We iske you to
the leaders.

by Mahadevan
Ramasame, Technical
Marketing Engineer,
Alliance Series,
mahadeva@xilinx.com

[The top-down

design method refers to
applying a single optimization
at the top level of your design;
the bottom-up design method
refers to performing individual
optimizations on sub-blocks of
your design. [

The Basic Elements of HDL Simulation

This article introduces the basic facts and
terminology of HDL simulation for FPGAs and
CPLDs, to help you simulate your design more
efficiently.

There are three stages in the FPGA design
process in which you conduct simulation:

Register Transfer Level - To verify the
syntax and functionality without the timing
information. The majority of the design
development is done through repetitive RTL
simulation until you get the required function-
ality. Errors identified early in the design cycle
are inexpensive to fix compared to functional
errors identified during silicon debug.

Gate-level Functional Simulation — After the
RTL simulation is error free, the HDL design is
synthesized to gates. The post-synthesized gate-
level simulation is a functional simulation with
unit delay timing. The simulation can be used to
identify initialization issues and to analyze don’t
care conditions. “The don’t care space of a
design may be larger than the functional space,”
says Michael Bohm, VP and Chief Scientist at
Exemplar Logic. The post synthesis simulation
generally uses the same testbench as functional
simulation.

Gate-level Timing Simulation — Gate-level
timing simulation is a back-annotated timing
simulation. Timing simulation is important in
verifying the operation of your circuit after the
worst case place and
route delays are
calculated for your
design. The back
annotation process
produces a netlist of
library components
annotated in an SDF
file with the appro-
priate block and net
delays from the
place and route
process. The simula-
tion will identify any

race conditions and setup-and-hold violations
based on the operating conditions for the
specified functionality.

Design Techniques for
Better Simulation Results

Design techniques are used in the process
of applying optimizations to an FPGA design. The
top-down design method refers to applying a
single optimization at the top level of your design;
the bottom-up design method refers to perform-
ing individual optimizations on sub-blocks of
your design.

To improve the quality of the results of the
simulation, use the following guidelines for design
partitioning:

Limit gate counts in sub-blocks; 10k to 50k gates.

Limit clocks to one per block.

Group similar logic together, such as state
machines, data path logic, decoder logic,
and ROMs.

Partition state machines into separate blocks
of hierarchy.

Separate timing-critical blocks from non timing-
critical blocks.

These features eliminate any ambiguity in your
design by providing better quality simulation
results. You can also add other features to the
design such as breaking the asynchronous feed-
back loops, and design stitching to build the
entire design after optimizations have been per-
formed on individual subblocks. You can also
unfold the netlist to perform two different optimi-
zations (such as area or delay) on two different
instances of common sub-blocks. These features
can help improve the quality of simulation results.

Simulation Libraries
The following libraries are available for the
Xilinx simulation flow:

UNISIM Library - Used for functional simula-
tion and contains default unit delays. This

library includes all of the Xilinx Unified Library
components that are inferred by most popular

for FPGAs and CPLDs

synthesis tools. The UNISIM library also
includes components that are commonly
instantiated such as 1/0’s and memory cells.
You can instantiate the UNISIM library compo-
nents in your design (VHDL or Verilog) and
simulate them during the RTL simulation. The
HDL code must refer to the compiled UNISIM
library. The HDL simulator must map the
logical library to the physical location of the
compiled library.

LogiBLOX and Coregen Library - LogiBLOX
is a module generator used for schematic-
based design entry of modules such as adders,
counters, and large memory blocks. LogiBLOX
can be used in the HDL flow to generate large
blocks of memory for instantiation. LogiBLOX
components are simulated with behavioral
code. They are not intended to be synthesized,
but they can be simulated. Coregen library
models are high level VHDL behavioral or RTL
models that are mapped to SIMPRIM structural
models in the back-annotated netlist. The
behavioral model is used for any post-
synthesis simulation because synthesis
processes these modules as a black box.

SIMPRIM Library - Used for simulations at
the following steps in the design flow:

e RTL simulations that include instantiated
LogiBLOX modules.

= Post-implementation simulations.
= Timing simulation.

LIBRARY COMPILATION

The UNISIM libraries are used for RTL and
post-synthesis simulations. Because industry
standard simulators like ModelSim use pre-
compiled libraries, Xilinx recommends compiling
the UNISIM components that are instantiated in
the current design. The UNISIM VHDL or Verilog
Library can be compiled to any physical location.
The order in which the VHDL source files for the
UNISIM library must be compiled is listed in the
Xilinx simulation design guide.

The LogiBLOX library is not a library of
modules. It is a set of packages required by the

LogiBLOX models that are created on-the-fly by
the LogiBLOX tool. The source libraries for the
LogiBLOX packages must be compiled into a
library named LogiBLOX. These packages are
available separately for VHDL and Verilog designs.
The component model from the LogiBLOX GUI
should be compiled into your working directory
with your design.

The Simprim VHDL or Verilog Library can be
compiled to any physical location and can be
named Simprim.

VHDL Simulation

The Xilinx simulation flow supports the VHDL
language standard IEEE-STD-1076-87 and the
standard logic package IEEE-STD-1164-93. In
VHDL designs, you must declare as ports any
signals that are simulated or monitored from
outside a module. Global GSR and GTS signals
are used to initialize the simulation and require
access ports if controlled from the testbench. The
addition of these ports makes the pre and post
implementations of your design different and your
original testbench is no longer applicable to both
versions of your design.

However, it’s usually a good idea to get a pre-
route VHDL description (used in gate-level func-
tional simulation) that can be used for functional
simulations with the GSR and GTS characteristics
that match post-route results (gate-level timing
simulation). This enables you to predict your
design description accuracy at an earlier stage
and reduces your design modification after place
and route; therefore, this reduces your total de-
sign time. This is achieved by the addition of new
library cells to simulate the GSR/GTS behavior.

Global Signal Methodology

To match the simulation behavior at all the
three stages in the FPGA design, add a behavioral
representation for GSR and Xilinx implementation
directives. This directive is used to specify, to the
place and route tools, the use of the special pur-
pose GSR net that is pre-routed on the chip, and
not to use the local asynchronous set/reset pins.
Hence it utilizes the existing routing resources
and significantly improves the performance. The

Continued on the
following page

HDL | new library cells introduced have both the behav-

ioral representation and the implementation
directives. The new library cells are:

Simulation

Continued from the

previous page ROC — Emulates the reset on configuration pulse.

ROCBUF — Allows the test bench to drive the
chip-generated reset on configuration without
implementing an actual input pin on the chip.

TOC — Emulates the chip-generated 3-state on
configuration pulse.

TOCBUF — Allows the test bench to drive the
chip-generated 3-state on configuration with-
out actually implementing the actual input on
the chip.

STARTBUF — A technology-independent version

These five cells allow you to control the global
reset and 3-state signal emulation, so you can
get pre-route initialization simulations to match

mentation tools to add or delete pins and also
help in the selection of nets for routing.

of the STARTUP block supported for simulation.

post-route simulations. The cells also drive imple-

Model of
ROC for
Functional — D Ql— —1D Ql—
Simulation
—>CK —>CK
— CE — CE
AR AS
ROC
o) GSP
Local Reset
Output
Pad 1
Outpur 1
TOC
|—| 0 GTS
Local Tristate L Output
Pad 2
Output 2

‘ Model of TOC for Functional Simulation

Models of the ROC and TOC cells, used for
functional simulation, are given below.

Xilinx VHDL simulation supports the VITAL
modeling standard IEEE-STD-1076.4 — 95 and
Standard Delay Format version 2.1. This standard
allows you to simulate your designs with any
VITAL-compliant simulator and hence it acceler-
ates your design compilation times, resulting in
improved performance.

These features allow you to do high perfor-
mance designs with shorter design cycles.

Verilog Simulation

The Xilinx simulation flow supports the Verilog
language standard IEEE-STD-1364-95. The Verilog
version of the UNISIM library may not need to be
compiled, depending on the Verilog tool. Because
there are a few cells with functional differences
between Xilinx devices, a separate library is pro-
vided for each supported device. The libraries are
in uppercase only and if needed, lower case li-
braries are provided in Xilinx/Cadence interface.

Unlike VHDL, Verilog can simulate internal
signals and these signals are driven directly from
the testbench without instantiating any specific
component. The global set/reset net is present in
your implemented design even if you do not
instantiate the STARTUP block in your design. The
function of STARTUP is to give you the option to
control the global reset net from an external pin.

The general procedure for specifying the
global set/reset during a post-synthesis Verilog
UNISIM simulation involves defining the global
reset signals with suitable Verilog macros. This is
necessary because these global nets do not exist in
the UNISIM libraries and as a result, the reset of
UNISIM components is controlled by the detection
of those macros. Also, the global set/reset signals
need to be declared as either awire or reg and
the choice depends on whether the design
contains a STARTUP component or not.

At the beginning of an FPGA design simulation,
the global set/reset signal or the GR global reset
signal must be toggled to emulate the power-on
reset of the FPGA. This is to ensure that the flip-
flops and latches in your simulation function
correctly. The general procedure for specifying
GTS is similar to that used for specifying the
global set/reset signals, GSR and GR.

Testbenches

A testbench is a separate set of VHDL or
Verilog code that connects to the inputs and
outputs of a design. The testbench has two main
purposes:

It provides the stimulus and response infor-
mation (clocks, set/reset, input data, and so
on) that the design will encounter when it is
implemented in an FPGA and installed into the
final system.

The testbench contains regression checking

constructs, which allow design functionality to
be tested throughout the FPGA HDL Simulation
flow (RTL, Functional Gate, and Timing Gate).

Use the steps for simulation in an industry
standard simulator such as ModelSim:

Create a working library.

Compile the RTL/post-synthesis/place and
route HDL design.

Compile the testbench.

Simulate the testbench and design. For place
and route HDL design, simulate the testbench
and design, with timing information.

Run until the testbench stops.

S~
A SAMPLE TESTBENCH MODEL:
library declarations ;
entity sample of testbench is
end ;
architecture test of testbench
instantiation of a component of the design ;
signal declarations ;
begin
port mapping of the component to the signals
declared ;
process
begin
clock period declaration ;
end process ;
process
begin
Test vectors for design ;
end process ;
end test ;
configuration statement to configure
architecture to the component
instantiation; (optional)
_

You can create the testhench using a partic-
ular coding style for supplying the stimulus by
referring to the synthesis or simulation vendors’
documentation.

Conclusion

Xilinx offers a wide range of FPGA and CPLD
solutions, including large density devices and low
cost devices. You can successfully implement and
correlate global initialization behavior of user-
defined logic-, LogiBLOX-, and CORE Generator-
based designs at all simulation phases, from RTL
to back-annotated netlists. [

Xilinx offers a wide range ot reea and

CPLD solutions, including large density devices and low cost

devices. You can successfully implement and correlate global

initialization behavior of user-defined logic-, LogiBLOX-, and

CORE Generator-based designs at all simulation phases, from
RTL to back-annotated netlists. []

