
28

Figure 1: The Technology
View in HDL Analyst

Synplicity has added automatic RAM
inferencing to Synplify version 5.0.5. Now, you no
longer need to manually instantiate RAM as a black
box or Xilinx-specific primitive; you can make
designs that are truly technology independent.

This article describes how to successfully in-
corporate RAM into your next VHDL or Verilog
design with Synplify. Synplify integrates both RAM
timing estimates and regular timing constraints to
efficiently optimize your next design, and includes:

� Automatic synchronous RAM inferencing

� SelectRAM� or register implementations

� Timing estimates on RAM blocks

� Flexible coding styles

RAM Implementation
Synplify v5.0.5 can automatically infer RAM

structures when coded as an indexed array or as a
CASE statement. However, it will infer only syn-
chronous RAMs; asynchronous RAMs are not
supported. See the following examples for a sug-
gestion on coding styles for RAM blocks.

When a RAM block is recognized, Synplify will
automatically implement the circuit using
RAM16X1S, RAM32X1S, and RAM16X1D Xilinx
RAM primitives. If a RAM block is more complex
than a single 16x1 primitive, Synplify creates the
necessary write enable and data multiplexing logic

to implement the circuit using multiple RAM
blocks. HDL Analyst displays a RAM block in the
RTL view, making the schematic view easier to
read. To see how the large RAM blocks are imple-
mented, use the technology view in HDL Analyst,
as shown in Figure 1.

If you want to map your RAM into standard
logic and registers, you can disable the usage of
Xilinx SelectRAM TM, by setting the syn_ramstyle
attribute to �registers.� This attribute can be ap-
plied directly in the HDL source code or through
Synplify�s Synthesis Constraint OPtimization Envi-
ronment (SCOPE �).

To effectively optimize designs that incorporate
RAM, the synthesis tool must understand the tim-
ing delays through the RAM blocks for the critical
path optimization. Synplify understands the timing
characteristics of the RAM primitives, and includes
all RAM delays in the analysis and optimization of
critical paths.

Inferring RAM in Synplify
by Allen Drost,

Corporate Applications
Engineering Group

Manager,
allen@synplicity.com

�Inferring RAM is

the most effective method of

designing memory into

your FPGA design. Synplify

provides a full suite of

features to implement,

analyze, and optimize your

RAM design.�

29

Example 3: Single-ported Verilog
module test_ram32x2 (clk, we, addr, data_in,

data_out);

input clk, we;

input [1:0] data_in;

input [4:0] addr;

output [1:0] data_out;

reg [1:0] mem [31:0];

always @(posedge clk)

if (we) mem[addr] = data_in;

assign data_out = mem[addr];

endmodule

Example 4: Dual-ported Verilog
module ram4x4(z, raddr, d, waddr, we, clk);

output [3:0] z;

input [3:0] d;

input [1:0] raddr, waddr;

input we;

input clk;

reg [3:0] z;

reg [3:0] mem0, mem1, mem2, mem3;

always @(mem0 or mem1 or mem2 or mem3 or
raddr)

begin

case (raddr[1:0])

4’b00: z = mem0;

4’b01: z = mem1;

4’b10: z = mem2;

4’b11: z = mem3;

endcase

end

always @(posedge clk) begin

if(we) begin

case (waddr[1:0])

4’b00: mem0 = d;

4’b01: mem1 = d;

4’b10: mem2 = d;

4’b11: mem3 = d;

endcase

end

end

endmodule

Conclusion
Inferring RAM is the most effective method of

designing memory into your FPGA design. Synplify
provides a full suite of features to implement,
analyze, and optimize your RAM design.

Example 1: Single-ported VHDL
library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_signed.all;

entity ramtest is

port (q : out std_logic_vector(3 downto
0);

d : in std_logic_vector(3 downto 0);

addr : in std_logic_vector(2 downto 0);

we: in std_logic;

clk : in std_logic);

end ramtest;

architecture rtl of ramtest is

type mem_type is array (7 downto 0) of
std_logic_vector (3 downto 0);

signal mem : mem_type;

begin

q <= mem(conv_integer(addr));

process (clk, we, addr) begin

if (rising_edge (clk)) then

if (we = ‘1’) then

mem(conv_integer(addr)) <= d;

end if;

end if;

end process;

end rtl;

Example 2: Dual-ported VHDL
library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_signed.all;

entity ramtest is

port (q : out std_logic_vector(3 downto
0);

d : in std_logic_vector(3 downto 0);

addr_in : in std_logic_vector(2 downto 0);

addr_out : in std_logic_vector(2 downto 0);

we : in std_logic;

clk : in std_logic);

end ramtest;

architecture rtl of ramtest is

type mem_type is array (7 downto 0) of
std_logic_vector (3 downto 0);

signal mem : mem_type;

begin

q <= mem(conv_integer(addr_out));

process (clk, we, addr_in) begin

if (rising_edge (clk)) then

if (we = ‘1’) then

mem(conv_integer(addr_in)) <= d;

end if;

end if;

end process;

end rtl;

Examples
(Note: Synplify supports inferencing of single and dual ported RAM in VHDL and Verilog, using either

indexed arrays or case statements)

For more information
please see the
Synplicity website at
www.synplicity.com.

http://www.synplicity.com

