
Foundation Series 3.1i Quick Start Guide — 0401895 Printed in U.S.A.

Foundation
Series 3.1i
Quick Start
Guide

Setting Up the Foundation
Tools

Foundation Overview

Basic Tutorial

Glossary

Foundation Series 3.1i Quick Start Guide

Foundation Series 3.1i Quick Start Guide

Xilinx Development System

R

The Xilinx logo shown above is a registered trademark of Xilinx, Inc.

FPGA Architect, FPGA Foundry, NeoCAD, NeoCAD EPIC, NeoCAD PRISM, NeoROUTE, Timing Wizard,
TRACE, XACT, XILINX, XC2064, XC3090, XC4005, XC5210, and XC-DS501 are registered trademarks of Xilinx,
Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

All XC-prefix product designations, Alliance Series, AllianceCORE, BITA, CLC, Configurable Logic Cell, Dual
Block, EZTag, FastCLK, FastCONNECT, FastFLASH, FastMap, Foundation, HardWire, LCA, LogiBLOX, Logic
Cell, LogiCORE, LogicProfessor, MicroVia, Plus Logic, PLUSASM, Plustran, P+, PowerGuide, PowerMaze,
SelectI/O, Select-RAM, Select-RAM+, Smartguide, SmartSearch, Smartspec, Spartan, TrueMap, UIM,
VectorMaze, VersaBlock, VersaRing, Virtex, WebLINX, XABEL, XACTstep, XACTstep Advanced, XACTstep
Foundry, XACT-Floorplanner, XACT-Performance, XAM, XAPP, X-BLOX, X-BLOX plus, XChecker, XDM, XDS,
XEPLD, Xilinx Foundation Series, XPP, XSI, and ZERO+ are trademarks of Xilinx, Inc. The Programmable Logic
Company and The Programmable Gate Array Company are service marks of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown
herein; nor does it convey any license under its patents, copyrights, or maskwork rights or any rights of others.
Xilinx, Inc. reserves the right to make changes, at any time, in order to improve reliability, function or design and
to supply the best product possible. Xilinx, Inc. will not assume responsibility for the use of any circuitry described
herein other than circuitry entirely embodied in its products. Xilinx, Inc. devices and products are protected under
one or more of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216; 4,713,557; 4,746,822; 4,750,155;
4,758,985; 4,820,937; 4,821,233; 4,835,418; 4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135;
5,023,606; 5,028,821; 5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056; 5,243,238;
5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704; 5,329,174; 5,329,181;
5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248; 5,349,249; 5,349,250; 5,349,691; 5,357,153;
5,360,747; 5,361,229; 5,362,999; 5,365,125; 5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925; 5,410,189;
5,410,194; 5,414,377; 5,422,833; 5,426,378; 5,426,379; 5,430,687; 5,432,719; 5,448,181; 5,448,493; 5,450,021;
5,450,022; 5,453,706; 5,455,525; 5,466,117; 5,469,003; 5,475,253; 5,477,414; 5,481,206; 5,483,478; 5,486,707;
5,486,776; 5,488,316; 5,489,858; 5,489,866; 5,491,353; 5,495,196; 5,498,979; 5,498,989; 5,499,192; 5,500,608;
5,500,609; 5,502,000; 5,502,440; 5,504,439; 5,506,518; 5,506,523; 5,506,878; 5,513,124; 5,517,135; 5,521,835;
5,521,837; 5,523,963; 5,523,971; 5,524,097; 5,526,322; 5,528,169; 5,528,176; 5,530,378; 5,530,384; 5,546,018;
5,550,839; 5,550,843; 5,552,722; 5,553,001; 5,559,751; 5,561,367; 5,561,629; 5,561,631; 5,563,527; 5,563,528;
5,563,529; 5,563,827; 5,565,792; 5,566,123; 5,570,051; 5,574,634; 5,574,655; 5,578,946; 5,581,198; 5,581,199;
5,581,738; 5,583,450; 5,583,452; 5,592,105; 5,594,367; 5,598,424; 5,600,263; 5,600,264; 5,600,271; 5,600,597;
5,608,342; 5,610,536; 5,610,790; 5,610,829; 5,612,633; 5,617,021; 5,617,041; 5,617,327; 5,617,573; 5,623,387;
5,627,480; 5,629,637; 5,629,886; 5,631,577; 5,631,583; 5,635,851; 5,636,368; 5,640,106; 5,642,058; 5,646,545;
5,646,547; 5,646,564; 5,646,903; 5,648,732; 5,648,913; 5,650,672; 5,650,946; 5,652,904; 5,654,631; 5,656,950;
5,657,290; 5,659,484; 5,661,660; 5,661,685; 5,670,896; 5,670,897; 5,672,966; 5,673,198; 5,675,262; 5,675,270;
5,675,589; 5,677,638; 5,682,107; 5,689,133; 5,689,516; 5,691,907; 5,691,912; 5,694,047; 5,694,056; 5,724,276;
5,694,399; 5,696,454; 5,701,091; 5,701,441; 5,703,759; 5,705,932; 5,705,938; 5,708,597; 5,712,579; 5,715,197;
5,717,340; 5,719,506; 5,719,507; 5,724,276; 5,726,484; 5,726,584; 5,734,866; 5,734,868; 5,737,234; 5,737,235;
5,737,631; 5,742,178; 5,742,531; 5,744,974; 5,744,979; 5,744,995; 5,748,942; 5,748,979; 5,752,006; 5,752,035;
5,754,459; 5,758,192; 5,760,603; 5,760,604; 5,760,607; 5,761,483; 5,764,076; 5,764,534; 5,764,564; 5,768,179;

Foundation Series 3.1i Quick Start Guide

5,770,951; 5,773,993; 5,778,439; 5,781,756; 5,784,313; 5,784,577; 5,786,240; 5,787,007; 5,789,938; 5,790,479;
5,790,882; 5,795,068; 5,796,269; 5,798,656; 5,801,546; 5,801,547; 5,801,548; 5,811,985; 5,815,004; 5,815,016;
5,815,404; 5,815,405; 5,818,255; 5,818,730; 5,821,772; 5,821,774; 5,825,202; 5,825,662; 5,825,787; 5,828,230;
5,828,231; 5,828,236; 5,828,608; 5,831,448; 5,831,460; 5,831,845; 5,831,907; 5,835,402; 5,838,167; 5,838,901;
5,838,954; 5,841,296; 5,841,867; 5,844,422; 5,844,424; 5,844,829; 5,844,844; 5,847,577; 5,847,579; 5,847,580;
5,847,993; 5,852,323; 5,861,761; 5,862,082; 5,867,396; 5,870,309; 5,870,327; 5,870,586; 5,874,834; 5,875,111;
5,877,632; 5,877,979; 5,880,492; 5,880,598; 5,880,620; 5,883,525; 5,886,538; 5,889,411; 5,889,413; 5,889,701;
5,892,681; 5,892,961; 5,894,420; 5,896,047; 5,896,329; 5,898,319; 5,898,320; 5,898,602; 5,898,618; 5,898,893;
5,907,245; 5,907,248; 5,909,125; 5,909,453; 5,910,732; 5,912,937; 5,914,514; 5,914,616; 5,920,201; 5,920,202;
5,920,223; 5,923,185; 5,923,602; 5,923,614; 5,928,338; 5,931,962; 5,933,023; 5,933,025; 5,933,369; 5,936,415;
5,936,424; 5,939,930; Re. 34,363, Re. 34,444, and Re. 34,808. Other U.S. and foreign patents pending. Xilinx,
Inc. does not represent that devices shown or products described herein are free from patent infringement or from
any other third party right. Xilinx, Inc. assumes no obligation to correct any errors contained herein or to advise
any user of this text of any correction if such be made. Xilinx, Inc. will not assume any liability for the accuracy or
correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in
such applications without the written consent of the appropriate Xilinx officer is prohibited.

Copyright 1991-2000 Xilinx, Inc. All Rights Reserved.

Foundation Series 3.1i Quick Start Guide — 0401895 i

About This Manual

This guide should be used as the initial learning tool for designers
who are unfamiliar with the features of the Foundation series
software.

Note This Xilinx software release is certified as Year 2000 compliant.

Manual Contents
This guide covers the following topics.

• Chapter 1, “Setting Up the Foundation Tools,” gives instructions
for installing Foundation 3.1i and provides you with information
about the type of computer you need to successfully implement
your designs.

• Chapter 2, “Foundation Overview,” looks in-depth at the
capability and flexibility of the Foundation software.

• Chapter 3, “Basic Tutorial” provides a step-by-step example
explaining how to use the basic Foundation tools.

• “Glossary,” defines some of the commonly used terms in this
Guide.

Foundation Series 3.1i Quick Start Guide

ii Xilinx Development System

Additional Resources

For additional information, go to http://support.xilinx.com.
The following table lists some of the resources you can access from
this Web site. You can also directly access these resources using the
provided URLs.

Resource Description/URL

Tutorials Tutorials covering Xilinx design flows, from design entry to verification
and debugging
http://support.xilinx.com/support/techsup/tutorials/
index.htm

Answers
Database

Current listing of solution records for the Xilinx software tools
Search this database using the search function at
http://support.xilinx.com/support/searchtd.htm

Application
Notes

Descriptions of device-specific design techniques and approaches
http://support.xilinx.com/apps/appsweb.htm

Data Book Pages from The Programmable Logic Data Book, which contain device-
specific information on Xilinx device characteristics, including readback,
boundary scan, configuration, length count, and debugging
http://support.xilinx.com/partinfo/databook.htm

Xcell Journals Quarterly journals for Xilinx programmable logic users
http://support.xilinx.com/xcell/xcell.htm

Technical Tips Latest news, design tips, and patch information for the Xilinx design
environment
http://support.xilinx.com/support/techsup/journals/
index.htm

Foundation Series 3.1i Quick Start Guide — 0401895 iii

Conventions

This manual uses the following conventions. An example illustrates
each convention.

Typographical
The following conventions are used for all documents.

• Courier font indicates messages, prompts, and program files
that the system displays.

speed grade: - 100

• Courier bold indicates literal commands that you enter in a
syntactical statement. However, braces “{ }” in Courier bold are
not literal and square brackets “[]” in Courier bold are literal
only in the case of bus specifications, such as bus [7:0].

rpt_del_net=

Courier bold also indicates commands that you select from a
menu.

File → Open

• Italic font denotes the following items.

♦ Variables in a syntax statement for which you must supply
values

edif2ngd design_name

♦ References to other manuals

Foundation Series 3.1i Quick Start Guide

iv Xilinx Development System

See the Development System Reference Guide for more informa-
tion.

♦ Emphasis in text

If a wire is drawn so that it overlaps the pin of a symbol, the
two nets are not connected.

• Square brackets “[]” indicate an optional entry or parameter.
However, in bus specifications, such as bus [7:0], they are
required.

edif2ngd [option_name] design_name

• Braces “{ }” enclose a list of items from which you must choose
one or more.

lowpwr ={on|off}

• A vertical bar “|” separates items in a list of choices.

lowpwr ={on|off}

• A vertical ellipsis indicates repetitive material that has been
omitted.

IOB #1: Name = QOUT’

IOB #2: Name = CLKIN’

.

.

.

• A horizontal ellipsis “….” indicates that an item can be repeated
one or more times.

allow block block_name loc1 loc2locn;

Online Document
The following conventions are used for online documents.

• Red-underlined text indicates an interbook link, which is a cross-
reference to another book. Click the red-underlined text to open
the specified cross-reference.

Foundation Series 3.1i Quick Start Guide v

• Blue-underlined text indicates an intrabook link, which is a cross-
reference within a book. Click the blue-underlined text to open
the specified cross-reference.

Foundation Series 3.1i Quick Start Guide

vi Xilinx Development System

Foundation Series 3.1i Quick Start Guide — 0401895 vii

Contents

About This Manual
Manual Contents .. i
Additional Resources ... ii

Conventions
Typographical... iii
Online Document ... iv

Chapter 1 Setting Up the Foundation Tools

Installation Notes.. 1-1
Supported Platforms and System Requirements...................... 1-2
Memory Requirements for Xilinx Architectures......................... 1-3
Installing Software... 1-3

Installing Xilinx Software.. 1-3
Installing Documentation ... 1-4
Installing MXE Software... 1-5

Network Compatibility ... 1-5
Customer Service... 1-6
Technical Support .. 1-6

Chapter 2 Foundation Overview

New Features... 2-2
Design Flows.. 2-2

HDL Flow .. 2-2
Schematic Flow... 2-3

Using the Foundation Design Entry Tools...................................... 2-6
Starting the Foundation Project Manager 2-6
Creating a New Project ... 2-7
Creating Top-level VHDL/Verilog Designs................................ 2-8
Creating Top-Level Schematic Designs.................................... 2-9

Foundation Series 3.1i Quick Start Guide

viii Xilinx Development System

Creating State Machine Designs .. 2-10
Instantiating LogiBLOX and CORE Generator Modules 2-11
Accessing the Design Entry Tools .. 2-12

Using the Design Implementation Tools .. 2-12
Translate ... 2-13
MAP (FPGAs) ... 2-13
Place and Route (FPGAs) .. 2-14
CPLD Fitter (CPLDs) .. 2-14
Configure (FPGAs) ... 2-14
Bitstream (CPLDs) .. 2-15
Interpreting the Reports .. 2-15

Translation Report ... 2-16
Map Report (FPGAs) ... 2-17
Place and Route Report (FPGAs) 2-17
Pad Report (FPGAs).. 2-18
Fitting Report (CPLDs) .. 2-18
Post Layout Timing Report .. 2-18
Asynchronous Delay Report .. 2-18

Selecting Options.. 2-18
Using Constraint Files .. 2-20

Design, Netlist, and User Constraints 2-20
Using the Xilinx Constraints Editor.. 2-21
Creating a User Constraints File... 2-21

Static Timing Analysis .. 2-22
Static Timing Analysis after Synthesis (HDL Only) 2-22
Static Timing Analysis after Map (FPGAs Only) 2-23
Static Timing Analysis after Place and Route (FPGAs Only).... 2-23
Summary Timing Reports ... 2-24
Detailed Timing Analysis... 2-24

Creating Simulation Files ... 2-25
When Can Simulation Data be Created?.................................. 2-25
Creating Functional Simulation Data .. 2-26
Creating Timing Simulation Data .. 2-27
HDL Simulation ... 2-28

Downloading a Design ... 2-28
Creating a PROM.. 2-29
In-Circuit Debugging ... 2-29

Re-Entrant Routing (FPGAs) ... 2-30

Contents

Foundation Series 3.1i Quick Start Guide ix

Chapter 3 Basic Tutorial

Getting Started ... 3-1
Design Description.. 3-2
Starting the Project Manager .. 3-4
The Project Manager .. 3-6
Project Libraries .. 3-7

Schematic Design Entry... 3-9
Starting the Schematic Editor ... 3-9
Manipulating the Screen ... 3-10
Adding a Library Component .. 3-11
Correcting Mistakes .. 3-13
Drawing and Labeling Nets... 3-13
Saving the Schematic ... 3-14

HDL-Based Design Entry ... 3-14
Adding a File to the Design... 3-15
Correcting Syntax Errors... 3-15
Using the Language Assistant .. 3-16
Design Description.. 3-17
Synthesis .. 3-18

Functional Simulation... 3-19
Starting the Logic Simulator .. 3-20
Performing Simulation... 3-20
Adding Signals .. 3-20

Adding Signals Using the Component Selection Window ... 3-20
Deleting a Signal.. 3-23

Adding Stimulus .. 3-23
Stimulating with the Internal Binary Counter........................ 3-24
Stimulating with Keyboard Stimulators 3-25

Running the Simulation... 3-26
Implementation... 3-28

Implementing the Schematic Design .. 3-29
Implementing the HDL Design .. 3-30
Implementation Options .. 3-31
Running Implementation — The Flow Engine 3-31
Viewing Implementation Results ... 3-33

Timing Simulation... 3-34
Invoking Timing Simulation ... 3-34
Simulating with Script Files - Script Editor 3-34
Running the Simulation from the Script Editor 3-35
Closing the Simulator.. 3-36

Foundation Series 3.1i Quick Start Guide

x Xilinx Development System

Glossary

Foundation Series 3.1i Quick Start Guide — 0401895 1-1

Chapter 1

Setting Up the Foundation Tools

This chapter lists the system requirements for the Foundation Series
3.1i Xilinx design tools software and discusses the recommended
system types and memory requirements to comfortably run the
software. Also included are general instructions for installing the
software, contacting customer support, and obtaining and installing
the necessary authorization codes and licenses.

For a detailed discussion, refer to the Foundation Series 3.1i Installation
Guide and Release Notes.

This chapter contains the following sections:

• “Installation Notes”

• “Customer Service”

• “Technical Support”

Installation Notes
Ensure the optimum use and operation of your new design tools by
installing Foundation Series 3.1i on the recommended hardware with
sufficient memory (RAM and hard disk “swap” space). If you
experience problems with either the installation, operation, or
verification of your installation, contact the Xilinx Technical Support
hotline. Refer to the “Technical Support” section of this chapter for
specifics.

Foundation Series 3.1i Quick Start Guide

1-2 Xilinx Development System

Supported Platforms and System Requirements
The Foundation Series 3.1i software is a PC-only release. Foundation
runs on either Windows 98/2000 or Windows NT. (Service Pack 5 or 6
is required with NT.) The following list shows the minimum
recommended type of PC you should have to create designs for
Xilinx FPGAs or CPLDs.

• Pentium Pro Processor®

• Windows 98®, Windows 2000®, Windows NT 4.0® (with Service
Pack 5 or 6 installed)

• 120 MHz clock speed

• System Memory—32 MB to 256 MB (dependent on device)

• Swap Space—48 MB to128 MB (dependent on device)

• Required disk space, 2 GB recommended

• SVGA 17” monitor

• 4x CD-ROM drive

• Ports—Two ports (one for a pointing device and one parallel port
for the parallel download cable, if needed). You can share the
parallel port used for the parallel download cable.

• Keyboard

• Mouse—2-button or 3-button (Microsoft Windows compatible).
On a 3-button mouse, the middle button is not used.

Note Due to the size and complexity of the XC4000 and Virtex
devices, Xilinx recommends that these designs be compiled using a
high-performance computer. 64 MB of RAM as well as 64 MB of swap
space is required to compile XC4000EX designs, but Xilinx
recommends that at least 128MB of both RAM and swap space be
used. For Virtex designs, Xilinx recommends 256 MB of RAM.

Swap file size requirements also vary with the design and constraint
set size. By default, Windows 98/2000 manages its swap file size
automatically, but for Windows NT, you may need to increase it.
Typically, your Windows NT swap file size should be twice as large
as your system RAM amount.

Setting Up the Foundation Tools

Foundation Series 3.1i Quick Start Guide 1-3

It is important to note that slower systems or systems with less than
the recommended RAM and swap space may exhibit longer
runtimes.

Memory Requirements for Xilinx Architectures
The various steps of designing Xilinx FPGAs or CPLDs require a
substantial amount of memory, as shown in the following table.

Note The values given in the above table are for typical designs and
include the normal load created by the operating system. Additional
memory may be required for certain “boundary-case” or “extremely
large” designs, as well as for concurrent operation of other non-Xilinx
applications.

Installing Software
Ensure the optimum use and operation of your new design tools by
installing the software on the recommended hardware with sufficient
memory (RAM and hard disk “swap” space). If you experience
problems with either the installation, operation, or verification of
your installation, contact the Xilinx Technical Support hotline. Refer
to the “Technical Support” section of this chapter for specifics.

Please refer to the Foundation 3.1i Installation Guide and Release Notes
for complete details on installation and prerequisites for installation.

Installing Xilinx Software

This subsection explains how to install the Xilinx software tools from
the Design Environment CD. Note that this CD also contains the
FPGA Express software.

1. Select Start → Run. Type d:setup.exe in the Open field of the
Run window and click OK. (If your CD-ROM drive is not the “d”
drive, substitute the appropriate drive designation.)

Table 1-1 Minimum Memory Requirements

Xilinx Packages RAM
Virtual Memory
(Swap Space)

Base or Base Express 48 MB 64 MB

Foundation Express or
Foundation Elite

64 MB 256 MB

Foundation Series 3.1i Quick Start Guide

1-4 Xilinx Development System

2. Follow the instructions on the screen to install the software. You
will be asked to register the product from the Welcome screen
during install. You can register via the web, email, or fax.

In order to register the product, you need to provide the
following information:

♦ Product ID

Your product ID number is located on the back of your
software CD pack.

♦ Your name

♦ Company

♦ Mailing address

♦ Phone number

♦ email address

When you register, Xilinx gives you a Registration ID. You must
have the registration ID in order to complete the installation.

The installer first installs all of the Xilinx software and then
invokes the installer for FPGA Express. Make sure that you
install FPGA Express in the default directory indicated. Your
FPGA Express synthesis FlexLM license file will be emailed to
you. When install is complete, remove the CD.

You may need to reboot your PC to allow the environment variables
and path statement to take effect before you can run the design
implementation tools. The Install program will inform you if you
need to reboot.

Installing Documentation

The documentation CD contains all of the online software manuals
that can be viewed in an HTML browser. This CD also contains PDF
versions of manuals that can be viewed with the Adobe Acrobat
reader.

Installing the documentation is optional, that is, it is not required to
run the software.

To install the Xilinx documentation CD, insert the CD and follow the
instructions.

Setting Up the Foundation Tools

Foundation Series 3.1i Quick Start Guide 1-5

Installing MXE Software

This CD contains the ModelSim Xilinx Edition simulator from MTI.
Installing MXE is optional; it is not required to run the software. To
install the CD, perform the following steps:

1. Insert the ModelSim Xilinx Edition CD.

2. Select Start → Programs → Foundation Series 3.1i →
Partner Products →Install Modelsim Xilinx
Edition.

When you install this software, you are prompted for licensing.
Follow the instructions on the screen to license and install the
product.

3. Remove the CD when installation is complete.

Network Compatibility
The Xilinx installation program supports only TCP-IP style networks.
Novell is not a TCP-IP style network. You can run the Xilinx
implementation tools from a network. However, the Aldec design
entry tools, FPGA Express, and ABEL cannot be run from the
network.

Foundation Series 3.1i Quick Start Guide

1-6 Xilinx Development System

Customer Service
For software licensing information, warranty status, shipping, and
order management issues, contact Xilinx Customer Service using the
information in the following table.

1 Mon-Fri, 8:00 am - 5:00 pm Pacific time
2 Monday-Friday, 9:00 a.m. to 5:30 p.m. United Kingdom time—
English speaking only.

If you are an international customer, contact your local sales
representative for customer service issues. Refer to the Xilinx web site
at http://support.xilinx.com/company/sales/int_reps.htm for
contact information.

A complete list of Xilinx worldwide sales offices is at http://
support.xilinx.com/company/sales/offices.htm.

Technical Support
The following section details how to reach the Xilinx Application
Service centers for your area. If you experience problems with the
installation or operation of your software, Xilinx suggests that you
first go to our http://support.xilinx.com website.

You can also contact the Xilinx Technical Support hotline by phone,
email, or fax. When e-mailing or faxing inquiries, provide your
complete name, company name, and phone number.

Country Telephone Facsimile

United States and Canada1 1-800-624-4782 408-559-0115

United Kingdom2 01932-333550 01932-828521

Belgium2 0800 73738

France2 0800 918333

Germany2 0130 816027

Italy2 1677 90403

Netherlands2 0800 0221079

Other European Locations2 (44) 1932-333550 (44) 1932-828521

Japan 81 3 3297 9153 81 3 3297 9189

Setting Up the Foundation Tools

Foundation Series 3.1i Quick Start Guide 1-7

The following table gives Worldwide contact information for Xilinx
Application Service centers

Location Telephone Electronic Mail Facsimile (Fax)

North America 1-408-879-5199
1-800-255-7778

hotline@xilinx.com 1-408-879-4442

United Kingdom 44-1932-820821 ukhelp@xilinx.com 44-1932-828522

France 33-1-3463-0100 frhelp@xilinx.com 33-1-3463-0959

Germany 49-89-93088-130 dlhelp@xilinx.com 49-89-93088-188

Japan local distributor jhotline@xilinx.com local distributor

Korea local distributor korea@xilinx.com local distributor

Hong Kong local distributor hongkong@xilinx.com local distributor

Taiwan local distributor taiwan@xilinx.com local distributor

Corporate Switchboard 1-408-559-7778

Foundation Series 3.1i Quick Start Guide

1-8 Xilinx Development System

Foundation Series 3.1i Quick Start Guide — 0401895 2-1

Chapter 2

Foundation Overview

This overview explains the basic concepts and design flow of the
Foundation Series 3.1i release as it spans the flow from netlist to final
PROM file. The chapter describes the basic tools; for details on using
the tools, refer to the “Basic Tutorial” chapter.

The Foundation Overview chapter contains the following sections:

• “New Features”

• “Design Flows”

• “Using the Foundation Design Entry Tools”

• “Using the Design Implementation Tools”

• “Using Constraint Files”

• “Static Timing Analysis”

• “Creating Simulation Files”

• “Downloading a Design”

• “Re-Entrant Routing (FPGAs)”

The flow described in this chapter is generally applicable to all Xilinx
families. However, many of the details apply only to the FPGA device
families. For complete information on CPLD design flows, refer to the
Foundation online help.

Foundation Series 3.1i Quick Start Guide

2-2 Xilinx Development System

New Features
The major new features for the Foundation 3.1i release include the
following:

• New Libraries for Virtex™-E, Virtex™-II and Spartan™-II

• New 3.4 version of Foundation Express

For a detailed description of these new features, refer to the What’s
New file by selecting Start → Programs → Foundation
Series 3.1i → What’s New.

For detailed information about Xilinx documentation, refer to the
“Introduction” chapter of the Foundation Series 2.1i User Guide.

Design Flows
The Foundation Series design tools interface supports two basic flows
within the Project Manager: HDL and Schematic.

HDL Flow
An HDL Flow project can contain VHDL, Verilog, or schematic top-
level designs with underlying VHDL, Verilog, or schematic modules.

HDL files can be created using the HDL Editor, Finite State Machine
Editor, or other text editors. Design sources are analyzed and
optimized by the Express Synthesis Engine.

LogiBLOX, CORE Generator, and ABEL modules as well as XNF files
can be instantiated in the design source files using the “black box
instantiation method”. Black box modules are not elaborated and
optimized during synthesis. State machine modules are synthesized
as VHDL or Verilog.

For a detailed description of the design methodologies, refer to the
“Design Methodologies - HDL Flow” chapter in the Foundation Series
2.1i User Guide.

Foundation Overview

Foundation Series 3.1i Quick Start Guide 2-3

Schematic Flow
The Schematic Flow supports the following design strategies.

• Top-level schematic design with the Xilinx Unified Libraries
components, LogiBLOX symbols, CORE generated modules, and
ABEL, HDL and/or state machine macros

• Top-level ABEL-based designs (not recommended for FPGA
designs)

• Top-level State Machine designs—only as ABEL designs

For a detailed description of the design methodologies, refer to the
“Design Methodologies - Schematic Flow” chapter in the Foundation
Series 2.1i User Guide.

Also refer to the “HDL Design Entry and Synthesis” chapter in the
Foundation Series 2.1i User Guide.

The following two figures illustrate the basic design flow for FPGAs
and CPLDs. For detailed design flow illustrations, refer to the “File
Processing Overview” appendix in the Foundation Series 2.1i User
Guide.

Foundation Series 3.1i Quick Start Guide

2-4 Xilinx Development System

Figure 2-1 Foundation Overall Design Flow for FPGAs

X8088

CHECKPOINT
VERIFICATION

IMPLEMENTATION

Creation of Device
Programming

Data

Interactive
Hardware

Debugging (Optional)

PROM File
Formatting

JTAG
Programmer

(Optional)

Multi-Pass
PAR

Post-Place and Route
Static Timing Analysis

Post-Map
Static Timing

Analysis

User-Created Stimulus

User-Created Stimulus

Logic Block Delays Only

Gate-Level
Functional
Simulation

Behavioral
HDL Simulation

*

Purchased Separately

Post-
Place and Route

Gate-Level
Timing Simulation

Netlist Merging
Mapping to Target

Architecture

Knowledge-Driven
Place and Route

Behavioral
HDL Simulation

DESIGN ENTRY

Schematic

LogiBLOXCORE
Generator

Finite State
Machine Diagram

HDL
(XABEL/Verilog/

VHDL)

*

*

Foundation Overview

Foundation Series 3.1i Quick Start Guide 2-5

Figure 2-2 Foundation Overall Design Flow for CPLDs

CHECKPOINT
VERIFICATION

IMPLEMENTATION

Creation of Device
Programming

Data

JTAG
Programmer

Post-Implementation
Static Timing Analysis

User-Created Stimulus

User-Created Stimulus

Gate-Level
Functional
Simulation

(Optional)
Behavioral

HDL Simulation

(Optional)
Behavioral

HDL Simulation

Post-
Implementation

Gate-Level
Timing Simulation

X8228

CPLD Fitter

DESIGN ENTRY

Schematic

HDL
(XABEL/Verilog/

VHDL)

Finite State
Machine Diagram

LogiBLOXCORE
Generator

Foundation Series 3.1i Quick Start Guide

2-6 Xilinx Development System

Using the Foundation Design Entry Tools
This section describes the basic procedure for using the design entry
tools.

Starting the Foundation Project Manager
To start the Project Manager, double click the Project Manager icon in
the Foundation Series program group. The icon to click is shown in
the following figure.

A Getting Started dialog box displays, allowing you to select a project
to open or create a new project.

Foundation Overview

Foundation Series 3.1i Quick Start Guide 2-7

Creating a New Project
To create a new project, follow these steps:

1. Select Create a New Project and click OK.

Figure 2-3 New Project Dialog Box

2. After the New Project dialog box displays, enter a name for the
project. Change the directory for the project, if desired, by using
the Browse button.

3. Choose the appropriate family, part, and speed grade and flow
type. (schematic flow only)

4. Click OK. The new project displays in the Project Manager.

Foundation Series 3.1i Quick Start Guide

2-8 Xilinx Development System

Figure 2-4 Foundation Project Manager

For more information about creating new projects in Foundation,
refer to Foundation’s online help system. For detailed information
about the Project Manager, refer to the online help by selecting Help
→ Foundation Help Contents → Project Manager. Also see
the “Project Manager” section of the “Project Toolset” chapter in the
Foundation Series 2.1i User Guide.

Creating Top-level VHDL/Verilog Designs
You can create VHDL and Verilog designs if you purchased a version
of Foundation that includes the Synopsys FPGA Express package.
FPGA Express is included with these Foundation versions: 1) Base
Express 2) Foundation Express, and 3) Foundation Elite.

You can create a variety of top-level schematics, VHDL or Verilog
designs.

Foundation Overview

Foundation Series 3.1i Quick Start Guide 2-9

• All-HDL designs

• HDL designs with State Machine macros

• HDL designs with black box instantiations

• Schematic designs

Black boxes are not synthesized by Express; they are passed to the
implementation tools for translation by the Flow Engine.

For a detailed description of the procedures for creating these types
of designs, refer to the “Design Methodologies - HDL Flow” chapter
in the Foundation Series 2.1i User Guide.

Also refer to the Foundation 3.1i Watch Tutorial located at http://
support.xilinx.com/support/techsup/tutorials/
index.htm.

For a discussion of HDL design issues, refer to the “HDL Design
Entry and Synthesis” chapter in the Foundation Series 2.1i User Guide.

For information on how to use the VHDL and Verilog languages,
refer to the online PDF documents, VHDL Reference Guide and Verilog
Reference Guide.

Foundation 3.1i also includes utilities that convert ABEL and AHDL
to HDL (ABEL2HDL and AHDL2HDL). To access these utilities from
the Project Manager, select Tools → Utilities. In order to use
ABEL or AHDL designs as top-level HDL designs, you must convert
the designs.

Creating Top-Level Schematic Designs
You can create a variety of top-level designs.

• All schematic designs

• Schematic designs with instantiated HDL macros, LogiBLOX and
CORE Generator modules, and state machine macros

• Top-level ABEL-based designs

• State Machine designs—only as ABEL designs

Foundation Series 3.1i Quick Start Guide

2-10 Xilinx Development System

For a detailed description of the procedures for creating these types
of designs, refer to the “In-Depth Tutorial—Schematic-Based
Designs” in the Foundation 3.1i Watch Tutorial located at http://
support.xilinx.com/support/techsup/tutorials/
index.htm.

Also refer to the “Design Methodologies - Schematic Flow” chapter in
the Foundation Series 2.1i User Guide.

For a discussion of schematic design issues, refer to the “Schematic
Design Entry” chapter in the Foundation Series 2.1i User Guide.

Creating State Machine Designs
State machine designs typically start with the translation of a concept
into a “paper design,” usually in the form of a state diagram or a
bubble diagram. The paper design is converted to a state table and
then, into the source code itself.

A State Machine design can be used in the following ways.

• Top-level design in a Schematic Flow—as an ABEL design only

• A module in a schematic

• A module in a VHDL or Verilog design (not ABEL)

For a detailed discussion of the design steps, refer to the “Design
Methodologies - Schematic Flow” chapter and the “Design Method-
ologies - HDL Flow” chapter in the Foundation Series 2.1i User Guide.

For a description of a sample state machine, refer to the “State
Machine Designs” chapter in the Foundation Series 2.1i User Guide.

Foundation Overview

Foundation Series 3.1i Quick Start Guide 2-11

Instantiating LogiBLOX and CORE Generator
Modules

LogiBLOX is a design tool for creating high-level modules such as
counters, shift registers, and multiplexers for FPGA and CPLD
designs. LogiBLOX includes both a library of generic modules and a
set of tools for customizing these modules. LogiBLOX modules are
pre-optimized to take advantage of Xilinx architectural features such
as Fast Carry Logic for arithmetic functions and on-chip RAM for
dual-port and synchronous RAM. With LogiBLOX, you can create
high-level LogiBLOX modules that will fit into your schematic-based
design or HDL-based design.

For information about instantiating LogiBLOX into designs, refer to
the following sections in the Foundation Series 2.1i User Guide:

• “Schematic Designs With Instantiated LogiBLOX Modules”
section of the “Design Methodologies - Schematic Flow” chapter

• “HDL Designs with Black Box Instantiation” section of the
“Design Methodologies - HDL Flow” chapter of the Foundation
Series 2.1i User Guide

The Xilinx CORE Generator tool is a design tool that delivers parame-
terizable cores, optimized for Xilinx FPGAs. The CORE Generator
library includes cores as complex as DSP filters and multipliers and
as simple as delay elements. You can use these cores as building
blocks in order to complete your design more quickly. In Foundation
3.1i, the CORE Generator tools are integrated into the Project
Manager, Schematic Editor, and HDL Editor. For details on how to
instantiate cores in schematics, refer to the “Schematic Designs With
Instantiated CORE Generator Cores” section of the “Design Method-
ologies - Schematic Flow” chapter. For details on how to instantiate
cores in HDL designs, refer to the “CORE Generator COREs in a
VHDL or Verilog Design” section of the “Design Methodologies -
HDL Flow” chapter of the Foundation Series 2.1i User Guide.

For complete information about the CORE Generator tool, refer to the
online manual, CORE Generator User Guide.

Foundation Series 3.1i Quick Start Guide

2-12 Xilinx Development System

Accessing the Design Entry Tools
You can access all of the Design Entry tools from the Project
Manager’s Tools menu (Tools → Design Entry). The tools include
the following:

• Schematic Editor

• State Editor

• HDL Editor

• Symbol Editor

• LogiBLOX module generator

• CORE Generator

You can also directly access the Schematic Editor, State Editor, and
HDL Editor from the Design Entry phase button.

For a complete description on how to use these design entry tools, see
the Foundation Series 2.1i User Guide.

After completing a design with design entry, the design is next
implemented to a target Xilinx hardware part.

Using the Design Implementation Tools
The implementation tools perform the translate map, place, route, (fit
for CPLDs), and bitstream generation phases of the design flow

The Xilinx Flow Engine is the graphical interface that displays each of
of these design phases. Results of these implementations are made
available in reports and may be accessed through the Reports tab in
the Project Manager.

The Foundation Project Manager provides menu and push button
access to other Xilinx tools such as the Timing Analyzer, PROM File
Formatter, Floorplanner, FPGA Editor, Constraints Editor, and CPLD
ChipViewer. You can access these tools through either the Tools menu
or Implementation menu in the Project Manager or directly from the
Project Flowchart push buttons.

Foundation Overview

Foundation Series 3.1i Quick Start Guide 2-13

During design implementation, the Flow Engine prominently
displays the status of each phase of the design, as shown in the
following figures.

Figure 2-5 Flow Engine Shows All Design Segments Completed
(FPGAs)

Figure 2-6 Flow Engine Shows All Design Segments Completed
(CPLDs)

Translate
The Flow Engine’s first step, Translate, merges all of the input
netlists. This is accomplished by running NGDBuild. For a complete
description of NGDBuild, refer to the “NGDBuild” chapter of the
Development System Reference Guide.

MAP (FPGAs)
The next step is the technology mapper. Map optimizes the gates and
trims unused logic in the merged NGD netlist. This step also maps
the design’s logic resources; logic in the design is mapped to
resources on the silicon, and a physical design rule check is
performed. For more information about MAP, refer to the “MAP—
The Technology Mapper” chapter in the online software manual,
Development System Reference Guide.

Foundation Series 3.1i Quick Start Guide

2-14 Xilinx Development System

Place and Route (FPGAs)
After the design is mapped, the Flow Engine places and routes the
design. In the place stage, all logic blocks, including the configurable
logic blocks (CLB) and input/output blocks (IOB) structures, are
assigned to specific locations on the die.

If timing constraints have been placed on particular logic
components, the placer tries to meet those constraints by moving the
corresponding logic blocks closer together.

In the routing stage, the logic blocks are assigned specific intercon-
nect elements on the die. If timing constraints have been placed on
particular logic components, the router tries to meet those constraints
by choosing a faster interconnect. For more information about PAR,
refer to the “PAR—Place and Route” chapter in the online software
document, Development System Reference Guide.

CPLD Fitter (CPLDs)
The CPLD fitter implements designs for the XC9500 and XC9500XL
devices. The fitter outputs several files: fitting report
(design_name.rpt), static timing report (design_name.tim), guide file
(design_name.gyd, programming file (design_name.jed), and timing
simulation database (design_name.nga).

For detailed information about implementing CPLD designs, refer to
the Foundation online help.

Configure (FPGAs)
After place and route, the Flow Engine translates the physical imple-
mentation into a configuration file (bit) that is used to program the
FPGA. The BitGen executable creates the configuration file. For more
information about the BitGen executable, refer to the “BitGen”
chapter in the online software document, Development System Refer-
ence Guide.

You can program an FPGA using the Hardware Debugger or JTAG
Programmer to download a bitstream to configure a device. You can
also use a bitstream as an input to the PROM File Formatter, which
creates a specific configuration program for PROM use.

Foundation Overview

Foundation Series 3.1i Quick Start Guide 2-15

Bitstream (CPLDs)
At the end of a successful CPLD implementation, a .jed programming
file is created. The JTAG Programmer uses this file to configure
XC9500/XL CPLD devices.

Interpreting the Reports
The reports generated by the implementation tools provide
information on logic trimming, logic optimization, timing constraint
performance, and I/O pin assignment. To access the reports, select
the Reports tab from Project Manager. Double click the
Implementation Report Files icon to open the Report Browser. To
open a particular report, double click its icon, as shown in the
following two figures.

Figure 2-7 Report Browser (FPGAs)

Foundation Series 3.1i Quick Start Guide

2-16 Xilinx Development System

Figure 2-8 Report Browser (CPLDs)

Translation Report

The translation report (.bld) contains warning and error messages
from the three translation processes: conversion of the EDIF or XNF
style netlist to the Xilinx NGD netlist format, timing specification
checks, and logical design rule checks. The report lists the following:

• Missing or untranslatable hierarchical blocks

• Invalid or incomplete timing constraints

• Output contention, loadless outputs, and sourceless inputs

Foundation Overview

Foundation Series 3.1i Quick Start Guide 2-17

Map Report (FPGAs)

The Map Report (.mrp) contains warning and error messages
detailing logic optimization and problems in mapping logic to
physical resources. The report lists the following information:

• Removed logic. Sourceless and loadless signals can cause a whole
chain of logic to be removed. Each deleted element is listed with
progressive indentation, so the origins of removed logic sections
are easily identifiable; their deletion statements are not indented.

• Logic that has been added or expanded to optimize speed.

• The Design Summary section lists the number and percentage of
used CLBs, IOBs, flip-flops, and latches. It also lists occurrences
of architecturally-specific resources like global buffers and
boundary scan logic.

Note The Map Report can be very large. To find information, use key
word searches. To quickly locate major sections, search for the string
‘---‘, because each section heading is underlined with dashes.

Place and Route Report (FPGAs)

The Place and Route Report (.par) contains the following
information.

• The overall placer score which measures the “goodness” of the
placement. Lower is better. The score is strongly dependent on
the nature of the design and the physical part that is being
targeted, so meaningful score comparisons can only be made
between iterations of the same design targeted for the same part.

• The Number of Signals Not Completely Routed should be zero
for a completely implemented design. If non-zero, you may be
able to improve results by using re-entrant routing or the multi-
pass place and route flow.

• The timing summary at the end of the report details the design’s
delays. For information on timing constraint performance and
synchronous delays, refer to the “Static Timing Analysis” section
later in this chapter

Foundation Series 3.1i Quick Start Guide

2-18 Xilinx Development System

Pad Report (FPGAs)

The Pad Report lists the design’s pinout in three ways.

• Signals are referenced according to pad numbers.

• Pad numbers are referenced according to signal names.

• PCF file constraints are listed.

Fitting Report (CPLDs)

The Fitting Report (design_name.rpt) lists summary and detailed
information about the logic and I/O pin resources used by the
design, including the pinout, error and warning messages, and
Boolean equations representing the implemented logic.

Post Layout Timing Report

A timing summary report shows the calculated worst-case timing for
the logic paths in your design.

Asynchronous Delay Report

This report shows the 20 worst net delays within the design.

Selecting Options
Options specify how a design is optimized, mapped, placed, routed,
and configured. Options are grouped into objects called
implementation, simulation, and configuration templates. Each
template defines an implementation, simulation or configuration
approach. For example, one implementation style could be Quick
Evaluation, while another could be Timing Constraint Driven.

Foundation Overview

Foundation Series 3.1i Quick Start Guide 2-19

Figure 2-9 Flow Engine Options Dialog Box

You can have multiple templates in a project. To access the options
and templates, perform the following steps.

1. Select the Options button in the Implement or Synthesis/
Implementation dialog box.

2. In the Program Option portion of the Options dialog box, select
the Edit Template button for Implementation, Simulation, or
Configuration to access the associated template.

The default options settings provide sufficient performance for most
design requirements. For information on the options, select Help →
Help Topics from the Flow Engine menu.

Foundation Series 3.1i Quick Start Guide

2-20 Xilinx Development System

Using Constraint Files
With the design implementation tools, you can control the
implementation of a design by entering constraints. There are two
basic types of constraints that you can apply to a design: location
constraints and timing constraints.

Location constraints are used to control the mapping and positioning
of the logic elements in the target device. The most common location
constraints are pad constraints. They are used to lock the pins of the
design to specific I/O locations so that the pin placement is consistent
from revision to revision.

Timing constraints tell the software which paths are critical, and
therefore, need closer placement and faster routing. Conversely,
timing constraints also tell the software which paths are not critical
and, therefore, do not need closer placement or faster routing. Both
the placer and the router can be timing constraint driven.

Design, Netlist, and User Constraints
Constraints can be entered throughout the design entry and
implementation processes. Constraints can be entered during the
design entry phase by adding them to a schematic, specifying them
through the use of a constraint entry GUI, or listing them in a user
constraint file (.ucf). These three approaches differ in the following
ways.

• Constraints entered directly in the input design are known
simply as design constraints and are ultimately placed in the
design netlist.

• If you want your constraints separated from the input design
files, or if you want to modify your constraints without having to
completely re-synthesize your design, you can use the Xilinx
Constraints Editor or create a user constraints file
design_name.ucf.

Foundation Overview

Foundation Series 3.1i Quick Start Guide 2-21

Using the Xilinx Constraints Editor
The Constraints Editor is a Graphical User Interface (GUI) that you
can run after the Translate program to create new constraints in a
UCF file. To access the Constraints Editor, select Tools → Imple-
mentation → Constraints Editor from the Project Manager.

The Constraints Editor interface consists of a main window, three tab
windows, and a number of dialog boxes. For more details, refer to the
online software document, Constraints Editor Guide.

You can also directly enter constraints into a UCF file without using
the Xilinx Constraints Editor. See the next section for details.

Creating a User Constraints File
The User Constraints File (.ucf) is a user-created ASCII file that holds
timing and location constraints. It is read by NGDBuild during the
translate process and is combined with an EDIF or XNF netlist into an
NGD file. If a UCF file exists with the same name as the top-level
netlist, then it will automatically be read. Otherwise, specify a file for
User Constraints in the Implement Control Files Settings dialog box.

For Foundation 3.1i, if you already have an existing UCF file
associated with a Revision, this UCF file is automatically copied and
used as your UCF file within a new revision.

Note Xilinx recommends that you use the Xilinx Constraints Editor to
edit a UCF file. If you edit an existing UCF manually, make sure that
you are editing the correct file.

For an example of how to lock I/Os to pin locations and how to write
Timespec and Timegroup constraints, refer to the “Foundation
Constraints” appendix in the Foundation Series 2.1i User Guide.

You can also lock pin locations within the Project Manager by
selecting Tools → Implementation → Lock Device Pins.

Foundation Series 3.1i Quick Start Guide

2-22 Xilinx Development System

Static Timing Analysis
You can perform timing analysis at several stages in the
implementation flow to estimate delays. You create or generate the
following.

• A post-synthesis pre-implementation display for HDL designs
with the Express Time Tracker (Foundation Express only—not
Base Express).

• A post-map timing report to evaluate the effects of logic delays
on timing constraints.

• A post-place-and-route timing report that incorporates both
block and routing delays as a final analysis of the design’s timing
constraints.

The Interactive Timing Analyzer tool produces detailed timing
constraint, clock, and path analysis for post-map or post-place-and-
route implementations.

Note Static timing analysis may make the implementation processes
run slower.

Static Timing Analysis after Synthesis (HDL Only)
You can examine static timing results with the Express Time Tracker
after synthesis and before implementation. You must be licensed to
use Foundation Express to access the Time Tracker and the Express
Constraints Editor.

1. After you synthesize your design, right click the optimized
structure from the Versions tab.

2. Select View Synthesis Results.

3. Select the Paths tab from the Time Tracker to view estimated
delays.

Foundation Overview

Foundation Series 3.1i Quick Start Guide 2-23

Static Timing Analysis after Map (FPGAs Only)
Post-map timing reports can be very useful in evaluating timing
performance. Although route delays are not accounted for, the logic
delays can provide valuable information about the design.

If logic delays account for a significant portion (> 50%) of the total
allowable delay of a path, the path may not be able to meet your
timing requirements when routing delays are added.

Routing delays typically account for 40% to 60% of the total path
delays. By identifying problem paths, you can mitigate potential
problems before investing time in place and route. You can redesign
the logic paths to use less levels of logic, tag the paths for specialized
routing resources, move to a faster device, or allocate more time for
the path.

If logic-only-delays account for much less (<35%) than the total
allowable delay for a path or timing constraint, then the place-and-
route software can use very low placement effort levels. In these
cases, reducing effort levels allow you to decrease runtimes while still
meeting performance requirements.

Static Timing Analysis after Place and Route (FPGAs
Only)

Post-PAR timing reports incorporate all delays to provide a
comprehensive timing summary. If a placed and routed design has
met all of your timing constraints, then you can proceed by creating
configuration data and downloading a device. On the other hand, if
you identify problems in the timing reports, you can try fixing the
problems by increasing the placer effort level, using re-entrant
routing, or using multi-pass place and route. You can also redesign
the logic paths to use fewer levels of logic, tag the paths for
specialized routing resources, move to a faster device, or allocate
more time for the paths.

For information on re-entrant routing or multi-pass place and route,
see the “Re-Entrant Routing (FPGAs)” section at the end of this
chapter.

Foundation Series 3.1i Quick Start Guide

2-24 Xilinx Development System

Summary Timing Reports
Summary reports show timing constraint performance and clock
performance. Implementing a design in the Flow Engine can
automatically generate summary timing reports. To create summary
timing reports, perform the following steps:

1. Open the Options dialog box (Implementation → Options)
from the Project Manager and select Edit Options for the
Implementation template.

2. Select the Timing Reports tab.

3. For a post-map report, select Produce Logic Level Timing
Report. For a post-PAR report, select Produce Post Layout
Timing Report

4. To modify the reports to highlight path delays or paths that have
failed timing constraints, select a report format.

5. After MAP or PAR has completed, the respective timing reports
appear in the Report Browser.

Detailed Timing Analysis
To perform detailed timing analysis, select Tools → Simulation/
Verification → Interactive Timing Analyzer from the
Project Manager menu. You can specify specific paths for analysis,
discover paths not affected by timing constraints, and analyze the
timing performance of the implementation based on another speed
grade. For path analysis, perform the following:

1. Choose sources. From the Timing Analyzer menu, select Path
Filters → Custom Filters → Select Sources.

2. Choose destinations. From the Timing Analyzer menu, select
Path Filters → Custom Filters → Select
Destinations.

3. To create a report, select one of the options under the Analyze
menu.

To switch speed grades, select Options → Speed Grade. After a
new speed grade is selected, all new Timing Analyzer reports will be
based on the design running with new speed grade delays. The
design does not have to be re-implemented, because the new delays
are read from a separate data file.

Foundation Overview

Foundation Series 3.1i Quick Start Guide 2-25

Creating Simulation Files
After the design is implemented, you can perform a timing
simulation to ascertain if the timing requirements and functionality
of your design have been met. Timing simulation can save
considerable time by reducing the time spent debugging test boards
in the lab. Functional simulation can also potentially save time by
uncovering design bugs before running PAR.

When Can Simulation Data be Created?
With the design implementation tools, you can create simulation data
after each major processing step. This means that you can create
functional simulation netlists after NGDBuild merges the design
together in the Translate process and simulation netlists after PAR has
placed and routed the design for FPGAs or the CPLD fitter has fit the
design for CPLDs.

Additionally, for FPGAs, you can create simulation data after the
design has been mapped. For a graphical representation of when you
can conveniently simulate your design, refer to Figure 2-1 and Figure
2-2.

For FPGAs, simulation data created after the design has been
mapped contains timing data based on the CLB and IOB block
delays, and all net (interconnect) delays are set to zero.

With post-map simulation, you can ensure that the design’s current
implementation will give the place and route software sufficient
margin to route the design and still stay within your timing
requirements.

Simulation data created after the design has been placed, but not
routed, contains accurate block delays and estimates for the net
delays.

You can use post-place simulation as an incremental simulation step
between post-map simulation and a complete post-route timing
simulation.

To simulate at any of these intermediate stages, select Tools →
Simulation/Verification → Checkpoint Gate
Simulation Control from the Foundation Project Manager and
choose the appropriate netlist to simulate.

Foundation Series 3.1i Quick Start Guide

2-26 Xilinx Development System

Creating Functional Simulation Data
For schematic and HDL designs, the functional simulation netlists are
created in the Foundation design entry tools environment. Click the
Simulation phase button in the Project Manager Flowchart area to
invoke the Simulator and load the netlist. The Simulation phase
button is shown in the following figure.

For designs that include macros whose underlying files are XNF or
EDIF netlists, the design must first be “translated” in the Xilinx
implementation tools in order to merge in these additional netlists.
Follow these steps to translate the design and then invoke the
simulator and load the functional netlist.

1. Select Project → Create Version from the Project
Manager.

2. Select Project → Create Revision from the Project
Manager.

3. Select Tools → Implementation → Flow Engine from the
Project Manager while the new revision is selected in the Versions
tab.

4. From within the Flow Engine, select Setup → Stop After
and then choose the Stop After Translate option.

5. Click OK, then select File → Run in the Flow Engine.

6. After Translate is complete, go back to the Foundation Project
Manager and select Tools → Simulation/Verification →
Checkpoint Gate Simulation Control.

7. Choose the appropriate NGD file from the Revision which was
just created and click OK. This invokes the simulator and loads
the netlist.

For details about functional simulation, refer to the “Functional
Simulation” chapter in the Foundation Series 2.1i User Guide and the
“In-Depth Tutorial—Functional Simulation” chapter in the Founda-
tion 3.1i Watch Tutorial located at http://support.xilinx.com/
support/techsup/tutorials/index.htm.

Foundation Overview

Foundation Series 3.1i Quick Start Guide 2-27

For additional information about functional simulation, see the
“Performing Functional Simulation” section of the “Design Method-
ologies - Schematic Flow” chapter in the Foundation Series 2.1i User
Guide.

Creating Timing Simulation Data
Before you perform timing simulation, ensure that you have gener-
ated a timing annotated simulation netlist. See the “Timing Simula-
tion” section of the “Verification and Programming” chapter in the
Foundation Series 2.1i User Guide for details and the “In-Depth Tuto-
rial—Timing Simulation” chapter in the Foundation 3.1i Watch Tutorial
located at http://support.xilinx.com/support/techsup/
tutorials/index.htm.

1. To create the timing simulation netlist, open the Options dialog
box by selecting Implementation → Options, and verify
that Foundation EDIF displays in the Simulation list box for
Program Options.

2. Click OK.

3. After the Implementation process is complete, return to the
Foundation Project Manager, and click the timing simulation
portion of the Verification phase button. This invokes the
Simulator and loads the timing simulation netlist.

For additional information about timing simulation, refer to the
“Verifying the Design” section of the “Design Methodologies - Sche-
matic Flow” chapter in the Foundation Series 2.1i User Guide.

Foundation Series 3.1i Quick Start Guide

2-28 Xilinx Development System

HDL Simulation
Foundation provides the option of adding HDL simulation
capabilities to all Foundation design flows. Xilinx ships an evaluation
version of an HDL simulator from MTI.

This product may be licensed for free evaluation for up to 30 days.
Sale and support for this product is provided directly by the vendors.

All ModelSim product sales are handled directly by MTI and its
authorized sales affiliates (email sales@model.com).

Customer support is also provided directly by MTI (email
support@model.com or call the main number at (503) 641-1340)

Adding MTI’s ModelSim product to the Foundation Series design
environment enables simulation of VHDL, Verilog HDL or mixed-
HDL designs (Verilog and VHDL). Source code debugging,
functional simulation, and back-annotated timing simulation are all
supported through this integrated solution. The availability of a
mixed-language simulation environment offers maximum flexibility
to HDL design methodologies which draw on design elements from
both Verilog and VHDL.

Downloading a Design
You can download an implemented FPGA design directly from your
PC using the Hardware Debugger program with the XChecker cable,
JTAG download cable, or MultiLINX cable. No cables are shipped
with the Foundation product.

The Hardware Debugger can download a BIT file or a PROM file:
MCS, EXO, or TEK file formats. A BIT file contains configuration
information for an FPGA device. For more information on using the
Hardware Debugger, see the Hardware Debugger Guide.

You can download an implemented CPLD design from your PC
using the JTAG Programmer. The JTAG Programmer software is used
to configure FPGAs and CPLDs and supports both the XChecker and
the Parallel Cable III. This is a GUI based program. See the JTAG
Programmer Guide for details. Also, see the Hardware User Guide for
information about cable compatibility.

To download an implemented design, click the Programming icon in
the Project Flow area.

Foundation Overview

Foundation Series 3.1i Quick Start Guide 2-29

Creating a PROM
An FPGA or daisy chain of FPGAs can be configured from serial or
parallel PROMs. The PROM File Formatter can create MCS, EXO, or
TEK style files. The files are read by a PROM programmer that turns
the image into a PROM.s

A HEX file can also be used to configure an FPGA or a daisy chain of
FPGAs through a microprocessor. The file is stored as a data structure
in the microprocessor boot-up code.

In-Circuit Debugging
Once a design has been downloaded to an FPGA, snapshots of
internal signal states can be captured and read using the Hardware
Debugger program with the XChecker cable, JTAG cable, or
MultiLINX cable. You can display the signal states as waveforms in
the Hardware Debugger.

This capability allows you to test and debug your design in a real-
time environment as it interfaces with the other components on your
board. You can also control the states of your state machines by
controlling when clock edges are sent to your system clock input.

For more information on in-circuit debugging and the Hardware
Debugger, see the Hardware Debugger Guide.

Foundation Series 3.1i Quick Start Guide

2-30 Xilinx Development System

Re-Entrant Routing (FPGAs)
The place and route software, PAR, has features that allow it to
process complex designs that have tight timing requirements and/or
are difficult to route. If your design is completely placed and routed
but not meeting timing specifications, PAR can start from where it left
off and continue re-routing the design to produce an implementation
that meets your timing specifications.

As PAR is running, it continually updates the NCD file with its
current placement and routing information. As long as an NCD file
exists that is at least placed, PAR can used it for re-entrant routing. To
initiate re-entrant routing, follow these steps.

1. In the Project Manager, select Tools → Implementation →
Flow Engine.

2. In the Flow Engine, select the Setup → FPGA Re-entrant
Route menu.

3. In the Setup Re-entrant Route dialog box, select Allow Re-
Entrant Route, which enables the re-entrant route options:

♦ Optional: If meeting timing specifications is a critical goal,
then select Use Timespecs During Re-entrant Route. If
meeting timing specifications is not critical, do not select this
option, because timing-driven routing takes much longer to
process than non-timing-driven routing

♦ Optional: Select the number of re-entrant routing passes to
perform. If left in “Auto,” PAR will continue to perform
routing iterations until either 1) it determines that it is no
longer making significant progress, or 2) the design
constraints have been fully met.

♦ Optional: Select the number of clean-up passes to run. Clean-
up passes are run after the “main” routing passes are
complete. Two types of clean-up routing passes can be
invoked—cost-based and delay-based. The effectiveness of
each type depends on the design, device, and constraints of
the implementation.

Foundation Overview

Foundation Series 3.1i Quick Start Guide 2-31

4. Click OK (in the Setup Re-entrant Routing dialog box) to submit
the options. This causes the Place and Route icon in the Flow
Engine to show a loop back arrow and the Re-Entrant route label.

If you are specifying timing or location constraints, you have the
option to relax them to give PAR more flexibility. If you modify
the UCF file, you must step backwards with the Flow Engine and
re-run Translation in order to incorporate the changes.

Foundation Series 3.1i Quick Start Guide

2-32 Xilinx Development System

Foundation Series 3.1i Quick Start Guide — 0401895 3-1

Chapter 3

Basic Tutorial

This tutorial describes the features in the Foundation Series release
3.1i. The tutorial is provided in three separate types of projects:

• schematic

• Verilog

• VHDL

The chapter contains the following sections:

• “Getting Started”

• “Schematic Design Entry”

• “HDL-Based Design Entry”

• “Functional Simulation”

• “Implementation”

• “Timing Simulation”

Getting Started
This section guides you through a typical FPGA-based design
procedure using a design called ”JCOUNT.” The JCOUNT design
targets a SpartanXL device—S05XLPC84-5; however, all of the
principles and flows taught are applicable to any Xilinx device family,
unless otherwise noted.

In the first part of the tutorial, you will use the Foundation design
entry tools to complete the design. The design is composed of flip-
flops, buffers, and pads.

Foundation Series 3.1i Quick Start Guide

3-2 Xilinx Development System

Design Description
Throughout this tutorial, the design is referred to as JCOUNT.

The design begins as an unfinished design. After you complete the
design, you will simulate it to verify the functionality.

“JCOUNT” is a simple 4-bit Johnson counter. The completed
schematic is shown in the following picture.

Figure 3-1 Completed JCOUNT Schematic

Controls:

• CLK—input clock pulse

• CE—clock enable (when set to 0, the counter freezes)

• CLR—clear input (when set to 1, the counter is reset to all zeroes)

Basic Tutorial

Foundation Series 3.1i Quick Start Guide 3-3

Outputs:

Q0-Q3—counter outputs

Operation:

The counter is triggered on the rising edge of the clock (CLK) when
the clock enable signal (CE) is high. Following is the sequence of
states during normal operation (that is, without clearing of the
counter):

0000

0001

0011

0111

1111

1110

1100

1000

0000

There are also two files external to the project that contain simulation
results.

• JCT_F.TVE—prerouted design simulation results

• JCT_T.TVE—routed design timing simulation results

Foundation Series 3.1i Quick Start Guide

3-4 Xilinx Development System

Starting the Project Manager
This tutorial assumes that the Foundation software is installed in the
default location c:\fndtn. If you have installed the software in a
different location, substitute your installation path for c:\fndtn.

The JCOUNT project is installed in the c:\fndtn\active\projects
directory. Following is the list of JCOUNT projects supplied by Xilinx.

1. Double click the Foundation Series Project Manager icon on your
desktop or select Start → Programs → Foundation
Series 3.1i → Xilinx Project Manager from the Start
menu icon in the lower left corner of your screen.

2. A Getting Started dialog box displays, allowing you to select a
project to open. If you have not opened this tutorial project before
now, click the More Projects... button.

Project Name Description

JCT_SCHF JCOUNT schematic -- finished

JCT_SCHU JCOUNT schematic -- unfinished

JCT_VHDF JCOUNT VHDL -- finished

JCT_VHDU JCOUNT VHDL -- unfinished

JCT_VERF JCOUNT Verilog -- finished

JCT_VERU JCOUNT Verilog -- unfinished

Basic Tutorial

Foundation Series 3.1i Quick Start Guide 3-5

Figure 3-2 Getting Started Dialog Box

3. Browse to the c:\fndtn\active\projects directory in the
Directories list (it should open to this location by default). Select
one of the following unfinished projects in the Projects list of the
Open Project dialog box:

♦ JCT_SCHU (JCOUNT schematic design)

♦ JCT_VERU (JCOUNT Verilog design)

♦ JCT_VHDU (JCOUNT VHDL design)

4. Select Open to open the project.

Foundation Series 3.1i Quick Start Guide

3-6 Xilinx Development System

The Project Manager
The Project Manager controls all aspects of the design flow. You can
access all of the various design entry and design implementation
tools as well as the files and documents associated with your project.
The Project Manager also maintains revision control over multiple
design iterations.

The Project Manager is divided into three main subwindows. To the
left is the Design Hierarchy Browser which displays the project
elements. To the right is a set of tabs, each one opens a separate
functional window. The third window at the bottom of the Project
Manager is the Message Console and shows status messages, errors,
and warnings and is updated during all project actions.

Figure 3-3 Project Manager (Schematic Design)

Basic Tutorial

Foundation Series 3.1i Quick Start Guide 3-7

Figure 3-4 Project Manager (HDL Design)

Project Libraries
For schematic designs, when you create a new project in Foundation,
three libraries are automatically added to the project: the appropriate
device family library based on the target family you have chosen (for
example, SPARTANX), the project library (with the same name as the
project), and the SIMPRIMS library (for simulation). All libraries that
are part of the project are listed in the Files tab of the Project Manager.

For HDL designs, only the project library is initially added to the
project. All other libraries are added after synthesis and display in the
Files tab.

Foundation Series 3.1i Quick Start Guide

3-8 Xilinx Development System

Figure 3-5 Project Libraries (Schematic Design)

Figure 3-6 Project Libraries (HDL Design—Before Synthesis)

You can double click any of these libraries, which will bring up the
Library Manager window, allowing you to see the contents of the
library. In the Library Manager window, choose the name of the
library (in the Libraries tab), then choose the Objects tab to see which
objects are in the particular library.

The device family library (SPARTANX for this project) contains all of
the Xilinx Unified Library components for the given family. A
complete description of all of these components can be found in the
online software manual Xilinx Libraries Guide.

To facilitate simulation with the Foundation Logic Simulator, the
SIMPRIMS is added to the project. This library contains the simula-
tion models for the Xilinx devices.

To complete an unfinished schematic design, proceed to the next
section, “Schematic Design Entry”.

To complete an unfinished HDL design, proceed to the “HDL-Based
Design Entry” section.

Basic Tutorial

Foundation Series 3.1i Quick Start Guide 3-9

Schematic Design Entry
This section explains how to complete the unfinished schematic
design, JCT_SCHU. If you selected an HDL design instead, proceed
to the “HDL-Based Design Entry” section.

Starting the Schematic Editor
You can start the Schematic Editor in either of these ways:

• From the Flow tab, click the Schematic Editor icon in the Design
Entry phase button. This instructs the Schematic Editor to open
the project’s top level schematic sheet.

• Double click the file name jct_sch.sch in the Files tab.

The Schematic Editor opens with the jct_sch.sch schematic sheet
loaded. The jct_sch.sch schematic is incomplete at this point. You will
now complete it.

If you need to stop the tutorial at any time, save your work on the
schematic by selecting File → Save from the schematic pulldown
menus.

Foundation Series 3.1i Quick Start Guide

3-10 Xilinx Development System

Figure 3-7 Schematic Editor

Manipulating the Screen
Under the Display pulldown menu is a series of commands that
modify the viewing area of the Schematic Editor window. Zoom in or
out of the schematic to comfortably view it.

Basic Tutorial

Foundation Series 3.1i Quick Start Guide 3-11

Adding a Library Component
Components from all of the libraries (except SIMPRIMS) for the given
project are available from the SC (Schematic) Symbols Toolbox to
place on the schematic. The available components listed in this
toolbox are arranged alphabetically within each library.

1. From the pulldown menus of the schematic editor, select Mode
→ Symbols or click the Symbols Toolbox button in the vertical
toolbar on the left side of the Schematic Editor.

This puts the schematic editor in “Symbols Mode,” opens the SC
Symbols window, and displays the libraries and their corre-
sponding components.

Figure 3-8 SC Symbols Toolbox

Foundation Series 3.1i Quick Start Guide

3-12 Xilinx Development System

2. The component you will place is an IPAD input pad. You can
select this component by either scrolling down the list and
selecting it or by typing IPAD in the bottom of the SC Symbols
Window. Then, move the mouse back into the schematic window.

In the SC Symbols window, when the IPAD component is
selected, a description of the component appears in the bottom of
the window.

3. Move the symbol outline to the location shown at the lower left of
the following picture and click the left mouse button to place the
IPAD between the CE and CLR IPADs.

Remove the SC Symbols window by toggling the Symbols
Toolbox icon on the vertical toolbar (“un-click” to exit the toolbox
mode).

You will wire up the IPAD later in the tutorial. For now, just place
it on the schematic.

Figure 3-9 Placing IPAD

Basic Tutorial

Foundation Series 3.1i Quick Start Guide 3-13

Correcting Mistakes
If you make a mistake when placing the component, you can easily
move or delete the component.

1. Press the Esc key on the keyboard to exit the Symbols Mode.

2. Select the component you want to move or delete. Make sure that
no other components are selected (clicking a blank area of the
schematic deselects everything).

3. Click and drag to correctly place the component, or press the Del
key on the keyboard or the Cut icon in the toolbar to delete the
component.

Drawing and Labeling Nets
You use the Draw Wires icon in the vertical toolbar to draw wires
(also called nets) to connect the IPAD to other components on the
schematic.

1. Click the Draw Wires icon in the vertical toolbar.

2. Click the source pin (output pin of the IPAD), then click the
destination pin (the IBUF to the right of the IPAD that connects to
the flip-flop clock). The net will automatically be drawn between
the two pins.

Note You can specify the shape of the net by moving the mouse
in the direction you want to draw the net and then single-clicking
to create a 90-degree bend in the wire. If you make a mistake
while drawing a net, you can quit your current drawing by
pressing the “Escape” key.

3. Press the “Escape” key to return to Select-and-Drag mode.

4. Double click the net that you just drew.

5. In the Net Name field, type CLK as shown below.

Foundation Series 3.1i Quick Start Guide

3-14 Xilinx Development System

Figure 3-10 Labeling Nets

6. Click OK. Now, view your net, labeled, on the schematic sheet.

Saving the Schematic
The jct_sch.sch schematic is now complete.

Save the schematic by selecting File → Save or clicking the Save
icon in the horizontal toolbar.

All errors, warnings, and informational messages are displayed in the
Message Window in the Project Manager. If any errors are issued,
resolve them and save the schematic again.

Proceed to the “Functional Simulation” section

HDL-Based Design Entry
In this section, you will use either one of two HDL projects:
jct_veru or jct_vhdu. This is the same JCOUNT design that is
used in the schematic design entry. However, rather than being
comprised of modules on a schematic sheet, this JCOUNT design is
written in VHDL or Verilog.

This section assumes that you have already opened one of the
following HDL example designs from the Project Manager.

• c:\fndtn\active\projects\jct_veru

• c:\fndtn\active\projects\jct_vhdu

Basic Tutorial

Foundation Series 3.1i Quick Start Guide 3-15

Adding a File to the Design
For this tutorial, you will add either the Verilog file (.v) or the VHDL
file (.vhd) to the design. Each design has a syntax error. To add the file
to the design and fix the errors, perform the following steps:

1. Add the Jct_ver.v or the Jct_vhd.vhd file to the project by
selecting Document → Add. After the Add Document dialog
box displays, enter the Jct_ver.v or Jct_vhd.vhd file name in the
File name list box and click Open.

Note that the file has a red X next to it. The red X means that the
file has an error.

2. Double click the Jct_ver.v or the Jct_vhd.vhd in the Files tab of the
Project Manager file to open it.

Correcting Syntax Errors
The following steps explain how to correct syntax errors.

1. Check the syntax of the HDL file you are using by selecting
Synthesis → Check Syntax from within the HDL Editor.
Both the Jct_ver.v and Jct_vhd.vhd file have the same syntax
error—the CLK port is not declared.

♦ If you are using the Jct_ver.v file, add the CLK definition to
Line 1. Line 1 should look like the following after adding the
CLK definition.

module JCT_VER (CLK, CE, CLR, Q);

♦ If you are using the Jct_vhd.vhd file, add the CLK declaration
to the Port declaration. The Port declaration lines should look
like the following after adding the CLK declaration.

port (CLK: in STD_LOGIC;

CE: in STD_LOGIC;

CLR: in STD_LOGIC;

Q: inout STD_LOGIC_VECTOR (3 downto 0));

2. Recheck the syntax. The designs now check successfully.

Foundation Series 3.1i Quick Start Guide

3-16 Xilinx Development System

Using the Language Assistant
While you are in the HDL editor, view the Language Assistant. The
Language Assistant provides templates (example code fragments) for
commonly used HDL constructs, as well as synthesis templates for
commonly used logic components such as counters, D flip-flops,
multiplexers, and global buffers. You can add your own templates to
the Language Assistant for components or constructs you use often.

1. To invoke the Language Assistant, select Tools → Language
Assistant from the HDL Editor pulldown menu.

2. The Language Assistant is divided into three sections: Language
Templates, Synthesis Templates, and User Templates. To expand
the view of any of these sections, click the ‘+’ next to the topic.
Click any of the listed templates to view the HDL code in the
right hand pane.

3. Notice the template called D Flip Flop, located under the Flip
Flops heading within the Synthesis Templates and the
corresponding HDL code in the right-hand window.

Figure 3-11 HDL Language Assistant

4. Close the Language Assistant by clicking the “X” in the top right
corner of its window.

5. Close the HDL editor (do not make any modifications) by
selecting File → Exit.

Basic Tutorial

Foundation Series 3.1i Quick Start Guide 3-17

Design Description
The HDL design used in this tutorial is either a top-level Verilog or
VHDL design file. To ensure that the file has recently been analyzed
by Foundation Express, choose Synthesis → Analyze all
Sources.

HDL files that make up a project always have one of four status
indicators associated with the file. Examples of these indicators are
shown below:

A red question mark means that the file has been modified and needs
to be re-analyzed. Right-click the file and select Analyze from the
pulldown menu.

A red exclamation point means warnings have been issued. Select the
file and examine the warnings under the HDL Warnings tab. To
investigate the warning on a file, perform the following steps:

1. Click the file name.

2. Click the HDL Warnings tab in the messages window.

3. Single-click to highlight the warning message

4. Press the “F1” key on your keyboard. An extended help message
screen will pop up. Many synthesis warnings may be safely
ignored.

A red X means errors have been found.

A green check mark means that the file is up-to-date with no errors or
warnings.

Foundation Series 3.1i Quick Start Guide

3-18 Xilinx Development System

Synthesis
Now that the design has been entered and each file analyzed, you
will synthesize the design in the next steps. “Logic Synthesis” is the
process of compiling your HDL code into an XNF or EDIF netlist of
gates. That netlist is the input to the Xilinx Implementation Tools. In
this section, you will “pull” the design completely through synthesis.

1. Set the global synthesis options by selecting Synthesis →
Options. Set the Default Frequency to 100 (default is 50 MHz),
and check the Export Timing Constraints box. Click OK to accept
these values.

2. Click the + next to jct_ver.v or jct_vhd.vhd. This shows the
modules within the HDL file.

3. Select the module named “JCT_VER” or “JCT_VHD” and click
the Synthesis button from the Flow tab.

This step causes the flow to proceed through Synthesis.

4. In the Synthesis/Implementation window, complete the Target
Device fields with this information:

♦ Family: SPARTANXL

♦ Device: S05XLPC84

♦ Speed Grade: -5

Basic Tutorial

Foundation Series 3.1i Quick Start Guide 3-19

Figure 3-12 Synthesis/Implementation Window

Note If your design is JCT_VHD, then “JCT_VHD” displays in
the Top level field instead of “JCT_VER”.

5. Click Run.

Foundation Express synthesizes and optimizes the design and
also creates a design version.

6. Proceed to the next section, “Functional Simulation”.

Functional Simulation
You can perform functional simulation before design implementation
to verify that the logic that you have created is correct. Foundation
provides a Logic Simulator, which is a gate-level simulator. You can
perform functional simulation on a schematic-based design
immediately after you have finished using the Schematic editor. In a
later section, you will perform timing simulation, which takes place
after the design is implemented (placed and routed) with the Xilinx
Implementation Tools.

Foundation Series 3.1i Quick Start Guide

3-20 Xilinx Development System

Starting the Logic Simulator
Click the Simulation phase button in the Project Flowchart.

You may be prompted to update the schematic netlist if you modified
the design but did not write out a netlist. In this case, click Yes to
update the netlist. (If you also get a dialog asking to update macros,
select No. You will get this dialog only if you inadvertently changed
something in the HDL editor.)

The Logic Simulator is invoked, and the project netlist is
automatically loaded into the simulator.

Performing Simulation
There are three basic steps to simulate your design:

1. Adding signals - the inputs and outputs you want to see in the
simulator

2. Adding stimulus - inputs on some of the signals

3. Running the simulation - and view output waveforms

Adding Signals
In order to view signals during the simulation, you must first add
them to the Waveform Viewer in the Simulator. The signals are then
listed in the Waveform Viewer. You can view and monitor the
waveforms next to the corresponding signal names.

Adding Signals Using the Component Selection
Window

Follow these steps to add signals using the Component Selection
window within the Simulator.

1. Click the Component Selection icon in the toolbar in the
Simulator or select Signal → Add Signals.

Basic Tutorial

Foundation Series 3.1i Quick Start Guide 3-21

The Component Selection window opens.

This window is divided into three panes. The left-most pane is
the Signals Selection pane. This pane displays a list of all of the
available signals for a given level of hierarchy. The middle pane,
Chip Selection, displays a list of all of the components for a given
level of hierarchy.

Figure 3-13 Scan Hierarchy Signals Selector (Schematic Design)

Foundation Series 3.1i Quick Start Guide

3-22 Xilinx Development System

Figure 3-14 Scan Hierarchy Signals Selector (HDL Design)

2. From the Signals Selection pane, you can either double click
signals to add them to the Waveform Viewer, or you can single
click and then press Add. Use whichever method you prefer to
add the following nets and buses:

CLK

CE

CLR

<Q3, Q0> (4-bit wide Q bus)

3. (Schematic design only) Create a bus for the output signals Q3,
Q2, Q1, and Q0.

a) Shift click each Q output.

b) With all four outputs selected, right-click the mouse and
select Bus → Combine.

(The HDL design Q outputs are already defined as a bus).

Basic Tutorial

Foundation Series 3.1i Quick Start Guide 3-23

4. Change the radix of the Q bus to binary.

a) Select Q.

b) Right-click the mouse button and select Bus → Display
Binary.

5. Close the Component Selection Window by clicking the Close
button.

All of the signals you added are now in the Waveform Viewer.

Deleting a Signal

To delete any of the signals from the Waveform Viewer, first select the
signal in the signal list in the Waveform Viewer, right-click, and then
select Delete Signals → Selected. This operation removes the
highlighted signal from the Waveform Viewer.

Adding Stimulus
To define the function of the input signals, you must add stimulus to
your simulation. There are many ways to define stimulus with the
Foundation Simulator. In this tutorial, you will use the keyboard
stimulus.

Open the Stimulator Selection Window by clicking the Stimulator
icon in the toolbar or by selecting Signal → Add
Stimulators...

The Stimulator Selection window appears:

Foundation Series 3.1i Quick Start Guide

3-24 Xilinx Development System

Figure 3-15 Stimulator Selector

Stimulating with the Internal Binary Counter

You need to simulate an input clock for the JCOUNT design, so you
will use the Foundation Simulator’s internal 16-bit binary counter.
Use the least-significant bit (LSB) of the counter (B0). The right-most
round yellow LED in the Stimulator Selection window is the B0
counter.

To simulate the system clock, you assign the B0 stimulus to the CLK
signal in the simulator.

1. In the Waveform Viewer, select the CLK signal by clicking it.

2. In the Stimulator Selection Window, click the B0 stimulator (the
right-most yellow round LED). You should now see a B0 next to
the CLK signal in the Waveform Viewer indicating that the B0
stimulator is assigned to CLK.

3. Select Options → Preferences from the Simulator window.
This opens the Preferences window. In the Simulation tab of this
window, you can set the frequency of the B0 counter output. Set
the B0 frequency to 10MHz.

Basic Tutorial

Foundation Series 3.1i Quick Start Guide 3-25

Figure 3-16 Simulator Preferences

4. Click OK to close the Preferences window.

Stimulating with Keyboard Stimulators

You assign keyboard keys as stimulus for signals in your design with
the keyboard in the Stimulator Selection window. After you assign a
key as a stimulus, the signal’s value toggles between 1 and 0 when-
ever you press the corresponding key on your PC’s keyboard.

Assign the R keyboard stimulus to the CLR signal in the JCOUNT
design.

1. Click and drag the R key on the keyboard in the Stimulator
Selector onto the CLR signal name in the Waveform Viewer.

2. You should now see an r next to the CLR signal in the Waveform
Viewer, which indicates that this is the assigned stimulus.

3. Press the R key on your PC keyboard a few times to see the state
of the stimulus toggling in the Waveform Viewer.

4. In the same way, assign the E keyboard stimulus to the CE signal
in the JCOUNT design.

5. Close the Stimulator Selection window by clicking its Close
button.

Foundation Series 3.1i Quick Start Guide

3-26 Xilinx Development System

Running the Simulation
Now you should see the three inputs of the JCOUNT design, CLK,
CLR, and CE, listed in the Waveform Viewer, each having some type
of stimulus associated with it. You should also see the Q output
listed. You are now ready to run the simulation.

Figure 3-17 Signals with Stimulus

Use the Step button in the Simulator toolbar to advance the
simulation for a set amount of time. You can define the size of the
Step using the pulldown menu next to the Step button, shown in the
following diagram.

Basic Tutorial

Foundation Series 3.1i Quick Start Guide 3-27

Figure 3-18 Simulator Step

1. Set the Step size to 100ns.

2. Press the R key on your PC keyboard until the CLR stimulus state
is low.

3. Press the E key on your PC keyboard so that the CE state is high.

4. Click the Step button three times to advance the simulation.

The CLK signal is clocking based on the B0 frequency you set
earlier.

5. Press the E key on your PC keyboard to simulate the clock enable
signal.

6. Click the Step button twice to advance the simulation.

7. Press the E key again on your PC keyboard to simulate.

8. Click the Step button three times to advance the simulation.

9. Press the R key on the PC keyboard to set CLR to high.

10. Click the Step button once.

11. Press the R key on the PC keyboard to set CLR to low.

12. Click the Step button twice.

Does the circuit appear to be working properly? Is the counter
counting? The waveform should look like the following figure.

Foundation Series 3.1i Quick Start Guide

3-28 Xilinx Development System

Figure 3-19 Resulting Waveform

13. To clear your waveforms and start your simulation over, choose
Waveform → Delete → All Waveforms with Power On
from the Simulator pulldown menus.

14. Run several simulations, experimenting with the CLR and CE
input functionality.

15. Close the Logic Simulator window by selecting File → Exit.

Implementation
This section describes how to implement a design.

• If you created the schematic design, proceed to the
“Implementing the Schematic Design” section.

• If you created the HDL design, proceed to the “Implementing the
HDL Design” section.

Basic Tutorial

Foundation Series 3.1i Quick Start Guide 3-29

Implementing the Schematic Design
To begin the implementation of the schematic design, click the
implementation phase button in the Project Flow diagram.

If you are asked if you wish to update the EDIF netlist because the
schematic is newer, say Yes to update the EDIF netlist. This EDIF
netlist is the actual input file to the Design Implementation tools.

Next you will see the Implement Design dialog box.

Figure 3-20 Implement Design Dialog Box

With this dialog box, you can select the target device and various
implementation options. The target device is already set to
S05XLPC84-5 because that was the device selected when the
Foundation project was created. The Version and Revision fields have
been filled in automatically. You can also find these version and
revision names in the Project Manager Versions tab after
implementation.

Proceed to the “Implementation Options” section.

Foundation Series 3.1i Quick Start Guide

3-30 Xilinx Development System

Implementing the HDL Design
In the “Synthesis” section, you synthesized your design. To
implement the design, perform the following steps.

1. Click the Implementation phase button in the Project Flow
diagram.

2. The Revision Name is automatically filled in with “rev1”. If you
want to use a new name, enter it in the box. Proceed to the
“Implementation Options” section.

Figure 3-21 Synthesis/Implementation Dialog Box

Basic Tutorial

Foundation Series 3.1i Quick Start Guide 3-31

Implementation Options
Implementation options specify how a design is optimized, mapped,
placed, routed, and configured. Options are grouped into objects
called implementation, simulation, and configuration templates.
Each template defines an implementation, simulation or
configuration approach.

1. Click the Options button. The Options dialog box opens.

2. Select desired options and click OK.

Figure 3-22 Options Dialog Box

3. Click OK to close the Options dialog box.

Running Implementation — The Flow Engine
After setting the implementation options, you are ready to implement
the design.

Click Run in the Implement Design dialog box or click Run in the
Synthesis/Implementation dialog box.

The Flow Engine displays and processes your design through the
implementation steps.

Foundation Series 3.1i Quick Start Guide

3-32 Xilinx Development System

Figure 3-23 Flow Engine

When implementation is complete, the Flow Engine closes automati-
cally, and the Foundation Series Project Manager is fully visible
again. Click OK in the Flow Engine Completed Successfully dialog
box.

The status of the implementation is displayed in the console window
at the bottom of the Project Manager. You should see (OK
Implemented) and Completed Successfully for the version and
revision. If you encountered any errors in the implementation, refer
to the Implementation Log file for details on the error.

Basic Tutorial

Foundation Series 3.1i Quick Start Guide 3-33

Viewing Implementation Results
The Foundation Series Project Manager maintains control over all of
your design implementation versions and revisions. You can directly
view and analyze these implementations from the Project Manager.

1. Click the Versions tab in the left-hand pane of the Project
Manager. You should see a hierarchical display of the
implementation you just ran. The revision that is most current is
displayed in bold.

Figure 3-24 Versions Tab (Schematic Design)

Figure 3-25 Versions Tab (HDL Design)

2. With the current revision selected, click the Reports tab in the
right-hand side of the Project Manager. The Reports tab displays
reports and logs for the selected revision of the design.

3. Double click the report entitled Implementation Report Files.
This displays the Xilinx Report Browser, which contains all of the
implementation reports. You have the option to browse through
any of these reports at this time.

Foundation Series 3.1i Quick Start Guide

3-34 Xilinx Development System

Timing Simulation
Timing simulation uses the block and routing delay information from
the routed design to give a more accurate assessment of the behavior
of the circuit under worst-case conditions. For this reason, timing
simulation is performed after the design has been placed and routed.

This section of the tutorial shows how to run a script to do a
simulation. Timing simulation uses the same tools as does the
functional simulation that you did with the design earlier. The only
difference is that the design which is loaded into the simulator for
timing simulation contains worst-case routing delays based on the
actual placed and routed design.

Invoking Timing Simulation
To invoke the timing simulator, click the Timing Simulation icon in
the Verification phase button in the Project Manager Flow diagram.

The simulator is now loaded and ready to simulate. For this
simulation, you will use an existing script file.

Simulating with Script Files - Script Editor
Earlier, you used the Foundation Series functional simulator to input
signals to the simulator and to provide stimulus including keyboard
stimulus and the internal binary counter. In this section, you use a
script file to simulate the design and will launch it from the Script
Editor.

1. To invoke the Script Editor, select Tools → Script Editor
from the pulldown menus within the Simulator. A dialog box
prompts you to select a script file.

2. Choose Open: Existing Script File and click OK.

3. Select the file: jcount.cmd, which was written previously for you
to use in this tutorial.

Basic Tutorial

Foundation Series 3.1i Quick Start Guide 3-35

Browse the script file; you will notice the same inputs and outputs
that you used in the functional simulation earlier.

Running the Simulation from the Script Editor
This section explains how to run simulation from the script editor.

1. You can execute the simulation directly from the Script Editor. To
do this, select Execute → Go.

A log of the executed commands appears at the bottom of the
Script Editor.

2. To view the simulation results in the Waveform Viewer, move the
Script Editor window and bring the Waveform Viewer window
to the front of your view.

3. Click the Expand icon located above the signal names display to
view the waveform in more details.

4. Inspect the simulation results to make sure they are accurate.

You should now see that this is indeed performing a timing
simulation based on actual delays in the placed and routed design. If
you zoom in to get a closer view of the waveforms, you will see that
there is a delay from the rising edge of the clock to the transitions or
the counter outputs.

Foundation Series 3.1i Quick Start Guide

3-36 Xilinx Development System

Figure 3-26 Timing Simulation Waveforms

Closing the Simulator
When you are satisfied with the results of the simulation, you may
close the Script Editor and the Simulator.

Foundation Series 3.1i Quick Start Guide — 0401895 Glossary-1

Glossary

ABEL
ABEL is a high-level language (HDL) and compilation system
produced by Data I/O Corporation.

actions
In state machines, actions are HDL statements that are used to make
assignments to output ports or internal signals. Actions can be
executed at several points in a state diagram. The most commonly
used actions are state actions and transition actions. State actions are
executed when the machine is in the associated state. Transition
actions are executed when the machine goes through the associated
transition.

Aldec
An Electronic Design Automation (EDA) vendor. Aldec provides the
Foundation Project Manager, Schematic Editor, Logic Simulator, and
HDL Editor, and State Editor.

aliases
Aliases, or signal groups, are useful for probing specific groups of
nodes.

analyze
The Foundation Express process in which design source files are
examined for correct syntax.

Foundation Series 3.1i Quick Start Guide

Glossary-2 Xilinx Development System

architecture
Architecture is the common logic structure of a family of
programmable integrated circuits. The same architecture can be
realized in different manufacturing processes. Examples of Xilinx
architectures are the XC4000, XC5200, and XC9500 devices.

attributes
Attributes are instructions placed on symbols or nets in an FPGA
schematic to indicate their placement, implementation, naming,
direction, or other properties.

back-annotation
Back-annotation is the translation of a routed or fitted design to a
timing simulation netlist.

BitGen
A program that produces a bitstream for Xilinx device configuration.
BitGen takes a fully routed NCD (Circuit Description) file as its input
and produces a configuration bitstream, a binary file with a .bit
extension.

Black Box Instantiation
Instantiation where the synthesizer is not given the architecture or
modules. In Foundation, black boxes are translated with the
implementation tools.

block
A block is a group of one or more logic functions.
A block is a schematic or symbol sheet. There are four types of blocks.

• A Composite block indicates that the design is hierarchical.

• A Module block is a symbol with no underlying schematic.

• A Pin block represents a schematic pin.

• An Annotate block is a symbol without electrical connectivity
that is used only for documentation and graphics.

Foundation Series 3.1i Quick Start Guide Glossary-3

breakpoint
A breakpoint is a condition for which a simulator must stop to
perform simulation commands.

buffer
A buffer is an element used to increase the current or drive of a weak
signal and, consequently, increase the fanout of the signal. A storage
element.

bus
A bus is a group of nets carrying common information. In LogiBLOX,
bus sizes are declared so that they can be expanded accordingly
during design implementation.

CLB
The Configurable Logic Block (CLB). Constitutes the basic FPGA cell.
It includes two 16-bit function generators (F or G), one 8-bit function
generator (H), two registers (flip-flops or latches), and
reprogrammable routing controls (multiplexers).

CLBs are used to implement macros and other designed functions.
They provide the physical support for an implemented and
downloaded design. CLBs have inputs on each side, and this
versatility makes them flexible for the mapping and partitioning of
logic.

component
A component is an instantiation or symbol reference from a library of
logic elements that can be placed on a schematic.

condition
A condition is a Boolean expression. If there is more than one
transition leaving a state in a state machine, you must associate a
condition with each transition.

Foundation Series 3.1i Quick Start Guide

Glossary-4 Xilinx Development System

constraint
Constraints are specifications for the implementation process. There
are several categories of constraints: routing, timing, area, mapping,
and placement constraints.

Using attributes, you can force the placement of logic (macros) in
CLBs, the location of CLBs on the chip, and the maximum delay
between flip-flops. CLBs are arranged in columns and rows on the
FPGA device. The goal is to place logic in columns on the device to
attain the best possible placement from the standpoint of both
performance and space.

constraints editor
A GUI tool that you can use to enter design constraints. In Foundation
3.1i, there are two constraint editors. The Express editor is available
only in the Foundation Express product configuration. The Xilinx
Constraints Editor is integrated with the Design Implementation tools
and available in all product configurations.

constraint file
A constraint file specifies constraints (location and path delay)
information in a textual form. An alternate method is to place
constraints on a schematic.

CORE Generator tool
A software tool for generating and delivering parameterizable cores
optimized for FPGAs. The library includes cores as complex as DSP
filters and multipliers and as simple as delay elements. You can use
these cores as building blocks in order to complete your designs more
quickly.

Foundation Series 3.1i Quick Start Guide Glossary-5

CPLD
Complex Programmable Logic Device (CPLD) is an erasable
programmable logic device that can be programmed with a schematic
or a behavioral design. CPLDs constitute a type of complex PLD based
on EPROM or EEPROM technology. They are characterized by an
architecture offering high speed, predictable timing, and simple
software.

The basic CPLD cell is called a macrocell, which is the CPLD
implementation of a CLB. It is composed of AND gate arrays and is
surrounded by the interconnect area.

CPLDs consume more power than FPGA devices, are based on a
different architecture, and are primarily used to support behavioral
designs and to implement complex counters, complex state machines,
arithmetic operations, wide inputs, and PAL crunchers.

CPLD fitter
The CPLD Fitter implements designs for the XC9500 devices.

design entry tools
A set of tools accessible from the Project Manager. These tools include
the Schematic Editor, State Editor, and HDL Editor.

Foundation Express, an embedded portion of the Foundation
software package, contains the VHDL and Verilog design languages.

daisy chain
A daisy chain is a series of bitstream files concatenated in one file. It
can be used to program several FPGAs connected in a daisy chain
board configuration.

design implementation tools
A set of tools that comprise the mainstream programs offered in the
Xilinx design implementation tools. The tools are NGDBuild, MAP,
PAR, NGDAnno, TRCE, all the NGD2 translator tools, BitGen, and
PROMGen. The GUI-based tools are Flow Engine, Constraint Editor,
FPGA Editor, Floorplanner, PROM File Formatter, JTAG
Programmer, and Hardware Debugger.

Foundation Series 3.1i Quick Start Guide

Glossary-6 Xilinx Development System

effort level
Effort level refers to how hard the Xilinx Design System (XDS) tries to
place a design. The effort level settings are.

• High, which provides the highest quality placement but requires
the longest execution time. Use high effort on designs that do not
route or do not meet your performance requirements.

• Medium, which is the default effort level. It provides the best
trade-off between execution time and high quality placement for
most designs.

• Low, which provides the fastest execution time and adequate
placement results for prototyping of simple, easy-to-route
designs. Low effort is useful if you are exploring a large design
space and only need estimates of final performance.

elaborate
The HDL process that combines the individual parts of a design into a
single design and then synthesizes the design.

EXORmacs (Motorola)
EXORmacs is a PROM format supported by the Xilinx tools. Its
maximum address is 16 777 216. This format supports PROM files of
up to (8 x 16 777 216) = 134 217 728 bits.

fanout
Fanout is the maximum number of specified unit loads that a specified
output can drive.

fitter
The fitter is the software that maps a PLD logic description into the
target CPLD.

floorplanning
Floorplanning is the process of choosing the best grouping and
connectivity of logic in a design.

It is also the process of manually placing blocks of logic in an FPGA
where the goal is to increase density, routability, or performance.

Foundation Series 3.1i Quick Start Guide Glossary-7

FPGA
Field Programmable Gate Array (FPGA) is a class of integrated
circuits pioneered by Xilinx in which the logic function is defined by
the customer using Xilinx development system software after the IC
has been manufactured and delivered to the end user. Gate arrays are
another type of IC whose logic is defined during the manufacturing
process. Xilinx supplies RAM-based FPGA devices.

FPGA applications include fast counters, fast pipelined designs,
register intensive designs, and battery powered multi-level logic.

functional simulation
Functional simulation is the process of identifying logic errors in your
design before it is implemented in a Xilinx device. Because timing
information for the design is not available, the simulator tests the logic
in the design using unit delays. Functional simulation is usually
performed at the early stages of the design process.

gate
A gate is an integrated circuit composed of several transistors and
capable of representing any primitive logic state, such as AND, OR,
XOR, or NOT inversion conditions. Gates are also called digital,
switching, or logic circuits.

guided design
Guided design is the use of a previously implemented version of a file
for design mapping, placement, and routing. Guided design allows
logic to be modified or added to a design while preserving the layout
and performance that have been previously achieved.

guided mapping
An existing NCD file is used to “guide” the current MAP run. The
guide file may be used at any stage of implementation: unplaced or
placed, unrouted or routed. In 3.1i, guided mapping is supported
through the Project Manager.

Foundation Series 3.1i Quick Start Guide

Glossary-8 Xilinx Development System

HDL
Hardware Description Language. A language that describes circuits in
textual code. The two most widely accepted HDLs are VHDL and
Verilog.

An HDL, or hardware description language, describes designs in a
technology-independent manner using a high level of abstraction.

HDL Editor
Foundation’s editor for ABEL, Verilog, and VHDL. The HDL Editor
also provides a syntax checker, language templates, and access to the
synthesis tools.

hierarchical design
A hierarchical design is a design composed of multiple sheets at
different levels of your schematic.

Hierarchy Browser
The left-hand portion of the Foundation Project Manager that displays
the current design project. The browser also displays two tabs, Files
and Versions.

implementation
Implementation is the mapping, placement, and routing of a design.
A phase in the design process during which the design is placed and
routed. (For CPLDs, the design is fitted.)

instantiation
Incorporating a macro or module into a top-level design. The
instantiated module can be a LogiBLOX module, CORE-generated
module, VHDL module, Verilog module, schematic module, state
machine, or netlist.

Language Assistant
The Language Assistant in the HDL Editor provides templates to aid
you in common VHDL and Verilog constructs, common logic
functions, and architecture-specific features.

Foundation Series 3.1i Quick Start Guide Glossary-9

Library Manager
The Library Manager is used to perform a variety of operations on the
design entry tools libraries and their contents. These libraries contain
the primitives and macros that you use to build your design.

locking
Lock placement applies a constraint to all placed components in your
design. This option specifies that placed components cannot be
unplaced, moved, or deleted.

LogiBLOX
Xilinx design tool for creating high-level modules such as counters,
shift registers, and multiplexers.

logic
Logic is one of the three major classes of ICs in most digital electronic
systems: microprocessors, memory, and logic. Logic is used for data
manipulation and control functions that require higher speed than a
microprocessor can provide.

Logic Simulator
The Logic Simulator, a real-time interactive design tool, can be used
for both functional and timing simulation of designs. The Logic
Simulator creates an electronic breadboard of your design directly
from your design’s netlist. The Logic Simulator can be accessed by
clicking the Functional Simulation icon on the Simulation phase
button or the Timing Simulation icon on the Verification phase button
in the Project Manager.

macro
A macro is a component made of nets and primitives, flip-flops or
latches, that implements high-level functions, such as adders,
subtractors, and dividers. Soft macros and RPMs are types of macros.

A macro can be unplaced, partially placed, or fully placed; it can also
be unrouted, partially routed, or fully routed. See also “physical
macro.”

Foundation Series 3.1i Quick Start Guide

Glossary-10 Xilinx Development System

mapping
Mapping is the process of assigning a design’s logic elements to the
specific physical elements that actually implement logic functions in a
device.

MCS file
An MCS file is an output from the PROMGen program in Intel’s MCS-
86 format.

MRP file
An MRP (mapping report) file is an output of the MAP run. It is an
ASCII file containing information about the MAP run. The
information in this file contains DRC warnings and messages, mapper
warnings and messages, design information, schematic attributes,
removed logic, expanded logic, signal cross references, symbol cross
references, physical design errors and warnings, and a design
summary.

NCD file
An NCD (netlist circuit description) file is the output design file from
the MAP program, LCA2NCD, PAR, or FPGA Editor. It is a flat
physical design database correlated to the physical side of the NGD in
order to provide coupling back to the user’s original design. The NCD
file is an input file to MAP, PAR, TRCE, BitGen, and NGDAnno.

net
A net is a logical connection between two or more symbol instance
pins. After routing, the abstract concept of a net is transformed to a
physical connection called a wire.

A net is an electrical connection between components or nets. It can
also be a connection from a single component. It is the same as a wire
or a signal.

netlist
A netlist is a text description of the circuit connectivity. It is basically
a list of connectors, a list of instances, and, for each instance, a list of
the signals connected to the instance terminals. In addition, the netlist
contains attribute information.

Foundation Series 3.1i Quick Start Guide Glossary-11

NGA file
An NGA (native generic annotated) file is an output from the
NGDAnno run. An NGA file is subsequently input to the appropriate
NGD2 translation program.

NGDAnno
The NGDAnno program distributes delays, setup and hold time, and
pulse widths found in the physical NCD design file back to the logical
NGD file. NGDAnno merges mapping information from the NGM file
and timing information from the NCD file and puts all this data in the
NGA file.

NGDBuild
The NGDBuild program performs all the steps necessary to read a
netlist file in XNF or EDIF format and create an NGD file describing
the logical design. The GUI equivalent is called Translate.

NGD file
An NGD (native generic database) file is an output from the
NGDBuild run. An NGD file contains a logical description of the
design expressed both in terms of the hierarchy used when the design
was first created and in terms of lower-level Xilinx primitives to which
the hierarchy resolves.

NGM file
An NGM (native generic mapping) file is an output from the MAP run
and contains mapping information for the design. The NGM file is an
input file to the NGDAnno program.

one-hot encoding
For state machines, in one-hot encoding, an individual state register is
dedicated to one state. Only one flip-flop is active, or hot, at any one
time.

Foundation Series 3.1i Quick Start Guide

Glossary-12 Xilinx Development System

optimization
Optimization is the process that decreases the area or increases the
speed of a design. Foundation allows you to control optimization of a
design on a module-by-module basis. This means that you have the
ability to, for instance, optimize certain modules of your design for
speed, some for area, and some for a balance of both.

optimize
The third step in the FPGA Express synthesis flow. In this stage, the
implemented design is re-synthesized with constraints the user
specifies. This is the final step before writing out the XNF file from
FPGA Express.

PAR (Place and Route)
PAR is a program that takes an NCD file, places and routes the design,
and outputs another NCD file. The NCD file produced by PAR can be
used as a guide file for reiterative placement and routing. The NCD
file can also be used by the bitstream generator, BitGen.

path delay
A path delay is the time it takes for a signal to propagate through a
path.

PCF file
The PCF file is the “Physical Constraints File” created by the MAP
program. It is an ASCII file containing physical constraints created by
the MAP program as well as physical constraints you enter. You can
edit the PCF file from within the FPGA Editor.

PDF file
Project Description File. The PDF file contains library and other
project-specific information. Not to be confused with an Adobe
Acrobat document with the same extension.

Foundation Series 3.1i Quick Start Guide Glossary-13

physical Design Rule Check (DRC)
Physical Design Rule Check (DRC) is a series of tests to discover
logical and physical errors in the design. Physical DRC is applied from
FPGA Editor, BitGen, PAR, and Hardware Debugger. By default,
results of the DRC are written into the current working directory.

pin
A pin can be a symbol pin or a package pin. A package pin is a
physical connector on an integrated circuit package that carries
signals into and out of an integrated circuit. A symbol pin, also
referred to as an instance pin, is the connection point of an instance to
a net.

pinwires
Pinwires are wires which are directly tied to the pin of a site (that is,
CLB, IOB).

PLD
A PLD, or programmable logic device, is composed of two types of
gate arrays: the AND array and the OR array, thus providing for sum
of products algorithmic representations. PLDs include three distinct
types of chips: PROMs, PALs, and PLAs. The most flexible device is
the PLA (programmable logic array) in which both the AND and OR
gate arrays are programmable. In the PROM device, only the OR gate
array is programmable. In the PAL device, only the AND gate array is
programmable. PLDs are programmed by blowing the fuses along the
paths that must be disconnected.

FPGAs and CPLDs are classes of PLDs.

Project Manager
The primary GUI for managing a Foundation Project. Design entry,
synthesis, simulation, implementation, and downloading can be
launched from the Project Manager.

Foundation Series 3.1i Quick Start Guide

Glossary-14 Xilinx Development System

Project Flowchart
The right-hand portion of the Foundation Project Manager that
provides access to the synthesis and implementation tools, and the
current design project. The Project Flowchart can display up to four
tabs: Flow, Contents, Reports, and Synthesis.

PROM File Formatter
The PROM File Formatter is the program used to format one or more
bitstreams into an MC86, TEKHEX, EXORmacs or HEX PROM file
format.

radix
A radix is the base—usually binary, octal, decimal, or hexadecimal—
in which waveforms are displayed in a waveform viewer.

readback
Readback is the process of reading the logic downloaded to an FPGA
device back to the source. There are two types of readbacks:

• A readback of logic usually accompanied by a comparison check
to verify that the design was downloaded in its entirety.

• A readback of the states stored in the device memory elements to
ensure that the device is behaving as expected.

route
The process of assigning logical nets to physical wire segments in the
FPGA that interconnect logic cells.

route-through
A route that can pass through an occupied or an unoccupied CLB site
is called a route-through. You can manually do a route-through in the
FPGA Editor. Route-throughs provide you with routing resources
that would otherwise be unavailable.

Foundation Series 3.1i Quick Start Guide Glossary-15

Schematic Flow
If a project is defined as a Schematic Flow, no Synthesis button
displays in the Project Flow area of the Project Manager. A Schematic
Flow may only have schematic designs as top-level designs. However,
these top-level designs can contain HDL modules. If the designs
contain HDL modules, the Synthesis tab displays in the upper portion
of the Project Flow area.

states
The values stored in the memory elements of a device (flip-flops,
RAMs, CLB outputs, and IOBs) that represent the state of that device
for a particular readback (time). To each state, there corresponds a
specific set of logical values.

state diagram
A state diagram is a pictorial description of the outputs and required
inputs for each state transition as well as the sequencing between
states. Each circle in a state diagram contains the name of a state.
Arrows to and from the circles show the transitions between states
and the input conditions that cause state transitions. These conditions
are written next to each arrow.

state machine
A state machine is a set of combinatorial and sequential logic elements
arranged to operate in a predefined sequence in response to specified
inputs. The hardware implementation of a state machine design is a
set of storage registers (flip-flops) and combinatorial logic, or gates.
The storage registers store the current state, and the logic network
performs the operations to determine the next state. See also
“symbolic state machine” and “encoded state machine.”

state table
A state table shows the value of the outputs for all combinations of
current states and inputs. It also defines the next state for each set of
inputs.

static timing analysis
A static timing analysis is a point-to-point delay analysis of a design
network.

Foundation Series 3.1i Quick Start Guide

Glossary-16 Xilinx Development System

static timing analyzer
A static timing analyzer is a tool that analyzes the timing of the design
on the basis of its paths.

status bar
The status bar is an area located at the bottom of a tool window that
provides information about the commands that you are about to select
or that are being processed.

stimulus information
Stimulus information is the information defined at the schematic level
and representing a list of nodes and vectors to be simulated in
functional and timing simulation.

synthesis
The HDL design process in which each design module is elaborated
and the design hierarchy is created and linked to form a unique design
implementation. Synthesis starts from a high level of logic abstraction
(typically Verilog or VHDL) and automatically creates a lower level of
logic abstraction using a library containing primitives.

TEKHEX (Tektronix)
TEKHEX (Tektronix) is a PROM format supported by Xilinx. Its
maximum address is 65 536. This format supports PROM files of up to
(8 x 65 536) = 524 288 bits.

TRCE
TRCE (Timing Reporter and Circuit Evaluator) “trace” is a program
that will automatically perform a static timing analysis on a design
using the specified (either timing constraints. The input to TRCE is an
NCD file and, optionally, a PCF file. The output from TRCE is an
ASCII timing report which indicates how well the timing constraints
for your design have been met.

Foundation Series 3.1i Quick Start Guide Glossary-17

TWR file
A TWR (Timing Wizard Report) file is an output from the TRCE
program. A TWR file contains a logical description of the design
expressed both in terms of the hierarchy used when the design was
first created and in terms of lower-level Xilinx primitives to which the
hierarchy resolves.

UCF file
A UCF (User Constraints File) contains user-specified logical
constraints.

verification
Verification is the process of reading back the configuration data of a
device and comparing it to the original design to ensure that all of the
design was correctly received by the device.

Verilog
An industry-standard HDL (IEEE Std 1364) originally developed by
Cadence Design Systems, now maintained by OVI. Recognizable as a
file with a .v extension.

Verilog is a commonly used Hardware Description Language (HDL)
that can be used to model a digital system at many levels of
abstraction ranging from the algorithmic level to the gate level. It is
IEEE standard 1364-1995.

VHDL
VHSIC (VHSIC an acronym for Very High-Speed Integrated Circuits)
Hardware Description Language. An industry-standard (IEEE 1076.1)
HDL. Recognizable as a file with a .vhd or .vhdl extension.

VHDL is an acronym for VHSIC Hardware Description Language,
which can be used to model a digital system at many levels of
abstraction ranging from the algorithm level to the gate level. It is
IEEE standard 1076-1993.

A language that is capable of describing the concurrent and sequential
behavior of a digital system with or without timing.

Foundation Series 3.1i Quick Start Guide

Glossary-18 Xilinx Development System

wire
A wire is either 1) a net or 2) a signal.

Foundation Series 3.1i Quick Start Guide — 0401895 Index-1

Index

A
ABEL, definition, Glossary-1
ABEL2HDL, 2-9
actions, definition, Glossary-1
Aldec, Glossary-1
alias, definition, Glossary-1
analyze, definition, Glossary-1
Annotate block type, Glossary-2
architectures, definition, Glossary-2
Asynchronous Delay Report, 2-18
attributes

definition, Glossary-2
various ways to enter, 2-20

B
back-annotation, definition, Glossary-2
BitGen, definition, Glossary-2
bitstreams, CPLDs, 2-15
black box instantiation, definition,
Glossary-2
black boxes, 2-9
BLD file, 2-16
block

definition, Glossary-2
delays, 2-25
types, Glossary-2

Boolean expressions, Glossary-3
breakpoints, definition, Glossary-3
buffer, definition, Glossary-3
bus, definition, Glossary-3

C
checkpoint

simulation, initializing, 2-25
verification, in Figure, 2-3

CLBs
definition, Glossary-3
relationship to constraints, Glossary-4

Component Selection window, 3-20
components

adding to schematics, 3-11
definition, Glossary-3

Composite block type, Glossary-2
condition, definition, Glossary-3
configuration

bitstream, 2-29
templates, 2-18, 3-31

constraint
definition, Glossary-4
editor, definition, Glossary-4
file, definition, Glossary-4
files, using, 2-20

Constraints Editor
definition, Glossary-4
Xilinx, 2-21

CORE Generator tool, 2-11, Glossary-4
cost-based routing, 2-30
CPLDs

bitstream, 2-15
definition, Glossary-5
design flow, 2-3
downloading designs, 2-28

Foundation Series 3.1i Quick Start Guide

Index-2 Xilinx Development System

fitter, 2-14
Fitting Report, 2-18
flow engine, 2-13

customer support, 1-6

D
daisy chain

definition, Glossary-5
of FPGAs, 2-29

debugging
in-circuit, 2-29
real-time, 2-29

delay-based routing, 2-30
delays, routing versus logic, 2-23
design

metrics, overall placer score, 2-17
metrics, physical design rule check,
 2-13
rule check, performing with MAP, 2-13
tools, installation, 1-4

design entry
HDL, 3-14
schematic, 3-9

design entry tools
accessing, 2-12
definition, Glossary-5

design flows
CPLDs, 2-3
for FPGAs, 2-3
supported types, 2-2

design implementation
HDL, 3-30
schematics, 3-29

design implementation tools
definition, Glossary-5
running, 3-31
using, 2-12
viewing results, 3-33

designs
downloading, 2-28
downloading and creating PROMs,
 2-29

documentation, installing, 1-4
downloading, designs, 2-28
Draw Wires icon, 3-13

E
EDIF netlists, 2-21, 2-26
effort level, definition, Glossary-6
elaborate, definition, Glossary-6
E-mail, technical support, 1-6
erroneously removed logic, 2-17
errors, correcting, 3-13
EXO file, 2-28
EXORmacs, Glossary-6

F
fanout, definition, Glossary-6
features, new, 2-2
files, adding to designs, 3-15
fitter

definition, Glossary-6
description, 2-14

Fitting Report, 2-18
floorplanning, definition, Glossary-6
Flow Engine

creating binary streams, 2-14
description, 3-32
Options dialog box, 2-19
status bar, 2-13

FPGAs
daisy chaining, 2-29
definition, Glossary-7

functional simulation
basic steps, 3-20
data, creating, 2-26
definition, Glossary-7
performing, 3-19
running, 3-26

Index

Foundation Series 3.1i Quick Start Guide Index-3

G
gate, definition, Glossary-7
Getting Started dialog box, 3-5
global synthesis option, 3-18
green check mark, 3-17
guided

design, definition, Glossary-7
mapping, definition, Glossary-7

H
hardware, requirements, 1-3
HDL

adding a file, 3-15
correcting syntax errors, 3-15
definition, Glossary-8
design entry, 3-14
designs, synthesizing, 3-18
Editor, definition, Glossary-8
Flow, design strategies, 2-2
implementing, 3-30
simulation capabilities, 2-28

hierarchical design, definition, Glossary-8
Hierarchy Browser

definition, Glossary-8
description, 3-6

I
Implement Design dialog box, 2-13, 3-29
implementation

default options, 2-19
definition, Glossary-8
in-circuit debugging, 2-29
interpreting reports, 2-15
MAP, 2-13
options, 2-18, 3-31
PAR, 2-14
templates, 2-18, 3-31
tools, running, 3-31
tools, viewing results, 3-33
translate, 2-13

Implementation Options Dialog Box, 3-31

in-circuit debugging, 2-29
input, netlists (merging), 2-13
installation

design environment CD, 1-3
design tools, 1-4
documentation, 1-4
getting started, 1-1, 1-3
MXE, 1-5

instantiation, definition, Glossary-8
interconnect delays, 2-25
internal binary counter, 3-24

J
JCOUNT design, 3-1, 3-2

K
keyboard stimulators, 3-25

L
Language Assistant, 3-16, Glossary-8
Library Manager, Glossary-9
location constraints, 2-20
lock placement

definition, Glossary-9
example, 2-21

LogiBLOX
definition, Glossary-9
instantiating, 2-11

logic
definition, Glossary-9
erroneously removed, 2-17

Logic Simulator
definition, Glossary-9
starting, 3-20

M
macros, definition, Glossary-9
MAP

description, 2-13
timing report, 2-23
trimming unused logic, 2-13

Foundation Series 3.1i Quick Start Guide

Index-4 Xilinx Development System

Map report, 2-17
mapping

definition, Glossary-10
report, 2-17

MCS file
definition, Glossary-10
supported file format, 2-28

memory requirements, 1-3
Message Console, 3-6
ModelSim, 2-28
Module block type, Glossary-2
MRP file, definition, Glossary-10
MXE, installation, 1-5

N
NCD files

definition, Glossary-10
updating, 2-30

netlists
definition, Glossary-10
merging, 2-13

nets
definition, Glossary-10
delays, 2-25
drawing, 3-13
labeling, 3-14

network compatibility, 1-5
new features, 2-2
NGA files, definition, Glossary-11
NGD files

containing user constraints, 2-21
definition, Glossary-11

NGDAnno, definition, Glossary-11
NGDBuild

definition, Glossary-11
performing translation, 2-13

NGM file, definition, Glossary-11

O
one-hot encoding, definition, Glossary-11
operating systems supported, 1-2
optimization, definition, Glossary-12
optimize, definition, Glossary-12
options

implementation, 3-31
importance of, 2-18

P
package support, 1-3
pad report, 2-18
pads, constraints, 2-20
PAR

definition, Glossary-12
examining constraints, 2-14
shown in design flow, 2-3
timing report, 2-23

path
delays, controlling with constraints,
 2-20
delays, definition, Glossary-12

PCF file, definition, Glossary-12
PDF file, definition, Glossary-12
physical design rule check, 2-13,
 Glossary-13
pins

block type, Glossary-2
definition, Glossary-13

pinwires, definition, Glossary-13
place and route report, 2-17
placer

score, 2-17
timing constraint driven, 2-20

platforms, supported, 1-2
PLDs, definition, Glossary-13
ports, 1-2
Post Layout Timing Report, 2-18
post-map simulation, advantages of, 2-25
probes, 3-20

Index

Foundation Series 3.1i Quick Start Guide Index-5

project
creating new, 2-7
libraries, 3-7

Project Flowchart, definition, Glossary-14
Project Libraries, 3-7
Project Manager

definition, Glossary-13
description, 3-6
starting, 2-6, 3-4

PROM File Formatter, definition,
Glossary-14

PROM files, downloading, 2-28
PROMs, creating, 2-29

R
radix, definition, Glossary-14
readback, definition, Glossary-14
real-time debugging, 2-29
red exclamation point, 3-17
red question mark, 3-17
red X, 3-17
re-entrant routing, 2-30
registration, 1-4
Report Browser, viewing timing reports,
 2-24
reports

accessing, 3-33
interpreting, 2-15
mapping, 2-17
pinout of design, 2-18
place and route report, 2-17
post-map timing report, 2-22
post-place-and-route timing report,
 2-22
summary timing, 2-24
timing summary, 2-17
translation, 2-16

route, definition, Glossary-14
route-through, definition, Glossary-14
routing

cost-based, 2-30
delay-based, 2-30

re-entrant routing, 2-30
timing constraint driven, 2-20

runtimes, minimizing, 1-2

S
SC Symbols toolbox, 3-12
Scan Hierarchy Signals Selector, 3-22
Schematic

Editor, starting, 3-9
Flow, definition, Glossary-15
Flow, description, 2-3

schematics
adding components, 3-11
design entry, 3-9
designs. top-level, 2-9, 2-10
implementing, 3-29
saving, 3-14

score, placer, 2-17
script editor, 3-34
script files, 3-34
signal states, displaying, 2-29
signals

adding with Component Selection
window, 3-20

adding with probes, 3-20
deleting from Waveform Viewer, 3-23

simulation
files, creating, 2-25
functional, 3-19
functional, basic steps, 3-20
HDL, 2-28
ModelSim, 2-28
timing, 3-34

Simulator Step button, 3-27
simulator, invoking after translation, 2-26
speed grades, switching, 2-24
State

Machines, creating designs, 2-10
Machines, definition, Glossary-15

state
diagrams, definition, Glossary-15
table, definition, Glossary-15

Foundation Series 3.1i Quick Start Guide

Index-6 Xilinx Development System

states, definition, Glossary-15
static timing

analysis, definition, Glossary-15
analysis, description, 2-22, 2-23
analysis, stages of, 2-22
analyzer, definition, Glossary-16

status bar, definition, Glossary-16
stimulation

with keyboard stimulators, 3-25
with the Internal Binary Counter, 3-24

Stimulator Selector, 3-24
stimulus

adding, 3-23
information, Glossary-16

summary timing reports, 2-24
swap space required, 1-2
syntax errors, correcting, 3-15
synthesis

definition, Glossary-16
HDL designs, 3-18

Synthesis/Implementation dialog box,
 3-19, 3-31
system requirements

memory, 1-2
swap space, 1-2

T
technical support, obtaining, 1-6
TEK file, 2-28
TEKHEX, Glossary-16
templates, 2-18, 3-31
Timegroup constraints, 2-21
Timespec constraints, 2-21
timing

analysis, after map, 2-23
analysis, after synthesis, 2-22
analysis, detailed, 2-24
analysis, static, 2-22
analysis, static, after place-and-route,

2-23
constraints, benefit of using, 2-20
delays, minimizing, 2-14

report, post-map, 2-23
report, post-place-and-route, 2-23
report, post-synthesis, 2-22
simulation, advantages of, 2-25
simulation, creating data, 2-27
simulation, description, 3-34
simulation, running from Script
Editor, 3-35
simulation, waveforms, 3-35
summary, 2-17

top-level designs
schematics designs, top-level, 2-9, 2-10
VHDL/Verilog, 2-8

translate, 2-13
translation report, 2-16
TRCE, definition, Glossary-16
tutorial

getting started, 3-1
location, 3-4

TWR file, definition, Glossary-17

U
UCF files

creating, 2-21
definition, Glossary-17
using, 2-20

V
verification, definition, Glossary-17
Verilog, creating designs, 2-8
Versions tab, 3-33
VHDL

definition, Glossary-17
designs, creating, 2-8

W
waveforms, displaying, 2-29
Windows 98/2000/NT, 1-2
wires, definition, Glossary-18

Index

Foundation Series 3.1i Quick Start Guide Index-7

X
XChecker cable, 2-28
Xilinx Constraints Editor, using, 2-21
Xilinx technical support, 1-6
XNF

files, containing underlying netlist,
 2-26
netlists, 2-21

Foundation Series 3.1i Quick Start Guide

Index-8 Xilinx Development System

	Software Manuals Online
	Foundation Series 3.1i Quick Start Guide
	About This Manual
	Manual Contents
	Additional Resources

	Conventions
	Typographical
	Online Document

	Table of Contents (TOC)
	Setting Up the Foundation Tools
	Installation Notes
	Supported Platforms and System Requirements
	Memory Requirements for Xilinx Architectures
	Installing Software
	Installing Xilinx Software
	Installing Documentation
	Installing MXE Software

	Network Compatibility

	Customer Service
	Technical Support

	Foundation Overview
	New Features
	Design Flows
	HDL Flow
	Schematic Flow

	Using the Foundation Design Entry Tools
	Starting the Foundation Project Manager
	Creating a New Project
	Creating Top-level VHDL/Verilog Designs
	Creating Top-Level Schematic Designs
	Creating State Machine Designs
	Instantiating LogiBLOX and CORE Generator Modules
	Accessing the Design Entry Tools

	Using the Design Implementation Tools
	Translate
	MAP (FPGAs)
	Place and Route (FPGAs)
	CPLD Fitter (CPLDs)
	Configure (FPGAs)
	Bitstream (CPLDs)
	Interpreting the Reports
	Translation Report
	Map Report (FPGAs)
	Place and Route Report (FPGAs)
	Pad Report (FPGAs)
	Fitting Report (CPLDs)
	Post Layout Timing Report
	Asynchronous Delay Report

	Selecting Options

	Using Constraint Files
	Design, Netlist, and User Constraints
	Using the Xilinx Constraints Editor
	Creating a User Constraints File

	Static Timing Analysis
	Static Timing Analysis after Synthesis (HDL Only)
	Static Timing Analysis after Map (FPGAs Only)
	Static Timing Analysis after Place and Route (FPGAs Only)
	Summary Timing Reports
	Detailed Timing Analysis

	Creating Simulation Files
	When Can Simulation Data be Created?
	Creating Functional Simulation Data
	Creating Timing Simulation Data
	HDL Simulation

	Downloading a Design
	Creating a PROM
	In-Circuit Debugging

	Re-Entrant Routing (FPGAs)

	Basic Tutorial
	Getting Started
	Design Description
	Starting the Project Manager
	The Project Manager
	Project Libraries

	Schematic Design Entry
	Starting the Schematic Editor
	Manipulating the Screen
	Adding a Library Component
	Correcting Mistakes
	Drawing and Labeling Nets
	Saving the Schematic

	HDL-Based Design Entry
	Adding a File to the Design
	Correcting Syntax Errors
	Using the Language Assistant
	Design Description
	Synthesis

	Functional Simulation
	Starting the Logic Simulator
	Performing Simulation
	Adding Signals
	Adding Signals Using the Component Selection Window
	Deleting a Signal

	Adding Stimulus
	Stimulating with the Internal Binary Counter
	Stimulating with Keyboard Stimulators

	Running the Simulation

	Implementation
	Implementing the Schematic Design
	Implementing the HDL Design
	Implementation Options
	Running Implementation — The Flow Engine
	Viewing Implementation Results

	Timing Simulation
	Invoking Timing Simulation
	Simulating with Script Files - Script Editor
	Running the Simulation from the Script Editor
	Closing the Simulator

	Glossary
	Index

