
Mentor Graphics Interface Guide — 3.1i Printed in U.S.A.

Mentor
Graphics
Interface Guide

Introduction

Getting Started

Schematic Designs

HDL Designs

Mixed Designs with VHDL
on Top

Mixed Designs with
Schematic on Top

Mentor/Xilinx Flow
Manager

Advanced Techniques

Manual Translation

Mentor Graphics Interface Guide

Mentor Graphics Interface Guide

Xilinx Development System

R

The Xilinx logo shown above is a registered trademark of Xilinx, Inc.

ASYL, FPGA Architect, FPGA Foundry, NeoCAD, NeoCAD EPIC, NeoCAD PRISM, NeoROUTE, Timing Wizard,
TRACE, XACT, XILINX, XC2064, XC3090, XC4005, XC5210, and XC-DS501 are registered trademarks of Xilinx,
Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

All XC-prefix product designations, A.K.A Speed, Alliance Series, AllianceCORE, BITA, CLC, Configurable Logic
Cell, CoolRunner, CORE Generator, CoreLINX, Dual Block, EZTag, FastCLK, FastCONNECT, FastFLASH,
FastMap, Fast Zero Power, Foundation, HardWire, IRL, LCA, LogiBLOX, Logic Cell, LogiCORE, LogicProfessor,
MicroVia, MultiLINX, PLUSASM, PowerGuide, PowerMaze, QPro, RealPCI, RealPCI 64/66, SelectI/O,
SelectRAM, SelectRAM+, Silicon Xpresso, Smartguide, Smart-IP, SmartSearch, Smartspec, SMARTSwitch,
Spartan, TrueMap, UIM, VectorMaze, VersaBlock, VersaRing, Virtex, WebFitter, WebLINX, WebPACK, XABEL,
XACTstep, XACTstep Advanced, XACTstep Foundry, XACT-Floorplanner, XACT-Performance, XAM, XAPP, X-
BLOX, X-BLOX plus, XChecker, XDM, XDS, XEPLD, Xilinx Foundation Series, XPP, XSI, and ZERO+ are
trademarks of Xilinx, Inc. The Programmable Logic Company and The Programmable Gate Array Company are
service marks of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown
herein; nor does it convey any license under its patents, copyrights, or maskwork rights or any rights of others.
Xilinx, Inc. reserves the right to make changes, at any time, in order to improve reliability, function or design and
to supply the best product possible. Xilinx, Inc. will not assume responsibility for the use of any circuitry described
herein other than circuitry entirely embodied in its products. Xilinx, Inc. devices and products are protected under
one or more of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216; 4,713,557; 4,746,822; 4,750,155;
4,758,985; 4,820,937; 4,821,233; 4,835,418; 4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135;
5,023,606; 5,028,821; 5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056; 5,243,238;
5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704; 5,329,174; 5,329,181;
5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248; 5,349,249; 5,349,250; 5,349,691; 5,357,153;
5,360,747; 5,361,229; 5,362,999; 5,365,125; 5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925; 5,410,189;
5,410,194; 5,414,377; 5,422,833; 5,426,378; 5,426,379; 5,430,687; 5,432,719; 5,448,181; 5,448,493; 5,450,021;
5,450,022; 5,453,706; 5,455,525; 5,466,117; 5,469,003; 5,475,253; 5,477,414; 5,481,206; 5,483,478; 5,486,707;
5,486,776; 5,488,316; 5,489,858; 5,489,866; 5,491,353; 5,495,196; 5,498,979; 5,498,989; 5,499,192; 5,500,608;
5,500,609; 5,502,000; 5,502,440; 5,504,439; 5,506,518; 5,506,523; 5,506,878; 5,513,124; 5,517,135; 5,521,835;
5,521,837; 5,523,963; 5,523,971; 5,524,097; 5,526,322; 5,528,169; 5,528,176; 5,530,378; 5,530,384; 5,546,018;
5,550,839; 5,550,843; 5,552,722; 5,553,001; 5,559,751; 5,561,367; 5,561,629; 5,561,631; 5,563,527; 5,563,528;
5,563,529; 5,563,827; 5,565,792; 5,566,123; 5,570,051; 5,574,634; 5,574,655; 5,578,946; 5,581,198; 5,581,199;
5,581,738; 5,583,450; 5,583,452; 5,592,105; 5,594,367; 5,598,424; 5,600,263; 5,600,264; 5,600,271; 5,600,597;
5,608,342; 5,610,536; 5,610,790; 5,610,829; 5,612,633; 5,617,021; 5,617,041; 5,617,327; 5,617,573; 5,623,387;
5,627,480; 5,629,637; 5,629,886; 5,631,577; 5,631,583; 5,635,851; 5,636,368; 5,640,106; 5,642,058; 5,646,545;
5,646,547; 5,646,564; 5,646,903; 5,648,732; 5,648,913; 5,650,672; 5,650,946; 5,652,904; 5,654,631; 5,656,950;
5,657,290; 5,659,484; 5,661,660; 5,661,685; 5,670,896; 5,670,897; 5,672,966; 5,673,198; 5,675,262; 5,675,270;
5,675,589; 5,677,638; 5,682,107; 5,689,133; 5,689,516; 5,691,907; 5,691,912; 5,694,047; 5,694,056; 5,724,276;
5,694,399; 5,696,454; 5,701,091; 5,701,441; 5,703,759; 5,705,932; 5,705,938; 5,708,597; 5,712,579; 5,715,197;
5,717,340; 5,719,506; 5,719,507; 5,724,276; 5,726,484; 5,726,584; 5,734,866; 5,734,868; 5,737,234; 5,737,235;

Mentor Graphics Interface Guide

5,737,631; 5,742,178; 5,742,531; 5,744,974; 5,744,979; 5,744,995; 5,748,942; 5,748,979; 5,752,006; 5,752,035;
5,754,459; 5,758,192; 5,760,603; 5,760,604; 5,760,607; 5,761,483; 5,764,076; 5,764,534; 5,764,564; 5,768,179;
5,770,951; 5,773,993; 5,778,439; 5,781,756; 5,784,313; 5,784,577; 5,786,240; 5,787,007; 5,789,938; 5,790,479;
5,790,882; 5,795,068; 5,796,269; 5,798,656; 5,801,546; 5,801,547; 5,801,548; 5,811,985; 5,815,004; 5,815,016;
5,815,404; 5,815,405; 5,818,255; 5,818,730; 5,821,772; 5,821,774; 5,825,202; 5,825,662; 5,825,787; 5,828,230;
5,828,231; 5,828,236; 5,828,608; 5,831,448; 5,831,460; 5,831,845; 5,831,907; 5,835,402; 5,838,167; 5,838,901;
5,838,954; 5,841,296; 5,841,867; 5,844,422; 5,844,424; 5,844,829; 5,844,844; 5,847,577; 5,847,579; 5,847,580;
5,847,993; 5,852,323; 5,861,761; 5,862,082; 5,867,396; 5,870,309; 5,870,327; 5,870,586; 5,874,834; 5,875,111;
5,877,632; 5,877,979; 5,880,492; 5,880,598; 5,880,620; 5,883,525; 5,886,538; 5,889,411; 5,889,413; 5,889,701;
5,892,681; 5,892,961; 5,894,420; 5,896,047; 5,896,329; 5,898,319; 5,898,320; 5,898,602; 5,898,618; 5,898,893;
5,907,245; 5,907,248; 5,909,125; 5,909,453; 5,910,732; 5,912,937; 5,914,514; 5,914,616; 5,920,201; 5,920,202;
5,920,223; 5,923,185; 5,923,602; 5,923,614; 5,928,338; 5,931,962; 5,933,023; 5,933,025; 5,933,369; 5,936,415;
5,936,424; 5,939,930; 5,942,913; 5,944,813; 5,945,837; 5,946,478; 5,949,690; 5,949,712; 5,949,983; 5,949,987;
5,952,839; 5,952,846; 5,955,888; 5,956,748; 5,958,026; 5,959,821; 5,959,881; 5,959,885; 5,961,576; 5,962,881;
5,963,048; 5,963,050; 5,969,539; 5,969,543; 5,970,142; 5,970,372; 5,971,595; 5,973,506; 5,978,260; 5,986,958;
5,990,704; 5,991,523; 5,991,788; 5,991,880; 5,991,908; 5,995,419; 5,995,744; 5,995,988; 5,999,014; 5,999,025;
6,002,282; and 6,002,991; Re. 34,363, Re. 34,444, and Re. 34,808. Other U.S. and foreign patents pending.
Xilinx, Inc. does not represent that devices shown or products described herein are free from patent infringement
or from any other third party right. Xilinx, Inc. assumes no obligation to correct any errors contained herein or to
advise any user of this text of any correction if such be made. Xilinx, Inc. will not assume any liability for the
accuracy or correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in
such applications without the written consent of the appropriate Xilinx officer is prohibited.

Copyright 1991-2000 Xilinx, Inc. All Rights Reserved.

Mentor Graphics Interface Guide — 3.1i i

About This Manual

This manual explains how to use the Xilinx/Mentor Graphics
Interface software with Mentor Graphics® software version C.4.

Before using this manual, you should be familiar with the operations
that are common to all Xilinx software tools. These operations are
covered in the Quick Start Guide.

For detailed tutorials showing how to use the Mentor Graphics
Interface, see the Mentor Schematic Tutorial and the Mentor Schematic-
on-Top with VHDL Macro Tutorial on the Xilinx Web site at http://
support.xilinx.com/support/techsup/tutorials/
index.htm.

Manual Contents
This manual covers the following topics.

• Chapter 1, “Introduction,” describes the Mentor Graphics Design
Manager™ Interface, the Xilinx design flow, key features, inputs
and outputs, and the architectures with which they work.

• Chapter 2, “Getting Started,” describes how to configure your
system for the Mentor Graphics Design Manager, and how to
invoke the Mentor Graphics Design Manager.

• Chapter 3, “Schematic Designs,” describes how to use the Mentor
Graphics Design Manager and Design Architect™ to design with
pure schematic designs. It covers schematic design entry,
functional simulation, implementation, and timing simulation.

Mentor Graphics Interface Guide

ii Xilinx Development System

• Chapter 4, “HDL Designs,” describes how to use the Mentor
Graphics Interface to design with pure HDL designs. It covers
HDL design entry, functional simulation, implementation, and
timing simulation.

• Chapter 5, “Mixed Designs with VHDL on Top,” describes how
to use the Mentor Graphics Interface to design with mixed
schematic and VHDL designs with VHDL on Top. It covers
design entry, functional simulation, implementation, and timing
simulation.

• Chapter 6, “Mixed Designs with Schematic on Top,” describes
how to use the Mentor Graphics Interface to design with mixed
schematic and VHDL designs with a schematic on top. It covers
design entry, functional simulation, implementation, and timing
simulation.

• Chapter 7, “Mentor/Xilinx Flow Manager,” describes how to use
the Mentor/Xilinx Flow Manager to guide you through the
design process.

• Chapter 8, “Advanced Techniques,” describes useful design and
simulation techniques that were not covered in the other sections
of this manual.

• Chapter 9, “Manual Translation,” describes how to manually
process your design from the operating system command line.

Additional Resources

For additional information, go to http://support.xilinx.com.
The following table lists some of the resources you can access from
this Web site. You can also directly access these resources using the
provided URLs.

Resource Description/URL

Tutorials Tutorials covering Xilinx design flows, from design entry to verification
and debugging
http://support.xilinx.com/support/techsup/tutorials/
index.htm

Answers
Database

Current listing of solution records for the Xilinx software tools
Search this database using the search function at
http://support.xilinx.com/support/searchtd.htm

Mentor Graphics Interface Guide iii

Application
Notes

Descriptions of device-specific design techniques and approaches
http://support.xilinx.com/apps/appsweb.htm

Data Book Pages from The Programmable Logic Data Book, which contain device-
specific information on Xilinx device characteristics, including readback,
boundary scan, configuration, length count, and debugging
http://support.xilinx.com/partinfo/databook.htm

Xcell Journals Quarterly journals for Xilinx programmable logic users
http://support.xilinx.com/xcell/xcell.htm

Technical Tips Latest news, design tips, and patch information for the Xilinx design
environment
http://support.xilinx.com/support/techsup/journals/
index.htm

Resource Description/URL

Mentor Graphics Interface Guide

iv Xilinx Development System

Mentor Graphics Interface Guide — 3.1i v

Conventions

This manual uses the following conventions. An example illustrates
each convention.

Typographical
The following conventions are used for all documents.

• Courier font indicates messages, prompts, and program files
that the system displays.

speed grade: - 100

• Courier bold indicates literal commands that you enter in a
syntactical statement. However, braces “{ }” in Courier bold are
not literal and square brackets “[]” in Courier bold are literal
only in the case of bus specifications, such as bus [7:0].

rpt_del_net=

Courier bold also indicates commands that you select from a
menu.

File → Open

• Italic font denotes the following items.

♦ Variables in a syntax statement for which you must supply
values

edif2ngd design_name

♦ References to other manuals

Mentor Graphics Interface Guide

vi Xilinx Development System

See the Development System Reference Guide for more informa-
tion.

♦ Emphasis in text

If a wire is drawn so that it overlaps the pin of a symbol, the
two nets are not connected.

• Square brackets “[]” indicate an optional entry or parameter.
However, in bus specifications, such as bus [7:0], they are
required.

edif2ngd [option_name] design_name

• Braces “{ }” enclose a list of items from which you must choose
one or more.

lowpwr ={on|off}

• A vertical bar “|” separates items in a list of choices.

lowpwr ={on|off}

• A vertical ellipsis indicates repetitive material that has been
omitted.

IOB #1: Name = QOUT’

IOB #2: Name = CLKIN’

.

.

.

• A horizontal ellipsis “….” indicates that an item can be repeated
one or more times.

allow block block_name loc1 loc2locn;

Online Document
The following conventions are used for online documents.

• Red-underlined text indicates an interbook link, which is a cross-
reference to another book. Click the red-underlined text to open
the specified cross-reference.

Mentor Graphics Interface Guide vii

• Blue-underlined text indicates an intrabook link, which is a cross-
reference within a book. Click the blue-underlined text to open
the specified cross-reference.

Mentor Graphics Interface Guide

viii Xilinx Development System

Mentor Graphics Interface Guide — 3.1i ix

Contents

About This Manual
Manual Contents .. i
Additional Resources ... ii

Conventions
Typographical... v
Online Document ... vi

Chapter 1 Introduction

Architecture Support .. 1-1
Platform Support .. 1-2
Library Support... 1-2
Features ... 1-2

Mentor Software Release Support.. 1-2
HDL Support ... 1-3

ModelSim and QuickSim Pro... 1-3
VHDL Gate-Level Simulation Support 1-3
Verilog Gate-Level Simulation Support................................ 1-3
Links to EDIF from Synthesis Tools..................................... 1-4

Mentor Design Manager ... 1-4
Coregen (CORE Generator) .. 1-6
Editor ... 1-6
Exemplar.. 1-6
Flow_mgr (Mentor/Xilinx Flow Manager) 1-6
Gen_Arch... 1-6
ModelSim... 1-6
Pld_da.. 1-7
Pld_dsgnmgr.. 1-8
Pld_dve.. 1-8
Pld_edif2sim .. 1-8
Pld_edif2tim ... 1-8

Mentor Graphics Interface Guide

x Xilinx Development System

Logiblox (LogiBLOX GUI) .. 1-8
Pld_men2edif... 1-8
Pld_xnf2sim ... 1-9
Pld_quicksim.. 1-9
Pld_sg.. 1-9
QuickPath .. 1-9
Renoir .. 1-9
Tau... 1-10

LogiBLOX Modules ... 1-10
CORE Generator Modules.. 1-10
EDIF.. 1-10
Cross-Probing ... 1-11
Timing Simulation ... 1-11
Schematic Generator .. 1-11
Timing Constraints .. 1-12

Design Flows.. 1-12
Schematic Entry Design Flows ... 1-12
HDL Entry ... 1-16
Mixed Schematic and VHDL Flow with VHDL on Top 1-17
Mixed Schematic and VHDL Flow with Schematic on Top 1-18

Inputs ... 1-19
EDIF.. 1-19
XNF... 1-19

Outputs... 1-19
Files.. 1-20
Tutorials ... 1-20
Online Help .. 1-21

Chapter 2 Getting Started

Configuring Your System ... 2-1
Invoking the Design Manager ... 2-4
Invoking Applications in the Design Manager 2-4

Tools Window Icons.. 2-4
Navigator Window... 2-5

Chapter 3 Schematic Designs

Design Flows.. 3-1
Design Entry... 3-1

Invoking Design Architect ... 3-1
Adding Components ... 3-2

Adding Xilinx Library Components....................................... 3-2

Contents

Mentor Graphics Interface Guide xi

Bus Rippers ... 3-3
Xilinx Libraries ... 3-3

Properties.. 3-6
INST... 3-6
COMP.. 3-6
CYMODE ... 3-6
INTERNAL ... 3-7
Entering Timing Specifications .. 3-7
Creating New Groups from Existing Groups........................ 3-7

Functional Simulation... 3-8
Simulating Pure Schematic Designs... 3-8

Creating the Viewpoint... 3-9
Simulating the Design.. 3-11

Simulating Schematic Designs with LogiBLOX Elements
or CORE Generator Modules... 3-13

Simulating Schematic Designs with XNF Elements.................. 3-13
Creating the Design Component ... 3-13
Converting the XNF File .. 3-13
Creating the Viewpoint... 3-16
Simulating the Design.. 3-16

Simulating Schematic Designs with EDIF Elements................. 3-16
Creating the Design Component ... 3-17
Converting the EDIF File ... 3-17
Simulating the Design.. 3-19

Implementing Schematic Designs.. 3-19
Converting the EDDM Design to EDIF...................................... 3-19
Implementing the Design .. 3-21

Timing Simulation for Schematic Designs...................................... 3-22
Creating the EDDM Model and the Viewpoint 3-23
Simulating the Design ... 3-24
Cross-Probing ... 3-26
Performing a Timing Analysis ... 3-27

Chapter 4 HDL Designs

Design Flow ... 4-1
HDL Design Entry .. 4-2

Overview of HDL Design Entry ... 4-3
HDL Design Entry Stages ... 4-4

Stage 1: RTL Behavioral Code Development...................... 4-6
Stage 2: Synthesis... 4-7
LogiBLOX Design Entry... 4-8

CORE Generator Module Design Entry 4-9

Mentor Graphics Interface Guide

xii Xilinx Development System

Unified Library Instantiated Components.................................. 4-10
Functional Simulation... 4-10

Pre-Synthesis Functional Simulation .. 4-11
Synthesis .. 4-14
Optional Post Synthesis Functional Simulation 4-14

Design Implementation .. 4-14
Timing Simulation... 4-16

Passing Timing Generics to Special Cells—ROC, OSC,
OSC4, and OSC5 ... 4-16

Simulating the Design ... 4-17

Chapter 5 Mixed Designs with VHDL on Top

Design Flow ... 5-1
Design Entry... 5-3
Functional Simulation... 5-7

Simulating the Design ... 5-7
Synthesis .. 5-8
Optional Post-Synthesis Functional Simulation 5-9

Design Implementation .. 5-9
Timing Simulation... 5-11

Compiling the SimPrim Libraries... 5-11
Passing Timing Generics to Special Cells—ROC,

OSC, OSC4, and OSC5... 5-11
Simulating the Design ... 5-12

Chapter 6 Mixed Designs with Schematic on Top

Design Flow ... 6-1
Design Entry... 6-3

VHDL Module Design Entry .. 6-3
Schematic Entry.. 6-5

Functional Simulation... 6-5
Functional Simulation Before Synthesis 6-5
Synthesis .. 6-7
Functional Simulation After Synthesis 6-8

Design Implementation .. 6-9
Converting the EDDM Design... 6-10
Implementing the Design .. 6-10

Timing Simulation... 6-11

Contents

Mentor Graphics Interface Guide xiii

Chapter 7 Mentor/Xilinx Flow Manager

Flow Manager Overview .. 7-1
Pure Schematic Design Flow ... 7-3
Pure XNF Design Flow... 7-6
Pure VHDL/Verilog Design Flow .. 7-7
Mixed Schematic (top)/HDL Design Flow 7-10
Mixed Sch/HDL(top) Design Flow .. 7-13

Create EDDM.. 7-13
Simulate/Implement Top HDL (Main Flow) 7-14
Simulate Synthesis Output (Optional)....................................... 7-15

Chapter 8 Advanced Techniques

Retargeting the Design to a Different Family 8-1
Merging Design Files from Other Sources 8-4
Simulation Models.. 8-4
Setting Global Reset and 3-State Signals...................................... 8-4

FPGA Designs .. 8-4
CPLD Designs .. 8-6

Using TAU.. 8-6

Chapter 9 Manual Translation

Functional Simulation... 9-1
Pure Schematic Designs... 9-1
Schematic Designs with XNF Elements.................................... 9-2
Schematic Designs with LogiBLOX or CORE Generator

Elements .. 9-2
Mixed Schematic and VHDL with Schematic-on-Top Designs . 9-3

Before Synthesis.. 9-3
After Synthesis... 9-4

HDL-at-Top Designs ... 9-5
Pure HDL Designs .. 9-6

Design Implementation .. 9-6
Schematic Designs (FPGA) .. 9-6
Schematic Designs (CPLD) .. 9-7
HDL-at-Top Designs ... 9-8
Pure HDL Designs .. 9-9

Timing Simulation... 9-11
Schematic Designs ... 9-11
Pure HDL Designs .. 9-12

EDIF Method.. 9-12
VHDL/Verilog Method .. 9-12

Mentor Graphics Interface Guide

xiv Xilinx Development System

Program Summary ... 9-13
CPLD .. 9-13
Dsgnmgr ... 9-13
EDIF2NGD.. 9-14
Editor... 9-14
Gen_Arch.. 9-14
MAP .. 9-14
NGDAnno.. 9-14
NGDBuild .. 9-14
NGD2EDIF.. 9-15
PAR... 9-15
Pld_da... 9-15
Pld_dve ... 9-15
Pld_edif2sim ... 9-16
Pld_edif2tim .. 9-17
Pld_men2edif .. 9-17
Pld_quicksim... 9-18
Pld_sg ... 9-19
Pld_xnf2sim .. 9-19
ModelSim .. 9-20
QuickPath ... 9-21
QuickSim Pro .. 9-21
Vcom... 9-21
Vlog... 9-21

Mentor Graphics Interface Guide — 3.1i 1-1

Chapter 1

Introduction

This chapter describes the Mentor Graphics® Design Manager™
interface, a Mentor Graphics tool enhanced by the addition of Xilinx
features.

You can invoke all individual tools from the Xilinx-enhanced Design
Manager or from the shell.

This chapter contains the following sections.

• “Architecture Support”

• “Platform Support”

• “Library Support”

• “Features”

• “Design Flows”

• “Inputs”

• “Outputs”

• “Files”

• “Tutorials”

• “Online Help”

Architecture Support
The software supports the following architecture families in this
release.

• Spartan™/XL/-II

• Virtex™/-E/-II

• XC9500™/XL/XV

Mentor Graphics Interface Guide

1-2 Xilinx Development System

• XC4000™E/L/EX/XL/XV/XLA

• XC3000™A/L

• XC3100™A/L

• XC5200™

Platform Support
The Mentor interface is supported on Sun SPARCstations using the
Solaris operating system versions 2.5 and 2.6. It is also supported on
HP workstations using the HPUX operating system version 10.2.

Library Support
The following libraries are available in the Mentor interface.

• Unified Libraries, which contain the symbol models for
schematic entry and simulation

• SimPrim library, which contains the symbol models for timing
(EDDM) simulation

• VITAL VHDL SimPrim library for top-down timing simulation

• Verilog SimPrim library for top-down Verilog timing simulation

Features
The following sections describe the major features available in this
release.

Mentor Software Release Support
This interface supports the Mentor C.4 software release.

Introduction

Mentor Graphics Interface Guide 1-3

HDL Support
This release offers a number of features that allow you to process a
design through a VHDL or Verilog netlist.

ModelSim and QuickSim Pro

This release supports the ModelSim™ simulator, which simulates
behavioral VHDL, Verilog, VHDL-based, and Verilog-based gate-
level designs composed of SimPrim elements. In addition, LogiBlox
elements can be simulated at the behavioral level.

It also supports QuickSim Pro™ for mixed mode simulations for
schematic-based and VHDL-based designs. QuickSim Pro can invoke
ModelSim to simulate VHDL-based elements, or quicksim to simu-
late Unified Libraries elements.

Note This documentation assumes that you are using ModelSim and
QuickSim Pro. However, QuickHDL and QuickHDL Pro™ provide
the same functionality as ModelSim and QuickSim Pro. If you are
using QuickHDL instead of ModelSim or QuickHDL Pro in place of
QuickSim Pro, see the “ModelSim” section for details on how to use
QuickHDL and QuickHDL Pro in place of ModelSim and QuickSim
Pro.

Co-simulation may require that you use a specific version of the
ModelSim software with Mentor C.4. Check with your Mentor
representative for details.

VHDL Gate-Level Simulation Support

This release supports VHDL simulation, including IEEE-standard
1076.4 VHDL libraries of SimPrim models. Xilinx implementation
tools output timing simulation VHDL netlists by using structural
VHDL models of SimPrim VHDL models and an SDF file.

Verilog Gate-Level Simulation Support

This release supports Verilog simulation, including Verilog libraries
for use with SimPrim models. Xilinx implementation tools output
timing Verilog netlists by using structural Verilog models with
SimPrim Verilog models and an SDF file.

Mentor Graphics Interface Guide

1-4 Xilinx Development System

Links to EDIF from Synthesis Tools

The Mentor interface can accept XNF and EDIF files from various
synthesizers that are compatible with the Xilinx implementation
software. These files can be directly submitted to the Xilinx Design
Manager for placement and routing of the design.

You can also simulate these EDIF or SXNF files by submitting them to
the pld_edif2sim or pld_xnf2sim utility, which creates EDDM
components for use with pld_quicksim.

In addition, after place and route, you can output VHDL and Verilog
netlists, which can be submitted to ModelSim for simulation with
SDF files providing the back-annotation information.

Mentor Design Manager
The Mentor Graphics Design Manager is an easy-to-use interface that
represents applications and design files as icons. You can now
perform many tasks in the Design Manager window that were
previously done at the operating system level. The Design Manager
runs in a window on your workstation display and makes it easy for
you to invoke applications and to manage designs, files, and
directories. The Design Manager lets you do these tasks by using
graphical point-and-click actions. You can run applications by
selecting an application icon, or a design object icon and a menu item.

Note A design object consists of the files and directories that make up
your design.

The Xilinx script, pld_dmgr, configures the Design Manager for the
creation, implementation, and simulation of Xilinx designs. This
manual describes only the Xilinx-configured Design Manager; refer
to Mentor Graphics documentation for a more comprehensive
description of the Mentor Design Manager.

The Design Manager includes a Tools window, a Navigator window,
and a Design Manager palette, as shown in the following figure.

Introduction

Mentor Graphics Interface Guide 1-5

Figure 1-1 Mentor Design Manager Window

The Tools window contains icons representing all the Mentor
Graphics and Xilinx applications that you need to execute the steps in
the design flow. The Navigator window contains design object icons,
including original schematics as well as files created during
translation and simulation. This window makes it easy to access files
in different directories. The Design Manager palette provides easy
access to the most commonly used Design Manager menu items.

The remainder of this section briefly describes the icons in the Tools
window and the Mentor programs they represent. The tools with
names that begin with PLD are configured through scripts for
working with Xilinx designs.

Mentor Graphics Interface Guide

1-6 Xilinx Development System

Coregen (CORE Generator)

This is a stand-alone Xilinx tool for generating VHDL and Verilog
models of CORE modules. Schematic models can be created by
invoking CORE Generator from within pld_da under the Xilinx
Libraries Palette menu.

Editor

The Editor icon represents the Mentor Graphics Notepad editor.
Notepad is a full-featured, window-based text editor. For more
information on Notepad, refer to the Mentor Graphics Notepad User’s
and Reference Manual.

Exemplar

The Exemplar™ icon opens the Leonardo™ Spectrum synthesis tool.

Flow_mgr (Mentor/Xilinx Flow Manager)

The Mentor/Xilinx Flow Manager is a dialog box that provides a
visual guide of the steps you need to perform for five common design
flows. Each step contains buttons to launch the appropriate tool and
to display a visual record of your progress in the flow. It does not
automatically perform the steps for you. It lists the steps in the correct
order that you need to perform. For each step there is a button that
launches the appropriate tool. When you are finished with the tool,
you click the Finished button for that step and the description for that
step changes to indicate that it is finished.

Gen_Arch

Gen_Arch creates a VHDL architecture from a Mentor schematic
(EDDM) component for use in mixed schematic and HDL
simulations within QuickSim Pro.

ModelSim

ModelSim™ (vsim) is Mentor’s simulator for behavioral VHDL,
Verilog, or VHDL-based and Verilog-based gate-level designs
composed of SimPrim elements.

Introduction

Mentor Graphics Interface Guide 1-7

QuickHDL previously provided this same functionality as ModelSim.
The design flows in this user guide are based on ModelSim. If you
have not upgraded to ModelSim and are still using QuickHDL, you
can substitute QuickHDL into your design flows as described below.

ModelSim and QuickHDL have the same functionality, but the
commands you use to control these tools are different. The Mentor
Design Manager contains icons for QHDL as well as ModelSim so
you can access either tool depending on what you have installed.

The following table provides a mapping between ModelSim and
QuickHDL commands. In the procedures in this manual that use
ModelSim commands, you can substitute QuickHDL by substituting
the corresponding QuickHDL commands in those procedures.

Pld_da

Pld_da is Mentor’s Design Architect®, a schematic editor configured
for Xilinx designs. The Xilinx-configured Design Architect is identical
to the Mentor Graphics version except for the addition of a Xilinx
library of primitives, macros, and utilities such as Convert Design.
For more information on creating Xilinx designs with Design
Architect, refer to the “Design Entry” section of the “Schematic
Designs” chapter in this manual and the Mentor Graphics Schematic
Design Tutorial on the Xilinx Web site at http://
support.xilinx.com/support/techsup/tutorials/
index.htm. For a more detailed description of Design Architect
commands and processes, refer to the Mentor Graphics Design
Architect User’s Manual.

ModelSim Commands QuickHDL Commands

vlib qhsim

vlib qhlib

vmap qhmap

vcom qvhcom

vlog qvlcom

Mentor Graphics Interface Guide

1-8 Xilinx Development System

Pld_dsgnmgr

The Mentor Design Manager interface contains a Pld_dsgnmgr icon
for the Xilinx Design Manager. Pld_dsgnmgr is the Xilinx Design
Manager, which implements the design. You can access any
individual Xilinx tool from the Xilinx Design Manager.

Pld_dve

Pld_dve is the Mentor Graphics Design Viewpoint Editor (DVE)
configured for Xilinx designs. When you invoke this application from
within the Mentor Design Manager, a dialog box appears and you are
asked to create either a simulation or custom viewpoint. Refer to the
“Functional Simulation” section of the “Schematic Designs” chapter
and the “Timing Simulation for Schematic Designs” section of the
“Schematic Designs” chapter in this manual for more information on
pld_dve. For detailed information on DVE, refer to the Mentor
Graphics Design Viewpoint Editor User’s and Reference Manual.

Pld_edif2sim

Pld_edif2sim is a utility that converts a Mentor, Synopsys, or other
Xilinx compatible EDIF files into a Mentor EDDM single-object
simulation model, VHDL netlist, or Verilog netlist. Pld_edif2sim is for
functional simulation only.

Pld_edif2tim

Pld_edif2tim is the Mentor EDIF netlist reader, which converts a
placed and routed EDIF netlist to a Mentor single-object EDDM file
that can be submitted to pld_quicksim for timing simulation.

Logiblox (LogiBLOX GUI)

This is a stand-alone Xilinx tool for generating VHDL and Verilog
models of LogiBlox components. Schematic models can be created by
invoking LogiBLOX from within pld_da under the Xilinx Libraries
Palette menu.

Pld_men2edif

Pld_men2edif converts a Mentor schematic to a hierarchical EDIF
netlist that is ready for implementation.

Introduction

Mentor Graphics Interface Guide 1-9

Pld_xnf2sim

Pld_xnf2sim is a utility that converts an unrouted XNF file to a
Mentor EDDM single-object simulation model. This conversion can
only be done on chip-level XNF files with EXT records, not on lower
level modules embedded in a schematic. VHDL or Verilog simulation
models can also be generated. Pld_xnf2sim is for functional
simulation only.

Pld_quicksim

Pld_quicksim is an interactive logic simulator that performs
functional or timing simulation on your designs. For more
information on pld_quicksim, refer to the “Functional Simulation”
section of the “Schematic Designs” chapter, the “Timing Simulation
for Schematic Designs” section of the “Schematic Designs” chapter,
and the Mentor Graphics Schematic Design Tutorial on the Xilinx Web
site at http://support.xilinx.com/support/techsup/tutorials/
index.htm. For a detailed description of pld_quicksim, refer to the
Mentor Graphics QuickSim II User’s Manual.

Pld_sg

Pld_sg is the Mentor schematic generator (SG), which creates a
schematic from an EDDM single object netlist. You can use this tool to
generate a schematic for the timing simulation netlist.

QuickPath

QuickPath™ performs static and slack timing analysis on designs.
For more information on QuickPath, refer to the “Performing a
Timing Analysis” section of the “Schematic Designs” chapter. For a
detailed description of QuickPath, refer to the Mentor Graphics
QuickPath User’s and Reference Manual.

Renoir

Renoir™ is the Mentor Graphics HDL graphical design tool for
generating Verilog and VHDL.

Mentor Graphics Interface Guide

1-10 Xilinx Development System

Tau

Tau is a board-level timing analysis tool from Mentor Graphics
designed to do system timing analysis, as opposed to transmission
line analysis which is the focus of IS Analyzer/Floorplanner. Tau
checks that timing constraints such as setup and hold requirements
on component inputs are met. For more details, refer to the “Using
TAU” section of the “Advanced Techniques” chapter.

LogiBLOX Modules
You can enter a schematic using LogiBLOX symbols along with other
Unified Libraries elements. For schematics, invoke LogiBLOX from
within pld_da by using the Xilinx Libraries menu (Libraries →
Xilinx Libraries → Logiblox). In addition, EDDM simulation
models are automatically created for LogiBLOX symbols during
symbol creation.

For VHDL or Verilog LogiBlox models, invoke LogiBlox from the
pld_dmgr’s tool window, or from the popup session window within
pld_da.

CORE Generator Modules
You can enter a schematic using CORE Generator symbols along with
other Unified Libraries elements. For schematics, invoke CORE
Generator from within pld_da by using the Xilinx Libraries menu
(Libraries → Xilinx Libraries → Coregen). In addition,
EDDM simulation models are automatically created for CORE
Generator symbols during symbol creation.

For VHDL or Verilog CORE Generator models, invoke CORE
Generator from the pld_dmgr’s tool window, or from the popup
session window within pld_da.

EDIF
This release supports EDIF 2 0 0 for design implementation. Refer to
the Xilinx EDIF specification for supported constructs.

Introduction

Mentor Graphics Interface Guide 1-11

Cross-Probing
Cross-probing is a way of cross-referencing between the original
schematic and the timing simulation model after placement and
routing. Once a Mentor design is translated, expanded, mapped,
placed, and routed, you can extract the back-annotation information
and create a hierarchical EDIF netlist. After you convert this EDIF
netlist to an EDDM model using pld_edif2tim, you submit it to
pld_dve to create a viewpoint and then to pld_quicksim for timing
simulation. The resulting data base preserves the design hierarchy,
and although it is created in terms of the SimPrim library, most of the
original net names are still available. You enable cross-probing by
invoking QuickSim with the -cp option. This option invokes pld_dve
as well as pld_quicksim. You then open the original design viewpoint
in pld_dve and view the desired design sheet. If you display the
original schematic in pld_dve, you can select nets on the original
schematic and view them in the QuickSim trace window.

See the “Cross-Probing” section of the “Schematic Designs” chapter
for more details on cross-probing.

Timing Simulation
This release supports back-annotated timing simulation after
placement and routing. Pld_edif2tim translates the routed EDIF file
to an EDDM single-object netlist.

Schematic Generator
The schematic generator is a utility that you can optionally use to
generate a hierarchical schematic from a back-annotated EDDM
model. This is not a required step since you can instead use cross-
probing with the back-annotated EDDM model and the original
schematic for simulation without generating a back-annotated
schematic. You can invoke the schematic generator from within the
design manager or from a shell by typing pld_sg. You must have a
Mentor schematic generator license in order to use this tool.

Mentor Graphics Interface Guide

1-12 Xilinx Development System

Timing Constraints
You can add timing constraints to the schematic as properties. You
can also place them in a UCF (user constraints file) that NGDBuild
can process. If a conflict arises between the timing information in the
EDIF file and in the constraints file, the information in the constraints
file prevails.

Design Flows
You use different PLD design flows for performing design entry,
implementation and simulation depending on whether you use
schematic design entry or HDL design entry.

In either case, the easiest and most automatic way is to use the appli-
cation icons in the Design Manager window. You can also run the
various programs in the design flow manually from the UNIX shell.
The shell commands are described in the “Manual Translation”
chapter.

The Mentor interface supports the following design flows.

• Schematic entry with the Unified Libraries components,
LogiBLOX symbols, CORE Generator symbols or a combination
of these symbols.

• Schematic entry with Unified Library components with some
models expressed in Xilinx compliant EDIF or XNF

• Top-down HDL (Verilog/VHDL) design entry and synthesis

• Mixed schematic and VHDL design with VHDL on top

• Mixed schematic and VHDL design with schematic on top

Schematic Entry Design Flows
The schematic entry design flows are illustrated in the following
three figures.

Introduction

Mentor Graphics Interface Guide 1-13

Figure 1-2 Schematic Design Entry Including EDIF-Based and
LogiBLOX Modules

pld_dmgr

pld_da

No

Yes

EDDM
single object
and symbol

X8883

pld_dve

LogiBLOX GUI

LogiBLOX
(optional)

EDIF with timing

Design
functionality

correct?

Design
contains

LogiBLOX
elements

pld_men2edif

pld_quicksim

pld_dsgnmgr

EDDM

No

Yes

YesDesign
timing

correct?

pld_edif2tim

pld_dve

pld_quicksim
(with cross-probing)

Design complete

EDDM
single object

EDIF

EDDM
single object

EDIF (optional)

EDIF
lower-level

module

pld_edif2sim
with EDIF for module

Create Mentor
symbol

with pld_da

Add property
File=EDIF
to symbol

Instantiate into
top-level

schematic

EDDM
single object
and symbol

CORE Generator

CORE Generator
(optional)

Design
contains

CORE Generator
modules

Mentor Graphics Interface Guide

1-14 Xilinx Development System

Figure 1-3 Design Entry with XNF Top-Level Module

No

Yes

X8884

EDIF with timing

Design
functionality

correct?

EDDM
single object and
simulation viewpoint

XNF
top-level module

pld_quicksim

pld_dsgnmgr

pld_xnf2sim

No

Yes

YesDesign
timing

correct?

pld_edif2tim

pld_dve

pld_quicksim
(without cross-probing)

Design complete

EDDM
single object

with top-level XNF

Introduction

Mentor Graphics Interface Guide 1-15

Figure 1-4 Schematic Design Entry with XNF Module

pld_dmgr

pld_da

No

Yes

X8885

EDIF with timing

Design
functionality

correct?

EDDM
single object

XNF
lower-level

module

XNF (optional)

pld_quicksim

pld_dsgnmgr

EDDM

EDIF

No

Yes

YesDesign
timing

correct?

pld_edif2tim

pld_dve

pld_quicksim
(with cross-probing)

Design complete

EDDM
single object

pld_edif2sim
on top

pld_men2edif

Create Mentor
symbol

with pld_da

Add property
File=

 to symbol

Instantiate into
top-level

schematic

XNF_pathname

Mentor Graphics Interface Guide

1-16 Xilinx Development System

HDL Entry
The following figure shows the design flow for VHDL and Verilog
design entry and synthesis for all supported technologies.

Figure 1-5 HDL (Verilog/VHDL) Design Entry and Synthesis

VHDL

VHDL

Verilog

No

Yes

X8887Design complete

Yes

ModelSim

Synthesis*

Design
functionality

correct?

RTL
HDL

ModelSim

ModelSim

HDL Entry Tool

pld_dsgnmgr

* Do not synthesize
 architectures for
 LogiBLOX or
 CORE Generator
 modules

Optional post-synthesis
gate-level simulation

Optional post-synthesis
gate-level simulation

SDF

Design
timing

correct?
No

LogiBLOX
(optional)

Design
contains

instantiations
of LogiBLOX

elements

VHDLVerilog

LogiBLOX GUI

pld_xnf2sim

NGC

ModelSim

SimPrim
VHDL/
Verilog

Verilog

EDIF XNF

pld_edif2sim
on top-level EDIF

VHDL

on top-level XNF

Instantiated Unified
Library (Unisim)
Componments

 (optional)

Design
contains

instantiations
of Unified Library

components

VHDLVerilog VHDL

VHDLVerilog VHDL

ModelSim

VHDL Verilog

Post-synthesis
simulation using
Unified Library
components

CORE Generator
(optional)

Design
contains

instantiations of
CORE Generator

modules

VHDLVerilog

CORE Generator

VHDLVHDLEDIF

(DA, Renoir, Text)

Introduction

Mentor Graphics Interface Guide 1-17

Mixed Schematic and VHDL Flow with VHDL on Top
The design flow for design entry of a top-level VHDL design with a
schematic sub-module embedded within is illustrated in the
following figure.

Figure 1-6 Mixed Schematic and VHDL Design with VHDL on
Top

Synthesis**

EDIF XNF

RTL VHDL to be
synthesized

QuickSim Pro

Design
correct?

Yes

VHDL for module

(DA, Renoir, Text)
HDL Entry Tool

pld_dve

Gen_Arch

EDDM for
schematic module

pld_dmgr

pld_da

pld_men2edif*

EDIF for module

pld_edif2sim
NGO only

NGO for module

No

SDFVHDL VHDL

ModelSim

pld_xnf2sim
on top level XNF

ModelSim

pld_dsgnmgr

VHDL

ModelSim

pld_edif2sim
on top level EDIF

*Use bus delimiters that
your synthesis tool uses

**Do not compile architecture
for schematic instantiation

RTL functional simulation

Implementation and
timing simulation

Post-synthesis
gate level simulation

Post-synthesis
gate level simulation

X8850

VHDLVHDL

QuickSim Pro

Post-synthesis
simulation using
Unified Library
components

SimPrim
VHDL

Mentor Graphics Interface Guide

1-18 Xilinx Development System

Mixed Schematic and VHDL Flow with Schematic on
Top

The design flow for design entry using a mixture of schematics,
VHDL, and Verilog is illustrated in the following figure.

Figure 1-7 Mixed Schematic and VHDL Design with Schematic
on Top

Design
correct?

pld_dmgr HDL Entry tool
(DA, Renoir, Text)

RTL VHDL
for module

Synthesis

EDIF
for module

XNF
for module

or

No

pld_men2edif*

Top-level
EDIF

EDDM for design
with instantiated

VHDL module

pld_dve

QuickSim Pro

pld_dsgnmgr

Routed EDIF
in SimPrims

pld_edif2tim Unrouted EDDM
in Simprims

pld_edif2sim
on top-level EDIF

pld_quicksim

Optional
post-synthesis

* Use bus delimiters
that your synthesis
tool uses

gate-level
simulation

YesPLD_DA

Routed EDDM
in Simprims

pld_dve

pld_quicksim

vcom

Compiled VHDL
for module

X8851

Instantiate on top
level schematic

Put file=xnf or
file=edif property on

symbol of synthesized
module

Generate Symbol
in pld_da for
HDL module

Import VHDL

Introduction

Mentor Graphics Interface Guide 1-19

Inputs
The Mentor interface accepts netlists in EDIF or XNF format.

EDIF
You can submit an EDIF Level 2 0 0 netlist based on a design using
Unified Libraries components. The following restrictions apply.

• Only the netlist and schematic types of EDIF are supported.

• Only one design per EDIF file is allowed.

• An EDIF file can contain one design component or multiple
components. The EDIF2NGD utility converts each design
component to an NGO file. NGDBUILD uses a top-level NGO
file, which refers to the other NGO files, to create the NGD file.

XNF
The Mentor interface can accept one of the following XNF netlists.

• An XNF netlist created by third-party netlist writers that meet the
specifications of XNF version 6.1

• An XFF netlist created by XNFMerge version 6.1

• An XTF netlist created by XNFPrep version 6.1

An XNF netlist can represent all or part of a design. To be included in
the netlist of a schematic design, a component must be tagged with
the FILE property indicating the path name of the XNF file.

If a lower module is expressed in XNF, the top level must be run
through EDIF2SIM in order to create a simulation netlist. The lower-
level XNF file can not be run through XNF2SIM by itself since its lack
of EXT records prevents XNF2SIM from knowing which signals
should become module pins.

Outputs
Xilinx Design Manager generates a back-annotated simulation netlist:

• SimPrim-based EDIF

• A structural VHDL SimPrim netlist and an SDF delay file

• A structural Verilog SimPrim netlist and an SDF delay file

Mentor Graphics Interface Guide

1-20 Xilinx Development System

Files
The following Xilinx specific files are involved in processing a design
through the Mentor interface.

• The EDN file is a post-route EDIF netlist file that expresses timing
in SimPrim library elements instead of Unified Libraries
elements.

• The NCD file contains a representation of the physical design.

• The NGA file contains physical timing delay information.

• The NGD file contains a logical design hierarchy expressed in the
Xilinx implementation primitives.

• The NGM file contains a representation of the logical design. It
also contains optimization information.

• The NGO file contains netlist information in a proprietary data
base format; it is a binary file.

• The SDF file contains timing delay information.

• The V file contains the structural design based on Verilog-based
SimPrim models.

• The VHD file contains the structural design based on VHDL-
based SimPrim models.

• The XNF file is the Xilinx netlist format used prior to the use of
EDIF in the current release. In the current Mentor Interface flow,
XNF is only used as an import format option.

• The PCF file is the physical constraints file.

• The UCF file is the User Constraint File for specifying the user’s
timing and placement constraints for place and route.

Tutorials
It is highly recommended that you perform the Mentor Interface
tutorials provided on the Xilinx Web site to become familiar with the
basic concepts of PLD design, verification, and implementation. The
tutorials are located at http://support.xilinx.com/support/
techsup/tutorials/index.htm.

Introduction

Mentor Graphics Interface Guide 1-21

Online Help
The Mentor interface contains online help which is available from
each application’s dialog box. Help contains information about the
Mentor features offered in the interface but does not contain
information about the Xilinx features. The Mentor software is
supplied with a set of online manuals in PDF format. This online
manual is the documentation for the Xilinx features.

Mentor Graphics Interface Guide

1-22 Xilinx Development System

Mentor Graphics Interface Guide — 3.1i 2-1

Chapter 2

Getting Started

This chapter describes how to configure your system for the Mentor
Graphics Design Manager, and how to invoke the Mentor Graphics
Design Manager. This chapter contains the following sections.

• “Configuring Your System”

• “Invoking the Design Manager”

• “Invoking Applications in the Design Manager”

Configuring Your System
Install the appropriate software and verify that your system is
properly configured as described in the release notes that came with
your software package. When you have finished the installation,
verify that your .cshrc or setup file contains lines similar to the
following.

setenv XILINX location_of_Xilinx_software
set path=($XILINX/bin/sol \
$XILINX/mentor/bin/sol $MGC_HOME/bin $path)

Note Path names of directories will vary. (For example, $XILINX/
bin/sol would be $XILINX/bin/hp if you are running the Xilinx
software on an HP workstation.) For more information on paths and
environment variables, refer to the release notes that came with your
software package.

XILINX is the directory where all Xilinx software is located.

Make sure that the following Mentor Graphics specific variables are
set correctly.

Mentor Graphics Interface Guide

2-2 Xilinx Development System

• EXEMPLAR

This variable should point to the location where the Exemplar
software is installed. For example.

setenv EXEMPLAR /products/leonardo.ver4_2

• LCA

In addition to instantiating it in the file pointed to by
MGC_LOCATION_MAP, the LCA environment variable should
point to the directory where the Xilinx/Mentor Graphics
software is installed, typically $XILINX/mentor/data.

• LD_LIBRARY_PATH

This variable is used by Mentor Graphics and Xilinx programs.
On Solaris platforms, this variable is set as follows.

setenv LD_LIBRARY_PATH $MGC_HOME/shared/
lib:$MGC_HOME/lib:$XILINX/bin/sol:/usr/openwin/
lib: ${LD_LIBRARY_PATH}

On HP workstations, the variable is SHLIB_PATH. Leave out /
usr/openwin/lib.

• MGC_GENLIB

This should point to the Mentor Graphics gen_lib library,
normally $MGC_HOME/gen_lib.

• MGC_HOME

This should point to the Mentor Graphics software tree.

• MGC_LOCATION_MAP

This variable should point to a valid location map file.

Each component in a design contains a reference indicating
where it resides on the disk or network. All components in
designs created in the Mentor Graphics C.4 environment
reference the variable $LCA, while back-annotated timing
models reference the variable $SIMPRIMS. It is also important
that the $LCA and $SIMPRIMS variables be instantiated, but not
defined, in the file pointed to by $MGC_LOCATION_MAP. With
all these elements, the location-map file should, at a minimum,
look like:

Getting Started

Mentor Graphics Interface Guide 2-3

MGC_LOCATION_MAP_1

(empty line)

$MGC_GENLIB

(empty line)

$LCA

(empty line)

$SIMPRIMS

(empty line)

The MGC_LOCATION_MAP_1 line indicates that this is a
version 1 location-map file. (You can also use the version
MGC_LOCATION_MAP_2, which adds features such as outside
file inclusion.) The three soft names with blank lines indicate that
the Mentor Graphics software should pull the associated values
from the parent environment.

Refer to the Mentor Graphics documentation for more
information on location maps.

• MGC_WD (Optional)

This variable should point to the working directory. You can have
this variable always point to your current directory by setting it
to “.”

Xilinx tools ignore the MGC_WD variable.

• MGLS_LICENSE_FILE

This variable must point to a valid FlexLM license file that lists
the Mentor Graphics license daemon and licensed software
features, as supplied by Mentor Graphics. A sample license file
may begin as follows.

SERVER tequiero 9542df17 1700

DAEMON mgcld /tools/mentor/lib/mgcld

/usr/local/data/mentor.opt

FEATURE falconfw_s 8.0 31-dec-1997 10 ...

Mentor Graphics Interface Guide

2-4 Xilinx Development System

• MODELTECH

This variable should point to the directory where the Modeltech
software is installed. For example,

setenv MODELTECH /products/modeltech_ver5

• MTI_HOME

This variable should point to the directory where the Modeltech
software is installed. For example,

setenv MTI_HOME /products/modeltech_ver5

• RENOIRHOME

This variable should point to the directory where the Renoir soft-
ware is installed. For example,

setenv RENOIRHOME /products/renoir

• SIMPRIMS

This points to the directory where Xilinx simulation models are
located. This should be set to $LCA/simprims.

Refer to the release notes for additional information on paths and
environment variables.

Invoking the Design Manager
To invoke the Design Manager from the operating system, type
pld_dmgr.

The Design Manager window appears, as shown in Figure 1-1.

Invoking Applications in the Design Manager
You can use either an icon or the Navigator to invoke an application
from the Design Manager.

Tools Window Icons
To use an icon to open an application, double-click the left mouse
button on the icon in the Tools window.

A dialog box appears that allows you to set options, or the
application is executed.

Getting Started

Mentor Graphics Interface Guide 2-5

Navigator Window
If you want to load a specific design, you can also use another
method of invoking an application.

1. Select the design object in the Navigator window with the left
mouse button and press the right mouse button.

2. Select Open from the Navigator menu.

3. Select the appropriate application from the popup menu.

Only the applications that can be executed on the selected object
will be displayed in the popup menu.

A dialog box appears that allows you to set options, or the
application is executed.

Mentor Graphics Interface Guide

2-6 Xilinx Development System

Mentor Graphics Interface Guide — 3.1i 3-1

Chapter 3

Schematic Designs

This chapter describes how to use the Mentor Graphics Design
Manager and Design Architect to design with pure schematic
designs. It contains the following sections.

• “Design Flows”

• “Design Entry”

• “Functional Simulation”

• “Implementing Schematic Designs”

• “Timing Simulation for Schematic Designs”

Design Flows
Three pure schematic design flows are shown in the “Schematic Entry
Design Flows” section in the “Introduction” chapter. This chapter
describes how to work with designs using the pure schematic design
flows.

Design Entry
The following subsections describe how to access and use the design
entry tools.

Invoking Design Architect
You can use either the pld_da icon or the Navigator to invoke Design
Architect from the Design Manager.

Mentor Graphics Interface Guide

3-2 Xilinx Development System

To invoke Design Architect with the pld_da icon in the Tools
Window, double-click the left mouse button on the pld_da icon. A
Design Architect window displays but without a schematic. You can
use the Open Sheet icon in the Session Palette to open a schematic
sheet.

If you want to load a specific design, you can invoke Design Architect
from the Navigator as follows.

1. Select the design in the Navigator window and press the right
mouse button.

2. Select Open → pld_da from the Navigator pop-up menu.

Adding Components
This section explains how to add Xilinx library components and
describes how to use CORE Generator and LogiBLOX.

Adding Xilinx Library Components

To add Xilinx library components, perform the following steps.

1. To add a component from the Xilinx libraries, select XILINX
Libraries from the Libraries pull-down menu.

2. In the Schematic Palette, click the desired technology library.

Note Do not mix components from different technologies
(families).

3. Click BY TYPE to select a category of element, or ALL PARTS to
select a specific element.

4. Click the desired element, move the cursor to the desired location
on the schematic, and click the left mouse button to place it.

Note For Virtex2, ten I/O primitives have default attributes when
added to the schematic. The default attribute displays next to the
primitive when placed on the schematic. For OBUF, OBUFDS,
OBUFTDS, OBUFT, IOBUF, and IOBUFDS, there are default
attributes for IOSTANDARD, DRIVE, and SLEW. For IBUF, IBUFDS,
IBUFG, IBUFGDS, there is a default attribute for IOSTANDARD. For
details on valid entries for each of these attributes, see the Xilinx
Libraries Guide.

Schematic Designs

Mentor Graphics Interface Guide 3-3

Bus Rippers

Bus rippers are Mentor Graphics-supplied special components that
connect nets to specific signals on a bus. You can obtain bus rippers
by selecting the rip component in the Logic submenu in the Unified
Libraries. These components are the same as rip components in the
MGC Digital Libraries gen_lib.

Xilinx Libraries

In Design Architect, the Xilinx Libraries menu contains the Unified
Libraries. The Unified Libraries are a collection of libraries that
conform to standards set for the appearance, function, and naming
conventions of the library elements. This standardization allows you
to easily convert from one Xilinx architecture to another. You should
use the primitives and the macros in the Unified Libraries to create
new designs. Refer to the Xilinx Libraries Guide for detailed
information on the Xilinx Libraries.

Primitives and Macros

The Xilinx Libraries contain the following types of components.

• Primitives—These are pads and basic logic elements, such as
gates, latches, flip-flops, buffers, and oscillators.

• Soft macros—These are schematics that contain primitives and
other soft macros. Soft macros have pre-defined functionality and
often have fixed mapping, placement, and routing to provide the
most efficient use of resources and the fastest speed.

LogiBLOX

LogiBLOX allows you to synthesize common data functions such as
addition, that are optimized for a particular family. Refer to the
LogiBLOX Guide for information on LogiBLOX components.

CORE Generator System

The CORE Generator system allows you to use complex functions
such as math functions, memories, or DSP functions that are
optimized for a particular family. Refer to the CORE Generator System
User Guide for information on CORE Generator modules.

Mentor Graphics Interface Guide

3-4 Xilinx Development System

You might like to create various functions using Xilinx Cores and put
them on a schematic sheet in Mentor Design Architect, and simulate
them using Mentor's QuickSim.

To place Core Generator modules into your design, follow these
steps.

1. Invoke pld_da and open a schematic sheet for your design.

2. In the Xilinx library menu in the schematic sheet, click the
Coregen... Palette menu item.

The Create/Instantiate COREGEN Symbol dialog box opens as
shown in the following figure.

Figure 3-1 Create/Instantiate COREGEN Symbol

Schematic Designs

Mentor Graphics Interface Guide 3-5

Note When you invoke Coregen from within the Schematic
Editor, a revolving cursor indicates that Design Architect is
waiting on the Coregen GUI and for you to create a core. At
times, Coregen GUI may be hidden behind the Design Architect
window. If the Coregen GUI does not come up, press control-s to
stop the waiting process. When you press control-s, the revolving
cursor stops moving but it does not return to the normal arrow
shape. This does not mean that Design Architect is not functional;
you can continue working in the Schematic Editor. To restore the
cursor to the normal arrow, press control-k at any time. If you
wish to continue waiting for interaction with Coregen GUI, press
control-q to resume the waiting process.

The Create/Instantiate COREGEN Symbol dialog box contains
the following fields.

♦ Project directory—This is the directory in which you would
like the symbol component to reside. Xilinx refers to this
directory as the symbol project directory.

♦ Replace existing symbol—This button determines if the new
symbol can overwrite the same name symbol in the symbol
project directory.

♦ Simulation Model—This switch cannot be changed. It
indicates that the cores are created from EDIF files and read
into Mentor to create EDDM SINGLE OBJECT simulation
model.

♦ Instantiate symbol—This choice button determines if the
created core symbol is to be placed on the sheet.

♦ Target Architecture—This is a list gadget from which the
desired Xilinx family is selected.

3. Fill out this form and click OK.

The CORE Generator system is invoked and Design Architect is
disabled.

4. In the CORE Generator, select and generate the desired core.

5. Once the CORE Generator edif output is created, control will be
back in the Design Architect, a symbol gets created and you are
able to place the symbol on the schematic sheet.

Mentor Graphics Interface Guide

3-6 Xilinx Development System

6. Upon placement of the symbol an automatic popup message
inquires if you would like to create another core. If you select
YES, the control will be transferred back to CORE Generator and
the same process repeats. If you select NO, the CORE Generator
GUI automatically closes. This dialog box often appears on the
top left corner of the schematic window.

7. After the CORE Generator closes, if you need to create another
core, go back to step 2 above.

Properties
This section describes the properties that are unique to Mentor or that
are required when working with Xilinx PLDs using Mentor.

Properties, or attributes, are instructions placed on symbols or nets in
an FPGA or CPLD schematic that allow you to control aspects of
software processing. They express information specific to each
design, unlike run-time options entered in the Xilinx Design
Manager.

This section describes the properties that are unique to Mentor sche-
matics or that are required. The Xilinx Libraries Guide describes the
other attributes that you can place on a Mentor schematic.

INST

Use the INST property to uniquely identify an instantiation of a
component or symbol in a design. Design Architect assigns a default
INST property to the symbol of each instantiation (I$1, I$2, and so
forth), and the INST value is appended to the hierarchical path.

COMP

Use the COMP property to indicate that a simulation model exists for
a primitive. All Xilinx primitives have a COMP property.

Do not place the COMP property on user symbols since COMP
indicates that the symbol is a Xilinx library primitive.

CYMODE

Use the CYMODE property on the Carry Mode symbol to identify the
mode for the dedicated carry logic in an XC4000 CLB.

Schematic Designs

Mentor Graphics Interface Guide 3-7

INTERNAL

Use the INTERNAL property to identify unbonded IOBs.

Entering Timing Specifications

The Mentor netlist writer program (ENWRITE) converts all property
names to lowercase letters, and the Xilinx netlist reader EDIF2NGD
then converts the property names to uppercase letters. To ensure
references from one constraint to another are processed correctly,
observe these guidelines.

• A TSidentifier name should contain only uppercase letters on a
Mentor Schematic (TSMAIN, for example, but not TSmain or
TSMain).

• If a TSidentifier name is referenced in a property value, it must be
entered in uppercase letters. For example, the TSID1 in the
second constraint below must be entered in uppercase letters to
match the TSID1 name in the first constraint.

TSID1 = FROM: gr1: TO: gr2: 50;

TSMAIN = FROM: here: TO: there: TSID1: /2;

Creating New Groups from Existing Groups

The Mentor netlist writer program (ENWRITE) converts all property
names to lowercase letters, and the Xilinx netlist reader EDIF2NGD
then converts the property names to uppercase letters. To ensure
references from one constraint to another are processed correctly,
observe these guidelines.

• Group names should contain only uppercase letters on a Mentor
Schematic (MY_FLOPS, for example, but not my_flops or
My_flops).

• If a group name appears in a property value, it must also be
expressed in uppercase letters. For example, the GROUP3 in the
first constraint below must be entered in uppercase letters to
match the GROUP3 in the second constraint.

TIMEGRP GROUP1 = gr2: GROUP3;

TIMEGRP GROUP3 = FFS: except: grp5;

Mentor Graphics Interface Guide

3-8 Xilinx Development System

Functional Simulation
Functional simulation provides an effective means of identifying
logic errors in your design before it is implemented in a Xilinx device.
Since timing information for the design is not available, the simulator
tests the logic in the design using unit delays. Finding errors before
routing your design saves debugging time later in the design process.

You can functionally simulate XNF or EDIF based designs by using
pld_xnf2sim or pld_edif2sim to convert the designs to a Mentor
simulation model. The EDIF design must be Xilinx compatible and
expressed in Unified Library components. The following figure illus-
trates the design flow for these types of designs.

Figure 3-2 Functional Simulation Flow Diagram

The Mentor Graphics Schematic Design Tutorial on the Xilinx Web site at
http://support.xilinx.com/support/techsup/
tutorials/index.htm provides a detailed example of the steps
involved in functional simulation.

Simulating Pure Schematic Designs
This section describes how to simulate purely schematic designs—
designs that are composed solely of elements from the Unified
Libraries and that have been entered through Design Architect.
Performing functional simulation on a pure schematic design consists
of creating a viewpoint in pld_dve from the schematic that you
created in Design Architect and using pld_quicksim to simulate the
design.

X7569

pld_dve

pld_quicksim

EDDM
Schematic

Simulation
Viewpoint

Schematic Designs

Mentor Graphics Interface Guide 3-9

Creating the Viewpoint

After creating a schematic design with Design Architect and a Xilinx
library, the next step in the functional simulation flow is to configure
a viewpoint for the simulator. Without a correct simulation
viewpoint, you will not be able to simulate your design. The
viewpoint defines primitives and parameters for design evaluation
and analysis.

Pld_dve invokes the Mentor Graphics Design Viewpoint Editor
(DVE) to configure a viewpoint for Xilinx designs.

Create the viewpoint for the top-level component that was created in
Design Architect.

1. To invoke DVE, double-click the left mouse button on the
pld_dve icon in the Design Manager Tools window.

Alternatively, you can select the top-level component in the
Navigator window and click the right mouse button to invoke
pld_dve.

The dialog box shown in the following figure appears. For a more
detailed description of DVE, refer to the Mentor Graphics Design
Viewpoint Editor Users Manual and Reference Manual.

Mentor Graphics Interface Guide

3-10 Xilinx Development System

Figure 3-3 Pld_dve Dialog Box

2. Enter the design name in the Component Name field, or click
Navigator to browse a list of design names. If you invoked
pld_dve from the Navigator window, the component is already
selected.

If you click the Navigator, you can select the component name,
and the corresponding viewpoint name will appear in the
Viewpoint Name field.

3. In the Select One field, select Simulation.

Select Custom if you want to open the selected viewpoint in DVE
so that you can interact with it rather than accept the pld_dve
default. Selecting Custom invokes Mentor’s DVE and opens the
named viewpoint. You could use this to select a different model
for a specific sub-module.

4. In the Viewpoint Name field, you can enter the viewpoint name if
you do not want to use the default viewpoint.

5. In the PLD Technology field, select a technology.

Schematic Designs

Mentor Graphics Interface Guide 3-11

6. Click Invoke Stand-Alone DVE only if you want to invoke
DVE to interact with Mentor’s user interface instead.

This command brings up the DVE window to allow you to
customize the viewpoint. For information on customizing a
viewpoint, see the Mentor Graphics DVE user documentation.

7. Select OK to start pld_dve.

Pld_dve now generates a viewpoint with the same name as that
entered in the Viewpoint Name field. It is in the format
component_name/viewpoint_name.

You can also access pld_dve from a UNIX shell.

If you are converting a top-level XNF or EDIF netlist with
pld_xnf2sim or pld_edif2sim, the simulation viewpoint is created
for you automatically.

Simulating the Design

After creating the viewpoint, you can submit pure schematic designs
to pld_quicksim for functional simulation.

1. To invoke pld_quicksim, double-click the left mouse button on
the pld_quicksim icon in the Design Manager Tools window.

Alternatively, you can select the top-level component in the
Navigator window and click the right mouse button to invoke
pld_quicksim.

The PLD_QuickSim II dialog box, shown in Figure 3-4, appears
on the screen. For more detailed information on the dialog box
options, refer to the Mentor Graphics QuickSim documentation.

Mentor Graphics Interface Guide

3-12 Xilinx Development System

Figure 3-4 PLD_QuickSim II Dialog Box

2. In the Design field, enter the design name. If you selected the
component in the Navigator window, the design name is already
set.

3. In the Select Desired Mode box, click No Cross-Probing, if it is
not already selected (This is the default setting).

You can only select cross-probing for timing simulation for
schematic designs, not for functional simulation. See the “Cross-
Probing” section for more details about cross-probing.

4. In the Timing Mode field, select Unit for functional simulation.

5. In the Detail of “Unit” Timing Mode field, click Hidden.

6. In the Simulator Resolution box, enter the smallest unit of time
that you want to be visible in the simulator.

The smallest resolution allowed for Xilinx designs is 0.1 ns.

7. Click OK.

Pld_quicksim now starts, and the QuickSim II window appears.
The QuickSim II window functions as a waveform viewer; you
can bring up the schematic and view the signals, or you can view
the waveforms generated by the simulation. Consult the Mentor
Graphics documentation for more information on how to view
waveforms in this window.

Schematic Designs

Mentor Graphics Interface Guide 3-13

Simulating Schematic Designs with LogiBLOX
Elements or CORE Generator Modules

LogiBLOX creates a simulation model for LogiBLOX elements and
the CORE Generator system creates a simulation model for CORE
Generator modules. However, you must still create a viewpoint on
the top-level design with pld_dve before functionally simulating the
design. Follow the instructions in the “Creating the Viewpoint”
section of the “Simulating Pure Schematic Designs” section in this
chapter. Then submit the design to pld_quicksim, following the
procedure given in the “Simulating the Design” section of the
“Simulating Pure Schematic Designs” section in this chapter.

Simulating Schematic Designs with XNF Elements
To functionally simulate a pre-route XNF design, follow the steps in
this section. The steps are illustrated in the following figure.

Figure 3-5 XNF Functional Simulation Flow

Creating the Design Component

Create the top-level design component as described in the “Creating
the Design Component” section in this chapter. This provides an
“anchor” for the converted design.

Converting the XNF File

The next step is to convert the XNF file to a simulation model.

1. In your schematic, create a symbol for each XNF element in your
design.

Top-level XNF

pld_xnf2sim

pld_quicksim

EDDM
single object

X7838

Mentor Graphics Interface Guide

3-14 Xilinx Development System

2. Attach a FILE=xnf_file_pathname property to each symbol. (In this
manual, file=value means to add the file property and set its value
to value.)

3. Double-click the left mouse button on the pld_xnf2sim icon in the
Design Manager Tools window.

The resulting dialog box is shown in the following figure.

Figure 3-6 PLD XNF to Mentor Convert Dialog Box

Pld_xnf2sim uses all supporting XNF files from the directory in
which the top-level XNF input file was submitted.

Schematic Designs

Mentor Graphics Interface Guide 3-15

4. If the required XNF files are not in that directory, click Yes in the
field asking “Select a group of XNF files from a list file?,” and
specify the path name of a file that lists the path names of all
needed XNF files. Each path name is specified on a separate line
in this file, for example.

/x/y/z/abc.xnf
/x/y/z/def.xnf

5. In the Synopsys XNF field, select No if the XNF does not come
from Synopsys.

6. In the Top-level XNF Input File field, type the name of your top-
level XNF file or click Navigator to find it.

7. In the Enter Name field, enter the name of the symbol that you
created in step 1 or click Navigator to find it.

Note If the symbol has not yet been created, a Mentor component
is created with an EDDM-single-object model. At this point, you
can use Design Architect to create a symbol for it. Click Open
Symbol and specify the path name of this component. A symbol
is automatically created. Check the symbol, add the
file=xnf_file_pathname property, and save it if the XNF file
represents the entire design (If it has EXT statements for IO pins.).
However, if the XNF does not contain EXT statements, you must
manually create the symbol and assign the pins. In this case, the
simulation model (EDDM_single_object) created by pld_xnf2sim
will not correspond with this symbol, and functional simulation
must be done by converting the entire design to EDIF and
submitting the EDIF to pld_edif2sim to create a top-level
component and use pld_quicksim to simulate. This top-level
component and all its submodules will be expressed in terms of
SimPrim primitives rather than the Unified Library components
used for design entry.

8. In the PLD Technology field, select the appropriate architecture.

9. Leave the Exit on Errors button enabled if you want the program
to exit when it encounters an unresolved block. Otherwise, click
the Exit on Errors button and it changes to Continue (Ignore
Errors).

10. In the Select Desired Simulation Model field, select EDDM.

Mentor Graphics Interface Guide

3-16 Xilinx Development System

11. In the “Enter additional directories to search” field, enter all the
directory pathnames that the program should search to find
EDIF, XNF, and NGO files that define blocks in your design that
have the File property on them.

12. Click OK.

This procedure produces a single-object simulation model for the
specified symbol component.

Creating the Viewpoint

If you are converting a top-level XNF or EDIF netlist with
pld_xnf2sim or pld_edif2sim, the simulation viewpoint is created for
you automatically.

Simulating the Design

The rest of the simulation procedure is the same as that described in
the “Simulating Pure Schematic Designs” section earlier in this
chapter.

Simulating Schematic Designs with EDIF Elements
To functionally simulate a pre-route EDIF design, follow the steps in
this section. The steps are illustrated in the following figure.

Figure 3-7 EDIF Functional Simulation Flow

Top-level EDIF

pld_edif2sim

pld_quicksim

EDDM
single object

X7837

Schematic Designs

Mentor Graphics Interface Guide 3-17

Creating the Design Component

Create the top-level design component as described in the “Creating
the Design Component” section in this chapter. This provides an
“anchor” for the converted design.

Converting the EDIF File

The next step is to convert the EDIF file to a simulation model.

1. In your schematic, create a symbol for each EDIF element in your
design.

2. Attach a FILE property with the value of edif_file_pathname to
each symbol.

3. Double-click the left mouse button on the pld_edif2sim icon in
the Design Manager Tools window.

The resulting dialog box is shown in the following figure.

Figure 3-8 PLD EDIF to Mentor Convert Dialog Box

Mentor Graphics Interface Guide

3-18 Xilinx Development System

Pld_edif2sim uses all supporting EDIF files from the directory in
which the top-level EDIF input file was submitted.

4. In the EDIF source field, select Mentor, Synopsys, or Other to
specify the source from which the EDIF was generated. Specify
Other if the EDIF comes from a vendor other than Mentor or
Synopsys. When selecting Other, you must ensure that the EDIF
is compatible with Xilinx EDIF.

5. In the Top-level EDIF Input File field, type in the name of your
top-level EDIF file, or click Navigator to find it.

6. In the Enter Name field, enter the name of the symbol that you
created in step 1, or click Navigator to find it.

Note If the symbol has not yet been created, a Mentor component
is created with an EDDM-single-object model. At this point, you
can use Design Architect to create a symbol for it. Click Open
Symbol and specify the path name of this component. A symbol
is automatically created. Check the symbol, add the
file=edif_file_pathname property, and save it.

7. In the PLD Technology field, select the appropriate architecture.

8. Leave the Exit on Errors button enabled if you want the program
to exit when it encounters an unresolved block. Otherwise, click
the Exit on Errors button and it changes to Continue (Ignore
Errors).

9. In the Select Desired Output field, select EDDM.

10. In the “Enter additional directories to search” field, enter all the
directory pathnames that the program should search to find
EDIF, XNF, and NGO files that define blocks in your design that
have the File property on them.

11. Click OK.

This procedure produces a single-object simulation model for the
specified symbol component.

If you are converting an EDIF with pld_edif2sim, the simulation
viewpoint is created for you automatically.

Schematic Designs

Mentor Graphics Interface Guide 3-19

Simulating the Design

The rest of the simulation procedure is the same as that described in
the “Simulating the Design” section of the “Simulating Pure
Schematic Designs” section section earlier in this chapter.

Implementing Schematic Designs
Once you complete functional simulation for schematic designs, you
are ready to implement your design. You perform implementation
with the Xilinx Design Manager, pld_dsgnmgr, which you invoke
from the Mentor Design Manager or from a UNIX shell.
Pld_dsgnmgr first translates the design into a flattened or
hierarchical netlist, then optimizes, places, and routes the design. It
creates delay data for timing simulation and physical (bitstream)
design data for downloading.

Design entry of pure schematic designs, or schematic designs with
LogiBLOX elements, CORE Generator modules, EDIF submodules,
or XNF submodules produces an EDDM file that you must convert to
EDIF with the pld_men2edif utility before implementing the design
with pld_dsgnmgr. The following figure shows the design flow
involved in implementing a design.

Figure 3-9 Design Implementation

Converting the EDDM Design to EDIF
To convert your design to EDIF, follow these steps.

1. In the Mentor Design Manager, double-click the left mouse
button on the pld_men2edif icon.

The dialog box shown in the following figure appears.

X7842EDN

pld_men2edif

pld_dsgnmgr

EDDM

EDIF

Mentor Graphics Interface Guide

3-20 Xilinx Development System

Figure 3-10 Mentor to EDIF Netlist Dialog Box

2. In the Component Name field, enter the component name or click
Navigator to browse a list of design names.

3. In the From Viewpoint field, you can enter the viewpoint name if
you do not want to use the default viewpoint. Alternatively, in
step 2 you can select a viewpoint under the component.

4. Select the appropriate architecture for your design in the PLD
Technology field.

5. Select the appropriate Bus Dimension Separator Style.

This is important if you are merging components from other
design-entry tools into a single design. Choosing a bus-index
delimiter lets you insure that the bus-index delimiters that
pld_men2edif writes out are consistent with those of any other
design-entry tools with which you are interfacing. Mentor EDIF
uses parentheses. Synopsys EDIF uses angle brackets.

6. Click OK.

Schematic Designs

Mentor Graphics Interface Guide 3-21

Pld_men2edif now produces an EDIF file that you can submit to
the Xilinx Design Manager, pld_dsgnmgr. The output name is
component_name.edif.

Implementing the Design
The Xilinx Design Manager is a graphical design flow and project
manager. The Xilinx Design Manager takes your design, represented
by the EDIF file from pld_men2edif, and implements it in an FPGA or
CPLD. You can also use the Xilinx Design Manager to generate
timing information that you can import into QuickSim or ModelSim.

The Xilinx Design Manager, pld_dsgnmgr, can accept an EDIF file, or
if your design is a pure XNF design, it can accept an XNF file.

For a more in-depth discussion of the flow, including advanced
implementation options, see the Development System Reference Guide.

To implement your design, follow these steps.

1. Within the Mentor Design Manager, select the EDIF icon for your
design in the Navigator, then select Right Mouse Button →
Open → pld_dsgnmgr. The tool automatically creates a Xilinx
project called your_design_name. Xilinx project information is kept
in a file called xproj/your_design_name.prj by default. For
implementation details, see the Xilinx Design Manager/Flow
Engine Guide.

2. In the Xilinx Design Manager, select Design → Options.

The Options dialog box appears as shown in the following figure.
This dialog box contains many options. Most of these you can set
as you see fit for you design. The following steps list some
recommended settings for working in the Mentor environment.

Mentor Graphics Interface Guide

3-22 Xilinx Development System

Figure 3-11 Options Dialog Box

1. Select Quicksim in the Options dialog box Simulation popup
menu.

2. Click the Simulation Edit Options button to open the Simulations
Options dialog box.

3. In the EDIF pane, make sure the CAE Vendor is set to Mentor and
that the Retain Hierarchy in Netlist option is enabled.

Timing Simulation for Schematic Designs
Timing simulation verifies design functionality by using delay
information from the EDIF, VHDL, or Verilog file created during
design implementation. It also describes how to perform a timing
analysis with Mentor’s QuickPath tool.

Schematic Designs

Mentor Graphics Interface Guide 3-23

During design implementation, the Xilinx Design Manager can
produce an EDIF (EDN) file. For EDIF files, the process of timing
simulation consists of converting the EDIF netlist to a Mentor EDDM
model, creating a component and a viewpoint, and simulating the
design with pld_quicksim. The timing simulation process for EDIF
files is shown in Figure 3-12.

The Mentor Graphics Schematic Design Tutorial on the Xilinx Web site at
http://support.xilinx.com/support/techsup/tuto-
rials/index.htm illustrates the steps involved in timing simula-
tion.

This section describes how to use QuickSim to perform timing
simulation on designs described in EDIF.

Figure 3-12 Timing Simulation for Schematics

Creating the EDDM Model and the Viewpoint
The first step in performing a timing simulation on your design is to
use the pld_edif2tim utility to convert the EDIF netlist created by the
Xilinx Design Manager to a Mentor EDDM model. At the same time,
pld_edif2tim automatically creates a viewpoint which is
subsequently processed by pld_dve –s to prepare it for timing
simulation.

1. Double-click the left mouse button on the pld_edif2tim icon in
the Design Manager Tools window.

The dialog box shown in the following figure appears.

EDN

EDDM
(Single Object)

pld_dsgnmgr

pld_edif2tim

pld_dve

pld_quicksim
with

cross-probing
X7571

Mentor Graphics Interface Guide

3-24 Xilinx Development System

Figure 3-13 EDIF to Mentor Eddm Single Object Dialog Box

2. Enter the name of the EDN file in the EDIF Input File field, or
click Navigator to browse the available files.

The component created from the EDN file is put into a design
library called my_design_lib. If you have already implemented
your design at least once, this directory already exists. If you do
not wish to copy over it, move it to another directory before
proceeding.

3. Click OK.

4. Invoke DVE, by double-clicking the left mouse button on the
pld_dve icon in the Design Manager Tools window.

5. Enter the top-level component name created by pld_edif2tim in
the my_design_lib directory.

6. Use the Navigate button to navigate all the way down to the
“default” viewpoint and select the viewpoint.

7. Select the Simulation Button.

8. Select the appropriate technology from the PLD Technology box.

9. Click OK.

Simulating the Design
You can now submit the design to pld_quicksim for timing
simulation.

1. To invoke pld_quicksim, double-click the left mouse button on
the pld_quicksim icon in the Design Manger Tools window.

Schematic Designs

Mentor Graphics Interface Guide 3-25

2. In the Design field, enter the name of the top-level design created
by pld_edif2tim.

3. In the Select Desired Mode field, select Cross-Probing.

Normally, you select cross-probing for back-end EDDM designs
but not for front-end designs. You can only cross-probe back-end
designs that contain either pure schematic or schematics that
contain EDDM hierarchical models. You cannot cross-probe
designs written in HDL or that contain HDL models. See the
“Cross-Probing” section for more details about cross-probing.

Caution: In order for cross-probing to work, other sessions of
Design Viewpoint Editor and QuickSim must be closed.
Otherwise, the interprocess communication gets confused. This
includes another user’s session invoked by rlogin from another
workstation.

4. Set the timing modes as desired.

5. Click OK.

Pld_quicksim now simulates the design. The QuickSim graphical
user interface appears. If you selected cross-probing, DVE is
invoked as well.

6. In DVE, open the viewpoint of the front-end schematic design,
that is, the viewpoint submitted to pld_men2edif.

7. Open the sheet of the design, and select signals that you wish to
trace.

These signals are automatically added to the QuickSim trace
window. If you have a file that sets up your trace window and
stimulus, use that instead. Any signals selected in the trace
window select the same on the schematic on which they reside in
the DVE window. If such sheets have not been opened in DVE
yet, you must open them to see the selections.

Mentor Graphics Interface Guide

3-26 Xilinx Development System

Cross-Probing
Cross-probing is a way of cross-referencing between the original
schematic and the timing simulation model after placement and
routing. Once a Mentor design is translated, expanded, mapped,
placed, and routed, you can extract the back-annotation information
and create a hierarchical EDIF netlist. After you convert this EDIF to
an EDDM model using pld_edif2tim, you submit it to pld_dve to
create a viewpoint and then to pld_quicksim for timing simulation.
The resulting data base preserves the design hierarchy, and although
it is created in terms of the SimPrim library, most of the original net
names are still available. You enable cross-probing by invoking
QuickSim with the -cp option. This option invokes pld_dve as well as
pld_quicksim. You then open the original design viewpoint in
pld_dve and view the desired design sheet. If you display the
original schematic in pld_dve, you can select nets on the original
schematic and view them in the QuickSim trace window.

You may optionally create a schematic model using Mentor's sche-
matic generator (sg) from the Eddm model created by pld_edif2tim.
This schematic is only for viewing the backend schematic and is not
required for the Xilinx flow to work. With cross-probing, you can use
your original schematic for this purpose.

You should usually be able to reapply your original test vectors to the
new Eddm_single_object design model for timing and/or functional
simulation in QuickSim.

When you create the trace/list window in QuickSim, selecting signals
from the original selected test vectors should cause the corresponding
net on the original schematic sheet in pld_dve to be selected. If it is
unselected in the trace/list window, it is also unselected on the
original schematic.

If a net is selected in the pld_dve schematic sheet window, the net is
automatically added to QuickSim trace window. If the net due to
optimization or other complexities has been eliminated in the post-
layout design, QuickSim issues an Error message of the type.

Error: $$add_traces returned error status at line
440 of file /tools/...

Error: Unable to resolve string '/ALU/I$10/C2' to a
signal or expression

Schematic Designs

Mentor Graphics Interface Guide 3-27

No trace is displayed for this net.

When a net is selected on the original schematic sheet in pld_dve and
if the corresponding signal is already added to the trace/list window,
the net will not be added again; instead, it is highlighted in the trace/
list window.

Adding list windows in quicksim is your choice. List windows are
not automatically created. If you do create a list window, it is your
choice which signals to add to the list window. Opening a list
window does not automatically show or add the signals from the
trace window. However once you have added signals to the list
window, selecting such signals will interact with the original
schematic exactly the same way as the ones in trace window.

Caution: In order for cross-probing to work, other sessions of Design
Viewpoint Editor and QuickSim must be closed. Otherwise, the
interprocess communication gets confused. This includes another
user’s session invoked by rlogin from another workstation to your
workstation.

Note If you flatten your design during netlist generation, you lose
hierarchical aliases for signals that span multiple hierarchy levels;
only the name of the signal at its highest level is preserved.

While 100% back-annotation is possible, certain limitations of
simulators, optimization process, and modelling of complex
functions can make 100% back annotation impossible.

For more details on cross-probing, see the Mentor Graphics Schematic
Design Tutorial on the Xilinx Web site at http://
support.xilinx.com/support/techsup/tutorials/
index.htm.

Performing a Timing Analysis
To perform static timing analysis, you may use Xilinx “trace” or
Mentor’s QuickPath or Sst Velocity.

Mentor Graphics Interface Guide

3-28 Xilinx Development System

Mentor Graphics Interface Guide — 3.1i 4-1

Chapter 4

HDL Designs

This chapter describes how to use the Mentor Graphics Interface to
design with pure HDL designs. It contains the following sections.

• “Design Flow”

• “HDL Design Entry”

• “Functional Simulation”

• “Design Implementation”

• “Timing Simulation”

Design Flow
The following figure shows the design flow for VHDL and Verilog
design entry, functional simulation, synthesis, and timing simulation
for all supported technologies.

Mentor Graphics Interface Guide

4-2 Xilinx Development System

Figure 4-1 HDL (Verilog/VHDL) Design Flow

HDL Design Entry
This section describes the basic process of entering HDL designs. In
addition to this chapter, the HDL design entry techniques in this
section apply to the “Mixed Designs with VHDL on Top” chapter and
“Mixed Designs with Schematic on Top” chapter.

VHDL

VHDL

Verilog

No

Yes

X8887Design complete

Yes

ModelSim

Synthesis*

Design
functionality

correct?

RTL
HDL

ModelSim

ModelSim

HDL Entry Tool

pld_dsgnmgr

* Do not synthesize
 architectures for
 LogiBLOX or
 CORE Generator
 modules

Optional post-synthesis
gate-level simulation

Optional post-synthesis
gate-level simulation

SDF

Design
timing

correct?
No

LogiBLOX
(optional)

Design
contains

instantiations
of LogiBLOX

elements

VHDLVerilog

LogiBLOX GUI

pld_xnf2sim

NGC

ModelSim

SimPrim
VHDL/
Verilog

Verilog

EDIF XNF

pld_edif2sim
on top-level EDIF

VHDL

on top-level XNF

Instantiated Unified
Library (Unisim)
Componments

 (optional)

Design
contains

instantiations
of Unified Library

components

VHDLVerilog VHDL

VHDLVerilog VHDL

ModelSim

VHDL Verilog

Post-synthesis
simulation using
Unified Library
components

CORE Generator
(optional)

Design
contains

instantiations of
CORE Generator

modules

VHDLVerilog

CORE Generator

VHDLVHDLEDIF

(DA, Renoir, Text)

HDL Designs

Mentor Graphics Interface Guide 4-3

Overview of HDL Design Entry
Use a text editor, pld_da, Renoir, or other HDL entry tool that is
compatible with your synthesizer to create synthesizable VHDL or
Verilog. Pld_da can be better than a plain text editor for editing your
source. With pld_da you can submit the source to be compiled as you
edit it (see the Mentor Design Architect User’s Guide for details). When
performing HDL design entry, observe the following requirements.

• The synthesizers must create EDIF or XNF that is compatible
with Xilinx implementation tools.

• Xilinx-specific properties and timing constraints cannot be added
in a VHDL or Verilog description, but synthesizers do have the
capability of adding them to the output EDIF or XNF via
constraint setting options. These constraint settings must be
consistent with the current Xilinx implementation tools
requirements. Otherwise, implementation can be controlled
within the implementation tools themselves or with a UCF (user
constraint file) file.

As an optional part of the Xilinx HDL design entry flow, you can
instantiate LogiBLOX modules in your VHDL or Verilog designs and
simulate the HDL output from LogiBLOX in your HDL simulators.
When using LogiBLOX modules in HDL design entry, observe the
following requirements.

• Create the NGC from LogiBLOX for later use in the
implementation tools. LogiBLOX NGC files must be placed in
your top level directory or you must modify the macro search
path in the Xilinx Design Manager to include the location of NGC
files. You must have the LogiBLOX NGC files in the same
directory as your top-level EDIF or XNF.

• Your synthesizer must not read in or synthesize the HDL
description of the LogiBLOX modules. These descriptions are for
simulation only. The modules must be treated as black boxes by
the synthesizer.

As an additional option in the Xilinx HDL design entry flow, you can
instantiate CORE Generator modules in your VHDL or Verilog
designs and simulate the HDL output from the CORE Generator
system in your HDL simulator. When using CORE Generator
modules in HDL design entry, observe the following requirements.

Mentor Graphics Interface Guide

4-4 Xilinx Development System

• Create the EDF from CoreGen for later use in the implementation
tools. The CoreGen EDF file must be placed in your top level
directory or you must modify the macro search path in the Xilinx
Design Manager to include the location of the EDF files. You
must have the CORE Generator EDF files in the same directory as
your top-level EDF or XNF.

• Your synthesizer must not read in or synthesize the HDL
description of the CoreGen modules. These descriptions are for
simulation only. These are templates for you to cut and paste
CoreGen declarations, instantiations, and configurations into the
testbench. The modules must be treated as black boxes by the
synthesizer.

Note In order to simulate CORE Generator modules, you need to first
extract HDL simulation models using get_models. Please see the
CORE Generator System User Guide for details.

HDL Design Entry Stages
HDL design entry has two stages as shown in Figure 4-2. The first
stage is the Register Transfer Level (RTL). At this level, the design
behavior is described in a high-level, non-technology-specific
manner. Instantiation of specific components is the exception. An
example would be RAMs or LogiBLOX modules. This design entry
step is generally followed by a functional simulation.

HDL Designs

Mentor Graphics Interface Guide 4-5

Figure 4-2 HDL (Verilog/VHDL) Design Entry and Synthesis

During design entry, you may check out the syntax correctness of
your code by compiling it for your synthesizer and/or ModelSim
without doing either the synthesis or simulation.

You may find the syntax checkers are different. The synthesizer may
check for certain constructs it cannot synthesize like textio in VHDL,
but these constructs may be perfectly good for simulating
functionality as you develop the circuit. Many synthesizers have
pragma or meta comments that allow you to keep this code in your
HDL description but tell the synthesizer to ignore it.

Also there may be significant differences in how thoroughly the
compilers check the code against the VHDL and Verilog IEEE
standards or even how they interpret certain sections.

It is good practice to do occasional compiles for both the synthesis
tool and ModelSim as you develop large sections of your HDL code.

x8888

RTL Design Entry (stage 1)

Synthesis (stage 2)

Synthesis*

RTL
HDL

Editor or pld_da
LogiBLOX
(optional)

Design
contains

instantiations
of LogiBLOX

elements

VHDLVerilog

LogiBLOX GUI

NGC

EDIF XNF

VHDL

Functional smulation can
be performed at this point

Post-synthesis
simulation using
Unified Library
components

VHDLVerilog

ModelSim

Instantiated Unified
Library Components

(optional)

Design
contains

instantiations
of Unified Library

components

VHDLVerilog VHDL EDIF

CORE Generator
(optional)

Design
contains

instantiations of
CORE Generator

modules

VHDLVerilog

CORE Generator

VHDL

* Do not synthesize
 architectures for
 LogiBLOX or
 CORE Generator
 modules

Mentor Graphics Interface Guide

4-6 Xilinx Development System

Once the RTL simulation is correct, the second stage of design entry is
to submit the RTL code to a synthesizer where the general
functionality is synthesized and mapped to gates in a specific
technology. At this point you have the option of performing a second
functional simulation of the post-synthesis gate level description.
However, this step is not necessary since no additional timing
information is available before place and route.

Once you are satisfied with the behavior of the circuit, you can send
the gate level output of the synthesizer to the implementation tool as
either an XNF or EDIF file.

Stage 1: RTL Behavioral Code Development

The first stage of HDL design entry is developing an RTL behavioral
description. Code created at the RTL entry is generally non-
technology specific. Two exceptions worth noting are as follows.

• Coding style favoring one technology strengths over another

• Instantiating technology specific components

Your coding style should take into account your targeted
technology’s architecture specifics to achieve the best performance or
smallest size for your design.

For example, a style that infers latches unintentionally or even on
purpose would be just fine for a XC5200 or XC4000EX part but would
be a trouble spot with an XC3000. It is a problem for the XC3000
because it would be implemented as cross-coupled logic creating a
host of timing analysis issues. In a XC4000 it would take up valuable
resources since each latch could be implemented as a SRAM cell,
taking up a whole function generator. Synthesizers may vary in how
they implement latches in technologies that do not have explicit
latches. Some may use cross-coupled logic as in the XC4000E. Others
may use a RAM cell.

Another RTL coding style problem might be describing the
functionality in a manner that infers lots of MUXES. A better choice
in some technologies would be to infer internal tri-states and use the
high-performance tri-state lines.

Some synthesizers may not have a means of inferring or targeting
high performance technology components like wide-edge decoders,
I/O muxes, or latches. In that case you may need to instantiate these
components to get your best chip performance.

HDL Designs

Mentor Graphics Interface Guide 4-7

In summary, observe the following RTL coding guidelines.

• Avoid using latches in technologies without specific architecture
components to support them like the XC5200 and XC4000EX
have.

• Infer tri-state buses instead of muxes for technologies with good
internal tri-state structures.

• Instantiate high performance architecture features if your
synthesizer cannot infer them.

Stage 2: Synthesis

The second stage of HDL design entry is synthesis of the RTL
behavioral description down to technology specific gates. Specific
synthesis design entry steps for Xilinx parts are highly dependent on
which synthesizer you use. Generally you can break synthesis design
entry into the following steps.

1. Tailor your RTL code for both the synthesizer and the Xilinx
technology’s capabilities. For example, if your synthesizer can
insert the STARTUP component, you need not instantiate it.

When you simulate in ModelSim with an instantiated startup
block, you get a warning because the startup module does not
have a simulation module. You may ignore this warning since the
startup block is only used to direct the implementation tool and
does not change the logical functionality of the circuit. The
warning looks something like this.

** Warning: Component startupblk is not bound.

2. Guide the synthesis process with timing and/or size
requirements.

3. Guide the output process to select XNF or EDIF outputs to insert
I/O buffers, global buffers, STARTUP blocks, and to output
timing constraints either within the netlist itself or to a separate
file readable by Xilinx implementation tools. Make sure the
timing constraint style is the correct one for the current version of
Xilinx implementation tools.

You should read your synthesizer manual for specific details,
especially the sections about targeting Xilinx devices. Be aware that
any one of these three steps can greatly affect the quality of synthesis
and/or implementation results.

Mentor Graphics Interface Guide

4-8 Xilinx Development System

LogiBLOX Design Entry

Some synthesizers are not capable of using Xilinx carry chains
properly and tend to infer inefficient structures (for example, for
adders and counters). Other synthesizers are able to infer
incrementors or decrementors, but do not use efficient logic for the
control logic of the loadable counter.

To guarantee optimal synthesis for certain modules in a Xilinx
technology, you may use the LogiBLOX module generator and
instantiate the resulting module in your HDL code.

You may invoke the stand-alone Graphic User Interface of LogiBLOX
in the tool window of pld_dmgr by clicking on the pld_logiblox icon.
This is not the same Graphic User Interface you get in the Design
Architect Schematic Palette. The stand-alone version is for VHDL or
Verilog models only. Another way to invoke the stand-alone GUI is
from the Design Architect pop-up menu in the Session Window.

LogiBLOX requires two outputs for proper implementation in a HDL
design.

The first output is the HDL behavior description for simulating either
VHDL or Verilog. These HDL descriptions only support HDL
functional simulations. You should not send them to the synthesizer
for synthesis. The entities can be used for component instantiation
purposes, but the architectures should be treated as black boxes
within the synthesizer. The following is an example of a LogiBLOX
component declaration and instantiation in VHDL.

-- Component Declaration

component RAM16X1

PORT(
A: IN std_logic_vector(3 DOWNTO 0);
DI: IN std_logic_vector(15 DOWNTO 0);
WR_EN: IN std_logic;
DO: OUT std_logic_vector(15 DOWNTO 0));

end component;

-- Component Instantiation

HDL Designs

Mentor Graphics Interface Guide 4-9

instance_name : RAM16X1 port map
(A => ,
DI => ,
WR_EN => ,
DO =>);

The second output is the NGC file. The implementation tools use this
file to pull the LogiBLOX module into the top-level design. Since
these NGC files are technology specific, you should generate a new
NGC file each time you select a new Xilinx architecture. The HDL
behavioral descriptions do not change.

CORE Generator Module Design Entry
The Xilinx CORE Generator system provides designers with a catalog
of ready-made functions ranging in complexity from simple
arithmetic operators such as adders, accumulators, and multiplexers
to system-level building blocks such as filters, transforms, and
memories. These functions are optimized to deliver the highest levels
of performance and efficiency for a particular Xilinx FPGA
architecture and can be quickly integrated into your schematic or
HDL designs.

You can invoke the Xilinx CORE Generator system in standalone
mode by typing coregen at the UNIX prompt, by typing coregen in a
session pop-up window in Design Architect, or by clicking on the
pld_coregen icon in the Mentor Design Manager.

For Verilog and VHDL flows, the CORE Generator system creates
both types of instantiation templates (.veo and .vho), and you simply
use the one that is appropriate for your design flow. The instantiation
templates contain example code for instantiating the CORE
Generator module into a synthesis netlist. They also contain
additional directives that must be added to a behavioral simulation
testbench to perform an HDL behavioral simulation of your top level
design. For example, in the .vho instantiation template file, there is a
component declaration for CORE Generator module and a module
instantiation block which you must use to instantiate the module in
your HDL design for synthesis and behavioral simulation.

Mentor Graphics Interface Guide

4-10 Xilinx Development System

There is also a Xilinx CoreLib simulation library declaration, an
include statement pointing to the VHDL behavioral model for the
module in the Xilinx CoreLib library, and a VHDL CONFIGURA-
TION entry which defines VHDL generics used in the module’s
VHDL behavioral simulation model.

The EDIF implementation netlist (.edn) is always produced for all
design flows and contains information used by the Xilinx
implementation tools to implement the module. Because the
information in the EDN file is technology specific, a given CORE
Generator module must always be regenerated whenever you
retarget your design to a different Xilinx architecture.

Unified Library Instantiated Components
If you prefer, you may instantiate Unified Library components into
the RTL design. The components you use should be primitives
supported in the Xilinx family being targeted and also present in the
synthesis tool’s target library. For more information on Unified
Library components, see the Development System Reference Guide.

Functional Simulation
Pure HDL designs consist of a RTL VHDL or Verilog model. You can
optionally convert the synthesis output netlist to a gate-level HDL
model and functionally simulate it. The flow diagram for performing
functional simulation on pure HDL designs is shown in the following
figure.

HDL Designs

Mentor Graphics Interface Guide 4-11

Figure 4-3 Performing Functional Simulation on a Pure HDL
Design

Pre-Synthesis Functional Simulation
To perform a pre-synthesis functional simulation on a pure HDL
design follow these steps.

Note This procedure assumes that you are using ModelSim.
QuickHDL provides the same functionality as ModelSim. If you are
using QuickHDL instead of ModelSim, see the “ModelSim” section of
the “Introduction” chapter for details on how to modify this
procedure.

1. Create a working library with vlib.

vlib mywork

2. Map the library with vmap.

vmap work mywork

x8889

ModelSim

Synthesis*

RTL
HDL

RTL Functional Simulation

Optional post-synthesis
gate-level simulation

EDIF XNF

ModelSim

pld_edif2sim
on top-level EDIF

ModelSim

pld_xnf2sim
on top-level XNF

VHDL VerilogVHDL

ModelSim

VHDL VerilogVHDL VHDL VerilogVHDL

Post-synthesis
simulation using
Unified Library
components

* Do not synthesize
 architectures for
 LogiBLOX or
 CORE Generator
 modules

Mentor Graphics Interface Guide

4-12 Xilinx Development System

3. If you are using LogiBLOX modules, use vmap to map to the
compiled LogiBLOX modules location.

vmap logiblox compiled_logiblox_area

Your system administrator can tell you the location of the
compiled version(s) of the LogiBLOX library. Instructions for
compiling are in the Mentor Graphics Installation section of the
Alliance Installation Guide. You may have to recompile the library
for each version of ModelSim you use. The default directory for
the compiled LogiBLOX library is as follows.

$XILINX/mentor/data/vhdl/logiblox

4. If you are using CORE Generator modules, use vmap to map to
the compiled CoreGen modules location.

Your system administrator can tell you the location of the
compiled version(s) of the Xilinx CORE Generator library.
Instructions for compiling are in the CORE Generator Installation
section of the Alliance Installation Guide. You may have to
recompile the library for each version of ModelSim you use. You
can copy the files to a directory of your choice using the
get_models command provided by the Xilinx install. This utility
is used to extract and collect the Verilog or VHDL behavioral
models which have been installed in a user’s Core Generator tree.

get_models [-verilog | -vhdl] directory_name

For example, the following collects the VHDL models and puts
them in the directory /usr/tmp/.

get_models -vhdl /usr/tmp

Compile the libraries as follows.

vlib XilinxCoreLib

vmap XilinxCoreLib path/to/XilinxCoreLib

vcom -work XilinxCoreLib /usr/tmp/files.vhd

In a similar manner, you can use the vlog command to compile
the verilog libraries.

5. If you are using Unified Library components, use vmap to map to
the compiled Unified Library location by executing the
appropriate line below for the device family that you are using.

HDL Designs

Mentor Graphics Interface Guide 4-13

For vhdl:

vmap unisim $XILINX/mentor/data/vhdl/unisim

vmap unisim_5k $XILINX/mentor/data/vhdl/
unisim_5k

Map to unisim for the XC3000 and XC4000 series, or unisim_5k
for the XC5200 series.

For verilog:

vmap unisim_ver $XILINX/mentor/data/verilog/
unisims

Map to uni3000 for the XC3000 series or uni5200 for the XC5200
series. All XC4000, Spartan, and Virtex families are mapped to
unisims.

Note The preceding locations for the compiled libraries are the
default locations for a default software installation. However,
your system administrator can install them in other locations.
Your system administrator can tell you the location of the
compiled version(s) of the Unified Library. Instructions for
compiling are in the Mentor Graphics Installation section of the
Alliance Installation Guide. You may have to recompile the library
for each version of ModelSim you use.

6. Compile the HDL source files with vcom (VHDL) or vlog
(Verilog).

vcom [options] design_file(s)

vlog [options] design_file(s)

See the Mentor documentation for a description of the available
options.

7. Compile your testbench with vcom (VHDL) or vlog (Verilog).

vcom [options] testbench_file(s)

vlog [options] testfixture_file(s)

8. Select the appropriate architecture configuration or module for
your testbench and select ModelSim in the pld_dmgr tools
window. You can alternatively invoke the ModelSim simulator
using vsim on the command line.

See the Mentor documentation for ModelSim instructions.

Mentor Graphics Interface Guide

4-14 Xilinx Development System

9. After the RTL level simulation is correct, you may proceed to
synthesis and to implementation or optional post-synthesis
functional simulation.

Synthesis
You may use the tool of your choice for synthesis. For detailed
information on performing synthesis, refer to the following Xilinx
documents.

• Synthesis and Simulation Design Guide

• Exemplar Tutorial on the Xilinx Web site at http://
support.xilinx.com/support/techsup/tutorials/
index.htm

Optional Post Synthesis Functional Simulation
You can optionally perform a post-synthesis functional simulation on
a pure HDL design, by following these steps.

1. Run pld_edif2sim on your top-level EDIF or pld_xnf2sim on your
top level XNF file from synthesis.

2. Specify either VHDL or Verilog output in the pld_edif2sim or
pld_xnf2sim dialog box.

3. Choose the Flat or Hierarchical option and click OK to create the
structural HDL netlist.

Design Implementation
Once you complete functional simulation for HDL designs, you are
ready to implement your design in an FPGA or CPLD. You perform
implementation with the Xilinx Design Manager, a graphical design
flow and project manager. In the Mentor interface, the Xilinx Design
Manager is called pld_dsgnmgr. You invoke pld_dsgnmgr from the
Mentor Design Manager or from a UNIX shell.

Figure 4-4 shows the design flow for implementing a design. The
Xilinx Design Manager accepts your design, represented by the XNF
or EDIF file from the synthesis tool. Design entry of pure HDL
designs, or HDL designs with LogiBLOX elements or CORE Gener-
ator modules produces an EDIF or XNF file that you can submit to
pld_dsgnmgr. Pld_dsgnmgr first translates the design into a flattened

HDL Designs

Mentor Graphics Interface Guide 4-15

or hierarchical netlist, then optimizes, places, and routes the design.
You can also use the Xilinx Design Manager to generate SDF timing
information that you can import into ModelSim along with your
VHDL or Verilog netlist. For a more in-depth discussion of the flow,
including advanced implementation options, see the Development
System Reference Guide.

Figure 4-4 HDL Design Implementation

To implement your design within the Mentor Design Manager, select
the EDIF icon for your design in the Navigator, then select Right
Mouse Button → Open → pld_dsgnmgr. The Xilinx Design
Manager displays. The tool automatically creates a Xilinx project
called your_design_name. Xilinx project information is kept in a file
called xproj/your_design_name.prj by default.

For implementation details, see the Xilinx Design Manager/Flow
Engine Guide.

Note Be sure to choose the desired simulation option in the Options
dialog box of the Xilinx Design Manager.

VHDL Verilog

X7570

pld_dsgnmgr

SDF

EDIF XNF

Mentor Graphics Interface Guide

4-16 Xilinx Development System

Timing Simulation
For HDL designs, the Xilinx Design Manager produces a V (Verilog)
file or a VHDL file expressed in SimPrims and a corresponding SDF
file that contains the timing data. The SDF file for VHD and V files are
not interchangeable since the models they annotate follow different
modeling standards.

Passing Timing Generics to Special Cells—ROC,
OSC, OSC4, and OSC5

If your designs do not have an external global set or reset port or a
user defined internal net driving the global set/reset net, then a ROC
(Reset on Configuration) cell is automatically added to your VHDL
netlist. This cell enables you to toggle the global set/reset net at the
beginning of simulation by defining the pulse width of the signal
pulse starting at time 0. By default, the pulsewidth is 0 which enables
simulation to proceed but does not reset the circuit. To properly
simulate the reset behavior of the chip, the pulse width generic
should be set to a value within the range found in the Xilinx
Databook for the particular device.

You can modify the following configuration for the technology’s
specific pulse width and user’s testbench and compile it before you
compile the testbench.

CONFIGURATION cfg_my_timing_testbench OF my_testbench IS
FOR my_testbench_architecture

FOR ALL:my_design USE ENTITY work.my_design(structure);
FOR structure

FOR ALL:roc USE ENTITY work.roc(roc)v)
GENERIC MAP (width => 100 ms);

END FOR;
END FOR;

END FOR;
END FOR;

END cfg_my_timing_testbench;

Verilog designs do not require ports to drive the global/set reset net
from a testbench. Therefore, Verilog designs do not contain the ROC
cell. The same signal name found in the front end can be used to drive
the signal in the back-annotated design. The signal must be driven, or
all flip-flops will initialize as X.

HDL Designs

Mentor Graphics Interface Guide 4-17

VHDL designs that contain oscillator cells like OSC, OSC4, or OSC5,
must have the clock period set with a configuration statement. By
default, the period is 0, disabling the oscillator. You should carefully
select the period from the range of viable periods found in the Xilinx
Databook for the particular technology. A specific period is not
guaranteed because the cell is subject to process variations. You
should select the value that best meets your simulation requirements.

You can use the following configurations for either the OSC, OSC4, or
OSC5 cells by just changing the name of the cell and modifying the
pulse width to the correct value.

CONFIGURATION cfg_my_functional_testbench OF my_testbench IS
FOR my_testbench_architecture

FOR ALL:my_design USE ENTITY work.my_design(my_design_rtl);
FOR my_design_rtl

FOR ALL:my_submodule USE ENTITY
work.my_submodule(my_submodule_rtl);

FOR my_submodule_rtl
FOR all: osc4 USE ENTITY work.osc4(structure)

GENERIC MAP (period_8m => 125 NS);
END FOR;

END FOR;
END FOR;

END FOR;
END FOR;

END FOR;
END cfg_my_testbench_functional;

You can drive Verilog designs by the signal name used to drive the
front-end simulation since the hierarchical name is preserved.

Simulating the Design
Simulate with ModelSim using vsim. To include the timing
information in the SDF file, invoke vsim with the –sdftyp option.
Refer to the Mentor documentation for information on available
options. To simulate a Verilog based design, invoke vsim with the –L
simprim option to choose the Verilog SimPrim libraries models.

Mentor Graphics Interface Guide

4-18 Xilinx Development System

Mentor Graphics Interface Guide — 3.1i 5-1

Chapter 5

Mixed Designs with VHDL on Top

This chapter describes how to use the Mentor Graphics Interface to
design with mixed schematic and VHDL designs with VHDL on Top.
It contains the following sections.

• “Design Flow”

• “Design Entry”

• “Functional Simulation”

• “Design Implementation”

• “Timing Simulation”

Design Flow
The design flow for a top-level VHDL design with a schematic sub-
module embedded within is illustrated in the following figure.

Mentor Graphics Interface Guide

5-2 Xilinx Development System

Figure 5-1 Mixed Schematic and VHDL Design with VHDL on
Top

Synthesis**

EDIF XNF

RTL VHDL

QuickSim Pro

Design
correct?

Yes

VHDL for module

(DA, Renoir, Text)
HDL Entry Tool

pld_dve

Gen_Arch

EDDM for
schematic module

pld_dmgr

pld_da

pld_men2edif*

EDIF for module

pld_edif2sim
NGO only

NGO for module

No

SDFVHDL VHDL

ModelSim

pld_xnf2sim
on top level XNF

ModelSim

pld_dsgnmgr

VHDL

ModelSim

pld_edif2sim
on top level EDIF

*Use bus delimiters that
your synthesis tool uses

**Do not compile architecture
for schematic instantiation

RTL functional simulation

Implementation and
timing simulation

Post-synthesis
gate level simulation

Post-synthesis
gate level simulation

X8948

VHDLVHDL

QuickSim Pro

Post-synthesis
simulation using
Unified Library
components

SimPrim
VHDL

Mixed Designs with VHDL on Top

Mentor Graphics Interface Guide 5-3

Design Entry
Enter your pure VHDL design as described in the “HDL Design
Entry” section of the “HDL Designs” chapter.

If you wish to insert a schematic module into your VHDL code,
Mentor QuickSim Pro allows you to co-simulate your VHDL portion
in ModelSim with your schematic portion in QuickSim II.

Your synthesizer requires you to treat the schematic module as a
black box. You must use pld_men2edif and pld_edif2sim to create a
NGO file for the schematic component so the Xilinx implementation
tools can merge it in the module during implementation.

Figure 5-2 Design Entry for a Mixed Schematic and VHDL
Design with VHDL on Top

To enter a mixed schematic and HDL design with VHDL on top,
perform the following procedure. Figure 5-2 shows the flow diagram
for this procedure.

Synthesis**

EDIF XNF

RTL VHDL to be
synthesized

VHDL for module

Text editor

pld_dve

Gen_Arch

EDDM for
schematic module

pld_dmgr

pld_da

pld_men2edif*

EDIF for module

pld_edif2sim
NGO only

NGO for module

*Use bus delimiters that
your synthesis tool uses

To create the NGO file
for implementation

**Do not compile architecture
for schematic instantiation

X8886

Mentor Graphics Interface Guide

5-4 Xilinx Development System

1. Open pld_dmgr.

2. Open pld_da and generate EDDM for the schematic module.

3. Create the NGO file for implementation. To accomplish this, you
use pld_men2edif to convert the EDDM for schematic module to
EDIF and then use pld_edif2sim to create the NGO file. The
procedure for doing this is as follows.

a) Open pld_men2edif.

b) Fill in the component name of the existing schematic based
module. The module must have a symbol for its top-level
netlist. There can be no chip-level I/Os.

c) Select a viewpoint that properly sets the schematic
parameters such that the EDIF is properly generated.

d) Select the Bus Dimension Separator Style that matches your
synthesizer. This is important; if your synthesizer uses one
bus style and the EDIF/NGO from your schematic uses
another style, the implementation tool does not merge the
schematic module with the rest of the design, thus leaving it
unexpanded.

e) Choose the technology.

f) Click OK.

g) Create the NGO from EDIF2SIM and XNF2SIM for later use
in the implementation tool. EDIF2SIM and XNF2SIM NGO
files must be placed in your top level directory or you must
modify the macro search path in the Xilinx Design Manager
to include the location of the NGO files. EDIF2SIM or
XNF2SIM do not have the macro search path functionality.
You must have the EDIF2SIM and XNF2SIM NGO files in the
same directory as your top-level EDIF or XNF.

h) Open pld_edif2sim.

A Pld_edif2sim dialog box opens.

i) Specify the source of the EDIF file as either a Mentor,
Synopsys, or Xilinx compatible EDIF. This step selects the
appropriate implementation libraries.

j) Enter the name for the EDIF file created above in step b that
will be used for the NGO file.

Mixed Designs with VHDL on Top

Mentor Graphics Interface Guide 5-5

k) Enter the name of the NGO file based on the component
name used in the VHDL instantiation.

l) Select a Xilinx technology.

m) Select the NGO (only) output.

n) In the “Enter additional directories to search” field, enter all
the directory pathnames that the program should search to
find supporting EDIF, XNF, and NGO files.

o) Click OK to produce the NGO macro file of the schematic
component.

4. Use pld_dve to set the simulation viewpoint.

5. Open GEN_ARCH to generate the VHDL for module.

The dialog box opens as shown in the following figure.

Mentor Graphics Interface Guide

5-6 Xilinx Development System

Figure 5-3 Create a VHDL Architecture from an EDDM
Component Dialog Box

6. Enter the EDDM component name for the schematic.

7. Indicate the directory where the VHDL source files from
GEN_ARCH are to be placed.

8. Specify the appropriate ModelSim initialization file. See the
Mentor Graphics Documentation for details.

9. Enter the library name in which the compiled code will be placed.
You can place it in the work library.

10. Leave the other boxes blank and click OK to produce the required
output.

Mixed Designs with VHDL on Top

Mentor Graphics Interface Guide 5-7

11. Use a Text Editor to create RTL VHDL to be synthesized for the
rest of the design. Include the component declaration and
instantiation for the schematic module.

12. Perform synthesis to generate EDIF or XNF for the whole design
with a black box for the schematic module.

Functional Simulation
VHDL-on-top designs consist of a VHDL based design referencing
EDDM components.

Simulating the Design
To simulate VHDL-at-top designs, invoke QuickSim Pro, which in
turn invokes QuickSim to simulate the Unified Libraries elements
and ModelSim to simulate the VHDL-based blocks as needed.

1. Double-click the left mouse button on the QuickSim Pro icon in
the Design Manager Tools window.

Alternatively, you can select the top-level component in the
Navigator window and click the right mouse button to invoke
QuickSim Pro.

The QuickSim Pro dialog box appears, as shown in Figure 5-4.

2. In the Invoke On field, click Configuration.

3. In the Name field, type the path name of the configuration from
Gen_Arch.

4. Click Qspro.

5. Click OK to proceed with simulation.

For details on using QuickSim Pro, refer to the Mentor Graphics
Documentation.

Mentor Graphics Interface Guide

5-8 Xilinx Development System

Figure 5-4 QuickSim Pro Dialog Box

Synthesis
You may use the tool of your choice for synthesis of the HDL
component. For detailed information on performing synthesis, refer
to the following Xilinx documents.

• Synthesis and Simulation Design Guide

• Exemplar Tutorial on the Xilinx Web site at http://
support.xilinx.com/support/techsup/tutorials/
index.htm

Mixed Designs with VHDL on Top

Mentor Graphics Interface Guide 5-9

Optional Post-Synthesis Functional Simulation
You can optionally re-simulate the design after synthesis to an EDIF
or XNF file to ensure that the design’s functionality remains optimal.
To do so, follow these steps.

1. Create the NGO from EDIF2SIM and XNF2SIM for later use in
the implementation tool. EDIF2SIM and XNF2SIM NGO files
must be placed in your top level directory or you must modify
the macro search path in the Xilinx Design Manager to include
the location of NGO files. EDIF2SIM or XNF2SIM do not have the
macro search path functionality. You must have the EDIF2SIM
and XNF2SIM NGO files in the same directory as your top-level
EDIF or XNF.

2. If the synthesis tool created an EDIF file, submit the file to
pld_edif2sim, then submit it to ModelSim.

3. If the synthesis tool created an XNF file, submit the file to
pld_xnf2sim, then submit it to ModelSim. You can alternatively
invoke the ModelSim simulator using vsim on the command line.

Design Implementation
Once you complete the functional simulation and synthesis steps for
a VHDL-on-top design, you are ready to implement your design in
an FPGA or CPLD. You perform implementation with the Xilinx
Design Manager, a graphical design flow and project manager. In the
Mentor interface, the Xilinx Design Manager is called pld_dsgnmgr.
You invoke pld_dsgnmgr from the Mentor Design Manager or from a
UNIX shell.

Within the Mentor Design Manager, select the EDIF icon for your
design in the Navigator, then select Right Mouse Button →
Open → pld_dsgnmgr. The Xilinx Design Manager displays. The
tool automatically creates a Xilinx project called your_design_name.
Xilinx project information is kept in a file called xproj/
your_design_name.prj by default.

Design entry of VHDL-on-top designs produces NGO files for
schematic modules and XNF or EDIF files for the synthesized portion
of the design. The following figure shows the design flow for
implementing such a mixed design.

Mentor Graphics Interface Guide

5-10 Xilinx Development System

Figure 5-5 Design Implementation

The Xilinx Design Manager takes in your design, represented by the
EDIF or XNF file from synthesis and the NGO file for the schematic
module from pld_edif2sim. It first translates the design into a
flattened or hierarchical netlist, then optimizes, places, and routes the
design. You can also use the Xilinx Design Manager to generate SDF
timing information that you can import into ModelSim. For a more
in-depth discussion of the flow, including advanced implementation
options, see the Development System Reference Guide.

By default, the Xilinx Design Manager looks for the NGO files for the
schematic modules in the directory where it was invoked. You have
the option of putting all of the NGO files in another directory. To
direct the Xilinx Design Manager to look for the NGO files in another
directory, follow these steps.

1. In the Xilinx Design Manager window, select Utilities →
Template Manager.

2. Select the Family for implementation.

3. Select Implementation Templates.

4. Select the Template you wish to modify.

If you have not created your own template, you may modify the
default one.

5. Select Edit.

6. Select Interface.

7. Fill in the Macro Search Path box with the path to the NGO files.

8. Under simulation Data Options, select the VHDL Format.

X7843VHDL SDF

pld_dsgnmgr

XNF EDIF
for module

NGO

Mixed Designs with VHDL on Top

Mentor Graphics Interface Guide 5-11

Timing Simulation
You can now submit the VHDL and SDF files to ModelSim for timing
simulation. You no longer need to use QuickSim Pro.

Compiling the SimPrim Libraries
Before performing timing simulation on an HDL-based design, the
VHDL SimPrim libraries must be compiled.

Passing Timing Generics to Special Cells—ROC,
OSC, OSC4, and OSC5

If your designs do not have an external global set or reset port or a
user defined internal net driving the global set/reset net, then a ROC
(Reset on Configuration) cell is automatically added to your VHDL
netlist. This cell enables you to toggle the global set/reset net at the
beginning of simulation by defining the pulse width of the signal
pulse starting at time 0. By default, the pulsewidth is 0 which enables
simulation to proceed but does not reset the circuit. To properly
simulate the reset behavior of the chip, the pulse width generic
should be set to a value within the range found in the Xilinx
Databook for the particular device.

You can modify the following configuration for the technology’s
specific pulse width and user’s testbench and compile it before you
compile the testbench.

CONFIGURATION cfg_my_timing_testbench OF my_testbench IS
FOR my_testbench_architecture

FOR ALL:my_design USE ENTITY work.my_design(structure);
FOR structure

FOR ALL:roc USE ENTITY work.roc(roc)v)
GENERIC MAP (width => 100 ms);

END FOR;
END FOR;

END FOR;
END FOR;

END cfg_my_timing_testbench;

Mentor Graphics Interface Guide

5-12 Xilinx Development System

Verilog designs do not require ports to drive the global/set reset net
from a testbench. Therefore Verilog designs do not contain the ROC
cell. The same signal name found in the front end can be used to drive
the signal in the back-annotated design. The signal must be driven, or
all flip-flops will initialize as X.

VHDL designs that contain oscillator cells like OSC, OSC4, or OSC5,
must have the clock period set with a configuration statement. By
default, the period is 0, disabling the oscillator. You should carefully
select the period from the range of viable periods found in the Xilinx
Databook for the particular technology. A specific period is not
guaranteed because the cell is subject to process variations. You
should select the value that best meets your simulation requirements.

You can use the following configurations for either the OSC, OSC4, or
OSC5 cells by just changing the name of the cell and modifying the
pulse width to the correct value.

CONFIGURATION cfg_my_functional_testbench OF my_testbench IS
FOR my_testbench_architecture

FOR ALL:my_design USE ENTITY work.my_design(my_design_rtl);
FOR my_design_rtl

FOR ALL:my_submodule USE ENTITY
work.my_submodule(my_submodule_rtl);
FOR my_submodule_rtl

FOR all: osc4 USE ENTITY work.osc4(structure)
GENERIC MAP (period_8m => 125 NS);

END FOR;
END FOR;

END FOR;
END FOR;

END FOR;
END FOR;

END cfg_my_testbench_functional;

You can drive Verilog designs by the signal name used to drive the
front-end simulation since the hierarchical name is preserved.

Simulating the Design
Simulate with ModelSim using vsim. To include the timing
information in the SDF file, invoke vsim with the –sdftyp option.
Refer to the Mentor documentation for information on available
options.

Mentor Graphics Interface Guide — 3.1i 6-1

Chapter 6

Mixed Designs with Schematic on Top

This chapter describes how to use the Mentor Graphics Interface to
design with mixed schematic and VHDL designs with schematic on
top. It contains the following sections.

• “Design Flow”

• “Design Entry”

• “Functional Simulation”

• “Design Implementation”

• “Timing Simulation”

Design Flow
The design flow for designs containing a mixture of schematics and
VHDL is illustrated in the following figure.

Mentor Graphics Interface Guide

6-2 Xilinx Development System

Figure 6-1 Mixed Schematic and VHDL Design with Schematic
on Top

Design
correct?

pld_dmgr HDL Entry tool
(DA, Renoir, Text)

RTL VHDL
for module

Synthesis

EDIF
for module

XNF
for module

or

No

pld_men2edif*

Top-level
EDIF

EDDM for design
with instantiated

VHDL module

pld_dve

QuickSim Pro

pld_dsgnmgr

Routed EDIF
in SimPrims

pld_edif2tim Unrouted EDDM
in Simprims

pld_edif2sim
on top-level EDIF

pld_quicksim

Optional
post-synthesis

* Use bus delimiters
that your synthesis
tool uses

gate-level
simulation

YesPLD_DA

Routed EDDM
in Simprims

pld_dve

pld_quicksim

vcom

Compiled VHDL
for module

X8949

Instantiate on top
level schematic

Put file=xnf or
file=edif property on

symbol

Generate Symbol
in pld_da for
HDL module

Import VHDL
(for manually

created symbol)

Mixed Designs with Schematic on Top

Mentor Graphics Interface Guide 6-3

Design Entry
Design entry consists of two parts, VHDL module design entry and
schematic entry.

VHDL Module Design Entry
To enter the VHDL module of your design and to get it ready for
functional simulation and implementation, perform the following
steps.

1. Enter the VHDL portion of your design.

2. Compile the VHDL source files with vcom.

vcom [options] design_file(s) –qspro_syminfo

3. In pld_da, use File → Generate → Symbol to import VHDL
and create a symbol for the VHDL module as shown in the
following figure.

Mentor Graphics Interface Guide

6-4 Xilinx Development System

Figure 6-2 Generate Symbol Dialog Box

4. On the symbol, add the file=xnf_file_pathname or
file=edif_file_pathname property with a value that specifies the
path to the XNF or EDIF file that will be synthesized from the
RTL description you created above. (In this manual, file=value
means to add the file property and set its value to value.)

5. Check and save the new symbol.

Refer to the Mentor documentation for details on using Generate
Symbol.

Mixed Designs with Schematic on Top

Mentor Graphics Interface Guide 6-5

Schematic Entry
Perform the following steps:

1. Enter the top-level and lower-level schematic portions as
described in the “Design Entry” section of the “Schematic
Designs” chapter.

2. Instantiate the symbol created for the VHDL module on the top-
level design.

Functional Simulation
Mixed-model schematic-based designs can be composed of schematic
elements from the Unified Libraries, VHDL, XNF-based components,
or EDIF-based components. The VHDL-based components will later
have FILE=edif_path properties for implementation.

You can simulate the design either before or after you synthesize the
HDL module.

Functional Simulation Before Synthesis
The flow diagram for this procedure is shown in Figure 6-4. Follow
these steps to simulate your design before you synthesize it.

1. Generate a symbol for the HDL module with pld_da.

2. Instantiate the symbol on the schematic.

3. Put FILE=xnf_file_pathname or FILE=edif_file_pathname property
on the symbol of the synthesized module. (In this manual,
file=value means to add the file property and set its value to
value.)

4. Create a viewpoint for the top-level design using pld_dve.

pld_dve –s design_name technology [viewpoint_name]

5. Run QuickSim Pro to simulate the design by typing the following
syntax.

qhpro [options] design_name

Alternate ways to invoke QuickSim Pro are to double-click the
left mouse button on the QuickSim Pro icon in the Design
Manager Tools window or to select the top-level component in
the Navigator window and click the right mouse button.

Mentor Graphics Interface Guide

6-6 Xilinx Development System

The QuickSim Pro dialog box appears, as shown in the following
figure.

Figure 6-3 QuickSim Pro Dialog Box

6. In this dialog box, click EDDM Design in the Invoke On field.

7. In the Pathname field, type in the path name of the component.

8. Type the symbol name in the Symbol field only. This step is
optional.

9. Type the interface name in the Interface field only. This step is
optional.

Mixed Designs with Schematic on Top

Mentor Graphics Interface Guide 6-7

10. Click OK to invoke the ModelSim simulator and perform
simulation.

11. After simulation you may proceed to synthesis.

Figure 6-4 Performing Functional Simulation Before Synthesis
on Mixed-Model Schematic-on-Top Designs

Synthesis
You may use the tool of your choice for synthesis of the HDL
component. For detailed information on performing synthesis, refer
to the following Xilinx documents.

• Synthesis and Simulation Design Guide

• Exemplar Tutorial on the Xilinx Web site at http://
support.xilinx.com/support/techsup/tutorials/
index.htm

pld_dmgr (DA, renoir, Text)
HDL Entry Tool

RTL VHDL
for module

Instantiate on top
level schematic

Put file=xnf or
file=edif property on

symbol of synthesized
module

Generate Symbol
in pld_da for
HDL module

Import VHDL

EDDM for design
with instantiated

VHDL module

pld_dve

QuickSim Pro

pld_da

x8852

Mentor Graphics Interface Guide

6-8 Xilinx Development System

Functional Simulation After Synthesis
You can optionally re-simulate the design at this point to ensure that
the design’s functionality remains optimal. This method for
simulating your design does not require the use of QuickSim pro. The
flow diagram for this procedure is shown in Figure 6-5.

If the synthesis tool created an EDIF file, you can include a symbol for
the module within the top level design with file=edif_file_name. Then
submit the whole design to pld_edif2sim, and then submit it to
pld_quicksim.

If the synthesis tool created an XNF file, you can include a symbol for
the module within the top level design with file=xnf_file_name. Then
submit the whole design to pld_men2sim, pld_edif2sim, and then
pld_quicksim.

Follow these steps to simulate by this method.

1. Synthesize the HDL module that is being included on the
schematic, and create an EDIF or XNF file from that synthesis.

2. Create a symbol for the HDL module with pld_da and add the
file=edif_file_name or file=xnf_file_name property to the symbol.
Instantiate the symbol on the top level design.

3. Run pld_men2edif on the top level design to create an EDIF for
the whole design. Make sure to specify the appropriate bus
delimiter to match the synthesized module.

4. Run pld_edif2sim to convert it to a Mentor EDDM single object.

pld_edif2sim edif_file symbol_component_name technology {–m|–s}
–eddm

Use –m if the synthesis was performed with a Mentor tool; use –s
if the synthesis was performed with a Synopsys tool.

5. Perform functional simulation with pld_quicksim.

pld_quicksim design_name[/viewpoint_name]

Mixed Designs with Schematic on Top

Mentor Graphics Interface Guide 6-9

Figure 6-5 Performing Functional Simulation After Synthesis on
Mixed-Model Schematic-on-Top Designs

Design Implementation
After functional simulation, use a synthesis tool that creates a Xilinx
compatible EDIF or XNF file to synthesize certain blocks of the design
described in VHDL.

After synthesis, you must attach a FILE=design.edif or
FILE=design.xnf property to the VHDL-based block symbol in the
schematic before you submit the top-level EDDM design to
pld_men2edif.

pld_dmgr

RTL VHDL
for module

HDL Entry Tool
(DA, Renoir, Text)

Synthesis

EDIF
for module

XNF
for module

or

pld_men2edif*

Top-level
EDIF

Instantiate on top
level schematic

Put file=xnf or
file=edif property on

symbol of synthesized
module

Generate Symbol
in pld_da for
HDL module

Import VHDL

EDDM for design
with instantiated

VHDL module

Unrouted EDDM
in SimPrims

pld_edif2sim
on top-level EDIF

pld_quicksim

Optional
post-synthesis

* Use bus delimiters
that your synthesis
tool uses

gate-level
simulation

PLD_DA

x8897

Mentor Graphics Interface Guide

6-10 Xilinx Development System

Converting the EDDM Design
You convert the top-level EDDM design to EDIF with the
pld_men2edif utility. To convert your design to EDIF, follow these
steps.

1. In the Mentor Design Manager, double-click the left mouse
button on the pld_men2edif icon.

The Mentor to EDIF Netlist dialog box displays.

2. In the Component Name field, enter the component name, or
click on Navigator to browse a list of design names.

3. In the From Viewpoint field, you can enter the viewpoint name if
you do not want to use the default viewpoint. Alternatively, in
step 2 you can select a viewpoint under the component.

4. Select the appropriate architecture for your design in the PLD
Technology field.

5. Select the desired bus notation style.

Be careful to select the Bus Dimension Separator Style that
matches your synthesizer’s style. Otherwise busses between the
schematic portion and the HDL portion will not match up in the
implemented design.

6. Click OK.

pld_men2edif now produces an EDIF file that you can submit to
the Xilinx Design Manager, pld_dsgnmgr. The output name is
component_name.edif.

Implementing the Design
The Xilinx Design Manager, pld_dsgnmgr, can accept an EDIF file or
if your design is a pure XNF design, it can accept an XNF file.

In the Mentor Design Manager, double-click the left mouse button on
the pld_dsgnmgr icon.

Because the implementation is essentially the same as for a pure
schematic design, follow the directions in the “Implementing
Schematic Designs” section of the “Schematic Designs” chapter.

Mixed Designs with Schematic on Top

Mentor Graphics Interface Guide 6-11

Normally you need an EDIF file to bring back the design into the
EDDM environment. But you have the option of creating a VHDL or
Verilog and an SDF file instead of an EDIF file, which you can submit
to ModelSim for timing simulation.

Timing Simulation
This is the same as the “Timing Simulation for Schematic Designs”
section of the “Schematic Designs” chapter. When reading this
section, be aware that cross-probing does not apply to the VHDL
component.

Mentor Graphics Interface Guide

6-12 Xilinx Development System

Mentor Graphics Interface Guide — 3.1i 7-1

Chapter 7

Mentor/Xilinx Flow Manager

This chapter describes how to use the Mentor/Xilinx Flow Manager.
It provides an overview of the Flow Manager followed by a
description of each flow supported by the Flow Manager. It contains
the following sections.

• “Flow Manager Overview”

• “Pure Schematic Design Flow”

• “Pure XNF Design Flow”

• “Pure VHDL/Verilog Design Flow”

• “Mixed Schematic (top)/HDL Design Flow”

• “Mixed Sch/HDL(top) Design Flow”

Flow Manager Overview
The Mentor/Xilinx Flow Manager is a dialog box that provides a
visual guide of the steps you need to perform for five common design
flows. Each step contains buttons to launch the appropriate tool and
to display a visual record of your progress in the flow. It does not
automatically perform the steps for you. It lists the steps in the correct
order that you need to perform. For each step there is a button that
launches the appropriate tool. When you are finished with the tool,
you click the Finished button for that step and the description for that
step changes to indicate that it is finished.

The following example shows the basic steps for using the Mentor/
Xilinx Flow Manager.

1. Click the Flow Manager icon in the Mentor Design Manager tools
window to open the Mentor/Xilinx Flow Manager dialog box.

Mentor Graphics Interface Guide

7-2 Xilinx Development System

Since the Flow Manager is a dialog box, its size is determined by
the size of the Mentor Design Manager Window. If necessary, use
the Page Up/Page Down keys to scroll the Flow Manager dialog
box.

2. Select the desired flow in the top portion of the Mentor/Xilinx
Flow Manager dialog box.

The contents of the Mentor/Xilinx Flow Manager dialog box
change to show the selected flow.

3. Click the first flow step button.

The Mentor/Xilinx Flow Manager launches the appropriate tool.

4. After you finish using the tool, exit the tool.

After the tool closes, you are returned to the Mentor/Xilinx Flow
Manager.

5. In the Mentor/Xilinx Flow Manager, click the Finished button for
the current flow step.

Notice that the description and highlight color change to indicate
that this step is complete.

6. Continue in the same manner with the remaining flow steps.

7. If you need to reset the flow, you can click the Reset button
located at the bottom of the Mentor/Xilinx Flow Manager dialog
box.

Mentor/Xilinx Flow Manager

Mentor Graphics Interface Guide 7-3

8. When you are finished with the Mentor/Xilinx Flow Manager,
click the Exit Flow Manager button.

The details of each flow are described in the following pages.

Pure Schematic Design Flow
This flow consists of the following steps. Each step lists the name of
the tool that you invoke followed by a reference to information in this
manual about how to perform the step. The dialog box for this design
flow is shown in Figure 7-1.

1. Start Schematic Design Entry

♦ pld_da (Design Architect)

♦ See the “Design Entry” section of the “Schematic Designs”
chapter.

2. Create Functional Simulation Viewpoint

♦ pld_dve (Viewpoint Editor)

♦ See the “Creating the Viewpoint” section of the “Schematic
Designs” chapter.

3. Run Functional Simulation

♦ pld_quicksim (QuickSim)

♦ See the “Simulating the Design” section of the “Schematic
Designs” chapter.

4. Create EDIF from Schematic Design

♦ pld_men2edif (EDIF writer)

♦ See the “Converting the EDDM Design to EDIF” section of
the “Schematic Designs” chapter.

5. Implement the EDIF/XNF Design

♦ pld_dsgnmgr (Xilinx Design Manager)

♦ See the “Implementing the Design” section of the “Schematic
Designs” chapter.

Mentor Graphics Interface Guide

7-4 Xilinx Development System

6. Create the Timing Simulation Model

♦ pld_edif2tim (EDIF reader)

♦ See the “Creating the EDDM Model and the Viewpoint”
section of the “Schematic Designs” chapter.

7. Run Timing Simulation

♦ pld_quicksim (QuickSim)

♦ See the “Simulating the Design” section of the “Schematic
Designs” chapter.

Mentor/Xilinx Flow Manager

Mentor Graphics Interface Guide 7-5

Figure 7-1 Mentor/Xilinx Design Manager Pure Schematic Mode

Mentor Graphics Interface Guide

7-6 Xilinx Development System

Pure XNF Design Flow
This flow consists of the following steps. Each step lists the name of
the tool that you invoke followed by a reference to information in this
manual about how to perform the step. The dialog box for this design
flow is shown in Figure 7-2.

1. Create the EDDM/VHDL/Verilog Simulation Model

♦ pld_xnf2sim (XNF to EDDM)

♦ See the “Simulating Schematic Designs with XNF Elements”
section of the “Schematic Designs” chapter.

2. Run Functional Simulation

♦ pld_quicksim (QuickSim)

♦ See the “Simulating the Design” section of the “Schematic
Designs” chapter.

3. Implement the EDIF/XNF Design

♦ pld_dsgnmgr (Xilinx Design Manager)

♦ See the “Implementing the Design” section of the “Schematic
Designs” chapter.

4. Create the Timing Simulation Model

♦ pld_edif2tim (EDIF reader)

♦ See the “Creating the EDDM Model and the Viewpoint”
section of the “Schematic Designs” chapter.

5. Run Timing Simulation

♦ pld_quicksim (QuickSim)

♦ See the “Simulating the Design” section of the “Schematic
Designs” chapter.

Mentor/Xilinx Flow Manager

Mentor Graphics Interface Guide 7-7

Figure 7-2 Mentor/Xilinx Design Manager Pure XNF Mode

Pure VHDL/Verilog Design Flow
This flow consists of the following steps. Each step lists the name of
the tool that you invoke followed by a reference to information in this
manual about how to perform the step. The dialog box for this design
flow is shown in Figure 7-3.

Mentor Graphics Interface Guide

7-8 Xilinx Development System

1. Select the desired VHDL/Verilog Creation Tool

♦ DA, Renoir, or text editor

♦ See the “HDL Design Entry” section of the “HDL Designs”
chapter

2. Create the HDL Design

♦ pld_da (Design Architect), Renoir, text editor

♦ See the “HDL Design Entry” section of the “HDL Designs”
chapter

3. Run VHDL/Verilog Functional Simulation

♦ vsim (MTI Simulator modelsim)

♦ See the “Pre-Synthesis Functional Simulation” section of the
“HDL Designs” chapter

4. Run VHDL/Verilog Synthesis

♦ Synthesis tool

♦ See the “Synthesis” section of the “HDL Designs” chapter

5. Run ModelSim on post synthesis HDL

YES or NO

6. Run VHDL/Verilog after synthesis simulation (OPTIONAL)

♦ vsim (MTI Simulator modelsim)

♦ See the “Functional Simulation” section of the “HDL
Designs” chapter

7. Implement the EDIF/XNF Design

♦ pld_dsgnmgr (Xilinx Design Manager)

♦ See the “Design Implementation” section of the “HDL
Designs” chapter

8. Run VHDL/Verilog Timing Simulation

♦ vsim (MTI Simulator modelsim)

♦ See the “Simulating the Design” section of the “HDL
Designs” chapter.

Mentor/Xilinx Flow Manager

Mentor Graphics Interface Guide 7-9

Figure 7-3 Mentor/Xilinx Design Manager Pure VHDL/Verilog
Mode Running ModelSim on Post Synthesis HDL

Mentor Graphics Interface Guide

7-10 Xilinx Development System

Mixed Schematic (top)/HDL Design Flow
This flow consists of the following steps. Each step lists the name of
the tool that you invoke followed by a reference to information in this
manual about how to perform the step. The dialog box for this design
flow is shown in Figure 7-4.

1. Select the desired VHDL/Verilog Creation Tool

♦ DA, Renoir, or text editor

♦ See the “Design Entry” section of the “Mixed Designs with
Schematic on Top” chapter

2. Create the HDL Design

♦ pld_da (Design Architect), Renoir, text editor

♦ See the “Design Entry” section of the “Mixed Designs with
Schematic on Top” chapter

3. Run VHDL/Verilog Synthesis

♦ Synthesis tool

♦ See the “Synthesis” section of the “Mixed Designs with Sche-
matic on Top” chapter

4. Start the schematic design entry

♦ pld_da (Design Architect)

♦ See the “Design Entry” section of the “Mixed Designs with
Schematic on Top” chapter

5. Generate Symbol for HDL Model

♦ Generate Symbol

♦ See the “VHDL Module Design Entry” section of the “Mixed
Designs with Schematic on Top” chapter

6. Create the Functional Simulation Viewpoint

♦ pld_dve (Viewpoint Editor)

♦ See the “Functional Simulation” section of the “Mixed
Designs with Schematic on Top” chapter

Mentor/Xilinx Flow Manager

Mentor Graphics Interface Guide 7-11

7. Run Functional Simulation

♦ qspro (QuickSim Pro)

♦ See the “Functional Simulation” section of the “Mixed
Designs with Schematic on Top” chapter

8. Create EDIF from the Schematic Design

♦ pld_men2edif (EDIF writer)

♦ See the “Functional Simulation After Synthesis” section of
the “Mixed Designs with Schematic on Top” chapter

9. Implement the EDIF/XNF Design

♦ pld_dsgnmgr (Xilinx Design Manager)

♦ See the “Design Implementation” section of the “Mixed
Designs with Schematic on Top” chapter

10. Create the Timing Simulation Model

♦ pld_edif2tim (EDIF reader)

♦ See the “Design Implementation” section of the “Mixed
Designs with Schematic on Top” chapter

11. Run Timing Simulation

♦ pld_quicksim (QuickSim)

♦ See the “Timing Simulation for Schematic Designs” section of
the “Schematic Designs” chapter. When reading this section,
be aware that cross-probing does not apply to the VHDL
component.

Mentor Graphics Interface Guide

7-12 Xilinx Development System

Figure 7-4 Mentor/Xilinx Design Manager Mixed Sch(top)/HDL
Mode

Mentor/Xilinx Flow Manager

Mentor Graphics Interface Guide 7-13

Mixed Sch/HDL(top) Design Flow
In this mode, the Flow Manager dialog box has the following two
sub-flows which you select at the top part of the dialog box.

• Create EDDM

• Simulate/Implement Top HDL.

To make the steps easier to understand, this document splits the
Simulate/Implement Top HDL flow into a Simulate/Implement flow
and an optional Simulate Synthesis Output flow.

This flow consists of the following steps. Each step lists the name of
the tool that you invoke followed by a reference to information in this
manual about how to perform the step.

The dialog box for the Create EDDM sub-flow is shown in Figure 7-5.
The dialog box for the Simulate/Implement Top HDL sub-flow is
shown Figure 7-6.

Create EDDM
To create EDDM, perform the following steps:

1. Create schematic for the EDDM module

♦ pld_da (Design Architect)

♦ See the “Design Entry” section of the “Mixed Designs with
VHDL on Top” chapter

2. Create viewpoint for EDDM module

♦ pld_dve (Viewpoint Editor)

♦ See the “Design Entry” section of the “Mixed Designs with
VHDL on Top” chapter

3. Create Entity/Architecture for EDDM module

♦ genarch (Entity/Arch creation tool)

♦ See the “Design Entry” section of the “Mixed Designs with
VHDL on Top” chapter

Mentor Graphics Interface Guide

7-14 Xilinx Development System

4. Create EDIF for Schematic module

♦ pld_men2edif (EDIF writer)

♦ See the “Design Entry” section of the “Mixed Designs with
VHDL on Top” chapter

5. Create NGO file from schematic module EDIF

♦ pld_edif2sim (EDIF to EDDM, choose NGO only)

♦ See the “Design Entry” section of the “Mixed Designs with
VHDL on Top” chapter

Simulate/Implement Top HDL (Main Flow)
To simulate/implement top HDL, perform the following steps:

1. Select the desired VHDL/VERILOG creation tool

♦ DA, Renoir, or text editor

♦ See the “HDL Design Entry” section of the “HDL Designs”
chapter

2. Create HDL Design

♦ pld_da (Design Architect), Renoir, text editor

♦ See the “HDL Design Entry” section of the “HDL Designs”
chapter

3. Run Functional Simulation on top-level HDL

♦ qspro (QuickSim Pro)

♦ See the “Functional Simulation” section of the “Mixed
Designs with VHDL on Top” chapter

4. Run VHDL/Verilog Synthesis

♦ Synthesis tool

♦ See the “Synthesis” section of the “Mixed Designs with
VHDL on Top” chapter

Mentor/Xilinx Flow Manager

Mentor Graphics Interface Guide 7-15

5. Run simulation on post synthesis output?

♦ YES or NO.

♦ If you select YES, perform the steps in the following “Simu-
late Synthesis Output (Optional)” section before completing
the following steps six and seven.

6. Implement EDIF/XNF design

♦ Invoke pld_dsgnmgr (Xilinx Design Manager)

♦ See the “Design Implementation” section of the “Mixed
Designs with VHDL on Top” chapter

7. Run VHDL/Verilog Timing Simulation

♦ Invoke vsim (MTI Simulator Modelsim)

♦ See the “Timing Simulation” section of the “Mixed Designs
with VHDL on Top” chapter

Simulate Synthesis Output (Optional)
This is an optional step that you can perform before implementation.
For instructions on performing the following steps, see the “Optional
Post-Synthesis Functional Simulation” section of the “Mixed Designs
with VHDL on Top” chapter. This flow consists of the following
steps.

1. Run simulation on post synthesis output. (Optional)

YES or No. Select YES. (See step five in the preceding “Simulate/
Implement Top HDL (Main Flow)” section.)

2. Select desired synthesis output

HDL, EDIF, or XNF

3. Create EDDM/VHDL/VERILOG simulation model (EDIF)

pld_edif2sim (EDIF to EDDM)

4. Create EDDM/VHDL/VERILOG simulation model (XNF)

pld_xnf2sim (XNF to EDDM)

5. Run Functional Simulation (HDL)

qspro (QuickSim Pro)

Mentor Graphics Interface Guide

7-16 Xilinx Development System

6. Run VHDL/Verilog Simulation (EDIF)

vsim (MTI Simulator modelsim)

7. Run VHDL/Verilog Simulation (XNF)

vsim (MTI Simulator modelsim)

8. Implement EDIF/XNF design

Invoke pld_dsgnmgr (Xilinx Design Manager)

9. Run VHDL/Verilog Timing Simulation

vsim (MTI Simulator modelsim)

Mentor/Xilinx Flow Manager

Mentor Graphics Interface Guide 7-17

Figure 7-5 Mentor/Xilinx Design Manager Mixed Sch/HDL(top) —
Create EDDM Mode

Mentor Graphics Interface Guide

7-18 Xilinx Development System

Figure 7-6 Mentor/Xilinx Design Manager Mixed Sch/HDL(top) —
Simulate/Implement Top HDL Mode

Mentor Graphics Interface Guide — 3.1i 8-1

Chapter 8

Advanced Techniques

This chapter discusses aspects of schematic entry and simulation that
you should be familiar with to use Design Architect and
pld_quicksim effectively.

This chapter contains the following sections.

• “Retargeting the Design to a Different Family”

• “Merging Design Files from Other Sources”

• “Simulation Models”

• “Setting Global Reset and 3-State Signals”

• “Using TAU”

Retargeting the Design to a Different Family
The Unified Libraries allow you to retarget your designs from one
device family to another if both your source and target designs only
include symbols from the Unified Libraries. Since most of the
symbols in the Unified Libraries have the same footprint and name
from one device family to another, you can easily convert your
designs across Xilinx device families.

The procedure described in the following section uses Xilinx’s
Convert Design utility in Design Architect to retarget your schematic.
It allows you to change every reference of every design object in your
design directory from the source design library to the target design
library. In your target design, the symbols that are common to the
source and target families maintain their relative location and pin
position in the schematic. Pins on these symbols retain their
connectivity to the nets they were attached to in the source design.

Mentor Graphics Interface Guide

8-2 Xilinx Development System

You must manually replace symbols that are not common to your
source and target families with equivalent logic. For example, if a
GCLK was used in an XC3000A design that is retargeted for use in an
XC4000E device, you must manually replace the GCLK symbol with
a BUFGP, BUFG, or BUFGS, which is the XC4000E equivalent of a
GCLK.

Note In the following procedures, XC4000 is used as the source
design device family, and XC5200 is used as the target design device
family. You can also retarget other device families.

To retarget a design to a different family, perform these steps.

1. Activate Design Architect by using either of the methods
described in the “Invoking Design Architect” section of the
“Schematic Designs” chapter. You do not have to open the
schematic.

2. On Design Architect’s desktop background (the area outside any
schematic or symbol windows) press the right mouse button and
select Convert Design.

The dialog box shown in the following figure appears.

Figure 8-1 Convert Design To New Technology Dialog Box

Advanced Techniques

Mentor Graphics Interface Guide 8-3

3. In the field asking “Select a group of designs from a list file?,”
click yes or no.

♦ Click no if you want to retarget a single design. Convert
Design utility traverses the hierarchy of a given schematic
and converts the schematics of any hierarchical blocks found
on the top-level schematic.

♦ Click yes if you have a number of designs to retarget, and
their names are contained in a file, one design per line. This
file is useful if your design has many lower-level schematics.

Note You can create a list file with the UNIX ls command. The ls
command lists all the MGC components within a single directory,
and the sed command strips the trailer from
.mgc_compoennt.attr. The result is directed to the list file.

ls *.mgc_component.attr | sed s/
.mgc_component.attr//g > listfile

4. In the Enter Design Name field, enter the design name or the
name of the file listing the designs to retarget.

5. In the Schematic Name field, enter the name of the schematic
model.

The default is Schematic.

6. Select the Verbose mode switch.

7. Leave the Check and Save Switch field set to its default setting,
manual checking, to allow you to find Xilinx components that do
not convert properly. Once you become familiar with Convert
Design’s operation, you can select this field to have Convert
Design automatically check and save the schematic.

8. In the From technology field, type the name of the device family
from which you are converting. This field is case-insensitive.

9. In the To Technology field, type the name of the device family to
which you are converting. This field is case-insensitive.

10. If you want the results of the conversion saved to a log file, type
the name of the log file in the Log File Name field. The default is
log_file.

11. Set a beep to sound for every un-matched symbol.

12. Click OK to start the conversion.

Mentor Graphics Interface Guide

8-4 Xilinx Development System

Merging Design Files from Other Sources
You can enter part of your design in a form other than schematics,
such as text entry or a RAM or ROM description. You can also bring
in netlist files produced by interface software other than Mentor
Graphics. Whatever the form of entry, the starting point for inclusion
into a Mentor Graphics schematic design must be a netlist file in EDIF
format. EDIF netlist files must be located in the working directory.
Without the EDIF file, this portion of the design cannot be included;
with it, the origin of the logic becomes irrelevant. To incorporate the
EDIF file into your schematic, you must create a symbol for the file
and place it on your schematic as you would any other component.
You also need to attach a FILE=edif_file_pathname property to the
symbol.

Simulation Models
Most Xilinx simulation models are built with Mentor Graphics
QuickPart tables. Flip-flops and memory elements are modeled with
QuickPart tables and behavioral language models, while gates are
modeled with QuickPart tables. All delay information is passed to
Xilinx components through the routed EDIF, Verilog, or VHDL file.

Setting Global Reset and 3-State Signals
The way you set Global Reset and 3-State signals depends on which
part type you are using. The methods are described below.

FPGA Designs
Before you simulate an FPGA design, you must force the //
globalsetreset (XC4000E designs) or the //globalreset (XC5200
designs) or the //globalresetb (XC3000 designs); otherwise, the flip-
flops and latches do not function correctly.

1. Select your design directory icon in the Navigator window and
select Right Mouse Button → Open → pld_quicksim to
enter the pld_quicksim simulator.

2. Select the File→ Open Sheet menu item to display the Design
Architect schematic.

Advanced Techniques

Mentor Graphics Interface Guide 8-5

3. Select the Add Force menu from the pld_quicksim Stimulus
palette.

4. Fill in the dialog box with the //globalsetreset signal name, 25
for the first time, and 1 for the first value; n for the second time,
and 0 for the second value.

It is recommended that you do not force signals at time 0. See
Mentor’s QuickSim User Guide for details.

The reset width emulates a power-on reset at the beginning of
simulation. Globalsetreset is now forced High at n ns. If you want
to reset the flip-flops after n ns, toggle the globalsetreset Low and
High for the necessary pulse width specified in The Xilinx
Programmable Logic Data Book.

The previous procedure is slightly different for XC4000 IOBs and 3-
state I/O pins.

To set XC4000E/EX IOB flip-flops, follow these instructions.

1. Set the IOB flip-flops High or Low on power-up by using the
INIT property on the IOB flip-flops.

2. To activate the signal and begin simulation, set globalsetreset by
selecting the Add Force menu item from the pld_quicksim
Stimulus palette.

3. Fill in the dialog box with the //globalsetreset signal name, 25
for the first time and 1 for the first value; n for the second time
and 25 for the second value.

It is recommended that you do not force signals at time 0. See
Mentor’s QuickSim User Guide for details.

N is the specified minimum reset pulse width for the given speed
grade part of the design, specified in The Xilinx Programmable
Logic Data Book.

XC4000E/EX parts have a global input state to make all output
pins 3-state, which allows the isolation of the XC4000E/EX part
in board test. To simulate the global 3-state signal, force the signal
named //globalthreestate High using the Add Force command.
Forcing the signal High holds all chip I/Os in a high-Z (3-state)
state until //globalthreestate is forced to zero.

Mentor Graphics Interface Guide

8-6 Xilinx Development System

CPLD Designs
Before you simulate a XC7000 or XC9000 CPLD design, you must
force the //prld; otherwise, the flip-flops do not function correctly.

1. Select your design directory icon in the Navigator window and
select Right Mouse Button → Open → pld_quicksim to
enter the pld_quicksim simulator.

2. Select the File→ Open Sheet menu item to display the Design
Architect schematic.

3. Select the Add Force menu from the pld_quicksim Stimulus
palette.

4. Fill in the dialog box with the //prld signal name, 25 for the first
time, and 1 for the first value; n for the second time, and 0 for the
second value.

It is recommended that you do not force signals at time 0. See
Mentor’s QuickSim User Guide for details.

The reset width emulates a power-on reset at the beginning of
simulation. If you want to reset the flip-flops after n ns, toggle the
prld High and Low for the necessary pulse width specified in The
Xilinx Programmable Logic Data Book.

Using TAU
Tau is a board-level timing analysis tool from Mentor Graphics
designed to do system timing analysis, as opposed to transmission
line analysis which is the focus of IS Analyzer/Floorplanner. Tau
checks that timing constraints such as setup and hold requirements
on component inputs are met. To determine if these requirements are
satisfied, it is necessary to take into account interconnect delay on the
board, component delay, and the skew and phase shift between
clocks. This system timing analysis is performed in the digital
domain. You can perform this analysis before beginning physical
design to identify interconnect delay constraints that must be
satisfied by a board.

The Xilinx 3.1i development system also features Stamp Model
generation which can be used with Tau. With Stamp Model
generation, you can accelerate board level design verification for
Xilinx programmable logic products.

Advanced Techniques

Mentor Graphics Interface Guide 8-7

For more information on using the Xilinx tools Trace to create Stamp
models, and how to integrate with Tau please see the Application
Note 166 at http://www.xilinx.com/xapp/xapp166.pdf.

The Xilinx program Trace (trce) can produce Stamp files which are
used to pass timing data about the Xilinx FPGA to Tau. By default,
Trace reports back all timing paths covered by constraints (.pcf file),
but this may not be enough information in the STAMP file since it is
possible that not all inputs and outputs are reported because they
might not be covered by user constraints. You can use the following
options to force Trace to evaluate all the paths.

• -a is used for advanced design analysis in the absence of a
constraint file (.pcf)

• -u reports additional paths which are not covered by the
constraints within the PCF file

• -s <speed> runs analysis with the specified speed grade

By default, Trace does not use the constraint file (.pcf) so you must
specify it on the command line when running trce. Use the -stamp
option to generate the Stamp .mod and .dat files. An example
follows.

trce -u -s 1 -o report_filename -stamp stamp_filename
routed_file.ncd file.pcf

To create the Stamp files for minimum timing, use the -s min option
and run Trace again. Support for the -s min option is only available
for 4KXL and later families and may not currently be available for all
technologies. Run Trace once to get min and run it again to get max
timing. This creates two .dat and two .mod files. You only need one
.mod and the two .dat files to import into Taulib. The following is an
example of creating Stamp files for minimum timing.

trce -u -s min min_report_filename -stamp
min_stamp_filename routed_file.ncd file.pcf

Refer to the Xilinx Development System Reference Guide for more
information about Trace.

Taulib is the tool you use to import the cell timing for the Xilinx
FPGA cell. At the board-level, the chips (FPGAs in this case) are
considered cells. Following are the steps for importing the cell timing
with Taulib.

Mentor Graphics Interface Guide

8-8 Xilinx Development System

1. Within Taulib, import the Stamp information by selecting the cell
name that represents the FPGA, if it already exists. Do this by
clicking on the very left hand box next to the name. This
highlights the entire row. If the cell does not already exist, taulib
automatically creates one.

2. Import the Stamp model (.mod) and the data (.dat) file using the
File → Import menus.

3. If only the timing information is to be read, choose Override
Existing Timing model.

4. If a new timing model is to be created, choose Create New Timing
Model.

5. Choose the appropriate Timing Value to interpret the delay
values in the data file as either minimum or maximum.

6. Click OK and select the Cell Timing sheet to examine the
imported timing information.

Refer to the Mentor Tau documentation for more information on
running Tau.

Mentor Graphics Interface Guide — 3.1i 9-1

Chapter 9

Manual Translation

You can access the programs required to simulate and implement
your design through the graphical user interface of the Mentor
Design Manager or through the UNIX command line.

The first half of this chapter discusses the program sequence for
performing functional simulation, design implementation, and
timing simulation from the UNIX command line for different types of
designs. The second half describes the syntax of the individual
programs.

This chapter contains the following sections.

• “Functional Simulation”

• “Design Implementation”

• “Timing Simulation”

• “Program Summary”

Functional Simulation
The following sections describe functional simulation for a variety of
designs.

Pure Schematic Designs
Perform functional simulation for schematic designs as follows:

1. Create a viewpoint using pld_dve.

pld_dve –s design_name technology [viewpoint_name]

2. Perform functional simulation with pld_quicksim.

pld_quicksim design_name [/viewpoint_name]

Mentor Graphics Interface Guide

9-2 Xilinx Development System

Schematic Designs with XNF Elements
Perform functional simulation as follows:

1. Create a symbol in pld_da for each XNF element in your design.

2. To the symbols, add the FILE property with the path name of the
XNF file as the value.

3. Run pld_men2edif to convert the entire design into EDIF.

4. Run pld_edif2sim on this EDIF file to create a design component
that represents the entire design.

pld_edif2sim edif_file component_name technology –m –eddm
[–sd dir]

Use –sd to search additional directories other than the one
containing the source EDIF file to find supporting EDIF, NGO, or
XNF files.

5. Perform functional simulation with pld_quicksim.

pld_quicksim design_name[/viewpoint_name]

Schematic Designs with LogiBLOX or CORE
Generator Elements

Schematic designs with LogiBLOX or CORE Generator elements
already contain simulation models so you only need to create a
viewpoint and then simulate.

1. Create a viewpoint using pld_dve

pld_dve –s design_name technology [viewpoint_name]

2. Perform functional simulation with pld_quicksim.

pld_quicksim design_name[/viewpoint_name]

Manual Translation

Mentor Graphics Interface Guide 9-3

Mixed Schematic and VHDL with Schematic-on-Top
Designs

You can simulate the design either before or after you synthesize the
HDL module.

Before Synthesis

Follow these steps to simulate your design before you synthesize it.

1. Compile the VHDL module into a work library. If using Mentor
version B.2 and up, use –qhpro –syminfo when compiling,
otherwise Generate Symbol in the Design Architect will fail.

2. Create a symbol for the HDL module with pld_da using File →
Miscellaneous → Symbol.

3. The Generate Symbol dialog box opens as shown in Figure 9-1.

4. In the Generate Symbol dialog box, choose Entity as the source
and specify the library logical name, entity name, and default
architecture.

5. Instantiate the symbol on the schematic.

6. Create a viewpoint using pld_dve.

pld_dve –s design_name technology [viewpoint_name]

7. Run QuickSim PRO to simulate the design by typing the
following syntax.

qhpro [options] design_name

Mentor Graphics Interface Guide

9-4 Xilinx Development System

Figure 9-1 Generate Symbol Dialog Box

After Synthesis

To simulate your VHDL design after you synthesize it, follow these
steps.

1. Synthesize the HDL module that is being included on the
schematic, and create an EDIF file from that synthesis.

2. Create a symbol for the HDL module with pld_da.

3. If the synthesis output was an EDIF file, run pld_edif2sim to
convert it to a Mentor EDDM single object.

pld_edif2sim edif_file symbol_component_name technology
{–m|-s} –eddm [–sd dir1 ... -sd dirn]

Manual Translation

Mentor Graphics Interface Guide 9-5

Use –m if the synthesis was performed with a Mentor tool; use –s
if the synthesis was performed with a Synopsys tool.

4. Perform functional simulation with pld_quicksim.

pld_quicksim design_name[/viewpoint_name]

Where design_name is the EDDM design created by pld_edif2sim.

HDL-at-Top Designs
EDDM models must be inserted in the top-level HDL file.

1. Create a work library.

2. Perform the following steps for any schematic based components
that need to be included in the top level VHDL.

a) Run pld_dve –s to create a viewpoint for each EDDM
component.

b) Make sure the EDDM has an underlying symbol associated
with it. If not create one using pld_da → Miscellaneous
→ Generate Symbol. Specify Schematics as the source in
the dialog box.

c) Run gen_arch to create entity and architecture source files.

d) Instantiate this component into the top-level VHDL file.

3. Compile the VHDL source files with vcom.

vcom [options] design_name

See the Mentor documentation for a description of the available
options.

4. Run QuickSim PRO to simulate the design by typing the
following syntax.

qhpro [options] design_name

For a description of the QuickSim PRO options, see the Mentor
Graphics documentation.

Mentor Graphics Interface Guide

9-6 Xilinx Development System

Pure HDL Designs
Perform the following steps.

1. Create a working library.

2. Compile the HDL source files with vcom.

vcom [options] design_name

See the Mentor documentation for a description of the available
options.

3. Simulate the design by running ModelSim. Type the following
syntax.

vsim [options] [–lib_name] [primary [architecture [primary] ...]

Design Implementation
This section explains how to implement various design types.

Schematic Designs (FPGA)
The procedure for implementing pure schematic designs, designs
with XNF elements, designs with LogiBLOX elements, designs with
CORE Generator modules, and mixed-model schematic-at-top
designs is the same. Follow these steps.

1. Convert the EDDM design to EDIF format with pld_men2edif.

pld_men2edif design_name technology [viewpoint_name]
[–b bus_delimiter]

2. Submit the design to NGDBuild, which reads a file in EDIF or
XNF format, reduces all the components in the design to Xilinx
primitives, runs a logical design rule check on the design, and
writes an NGD file as output.

ngdbuild –p technology design_name

For example.

ngdbuild –p xc4000ex test –sd dir

3. Map the logic to the components in the FPGA by typing the
following syntax.

map design_name.ngd –p partname

Manual Translation

Mentor Graphics Interface Guide 9-7

For example.

map –p 4000EXHQ240-3 test.ngd

4. Place and route the design.

par –w design_name.ncd design_name.ncd

The first file is created by the MAP utility, and PAR creates the
other one.

For example.

par –w test.ncd test.ncd (writes out test.ncd created by
map)

par –w test.ncd test_par.ncd (writes new file
test_par.ncd)

5. Back-annotate the design.

ngdanno design_name.ncd design_name.ngm

6. Convert the design to an EDIF file.

ngd2edif –a –v mentor design_name.nga –w

7. Submit the design to pld_edif2tim, the Mentor EDIF netlist
reader, which converts an EDIF netlist to a Mentor single-object
EDDM file that can be submitted to pld_quicksim for timing
simulation. Use this syntax.

pld_edif2tim design_name.edn

This step creates a design library, design_lib, containing the
design on which you can perform timing simulation.

Schematic Designs (CPLD)
When using CPLDs, the procedure for implementing pure schematic
designs, designs with XNF elements, and mixed-model schematic-at-
top designs is the same. Follow these steps.

1. Convert the EDDM design to EDIF format with pld_men2edif.

pld_men2edif design_name technology [viewpoint_name]

2. Submit the design to the CPLD fitter.

cpld –p partname design_name [–sd dir]

Mentor Graphics Interface Guide

9-8 Xilinx Development System

3. Convert the design to an EDIF file.

ngd2edif –a –v mentor design_name.nga –w

4. Submit the design to pld_edif2tim, the Mentor EDIF netlist
reader, which converts an EDIF netlist to a Mentor single-object
EDDM file that can be submitted to pld_quicksim for timing
simulation. Use this syntax.

pld_edif2tim design_name.edn

This step creates a design library, design_lib, containing the
design on which you can perform timing simulation.

HDL-at-Top Designs
To implement HDL-at-top designs, perform the following steps.

1. Synthesize the HDL modules in your design, and create an EDIF
or XNF file from that synthesis.

2. Convert the EDIF or XNF file to an NGD file by using ngdbuild.

ngdbuild –p technology design_name

For example.

ngdbuild –p XC4000E test (where test is the root name for
the EDIF or XNF file)

Note Referenced Mentor EDDM models must have their
corresponding EDIF files created and residing in the same
directory where the top level EDIF or XNF file resides. If they
reside in other directories, you must use the –sd option to specify
additional directories to search for such files.

3. Map the logic to the components in the FPGA by typing the
following syntax.

map design_name.ngd –p partname

For example.

map –p 4000EXHQ240-3 test.ngd

4. Place and route the design.

par –w design_name.ncd design_name.ncd

Manual Translation

Mentor Graphics Interface Guide 9-9

The first file is created by the MAP utility, and PAR creates the
other one.

For example.

par –w test.ncd test.ncd (writes out test.ncd created by
map)

par –w test.ncd test_par.ncd (writes new file
test_par.ncd)

5. Back-annotate the design.

ngdanno design_name.ncd design_name.ngm

6. Back-annotate the design.

ngdanno design_name.ncd design_name.ngm

7. Submit the design to pld_edif2tim, the Mentor EDIF netlist
reader, which converts an EDIF netlist to a Mentor single-object
EDDM file that can be submitted to pld_quicksim for timing
simulation. Use this syntax.

pld_edif2tim design_name.edn

This step creates a design library, design_lib, containing the design
on which you can perform timing simulation.

Pure HDL Designs
To implement pure HDL designs, perform the following steps.

1. Synthesize the HDL file, and create an EDIF or XNF file from that
synthesis.

2. Convert the EDIF or XNF file to an NGD file by using ngdbuild.

ngdbuild –p technology design_name

For example,

ngdbuild –p XC4000E test (where test is the root name for
the EDIF or XNF file)

Note Referenced Mentor EDDM models must have their
corresponding EDIF files created and residing in the same
directory where the top level EDIF or XNF file resides.

Mentor Graphics Interface Guide

9-10 Xilinx Development System

3. Map the logic to the components in the FPGA by typing the
following syntax.

map design_name.ngd –p partname

For example.

map –p 4000EXHQ240-3 test.ngd

4. Place and route the design.

par –w design_name.ncd design_name.ncd

The first file is created by the MAP utility, and PAR creates the
other one.

For example,

par –w test.ncd test.ncd (writes out test.ncd created by
map)

par –w test.ncd test_par.ncd (writes new file
test_par.ncd)

5. Back-annotate the design.

ngdanno design_name.ncd design_name.ngm

6. Convert the design to an EDIF file.

ngd2edif –a –v mentor design_name.nga –w

7. Submit the design to pld_edif2tim, the Mentor EDIF netlist
reader, which converts an EDIF netlist to a Mentor single-object
EDDM file that can be submitted to pld_quicksim for timing
simulation. Use this syntax.

pld_edif2tim design_name.edn

This step creates a design library, design_lib, containing the design
on which you can perform timing simulation.

Manual Translation

Mentor Graphics Interface Guide 9-11

Timing Simulation
This section explains how to perform timing simulation for various
designs.

Schematic Designs
The procedure for performing timing simulation on pure schematic
designs, designs with XNF elements, designs with LogiBLOX
elements, designs with CORE Generator modules, and mixed-model
schematic-at-top designs is the same. Follow these steps.

1. Use pld_edif2tim to create a Mentor EDDM model.

pld_edif2tim design_name.edn

2. Create a viewpoint using pld_dve.

pld_dve –s design_lib/design technology [viewpoint_name]

3. Run pld_quicksim to perform the timing simulation by using the
following syntax.

pld_quicksim –cp design_lib/design_name

This command brings up DVE for cross-probing.

For example,

pld_quicksim –cp test_lib/test

4. Cross-probe between the original design and the new design.

5. Open the Viewpoint that was used to create the original design
EDIF netlist.

6. Open the schematic sheet in pld_dve.

7. Select the signals to trace in the pld_dve schematic.

Pld_quicksim automatically creates a trace window and adds the
selected signals to it. Use pld_dve’s schematic sheet window as if
it were the sheet in the pld_quicksim window.

Mentor Graphics Interface Guide

9-12 Xilinx Development System

Pure HDL Designs
You can create either an output EDIF file or output VHDL/Verilog
file from the Xilinx Design Manager (or Xilinx core tool scripts).

EDIF Method

To create an EDIF output file, perform the following steps.

1. Submit the design to pld_edif2tim, which converts an EDIF
netlist to a Mentor single-object EDDM file that can be submitted
to pld_quicksim for timing simulation. Use this syntax.

pld_edif2tim design_name.edn

This step creates a design library, design_lib, containing the design
on which you can perform timing simulation.

2. Create a viewpoint with pld_dve.

pld_dve –s design_lib/design_name technology

3. Simulate the timing with pld_quicksim.

pld_quicksim design_lib/design_name

VHDL/Verilog Method

To create an VHDL/Verilog output file, perform the following steps.

1. Compile the HDL source files with vcom.

vcom [options] design_name

See the Mentor documentation for a description of the available
options.

2. Simulate the timing with ModelSim.

vsim options [–lib_name] [primary [architecture [primary] ...]

Manual Translation

Mentor Graphics Interface Guide 9-13

Program Summary
This section briefly describes the UNIX command-line syntax of the
commands that activate the Mentor and Xilinx programs that you can
use to process your designs manually. They are listed in alphabetical
order.

CPLD
CPLD is a C-shell script for fitting into the XC7000 and XC9000
families. For a description of the CPLD command syntax and options,
see the CPLD Schematic Design Guide or run the CPLD command with
no parameters

Dsgnmgr
Dsgnmgr, the Xilinx Design Manager, is Xilinx’s design
implementation tool.

The dsgnmgr syntax can take the following three forms.

dsgnmgr

dsgnmgr project

dsgnmgr –design design.edif

When you use the first form of the syntax, the Design Manager
appears with no project loaded. A project in this context means a
Xilinx project.

When you use the second form of the syntax, the Design Manager
appears but with the specified project loaded or opened. The project
is a fully specified file name with a .prj extension. It is a file created by
the Design Manager and contains the project information for a Xilinx
project.

When you use the third form of the syntax, the Design Manager finds
the design. A design in this context is a netlist file such as an EDIF
file. If the design does not already have a Xilinx project associated
with it, the Design Manager creates a project and appears with this
project loaded. If the design already has a Xilinx project associated
with it, the Design Manager appears with that project loaded.

Mentor Graphics Interface Guide

9-14 Xilinx Development System

EDIF2NGD
Edif2ngd converts an EDIF 2 0 0 netlist to a Xilinx NGO file. The EDIF
file includes the hierarchy of the input schematic. The output NGO
file is a binary database describing the design in terms of the compo-
nents and hierarchy specified in the input design file.

For a description of the edif2ngd syntax and options, see the
Development System Reference Guide.

Editor
The Notepad editor is a full-featured, window-based text editor. It is
only available in the graphical user interface of the Mentor tools.

Gen_Arch
Gen_Arch creates VHDL entity and architecture from a Mentor
(EDDM) component.

For a description of the Gen_Arch syntax and options, see the Mentor
Graphics documentation.

MAP
MAP is a Xilinx tool that maps the logic to the components in an
FPGA design.

For a description of the MAP syntax and options, see the Development
System Reference Guide.

NGDAnno
NGDAnno is Xilinx’s back-annotation utility.

For a description of the NGDAnno syntax and options, see the
Development System Reference Guide.

NGDBuild
NGDBuild reads a file in EDIF or XNF format, reduces all the
components in the design to Xilinx primitives, runs a logical design
rule check on the design, and writes an NGD file as output.

Manual Translation

Mentor Graphics Interface Guide 9-15

For a description of the NGDBuild syntax and options, see the
Development System Reference Guide.

NGD2EDIF
NGD2EDIF converts a Xilinx NGD or NGA file to an EDIF 2 0 0
netlist.

For a description of the NGD2EDIF syntax and options, see the
Development System Reference Guide.

PAR
PAR is Xilinx’s place and route tool.

For a description of the PAR syntax and options, see the Development
System Reference Guide.

Pld_da
Pld_da is Design Architect, a schematic editor configured for Xilinx
designs. For a description of Design Architect, see the Mentor Graphics
Design Architect Users Manual.

Pld_dve
Pld_dve creates a simulation or custom viewpoint for a Xilinx design.

The pld_dve syntax is the following.

pld_dve [–s] design_name technology [viewpoint_name]

• –s creates a simulation viewpoint for pld_quicksim (chip-level/
board-level functional/timing). It is optional. If you do not use –s
but specify a viewpoint name, pld_dve opens in the interactive
mode and opens the specified viewpoint.

• design_name is the name of your Mentor design component.

• technology specifies the PLD architecture.

• viewpoint_name specifies the name of the design viewpoint to
generate. This is optional; pld_dve does not perform any
customization on this viewpoint if –s is not specified.

Mentor Graphics Interface Guide

9-16 Xilinx Development System

When pld_dve creates a simulation viewpoint—that is, when you use
the –s option—and if the viewpoint contains COMP or FILE
primitives, pld_dve removes these primitives, then creates a
viewpoint that can be submitted to pld_quicksim.

Pld_edif2sim
Pld_edif2sim is a utility that converts a Mentor, Synopsys, or any
other Xilinx compatible EDIF file into a Mentor EDDM single object,
VHDL netlist, Verilog netlist, or NGO file.

The pld_edif2sim syntax is the following.

pld_edif2sim edif_file symbol_component_name |
output_file_name technology {–s|–o|–m} {–eddm|–vhdl|–
verilog|–ngo} {–hier|–flat} {–ignore_unexpanded} [–sd
dir1 ... -sd dirn] [–help]

• edif_file is the name of the EDIF file from Mentor, Synopsys, or
Data I/O

• symbol_component_name is the name of the component. This is
used for the –eddm option.

• output_file_name is the name of the output VHDL or Verilog. This
is used for the –vhdl or –verilog options.

• technology specifies the PLD architecture.

• –ngo specifies that pld_edif2sim should produce a
design_name.ngo file only.

• –s indicates that the EDIF file is a Synopsys file.

• –o indicates that the EDIF file is any third party vendor’s EDIF
that is compatible with Xilinx.

• –m indicates that the EDIF file is a Mentor file.

• –eddm specifies that the EDIF file be converted to Mentor’s
EDDM single object.

• –vhdl specifies that the EDIF file be converted to a VHDL file.

• –verilog specifies that the EDIF file be converted to a Verilog file.

• –sd specifies additional directories to search to find any
supporting EDIF, XNF, or NGO files.

• –hier specifies that the VHDL/Verilog netlist is hierarchical.

Manual Translation

Mentor Graphics Interface Guide 9-17

• –flat specifies that the VHDL/Verilog netlist is flat (default is
flat).

• –ignore_unexpanded specifies that if there are any unknown
primitives in the design, pld_edif2sim does not exit with an error
status; instead, it ignores this condition and goes on. By default, it
exits with an error message.

• –help allows you to obtain more information on pld_edif2sim
and its options. It is optional.

Pld_edif2tim
Pld_edif2tim is the Mentor EDIF netlist reader, which converts an
EDIF netlist to a Mentor single-object EDDM file that can be
submitted to pld_quicksim for timing simulation.

The pld_edif2tim syntax is the following.

pld_edif2tim edif_file [–r] [–help]

• edif_file is the name of the EDIF file.

• –r specifies that if design_lib already exists, it will be replaced.

• –help allows you to obtain more information on pld_edif2tim
and its options. It is optional.

Pld_men2edif
Pld_men2edif is the Mentor EDIF netlist writer, which creates a
hierarchical EDIF netlist from a Mentor schematic design.

The pld_men2edif syntax is the following.

pld_men2edif design_name technology [viewpoint_name]
[–b 'delimiter'] –circular [–help]

• design_name is the name of your Mentor design component.

• technology specifies the PLD architecture.

• viewpoint_name specifies the name of the design viewpoint to use.
It is optional. If a viewpoint does not exist, pld_men2edif will
create one. If you do not specify the viewpoint, it will use the
viewpoint called default.

Mentor Graphics Interface Guide

9-18 Xilinx Development System

• –circular overcomes the forward referencing problem that occurs
if a primitive in one library is referenced in another library before
its parent library is defined in EDIF. In this case the EDIF reader
fails to process the EDIF file. The –circular switch prevents this
problem.

• –b 'delimiter' specifies the bus dimension separator style as an
angle bracket, square bracket or paren.

delimiter is one of the following: Angle | Square | Paren

The –b option instructs the EDIF writer to convert the bus
delimiters into the specified delimiter. If –b is not specified, '()'
will be used for bus delimiters by default.

• –help allows you to obtain more information on pld_men2edif
and its options. It is optional.

Pld_quicksim
Pld_quicksim is an interactive logic simulator that performs func-
tional or timing simulation on your designs.

The pld_quicksim syntax is the following.

pld_quicksim [–cp] design_name[/viewpoint_name]

• –cp ensures that cross-probing is performed. It is optional. If you
specify this option, QuickSim invokes DVE to allow viewing the
front-end schematic for cross-probing. You must then open the
viewpoint on the original design that was used to create the EDIF
netlist.

• design_name is the name of your Mentor design directory.

• viewpoint_name specifies the name of the design viewpoint to use.
It is optional. If you specify a viewpoint name, it must be
preceded with a slash and appended to the design name, as in the
following example.

pld_quicksim test/myvpt

For a description of the other options available in pld_quicksim,
see the Mentor Graphics QuickSim Users and Reference Manuals.

Manual Translation

Mentor Graphics Interface Guide 9-19

To enable cross-probing between front-end and back-end designs
in timing simulations, specify –cp. In this case, the syntax is the
following.

pld_quicksim –cp test_lib/test

Pld_sg
Pld_sg invokes the Mentor schematic generator (SG), which creates a
schematic from an EDDM model. You must have a Mentor schematic
generator license in order to use this tool. Usage is as follows.

pld_sg [options] [viewpoint_path]

See the Mentor documentation for a description of the available
options.

Pld_xnf2sim
Pld_xnf2sim is a utility that converts an XNF file to a Mentor EDDM
single object, VHDL netlist, or Verilog netlist.

The pld_xnf2sim syntax is the following.

pld_xnf2sim top-level_xnf_file [–list listfile]
symbol_component_name | output_file_name technology
{–ignore_unexpanded} [–s] {–eddm|–vhdl|–verilog} {–
hier|–flat} [–sd dir1 ... -sd dirn] [–help]

• top-level_xnf_file is the top-level XNF file.

• –list listfile allows you to list all the related XNF files to be
converted. It is optional. If you do not specify –list, all XNF files
located in the directory in which the top-level XNF file resides are
used as referenced by the top-level XNF file.

• symbol_component_name is the name of the Mentor component for
which a simulation model is to be created.

• output_file_name is the name of output VHDL or Verilog
(for –vhdl or –verilog option)

• technology specifies the PLD architecture.

• –s indicates that the XNF file is a Synopsys file. It is optional.

• –eddm specifies that the XNF file be converted to an EDDM
single object.

Mentor Graphics Interface Guide

9-20 Xilinx Development System

• –vhdl specifies that the XNF file be converted to a VHDL file.

• –verilog specifies that the XNF file be converted to a Verilog file.

• –hier specifies that VHDL/Verilog is hierarchical.

• –flat specifies that VHDL/Verilog is flat (This is the default).

• –ignore_unexpanded specifies that if there are any unknown
primitives in the design, pld_edif2sim does not exit with an error
status; instead, it ignores this condition and goes on. By default, it
exits with an error message.

• –sd specifies additional directories to search to find any
supporting EDIF, XNF, or NGO files.

XNF file(s) submitted to pld_xnf2sim must represent the entire
design, including the top-level IO ports (EXT statements). Feeding an
XNF file that only represents one part of a design (with no IO pads)
results in an invalid simulation model. You can use the following
procedure to run functional simulation on a schematic design that
consists of a partial XNF.

1. Create symbols representing the XNF files.

2. Add the FILE property with the value equal to the pathname of
the XNF file.

3. Instantiate these symbols on your schematic.

4. Create an EDIF file with pld_men2edif (using the top-level
schematic).

5. Feed this EDIF file to pld_edif2sim to create an EDDM model.

6. Simulate this EDDM model with pld_quicksim.

ModelSim
ModelSim (vsim), is Mentor’s simulator for behavioral VHDL,
Verilog, VHDL-based, and Verilog-based gate-level designs
composed of Unified Libraries or SimPrim elements.

The ModelSim syntax is the following.

vsim options [–lib_name] [primary [architecture
[primary] ...]

For a description of the ModelSim options, see the Mentor Graphics
documentation.

Manual Translation

Mentor Graphics Interface Guide 9-21

Note This documentation assumes that you are using ModelSim.
QuickHDL provides the same functionality as ModelSim. If you are
using QuickHDL instead of ModelSim, see the “ModelSim” section of
the “Introduction” chapter for details on how to use QuickHDL in
place of ModelSim.

QuickPath
QuickPath performs a static and slack timing analysis on designs. For
a description of the QuickPath syntax and options, see the Mentor
Graphics documentation.

QuickSim Pro
QuickSim Pro (qspro) is Mentor’s simulator for mixed-model
schematic, VHDL, and Verilog designs. It can invoke ModelSim to
simulate HDL-based elements, or QuickSim to simulate gate-level
schematics.

The QuickSim Pro syntax is the following.

qhpro options design_name

For a description of the QuickSim Pro options, see the Mentor
Graphics documentation.

Vcom
Vcom compiles the VHDL to be able to run ModelSim (vsim)
simulator.

vcom [options] design_name

See the Mentor documentation for a description of the available
options.

Vlog
Vlog compiles the Verilog files to be able to run ModelSim (vsim)
simulator.

vlog [options] design_name

See the Mentor documentation for a description of the available
options.

Mentor Graphics Interface Guide

9-22 Xilinx Development System

Mentor Graphics Interface Guide — 3.1i Index-1

Index

A
applications, invoking in Design Manager,
2-4
architectures

retargeting designs to, 8-1
supported, 1-1

B
behavioral code development, 4-6
bus rippers, 3-3

C
case-sensitivity, 3-7
COMP property, 3-6
components

adding to schematics, 3-2
instantiating Unified Libraries, 4-10

constraints
timing, entering, 1-12, 3-7
timing, group names, 3-7

Convert Design utility, 8-3
CORE Generator

description, 1-6
get_models, 4-12
instantiating modules in HDL, 4-9
instantiating modules in schematics,

3-3
invoking, 1-10, 4-9
requirements for HDL, 4-4
schematic designs, 9-2

simulating modules in schematics,
3-13

co-simulation, 1-3
cpld script, 9-13
cross-probing, 1-11, 3-25, 3-26
cshrc file, 2-1
CYMODE property, 3-6

D
Design Architect

description, 1-7
invoking, 3-1
Xilinx Libraries, 3-3

design entry
HDL, 4-2, 4-3, 4-4
mixed with top-level schematics, 6-3
schematics, 3-1
top-level VHDL with schematic

modules, 5-3
VHDL modules, 6-3

design files, merging, 8-6
design flows

description, 1-12
HDL, 1-16, 4-1
mixed with top-level schematic, 1-18
mixed with top-level schematics, 6-1
mixed with VHDL on top, 1-17
schematic entry, 1-12
top-level VHDL with instantiated

schematics, 5-1

Mentor Graphics Interface Guide

Index-2 Xilinx Development System

design implementation
HDL, 4-14
mixed with top-level HDL, 9-8
pure HDL, 9-9
schematics, 3-19, 3-21, 9-6
schematics (CPLDs), 9-7
top-level schematic, 6-14
top-level VHDL with schematic

modules, 5-9
Design Manager, Mentor

description, 1-4
invoking, 2-4
invoking applications, 2-4
Navigator window, 2-5
tools window icons, 2-4

Design Manager, Xilinx, 1-8
Design Viewpoint Editor, 1-8
designs

loading, 2-5
retargeting to another device, 8-1

devices, supported, 1-1
documentation, additional resources, ii
dsgnmgr, 9-13

E
EDDM

creating for mixed designs (top-level
HDL), 7-13

design, converting to EDIF, 3-19, 6-14
file, 3-19
model, 3-23
with pld_xnf2sim, 1-9

EDIF
converting for simulation, 3-17
converting from EDDM, 3-19
description, 1-19
from synthesis tools, 1-4
merging design files, 8-6
simulating, 3-16
support, 1-10

edif2ngd, 9-14
Editor icon, 1-6

EDN file, 1-20
environment, setting up, 2-1
ENWRITE, 3-7
Exemplar icon, 1-6
Exemplar variable, 2-2

F
FILE property, 6-14, 8-6
Flow Manager

description, 1-6
mixed with top-level HDL, 7-13
mixed with top-level schematic, 7-10
overview, 7-1
pure HDL design flow, 7-7
pure schematic design flow, 7-3
pure XNF design flow, 7-6
using, 7-1

Flow_mgr, 1-6
functional simulation

HDL, 4-10
HDL (post-synthesis), 4-14
HDL (pre-synthesis), 4-11
mixed with top-level HDL, 9-5
mixed with top-level schematic, 6-6
mixed with top-level VHDL, 9-3
post-synthesis (top-level schematic),

6-11
pre-synthesis with top-level schematic,

6-6
pure HDL, 9-6
pure schematics (command line), 9-1
schematics, 3-8
schematics with CORE Generator

elements, 9-2
schematics with LogiBLOX elements,

9-2
schematics with XNF elements, 9-2
top-level VHDL with schematic

modules, 5-7, 5-9

Index

Mentor Graphics Interface Guide Index-3

G
Gen_Arch, 1-6, 9-14
get_models, 4-12
Global Reset

CPLDs, 8-9
FPGAs, 8-7

Global Set/Reset, ROC, 4-16, 5-11
group names, 3-7

H
HDL

compiling source files, 4-13
design entry, 4-2
design entry (top-level VHDL), 5-3
design entry and synthesis, 1-16
design entry overview, 4-3
design entry stages, 4-4
design flows, 4-1
design implementation, 4-14
design implementation (pure HDL),

9-9
design implementation (top-level

VHDL), 5-9
functional simulation, 4-10
functional simulation (top-level

VHDL), 5-7
instantiating CORE Generator

modules, 4-9
instantiating LogiBLOX modules, 4-8
instantiating Unified Library

components, 4-10
passing timing generics, 4-16
post-synthesis functional simulation,

4-14
post-synthesis functional simulation

(top-level VHDL), 5-9
pre-synthesis functional simulation,

4-11
pure (functional simulation), 9-6
pure, Flow Manager, 7-7
support, 1-3

synthesis, 4-7
synthesis (top-level VHDL), 5-8
timing simulation, 4-16
timing simulation (EDIF method), 9-12
timing simulation (HDL method), 9-12
timing simulation (top-level VHDL),

5-11

I
I/O attributes for Virtex2, 3-2
input files

description, 1-19
EDIF, 1-19
XNF, 1-19

INST property, 3-6
INTERNAL property, 3-7

L
LCA variable, 2-2
LD_LIBRARY_PATH, 2-2
libraries, supported, 1-2
library components, adding, 3-2
LogiBLOX

description, 1-8
instantiating modules in HDL, 4-8
invoking, 1-10
NGC files, 4-3
schematic designs, 9-2
simulating modules in schematics,

3-13
lowercase, 3-7

M
MAP, 9-14
MGC_GENLIB variable, 2-2
MGC_HOME variable, 2-2
MGC_LOCATION_MAP variable, 2-2
MGC_WD variable, 2-3
MGLS_LICENSE_FILE variable, 2-3
mixed designs

Mentor Graphics Interface Guide

Index-4 Xilinx Development System

design implementation (top-level
HDL), 9-8

Flow Manager, top-level HDL, 7-13
Flow Manager, top-level schematic,

7-10
top-level schematic, flow diagram,

1-18
with top-level (functional simulation),

9-3
with top-level HDL (functional

simulation), 9-5
with top-level schematic, 6-1
with top-level VHDL, 5-1
with top-level VHDL, flow diagram,

1-17
ModelSim

commands, 1-7
description, 1-3, 1-6, 9-20

MODELTECH variable, 2-4
MTI_HOME variable, 2-4

N
Navigator window, 1-5, 2-5
NCD file, 1-20
NGA file, 1-20
NGC files, 4-3
NGD file, 1-20
Ngd2EDIF, 9-15
NGDAnno, 9-14
NGDBuild, 9-14
NGM file, 1-20
NGO file, 1-20, 5-4, 5-9
Notepad editor, 1-6, 9-14

O
online help, 1-21
OSC, 4-16, 5-11, 5-12
OSC4, 4-16, 5-11, 5-12
OSC5, 4-16, 5-11, 5-12
output files, 1-19

P
PAR, 9-15
path, setting, 2-1
PCF file, 1-20
platforms, supported, 1-2
pld_da, 1-7, 9-15
pld_da icon, 3-1
pld_dmgr, 1-4
pld_dsgnmgr, 1-8, 3-19
pld_dve, 1-8, 3-10, 9-15
pld_edif2sim, 1-8, 9-2, 9-16
pld_edif2tim, 1-8, 9-17
pld_men2edif, 1-8, 6-14, 9-17
pld_quicksim, 1-9, 9-2, 9-18
PLD_QuickSim dialog box, 3-12
pld_sg, 1-9, 9-19
pld_xnf2sim, 1-9
primitives, Xilinx Libraries, 3-3
properties

FILE, 6-14, 8-6
setting in synthesis, 4-3

properties, schematic, 3-6

Q
qhpro, 6-7, 9-21
QuickHDL, 1-3

commands, 1-7
description, 1-7

QuickHDL Pro
as replacement, 1-3

QuickPath, 1-9, 9-21
QuickSim

-cp option (cross-probing), 1-11
description, 1-3

QuickSim Pro, 1-3, 5-8, 6-7, 9-21

R
Renoir, 1-9
RENOIRHOME variable, 2-4
ROC, 4-16, 5-11, 5-12
RTL, 4-6

Index

Mentor Graphics Interface Guide Index-5

S
schematic generator, 1-11
schematics

adding components, 3-2
adding Xilinx library components, 3-2
design entry, 3-1
design entry, flow diagrams, 1-12
design implementation, 3-19, 3-21, 9-6
design implementation (CPLDs), 9-7
design implementation (top-level

schematic), 6-14
Flow Manager (pure schematics), 7-3
functional simulation, 3-8
functional simulation (top-level

schematic), 6-6
instantiating CORE generator

modules, 3-3
mixed with top-level schematic, 6-1,

6-3
post-synthesis functional simulation

(top-level schematic), 6-11
pre-synthesis functional simulation

(top-level schematic), 6-6
properties, 3-6
pure, functional simulation (command

line), 9-1
pure, simulating, 3-8, 3-11
simulating designs with CORE

Generator modules, 3-13
simulating designs with LogiBLOX,

3-13
simulating schematics with EDIF

elements, 3-16
simulating schematics with XNF

elements, 3-13
timing simulation, 3-22, 3-24, 9-11
with CORE Generator elements

(functional simulation), 9-2
with LogiBLOX elements (functional

simulation), 9-2
with XNF elements (functional

simulation), 9-2

SDF file, 1-20
SimPrim libraries, 1-2
SIMPRIMS variable, 2-4
simulation

EDIF elements in schematics, 3-16
models, 8-6
pure schematics, 3-8, 3-11
schematics with CORE Generator

modules, 3-13
schematics with LogiBLOX, 3-13
types, 1-3
XNF elements in schematics, 3-13

soft macros, Xilinx Libraries, 3-3
special cells, 4-16, 5-11
Stamp Models, 8-11
synthesis

HDL, 4-7
setting properties, 4-3
setting timing constraints, 4-3
top-level VHDL with schematic

modules, 5-8

T
Tau, 1-10, 8-10
Taulib, 8-13
TIMEGRP, 3-7
timing constraints

entering, 1-12, 3-7
group names, 3-7
setting in synthesis, 4-3

timing generics, 4-16, 5-11
timing simulation

HDL, 4-16
pure HDL, 9-12
schematics, 3-22, 3-24, 9-11
supported, 1-11
top-level VHDL with schematic

modules, 5-11
Tools window, 1-5
tools window icons, 2-4
top-level schematics, 6-1
trace, 8-11

Mentor Graphics Interface Guide

Index-6 Xilinx Development System

trce, 8-11
tristate signals

CPLDs, 8-9
FPGAs, 8-7

TSidentifier, 3-7
tutorials, 1-20

U
UCF file, 1-20
Unified Libraries

description, 1-2
instantiating components in HDL, 4-10
vmap, 4-12

uppercase, 3-7

V
V file, 1-20
vcom, 4-12, 4-13, 6-3, 9-21
Verilog

SimPrim library, 1-2
simulation, gate-level, 1-3

VHD file, 1-20
VHDL

modules, design entry, 6-3
simulation, gate-level, 1-3
source files, compiling, 6-3
top-level for mixed designs, 5-1

viewpoints
pure schematics, 3-9
schematics, 3-23

Virtex2, I/O primitive default attributes,
3-2

VITAL VHDL SimPrim library, 1-2
vlib, 4-11, 4-12
vlog, 4-13, 9-21
vmap, 4-11, 4-12
vsim, 9-20

X
XFF netlist, 1-19
Xilinx Libraries

in Design Architect, 3-3
primitives, 3-3
soft macros, 3-3

XILINX variable, 2-1
XNF

converting for simulation, 3-13
description, 1-19
file, description, 1-20
from synthesis tools, 1-4
pure, Flow Manager, 7-6
simulating, 3-13
with pld_xnf2sim, 1-9

XTF netlist, 1-19

	Software Manuals Online
	Mentor Graphics Interface Guide
	About This Manual
	Manual Contents
	Additional Resources

	Conventions
	Typographical
	Online Document

	Table of Contents
	Introduction
	Architecture Support
	Platform Support
	Library Support
	Features
	Mentor Software Release Support
	HDL Support
	ModelSim and QuickSim Pro
	VHDL Gate-Level Simulation Support
	Verilog Gate-Level Simulation Support
	Links to EDIF from Synthesis Tools

	Mentor Design Manager
	Coregen (CORE Generator)
	Editor
	Exemplar
	Flow_mgr (Mentor/Xilinx Flow Manager)
	Gen_Arch
	ModelSim
	Pld_da
	Pld_dsgnmgr
	Pld_dve
	Pld_edif2sim
	Pld_edif2tim
	Logiblox (LogiBLOX GUI)
	Pld_men2edif
	Pld_xnf2sim
	Pld_quicksim
	Pld_sg
	QuickPath
	Renoir
	Tau

	LogiBLOX Modules
	CORE Generator Modules
	EDIF
	Cross-Probing
	Timing Simulation
	Schematic Generator
	Timing Constraints

	Design Flows
	Schematic Entry Design Flows
	HDL Entry
	Mixed Schematic and VHDL Flow with VHDL on Top
	Mixed Schematic and VHDL Flow with Schematic on Top

	Inputs
	EDIF
	XNF

	Outputs
	Files
	Tutorials
	Online Help

	Getting Started
	Configuring Your System
	Invoking the Design Manager
	Invoking Applications in the Design Manager
	Tools Window Icons
	Navigator Window

	Schematic Designs
	Design Flows
	Design Entry
	Invoking Design Architect
	Adding Components
	Adding Xilinx Library Components
	Bus Rippers
	Xilinx Libraries
	Primitives and Macros
	LogiBLOX
	CORE Generator System

	Properties
	INST
	COMP
	CYMODE
	INTERNAL
	Entering Timing Specifications
	Creating New Groups from Existing Groups

	Functional Simulation
	Simulating Pure Schematic Designs
	Creating the Viewpoint
	Simulating the Design

	Simulating Schematic Designs with LogiBLOX Elements or CORE Generator Modules
	Simulating Schematic Designs with XNF Elements
	Creating the Design Component
	Converting the XNF File
	Creating the Viewpoint
	Simulating the Design

	Simulating Schematic Designs with EDIF Elements
	Creating the Design Component
	Converting the EDIF File
	Simulating the Design

	Implementing Schematic Designs
	Converting the EDDM Design to EDIF
	Implementing the Design

	Timing Simulation for Schematic Designs
	Creating the EDDM Model and the Viewpoint
	Simulating the Design
	Cross-Probing
	Performing a Timing Analysis

	HDL Designs
	Design Flow
	HDL Design Entry
	Overview of HDL Design Entry
	HDL Design Entry Stages
	Stage 1: RTL Behavioral Code Development
	Stage 2: Synthesis
	LogiBLOX Design Entry

	CORE Generator Module Design Entry
	Unified Library Instantiated Components

	Functional Simulation
	Pre-Synthesis Functional Simulation
	Synthesis
	Optional Post Synthesis Functional Simulation

	Design Implementation
	Timing Simulation
	Passing Timing Generics to Special Cells—ROC, OSC, OSC4, and OSC5
	Simulating the Design

	Mixed Designs with VHDL on Top
	Design Flow
	Design Entry
	Functional Simulation
	Simulating the Design
	Synthesis
	Optional Post-Synthesis Functional Simulation

	Design Implementation
	Timing Simulation
	Compiling the SimPrim Libraries
	Passing Timing Generics to Special Cells—ROC, OSC, OSC4, and OSC5
	Simulating the Design

	Mixed Designs with Schematic on Top
	Design Flow
	Design Entry
	VHDL Module Design Entry
	Schematic Entry

	Functional Simulation
	Functional Simulation Before Synthesis
	Synthesis
	Functional Simulation After Synthesis

	Design Implementation
	Converting the EDDM Design
	Implementing the Design

	Timing Simulation

	Mentor/Xilinx Flow Manager
	Flow Manager Overview
	Pure Schematic Design Flow
	Pure XNF Design Flow
	Pure VHDL/Verilog Design Flow
	Mixed Schematic (top)/HDL Design Flow
	Mixed Sch/HDL(top) Design Flow
	Create EDDM
	Simulate/Implement Top HDL (Main Flow)
	Simulate Synthesis Output (Optional)

	Advanced Techniques
	Retargeting the Design to a Different Family
	Merging Design Files from Other Sources
	Simulation Models
	Setting Global Reset and 3-State Signals
	FPGA Designs
	CPLD Designs

	Using TAU

	Manual Translation
	Functional Simulation
	Pure Schematic Designs
	Schematic Designs with XNF Elements
	Schematic Designs with LogiBLOX or CORE Generator Elements
	Mixed Schematic and VHDL with Schematic-on-Top Designs
	Before Synthesis
	After Synthesis

	HDL-at-Top Designs
	Pure HDL Designs

	Design Implementation
	Schematic Designs (FPGA)
	Schematic Designs (CPLD)
	HDL-at-Top Designs
	Pure HDL Designs

	Timing Simulation
	Schematic Designs
	Pure HDL Designs
	EDIF Method
	VHDL/Verilog Method

	Program Summary
	CPLD
	Dsgnmgr
	EDIF2NGD
	Editor
	Gen_Arch
	MAP
	NGDAnno
	NGDBuild
	NGD2EDIF
	PAR
	Pld_da
	Pld_dve
	Pld_edif2sim
	Pld_edif2tim
	Pld_men2edif
	Pld_quicksim
	Pld_sg
	Pld_xnf2sim
	ModelSim
	QuickPath
	QuickSim Pro
	Vcom
	Vlog

