
12
XCell 31 - 1Q99

Efficient Multi-Channel
SERIAL to PARALLEL

Converter

ften, data from remote sensors is sent back to a
central location in serial format, to reduce the cost of
cabling. The data streams then need to be converted

into a parallel format for processing. This is typically accom-
plished using a shift register, followed by a holding register,
thus requiring two flip-flops per bit.

For example, eight 16-bit channels of data would require
eight 16-bit shift registers and eight 16-bit registers, for a total
of 256 flip-flops. This requires 128 CLBs in a Spartan or
XC4000 family device, or 64 CLBs in a Virtex device. The
following implementation requires only 30.5 CLBs in a Spartan
or XC4000, and only 15.25 CLBs in a Virtex device, and
requires 128 (8x16) clock cycles for one complete scan.

Double Buffering for �free�
The dual port RAM is used to both convert the data from serial
to parallel format, as well as provide for double buffering. The
data is written into one half of the memory, and read out from
the other half. The double buffering is accomplished by �ping-
ponging� between the memory halves.

Memory Map
The 16 dual port 16x1 RAMs are structured such that each
DPRAM contains a specific bit of data from all channels. For
example, DPRAM 0 contains all the bit zeros, DPRAM 1
contains all the bit ones, and so on. As discussed above, the
upper/lower half contains the data currently being converted,
while the lower/upper half contains the data previously
converted.

FPGA APPLICATIONS

A significant size reduction is accomplished
by taking advantage of the dual port mode
of the distributed SelectRAM available in
Spartan,TM XC4000, and Virtex devices.

Double Buffering

Memory Map

O

Figure 2

DPRAM 0 DPRAM N

teven teven

todd todd

Channel 0, bit 0 Channel 0, bit N
Channel 1, bit 0 Channel 1, bit N

Channel 7, bit 0 Channel 7, bit N
Channel 0, bit 0 Channel 0, bit N

Channel 7, bit 0 Channel 7, bit N

Figure 1

by Paul Gigliotti, Field
Applications Engineer, Xilinx,
paul.gigliotti@xilinx.com

The ability of Spartan, XC4000, and
Virtex FPGAs to support distributed
blocks of RAM allows for significant
design efficiencies.



13
XCell 31 - 1Q99

outputs of the decoder driving the write enables of the dual
port RAMs.

Conclusion
The ability of Spartan, XC4000, and Virtex FPGAs to support
distributed blocks of RAM allows for significant design
efficiencies. The above design can be extended to 16 channels
by adding another bank of sixteen dual port RAMs, increasing
the CLB count by 16, rather than an increase of 128 CLBs
using a more traditional approach.

Control Logic
The control logic consists of an eight-bit counter, an 8-to-1
multiplexer, and a 4-to-16 decoder. In a Spartan or XC4000
device, the control logic uses four CLBs for the counter, 2.5
CLBs for the multiplexer, and eight CLBs for the decoder, for a
total overhead of 14.5 CLBs. The three LSBs of the eight-bit
counter drive the select lines of the 8-to-1 mux, as well as the
write port�s three LSB address lines. The MSB of the write port
is driven by the inversion of the counter�s MSB. The four MSBs
of the counter drive the read port�s addresses. Finally, bits 3,
4, 5, and 6 of the counter source the 4-to-16 decoder, with the

else
WRITE_ENABLE(I) <= ‘0’;

end if;
end loop;

end process;

MUX:
process (COUNTER)
begin

case COUNTER(2 downto 0) is
when “000” => DATA_BIT <= CHANNEL(0);
when “001” => DATA_BIT <= CHANNEL(1);
when “010” => DATA_BIT <= CHANNEL(2);
when “011” => DATA_BIT <= CHANNEL(3);
when “100” => DATA_BIT <= CHANNEL(4);
when “101” => DATA_BIT <= CHANNEL(5);

when “110” => DATA_BIT <= CHANNEL(6);
when others => DATA_BIT <= CHANNEL(7);

end case;
end process;

WRITE_ADDRESS <= (not(COUNTER(7)) & COUNTER);

RAM:
for I in 0 to 15 generate
RAMBANK:

RAM16X1D port map (
A => WRITE_ADDRESS,
DI => DATA_BIT,
WR_EN => WRITE_ENABLE(I),
WR_CLK => CLK,
DPO => DATA(I),
DPRA => COUNTER(7 downto 4)
);

end generate RAM;
end ser2par_arch;

entity ser2par is
port (
CLK: in STD_LOGIC;
CHANNEL: in STD_LOGIC_VECTOR (7 downto 0);
DATA: out STD_LOGIC_VECTOR (15 downto 0)
);
end ser2par;

architecture ser2par_arch of ser2par is

signal DATA_BIT:STD_LOGIC;
signal WRITE_ADDRESS:STD_LOGIC_VECTOR(3 downto 0);
signal COUNTER:STD_LOGIC_VECTOR(7 downto 0);
signal WRITE_ENABLE:STD_LOGIC_VECTOR(15 downto 0);

component RAM16X1D
PORT(
A: IN std_logic_vector(3 DOWNTO 0);
DI: IN std_logic;
WR_EN: IN std_logic;
WR_CLK: IN std_logic;
DPO: OUT std_logic;
DPRA: IN std_logic_vector(3 DOWNTO 0));
end component;

begin

process (CLK)
begin

if CLK=’1’ and CLK’event then
COUNTER <= COUNTER + 1;

end if;
end process;

DECODER:
process (COUNTER)
begin

for I in 0 to 15 loop
if (COUNTER(7 downto 4) = I) then

WRITE_ENABLE(I) <= ‘1’;

The Code


