by Tom Hill, Silicon Vendor
Relations Manager, Exemplar
Logic, tom.hill@exemplar.com

SIC synthesis experienced rapid growth in the EDA

industry during the early to mid-‘90s. However, it was the

programmable logic industry, that pioneered chip design
using logic synthesis. Pre-dating the introduction of the first
commercial ASIC synthesis tools by ten years, PALASM and ABEL
were being used to synthesize PAL devices. By the mid-‘80s most
board designs included a programmable logic device.

Xilinx, founded in 1984, had a novel idea for a new ASIC device
called a field programmable gate array (FPGA). Their architec-
ture differed significantly from the PALs in two ways. First, it
employed SRAM technology to achieve reprogrammability,
which pushed gate counts far beyond PALs. Second, it offered
multiple logic levels on a single device, making it more versatile
and more similar to gate arrays than the two-level logic
structures of PALs. This second reason spawned a relationship
between Exemplar Logic and Xilinx in 1987 that would
profoundly change both companies.

In 1985, Ewald Detjens, the founder of Exemplar Logic, was
participating in a UC Berkley research project developing
algorithms for multiple logic level, interactive synthesis (MIS).
Several classmates, wishing to apply these concepts to gate
arrays, went on to form the origins of one of today’s largest EDA

companies. Ewald, a person
preferring the road less traveled,
was looking for something different
when he discovered Xilinx.

In 1987 Xilinx introduced its first
automated design environment
called PPR. Prior to PPR, designers
placed and routed their devices by
hand using a system called XACT.

14

Exemplar Logic and Xilinx pioneered
FPGA synthesis and have been work-
ing together for over a decade to

advance and improve methodologies.

PPR liberated them from this painstaking process by accepting
netlists of cells and automatically performing place and route.
For the first time, Xilinx devices could be designed using 31
party design entry tools and schematic capture was quickly
introduced into their design flow. While broadening their
appeal to gate array designers currently using schematic
capture, Xilinx was failing to effectively reach the market it
really wanted: the person already using programmable logic,
the PAL designer using PALASM and logic synthesis.

Working closely with some of the original software
developers at Xilinx, Exemplar Logic introduced its first two
products in 1988. Developed exclusively for Xilinx to target
PAL designers, these products were called “PDS2XNF” and
“XNFOPT.* PDS2XNF converted PALASM files to XNF netlists of
simple primitive gates and XNFOPT incorporated the MIS
synthesis technology developed at UC Berkley, along with a
new invention called LUT mapping, to efficiently optimize
PALASM files directly into Xilinx Configurable Logic Blocks
(CLBs). Exemplar Logic gave PAL designers easy access to
Xilinx technology through logic synthesis and forever changed
the face of the programmable logic industry.

From these humble beginnings PLD synthesis has grown to
a $50 million a year industry and provides the chief method
for designing Xilinx FPGAs. While the tools and devices have
grown in sophistication, the design methodology has remained
relatively consistent. Today, a single designer can complete
most designs using a non-interactive, top-down synthesis
approach and “on-board” verification. But will this meet the
needs of tomorrow’s FPGA designer? The answer is “no.”
Today’s FPGA design methodology needs to evolve to avoid the
productivity gap now being experienced by the gate array and
standard cell communities where silicon densities have
outpaced the designers’ ability to utilize them.

The Virtex family represents a major advancement in program-
mable logic technology providing up to one million system
gates of logic. With this dramatic increase in gate counts, the
advantages of preserving design hierarchy are too great to
ignore. Initial place and route can be performed early in the
design process providing valuable device utilization and
performance information while changes, made during final
debug, can be limited to a local sub-block, maintaining an
efficient design iteration cycle. FPGA synthesis and implemen-
tation must become interactive and iterative on a block by
block basis to continue to provide an efficient design method-

Leonardo Spectrum has been designed, not to hide design
hierarchy, but rather to exploit its many advantages. A design
hierarchy browser is an integral part of the user interface
allowing you to easily access, manipulate, constrain, and swap
hierarchical blocks. Incremental design is fully supported at
the functional level allowing modules to be corrected at the
RTL level, re-synthesized, and re-optimized while preserving
all netlist information in the surrounding blocks. Incremental
design is also supported at the synthesis level allowing
constraints to be “tightened” on sub-blocks and re-optimized
to correct timing or area problems discovered during place

ology for FPGAs. and route. Block-level design will provide the key to efficient
interaction between the synthesis and place and route
Timing Constraints environments.
passed down
Top from Top Level
| | Exemplar Logic and Xilinx pioneered FPGA synthesis and have
N c been working together for over a decade to advance and
improve methodologies. Together we are committed to
Netlist & developing new technologies, including improved interactive
Commands ™ . block-based FPGA design, making programmable logic design
Incremental 8 < Alliance Series the industry’s premier design methodology. &
Optimization SDF —— |
performed on
Block B

Constraint Editor

Input Parts:

=4k INTERFACE
[= seed24:0]

o-F (1 [priority_encoder_|
vk 12 (ram_8_3_8)

e [-

r~ Input Constraint

Aurival Tirme:

Rize:

=
@

=1
e

i N WML N

Hierarchy Browser

Optimization Interface

= v FRIMITIVES

= B work

D dishg 25

D priority_encoder_25_3

Select design to optimize:

= W wiark,

-0 diabg 25

Current Path: .work.rand INTERFACE

Target Technology:

B> initf4:0] & Infinite Drive B o B8 D prioity_encoder 25 [ogi inex -

[lnad ™ Input Drive D 1B Lr1am 8.3 8

D thif 8 Riun bype:
[clk - lfer 8 t

s] & Dptimize ¢ Remap
-[Ir 1eset tax Input Load: pf o divide_by_n_5 :

=L 1and --D divide_by_n_5 -

T read M Input Fanout f loads =4 INTERFACE -0 rand I™ Extended Oplimization Effort
- wiite (B Ports ~LF INTERFACE ¥ Fassil ¥ | Passiz
#-Cr 10 (dlatrg_25) Mai Transition: ¥ Fass ol [| Fass

Diptirize For
Set s Present Design |

-0 12 (ram_8_3 8] it A " Delay i Area
5O 13 (bu_g) el L O 12l B
ik 14 [IFsr_8) g :;R;Sf,dﬁl - Ungroup [Add |0 Pads
; . i
i 15 [divide_by_n B) PFir Location: o @ OPERATORS ivide_by_n_. Unmap T oo M
Don't Tauch : . .
il I » [~ Optimize a single level of hisrarchy
et Buffers Trace to HDL Sourcs ¥ Run timing optimization
Delete Canstraints I Sort 4 | »

15

