I want to create a group of FFs which power-up in a certain state. How can |
do this in HDL without creating an extra port in my design using Alliancel.4?

The ROCBUF was created for synthesis users
who needed to create FFs which would power-up
ina ‘1’ or ‘0’ state, but the FF would not have an
asynchronous reset or set pin. FFs in XC4000 type
devices with an asynchronous reset pin will power-
up asa ‘0. FF's in XC4000 type devices with an
asynchronous set pin will power-up asa ‘1.’

By describing FFs with an asynchronous set or
reset pin, you can create a group of FFs that
power-up in a known pattern, like “10101111.” If
you want FFs with asynchronous reset or set pins,
this is an easy task, because the HDL will describe

this behavior. But, if you do not want or do not
need these FFs to have a asynchronous reset or
set pins, you must still describe, in the RTL code
for the FFs, an asynchronous reset or set pin.

By connecting the HDL code which describes
the asynchronous reset or set pin of an RTL de-
scribed FF to the ROCBUF, you can create FFs that
power-up in a known state. The ROCBUF will not
synthesize to logic. So, even though the ROCBUF is
connected to a top-level port, no extra pin will be
added to a design. The top-level port the ROCBUF
is connected to will not be implemented.

HDL State
Machine
Technique

Continued on the
following page



COMMMON QUESTIONS AND ANSWERS FROM OUR HOTLINE

HDL State
Machine
Technique

Continued from the
previous page

VERILOG EXAMPLE OF USING THE ROCBUF:

module
stmchine(CLK,RESET,STRTSTOP,CLKEN,RST);

input CLK;

input RESET;
input STRTSTOP;
output CLKEN;
output RST,;

reg CLKEN;
reg RST;
wire rstWire;

parameter [5:0] //synopsys enum
STATE_TYPE

clear=6’b000001,
zero=6'b000010,
start=6'b000100,
counting=6'b001000,
stop=6’b010000,
stopped=6’h100000;

reg [5:0] current_state;
reg [5:0] next_state;

always@(current_state or STRTSTOP)
begin
case(current_state) //synopsys

start:begin

next_state<=(STRTSTOP)?start:counting;
CLKEN<=1'b0;
RST<=1'b0;
end
counting:begin

next_state<=(STRTSTOP)?stop:counting;
CLKEN<=1'b1;
RST<=1'b0;
end
stop:begin

next_state<=(STRTSTOP)?stop:stopped;
CLKEN<=1'b0;
RST<=1'b0;
end
stopped:begin

next_state<=(STRTSTOP)?start:stopped;
CLKEN<=1"b0;
RST<=1'b0;
end
endcase
end

always@(posedge CLK or posedge

full_case parallel_case rstWire)
clear:begin begin
next_state<=zero; if(rstWire==1'b1)
CLKEN<=1'b0; current_state = clear;
RST<=1'b1; else
end current_state = next_state;
zero:begin end
next_state<=(STRTSTOP)?start:zero; ROCBUF U1 (.I(RESET),.O(rstWire));
CLKEN<=1'b0;
RST<=1'b0; endmodule
end
VHDL EXAMPLE OF USING THE ROCBUF:
library IEEE; STD_LOGIC);

use |IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_misc.all;
use |IEEE.std_logic_unsigned.all;

entity smallcntr is

port (CE : in STD_LOGIC;

CLK :in STD_LOGIC;

CLR :in STD_LOGIC;

QOUT : out STD_LOGIC_VECTOR(9
downto 0)

end sr'nallcntr;

architecture inside of smallcntr is

signal goutsig : STD_LOGIC_VECTOR(9
downto 0);

signal clrSig: STD_LOGIC;

component ROCBUF
port(l: in STD_LOGIC; O: out

end component;
begin

process(CE,CLK,clrSig)
begin

if(clrSig="1") then

goutsig <="0100010001";
elsif(CE="1") then

if(CLK’event and CLK="1") then

goutsig<=qoutsig +

“0000000001™;

end if;
end if;
end process;

QOUT<=qoutsig;

Ul: ROCBUF port
map(I=>CLR,O=>clrSig);

end inside;



