
®

December 1994 Application Note BY KEN CHAPMAN

© 1994 Xilinx, Inc. All rights reserved. PRELIMINARY—SUBJECT TO CHANGE Version 0.30

Dynamic Microcontroller in an
XC4000 FPGA

Summary

This Application Note describes how to build a microcontroller with dynamic bus size for implementing complex state
machines and processing functions either as part of a system, or for use during development and test.

Xilinx Family

XC4000 and derivatives

Demonstrates

X-BLOX™ module generator

Using RAM and PROM

Table of Contents
Features 1

Overview 1

Demand for a Compact Architecture 2

Exploiting FPGA Features 2

Practical Aspects of Implementation 2

Instructions and Encoding 3

Programming Example 5

Size and Performance 6

PSMBLE Assembler for PSM 7

How to Write a Program for PSM 8

Interesting Ideas and Examples 9

Conclusions 10

Using the PSM Design Files 10

Features
Dynamic bus width — 1 to n bits

16 Data Registers

16 I/O Ports

Flexible instruction set

• Add and Subtract
• Logical OR, AND, and XOR
• Load, In, Out

• Jump group, shift and rotate sets

Program ROM — Dynamic depth from 16 to 256
instructions

Typically >3 MIPS performance

Unique architecture for highly compact design in
XC4000 device

Overview
Microcontrollers are common in many digital systems.
The relatively low cost of these complex devices
makes them ideal for certain applications. The deci-
sion to include a microcontroller in a design is often
very clear because it transforms the design effort from
a logic design into more of a software design.

Xilinx FPGA devices offer similar flexibility for all the
other logic functions required in such systems. These
would include special high performance circuits, or sig-
nal conditioning for the microcontroller.

With the ever increasing size and reductions in cost of
FPGA devices, it is now possible to implement a com-
plete system on one device. The microcontroller and
associated software can be replaced by a complex
state machine dedicated to the function. However,
such state machines are often difficult to develop.
Consequently, a microcontroller usually remains a dis-
crete device, unless board space is at a premium.

A microcontroller is often used for diagnostics and test
functions in a system. Small programs are easy to
write, and very flexible.

This application note offers an alternative to discrete
microcontrollers by providing a microcontroller macro
for an XC4000. This microcontroller macro may be
used for board test and diagnostics, regardless of the
function the device will perform after reprogramming. It
is also useful in systems where the control logic is too
complex for hardware logic, but almost too simple for
software. Some applications requiring high security
such as data encryptors may also incorporate this
macro.

The macro, named 'PSM', is a programmable state
machine. The macro’s name conveys its potential use.
Although full featured, the macro is limited by the
amount of FPGA device that the designer is willing to
convert to program ROM.

A good efficient instruction set and the ability to avoid
the constraints of a fixed bus width make programs

Dynamic Microcontroller in an XC4000 FPGA

PRELIMINARY 2

compact. During diagnostics and test, the entire de-
vice is available to the user for this function, and the
size of the program ROM is not an issue. In a system
application, the code complexity is the deciding factor.

Demand for a Compact Archite cture
When developing the PSM macro, silicon efficiency
was the primary focus. High performance circuits will
always be implemented as dedicated circuits. Hence,
all design decisions for this macro favor optimizations
for minimum area (low CLB count), with processing
speed a second priority.

The major design task was to define the functionality of
the microcontroller. This is defined by:

The bus width

The instruction set

Each affects silicon efficiency in two ways—the size of
the processing core, and the size of the program (and
the corresponding program ROM) to carry out the se-
quence of operations.

The data bus determines the width of all data paths
and processing elements such as the ALU and data
registers. However, a suitably wide data bus simplifies
the program code. For example, the addition of two
16-bit values is only one instruction in a 16-bit micro-
processor, but is two instructions in an 8-bit version.
Clearly this decision also effects the overall system
performance.

The complexity and the range of available instructions
impacts the amount of logic required for the data paths
and processing elements. Too small a range of in-
structions—or the inability to manipulate data effec-
tively—results in long programs, with poor system
performance, that require large program ROMs. Suit-
able instructions lead to efficient programs.

Consequently, the ability to choose the precise data

bus width required for a system, and the availability of
a highly efficient set of instructions result in a usable
microcontroller macro.

Exploiting FPGA Features
This microcontroller design exploits various XC4000
FPGA features including:

Arithmetic carry logic — ALU Add and Subtract
functions, program counter

ROM — Program memory

RAM — Data registers

These features, and the ultimate flexibility of an FPGA,
offer some significant advantages.

Traditional microprocessors and microcontrollers hold
their program code in standard EPROMs. This ap-
proach results in variable length instructions and the
added complexity of op-code and operand fetch cycles.
Furthermore, the data bus is a shared resource for the
manipulation of program code and the processing of
data.

The FPGA architecture permits the program code and
the data bus to be separated. This allows the data bus
to be a different width from that required for the in-
struction codes. In fact, it permits the data bus to be
the width most suitable for the application. Further-
more, the FPGA can implement any width of ROM to
accommodate the program instructions. Having a
ROM wider than the normal eight bits enables the in-
struction and operands to be defined in a single access
for compact and fast system performance.

Practical Aspects of Implementation
The instruction set and its encoding provides the key to
the processor architecture. However, a few basic de-
cisions must be made.

Constant ROM

Data Registers
Input Ports

ALU

Output Ports

Jump Vector
ROM

Program
ROM

Program
Counter Control

Flags

Instruction BusAddress BusJump Bus

Dynamic Data Busses

Figure 1. Dynamic microcontroller architecture.

3 SUBJECT TO CHANGE

X-BLOX™ provides a design entry method where the
data path bus widths can be changed, and for the cor-
responding synthesized logic. X-BLOX is the preferred
method for the design of this macro.

The XC4000 CLB RAM feature provides the ideal solu-
tion for building the data registers in the microcontrol-
ler. This makes the 16 registers extremely space effi-
cient because a CLB contains two 16x1 RAMs.

Many processors include an accumulator in their
structure. This has the advantage of implied instruc-
tions, which remove the need for two operands per in-
struction. Unfortunately it also results in a high per-
centage of instructions which simply move values into
and out of the accumulator. It is important to keep the
program code small in an FPGA, and hence all opera-
tions directly access the registers.

Program code is efficient when all the bits of the en-
coded instructions and operands are used. The ability
to express the instruction and all the operands in a
single access also leads to simple control circuits for
the processor. All instructions are limited to a single
access by making the program ROM the necessary
width—knowing that there is a space advantage of
shallow-but-wide ROMs over deep-but-narrow ROMs in
the XC4000 FPGA.

Instructions and Encoding
Some factors are already determined by the previously
stated architectural decisions. Others are defined by
the actual functionality. Four main instruction types
emerge for data processing, and one for program flow
control, considering the number of registers and the
access required by each instruction. These instruction
types are shown in Table 1.

In most cases, a resultant value needs to be stored.
Although it is possible to specify a third location, the
additional operand information adds too much extra
logic. Hence, the result will generally be placed back
into Register A.

With 16 registers to access, four bits of encoded in-
struction are need to specify each register access. A
total of eight bits are therefore dedicated to operand
specification in a Type 1 instruction.

Table 1. Function Types
Type Function

Type 1 Function of Register A with
Register B

Type 2 Function of Register A with a
constant value

Type 3 Function of Register A with I/O
port access

Type 4 Data manipulation of Register A
Type 5 Program flow control and

flag testing

For Type 3 instructions, Register A is again specified
by four bits. Another easy architectural decision is the
number of I/O ports. Sixteen ports can be specified by
the same four bits used to access register B in a Type
1 instruction.

The specified constant in Type 2 instructions is a
problem. Constants relate to the data processing, and
hence are as wide as the data bus. Normally a fetch
cycle is used to access the next memory location for
the bits required to define the constant. In this macro,
where dynamic bus width is desirable, a fetch cycle
would place an upper limit on the bus width, and waste
memory bits for smaller bus sizes.

The solution is to permit 16 pointers (defined by four
bits) to a ROM. This ROM holds up to 16 constants of
the same width as the data bus. A program therefore
consists of:

A main instruction memory of fixed width, and

A separate constant memory of data bus width.

All Type 1, 2 and 3 instruction operands are therefore
defined by only eight bits.

The actual operations need to be encoded. The bits
required to encode the operations are directly related to
the number of instructions. Too few instructions result
in long programs, and too many result in an overly-
large processor.

A minimum instruction set provides the largest number
of functions with the least amount of instruction over-
lap—e.g. comparison can be done with a subtract in-
struction. This instruction set is organized into the fol-
lowing instruction types:

Figure 2. Defining the address bus range on the PSM macro symbol.

Dynamic Microcontroller in an XC4000 FPGA

PRELIMINARY 4

Type 1—Load, Add, Subtract, AND, OR, XOR
Type 2—Load, Add, Subtract, AND, OR, XOR
Type 3—Input, Output
Type 4—Shift group, Rotate group
Type 5—Jump group

This results in 17 basic instructions, although those of
Type 4 and 5 require several variations. It would ap-
pear that five bits are required to encode the full range
of instructions. However the encoding of Type 4 and 5
instructions can use some of the eight operand bits
from the other instruction types which allows just four
bits to encode the operation.

Type 4 instructions only require access to one register.
The remaining four operand bits are available to define
the shift or rotate process required. Shift and rotate
are then encoded by one instruction code reducing the
basic instruction count to 16. Instructions can now be
represented by a total of 12 bits.

The remaining challenge is to implement the Type 5
instruction within the same 12 bits. The four bits of the
operation code already define this as a jump instruc-
tion, leaving the eight operand bits.

It is possible to use eight bits to specify a relative jump
of -128 to +127. This is sufficient for small programs,
but would not leave any bits to encode the condition for
the jump. Reducing the number of bits allocated to
relative addressing would be very limiting. Absolute
addressing presents the same problem as defining a
constant did for Type 3 instructions. However the same
solution is applicable, and hence four bits are used as
a pointer to a small memory containing up to 16 jump
vectors. The jump memory need only be wide enough
to support the size of the program.

The testing of flags defines the remaining four bits on a
Type 5 instruction. ZERO and CARRY flags provide
suitable flow control to the user.

The actual encoding of all instructions keeps the logic
to a minimum. Controlling the data flow and process-
ing directly with the status of bits reduces size and in-
creases performance. The complete instruction encod-
ing follows.

Instruction Quick Reference
function code(hex) function code(hex)
ADD sx,sy Dxy SR0 sx 6xE
ADD sx,c 5xc SR1 sx 6xF
SUB sx,sy Cxy SRX sx 6xA
SUB sx,c 4xc SRA sx 6x8
OR sx,sy 8xy RR sx 6xC
OR sx,c 0xc SL0 sx 6x6
AND sx,sy 9xy SL1 sx 6x7
AND sx,c 1xc SLX sx 6x4
XOR sx,sy Axy SLA sx 6x0
XOR sx,c 2xc RL sx 6x2
LD sx,sy Bxy JP j 70j
LD sx,c 3xc JP Z,j 73j
 JP C,j 7Cj
IN sx,p Exp JP NZ,j 72j
OUT sx,p Fxp JP NC,j 78j
 JP GT,j 7Aj
 JP LT,j 7Bj

Type 1 and 2 instructions — Arithmetic and Load
Functions
1 1 CODE
Op_code | 1 0 9 8 | 7 6 5 4 | 3 2 1 0 |
------- ------------------------------------
ADD sx,sy 1 1 0 1 x x x x y y y y
SUB sx,sy 1 1 0 0 x x x x y y y y
OR sx,sy 1 0 0 0 x x x x y y y y
AND sx,sy 1 0 0 1 x x x x y y y y
XOR sx,sy 1 0 1 0 x x x x y y y y
LD sx,sy 1 0 1 1 x x x x y y y y
ADD sx,c 0 1 0 1 x x x x c c c c
SUB sx,c 0 1 0 0 x x x x c c c c
OR sx,c 0 0 0 0 x x x x c c c c
AND sx,c 0 0 0 1 x x x x c c c c
XOR sx,c 0 0 1 0 x x x x c c c c
LD sx,c 0 0 1 1 x x x x c c c c
 | | | |
 | | | | Select operation
 | | | | ----------------
 | | | |__ 1 - Add
 | | | | 0 - Subtract
 | | | |__ 0 0 - OR
 | | |____}-----------> 0 1 - AND
 | | 1 0 - XOR
 | | 1 1 - LOAD
 | |
 | |______ 0 - Logical or load operation
 | 1 - Arithmetic operation
 |
 |________ 0 - 'sx' and constant
 1 - 'sx' and 'sy'

Notes:

‘c' is a 4 bit pointer (cccc) to a constant table.

'sx' is any one of 16 registers represented by 4 bits
(xxxx).

'sy' is any one of 16 registers represented by 4 bits
(yyyy).

The result of operation is placed into 'sx'.

All commands effect ZERO and CARRY flags ex-
cept LOAD.

ADD and SUB commands will include the value of
the carry flag in the calculation.

Type 3 Instructions — Ports
1 1 CODE
Op_code | 1 0 9 8 | 7 6 5 4 | 3 2 1 0 |
------- ------------------------------------
IN sx,p 1 1 1 0 x x x x p p p p
OUT sx,p 1 1 1 1 x x x x p p p p

Notes:

'sx' is any one of 16 registers represented by 4 bits
(xxxx).

'p' is a 4 bit port address (pppp).

flags : no effect.

5 SUBJECT TO CHANGE

Type 4 Instructions — Shift and Rotate group
1 1 CODE
Op_code | 1 0 9 8 | 7 6 5 4 | 3 2 1 0 |
------- ------------------------------------
SR0 sx 0 1 1 0 x x x x 1 1 1 0
SR1 sx 0 1 1 0 x x x x 1 1 1 1
SRX sx 0 1 1 0 x x x x 1 0 1 X
SRA sx 0 1 1 0 x x x x 1 0 0 X
RR sx 0 1 1 0 x x x x 1 1 0 X
SL0 sx 0 1 1 0 x x x x 0 1 1 0
SL1 sx 0 1 1 0 x x x x 0 1 1 1
SLX sx 0 1 1 0 x x x x 0 1 0 X
SLA sx 0 1 1 0 x x x x 0 0 0 X
RL sx 0 1 1 0 x x x x 0 0 1 X
 | | | |
 direction 0 - left ___| | | |
 1 - right | | |
 | | |
 select bit to move in | | |
 | | |
 0 0 - carry flag | | |
 0 1 - msb _____| | |
 1 0 - LSB _______| |
 1 1 - Forced value |
 |
 Forced value of bit to shift in_______|

Notes :

'sx' is any one of 16 registers represented by 4 bits
(xxxx).

ZERO and CARRY flags may be effected.
Functions:

• SR0 — shift right zero, forcing 0 into MSB, carry
takes value from LSB.

• SR1 — shift right one, forcing 1 into MSB, carry
takes value from LSB.

• SRX — shift right extended, MSB copied into
MSB, carry takes value from LSB.

• SRA — shift right arithmetic, carry moved into
MSB, carry takes value from LSB.

• RR — rotate right, LSB moved into MSB, carry
takes value from LSB.

• SL0 — shift left zero, forcing 0 into LSB, carry
takes value from MSB.

• SL1 — shift left one, forcing 1 into LSB, carry
takes value from MSB.

• SLX — shift left extended, LSB copied into LSB,
carry takes value from MSB.

• SLA — shift left arithmetic, carry moved into
LSB, carry takes value from MSB.

• RL — rotate left, MSB moved into LSB, carry
takes value from MSB.

Type 5 Instructions —- Jump group
1 1 CODE
Op_code | 1 0 9 8 | 7 6 5 4 | 3 2 1 0 |
------- ------------------------------------

JP j 0 1 1 1 0 X 0 X j j j j
JP Z,j 0 1 1 1 0 X 1 1 j j j j
JP C,j 0 1 1 1 1 1 0 X j j j j
JP NZ,j 0 1 1 1 0 X 1 0 j j j j
JP NC,j 0 1 1 1 1 0 0 X j j j j
JP GT,j 0 1 1 1 1 0 1 0 j j j j
JP LT,j 0 1 1 1 1 0 1 1 j j j j
 | | | |
 | | | |_zero flag status
 | | |_look at zero flag
 | |_carry flag status
 |_look at carry flag

Notes:

'j' is a 4 bit pointer (jjjj) to a jump vector table.

Conditional jumps -

• Z — Jump if ZERO flag set

• NZ — Jump if NOT ZERO

• C — Jump if CARRY flag set

• NC — Jump if NO CARRY

• GT — Jump if GREATER THAN

• LT — Jump if LESS THAN

• GT and LT apply after a 'SUB sx, ? ' such that
the test is applied to 'sx'. i.e. sx < ?

flags : no effect.

Programming Example
The following is an example of a program written to
multiply two 4-bit numbers and provide an 8-bit result.
Based on the resulting 8-bit product, it is more efficient
to implement an 8-bit data bus. The schematic design
for this function is shown in Figure 6 on page 12. The
design is intended for the XC4000 demonstration board
(containing a single 84-pin PLCC socket for an
XC4003PC84C or XC4005PC84C device).

;
;Program for 4 bit Multiply on Demo Board
;
START: LD s3,04 ;4 bits to multiply

XOR s2,s2 ;clear s2
IN s0,0 ;read switches
LD s1,s0 ;
AND s1,F0 ;isolate high nibble

LOOP: SR0 s0 ;test bit of low nibble
JP NC,NO_ADD ;bit was zero
OR s1,s1 ;clear carry flag
ADD s2,s1 ;accumulate result

NO_ADD: SRA s2 ;shift result
SUB s3,01 ;
JP NZ,LOOP ;test if all 4 bits used
OUT s2,1 ;display output
JP START ;repeat

Figure 3. Multiply program written in PSMBLE.

The macro connects to the rest of the circuit in such a
way that port connections define the data bus width to
be synthesized by X-BLOX. The program address

Dynamic Microcontroller in an XC4000 FPGA

PRELIMINARY 6

range must be set by attaching a BUS_DEF symbol to
the PROG_ADDR_RANGE bus input on the macro and
adjusting the 'BOUNDS=' parameter on the BUS_DEF
symbol as shown in Figure 2. This parameter may be
adjusted later if the program turns out to be smaller or
larger than expected.

The design is then processed using the XACT™ 5.0
FPGA development system. The results is three ROM
template files for the user’s program code.

PROGRAM.MEM contains the main instructions.

CONSTANT.MEM defines any data constants re-
quired.

JUMP.MEM contains the vectors for any jump in-
structions.

The names of these files may be changed by re-
defining the ‘FILE=‘ attribute on the X-BLOX PROM
symbols within the macro. The internal details of the
PSM macro, including the X-BLOX data paths and
ROMs, are shown in Figure 7 and Figure 8.

An assembler, called 'PSMBLE', is written in QBASIC
and is included with the demonstration designs (see
PSMBLE Assembler for PSM for details on using it).
The program generates the required three data files
from assembly code, simplifying the task of creating
the constant pointers and jump vectors.

When the MEM files are ready, the XACT tools are
used again to process the design including the ROM
data definitions.

Size and Performance
Both size and performance of a dynamic macro are
difficult to evaluate, but here are some guidelines.

The control logic is very simple because of the instruc-

tion encoding. In fact only about ten CLBs carry out
the instruction decoding and implement the control
state machine. Although the absolute performance
depends on the maximum clock frequency, the state
machine dictates the number of clock cycles (t-states)
required to perform each instruction:

All instructions excluding JUMP group require six
cycles.

JUMP group (condition true or false) require one
cycle.

The size of the program counter and JUMP ROM de-
pend on the size of the program in the PROGRAM
ROM. However, at one CLB per address bit, no more
than eight CLBs are ever used for these combined
elements.

The instruction format minimizes the size of programs,
and hence the size of the PROGRAM ROM. The ROM
has a fixed width of 12 bits, but the depth is defined by
the PROG_ADDR_RANGE on the PSM macro.

The ROMs are built from function generators in the
XC4000 CLBs. Fundamentally, 16 or 32 addressable
locations are available. Larger memories are formed
by combining CLBs. When the PSM macro is only a
portion of the overall design, the user will want to keep
the program relatively short in order to minimize the
number of CLBs used for program storage. However,
when the whole device is turned into a microcontroller
for test purposes, then all CLBs are available to hold
much longer and possibly less efficient programs.

The values shown in Table 2 indicate the number of
CLBs required for programs of a given depth.

It is possible to adjust the DEPTH value in the
PROGRAM.MEM file to further minimize the number of
CLBs. For example, if only 135 program instructions
are required, then setting DEPTH=135 reduces the

Compiler Report for program 'mult4.psm'.

addr code label instruction cross-ref comment

 00 ;
 00 ;Program for 4 bit Multiply on Demo
 00 ;
 00 330 START: LD s3,0 ;0 -> '04'
 01 A22 XOR s2,s2
 02 E00 IN s0,0
 03 B10 LD s1,s0
 04 111 AND s1,1 ;1 -> 'F0'
 05 60E LOOP: SR0 s0
 06 780 JP NC,0 ;0 -> 'NO_ADD'
 07 811 OR s1,s1
 08 D21 ADD s2,s1
 09 628 NO_ADD: SRA s2
 0A 432 SUB s3,2 ;2 -> '01'
 0B 721 JP NZ,1 ;1 -> 'LOOP'
 0C F21 OUT s2,1
 0D 702 JP 2 ;2 -> 'START'

Figure 4. Compiler report from PSMBLE showing jump vector and constant pointer assignments.

7 SUBJECT TO CHANGE

number of CLBs from 126 to only 73 CLBs—even
though address bus is still 7:0.

The dynamic data paths have the largest effect on size
and performance. The design maps very well into the
architecture using no more than five CLBs per bit, in-
cluding the constant ROM and the RAM based regis-
ters.

Table 2. Design Size as a Function of
Address Range.

Program
Size

Program
Address
Range

CLB count

16 3:0 6
32 4:0 12
64 5:0 30
128 6:0 60
256 7:0 126

Performance of this macro was a secondary consid-
eration. The primary focus was on minimum CLB
count. However, preliminary results indicate that the
combined effect of instruction encoding, pipelined de-
sign, and X-BLOX implementation produces two to
three times the performance of a typical 8-bit microcon-
troller.

The macro operates at up to 23 MHz in an XC4000-5
device. In most designs, however, the clock frequency
is much lower. Under typical test applications, per-
formance is usually of little consideration. In these
applications, the macro can be clocked with the internal
8 MHz (nominal) clock source.

PSMBLE Assembler for PSM
This section describes the PSMBLE assembler for the
PSM macro described earlier.

PSMBLE.BAS is written for QBASIC on the PC, and is
supplied in original uncompiled format to allow modifi-
cations by the user. This provides a way to comple-
ment any changes made to the standard PSM macro.

Though careful effort makes this program easy to use,
it has not received any official quality testing. Please
help to improve this program by reporting any problems
encountered.

What does it do?

The program can be executed from within QBASIC, or
by invoking QBASIC with

 qbasic /run psmble

Syntax table

[] means optional
[...] means option may be repeated
{ a | b } means that one of the enclosed must be specified
[a-z] means in the range specified.
::= means 'is defined by'.

note : upper and lower case are always acceptable

each line should take the format:-

 program_line ::= [label :] [instruction] [; comment]

where

 label = lab_char [lab_char...]

 lab_char = { [A-Z] | [0-9] | _ }

 instruction = { arith | logical | port | shift | jump }

 arith = { ADD | SUB } reg_spec , second_operand

 logical = { OR | AND | XOR | LD } reg_spec , second_operand

 port = { IN | OUT } reg_spec , hex_char

 shift = { SR0 | SR1 | SRX | SRA | RR | SL0 | SL1 | SLX | SLA | RL } reg_spec

 reg_spec = S hex_char

 jump = JP [{ C | NC | Z | NZ | GT | LT } ,] label

 second_op = { reg_spec | constant }

 constant = hex_char [hex_char...]

 hex_char = { [0-9] | [A-F] }

 comment = [any characters]

Figure 5. Syntax table.

Dynamic Microcontroller in an XC4000 FPGA

PRELIMINARY 8

The program asks for the name of your assembly code
file, and then processes it.

It takes only a few seconds to carry out the single pass
process, followed by another few seconds resolving the
jump addresses.

PSM requires that constants and jump addresses be
separated from the main program code. It also en-
sures that no more than a maximum of 16 different
constants or jump vectors are specified.

The program produces three files called:

program.dat

constant.dat

jump.dat

These files contain the data needed for the correspond-
ing MEM files used by X-BLOX in the macro sche-
matic. It is a simple task to paste this data into each
MEM file following the word 'DATA', and recompile the
design.

Helpful Files

During the assembly process, PSMBLE creates sev-
eral files to aid program development, debugging and
verification:

compile.log

A complete listing of the compiled program with ad-
dress and instruction codes. This file is a complete
reconstruction of the original file, and consequently can
be used to verify the assembly process.

constant.tab

Lists all the constants specified in the program against
the pointer value (0 to F hex) to which they have been
assigned.

jump.tab

Lists all the labels used in JUMP instructions against
the vector number (0 to F hex) to which they have
been assigned.

label.tab

Lists every label specified and its address. The pro-
gram has a limit of 100 labels, but only 16 can actually
be referenced in jump instructions.

jumpaddr.tab

Lists how the jump vectors and labels are resolved to
form addresses used in the jump.mem file.

format.prg

This file is a formatted copy of the original program and
may be adopted as a replacement for the original
source file. It also acts as a verification of how
PSMBLE interpreted the assembly program.

How to Write a Program for PSM
All the instructions are described in detail earlier in the
application note. Complete syntax tables are provided
in Figure 5.

List of Instructions

In this list of all instructions, '2B7' is used as a con-
stant, 'ken' is used as a label, and '5' is used as a port
number.
Arithmetic Shift and Rotate
 ---------- ----------------

 ADD s1,s2 SR0 s1
 ADD s1,2B7 SR1 s1
 SUB s1,s2 SRX s1
 SUB s1,2B7 SRA s1
 RR s1
 Logical SL0 s1
 ------- SL1 s1
 SLX s1
 OR s1,s2 SLA s1
 OR s1,2B7 RL s1
 AND s1,s2
 AND s1,2B7 Jump
 XOR s1,s2 ----
 XOR s1,2B7
 LD s1,s2 JP ken
 LD s1,2B7 JP Z,ken
 JP C,ken
 Port JP NZ,ken
 ---- JP NC,ken
 JP GT,ken
 IN s1,5 JP LT,ken
 OUT s1,5

Case sensitivity

Upper and lower cases are accepted. The assembler
converts all characters to upper case.

Tabs and Spaces

Tabs and spaces can be used freely to format the pro-
gram. They are removed during processing.

Constants

Constants are interpreted in hexadecimal only, and
hence only characters 0-9 and A-F are valid. The
designer must ensure that the data bus width setting
for the PSM macro is large enough to support the
constants specified in the assembly program.

Registers

The use of a register in an instruction is indicated by
the letter 's' before the single hexadecimal character 0
to F representing which of the 16 registers is to be
used. Most instructions expect the first operand to be a
register, but the second operand is assumed to be a
constant if 's' is not used.

Labels

Labels can use any alpha-numeric combination.
Spaces are removed, but the underscore ('_') character
can be used as a separator. There is no fundamental

9 SUBJECT TO CHANGE

limit to the length of labels, but labels longer than 15
characters make the compile.log file untidy.

Jumps

Jumps must be performed using labels. For each label
used in a jump instruction, a corresponding label must
appear in the program.

Comments

Any characters specified after a semicolon (';') until the
end of the line are assumed to be a comment and are
ignored. Comments are retained in the compile.log
file. Any character can be used in a comment, but
control characters inserted by some text editors may
give unexpected results.

Interesting Ideas and Examples
Following are a few ideas that may help in the use of
PSM and this assembler. If you have any more ideas,
please send them in.

Labels do not have to be on the same line as an
instruction

As seen in the earlier example, labels do not have to
be on the same line as an instruction. By placing them
on a line with a comment introducing a procedure, pro-
grams become very readable.

Example:
mult_by_8 : ;multiply the value in S3 by 8
 SL0 s3
 SL0 s3
 SL0 s3

which seems to make much more sense than
mult_by_8 : SL0 s3 ;multiply the value in S3 by 8
 SL0 s3 ;using a shift to multiply by 2
 SL0 s3 ;three times.

Avoid multiple labels at one address

Multiple labels can be defined to a single address loca-
tion. Although PSMBLE can process them, referencing
different labels in jump instructions causes unneces-
sary jump pointers to be assigned. A review of the
jumpaddr.tab indicates duplicate addresses.

Take care of Carry flag

ADD, SUB, SRA and SLA all use the carry flag during
data processing. If you do not wish the carry flag to
have an effect, there are several options:

1. Shift instructions are very flexible, and where pos-
sible, you should force a '1' or '0' into the register
instead of the carry flag. For example, use 'SL0
s4' instead of 'SLA s4' if you definitely want to
force a zero into the LSB.

2. Perform any logical function (AND, OR, XOR) be-
fore the carry flag operation. All logical functions
have the effect of clearing the carry flag; hence by

ordering instructions carefully, the desired effect is
achieved without wasting instructions.

3. The carry flag can be cleared by using a logical OR
of any register with itself. This step preserves data,
but may also affects the zero flag, which may or
may not be useful. For example, 'OR s4,s4'
clears the carry flag.

Obtaining more constants

If your program uses more than 16 constants, there are
several tricks to obtain more.

First, avoid using zero, ‘0’, as a constant by clearing
any register with the XOR instruction. For example, to
effectively load register s2 with zero, execute:

XOR s2,s2

It may also be possible to form the constant you need
from those you already have and hold it in an unused
register. Look at various kinds of instructions to make
the value required. The following are some examples
of values created from the constants 3 and 5:

Assume

LD s3,3
LD s5,5

then the following operations creates these new values

XOR s3,s3 -> 0
AND s5,s3 -> 1
SUB s5,s3 -> 2
SL0 s3 -> 6
OR s5,s3 -> 7
ADD s5,s3 -> 8
SL0 s5 -> A
SL1 s5 -> B

Finally, use any unused input ports to read an external
ROM containing further constants the same way as the
internal constant ROM.

PSM does not support a CALL and RETURN sy s-
tem

A manual approach to call and returns functions is
possible, but it adds instructions to a program. Decide
whether duplicating the subroutine in straight code is
smaller than the effect of making the subroutine call.

The suggested method only requires four instructions
per call, but also uses up some jump vectors. Re-
member, the PSM only permits 16 jump vectors in to-
tal.

The concept is to load a register before making the
'call' such that the return can be made logically.
Sometimes unique data passed to the sub-routine can
also be used to indicate the point of return.

Dynamic Microcontroller in an XC4000 FPGA

PRELIMINARY 10

Example:
call_from_A: LD sF, 01 ;return flag

JP sub_routine
return_to_A: ;continue the program

call_from_B: LD sF, 02 ;return flag
JP sub_routine
return_to_B: ;continue the program

call_from_C: LD sF, 03 ;return flag
JP sub_routine

return_to_C: ;continue the program
sub_routine: ;instructions to perform sub routine

SUB SF,01
JP Z, return_to_A
SUB SF,01
JP Z, return_to_B
JP Z, return_to_C

External hardware interacting with PSM

PSM is an imbedded micro-controller, and all the sig-
nals are available to be connected to other logic. This
means that other 'external' processes can be triggered
by the PSM instructions without actually using 'IN' and
'OUT' instructions.

Example:

A program is assembled and a particular process is
only activated by a jump to address 34. Clearly, this
address will then appear on the 'CURRENT_ADDR'
bus. Other hardware can be controlled to operate or
stop by decoding Address 34 on ‘CURRENT_ADDR’.
This technique reduces the number of instructions re-
quired and improves performance.

Conclusions
This application note introduces a novel microproces-
sor macro which can be used in two obvious ways:

As an imbedded processor in a complex design.

To convert an FPGA into a microcontroller during
production test or field diagnostics.

This application note also demonstrates ways to exploit
the architectural features of an XC4000 FPGA. X-
BLOX synthesis provides a logical schematic and a
simple method of accessing the density and perform-
ance of the device.

Finally, Xilinx FPGAs offer total flexibility. This macro
may provide a basis for your own custom processor
design. The instructions can be adapted to meet your
unique system requirements.

Using the PSM Design Files
This design is available on the Programmable Logic
Breakthrough ‘95 CD-ROM. This section describes
what software is required to run the design and the
steps involved. Also, please read through the Limita-
tions and Restrictions section.

Software Requirements

The following software is required to process this de-
sign:

VIEWdraw or VIEWdraw-LCA schematic editor.
This software is required in order to make modifica-
tions to the schematics.

Xilinx XACT 5.0 FPGA development system, includ-
ing the PPR place and route program and the X-
BLOX module generator.

The QBASIC BASIC interpreter, available with MS-
DOS, is required to run the PSMBLE assembler.

Using the Design on Your System

1. Create a new directory called PSM on your hard
disk.

2. Copy the files and sub-directories from the
/MISCAPPS/MICROCNT/DESIGNS directory on
the Programmable Logic Breakthrough ‘95 CD-
ROM into your PSM directory.

3. Edit the VIEWDRAW.INI file. Make sure that the
VIEWlogic® design library pointers are set appro-
priately for your machine. You will find the library
pointers near the end of the file.

Limitations and Restrictions

WARNING: THIS IS AN UNTESTED DESIGN.

Xilinx, Inc. does not make any representation or war-
ranty regarding this design or any item based on this
design. Xilinx disclaims all express and implied war-
ranties, including but not limited to the implied fitness of
this design for a particular purpose and freedom from
infringement. Without limiting the generality of the
foregoing, Xilinx does not make any warranty of any
kind that any item developed based on this design, or
any portion of it, will not infringe any copyright, patent,
trade secret or other intellectual property right of any
person or entity in any country. It is the responsibility
of the user to seek licenses for such intellectual prop-
erty rights were applicable. Xilinx shall not be liable for
any damages arising out of or in connection with the
use of the design including liability for lost profit, busi-
ness interruption, or any other damages whatsoever.

Design Support and Feedback

This application note may undergo future revisions and
additions. If you would like to be updated with new
versions of this application note, or if you have ques-
tions, comments, or suggestions please send an E-mail
to

apps@xilinx.com

or a FAX addressed to "PSM Application Note Devel-
opers" sent to

1+(408) 879-4442.

11 SUBJECT TO CHANGE

IMPORTANT: Please be sure to include which ver-
sion of the application note you are using. The version
number is in the lower right-hand corner of page 1.

12 SUBJECT TO CHANGE

Figure 6. Four-bit multiplier design using PSM macro.

13 SUBJECT TO CHANGE

Figure 7. The internal details of the PSM macro. Many portions of the design use X-BLOX.

Dynamic Microcontroller in an XC4000 FPGA

PRELIMINARY 14

Figure 8. More internal details of the PSM macro. Many portions of the design use X-BLOX.

	Features
	Overview
	Compact Archite cture
	Exploiting FPGA Features
	Practical Aspects
	Instructions and Encoding
	Arithmetic and Load
	Shift and Rotate
	Ports
	Shift and Rotate
	Jump

	Programming Example
	Size and Performance
	Assembler for PSM
	How to Write a Program
	List of Instructions
	Case sensitivity
	Tabs and Spaces
	Constants
	Registers
	Labels
	Jumps
	Comments

	Ideas and Examples
	Avoid multiple labels
	Carry flag
	Obtaining more constants
	CALL and RETURN
	External hardware

	Conclusions
	Design Files
	Software Requirements
	Limitations and Restrictions
	Support and Feedback

	Schematics
	Multiplier schematic
	Internal Details (1 of 2)
	Internal Details (2 of 2)

