
Summary The convolutional interleaver technique is used in telecommunication applications such as
SDH and PDH radio systems, GSM and UMTS mobile communication systems, and point-to-
multipoint radio systems to protect transmission channels from noise. On the transmit side, the
convolutional interleaver parallelizes serial input data into N-bit words and shifts the data word
through N delay lines. The delayed data is then shifted out through a PISO shift register for
transmission. At the receiver, the incoming data stream is reconstructed with dual delay lines
and shift registers.

The Virtex™ architecture is well suited to implement easy, fast, and efficient convolutional
interleavers. With the SRL16 feature available in Virtex devices, very efficient shift registers can
be implemented. The flexible shift registers vary in length from one to sixteen bits as
determined by the address lines. In Figure 1, an SRL16 is used to implement a progressive
delay line, thereby saving logic resources and producing the highest performance.

Introduction Data transmission systems must be protected from stochastic noise events on communication
channels. Data scramblers (synchronous and asynchronous), check codes, error correction
codes (Reed-Solomon, Viterbi, BCH), and interleavers (block or convolutional) are popular
techniques for protecting data from noise. Interleavers are a popular choice for controlling
impulse noise, which is characterized by high-power, short-duration bursts. Convolutional
interleavers are often used in conjunction with Viterbi or Reed-Solomon codecs, since the load
is dramatically reduced after the de-interleaver stage.

Application Note: Virtex Series

XAPP222 (v1.0) September 27, 2000

Designing Convolutional Interleavers with
Virtex Devices
Author: Gianluca Gilardi and Catello Antonio De Rosa

R

Figure 1: SRL16

D
CE

Q

D
CE

Q

D
CE

Q

D
CE

Q

CLB

Slice

LUT

LUT

LUT

LUT

Slice

OUT

LUT

IN
CE

CLK

ADDR[3:0]

x222_01_082200
XAPP222 (v1.0) September 27, 2000 www.xilinx.com 1
1-800-255-7778

© 2000 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Designing Convolutional Interleavers with Virtex Devices
R

Convolutional
Interleaver

The heart of a convolutional interleaver is a set of progressive delay lines. In Figure 2, the delay
lines constitute two parts, one interleaver in the transmitter (TX) and one de-interleaver in the
receiver (RX).

Consider a data stream, D_IN, feeding into the transmitter (TX). At a certain rate, this flow will
be structured by a serial-in parallel-out (SIPO) register in a B-bit-wide bus (e.g., B = 32). The
parallel flow then enters a progressive delay line where M is the delay unit. The first signal is not
delayed, the second is delayed by M, the third is delayed by 2M, and so on until the B th signal
is delayed by (B –1)M. All B-bit-wide signals are reserialized by a parallel-in, serial-out (PISO)
register, and the serial output data flow, D_OUT, is ready for transmission.

On the receiving end, the receiver circuits are synchronized with the transmitter to reconstruct
the data stream. In TX and RX circuits, a counter provides the correct timing and
synchronization of events. Convolutional interleavers are conceptually similar to block
interleavers, although they are more complex to implement. Convolutional interleavers are area
efficient, using only half the density needed by block interleavers. In addition, the
synchronization circuitry is simplified at the receiver, because the phases are B instead of
B x N, where B is the number of block interleaver rows and N is the number of block interleaver
columns.

System Synchronization
In a radio system, a convolutional de-interleaver is generally put before a Viterbi decoder
whose output provides the necessary synchronization. Consider a certain period of time, when
the error rate is observed after the decoder processing. If in this period the error rate falls to
zero, then synchronization is achieved. On the other hand, if this rate is not zero, a stop of one
clock cycle to the RX synchronization counter must be provided. At most, after B steps, the
synchronization phase is caught up.

Figure 2: Convolutional Interleaver and De-interleaveer Schematic

S/P P/S

D_IN

D_OUT

S/P P/S

D_IN

D_OUT

0 0

0 0

29 29

30 30

31 31

1 1

2 2

31 31

M = Basic Delay Element

Transmitter
(TX)
(Interleaver)

Receiver
(RX)
(De-Interleaver)

X222_02_082200
2 www.xilinx.com XAPP222 (v1.0) September 27, 2000
1-800-255-7778

http://www.xilinx.com

Designing Convolutional Interleavers with Virtex Devices
R

System
Architecture

In this example, the TX of the interleaver circuit has B = 32 phases, M = 1 delay units, and
contains three elements: one 32-tap SIPO, one 32-bit progressive delay line (from 0 to 31 delay
elements), and one 32-tap PISO to stream back serially formatted data for transmission. One
5-bit counter (B = 32) provides the correct delay adjustment, synchronizing the SIPO at the
input of the delay line with acquisition by the PISO at the output of the delay line. An equation
for the number (ND) of the delay elements is then calculated:

ND = B (B –1) / 2 = 496

The de-interleaver receiver is similar to the interleaver architecture with only the delay elements
reversed (Figure 2). The receiver needs an external synchronization signal to enable the 5-bit
counter (B = 32) to provide the correct circuit delay (similar to the transmitter). If this signal is
not available, it is possible to use the output of the Viterbi decoder, as mentioned in the previous
paragraph.

This circuitry is useful for a one-transmission data channel. With an 8-bit digital transmission,
there are eight serial channels where an interleaver/de-interleaver protection system must be
implemented.

Progressive
Delay Line

Traditionally in FPGAs, the unit delay elements M = 1 (Figure 2) of the progressive delay line
are implemented with flip-flops, making it a very register-intensive application. The additional
resources needed to implement a real transmission system (for example, an 8-bit TX/RX
system, 496 x 8 x 2 = 7936 flip-flops) traditionally favored ASIC solutions, but produced
significant performance degradation.

The Virtex architecture redefines the suitability of FPGAs in transmission systems by
implementing the delay elements in an exclusive SRL16 feature. The built-in programmable
shift register enables one LUT to hold sixteen delay elements. In a system where B = 32, one
LUT can implement from 1 to 16 delay lines. From 17 to 31 delay lines can be implemented with
two LUTs per line, saving logic resources and maximizing overall performance. The only
limiting factor is the physical LUT access time. In an 8-bit TX/RX system, for instance, the logic
resources used are calculated:

(16 + (2 x 15)) x 8 x 2 = 736 LUTs

The Virtex solution uses almost ten times less logic resources then a traditional flip-flop
solution.

SIPOs, PISOs,
and Further
Area Reduction

Generally, SIPOs and PISOs are implemented with flip-flops. Another technique, depending on
logic resources and memory priorities, is to use block RAM.

Figure 3: Dual-Port Block RAM Memory

RAMB4_S#_S1

WEA

ENA

RSTA

ADDRA[11:0]

DIA0

WEB

ENB

RSTB

CLKB

CLKA
DOA0

DOB[15:0]

X222_03_072400
XAPP222 (v1.0) September 27, 2000 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

Designing Convolutional Interleavers with Virtex Devices
R

The available block RAM primitives are shown in Figure 3 and Table 1. With the true dual-port
capability of Virtex block RAM, A and B are used effectively as two independent ports, without
any additional logic, thus allowing data flow width conversions. For instance, a 16-tap
SIPO/PISO is a conversion 1:16 or 16:1.

Comparison Traditional (Flip-Flop) vs. Virtex Exclusive (SRL16) Solutions
Table 2 shows the efficiency of implementing this application in the Virtex architecture by
comparing an eight channel interleaver/de-interleaver system. The interleaver and de-
interleaver are implemented with B = 32 delay stages. This design was implemented for three
Xilinx families: XC5210 (flip-flops), XC4062XL (delay elements by Core Gen), and XCV200
(SRL16s) devices.

Additionally, Table 3 shows the final results of the same interleaver implemented on an
XCV400E device, the first with flip-flops and the second with SRL16s.

The Virtex architecture allows the designer to implement a high-performance convolutional
interleaver/de-interleaver with a small amount of FPGA resources by utilizing the SRL16
technique.

Table 1: Available Primitives

Primitive Port A Width Port B Width

RAMB4_S1_S1 1 1

RAMB4_S1_S2 1 2

RAMB4_S1_S4 1 4

RAMB4_S1_S8 1 8

RAMB4_S1_S16 1 16

Table 2: Convolutional Interleaver Across Xilinx Families

Device
CLB Array

(R x C x LC) LUTs Flip-Flops Used Area SRL16

XC5210 18 x 18 x 4 514 8972 8 FPGAs 0

XC4062XL 48 x 48 x 2 1814 2040 1090 CLBs 0

XCV200 28 x 42 x 4 509 1036 1352 Slices 736

Table 3: SRL16 vs. Flip-Flop Implementation: Resource Usage in the Progressive Delay Line

CLB Array
(R x C x LC) LUTs Flip-Flops SRL16 Slice Usage Max Frequency (-6) Max Frequency (-8)

Flip-Flop 40 x 60 x 4 509 8972 0 4800 (100%) 102 MHz 131 MHz

SRL16 40 x 60 x 4 509 1036 736 1352 (28%) 128 MHz 160 MHz
4 www.xilinx.com XAPP222 (v1.0) September 27, 2000
1-800-255-7778

http://www.xilinx.com

Designing Convolutional Interleavers with Virtex Devices
R

Synthesizable
HDL Code
Reference
Design

This section of the application note describes a hierarchical synthesizable implementation
convolutional interleaver/de-interleaver protection system for an eight-channel TX/RX radio
system in Virtex devices with SRL16s. Complete VHDL code is available as a reference design
(xapp222.zip and xapp222.tar.gz). The following design modules are included:

• TOP.vhd: Top file; example of instantiation of an 8-channel interleaver/de-interleaver
system

• MULTI_CH.vhd: parametric VHDL for N -bit-wide interleaver/de-interleaver system

• TX_INTER: convolutional interleaver with B = 32 delay stages

• RX_INTER: convolutional de-interleaver with B = 32 delay stages

Foundation 3.1i ISE Convolutional Interleaver Test Circuit
This archived project can be loaded into the Xilinx Foundation 3.1i ISE front end tools. The
circuit in Figure 5 shows an example of how to control a convolutional interleaver under ideal
conditions. The delay element M is equal to the system clock in this case, giving a relative delay
value of 1. This simplifies the synchronization circuitry for this example; in a real communication
system, the synchronization is handled by the Viterbi decoder or other control mechanism.
Using this example, the designer has the ability to use the convolutional interleaver on specific
designs.

• MASTER.sch: top-level schematic showing the connectivity between all the components.
In simulation the user needs to supply a serial data vector and an active high GO signal

• C5CE.sch: 5-bit counter

• CONTROLBOX.sch: a simple state machine to control the synchronization of the
convolutional interleaver. The FSM implements the state transition diagram (Figure 4).

• SIPO.v: serial-in parallel-out shift register. Provided for the designer to see the output of
the receiver as a parallel word instead of as a serial data stream

• RX_INTER.vhd: VHDL module describing the 32-delay tap convolutional de-interleaver

• TX_INTER.vhd: VHDL module describing the 32-delay tap convolutional interleaver

Figure 4: State Machine

X222_04_092700

INIT

COUNT

RESET
COUNTER

RESET
ALL

GO = 1

GO = 0

CNT_EN = 1

TC = 0, GO = 1

TC = 1
GO = 0

CNT_RESET = 1
RESET_RX = 1
RESET_TX = 1

SYNC_TX = 1
SYNC_RX = 1

CNT_RESET = 1
XAPP222 (v1.0) September 27, 2000 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com
ftp://ftp.xilinx.com/pub/applications/xapp/

Designing Convolutional Interleavers with Virtex Devices
R

Conclusion This application note and reference design clearly demonstrate the efficiency of the SRL16
technique. This exclusive Virtex architectural feature is the key advantage when designing a
convolutional interleaver/de-interleaver for TX/RX radio systems.

Using the SRL16 feature instead of flip-flops to make variable-delay elements saves resources
and maximizes performance. Additionally, the true dual-port capability of Virtex block RAM
allows further area reduction by making SIPOs and PISOs using the capability to set different
widths for port A and port B. This easy, fast, and efficient solution is feasible only with the Virtex
architecture. Other FPGAs utilize traditional logic-consuming, register-intensive approaches.

References 1. Xilinx Inc., DS022, Virtex-E 1.8V Field Programmable Gate Arrays Data Sheet

2. Xilinx Inc., DS003, Virtex-E 2.5V Field Programmable Gate Arrays Data Sheet

3. Xilinx Inc., DS001, Spartan®-II 2.5V Field Programmable Gate Arrays Data Sheet

4. Xilinx Inc., XAPP210, Linear Feedback Shift Registers in Virtex Devices

5. Xilinx Inc., XAPP130, Using the Virtex Block SelectRAM™+ Features

Revision
History

The following table shows the revision history for this document.

Figure 5: Test Circuit

32-bit Interleaver
32-bit De-Interleaver

32-bit Serial to Parallel Converter

5-bit Binary Counter

Example - Control FSM

SIPO

I8

Q_OUT[31:0]

DIN

CLK

RESET

SOUT

SOUT

SIPO_RESET

DATA_RX

DATA_TX

OUTPUT[31:0]

COUNT[4:0]

DATA_IN

SIN
SYNC_RX
RESET
CLK

SIN

SYNC_TX
RESET
CLK

SYNC_RX
RESET_RX

SYNC_RX
RESET_RX

CLK CLK

CLK

GO

Serial Data Input
TX_INTER

RX_INTER

I6

I7

I5

TC

OUT[4:0]

SYNC_TX
SYNC_RX

RESET_RX
RESET_TX

SIPO_RESET
CNT_RESET

CNT_EN

CNT_EN

TC

CNT_RESET

CE

RESET

C5CE

CONTROL BOX

I11
X222_05_092700

Date Version Revision

09/27/00 1.0 Initial Release
6 www.xilinx.com XAPP222 (v1.0) September 27, 2000
1-800-255-7778

http://www.xilinx.com

	Summary
	Introduction
	Convolutional Interleaver
	System Synchronization

	System Architecture
	Progressive Delay Line
	SIPOs, PISOs, and Further Area Reduction
	Comparison
	Traditional (Flip-Flop) vs. Virtex Exclusive (SRL16) Solutions

	Synthesizable HDL Code Reference Design
	Foundation 3.1i ISE Convolutional Interleaver Test Circuit

	Conclusion
	References
	Revision History

