
45

Most often, Btrieve and Lmacs errors are a
result of conflicts associated with the Btrieve
software. Btrieve is a Windows database software
program, which is used by the Foundation Library
Manager. Btrieve may also be used by other
Windows software, which are unrelated to the
Foundation software. If this other software uses a
different version of the Btrieve software than the
Foundation software uses, conflicts may exist, and
Lmacs or Btrieve errors may be issued by Founda-
tion. Often, the errors involve Foundation not
being able to locate the proper library files.

First, check your WINDOWS directory for any
of the following files:

➤ Wbt32res.dll ➤ Wbtrcall.dll
➤ Wbtrlocl.dll ➤ Wbtrvres.dll
➤ Wbtr32.exe

The Foundation install program writes the
above files to the c:\windows directory by default.

Search for the same .dll and/or .exe files in the
c:\windows\system directory. If they are also
found here, there is a conflict between the
differenct versions of Btrieve on your PC.
Remove these files from c:\windows\system.

It is also possible that there is an incompatible
version of Btrieve being loaded by Windows. This
incompatible version may have been installed by
another windows program. An easy way to attempt
to resolve this problem is to copy the Btrieve files
directly from the Foundation CD-ROM into the
Windows directory.

From the Foundation Design Entry Tools
CD-ROM, go to the FNDTN\ACTIVE\BTRIEVE
directory, and copy the following all of the files in
that directory into your local Windows directory.

○ ○

Foundation
Series
Software

Using Foundation, what can I do when I encounter Lmacs or Btrieve errors?

How do I compile the Simulation Libraries for the Model Technology Simulator? Model
Technologytime and disk space than necessary. Generally it is

much more efficient to compile the libraries to a
central area and point to the libraries via the
modelsim.ini file. Solution record #1923 available
on the Xilinx website at http://www.xilinx.com/
techdocs/1923.htm explains how to compile the
simulation libraries in this more efficient manner.

If you are using Modelsim to simulate VHDL or
Verilog, the Xilinx simulation libraries need to be
compiled first, before a simulation may be
performed. The simulation libraries may be
compiled to the project’s working directory;
however after creating a few Xilinx projects, this
redundant library compilation may take up more

this behavior. But, if you do not want or do not
need these FFs to have a asynchronous reset or
set pins, you must still describe, in the RTL code
for the FFs, an asynchronous reset or set pin.

By connecting the HDL code which describes
the asynchronous reset or set pin of an RTL de-
scribed FF to the ROCBUF, you can create FFs that
power-up in a known state. The ROCBUF will not
synthesize to logic. So, even though the ROCBUF is
connected to a top-level port, no extra pin will be
added to a design. The top-level port the ROCBUF
is connected to will not be implemented.

○ ○

HDL State
Machine
Technique

I want to create a group of FFs which power-up in a certain state. How can I
do this in HDL without creating an extra port in my design using Alliance1.4?

The ROCBUF was created for synthesis users
who needed to create FFs which would power-up
in a ‘1’ or ‘0’ state, but the FF would not have an
asynchronous reset or set pin. FFs in XC4000 type
devices with an asynchronous reset pin will power-
up as a ‘0’. FF’s in XC4000 type devices with an
asynchronous set pin will power-up as a ‘1.’

By describing FFs with an asynchronous set or
reset pin, you can create a group of FFs that
power-up in a known pattern, like “10101111.” If
you want FFs with asynchronous reset or set pins,
this is an easy task, because the HDL will describe

Continued on the
following page

46

Q&AQ&A

VERILOG EXAMPLE OF USING THE ROCBUF:

module
stmchine(CLK,RESET,STRTSTOP,CLKEN,RST);

input CLK;
input RESET;
input STRTSTOP;
output CLKEN;
output RST;

reg CLKEN;
reg RST;
wire rstWire;

parameter [5:0] //synopsys enum
STATE_TYPE
 clear=6’b000001,
 zero=6’b000010,
 start=6’b000100,
 counting=6’b001000,
 stop=6’b010000,
 stopped=6’b100000;

reg [5:0] current_state;
reg [5:0] next_state;

always@(current_state or STRTSTOP)
begin

 case(current_state) //synopsys
full_case parallel_case

 clear:begin
 next_state<=zero;
 CLKEN<=1’b0;
 RST<=1’b1;
 end

 zero:begin

 next_state<=(STRTSTOP)?start:zero;
 CLKEN<=1’b0;
 RST<=1’b0;
 end

 start:begin

 next_state<=(STRTSTOP)?start:counting;
 CLKEN<=1’b0;
 RST<=1’b0;
 end

 counting:begin

 next_state<=(STRTSTOP)?stop:counting;
 CLKEN<=1’b1;
 RST<=1’b0;

 end
 stop:begin

 next_state<=(STRTSTOP)?stop:stopped;
 CLKEN<=1’b0;
 RST<=1’b0;

 end
 stopped:begin

 next_state<=(STRTSTOP)?start:stopped;
 CLKEN<=1’b0;
 RST<=1’b0;

 end
 endcase

 end

 always@(posedge CLK or posedge
rstWire)
 begin

 if(rstWire==1’b1)
 current_state = clear;
 else
 current_state = next_state;

 end

ROCBUF U1 (.I(RESET),.O(rstWire));

endmodule

COMMMON QUESTIONS AND ANSWERS FROM OUR HOTLINE

HDL State
Machine

Technique
Continued from the

previous page

STD_LOGIC);
end component;

begin

process(CE,CLK,clrSig)
 begin

 if(clrSig=’1') then
qoutsig <=”0100010001";

 elsif(CE=’1') then
if(CLK’event and CLK=’1') then

qoutsig<=qoutsig +
“0000000001”;

end if;
 end if;
 end process;

QOUT<=qoutsig;

U1: ROCBUF port
map(I=>CLR,O=>clrSig);

end inside;

VHDL EXAMPLE OF USING THE ROCBUF:

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_misc.all;
use IEEE.std_logic_unsigned.all;

entity smallcntr is

 port (CE : in STD_LOGIC;
 CLK : in STD_LOGIC;
 CLR : in STD_LOGIC;
 QOUT : out STD_LOGIC_VECTOR(9

downto 0)
);

end smallcntr;

architecture inside of smallcntr is

signal qoutsig : STD_LOGIC_VECTOR(9
downto 0);
signal clrSig: STD_LOGIC;

component ROCBUF
port(I: in STD_LOGIC; O: out

