
28

core. However, even though the direct interface to
the PCI bus is pre-verified, it is still your responsi-
bility to verify the compliance of your final design.

The PCI protocol is very complex, and as a
result, it is difficult to test every possible combi-
nation of transactions. Although simulation covers
most of the functional test, the only way to verify
full PCI compliance is to test the actual hardware.
This can be accomplished at the quarterly PCI-SIG
“plug-fests.” At these events, PC manufacturers
and PCI board manufacturers gather to test their

then perform timing simulation with block
delays. This is generally a good way to test
whether the design is meeting your timing
requirements before spending the time to do a
full place and route.

5. After place and route (if you have previously
selected EDIF as the simulation data format),
simulate your complete design with both block
and routing delays.

Simulation with an
HDL at the Top Level

1. Before synthesis, simulate the HDL modules of
your design using an HDL testbench. You can
simulate schematic components using a gate
level simulator. You can simulate the complete
design as in the case of a top-level schematic.

2. After synthesis, generate an EDIF netlist for the
HDL modules. You can simulate the gate level
function of the complete design as in the case
of a top-level schematic.

3. After translate, generate a structural HDL netlist
using NGD2VER or NGD2VHDL for gate level
simulation after the design is translated to
Xilinx primitives.

4. After map, simulate the design with block delays
similar to a top-level schematic except using the

command line NGD2VHDL or NGD2VER to
create a structural simulation netlist.

5. After place and route, (if you have previ-
ously selected VHDL or Verilog as the simu-
lation data format), simulate the complete
design with both block and routing delays
with VHDL/Verilog and associated SDF
(standard delay format) file.

Bus Notation in
Schematic and in Synthesis

In a mixed mode design, the Bus Dimen-
sion Separator style in your schematic must
match your synthesis bus style. If you use a
synthesis option to generate one bus style and
then use the EDIF from your schematic to
generate a different bus style, the implementa-
tion tool will not merge the schematic module
with the rest of the design, leaving it
unexpanded.

Conclusion
Xilinx allows mixed mode design methodol-

ogy with both HDL and schematic submodules.
With a schematic at the top level, you can
reuse test vectors throughout the design cycle;
while with HDL at the top level, you can reuse
your testbench throughout the design. ◆

Verifying
PCI Designs

Mixed
Schematic

Continued from the
previous page

by Nupur Shah,
Design Engineer,

nupur@xilinx.com

Your PCI design must be PCI compliant to
work along with other vendors’ PCs and PCI add-
in boards. Therefore the final stage in the design
flow of a PCI design is design verification, which
consists of two steps: functional verification
and timing verification.

By using a pre-designed PCI interface core, with
predictable timing (such as Xilinx LogiCORE PCI
products) the PCI protocol and timing is already
verified. Therefore, you can focus on your unique
back-end design and how it interfaces to the PCI

HDL VERIFICATION
SPECIAL SECTION

We take you to
the leaders.



29

products. By implementing your PCI design in a
Xilinx FPGA, the hardware can easily be changed
and fixed if a problem is found.

PCI Functional Verification
To test PCI compliance, you will need to imple-

ment the PCI Special Interest Group (SIG) Test
Scenarios for Compliance Testing. These scenarios
test the basic transactions between two agents on a
PCI bus; one agent being the device under test
(DUT) and other being the behavioral model of a
PCI Initiator. These tests verify if the DUT is PCI
complaint or not. You have the option to purchase
a testbench from a third party vendor. However,
learning these testbenches can prove to be just as
difficult as developing one yourself, and there is
no guarantee that they provide full fault coverage.

If you choose to develop a testbench, there are
two types of testing that must be performed in
order to verify that your design is functional:
system-level testing and PCI bus protocol testing.
System-level testing sets up modules in a system to
transfer data back and forth. It checks to see if the
data was actually sent and whether it arrived at the
destination or not. It also checks for the validity
of the data. However, the correct operating proce-
dure is not checked in system-level testing.

PCI bus protocol testing is used to determine
if the modules in a system operate within the rules
of the protocol. Besides verifying the data, protocol
testing verifies that the agents are PCI compliant.
PCI protocol tests should include the basic
functional testing that is outlined in the PCI test
scenarios. However, these test scenarios do not
test every bus situation. There are several other
conditions that have high probability of occurring
and are recommended for implementation.

Some of the recommended exercises that
should be implemented are:

Target termination sequences: Sequences
where the target issues a termination when the
master inserts wait states before, during, and after
the termination.

Parity checking: Sequences where the
incorrect address and data parity are generated
to check the ability of the DUT to report errors.

Protocol checker: Checks to see if all the
operating rules are obeyed.

Developing an extensive testbench will help you
determine the correctness of the design before
continuing on to the implementation stage of the
design cycle. After implementation, the testbench
can be used for backannotated timing simulation.

PCI Timing Verification
Timing verification occurs after the design

has been implemented. There are two stages to
timing verification: static timing analysis and back
annotated timing simulation.

Static timing analysis is used to determine if the
design meets all the PCI timing specifications such
as setup/hold time and clock-to-out timing. Static
timing analyzers are provided by FPGA vendors
and will determine if 100% of the design met the
timing specifications. You have the responsibility
of specifying these timing parameters to the tool
and determining what parts of the design should
be attached to the each parameter. If the design
does not meet timing, the static timing analyzer
can be used to probe the design and determine
where the design is failing. Based on this investiga-
tion, you have the option to re-implement the
design using a tighter set of timing specifications
or redesign parts of the design to contain less
levels of logic.

After the design passes the static timing
analysis, it is beneficial to run the physical netlist,
with timing information, through the functional
testbench. This will allow you to determine if, in
fact, the design meets timing using actual physical
delays (not simply the unit delays that are applied
during functional simulation). Once you have
verified the design, it is ready to be downloaded to
a device and used in a physical system.

Conclusion
Using a pre-verified Xilinx PCI LogiCORE can

save you a lot of time and effort. These cores have
been proven in hundreds of designs. However, you
must still test your completed design to guarantee
full PCI compliance. ◆

❝The PCI protocol is very
complex, and as a result, it is difficult to test
every possible combination of transactions.❞


