
18

Synplicity has expanded its Synthesis Con-
straint Optimization Environment (SCOPE) to
allow you to characterize the timing of
macrofunctions not synthesized in Synplify. These
new constraints integrate SCOPE more tightly for
mixed mode design entry than any other FPGA
constraint solution. SCOPE provides total control
of your synthesis results by using an innovative
multi-level constraint approach. The addition of
the timing constraints for mixed mode entry
complements the existing timing constraint.

New Synplify 3.0C
Timing Constraints:

➤ Black Box Propagation Delays

➤ Black Box Setup Delays

➤ Black Box Clock to Output Delays

Existing Timing Constraint Features:

➤ Clock Frequency

➤ Input Delays

➤ Output Delays

➤ Delays To Registers

➤ Delays From Registers

➤ Multicycle Paths

➤ Improve Timing Constraint

➤ Route Timing Constraint

When synthesizing a design, logic can often be
made faster at the expense of more logic. The most
direct method of evaluating these “area vs. perfor-
mance” trade-offs is by analyzing the performance
of the synthesized logic. Synplify allows you to
define timing constraints that automatically control
synthesis to meet the system requirements.

Consider the Xilinx cores and macrofunctions
that have been carefully structured to fit into your
design. Most synthesis tools do not allow you
to specify the timing characteristics of these
functions when incorporated into your design.
Therefore, the synthesis tool does not understand
whether inputs and outputs are registered or
combinatorial. Additionally, the delays inside
these block are unknown, leading to paths that
become over- or under-constrained.

If a design is under-constrained, the logic will
not be synthesized to map to the optimal amount
of logic and will perform slower than required. If
a design is over-constrained, synthesis compro-
mises on design performance and area to achieve
the goals. The over-constrained design may either
be larger than required, or may be slower for the
overall design.

Defining Hierarchy with the
Black_Box Attribute

Synplify supports mixed mode design entry
by instantiating components and attaching the
“black_box” timing attribute. The black_box
attribute allows the integration of schematics,
LogiBlox, COREgen, Xilinx Core Solutions, as well
as any other design that is not to be synthesized in
VHDL or Verilog.

To use the black_box attribute create a stub
for the macrofunction (logic content will be
ignored). The stub must declare the ports and the
port directions. By placing the “black_box”
synthesis directive just before the semicolon in
the module declaration, Synplify will ignore the
internal logic. The body of the code then instanti-
ates the component. The netlist that Synplify gen-
erates will be combined with the other design files
when compiled in the Alliance Series tools.

Synplify Extends Timing Constraint
by Jim Tatsukawa,
Partner Programs

Manager, Synplicity
Inc., jimt@

synplicity.com

❝Synplify allows you to

define timing constraints that

automatically control synthesis to

meet the system requirements.❞



19

Control For Mixed Mode Entry
Timing Constraints
For Black_Box Modules

After the black_box module has been specified,
Synplify allows the full timing characterization of
the black_box module through the use of three
types of timing attributes that are attached to the
black_box definition. The following summaries
describe how to effectively use these timing con-
straints to fully characterize your design.

➤ Combinatorial delays through the black_box
module are defined by the syn_tpd attribute.
It specifies the delays from the inputs of the
black_box module to the outputs. Delays are
given in nanoseconds.
Syntax: syn_tpd1=”{input or input

bus}->{output or output
bus}={propagation delay in ns}”

➤ Registered inputs for the black_box module
use the syn_tsu attribute to specify the setup time
required for the inputs relative to the clock.
Synplify will then recognize the black_box
module as the destination of register to register
propagation delays. Many designs use both rising
edge and falling edge clocks. Synplify allows you
to specify the rising edge and falling edge clocks.
The syn_tsu specifies falling edge clocks by the
additional use of the “!” character.

Example Design
module ram32x4(z, d, addr, we, clk);
/* synthesis black_box

syn_tpd1=”addr[3:0]->z[3:0]=8.0"
syn_tsu1=”addr[3:0]->clk=2.0"
syn_tsu2=”we->clk=3.0"

 */
output [3:0] z;
input [3:0] d;
input [3:0] addr;
input we;
input clk;

endmodule

/*
 * Build a bigger ram
 */

Syntax: syn_tsu[0-9]=”{input or
input bus}->{clock input}=
{propagation delay in ns}”

Syntax: syn_tsu[0-9]=”{input or
input bus}->!{clock input}=
{propagation delay in ns}”

➤ Registered outputs for the black_box mod-
ule use the syn_tco attribute to specify the
clock to output delays within the black_box
module. The syn_tco additionally specifies the
black_box module as the source of register to
register propagation delays. The syn_tco at-
tribute supports the rising or falling edge
clock specification as in the syn_tsu.
Syntax: syn_tco[0-9]=”{clock

input}->{output or output
bus}={propagation delay in ns}”

Syntax: syn_tco[0-9]=”!{clock
input}->{output or output
bus}={propagation delay in ns}”

◆

module ram64x4(z, d, addr, we, clk);
output [3:0] z;
input [3:0] d;
input [4:0] addr;
input we /* xsynthesis

syn_input_delay=10.0 */;
input clk;

wire [3:0] za, zb;

wire wea = we & ~addr[4];
wire web = we & addr[4];
ram32x4 r1 (za, d, addr[3:0], wea, clk);
ram32x4 r2 (zb, d, addr[3:0], web, clk);
assign z = addr[4] ? zb : za;

endmodule ◆

❝Synplify supports mixed mode design

entry by instantiating components and

attaching the “black_box” timing attribute.❞


