
Accelerating DTP with Reconfigurable Computing
Engines

Donald Macvicar1 and Satnam Singh2

1 Dept. Computing Science, The University of Glasgow, G12 8QQ, U.K.
donald@dcs.gla.ac.uk

2 Xilinx Inc., San Jose, California 95124-3450, U.S.A.
Satnam.Singh@xilinx.com

Abstract. This paper describes the context in which a reconfigurable computing engine can be
used to accelerate DTP printing functions. We show how PostScript rendering can be acceler-
ated using a commercially available FPGA co-processor card. Our method relies on dynami-
cally swapping in pre-computed circuits to accelerate the compute intensive portions of
PostScript rendering e.g. drawing curves. We deploy a novel hardware description language
which allows efficient utilisation of a limited FPGA resource. Experiments show that this tech-
nique could lead to a commerical viable FPGA co-processor for desk top publishing applica-
tions. We describe a run-time system for managing the FPGA and dynamic circuit resources.
We also outline other compute intensive desk top publishing functions that can be addressed by
FPGA technology.

1 Introduction

Imagine the office of a typical desk top publishing house: it will comprise of mid to
high end PCs or Macintosh computers with large displays connected to a series of
printers that can generate publication quality colour output at thousands of dots per
inch (dpi). Rasterisation is the process of converting the high level page descriptions
in PostScript into bitmaps that specify where to apply the ink on the paper. This is a
very compute intensive operation and is often performed by a separate computer or
Raster Image Processor (RIP) system. The applications that graphic designers run
include image processing packages like Adobe Photoshop that perform compute
intensive operations like convolution (e.g. Gaussian Blur) over huge true-colour
images. Image processing and printing is often very slow.

Imagine taking an off-the-shelf FPGA PCI card and slotting it into these machines
to accelerate typical desk top publishing functions. That vision is exactly what we are
striving for in our projects at the University of Glasgow in conjunction with Xilinx
Inc. This paper concentrates on how we are working to accelerate PostScript rendering
with reconfigurable technology. Other projects have shown that it is possible to extend
and accelerate the filtering operations of Adobe Photoshop using exactly the same
hardware.

This paper introduces the desk top publishing market and describes the PostScript
rendering technology that we are currently developing. This includes a collection of

rendering circuits that are dynamically swapped into FPGAs as and when required. It
also includes a software architecture that manages the FPGAs. Rather than providing
a stand alone rasterisation application, we show how this system can be used with the
Windows operating system to systematically provide seamless support for hardware
based PostScript rendering.

2 Desk Top Publishing

2.1 Document Creation and Preparation

Desk Top Publishing (DTP) is a rapidly growing area of the current computer appli-
cation market. The increased use of high quality colour graphics has put an even
bigger demand on the software and hardware used for DTP. The manipulation of a
colour image to prepare it for printing requires a significant amount of compute power
to perform the operation in a reasonable amount of time. The addition of instructions
like those on the Intel MMX processors has also helped to improve the performance
of image processing operations (e.g. filtering). The main bottleneck with these opera-
tions is the large amounts of data that have to be accessed to perform the operations.

2.2 Print Technology
Recent developments in print technology are having a significant effect on the whole
printing industry. High quality printed material is now available in small quantities at
reasonable cost. Digital print presses are making it possible and cost effective to pro-
duce short runs of high quality, full colour documents and also allow print on demand
services to be offered. The internet has also had a major effect on the printing industry
and the way in which documents are used. In the past a document was edited and
printed before finally being distributed. It is now becoming more common to distrib-
ute documents in their digital form over some kind of network and print at the final
destination.

Digital cameras and low cost high quality scanners along with increasing power
and reducing cost of home and office computers has allowed many more people access
to desktop publishing. Small companies and individuals can now produce high quality
documents but require only small numbers of them thus the printing industry has had
to change to meet these new demands.

The changes in the way that documents are being used and new print technology
have forced changes in the pre-press production area. The original printing presses
required each letter on a page to be positioned by hand on a large plate which was then
coated in ink and pressed onto paper. The technology has evolved somewhat from
those days but the principles are still the same. Computers are now used to generate
the plates which are then mounted on cylinders and rolled over the paper thus increas-
ing the speed of printing. Even using computers the cylindrical plates take time to
produce and it is feasible only to use these techniques for large quantities. For colour
printing four plates are required as a four colour process is used (cyan, magenta,
yellow and black). The new generation of printers has reduced the cost and time taken
to produce the plates used for printing thus making short runs possible.

The data used to create the plates used for imaging is a raster image of the page
which is constructed from a digital description of the page. The most common lan-
guage for page description is PostScript from Adobe Systems. Documents are created
using applications such as PageMaker, FrameMaker or Quark Xpress. The document
is then saved as a PostScript file which can be sent to a printer. Many print bureaus
will accept PostScript files which they can print on the high resolution printers and
imagesetters.

The process of converting the PostScript generated by the application into the
bitmap data that is used by the print engine is a compute intensive one. The systems
used for this conversion are called Raster Image Processors (RIP). RIP systems are
often dedicated high performance workstations and cost tens of thousands of dollars.
These expensive workstations are used solely for rendering PostScript which could be
a waste of processing power if documents are not always being printed. Even these
dedicated workstations can take hours to render documents and are thus often run in
parallel with the printer, while one document is being printed the next is being ren-
dered ready for printing.

There are two stages to rasterising PostScript. First the PostScript has to be inter-
preted to obtain the commands and associated data for each page in the document. In
the second stage the data from the first stage is used to build a bitmap image of the
page and is sent to the print engine. The page descriptions in PostScript are not page
independent i.e. some data on the last page may be required on the first page. This
interpage dependency makes it difficult to process pages concurrently.

For the FPGA-PS project PDF was chosen as the input page description language.
PDF is very similar in power to PostScript but contains a static, page independent
description of each page. Several packages are available for converting PostScript into
PDF including Acrobat Distiller from Adobe Systems.

Adobe Systems Inc. have recently introduced two solutions for PostScript print-
ing. Adobe PrintGear [2] is a custom processor designed specifically for executing the
commands in the PostScript language. It is designed for desktop printers upto 600dpi
and can produce approx. 8ppm which allows current print engines to operate at their
full potential. The second solution is called PostScript Extreme [1], which is a parallel
approach to PostScript RIPing. PostScript is first converted into PDF to get page inde-
pendence and each page is then dispatch to one of upto ten RIP engines which produce
the raster images for sending to the print engine. The current version of this system
has been built for use with an IBM printer and costs an extra $30,000 on top of the
$780,000 for the printer. This is based on the InfoPrint 4000 600dpi duplex system and
is capable of producing 464 impressions per minute on a RIP while printing system.
It is possible to output variable data PostScript pages with high quality graphics at
these speeds.

3 FPGA Technology

In the case of the FPGA PostScript project the Xilinx XC6200 FPGA is used to accel-
erate the compute intensive areas of the PostScript rendering process. The FPGA is
only utilised when there will be a clear advantage over using software. It is not prac-

tical or possible to implement the entire PostScript rendering process on a FPGA
therefore only the areas that can benefit from acceleration are concentrated on.

Since space is limited on the FPGA, we use the discipline of virtual hardware to
dynamically swap in circuits as they are required. Whenever possible, it helps to order
rendering operations to avoid swapping, otherwise we might experience thrashing.

The following areas of the rendering process are being investigated for accelera-
tion. These identified areas become more significant as the output resolution
increases.
• Matrix-Based coordinate transforms. Every coordinate in a PDF file has to be

multiplied by a six element matrix to obtain the absolute position on the page for
the object.

• Rasterisation of lines. Converting a line from its specification as start and end
points to the list of pixels on the particular line.

• Rasterisation of Bézier curves. Curves can be rendered by approximating the
curve with a series of straight lines, which can then be rendered by the line raster-
isation circuit.

• Rasterisation of TrueType fonts. TrueType fonts are specified as a series of
curves thus rasterising fonts can use the Bézier circuit from above. This may
prove too data intensive for FPGA implementation.

• Anti-Aliasing. When lines and curves are rendered onto a raster grid they may
appear jaggy and uneven in intensity; anti-aliasing corrects these problems.

• Colour correction. Different raster display devices have different characteristics
with respect to colour so when high quality output is required colours have to be
adjusted for the particular output device.

• Bitmap Compression. Since PostScript (level 2) can process LZW compressed
data the intention is to transmit an LZW compressed bitmap to the printer thus
reducing the about of data transfer required.

• RAM Bitmap to SCSI output. The bitmap for a page is finally sent to the printer
using DMA transfers over a high speed SCSI bus prevents this from becoming a
significant bottle neck in the process.

Figure 1 FPGA-PS System.

The FPGA-PS system uses several stages to perform the complete PostScript ren-
dering process. The input PostScript job is first converted into PDF using Adobe
Acrobat Distiller. This application is invoked through its control interface (OLE)
which allows other applications running under Windows to communicate with Dis-
tiller and request it to perform work for them.

The PDF is then parsed to obtain the list of graphical objects that require render-
ing for a particular page. Currently only a small subset of the possible page marking
operations are handled by the system. Only line and arc drawing operations are han-
dled by the initial prototype because these were noticed as being those which could
benefit most from a FPGA implementation which is geared towards technical
drawings.

When the list of objects has been received from the parser they are rendered to the
screen using Windows graphics drawing functions. The image displayed on screen can
then be rendered for printing. The rendering process for printing uses a combination
of hardware and software. The hardware FPGA circuits are only used to carry out tasks
when it will benefit the entire system to do so.

The output of the hardware/software rendering process is a bitmap PostScript file
which requires very little processing by the printer.

4 Case Studies

Several of the circuits for the PostScript rendering process have been implemented and
integrated into the software system described above.

n for
metic
ir per
the

ting
lated
t each
r

nd 1
4.1 Line Rendering Circuit.

Scan conversion of lines to obtain the detailed information of which pixels are on a
raster grid is a common and well known problem with many solutions. In PostScript
there is a command for drawing a line given its end points. Since the initial prototype
for the FPGA-PS system is aimed at technical style drawings scan conversion of lines
is a useful algorithm to implement in FPGA.

There are many algorithms that could have been used but after reflection Bresen-
ham’s scan conversion algorithm 8. is particularly suited to FPGA implementatio
several reasons. Firstly Bresenhams algorithm involves only simple integer arith
and has minimal initalisation. The algorithm also generates one co-ordinate pa
iteration of the main loop which simplifies the control circuitry necessary for
FPGA implementation.

Figure 2 Scan Converting Straight Lines.

Bresenham’s line algorithm is an incremental algorithm for scan conver
straight lines. The pixels on a particular line defined by its end points are calcu
by stepping along the axis with the largest difference between the end points. A
step p(x,y) either the pixel p(x+1,y) or p(x+1,y+1) is selected depending on the large
of s and t.

The code given bellow is for rendering lines with a gradient of between 0 a
but has been generalised for all lines in the circuit implementation.

Bresenhams (int x1,y1, x2,y2, colour)
{
// Initialisaton Section.
 int dx = abs(x2-x1);
 int dy = abs(y2-y1);
 int d = 2 * dy - dx;
 int inc1 = 2 * dy;
 int inc2 = 2 * (dy - dx);
// Assume that x1,y1 is start point.
 int x = x1;
 int y = y1;

s

t

p(x,y) p(x+1,y)

p(x+1,y+1)

 int xend = x2;

 WRITE_PIXEL(x, y, colour);
 while (x < xend) {
 x = x + 1;
 if (d < 0)
 d = d + inc1;
 else {
 y = y + 1;
 d = d + inc2;
 }
 WRITE_PIXEL(x, y, colour);
 }
}

The implementation of the generic line drawing algo-
rithm uses only three simple circuits. The x and y terms are
calculated using a circuit which performs one of three func-
tions depending on the control inputs given. The circuit takes
a value and can either increment or decrement it and also can
do nothing returning the original value. The error term d is
calculated by adding one of two constants onto the previous
value. The appropriate constant is select by multiplexors and
is then added to the previous value with the result being
clocked into a register.

Figure 3 Line Scan Circuit Block Diagram

The circuits used to build the calculation units for each of
the variables in the loop are built up from a bit level circuit
and are parameterised on the size of the final circuit thus
making a circuit that uses 16 bit integers, rather than the 8 bits
as shown, is simple.

Figure 4 Line Rendering Circuit.

The above circuit produces approximately 10 million
pixels per second. This could be improved by using look
ahead carry in the adders rather than the simple ripple carry
that is currently used. Other line scan algorithms can render
two pixels per loop with similar amount of calculation to
Bresenhams algorithm. Run-Slicing could also be used to
speed up the process, if the line is split into two sections these
could then be rendered in parallel thus giving double the per-
formance but with the added cost in term of chip area used
and the increased control logic. Having two circuits rendering
in parallel would greatly increase the complexity of the inter-
face to the SRAM.

4.2 Circle Rendering Circuit
The algorithm used to render circles is very similar to that
used for straight lines. An error term is used to decide in
which direction the next pixel on the curve is.

The error term used for the circle rendering is more com-
plex to calculate than that for the line drawing algorithm. The
error term is calculated by adding one or other of two values
to the previous value but unlike the line algorithm the values
are not constants and are dependant on the previous values of
x, y and d.
dn+1 = dn + 2*xn + 3;
dn+1 = dn + 2*(xn-yn) + 5;

The symmetry of a circle is used by this algorithm to
reduce the number of calculations required. Assuming a
circle centred on the origin it is possible to calculate the co-
ordinates for only a 45° segment of the circle and use these

X
in

it
Y

in
it

D
in

it

X
 R

eg
is

te
r

Y
 R

eg
is

te
r

D
 R

eg
is

te
r

C
ou

nt
er

In
cr

em
en

t 1
In

cr
em

en
t 2

C
on

tr
ol

Y
 V

al
ue

In
cr

em
en

te
r/

D
ec

re
m

en
te

r

X
 V

al
ue

In
cr

em
en

te
r/

D
ec

re
m

en
te

r
D

 V
al

ue
C

al
cu

la
to

r

points to obtain the complete circle. At each stage through the loop in the code sample
below the point (x,y) is calculated. The WRITE_CIRCLE function then takes this
point and can plot the following list of points:

(x,y), (y,x), (y,-x), (x,-y), (-x,-y), (-y,-x), (-y,x), (-x,y)

midpoint_circle (int radius, colour)
{
 int x = 0;
 int y = radius;
 int d = 1-radius;

 WRITE_CIRCLE(x, y, colour);

 while (x < y)
 {
 if (d<0)
 d = d + 2*x + 3;
 else
 {
 d = d + 2*(x-y) + 5;
 y = y - 1;
 }
 x = x - 1;
 WRITE_CIRCLE(x, y, colour);
 }
}

When implemented on an FPGA the calculation of the error term d takes the long-
est time because of the arithmetic required. The commutivity of addition and
subtraction can be used to improve the speed of the calculations. For example in the
else clause of the if statement the calculation requires three arithmetic operations but
parallelism can be used to reduce time taken to that of two operations in sequence. The
x-y part and the d+5 can be carried out in parallel before adding the two result to arrive
at the final answer.

Figure 5 Circle Rendering Circuit Block Diagram.

We have also reported the design of a sphere rendering circuit realised on the
XC4000 devices which delivers good performance [6]. It is interesting to note that the
circle circuit is a special case of the sphere circuit (the sphere circuit was described in
structural VHDL).

X
in

it
Y

in
it

D
in

it

X
 R

eg
is

te
r

Y
 R

eg
is

te
r

D
 R

eg
is

te
r

In
cr

em
en

te
r

C
on

d
In

cr
em

en
t

x
+

 d

ad
d

3

se
le

ct

x
-

y

d
+

 5

ad
de

r

4.3 Bézier Curves.

Polylines are a first degree, piecewise linear approximations to curves resulting in
large numbers of lines for a curve that is not also piecewise linear. In PostScript and
PDF curves are specified using parametric cubic curves cf.

Curves can then be defined in terms of control points which are substituted for
a,b,c,d in the above equations.

The general technique is to approximate the curve with a number of straight line
segments but there are several ways to find the end points of the lines. Firstly the par-
ametric equations can be evaluated for discrete values of t and then a straight line
drawn between the resulting points. This process is very slow as it requires a large
amount of floating point calculations. Also the curve is approximated by a series of
equal straight lines which for some curves my be inefficient as they could have longer
straight sections. A more efficient method of rendering the curve is do recursivly
divide the curve in two and check each half for straightness. If it is not straight then
divide again otherwise a straight line can be drawn.This provides more flexability as
the straightness can be check to some tolerance resulting in a trade off between curve
smoothness and the time taken to produce it.

Figure 6 Bézier Curve and Control Points

There are two methods by which the division can be carried out. Firstly the para-
metric equations can be used to produce point on the curve at mid point of two
previous points and then the straightness check involves checking for that the three
point lie on a straight line. This is still very compute intensive as it requires constant
evaluation of the parametric equations. The second method, which is used in our sys-
tem, involves dividing the curve into two new equal curves. The curve is checked for
straightness and only divided if it is not approximately straight. The test for straight-
ness involves calculating d1 and d2 in Figure 6 and comparing them to some tolerance
value. The calculation is a complex floating point one involving squares and square

Q t() x t()y t()=

x t() axt
3

bxt
2

cxt dx

y t() ayt
3

byt
2

cyt dy 0 t 1≤ ≤(),+ + +=

,+ + +=

nly
sing
its

ézier
roots. Since the straightness test requires a large amount of calculation a fixed depth
of recursion is used with the depth of the recursion is dependant on the approximate
length of the curve. Although this method involves more iterations of the recursion it
does reduce the calculations involved.

recursiveBezier(curve, recDepth)
{
 if (recursionDepth > 0)
 {
 splitCurve(curve,leftCurve,rightCurve);
 recursiveBezier(leftCurve,recDepth-1);
 recursiveBezier(rightCurve, recDepth-1);
 }
 else
 drawLine(curve);
}

The distance between P1,P2,P3,P4 is used as a pessimistic estimate to the length
of the curve. The distance P1,L4,P4 in Figure 7 is used as an optimistic estimate of the
length of the curve. The logarithm too the base two of each of the above lengths is
found. The depth of recursion is then set too the average of the two logarithm values.

Figure 7 Splitting a Bézier Curve.

Figure 7 shows how a curve can be split into two curves
 and which represent the left and right halves of the

curve respectively.
A circuit for dividing Bézier curves in half has been designed and built using o

integer arithmetic which is adequate. Improved results could be obtained by u
fixed point real arithmetic. To perform the division of a curve two identical circu
are used one for the x components and one for the y components. The block diagram
for one of the components is shown in Figure 8. Before rendering begins, all B

L2=(P1+P2)/2, H=(P2+P3)/2, L3=(L2+H)/2,
R3=(P3+P4)/2, R2=(H+R3)/2, L4=R1=(L3+R2)/2

P1 P2 P3 P4, , ,()
L1 L2 L3 L4,,,() R1 R2 R3 R4, , ,()

curves are converted into a sequence of straight lines then the resulting lines are ren-
dered with the others in the document. Currently software is used to do handle the
recursion with the FPGA circuit being used to simply divide the curves. It is hoped
that once the memory access and other problems with the VCC Hotworks board are
corrected that the entire process of producing the straight line to approximate the curve
can be done using a circuit on the FPGA with the resulting line segments written to
the on board SRAM.

Figure 8 Block Diagram of Bézier Dividing Circuit.

All the circuits were implemented in an hardware description language called
Lava, which is a variant of the relational algebraic hardware description language
Ruby [5][7]. A key feature of this language is that it provides circuits combinators that
encode circuit behaviour and layout. This allows us to specify circuit topology without
explicitly calculating the co-ordinate of each cell. This in turn allows us to generate
circuits which are far more likely to route in a reasonable amount of time.

5 Board Issues

We used the HOT Works boards from VCC which have Xilinx XC6216 FPGAs. This
board is fine for development work but would cause excessive overheads in a com-

P1
P2

P3
P4

L
2

L
3

L
4=

R
1

L
2=

P
1+

P
2

H
=

P
2+

P3
R

3=
P

3+
P

4

L
3=

H
+

L
2

L
4=

L
3+

R
2

R
2

R
3

R
2=

R
3+

H

SUN
anies
d to
figu-
to the
cted to
rchi-

hich
 using
ing a

cro-
ough
 be
RAM
pping
a par-
. The
 FPGA
pping

if-
ystem
vel is

ent
d be
lso far
ic. If
ering
tion
rent
print
plete system. The job of rendering PostScript as well as being compute intensive also
requires large amounts of memory. An A4 page (similar in size to a US letter page) in
full colour at 600dpi requires approximately 32MB of memory. It would be impracti-
cal to have a whole page bitmap in memory at once so the bitmap must be paged from
main memory and perhaps even disk for high resolution. The current PCI card has
only 2Mb of SRAM which is enough for only a small region of a page and will thus
incur much swapping if more memory was available then the swapping could be
reduced.

Several other boards are available which may be better suited to this particular
task. The SBX+ from SUN is one possible solution for several reasons. Current RIP
systems are often based upon high powered workstations like DEC Alpha’s or
Sparc Stations, since the SBX is designed for this architecture then many comp
could benefit from the acceleration with minimal outlay. The SBX is also designe
be extendable using a daughter card with 1-4 FPGA/ASICs thus allowing a con
ration that is suited to an individuals need. The FPGA chips that are connected
base card do not have to be the same e.g. Xilinx and Altera parts can be conne
the same board. The use of different parts facilitates the use of different FPGA a
tectures which would allow algorithms to be implemented on the architecture w
best suits it. LZW compression requires access to large look-up tables therefore
a LUT based FPGA to implement this would achieve better performance than us
fine grained FPGA.

The ACEcard from TSI-TeleSys has two XC6264 parts and a 100MHz mi
SPARC IIep processor core on one PCI card. The memory on this card alth
DRAM is fitted via a SIMM socket thus allowing as much memory as possible to
connected to the FPGA. Each of the FPGA chips also has a small amount of S
connected to it which could be used for storing circuits and thus reducing the swa
overhead. Having a processor and FPGA on the same board would allow for extr
allelism in that each FPGA could be doing one job and the processor another
processor on the card be used to run normal code or can be used to configure the
chips. Using the local processor and local memory would reduce the cost of swa
circuits onto the FPGA and would thus speed up the entire process.

6 Software Issues

The driver model in Windows NT is a multi-level one with different levels having d
ferent operating environments. There are several layers to a print driver. The s
described above could be implemented at several different levels. At the top le
the section of the driver that an application calls. It would be possible to implem
the FPGA circuits at this level but would mean that the application printing woul
tied up for the time it took for the pages to be rendered. The rendered data is a
larger than the PostScript and this method would thus involve more network traff
the printer is to be used in a network situation then it is best for the FPGA rend
to be carried out at the lowest level or in the print spooler level. If the implementa
is at the device interface level then a different driver would be required for diffe
printers. The optimum level for implementing the FPGA-PostScript is thus at the

spooler level. The print spooler simply takes the data from the application level driver
and sends it down too the device level driver using a buffer to handle multiple print
jobs. The spooler could thus convert the structured PostScript into bitmap PostScript
before sending to the printer.

Figure 9 Window NT Printing Architecture.

Many printers can interpret the PostScript internally but this can be a very slow
process. The FPGA system tries to remove as much of the processing as possible
resulting in sending a PostScript document that has only a bitmap for the current page
which needs no further processing.

When using the FPGA as virtual hardware the order in which the rendering oper-
ations are done becomes critical to the system performance. If many different circuits
are required one after the other then the overhead of swapping in the new circuits will
outweigh the acceleration. The graphical objects have to be very carefully ordered to
minimise the swapping of virtual circuits. If objects on a page overlap then the order
in which they are rendered will have a profound effect on the final result, the order in
which the overlapping objects are rendered must be the same as that in the original
PostScript file.

The memory required to hold a bitmap image of even one A4 page at current
printer resolutions will range from 32Mb at 600dpi up to 2Gb at 5000dpi. Since it is
impractical to have physical memory of that capacity especially in SRAM connected
to the FPGA some form of paging system will be required. The paging of memory will
also require careful ordering of the graphical objects to reduce swapping overhead
incurred by reconfiguring the FPGA for different rendering operations.

A related project is developing a run-time circuit specialisation technique called
partial evaluation. This technique is based on performing constant propagation at run-
time, giving a systematic way to perform dynamic synthesis in a controlled fashion.

ich
roxi-
ment.
ion of
 ren-

etic)
lising
e will

f the
red a
ave
 the

an to
s to
I bus

rs on
f data
ce we
These techniques could be employed to improve the speed of certain circuits. In PDF
every co-ordinate within a document has to be multiplied by a matrix called the Cur-
rent Transformation Matrix (CTM). This CTM allows PDF to be device independent
and is essentially used to scale the co-ordinates to the correct resolution for the current
output device. During the processing of a page the values in the CTM remain constant
for long periods of time. It would therefore be beneficial to customise a generic matrix
multiplication circuit for the current CTM. This would require some analysis or pre-
diction on the number of calculations the CTM will remain unchanged for.

Many publishing applications have plug-in technology such as Photoshop, Ilus-
trator and many other products even CAD tools. The circuit to perform a given
function can be download to a general FPGA accelerator card allowing the same piece
of hardware to be used to accelerate as many functions as possible. Due to the partially
reconfigurable nature of the Xilinx XC6200 it may even be possible for more than one
application to have circuits processing on the FPGA at the same time.

7 Performance

Using a test document which contains 15,768 lines totalling 92,262 pixels at a resolu-
tion of 72dpi the speed of the FPGA line drawing circuit was analysed. We used
GSView32 from Russel Land of Aladdin running on a 150Mhz Pentium with 64Mb
of memory to estimate the time taken for a typical software based PostScript rasteriser.
This application takes approximately 5s to recalculate and display the image on screen
after it has been read from the file. The speed of GSView32 is dependant on many fac-
tors other than just the amount of data to be rendered which include overheads from
the poor performance of the graphical interface of the operating system. Using a
straight forward implementation of Bresenham’s line scan algorithm in C++ wh
simply renders the lines into a bitmap in memory it was measured to take app
mately 1.73seconds to render the 15,768 lines at 72dpi in the same test docu
Assuming that the same image is to be rendered using the FPGA at a resolut
1000dpi resulting in approximately 93262*(1000/72) = 1,295,305 pixels must be
dered. The circuit can render at 5,000,000 pixels per second (using 16-bit arithm
thus it takes 0.26s to render at 1000dpi. This speed could be improved by uti
some of the techniques mentioned earlier. The transfer of the data for each lin
also affect the total rendering time.

One of the severest limitations of our system is the very low performance o
PCI interface. Using one of the earlier VCC Hotworks boards, we have measu
transfer rate of just 0.7Mb/s, but the theoretical limit for PCI is 132Mb/s. VCC h
recently improved the interface, but the bandwidth is still far too low compared to
speed at which the FPGA circuits rasterise the final image. In the future, we pl
investigate using Intel’s Accelerated Graphics Port (AGP) [4] system allowing u
rapidly transfer the image over this dedicated bus (up to 533Mb/s), leaving the PC
for control signals.

We shall use the measured data transfer rate of 0.7Mb/s for writing to registe
the XC6200. There are 15768 lines in the image and each line requires 10 bytes o
- since we have a 32-bit bus this requires 3 transfers over the PCI bus per line sin

uting
 this
 that

 curve
need to communicate 12 bytes per line. This gives a total of 12*15768=189216 bytes
resulting in a transfer time of 0.25s to complete all data transfers. These two values
added together result in a total rendering time of approximately 0.51s, which is signif-
icantly faster than the software.

8 Accelerating Image Processing

PostScript rendering is just one of many desk top publishing functions that are suitable
for hardware based acceleration. We have also developed plug-ins for Adobe Pho-
toshop which use the same VCC XC6200 Hotworks board to accelerate image
processing operations like colour space conversion and image convolution (e.g. Gaus-
sian Blur). Some of these filters operate at around 20 million pixels per second on the
board, but as stated earlier the poor performance on the PCI interface on the card deliv-
ers a much poorer performance to the user. However, all the hardware filters that we
developed still ran several times faster than their software only versions.

9 Summary

In summary, we report that we are getting closer to our vision of a desk top publishing
studio exploiting dynamically reconfigurable technology for commercial advantage.
We have designed and implemented some of the most important circuits required for
PostScript rendering. We have developed the methodology of virtual hardware allow-
ing us to swap in circuits as required into the FPGA. We are developing a run-time
system to manage the FPGA board resources and to present a high level interface to
the application layer. And finally, we have investigated where in the Windows 95 and
NT architecture would be the best place to install the software that takes PostScript
and dispatches it to the FPGA for rendering.

The main barriers at the moment include the unsuitability of the VCC Hotworks
board for our applications. In the next stage of the project, we will move to a board
that either has a superior PCI interface, or one that has an alternative channel for com-
municating the image (e.g. AGP). We also need far more image memory on the card,
which might require us to move to DRAM instead of continuing with SRAM based
cards. The TSI-TeleSys cards are a likely system for us to investigate. They would
allow us to cache enough circuits on the board to accelerate swapping virtual circuits.
They also have a faster PCI interface (although we have not tested this board
ourselves).

In the recent IEEE Computer article Seeking Solutions in Configurable Comput-
ing [2] it was reported that ‘no companies are known to use reconfigurable comp
for a competitive advantage.’ We believe that this project will eventually address
problem by providing a low cost alternative to expensive software and hardware
is required for rasterising PostScript.

The authors acknowledge the assistance of Dr. John Patterson with Bézier
rendering. This work is supported by a grant from the UK’s EPSRC.

n,
lem,

EE
References

1. Adobe Systems. Adobe PostScript Extreme White Paper. Adobe System Inc.
1997

2. Adobe Systems. Adobe PrintGear Technology Backgrounder. Adobe Systems
Inc. 1997

3. William H. Mangione-Smith, Brad Hutchings, David Andrews, André DeHo
Carl Ebeling, Reiner Hartenstein, Oskar Mencer, John Morris, Kirshna Pa
Viktor K. Prasanna, Henk A. E. Spaanenburg. Seeking Solutions in Configurable
Computing. IEEE Computer, December, Vol. 30, No. 12. December 1997.

4. Intel. Accelerated Graphics Port Interface Specification Revision 2.0. December
11, 1997.

5. M. Sheeran, G. Jones. Circuit Design in Ruby. Formal Methods for VLSI De-
sign, J. Stanstrup, North Holland, 1992.

6. Satnam Singh and Pierre Bellec. Virtual Hardware for Graphics Applications
using FPGAs. FCCM’94. IEEE Computer Society, 1994.

7. Satnam Singh. Architectural Descriptions for FPGA Circuits. FCCM’95. IE
Computer Society. 1995.

8. J.D. Foley, A. Van Dam. Computer Graphics: Principles and Practice. Addison
Wesley. 1997.

9. Xilinx. XC6200 FPGA Family Data Sheet. Xilinx Inc. 1995.

	Accelerating DTP with Reconfigurable Computing Engines
	Donald Macvicar1 and Satnam Singh2
	1 Dept. Computing Science, The University of Glasgow, G12 8QQ, U.K.
	donald@dcs.gla.ac.uk
	2 Xilinx Inc., San Jose, California 95124-3450, U.S.A.
	Satnam.Singh@xilinx.com
	Abstract. This paper describes the context in which a reconfigurable computing engine can be used...
	1 Introduction
	2 Desk Top Publishing
	2.1 Document Creation and Preparation
	2.2 Print Technology

	3 FPGA Technology
	Figure 1 FPGA-PS System.

	4 Case Studies
	4.1 Line Rendering Circuit.
	Figure 2 Scan Converting Straight Lines.
	Figure 3 Line Scan Circuit Block Diagram
	Figure 4 Line Rendering Circuit.

	4.2 Circle Rendering Circuit
	Figure 5 Circle Rendering Circuit Block Diagram.

	4.3 Bézier Curves.
	Figure 6 Bézier Curve and Control Points
	Figure 7 Splitting a Bézier Curve.
	Figure 8 Block Diagram of Bézier Dividing Circuit.

	5 Board Issues
	6 Software Issues
	Figure 9 Window NT Printing Architecture.

	7 Performance
	8 Accelerating Image Processing
	9 Summary
	References
	1. Adobe Systems. Adobe PostScript Extreme White Paper. Adobe System Inc. 1997
	2. Adobe Systems. Adobe PrintGear Technology Backgrounder. Adobe Systems Inc. 1997
	3. William H. Mangione-Smith, Brad Hutchings, David Andrews, André DeHon, Carl Ebeling, Reiner Ha...
	4. Intel. Accelerated Graphics Port Interface Specification Revision 2.0. December 11, 1997.
	5. M. Sheeran, G. Jones. Circuit Design in Ruby. Formal Methods for VLSI Design, J. Stanstrup, No...
	6. Satnam Singh and Pierre Bellec. Virtual Hardware for Graphics Applications using FPGAs. FCCM’9...
	7. Satnam Singh. Architectural Descriptions for FPGA Circuits. FCCM’95. IEEE Computer Society. 1995.
	8. J.D. Foley, A. Van Dam. Computer Graphics: Principles and Practice. Addison Wesley. 1997.
	9. Xilinx. XC6200 FPGA Family Data Sheet. Xilinx Inc. 1995.

