Synthesis tools need to
look beyond just optimi-
zation and be used as

SOFTWARE APPLICATIONS

Hierarchy Management

in Synplify

by Allen Drost, Corporate Applications Manager, and
Jim Tatsukawa, Partner Programs Manager, Synplicity,

allen@synplicity.com, jimt@synplicity.com

s your designs reach ASIC complexities with the Xilinx
A Virtex devices, you will face new design problems. Of

particular importance is how synthesis tools handle
your design’s hierarchy. Simple solutions of just turning on or
off hierarchy are inefficient and cambersome. Synthesis tools
need to look beyond just optimization and be used as part of
an overall design flow that includes constant changes and
recompiles.

Hierarchy Pro’s and Con'’s

Traditional synthesis tools treat hierarchy as “artificial” hard
boundaries. Thus preventing logic on one level of hierarchy
from being combined with
logic on another level. For
example, if the output of
an inverter crosses a level

. of hierarchy and drives a
part of an overall design second inverter, this
Slow with constant hierarchy boundary would
changes and recompiles. ~ Preventatraditional

synthesis tool from

optimizing the double inversion, resulting in a final circuit that
has two inverters instead of a more optimal circuit with zero
inverters. See Figures 1 and 2 for more examples.

Alternatively you could try and dissolve the design so that
there were no hierarchical boundaries. This flattening of the
design may produce a smaller or faster design from a logic
perspective, but it creates other complications in the design
flow. First of all, blindly flattening the entire design may
produce a single block of logic large enough to overwhelm the
capacity of the synthesis tool, resulting in unmanageable
runtimes, or a sub-optimal netlist. To deal with this problem,
you may need to specify which levels of hierarchy to dissolve,
but this requires you to decide what the optimal hierarchical
boundaries should be.

XCell 31 - 1Q99

19

A look at how Synplify automatically
manages hierarchy for all Xilinx
architectures while giving you addi-
tional controls if required.

Another issue with flattening hierarchy is that, although it
may lead to a more optimal netlist from synthesis, the simple
fact that the topology of the design has changed may cause
problems with tools downstream. For example, you may invest
significant amounts of time and effort developing constraints for
placement and routing, as well as a simulation testbench. By
altering the topology of the design, the grouping of large blocks
of logic may change, as well as the names of the registers within
the design. These changes could invalidate both the place and
route constraints and the simulation testbench. If this occurs,

Continued on the following page

RTL & Technology Views of Hierarchical Design

R
Oraed i | [EEN S

o I ["

LLIT4_MoEd |
- e

e 34 Wiz

Figure 1
This design simply ANDs four signals together,
however as shown in the top (RTL) view, two of the
signals are ANDed in hierarchical block U1 and two
more are ANDed with that result in block U2. Notice
in the bottom (Technology) view that the two AND
structures were merged together into a single 4-input
LUT in block U2. This type of simple boolean optimi-
zation occurs regardless of the value of syn_hier.

SOFTWARE APPLICATIONS

Source code

[**** Sub-block A description ****/
module block_A (clk, rst, a, b, A_out);

input clk, rst, a, b;
output A_out;

reg reg_a, reg_b;

always @(posedge clk or negedge rst) begin
if (Irst) begin
reg_a <= 1'b0;
reg_b <= 1'b0;
end
else begin
reg_a<=a;
reg_b <=b;
end
end

assign A_out =reg_a & reg_b;

endmodule

[**** Sub-block B description ****/
module block_B (clk, rst, c, d, A_out, z);

input clk, rst, c, d, A_out;
output z;
reg z;
always @(posedge clk or negedge rst) begin
if (Irst)
z <=1'b0;
else
z<=c&d&A out;
end

endmodule

[**** Top level description ****/
module boundary_optl (clk, rst, a, b, c, d, z);

input clk, rst, a, b, c, d;
output z;

wire A_out;

block_A U1 (clk, rst, a, b, A_out);
block_B U2 (clk, rst, c, d, A_out, z);

endmodule

you would need to update the constraints and testbench,
creating a lot of extra work, particularly if it is necessary to
iterate this process several times.

Hierarchy Solution

Synplify handles these hierarchical issues automatically.
During the synthesis process, Synplify dissolves as much of the
design’s hierarchy as possible to allow efficient optimization of
logic across hierarchical boundaries while maintaining fast
runtimes. Synplify then rebuilds the hierarchy to be as close as
possible to the original source.

With the exception of any optimizations that occurred on
the logic that straddles the hierarchy boundaries, the final
netlist will have the same hierarchy as the original source
code, ensuring that hierarchical register names remain
consistent, and that major blocks of logic remain grouped
together. This method of handling hierarchical boundaries,
combined with the architecture-specific mapping, creates an
efficient and effective optimization engine.

Optimization With Soft Hierarchy

Figure 2

Additional Control for Hierarchy

Although Synplify does a good job at managing hierarchical
designs automatically, from time to time you may have a
specific reason to want manual control over your design’s
hierarchy. Synplify offers the “syn_hier” attribute to provide
this manual control. The syn_hier attribute is applied to
instances, modules, or architectures. It takes one of three
values:

o The “remove” option dissolves a level of hierarchy.

o The “soft” option is the default option, and gives Synplify
control over which hierarchical boundaries to dissolve.

o The “firm” option prevents a level of hierarchy from being
dissolved, however, simple boolean optimizations will still
take place across hierarchical boundaries (see Figure 1).

Notice that these options control the way Synplify handles a
design during optimization only. Regardless of which option is
selected (remove, soft, or firm), Synplify will rebuild the

clk
[enable [7:0]
(7:01/5 =)
. . ™~
[7:0] .[7:01 D[7:0] Q[7:0] 70l ——{count[7:0] >
. :
U2.inc[7:0] U1.count_4{7:0] U1.count[7:0]
rst Figur93

XCell 31 - 1099

20

hierarchy before the final netlist is created, ensuring that the
netlist created by Synplify is efficient with regard to hierarchi-
cal boundary optimizations, and structurally as close as
possible to the source code.

The syn_hier attribute can be placed directly in the source
code, in the Synplify constraints file (.sdc), or in the graphical
constraint editor in SCOPE. See Figure 4 for example usage.
The syntax is shown below:

Verilog:
module block_A (clk, rst, enable, inc, count) /*

synthesis syn_hier = “firm” */;

VHDL:

attribute syn_hier: string;

attribute syn_hier of block_A : architecture is
“firm”;

Constraint file (.sdc):

define_attribute { U1} syn_hier { firm}

Summary

To control Virtex designs over multiple compiles, synthesis
tools need a hierarchical solution that does not compromise
the overall performance of the design. Synplify understands the
hierarchies of a design, and automatically produces a netlist

Source Code:

[**** Sub-block A description ****/
module block_A (clk, rst, enable, inc, count);

input clk, rst, enable;
input [7:0] inc;
output [7:0] count;

reg [7:0] count;

always @(posedge clk or negedge rst) begin
if (Irst) count = 8’'h00;
else if (enable) count = inc;

end

endmodule
[**** Sub-block B description ****/
module block_B (count, inc);

input [7:0] count;
output [7:0] inc;

assign inc = count + 1;
endmodule

[**** Top level description ****/
module boundary_optl (clk, rst, enable, count);

input clk, rst, enable;
output [7:0] count;

wire [7:0] inc;

block_A U1 (clk, rst, enable, inc, count);
block_B U2 (count, inc);

with efficient logic optimization across hierarchical bound- SRR
aries, while preserving a topology as close as possible to the .
Figure 4
source code, thus ensuring that the entire design flow remains
intact. See www.synplicity.com for more information. &
Optimization With Firm Hierarchy
block B This design is a simple counter. As
- N block_A shown by the component names in
N2 L 'na figure 3 (RTL View), the register is in
N 3 N 3 hierarchical block U1 and the
To|CUNtl7:0l N_a | N_2 _ incrementor is in hierarchical block U2.
e N-1 1 2 Infigure 6 (Technology View),
e || N countlZ:0) 75~ IR0 the default value of syn_hier
N_8 e N 6 was used (soft), and Synplify recog-
u2 enable nizes the counter and pulls the
ek 7 5}(—' increment logic into block U1. In
enable N_5 figure 5 (Technology View), syn_hier
u1 was set to the value firm. This kept the
hierarchical boundary in tact and
INV prevented the increment logic from
rst I O Figure 5 being pulled into block U1.
rst_i
lenable
block_A
INV L__{ enable (7:0]
E>—| 0 rst i count[7:0]
i —1 clk
rst_|
clk Ut Figure 6

XCell 31 - 1Q99

21

http://www.synplicity.com

