
27

HDL
hen Xilinx users first started creating FPGA designs
based on schematics, the only verification technol-
ogy available was based on a gate-level netlist

simulator. The time and effort required to create tool-specific
simulation test vectors and the relatively small gate count of
designs made it unnecessary to use a simulator in the design
flow. It was easier to program the device and test it in hardware
than to verify it using the simulator.

Today, with FPGA capacities exceeding one million system
gates, simulators can actually save you time by detecting
problems early in the design flow. For most large designs it is
practically impossible to create a reliable FPGA without using a
simulator.

Behavioral RTL Simulation of HDL Code
The term “behavioral RTL simulation” is used here to describe
simulation of an FPGA design prior to running any synthesis or
implementation tools. Behavioral simulation verifies that your
HDL code is correct and detects any functional problems. For
large designs that take hours to synthesize it will save a lot of
time if the FPGA can be functionally tested without running the
synthesis after each change. Furthermore, behavioral simula-
tion is typically 10 to 100 times faster than post-synthesis
simulation of the same design.

PERSPECTIVE

The Increasing Importance of
OK
Not OK

by Gregor Siwinski, Director of R&D,
Aldec Inc., gregor@aldec.com

W

HDL simulation in debug mode
using Active-VHDLTM software

Figure 1

How the new generation
of HDL simulators can
help you design the largest
FPGAs with a minimum
amount of time spent on
the simulation process.

Advanced HDL Debugging
Simulating HDL in a debug mode allows you to analyze your
design source similar to software debuggers:

• Execute your HDL code in trace mode one line at a time.

• Breakpoints can be on any line of HDL code or signal change.

• Variables can be monitored and modified during simulation.

• Design hierarchy and signals can be viewed to inspect a
value of any signal or port in the design.

• The Dataflow view presents a graphical view of a signals
connectivity in the HDL design.

• Waveforms and event list windows can be used to monitor
the results.

Today, with FPGA capacities exceeding
one million system gates, simulators can
actually save you time by detecting prob-
lems early in the design flow.

VerificationVerification

Continued on the following page



28

PERSPECTIVE

One very important benefit of using HDL simulation is that
the test bench can be described in the same HDL language as
the design itself. Aldec also generates a script file that will
compile the necessary HDL files and automate the entire
verification process.

Xilinx Foundation Series Designs
Many Xilinx Foundation Series software users create designs
containing schematics. Schematic-based designs and mixed
schematic/HDL designs can also be simulated in HDL simula-
tors. The Foundation Series software provides a seamless
interface to HDL simulation that will export all schematic
portions of the design to VHDL and then invoke the VHDL
simulator from the Foundation Project Manager.

Users who create graphical state machines in the Founda-
tion Series are also able to animate the FSM diagrams during
simulation. Also, the Foundation test vectors can be imported
to Active-VHDL for easy transition to the HDL simulation
environment.

Post-synthesis Verification
In most cases, the simulation of a design after synthesis should
output the same results as the behavioral simulation. The
purpose of post-synthesis simulation is to make sure this is the
case and that the synthesis tool output produced the netlist
which is functionally the same. Synthesis programs may
implement your HDL code in a different way than you expected
and the post-synthesis simulation will detect that.

Synthesis tools like Foundation Express can produce a netlist
in VHDL and Verilog formats for HDL verification. The best
feature of this process is the ability to use the same simulation
input or test bench that was used for behavioral simulation. The
post-synthesis simulation results can be compared against
original outputs graphically in the waveform window.

HDL Test Bench
Creating simulation input can be a tedious process. That’s why
it is important to know all possible entry methods and use
them to save design time:

• Graphical stimulators are very useful to set signals to a
desired state, define clocks and formulas.

• HDL test bench files can be generated from waveform
diagrams.

• HDL test bench with Smart ComparisonTM using IEEE
1029.1 WAVES standard.

• Script files can automate the entire verification process
(such as TCL, PERL).

Waveform-based HDL simulation with
familiar stimulators

Figure 2

In most cases, the simulation of a design after synthe-
sis should output the same results as the behavioral
simulation. The purpose of post-synthesis simulation
is to make sure this is the case...



29

Timing Verification
After a design is implemented by the Xilinx tools, you have an
option to export timing simulation data. This will generate an
HDL simulation netlist and an SDF file containing calculated
timing delays. The timing netlist uses the SIMPRIMS simulation
library based on Vital primitives.

Accurate simulation of timing delays allows testing of the
design functionality at the target frequency rate, to detect any
setup/hold violation and timing glitches.

Similar to post-synthesis simulation, there is no need to
develop new simulation test vectors. The same simulation test
bench can be used for both behavioral and post-implementa-
tion simulation. All this is done in the same design and
graphical environment.

Timing simulation can be very time consuming. However,
with the accelerated Vital primitives used in Active-VHDL
software the simulation speed can be five to ten times faster
than in the Foundation Series gate-level simulator.

Smart Comparison Test Bench
One obvious question is how to compare the simulation results
between behavioral simulation and post-implementation timing
simulation. You can no longer use the graphical comparison
because of the delays that cause waveforms to shift.

The answer comes in the Smart Comparison based on the
recently published IEEE WAVES standard. Among other test
bench functions, WAVES provides a very convenient method of
comparison of current simulation results with the golden
reference previously saved in the vector file.

Active-VHDL Test Bench WizardTM automates this process
even further, saving the functional simulation results into a
standard VEC file and generating the VHDL test bench program
using the WAVES library. You only have to specify the so called
“comparison window” which defines a period of time after
each test pattern that is ignored to take account for timing
delays. All discrepancies are detected during simulation giving
you detailed messages about signal and time when the
simulation results are different. Both expected and actual
waveforms are displayed in the same screen.

Smart Comparison shows
actual and expected waveforms

Figure 4

In the near future, you will see even
more integration in the HDL design
environment with features such as HDL
graphical entry, code coverage analy-
sis, and formal verification. This pre-
pares us for the next generation of HDL
verification tools.

Xilinx Foundation software
provides integration to VHDL simulation

Figure 3

Summary
As you could see, the verification tools have come a long way
over the last 15 years. If you would like to learn more about
the benefits of HDL simulation please visit Aldec’s website at
http://www.aldec.com/activevhdl

In the near future, you will see even more integration in the
HDL design environment with features such as HDL graphical
entry, code coverage analysis, and formal verification. This
prepares us for the next generation of HDL verification
tools.

http://www.aldec.com/activevhdl

