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ABSTRACT

This paper investigates two options for the field programmable gate array (FPGA) implementation of a very
high-performance 2-D discrete cosine transform (DCT) processor for real-time applications. The first architecture
exploits the transform separability and uses a row-column decomposition. The row and column processors are
realized using distributed arithmetic (DA) techniques. The second approach uses a naturally 2-D method based on
polynomial transforms. The paper provides an overview of the DCT calculation using DA methods and describes
the FPGA implementation. A tutorial overview of a computationally efficient method for computing 2-D DCTs
using polynomial transforms is presented. A detailed analysis of the datapath for this approach using an 8 x 8
data-set is given. Comparisons are made that show the polynomial transform approach to require 67% of the
logic resources of a DA processor for equal throughputs. The polynomial transform approach is also shown to
scale better with increasing block size than the DA approach.
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1 INTRODUCTION

The 2-D DCT is at the heart of a vast majority of low-rate codecs for video compression. For example, the
DCT is an integral part of MPEG! and H.261.2 Tts time efficient computation is therefore of great interest in the
current technological climate where there is explosive growth in the communications and multimedia area. An
integral aspect of this confluence of computing, communications and multimedia are images and real-time video.
The efficient storage and transmission of video signals is a key component to the success of multimedia-based
systems.

The efficient computation of both the 1-D and 2-D DCT has received much attention in the research commu-
nity.8 ' There are several strategies available to the DSP systems engineer for realizing a DCT-based transform
coder. One option is to use a software programmable DSP processor like the TMS320C5x.'"" This brings high
flexibility to a design while sacrificing performance. At the other end of the implementation spectrum is an ASIC
solution, providing high performance at the expense of system flexibility. A third option is a field programmable
gate array based approach. This alternative has the potential to bring high-performance as well as flexibility to
a design.



Several investigators have explored approaches for implementing DCTs using field programmable logic. In?
a 1-D DCT based on the algorithm in* is described for the Xilinx XC6200° fine-grain architecture FPGA. In® a
distributed arithmetic (DA)7 approach for computing the 1-D DCT is described.

The conventional technique for realizing a 2-D DCT is to exploit the transform separability and decompose
the problem into a sequence of 1-D sub-problems - the row-column approach. For high-resolution N x N-pixel,
N > 1024, color images, a parallel architecture that incorporates row and column processors, as well as a matrix
transposition engine must be used to accommodate real-time data rates. Using the 1-D DA DCT reported in,%
the logic to realize each of the row and column processors alone is 264 configurable logic blocks CLBs),'? and this
is only for one of the three primary colors, and the matrix transposition has yet to be accounted for.

In this paper a new approach for implementing 2-D DCTs using Xilinx 4000 series FPGAs is described. The
technique is based on a little known result based on arithmetic in polynomial fields.'®'3 This algorithm has the
property of only requiring N 1-D DCTs of size N for performing an N x NV 2-D transform. Thus, the multiplicative
complexity is halved when compared to classical row-column algorithms. The resulting implementation requires
only 67% of the FPGA logic resources compared to a DA 2-D DCT engine with equivalent throughput. In
addition, as a result of the reduction in number of multiplications, computation noise introduced by round-off
errors in the fixed-point multipliers, is less than the row-column approach.

The DA approach for computing 1-D DCTs is first described. An architecture for computing 2-D DCTs using
FPGA-based 1-D DCT processors is presented. The logic requirements and performance data are reported. An
overview of a polynomial transform (PT) DCT technique is then given. The mathematical framework of this
elegant technique is provided, and then by way of an example (N = 8), the datapath implications are derived and
implementation using Xilinx FPGA is reported. To illustrate the utility of the polynomial transform method, the
logic requirements are compared to a DA DCT implementation.

2 COMPUTING DCTs USING DISTRIBUTED ARITHMETIC

To appreciate the utility of the polynomial transform based approach for computing DCTs presented later in
the paper, it is useful to provide a context in which to draw comparisons. The DCT defining equation is

N-1
2m
Yk:ak;xncos<m(2n+l)k> k=0,...,N—1 (1)

where ag = 1vN and a = /2/N for1 <k < N-1. In.% distributed arithmetic” is used as the basis for a
2-D DCT Xilinx'? FPGA implementation. The method is explained by first considering the matrix-vector form
of the 1-D DCT equation defined in Eq. (2) for the case N = 8.
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This formulation clearly reveals that each DCT output sample Y,k = 0,...,7 can be computed as a vector

dot-product of the basis function Cy,k = 0,...,7 and input samples z;,7 =0, ...,7 where Cj = cos(27k/32). To
compute all 8 DCT values, 8 FIR filters operating in parallel can be used. Each filter operates on the same set
of input data, but uses different coefficient sets. Each filter’s coefficient data is taken in a row-wise fashion from
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Figure 1: Row-column 2-D DCT processor employing 2 1-D DCT engines.

M T (milli-seconds) R

1024 23.6 42
2048 94.4 10
4096 3775 2

Table 1: Frame rate R and 2-D DCT execution times I' for several image sizes. DA DCT, b =8, f. = 50 MHz,
gray-scale data.

the basis function matrix in Eq. (2). The symmetry embodied in the coefficient data means that each filter need
only compute four product terms. This observation is used to implement very area efficient DA FIR filters for
performing DCT calculations.

For 8-bit precision input samples, and following the resource accounting detailed in,® the FPGA logic break-
down for one filter is as follows. A 16-word deep 8-bit wide LUT occupying 4 CLBs is required for computing
the sum-of-products. This unit is cascaded with an 8-bit parallel adder/subtracter requiring 9 CLBs. This gives
a total of 13 CLBs for the basic inner-product engine. Input buffering occupies a further 64 CLBs, and 12 CLBs
are used for producing the DA LUT addresses. The final components are an output buffer stage employing 64
CLBs, and 20 CLBs for the control-path. To support the concurrent calculation of all N DCT output values a
total of 264 CLBs are required to implement a single 1-D DCT processor.

2.1 DA DCT Performance

A 2-D DCT processor can be implemented by exploiting the transform separability and using row-column
processing as shown in Figure 1.

Data is loaded into the input buffer and N 1-D N-point DCTs are performed on the rows. N 1-D DCTs
are then performed on the columns of this intermediate result. Depending on the DCT processor architecture, a
matrix transposition may be required between the two transform stages.

For b-bit precision input samples, b+ 1 clock cycles are required to compute each N-point DCT. For an M x M
image frame, and using N x N source blocks, the transform time I' is

- MxM

7me(b+1)xi (3)

fe
where f, is the system clock frequency. The frame rate R is 1/I". The frame throughput and DCT execution
times for several values of M, and using b = 8, are shown in Table 1.

From the tabulated performance data, the DA approach obviously has reasonable throughput, but there
will always be applications with higher throughput demands than can be satisfied with this approach. High-
performance would also be required if color images, or multiple video channels are to be coded.
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Figure 2: Parallel DCT processor for computing 2-D DCTs in real-time.

3 HIGH-PERFORMANCE 2-D DCT PROCESSOR

By parallelizing the row and column processing, a very high-performance DCT processor can be realized.
This architecture is shown in Figure 2. Separate DCT processors are used for each row and column transform.
The input data is distributed in a row-wise fashion to each of the row buffer memories M, (p), p=0,...,N — 1.
The row processing elements PFE, (p) perform all of the N row transforms in parallel. The matrix transposer
re-orders the data and presents it to the column processing elements PFE.(p) via the column buffer memories
M.(p). Suitable pipelining is employed so that the row processing, corner turning, and column DCT computation
phases are overlapped.

Using this approach throughput is increased by a factor of N. However, this is achieved with a substantial
increase in logic resources. Excluding the matrix transposer, this architecture requires approximately 3328 CLBs.

If the remaining arithmetic redundancies in the row-column approach can be eliminated, a more area efficient
design can be produced. This goal is achieved by using an inherently 2-D approach to computing the transform,
rather than decomposing the problem into a set of 1-D calculations. Instead of interpreting the input data as a
2-D array of real numbers, it is treated as an ordered column vector of polynomials. Each polynomial corresponds
to one raster line, and can be thought of as an ordered N-tuple of data samples. The atomic unit of data that
is now manipulated is a polynomial, rather than a real number as is the case with DCT methods that employ
transform separability.

4 DCT COMPUTATION USING POLYNOMIAL TRANSFORMS

Polynomial transforms have been applied to computing 2-D DCTs by several researchers.'? 16 The derivation
by Prado'® will be used to formulate a datapath that results in a useful and efficient FPGA implementation.
Before considering the datapath that has been developed by the author, the mathematical foundation of the
technique is first described.



4.1 Polynomial Transform Calculation of 2-D DCTs

Since the inverse DCT is more easily expressible in terms of polynomial evaluation than the forward DCT, it
will be used to define the formal framework of the method.

Consider the 1-D DCT of the length N sequence x,
N-1 9
Xk:cknz%xncos<m(2n+1)k> E=0,...,N—1 4)

where ¢co = 1V/N and ¢, = V2/N for 1 <k < N —1. Without loss of generality the constant scaling term ¢y will
be excluded from the remainder of the analysis.

By defining the sequences

Yn = T2n
{ YN—1—-n — T2n+1 n:O,...,%—l (5)
and
Yo =2X, ©)
Y. = X, k=1,...,N—1
it can be shown that N
Xp 4 XNk = D yWin (7)
n=0
and
1= Ant1)k
=5 (Vi+ Yy Wt ®)
k=0

Tnverting Eq. (8) and applying standard results from polynomial algebra, results in the 1-D inverse DCT being
expressed as a polynomial evaluation in Eq. (10) .

N—-1
Y(z) = Y (Ve+iVnog)?* 9)
k=0

2yn = Y(z)|Z:W4(;1\;L+1>k =Y (z) mod (z — W’ﬁ\,nﬂ)k) (10)

Eqg. (10) has the following symmetry
JYN_k(z) = 2N Ye(z7) (11)

4.1.1 The 2-D DCT as a Polynomial Evaluation

The 2-D DCT X,,, , of the sequence x,, n, is defined as

N—-1 N-1

2m 2m
Xiy ko = Z Z Ty ny COS (m@m + 1)k1> cos (m(?’ng + 1)k2> (12)

k1=0k2=0

Define a permuted sequence as

Yni,ng = L2n1,2ny
yN—nl—l,ng = $2n1+1,2n2
yn1,N—n2—1 - x2n1,2n2+1 (]3>

N
YN—n1,N—nz—1 = T2ny+1,2n2+1 N1,M2 =0,...5 —1



As noted by Prado'® the 2-D equivalents of Eq. (7) and Eq. (8) can be obtained by some quite tedious computations
as
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Eq. (16) is equivalent to an inverse 2-D DCT but for a few additive terms. Tntroducing an auxiliary sequence
Yii ks

Vino = 2Xk 0 ki1=0,...,N—1
AT Fike=1,...,N 1 (19)
Yo ke = 2X0,k, ko=0,...,N —1

allows z,, n, to be written more compactly as
N—1N-
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Using a standard result from polynomial algebra'3 allows Eq. 20 to be expressed as a polynomial evaluation along
one dimension, ngy, while keeping the other one unchanged.
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Making use of the observation that (z — W’S\,"TH)) divides (2V + j), and replacing the index sequence {4n; + 1}
with a permutation {4n} + 1} defined as

{4n] +1} ={(4ny +1) X (4ny +1)} mod 4N (23)

allows the 2-D IDCT to be expressed as
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Y(Z) = Z Akl:kQ k2 (24)

2?&"‘
|
Dy

Y, = Vi, (2)24m Dk mod(2N + ) (25)

>

=
Il
=]

~c

Fnine = (z) mod (z—VV(‘*”erl)‘lN) (26)



DCT Calculation Pol - 0 2-D
Input | typut Re-ordering | Along L, Jolynomial | uput |\ DCT
Data Extended Diagonals Transform Re-ordering Result
Input Permutation 1-D DA DCT Parallel Pipelined Output
Processor Processors Polynomial Transform Permutation
Calculator Processor

Figure 3: Polynomial transform DCT system architecture.

Eq. (25) is recognized as being a polynomial transform and is multiplier-free. Eq. (26) defines the calculation of
N 1-D N-point IDCTs. The significant result to appreciate is that all of the multiplications from one dimensional
of the problem have been removed. And further more, there has been no increase in the number of additions
required.

A similar process can be used for calculating the forward transform, only now the order of the processing is
changed and the IDCTs are replaced by DCTs.

5 FPGA IMPLEMENTATION OF 2-D POLYNOMIAL
TRANSFORM BASED DCTs

From the formal mathematical explanation of the PT 2-D DCT in Section 4, the implications for the datapath
architecture are not immediately obvious. To further expose the operation of the algorithm and its implications
for FPGA implementation, a detailed example for the case N = 8 is considered in this section. This value has
been chosen because of its widespread use in video coding standards such as MPEG' and H.261.2

A block diagram of the PT 2-D DCT system architecture is shown in Figure 3. Data is received from the input
source and re-ordered. N 1-D DCTs are computed along extended diagonals of the permuted data, a polynomial
transform is calculated, and some output re-ordering is performed to produce the final result.

Although formally defined above, for the purposes of clarifying the procedure and providing some insight to
the requirements of the FPGA DCT processor, the data re-ordering process is examined here in more detail.

Figure 4 shows the first stage of the input permutation. The starting point is the naturally ordered input
data in Figure 4(a). Applying the permutation defined in Eq. 13 for N = 8 results in the data-set shown in
Figure 4(b). Only the indices for the two-dimensional input samples are indicated in the figures. Inspection of
the re-ordered matrix reveals the symmetries in the permutation mapping. It is worth noting that the address
sequencing required to effect the mapping is easily accommodated by an FPGA. The designer has the luxury of
customizing the address generator to meet any arbitrary data access requirements without any impact in the time
dimension. Of course area is traded in return for this benefit. However, a microprocessor implementation is likely
to be inefficient. Fither an arithmetic approach that requires use of the processor arithmetic logic unit (ALU)
and considerable control overhead, or a table lookup scheme could be employed. Both methods will impinge on
the reduction in the arithmetic workload that the PT algorithm provides.

Next, a sequence of N, in this case 8, 1-D DCTs are computed along extended diagonals of the permuted
input data. The eight diagonals are shown in Figure 5. All of the 1-D DCTs are computed in parallel, so of
course each 1-D DCT processor must have the appropriate source data available to it. This data organization
task is performed by the Input Permutation Processor in Figure 3. This functional unit assembles the input
data and formats it into eight independent memories, each containing data along one of the extended diagonals.
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Figure 4: Polynomial transform 2-D DCT - first stage of input data re-ordering.
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Figure 5: Computing 1-D DCTs along extended diagonals of the permuted input array.
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Figure 6: DCT polynomial transform signal flowgraph. IV = 8.

The requirements of the first stage permutation and the extended diagonal indexing are contracted into a single
process that is performed by this memory management unit.

Each DA processor requires b + 1 clock cycles to compute a complete 1-D N-point DCT. With the PT post-
processing overlapping the first stage DCT calculation, the data re-ordering must be completed in b + 1 clock
cycles so as not to stall the processor. In the available b + 1 clock cycles, N2 numbers must be handled by the
Permutation Processor. This can be achieved by presenting the data as N — 1 degree polynomials to the input
stage. For the widely used case of N = 8 this is not an unreasonable requirement. The implication is that 8 b-bit
data samples be available at each clock cycle. For b = 8, this amounts to the provision of a 64-bit wide input bus.

The key equations for constructing the datapath for the PT processor are embodied in Eq. (25). Several
options are available for a hardware realization. The PT is computed with a minimum number of additions if a
radix-2 partitioning, similar to the classical FF'T one, is used. This processing stage will consist of several columns
of polynomial butterflies. Unlike the butterflies that are used in many common FF'T algorithms, the PT transform
butterflies operate on polynomials rather than complex tuples. Furthermore, they are multiplier free, requiring
only addition and subtraction. An initial inspection of Eq. (25) may indicate the use of complex arithmetic in
the procedure. However, the complex writing of the inverse 2-D DCT is nothing more than a convenient option
that allows a succinct mathematical specification of the calculations that are to be undertaken. On another level
of observation, since the input data to the transform is real-valued, and because the DCT kernel does not involve
complex arithmetic, the result will naturally be a sequence of real numbers. It follows that there must be a way
to realize the system of equations Eq. (24-26) without requiring the use of complex variables. The problem is one
of revealing this possibility and architecting a suitable datapath.

A detailed analysis of Eq. (25) for the case N = 8, resulted in the signal flowgraph of Figure 6. The input
polynomials Ty (z), K = 0,...,7, are the results from the extended diagonal DCT calculations. The polynomials
Py (z), are the transform results in polynomial bit-reversed order. The calculation consists primarily of polyno-
mial butterflies, but with suitable multiplexing at appropriate points to avoid the introduction of any complex
quantities and to implicitly handle multiplication by the polynomial transform kernel. It should be noted that
the multiplication referred to here is not an arithmetic product and is implemented by appropriate indexing of
the data and possibly the introduction of a sign-change. A parallel pipelined structure is used in order to match
the latency of the first stage DCT processing. Recall that the DCT processing requires 9 clock cycles to execute.
The PT calculation must be performed in this same amount of time, or less, to avoid any stalls.

Each butterfly consists of an adder and subtracter. Most of the polynomial storage can employ FIFOs so
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Figure 7: DCT rank-2 butterfly.

minimizing control overhead, some of the memory elements must be dual-port RAM. The signal flow graph does
not posses the same degree of uniformity that the classical FFT algorithm has. The first processing stage is
straightforward, the four butterflies accept 7’th-order polynomials and form polynomial sums and differences that
are written to output FIFOs or dual-port memory - the processing is the same for the 4-pairs of rows. Subsequent
processing stages are not as regular, but essentially perform butterfly-like processing. This point is highlighted
by one example. In the second column of butterflies, rows 4 and 6 are combined using the butterfly circuit in
Figure 7 to produce new sequences for these same rows but one iteration later in time. The computation is defined
in Eq. (27) and Eq. (28). The primes indicate the new outputs and the notation y(%, j) references the jth element
in the 7’th row of a two-dimensional data-set.

YD) = i) - y(6.8 )
y(6,3) = %(y(4,i)+y(6,8—i)) i=1,2.3 (27)
YUS=i) = 8= i) y(6,0)
J6,8-0) = sAS—i)+y6,0) i=123 (28)

2

Observe that in these equations column elements 0 and 4 are not involved in the calculation, they must of course
pass through this processing phase unaltered in order to be available to later processing stages. The modified
butterfly that facilitates this is shown in Figure 7. The multiplexor select signal s allows the coefficients for terms
2% and z* from A(z) and B(z) to use the bypass path p and progress to the next stage of processing unaltered.
For all other terms, the polynomial sum and difference is presented at the multiplexor output. The scaling by 1/2
in Eq. (27) and (28)is simply a right-shift by one bit and is accommodated by wiring between adjacent stages.

5.1 Logic Requirements and Comparison

A figure of 200 CLBs will be used to account for each 1-D DA DCT processor. This number is obtained from
data in Section 2, where the total cost for a complete DA DCT engine was introduced as 264. The cost of the
dual-port output buffer, 64 CLBs, has been removed since it is not required for the processing elements in the
concurrent approach. Using 8-bit precision, the datapath defined in Figure 6 can be implemented with 584 Xilinx
4000 series CLBs. Add to this 8 x 200 = 1600 CLBs for the first stage DA-based DCT processing and a further
64 CLBs for the row buffer memories, and the net logic requirement is 2248 CLBs. From Section 3, the CLB
requirements for a transform processor that solely employs DA DCT techniques was 3328. So the polynomial
transform method uses 2248/3328 x 100% = 67% of logic resources of the DA-only processor while providing the
same processing throughput.



5.2 Scalability

Both the 2-D DA DCT processor and the 2-D PT DCT architecture are obviously scalable. It is instructive
to consider the area implications for scaling both approaches. Aside from the dimension M of the input data-set,
there are essentially two other variables to consider from a scalability perspective: the precision of the input
samples and the size N of the transform data blocks. We will investigate the effect of manipulating N. What
effect does a doubling of N produce? For a fixed frame rate requirement, a doubling of NV implies approximately a
four-fold increase in the processing load. In going from N = 8 to N = 16, 16 DA engines will be required in each
of the row and column processors. To match the processing latency for the N = 8 case using the larger block size,
requires the 16-bit processors to process two bits of each input sample in parallel. The logic requirements of a
dual-bit processor are approximately twice that of a single-bit processor. So again using the figure of 200 CLBs for
a single-bit DA DCT engine, the new CLB count for the 16 x 16 transform engine is 2 x (16 4+ 16) x 200 = 12, 800
CLBs. Now consider the logic impact for the PT architecture.

The first stage processing will grow by the same amount as the row processor requirements in the DA processor.
However, the polynomial transform scales logarithmically. A good estimate of the impact can be obtained by
considering how butterfly networks in general scale. Let Ay denote the logic resource requirements for an order
N polynomial transform. The complexity of the polynomial transform is approximately N/2log, N. The impact
on silicon requirements in going from an O(N/2) problem to an O(N) transform can be expressed as the ratio

AN - %logQN

A(N)

= 29
AN/Q % log, % (29)

Having the CLB count Z(8) for N = 8, lets us compute a good area estimate for a 16-point polynomial transform
as A(16) x Z(8) = 2.666 x 584 = 1557. Including the first stage DCT processing gives a CLB count of 2 x 16 x
200 4+ 1557 = 7957 CLBs. Comparing this figure with the DA CLB count, shows that the PT processor uses
7957/12800 x 100 = 62% of the logic requirements.

The conclusion is that the polynomial transform algorithm scales in a more desirable manner than the DA-only
DCT based processor. This observation may warrant devoting some attention to this approach for demanding
combinations of problem size and frame rate requirements.

6 CONCLUSION

This paper has explored a new architectural option for implementing high-performance 2-D DCT processors
using FPGA technology. Most would agree that the mathematical framework of the polynomial transform DCT
calculation is reasonably cumbersome. This investigation has attempted to reveal some details of the operation of
the algorithm, and show how a suitable datapath can be constructed for performing the required calculations. By
comparison with one of the few FPGA DCT implementations reported in the literature it has been demonstrated
that the polynomial transform based DCT calculation has a contribution to make in the context of minimizing
FPGA logic resources. For the case of 8 x 8 coding blocks, a polynomial transform DCT architecture uses 67%
of the CLB resources of DA-only approach for the same throughput.

As a final note, it is interesting to observe that since all of the multiplications have been completely eliminated
from one dimension of the problem, the computation noise introduced by rounding of product terms has been
removed. The only operations required in the second stage of the polynomial transform DCT are addition and
subtraction. When implemented using integer arithmetic, the calculations are performed exactly and with no
introduction of noise.
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