
June 1999

Programming
Xilinx XC9500
on a Teradyne
Z1800 or
Spectrum

JTAG Programmer
Version 2.1i

Preface

Introduction

Creating SVF Files

Creating Teradyne Test Files

Troubleshooting

Programming XC9500 on a Teradyne Z1800 or Spectrum
The Xilinx logo shown above is a registered trademark of Xilinx, Inc.

XILINX, XACT, XC2064, XC3090, XC4005, XC5210, XC-DS501, FPGA Architect, FPGA Foundry, NeoCAD,
NeoCAD EPIC, NeoCAD PRISM, NeoROUTE, Plus Logic, Plustran, P+, Timing Wizard, and TRACE are registered
trademarks of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

All XC-prefix product designations, XACTstep, XACTstep Advanced, XACTstep Foundry, XACT-Floorplanner,
XACT-Performance, XAPP, XAM, X-BLOX, X-BLOX plus, XChecker, JTAG Programmer, XDM, XDS, XEPLD,
XPP, XSI, BITA, Configurable Logic Cell, CLC, Dual Block, FastCLK, FastCONNECT, FastFLASH, FastMap,
HardWire, LCA, LogiBLOX, Logic Cell, LogiCORE, LogicProfessor, MicroVia, PLUSASM, PowerGuide,
PowerMaze, Select-RAM, SMARTswitch, TrueMap, UIM, VectorMaze, VersaBlock, VersaRing, XABEL, Xilinx
Foundation Series, and ZERO+ are trademarks of Xilinx, Inc. The Programmable Logic Company and The
Programmable Gate Array Company are service marks of Xilinx, Inc.

IBM is a registered trademark and PC/AT, PC/XT, PS/2 and Micro Channel are trademarks of International Business
Machines Corporation. DASH, Data I/O and FutureNet are registered trademarks and ABEL, ABEL-HDL and
ABEL-PLA are trademarks of Data I/O Corporation. SimuCad and Silos are registered trademarks and P-Silos
and P/C-Silos are trademarks of SimuCad Corporation. Microsoft is a registered trademark and MS-DOS is a
trademark of Microsoft Corporation. Centronics is a registered trademark of Centronics Data Computer
Corporation. PALASM is a registered trademark of Advanced Micro Devices, Inc. UNIX is a trademark of AT&T
Technologies, Inc. CUPL, PROLINK, and MAKEPRG are trademarks of Logical Devices, Inc. Apollo and AEGIS
are registered trademarks of Hewlett-Packard Corporation. Mentor and IDEA are registered trademarks and
NETED, Design Architect, System Architect, QuickSim, QuickSim II, and EXPAND are trademarks of Mentor
Graphics, Inc. Sun is a registered trademark of Sun Microsystems, Inc. SCHEMA II+ and SCHEMA III are
trademarks of Omation Corporation. OrCAD is a registered trademark of OrCAD Systems Corporation. Viewlogic,
Viewsim, and Viewdraw are registered trademarks of Viewlogic Systems, Inc. CASE Technology is a trademark
of CASE Technology, a division of the Teradyne Electronic Design Automation Group. Spectrum is a trademark
of Teradyne, Inc. DECstation is a trademark of Digital Equipment Corporation. Synopsys is a registered trademark
of Synopsys, Inc. Verilog is a registered trademark of Cadence Design Systems, Inc. FLEXlm is a trademark of
Globetrotter, Inc. DynaText is a registered trademark of Inso Corporation.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown
herein; nor does it convey any license under its patents, copyrights, or maskwork rights or any rights of others.
Xilinx, Inc. reserves the right to make changes, at any time, in order to improve reliability, function or design and
to supply the best product possible. Xilinx, Inc. will not assume responsibility for the use of any circuitry described
herein other than circuitry entirely embodied in its products. Xilinx, Inc. devices and products are protected under
one or more of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216; 4,713,557; 4,746,822; 4,750,155;
4,758,985; 4,820,937; 4,821,233; 4,835,418; 4,853,626; 4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107;
5,012,135; 5,023,606; 5,028,821; 5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056;
5,243,238; 5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704; 5,329,174;
5,329,181; 5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248; 5,349,249; 5,349,250; 5,349,691;
5,357,153; 5,360,747; 5,361,229; 5,362,999; 5,365,125; 5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925;
5,410,189; 5,410,194; 5,414,377; 5,422,833; 5,426,378; 5,426,379; 5,430,687; 5,432,719; 5,448,181; 5,448,493;

R

Xilinx Development System

5,450,021; 5,450,022; 5,453,706; 5,466,117; 5,469,003; 5,475,253; 5,477,414; 5,481,206; 5,483,478; 5,486,707;
5,486,776; 5,488,316; 5,489,858; 5,489,866; 5,491,353; 5,495,196; 5,498,979; 5,498,989; 5,499,192; 5,500,608;
5,500,609; 5,502,000; 5,502,440; RE 34,363, RE 34,444, and RE 34,808. Other U.S. and foreign patents pending.
Xilinx, Inc. does not represent that devices shown or products described herein are free from patent infringement
or from any other third party right. Xilinx, Inc. assumes no obligation to correct any errors contained herein or to
advise any user of this text of any correction if such be made. Xilinx, Inc. will not assume any liability for the accuracy
or correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in
such applications without the written consent of the appropriate Xilinx officer is prohibited.

Copyright 1991-1997 Xilinx, Inc. All Rights Reserved.
June 1999

Programming XC9500 on a Teradyne Z1800 or Spectrum
Xilinx Development System

Preface

About This Manual
This manual describes how to program Xilinx XC9500 CPLDs on
Teradyne Z1800 or Spectrum testers.

Before using this manual, you should be familiar with the operations
that are common to all Xilinx’s software tools: how to bring up the
system, select a tool for use, specify operations, and manage design
data.

Manual Contents
This manual covers the following topics.

• Chapter 1, “Introduction,” lays out the basic procedure for
programming an XC9500 CPLD in a Teradyne test environment.

• Chapter 2, “Creating SVF Files,” discusses how to create SVF files
using JTAG Programmer on PCs, and on Sun and HP worksta-
tions.

• Chapter 3, “Creating Teradyne Test Files,” discusses how to
generate a Teradyne Binary Vector File, and how to create the
executable ptprog.exe, and integrate into your test environ-
ment.

• Appendix A, “Troubleshooting,” contains information on trou-
bleshooting a problem.
Programming XC9500 on a Teradyne Z1800 or Spectrum v

Programming XC9500 on a Teradyne Z1800 or Spectrum
vi Xilinx Development System

Conventions

In this manual the following conventions are used for syntax clarifi-
cation and command line entries.

• Courier font indicates messages, prompts, and program files
that the system displays, as shown in the following example.

speed grade: -100

• Courier bold indicates literal commands that you must enter in
a syntax statement.

rpt_del_net=

• Italic font indicates variables in a syntax statement. See also, other
conventions used on the following page.

xdelay design

• Square brackets “[]” indicate an optional entry or parameter.
However, in bus specifications, such as bus [7:0], they are
required.

xdelay [option] design

• Braces “{ }” enclose a list of items from which you choose one or
more.

xnfprep designname ignore_rlocs={true|false}

• A vertical bar “|” separates items in a list of choices.

symbol editor [bus|pins]
Programming XC9500 on a Teradyne Z1800 or Spectrum vii

Programming XC9500 on a Teradyne Z1800 or Spectrum
Other conventions used in this manual include the following.

• Italic font indicates references to manuals, as shown in the
following example.

See the Development System Reference Guide for more information.

• Italic font indicates emphasis in body text.

If a wire is drawn so that it overlaps the pin of a symbol, the two
nets are not connected.

• A vertical ellipsis indicates repetitive material that has been
omitted.

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

• A horizontal ellipsis “. . .” indicates that the preceding can be
repeated one or more times.

allow block blockname loc1 loc2 ... locn ;
viii Xilinx Development System

Chapter 1

Introduction

This document describes the procedures necessary to program Xilinx
XC9500/XL/XV CPLD designs in a Teradyne test environment. The
procedures described in this document lay out the necessary steps
you need to perform; they are:

• Creating an SVF File Using JTAG Programmer

• Generating a Teradyne Binary Vector File

• Creating the ptprog.exe executable

• Modifying the PT2.INI File

• Integrate the executable and .img file into your test program

JTAG Programmer translates JEDEC files into Serial Vector Format
(SVF) files. The xilinx bat file translates SVF files to Teradyne
Binary Vector Files.

The following is needed to run this software:

• Digital Function Processor option

• Windows95 or WindowsNT, a 32 bit environment

• Turbo C++ or Microsoft Visual C++ Compiler (the Microsoft
Visual C++ must be able to produce DOS executables to produce
the 16 bit executable ptprog.exe)

• Teradyne F1 Software

Note: The installation procedure is found in the README file on the
disk. This is an ASCII text file and can be viewed from the DOS editor
(edit readme.txt) or the Windows Notepad.

Chapter 2 describes the procedure for creating an SVF file from JTAG
Programmer from both PC and workstation environments. Chapter 3
describes how to produce Teradyne compatible tester programming.
Programming XC9500 on a Teradyne Z1800 or Spectrum 1-1

Programming XC9500 on a Teradyne Z1800 or Spectrum
Hardware Considerations
This software and methodology applies to the following Teradyne
testers running Teradyne software release F1 or greater.

• Z1800 with Digital Functional Processor

• Spectrum

Xilinx Device Support
• XC9500 Family (5 Volt devices)

• XC9500XL Family (3.3 Volt devices)

• XC9500XV Family (2.5 Volt devices)

XC9500 XC9500XL XC9500XV

36 36XL 36XV

72 72XL 72XV

108

144 144XL 144XV

216

288 288XL 288XV

Table 1-1 Device Listing of Device Families
1-2 Xilinx Development System

Chapter 2

Creating SVF Files

Creating an SVF File Using JTAG Programmer
This procedure describes how to create an SVF file; it assumes that
you are using Xilinx Foundation or Alliance Series software, Version
1.3 or newer. These software packages include the Xilinx CPLD fitter
and JTAG Programmer software. JTAG Programmer is available free
of charge on the Xilinx World Wide Web site, www.xilinx.com/isp/
toolbox.htm.

JTAG Programmer is supplied with both graphical and batch user
interfaces. The batch user interface executable name is jtagprog;
and the graphical user interface is named jtagpgmr. The graphical
tool can be launched from the Design Manager or Project Manager,
but may also be launched by opening a shell and invoking jtag-
pgmr. The batch tool is available by opening a shell and invoking
jtagprog on the command line.

The goal of the following procedure is to create three separate SVF
files for each device being programmed. We will show you how to do
this using both the batch and the GUI tool. One SVF file contains
erase information for the device, another the program information for
the device, and the third contains verification information.

Using the Batch Download Tool to Generate SVF
Files

1. Run your design through the Xilinx fitter and create a JEDEC
programming file. If you have already been provided with a
JEDEC file, proceed to the next step.

2. Invoke the batch JTAG Programmer tool from the command line
in a new shell.
Programming XC9500 on a Teradyne Z1800 or Spectrum 2-1

http://www.xilinx.com/isp/toolbox.htm
http://www.xilinx.com/isp/toolbox.htm

Programming XC9500 on a Teradyne Z1800 or Spectrum
jtagprog -svf

The following messages will appear:

JTAGProgrammer: version <Version Number>
Copyright:1991-1998

Sizing system available memory...done.

SVF GENERATION MODE

[JTAGProgrammer::(1)]>

3. Set up the device types and assign design names by typing the
following command sequence at the JTAG Programmer prompt:

part deviceType1:designName1 deviceType2:designName2
... deviceTypeN:designNameN

where devicetype is the name of the BSDL file for that device and
designName is the name of the design to translate into SVF.
Multiple deviceType:designName pairs are separated by spaces. For
example:

part xc95108:abc12 xc95216:ww133

The part command defines the composition and ordering of the
boundary-scan chain. The devices are arranged with the first
device specified being the first to receive TDI information and the
last device specified being the one to provide the final TDO data.

Note: For any non-XC9500XL/XV device in the boundary-scan chain,
make certain that the BSDL file is available either in the XILINX vari-
able data directory, or by specifying the complete path information in
the deviceType. The designName in this case can be any arbitrary name.

4. Execute the required boundary-scan or ISP operation in JTAG
Programmer.

• erase [-fh] designName -- generates an SVF file to describe
the boundary-scan sequence to erase the specified part. The -
f flag generates an erase sequence that overrides write
protection on devices. The -h flag indicates that all other
parts (other than the specified designName) in the boundary-
scan chain should be held in the HIGHZ state during the
erase operation. Xilinx recommends erase -f -h design-
Name.

• verify [-h] designName [-j jedecFileName] -- generates an
SVF file to describe the boundary-scan sequence to read back
2-2 Xilinx Development System

Creating SVF Files
the device contents and compare it against the contents of the
specified JEDEC file. The JEDEC file defaults to be the design-
Name.jed in the current directory, or may be alternatively
specified using the -j flag. The -h flag is used to specify that
all other parts (other than the specified designName) in the
boundary-scan chain should be held in the HIGHZ state
during the verify operation. Xilinx recommends verify -h
designName.

• program [-bh] designName -j [jedecFileName] -- generates an
SVF file to describe the boundary-scan sequence to program
the device using the programming data in the specified
JEDEC file. The JEDEC file defaults to be designName.jed in
the current directory, or may be alternatively specified using
the -j flag. The -h flag is used to specify that all other parts
(other than the specified designName) in the boundary scan
chain should be held in the HIGHZ state during the
programming operation. The -b flag indicated the program-
ming operations should erase the device. This is useful when
programming devices shipped from the factory. Xilinx
recommends program -b -h designName.

• partinfo [-h] -id designName -j [jedecFileName]-- generates
an SVF file to describe the boundary-scan sequence to read
back the 32 bit hard-coded device IDCODE. The -h flag is
used to specify that all other parts (other than the specified
designName) in the boundary scan chain should be held in the
HIGHZ state during the IDCODE operation.This operation
can be performed in any combination of the three SVF files.

• partinfo [-h] -signature designName -j [jedecFileName]--
generates an SVF file to describe the boundary-scan sequence
to read back the 32 bit user-programmed device USERCODE.
The -h flag is used to specify that all other parts (other than
the specified designName) in the boundary scan chain should
be held in the HIGHZ state during the USERCODE opera-
tion. This operation can be performed in any combination of
the SVF files.

5. Exit JTAG Programmer by entering the following command:

quit

Note: The SVF file will be named designName.svf and will be created
in the current working directory. Consecutive operations on the same
Programming XC9500 on a Teradyne Z1800 or Spectrum 2-3

Programming XC9500 on a Teradyne Z1800 or Spectrum
designName will append to the SVF file. To create SVF files with sepa-
rate operations in each, you will need to rename the SVF file after
each operation by exiting to the system shell.

Using the Graphical User Interface to Generate SVF
Files

1. Run your design through the Xilinx fitter and create a JEDEC file.

2. Double-click on the JTAG Programmer icon or open a shell and
type jtagpgmr. The JTAG Programmer will appear.

3. Instantiate your boundary-scan chain. There are two ways to do
this. The first is to manually add each device in the correct
boundary-scan order from system TDI to system TDO.

a) Selecting Edit → Add Device for each device in the
boundary-scan chain.

b) Fill in the device properties dialog to identify the JEDEC (if it
is an XC9500 device) or BSDL (if it is not an XC9500 device)
file associated with the device you are adding.
2-4 Xilinx Development System

Creating SVF Files
The device type and JEDEC file name will appear below the
added device.

The second method is to allow JTAG Programmer to query the
boundary-scan chain for devices, and then fill in the JEDEC and
BSDL file information. This method will work only when you have
the target system connected to your computer with a Xilinx serial or
parallel cable. The cable must be powered up by the board under test.
The steps are as follows:

a) Initialize the chain as follows:

File → Initialize Chain

JTAG Programmer will display the boundary-scan chain configu-
ration as shown:
Programming XC9500 on a Teradyne Z1800 or Spectrum 2-5

Programming XC9500 on a Teradyne Z1800 or Spectrum
b) For each device in the resulting chain, double-click on the
chip icon to bring up the device properties dialog, then select
the JEDEC or BSDL file associated with that device.

4. Put the JTAG Programmer into SVF mode by selecting

Output → Create SVF File...

to create a new SVF file, or

Output → Append to SVF File...

to append to an existing SVF file.

Select the SVF Option Through Test-Logic-Reset, then
click OK.
2-6 Xilinx Development System

Creating SVF Files
Fill in the SVF file dialog with the desired name of the target SVF
file to be created.

Note: Once you enter SVF mode the composition of the boundary-
scan chain cannot be edited in order to ensure consistency of the
boundary-scan data in the SVF file.

5. Highlight one of the devices by clicking it once with the mouse.
Then, select any of the enable operations from the Operations
pull down menu to generate an SVF file to describe the
boundary-scan sequence to accomplish the requested operation.

6. When you completed the required operations you may exit JTAG
Programmer by selecting:

File → Exit

Note: You may select Use HIGHZ instead of BYPASS from the
File → Preferences... dialog to specify that all other parts (not
the device selected) in the boundary-scan chain will be held in
HIGHZ state during the requested operation.

Note: To generate separate SVF files for each operation you will have
to perform the following steps between operations:

a) Select Output → Use Cable...

b) On the Cable Communications dialog box select Cancel

c) Select Output → Create SVF File..

d) Choose a new SVF file and proceed normally.
Programming XC9500 on a Teradyne Z1800 or Spectrum 2-7

Programming XC9500 on a Teradyne Z1800 or Spectrum
2-8 Xilinx Development System

Chapter 3

Creating Teradyne Test Files

Introduction
Use the SVF file that you generated above as input for the creation of
a Teradyne Binary Vector File (.img). This chapter explains how to
create executable Teradyne programs from SVF files.

You first need to check that your PC is setup with the following files
that were contained in the zip file (setup file). If you do not find these
files, your unzip utility probably failed.

The xlate directory contains the executable and libraries you will
need to parse the SVF file output of your design tool. Add the xlate
directory to the PATH variable on your PC.

Table 3-1 Directories and Files

Directory Files

dfp pt2.ini
xilinx.c

doc teradyne.pdf
readme.txt

xlate svfp.exe
xilinx.bat
bsv.dll
dfpbv.dll
failrep.dll
svfc.dll
svfp.dll
util.dll
wrpsrv.dll
Programming XC9500 on a Teradyne Z1800 or Spectrum 3-1

Programming XC9500 on a Teradyne Z1800 or Spectrum
Generating a Binary Vector File
To create a binary vector file, run the translator by entering the
xilinx command.

xilinx filename.svf

Note: xilinx is a DOS .bat file that will invoke the svfp program
with the following parameters:

-period 1000 -svf filename.svf -target dfpbv.

The -period parameter is used by the svfp program to determine
the real time clock value used. The -svf parameter refers to the
.svf file that contains your programming information, and the -
target parameter indicates that the binary vector file will be output
such that it can be run on the Digital Functional Processor.

In general, the file size for the .img file produced by the svfp
program will be smaller than the original .svf file.

After running xilinx.bat copy the resulting .img file to the direc-
tory containing your data files (on the DFP).

Creating the Executable ptprog.exe
Source code for the Digital Functional Processor is located in the dfp
directory. Compile xilinx.c into an executable called
ptprog.exe.

Note: Teradyne currently supports Turbo C++ Version 3.0 and
Microsoft Visual C++. You must have a version of Visual C++ that
produces DOS 16 bit executables.

xilinx.c has the channel assignments for the JTAG connections
hardcoded. If your design has multiple devices in the JTAG scan
chain, you will need to hook the TDI of the first device to channel 209
and TDO of the last device in the chain to channel 208. You should
have also generated your SVF file with the same chain configuration.
The table below shows the mapping that the xilinx.c expects. The
TRST is not needed for Xilinx parts.
3-2 Xilinx Development System

Creating Teradyne Test Files
TCLK is running at the fastest rate the Z1800 DFP will allow (600
kHz).

The ptprog.exe when executed will look for two input files: the
.img binary vector file, and the pt2.ini file (described below).

Modifying the pt2.ini File
The pt2.ini file provides additional information to the
ptprog.exe program at run time. A sample pt2.ini file is shown
below.

Sample pt2.ini - XC95108 :

L,IC1,XC95108,pgm.svf,,,0,1

R,format = No translation

where:

Table 3-2 Mapping

Signal DFP Card DFP node/s

TDO Card 0 208 (Port C bit 0)

TDI Card 0 209 (Port C bit 1)

TCLK Card 0 210 (Port C bit 2)

TMS Card 0 211 (Port C bit 3)

TRST Card 0 212 (Port C bit 4)

L = local device tag

IC1 = board identifier Modify the board identifier
to your own board identifier.

XC95108 = device type Make this be the device type
for the device that is being
programmed in the SVF file.

pgm.svf = data source file Make this the name of the
original SVF file. This will
generate a .img file with the
same root name as your
.svf file (pgm in this
example)
Programming XC9500 on a Teradyne Z1800 or Spectrum 3-3

Programming XC9500 on a Teradyne Z1800 or Spectrum
Adding Xilinx Programming to your Z1800 Board
Test Program

1. Edit the PRGMVARS section of your program. Enable the DFP
and specify the Source File Directory path, usually the board
directory.

2. Create a subdirectory of the source file directory and copy the
*.img, pt2.ini and ptprog.exe files to it.

3. Create a DFP worksheet and specify the subdirectory name in the
source directory field of the worksheet. No arguments are
needed.

4. Press the update button and you are ready to program.

Blank = format of data source file
(91 = Jedec fuse file)

Not needed for Xilinx
devices.

Blank = number of fuses Not needed for Xilinx
devices.

0 = chain position Not needed for Xilinx
devices.

1 = fill character Not needed for Xilinx
devices.

R = remarks/comments
3-4 Xilinx Development System

Appendix A

Troubleshooting

ATE environments tend to be very noisy. The presence of electrical
noise can contribute to erratic ISP behavior. Consider the following
tips if you suspect noise problems.

If you are not able to program the Xilinx parts reliably, try turning
down the TCK rate. You can do this by modifying the following
xilinx.c statements as follows:

Uncomment #define CCC_IO_MAP

Comment out #define CCC_MEM_MAP

This will reduce the TCK clock frequency to about 300 kHz.
Programming XC9500 on a Teradyne Z1800 or Spectrum A-1

Programming XC9500 on a Teradyne Z1800 or Spectrum
A-2 Xilinx Development System

	Preface
	About This Manual
	Manual Contents

	Conventions
	Introduction
	Hardware Considerations
	Xilinx Device Support

	Creating SVF Files
	Creating an SVF File Using JTAG Programmer
	Using the Batch Download Tool to Generate SVF
	Using the Graphical User Interface to Generate SVF

	Creating Teradyne Test Files
	Introduction
	Generating a Binary Vector File
	Creating the Executable ptprog.exe
	Modifying the pt2.ini File
	Adding Xilinx Programming to your Z1800 Board

	Troubleshooting - Appendix A

