

CORE Generator™

System 2.1i

User Guide

,

XILINX, XACT, XC2064, XC3090, XC4005, XC-DS501, FPGA Archindry, NeoCAD, NeoCAD EPIC,

NeoCAD PRISM, NeoROUTE, Plus Logic, Plustran, P+, Timing Wizard, and TRACE are registered trademarks

of Xilinx, Inc.

, all XC-prefix product designations, XACT

step

, XACT

step

 Advanced, XACT

step

 Foundry, XACT-Floor-
planner, XACT-Performance, XAPP, XAM, X-BLOX, X-BLOX plus, XChecker, XDM, XDS, XEPLD, XPP, XSI,
Foundation Series, AllianceCORE, BITA, Configurable Logic Cell, CLC, Dual Block, FastCLK, FastCONNECT,
FastFLASH, FastMap, HardWire, LCA, Logic Cell, LogiCore, LogiBLOX, LogicProfessor, MicroVia, PLUSASM,
PowerGuide, PowerMaze, Select-RAM, SMARTswitch, TrueMap, UIM, VectorMaze, VersaBlock, VersaRing,
and ZERO+ are trademarks of Xilinx, Inc. The Programmable Logic Company and The Programmable Gate
Array Company are service marks of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx does not assume any liability arising out of the application or use of any product described or shown
herein; nor does it convey any license under its patents, copyrights, or maskwork rights or any rights of others.
Xilinx reserves the right to make changes, at any time, in order to improve reliability, function or design and to
supply the best product possible. Xilinx will not assume responsibility for the use of any circuitry described
herein other than circuitry entirely embodied in its products. Xilinx devices and products are protected under
one or more of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216; 4,713,557; 4,746,822; 4,750,155;
4,758,985; 4,820,937; 4,821,233; 4,835,418; 4,853,626; 4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107;
5,012,135; 5,023,606; 5,028,821; 5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056;
5,243,238; 5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704; 5,329,174;
5,329,181; 5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248; 5,349,249; 5,349,250; 5,349,691;
5,357,153; 5,360,747; 5,361,229; 5,362,999; 5,365,125; 5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925;
5,410,189; 5,410,194; 5,414,377; 5,422,833; 5,426,378; 5,426,379; 5,430,687; 5,432,719; 5,448,181; 5,448,493;
5,450,021; 5,450,022; 5,453,706; 5,466,117; 5,469,003; 5,475,253; 5,477,414; 5,481,206; 5,483,478; 5,486,707;
5,486,776; 5,488,316; 5,489,858; 5,489,866; 5,491,353; 5,495,196; 5,498,979; 5,498,989; 5,499,192; 5,500,608;
5,500,609; 5,502,000; 5,502,440; RE 34,363, RE 34,444, and RE 34,808. Other U.S. and foreign patents pending.
Xilinx, Inc. does not represent that devices shown or products described herein are free from patent infringe-
ment or from any other third party right. Xilinx assumes no obligation to correct any errors contained herein or
to advise any user of this text of any correction if such be made. Xilinx will not assume any liability for the
accuracy or correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product
in such applications without the written consent of the appropriate Xilinx officer is prohibited.

Copyright 1999 Xilinx, Inc. All Rights Reserved.

R

CORE Generator 2.1i User Guide

Table of Contents

About This Manual .. vii

Manual Contents ..vii

Conventions .. ix

Typographical ... ix
Online Document ... x

Introduction .. 1-1

Overview ...1-1
About the CORE Generator System ...1-1
How to Obtain New and Updated COREs ..1-4
System Requirements and Installation Information1-5
Additional Resources ..1-5

Online Documentation .. 1-5

Getting Started ... 2-1

Overview ...2-1
CORE Generator Components ..2-2
CORE Generator System Installation Requirements2-2

Running CORE Generator System on Windows (95/98/NT) 2-2
Launching CORE Generator System on Workstations 2-2

Setup Files ...2-3
coregen.prj .. 2-3
resources.lib .. 2-3
known.prj .. 2-4
coregen_<user_name>.prf .. 2-4
Sample Workstation preferences file: ... 2-6
Sample PC-based preferences file: ... 2-6

Inputs and Outputs ..2-7
Project Management ...2-9

Creating a New Project ... 2-9
Opening an Existing Project ...2-10
Selecting Project Design Entry Options ...2-11

Selecting Vendor Design Entry Options ... 2-11
Selecting Behavioral Simulation Options 2-12
Selecting Target Xilinx FPGA Family Options 2-12

Table of Contents

Xilinx Inc.

Complete New Project Creation ...2-12
Changing Project Design Entry Options ...2-13
Setting Web Browser Path ..2-13
Setting AcroRead Path ..2-13
CORE Generator System Troubleshooting ...2-14

General Hints: ... 2-14
Where to get help with general CORE Generator problems: 2-15
Additional Resources: ... 2-15
Xilinx CORE Generator System .. 2-15
AllianceCORE .. 2-15
Email Support ... 2-16
Web Support ... 2-16
FTP .. 2-16

Using the CORE Generator ™ System ... 3-1

Overview ...3-1
Using the CORE Browser ...3-1
Accessing CORE Data Sheets ..3-3
Customizing a CORE ..3-4

Illegal or Invalid Values .. 3-6
.COE Files ... 3-6
Command Files ... 3-11
coregen.ini/coregen_<user_name>.ini .. 3-11
User-generated Command Files .. 3-11
.XCO Files .. 3-12
coregen.log .. 3-13
Valid CORE Generator Commands .. 3-14
Global Properties .. 3-14
Project Properties .. 3-15
Generating COREs in Batch Mode ... 3-15

Updating COREs in the CORE Generator System3-17
Version Handling in the CORE Generator System 3-17
Downloading New COREs ... 3-17
CORE Version Update in an Existing Project 3-18

CORE Generator Design Flows .. 4-1

Overview ...4-1
CORE Generator Design Flow Basics ..4-2

CORE Generator 2.1i User Guide

Viewlogic Design Flow .. 4-3
Create a directory for a Viewlogic project .. 4-3

Example .. 4-3
Set up project libraries .. 4-3
Set the Output Format ... 4-4
Set Project Path and Viewlogic Library Alias 4-4
Select Desired Module .. 4-5
Output Files ... 4-5
Load Symbol in Schematic Editor .. 4-6
Example .. 4-6

Foundation Design Flow ... 4-6
Mentor Design Flow ... 4-7
Cadence Design Flow ... 4-7

HDL Design Flows ...4-7
Behavioral Model Delivery in the CORE Generator System 4-8
get_models .. 4-9

Syntax ... 4-9
Required Parameters ... 4-9

Inputs ... 4-10
Outputs .. 4-10
.VEO (Verilog Instantiation Template) .. 4-10
.VHO (VHDL Instantiation Template) ... 4-12

Sample .VHO file for an 8-bit adder ... 4-12
CORE Generator Verilog Flow ..4-15

Synthesis ... 4-15
Simulation ... 4-15

Basic Steps in the Verilog Design Flow ... 4-15
Module Generation ... 4-15
Behavioral Simulation .. 4-15

Module Generation ... 4-16
Specify the Design Entry, Vendor, and Behavioral
Simulation settings for the project. ... 4-16

Behavioral Simulation .. 4-16
Preparing for Verilog Behavioral Simulation 4-16
Instantiate the core (same procedure for all simulators
and synthesis tools) ... 4-17

Table of Contents

Xilinx Inc.

Cadence Verilog-XL and MTI ModelSim/VLOG 4-18
Example .. 4-18
Comment out the instantiation template in the .VEO file. 4-18
Copy the .VEO file to <module_name>.v 4-18
Connect the core to the parent design by editing the
module connections. ... 4-18
Example .. 4-18
VERILOG instantiation template file: myadder8.veo 4-19
VERILOG parent design file: myadder8_top.v 4-21
Create The Testbench ... 4-23
Perform the Behavioral Simulation .. 4-24
MTI ModelSIM ... 4-24
Cadence Verilog-XL ... 4-25
Synthesis ... 4-25
Synopsys FPGA Compiler .. 4-25
Synopsys FPGA Express .. 4-25
Synplicity Synplify ... 4-25
Exemplar Leonardo ... 4-26
Write out the implementation netlist for the
synthesized design .. 4-26
Synopsys FPGA Compiler .. 4-27
Synopsys FPGA Express .. 4-27
Synplicity Synplify ... 4-27
Exemplar ... 4-27
Implementation ... 4-27

CORE Generator VHDL Flow ..4-28
Synthesis ... 4-28
Simulation ... 4-28

Basic Steps .. 4-28
Module Generation ... 4-29

Synopsys FPGA Express and FPGA Compiler 4-30
Synplicity Synplify ... 4-30
Exemplar Leonardo ... 4-30

Behavioral Simulation .. 4-30
Prepare for Simulation .. 4-30
VHDL Model Extraction .. 4-30

CORE Generator 2.1i User Guide

Example .. 4-31
Simulator-specific processing steps .. 4-31
Create the XilinxCoreLib library .. 4-32
MTI ModelSim/VHDL ... 4-32
MTI ModelSim/VHDL ... 4-32
Analyze the behavioral models ... 4-32
MTI ModelSim/VHDL ... 4-33
Instantiate the module (same procedure for all simulators) 4-33
Connect the core to the parent design by editing
the instantiation block ... 4-34
Example .. 4-35
VHDL template file: myadder8.vho .. 4-35
VHDL parent design file: myadder8_top.vhd 4-38
Create the Testbench ... 4-40
VHDL Testbench file: testbench.vhd 4-40

Design Simulation ... 4-42
Analyze the parent design and testbench file 4-42
MTI ModelSim ... 4-42
Invoke the simulator ... 4-42

Synthesis and Implementation .. 4-42
Synthesize the design using black-box methodology 4-42
Synopsys FPGA Compiler .. 4-43
Synopsys FPGA Express .. 4-43
Synplicity Synplify v5.1.2 and later ... 4-43
Exemplar Leonardo (v1998.2) .. 4-44
Write out the implementation netlist for the
synthesized design .. 4-44
Synopsys FPGA Compiler .. 4-44
Synopsys FPGA Express .. 4-44
Synplicity Synplify v5.1.2and later .. 4-44
Exemplar Leonardo (v1998.2) .. 4-45

Implement the Design ... 4-45

Table of Contents

Xilinx Inc.

CORE Generator 2.1i User Guide

About This Manual

This manual describes the Xilinx CORE Generator

ΤΜ

 System, a tool
used for parameterizing cores optimized for Xilinx FPGAs.

The CORE Generator System User Guide is available online and can
be read using the Acrobat Reader. This manual can be launched as
follows: From the pulldown menu area of the “CORE Generator
(Main Menu)” window, select HELP--> Online Documentation.

Before using this manual, you should be familiar with the operations
that are common to all Xilinx software tools. These operations are
covered in the

Quick

Start

Guide

of the Xilinx software documenta-
tion.

Manual Contents

This manual covers the following topics:

• Introduction (Overview)

• Getting Started

• How to Use the CORE Generator System

• Design Flows in the CORE Generator System

Preface

-viii Xilinx Inc.

CORE Generator 2.1i User Guide ix

Conventions

This manual uses the following typographical and online document
conventions. An example illustrates each typographical convention.

Typographical

The following conventions are used for all documents.

•

Courier

font

 indicates messages, prompts, and program files
that the system displays.

speed grade: -100

•

Courier

bold

 indicates literal commands that you enter in a
syntactical statement. However, braces “{ }” in Courier bold are
not literal and square brackets “[]” in Courier bold are literal
only in the case of bus specifications, such as bus [7:0].

rpt_del_net=

Courier

bold

 also indicates commands that you select from a
menu.

File

→

Open

•

Italic

font

 denotes the following items.

• Variables in a syntax statement for which you must supply
values

edif2ngd

design_name

• References to other manuals

See the

Development System Reference Guide

 for more informa-
tion.

Conventions

-x Xilinx Inc.

• Emphasis in text

If a wire is drawn so that it overlaps the pin of a symbol, the
two nets are

 not

 connected.

• Square brackets “[]” indicate an optional entry or parameter.
However, in bus specifications, such as bus [7:0], they are manda-
tory.

edif2ngd

 [

option_name

]

design_name

• Braces “{ }” enclose a list of items from which you must choose
one or more.

lowpwr

=

{

on

|

off

}

• A vertical bar “|” separates items in a list of choices.

lowpwr

=

{

on

|

off

}

• A vertical ellipsis indicates repetitive material that has been
omitted.

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

• A horizontal ellipsis “. . .” indicates that an item can be repeated
one or more times.

allow

block

block_name

loc1

loc2

...

locn;

Online Document

The following conventions are used for online documents.

• Red-underlined text indicates an interbook link, which is a cross-
reference to another book. Click the red-underlined text to open
the specified cross-reference.

• Blue-underlined text indicates an intrabook link, which is a cross-
reference within a book. Click the blue-underlined text to open
the specified cross-reference.

CORE Generator 2.1i User Guide 1-1

Chapter 1

Introduction

Overview

This chapter introduces the Xilinx CORE Generator ™ System, an
easy to use design tool that delivers parameterizable COREs opti-
mized for Xilinx FPGAs.

The following topics are included in this chapter:

• About the CORE Generator System

• System Requirements and Installation Information

• How to Obtain New and Updated COREs

About the CORE Generator System

The CORE Generator System’s main Graphical User Interface (GUI)
allows central access to COREs, data sheets, variable options, and
help functions.

The Xilinx CORE Generator System provides the user with a catalog
of ready-made functions ranging in complexity from simple arith-
metic operators such as adders, accumulators and multipliers, to
system-level building blocks including filters, transforms and memo-
ries.

Note:

The words

function

 and

CORE

 are used interchangeably in
this guide to mean a design entity like a multiplier or FIR filter which
the CORE Generator System can generate for the designer.

COREs are organized by type into folders that expand or contract on
demand. Detailed information on each CORE is contained in a speci-
fication or data sheet which can be accessed by clicking on the
Datasheet button in the CORE specification window, or by clicking

Introduction

1-2 Xilinx Inc.

on the Datasheet icon in the main CORE Generator application
toolbar. This launches the Adobe Acrobat Reader and calls up the
datasheet for the selected CORE. Datasheets include:

• Functional information

• Area and performance data

• Pinouts and interface signal names

• Details of how to use the CORE in an application

The CORE Generator System can customize a generic functional
building block such as a FIR filter or a multiplier to meet the needs of
your application and simultaneously delivers high levels of perfor-
mance and area efficiency. This is accomplished by the use of Xilinx’s
CORE-friendly FPGA architectures and by the application of Xilinx
Smart-IP™ technology.

Figure 1-1 CORE Generator System Window

Introduction

CORE Generator 2.1i User Guide 1-3

Smart-IP™ technology leverages:

• Xilinx FPGA architectural advantages such as look-up tables
(LUTs), distributed RAM, segmented routing and floorplanning
information

• Relative location constraints and expert logic mapping to opti-
mize performance of a given CORE instance in a given Xilinx
FPGA architecture

Smart-IP™ technology delivers:

• Physical layout optimized for high performance

• Predictable performance and resource utilization

• Reduced power requirements through compact design and inter-
connect minimization

• Performance independent of device size

• Ability to use multiple COREs without deterioration of perfor-
mance

• Reduced compile time over competing architectures.

Parameterization provides the ability to generate COREs which meet
design flexibility needs and which meet design size constraints.

For each CORE the CORE Generator System delivers:

• A customized EDIF netlist

• In addition the user had the option of generating support files
with Verilog or VHDL behavioral simulation models

• Instantiation templates

• Foundation or Viewlogic schematic symbols

This makes it easy for you to integrate the COREs into your preferred
design environment using the CORE Generator System.

High performance, area efficiency, and flexibility delivered by the
CORE Generator System’s diverse library of complex building blocks
make the design of systems-on-a-chip simpler and faster than ever
before.

Introduction

1-4 Xilinx Inc.

How to Obtain New and Updated COREs

New COREs can be downloaded from the Xilinx web site and easily
added to the CORE Generator System.

Bookmark

:

http://www.xilinx.com/products/logicore/
coregen

Xilinx encourages you to check the CORE Generator System web
page before starting a new design to verify that you have the latest
version of each CORE and CORE datasheet; the CORE Generator
web page also provides a current list of new and updated COREs that
may be useful in your design.

Screen Shot to go here

F1-2

Introduction

CORE Generator 2.1i User Guide 1-5

System Requirements and Installation Information

 See the 2.1i Release Notes for information on system requirements
and installation instructions for the CORE Generator System.

Adobe Acrobat v 3.0 or later is needed to launch and view the COREs
datasheets.

The CORE Generator System interface to Viewlogic requires that both
the Viewlogic and the Xilinx Implementation Tools be set up on your
system.

Additional Resources

Online Documentation

For detailed help on how to operate the Xilinx CORE Generator
System, you can select

Help->Topics

 from the

Help

 menu at the
top of the CORE Generator main window. Refer to the appropriate
section for your design flow.

For an overview of the supported design flows, refer to chapter 4,

CORE Generator Design Flow

, in this manual

select

Help->Topics

 under the Help Menu and select

User Guide
to access the online user guide. This Guide provides descriptions and
step-by-step instructions on using the Xilinx CORE Generator
System.

Introduction

1-6 Xilinx Inc.

CORE Generator 2.1i User Guide 2-1

Chapter 2

Getting Started

Overview
This chapter describes the various elements of the CORE Generator
System. The user must have this information before creating
successful designs targeted to the Xilinx FPGAs, using one or more of
the COREs offered in the CORE Generator System.

The elements of the CORE Generator System included in this chapter
are:

• Components

• System Installation Requirements

• Setup Files

• Inputs and Outputs

• Project Management

• Troubleshooting

Getting Started

2-2 Xilinx Inc.

CORE Generator Components
The Xilinx CORE Generator System consists of three distinct prod-
ucts:

• The Acrobat Reader Application

• The CORE Generator Application

• JAVA Run-time Support

CORE Generator System Installation Requirements
For detailed information on CORE Generator installation on the PC
and on the Unix Workstation refer to the Xilinx Alliance/Foundation
Quick Start Guide (version 2.1i).

Running CORE Generator System on
Windows (95/98/NT)

To start the CORE Generator System from the Windows menu, click
on the Windows Start Menu button, select:

'Programs'--> 'Xilinx Alliance Series 2.1i or
Foundation Series 2.1i-->'Accessories'--
>'COREGen'

Launching CORE Gen erator System on
Workstations

Make sure your environment is set up to run the Xilinx software as
specified in the Xilinx Alliance/Foundation Quick Start Guide (v2.1i).
The two required settings are: the XILINX variable, which should be
set to your Xilinx installation directory, and your PATH variable,
which should be set to $XILINX/bin/<platform>, where "platform"
is either "sol" or "hp".

Type coregen to start the CORE Generator System.

Getting Started

CORE Generator 2.1i User Guide 2-3

Setup Files
This section describes in some detail the setup files in the CORE
Generator System. The setup files are required to properly configure
your CORE Generator session.

• coregen.prj

• resources.lib

• known.prj

• coregen_<user_name>.prf

coregen.prj
coregen.prj is the CORE Generator "project file". The coregen.prj file
is automatically created whenever you create a new project. It
contains a record of project-specific property settings, information on
versions of the COREs available to the project, and user-specified
output files. A valid CORE Generator project directory must contain a
coregen.prj file.

The information in the coregen.prj file includes a list of all the IP
COREs and versions that are available to the project, as well as the
version of every CORE actually used in the project.

coregen.prj is a configuration file which is created, read, and modi-
fied by the CORE Generator System for project management
purposes and should not be altered by the user.

resources.lib
Resources.lib is the cores database file located in $XILINX/coregen/
ip. It is generated in the $XILINX/coregen/ip directory the first time
a user starts up a given installation of the CORE Generator software.
This database is built by scanning the COREs installed in $XILINX/
coregen/ip and is used by the CORE Generator System to identify
and locate all COREs that are present in a CORE Generator software
installation.

The database recorded in resources.lib is also updated whenever new
COREs are added into the IP repository. An update of the
resources.lib database file can be forced by placing a file named
<container_name>.upd in the $XILINX/coregen/ip

Getting Started

2-4 Xilinx Inc.

Note that since the COREs database is built at startup time, new
versions of COREs (that are deposited into the repository while
CORE Generator System is running) will not be recognized until after
the CORE Generator System is restarted.

known.prj
known.prj, located in $XILINX/coregen/preferences, contains a
listing of fully qualified paths to all known user projects. These
projects are listed in the known projects listing drop-down in the
CORE Generator GUI. When multiple users are using the same
installation of the CORE Generator System, this list will include all
known projects for all those users.

Individual projects can be deleted from the known projects listing by
manually deleting the corresponding line in the known.prj file.

coregen_<user_name>.prf
coregen_<user_name>.prf is the Xilinx CORE Generator preferences
file. This is an ASCII option settings file that allows the user to
customize various aspects of the CORE Generator GUI, and certain
kinds of runtime behavior. This file is user-specific and consists of a
mix of comment lines and property specification lines. Comment
lines begin with the "#" (octothorpe) character and designate a line
which is ignored when the file is read by the CORE Generator
System. The format for a line specifying a property in the preference
file is:

 PropertyName = Value

Example: AlwaysOpenLastProject = true

Each Property Name represents a particular property within the
Xilinx CORE Generator System, and the corresponding Value field is
the value to be applied to that property. Preference settings are stored
for each user in the directory:

$XILINX/coregen/preferences

The name of a given user's preference file is:

coregen_<user_name>.prf

Getting Started

CORE Generator 2.1i User Guide 2-5

where <user_name> is replaced by the name of the user. The
<user_name> part of the file name is based on the computer name of
the user as defined in their Windows settings or UNIX login name.

The first time a specific user starts up the CORE Generator System, no
preference file exists for that user. The preference file,
coregen_<user_name>.prf , for a particular user is created the
first time the user exits out of CORE Generator System. The file is
automatically written to $XILINX/coregen/preferences when the
user exits the CORE Generator application, based on settings they
have specified during a project session. This file can also be created
manually by the user as a text file.

The CORE Generator System looks for preference files in the
$XILINX/coregen/preferences directory.

During start-up, and after any optional coregen.ini file is read (Work-
stations only), CORE Generator System searches the preferences
directory for a coregen_user_name.prf file. If this file is found, it is
loaded and all preferences contained in it override the default CORE
Generator System preference settings. If no preference file is found
for the user (as in the case of a first-time user), the various preference
values take on their hardcoded default values.

The list of supported preference file properties is shown below.

Property Name Value Definition

AlwaysOpenLastProject

false Do not start CORE Gener-
ator System in the last
active project.

true Always start CORE Gener-
ator System in the last
active project.

OverwriteFiles

false Prompt user before over-
writing design files during
elaboration.

true Automatically overwrite
design files during elabora-
tion.

Getting Started

2-6 Xilinx Inc.

Sample Workstation preferences file:

#Coregen preferences

#Fri Apr 23 13:46:57 PDT 1999

lastproject=/home/myprojects/fir_filter

alwaysopenlastproject = false

overwritefiles = true

browser = /usr/bin/netscape

viewer = /usr/local/bin/acroread

Sample PC-based preferences file:

#Coregen preferences

#Fri Apr 23 13:46:57 PDT 1999

lastproject=\\home\\myprojects\\fir_filter

alwaysopenlastproject = false

overwritefiles = true

browser = c:\\program files\\netscape\\communi-
cator\\program\\netscape.exe

viewer = c:\\program
files\\acrobat3\\reader\\acrord32.exe

Note: The users should not edit their preferences file directly.

Browser <path_to
_web_br
owser>

Fully qualified path to the
user’s web browser.

Viewer <path_to
_pdf_vie
wer>

Fully qualified path to the
user’s Acrobat PDF viewer.

Property Name Value Definition

Getting Started

CORE Generator 2.1i User Guide 2-7

Inputs and Outputs
This section lists the input files used by, and the output files gener-
ated by the CORE Generator System.

Input Description

.COE ASCII data file. Defines the coefficient values for FIR
Filters and initialization values for Memory modules.
See $XILINX/coregen/data for sample .COE files.

.XCO CORE Generator file containing the parameters used to
specify the parameters for regenerating a CORE and
can also be used as a logfile to determine the settings
used to generate a particular CORE. This file is also
generated by the CORE Generator System along with
any CORE that it creates in the current project directory.
For details on the .xco file refer to the Using the CORE
Generator System chapter in this user guide.

Output Description

.EDN EDIF Implementation Netlist for the CORE. Describes
how the CORE is implemented and is used as input to
the Xilinx Implementation Tools.

.VEO Verilog Template file. The components in this file can
be used as a guide to creating the core’s Verilog instanti-
ation and its Verilog behavioral netlist. For more details
refer to the section on get_models in Chapter 4 of this
manual.

.VHO VHDL Template file. The components in this file can be
used as a guide to creating the CORE’s VHDL instantia-
tion and its VHDL behavioral simulation reference. For
more details, refer to the section on get_models in
Chapter 4 of this manual.

Getting Started

2-8 Xilinx Inc.

.XCO CORE Generator file containing the parameters used
for generating a customized CORE. Maybe created
manually by the user, but this file is also generated by
the CORE Generator System, when first creating a
CORE.

.MIF Memory Initialization File which is automatically
generated by the CORE Generator System for Virtex
Block RAM modules, only when an HDL simulation
flow is specified. A MIF data file is used to support
HDL functional simulation of Block RAM modules.
To generate a MIF file you must direct CORE Generator
System to generate an EDIF Implementation Netlist and
specify either a Verilog or a VHDL Behavioral Simula-
tion output.

vllink.log Log file created by the VLLINK script when a Viewlogic
Schematic Design Flow is selected from the Project
Option menu. This file records the operations and
status of the various function calls used to create a
Viewlogic symbol and WIR file for core simulation.

Output Description

.EDN EDIF Implementation Netlist for the CORE. Describes
how the CORE is implemented and is used as input to
the Xilinx Implementation Tools.

Getting Started

CORE Generator 2.1i User Guide 2-9

Project Management
This section describes in some detail the functions performed by the
user in initiating, designing, and maintaining core designs in Xilinx
CORE Generator System’s GUI environment. The functions included
in this section are: Creating a New Project, Selecting an Existing Project,
Selecting Project Design Entry Options, Selecting Behavioral Simulation
Options, Selecting Target Family Options, Finish New Project Creation,
Changing to Another Project, Changing Project Design Entry Options,
Setting Web Browser Path, and Setting AcroRead Path.

Note: The Xilinx CORE Generator System is designed to operate
within the directory structure of your selected design entry environ-
ment. Consequently, the CORE Generator System does not create
directories and hence, make sure the directory exists before browsing
to it.

Creating a New Project
When you first start up the Xilinx CORE Generator System, you will
be prompted to create a new project with the "Getting Started" project
dialog. The "Create a New Project" radio button should be selected. If
it is not, please select it now. You can type the path to the new project
directory into the "directory" text field or you may click on the
"browse" button and navigate to it.

Specify your CAE Vendor (Foundation, Viewlogic, Cadence, Mentor,
or Other). If you select "Other", you must also specify the required
Netlist Bus Format for individual bus bits ("B<I>", "B(I)", or "BI",
where "B" represents the name of the bus, and "I" represents the bus
index. Selecting any of the other vendors will automatically set the
Netlist Bus Format setting to the correct value for that vendor.

Note: Due to a browser limitation, once you have "browsed to the
project directory, you must specify a file by the name of
coregen.prj for the project file. For "new" projects this file will not
exist, but will be created when you click "OK".

For example, (for PCs): c:\designs\newproject\coregen.prj

For workstations: ../designs/newproject/coregen.pr j

Getting Started

2-10 Xilinx Inc.

Opening an Existing Project
The Xilinx CORE Generator System 2.1i maintains a list of valid
projects. When the CORE Generator System is started you are
provided with a list of these valid projects. In a shared-user environ-
ment in which multiple users access the same installation of the
CORE Generator System this would include projects belonging to all
users using that installation. You may select a project from the list in
the "Getting Started" dialog window. Select the CORE Generator
project that you want to work in and click OK .

Within the "Getting Started" project dialog you may also place a
check mark for the "Always Open Last Project" check box. This will
cause the CORE Generator System to bypass the "Getting Started"
dialog window and always open the last project that you were
working on.

Note: To restore the launching of the "Getting Started" project dialog
window, you must deselect the corresponding check box in the
“Open Project” dialog window.

Figure 2-1 Getting Started Project Dialog Window

Getting Started

CORE Generator 2.1i User Guide 2-11

Selecting Project Design Entry Options
From the Getting Started dialog window select the Create a
New Project button and this will bring up the "New Project" dialog
window. You will now need to select the top level "Design Entry"
flow that you will be using. The Xilinx CORE Generator System
supports "Schematic", "VHDL", and "Verilog" top level design entry
flows. Select one of these design entry flows.

Selecting Vendor Design Entry Options
From the "Project Options" window select the Design Entry Vendor
that you will be using. Based on your selection, the output EDIF
netlist will contain the appropriate bus delimiter symbol for the EDIF
netlist for the module: "()"; "<>"; "[]"; none (This will allow the
generated EDIF netlist port to match the port references in the EDIF

Figure 2-2 Project Options Dialog Window

Getting Started

2-12 Xilinx Inc.

netlist for your top level design, for your module, the HDL instantia-
tion templates or schematic symbol port and pin names.

If the Design Entry Vendor you are using is not listed, select "Other"
as your Vendor. You will also need to specify the netlist bus format
that your HDL or Schematic tools support.

Selecting Behavioral Simulation Options
The Behavioral Simulation templates that the Xilinx CORE Generator
System creates are dependent on the Behavioral Simulation options
(Verilog and/or VHDL) flow that you select. If you would like addi-
tional behavioral simulation templates for other simulation flows,
you may select them. For example, if you have selected VHDL as
your Behavioral Simulation option, a VHDL simulation template file
will be generated with the name of <module_name> .vho . For
example, if you would like a Verilog instantiation template and/or a
Verilog behavioral simulation template, you will also need to place a
check mark in the "Verilog Behavioral Simulation" check box. This
will cause a <module_name> .veo file to be created as well.

Selecting Target Xilinx FPGA Family Options
The Xilinx CORE Generator System tailors the COREs it generates to
the selected "Target Family" setting. Any COREs that are generated
are optimized to this selected Xilinx architecture and will not work if
integrated into a design targeted for a different Xilinx FPGA family.
For example, COREs that were targeted to the Spartan architecture,
when they were generated, will not work if placed in a Virtex design.
Select the "Target Family" based on the Xilinx architecture that you
will be targeting. If you change architectures you will need to regen-
erate any COREs you have already created.

Complete New Project Creation
After you have selected all the project options, click OK. The Xilinx
CORE Generator System will now initialize the new project. A
coregen.prj file is written to the new project. The coregen.prj
file contains a record of all installed COREs and their available
versions. A link to the new project is also written to the known.prj
file found in the $XILINX/coregen/preferences directory.

Getting Started

CORE Generator 2.1i User Guide 2-13

Note: The initialization of the new project may take several seconds.
Also the listing of COREs available in the CORE Generator System
will not display until you specify a valid CORE Generator project.

Changing Project Design Entry Options
You may change the Project Design Entry Options by
selecting Project-->Project Options menu. This will launch a
"Project Options" dialog. You may change any of the "Design Entry",
"Vendor", "Behavoral Simulation" and "Family" options. When you
have finished modifying these options, click OK .

You should be aware that changing the project options will only affect
new COREs that you generate. Any COREs that you have created
before making the project changes will still reflect the old options.
You will need to regenerate any COREs that need to inherit the new
project options.

Setting Web Browser Path
The Xilinx CORE Generator System is able to link to sites on the Web.
You may click to the Xilinx CORE Generator System Web page or the
Xilinx support.xilinx.com site. You can also link to the AllianceCORE
partner web sites. When the Xilinx CORE Generator System attempts
to link to the Web the first time, it will look for your default browser.

The Xilinx CORE Generator System will first attempt to locate your
default browser from the registry (on the PC) or from your path (on
Workstations). If it cannot determine the default browser, you will be
prompted for the location. A "Choose Browser" dialog will launch
and allow you to provide the path to your web browser if it has not
been previously set.

The path to your web browser can also be set by editing $XILINX/
coregen/preferences/coregen-<user_name>.prf and setting the
"Browser"property value to the fully qualified path to your web
browser.

Setting AcroRead Path
The Xilinx CORE Generator System provides all core datasheets in
Adobe Acrobat PDF format. When the Xilinx CORE Generator
System attempts to link to the Web the first time, it will look for your

Getting Started

2-14 Xilinx Inc.

default PDF Acrobat Reader. The Xilinx CORE Generator System will
first attempt to locate your default PDF Acrobat Reader from the
registry (on the PC) or from your path (on Workstations). If it cannot
determine the default PDF Acrobat Reader, you will be prompted for
the location. A Choose PDF Reader dialog will launch and allow
you to provide the path to your PDF Acrobat Reader.

The path to your Acrobat Reader can also be set by editing the
"Viewer" property value in $XILINX/coregen/preferences/
coregen_<user_name>.prf. Refer to the section on Setup Files, earlier
in this chapter for more information on setting the "Viewer" property
value.

CORE Generator System Troubleshooting

General Hints:
• Check the coregen.log file and <module_name> .xco file for

diagnostic information.

• If your coregen.prj project information file becomes
corrupted, delete it and recreate the project in that directory by
selecting the New Project option in CORE Generator System. One
symptom of a corrupted coregen.prj is errors from the CORE
Generator System during startup about missing modules.

• Check that write permissions are open for the directories
$XILINX/coregen/ip, $XILINX/coregen/preferences ,
and $XILINX/coregen/tmp . These directories must be write-
able for proper functioning of the CORE Generator System. Prob-
lems creating the resources.lib file may be associated with write
permissions or lack of available disk space on the $XILINX/
coregen/ip directory.

• LD_LIBRARY errors (workstations only): Verify that
LD_LIBRARY_PATH includes the path to $XILINX/bin/
<platform>

To debug startup problems, edit coregen.bat and add –v (verbose
mode) and –d (debug mode) options to the java.exe command line in
coregen.bat. The –v option will cause CORE Generator System to
display a detailed report of all data files being loaded and miscella-
neous operations. The –d option will cause CORE Generator System
to report specific debug-related information.

Getting Started

CORE Generator 2.1i User Guide 2-15

Where to get help with general CORE
Generator problems:

• Check here first: http://www.support.xilinx.com/
support/techsup/tappinfo.htm for general information on
contacting Xilinx support.

• Use our web-based search engine to search the Xilinx Answers
Database http://www.support.xilinx.com/support/
searchtd.htm . This database contains information on all
known problems with Xilinx hardware and software. Xilinx
Applications Engineers add to this knowledge base daily.

• Check the Updates & Files area, given below, to make sure your
software is current.

http://www.support.xilinx.com/support/techsup/
sw_updates

Additional Resources:

Xilinx CORE Generator System

Xilinx CORE Generator web page:

http://www.xilinx.com/products/logicore/
coregen

Check here for the latest news on the CORE Generator
System, including announcements about new modules.

CORE Generator & IP Modules Technical Tips web page:

http://www.xilinx.com/support/techsup/jour-
nals/coregen

AllianceCORE

Modules:

Contact the appropriate third party AllianceCORE provider
as indicated on the CORE Generator datasheet for that
module.

Getting Started

2-16 Xilinx Inc.

Email Support

For CORE Generator System specific questions not covered
in the Xilinx Answers Database:

coregen@xilinx.com

For DSP application specific questions:

dsp@xilinx.com

For AllianceCORE Partner questions:

alliancecore@xilinx.com

Web Support

For CORE Generator product information:

http://www.xilinx.com/products/logicore/
coregen

For information on cores:

http://www.xilinx.com/ipcenter

FTP

Miscellaneous application notes and design files:

http://www.xilinx.com/support/techsup/ftp/
apps.htm

CORE Generator 2.1i User Guide 3-1

Chapter 3

Using the CORE Generator ™ System

Overview
This chapter explains the major functions performed by the designer
when using the CORE Generator System. The functions included in
this chapter are:

• How to use the CORE browser

• How to access CORE datasheets

• How to customize a CORE

• How to generate COREs in batch mode

• How to update the COREs

Using the CORE Browser
The main view of the CORE Generator System is the CORE browser.

COREs that fall into particular application categories are grouped
into folders to assist you in locating the CORE appropriate to your
needs. The left hand pane of the CORE browser allows you to browse
through these folders. To select a folder, click once on the folder name
in the left hand pane. To expand a folder, double click on the folder
icon to the left of the folder name. The folder will expand to reveal
more folders. A folder may be closed by double clicking on the open
folder icon. Some folders have a + icon or a – icon to their left which
can also be used to open or close them respectively by a single click
on the icon.

The COREs in the selected folder are displayed in the right hand pane
of the CORE browser. COREs are listed by name and also have type,
version, family and vendor information displayed in columns. The

Using The CORE Generator TM System

3-2 Xilinx Inc.

size of each column can be altered by pointing the mouse at the sepa-
rator between the column headings until the cursor changes to

↔ icon. Click and hold the left mouse button (clicking slightly to the
left of the separator selects the column on the left and clicking slightly
to the right selects the column on the right of the separator) and then
move the mouse horizontally to resize the selected column. Release
the mouse button when the desired column width is achieved. The
column ordering can also be modified by clicking and holding the left
mouse button while pointing at the category label, then dragging the
label to the desired position by moving the mouse horizontally.
Releasing the mouse button deposits the label at its new position.

The status pane at the bottom of the CORE browser window displays
the results of actions and, displays appropriate messages if any errors
or warnings occur.

The size of each of the panes can be adjusted by pointing at the
vertical or horizontal bar separating the panes until the cursor
changes to a↑ icon (for vertical bars) or ↔ icon (for horizontal bars).
Clicking and holding the left mouse button allows the panes to be

Figure 3-1 Main CORE Generator Browser Window

Using the CORE Generator ™ System

CORE Generator 2.1 User Guide 3-3

resized when the mouse is moved. Release the mouse button when
the desired pane layout is achieved.

All panes will have vertical and or horizontal scroll bars that allow
navigation if the information displayed in the pane is larger than the
current pane size.

Accessing CORE Data Sheets
A CORE can be selected by clicking on the name of the CORE in the
right pane. Once a CORE has been selected the data sheet can be
viewed by clicking on the Data Sheet button on the CORE browser
toolbar or by selecting the Core -->Datasheet option from the pull-
down menus. Both of these actions will launch the Acrobat reader to
display the data sheet.

Figure 3-2 CORE Datasheet Buttons

Using The CORE Generator TM System

3-4 Xilinx Inc.

Customizing a CORE
Most COREs have a parameterization window. The parameterization
window shown below was launched by navigating to the CORE
Generator’s ‘Registered Loadable Adder’ module.

The parameterization window for a CORE is displayed by double
clicking on the CORE in the right pane of the CORE browser, clicking
on the Customize button on the CORE browser toolbar, or selecting:

Core -> Customize from the pull down menus.

While the parameterization windows will be unique for each CORE,
there are some characteristics that are common to all modules.

The default tab that is displayed when the parameterization window
is displayed is the Parameter screen. A CORE Overview screen is
available as is a Contact Information screen. These tabs are accessed

Figure 3-3 Registered Loadable Adder Module

Using the CORE Generator ™ System

CORE Generator 2.1 User Guide 3-5

by clicking on the appropriate tab at the top of the parameterization
window.

All modules have a Component Name field which allows you to
assign a name to the CORE that you create. Files that the CORE
Generator System creates for a particular CORE will have a root file-
name that matches the Component Name. You should note that
component names have the following restrictions:

• Must begin with an alpha character: a - z

• No uppercase letters

• May include (after the first character): 0 - 9, _ (under-
score)

• No extensions

The Generate, Cancel and Data Sheet … buttons are also
common to all parameterization windows. Assuming there are no
problems with any of the parameters that have been specified,
pressing Generate will cause the CORE Generator System to create
files for the requested CORE of the requested types. Pressing Cancel
will return you to the CORE browser window without generating
any files. Pressing Data Sheet … will invoke Adobe Acrobat to
display the data sheet for the module being parameterized.

Figure 3-4 CORE Customize Buttons

Using The CORE Generator TM System

3-6 Xilinx Inc.

For information about a specific CORE’s parameterization window,
such as upper and lower limits for certain fields, see the CORE’s data
sheet.

Illegal or Invalid Values
All parameterization windows flag illegal or invalid data in the same
fashion. The affected field is highlighted in red until the problem is
corrected. If the reason why a field is highlighted is not obvious, or if
the explanation in the log window is not clear, a more detailed expla-
nation can usually be obtained by pressing the Generate button.

.COE Files
Some COREs require a significant amount of information to fully
specify their behavior. COREs of this type (e.g. PDA FIR, SDA FIR,
XC4000 RAM and ROM, and Virtex Block RAM) usually require
multiple coefficients or initialization values. To specify the values
more conveniently, you can load a .COE file using the Load Coef-
ficients … button in the parameterization window.

The Load Coefficients … button can be seen in the screen shot of
the PDA FIR Filter parameterization window Figure 3-5.

Additional information about the requirements for a CORE’s .COE
file can be found in that CORE’s data sheet.

The general form for a .COE file is the following:

Keyword =Value ; Optional Comment

Keyword =Value ; Optional Comment

CoefData =Data_Value, Data_Value, …;

CoefData is the keyword used for filters to indicate that the data that
follows comprises the coefficients for the filter. For distributed memo-
ries the keyword MemData is used instead and for Virtex Block
memories the keyword is

MEMORY_INITIALIZATION_VECTOR

Note: Any text after a semicolon is treated as a comment and will be
ignored.

Using the CORE Generator ™ System

CORE Generator 2.1 User Guide 3-7

CoefData , MemData , MEMORY_INITIALIZATION_VECTOR ,
all must be the last keywords in the .COE file. Any keywords that
follow them will be ignored.

Examples of .COE files for the PDA FIR, SDA FIR, distributed RAM,
distributed ROM and Virtex block RAM COE files can be found in the
$XILINX/coregen/data directory and are reproduced below.

Figure 3-5 PDA FIR Filter Module Window

Using The CORE Generator TM System

3-8 Xilinx Inc.

****** Example of PDA FIR .COE file with ******

****** hex coefficients - pdafir.coe ******

Component_Name=fltr16;

Number_Of_Taps=16;

Input_Width = 8;

Output_Width = 20;

Coefficient_Width = 12;

Impulse_Response_Symmetry = true;

Radix = 16;

CoefData=346,EDA,0D6,F91,079,FC8,053,FE2;

****** Example of PDA FIR .COE file with ******

****** decimal coefficients – pfir_dec.coe ******

Component_Name=fltr16;

Number_Of_Taps=16;

Input_Width = 8;

Signed_Input_Data = true;

Output_Width = 21;

Coefficient_Width = 8;

Impulse_Response_Symmetry = true;

Radix = 10;

CoefData=1,-3,7,9,78,80,127,-128;

****** Example of SDA FIR .COE file with ******

****** decimal coefficients – sdafir.coe ******

Component_Name=sdafir;

Number_Of_Taps=6;

Radix=10;

Input_Width=10;

Output_Width=24;

Coefficient_Width=11;

Using the CORE Generator ™ System

CORE Generator 2.1 User Guide 3-9

Impulse_Response_Symmetry = false;

CoefData= -1,18,122,418,-40,3;

****** Example of distributed RAM .COE file ******

****** with hex coefficients – ram_hex.coe ******

Component_Name=ram16x12;

Data_Width = 12;

Address_Width = 4;

Depth = 16;

Radix = 16;

memdata=346,EDA,0D6,F91,079,FC8,053,

FE2,03C,FF2,02D,FFB,022,002,01A,005;

****** Example of distributed ROM .COE file ******

****** with decimal coefficients – rom_dec.coe ******

Component_Name=rom32x8;

Data_Width = 8;

Address_Width = 5;

Depth = 32;

Radix = 10;

memdata=127,127,127,127,127,126,126,126,

125,125,125,4,3,2,0,-1,-2,-4,-5,-6,-8,-9,

-11,-12,-13,-38,-39,-41,-42,-44,-45,-128;

****** Example of Virtex single port ******

****** RAM .COE file with hex ******

****** coefficients – v_spbram.coe ******

Component_Name = v_spbram;

Depth = 256;

Data_Width = 32;

Radix = 16;

Using The CORE Generator TM System

3-10 Xilinx Inc.

Default_Data = FFF;

MEMORY_INITIALIZATION_VECTOR =
FF0,F0F,0FF,FF4,F4F,4FF,FF8,F8F,8FF;

****** Example of Virtex dual port ******

****** RAM .COE file with binary ******

****** coefficients – v_dpbram.coe ******

Component_Name=v_dpbram;

Depth_A = 4096;

Data_Width_A = 16;

Depth_B = 1024;

Data_Width_B = 64;

Radix = 2;

Default_Data = 10101010;

MEMORY_INITIALIZATION_VECTOR=

1111111111111110,

1111111111111101,

1111111111111011,

1111111111110111;

Using the CORE Generator ™ System

CORE Generator 2.1 User Guide 3-11

Command Files
A Xilinx CORE Generator command file is a file that contains valid
CORE Generator commands and comments (see the table below for
the list of valid CORE Generator commands). Command file
comment lines begin with a '#' symbol. The CORE Generator allows
you to execute command files in GUI mode by selecting the File-
>Execute Command File... item in the main menu and entering the
path to the command file, as well as in batch mode by invoking
"coregen" in command line mode with the -b <command_file>
command line option.

The four types of command files in the CORE Generator System-- .xco
files, coregen.ini/coregen_<user_name>.ini files, user-generated command
files, and coregen.log files, are described below.

coregen.ini/coregen_<user_name>.ini

.ini files are executed when CORE Generator is first invoked, and also
when changing projects. .ini files should be used to set system prop-
erties such as AcrobatPath, or to set user customization properties
such as CoreSelect. When CORE Generator System is invoked, it first
searches the current working directory for a file named
"coregen_<user_name>.ini", then for a file named "coregen.ini", and
executes the first .ini file it finds. Alternatively, you can direct CORE
Generator System to use a particular .ini file by specifying the

"-i <ini_file> "

command line option when invoking the CORE Generator System.
.ini files are optional, and are not required for the CORE Generator
System to operate correctly.

When changing projects, the CORE Generator System uses the same
search order to find and execute an .ini file in the new project direc-
tory. Placing .ini files in project directories allows you to customize
CORE Generator behavior for individual projects.

User-generated Command Files

Users can write their own command files to generate COREs, create
projects, customize the CORE Generator environment, or execute any
other CORE Generator command. User-generated command files
may have any name and extension. All global property SET
commands executed within a user-generated command file

Using The CORE Generator TM System

3-12 Xilinx Inc.

are only in effect for that session. However, all project property SET
commands executed within a user-generated command file will
modify the current project.

See the tables included at the end of the Command Files section for the
list of valid global and project properties that can be set within a
command file.

.XCO Files

When a CORE is generated, a file called <component_name >.xco
will be generated by the system. This file is a log file that records all
the options used to create the CORE. It can be used to verify all the
options that were used when the CORE was generated and can also
be used to recreate the CORE exactly using the

File -> Execute Command File menu or in batch mode.

Comment lines begin with the # character. Any output format or
system options lines start with the keyword SET. These options will
match the options set in the coregen_<User_Name>.ini . The lines
that start with CSET are the options that are passed from the CORE
parameterization dialog window. All data read in from a .COE file is
also listed preceded by the CSET keyword.

The following is an example for the FIR filter generated using the
pdafir.coe file described above.

Xilinx CORE Generator v2.1.11

Username = roman

FoundationPath = G:\Xilinx

COREGenPath = d:\cg212\rtf\coregen

ProjectPath = D:\Designs\cgvxtest

ExpandedProjectPath = D:\Designs\cgvxtest

SET BusFormat = BusFormatParen

SET SimulationOutputProducts = VHDL

SET ViewlogicLibraryAlias = ""

SET XilinxFamily = XC4000

SET DesignFlow = VHDL

SET FlowVendor = Synplicity

SELECT PDA_FIR_Filter XC4000 Xilinx 1.0

Using the CORE Generator ™ System

CORE Generator 2.1 User Guide 3-13

CSET number_of_taps = 16

CSET component_name = fltr16

CSET trim_empty_roms = FALSE

CSET radix = 10

CSET impulse_response_symmetry = TRUE

CSET signed_input_data = TRUE

CSET generate_cascadable_section = FALSE

CSET coefdata = 1,-3,7,9,78,80,127,-128

CSET output_width = 15

CSET input_width = 8

CSET coefficient_width = 8

CSET antisymmetry = FALSE

GENERATE

coregen.log

Coregen.log is a log file that is automatically written to the current
working directory by the CORE Generator System. coregen.log
contains all the actions and messages performed during a CORE
Generator session, so you can refer to it to see what occurred during
that session. Since coregen.log is a command file it can also be
replayed to recreate a CORE Generator session.

On PC's, coregen.log is written to $XILINX\coregen\tmp

On Workstations, coregen.log is written to the current project direc-
tory.

Using The CORE Generator TM System

3-14 Xilinx Inc.

Valid CORE Generator Commands

Global Properties

Command Syntax Description

CSET <core_property> =
<value>

Sets a core parameter value before generation.

END Ends a CORE Generator session.

EXECUTE =
<command_file_path>

Executes a CORE Generator command file.

GENERATE Generates a core.

NEWPROJECT =
<new_project_path>

Creates a new project.

SELECT <core_name>
<architecture> <vendor>
 <core_version>

Selects the indicated core.

SET <global_property> =
<value>

Sets a global property value.

SETPROJECT
<project_path>

Makes the indicated project the active project.

Property Syntax Description

AcrobatPath =
<acrobat_install_directory>

Specify the path to the Acrobat install directory.

 AcrobatName =
<acrobat_exe_name>

Specify the Acrobat executable name.

CoreSelect = <SpecifiedVer-
sion |LatestVersion |
ProjectVersion>

Specify what version of a core to select.

FoundationPath =
<path_to_foundation_tool>

Specify the path to the Foundation directory.

OverwriteFiles = <true |
false>

Specify whether Coregen will automatically overwrite
design files during core generation.

ProjectOverride = <true |
false>

Specify whether the current project properties override the
project properties in a command file.

Using the CORE Generator ™ System

CORE Generator 2.1 User Guide 3-15

Project Properties

Generating COREs in Batch Mode
When the CORE Generator System is run with no options it comes up
in GUI mode. The CORE Generator System can be run in batch mode
to generate COREs by specifying the .XCO file that defines the CORE
to be generated and its parameters, and the project directory where
the output files should be deposited.

The .XCO file created by the CORE Generator System when run in
GUI mode can be used to drive the generation of the same CORE in
batch mode. These can be edited and renamed to generate a slightly
different CORE. Note also that an .XCO file can contain the
commands to generate more than one CORE.

If the directory where the CORE Generator executables resides is not
in the command search path, the CORE Generator System must be
invoked using a fully specified path.

The CORE Generator System’s command line options are listed
below.

• -b < command_file_name >

Property Syntax Description

BusFormat = <BusformatAngleBracket |
 BusformatSquareBracket | BusformatParen|
BusformatNoDelimiter>

Specify the desired bus delimiter
(default = BusformatNoDelimiter)

DesignFlow = <Schematic | VHDL |Verilog> Specify the desired design flow
(default = schematic)

FlowVendor = <Foundation | Viewlogic |
 Mentor | Cadence | Synplicity | Synopsys |
Exemplar | Other>

Specify the desired CAE flow vendor
(default = Viewlogic)

SimulationOutputProducts = <VHDL
|Verilog | None>

Select the desired simulation products
(default = None)

ViewlogicLibraryAlias =
<library_alias_name>

Specify the viewlogic library alias (must
match the library alias for the project
library in your viewdraw.ini)

XilinxFamily = <XC4000 | Spartan | Virtex |
Spartan2>

Select the desired Xilinx architecture
family (default = XC4000)

Using The CORE Generator TM System

3-16 Xilinx Inc.

Tells the CORE Generator the name of the command file (suffix
.XCO) that should be executed by the batch mode run.

• -i < coregen_ini_file_name >

By default the CORE Generator System will use the profile that is
in the specified project directory. If a different profile is required
to be used then it can be explicitly specified using a fully speci-
fied path name.

• -p <project_path>

Specifies the project directory. The project path must be fully
specified.

• -q <polling_dir_path>

This is an option for third party tools that call the CORE Gener-
ator System and should not be used by users in batch mode.

• -h

Displays the CORE Generator batch mode help screen.

D:\Designs\filter> coregen -h

Xilinx CORE Generator v2.1i

Usage:

<command_file_name> is the path to the Command file to be
executed.

<coregen_ini_file_name> is the path to the Coregen ini
file to be loaded, or it will load this file from the
Project directory.

<project_path> is the path to the Coregen Project.

<polling_dir_path> is the polling directory.

-h displays this usage message.

Typical invocation of the CORE Generator System in batch mode
would be as follows:

coregen -b <core_name>.xco –p <project_path>

Using the CORE Generator ™ System

CORE Generator 2.1 User Guide 3-17

Updating COREs in the CORE Generator System

Version Handling in the CORE Generator
System

The CORE Generator System is capable of handling multiple versions
of a CORE. The ability to create newer versions of a CORE allows a
designer to introduce additional functionality to an existing CORE
and fix any problems that may have been found in an earlier version
of the CORE.

When a new project is created the COREs displayedin the CORE
Generator System’s main window are the latest versions of the
COREs.

When new COREs and new versions of existing COREs are down-
loaded from the IP Center they are installed in the CORE Generator
System’s hierarchy, but are not visible for existing projects. This capa-
bility exists to insulate existing projects from updates to the COREs
used in that project and the changes in the functionality that might
occur if this were performed automatically. The capability exists to
allow a new CORE or a new version of an existing CORE to be made
available in an existing project, should this be required.

Downloading New COREs
The new COREs and their installation instructions can be down-
loaded from the Xilinx IP Center at http://www.xilinx.com/

Links to the IP Center are available from the menus via

Core -> CoreLINX or Web -> CoreLINX

A toolbar button is also available to access the IP Center.

Using The CORE Generator TM System

3-18 Xilinx Inc.

CORE Version Update in an Existing Project
As described above, an existing project does not automatically adopt
new COREs or new versions of existing COREs. If new COREs are
downloaded and it is required that they be visible in an existing
project there are two ways to do this.

In general, make sure when updating an existing project to use new
versions of COREs because there may be differences that may change
the design operation. The data sheet for the new version of the CORE
should be read carefully to ensure that the differences are understood
within the context of the design in progress and are not likely to affect
adversely the functionality of the design.

Figure 3-6 CoreLINX Buttons

Figure 3-7 Browse CoreLINX Button

Using the CORE Generator ™ System

CORE Generator 2.1 User Guide 3-19

The Project -> Update Cores -> All to Latest , menu
selection will update the project files for the currently selected project
to reflect the latest version of all COREs. Care should be taken when
using this option because of the global nature of the change for the
current project.

Individual COREs can be added or removed to the current project’s
profile using the Project -> Update Cores -> Custom menu
selection. This displays the Update Project COREs dialogue screen
which allows the user to go through the listings of the COREs in each
category and click on the check box adjacent to any new COREs that

Figure 3-8 Update COREs Button

Figure 3-9 Update COREs Custom Window

Using The CORE Generator TM System

3-20 Xilinx Inc.

they want to be available in the current project. By clicking on a check
box that is already selected a CORE that is currently available can be
removed.

CORE Generator 2.1i User Guide 4-1

Chapter 4

CORE Generator Design Flows

Overview
This chapter describes how to integrate a CORE Generator module
into a user design. The chapter covers the two main types of design
flows: schematic design flow and the HDL design flow.

The CORE Generator design environment currently supports the
following schematic design tools:

• Viewlogic

• Foundation

• Mentor

• Cadence*

The CORE Generator design environment currently supports the
following HDL Synthesis tools:

• Synopsys FPGA Express

• Synopsys FPGA Compiler

• Exemplar

• Synplicity

*Limited Cadence support is currently available as described in the Schematic
Design Flow Section.

CORE Generator Design Flows

4-2 Xilinx Inc.

CORE Generator Design Flow Basics
The CORE Generator System produces an EDIF Netlist, and may also
produce a Foundation or Viewlogic schematic symbol, and /or a
VEO or VHO template file. The EDN file contains the information for
implementing the module. The Foundation or Viewlogic symbol
allows you to integrate the CORE Generator module into a schematic
for those CAE tools. Finally, the VEO and VHO template files contain
code that can be used as a model to instantiate the module in a
Verilog or VHDL design so that it can be simulated and integrated
into a design as a black box.

The dotted circles in Figure 4-1 highlight the portions of the flow
directly associated with the CORE Generator Design Flow. The circle
on the left shows the EDN, VEO, VHO and schematic files produced
by the CORE Generator System as discussed above.The circle on the
right shows the XilinxCoreLib and <Vendor> CoreLib libraries
that are extracted by the get_models utility. These libraries contain
the behavioral simulation models for the CORE Generator cores.

Please refer to the Design Flows Chapter for more information on the
various CAE flows depicted in this diagram as well as for informa-
tion on the get_models utility.

Figure 4-1 CORE Generator Design Flows

CORE Generator

Symbol

VHO
VEO

VHDL
Verilog

VHDL
Verilog

VHDL
Verilog

VHDL
Verilog

EDIF SDF

simprim Unified

Xilinx CoreLib

<Vendor>CoreLib

Unisim

simprim

Synthesizer

Schematic Editor

Schematic Simulation Tools

HDL Editor

EDIF

EDIF

EDN

Implementation Tools

EDIF

SDF

H
D
L

E
d
i
t
o
r

get_models

VITAL & Verilog

VITAL, Verilog,
Gate-level

Verilog & VHDL
Instantiation

HDL
TestBench

Timing
Simulation

Flow

Functional
Simulation

Flow

Behavioral Simulation Models

CORE Generator Design Flows

CORE Generator 2.1i User Guide 4-3

Viewlogic Design Flow
The Viewlogic interface outputs are generated by a script, vllink,
which calls for both Viewlogic tools and Xilinx Implementation Tools
programs.

On a Windows platform you must have both the Viewlogic and
Xilinx Implementation Tools software installed to generate the
outputs required to integrate a core into a Viewlogic design.

On a UNIX platform, your environment must be set up to run the
Viewlogic tools and the Xilinx Implementation software, as well as
the CORE Generator System software. If any of these tools are either
not installed or not properly set up in your environment, diagnostic
errors may be reported in the vllink.log file written to your project
directory.

Note: For details on Viewlogic and Xilinx Implementation Tools
setup, please refer to the Alliance Quick Start User Guide. For both plat-
forms, the CORE Generator project must be located in a valad View-
logic project directory.

The Viewlogic design flow is described below.

Create a directory for a Viewlogic project

Example

c:\wvoffice\project

Set up project libraries

On Workstations, these libraries must be defined in the viewedraw.ini
file located in the project’s working directory.

On PCs, these libraries must be set up through the Project Manager
GUI as described below:

• Open a New project.

• Add a configured FPGA library from the list. As an example, if
the xc4000XL is selected, the xc4000x, logiblox, simprims, builtin
and xbuiltin libraries are added automatically.

• Add the project directory as a Writeable library and give it the
alias, “primary”. Move it to the top of the library search order.

CORE Generator Design Flows

4-4 Xilinx Inc.

• Save the project in the Viewlogic Project Manager.

The following is an example of the library search order needed to
create an XC4000XL design:

dir [p] c:\wvoffice\project (primary)

dir [rm] %XILINX%\viewlog\data\xc4000x (xc4000x)

dir [r] %XILINX%\viewlog\data\logiblox (logiblox)

dir [rm] %XILINX%\viewlog\data\simprims (simprims)

dir [rm] %XILINX%\viewlog\data\builtin (builtin)

dir [rm] %XILINX%\viewlog\data\xbuiltin (xbuiltin)

Note: The (primary) alias is very important since the CORE Gener-
ator System will look for it in order to define the directory to copy the
symbol and simulation files. This alias should match the one speci-
fied in the CORE Generator System Options under Viewlogic Library
alias.

Set the Output Format

From the CORE Generator Project menu, select Project Options and
check the following options:

• Design Flow: Schematic

• Vendor: Viewlogic

The netlist bus format is automatically set to< BI> when Viewlogic
is specified as the vendor.

Set Project Path and Viewlogic Library Alias

From the CORE Generator Project menu, select Project / Open and
ensure that the Project Path is set to point to the Viewlogic project
directory you are working on (c:\wvoffice\project). If the
desired project is not on your list of displayed projects, use the
Browse button to navigate to this directory. Make sure that the string
you enter in the CORE Generator windowfor the Viewlogic Library
Alias matches the one defined in the viewdraw.ini file. The default
Viewlogic Library Alias is “primary” but any name up to 8 characters
can be used.

CORE Generator Design Flows

CORE Generator 2.1i User Guide 4-5

Select Desired Module

Select the module you want to generate by navigating around the
module browser and clicking on the desired module. You may click
the SPEC button on the CORE Generator toolbar to review the
module's datasheet.

Double click on the selected module to reveal its parameterization
window. When you have entered all the parameterization details
required by the module, click the Generate button.

Output Files

A Viewlogic Symbol, a Viewlogic simulation file (WIR) and a Netlist
File (.EDN) will be created.

Note: The symbol is created with a Block type of “Composite” and
placed in the SYM subdirectory within the Viewlogic project. This
symbol will not necessarily match the CORE Generator module
symbol shown in the datasheets in shape and pin order. It is possible
to manually modify your symbol using the Viewlogic Symbol Editor
as needed.

• The simulation file is created from the EDN file and placed in the
WIR subdirectory within the Viewlogic project.

Figure 4-2 Project Options GUI

CORE Generator Design Flows

4-6 Xilinx Inc.

• The Netlist (.EDN) used for implementation, is placed directly in
the Viewlogic project directory.

Note: The WIR file is used by Viewlogic to perform Functional
simulation and should not be deleted. In order to generate this file the
CORE Generator System needs to access some Xilinx Implementation
Tools executables and may fail if this tool is not set up properly.

Note: Workview Office 7.4 and 7.5 and Powerview 6.0 do not
support Virtex and Spartan2 simulation, so only a symbol and a
netlist are generated for these cores. You must use either VHDL or
Verilog to simulate Virtex designs in Viewlogic.

If an error occurs during the generation of these files, check the
vllink.log file located in the Project Directory.

Load Symbol in Schematic Editor

Open the Viewlogic schematic tool, load your top level schematic (or
create a new one) and add the new symbol for the module you have
just created. Finally, attach a “LEVEL” property to the symbol with a
value of “XILINX”. Check that this property has been added properly
to the symbol by displaying all properties attached to the symbol.

From this point onward, the flow for processing this design is the
same as if you were using macros from the Unified Library. For
further information, refer to the Viewlogic Interface/Tutorial Guide.

Note: When executing the Viewlogic “Check” program, error
messages like the one shown below will be displayed for every CORE
Generator module but can be safely ignored.

Example

ERROR: Could not load schematic sheet: corename.1

Foundation Design Flow
In the 2.1i release of the CORE Generator System is integrated into
the Foundation Schematic Editor. Please refer to the F2.1i documenta-
tion for details on integrating your CORE Generator module into a
Foundation Schematic Design.

CORE Generator Design Flows

CORE Generator 2.1i User Guide 4-7

Mentor Design Flow
The 2.1i release of the CORE Generator System is integrated into the
Mentor Design Architect. Please refer to the Mentor Interface docu-
mentation for details on integrating your CORE Generator module
into a Mentor Schematic Design.

Cadence Design Flow
Setting the Vendor to Cadence in the CORE Generator Project
Options dialog window will direct the application to generate and
EDIF Implementation netlist with the proper bus delimiter format for
Concept-HDL.

For further information integrating a core into a Concept-HDL sche-
matic, please refer to Solution 2005 at:

http://www.support.xilinx.com.

The CORE Generator System will be integrated into Concept-HDL in
a future release.

HDL Design Flows
This section describes the elements of an HDL design flow in the
CORE Generator System environment.

The first part of this section covers the new behavioral model
delivery system in the CORE Generator System including the new
get_models utility and the new.VEO and .VHO Verilog and VHDL
template files. This part is followed by the specifics of the vendor
flows for Synopsys FPGA Express, Synopsys FPGA Compiler, Exem-
plar, and Synplicity tools in combination with the Verilog-XL and
MTI VHDL and Verilog simulators.

The following are the basic steps involved in integrating a CORE
Generator module into an HDL design:

• Generate the module

• Instantiate the module in your design

• Perform a behavioral simulation of your design with the inte-
grated module

• Extract the CORE Generator module behavioral models from
the CORE Generator tree with get_models

CORE Generator Design Flows

4-8 Xilinx Inc.

• Analyze the models

• Simulate

• Implement the design.

Behavioral Model Delivery in the CORE
Generator System

In the 2.1i release of the Xilinx CORE Generator, the HDL behavioral
models have been rewritten to support “optional pins” on CORE
Generator modules. This refers to the fact that the various input and
output ports on a CORE Generator module may not all be required
by the user. Some pins (the “optional” ones) may be omitted when
the module is generated. With the new 2.1i CORE Generator parame-
terized behavioral models and internal representations, when
optional ports are not specified for the module, the construction of,
and behavioral models for, the module are adjusted accordingly. The
unused pins and their associated logic are omitted when the CORE
Generator System generates the EDIF implementation netlist for the
module. Since much of the unnecessary logic is omitted up front from
the implementation netlist generated by the CORE Generator, there is
less reliance on the Xilinx Mapper to trim out extraneous logic.

Several other aspects of CORE Generator HDL behavioral model
delivery have also changed for customers using CORE Generator
modules in HDL design flows. The additions are listed as follows:

• A new utility called get_models has been added. Its purpose is to
extract the HDL behavioral models from the CORE Generator
tree into a library directory.

• Behavioral models for each CORE Generator module are no
longer copied to the user’s project directory. Instead, CORE
Generator System 2.1i only writes out HDL instantiation
template files (.VEO and .VHO) which contain pointers to the
generic, parameterized HDL simulation models in a get_models
extracted library or directory.

• In those cases where a behavioral model is hierarchical, pointers
to the lower level behavioral models referenced by a higher level
one are also written to the instantiation template files.

CORE Generator Design Flows

CORE Generator 2.1i User Guide 4-9

get_models
This section describes the new methodology you will need to follow
to incorporate Xilinx CORE Generator HDL behavioral models into
your flow.

The get_models program is a command line utility used to extract the
Verilog or VHDL behavioral models embedded within a user’s CORE
Generator System installation to a single, central location. The models
may exist in archived or source file format. In the case of an HDL flow
using a compiled simulator, extracting the models to a single direc-
tory allows them to be conveniently analyzed for a particular Verilog
or VHDL simulator. In a Verilog flow using an interpretive simulator,
get_models simply extracts and collects together the Verilog behav-
ioral models of all installed CORE Generator modules so that they
can be conveniently referenced during simulation.

Alternatively, get_models can also be run to extract individual behav-
ioral models for specific CORE Generator modules to a user’s project
directory, if preferred.

Note: Since the behavioral model for any new CORE Generator
module is always embedded into that module’s directory archive,
you must also run get_models whenever you install a CORE Gener-
ator IP module update.

Syntax

get_models [-verilog | -vhdl] <destination_directory>

Required Parameters

• -verilog | -vhdl : Extract Verilog (or VHDL) behavioral
models only. You must specify either -verilog or –vhdl when
running get_models.

• <destination_directory> : name of directory in which the
various <Vendor >CoreLib subdirectories are to be created.
Typically a XilinxCoreLib subdirectory will always be one of the
directories created in this directory.

Recommended location of <destination_directory> is
$XILINX/data . (On networked UNIX workstations, system
administrator privileges may be required to use this location if
multiple users are using the same installation).

CORE Generator Design Flows

4-10 Xilinx Inc.

Note: You must specify either –verilog or-vhdl as one of the argu-
ments to get_models.

Inputs

The inputs to the get_models utility are the CORE Generator behav-
ioral models located in your Xilinx CORE Generator System installa-
tion under <install_directory>/ip/xilinx. These models may exist in
either of two formats:

• Archived together with other data files related to a given
module as a .JAR (JAVA Archive format) file, located under
$XILINX/coregen/ip/com/xilinx .

• Non-archived, source file format (.v and .vhd files) located in
the respective CORE Generator module directory, under
$XILINX/coregen/ip/com/xilinx .

Outputs

The outputs to the get_models utility is a directory of extracted
source format Verilog or VHDL behavioral models as listed in the
table below.

.VEO (Verilog Instantiation Template)
A .VEO (Verilog Output) file is a file containing code that can be used
to instantiate your CORE Generator module into your Verilog design,
and also contains code that supports behavioral simulation.

Output Files Description

*.v Verilog behavioral models extracted from the
CORE Generator directory tree

*.vhd VHDL behavioral models extracted from the
CORE Generator tree

<module>_com
p.vhd

VHDL component declaration files for each
CORE Generator module extracted from the
CORE Generator tree

CORE Generator Design Flows

CORE Generator 2.1i User Guide 4-11

A sample Verilog instantiation template for an 8-bit adder is shown
below. The main components are:

• Simulation Model “include” statement

• Instantiation code

• Module Port Declaration with customization parameters

/*The following line MUST appear at the top of the file in
which the instantiation will be made:*/

// LIB_TAG

`include “XilinxCoreLib/adreVHT.v”

// LIB_TAG_END

/*The following is an example of an instantiation. Cut and
paste this code into your design, changing the instance name
and port connections (in parentheses) to your own signal
names.*/

// INST_TAG

adder8 YourInstanceName (

.A(A),

.B(B),

.C(C),

.CE(CE),

.CI(CI),

.CLR(CLR),

.S(S));

// INST_TAG_END

*/Cut and paste this code into your design, after the module
in which it is to be instanced.*/

// MOD_TAG

module adder8 (

A,

B,

C,

CE,

CI,

CLR,

S);

input [7 : 0] A;

input [7 : 0] B;

input C;

input CE;

CORE Generator Design Flows

4-12 Xilinx Inc.

input CI;

input CLR;

output [8 : 0] S;

ADREVHT #(8,

1)

inst (.A(A),

.B(B),

.C(C),

.CE(CE),

.CI(CI),

.CLR(CLR),

.S(S));

endmodule

// MOD_TAG_END

.VHO (VHDL Instantiation Template)
The .VHO instantiation template file is a file containing code that can
be used to instantiate a CORE Generator module into a VHDL
design, and also contains code that supports behavioral simulation.
The .VHO file is similar to the .VHI instantiation template generated
by the 1.4 and 1.5 versions of the CORE Generator, but is distin-
guished by an additional VHDL CONFIGURATION snippet that
must be added to a CONFIGURATION declaration in your VHDL
testbench file or upper level design file. The Configuration sets the
values of various VHDL generics used to customize the CORE Gener-
ator VHDL simulation models in the 2.1i release.

The main parts of a .VHO file are:

• XilinxCoreLib LIBRARY Declaration

• COMPONENT Declaration

• Instantiation template

• CONFIGURATION Declaration with VHDL generics

Sample .VHO file for an 8-bit adder

--User: Make sure that these statements appear

--above the top-level entity declaration in your VHDL
design...

--LIB_TAG

Library XilinxCoreLib;

CORE Generator Design Flows

CORE Generator 2.1i User Guide 4-13

Use XilinxCoreLib.null_comp.all;

-- LIB_TAG_END

-- User: Make sure that this statement appears

-- in the architecture header in your VHDL design...

-- COMP_TAG

component adder8

port (

a: IN std_logic_VECTOR(7 downto 0);

b: IN std_logic_VECTOR(7 downto 0);

c: IN std_logic;

ce: IN std_logic;

ci: IN std_logic;

clr: IN std_logic;

s: OUT std_logic_VECTOR(8 downto 0));

end component;

-- COMP_TAG_END

-- User: Make sure that this statement appears

-- in the architecture body in your VHDL design,

-- substituting your own instance name where shown.

-- Do not forget to change the net names in the port map

-- to your own design's net names.

-- INST_TAG

your_instance_name : adder8

port map (

a => a,

b => b,

c => c,

ce => ce,

ci => ci,

clr => clr,

s => s);

-- INST_TAG_END

-- User: Make sure that this text appears

-- within the top-level configuration body in your VHDL
design,

-- for example:

--

-- configuration cfg_top of top_level is

-- for arch_name

-- <Insert text here>

CORE Generator Design Flows

4-14 Xilinx Inc.

-- end for;

-- end cfg_top;

--

-- CONF_TAG

for all : adder8 use entity XilinxCoreLib.null(behavioral)

generic map(

signed => true,

input_width => 8);

end for;

CONF_TAG_END

Note: The lines between the two markers, -- CONF_TAG, and –
CONF_TAG_END:

–CONF_TAG

for all : adder8 use entity XilinxCoreLib.null(behavioral)

generic map(

signed => true,

input_width => 8);

end for;

-- CONF_TAG_END

These lines must be added to a CONFIGURATION statement in your
VHDL test fixture file or top level design file.

CORE Generator Design Flows

CORE Generator 2.1i User Guide 4-15

CORE Generator Verilog Flow
This section describes the procedure for behavioral simulation,
synthesis, and implementation of Verilog designs containing CORE
Generator modules. Specific instructions are included for the
following tools:

Synthesis

• Synopsys FPGA Compiler

• Synopsys FPGA Express

• Synplicity Synplify

• Exemplar Leonardo

Simulation

• MTI ModelSim/VLOG

• Cadence Verilog-XL

Basic Steps in the Verilog Design Flow

Module Generation

Specify the Design Entry, Vendor, and Behavioral Simulation
settings for the project.

Behavioral Simulation

Prepare for simulation

1. Extract the behavioral models to a (source) library

2. Instantiate the module in the parent design

a) Edit the include statement to reflect the actual location of the
extracted behavioral model source library

b) Comment out the instantiation template in the .VEO file.

c) Copy the .VEO file to <module_name>.v

d) Edit the connections in the module declaration

3. Create a testbench

CORE Generator Design Flows

4-16 Xilinx Inc.

a) Perform the behavioral simulation

4. Synthesis

a) a. Apply any “black-box” properties, if required

b) b. Synthesize the design

c) c. Write out the implementation netlist

5. Implementation

Implement the design using the Xilinx tools

Module Generation

Specify the Design Entry, Vendor, and Behavioral
Simulation settings for the project.

From the CORE Generator Project menu, select Project Options and
specify the Design Flow as “Verilog”, and specify the synthesis
vendor software you will be using to synthesize your VERILOG
design. This will specify the appropriate EDIF bus delimiter format
required for that flow for proper integration with the upper level
“parent” implementation netlist written out by the synthesizer for
your design.

In the example below, the Design Flow has been set to “Verilog”, and
the Vendor has been set to “Synopsys”, and as a result, the bus delim-
iter format is automatically set to “B<I>”.

Behavioral Simulation

Preparing for Verilog Behavioral Simulation

Note: The following instructions assume that the CORE Generator
System v2.1i has been installed in the directory $XILINX/coregen.

Extract the CORE Generator Verilog Behavioral Models to a (source)
library (required for all simulators).

Prior to simulating any CORE Generator cores, the behavioral models
for the cores must be extracted from the CORE Generator system
installation area to a directory of the user's choosing (referred to here
as “<destination_directory> ”). The recommended location of
“<destination_directory> " is $XILINX/verilog/src, as this is
the location of the source code for all other Xilinx Verilog libraries.

CORE Generator Design Flows

CORE Generator 2.1i User Guide 4-17

The get_models utility must be used to extract these models to the
<destination_directory>. For a Verilog design flow, the get_models
utility should be run with the -verilog switch to specify that only the
Verilog models should be extracted. The full syntax of the command
is:

get_models –verilog <destination_directory>

Within the specified <destination_directory>, get_models creates a
subdirectory for each vendor whose cores exist in your CORE Gener-
ator installation. The names of these directories take the following
form:

<Vendor>CoreLib

Note: The first letter of the vendor name is capitalized.

As an example, the subdirectory get_models creates for the Xilinx IP
models is XilinxCoreLib .

Get_models extracts all Verilog models provided by a particular
vendor from the CORE Generator installation area to the appropriate
<Vendor >CoreLib subdirectory when it is invoked with the –
verilog option.

 (For more information on get_models, please refer to the get_models
section of the CORE Generator Design Flows chapter).

Instantiate the core (same procedure for all simulators
and synthesis tools)

Selecting the Verilog checkbox under the Behavioral Simula-
tion option in the CORE Generator Project Options window
directs CORE Generator System to generate a Verilog template file
(<component_name>.VEO) in addition to an implementation netlist
(<component_name>.EDN) whenever a core is generated. The .VEO
template file includes:

• a library "` include" statement

• a module declaration section

• a module instantiation snippet

These elements should be copied and pasted into the parent design,
and the following modifications made:

CORE Generator Design Flows

4-18 Xilinx Inc.

Edit the include statement in the .VEO file to reflect the actual loca-
tion of the extracted behavioral model source library.

Cadence Verilog-XL and MTI ModelSim/VLOG

The library “` include” statement(s) must be modified to reflect the
actual location of the XilinxCoreLib and any other <Vendor>CoreLib
libraries extracted by get_models.

Example

`include /tools/xilinx/verilog/src/XilinxCoreLib

Comment out the instantiation template in the .VEO
file.

Copy the .VEO file to <module_name>.v

Connect the core to the parent design by editing the
module connections.

The dummy signals in the CORE Generator module instantiation
snippet must be replaced with the actual signals in the parent design
to which the component is to be connected.

The module declaration and component instantiation establish a link
in the parent Verilog design to the EDIF implementation netlist for
the CORE Generator module. This link is necessary to ensure that the
design will be implemented properly after the parent Verilog design
has been synthesized. The core's EDIF netlist is merged in with the
rest of the parent design by the Xilinx NGDBUILD tool during the
translation phase of the design flow.

Example

The following example illustrates the use of the Verilog template file
with a parent design. In this example, an 8-bit adder core, myadder8,
is generated using the CORE Generator system and is instantiated in
a parent design called "myadder8_top". "myadder8" represents an 8-
bit adder. The relevant CORE Generator files in this example are the
instantiation template file, myadder8.veo, and the parent design,
myadder8_top.v which are list below.

CORE Generator Design Flows

CORE Generator 2.1i User Guide 4-19

VERILOG instantiation template file: myadder8.veo

/***

This file was created by the Xilinx CORE Generator tool,
and is (c) Xilinx, Inc. 1998, 1999. No part of this file may
be transmitted to any third party (other than intended by
Xilinx) or used without a Xilinx programmable or hardwire
device without Xilinx's prior written permission.
***/

// The following line must appear at the top of the file /
/ in which the core instantiation will be made.

//Ensure that the translate_off/_on compiler directives

//are correct for your synthesis tool(s)

//-- Begin Cut here for LIBRARY inclusion ---// LIB_TAG

// synopsys translate_off

`include "XilinxCoreLib/adreVHT.v"

// synopsys translate_on

// LIB_TAG_END ------- End LIBRARY inclusion --------

// The following code must appear after the module in

//which it is to be instantiated. Ensure that the
translate_off/_on compiler directives are correct for

//your synthesis tool(s).

//-- Begin Cut here for MODULE Declaration --// MOD_TAG

module myadder8 (

A,

B,

C,

CE,

CI,

CLR,

S);

input [7 : 0] A;

input [7 : 0] B;

input C;

input CE;

input CI;

input CLR;

output [8 : 0] S;

CORE Generator Design Flows

4-20 Xilinx Inc.

// synopsys translate_off

ADREVHT #(

8,

1)

inst (

.A(A),

.B(B),

.C(C),

.CE(CE),

.CI(CI),

.CLR(CLR),

.S(S));

// synopsys translate_on

endmodule

// MOD_TAG_END ------- End MODULE Declaration -------

// The following must be inserted into your Verilog file //for
this core to be instantiated. Change the instance

//name and port connections(in parentheses) to your own

//signal names.

//-Begin Cut here for INSTANTIATION Template-// INST_TAG

myadder8 YourInstanceName (

 .A(A),

.B(B),

.C(C),

.CE(CE),

.CI(CI),

.CLR(CLR),

.S(S));

// INST_TAG_END ------ End INSTANTIATION Template -------

The .VEO file can be copied to "myadder8.v" and used to reference
the behavioral model for the adder after commenting out the Instanti-
ation Template section of the file using "/* */" comment markers as
follows:

/* myadder8 YourInstanceName (

.A(A),

CORE Generator Design Flows

CORE Generator 2.1i User Guide 4-21

.B(B),

.C(C),

.CE(CE),

.CI(CI),

.CLR(CLR),

.S(S));

*/

The resulting myadder8.v file should be analyzed along with the
parent design when preparing for simulation.

Now take a look at the parent design, myadder8_top.v . Notice
that the `include statement, the module declaration and the instantia-
tion (with dummy signal names replaced with actual signal names)
have been copied and pasted from myadder8.veo.

VERILOG parent design file: myadder8_top.v

The component, myadder8, is instantiated and the module is
declared. The module declaration and instantiation template are
copied from myadder8.veo, and are copied and pasted into the
parent design.

The user-specified instance name of myadder8_1 replaces "YourIn-
stanceName", and dummy signal names are replaced with actual
signal names. Sections of code beginning with // synopsys
translate_off and ending with //synopsys translate_on
directives are ignored by the synthesizer and are used for simulation
only.

Note: This directive is supported by Synopsys FPGA Compiler,
Foundation Express, FPGA Express, Exemplar and Synplicity
synthesis tools.

//---

// synopsys translate_off

// edit the next line to reflect the actual path to
XilinxCoreLib

`include "/tools/xilinx/data/verilog/src/XilinxCoreLib/
adreVHT.v"

// synopsys translate_on

module top (A_P, B_P, C_P, CE_P, CI_P, CLR_P, S_P);

input [7 : 0] A_P;

CORE Generator Design Flows

4-22 Xilinx Inc.

input [7 : 0] B_P;

input C_P;

input CE_P;

input CI_P;

input CLR_P;

output [8 : 0] S_P;

// INST_TAG

myadder8 #(8, 1) myadder8_1 (

.A(A_P),

.B(B_P),

.C(C_P),

.CE(CE_P),

.CI(CI_P),

.CLR(CLR_P),

.S(S_P));

// INST_TAG_END

endmodule

module myadder8 (

A,

B,

C,

CE,

CI,

CLR,

S);

input [7 : 0] A;

input [7 : 0] B;

input C;

input CE;

input CI;

input CLR;

output [8 : 0] S;

// synopsys translate_off

ADREVHT #(8, 1) inst (.A(A_P),

.B(B_P),

.C(C_P),

.CE(CE_P),

.CI(CI_P),

.CLR(CLR_P),

CORE Generator Design Flows

CORE Generator 2.1i User Guide 4-23

.S(S_P));

// synopsys translate_on

endmodule

Create The Testbench

To simulate a parent design that contains the myadder8 core, a test-
bench file, testbench.v, must be written that includes an instantiation
of the parent design. The testbench must include stimulus to activate
the adder. The framework for a testbench used to simulate this design
is shown below with some sample simulation stimulus.

`timescale 1 ns/1 ps

 module testbench;

reg C;

reg CE;

reg CI;

reg CLR;

reg [7:0] A;

reg [7:0] B;

wire [8:0] S;

/* Instantiation of top level design */

top uut (

.C_P (C),

.CE_P (CE),

.CI_P (CI),

.CLR_P (CLR),

.A_P (A),

.B_P (B),

.S_P (S)

);

/* Add stimulus here */

always #10 C = ~C;

initial begin

$timeformat(-9,3,"ns",12);

end

initial begin

 CI = 0;

 A = 0;

 B = 0;

CORE Generator Design Flows

4-24 Xilinx Inc.

 CE = 1;

 C = 1;

 CLR = 1;

 #100

 CLR=0;

 #20;

 A = 8'b10000000;

 B = 8'b00000001;

 #40;

 A= 8'b11100001;

 #40

 B= 8'b00000010;

 #1000 $stop;

 // #1000 $finish;

 end

/* end stimulus section */

endmodule

Perform the Behavioral Simulation

Certain vendors require that Verilog simulation netlists be analyzed
before simulation can proceed. For example, if you are using Model
Technology's ModelSim simulation tool to simulate your design, both
the parent netlist and the testbench must be analyzed. The simulation
files may be analyzed (using the vlog command) into a local, default,
work library called "work", which is created using the vlib command.

MTI ModelSIM

Execute the following commands in the project directory:

 vlib work

 vlog testbench.v

 vlog myadder8_top.v

 vlog myadder8.v

CORE Generator Design Flows

CORE Generator 2.1i User Guide 4-25

The simulator may now be invoked:

 vsim <top_level_module>

This will load the testbench, the parent design and the simulation
model of the 8-bit adder core, stored in the subdirectory,
XilinxCoreLib.

Cadence Verilog-XL

verilog testbench.v myadder8_top.v myadder8.v

Synthesis

The parent design containing the core or cores must next be synthe-
sized. To do this, the synthesizer must be directed to treat each core as
a "black-box" because the logic for each core is specified only in its
EDIF implementation netlist <component_name.EDN> , not in any
Verilog file.

Synopsys FPGA Compiler

Apply the "don’t_touch" attribute to the module via the Synopsys
compile script.

Synopsys FPGA Express

Make sure that you do NOT read in a separate .V or EDIF file for the
CORE Generator module. FPGA Express will automatically treat the
module as a black box.

Synplicity Synplify

Apply the "/* synthesis black_box */" attribute to the component
instantiation as follows (this step is optional, but will prevent "black-
box” warnings from Synplify during compilation):

/ Verilog black box example

// synopsys translate_on

module top (A_P, B_P, C_P, CE_P, CI_P, CLR_P, S_P);

input [7 : 0] A_P;

input [7 : 0] B_P;

input C_P;

input CE_P;

CORE Generator Design Flows

4-26 Xilinx Inc.

input CI_P;

input CLR_P;

output [8 : 0] S_P;

// INST_TAG

myadder8 #(8, 1) myadder8_1 (

.A(A_P),

.B(B_P),

.C(C_P),

.CE(CE_P),

.CI(CI_P),

.CLR(CLR_P),

.S(S_P)) /* synthesis black_box */;

// INST_TAG_END

endmodule

Exemplar Leonardo

Make sure that you do NOT read in a separate .V or EDIF file for the
CORE Generator module. Exemplar will automatically treat the
module as a black box.

Write out the implementation netlist for the
synthesized design

After the parent design has been synthesized, you must write out its
implementation netlist using the synthesis tool. Depending on the
synthesis tool being used and the target architecture, this implemen-
tation netlist may be an EDIF or XNF file, or a set of EDIF or XNF
files.

Note: CORE Generator System breaks buses out into their compo-
nent bits when writing out the EDIF implementation netlist for a
module. This formerly created pin mismatch problems with the
upper level EDIF written out by some synthesis tools. However,
beginning with the 1.5 release of the Xilinx Implementation tools,
EDIF2NGD will automatically resolve connections between bus nets
written out in bus format (for example, address<7:0>) in a parent
EDIF netlist, and bus nets written out as individual bits in a lower
level EDIF.

CORE Generator Design Flows

CORE Generator 2.1i User Guide 4-27

Synopsys FPGA Compiler

No special instructions. FPGA Compiler will write out an SEDIF or
SXNF file for 4K designs, and SEDIF for Virtex designs.

Synopsys FPGA Express

No special instructions. When you direct FPGA Express to “Export
the Netlist” Express will write out an XNF file for 4K designs, and
EDIF for Virtex designs.

Synplicity Synplify

Synplify can write out either XNF or EDIF netlists for both XC4000
designs. It will write out only EDIF for Virtex designs.

Exemplar

Write out the implementation netlist in EDIF format.

Implementation

The implementation netlists for each of the cores in the parent design
are merged in with the main design when the ngdbuild program (the
“Translate” stage of the Xilinx Design Manager) is run on the top
level parent design during design implementation. To merge the
netlists successfully, make sure that all of the CORE Generator .EDN
EDIF netlist(s) for the generated module or modules are located in
the same directory as the top level EDIF netlist for the synthesized
design. Alternatively, you can run NGDBUILD with the –sd option,
which will allow you to specify explicitly the location of the directory
containing the CORE Generator EDN files.

CORE Generator Design Flows

4-28 Xilinx Inc.

CORE Generator VHDL Flow
This section describes the procedure for behavioral simulation,
synthesis, and implementation of VHDL designs containing CORE
Generator modules. Specific instructions are included for the
following tools:

Synthesis

• Synopsys FPGA Compiler

• Synopsys FPGA Express

• Synplicity Synplify

• Exemplar Leonardo

Simulation

• MTI ModelSim/VHDL

Basic Steps
1. Module Generation

a) Specify the Design Entry, Vendor, and Behavioral Simulation
settings for the project.

2. Prepare for Simulation

a) Behavioral simulation

1. Behavioral module extraction

2. Declare the library for the behavioral model (MTI
ModelSim)

3. Establish a link to the explicit location of the behavioral
models

4. Analyze the behavioral models

5. Instantiate the module in the parent design

a) Copy the component, instance and configuration
declarations into the parent design

b) Edit the instantiation template to connect the core to
the parent design

CORE Generator Design Flows

CORE Generator 2.1i User Guide 4-29

6. Create a testbench

a) Declare a configuration in the testbench

3. Simulate the Design

a) Analyze the parent design and testbench file

b) Run the simulation

4. Synthesis and Implementation

a) Write out the implementation netlist

b) Implement the design in the Xilinx tools

Module Generation

Specify the Design Entry, Vendor, and Behavioral Simulation settings
for the project.

Figure 4-3 VHDL Synopsys Design Flow Settings

CORE Generator Design Flows

4-30 Xilinx Inc.

From the CORE Generator Project menu, select Project Options and
specify the Design Flow as “VHDL”, and specify the synthesis
vendor software you will be using to synthesize your VHDL design.
This will specify the appropriate EDIF bus delimiter format required
for that flow for proper integration with the upper level “parent”
implementation netlist written out by the synthesizer for your
design.

In the example Figure 4-3 the Design Flow has been set to “VHDL”,
and the Vendor has been set to “Synopsys”. The combination of these
two settings forces the bus delimiter automatically to the setting of
“B<I>”.

Synopsys FPGA Express and FPGA Compiler

• Set Design Flow to “VHDL”, and Vendor to “Synopsys”. This sets
the EDIF bus delimiter format to “B<I>”.

• Select the “VHDL” option in the Behavioral Simulation field.

Synplicity Synplify

• Set Design Flow to “VHDL”, and Vendor to “Synplicity”. This
sets the EDIF bus delimiter format to “B(I)”.

• Select the “VHDL” option in the Behavioral Simulation field.

Exemplar Leonardo

• Set Design Flow to “VHDL”, and Vendor to “Exemplar”. This
sets the EDIF bus delimiter format to “B(I)”.

• Select the “VHDL” option in the Behavioral Simulation field.

Behavioral Simulation

Prepare for Simulation

Note: The following instructions assume that the CORE Generator
System v2.1 has been installed to the directory $XILINX/coregen.

VHDL Model Extraction

Prior to simulating any CORE Generator cores, the source code for
their associated behavioral models must be extracted from the CORE
Generator installation area to a directory of the user's choosing

CORE Generator Design Flows

CORE Generator 2.1i User Guide 4-31

(referred to here as “<destination_directory>”). The recommended
location of “<destination_directory>” is $XILINX/vhdl/src, as this is
the location of the source code for all other Xilinx VHDL libraries.

The get_models utility must be used to extract the models to the
<destination_directory>. For a VHDL flow, the get_models utility
should be run with the -vhdl switch to specify that only the vhdl
models should be extracted. The full syntax of the command is:

get_models -vhdl <destination_directory>

Within the specified <destination_directory>, get_models creates a
separate subdirectory for each vendor (including Xilinx) whose cores
exist in the CORE Generator installation. The names of these directo-
ries takes the following form:

<Vendor>CoreLib

Note: The first letter of the vendor name is capitalized

Example

The directory for the Xilinx IP models is “XilinxCoreLib ”.

get_models extracts all VHDL models provided by a given vendor
from the CORE Generator installation area to the appropriate vendor
subdirectory.

Note: Installing module updates: Whenever new cores or updates to
existing cores are installed into the CORE Generator installation area,
the get_models utility must be re-invoked to update the repository of
VHDL models. (For more information on get_models, please refer to
the get_models section of the CORE Generator Design Flows chapter.)

Simulator-specific processing steps

All VHDL simulators require that the VHDL models be analyzed into
the simulator's library scheme before simulation can actually
proceed.

The analyzed behavioral models provided by a vendor which are
extracted by get_models must also reside in a library called
<Vendor>CoreLib . In the specific case of Xilinx cores, the analyzed
behavioral models must reside in a library called XilinxCoreLib .
The actual physical location (referred to here as
<library_directory>) in which the <Vendor> CoreLib resides
is not important, but a good choice would be some location which

CORE Generator Design Flows

4-32 Xilinx Inc.

can be easily accessed by multiple designs and even multiple users
for maximum convenience.

Create the XilinxCoreLib library

MTI ModelSim/VHDL

cd <library_directory>

vlib xilinxcorelib

Note: The name of the analyzed library must be lower case

Establish a link to the compiled behavioral models. To use a vendor's
library of compiled behavioral models in a design of your own, a link
must be established between your project directory and vendor's
library directory.

MTI ModelSim/VHDL

In your project directory, type:

vmap xilinxcorelib <library_directory>/xilinxcorelib

(Map the logical name of xilinxcorelib to the xilinxcorelib
library declared in previous line.)

The above command creates (and also modifies) the MTI
modelsim.ini file. This file is read by the ModelSim/VHDL simulator
and relates library names to physical locations on a disk or network.

vmap xilinxcorelib <full_path_to_”xilinxcorelib”>

Analyze the behavioral models

Analyze the vendor's VHDL models into this XilinxCoreLib library in
the following order (this order is bottom up, starting with the most
primitive elements):

prims_constants.vhd

prims_comps.vhd

prims_utils.vhd

prims_sim_arch.vhd

ul_utils.vhd

*pack.vhd

c_*.vhd

*.vhd

CORE Generator Design Flows

CORE Generator 2.1i User Guide 4-33

Note: Because this order will change with subsequent IP module
updates, please refer to Xilinx Solution 6250 for the latest information
on the recommended compile order for the CORE Generator VHDL
behavioral models.

MTI ModelSim/VHDL

To analyze the behavioral models extracted to the XilinxCoreLib
subdirectory under <library_directory>, type:

vcom -work xilinxcorelib <path_to_extracted_library>/
XilinxCoreLib/prims_constants.vhd

vcom -work xilinxcorelib <path_to_extracted_library>/
XilinxCoreLib/prims_comps.vhd

vcom -work xilinxcorelib <path_to_extracted_library>/
XilinxCoreLib/prims_utils.vhd

vcom -work xilinxcorelib <path_to_extracted_library>/
XilinxCoreLib/prims_sim_arch.vhd

vcom -work xilinxcorelib <path_to_extracted_library>/
XilinxCoreLib/ul_utils.vhd

vcom -work xilinxcorelib <path_to_extracted_library>/
XilinxCoreLib/*pack.vhd

vcom -work xilinxcorelib <path_to_extracted_library>/
XilinxCoreLib/c_*.vhd

vcom -work xilinxcorelib <path_to_extracted_library>/
XilinxCoreLib/*.vhd

Note: It is critical that you compile the models in the order specified
above; i.e., primitive models before macro level models. Compiling
the models in the wrong order will lead to errors in compilation.

The above vlib, vcom and vmap commands need to be performed
once for each vendor's library of VHDL models.

Instantiate the module (same procedure for all
simulators)

Selecting the “VHDL” checkbox under the Behavioral Simula-
tion option in the CORE Generator Project Options window directs
CORE Generator System to generate a VHDL template file
(<component_name> .VHO) in addition to an implementation netlist
(<component_name>.EDN) whenever a core is generated.

CORE Generator Design Flows

4-34 Xilinx Inc.

The .VHO template file contains:

• a component declaration

• a component instantiation

• a library declaration

• a configuration “snippet”

These elements need to be copied and pasted into the parent design
as follows.

Connect the core to the parent design by editing the
instantiation block

Modify the port connections in the instantiation template to reflect
the actual connections to the parent design. (See parent design
myadder8_top.vhd example).

Note: The component declaration and component instantiation
block establish a link in the VHDL code to the EDIF implementation
netlist for the CORE Generator module. This link is necessary to
ensure that the design will be implemented properly after the parent
VHDL design has been synthesized. The VHDL instantiation core of
the parent design core serves as a placeholder for the core. After the
parent design has been synthesized, the core’s EDIF netlist is merged
by the Xilinx tools with the rest of the parent design.

Note: The component instantiation contains dummy signal names
that must be replaced with the actual signal names in the parent
design to which the corresponding pins on the core are to be
connected.

The library declaration and the configuration “snippet” in the .VHO
VHDL template file are both needed for behavioral simulation only.
Notice that both constructs are demarcated in the .VHO file with “—
synopsys translate_off” and “—synopsys translate_on” markers
which tell the synthesis tool to ignore the code in between the
markers when synthesizing the design. This allows the same code to
be used for behavioral simulation and for design synthesis.

This compiler directive is supported by Synopsys FPGA Compiler,
Foundation Express, FPGA Express, Exemplar and Synplicity synthe-
sizers.

CORE Generator Design Flows

CORE Generator 2.1i User Guide 4-35

Note: The specific purpose of the configuration snippet ist o estab-
lish a link between the parent design and the core's simulation model.
A separate, “dummy” .VHD file for the CORE Generator module is
not needed. The configuration snippet is used only for behavioral
simulation, and has no impact on the synthesis or the implementation
processes. To support behavioral simulation of the core, a component
declaration for the core, a library declaration for “XilinxCoreLib” or
the appropriate <Vendor>CoreLib library, and a VHDL Configura-
tion statement must be added to the parent design and the corre-
sponding configuration snippet for the core from the template file
must be embedded in that configuration statement.

It is important to note that a parent design may contain multiple
cores, and for each core that is instanced in the parent design, a corre-
sponding unique configuration “snippet” must be inserted into the
parent design's configuration declaration.

Example

The following example illustrates the use of the .VHO template file in
a parent design. In this example, an 8-bit registered adder,
myadder8 , is generated by the CORE Generator System and is
instantiated in a parent design. The files of interest are the instantia-
tion template file, myadder8.vho , and the parent design,
myadder8_top.vhd and are shown below.

VHDL template file: myadder8.vho

--

-- This file was created by the Xilinx CORE Generator --

-- tool, and is (c) Xilinx, Inc. 1998, 1999. No part --

-- of this file may be transmitted to any third party --

-- (other than intended by Xilinx)or used without a --

-- Xilinx programmable or hardwire device without --

-- Xilinx's prior written permission. --

-- The following code must appear in the VHDL

-- architecture header:

--- Begin Cut here for COMPONENT Declaration -- COMP_TAG

component myadder8

port (

a: IN std_logic_VECTOR(7 downto 0);

CORE Generator Design Flows

4-36 Xilinx Inc.

b: IN std_logic_VECTOR(7 downto 0);

c: IN std_logic;

ce: IN std_logic;

ci: IN std_logic;

clr: IN std_logic;

s: OUT std_logic_VECTOR(8 downto 0));

end component;

-- COMP_TAG_END ---- End COMPONENT Declaration ---------

-- The following code must appear in the VHDL

-- architecture body. Substitute your own instance name

-- and net names.

--- Begin Cut here for INSTANTIATION Template -- INST_TAG

your_instance_name : myadder8

port map (

a => a,

b => b,

c => c,

ce => ce,

ci => ci,

clr => clr,

s => s);

-- INST_TAG_END ------ End INSTANTIATION Template -------

-- The following code must appear above the VHDL

-- configuration declaration. An example is given at

-- the end of this file.

--- Begin Cut here for LIBRARY Declaration --- LIB_TAG

-- synopsys translate_off

Library XilinxCoreLib;

-- synopsys translate_on

-- LIB_TAG_END ------- End LIBRARY Declaration ----------

-- The following code must appear within the VHDL

-- top-level configuration declaration. Ensure that

-- the translate_off/on compiler directives are correct

-- for your synthesis tool(s).

CORE Generator Design Flows

CORE Generator 2.1i User Guide 4-37

--- Begin Cut here for CONFIGURATION snippet --- CONF_TAG

-- synopsys translate_off

for all : myadder8 use entity
XilinCoreLib.adreVHT(behavioral)

generic map(

Signed => 1,

Input_Width => 8);

end for;

-- synopsys translate_on

-- CONF_TAG_END ----- End CONFIGURATION snippet --------

--

-- Example of configuration declaration...

--

--

-- <Insert LIBRARY Declaration here>

--

-- configuration <cfg_my_design> of <my_design> is

-- for <my_arch_name>

-- <Insert CONFIGURATION Declaration here>

-- end for;

-- end <cfg_my_design>;

--

-- If this is not the top-level design then in the next

-- level up, the following text should appear

-- at the end of that file:

--

-- configuration <cfg> of <next_level> is

-- for <arch_name>

-- for all : <my_design> use configuration

-- <cfg_my_design>;

-- end for;

-- end for;

-- end <cfg>;

--

CORE Generator Design Flows

4-38 Xilinx Inc.

Next, we take a look at the parent design, myadder8_top.vhd .
Notice that the component declaration, the instantiation (with
dummy signal names replaced with actual signal names) and the
configuration snippet have been cut-and-pasted from
myadder8.vho .

VHDL parent design file: myadder8_top.vhd

library IEEE;

use IEEE.std_logic_unsigned.all;

use IEEE.std_logic_1164.all;

ENTITY myadder8_top IS

PORT (ap : IN std_logic_vector(7 downto 0);

bp : IN std_logic_vector(7 downto 0);

ck: IN std_logic ;

cep: IN std_logic;

cip: IN std_logic;

clrp: IN std_logic;

sp: OUT std_logic_VECTOR (8 downto 0));

END myadder8_top;

ARCHITECTURE use_core of myadder8_top IS

--

---- The MYADDER8 core is used in this design. The core

---- must be declared via a 'component declaration';

---- myadder8.vho provides the component declaration

---- which is cut-and-pasted into the design as

---- shown below.

--

component myadder8

port (

a: IN std_logic_VECTOR(7 downto 0);

b: IN std_logic_VECTOR(7 downto 0);

c: IN std_logic;

ce: IN std_logic;

ci: IN std_logic;

clr: IN std_logic;

s: OUT std_logic_VECTOR(8 downto 0));

end component;

CORE Generator Design Flows

CORE Generator 2.1i User Guide 4-39

BEGIN

--

---- The core is instantiated into this design.

---- myadder8.vho provides an instantiation

---- template which must be modified

---- so that it reflects actual signals used in the

---- design, establishing the connectivity between the

---- core and other logic at this level. The instance

---- of the core must also be given an actual label to

---- replace the dummy "your_instance_name" tag. In this

---- example,it is replaced by "myadder8".

--

myadder8_1 : myadder8

port map (

a => ap,

b => bp,

c => ck,

ce => cep,

ci => cip,

clr => clrp,

s => sp);

end use_core;

--
A partial configuration statement is found in

---- myadder8.vho.It contains information necessary to

---- link the behavior of the core with the its

---- instantiation. This configuration section from

---- myadder8.vho must be reproduced in this parent

---- design, embedded within the configuration statement

---- of parent design. NOTE: For each core that is

---- instantiated in this design, a unique partial

---- configuration statement must be included.

--

-- synopsys translate_off

CONFIGURATION cfg_myadder8_top OF myadder8_top IS

FOR use_core

CORE Generator Design Flows

4-40 Xilinx Inc.

for all : myadder8 use entity
XilinxCoreLib.myadder8firVHT(behavioral)

generic map(

signed => 1,

input_width => 8);

end for;

end for;

end cfg_myadder8_top;

-- synopsys translate_on

Create the Testbench

To simulate a parent design containing the MYADDER8 core, a test-
bench, testbench.vhd, is written that includes an instantiation of the
parent design. The testbench also includes a configuration statement
that reminds the simulator to reference the configuration statement in
the parent design. The testbench should also contain stimulus to acti-
vate the adder. Part of the testbench file used to simulate this design
is shown below; with the exception that the section that would have
contained simulation stimulus is omitted.

VHDL Testbench file: testbench.vhd

library IEEE;

use IEEE.std_logic_1164.ALL;

ENTITY testbench is

END testbench;

ARCHITECTURE simulate OF testbench IS

--

---- The parent design, myadder8_top, is instantiated

---- in this testbench. Note the component

---- declaration and the instantiation.

--
COMPONENT myadder8_top

PORT (

ap : IN std_logic_vector(7 downto 0);

bp : IN std_logic_vector(7 downto 0);

ck: IN std_logic ;

cep: IN std_logic;

cip: IN std_logic;

CORE Generator Design Flows

CORE Generator 2.1i User Guide 4-41

clrp: IN std_logic;

sp: OUT std_logic_VECTOR (8 downto 0));

END myadder8_top;

SIGNAL a_data_input : std_logic_vector(7 DOWNTO 0);

SIGNAL b_data_input : std_logic_vector(7 DOWNTO 0);

SIGNAL clock : std_logic;

SIGNAL clock_enable : std_logic;

SIGNAL carry_in : std_logic;

SIGNAL clear : std_logic;

SIGNAL sum : std_logic (8 DOWNTO 0);

BEGIN

uut: myadder8_top

PORT MAP (

ap => a_data_input,

bp => b_data_input,

ck => clock,

cep => clock_enable,

cip => carry_in,

clrp=> clear,

sp => sum);

stimulus: PROCESS

 BEGIN

--

-- Provide stimulus in this section. (not shown here)

--

wait;

end process; -- stimulus

END simulate;

--
The configuration, cfg_testbench, of the testbench,

---- reminds the simulator to refer to the configuration

---- statement in the parent design. Note that "work" was

---- was the default library into which the testbench

---- and the parent design were analyzed.

CORE Generator Design Flows

4-42 Xilinx Inc.

--

CONFIGURATION cfg_testbench OF testbench IS

FOR simulate

for all : myadder8_top

use configuration work.cfg_myadder8_top;

end for;

END for;

END cfg_testbench;

Design Simulation

Analyze the parent design and testbench file

Before Model Technology's simulation tools can be used to simulate
the design, the parent design and the testbench must be analyzed.
Unlike the earlier step in which all the behavioral models were
analyzed into XilinxCoreLib (or <Vendor>CoreLib), these design files
may be analyzed (using the vcom command) into a local, default,
work library (created using the vlib command).

MTI ModelSim

From the <project_directory>, type:

vlib work

vcom myadder8_top.vhd

vcom testbench.vhd

Invoke the simulator

The simulator may now be invoked:

vsim cfg_testbench

where, cfg_testbench corresponds to the name of the VHDL configu-
ration declared in the testbench. This will load the testbench, the
parent design and the simulation model of the myadder8 core, stored
in the location referenced by XilinxCoreLib.

Synthesis and Implementation

Synthesize the design using black-box methodology

The parent design containing one or more cores that must be synthe-
sized. During the synthesis process, the synthesizer must be directed

CORE Generator Design Flows

CORE Generator 2.1i User Guide 4-43

to treat any instantiated cores as “black-boxes”, because the logic for
each core is specified only in its EDIF implementation netlist
<component_name.EDN>, not in a VHDL file.

Synopsys FPGA Compiler

Apply the “don’t_touch” attribute to the module via the Synopsys
compile script.

Synopsys FPGA Express

Make sure you do NOT read in a separate .VHD or EDIF file for the
CORE Generator module. FPGA Express will automatically treat the
module as a “black box”.

Synplicity Synplify v5.1.2 and later

Attach a “black_box” attribute to component declaration for the
CORE Generator module as follows (this attribute is optional, but
will prevent Synplicity from issuing warnings about “black box”
modules):

-- VHDL black box attribute example

attribute black_box : boolean;

component myadder8

port (

a: IN std_logic_VECTOR(7 downto 0);

b: IN std_logic_VECTOR(7 downto 0);

c: IN std_logic;

ce: IN std_logic;

ci: IN std_logic;

clr: IN std_logic;

s: OUT std_logic_VECTOR(8 downto 0));

end component;

attribute black_box of myadder8 : component is true;

In addition, make sure you do NOT read in a separate .VHD or EDIF
file for the CORE Generator module. Synplify will automatically treat
the module as a “black box”.

CORE Generator Design Flows

4-44 Xilinx Inc.

Exemplar Leonardo (v1998.2)

Simply make sure that you do NOT read in a separate .VHD or EDIF
file for the CORE Generator module. Leonardo will automatically
treat the module as a black box.

Write out the implementation netlist for the
synthesized design

After the parent design has been synthesized, you must write out its
implementation netlist using the synthesis tool. Depending on the
synthesis tool being used and the target architecture, this implemen-
tation netlist may be an EDIF or XNF file, or a set of EDIF or XNF
files.

Note: CORE Generator System breaks buses out into their compo-
nent bits when writing out the EDIF implementation netlist for a
module. This formerly created pin mismatch problems with the
upper level EDIF written out by some synthesis tools. However,
starting with the 1.5 release of the Xilinx Implementation tools,
EDIF2NGD will automatically resolve connections between bus nets
written out in bus format (for example, address<7:0>) in a parent
EDIF netlist, and bus nets written out as individual bits in a lower
level EDIF.

Synopsys FPGA Compiler

No special instructions. FPGA Compiler will write out an XNF file for
4K designs, and EDIF for Virtex designs.

Synopsys FPGA Express

No special instructions. FPGA Express will write out an XNF file for
4K designs, and EDIF for Virtex designs.

Synplicity Synplify v5.1.2and later

Synplify can write out either XNF or EDIF netlists for both XC4000
and Virtex designs. EDIF format is preferred. No other special
instructions.

CORE Generator Design Flows

CORE Generator 2.1i User Guide 4-45

Exemplar Leonardo (v1998.2)

Leonardo can write out either XNF or EDIF netlists for both XC4000
and Virtex designs. EDIF format is preferred. No other special
instructions.

Implement the Design

The implementation netlists for each of the cores in the parent design
are merged in with the main design when the ngdbuild program (the
“Translate” stage of the Xilinx Design Manager) is run on the top
level parent design during design implementation. For the merging
of the netlists to succeed, you must make sure that the CORE Gener-
ator .EDN EDIF netlist(s) for the generated module or modules are
located in the same directory as the top level EDIF netlist for the
synthesized design, or you must run NGDBUILD with the –sd
option, specifying the location of the directory containing the CORE
Generator EDN files.

CORE Generator Design Flows

4-46 Xilinx Inc.

	CORE Generator System 2.1i User Guide
	Table of Contents
	About This Manual
	Manual Contents

	Conventions
	Typographical
	Online Document

	Introduction
	Overview
	About the CORE Generator System
	How to Obtain New and Updated COREs
	System Requirements and Installation Information
	Additional Resources
	Online Documentation

	Getting Started
	Overview
	CORE Generator Components
	CORE Generator System Installation Requirements
	Running CORE Generator System on Windows (95/98/NT)
	Launching CORE Generator System on Workstations

	Setup Files
	coregen.prj
	resources.lib
	known.prj
	coregen_<user_name>.prf
	Sample Workstation preferences file:
	Sample PC-based preferences file:

	Inputs and Outputs
	Project Management
	Creating a New Project

	Opening an Existing Project
	Selecting Project Design Entry Options
	Selecting Vendor Design Entry Options
	Selecting Behavioral Simulation Options
	Selecting Target Xilinx FPGA Family Options

	Complete New Project Creation
	Changing Project Design Entry Options
	Setting Web Browser Path
	Setting AcroRead Path
	CORE Generator System Troubleshooting
	General Hints:
	Where to get help with general CORE Generator problems:
	Additional Resources:
	Xilinx CORE Generator System
	AllianceCORE
	Email Support
	Web Support
	FTP

	Using the CORE Generator ™ System
	Overview
	Using the CORE Browser
	Accessing CORE Data Sheets
	Customizing a CORE
	Illegal or Invalid Values
	.COE Files
	Command Files
	coregen.ini/coregen_<user_name>.ini
	User-generated Command Files
	.XCO Files
	coregen.log
	Valid CORE Generator Commands
	Global Properties
	Project Properties

	Generating COREs in Batch Mode

	Updating COREs in the CORE Generator System
	Version Handling in the CORE Generator System
	Downloading New COREs
	CORE Version Update in an Existing Project

	CORE Generator Design Flows
	Overview
	CORE Generator Design Flow Basics
	Viewlogic Design Flow
	Create a directory for a Viewlogic project
	Example
	Set up project libraries
	Set the Output Format
	Set Project Path and Viewlogic Library Alias
	Select Desired Module
	Output Files
	Load Symbol in Schematic Editor
	Example

	Foundation Design Flow
	Mentor Design Flow
	Cadence Design Flow

	HDL Design Flows
	Behavioral Model Delivery in the CORE Generator System
	get_models
	Syntax
	Required Parameters
	Inputs
	Outputs

	.VEO (Verilog Instantiation Template)
	.VHO (VHDL Instantiation Template)
	Sample .VHO file for an 8-bit adder

	CORE Generator Verilog Flow
	Synthesis
	Simulation
	Basic Steps in the Verilog Design Flow
	Module Generation
	Behavioral Simulation

	Module Generation
	Specify the Design Entry, Vendor, and Behavioral Simulation settings for the project.

	Behavioral Simulation
	Preparing for Verilog Behavioral Simulation
	Instantiate the core (same procedure for all simulators and synthesis tools)
	Cadence Verilog-XL and MTI ModelSim/VLOG
	Example
	Comment out the instantiation template in the .VEO file.
	Copy the .VEO file to <module_name>.v
	Connect the core to the parent design by editing the module connections.
	Example
	VERILOG instantiation template file: myadder8.veo
	VERILOG parent design file: myadder8_top.v
	Create The Testbench
	Perform the Behavioral Simulation
	MTI ModelSIM
	Cadence Verilog-XL
	Synthesis
	Synopsys FPGA Compiler
	Synopsys FPGA Express
	Synplicity Synplify
	Exemplar Leonardo
	Write out the implementation netlist for the synthesized design
	Synopsys FPGA Compiler
	Synopsys FPGA Express
	Synplicity Synplify
	Exemplar
	Implementation

	CORE Generator VHDL Flow
	Synthesis
	Simulation
	Basic Steps
	Module Generation
	Synopsys FPGA Express and FPGA Compiler
	Synplicity Synplify
	Exemplar Leonardo

	Behavioral Simulation
	Prepare for Simulation
	VHDL Model Extraction
	Example
	Simulator-specific processing steps
	Create the XilinxCoreLib library
	MTI ModelSim/VHDL
	MTI ModelSim/VHDL
	Analyze the behavioral models
	MTI ModelSim/VHDL
	Instantiate the module (same procedure for all simulators)
	Connect the core to the parent design by editing the instantiation block
	Example
	VHDL template file: myadder8.vho
	VHDL parent design file: myadder8_top.vhd
	Create the Testbench
	VHDL Testbench file: testbench.vhd

	Design Simulation
	Analyze the parent design and testbench file
	MTI ModelSim
	Invoke the simulator

	Synthesis and Implementation
	Synthesize the design using black-box methodology
	Synopsys FPGA Compiler
	Synopsys FPGA Express
	Synplicity Synplify v5.1.2 and later
	Exemplar Leonardo (v1998.2)
	Write out the implementation netlist for the synthesized design
	Synopsys FPGA Compiler
	Synopsys FPGA Express
	Synplicity Synplify v5.1.2and later
	Exemplar Leonardo (v1998.2)

	Implement the Design

