
December 1, 1999 Printed in U.S.A.

Programming
Xilinx
XC9500/XL/XV
CPLDs on
GENRAD
Testers

Revision 1.5

Preface

Introduction

Creating SVF Files

Creating GenRad Test Files

DTS Example and
Explanation

Optimizations

svf2dts Conversion Utility
The Xilinx logo shown above is a registered trademark of Xilinx, Inc.

XILINX, XACT, XC2064, XC3090, XC4005, XC5210, XC-DS501, FPGA Architect, FPGA Foundry, NeoCAD,
NeoCAD EPIC, NeoCAD PRISM, NeoROUTE, Plus Logic, Plustran, P+, Timing Wizard, and TRACE are registered
trademarks of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

All XC-prefix product designations, XACTstep, XACTstep Advanced, XACTstep Foundry, XACT-Floorplanner,
XACT-Performance, XAPP, XAM, X-BLOX, X-BLOX plus, XChecker, XDM, XDS, XEPLD, XPP, XSI, BITA,
Configurable Logic Cell, CLC, Dual Block, FastCLK, FastCONNECT, FastFLASH, FastMap, HardWire, LCA,
LogiBLOX, Logic Cell, LogiCORE, LogicProfessor, MicroVia, PLUSASM, PowerGuide, PowerMaze, Select-RAM,
SMARTswitch, TrueMap, UIM, VectorMaze, VersaBlock, VersaRing, XABEL, Xilinx Foundation Series, and
ZERO+ are trademarks of Xilinx, Inc. The Programmable Logic Company and The Programmable Gate Array
Company are service marks of Xilinx, Inc.

IBM is a registered trademark and PC/AT, PC/XT, PS/2 and Micro Channel are trademarks of International Business
Machines Corporation. DASH, Data I/O and FutureNet are registered trademarks and ABEL, ABEL-HDL and
ABEL-PLA are trademarks of Data I/O Corporation. SimuCad and Silos are registered trademarks and P-Silos
and P/C-Silos are trademarks of SimuCad Corporation. Microsoft is a registered trademark and MS-DOS is a
trademark of Microsoft Corporation. Centronics is a registered trademark of Centronics Data Computer
Corporation. PALASM is a registered trademark of Advanced Micro Devices, Inc. UNIX is a trademark of AT&T
Technologies, Inc. CUPL, PROLINK, and MAKEPRG are trademarks of Logical Devices, Inc. Apollo and AEGIS
are registered trademarks of Hewlett-Packard Corporation. Mentor and IDEA are registered trademarks and
NETED, Design Architect, System Architect, QuickSim, QuickSim II, and EXPAND are trademarks of Mentor
Graphics, Inc. Sun is a registered trademark of Sun Microsystems, Inc. SCHEMA II+ and SCHEMA III are
trademarks of Omation Corporation. OrCAD is a registered trademark of OrCAD Systems Corporation. Viewlogic,
Viewsim, and Viewdraw are registered trademarks of Viewlogic Systems, Inc. CASE Technology is a trademark
of CASE Technology, a division of the Teradyne Electronic Design Automation Group. DECstation is a trademark
of Digital Equipment Corporation. Synopsys is a registered trademark of Synopsys, Inc. Verilog is a registered
trademark of Cadence Design Systems, Inc. FLEXlm is a trademark of Globetrotter, Inc. DynaText is a registered
trademark of Inso Corporation.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown
herein; nor does it convey any license under its patents, copyrights, or maskwork rights or any rights of others.
Xilinx, Inc. reserves the right to make changes, at any time, in order to improve reliability, function or design and
to supply the best product possible. Xilinx, Inc. will not assume responsibility for the use of any circuitry described
herein other than circuitry entirely embodied in its products. Xilinx, Inc. devices and products are protected under
one or more of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216; 4,713,557; 4,746,822; 4,750,155;
4,758,985; 4,820,937; 4,821,233; 4,835,418; 4,853,626; 4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107;
5,012,135; 5,023,606; 5,028,821; 5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056;
5,243,238; 5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704; 5,329,174;
5,329,181; 5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248; 5,349,249; 5,349,250; 5,349,691;
5,357,153; 5,360,747; 5,361,229; 5,362,999; 5,365,125; 5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925;
5,410,189; 5,410,194; 5,414,377; 5,422,833; 5,426,378; 5,426,379; 5,430,687; 5,432,719; 5,448,181; 5,448,493;

R

Xilinx Development System

5,450,021; 5,450,022; 5,453,706; 5,466,117; 5,469,003; 5,475,253; 5,477,414; 5,481,206; 5,483,478; 5,486,707;
5,486,776; 5,488,316; 5,489,858; 5,489,866; 5,491,353; 5,495,196; 5,498,979; 5,498,989; 5,499,192; 5,500,608;
5,500,609; 5,502,000; 5,502,440; RE 34,363, RE 34,444, and RE 34,808. Other U.S. and foreign patents pending.
Xilinx, Inc. does not represent that devices shown or products described herein are free from patent infringement
or from any other third party right. Xilinx, Inc. assumes no obligation to correct any errors contained herein or to
advise any user of this text of any correction if such be made. Xilinx, Inc. will not assume any liability for the accuracy
or correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in
such applications without the written consent of the appropriate Xilinx officer is prohibited.

Copyright 1991-1997 Xilinx, Inc. All Rights Reserved.
December 1, 1999

Preface

About This Manual
This manual describes how to program Xilinx XC9500(XL) CPLDs on
GenRad testers.

Before using this manual, you should be familiar with the operations
that are common to all Xilinx’s software tools: how to bring up the
system, select a tool for use, specify operations, and manage design
data.

Manual Contents
This manual covers the following topics.

• Chapter 1, “Introduction,” lays out the basic procedure for
programming an XC9500/XL/XV CPLD in a GenRad test envi-
ronment.

• Chapter 2, “Creating SVF Files,” discusses how to create SVF files
using JTAG Programmer on PCs, and on Sun and HP worksta-
tions.

• Chapter 3, “Creating GenRad Test Files,” discusses how to use
svf2dts to create compiled test files for use in the GenRad test
environment.

• Appendix A, “DTS Example and Explanations,” provides a
programming example.

• Appendix B, “Optimization,” contains some optimization hints.
svf2dts Conversion Utility v

Conventions

In this manual the following conventions are used for syntax clarifi-
cation and command line entries.

• Courier font indicates messages, prompts, and program files
that the system displays, as shown in the following example.

speed grade: -100

• Courier bold indicates literal commands that you must enter in
a syntax statement.

rpt_del_net=

• Italic font indicates variables in a syntax statement. See also, other
conventions used on the following page.

xdelay design

• Square brackets “[]” indicate an optional entry or parameter.
However, in bus specifications, such as bus [7:0], they are
required.

xdelay [option] design

• Braces “{ }” enclose a list of items from which you choose one or
more.

xnfprep designname ignore_rlocs={true|false}

• A vertical bar “|” separates items in a list of choices.

symbol editor [bus|pins]
svf2dts Conversion Utility vii

svf2dts Conversion Utility
Other conventions used in this manual include the following.

• Italic font indicates references to manuals, as shown in the
following example.

See the Development System Reference Guide for more information.

• Italic font indicates emphasis in body text.

If a wire is drawn so that it overlaps the pin of a symbol, the two
nets are not connected.

• A vertical ellipsis indicates repetitive material that has been
omitted.

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

• A horizontal ellipsis “. . .” indicates that the preceding can be
repeated one or more times.

allow block blockname loc1 loc2 ... locn ;
viii Xilinx Development System

Chapter 1

Introduction

This document describes the procedures necessary to program Xilinx
XC9500(XL) CPLD designs with a GenRad in-circuit test system. The
document presents the steps you need to perform which include:

• Creating an SVF file using Xilinx's JTAG Programmer software

• Generating a GenRad digital test source (.dts) using svf2dts
version 1.8 software (or newer)

• Merging digital test source into the test program

JTAG Programmer translates JEDEC files into Serial Vector Format
(SVF) files. The svf2dts program translates SVF files to GenRad
digital test source. This allows you to take SVF files created in JTAG
Programmer and translate them to digital test source (DTS) files for
use in a GenRad test environment.

Figure 1-1 Program Flow

The svf2dts program runs under Windows NT, 95, or 98. JTAG
Programmer runs under DOS or Windows 95 or NT on a PC, and in
both SUN and HP workstation environments.

Obtain CPLD
Design Files

Select ISP
 functions (erase,
 program, verify)

Merge vectors
 into

test program

JEDEC

file
Serial

 Vector File

Digital Test
Source

Production
Test

Program

Generate
GenRad
Vectors

Xilinx
Design Tool

Xilinx
JTAG Programmer

GenRad
Svf2dts

GenRad
Automatic

Test Generator
svf2dts Conversion Utility 1-1

svf2dts Conversion Utility
Note: The installation procedure for svf2dts is found in the README
file on the disk. This is an ASCII text file and can be viewed from the
DOS editor (edit readme.txt) or the Windows Notepad.

Chapter 2 describes the procedure for creating an SVF file from JTAG
Programmer from both PC and workstation environments.

Chapter 3 describes how to produce the GenRad digital test sourcefile
(.dts) and merge it into the a test program for production program-
ming.

Hardware Considerations
This software and ISP methodology applies to the following Genrad
in-circuit tester families running GenRad software release 3.2 or
greater.

• GR2287L/LX

• GR228X i-Series

• TS121

• TS8X
1-2 Xilinx Development System

Chapter 2

Creating SVF Files

Creating an SVF File Using JTAG Programmer
This procedure describes how to create an SVF file; it assumes that
you have JTAG Programmer, Version 2.1i or newer. JTAG
Programmer is included with the Xilinx Foundation or Alliance
Series software. JTAG Programmer is also available free of charge
with the Device Programming Tools on the Xilinx World Wide Web site,
http://www.xilinx.com/sxpresso/webpack.htm.

JTAG Programmer is supplied with both graphical and batch user
interfaces. The batch user interface executable name is jtagprog;
and the graphical user interface executable is named jtagpgmr. The
graphical tool can be launched from the Design Manager or Project
Manager, but may also be launched by opening a shell and invoking
jtagpgmr. The batch tool is available by opening a shell and
invoking jtagprog on the command line.

In order to program XC9500(XL) devices, the procedure is to create a
separate SVF file for each device being programmed. We will show
you how to do this using both the batch and the GUI tool.

Using the Batch Download Tool to Generate SVF
Files

1. Run your design through the Xilinx fitter and create a JEDEC
programming file. If you have already been provided with a
JEDEC file, proceed to the next step.

2. Invoke the batch JTAG Programmer tool from the command line
in a new shell.

jtagprog -svf
svf2dts Conversion Utility 2-1

svf2dts Conversion Utility
The following messages will appear:

JTAGProgrammer: version <Version Number>
Copyright:1991-1999

Sizing system available memory...done.

SVF GENERATION MODE

[JTAGProgrammer::(1)]>

3. Set up the device types and assign design names by typing the
following command sequence at the JTAG Programmer prompt:

part deviceType1:designName1 deviceType2:designName2
... deviceTypeN:designNameN

where devicetype is the name of the BSDL file for that device and
designName is the name of the design to translate into SVF.
Multiple deviceType:designName pairs are separated by spaces. For
example:

part xc95108:abc12 xc95216:ww133

The part command defines the composition and ordering of the
boundary-scan chain. The devices are arranged with the first
device specified being the first to receive TDI information and the
last device specified being the one to provide the final TDO data.

Note: For any non-XC9500(XL) device in the boundary-scan chain,
make certain that the BSDL file is available either in the XILINX vari-
able data directory, or by specifying the complete path information in
the deviceType. The designName in this case can be any arbitrary name.

4. Execute the required boundary-scan or ISP operation in JTAG
Programmer. Typically, you only specify the program operation
such that the device is erased, programmed, and verified, e.g.
program –h –v designName. A description of the other
operations are provided below.

• erase [-fh] designName -- generates an SVF file to describe
the boundary-scan sequence to erase the specified part. The -
f flag generates an erase sequence that overrides write
protection on devices. The -h flag indicates that all other
parts (other than the specified designName) in the boundary-
scan chain should be held in the HIGHZ state during the
erase operation. Xilinx recommends erase -f -h design-
Name.
2-2 Xilinx Development System

Creating SVF Files
• verify [-h] designName [-j jedecFileName] -- generates an
SVF file to describe the boundary-scan sequence to read back
the device contents and compare it against the contents of the
specified JEDEC file. The JEDEC file defaults to be the design-
Name.jed in the current directory, or may be alternatively
specified using the -j flag. The -h flag is used to specify that
all other parts (other than the specified designName) in the
boundary-scan chain should be held in the HIGHZ state
during the verify operation. Xilinx recommends verify -h
designName.

• program [-vbh] designName -j [jedecFileName] -- gener-
ates an SVF file to describe the boundary-scan sequence to
program the device using the programming data in the speci-
fied JEDEC file. The JEDEC file defaults to be design-
Name.jed in the current directory, or may be alternatively
specified using the -j flag. The -h flag is used to specify
that all other parts (other than the specified designName) in
the boundary scan chain should be held in the HIGHZ state
during the programming operation. The –v option specifies
that a verify operation should be performed immediately
after the program operation has completed. The -b flag
indicates the erase operation should be skipped. The erase
operation is performed, by default, prior to the program
operation. This is useful when programming devices
shipped from the factory. Xilinx recommends program –
h -v designName.

• partinfo [-h] -idcode designName -- generates an SVF file
to describe the boundary-scan sequence to read back the 32
bit hard-coded device IDCODE. The -h flag is used to specify
that all other parts (other than the specified designName) in
the boundary scan chain should be held in the HIGHZ state
during the IDCODE operation.This operation can be
performed in any combination of the three SVF files.

• partinfo [-h] -signature designName -- generates an
SVF file to describe the boundary-scan sequence to read back
the 32 bit user-programmed device USERCODE. The -h flag
is used to specify that all other parts (other than the specified
designName) in the boundary scan chain should be held in the
HIGHZ state during the USERCODE operation. This opera-
tion can be performed in any combination of the SVF files.
svf2dts Conversion Utility 2-3

svf2dts Conversion Utility
5. Exit JTAG Programmer by entering the following command:

quit

Note: The SVF file will be named designName.svf and will be created
in the current working directory. Consecutive operations on the same
designName will append to the SVF file. To create SVF files with sepa-
rate operations in each, you will need to rename the SVF file after
each operation by exiting to the system shell.

Using the Graphical User Interface to Generate SVF
Files

1. Run your design through the Xilinx fitter and create a JEDEC file.

2. Double-click on the JTAG Programmer icon or open a shell and
type jtagpgmr. The JTAG Programmer GUI interface will
appear.

Figure 2-1 JTAG Programmer Interface
2-4 Xilinx Development System

Creating SVF Files
3. Instantiate your boundary-scan chain: Manually add each device
in the correct boundary-scan order from system TDI to system
TDO.

a) Select Edit → Add Device for each device in the boundary-
scan chain.

b) Fill in the device properties dialog to identify the JEDEC (if it
is an XC9500(XL) device) or BSDL (if it is not an XC9500(XL)
device) file associated with the device you are adding.

Figure 2-2 Device Chain

The device type and JEDEC file name will appear below the
added device.

4. Put the JTAG Programmer into SVF mode by selecting

Output → Create SVF File...
svf2dts Conversion Utility 2-5

svf2dts Conversion Utility
to create a new SVF file, or

Output → Append to SVF File...

to append to an existing SVF file. Fill in the SVF file dialog with
the desired name of the target SVF file to be created.

Note: Once you enter SVF mode the composition of the boundary-
scan chain cannot be edited in order to ensure consistency of the
boundary-scan data in the SVF file.

5. Highlight one of the devices by clicking it once with the mouse.
Then, select any of the enable operations from the Operations
pull down menu to generate an SVF file to describe the
boundary-scan sequence to accomplish the requested operation.

Xilinx recommends that you specify the Operation->Program
and that you check the Erase Before Programming and Verify
options in the ensuing Program dialog box.

6. When you completed the required operations, you may close the
current SVF output file by selecting the Output->Use Cable
menu item and pressing Cancel in the ensuing Use Cable dialog
box.

7. When you are done with JTAG Programmer, exit by selecting:

File->Exit
2-6 Xilinx Development System

Chapter 3

Creating GenRad Test Files

Using svf2dts
Use the SVF file that you generated above as input to the svf2dts
Conversion Utility. This tool takes an SVF file as input and creates a
digital test source (.dts) file and report file (.rpt) which relays errors
or warnings encounterd during the conversion process. This chapter
provides an overview of the svf2dts v1.8 user interface, file conver-
sion, and integration program prep steps. While the program prep
flow is rather straight forward, the user should be aware of different
device configurations and programming techniques. The following
sections also discuss different board configurations and GenRad
programming options (standard driver/sensor pin memory or Deep
Serial Memory) to enhance file management and minimize program-
ming times.

This chapter is divided into the following sections:

• Review of Program Prep

• svf2dts GUI Overview

• Programming an Isolated JTAG Device

• Programming a Device in JTAG Chain Configuration

• Using the Deep Serial Memory Option

• Troubleshooting

svf2dts version 1.8 is a standalone program complete with a graphical
user interface and runs under Windows NT, 95, or 98. The program
uses only 164 kilobytes of memory, but requires at least 24 mega-
bytes of hard disk for output files.
svf2dts Conversion Utility 3-1

svf2dts Conversion Utility
Review of Program Prep Flow
Recall that converting the JEDEC design file into an SVF file with
JTAG Programmer is only one step in the program prep process. The
SVF file must be converted into GenRad vectors (.dts file) and inte-
grated into the GenRad test program (.tpg file). The svf2dts tool
creates a digital test source (.dts). GenRad’s automatic test generator
then creates an abbreviated .tpg file which contains the programming
instructions and correlates the CPLD’s signal pins to the target UUT’s
nodes and test nails. Then the user cuts and pastes the single compo-
nent .tpg file into the target UUT’s test program file. Finally,
GenRad’s software translates the new .tpg into object code.

Svf2dts GUI Overview
The conversion tool creates a digital test source, complete with
header section, and then incorporates the .svf file’s programming
vectors into commands that will instruct the test systems hardware to
drive the CPLD’s JTAG pins and accomplish various supported func-
tions. In order to successfully generate the GenRad program file(s),
the conversion software must obtain information specific to the
CPLD device, circuit description and GenRad programming tech-
nique. All required information is entered via the svf2dts GUI shown
below.

Modify
.ckt

svf2dts.svf

 ATG
Single device mode translate

.dts

Compiled
test

program
(.obc)

Component
.tpg

.dtl

Figure 3-1_GenRad Program Prep Flow for Xilinx ISP

Insert
into

UUT’s
.tpg

new
.tpg
3-2 Xilinx Development System

Creating GenRad Test Files

 status
rocess

ates a .dts
e Deep Serial

e for

le name for

le name for
 (generated
cted)
Programming an Isolated JTAG Device
If the target PCB contains an isolated JTAG device or single device
chain, all JTAG pins are free and not connected to any other compo-
nents (see figure below). The JTAG pins (TDI, TDO, TMS, TCK, TRST)
are likely connected to a header or the gold fingers on the PCB. If the
target CPLD’s JTAG pins are connected to another JTAG-compliant
device(s), please skip to the next section (Programming a Device in a
JTAG Chain Configuration).

Enter JTAG pins available
on the target device

Displays file generation
during the conversion p

Figure 3-2_svf2dts v1.8 GUI

Used to Identify the device if a
failure message is generated
during programming

If selected, svf2dts uses a clock nail
to drive the device’s TCK signal

If selected, svf2dts cre
and files required by th
Memory card

Enter path and file nam
target device’s .svf file

Enter destination and fi
target device’s .dts file

Enter destination and fi
target device’s .dds file
when DSM option is sele
svf2dts Conversion Utility 3-3

svf2dts Conversion Utility
Programming Example for a Single Device Chain
This section presents a step-by-step example for generating a .dts file
using the svf2dts v1.8 for a Xilinx ISP-capable CPLD.

1. Start the svf2dts.

2. When the user interface appears, carefully fill in all fields in the
left column with information related to the target CPLD. (It may
be useful to have a schematic available to answer some of the
specific device related questions).

Total number of pins for device or chain Header

15

16

17 19

U29

XC9572xl

TDI

TMS

TCK TDO

N35

N36

N37 N84

Figure 3-3_Single ISP-capable CPLD

U29 xc9572xl 1=N24, 2=N103, 3=N199, 4=N222,
 : : : :
 : : : :
 13=N13, 14=N43, 15=N35, 16=N36,

 17=N3717=N37, 18=N92, 19=N84, 20=N233,

U29_P U29PV 1=N24, 2=N103, 3=N199, 4=N222,
 : : : :

 : : : :
 13=N13, 14=N43, 15=N35, 16=N36,

 17=N37, 18=N92, 19=N84, 20=N233,

Figure 3-4_Adding a CPLD programming entry in the .ckt file
3-4 Xilinx Development System

Creating GenRad Test Files
This field refers to the number of JTAG-related pins present on
the target CPLD and will dictate the argument of the SIZE
keyword statement in the resultant .dts file. After reviewing the
CPLD’s pin-out in your schematic document, enter the total
number of ISP-related pins. ISP-capable devices should employ
at a minimum 4 JTAG-related pins (TDI, TDI, TMS, and TCK).

TMS Pin Number

This field refers to the CPLD’s TMS signal pin. svf2dts will enter
this number as the argument/value for TMS in the resultant .dts
file’s INPUT keyword statement located in the Header section.

TCK Pin Number

This field refers to the CPLD’s TCK signal pin. svf2dts will enter
this number as the argument/value for TCK in the resultant .dts
file’s INPUT keyword statement.

TDI Pin Number

This field refers to the CPLD’s TDI signal pin. svf2dts will enter
this number as the argument/value for TDI in the resultant .dts
file’s INPUT keyword statement located in the Header section.

TDO Pin Number

This field refers to the CPLD’s TDO signal pin. svf2dts will enter
this number as the argument/value for TDO in the resultant .dts
file’s OUTPUT keyword statement located in the Header section.

TRST Pin Number

XC9500(XL) devices do not have a TRST JTAG pin. If you are
using XC9500(XL) devices, leave this space blank when queried
by the svf2dts program

ENABLE Pin Number

XC9500(XL) devices do not have an ENABLE JTAG pin. If you
are using XC9500(XL) devices, leave this space blank when
queried by the svf2dts program. If another device in the JTAG
chain employs a ENABLE pin, enter the pin designator.

If you used an alpha-numeric for the signal names above, you
must edit the DTS file to add or change all other pins on the
device to be alpha-numeric. This will maintain consistency across
library modules.
svf2dts Conversion Utility 3-5

svf2dts Conversion Utility
Ground Pin Number

Enter on the pin number for one of the CPLD’s ground pins.

Fail Bit

This field refers to the fail bit to be set in the event that a
programming function fails. The default is fail bit 901. Any
number over 900 is acceptible.

Reference Designator

Enter the reference designator shown in the schematic to identify
the target CPLD. In the event that a programming operation fails,
the resultant test program will generate an error message which
indicts the name denoted in this field (i.e., U29_P).

3) Designating input files and output files. In the upper right of
the GUI, fill in the fields beneath File Input/Output

Input SVF File

Provides the conversion tool with the path and name of the target
CPLDs SVF file. Enter the path and name of the target SVF file
(e.g., c:\temp\design1.svf).

Output DTS File

Provides the conversion tool with the target location and name
for the resultant .dts file. Enter the path and name of the new .dts
file (e.g., c:\temp\design1.dts). This feature allows you to use a
different name for the .dts and .rpt files than you had on the .svf
files. This allows easier integration into the ATG process.

3. Select clock driver nail to drive the CPLD’s TCK signal by
clicking the option box next to Use Clock Nail located in the lower
left of the GUI. Using a Clock Driver Nail gives a faster slew rate
and, therefore, better noise immunity. Noise can be a significant
problem for some applications when programming parts in-
system. GenRad recommends selecting this option if one of the
test systems clock driver nails is available.

4. Selecting the Use DSM Board Option. If you have a Deep Serial
Memory card, GenRad recommends selecting this option which
will help minimize programming time and data vector file sizes.
However, since a few more program prep steps are required,
please proceed to the section entitled Programming Xilinx CPLDs
3-6 Xilinx Development System

Creating GenRad Test Files
with Deep Serial Memory. If you’re not using a DSM continue to
step 6.

5. Once all of the option selections and fields have been completed,
press Generate DTS. The resulting .dts file may contain multiple
bursts and require a lot of disk space. A resulting .rpt file contains
a summary of the data used to generate the .dts and the number
of bursts generated. Actual execution time for file conversion
varies depending on the size of the .svf file and the speed of your
computer.

6. Insert the new .dts file into a user .dtl. If a user .dtl does not exist
create one with GenRad’s library tool interface.

7. Run GenRad's Automatic Test Generator in single component
mode for the new dts (in the previous example the single compo-
nent is U29_P). The software creates a file named U29_P.tpg.
Copy the file's content and paste in the UUT's .tpg file beneath
the section of code for U29_P in the digital test section.

8. Translate the target .tpg file.

9. Debug the test program

Programming a Device in a JTAG Chain
Configuration

When the target CPLD lies in a multiple device or JTAG chain config-
uration, the user must make a couple additional modifications to the
.ckt file and generate a .dts for each Xilinx ISP-capable CPLD. In a
multiple-device chain, all JTAG-compliant devices in the chain share
TCK and TMS signals. However, the first device's TDO signal is
connected to the TDI of the second device and so forth (see figure
below). From a program prep perspective, each Xilinx ISP-capable
CPLD has an .svf file which contains vectors to erase, program, and/
or verify the device.
svf2dts Conversion Utility 3-7

svf2dts Conversion Utility
The above example illustrates a 3 device chain consisting of U29, U5
and U40. The three entries have the same node numbers since the
chain must always be driven from the beginning and there are three
devices to program and verify.

Programming Example for a Multiple Device Chain
Remember, for each Xilinx CPLD in the JTAG chain that you want to
program, the svf2dts must generate a separate .dts file. In the
example, there are 3 devices in the JTAG chain. Two are Xilinx
XC9572XL devices (which can be programmed) and the third is an
abitrary JTAG-compliant device (e.g., a DSP). In order to program the
XC9572XL parts, two .svf files (at minimum) should be available.

15

16

17 19

U29

XC9572xl

TDI

TMS

TCK TDO

15

16

17 19

U10

XC9572xl

TDI

TMS

TCK TDO

19

20

21 23

U45

Device xyz

TDI

TMS

TCK TDO

N 35

N 36

N 37

N 40

Figure 3-5_Multiple JTAG device chain configuration

J3

U29_P U29PV : : : :
 13=N13, 14=N43, 15=N35, 16=N36,

 17=N37, 18=N92, 19=N40, 20=N233,

U10_P U10PV : : : :
 13=N13, 14=N43, 15=N35, 16=N36,

 17=N37, 18=N92, 19=N40, 20=N233,

U45_P U45PV : : : :
 17=N37, 18=N92, 19=N35, 20=N36,

 21=N37, 22=N55, 23=N40, 24=N422

Figure 3-6_Modifying the .ckt to program CPLDs in the same JTAG chain
3-8 Xilinx Development System

Creating GenRad Test Files
One .svf contains instructions to put U10 and U45 into bypass mode
and program U29. The other contains instructions to put U29 and
U45 into bypass mode and program U10. This section walks through
a step-by-step example for generating a .dts for U29. Use the same
steps to create a .dts file for U10.

1. Start the svf2dts tool.

2. When the user interface appears, carefully fill in all of the
required fields with information related to the target CPLD. (It
may be useful to have a schematic available to answer some of
the specific device related questions).

Total number of pins for device or chain Header

This field refers to the JTAG-related pins employed on the target
CPLD. In the example, there are 4 such pins (TDI, TDO, TMS, and
TCK)

TMS Pin Number

This field refers to the JTAG chain’s TMS signal pin. In the
multiple-device chain example, TMS for all devices should be
referred to entered as 16.

TCK Pin Number

This field refers to the JTAG chain’s TCK signal pin. In the
example, TCK for all devices should be referred to entered as 17.

TDI Pin Number

This field refers to the JTAG chain’s TDI signal pin. svf2dts will
enter this number as the argument/value for TDI in the resultant
.dts files INPUT keyword statement located in the Header
section.

TDO Pin Number

This field refers to the JTAG chain’s TDO signal pin. Since the last
device in the chain is U40, it provides the TDO reference for the
chain. Since the .ckt file has been modified to note that U29_P’s
pin 19 connects to N40 (the node connected to U40’s TDO signal),
simply enter 19 in this field.

TRST Pin Number

XC9500(XL) devices do not have a TRST JTAG pin. If you are
using XC9500(XL) devices, leave this space blank when queried
svf2dts Conversion Utility 3-9

svf2dts Conversion Utility
by the svf2dts program. If another device in the JTAG chain
employs a TRST pin, enter the pin designator.

ENABLE Pin Number

XC9500(XL) devices do not have an ENABLE JTAG pin. If you
are using XC9500(XL) devices, leave this space blank when
queried by the svf2dts program. If another device in the JTAG
chain employs a ENABLE pin, enter the pin designator.

If you used an alpha-numeric for the signal names above, you
must edit the DTS file to add or change all other pins on the
device to be alpha-numeric. This will maintain consistency across
library modules.

Ground Pin Number

Enter on the pin number for one of the CPLD’s ground pins.

Fail Bit

This field refers to the fail bit to be set in the event that a
programming function fails. The default is fail bit 901 and could
be used for the first device in the chain (any number over 900 is
acceptible). However, subsequent devices require a different fail
bit to differentiate one from the other when a failure is encoun-
tered. GenRad recommends incrementing the failure bit by one
for each additional device (i.e., in the example, use 902 for U10).

Reference Designator

This field denotes reference designator for the target CPLD. In
the event that a programming operation fails, the resultant test
program will generate an error message which indicts the name
denoted in this field (i.e., U29_P). This assists in properly identi-
fying a failed device.

3) Designate input files and output files. In the upper right of the
GUI, fill in the fields beneath File Input/Output

Input SVF File

Provides the conversion tool with the path and name of the target
CPLDs SVF file. Enter the path and name of the target SVF file
(e.g., c:\temp\design1.svf).

Output DTS File
3-10 Xilinx Development System

Creating GenRad Test Files
Provides the conversion tool with the target location and name
for the resultant .dts file. Enter the path and name of the new .dts
file (e.g., c:\temp\design1.dts). This feature allows you to use a
different name for the .dts and .rpt files than you had on the .svf
files. This allows easier integration into the ATG process.

3. Select clock driver nail to drive the CPLD’s TCK signal by
clicking the option box next to Use Clock Nail located in the lower
left of the GUI. Using a Clock Driver Nail gives a faster slew rate
and, therefore, better noise immunity. Noise can be a significant
problem for some applications when programming parts in-
system. GenRad recommends selecting this option if one of the
test systems clock driver nails is available.

4. Selecting the Use DSM Board Option. If you have a Deep Serial
Memory card, GenRad recommends selecting this option which
will help minimize programming time and data vector file sizes.
However, since a few more program steps are required please
proceed to the section entitled Programming Xilinx CPLDs with
Deep Serial Memory.

5. Once all of the option selections and fields have been completed,
press Generate DTS. The resulting .dts file will contain multiple
bursts and may require a lot of disk space. There will also be a
.rpt file that contains a summary of the data used to generate the
.dts and the number of bursts generated. Actual execution time
for the file conversion varies depending on the size of the .svf file
and the speed of your computer.

6. Repeat steps 1-5 for each device and/or .svf file.

7. Insert the new .dts file into a user .dtl. If a user .dtl does not exist
create one with GenRad’s library tool interface.

8. Run GenRad's Automatic Test Generator in single component
mode for the new .dts (in the previous example the single compo-
nent is U29_P). The software creates a file named U29_P.tpg.
Copy the file's content and paste in the UUT's .tpg file beneath
the section of code for U29_P in the digital test section.

9. Translate the target .tpg file.

10. Debug the test program

11. Repeat steps 6-10 for each new .dts file.
svf2dts Conversion Utility 3-11

svf2dts Conversion Utility
Using the Deep Serial Memory Option

If you have a Deep Serial Memory (DSM) board on your tester you should use it.
Using Deep Serial Memory will result in significantly smaller file sizes. The DDS
file will be in the 1 to 4 megabyte range. The DTS file will be in kilobyte range.

1. Enter the appropriate information into all svf2dts GUI fields.

2. Click the option box next to Use DSM Board located in the lower
left of the GUI. Notice that a new field is now present within the
File Input/Output section.

3. Enter a filename and destination path for the resultant .dds file
required for the DSM option.

4. Press Generate DTS.

5. Insert the new .dts component into .dtl

6. Deep Serial Memory provisions

a) Create an automatic test options file (.ato). This file will load
the DSM binary file for the ISP component

b) Run DSM Translate on the DSM source (.dds) file to create
the .ddb file. Use the DSM Translate Page in GenRad’ ISP
Tool or 228X monitor pages DSM Translate page to create the
.ddb file.
3-12 Xilinx Development System

Creating GenRad Test Files
c) Run GenRad’s ATG with the newly created .ato file

7. Translate/compile test program (.tpg)

8. Debug test program

Troubleshooting
• There MUST be accurate .BSDL files for all devices in the chain.

• Unique FAIL bits MUST be assigned to each Xilinx device being
tested.

• Branch statements may need to be added at label DDONE: to
include the FAIL bits used in testing the devices.

• For erase vectors on XC9500 devices, you may need to increase
the erase “pulse” times. In fact, this is highly recommended for a
robust program. To increase the erase “pulse” times, you must
manually edit the DTS or SVF file. It is easiest to edit the SVF file
before running it through the svf2dts translator. In the SVF,
replace every instance of “RUNTEST 1300000 TCK;” with
“RUNTEST 2600000 TCK;”. This will double the erase “pulse”
time from 1.3 seconds to 2.6 seconds per erase “pulse”. There are
2 to 32 erase “pulses” per erase operation depending on the
device. This is not usually required for XC9500XL devices.

Figure 3-7_DSM Translate GUI available in GenRad’s ISP Tool v1.0
svf2dts Conversion Utility 3-13

Appendix A

DTS Example and Explanation

/* U5PV.DTS created by SVF2DTS version 1.2 utility 06-16-1997 09:47:55 */

.HEAD;

.SIZE 4;

.INPUT(1=TMS,2=TCLK,3=TDI);

.OUTPUT(4=TDO);

.PERIOD 1U; /* TCK is set to 1 MHz by the conversion tool

.END HEAD;

Any routine used more than once is put in a subroutine to decrease
the number of bursts required.

.FASTSUB TCLK;

$ IC(TCLK) IH(TCLK);

$ IL(TCLK);

$ RETURN;

.END FASTSUB;

Additional subroutines deleted for readability.

.MAIN USING(F=TDO);

BURST ACTIVE NOPRINT NOFAULT NODIAG FAIL() MAXTIME=60;

FAST;

Test steps deleted for readability.

The output .DTS is fully commented and includes any comments that
were in the input .SVF file. Test steps that check data set the assigned
FAIL bit if they fail.

/* Shift in FF masked with FF */
svf2dts Conversion Utility A-15

svf2dts Conversion Utility
/* Shift out 01 masked with FF */

OS(TDO) OH(TDO) ~FAIL(196)~;

$ IH(TDI);

$ GOSUB TCLK;

OL(TDO) ~FAIL(196)~;

Test steps deleted for readability.

/* Xilinx programming loop */

/* Shift in 00BFFFFE masked with 07FFFFFF */

/* Shift out 00000003 masked with 00000003 */

The Xilinx programming algorithm requires the location be tried up
to 32 times if it fails to program. To accomplish this we loop on the
programming command 31 times. The two status bits are tested each
pass through the loop and set the local FLAGFAIL Status bit.

FLOOP = D’31’;

OS(TDO) OH(TDO) FLAGFAIL;

$ IL(TDI);

$ GOSUB TCLK;

OH(TDO) FLAGFAIL;

$ IH(TDI);

$ GOSUB TCLK;

OI(TDO);

Test steps deleted for readability.

$ GOSUB TCLK;

/* State is now DREXIT1 */

If FLAGFAIL is not set then both status checks pass. Branch around
retry and continue programming. If either status check fails, attempt
to program the location up to 31 times.
A-16 Xilinx Development System

DTS Example and Explanation
GOTO P1 FLAG PASSES;

/* Operation failure retry */

$ GOSUB RETRY;

$ GOSUB W1800000;

/* Set state to DRSHIFT from IDLE */

$ GOSUB IDL2DRS;

IL(TMS);

/* State is now DRSHIFT */

END FLOOP;

If after 31 attempts the location still fails, try one more time. This time
if it fails set the status FAIL bits 193 or 194.

OS(TDO) OH(TDO) FLAGFAIL ~FAIL(193)~;

$ IL(TDI);

$ GOSUB TCLK;

OH(TDO) FLAGFAIL ~FAIL(194)~;

$ IH(TDI);

Test steps deleted for readability.

/* Branch to burst end if fails after 32 attempts */

Check the fail flag and branch to the end of the burst if the location
failed.

GOTO BE1 FLAG FAILS;

P1:

Test steps deleted for readability.

BE1: $;

END FAST;

The END BURST statement clears FAIL bits 193 and 194. Then it
checks the FAIL bit assigned to the device. If the FAIL bit is set, a
failure message is printed and any remaining bursts are branched.
DTG will add the correct branch statement before the “]”.

END BURST[IF FAIL(193) THEN BITCLR(FAIL,193);
svf2dts Conversion Utility A-17

svf2dts Conversion Utility
IF FAIL(194) THEN BITCLR(FAIL,194);

IF FAIL(196) THEN WRITE ID=MESFILE ’Device U5 failed%NL%’;

IF FAIL(196) THEN];

Additional bursts deleted.

The last burst is done only to clear the active state.

BURST;

/* This burst is done only to clear the active state!! */

IC(TDI,TMS,TCLK);

ID(#);

END BURST;

.END MAIN;
A-18 Xilinx Development System

Appendix B

Optimizations

You can use several simple techniques to optimize and reduce the
overall programming time.

• If you have Deep Serial Memory, use the Deep Serial Memory
option. Deep Serial Memory more efficiently handles the large
ISP vector sets.

• If you always program factory fresh (i.e. blank) XC9500 devices,
eliminate the erase operation by unchecking the Erase Before
Programming option in the Program dialog box when generating
the SVF file. The erase operation consumes the majority of the
overall programming time for XC9500 devices.

Additionally, several advanced techniques may be used to optimize
and reduce the overall programming time:

• If most of the devices you program are blank (erased), you can
conditionally erase an XC9500 device. You must generate sepa-
rate SVF files that contain the following operations per SVF file:
blank check, erase, and program+verify. To create the blank
check SVF, you must obtain the .jed file for a blank (erased)
device. Blank .jed files can be obtained via ftp://ftp.xilinx.com/
pub/swhelp/cpld/blank.zip. Use JTAG Programmer to
generate an SVF that contains a verify operation using the
blank.jed file. In your GenRad test program, you must first
execute the blank verify operation. Then, based on the result,
you can conditionally execute the erase vectors from the SVF
with the erase operation. Finally, execute the program+verify
vectors on the device. The verify (blank check) operation
executes very quickly in comparison to the regular, sector-based
erase operation.

• You can use the faster bulk erase method for later revisions of the
XC9500 devices. By default, JTAG Programmer uses the sector-
svf2dts Conversion Utility B-19

svf2dts Conversion Utility
based erase operation for XC9500 devices because the sector-
based erase is supported in all revisions of the XC9500 devices.
All XC9500 devices with a 0000 bit value in the revision field (4
most-significant-bits) of the IDCODE only support the sector-
based erase. The later revisions of the XC9500 devices support a
faster bulk erase operation. To force JTAG Programmer to use the
bulk erase operation, you must temporarily replace the base
BSDL file in the $XILINX/xc9500/data/ directory with the
higher revision BSDL file while you create the SVF files. For
example, you can replace the xc9536.bsd file with the
xc9536_v2.bsd file. Now, you can generate an SVF that contains
the bulk erase operation. (Remember to restore the original BSDL
file so that JTAG Programmer will work correctly with all revi-
sions of the XC9500 devices.) You may want to implement your
GenRad test program such that it conditionally performs either
the sector-based erase or the bulk erase operation based on the
device IDCODE. To create vectors that check a device IDCODE,
create an SVF that contains the Get IDCODE operation. By
default, JTAG Programmer generates the IDCODE check (SDR
command) in the SVF with a MASK value that ignores the revi-
sion field (4 most-significant-bits) of the IDCODE. Manually edit
the SVF to check all bits of the 32-bit IDCODE. Make sure the
TDO is expecting all zeroes for the revision field of the IDCODE.
Then, you can use the IDCODE SVF to check if a device is a revi-
sion 0000 device. If it is a revision 0000 device, you perform the
regular sector-based erase. Otherwise, you can perform the bulk
erase.
B-20 Xilinx Development System

	Programming Xilinx
	Trademarks
	Preface
	Conventions

	Chapter 1
	Introduction
	Figure 1-1� Program Flow

	Hardware Considerations

	Chapter 2
	Creating SVF Files
	Creating an SVF File Using JTAG Programmer
	Using the Batch Download Tool to Generate SVF Files
	Using the Graphical User Interface to Generate SVF Files
	Figure 2-1� JTAG Programmer Interface
	Figure 2-2� Device Chain

	Chapter 3
	Creating GenRad Test Files
	Using svf2dts
	Review of Program Prep Flow
	Svf2dts GUI Overview
	Programming an Isolated JTAG Device
	Programming Example for a Single Device Chain
	Programming a Device in a JTAG Chain Configuration
	Programming Example for a Multiple Device Chain
	Using the Deep Serial Memory Option

	Troubleshooting

	Appendix A
	DTS Example and Explanation

	Appendix B
	Optimizations

