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About This Manual

This manual provides a general overview of designing Field 
Programmable Gate Arrays (FPGAs) with Hardware Description 
Languages (HDLs). It includes design hints for the novice HDL user, 
as well as for the experienced user who is designing FPGAs for the 
first time. 

The design examples in this manual were created with Verilog and 
VHSIC Hardware Description Language (VHDL); compiled with 
various synthesis tools; and targeted for XC4000, Spartan, Spartan-II, 
Spartan-XL, Virtex, Virtex-E, Virtex-II and XC5200 devices. Xilinx 
equally endorses both Verilog and VHDL. VHDL may be more diffi-
cult to learn than Verilog and usually requires more explanation.

This manual does not address certain topics that are important when 
creating HDL designs, such as the design environment; verification 
techniques; constraining in the synthesis tool; test considerations; and 
system verification. Refer to your synthesis tool’s reference manuals 
and design methodology notes for additional information.

Before using this manual, you should be familiar with the operations 
that are common to all Xilinx software tools. These operations are 
covered in the Quick Start Guide. 

Note This Xilinx software release is certified as Year 2000 compliant.

Manual Contents
This manual contains the following chapters:

• Chapter 1, “Introduction,” provides a general overview of 
designing Field Programmable Gate Arrays (FPGAs) with HDLs. 
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This chapter also includes installation requirements and instruc-
tions.

• Chapter 2, “Understanding High-Density Design Flow,” 
provides synthesis and Xilinx implementation techniques to 
increase design performance and utilization.

• Chapter 3, “General HDL Coding Styles,” includes HDL coding 
hints and design examples to help you develop an efficient 
coding style. 

• Chapter 4, “Architecture Specific HDL Coding Styles for 
XC4000XLA, Spartan, and Spartan-XL,” includes coding tech-
niques to help you improve synthesis results.

• Chapter 5, “Architecture Specific HDL Coding Styles for Spartan-
II, Virtex, Virtex-E, and Virtex-II,” includes coding techniques to 
help you use the latest Xilinx devices.

• Chapter 6, “Simulating Your Design,” describes simulation 
methods for verifying the function and timing of your designs.

Additional Resources

For additional information, go to http://support.xilinx.com. 
The following table lists some of the resources you can access from 
this Web site. You can also directly access these resources using the 
provided URLs.

Resource Description/URL

Tutorials Tutorials covering Xilinx design flows, from design entry to verification 
and debugging
http://support.xilinx.com/support/techsup/tutorials/
index.htm

Answers  
Database

Current listing of solution records for the Xilinx software tools
Search this database using the search function at
http://support.xilinx.com/support/searchtd.htm

Application 
Notes

Descriptions of device-specific design techniques and approaches
http://support.xilinx.com/apps/appsweb.htm

Data Book Pages from The Programmable Logic Data Book, which contain device-
specific information on Xilinx device characteristics, including readback, 
boundary scan, configuration, length count, and debugging
http://support.xilinx.com/partinfo/databook.htm
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Xcell Journals Quarterly journals for Xilinx programmable logic users
http://support.xilinx.com/xcell/xcell.htm

Technical Tips Latest news, design tips, and patch information for the Xilinx design 
environment
http://support.xilinx.com/support/techsup/journals/
index.htm

Resource Description/URL
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Conventions

This manual uses the following conventions. An example illustrates 
each convention. 

Typographical
The following conventions are used for all documents.

• Courier font indicates messages, prompts, and program files 
that the system displays.

speed grade: - 100

• Courier bold indicates literal commands that you enter in a 
syntactical statement. However, braces “{ }” in Courier bold are 
not literal and square brackets “[ ]” in Courier bold are literal 
only in the case of bus specifications, such as bus [7:0].

rpt_del_net=

Courier bold also indicates commands that you select from a 
menu.

File → Open

• Italic font denotes the following items.

♦ Variables in a syntax statement for which you must supply 
values

edif2ngd design_name

♦ References to other manuals
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See the Development System Reference Guide for more informa-
tion.

♦ Emphasis in text

If a wire is drawn so that it overlaps the pin of a symbol, the 
two nets are not connected.

• Square brackets “[ ]” indicate an optional entry or parameter. 
However, in bus specifications, such as bus [7:0], they are 
required.

edif2ngd [option_name] design_name

• Braces “{ }” enclose a list of items from which you must choose 
one or more.

lowpwr ={on|off}

• A vertical bar “|” separates items in a list of choices.

lowpwr ={on|off}

• A vertical ellipsis indicates repetitive material that has been 
omitted.

IOB #1: Name = QOUT’ 

IOB #2: Name = CLKIN’

.

.

.

• A horizontal ellipsis “….” indicates that an item can be repeated 
one or more times.

allow block  block_name loc1 loc2locn;

Online Document
The following conventions are used for online documents.

• Red-underlined text indicates an interbook link, which is a cross-
reference to another book. Click the red-underlined text to open 
the specified cross-reference.
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• Blue-underlined text indicates an intrabook link, which is a cross-
reference within a book. Click the blue-underlined text to open 
the specified cross-reference.
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Chapter 1

Introduction

This chapter provides a general overview of designing Field 
Programmable Gate Arrays (FPGAs) with HDLs and also includes 
installation requirements and instructions. It includes the following 
sections.

• “Architecture Support”

• “Overview of Hardware Description Languages”

• “Advantages of Using the Virtex-E FPGA Architecture”

• “Advantages of Using HDLs to Design FPGAs”

• “Designing FPGAs with HDLs”

• “Xilinx Internet Web Sites”

Architecture Support
The software supports the following architecture families in this 
release.

• Spartan™/XL/II

• Virtex™/E/II

• XC9500™/XL/XV

• XC4000™E/L/EX/XL/XLA

• XC3000™A/L

• XC3100™A/L

• XC5200™
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Overview of Hardware Description Languages
Hardware Description Languages (HDLs) are used to describe the 
behavior and structure of system and circuit designs. This chapter 
includes a general overview of designing FPGAs with HDLs. HDL 
design examples are provided in subsequent chapters of this book, 
and design examples can be downloaded from the Xilinx web site. 
System requirements and installation instructions for designs avail-
able from the web are also provided in this chapter.

This chapter also includes a brief description of why using FPGAs is 
more advantageous than using ASICs for your design needs.

To learn more about designing FPGAs with HDLs, Xilinx recom-
mends that you enroll in the appropriate training classes offered by 
Xilinx and by the vendors of synthesis software. An understanding of 
FPGA architecture allows you to create HDL code that effectively 
uses FPGA system features. 

Before you start to create your FPGA designs, refer to the current 
version of the Quick Start Guide for Xilinx Alliance Series for a 
description of the design flow; installation information; and general 
information on the Xilinx tools.

For the latest information on Xilinx parts and software, visit the 
Xilinx web site at http://www.xilinx.com. On the Xilinx home page, 
click on Products. You can get answers to your technical questions 
from the Xilinx support web site at http://www.support.xilinx.com. 
On the support home page, click on Advanced Search to set up search 
criteria that match your technical questions. You can also download 
software service packs from www.support.xilinx.com. On the 
support home page, click on Software, and then Service Packs. Soft-
ware documentation, tutorials, and design files, are available from 
the www.support.xilinx.com web site.

Advantages of Using the Virtex-E FPGA 
Architecture

Virtex-E devices are the most powerful and flexible devices offered 
from the Xilinx FPGA product lines. They deliver high performance 
and high capacity programmable logic solutions while reducing 
design time. One big advantage designers have with the Virtex-E 
device is that several other equipment manufacturers (OEMs) have 
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utilized the Virtex-E architecture specific algorithms in their synthesis 
tools. Synthesis tools such as Exemplar’s LeonardoSpectrum, 
Synplicity’s Synplify and Synopsys’s FPGA Express and FPGA 
Compiler II. The intimate knowledge of the Virtex-E FPGA architec-
ture each of these synthesis tools possess shortens the design cycle 
required to achieve performance goals.

Features of the Virtex-E FPGA.

• Architectural Changes—The heart of the new Virtex-E device is the 
configurable logic block (CLB) and its sub-unit known as a slice. 
Each CLB is made up logic cells (LC) which include a 4-input 
function generator, carry logic, and a storage element. There are 
four LCs per CLB organized in two similar slices. The “Virtex-E 
CLB” figure shows the structure of the CLB slices, and the 
“Virtex-E Slice” figure shows the slice in more detail.

Output from the function generator in each LC drives both the 
CLB output and the D input of the flip-flop.

• Increased Usage of the Function Generator(?)—The FPGA synthesis 
tool writes a netlist in terms of the function generator, known as a 
look up table (LUT), the carry logic, and the storage elements. 
The LUT can be used as static RAM to supplement the memory 
available as Block RAM outside the CLB. The LUT can also 
provide a 16-bit shift register that is ideal for capturing high-
speed or burst mode data. Using the 16-bit register you can store 
data in applications such as digital signal processing, multi-
plexers, or selected functions of up to nine inputs. 

• Increases in Silicon Efficiency— Optimization of Place and Route 
have resulted in dramatic silicon efficiencies. The abundance of 
routing resources permits the Virtex-E family to accommodate 
even the largest and most complex designs, up to 3.2 million 
gates.

V CCINT processing is 1.8v. VCCINT is the power supply voltage 
for the internal logic and memory for Virtex-E. 

The 0.18 mm design rules have resulted in smaller die, faster 
speed, and lower power consumption.

• New I/O Standards Supported—You can increase I/O performance 
up to 622 Mb/s by using source synchronous data transmission 
architectures. You can also increase the synchronous system 
performance up to 240 MHz by using the single-ended Select I/O 
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technology. New Differential I/O standards are supported, 
LVPECL, LVDS, and BLVDS, which use two pins per signal.

• Faster Speed Rates—Most signal pins for the new Virtex-E stan-
dards will achieve faster clock speeds. Virtex-E devices have up 
to 640 Kb of faster Block Select RAM. There are 8 DLLs with 
easier clock mirroring and 4x frequency multiplication than the 
original virtex. They can also achieve a higher performance to 311 
MHz. 

I/O pins are 3v tolerant, and can be 5v tolerant with an external 
100 watt resistor.

Virtex-E FPGAs are SRAM-based, and are customized by loading 
configuration data into internal memory cells. Configuration 
data can be read from an external SPROM in master serial mode, 
or can be written into the FPGA in SelectMAP, slave serial, and 
JTAG modes. While performance is design dependent, many 
designs operate internally at speeds in excess of 133 MHz and 
can achieve over 311 MHz.

For more compete details on the Virtex-E architecture, please 
refer to the “Virtex-E 1.8v Field Programmable Gate Arrays 
Datasheet” found on the Xilinx web site at www.xilinx.com.

Advantages of Using HDLs to Design FPGAs
Using HDLs to design high-density FPGAs is advantageous for the 
following reasons.

• Top-Down Approach for Large Projects—HDLs are used to create 
complex designs. The top-down approach to system design 
supported by HDLs is advantageous for large projects that 
require many designers working together. After the overall 
design plan is determined, designers can work independently on 
separate sections of the code.

• Functional Simulation Early in the Design Flow—You can verify the 
functionality of your design early in the design flow by simu-
lating the HDL description. Testing your design decisions before 
the design is implemented at the RTL or gate level allows you to 
make any necessary changes early in the design process.

• Synthesis of HDL Code to Gates—You can synthesize your hard-
ware description to a design implemented with gates. This step 
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decreases design time by eliminating the need to define every 
gate. Synthesis to gates also reduces the number of errors that can 
occur during a manual translation of a hardware description to a 
schematic design. Additionally, you can apply the automation 
techniques used by the synthesis tool (such as machine encoding 
styles or automatic I/O insertion) during the optimization of 
your design to the original HDL code, resulting in greater effi-
ciency.

• Early Testing of Various Design Implementations—HDLs allow you 
to test different implementations of your design early in the 
design flow. You can then use the synthesis tool to perform the 
logic synthesis and optimization into gates. Additionally, Xilinx 
FPGAs allow you to implement your design at your computer. 
Since the synthesis time is short, you have more time to explore 
different architectural possibilities at the Register Transfer Level 
(RTL). You can reprogram Xilinx FPGAs to test several imple-
mentations of your design.

• Reuse of RTL Code —You can retarget RTL code to new FPGA 
architectures with a minimum of recoding.

Designing FPGAs with HDLs
If you are more familiar with schematic design entry, you may find it 
difficult at first to create HDL designs. You must make the transition 
from graphical concepts, such as block diagrams, state machines, 
flow diagrams, and truth tables, to abstract representations of design 
components. You can ease this transition by not losing sight of your 
overall design plan as you code in HDL. To effectively use an HDL, 
you must understand the syntax of the language; the synthesis and 
simulator software; the architecture of your target device; and the 
implementation tools. This section gives you some design hints to 
help you create FPGAs with HDLs.

Using Verilog
Verilog® is popular for synthesis designs because it is less verbose 
than traditional VHDL, and it is standardized as IEEE-STD-1364-95. 
It was not originally intended as an input to synthesis, and many 
Verilog constructs are not supported by synthesis software. The 
Verilog examples in this manual were tested and synthesized with 
current, commonly-used FPGA synthesis software. The coding strate-
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gies presented in the remaining chapters of this manual can help you 
create HDL descriptions that can be synthesized.

Using VHDL
VHSIC Hardware Description Language (VHDL) is a hardware 
description language for designing Integrated Circuits (ICs). It was 
not originally intended as an input to synthesis, and many VHDL 
constructs are not supported by synthesis software. However, the 
high level of abstraction of VHDL makes it easy to describe the 
system-level components and test benches that are not synthesized. 
In addition, the various synthesis tools use different subsets of the 
VHDL language. The examples in this manual will work with most 
commonly used FPGA synthesis software. The coding strategies 
presented in the remaining chapters of this manual can help you 
create HDL descriptions that can be synthesized.

Comparing ASICs and FPGAs
Xilinx FPGAs are reprogrammable and when combined with an HDL 
design flow can greatly reduce the design and verification cycle seen 
with traditional ASICs.

Using Synthesis Tools
Most of the commonly-used FPGA synthesis tools have special opti-
mization algorithms for Xilinx FPGAs. Constraints and compiling 
options perform differently depending on the target device. There are 
some commands and constraints in ASIC synthesis tools that do not 
apply to FPGAs and, if used, may adversely impact your results. You 
should understand how your synthesis tool processes designs before 
creating FPGA designs. Most FPGA synthesis vendors include infor-
mation in their manuals specifically for Xilinx FPGAs.

Using FPGA System Features
You can improve device performance and area utilization by creating 
HDL code that uses FPGA system features, such as global reset, wide 
I/O decoders, and memory. FPGA system features are described in 
this manual.
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Designing Hierarchy
Current HDL design methods are specifically written for ASIC 
designs. You can use some of these ASIC design methods when 
designing FPGAs; however, certain techniques may unnecessarily 
increase the number of gates or CLB levels. This Design Guide will 
train you in techniques for optional FPGA design methodlogies.

Design hierarchy is important in the implementation of an FPGA and 
also during incremental or interactive changes. Some synthesizers 
maintain the hierarchical boundaries unless you group modules 
together. Modules should have registered outputs so their boundaries 
are not an impediment to optimization. Otherwise, modules should 
be as large as possible within the limitations of your synthesis tool. 
The “5,000 gates per module” rule is no longer valid, and can inter-
fere with optimization. Check with your synthesis vendor for the 
current recommendations for preferred module size. As a last resort, 
use the grouping commands of your synthesizer, if available. The size 
and content of the modules influence synthesis results and design 
implementation. This manual describes how to create effective design 
hierarchy.

Specifying Speed Requirements
To meet timing requirements, you should understand how to set 
timing constraints in both the synthesis and placement/routing tools. 
For more information, see “the chapter where this is explained”. 

Xilinx Internet Web Sites
You can get product information and product support from the Xilinx 
internet web sites. Both sites are described in the following sections.

 Xilinx World Wide Web Site
You can reach the Xilinx web site at http://www.xilinx.com. The 
following features can be accessed from the Xilinx web site.

• Products — You can find information about new Xilinx products 
that are being offered, as well as previously announced Xilinx 
products. 

• Service and Support — You can jump to the xilinx technical 
support site by choosing Service and Support.
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• Xpresso Cafe —You can purchase Xilinx software, hardware and 
software tool education classes through Xilinx and Xilinx distrib-
utors.

Technical Support Web Site
Answers to questions, tutorials, Application notes, software manuals 
and information on using Xilinx products can be found on the tech-
nical support web site. You can reach the support web site at http://
www.xilinx.support.com. The following features can be accessed 
from the Xilinx support web site.

• Troubleshoot — You can do an advanced search on the answers 
database to troubleshoot questions or issues you have with your 
design.

• Software — You can download the latest software service packs, 
IP updates, and product information from the Xilinx support 
website. 

• Library — You can view the Software manuals from this web site. 
The manuals are provided in both HTML, viewable through most 
HTML browsers, and PDF. The Databook, CORE Generator 
documentation and datasheets are also available. 

• Design — You can find helpful application notes that illustrate 
specific design solutions and methodologies.

• Services — You can open a support case when you need to have 
information from a Xilinx technical support person. You can also 
find information about your hardware or software order. 

• Feedback —We are always interested in how well we’re serving 
our customers. You can let us know by filling out our customer 
service survey questionnaire.

You can contact Xilinx technical support and application support for 
additional information and assistance in the following ways.
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Technical and Applications Support Hotlines
The telephone hotlines give you direct access to Xilinx Application 
Engineers worldwide. You can also e-mail or fax your technical ques-
tions to the same locations.

Note When e-mailing or faxing inquiries, provide your complete 
name, company name, and phone number. Also, provide a complete 
problem description including your design entry software and design 
stage.

Xilinx FTP Site
ftp://ftp.xilinx.com

The FTP site provides online access to automated tutorials, design 
examples, online documents, utilities, and published patches.

Vendor Support Sites
Vendor support for synthesis and verification products can be 
obtained at the following locations.

Table 1-1  Technical Support

Location Telephone Electronic Mail Facsimile (Fax)

North America 1-800-255-7778 hotline@xilinx.com 1-408-879-4442

Japan 81-3-3297-9163 jhotline@xilinx.com 81-3-3297-0067

France 33-1-3463-0100 frhelp@xilinx.com 33-1-3463-0959

Germany 49- 89-93088-130 dlhelp@xilinx.com 49-89-904-4748

United Kingdom 44-1932-820821 ukhelp@xilinx.com 44-1932-828522

Corporate Switchboard 1-408-559-7778

Table 1-2  Vendor Support Sites

Vendor Name - Product Telephone Electronic Mail Web Site

Synopsys - XSI 1-800-245-8005 support_center@sy
nopsys.com

www.synopsys.co
m

Cadence - Concept-HDL 1-877-237-4911 support@cadence.c
om

sourcelink.cadence.
com
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Mentor Graphics 1-800-547-4303 support_net@xilinx
.com

support-
netweb.mentorg.co
m

Viewlogic 1-800-223-8439 WVOffice: pc-
support@view-
logic.com
PowerView: pv-
support@view-
logic.com

www.view-
logic.com

Synopsys FPGA Express. 1-800-445-1888 support_center@sy
nopsys.com

www.synopsys.co
m

Synplicity 1-408-548-6000 support@synplicity
.com

www.synplicity.co
m

ModelSim N/A support@model.co
m

www.model.com

Exemplar 1-408-487-7410 support@exem-
plar.com

www.exem-
plar.com

Table 1-2  Vendor Support Sites

Vendor Name - Product Telephone Electronic Mail Web Site
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Chapter 2

Understanding High-Density Design Flow

This chapter describes the steps in a typical HDL design flow. 
Although these steps may vary with each design, the information in 
this chapter is a good starting point for any design. If necessary, refer 
to the current version of the Quick Start Guide for the Xilinx Alliance 
Series to familiarize yourself with the Xilinx and interface tools. This 
chapter includes the following sections.

• “Design Flow”

• “Entering your Design and Selecting Hierarchy”

• “Functional Simulation of your Design”

• “Synthesizing and Optimizing your Design”

• “Setting Constraints”

• “Evaluating Design Size and Performance”

• “Evaluating your Design for Coding Style and System Features”

• “Placing and Routing Your Design”

• “Timing Simulation of Your Design”

• “Downloading to the Device and In-system Debugging”

• “Creating a PROM File for Stand-Alone Operation”

Design Flow
An overview of the design flow steps is shown in the following 
figure.
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Figure 2-1  Design Flow Overview
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Entering your Design and Selecting Hierarchy
The first step in implementing your design is creating the HDL code 
based on your design criteria.

Design Entry Recommendations
The following recommendations can help you create effective 
designs.

Using RTL Code

By using register transfer level (RTL) code and avoiding (when 
possible) instantiating specific components, you can create designs 
with the following characteristics.

Note In some cases instantiating optimized LogiBLOX, CORE Gener-
ator or LogiCORE modules is beneficial with RTL.

• Readable code

• Faster and simpler simulation

• Portable code for migration to different device families

• Reuseable code for future designs 

Carefully Select Design Hierarchy

Selecting the correct design hierarchy is advantageous for the 
following reasons.

• Improves simulation and synthesis results

• Improves debugging and modifying modular designs

• Allows parallel engineering (a team of engineers can work on 
different parts of the design at the same time)

• Improves the placement and routing of your design by reducing 
routing congestion and improving timing

• Allows for easier code reuse in the current design, as well as in 
future designs
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Functional Simulation of your Design
Use functional or RTL simulation to verify the syntax and function-
ality of your design. Use the following recommendations when simu-
lating your design.

• Typically with larger hierarchical HDL designs, you should 
perform separate simulations on each module before testing your 
entire design. This makes it easier to debug your code.

• Once each module functions as expected, create a test bench to 
verify that your entire design functions as planned. You can use 
the test bench again for the final timing simulation to confirm 
that your design functions as expected under worst-case delay 
conditions.

Synthesizing and Optimizing your Design
This section includes recommendations for compiling your designs to 
improve your results and decrease the run time.

Note Refer to your synthesis tool documentation for more informa-
tion on compilation options and suggestions.

Creating an Initialization File
Most synthesis tools provide a default initialization with default 
options. You may modify the initialization file or use the GUI to 
change compiler defaults, and to point to the applicable implementa-
tion libraries. Refer to your synthesis tool documentation for more 
information.

Creating a Compile Run Script
FPGA Express, LeonardoSpectrum, and Synplify all support TCL 
scripting. Using TCL scripting can make compiling your design 
easier and faster while achieving shorter compile times. With more 
advanced scripting you can run a compile multiple times using 
different options and write to different directories. You can also 
invoke and run other command line tools. The following are some 
sample scripts that can be run from the command line or from the 
GUI.
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FPGA Express

FPGA Scripting Tool (FST) implements a TCL-based command line 
interface for FPGA Express. FST can be accessed from a command 
line by typing the following.

• For FPGA Compiler II

fc2_shell synth_file.tcl

• For FPGA Express

fe_shell -f synth.tcl

The script will execute and put you back at the UNIX or DOS prompt.

FPGA Express FST Example

The following FST commands can be run in FPGA Express.

• To create the project, enter the following.

create_project -dir . d_register

• To open the project, enter the following.

open_project  d_register 

• To add the files to the project, enter the following.

add_file -format VHDL ../src/d_register.vhd 

• To analyze the design files enter the following.

analyze_file -progress

• To create a chip for a device enter the following.

create_chip  -progress -target Virtex -device v50PQ240 -speed -5 -
name d_register d_register

• To set the top level as the current design, enter the following.

current_chip d_register 

• To optimize the design, enter the following.

set opt_chip [format "%s-Optimized" d_register]

optimize_chip  -progress -name $opt_chip

• To write out the messages enter the following.

list_message
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• To write out the netlist, enter the following.

export_chip -progress -dir .

• close_project

• quit

LeonardoSpectrum

The following TCL script can be run from LeonardoSpectrum by 
doing one of the following.

1. Select the File → Run Script menu item from the Leonar-
doSpectrum graphical user interface.

2. Type in the Level 3 GUI command line, source script_file.tcl

3. Type in the UNIX/DOS prompt with the EXEMPLAR environ-
ment path set up, spectrum -file script_file.tcl

4. Type spectrum at the UNIX/DOS prompt. This will put you in a 
TCL prompt. Then at the TCL prompt type source script_file.tcl

LeonardoSpectrum TCL Examples

The following TCL commands can be entered in LeonardoSpectrum.

• To set the part type, enter the following.

set part v50ecs144

• To read the HDL files, enter the following.

read  macro1.vhd macro2.vhd top_level.vhd

• To set assign buffers, enter the following.

PAD  IBUF_LVDS data(7:0)

• To optimize while preserving hierarchy, enter the following.

optimize -ta xcve -hier preserve

• To write out the EDIF file, enter the following.

auto_write ./M1/ff_example.edf
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Synplify

The following TCL script can be run from Synplify by doing one of 
the following:

1. Using the File → Run TCL Script menu item from the GUI

2. Typing synplify -batch script_file.tcl at a UNIX/DOS command 
prompt.

Synplify TCL Example

The following TCL commands can be entered in Synplify.

• To start a new project, enter the following.

project -new

• To set device options, enter the following.

set_option -technology Virtex-E

set_option -part XCV50E

set_option -package CS144

set_option -speed_grade -8

• To add file options, enter the following.

add_file -constriant “watch.sdc”

add_file -vhdl -lib work “macro1.vhd”

add_file -vhdl -lib work “macro2.vhd”

add_file -vhdl -lib work “top_levle.vhd”

• To set compilation/mapping options, enter the following.

set_option -default_enum_encoding onehot

set_option -symbolic_fsm_compiler true

set_option -resource_sharing true

• To set simulation options, enter the following.

set_option -write_verilog false

set_option -write_vhdl false

• To set automatic place and route (vendor) options, enter the 
following.



Synthesis and Simulation Design Guide

2-8 Xilinx Development System

set_option -write_apr_constraint true

set_option -part XCV50E

set_option -package CS144

set_option -speed_grade -8

• To set result format/file options, enter the following.

project -result_format “edif”

project -result_file “top_level.edf”

project -run

project -save “watch.prj”

• exit

Compiling Your Design
Use the recommendations in this section to successfully compile your 
design.

Modifying your Design

You may need to modify your code to successfully compile your 
design because certain design constructs that are effective for simula-
tion may not be as effective for synthesis. The synthesis syntax and 
code set may differ slightly from the simulator syntax and code set. 

Compiling Large Designs

Older versions of synthesis tools required incremental design compi-
lations to decrease run times. Some or all levels of hierarchy were 
compiled with separate compile commands and saved as output or 
database files. The output netlist or compiled database file for each 
module was read during synthesis of the top level code. This method 
is not necessary with new synthesis tools, which can handle large 
designs from the top down. The 5,000 gates per module rule of thumb 
no longer applies with the new synthesis tools. Refer to your 
synthesis tool documentation for details.
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Saving Compiled Design as XNF or EDIF

After your design is successfully compiled, save it as an XNF or EDIF 
file for input to the Xilinx software. 

Setting Constraints
You can define timing specifications for your design in the User 
Constraints File (UCF). You can use the Xilinx Constraints Editor 
which provides a graphical user interface allowing for easy 
constraints specification. You can also enter constraints directly into 
the UCF file. Both methods are described below. Most synthesis tools 
support an easy to use Constraints Editor interface for entering 
constraints in your design. 

Using the UCF File
The UCF gives you tight control of the overall specifications by 
giving you access to more types of constraints; the ability to define 
precise timing paths; and the ability to prioritize signal constraints. 
Furthermore, you can group signals together to simplify timing spec-
ifications. Some synthesis tools translate certain synthesis constraints 
to Xilinx implementation constraints. The translated constraints are 
placed in a special TIMESPEC component. For more information on 
timing specifications in the UCF file, refer to the Quick Start Guide for 
Xilinx Alliance Series, the Libraries Guide, and the Answers Database 
on the Xilinx Support Web site, http://support.xilinx.com.

Using the Xilinx Constraints Editor
The Xilinx Constraints Editor is a GUI based tool that can be accessed 
from the Design Manager GUI (Utilities -> Constraints 
Editor), or from the command line (constraints_editor).  The 
Constraints Editor allows the user to easily enter design constraints 
in a spreadsheet form and writes out the constraints in the UCF file.  
This eliminates the need to know the UCF file syntax. The other 
benefit is the Constraints Editor reads the design and lists all the nets 
and elements in the design. This is very helpful in the HDL flow 
when the synthesis tool creates the names.

Some constraints are not available through the Constraints Editor. 
The unavailable constraints will need to be entered directly in the 
UCF file using a text editor. The new UCF file needs to be re-run 
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through the Translate step in the Flow Engine or NGDBuild using the 
command line method. For more information on using the Xilinx 
Constraints Editor, please refer to the Constraints Editor Guide onthe 
Xilinx Support Web site, http://support.xilinx.com.

Using Synthesis Tools’ Constraints Editor
The FPGA Express, LeonardoSpectrum, and Synplify synthesis tools 
all have constraint editors to apply constraints to your HDL design. 
Refer to your synthesis tool’s documentation for information on how 
to use the constraints editor specific to your synthesis environment. 
You can add the following constraints:

• Clock frequency or cycle and offset

• Input and Output timing

• Signal Preservation

• Module constraints

• Buffering ports

• Path timing

• Global timing

Generally, the timing constraints will be written out to an NCF file, 
and all other constraints will be written to the output EDIF or XNF 
file. Please refer to the documentation for your synthesis tool to 
obtain more information on Constraint Editors. 

Evaluating Design Size and Performance
Your design should meet the following requirements.

• Design must function at the specified speed

• Design must fit in the targeted device

After your design is compiled, you can determine preliminary device 
utilization and performance with your synthesis tool’s reporting 
options. After your design is mapped by the Xilinx tools, you can 
determine the actual device utilization. At this point in the design 
flow, you should verify that your chosen device is large enough to 
incorporate any future changes or additions, and that your design 
will perform as specified. 
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Using your Synthesis Tool to Estimate Device 
Utilization and Performance

Use your synthesis tool’s area and timing reporting options to esti-
mate device utilization and performance. After compiling, use the 
report area command to obtain a report of device resource utilization. 
Some synthesis tools provide area reports automatically. Refer to 
your synthesis tool documentation for correct command syntax.

The device utilization and performance report lists the compiled cells 
in your design, as well as information on how your design is mapped 
in the FPGA. These reports are generally accurate because the 
synthesis tool creates the logic from your code and maps your design 
into the FPGA. However, these reports are different for the various 
synthesis tools. Some reports specify the minimum number of CLBs 
required, while other reports specify the “unpacked” number of 
CLBs to make an allowance for routing. For an accurate comparison, 
you should compare reports from the Xilinx place and route tool after 
implementation. Also, any instantiated components, such as Logi-
BLOX or CORE Generator modules, EDIF files, XNF files, or other 
components that your synthesis tool does not recognize during 
compilation are not included in the report file. If you include these 
components in your design, you must include the logic area used by 
these components when estimating design size. Also, sections of your 
design may get trimmed during the mapping process, and may result 
in a smaller design.

Using the Timing Report Command

Use your synthesis tool’s timing report command to obtain a report 
with estimated data path delays. Refer to your synthesis vendor’s 
documentation for command syntax.

Note See the "Report Files" appendix for sample report files from 
various synthesis vendors.

The timing report is based on the logic level delays from the cell 
libraries and estimated wire-load models for your design. This report 
is an estimate of how close you are to your timing goals; however, it is 
not the actual timing for your design. An accurate report of your 
design’s timing is only available after your design is placed and 
routed. This timing report does not include information on any 
instantiated components, such as LogiBLOX or CORE Generator 



Synthesis and Simulation Design Guide

2-12 Xilinx Development System

modules, EDIF files, XNF files, or other components that are not 
recognized by your synthesis tool during compilation.

Determining Actual Device Utilization and Pre-routed 
Performance 

To determine if your design fits the specified device, you must map it 
with the Xilinx Map program. The generated report file 
design_name.mrp contains the implemented device utilization infor-
mation. The report file can be located through the Reports section of 
the Design Manager. You can run the Map program from the Design 
Manager or from the command line.

Using the Design Manager to Map Your Design

Use the following steps to map your design using the Design 
Manager.

Note For more information on using the Design Manager, see the 
Design Manager/Flow Engine Reference/User Guide.

1. To start the Design Manager, enter the following command.

xilinx

2. To create a new project, select the XNF or EDIF file generated by 
your synthesis tool as your input file from the File → New 
Project menu command.

3. To start design implementation, click the Implement toolbar 
button or select Design → Implement.

The Implement dialog box appears.

4. If necessary, select a part in the dialog box.

5. Select the Options button in the Implement dialog box.

The Options dialog box appears. 

6. Select the Produce Logic Level Timing Report option. 

This option creates a timing report prior to place and route, but 
after map, as described in the following five steps.

7. Select the Edit Template button next to the Implementation drop-
down list.
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The Implementation Template dialog box appears.

8. Select the Timing tab. 

9. Select the Produce Logic Level Timing Report radio button.

10. Select the type of report you want to create. 

The default is Report Paths in Timing Constraints. 

11. Use the Implementation Template dialog box tabs (Optimize & 
Map, Place & Route, or Interface) to select any other options 
applicable to your design. Select OK to exit the Implementation 
Template dialog box.

Note Xilinx recommends using the default Map options for your 
designs. Also, do not use the guided map option with your 
synthesized designs.

12. Select Run in the Implement dialog box to begin implementing 
your design. 

13. When the Flow Engine is displayed, stop the processing of your 
design after mapping by selecting Setup → Stop After or by 
selecting the Set Target toolbar button.

The Stop After dialog box appears.

14. Select Map and select OK.

15. After the Flow Engine is finished mapping your design, select 
Utilities → Report Browser to view the map report. 
Double-click the report icon that you want to view. The map 
report includes a Design Summary section that contains the 
device utilization information.

16. View the Logic Level Timing Report with the Report Browser. 
This report shows the performance of your design based on logic 
levels and best-case routing delays.

17. At this point, you may want to start the Timing Analyzer from 
the Design Manager to create a more specific report of design 
paths.

18. Use the Logic Level Timing Report and any reports generated 
with the Timing Analyzer or the Map program to evaluate how 
close you are to your performance and utilization goals. Use 
these reports to decide whether to proceed to the place and route 
phase of implementation, or to go back and modify your design 



Synthesis and Simulation Design Guide

2-14 Xilinx Development System

or implementation options to attain your performance goals. You 
should have some slack in routing delays to allow the place and 
route tools to successfully complete your design. Use the verbose 
option in the Timing Analyzer to see block-by-block delay. The 
timing report of a mapped design (before place and route) shows 
block delays, as well as estimated routing delays.

Using the Command Line to Map Your Design

1. Translate your design as follows.

ngdbuild -p target_device design_name.xnf

or

ngdbuild -p target_device design_name.edf

2. Map your design as follows.

map design_name.ngd

3. Use a text editor to view the Device Summary section of the 
design_name.mrp map report. This section contains the device 
utilization information.

4. Run a timing analysis of the logic level delays from your mapped 
design as follows.

trce [options] design_name.ngd

Note For available options, enter only the trce command at the 
command line without any arguments.

Use the Trace reports to evaluate how close you are to your 
performance goals. Use the report to decide whether to proceed 
to the place and route phase of implementation, or to go back and 
modify your design or implementation options to attain your 
performance goals. You should have some slack in routing delays 
to allow the place and route tools to successfully complete your 
design.

The following is the Design Summary section of a Map report 
containing device information.

Xilinx Mapping Report File for Design 'area_con14'
Copyright (c) 1995-2000 Xilinx, Inc.  All rights reserved.
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Design Information
------------------
Command Line   : map -u area_con14.ngd
Target Device  : xv50
Target Package : bg256
Target Speed   : -6
Mapper Version : virtex -- HEAD
Mapped Date    : Tue Mar  7 13:30:28 2000

Design Summary
--------------

Number of errors: 0
Number of warnings: 56
Number of Slices: 0 out of  768   0%
Number of Slices containing

 unrelated logic: 0 out of                 0         0%
Number of 4 input LUTs: 0 out of 1,536  0%
Number of Block RAMs: 2 out of 8      25%

Total equivalent gate count for design:  32,768

Table of Contents
-----------------
Section 1 - Errors
Section 2 - Warnings
Section 3 - Design Attributes
Section 4 - Removed Logic Summary
Section 5 - Removed Logic
Section 6 - Added Logic
Section 7 - Expanded Logic
Section 8 - Signal Cross-Reference
Section 9 - Symbol Cross-Reference
Section 10 - IOB Properties
Section 11 - RPMs
Section 12 - Guide Report
Section 13 - Area Group Summary

Section 1 - Errors
------------------

Section 2 - Warnings
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--------------------
WARNING:DesignRules:368 - Netcheck: Sourceless.
Net clk has
 no source.
WARNING:DesignRules:368 - Netcheck: Sourceless. 
Net en has no source.
WARNING:DesignRules:368 - Netcheck: Sourceless. 
Net rst has no source.
WARNING:DesignRules:368 - Netcheck: Sourceless.
 Net we has no source.
WARNING:DesignRules:368 - Netcheck: Sourceless.
 Net addr11 has no source.
.
.
.
WARNING:DesignRules:367 - Netcheck: Loadless.
 Net m2_m2_doa0 has no load.
WARNING:DesignRules:367 - Netcheck: Loadless.
 Net m2_m2_doa1 has no load.
WARNING:DesignRules:367 - Netcheck: Loadless.
 Net m2_m2_dob0 has no load.
WARNING:DesignRules:367 - Netcheck: Loadless.
 Net m2_m2_dob1 has no load.

Section 3 - Design Attributes
-----------------------------

Section 4 - Removed Logic Summary
---------------------------------

Section 5 - Removed Logic
-------------------------

Section 6 - Added Logic
-----------------------

Section 7 - Expanded Logic
--------------------------
To enable this section, set the detailed map report option
 and rerun map.
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Section 8 - Signal Cross-Reference
----------------------------------
To enable this section, set the detailed map report option
 and rerun map.

Section 9 - Symbol Cross-Reference
----------------------------------
To enable this section, set the detailed map report option
 and rerun map.

Section 10 - IOB Properties
---------------------------

Section 11 - RPMs
-----------------

Section 12 - Guide Report
-------------------------
Guide not run on this design.

Section 13 - Area Group Summary
-------------------------------

AREA_GROUP AG_ONE
RANGE: RAMB4_R1C1:RAMB4_R3C1

No COMPRESSION specified for AREA_GROUP AG_ONE
Number of BlockRAMs:            2 out of      3 66%

The following is a sample Logic Level Timing Report.

-----------------------------------------------------------------
Xilinx TRACE, Version M1.4.12
Copyright (c) 1995-1997 Xilinx, Inc.  All rights reserved.

Design file:              map.ncd
Physical constraint file: demo_board.pcf
Device, speed: xc4003e,-2 (x1_0.86  PRELIMINARY)
Report level:             summary report
-----------------------------------------------------------------

=================================================================
Timing constraint: NET "FAST_CLOCK" PERIOD =  15.200 nS
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HIGH 50.000 % ;
 1 item analyzed, 0 timing errors detected.
 Minimum period is   5.585ns.

-----------------------------------------------------------------

=================================================================
Timing constraint: NET "control_logic/SLOW_CLOCK"PERIOD =
  121.600nS HIGH 50.000 % ;
 677 items analyzed, 0 timing errors detected.
 Minimum period is  17.295ns.
-----------------------------------------------------------------

All constraints were met.
Timing summary:
---------------
Timing errors: 0  Score: 0

Constraints cover 811 paths, 0 nets, and 
232 connections (73.2% coverage)
Design statistics:
  Minimum period:  17.295ns (Maximum frequency:  57.820MHz)

Analysis completed Tue Jan 27 12:07:59 1998

-----------------------------------------------------------------

Evaluating your Design for Coding Style and System 
Features

At this point, if you are not satisfied with your design performance, 
you can re-evaluate your code and make any necessary improve-
ments. Modifying your code and selecting different compiler options 
can dramatically improve device utilization and speed.

Tips for Improving Design Performance
This section includes ways of improving design performance by 
modifying your code and by incorporating FPGA system features. 
Most of these techniques are described in more detail in this manual.
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Modifying Your Code

You can improve design performance with the following design 
modifications.

• Reduce levels of logic to improve timing

• Redefine hierarchical boundaries to help the compiler optimize 
design logic

• Pipeline

• Logic replication

• Use of CORE Generator modules

• Resource sharing

• Restructure logic

Using FPGA System Features

After correcting any coding style problems, use any of the following 
FPGA system features in your design to improve resource utilization 
and to enhance the speed of critical paths. 

Note Each device family has a unique set of system features. Review 
the current version of the The Programmable Logic Data Book for the 
system features available for the device you are targeting.

• Use global set/reset and global tristate nets to reduce routing 
congestion and improve design performance

• Use clock enables

• Place the highest fanout signals on the global buffers

• Modify large multiplexers to use tristate buffers

• Use one-hot encoding for large or complex state machines

• Use I/O registers when applicable

• Use I/O decoders when applicable

• Use I/O multiplexers when applicable

Using Xilinx-specific Features of Your Synthesis Tool

Most synthesis tools have special options for the Xilinx-specific 
features listed in the previous section. Refer to your synthesis tool 
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white papers, application notes, documentation and online help for 
detailed information on using Xilinx-specific features.

Placing and Routing Your Design
Note For more information on placing and routing your design, refer 
to the Development System Reference Guide.

The overall goal when placing and routing your design is fast imple-
mentation and high-quality results. However, depending on the situ-
ation and your design, you may not always accomplish this goal, as 
described in the following examples.

• Earlier in the design cycle, run time is generally more important 
than the quality of results, and later in the design cycle, the 
converse is usually true.

• During the day, you may want the tools to quickly process your 
design while you are waiting for the results. However, you may 
be less concerned with a quick run time, and more concerned 
about the quality of results when you run your designs for an 
extended period of time (during the night or weekend).

• If the targeted device is highly utilized, the routing may become 
congested, and your design may be difficult to route. In this case, 
the placer and router may take longer to meet your timing 
requirements.

• If design constraints are rigorous, it may take longer to correctly 
place and route your design, and meet the specified timing. 

Decreasing Implementation Time
The options you select for the placement and routing of your design 
directly influence the run time. Generally, these options decrease the 
run time at the expense of the best placement and routing for a given 
device. Select your options based on your required design perfor-
mance.

Note If you are using the command line, the appropriate command 
line option is provided in the following procedure.

Use the following steps to decrease implementation time in the 
Design Manager.

1. Select Design → Implement
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The Implement dialog box appears.

2. Select the Options button in the Implement dialog box.

The Options dialog box appears. 

3. Select the Edit Template button next to the Implementation drop-
down list in the Program Options Templates field. The Imple-
mentation Template dialog box appears.

4. Select the Place & Route tab.

5. Set options in this dialog box as follows.

♦ Place & Route Effort Level

Generally, you can reduce placement times by selecting a less 
CPU-intensive algorithm for placement. You can set the 
placement level from 1 (fastest run time) to 5 (best results) 
with the default equal to 2. Use the –l switch at the command 
line to perform the same function. 

Note In some cases, poor placement with a lower placement level 
setting can result in longer route times.

♦ Router Options

You can limit router iterations to reduce routing times. 
However, this may prevent your design from meeting timing 
requirements, or your design may not completely route. 
From the command line, you can control router passes with 
the –i switch.

♦ Use Timing Constraints During Place and Route

You can improve run times by not specifying some or all 
timing constraints. This is useful at the beginning of the 
design cycle during the initial evaluation of the placed and 
routed circuit. To disable timing constraints in the Design 
Manager, deselect the Use Timing Constraints During Place 
and Route button. To disable timing constraints at the 
command line, use the –x switch with PAR.

6. Select OK to exit the Implementation Template dialog box.

7. Select any applicable options in the Options dialog box.

8. Select OK.
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9. Select Run in the Implement dialog box to begin implementing 
your design. 

Improving Implementation Results
Conversely, you can select options that increase the run time, but 
produce a better design. These options generally produce a faster 
design at the cost of a longer run time. These options are useful when 
you run your designs for an extended period of time (overnight or 
over the weekend). The following options can be used to improve 
implementation results. Detailed information for these options can be 
found in Chapter 3 of the “Design Manager/Flow Engine Guide”.

Multi-Pass Place and Route Option

Use this option to place and route your design with several different 
cost tables (seeds) to find the best possible placement for your design. 
This optimal placement results in shorter routing delays and faster 
designs. This option works well when the router passes are limited 
(with the –i option). After an optimal cost table is selected, use the re-
entrant routing feature to finish the routing of your design. You may 
select this option from the Design menu in the Design Manager, or 
specify this option at the command line with the –n switch.

Turns Engine Option (UNIX only)

This option is a Unix-only feature that works with the Multi-Pass 
Place and Route option to allow parallel processing of placement and 
routing on several Unix machines. The only limitation to how many 
cost tables are concurrently tested is the number of workstations you 
have available. To use this option in the Design Manger, specify a 
node list when selecting the Multi-Pass Place and Route option. To 
use this feature at the command line, use the –m switch to specify a 
node list, and the –n switch to specify the number of place and route 
iterations.

Note For more information on the turns engine option, refer to the 
Xilinx Development System Reference Guide.

Re-entrant Routing Option

Use the re-entrant routing option to further route an already routed 
design. The router reroutes some connections to improve the timing 
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or to finish routing unrouted nets. You must specify a placed and 
routed design (.ncd) file for the implementation tools. This option is 
best used when router iterations are initially limited, or when your 
design timing goals are close to being achieved.

From the Design Manager

To initiate a re-entrant route from the Design Manager interface, 
follow these steps.

1. From the Design Manager, select the placed and routed design 
revision for the re-entrant option.

2. Select Tools → Flow Engine to start the Flow Engine from 
the Design Manager.

3. From the Flow Engine menu, select Setup → Re-entrant 
Route.

4. In the Advanced dialog box that is displayed, select the Allow 
Re-entrant Routing option.

5. Select the appropriate options in the Re-entrant Route Options 
field.

6. Select OK.

7. The Place and Route icon in the Flow Engine is replaced with the 
Re-entrant Route icon. If this step is completed, use the Step Back 
button until the Re-entrant Route icon no longer indicates 
completed.

8. Select Run to complete the re-entrant routing.

Using PAR and Cost Tables

The PAR module places in two stages: a constructive placement and 
an optimizing placement. PAR writes the NCD file after constructive 
placement and modifies the NCD after optimizing placement.

During constructive placement, PAR places components into sites 
based on factors such as constraints specified in the input file (for 
example, certain components must be in certain locations), the length 
of connections, and the available routing resources. This placement 
also takes into account “cost tables”, which assign weighted values to 
each of the relevant factors. There are 100 possible cost tables. 
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Constructive placement continues until all components are placed. 
PAR writes the NCD file after constructive placement.

For more information on PAR and Cost Tables, refer to Chapter 12 of 
the “Development System Reference Guide”.

From the Command Line

To initiate a re-entrant route from the command line, you can run 
PAR with the –k and –p options, as well as any other options you 
want to use for the routing process. You must either specify a unique 
name for the post re-entrant routed design (.ncd) file or use the –w 
switch to overwrite the previous design file, as shown in the 
following examples.

par –k –p other_options design_name.ncd new_name.ncd

par –k –p –w other_options design_name.ncd design.ncd

Cost-Based Clean-up Option

This option specifies clean-up passes after routing is completed to 
substitute more appropriate routing options available from the initial 
routing process. For example, if several local routing resources are 
used to transverse the chip and a longline is available, the longline is 
substituted in the clean-up pass. The default value of cost-based 
cleanup passes is 1. To change the default value, use the Template 
Manager in the Design Manager, or the –c switch at the command 
line. 

Delay-Based Clean-up Option

This option specifies clean-up passes after routing is completed to 
substitute more appropriate routing options to reduce delays. The 
default number of passes for delay-based clean-up is 0. You can 
change the default in the Design Manager in the Implementation 
Options window, or at the command line with the –d switch. 

Guide Option

This option is generally not recommended for synthesis-based 
designs, except for modular design flows. Re-synthesizing modules 
can cause the signal and instance names in the resulting netlist to be 
significantly different from those in earlier synthesis runs. This can 
occur even if the source level code (Verilog or VHDL) contains only a 



Understanding High-Density Design Flow

Synthesis and Simulation Design Guide 2-25

small change. Because the guide process is dependent on the names 
of signals and comps, synthesis designs often result in a low match 
rate during the guiding process. Generally, this option does not 
improve implementation results.

For information on guide in modular design flows, refer to XAPP 404 
at http://www.xilinx.com/xapp/xapp404.pdf.

Timing Simulation of Your Design
Note Refer to the "Simulating Your Design" chapter for more infor-
mation on design simulation.

Timing simulation is important in verifying the operation of your 
circuit after the worst-case placed and routed delays are calculated 
for your design. In many cases, you can use the same test bench that 
you used for functional simulation to perform a more accurate simu-
lation with less effort. You can compare the results from the two 
simulations to verify that your design is performing as initially speci-
fied. The Xilinx tools create a VHDL or Verilog simulation netlist of 
your placed and routed design, and provide libraries that work with 
many common HDL simulators.

Timing Analysis Using TRACE
Timing-driven PAR is based upon Xilinx's timing analysis software, 
an integrated static timing analysis tool (that is, it does not depend on 
input stimulus to the circuit). This means that placement and routing 
are executed according to timing constraints that you specify in the 
beginning of the design process. The timing analysis software inter-
acts with PAR to ensure that the timing constraints you impose on the 
design are met.

You can only use the analysis software if you are not supplying any 
timing constraints (in a PCF file) to TRACE. The timing analysis tool 
option writes out a timing report containing the following.

• An analysis that enumerates all clocks and the required OFFSETs 
for each clock.

• An analysis of paths having only combinatorial logic, ordered by 
delay.

For more information on TRACE and Timing Analysis, refer to 
Chapter 14 of the “Development System Reference Guide”.
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Downloading to the Device and In-system 
Debugging

After you have verified the functionality and timing of your placed 
and routed design, you can create a design data file to download for 
in-system verification. The design data or bitstream (.bit) file is 
created from the placed and routed .ncd file. In the Design Manager, 
use the Configuration step in the Flow Engine to create this file. From 
the command line, run BitGen on your placed and routed .ncd file to 
create the .bit file as follows.

bitgen [options] design.ncd

Use the .bit file with the XChecker cable and the Hardware Debugger 
to download the data to your device. You can run the Hardware 
Debugger from the Design Manager, or from the command line as 
follows.

hwdebugr design.bit

The Hardware Debugger allows you to download the data to the 
FPGA using your computer’s serial port. The Hardware Debugger 
can also synchronously or asynchronously probe external or internal 
nodes in the FPGA. Waveforms can be created from this data and 
correlated to the simulation data for true in-system verification of 
your design.

Creating a PROM File for Stand-Alone Operation
After verifying that the FPGA works in the circuit, you can create a 
PROM file from the .bit file to program a PROM or other data storage 
device. You can then use this file to program the FPGA in-circuit 
during normal operation.

Use the Prom File Formatter to create the PROM file, or from the 
command line use PROMGen. You can run the Prom File Formatter 
from the Design Manager, or from the command line as follows.

promfmtr design.bit

Run PROMGen from the command line by typing the following.

promgen [options] design.bit

Note For more information on using these programs, refer to the 
Xilinx Development System Reference Guide.
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Chapter 3

General HDL Coding Styles

This chapter contains HDL coding styles and design examples to help 
you develop an efficient coding style. It includes the following 
sections.

• “Naming and Labeling Styles”

• “Specifying Constants”

• “Choosing Data Type (VHDL only)”

• “Coding for Synthesis”

• “Implementing Latches and Registers,”

• “Resource Sharing,”

• “Reducing Gates,”

• “Using Preset Pin or Clear Pin,”

HDLs contain many complex constructs that are difficult to under-
stand at first. Also, the methods and examples included in HDL 
manuals do not always apply to the design of FPGAs. If you 
currently use HDLs to design ASICs, your established coding style 
may unnecessarily increase the number of gates or CLB levels in 
FPGA designs. 

HDL synthesis tools implement logic based on the coding style of 
your design. To learn how to efficiently code with HDLs, you can 
attend training classes, read reference and methodology notes, and 
refer to synthesis guidelines and templates available from Xilinx and 
the synthesis vendors. When coding your designs, remember that 
HDLs are mainly hardware description languages. You should try to 
find a balance between the quality of the end hardware results and 
the speed of simulation.
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The coding hints and examples included in this chapter are not 
intended to teach you every aspect of VHDL or Verilog, but they 
should help you develop an efficient coding style.

Naming and Labeling Styles
Because HDL designs are often created by design teams, Xilinx 
recommends that you agree on a style for your code at the beginning 
of your project. An established coding style allows you to read and 
understand code written by your fellow team members. Also, ineffi-
cient coding styles can adversely impact synthesis and simulation, 
which can result in slow circuits. Additionally, because portions of 
existing HDL designs are often used in new designs, you should 
follow coding standards that are understood by the majority of HDL 
designers. This section of the manual provides a list of suggested 
coding styles that you should establish before you begin your 
designs.

Using Xilinx Naming Conventions
Use the Xilinx naming conventions listed in this section for naming 
signals, variables, and instances that are translated into nets, buses, 
and symbols. 

Note Most synthesis tools convert illegal characters to legal ones.

• User-defined names can contain A–Z, a–z, $, _, –, <, and >. A “/” 
is also valid, however, it is not recommended because it is used as 
a hierarchy separator

• Names must contain at least one non-numeric character

• Names cannot be more than 256 characters long

The following FPGA resource names are reserved and should not 
be used to name nets or components.

• Components (Comps), Configurable Logic Blocks (CLBs), Input/
Output Blocks (IOBs), basic elements (bels), clock buffers 
(BUFGs), tristate buffers (BUFTs), oscillators (OSC), CCLK, DP, 
GND, VCC, and RST

• CLB names such as AA, AB, and R1C2

• Primitive names such as TD0, BSCAN, M0, M1, M2, or STARTUP



General HDL Coding Styles

Synthesis and Simulation Design Guide 3-3

• Do not use pin names such as P1 and A4 for component names

• Do not use pad names such as PAD1 for component names

Refer to the language reference manual for Verilog or VHDL for 
language-specific naming restrictions. Xilinx does not recom-
mend using escape sequences for illegal characters. Also, if you 
plan on importing schematics into your design, use the most 
restrictive character set.

Matching File Names to Entity and Module Names
The VHDL or Verilog source code file name should match the desig-
nated name of the entity (VHDL) or module (Verilog) specified in 
your design file. This is less confusing and generally makes it easier 
to create a script file for the compilation of your design. Xilinx also 
recommends that if your design contains more than one entity or 
module, each should be contained in a separate file with the appro-
priate file name. It is also a good idea to use the same name as your 
top-level design file for your synthesis script file with either a .do, 
.scr, .script, or the appropriate default script file extension for your 
synthesis tool.

Naming Identifiers, Types, and Packages
You can use long (256 characters maximum) identifier names with 
underscores and embedded punctuation in your code. Use mean-
ingful names for signals and variables, such as 
CONTROL_REGISTER. Use meaningful names when defining 
VHDL types and packages as shown in the following examples.

type LOCATION_TYPE is ...;
package STRING_IO_PKG is

Labeling Flow Control Constructs
You can use optional labels on flow control constructs to make the 
code structure more obvious, as shown in the following VHDL and 
Verilog examples. However, you should note that these labels are not 
translated to gate or register names in your implemented design. 
Flow control constructs can slow down simulations in some Verilog 
simulators.

• VHDL Example
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-- D_REGISTER.VHD

-- May 1997

-- Changing Latch into a D-Register

library IEEE;

use IEEE.std_logic_1164.all;

entity d_register is

 port (CLK, DATA: in STD_LOGIC;

 Q: out STD_LOGIC);

end d_register;

architecture BEHAV of d_register is

begin

My_D_Reg: process (CLK, DATA)

begin

if (CLK'event and CLK='1') then            

Q <= DATA;

end if;

end process; --End My_D_Reg

end BEHAV;

• Verilog Example

/* Changing Latch into a D-Register

* D_REGISTER.V 

* May 1997

*/

module d_register (CLK, DATA, Q);
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input CLK;

input DATA;

output Q;

reg Q;

    

always @ (posedge CLK)

begin: My_D_Reg

 Q <= DATA;

end

endmodule

 Using Named and Positional Association 
Use positional association in function and procedure calls, and in 
port lists only when you assign all items in the list. Use named associ-
ation when you assign only some of the items in the list. Also, Xilinx 
suggests that you use named association to prevent incorrect connec-
tions for the ports of instantiated components. Do not combine posi-
tional and named association in the same statement as illustrated in 
the following examples.

• VHDL

Incorrect

CLK_1: BUFGS port map (I=>CLOCK_IN,CLOCK_OUT);

Correct

CLK_1: BUFGS port map(I=>CLOCK_IN,O=>CLOCK_OUT);

• Verilog

Incorrect 

BUFGS CLK_1 (.I(CLOCK_IN), CLOCK_OUT);
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Correct 

BUFGS CLK_1 (.I(CLOCK_IN), .O(CLOCK_OUT));

Passing Attributes
An attribute is attached to HDL objects in your design. You can pass 
attributes to HDL objects in two ways; you can predefine data that 
describes an object, or directly attach an attribute to an HDL object. 
Predefined attributes can be passed with a command file or 
constraints file in your synthesis tool, or you can place attributes 
directly in your HDL code. This section will illustrate passing 
attributes in HDL code only. For information on passing attribute via 
the command file, please refer to your synthesis tool manual. 

Most vendors adopt identical syntax for passing attributes in VHDL, 
but not in Verilog. The examples below illustrate the VHDL syntax.

Note: For FPGA Express, attribute passing is available beginning 
with version 3.0 and the attributes can only be applied to instantiated 
components or ports (but not inferred logic and nets).

VHDL Attribute Examples

The following are examples of VHDL attributes.

• Attribute use on a declaration:

attribute  <attribute_name> : <attribute_type> ;

• Attribute use on a port or signal:

attribute  <attribute_name> of <object_name> : signal is 
<attribute_value> 

Example:

library IEEE;

use IEEE.std_logic_1164.all;

entity d_register is

port (CLK, DATA: in STD_LOGIC;

 Q: out STD_LOGIC);

attribute FAST : string;

attribute FAST of Q : signal is "";
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end d_register;

• Attribute use on an instance:

attribute  <attribute_name> of <object_name> : label is 
<attribute_value>

Example:

architecture struct of spblkrams is

attribute INIT_00: string;

attribute INIT_00 of INST_RAMB4_S4: label is

"1F1E1D1C1B1A191817161514131211100F0E0D0C0B09087
06050403020100";

begin

INST_RAMB4_S4 : RAMB4_S4 port map (

DI => DI(3 downto 0),

EN => EN,

WE => WE,

RST => RST,

CLK => CLK,

ADDR => ADDR(9 downto 0),

DO => DORAMB4_S4

);

• Attribute use on a component:

attribute  <attribute_name> of <object_name> : component is 
<attribute_value> 

Example:

architecture xilinx of tenths_ex is

attribute black_box : boolean;

component tenths

port (     CLOCK : in STD_LOGIC;

CLK_EN : in STD_LOGIC;
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Q_OUT : out STD_LOGIC_VECTOR(9 
downto 0));

end component;

attribute black_box of tenths : component is 
true;

begin

• Attribute use in FPGA Express syntax:

//synopsys attribute <name> <value>

Example:

BUFG CLOCKB (.I(oscout), .O(clkint)); //synopsys

attribute LOC "BR"

or

RAMB4_S4 U1 (.WE(w), .EN(en), .RST(r), .CLK(ck)

.ADDR(ad), .DI(di), .DO(do)); /* synopsys 
attribute INIT_00

"AAAAAAAAAAAAAAAABBBBBBBBBBBBBBBB" INIT_09 

"99999988888888887777777776666666" */

• Atrribute use in Leonardo Spectrum syntax:

//exemplar attribute  <object_name> <attribute_name> 
<attribute_value>

Examples:

RAMB4_S8 U0 (.WE(WE), .EN(1’b1), .RST(1’b0), 

.CLK(CLK),.ADDR(ADDR), .DI(DIN), .DO(DOUT));

//exemplar attribute U0 INIT_00 

1F1E1D1C1B1A191817161514131211100F0E0D0C0B0A0908
070605040

3020100

• Attribute use in Synplfy syntax:

// synthesis  <directive>

// synthesis  <attribute_name>=<value>
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or 

/* synthesis  <directive> */

/* synthesis  <attribute_name>=<value> */

Examples :

FDCE u2(.D (q1),.CE(ce),.C (clk),.CLR (rst),

.Q (qo)) /* synthesis rloc="r1c0.s0" */;

or

module BUFG(I,O); // synthesis black_box 

input I; 

output O;

endmodule

Understanding Synthesis Tools Naming Convention
Some net and logic names are preserved and some are altered by the 
synthesis tools during the synthesis process. This may result in a 
netlist that is hard to read or trace back to the original code.

This section will discuss how different synthesis tools generate names 
from your VHDL/Verilog codes. This will help you corollate nets and 
component names appearing in the EDIF netlist. It will also help 
corollate nets and names during your after-synthesis design view of 
the VHDL/Verilog source.

Note The naming conventions below apply to inferred logic. The 
name of instantiated components and their connections, and port 
names are preserved during synthesis.

• FPGA Express Naming Styles:

Register instance: <output_signal>_reg

Output of register:  <output_signal>_reg

Output of clock buffer:  <signal>_BUFGed

Output of tristate:  <signal>_tri

Port names:  preserved

Hierarchy notation: ‘_’, e.g., <hier_1>_<hier_2>
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Other inferred component and net names are machine generated.

• Leonardo Spectrum Naming Styles:

Register instance: reg_<output signal>

Output of register: preserved, except if the output is also external 
port of the design. In this case, it will be <signal>_dup0

Clock buffer/ibuf: <driver_signal>_ibuf

Output of clock buffer/ibuf: <driver_signal>_int

Tristate instance: tri_<output_signal>

Driver and output of tristate: preserved

Hierarchy notation: ‘_’

Other names are machine generated.

• Synplify Naming Styles:

Register  instance: output_signal

Output of register: output_signal

Clock buffer instance/ibuf: <portname>_ibuf

Output of clock buffer: <clkname>_c

Output/inout tristate instance: <output_signal>_obuft or 

<output_signal>_iobuf

Internal tristate instance: un<n>_<signal_name>_tb, when <n> is 
any number or <signal_name>_tb

Output of tristate driving an output/inout : name of port

Output of internal tristate: <signal_name>_tb_<number>

RAM instance and its output

• Dual Port RAM:

ram instance: <memory_name>_<n>.I_<n>

ram output : DPO-><memory_name>_<n>.rout_bus, SPO->

<memory_name>_<n>.wout_bus

• Single Port RAM:

ram instance: <memory_name>.I_<n>
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ram output: <memory_name>

Single Port Block RAM:

ram_instance: <memory_name>.I_<n>

ram output: <memory_name>

• Dual Port Block RAM:

ram_instance: <memory_name>.I_<n>

ram output: <memory_name>[the output that is used]

• Hierarchy delimiter is usually a ".", however when 
syn_hier="hard", the hierarchy delimiter in the edif is "/"

Other names are machine generated.

Specifying Constants
Use constants in your design to substitute numbers to more mean-
ingful names. The use of constants help make a design more readable 
and portable.

Using Constants to Specify OPCODE Functions 
(VHDL)

Do not use variables for constants in your code. Define constant 
numeric values in your code as constants and use them by name. This 
coding convention allows you to easily determine if several occur-
rences of the same literal value have the same meaning. In some 
simulators, using constants allows greater optimization. In the 
following code example, the OPCODE values are declared as 
constants, and the constant names refer to their function. This 
method produces readable code that may be easier to modify.

constant ZERO   : STD_LOGIC_VECTOR (1 downto 0):=“00”;
constant A_AND_B: STD_LOGIC_VECTOR (1 downto 0):=“01”;
constant A_OR_B : STD_LOGIC_VECTOR (1 downto 0):=“10”;
constant ONE    : STD_LOGIC_VECTOR (1 downto 0):=“11”;

process (OPCODE, A, B)
begin  

if    (OPCODE = A_AND_B)then OP_OUT <= A and B;  
elsif (OPCODE = A_OR_B) then OP_OUT <= A or B;  



Synthesis and Simulation Design Guide

3-12 Xilinx Development System

elsif    (OPCODE = ONE) then OP_OUT <= ‘1’; 
else                         OP_OUT <= ‘0’;  

end if;
end process;

Using Parameters to Specify OPCODE Functions 
(Verilog)

You can specify a constant value in Verilog using the parameter 
special data type, as shown in the following examples. The first 
example includes a definition of OPCODE constants as shown in the 
previous VHDL example. The second example shows how to use a 
parameter statement to define module bus widths.

• Example 1

//Using parameters for OPCODE functions

parameter ZERO = 2’b00;

parameter A_AND_B = 2’b01;

parameter A_OR_B = 2’b10;

parameter ONE = 2’b11;

always @ (OPCODE or A or B)

begin 

if (OPCODE==‘ZERO)    OP_OUT=1’b0;

else if(OPCODE==‘A_AND_B) OP_OUT=A&B;

else if(OPCODE==‘A_OR_B)  OP_OUT=A|B;

else                     OP_OUT=1’b1;

end

• Example 2

//Using a parameter for Bus Size

parameter BUS_SIZE = 8;

output [‘BUS_SIZE-1:0] OUT;



General HDL Coding Styles

Synthesis and Simulation Design Guide 3-13

input [‘BUS_SIZE-1:0] X,Y;

Choosing Data Type (VHDL only)
Use the Std_logic (IEEE 1164) standards for hardware descriptions 
when coding your design. These standards are recommended for the 
following reasons.

• Applies as a wide range of state values—It has nine different values 
that represent most of the states found in digital circuits.

• Automatically initializes to an unknown value—Automatic initializa-
tion is important for HDL designs because it forces you to 
initialize your design to a known state, which is similar to what is 
required in a schematic design. Do not override this feature by 
initializing signals and variables to a known value when they are 
declared because the result may be a gate-level circuit that cannot 
be initialized to a known value.

• Easily performs board-level simulation—For example, if you use an 
integer type for ports for one circuit and standard logic for ports 
for another circuit, your design can be synthesized; however, you 
will need to perform time-consuming type conversions for a 
board-level simulation.

The back-annotated netlist from Xilinx implementation is in 
Std_logic. If you do not use Std_logic type to drive your top-level 
entity in the testbench, you cannot reuse your functional testbench 
for timing simulation. Some synthesis tools can create a wrapper for 
type conversion between the two top-level entities; however, this is 
not recommended by Xilinx.

Declaring Ports
Xilinx recommends that you use the Std_logic package for all entity 
port declarations. This package makes it easier to integrate the 
synthesized netlist back into the design hierarchy without requiring 
conversion functions for the ports. A VHDL example using the 
Std_logic package for port declarations is shown below.

Entity alu is  
 port( A : in STD_LOGIC_VECTOR(3 downto 0);        
 B : in STD_LOGIC_VECTOR(3 downto 0);        
 CLK : in STD_LOGIC;        
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 C : out STD_LOGIC_VECTOR(3 downto 0) );
end alu;

Since the downto convention for vectors is supported in a back-anno-
tated netlist, the RTL and synthesized netlists should use the same 
convention if you are using the same test bench. This is necessary 
because of the loss of directionality when your design is synthesized 
to an EDIF or XNF netlist.

Minimizing the Use of Ports Declared as Buffers
Do not use buffers when a signal is used internally and as an output 
port. In the following VHDL example, signal C is used internally and 
as an output port.

Entity alu is   
port( A : in STD_LOGIC_VECTOR(3 downto 0);        

 B : in STD_LOGIC_VECTOR(3 downto 0);        
 CLK : in STD_LOGIC;        
 C : buffer STD_LOGIC_VECTOR(3 downto 0) );
end alu;
architecture BEHAVIORAL of alu is
begin  
process begin     
 if (CLK'event and CLK='1') then        
 C <= UNSIGNED(A) + UNSIGNED(B) UNSIGNED(C);     
 end if;  
 end process;
end BEHAVIORAL;

Because signal C is used both internally and as an output port, every 
level of hierarchy in your design that connects to port C must be 
declared as a buffer. However, buffer types are not commonly used in 
VHDL designs because they can cause problems during synthesis. To 
reduce the amount of buffer coding in hierarchical designs, you can 
insert a dummy signal and declare port C as an output, as shown in 
the following VHDL example. 

Entity alu is  
 port( A : in STD_LOGIC_VECTOR(3 downto 0);        
 B : in STD_LOGIC_VECTOR(3 downto 0);        
 CLK : in STD_LOGIC;        
 C : out STD_LOGIC_VECTOR(3 downto 0));   

end alu;
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architecture BEHAVIORAL of alu is
-- dummy signal
signal C_INT : STD_LOGIC_VECTOR(3 downto 0);
begin  
 C <= C_INT;   

process begin     
 if (CLK'event and CLK='1') then      

C_INT < =UNSIGNED(A) + UNSIGNED(B) +         
 UNSIGNED(C_INT);
     
 end if;  
 end process;
end BEHAVIORAL;

Comparing Signals and Variables (VHDL only)
You can use signals and variables in your designs. Signals are similar 
to hardware and are not updated until the end of a process. Variables 
are immediately updated and, as a result, can affect the functionality 
of your design. Xilinx recommends using signals for hardware 
descriptions; however, variables allow quick simulation. 

The following VHDL examples show a synthesized design that uses 
signals and variables, respectively. These examples are shown imple-
mented with gates in the “Gate Implementation of XOR_VAR” and 
“Gate Implementation of XOR_SIG” figures.

Note If you assign several values to a signal in one process, only the 
final value is used. When you assign a value to a variable, the assign-
ment takes place immediately. A variable maintains its value until 
you specify a new value.

Using Signals (VHDL)

-- XOR_SIG.VHD
-- May 1997
Library IEEE;
use IEEE.std_logic_1164.all;
entity xor_sig is
   
 port (A, B, C: in  STD_LOGIC;
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  X, Y: out STD_LOGIC);
end xor_sig;

architecture SIG_ARCH of xor_sig is
 signal D: STD_LOGIC;
begin

SIG:process (A,B,C)
begin

 D <= A; -- ignored !!
X <= C xor D;
D <= B; -- overrides !!
Y <= C xor D;

end process;
end SIG_ARCH;

Figure 3-1  Gate implementation of XOR_SIG

Using Variables (VHDL)

-- XOR_VAR.VHD
-- May 1997

Library IEEE;

XOR2
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OBUF Y
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use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity xor_var is
 port (A, B, C: in  STD_LOGIC;
 X, Y:    out STD_LOGIC);
end xor_var;

architecture VAR_ARCH of xor_var is
begin
    

VAR:process (A,B,C)
 variable D: STD_LOGIC;   
 begin

D := A;
 X <= C xor D;
 D := B;
 Y <= C xor D;

end process;
end VAR_ARCH;

Figure 3-2  Gate Implementation of XOR_VAR

Coding for Synthesis
VHDL and Verilog are hardware description and simulation 
languages that were not originally intended as inputs to synthesis. 
Therefore, many hardware description and simulation constructs are 
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not supported by synthesis tools. In addition, the various synthesis 
tools use different subsets of VHDL and Verilog. VHDL and Verilog 
semantics are well defined for design simulation. The synthesis tools 
must adhere to these semantics to ensure that designs simulate the 
same way before and after synthesis. Follow the guidelines presented 
below to create code that simulates the same way before and after 
synthesis.

Omit the Wait for XX ns Statement
Do not use the Wait for XX ns statement in your code. XX specifies the 
number of nanoseconds that must pass before a condition is 
executed. This statement does not synthesize to a component. In 
designs that include this statement, the functionality of the simulated 
design does not match the functionality of the synthesized design. 
VHDL and Verilog examples of the Wait for XX ns statement are as 
follows.

• VHDL

wait for XX ns;

• Verilog

#XX;

Omit the ...After XX ns or Delay Statement
Do not use the ...After XX ns statement in your VHDL code or the 
Delay assignment in your Verilog code. Examples of these statements 
are as follows.

• VHDL

(Q <=0 after XX ns)

• Verilog

assign #XX Q=0;

XX specifies the number of nanoseconds that must pass before a 
condition is executed. This statement is usually ignored by the 
synthesis tool. In this case, the functionality of the simulated design 
does not match the functionality of the synthesized design.
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Omit Initial Values
Do not assign signals and variables initial values because initial 
values are ignored by most synthesis tools. The functionality of the 
simulated design may not match the functionality of the synthesized 
design.

For example, do not use initialization statements like the following 
VHDL and Verilog statements.

• VHDL

variable SUM:INTEGER:=0;

• Verilog 

wire SUM=1’b0;

Order and Group Arithmetic Functions
The ordering and grouping of arithmetic functions can influence 
design performance. For example, the following two VHDL state-
ments are not necessarily equivalent.

ADD <= A1 + A2 + A3 + A4;
ADD <= (A1 + A2) + (A3 + A4);

For Verilog, the following two statements are not necessarily equiva-
lent.

ADD = A1 + A2 + A3 + A4;
ADD = (A1 + A2) + (A3 + A4);

The first statement cascades three adders in series. The second state-
ment creates two adders in parallel: A1 + A2 and A3 + A4. In the 
second statement, the two additions are evaluated in parallel and the 
results are combined with a third adder. RTL simulation results are 
the same for both statements, however, the second statement results 
in a faster circuit after synthesis (depending on the bit width of the 
input signals).

Although the second statement generally results in a faster circuit, in 
some cases, you may want to use the first statement. For example, if 
the A4 signal reaches the adder later than the other signals, the first 
statement produces a faster implementation because the cascaded 
structure creates fewer logic levels for A4. This structure allows A4 to 
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catch up to the other signals. In this case, A1 is the fastest signal 
followed by A2 and A3; A4 is the slowest signal.

Most synthesis tools can balance or restructure the arithmetic oper-
ator tree if timing constraints require it. However, Xilinx recommends 
that you code your design for your selected structure.

Comparing If Statement and Case Statement
The If statement generally produces priority-encoded logic and the 
Case statement generally creates balanced logic. An If statement can 
contain a set of different expressions while a Case statement is evalu-
ated against a common controlling expression. In general, use the 
Case statement for complex decoding and use the If statement for 
speed critical paths. 

Most current synthesis tools can determine if the if-elsif conditions 
are mutually exclusive, and will not create extra logic to build the 
priority tree. The following are points to consider when writing if 
statements.

• Make sure that all outputs are defined in all branches of an if 
statement. If not it can creates latches or long equations on the CE 
signal. A good way to prevent this is to have default values for all 
outputs before the iff statements.

• Limiting the number of input signals into an if statement can 
reduce the number of logic levels. If there are a large number of 
input signals, see if some of them can be pre-decoded and regis-
tered before the if statement.

• Avoid bringing the dataflow into a complex if statement. Only 
control signals should be generated in complex if-else statements.

The following examples use an If construct in a 4–to–1 multiplexer 
design. The “If_Ex Implementation” figure shows the implementa-
tion of these designs. 

4–to–1 Multiplexer Design with If Construct

• VHDL Example

-- IF_EX.VHD

-- May 1997
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library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

entity if_ex is

 port (SEL: in STD_LOGIC_VECTOR(1 downto 0);   

 A,B,C,D: in STD_LOGIC;  

 MUX_OUT: out STD_LOGIC);

end if_ex;

architecture BEHAV of if_ex is

begin

    IF_PRO: process (SEL,A,B,C,D) 

    begin

        if    (SEL=”00”) then MUX_OUT <= A;

        elsif (SEL=”01”) then MUX_OUT <= B; 

       elsif (SEL=”10”) then MUX_OUT <= C;  

      elsif (SEL=”11”) then MUX_OUT <= D;  

      else                  MUX_OUT <= '0'; 

   end if;

end process; --END IF_PRO

end BEHAV;

• Verilog Example

//////////////////////////////////////////////
// IF_EX.V                                  //
// Example of a If statement showing a      //
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// mux created using priority encoded logic //
// HDL Synthesis Design Guide for FPGAs     //
// November 1997                            //
//////////////////////////////////////////////

module if_ex (A, B, C, D, SEL, MUX_OUT);

    input        A, B, C, D;

    input  [1:0] SEL;

    output       MUX_OUT;

    reg          MUX_OUT;

    always @ (A or B or C or D or SEL)

    begin

 if (SEL == 2'b00)

 MUX_OUT = A; 

 else if (SEL == 2'b01)  

 MUX_OUT = B;  

 else if (SEL == 2'b10)   

 MUX_OUT = C;  

 else if (SEL == 2'b11)  

 MUX_OUT = D;  

 else 

MUX_OUT = 0;

    end

endmodule
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Figure 3-3  If_Ex Implementation 

The following VHDL and Verilog examples use a Case construct 
for the same multiplexer. The “Case_Ex Implementation” figure 
shows the implementation of these designs. In these examples, 
the Case implementation requires only one XC4000 CLB while 
the If construct requires two CLBs in some synthesis tools. In this 
case, design the multiplexer using the Case construct because 
fewer resources are used and the delay path is shorter.

When writing case statements, make sure all outputs are defined 
in all branches

4–to–1 Multiplexer Design with Case Construct

• VHDL Example

-- CASE_EX.VHD

-- May 1997
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use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

entity case_ex is

    port (SEL: in STD_LOGIC_VECTOR(1 downto 0);

          A,B,C,D: in STD_LOGIC;

          MUX_OUT: out STD_LOGIC);

end case_ex;

architecture BEHAV of case_ex is

begin

    CASE_PRO: process (SEL,A,B,C,D)   

 begin

        case SEL is

            when “00” =>MUX_OUT <= A;

            when “01” =>  MUX_OUT <= B;

            when “10” =>  MUX_OUT <= C;

            when “11” =>  MUX_OUT <= D;

            when others=>  MUX_OUT <= '0';

        end case;

    end process; --End CASE_PRO

end BEHAV;

• Verilog Example

/////////////////////////////////////////
// CASE_EX.V                            //
// Example of a Case statement showing  //
// A mux created using parallel logic   //
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// HDL Synthesis Design Guide for FPGAs //
// November 1997 //
//////////////////////////////////////////

module case_ex (A, B, C, D, SEL, MUX_OUT);

input        A, B, C, D;

input  [1:0] SEL;

output       MUX_OUT;

reg          MUX_OUT;

 

   always @ (A or B or C or D or SEL) 

 begin

 case (SEL) 

       2'b00:   

          MUX_OUT = A;   

 2'b01:    

         MUX_OUT = B;     

 2'b10:  

 MUX_OUT = C;   

 2'b11:     

 MUX_OUT = D;     

 default:      

 MUX_OUT = 0;  

   endcase  

   end

endmodule
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Figure 3-4  Case_Ex Implementation

Implementing Latches and Registers
Synthesizers infer latches from incomplete conditional expressions, 
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atic for FPGA designs because not all FPGA devices have latches 
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have registers that can be configured to act as latches. For these 
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gates in the CLB function generators. For Spartan device, if the latch 
is directly connected to an input port, it is implemented in an IOB as a 
dedicated input latch. For example, the D latch described in the 
following VHDL and Verilog designs is implemented with one func-
tion generator as shown in the “D Latch Implemented with Gates” 
figure.
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• VHDL Example

-- D_LATCH.VHD

-- May 1997

library IEEE;

use IEEE.std_logic_1164.all;

entity d_latch is

    port (GATE, DATA: in STD_LOGIC;

  Q: out STD_LOGIC);

end d_latch;

architecture BEHAV of d_latch is

begin

LATCH: process (GATE, DATA)

    begin 

   if (GATE = '1') then

      Q <= DATA;

    end if;

end process; -- end LATCH

end BEHAV;

• Verilog Example

/* Transparent High Latch

 * D_LATCH.V

 * May 1997

*/
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module d_latch (GATE, DATA, Q);

input GATE;

input DATA;

output Q;

reg Q;

 

   always @ (GATE or DATA) 

   begin 

          if (GATE == 1'b1) 

              Q <= DATA; 

   end  // End Latch

endmodule
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Figure 3-5  D Latch Implemented with Gates

In this example, a combinatorial loop results in a hold-time 
requirement on DATA with respect to GATE. Since most 
synthesis tools do not process hold-time requirements because of 
the uncertainty of routing delays, Xilinx does not recommend 
implementing latches with combinatorial feedback loops. A 
recommended method for implementing latches is described in 
this section. 

To eliminate this possible problem, use D registers instead of 
latches. For example, to convert the D latch to a D register, use an 
Else statement or modify the code to resemble the following 
example.

Converting a D Latch to a D Register

• VHDL Example

-- D_REGISTER.VHD

-- May 1997
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-- Changing Latch into a D-Register 

library IEEE;

use IEEE.std_logic_1164.all;

entity d_register is

    port (CLK, DATA: in STD_LOGIC;

          Q: out STD_LOGIC);

end d_register;

architecture BEHAV of d_register is

begin

MY_D_REG: process (CLK, DATA) 

   begin 

   if (CLK'event and CLK='1') then

       Q <= DATA;

    end if;

    end process; --End MY_D_REG

end BEHAV;

• Verilog Example

/* Changing Latch into a D-Register 

 * D_REGISTER.V

 * May 1997                           */



General HDL Coding Styles

Synthesis and Simulation Design Guide 3-31

module d_register (CLK, DATA, Q);

input CLK;

input DATA;

output Q;

reg Q;

    always @ (posedge CLK)

    begin: My_D_Reg

     Q <= DATA;

    end 

endmodule

With some synthesis tools you can determine the number of 
latches that are implemented in your design. Check the manuals 
that came with your software for information on determining the 
number of latches in your design.

You should convert all If statements without corresponding Else 
statements and without a clock edge to registers. Use the recom-
mended register coding styles in the synthesis tool documenta-
tion to complete this conversion. 

In XC4000E devices, you can implement a D latch by instanti-
ating a RAM 16x1 primitive, as illustrated in the following figure.
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Figure 3-6  D Latch Implemented by Instantiating a RAM
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The following table provides a comparison of area and speed for 
a D latch implemented with gates, a 16x1 RAM primitive, and a 
D flip-flop.

Resource Sharing
Resource sharing is an optimization technique that uses a single func-
tional block (such as an adder or comparator) to implement several 
operators in the HDL code. Use resource sharing to improve design 
performance by reducing the gate count and the routing congestion. 
If you do not use resource sharing, each HDL operation is built with 

Table 3-1  D Latch Implementation Comparison

Comparison

Spartan,
CLB Latch 
Implemented 
with Gates

XC4000XLA, 
Spartan-XL, 
Spartan-II, 
Virtex, 
Virtex-E CLB 
Latch

All Spartan, 
XC4000 and 
Virtex Input 
Latch

XC4000XLA 
Instantiated 
RAM Latch

All
Families 
D Flip 
Flop

Advantages RTL HDL 
infers latch

RTL HDL 
infers latch, 
no hold times

RTL HDL 
infers latch, 
no hold 
times (if not 
specifying 
NODELAY, 
saves CLB 
resources)

No hold time 
or combina-
torial loops.

No hold 
time or 
combina-
torial loop. 
FPGAs are 
register 
abundant.

Disadvantages Feedback loop 
results in hold 
time require-
ment, not 
suggested

 Not available 
in Spartan

Input to 
latch must 
directly 
connect to 
port

Must be 
instantiated, 
uses logic 
resources

Requires 
change in 
code to 
convert 
latch to 
register

Area, see foot-
note “a”

1 Function 
Generator

1 CLB 
Register/
Latch

1 IOB 
Register/
Latch

1 Function 
Generator

1 CLB 
Register/
Latch

a. Area is the number of function generators and registers required. XC4000XLA and 
Spartan/Spartan-XL CLBs have two function generators and two registers. For Spartan-
II and Virtex/Virtex-E devices, replace CLB with slice.
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separate circuitry. However, you may want to disable resource 
sharing for speed critical paths in your design.

The following operators can be shared either with instances of the 
same operator or with an operator on the same line.

*

+ –

> >= < <=

For example, a + operator can be shared with instances of other + 
operators or with – operators. A * operator can be shared only with 
other * operators.

You can implement arithmetic functions (+, –, magnitude compara-
tors) with gates or with your synthesis tool’s module library. The 
library functions use modules that take advantage of the carry logic 
in XC4000 family, Spartan family, and Virtex family CLBs/slices. 
Carry logic and its dedicated routing increase the speed of arithmetic 
functions that are larger than 4-bits. To increase speed, use the 
module library if your design contains arithmetic functions that are 
larger than 4-bits or if your design contains only one arithmetic func-
tion. Resource sharing of the module library automatically occurs in 
most synthesis tools if the arithmetic functions are in the same 
process.

Resource sharing adds additional logic levels to multiplex the inputs 
to implement more than one function. Therefore, you may not want 
to use it for arithmetic functions that are part of your design’s time 
critical path. 

Since resource sharing allows you to reduce the number of design 
resources, the device area required for your design is also decreased. 
The area that is used for a shared resource depends on the type and 
bit width of the shared operation. You should create a shared 
resource to accommodate the largest bit width and to perform all 
operations.

If you use resource sharing in your designs, you may want to use 
multiplexers to transfer values from different sources to a common 
resource input. In designs that have shared operations with the same 
output target, the number of multiplexers is reduced as illustrated in 
the following VHDL and Verilog examples. The HDL example is 
shown implemented with gates in the Figure 3-7.
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• VHDL Example

-- RES_SHARING.VHD
-- May 1997

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
use IEEE.std_logic_arith.all;

entity res_sharing is
    port (A1,B1,C1,D1: in STD_LOGIC_VECTOR (7 downto 0);
          COND_1: in STD_LOGIC;
          Z1: out STD_LOGIC_VECTOR (7 downto 0));
end res_sharing;

architecture BEHAV of res_sharing is
begin
P1: process (A1,B1,C1,D1,COND_1)   
    begin
       if (COND_1='1') then
           Z1 <= A1 + B1;
       else
           Z1 <= C1 + D1;
       end if;
    end process; -- end P1

end BEHAV;

• Verilog Example

/* Resource Sharing Example
 * RES_SHARING.V
 * May 1997                                   
*/

module res_sharing (A1, B1, C1, D1, COND_1, Z1);

input       COND_1;
input  [7:0] A1, B1, C1, D1;
output [7:0] Z1;

reg [7:0] Z1;
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    always @(A1 or B1 or C1 or D1 or COND_1)   
    begin
           if (COND_1)
               Z1 <= A1 + B1;
           else
              Z1 <= C1 + D1;
    end 

endmodule

If you disable resource sharing or if you code the design with the 
adders in separate processes, the design is implemented using 
two separate modules as shown in the “Implementation without 
Resource Sharing” figure. 

Figure 3-7  Implementation of Resource Sharing
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Figure 3-8  Implementation without Resource Sharing

Some synthesis tools generate modules from special Xilinx 
module generation algorithms. Generally, this module generation 
is used for operators such as adders, subtracters, incrementers, 
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comparison of the number of CLBs used and the delay for the 
VHDL and Verilog designs with and without resource sharing.

Note Refer to the appropriate reference manual for more infor-
mation on resource sharing.

Reducing Gates
Use the generated module components to reduce the number of gates 
in your designs. The module generation algorithms use Xilinx carry 
logic to reduce function generator logic and improve routing and 
speed performance. Further gate reduction can occur with synthesis 
tools that recognize the use of constants with the modules.

Using Preset Pin or Clear Pin
Xilinx FPGAs consist of CLBs that contain function generators and 
flip-flops. The XC4000 family and Spartan family flip-flops have a 
dedicated clock enable pin and either a clear (asynchronous reset) pin 
or a preset (asynchronous set) pin. All synchronous preset or clear 
functions can be implemented with combinatorial logic in the func-
tion generators. 

Table 3-2  Resource Sharing/No Resource Sharing Comparison 
for XC4005EPC84-2

Comparison

Resource 
Sharing with 
Xilinx Module 
Generation

No Resource 
Sharing with 
Xilinx Module 
Generation

Resource 
Sharing 
without Xilinx 
Module 
Generation

No Resource 
Sharing 
without Xilinx 
Module 
Generation

F/G Functions 24 24 19 28

H Function Gener-
ators

0 0 11 8

Fast Carry Logic 
CLBs

5 10 0 0

Longest Delay 27.878 ns 23.761 ns 47.010 ns 33.386 ns

Advantages/
Disadvantages

Potential for 
area reduction

Potential for 
decreased crit-
ical path delay

No carry logic 
increases path 
delays

No carry logic 
increases CLB 
count
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You can configure XC4000XLA and Spartan/Spartan-XL CLB regis-
ters to have either a preset pin or a clear pin. Spartan-II and Virtex/
Virtex-E registers can be configured to have either or both preset and 
clear pins. 

For XC4000XLA and Spartan/Spartan-XL family you must modify 
any process that requires both pins to use only one pin or you must 
use three registers and a mux to implement the process. In this 
devices, if a register is described with an asynchronous set and reset, 
your synthesis tool may issue an error message similar to the 
following during the compilation of your design.

Warning: Target library contains no replacement for 
register ‘Q_reg’ (**FFGEN**) . (TRANS-4)

Warning: Cell ‘Q_reg’ (**FFGEN**) not translated. 
(TRANS-1)

During the implementation of the synthesized netlist, NGDBuild 
issues the following error message.

ERROR:basnu – logical block “Q_reg” of type 
“_FFGEN_” is unexpanded.

An XC4000 CLB and a Virtex slice is shown in the following figure.
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Figure 3-9  XC4000 Configurable Logic Block
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Figure 3-10  Detailed View of Virtex Slice
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Figure 3-11  Virtex-II Slice
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• VHDL Example
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-- May 1997

-- Example of Implementing Registers

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

entity ff_example is

 port ( RESET, CLOCK, ENABLE: in STD_LOGIC;

 D_IN: in STD_LOGIC_VECTOR (7 downto 0);

 A_Q_OUT: out STD_LOGIC_VECTOR (7 downto 0);

 B_Q_OUT: out STD_LOGIC_VECTOR (7 downto 0);

 C_Q_OUT: out STD_LOGIC_VECTOR (7 downto 0);

 D_Q_OUT: out STD_LOGIC_VECTOR (7 downto 0));

end ff_example;

architecture BEHAV of ff_example is

begin

    -- D flip-flop

    FF: process (CLOCK)

    begin

        if (CLOCK'event and CLOCK='1') then

            A_Q_OUT <= D_IN;

        end if;

    end process; -- End FF
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    -- Flip-flop with asynchronous reset

    FF_ASYNC_RESET: process (RESET, CLOCK)

    begin 

        if (RESET = '1') then

            B_Q_OUT <= “00000000”;

        elsif (CLOCK'event and CLOCK='1') then

            B_Q_OUT <= D_IN;

        end if;

    end process; -- End FF_ASYNC_RESET

    -- Flip-flop with asynchronous set

    FF_ASYNC_SET: process (RESET, CLOCK) 

    begin

        if (RESET = '1') then

            C_Q_OUT <= “11111111”;

        elsif (CLOCK'event and CLOCK = '1') then

            C_Q_OUT <= D_IN;

        end if;

    end process; -- End FF_ASYNC_SET

    -- Flip-flop with asynchronous reset and 
clock enable

    FF_CLOCK_ENABLE: process (ENABLE, RESET, 
CLOCK) 

   begin

        if (RESET = '1') then

           D_Q_OUT <= “00000000”;

        elsif (CLOCK'event and CLOCK='1') then

           if (ENABLE='1') then
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               D_Q_OUT <= D_IN;

           end if;

       end if;

   end process; -- End FF_CLOCK_ENABLE

end BEHAV;

• Verilog Example

/* Example of Implementing Registers
 * FF_EXAMPLE.V
 * May 1997
*/

module ff_example (RESET, CLOCK, ENABLE, D_IN, 
 A_Q_OUT, B_Q_OUT, C_Q_OUT, D_Q_OUT);

input RESET, CLOCK, ENABLE;
input       [7:0] D_IN;
output      [7:0] A_Q_OUT;
output      [7:0] B_Q_OUT;
output      [7:0] C_Q_OUT;
output      [7:0] D_Q_OUT;

reg         [7:0] A_Q_OUT;
reg         [7:0] B_Q_OUT;
reg         [7:0] C_Q_OUT;
reg         [7:0] D_Q_OUT;

    // D flip-flop
    always @(posedge CLOCK)
    begin
        A_Q_OUT <= D_IN;
    end

    // Flip-flop with asynchronous reset
    always @(posedge RESET or posedge CLOCK)
    begin
        if (RESET)
            B_Q_OUT <= 8'b00000000;
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            else
              B_Q_OUT <= D_IN;
    end

    // Flip-flop with asynchronous set
    always @(posedge RESET or posedge CLOCK)
    begin
        if (RESET)
            C_Q_OUT <= 8'b11111111;
            else
                C_Q_OUT <= D_IN;
    end

//Flip-flop with asynchronous reset & clock enable always 
// @(posedge RESET or posedge CLOCK)
    begin
           if (RESET)
                 D_Q_OUT <= 8'b00000000;
            else if (ENABLE)
                 D_Q_OUT <= D_IN;
    end

endmodule

• VHDL Example

The following VHDL and Verilog designs show how to describe a 
register with a clock enable and both clear and preset pins for 
Spartan-II and Virtex/Virtex-E devices.

library IEEE;

use IEEE.std_logic_1164.all;

entity setreset is

port (CLK: in std_logic;

DIN1, DIN2: in STD_LOGIC;

SET, RESET: in STD_LOGIC;

DOUT1, DOUT2: out STD_LOGIC);

end setreset ;

architecture RTL of setreset is
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begin

set_then_reset: process (CLK, SET, RESET)

begin

if (SET = ’1’) then

DOUT1 <= ’1’;

elsif (RESET = ’1’) then

DOUT1 <= ’0’;

elsif ( CLK’event and CLK =’1’) then

DOUT1  <= DIN1;

end if;

end process;

reset_then_set: process (CLK, SET, RESET)

begin

if (RESET = ’1’) then

DOUT2 <= ’0’;

elsif (SET = ’1’) then

DOUT2 <= ’1’;

elsif ( CLK’event and CLK =’1’) then

DOUT2  <= DIN2;

end if;

end process;

end RTL;

• Verilog Example

module setreset (CLK, DIN1, DIN2, SET, RESET,
DOUT1, DOUT2);

input CLK;
input DIN1, DIN2;
input SET, RESET;
output DOUT1, DOUT2;



Synthesis and Simulation Design Guide

3-48 Xilinx Development System

reg DOUT1, DOUT2;
always @ (posedge SET or posedge RESET or posedge CLK)

begin: set_then_reset
if (SET)

DOUT1 <= 1’b1;
else if (RESET)

DOUT1 <= 1’b0;
else

DOUT1  <= DIN1;
end

always @ (posedge RESET or posedge SET or posedge CLK)
begin: reset_then_set

if (RESET)
DOUT2 <= 1’b0;

else if (SET)
DOUT2 <= 1’b1;

else
DOUT2  <= DIN2;

end
endmodule

Using Clock Enable Pin Instead of Gated Clocks
Use the CLB clock enable pin instead of gated clocks in your designs. 
Gated clocks can introduce glitches, increased clock delay, clock skew, 
and other undesirable effects. The first two examples in this section 
(VHDL and Verilog) illustrate a design that uses a gated clock. The 
Figure 3-12 shows this design implemented with gates. Following 
these examples are VHDL and Verilog designs that show how you 
can modify the gated clock design to use the clock enable pin of the 
CLB. The Figure 3-13 shows this design implemented with gates.

• VHDL Example

-------------------------------------------

-- GATE_CLOCK.VHD Version 1.1 --

-- Illustrates clock buffer control --

-- Better implementation is to use --

-- clock enable rather than gated clock --

-- May 1997 --
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------------------------------------------

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

entity gate_clock is

    port (IN1,IN2,DATA,CLK,LOAD: in STD_LOGIC;

          OUT1: out STD_LOGIC);

end gate_clock;

architecture BEHAVIORAL of gate_clock is

signal GATECLK: STD_LOGIC;

begin

GATECLK <= (IN1 and IN2 and CLK);

    GATE_PR: process (GATECLK,DATA,LOAD) 

    begin

        if (GATECLK'event and GATECLK='1') then 

           if (LOAD='1') then

                OUT1 <= DATA;

            end if;

        end if;

    end process; --End GATE_PR
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end BEHAVIORAL;

• Verilog Example

/////////////////////////////////////////

// GATE_CLOCK.V Version 1.1 //

// Gated Clock Example //

// Better implementation to use clock //

// enables than gating the clock //

// May 1997 //

/////////////////////////////////////////

module gate_clock(IN1, IN2, DATA, 
CLK,LOAD,OUT1);

input       IN1 ;

input       IN2 ;

input       DATA ;

input       CLK ;

input       LOAD ;

output      OUT1 ;

reg         OUT1 ;

wire GATECLK ;

assign GATECLK = (IN1 & IN2 & CLK);

always @(posedge GATECLK)

begin

   if (LOAD == 1'b1)

      OUT1 = DATA;
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end

endmodule

Figure 3-12  Implementation of Gated Clock

• VHDL Example

-- CLOCK_ENABLE.VHD

-- May 1997

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

entity clock_enable is

    port (IN1,IN2,DATA,CLOCK,LOAD: in STD_LOGIC;

          DOUT: out STD_LOGIC);

end clock_enable;

architecture BEHAV of clock_enable is

signal ENABLE: STD_LOGIC;
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begin

    ENABLE <= IN1 and IN2 and LOAD;

    EN_PR: process (ENABLE,DATA,CLOCK)

    begin

        if (CLOCK'event and CLOCK='1') then

            if (ENABLE='1') then

                DOUT <= DATA;

            end if;

        end if;

    end process; -- End EN_PR

end BEHAV;

• Verilog Example

/* Clock enable example

 * CLOCK_ENABLE.V

 * May 1997                                    

*/

module clock_enable (IN1, IN2, DATA, CLK, LOAD, 
DOUT);

input IN1, IN2, DATA;

input CLK, LOAD;

output DOUT;

wire ENABLE;
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reg DOUT;

assign ENABLE = IN1 & IN2 & LOAD;

    always @(posedge CLK)

    begin 

            if (ENABLE) 

                 DOUT <= DATA;

    end

endmodule

Figure 3-13  Implementation of Clock Enable
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Chapter 4

Architecture Specific HDL Coding Styles for 
XC4000XLA, Spartan, and Spartan-XL 

This chapter includes coding techniques to help you improve 
synthesis results. It includes the following sections.

• “Introduction”

• “Instantiating Components”

• “Using Boundary Scan (JTAG 1149.1)”

• “Using Global Clock Buffers”

• “Using Dedicated Global Set/Reset Resource”

• “Implementing Inputs and Outputs”

• “Encoding State Machines”

• “Implementing Operators and Generate Modules”

• “Implementing Memory”

• “Implementing Multiplexers”

• “Using Pipelining”

• “Design Hierarchy”

• “Incremental Design (ECO)”

Introduction
Xilinx XC4000XLA, Spartan, and Spartan-XL FPGA devices are archi-
tecturally similar. They provide the benefits of custom CMOS VLSI 
and allow you to avoid the initial cost, time delay, and risk of conven-
tional masked gate array devices. In addition to the logic in the CLBs 
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and IOBs, the XC4000XLA family, Spartan, and Spartan-XL FPGAs 
contain the following system-oriented features.

• Global low-skew clock or signal distribution network

• Wide edge decoders (XC4000XLA family only)

• On-chip RAM and ROM

• IEEE 1149.1 — compatible boundary scan logic support

• Flexible I/O with Adjustable Slew-rate Control and Pull-up/
Pull-down Resistors

• 12-mA sink current per output and 24-mA sink per output pair. 

• Dedicated high-speed carry-propagation circuit

You can use these device characteristics to improve resource utili-
zation and enhance the speed of critical paths in your HDL 
designs. The examples in this chapter are provided to help you 
incorporate these system features into your HDL designs. 

Instantiating Components
Xilinx provides a set of libraries that your Synthesis tool can infer 
from your HDL code description. However, architecture specific and 
customized components must be explicitly instantiated as compo-
nents in your design.

Instantiating FPGA Primitives
Architecture specific components are available for instantiation. 
These components are marked as primitive in the “Libraries Guide”. 
Components marked as macro in the “Libraries Guide” should not be 
instantiated in HDL code. 

FPGA primitives can be instantiated in VHDL and Verilog.

• VHDL example (declaring component and port map)

library IEEE;
use IEEE.std_logic_1164.all;
-- Add the following two lines if using Synplify:
-- library xc4000;
-- use xc4000.components.all;
entity flops is port(
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di: in std_logic;
ce : in std_logic;
clk: in std_logic;
qo: out std_logic;
rst: in std_logic);
end flops;
-- remove the following component declaration
-- if using Synplify
architecture inst of flops is
component FDCE port( D: in std_logic;

CE: in std_logic;
C: in std_logic;
CLR: in std_logic;
Q: out std_logic);

end component;

begin
U0 : FDCE port map(D => di,

CE=> ce,
C => clk,
CLR => rst,
Q => qo);

end inst;

Note To use this example in Synplify, you need to add the Xilinx 
primitive library and remove the component declarations as 
noted above.

The XC4000 library contains primitives of XC4000XLA and 
Spartan/Spartan-XL architecture. Replace ‘xc4000’ with the 
appropriate device family if you are targeting other Xilinx FPGA 
architecture

• Verilog Example.

module flops (d1, ce, clk, q1, rst);
input d1;
input ce;
input clk;
output q1;
input rst;

FDCE u1 (.D(d1),
.CE(ce),
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.C (clk),

.CLR(rst),

.Q (q1));
endmodule

Note To use the above example in Synplify, add the following 
line.

‘include “<path_to>/<architecture>.v”

The <architecture>.v files are located in $SYNPLICITY/lib/
xilinx. Where $SYNPLICITY identifies your Synplicity install 
area.

To use the above example with XC4000XLA and Spartan/
Spartan-XL, replace <architecture> with xc4000.v. 

Instantiating CORE Generator Modules
CORE Generator allows you to generate complex ready-to-use func-
tions such as FIFO, Filter, Divider, RAM, and ROM. Core Generator 
will generate EDIF netlist to describe the functionality and a compo-
nent instantiation template for HDL instantiation. For more informa-
tion on the use and functions created by the CORE Generator, see the 
“CORE Generator Guide”.

In VHDL, you can declare the component and port map as shown in 
“Instantiating FPGA Primitives” section above. Synthesis tools will 
assume a black box to components that do not have a VHDL func-
tional description.

In Verilog, an empty module must be declared to get port direction-
ality. In addition, Synplify requires a synthesis syn_black_box direc-
tive declared on a black box as shown in the example below. FPGA 
Express and LeonardoSpectrum will assume a black box to empty 
modules.

Example of Black Box Directive and Empty Module Declaration

module r256x16s (
addr,
di,
clk,
we,
en,
rst,
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do); //synthesis syn_black_box
input [7:0] addr;
input [15:0] di;
input clk;
input we;
input en;
input rst;
output [15:0] do;
endmodule
module top (addrp, dip, clkp, wep, enp, rstp, dop);
input [7:0] addrp;
input [15:0] dip;
input clkp;
input wep;
input enp;
input rstp;
output [15:0] dop;
r256x16s U0(

.addr(addrp),

.di(dip),

.clk(clkp),

.we(wep),

.en(enp),

.rst(rstp),

.do(dop));
endmodule

Using Boundary Scan (JTAG 1149.1)
Note Refer to the Development System Reference Guide for a 
detailed description of the boundary scan capabilities.

XC4000XLA, Spartan, and Virtex FPGAs contain boundary scan facil-
ities that are compatible with IEEE Standard 1149.1.

     Xilinx devices support external (I/O and interconnect) testing and 
have limited support for internal self-test.

You can access the built-in boundary scan logic between power-up 
and the start of configuration. Optionally, the built-in logic is avail-
able after configuration if you specify boundary scan in your design. 
During configuration, a reduced boundary scan capability (sample/
preload and bypass instructions) is available.
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In a configured FPGA device, the boundary scan logic is enabled or 
disabled by a specific set of bits in the configuration bitstream. In the 
XC4000XLA family and Spartan/Spartan-XL families, you must 
instantiate the boundary scan symbol, BSCAN, and the boundary 
scan I/O pins, TDI, TMS, TCK, and TDO to access the boundary scan 
logic after configuration in HDL designs.

Instantiating the Boundary Scan Symbol in 
XC4000XLA and Spartan/Spartan-XL

To incorporate the boundary scan capability in a configured 
XC4000XLA, or Spartan/Spartan-XL FPGA using synthesis tools, you 
must manually instantiate boundary scan library primitives at the 
source code level. These primitives include TDI, TMS, TCK, TDO, 
and BSCAN. The following VHDL and Verilog examples show how 
to instantiate the boundary scan symbol, BSCAN, into your HDL 
code. Note that the boundary scan I/O pins are not declared as ports 
in the HDL code. The schematic for this design is shown in the 
"Bnd_scan Schematic" figure.

The following example will work as is in FPGA Express, Leonar-
doSpectrum, and Synplify provided you load or include the correct 
library. In other synthesis tools, you may be required to assign a Set 
Don't Touch or equivalent attribute to the net connected to the 
TDO pad before using the Insert Pads (or equivalent) and compile 
commands. Otherwise, the TDO pad is removed by the compiler. In 
addition, you do not need IBUFs or OBUFs for the TDI, TMS, TCK, 
and TDO pads. These special pads connect directly to the Xilinx 
boundary scan module.

Boundary Scan VHDL Example

The following is an example of the Boundary Scan in VHDL.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
entity bnd_scan is

port (TDI_P, TMS_P, TCK_P : in STD_LOGIC;
LOAD_P, CE_P, CLOCK_P, RESET_P: in
STD_LOGIC;
DATA_P: in STD_LOGIC_VECTOR(3 downto 0);
TDO_P: out STD_LOGIC;
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COUT_P: out STD_LOGIC_VECTOR(3 downto 0));
end bnd_scan;
architecture XILINX of bnd_scan is

component BSCAN 
port (TDI, TMS, TCK out STD_LOGIC;

TDO: in STD_LOGIC);
end component;
component TDI

port (I: out STD_LOGIC);
end component;
component TMS

port (I: out STD_LOGIC);
end component;
component TCK

port (I: out STD_LOGIC);
end component;
component TDO

port (O: out STD_LOGIC);
end component;
component count4

port (LOAD, CE, CLOCK, RST: in STD_LOGIC;
DATA: in STD_LOGIC_VECTOR (3 downto 0);
COUT: out STD_LOGIC_VECTOR (3 downto 0));

end component;
-- Defining signals to connect BSCAN to Pins --
signal TCK_NET  : STD_LOGIC;
signal TDI_NET  : STD_LOGIC;
signal TMS_NET  : STD_LOGIC;
signal TDO_NET  : STD_LOGIC;

begin
U1: BSCAN port map (TDO = TDO_NET,

TDI = TDI_NET, 
TMS = TMS_NET, 
TCK = TCK_NET);

U2: TDI port map (I =TDI_NET);
U3: TCK port map (I =TCK_NET);
U4: TMS port map (I =TMS_NET);
U5: TDO port map (O =TDO_NET);
U6: count4 port map (LOAD  = LOAD_P, 

CE    = CE_P,
CLOCK = CLOCK_P, 
RST   = RESET_P,
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DATA  = DATA_P, 
COUT  = COUT_P);

end XILINX;

Boundary Scan Verilog Example

The following is an example of the Boundary Scan in Verilog.

//////////////////////////////////////////////////
// BND_SCAN.V //
// Example of instantiating the BSCAN symbol in //
// activating the Boundary Scan circuitry //
// Count4 is an instantiated .v file of a counter //
// September 1997 
///////////////////////////////////////////////////
module bnd_scan (LOAD_P, CLOCK_P, CE_P, RESET_P,
DATA_P, COUT_P);

input         LOAD_P, CLOCK_P, CE_P, RESET_P;
input  [3:0] DATA_P;

output [3:0] COUT_P;
wire         TDI_NET, TMS_NET, TCK_NE, TDO_NET;
BSCAN U1 (.TDO(TDO_NET), .TDI(TDI_NET), 

.TMS(TMS_NET), .TCK(TCK_NET));
TDI U2 (.I(TDI_NET));
TCK U3 (.I(TCK_NET));
TMS U4 (.I(TMS_NET));
TDO U5 (.O(TDO_NET));
count4 U6 (.LOAD(LOAD_P), .CLOCK(CLOCK_P), 

.RST(RESET_P),
.DATA(DATA_P), .COUT(COUT_P));

endmodule
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Figure 4-1  Bnd_scan Schematic

Using Global Clock Buffers
For designs with global clock signals, use global buffers (BUFGs) to 
take advantage of the low-skew, high-drive capabilities of the dedi-
cated global buffer tree of the target device. Your synthesis tool auto-
matically inserts a generic clock buffer whenever an input signal 
drives a clock signal. It may also limit the amount of clock buffer 
insertion in the design. The Xilinx implementation software automat-
ically selects the clock buffer that is appropriate for your specified 
design architecture. If you want to use a specific global buffer, you 
must instantiate it.
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You can instantiate an architecture-specific buffer if you understand 
the architecture and want to specify how the resources should be 
used. Devices can contain Primary Global Buffers (BUFGP), and 
Secondary Global Buffers (BUFGS) that share the same routing 
resources. Devices can also contain Global Low Skew Buffers 
(BUFGLS). Table 4-1 summarizes global buffer resources in 
XC4000XLA, Spartan and Spartan-XL devices.

 In XC4000XLA and Spartan-XL devices, BUFGLS are standard global 
buffers that should be used for most internal clocking or high fanout 
signals that must drive a large portion of the device. There are eight 
BUFGLS buffers available, two in each corner of the device. The 
Global Early Buffers (BUFGEs) in XC4000XLA are designed to 
provide faster clock access, but CLB access is limited to one quadrant 
of the device. I/O access is also limited. Similarly, there are eight 
BUFGEs, two in each corner of the device.

Because BUFGEs and BUFGLS share a single pad, a single IPAD can 
drive a BUFGE, BUFGLS, or both in parallel in a XC4000XLA device. 
The parallel configuration is especially useful for clocking the fast 
capture latches of the device. Since the BUFGE and BUFGLS share a 
common input, they cannot be driven by two different signals.

You can use the following criteria to help select the appropriate 
global buffer for a given design path.

• The simplest option is to use a BUFGLS.

• If you want a faster clock path, use a BUFG. Initially, the software 
will try to use a BUFGLS. If timing requirements are not met, a 
BUFGE is automatically used if possible.

Table 4-1  Global Buffer Resources

Buffer Type XC4000XLA Spartan Spartan-XL

BUFGP N/A 4 N/A

BUFGS N/A 4 N/A

BUFGLS 8 N/A 8

BUFGE 8 N/A N/A

Total 
BUFGs

16 8 8
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• If a single quadrant of the chip is sufficient for the clocked logic, 
and timing requires a faster clock than the BUFGLS, use a 
BUFGE.

Note For more information on using the XC4000XLA device family 
global buffers, refer to the online version of The Programmable Logic 
Data Book or the Xilinx web site at http://www.xilinx.com.

For Spartan devices, you can use a BUFGS to buffer high-fanout, low-
skew signals that are sourced from inside the FPGA. To access the 
secondary global clock buffer for an internal signal, instantiate the 
BUFGS cell. You can use a BUFGP to distribute signals applied to the 
FPGA from an external source. Internal signals can be globally 
distributed with a primary global buffer, however, the signals must 
be driven by an external pin.

Spartan devices have four primary (BUFGP) and four secondary 
(BUFGS) global clock buffers that share four global routing lines, as 
shown in the following figure.

Figure 4-2  Global Buffer Routing Resources (Spartan)

These global routing resources are only available for the eight global 
buffers. The eight global nets run horizontally across the middle of 
the device and can be connected to one of the four vertical longlines 
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that distribute signals to the CLBs in a column. Because of this 
arrangement only four of the eight global signals are available to the 
CLBs in a column. These routing resources are “free” resources 
because they are outside of the normal routing channels. Use these 
resources whenever possible. You may want to use the secondary 
buffers first because they have more flexible routing capabilities.

In Spartan-XL, the four vertical longlines can be driven by any of the 
eight BUFGLS.

You should use the global buffer routing resources primarily for high-
fanout clocks that require low skew, however, you can use them to 
drive certain CLB pins, as shown in the following figure. In addition, 
you can use these routing resources to drive high-fanout clock 
enables, clear lines, and the clock pins (K) of CLBs and IOBs.

In the following figure, the C pins drive the input to the H function 
generator, Direct Data-in, Preset, Clear, or Clock Enable pins. The F 
and G pins are the inputs to the F and G function generators, respec-
tively.

Figure 4-3  Global Longlines Resource CLB Connections

If your design does not contain four high-fanout clocks, use these 
routing resources for signals with the next highest fanout. To reduce 
routing congestion, use the global buffers to route high-fanout 
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signals (not global reset signals). Use global buffer routing resources 
to reduce routing congestion; enable routing of an otherwise 
unroutable design; and ensure that routing resources are available for 
critical nets.

Xilinx recommends that you assign up to four secondary global clock 
buffers to the four signals in your design with the highest fanout 
(such as clock nets, clock enables, and reset signals). Clock signals 
that require low skew have priority over low-fanout non-clock 
signals. You can source the signals with an input buffer or a gate 
internal to the design. Generate internally sourced clock signals with 
a register to avoid unwanted glitches. The synthesis tool can insert 
global clock buffers or you can instantiate them in your HDL code.

Note Use Global Set/Reset resources when applicable. Refer to the 
“Using Dedicated Global Set/Reset Resource” section in this chapter 
for more information.

Inserting Clock Buffers
Many synthesis tools automatically insert a global buffer (BUFG) on 
all input ports that drive a register’s clock pin or a gated clock signal. 
If you have more clock pins than the available BUFGs resources, most 
synthesis tools will allow you to control BUFG insertions manually.

FPGA Express will infer up to four clock buffers for pure clock nets. 
You can also instantiate clock buffers or assign them via the Express 
Constraints Editor.

LeonardoSpectrum will force clock signals to global buffers when the 
resources are available. The best way to control unnecessary BUFG 
insertions is to turn off global buffer insertion, then use the buffer_sig 
attribute to push BUFGs onto the desired signals. By doing this the 
user will not have to instantiate any BUFG components. As long as 
"chip" options is used to optimize the IBUFs, they will be auto-
inserted for the input.

The following is a syntax example of the buffer_sig attribute.

set_attribute -port clk1 -name buffer_sig -value 
BUFG

set_attribute -port clk2 -name buffer_sig -value 
BUFG
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Synplify will assign a BUFG to any input signal that directly drives a 
clock. The maximum number of global buffers is defined as 4. Auto-
insertion of the BUFG for internal clocks occur with a fanout 
threshold of 16 loads. To turn off automatic clock buffers insertion, 
use the syn_noclockbuf attribute. This attribute can be applied to the 
entire module/architecture or a specific signal. To change the 
maximum number of global buffer insertion, you may set an attribute 
in the .sdc file as follows.

define_global_attribute xc_global buffers (8)

Refer to your synthesis tool documentation for a detailed syntax 
information. 

Instantiating Global Clock Buffers
You can instantiate global buffers in your code as described in this 
section.

Instantiating Buffers Driven from a Port

You can instantiate global buffers and connect them to high-fanout 
ports in your code rather than inferring them from a synthesis tool 
script. If you do instantiate global buffers, verify that the Pad param-
eter is not specified for the buffer.

In XC4000XLA, Spartan, and Spartan-XL designs verify that the Pad 
parameter is not specified for the buffer so that IBUF is not inserted.

Instantiating Buffers Driven from Internal Logic

Some synthesis tools require you to instantiate a global buffer in your 
code to use the dedicated routing resource if a high-fanout signal is 
sourced from internal flip-flops or logic (such as a clock divider or 
multiplexed clock), or if a clock is driven from the internal oscillator 
or non-dedicated I/O pin. The following VHDL and Verilog exam-
ples instantiate a BUFGS for an internal multiplexed clock circuit.

Note Synplify will insert a buffer on a CLOCK signal that has a 
fanout of more than 16.

• VHDL Example

-----------------------------------------------
-- CLOCK_MUX.VHD Version 1.1                 --
-- This is an example of an instantiation of --
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-- global buffer (BUFGS) from an internally  --
-- driven signal, a multiplexed clock.       --
-- March 1998                                --
-----------------------------------------------
library IEEE;
use IEEE.std_logic_1164.all;
entity clock_mux is

port (DATA, SEL; in STD_LOGIC;
SLOW_CLOCK, FAST_CLOCK: in  STD_LOGIC;
DOUT: out STD_LOGIC);

end clock_mux;
architecture XILINX of clock_mux is

signal CLOCK:      STD_LOGIC;
signal CLOCK_GBUF: STD_LOGIC;
component BUFGS 
    port (I: in  STD_LOGIC; 
          O: out STD_LOGIC);
end component;
begin

Clock_MUX: process (SEL, FAST_CLOCK, SLOW_CLOCK)
    begin
       if (SEL = '1') then 

CLOCK <= FAST_CLOCK;
        else

CLOCK <= SLOW_CLOCK;
        end if;
    end process;

GBUF_FOR_MUX_CLOCK: BUFGS
   port map (I => CLOCK,
 O => CLOCK_GBUF);

Data_Path: process (CLOCK_GBUF)
 begin
 if (CLOCK_GBUF'event and CLOCK_GBUF='1')then
 DOUT <= DATA;
 end if;
 end process;
end XILINX;
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• Verilog Example

//////////////////////////////////////////////
// CLOCK_MUX.V Version 1.1 //
//This is an example of an instantiation of //
// global buffer (BUFGS) from an internally //
// driven signal, a multipled clock. //
// March 1998 //
//////////////////////////////////////////////

module clock_mux(DATA,SEL,SLOW_CLOCK,FAST_CLOCK,
DOUT);

 input  DATA, SEL;
   input  SLOW_CLOCK, FAST_CLOCK;
   output DOUT;

    reg   CLOCK;
    wire   CLOCK_GBUF;
    reg    DOUT;

always @ (SEL or FAST_CLOCK or SLOW_CLOCK)
begin

        if (SEL == 1'b1)
            CLOCK <= FAST_CLOCK;
        else
            CLOCK <= SLOW_CLOCK;

end

BUFGS GBUF_FOR_MUX_CLOCK (.O(CLOCK_GBUF),
.I(CLOCK));

    always @ (posedge CLOCK_GBUF)
        DOUT = DATA;
endmodule

Using Dedicated Global Set/Reset Resource
XC4000XLA, Spartan, and Spartan-XL devices have a dedicated 
Global Set/Reset (GSR) net that you can use to initialize all CLBs and 
IOBs. When the GSR is asserted, every flip-flop in the FPGA is simul-
taneously preset or cleared. You can access the GSR net from the GSR 
pin on the STARTUP block or the GSRIN pin of the STARTBUF 
(VHDL).
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Since the GSR net has dedicated routing resources that connect to the 
Preset or Clear pin of the flip-flops, you do not need to use general 
purpose routing or global buffer resources to connect to these pins. If 
your design has a Preset or Clear signal that affects every flip-flop in 
your design, use the GSR net to increase design performance and 
reduce routing congestion.

For XC4000XLA, Spartan, and Spartan-XL devices, the Global Set/
Reset (GSR) signal is, by default, set to active high (globally resets 
device when logic equals 1). You can change this to active low by 
inferring it properly in your code. Most new synthesis tools will auto-
matically insert the STARTUP block and infer active low reset 
correctly.

Note See the “Simulating Your Design” chapter for more information 
on simulating the Global Set/Reset.

Startup State
The GSR pin on the STARTUP block or the GSRIN pin on the 
STARTBUF block drives the GSR net and connects to each flip-flop’s 
Preset and Clear pin. When you connect a signal from a pad to the 
STARTUP block’s GSR pin, the GSR net is activated. Because the GSR 
net is built into the silicon it does not appear in the pre-routed netlist 
file. When the GSR signal is asserted High (the default), all flip-flops 
and latches are set to the state they were in at the end of configura-
tion. When you simulate the routed design, the gate simulator trans-
lation program correctly models the GSR function.

Note See the “Simulating Your Design” chapter for more information 
on STARTUP and STARTBUF.

Preset vs. Clear 
The XC4000XLA, Spartan, and Spartan-XL family flip-flops are 
configured as either preset (asynchronous set) or clear (asynchronous 
reset) during startup. Automatic assertion of the GSR net presets or 
clears each flip-flop. You can assert the GSR pin at any time to 
produce this global effect. You can also preset or clear individual flip-
flops with the flip-flop’s dedicated Preset or Clear pin. When a Preset 
or Clear pin on a flip-flop is connected to an active signal, the state of 
that signal controls the startup state of the flip-flop. For example, if 
you connect an active signal to the Preset pin, the flip-flop starts up in 
the preset state. If you do not connect the Clear or Preset pin, the 
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default startup state is a clear state. To change the default to preset, 
assign an INIT=S attribute to the XC4000XLA/Spartan/Spartan-XL 
flip-flop.

I/O flip-flops and latches in XC4000XLA/Spartan/Spartan-XL do 
not have individual Preset or Clear pins. The default value of these 
flip-flops and latches is clear. To change the default value to preset, 
assign an INIT=1, or INIT=S attribute. 

Below is an example of setting register INIT using ROCBUF. In the 
HDL code, the instantiated ROCBUF connects the set/reset signal. 
The Xilinx tools will automatically remove the ROCBUF during 
implementation leaving the set/reset signal active only during 
power-up.

• VHDL Example.

library IEEE;

use IEEE.std_logic_1164.all;

entity d_register is

port (CLK : in std_logic;

RESET : in std_logic;

D0: in std_logic;

D1: in std_logic;

Q0 : out std_logic;

Q1 : out std_logic);

end d_register;

architecture XILINX of d_register is

signal RESET_int : std_logic;

component ROCBUF is  port (I : in STD_LOGIC;

O : out STD_LOGIC);

end component;
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begin

U1: ROCBUF port map (I => RESET, O => 
RESET_int);

process (CLK, RESET_int)

begin

if RESET_int = '1' then

Q0 <= '0';

Q1 <= '1';

elsif  rising_edge(CLK) then

Q0 <= D0;

Q1 <= D1; 

end if;

end process;

end XILINX;

• Verilog Example

/*

 Note: In Synplify, set blackbox attribute for 
ROCBUF as follows:

module ROCBUF (I, O); //synthesis syn_black_box

input I;

output O;

endmodule 

*/

module rocbuf_example (reset, clk, d0, d1, q0, 
q1)
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 ;

input reset;

input clk ;

input d0;

input d1;

output q0 ;

output q1 ;

reg q0, q1;

wire reset_int;

ROCBUF u1 (.I(reset), .O(reset_int));

always @ (posedge clk or posedge reset_int) 
begin

if  (reset_int) begin

q0 = 1'b0;

q1 = 1'b1;

end

else

begin

q0 = d0;

q1 = d1;

end

end

endmodule 

module ROCBUF (I, O); 

input I;

output O;

endmodule  
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Performance with the GSR Net
Many designs contain a net that initializes most of the flip-flops in the 
design. If this signal can initialize all the flip-flops, you can use the 
GSR net. You should always include a net that initializes your design 
to a known state.

To ensure that your HDL simulation results at the RTL level match 
the synthesis results, write your code so that every flip-flop and latch 
is preset or cleared when the GSR signal is asserted. The synthesis 
tool cannot infer the GSR net from HDL code. To utilize the GSR net, 
you must instantiate the STARTUP or STARTBUF block (VHDL), as 
shown below in the figure, “No_GSR Implementation with Gates”. 
You can also set the option to infer a GSR in your synthesis tool.

Design Example without Dedicated GSR Resource

In the following VHDL and Verilog designs, the RESET signal initial-
izes all the registers in the design; however, it does not use the dedi-
cated global resources. The RESET signal is routed using regular 
routing resources. These designs include two 4-bit counters. One 
counter counts up and is reset to all zeros on assertion of RESET and 
the other counter counts down and is reset to all ones on assertion of 
RESET. The “No_GSR Implemented with Gates” figure shows the 
No_GSR design implemented with gates.

• No GSR VHDL Example

-- NO_GSR Example
-- The signal RESET initializes all registers 
-- May 1997
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all

entity no_gsr is
port (CLOCK: in STD_LOGIC;
      RESET: in STD_LOGIC;
      UPCNT: out STD_LOGIC_VECTOR (3 downto 0);
      DNCNT: out STD_LOGIC_VECTOR (3 downto 0));
end no_gsr;

architecture SIMPLE of no_gsr is
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signal UP_CNT: STD_LOGIC_VECTOR (3 downto 0);
signal DN_CNT: STD_LOGIC_VECTOR (3 downto 0);

begin
    UP_COUNTER: process (CLOCK, RESET)
    begin
        if (RESET = '1') then
            UP_CNT <= "0000";
        elsif (CLOCK'event and CLOCK = '1') then
          UP_CNT <= UP_CNT + 1;

end if;
    end process;

    DN_COUNTER: process (CLOCK, RESET)
    begin
        if (RESET = '1') then
            DN_CNT <= "1111";
        elsif (CLOCK'event and CLOCK = '1') then
            DN_CNT <= DN_CNT - 1; 
        end if;
    end process;

    UPCNT <= UP_CNT;
    DNCNT <= DN_CNT;

end SIMPLE;

• No GSR Verilog  Example

/* NO_GSR Example
 * The signal RESET initializes all registers
 * December 1997 */

module no_gsr ( CLOCK, RESET, UPCNT, DNCNT);

input CLOCK, RESET;
output [3:0] UPCNT;
output [3:0] DNCNT;

reg [3:0] UPCNT;
reg [3:0] DNCNT;
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always @ (posedge CLOCK or posedge RESET) begin
 if (RESET) begin 
 UPCNT = 4'b0000;
 DNCNT = 4'b1111;
 end else begin

 UPCNT = UPCNT + 1'b1;
        DNCNT = DNCNT - 1'b1;

 end
end
endmodule
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Figure 4-4  No_GSR Implemented with Gates
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Design Example with Dedicated GSR Resource

To reduce routing congestion and improve the overall performance of 
the reset net in the No_GSR design, use the dedicated GSR net 
instead of the general purpose routing. Instantiate the STARTUP, 
STARTBUF, ROC, or TOC block in your design and use the GSR pin 
on the STARTUP block (or the GSRIN pin on the STARTBUF block) to 
access the global reset net. This is not necessary with many synthesis 
tools. If you fully define the behavior of the GSR net, the tool infers a 
STARTUP block. The modified designs (Use_GSR) are included at the 
end of this section. The Use_GSR design implemented with gates is 
shown in the Figure 4-5.

On assertion of the GSR net, flip-flops return to a clear (or Low) state 
by default. You can override this default by describing an asynchro-
nous preset in your code, or by adding the INIT=1 or INIT=R.

The Use_GSR design explicitly state that the down-counter resets to 
all ones, therefore, asserting the reset net causes this counter to set to 
a default of all ones. If the design does not explicitly state the reset 
value, you can attach the INIT = 1 or INIT=R attribute to the flip-
flops. This attribute allows you to override the default clear (or Low) 
state. However, because attributes are assigned outside the HDL 
code, the code no longer accurately represents the behavior of the 
design.

Refer to your synthesis tool documentation for more information on 
assigning attributes. 

The STARTUP or STARTBUF block must not be optimized during the 
synthesis process. Add the appropriate attribute to prevent optimiza-
tion before compiling your design.

• Use GSR VHDL Example (XC4000XLA/Spartan/Spartan-XL 
family)

-- USE_GSR.VHD Example
-- The signal RESET is connected to the 
-- GSRIN pin of the STARTBUF block
-- May 1997

library IEEE;
library UNISIM;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
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use UNISIM.all;

entity use_gsr is
port ( CLOCK: in STD_LOGIC;
       RESET: in STD_LOGIC;
       UPCNT: out STD_LOGIC_VECTOR (3 downto 0);
       DNCNT: out STD_LOGIC_VECTOR (3 downto 0));
end use_gsr;
architecture XILINX of use_gsr is
component STARTBUF 
    port (GSRIN: in STD_LOGIC);
          GSROUT: out STD_LOGIC);
end component;
signal RESET_INT: STD_LOGIC;
signal UP_CNT: STD_LOGIC_VECTOR (3 downto 0);
signal DN_CNT: STD_LOGIC_VECTOR (3 downto 0);
begin
    U1: STARTBUF port map(GSRIN=>RESET,
                          GSROUT=>RESET_INT);
    UP_COUNTER: process(CLOCK, RESET_INT)
    begin
        if (RESET_INT = '1') then
            UP_CNT <= "0000";
        elsif (CLOCK'event and CLOCK = '1') then
            UP_CNT <= UP_CNT - 1;
        end if;
    end process;
    DN_COUNTER: (CLOCK, RESET_INT) 
    begin
        if (RESET_INT = '1') then
            DN_CNT <= "1111";
        elsif (CLOCK'event and CLOCK = '1') then
            DN_CNT <= DN_CNT - 1;
        end if;
    end process;
    UPCNT <= UP_CNT;
    DNCNT <= DN_CNT;
end XILINX;

• Use GSR Verilog Example.

///////////////////////////////////////////////
// USE_GSR.V Version 1.0                      //
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// The signal RESET initializes all registers//
// Using the global reset resources (STARTUP)//
// December 1997 //
////////////////////////////////////////////////
module use_gsr ( CLOCK, RESET, UPCNT, DNCNT);
input CLOCK, RESET;
output [3:0] UPCNT;
output [3:0] DNCNT;

reg [3:0] UPCNT;
reg [3:0] DNCNT;

STARTUP U1 (.GSR(RESET));

always @ (posedge CLOCK or posedge RESET) begin
    if (RESET) begin
        UPCNT = 4'b0000;
        DNCNT = 4'b1111;
    end else begin
        UPCNT = UPCNT + 1'b1;
        DNCNT = DNCNT - 1'b1;
    end
end
endmodule
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Figure 4-5  Active_Low_GSR Implemented with Gates
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Design Example with Active Low GSR Signal

The Active_Low_GSR design is identical to the Use_GSR design 
except an INV is instantiated and connected between the RESET port 
and the STARTUP block. Also, a Set Don’t Touch (or equivalent) 
attribute is added to the synthesis tool script for both the INV and 
STARTUP, or STARTBUF (VHDL) symbols. By instantiating the 
inverter, the global set/reset signal is now active low (logic level 0 
resets all FPGA flip-flops). The inverter is absorbed into the 
STARTUP block in the device and no CLB resources are used to invert 
the signal. This is not necessary with many synthesis tools. If all regis-
ters and latches are described in the RTL code as reset or set, then a 
GSR is inferred. Some tools also give you the option to select any 
signal as the GSR net. This allows you to correct problems if the RTL 
code does not completely describe the GSR behavior. However, the 
RTL code will not match the place and route behavior because not all 
registers are described as set or reset with the GSR signal. Some tools 
provide a report of the inferred registers that are missing the GSR 
behavior, and allow you to change the RTL behavior. The following 
examples show VHDL and Verilog Active_Low_GSR designs.

• Active Low GSR VHDL Example

----------------------------------------------------
-- ACTIVE_LOW_GSR.VHD Version 1.0                 --
-- The signal RESET is inverted before being      --
-- connected to the GSRIN pin of the STARTBUF     --
-- The inverter will be absorbed by the STARTBUF  --
-- September 1997                                 --
----------------------------------------------------

library IEEE;
library UNISIM;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
use UNISIM.all;

entity active_low_gsr is
    port ( CLOCK: in STD_LOGIC;
 RESET: in STD_LOGIC; 
 UPCNT: out STD_LOGIC_VECTOR (3 downto 0);
 DNCNT: out STD_LOGIC_VECTOR (3 downto 0));
end active_low_gsr;
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architecture XILINX of active_low_gsr is

    component INV
      port (I: in  STD_LOGIC;

O: out STD_LOGIC);
end component;

  component STARTBUF
      port (GSRIN:  in  STD_LOGIC;
            GSROUT: out STD_LOGIC);
 end component;

 signal RESET_NOT:     STD_LOGIC;
 signal RESET_NOT_INT: STD_LOGIC;

signal UP_CNT:        STD_LOGIC_VECTOR (3 downto 0);
 signal DN_CNT:        STD_LOGIC_VECTOR (3 downto 0);

  begin

 U1: INV port map(I => RESET, O => RESET_NOT);

U2: STARTBUF port map(GSRIN=>RESET_NOT, 
GSROUT=>RESET_NOT_INT);

UP_COUNTER: process(CLOCK, RESET_NOT_INT)
 begin
    if (RESET_NOT_INT = '1') then
       UP_CNT <= "0000";
   elsif (CLOCK'event and CLOCK = '1') then
       UP_CNT <= UP_CNT + 1;
   end if;
 end process;

 DN_COUNTER: process(CLOCK, RESET_NOT_INT) 
 begin
  if (RESET_NOT_INT = '1') then
     DN_CNT <= "1111";
   elsif (CLOCK'event and CLOCK = '1') then

DN_CNT <= DN_CNT - 1;
  end if;
  



Architecture Specific HDL Coding Styles for 

Synthesis and Simulation Design Guide 4-31

  end process;

UPCNT <= UP_CNT;
DNCNT <= DN_CNT;

end XILINX;

• Active Low GSR Verilog Example

///////////////////////////////////////////////
// ACTIVE_LOW_GSR.V Version 1.0//
// The signal RESET is inverted before being //
// connected to the GSR pin of the STARTUP bloc/
// The inverter will be absorbed by STARTUP in//
// M1 //
// September 1997  // 
///////////////////////////////////////////////

module active_low_gsr ( CLOCK, RESET, UPCNT, 
DNCNT);

 input        CLOCK, RESET
 output [3:0] UPCNT;
 output [3:0] DNCNT;
 

wire       RESET_NOT;
 reg  [3:0] UPCNT;
 reg  [3:0] DNCNT;

 INV U1 (.O(RESET_NOT), .I(RESET));

 STARTUP U2 (.GSR(RESET_NOT));

always @ (posedge CLOCK or posedge RESET_NOT)
begin
  if (RESET_NOT)
begin
   UPCNT = 4'b0000;
  DNCNT = 4'b1111;
 end
 else
 begin
 UPCNT = UPCNT + 1'b1;
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 DNCNT = DNCNT - 1'b1;
end

end
endmodule

Implementing Inputs and Outputs
FPGAs have limited logic resources in the user-configurable inputs/
output blocks(IOB). You can move logic that is normally imple-
mented with CLBs to IOBs. By moving logic from CLBs to IOBs, addi-
tional logic can be implemented in the available CLBs. Using IOBs 
also improves design performance by increasing the number of avail-
able routing resources.

The XC4000XLA, Spartan, and Spartan-XL devices have different IOB 
functions. The following sections provide a general description of the 
IOB function in these devices. A description of how to manually 
implement additional I/O features is also provided.

XC4000XLA and Spartan/Spartan-XL IOBs
You can configure XC4000XLA and Spartan/Spartan-XL IOBs as 
input, output, or bidirectional signals. You can also specify pull-up or 
pull-down resistors, independent of the pin usage.

These various buffer and I/O structures can be inferred from 
commands executed in a script or in your synthesis tool. You can add 
attributes to these commands to further control pull-up, pull-down, 
and clock buffer insertion, as well as slew-rate control. Some tools 
operate on I/Os by selecting a chip level (inserts I/O) or module level 
(no I/O) synthesis.

Inputs

The buffered input signal that drives the data input of a storage 
element can be configured as either a flip-flop or a latch. Addition-
ally, the buffered signal can be used in conjunction with the input 
flip-flop or latch, or without the register.

If an IOB or register is instantiated in your HDL code, you may not be 
able to use the Set Port Is Pad (or equivalent) command on that port. 
Doing so may automatically infer a buffer on that port and create an 
invalid double-buffer structure. This varies with the tool you are 
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using. Check with your synthesis vendor to see if partial instantiation 
interferes with automatic I/O insertion or the use of IOB registers.

Registers that connect to an input or output pad and require a Direct 
Clear or Preset pin are not implemented by the synthesis tool in the 
IOB. The VHDL emulation of GSR on these registers prevents them 
from being pulled into the IOB. The VHDL emulation of GSR through 
direct clear or preset pins is described in the “Simulating Your 
Design” chapter. If GSR behavior is not completely described, auto-
matic inferencing of GSR does not occur. In this case, instantiate 
STARTBUF in VHDL, and fully describe the GSR behavior except for 
registers that you want in the IOB. In VHDL, these registers do not 
initialize pre-route, but do indicate X’s until the first data is regis-
tered. However, they do initialize properly during back-annotation. 
Verilog models initialize properly and do not interfere with the auto-
matic use of IOB registers instead of CLB registers.

Outputs

The output signal can be registered, 3-stated or a direct output. The 
register is a positive-edge triggered flip-flop and the clock polarity 
can be inverted inside the IOB. (Xilinx software automatically opti-
mizes any inverters into the IOB.) The XC4000XLA and Spartan/
Spartan-XL output buffers can sink 12 mA. Two adjacent outputs can 
be inter-connected externally to sink up to 24mA. 

Note Most FPGA synthesis tools can optimize flip-flops attached to 
output pads into the IOB. However, some of these tools cannot opti-
mize flip-flops into an IOB configured as a bidirectional pad. Refer to 
your synthesis tool documentation for more information.

XC4000XLA Output Multiplexer/2-Input Function 
Generator

A function added to XC4000XLA and Spartan-XL families is a two 
input multiplexer connected to the IOB output allowing the output 
clock to select either the output data or the IOB clock enable as the 
output pad. This allows you to share output pins between two 
signals, effectively doubling the number of device outputs without 
requiring a larger device or package. Additionally, this multiplexer 
can be configured as a two-input function generator allowing you to 
implement any 2-input logic function in the IOB thus freeing up addi-
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tional logic resources in the device and allowing for very fast pin-to-
pin data paths.

To use the output multiplexer (OMUX), you must instantiate it in 
your code. See the following VHDL and Verilog examples. Instantia-
tion of the other types of two-input output primitives (such as 
OAND2, OOR2, and OXOR2) are similar to these examples.

Note  Since the OMUX uses the IOB output clock and clock enable 
routing structures, the output flip-flop (OFD) can not be used within 
the same IOB. The input flip-flop (IFD) can be used if the clock enable 
is not used.

• Output Multiplexer VHDL Example

------------------------------------------
-- OMUX_EXAMPLE.VHD                     --
-- Example of OMUX instantiation        --
-- For an XC4000EX/XL/XV device         --
-- HDL Synthesis Design Guide for FPGAs --
-- August 1997                          --
------------------------------------------
library IEEE;
use IEEE.std_logic_1164.all;

entity  omux_example is
 port (DATA_IN: in STD_LOGIC_VECTOR (1 downto 0);
SEL: in STD_LOGIC
          DATA_OUT: out STD_LOGIC);
end omux_example;
architecture XILINX of omux_example is 
component OMUX2
 port (D0, D1, S0 : in  STD_LOGIC;
       O :          out STD_LOGIC);
end component;
begin

DUEL_OUT: OMUX2 port map (O=>DATA_OUT,
 D0=>DATA_IN(0), D1=>DATA_IN(1), S0=>SEL);
end XILINX;

• Output Multiplexer Verilog Example

//////////////////////////////////////////
// OMUX_EXAMPLE.V                       // 
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// Example of instantiating an OMUX2    // 
// in an XC4000EX/XL IOB                // 
// HDL Synthesis Design Guide for FPGAs //
// August 1997                          //
//////////////////////////////////////////
module omux_example (DATA_IN, SEL, DATA_OUT) ;
input  [1:0] DATA_IN ;
input        SEL ;
output       DATA_OUT ;
OMUX2 DUEL_OUT (.O(DATA_OUT), .D0(DATA_IN[0]),
 .D1(DATA_IN[1]), .S0(SEL));
endmodule

Bi-directional I/O
You can create bi-directional I/O with one or a combination of the 
following methods.

• Behaviorally describe the I/O path

• Structurally instantiate appropriate IOB primitives

Xilinx FPGA IOBs consist of a direct input path into the FPGA 
through an input buffer (IBUF) and an output path to the FPGA pad 
through a high impedance buffer (OBUFT). The input path can be 
registered or latched; the output path can be registered. If you instan-
tiate or behaviorally describe the I/O, you must describe this bi-
directional path in two steps. First, describe an input path from the 
declared INOUT port to a logic function or register. Second, describe 
an output path from an internal signal or function in your code to a 
high impedance output with a high impedance control signal that can 
be mapped to an OBUFT.

You should always describe the I/O path at the top level of your 
code. If the I/O path is described in a lower level module, your 
synthesis tool may incorrectly create the I/O structure.

Inferring Bi-directional I/O

This section includes VHDL and Verilog examples that show how to 
infer a bi-directional I/O. In these examples, the input path is latched 
by a CLB latch that is gated by the active high READ_WRITE signal. 
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The output consists of two latched outputs with an AND and OR, 
and connected to a described high impedance buffer. The active low 
READ_WRITE signal enables the high impedance gate.

• Inferring a Bi-directional Pin VHDL Example

-------------------------------------------------------
--  BIDIR_INFER.VHD                                  --
-- Example of inferring a Bi-directional pin --
--  August 1997                                      --
-------------------------------------------------------

Library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;
entity bidir_infer is

port (DATA :       inout STD_LOGIC_VECTOR(1 downto 0);
READ_WRITE : in    STD_LOGIC);

end bidir_infer;
architecture XILINX of bidir_infer is

   signal LATCH_OUT : STD_LOGIC_VECTOR(1 downto 0);

begin

 process(READ_WRITE, DATA)
 begin
    if (READ_WRITE = '1') then 
        LATCH_OUT <= DATA; 
    end if;
 end process;
  process(READ_WRITE, LATCH_OUT) 

begin
if (READ_WRITE = '0') then

DATA(0) <= LATCH_OUT(0) and LATCH_OUT(1);
DATA(1) <= LATCH_OUT(0) or LATCH_OUT(1);

else 
DATA(0) <= 'Z'; 
DATA(1) <= 'Z'; 

end if;
 end process;
end XILINX;
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• Inferring a Bi-directional Pin Verilog Example

//////////////////////////////////////////////////////////////////
// BIDIR_INFER.V Version 1.1 //
// This is an example of an inference of a bi-directional //
// signal. //
// Note: Logic description of port should always be on //
// top-level //
// code when using Synopsys Compiler and verilog.//
// March 1998 //
////////////////////////////////////////////////////////////////
module bidir_infer (DATA, READ_WRITE);
    input       READ_WRITE ; 
inout [1:0] DATA ;

reg   [1:0] LATCH_OUT ;

always @ (READ_WRITE or DATA) 
 begin 
 if (READ_WRITE == 1'b1) 
     LATCH_OUT <= DATA; 
 end

assign DATA[0] = READ_WRITE ?  1'bZ : (LATCH_OUT[0] & LATCH_OUT[1]);
assign DATA[1] = READ_WRITE ? 1'bZ : (LATCH_OUT[0] | LATCH_OUT[1]);
endmodule

Instantiating Bi-directional I/O

Instantiating the bi-directional I/O gives you more control over the 
implementation of the circuit; however, as a result, your code is more 
architecture-specific and usually more verbose. The VHDL and 
Verilog examples in this section are identical to the examples in the 
“Inferring B-directional I/O” section; however, since there is more 
control over the implementation, an input latch is specified rather 
than the CLB latch inferred in the previous examples. The following 
examples are a more efficient implementation of the same circuit.

When instantiating I/O primitives, do not specify the Set Port Is Pad 
(or equivalent) command on the instantiated ports to prevent the I/O 
buffers from being inferred by your synthesis tool. This precaution 
also prevents the creation of an illegal structure.

• Instantiation of a Bi-directional Pin VHDL Example
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-----------------------------------
--  BIDIR_INSTANTIATE.VHD        --
--  Example of an instantiation  --
--  of a Bi-directional pin      --
--  August 1997                  --
-----------------------------------
Library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;

entity bidir_instantiate is

 port (DATA :       inout STD_LOGIC_VECTOR(1 downto 0);
       READ_WRITE : in    STD_LOGIC);
end bidir_instantiate;
architecture XILINX of bidir_instantiate is

signal LATCH_OUT : STD_LOGIC_VECTOR(1 downto 0); 
signal DATA_OUT :  STD_LOGIC_VECTOR(1 downto 0); 
signal GATE :      STD_LOGIC;

component ILD_1
port (D, G : in  STD_LOGIC;

Q    : out STD_LOGIC);
end component;

component OBUFT_S
port (I, T : in  STD_LOGIC;

O :    out STD_LOGIC);
end component;
begin

DATA_OUT(0) <= LATCH_OUT(0) and LATCH_OUT(1);
DATA_OUT(1) <= LATCH_OUT(0) or LATCH_OUT(1);

GATE <= not READ_WRITE;

INPUT_PATH_0 : ILD_1
port map (D => DATA(0), G => GATE,

Q => LATCH_OUT(0));

INPUT_PATH_1 : ILD_1
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port map (D => DATA(1), G => GATE,
Q => LATCH_OUT(1));

OUPUT_PATH_0 : OBUFT_S
port map (I => DATA_OUT(0), T => READ_WRITE,

O => DATA(0));

OUPUT_PATH_1 : OBUFT_S
port map (I => DATA_OUT(1), T => READ_WRITE,

O => DATA(1));
end XILINX;

• Instantiation of a Bi-directional Pin Verilog Example

     //////////////////////////////////////////// 
 // BIDIR_INSTANTIATE.V                    //
   // This is an example of an instantiation //
  // of a bi-directional port.              //
 // August 1997                            //
////////////////////////////////////////////
module bidir_instantiate (DATA, READ_WRITE);

 input       READ_WRITE ; 
 inout [1:0] DATA ;

reg   [1:0] LATCH_OUT ;
wire  [1:0] DATA_OUT ;
 wire        GATE ;

assign GATE = ~READ_WRITE;

assign DATA_OUT[0] = LATCH_OUT[0] & LATCH_OUT[1];
assign DATA_OUT[1] = LATCH_OUT[0] | LATCH_OUT[1];
// I/O primitive instantiation

ILD_1 INPUT_PATH_0 (.Q(LATCH_OUT[0]), .D(DATA[0]), .G(GATE));

ILD_1 INPUT_PATH_1 (.Q(LATCH_OUT[1]), .D(DATA[1]), .G(GATE));
OBUFT_S OUPUT_PATH_0 (.O(DATA[0]), .I(DATA_OUT[0]),
.T(READ_WRITE));

OBUFT_S OUPUT_PATH_1 (.O(DATA[1]), .I(DATA_OUT[1]),
.T(READ_WRITE));
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endmodule

Delay and Slew Rate
You can avoid external hold-time requirements by using the IOB 
input flip-flops and latches with a delay block between the external 
pin and the D input. You can remove this default delay by instanti-
ating a flip-flop or latch with a NODELAY attribute. The NODELAY 
attribute decreases the setup-time requirement and introduces a 
small hold time.

FPGA Express currently does not support the NODELAY attribute. 
You can set the NODELAY attribute through the user constraints file 
(.ucf).

In LeonardoSpectrum, set the NODELAY attribute in a TCL script or 
from the command line. See the following example.

set_attribute -port data_in -name NODELAY -value TRUE

or

set_attribute -instance my_ifd -name NODELAY -value 
TRUE

or

set_attribute -net net_name -name NODELAY -value TRUE.

In Synplify, use the xc_nodelay attribute in the constraint editor or in 
your HDL code. Slew rate on the IOB outputs can be controlled by 
declaring either FAST or SLOW attributes.

In FPGA Express, slew rate can be specified after elaborating the 
design (before optimization) in the Constraints Editor graphical user 
interface.

In LeonardoSpectrum, set the slew rate in a TCL script or from the 
command line. The command line attribute would look like the 
following.

set_attribute -port <portname> -name FAST

In Synplify, use the xc_fast attribute in the constraints editor or in 
your HDL code.
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Pull-ups and Pull-downs
XC4000XLA, Spartan, and Spartan-XL devices have programmable 
pull-up and pull-down resistors available in the I/O. The resisters are 
available regardless of whether it is configured as an input, output, or 
bi-directional I/O. By default, all unused IOBs are configured as an 
input with a pull-up resistor. The value of the pull-ups and pull-
downs vary depending on operating conditions and device process 
variances but should be approximately 50 K Ohms to 100 K Ohms. If 
a more precise value is required, use an external resistor. Refer to 
your synthesis tool documentation for information on how to specify 
internal pull-up or pull-down I/O resistors.

Specifying Pad Locations
Although Xilinx recommends allowing the software to select pin 
locations to ensure the best possible pin placement in terms of design 
timing and routing resources, sometimes you must define the pad 
locations prior to placement and routing. You can assign pad loca-
tions either from the Xilinx Implementation Tool’s script prior to 
writing out the netlist file, or from a User Constraints File (UCF). Use 
one or the other method, but not both. 

For XC4000XLA designs it is best to use a higher placement effort in 
the software when allowing your synthesis tool to pick the I/Os.

Refer to your synthesis tool documentation for the correct syntax for 
configuring your I/O with the LOC property. Also, refer to The 
Programmable Logic Data Book or the Xilinx Web site (http://
support.xilinx.com) for the pad locations for your device and 
package.

Moving Registers into the IOB
IOBs contain an input register or latch and an output register. IOB 
inputs can be register or latch inputs as well as direct inputs to the 
device array. Registers without a direct reset or set function can be 
moved into IOBs. Moving registers or latches into IOBs may reduce 
the number of CLBs used and decreases the routing congestion. In 
addition, moving input registers and latches into the IOB reduces the 
external setup time, as shown in the following figure.
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Figure 4-6  Moving Registers into the IOB

Although moving output registers into the IOB may increase the 
internal setup time, it may reduce the clock-to-output delay, as shown 
in this figure. Most FPGA synthesis tools automatically move regis-
ters into IOBs if the Preset, Clear, and Clock Enable pins are not used.
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Use –pr Option with Map

Use the –pr (pack registers) option when running MAP. The –pr {i | o 
|  b} (input | output | both) option specifies to the MAP program to 
move registers into IOBs under the following circumstances.

1. The input of the register must be connected to an input port, or 
the Q pin must be connected to an output port. For the 
XC4000XLA this applies to non-I/O latches, as well as flip-flops.

2. The flip-flop does not use an asynchronous set or reset signal.

3. In XC4000, Spartan, and XC3000 devices, a flop/latch is not 
added to an IOB if it has a BLKNM or LOC conflict with the IOB.

4.  In XC4000XLA or Spartan/Spartan-XL devices, a flop/latch is 
not added to an IOB if its control signals (clock or clock enable) 
are not compatible with those already defined in the IOB. This 
occurs when a flip-flop (latch) is already in the IOB with different 
clock or clock enable signals, or when the XC4000XLA or 
Spartan-XL output MUX is used in the same IOB. In Virtex, clock 
enable can be different for each flip-flop, but clock and set/reset 
must be the same for all registers and latches in one IOB.

Using Unbonded IOBs (XC4000XLA and Spartan/
Spartan-XL Only)

In some package/device pairs, not all pads are bonded to a package 
pin. You can use these unbonded IOBs and the flip-flops inside them 
in your design by instantiating them in the HDL code. The VHDL 
and Verilog examples in this section show how to instantiate 
unbonded IOB flip-flops in a 4-bit shift register in XC4000XLA or 
Spartan/Spartan-XL devices. 

Note The synthesis tool compilers cannot infer unbonded primitives. 
Refer to your synthesis tool documentation for a list of library primi-
tives that can be used for instantiations.

4-bit Shift Register Using Unbonded I/O VHDL 
Example

-------------------------------------------------
-- UNBONDED_IO.VHD Version 1.0                 --
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-- XC4000 LCA has unbonded IOBs which have     --
-- storage elements that can be used to build  --
-- shift registers.                            --
-- Below is a 4-bit Shift Register using       --
-- Unbonded IOB Flip Flops                     --
-- Xilinx HDL Synthesis Design Guide for FPGAs --
-- May 1997                                    --
-------------------------------------------------
Library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
entity unbonded_io is

port (A, B: in STD_LOGIC;
CLK: in STD_LOGIC;
Q_OUT: out STD_LOGIC);

end unbonded_io;
architecture XILINX of unbonded_io is

component IFD_U  -- Unbonded Input FF with INIT=Reset
port (Q: out std_logic;

D, C: in  std_logic);
end component;

component IFDI_U -- Unbonded Input FF with INIT=Set
port (Q: out std_logic;

D, C: in  std_logic);
end component;

component OFD_U -- Unbonded Output FF with INIT=Reset
port (Q: out std_logic;

D, C: in  std_logic);
end component;

component OFDI_U -- Unbonded Output FF with INIT=Set
port (Q: out std_logic;

D, C: in  std_logic);
end component;

--- Internal Signal Declarations -----
signal U_Q : STD_LOGIC_VECTOR (3 downto 0);
signal U_D : STD_LOGIC;

begin
U_D <= A and B;
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Q_OUT <= U_Q(0);
U3: OFD_U  port map (Q => U_Q(3),
                  D => U_D,
                  C => CLK);

U2: IFDI_U port map (Q => U_Q(2),
                  D => U_Q(3),
                  C => CLK);

U1: OFDI_U port map (Q => U_Q(1),
                  D => U_Q(2),
                  C => CLK);

U0: IFD_U  port map (Q => U_Q(0),
                  D => U_Q(1),
                  C => CLK);
end XILINX;

4-bit Shift Register Using Unbonded I/O Verilog 
Example

//////////////////////////////////////////////////// 
// UNBONDED.V                                    // 
// XC4000 family has unbonded IOBs which have     // 
// storage elements that can be used to build     // 
// functions like shift registers.                 // 
// Below is a 4-bit Shift Register using Unbonded // 
// IOB Flip Flops                                 // 
// HDL Synthesis Design Guide for FPGAs           // 
// May 1997                                      //
////////////////////////////////////////////////////

module unbonded_io (A, B, CLK, Q_OUT);

input A, B, CLK;
output Q_OUT;

wire[3:0] U_Q;
wire      U_D;
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assign U_D = A & B;
assign Q_OUT = U_Q[0];

OFD_U U3 (.Q(U_Q[3]), .D(U_D), .C(CLK));
IFDI_U U2 (.Q(U_Q[2]), .D(U_Q[3]), .C(CLK));

OFDI_U U1 (.Q(U_Q[1]), .D(U_Q[2]), .C(CLK));

IFD_U  U0 (.Q(U_Q[0]), .D(U_Q[1]), .C(CLK));
endmodule

Encoding State Machines 
The traditional methods used to generate state machine logic result in 
highly-encoded states. State machines with highly-encoded state 
variables typically have a minimum number of flip-flops and wide 
combinatorial functions. These characteristics are acceptable for PAL 
and gate array architectures. However, because FPGAs have many 
flip-flops and narrow function generators, highly-encoded state vari-
ables can result in inefficient implementation in terms of speed and 
density.

One-hot encoding allows you to create state machine implementa-
tions that are more efficient for FPGA architectures. You can create 
state machines with one flip-flop per state and decreased width of 
combinatorial logic. One-hot encoding is usually the preferred 
method for large FPGA-based state machine implementation. For 
small state machines (fewer than 8 states), binary encoding may be 
more efficient. To improve design performance, you can divide large 
(greater than 32 states) state machines into several small state 
machines and use the appropriate encoding style for each.

Three design examples are provided in this section to illustrate the 
three coding methods (binary, enumerated type, and one-hot) you 
can use to create state machines. All three examples contain the same 
Case statement. To conserve space, the complete Case statement is 
only included in the binary encoded state machine example; refer to 
this example when reviewing the enumerated type and one-hot 
examples. 

Some synthesis tools allow you to add an attribute, such as 
type_encoding_style, to your VHDL code to set the encoding style. 
This is a synthesis vendor attribute (not a Xilinx attribute). Refer to 
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your synthesis tool documentation for information on attribute-
driven state machine synthesis.

Using Binary Encoding
The state machine bubble diagram in the following figure shows the 
operation of a seven-state machine that reacts to inputs A through E 
as well as previous-state conditions. The binary encoded method of 
coding this state machine is shown in the VHDL and Verilog exam-
ples that follow. These design examples show you how to take a 
design that has been previously encoded (for example, binary 
encoded) and synthesize it to the appropriate decoding logic and 
registers. These designs use three flip-flops to implement seven 
states.

Figure 4-7  State Machine Bubble Diagram

Binary Encoded State Machine VHDL Example

The following is a binary encoded state machine VHDL example.

-------------------------------------------------
-- BINARY.VHD Version 1.0                      --
-- Example of a binary encoded state machine   --
-- May 1997                                    --
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-------------------------------------------------
Library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity binary is
 port (CLOCK, RESET : in STD_LOGIC;
 A, B, C, D, E: in BOOLEAN;

SINGLE, MULTI, CONTIG: out STD_LOGIC);
end binary;

architecture BEHV of binary is

type STATE_TYPE is (S1, S2, S3, S4, S5, S6, S7);
attribute ENUM_ENCODING: STRING;
attribute ENUM_ENCODING of STATE_TYPE:type is "001 010 011 100 101
110 111";

signal CS, NS: STATE_TYPE;

begin
 SYNC_PROC: process (CLOCK, RESET)
  begin
     if (RESET='1') then
 CS <= S1;
 elsif (CLOCK'event and CLOCK = '1') then
 CS <= NS;

end if;
end process; --End REG_PROC

COMB_PROC: process (CS, A, B, C, D, E)
begin

case CS is
when S1 =>

MULTI  <= '0';
CONTIG <= '0';
SINGLE <= '0';
if (A and not B and C) then

NS <= S2;
elsif (A and B and not C) then

NS <= S4;
else
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NS <= S1;
end if;

when S2 =>
   MULTI  <= '1';

CONTIG <= '0';
SINGLE <= '0';
if (not D) then

NS <= S3;
else

NS <= S4;
end if;

  when S3 =>
MULTI  <= '0';
CONTIG <= '1';
SINGLE <= '0';
if (A or D) then

NS <= S4;
else

NS <= S3;
end if;

when S4 =>
MULTI  <= '1';
CONTIG <= '1';
SINGLE <= '0';
if (A and B and not C) then

NS <= S5;
else

NS <= S4;
end if;

 when S5 =>
MULTI  <= '1';
CONTIG <= '0';
SINGLE <= '0';
NS <= S6;

when S6 =>
MULTI  <= '0';
CONTIG <= '1';
SINGLE <= '1';
if (not E) then

NS <= S7;
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else 
NS <= S6;

  end if;
when S7 =>

MULTI  <= '0';
CONTIG <= '1';
SINGLE <= '0';
if (E) then

NS <= S1;
else

NS <= S7;
end if;

end case;
  end process; -- End COMB_PROC
end BEHV;

 Binary Encoded State Machine Verilog Example

/////////////////////////////////////////////////
// BINARY.V Version 1.0                        //
// Example of a binary encoded state machine   //
// May 1997                                    //
/////////////////////////////////////////////////
module binary (CLOCK, RESET, A, B, C, D, E, SINGLE, MULTI, CONTIG);

input    CLOCK, RESET;
input    A, B, C, D, E;
output   SINGLE, MULTI, CONTIG;

reg      SINGLE, MULTI, CONTIG;
// Declare the symbolic names for states
parameter [2:0]

S1 = 3'b001,
S2 = 3'b010,
S3 = 3'b011,
S4 = 3'b100,
S5 = 3'b101,
S6 = 3'b110,
S7 = 3'b111;

// Declare current state and next state variables
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reg [2:0] CS;
reg [2:0] NS;

// state_vector CS

always @ (posedge CLOCK or posedge RESET)
begin

if (RESET == 1'b1)
CS = S1;

else
CS = NS;

end
always @ (CS or A or B or C or D or D or E)
begin
case (CS)

S1 :
begin

MULTI  = 1'b0;
CONTIG = 1'b0;
SINGLE = 1'b0;

if (A && ~B && C)
NS = S2;

else if (A && B && ~C)
NS = S4;

else
NS = S1;

end 
S2 :
begin

MULTI  = 1'b1;
CONTIG = 1'b0;
SINGLE = 1'b0;

if (!D)
NS = S3;

else
NS = S4;

end 
S3 :

 begin
MULTI  = 1'b0;
CONTIG = 1'b1;
SINGLE = 1'b0;
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if (A || D) 
NS = S4;

else
NS = S3;

end 
        

S4 :
begin

MULTI  = 1'b1;
CONTIG = 1'b1;
SINGLE = 1'b0;
if (A && B && ~C)

NS = S5;
else

NS = S4;
end

S5 :
begin

MULTI  = 1'b1;
CONTIG = 1'b0;
SINGLE = 1'b0;
NS = S6;
end

S6 :
begin

MULTI  = 1'b0; 
CONTIG = 1'b1;
SINGLE = 1'b1;
if (!E)

NS = S7;
else

NS = S6;
end 
S7 :
begin

MULTI  = 1'b0;
CONTIG = 1'b1;
SINGLE = 1'b0;
if (E) 

NS = S1;
else 

NS = S7;
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end 
endcase

end
endmodule

Using Enumerated Type Encoding
The recommended encoding style for state machines depends on 
which synthesis tool you are using. Some synthesis tools encode 
better than others depending on the device architecture and the size 
of the decode logic. You can explicitly declare state vectors or you can 
allow your synthesis tool to determine the vectors. Xilinx recom-
mends that you use enumerated type encoding to specify the states 
and use the Finite State Machine (FSM) extraction commands to 
extract and encode the state machine as well as to perform state mini-
mization and optimization algorithms. The enumerated type method 
of encoding the seven-state machine is shown in the following VHDL 
and Verilog examples. The encoding style is not defined in the code, 
but can be specified later with the FSM extraction commands. Alter-
natively, you can allow your compiler to select the encoding style that 
results in the lowest gate count when the design is synthesized. Some 
synthesis tools automatically find finite state machines and compile 
without the need for specification.

Note Refer to the previous VHDL and Verilog Binary Encoded State 
Machine examples for the complete Case statement portion of the 
code.

Enumerated Type Encoded State Machine VHDL 
Example 

Library IEEE;
use IEEE.std_logic_1164.all;
entity enum is

port (CLOCK, RESET : in STD_LOGIC;
A, B, C, D, E: in BOOLEAN;
SINGLE, MULTI, CONTIG: out STD_LOGIC);

end enum;

architecture BEHV of enum is
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type STATE_TYPE is (S1, S2, S3, S4, S5, S6, S7);

signal CS, NS: STATE_TYPE;

begin
 SYNC_PROC: process (CLOCK, RESET)
 begin
 if (RESET='1') then
 CS <= S1;
 elsif (CLOCK'event and CLOCK = '1') then
 CS <= NS;
 end if;
 end process; --End SYNC_PROC
 COMB_PROC: process (CS, A, B, C, D, E)

begin
 case CS is
 when S1 =>
 MULTI  <= '0';
 CONTIG <= '0';
 SINGLE <= '0'; 
. 
. 
.

Enumerated Type Encoded State Machine Verilog 
Example

///////////////////////////////////////////////////
// ENUM.V Version 1.0 //
// Example of an enumerated encoded state machine//
// May 1997                                      //
///////////////////////////////////////////////////

module enum (CLOCK, RESET, A, B, C, D, E,
SINGLE, MULTI, CONTIG);

input  CLOCK, RESET;
input  A, B, C, D, E;
output SINGLE, MULTI, CONTIG;
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reg    SINGLE, MULTI, CONTIG;

// Declare the symbolic names for states
parameter [2:0]

S1 = 3'b000,
S2 = 3'b001,
S3 = 3'b010,
S4 = 3'b011,

 S5 = 3'b100,
    S6 = 3'b101,

S7 = 3'b110;

// Declare current state and next state variables
reg [2:0] CS;
reg [2:0] NS;

// state_vector CS

always @ (posedge CLOCK or posedge RESET)
begin

if (RESET == 1'b1)
     CS = S1;
 else
 CS = NS;
end

always @ (CS or A or B or C or D or D or E)
begin
case (CS)
     S1 :
     begin
     MULTI  = 1'b0;
     CONTIG = 1'b0;
     SINGLE = 1'b0;
     if (A && ~B && C) 
         NS = S2;
     else if (A && B && ~C)
         NS = S4;
     else
         NS = S1;
     end
.
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.

.

Using One-Hot Encoding
One-hot encoding allows you to create state machine implementa-
tions that are more efficient for FPGA architectures. One-hot 
encoding is usually the preferred method for large FPGA-based state 
machine implementation.

The following examples show a one-hot encoded state machine. Use 
this method to control the state vector specification or when you 
want to specify the names of the state registers. These examples use 
one flip-flop for each of the seven states. If you are using FPGA 
Express, use enumerated type, and avoid using the “when others” 
construct in the VHDL case statement. This construct can result in a 
very large state machine.

Note Refer to the previous VHDL and Verilog Binary Encoded State 
Machine examples for the complete Case statement portion of the 
code. 

One-hot Encoded State Machine VHDL Example

Library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity one_hot is
port (CLOCK, RESET : in STD_LOGIC;

A, B, C, D, E: in BOOLEAN;
SINGLE, MULTI, CONTIG: out STD_LOGIC);

end one_hot;

architecture BEHV of one_hot is

type STATE_TYPE is (S1, S2, S3, S4, S5, S6, S7);
attribute ENUM_ENCODING: STRING;
attribute ENUM_ENCODING of STATE_TYPE: type is 
"0000001 0000010 0000100 0001000 0010000 0100000 1000000 ";

signal CS, NS: STATE_TYPE;
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begin 

SYNC_PROC: process (CLOCK, RESET)
begin

if (RESET='1') then
CS <= S1;

elsif (CLOCK'event and CLOCK = '1') then
CS <= NS;
end if;

end process; --End SYNC_PROC
COMB_PROC: process (CS, A, B, C, D, E)
begin

case CS is
when S1 =>

MULTI  <= '0';
CONTIG <= '0';
SINGLE <= '0';

if (A and not B and C) then
NS <= S2;

elsif (A and B and not C) then
NS <= S4;

else
NS <= S1;

end if;
.
.
.

One-hot Encoded State Machine Verilog Example

 //////////////////////////////////////////////////
// ONE_HOT.V Version 1.0                          //
// Example of a one-hot encoded state machine    //
// Xilinx HDL Synthesis Design Guide for FPGAs  //
// May 1997                                    //
////////////////////////////////////////////////

module one_hot (CLOCK, RESET, A, B, C, D, E,
              SINGLE, MULTI, CONTIG);
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input   CLOCK, RESET;
input   A, B, C, D, E;
output  SINGLE, MULTI, CONTIG;

reg SINGLE, MULTI, CONTIG;

// Declare the symbolic names for states
parameter [6:0]

S1 = 7'b0000001,
S2 = 7'b0000010,
S3 = 7'b0000100,
S4 = 7'b0001000,
S5 = 7'b0010000,
S6 = 7'b0100000,
S7 = 7'b1000000;

// Declare current state and next state variables
reg [2:0] CS;
reg [2:0] NS;

// state_vector CS
 
 always @ (posedge CLOCK or posedge RESET) 
 begin
 if (RESET == 1'b1)
 CS = S1;
 else
 CS = NS;
end

always @ (CS or A or B or C or D or D or E)
begin

case (CS)
     S1 :
         begin
 MULTI  = 1'b0;
 CONTIG = 1'b0;
 SINGLE = 1'b0;
 if (A && ~B && C) 
 NS = S2;
 else if (A && B && ~C)
 NS = S4;
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 else
 NS = S1; 
end
 .
 .
 .

Accelerate FPGA Macros with One-Hot Approach
Most synthesis tools provide a setting for finite state machine (FSM) 
encoding. This setting will prompt synthesis tools to automatically 
extract state machines in your design and perform special optimiza-
tions to achieve better performance. The default option for FSM 
encoding is “One-Hot” for most synthesis tools. However, this setting 
can be changed to other encoding such as binary, grey, sequential, etc.

In FPGA Express, FSM encoding is set to “One-Hot” by default. To 
change this setting, select Synthesis-> Options -> Project Tab. Avail-
able options are: One-Hot, Binary, and Zero One-Hot.

In LeonardoSpectrum, FSM encoding is set to “Auto” by default 
which differs depending on Bit Width of your state machine. To 
change this setting to a specific value, select Input tab. Available 
options are: Binary, One-Hot, Random, Gray, and Auto.

In Synplify, Symbolic FSM Complier option can be accessed from the 
main GUI. When set, the default value is One-Hot. However, you 
may override the default on a register by register bases with 
syn_encoding directive/attribute. Available options are: One-Hot, 
Gray, Sequential, and Safe.

Summary of Encoding Styles 
In the three previous examples, the state machine’s possible states are 
defined by an enumeration type. Use the following syntax to define 
an enumeration type.

type type_name is (enumeration_literal {, enumeration_literal} );

After you have defined an enumeration type, declare the signal repre-
senting the states as the enumeration type as follows.

type STATE_TYPE is (S1, S2, S3, S4, S5, S6, S7);
signal CS, NS: STATE_TYPE;
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The state machine described in the three previous examples has 
seven states. The possible values of the signals CS (Current_State) 
and NS (Next_State) are S1, S2, ... , S6, S7. 

To select an encoding style for a state machine, specify the state 
vectors. Alternatively, you can specify the encoding style when the 
state machine is compiled. Xilinx recommends that you specify an 
encoding style. If you do not specify a style, your compiler selects a 
style that minimizes the gate count. For the state machine shown in 
the three previous examples, the compiler selected the binary 
encoded style: S1=“000”, S2=”001”, S3=”010”, S4=”011”, S5=”100”, 
S6=”101”, and S7=”110”. 

You can use the FSM extraction tool to change the encoding style of a 
state machine. For example, use this tool to convert a binary-encoded 
state machine to a one-hot encoded state machine.

Note Refer to your synthesis tool documentation for instructions on 
how to extract the state machine and change the encoding style.

Comparing Synthesis Results for Encoding Styles
The following table summarizes the synthesis results from the 
different methods used to encode the state machine in the three 
previous VHDL and Verilog state machine examples. The results are 
for an XC4013XLABG256-7 device.

Note The Timing Analyzer was used to obtain the timing results in 
this table.

Table 4-2  State Machine Encoding Styles Comparison 
(XC4013XLABG256-7)

Comparison One-Hot Binary
Enum
(One-hot)

Occupied CLBs 6 7 6

CLB Flip-flops 7 3 7

PadToSetup 6.6 ns (3a) 7.2 ns (4) 3.6 ns (3)

ClockToPad 10.4 ns (3) 10.8 ns (3) 9.9 ns (3)

ClockToSetup 7.8 ns (4) 8.5 ns (4) 4.8 ns (3)

a. The number in parentheses represents the CLB block level delay.
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The binary-encoded state machine has the longest ClockToSetup 
delay. Generally, the FSM extraction tool provides the best results 
because the compiler reduces any redundant states and optimizes the 
state machine after the extraction.

Initializing the State Machine
When creating a state machine, especially when you use one-hot 
encoding, add the following lines of code to your design to ensure 
that the FPGA is initialized to a Set state.

• VHDL Example

SYNC_PROC: process (CLOCK, RESET)

begin

    if (RESET=’1’) then

CS <= s1;

• Verilog Example

always @ (posedge CLOCK or posedge RESET)

begin

if (RESET == 1’b 1)

CS = S1;

Alternatively, you can assign an INIT=S attribute to the initial 
state register to specify the initial state. Refer to your synthesis 
tool documentation for information on assigning this attribute.

In the Binary Encode State Machine example, the RESET signal 
forces the S1 flip-flop to be preset (initialized to 1) while the other 
flip-flops are cleared (initialized to 0).

Implementing Operators and Generate Modules
Xilinx FPGAs feature carry logic elements that can be used for 
optimal implementation of operators and generate modules. 
Synthesis tools infer the carry logic automatically when a specific 
coding style or operator is used.
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Adder and Subtracter
Synthesis tools will infer carry logic in XC4000XLA, Spartan, and 
Spartan-XL devices when an adder and Subtracter is described (+ or - 
operator). 

Multiplier
Synthesis tools will utilize the carry logic when a multiplier is 
described.

LeonardoSpectrum Pipelined Multiplier Example

• VHDL Example

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

entity multiply is

generic (size :integer := 16; level:integer:=4);

port (

clk : in std_logic;

Ain : in std_logic_vector (size-1 downto 0);

Bin : in std_logic_vector (size-1 downto 0);

Qout : out std_logic_vector (2*size-1 downto 0)

);

end multiply;

architecture RTL of multiply is

type levels_of_registers is array (level-1

downto 0) of unsigned (2*size-1 downto 0);

signal reg_bank :levels_of_registers;

signal a, b : unsigned (size-1 downto 0);
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begin

Qout <= std_logic_vector (reg_bank (level-1));

process

begin

wait until clk’event and clk = ’1’;

a <= unsigned(Ain);

b <= unsigned(Bin);

reg_bank (0) <= a * b;

for i in 1 to level-1 loop

reg_bank (i) <= reg_bank (i-1);

end loop;

end process;

end architecture RTL;

• Verilog Example.

module multiply (clk, ain, bin, q);
parameter size = 16;
parameter level = 4;
input     clk;
input [size-1:0] ain, bin;
output [2*size-1:0] q;
reg [size-1:0]      a, b;
reg [2*size-1:0]    reg_bank [level-1:0];
integer             i;
always @(posedge clk)

begin
a <= ain;
b <= bin;

end
always @(posedge clk)

reg_bank[0] <= a * b;
always @(posedge clk)

for (i = 1;i < level; i=i+1)
reg_bank[i] <= reg_bank[i-1];

assign q = reg_bank[level-1];
endmodule // multiply
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Counters
When describing a counter in HDL, the arithmetic operator ’+’ will 
infer the carry chain. 

count <= count + 1; -- This will infer carry logic

This implementation will provide a very effective solution especially 
for all purpose counters.

Below is an example of a loadable binary counter:

• VHDL Example

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity counter is

port (d : in std_logic_vector (7 downto 0);

ld, ce, clk, rst : in std_logic;

q : out std_logic_vector (7 downto 0));

end counter;

architecture behave of counter is

signal count : std_logic_vector (7 downto 0);

begin

 process (clk, rst)

 begin

if rst = ’1’ then

count <= (others => ’0’);

elsif rising_edge(clk) then

if ld = ’1’ then

count <= d;
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elsif ce = ’1’ then

count <= count + ’1’;

end if;

end if;

end process;

q <= count;

end behave;

• Verilog Example

module counter(d, ld, ce, clk, rst, q);
input [7:0]  d;
input        ld, ce, clk, rst;
output [7:0] q;
reg [7:0]    count;
always @(posedge clk or posedge rst) 

begin
if (rst)

count <= 0;
else if (ld)

count <= d;
else if (ce)

count <= count + 1;
end

assign q = count;
endmodule

For application that require faster counters, LFSR can implement high 
performance and area efficient counters.  LFSR will require very 
minimum logic (only a XOR or XNOR feedback).

For smaller counters it is also effective to use the Johnson encoded 
counters.  This type of counter does not use the carry chain but 
provides a fast performance.

The following is an example of a sequence for a 3 bit johnson counter.

000

001

011
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111

110

100

• VHDL Example

library IEEE;
use IEEE.STD_LOGIC_1164.all;
entity johnson is

generic (size : integer := 3);
port (clk   : in std_logic;

reset : in std_logic;
qout  : out std_logic_vector(size-1 downto 0));

end johnson;
architecture RTL of johnson is

signal q : std_logic_vector(size-1 downto 0);
begin  -- RTL

process(clk, reset)
begin

if reset = ’1’ then
q <= (others => ’0’);

elsif clk’event and clk=’1’ then
for i in 1 to size - 1 loop

q(i) <= q(i-1);
end loop;  -- i
q(0) <= not q(size-1);

end if; 
end process;
qout <= q;

end RTL;

• Verilog Example

module johnson (clk, reset, q);
parameter size = 4;

input     clk, reset;
output [size-1:0] q;
reg [size-1:0]    q;
integer           i;
always @(posedge clk or posedge reset)

if (reset)
q <= 0;

else



Architecture Specific HDL Coding Styles for 

Synthesis and Simulation Design Guide 4-67

begin
for (i=1;i<size;i=i+1)

q[i] <= q[i-1];
q[0] <= ~q[size-1];

end
endmodule // johnson

Comparator
Magnitude comparator '>' or '<'  will infer carry chain logic and result in fast 
implementations in Xilinx devices. Equality comparator '==' will be imple-
mented using LUTs

• VHDL Example

-- Unsigned 8-bit greater or equal comparator.

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity compar is

port(A,B : in std_logic_vector(7 downto 0);

cmp : out std_logic);

end compar;

architecture archi of compar is

begin

cmp <= '1' when A >= B

else '0';

end archi;

• Verilog Example

// Unsigned 8-bit greater or equal comparator.

module compar(A, B, cmp);

input [7:0] A;

input [7:0] B;

output cmp;
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assign cmp = A >= B ? 1'b1 : 1'b0;

endmodule

Implementing Memory
XC4000XLA, Spartan, and Spartan-XL FPGAs provide distributed 
on-chip RAM and ROM. CLB function generators can be configured 
as ROM (ROM16X1, ROM32X1); level-sensitive RAM (RAM16X1, 
RAM 32X1); edge-triggered, single-port (RAM16X1S, RAM32X1S); or 
dual-port (RAM16x1D) RAM. Level sensitive RAMs are not available 
for the Spartan and Spartan-XL families. 

Note For more information on XC4000 family RAM, refer to the 
Xilinx Web site (http://support.xilinx.com) or the current release of 
The Programmable Logic Data Book.

Implementing Distributed SelectRAM+
Distributed SelectRAM+ can either be instantiated or inferred.Thefollowing 
sections describe and give examples of both instantiating and inferring 
distributed SelectRAM+.

The following RAM Primitives are available for instantiation.

• Static level-sensitive RAM (RAM16x1, RAM32x1). These primitives 
are not available in Spartan and Spartan-XL.

• Static synchronous single-port RAM (RAM16x1S, RAM32x1S)

• Static synchronous dual-port RAM (RAM16x1D, RAM32x1D)

For more information on distributed SelectRAM+, please see the 
Libraries Guide.

Instantiating Distributed SelectRAM+ in VHDL

Below are VHDL coding examples for RAM instantiation in FPGA Express/
FPGA Compiler II, LeonardoSpectrum, and Synplify.

• FPGA Express/FPGA Compiler II example

-- This example shows how to create a
-- 16x4s RAM using xilinx RAM16x1S component.
library IEEE;
use IEEE.std_logic_1164.all;
--use IEEE.std_logic_unsigned.all;



Architecture Specific HDL Coding Styles for 

Synthesis and Simulation Design Guide 4-69

entity ram_16x4s is

port (o: out std_logic_vector(3 downto 0);

we : in std_logic;

clk: in std_logic;
d: in std_logic_vector(3 downto 0);
a: in std_logic_vector(3 downto 0));

end ram_16x4s;
architecture xilinx of ram_16x4s is

component RAM16x1S is 
port (O : out std_logic;
D : in std_logic; 

A3, A2, A1, A0 : in std_logic;
WE, WCLK : in std_logic);

end component;
attribute INIT: string;
attribute INIT of U0: label is "FFFF";
attribute INIT of U1: label is "ABCD";
attribute INIT of U2: label is "BCDE";
attribute INIT of U3: label is "CDEF";

begin
U0 : RAM16x1S 

port map (O => o(0), WE => we, WCLK => clk, D 
=> d(0), A0 => 

a(0), A1 => a(1), A2 => a(2), A3 => a(3));
U1 : RAM16x1S 

port map (O => o(1), WE => we, WCLK => clk, D 
=> d(1), A0 => a(0), A1 => a(1), A2 => a(2), 

A3 => a(3));
U2 : RAM16x1S 

port map (O => o(2), WE => we, WCLK => clk, D 
=> d(2), A0 => a(0), A1 => a(1), A2 => a(2), 

A3 => a(3));
U3 : RAM16x1S 

port map (O => o(3), WE => we, WCLK => clk, D 
=> d(3), A0 => 

a(0), A1 => a(1), A2 => a(2), A3 => a(3));
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end xilinx;

• LeonardoSpectrum example

-- This example shows how to create a
-- 16x4s RAM using xilinx RAM16x1S component.

library IEEE;

use IEEE.std_logic_1164.all;
entity ram_16x1s is

generic (init_val : string := "0000" );

port (O : out std_logic;

D : in std_logic;
A3, A2, A1, A0: in std_logic;
WE, CLK : in std_logic);

end ram_16x1s;

architecture xilinx of ram_16x1s is

attribute INIT: string;

attribute INIT of u1 : label is init_val;
component RAM16X1S is port (O : out std_logic;

D : in std_logic;
WE: in std_logic;
WCLK: in std_logic;
A0: in std_logic;
A1: in std_logic;
A2: in std_logic;
A3: in std_logic);

end component; 

begin
U1 : RAM16X1S port map (O => O, WE => WE,  WCLK =>

CLK, D => D, A0 => A0, A1 => A1, A2 => A2, A3 => 
A3);

end xilinx;
library IEEE;
use IEEE.std_logic_1164.all;
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--use IEEE.std_logic_unsigned.all;
entity ram_16x4s is
port (o: out std_logic_vector(3 downto 0);

we : in std_logic;
clk: in std_logic;
d: in std_logic_vector(3 downto 0);
a: in std_logic_vector(3 downto 0));

end ram_16x4s;
architecture xilinx of ram_16x4s is
component ram_16x1s

generic (init_val: string := "0000");
port (O : out std_logic;
D : in std_logic; 

A3, A2, A1, A0 : in std_logic;
WE, CLK : in std_logic);

end component;
begin
U0 : ram_16x1s generic map ("FFFF")

port map (O => o(0), WE => we, CLK => clk, 
D => d(0), A0 => a(0), A1 => a(1),
A2 => a(2),A3 => a(3));

U1 : ram_16x1s generic map ("ABCD")
port map (O => o(1), WE => we, CLK => clk,
D => d(1), A0 => a(0), A1 => a(1), 
A2 => a(2), A3 => a(3));

U2 : ram_16x1s generic map ("BCDE")
port map (O => o(2), WE => we, CLK => clk, 
D => d(2), A0 => a(0), A1 => a(1), 
A2 => a(2), A3 => a(3));

U3 : ram_16x1s generic map ("CDEF")
port map (O => o(3), WE => we, CLK => clk, 
D => d(3), A0 => a(0), A1 => a(1), 
A2 => a(2), A3 => a(3));

end xilinx;

• Synplify example

-- This example shows how to create a
-- 16x4s RAM using xilinx RAM16x1S component.
library IEEE;
use IEEE.std_logic_1164.all;
library xc4000;
use xc4000.components.all;
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library synplify;
use synplify.attributes.all;

entity ram_16x1s is
generic (init_val : string := "0000" );
port (O : out std_logic;

D : in std_logic;
A3, A2, A1, A0: in std_logic;
WE, CLK : in std_logic);

end ram_16x1s;

architecture xilinx of ram_16x1s is

attribute xc_props: string;
attribute xc_props of u1 : label is "INIT=" & 

init_val;

begin

U1 : RAM16X1S port map (O => O, WE => WE,  WCLK =>
CLK, D => D, A0 => A0, A1 => A1, A2 => A2, A3 => 
A3);

end xilinx;

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity ram_16x4s is
port (o: out std_logic_vector(3 downto 0);

we : in std_logic;
clk : in std_logic;
d: in std_logic_vector(3 downto 0);
a: in std_logic_vector(3 downto 0));

end ram_16x4s;

architecture xilinx of ram_16x4s is

component ram_16x1s



Architecture Specific HDL Coding Styles for 

Synthesis and Simulation Design Guide 4-73

generic (init_val: string := "0000");
port (O : out std_logic;
D : in std_logic;

A3, A2, A1, A0 : in std_logic;
WE, CLK : in std_logic);

end component;

begin
U0 : ram_16x1s generic map ("FFFF")

port map (O => o(0), WE => we, CLK => clk,
D =>d(0), A0 => a(0), A1 => a(1),
A2 => a(2), A3 => a(3));

U1 : ram_16x1s generic map ("ABCD")
port map (O => o(1), WE => we, CLK => clk, 
D => d(1), A0 => a(0), A1 => a(1), 
A2 => a(2), A3 => a(3));

U2 : ram_16x1s generic map ("BCDE")
port map (O => o(2), WE => we, CLK => clk, 
D => d(2), A0 => a(0), A1 => a(1), 
A2 => a(2), A3 => a(3));

U3 : ram_16x1s generic map ("CDEF")
port map (O => o(3), WE => we, CLK => clk,
D => d(3), A0 => a(0), A1 => a(1), 
A2 => a(2), A3 => a(3));

end xilinx;

Instantiating Distributed SelectRAM+ in Verilog

Below are Verilog coding examples for RAM instantiation in FPGA 
Express/FPGA Compiler II, LeonardoSpectrum, and Synplify.

• FPGA Express/FPGA Compiler II example.

// This example shows how to create a
// 16x4 RAM using Xilinx RAM16X1S component.
module RAM_INIT_EX1 (DATA_BUS, ADDR, WE, CLK);
input [3:0] ADDR;
inout [3:0] DATA_BUS;
input WE, CLK;
wire [3:0] DATA_OUT;
// Only for Simulation -- the defparam will not 

synthesize
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// Use the defparam for RTL simulation.
// There is no defparam needed for Post P&R 

simulation.

// synopsys translate_off
defparam RAM0.INIT="0101", RAM1.INIT="AAAA", 

RAM2.INIT="FFFF", RAM3.INIT="5555";
// synopsys translate_on
assign DATA_BUS = !WE ? DATA_OUT : 4'hz;
// Instantaition of 4 16X1 Synchronous RAMs
// Use the xc_props attribute to pass the INIT 

property
RAM16X1S RAM3 (.O (DATA_OUT[3]), .D (DATA_BUS[3]),

.A3 (ADDR[3]), .A2 (ADDR[2]), .A1 (ADDR[1]),

.A0 (ADDR[0]), .WE (WE), .WCLK (CLK)) ; 
/* synopsys attribute INIT "5555" */

RAM16X1S RAM2 (.O (DATA_OUT[2]), .D (DATA_BUS[2]),
.A3 (ADDR[3]), .A2 (ADDR[2]), .A1 (ADDR[1]),
.A0 (ADDR[0]), .WE (WE), .WCLK (CLK));
/* synopsys attribute INIT "FFFF" */

RAM16X1S RAM1 (.O (DATA_OUT[1]), .D (DATA_BUS[1]),
.A3 (ADDR[3]), .A2 (ADDR[2]), .A1 (ADDR[1]),
.A0 (ADDR[0]), .WE (WE), .WCLK (CLK));
/* synopsys attribute INIT "AAAA" */

RAM16X1S RAM0 (.O (DATA_OUT[0]), .D (DATA_BUS[0]),
.A3 (ADDR[3]), .A2 (ADDR[2]), .A1 (ADDR[1]),
.A0 (ADDR[0]), .WE (WE), .WCLK (CLK));
/* synopsys attribute INIT "0101" */

endmodule
module RAM16X1S (O,D,A3, A2, A1, A0, WE, WCLK);
output O;
input D;
input A3;
input A2;
input A1;
input A0;
input WE;

input WCLK;

endmodule

• LeonardoSpectrum example
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// This example shows how to create a
// 16x4 RAM using Xilinx RAM16X1S component.
module RAM_INIT_EX1 (DATA_BUS, ADDR, WE, CLK);
input [3:0] ADDR;
inout [3:0] DATA_BUS;
input WE, CLK;
wire [3:0] DATA_OUT;
// Only for Simulation -- the defparam will not 

synthesize
// Use the defparam for RTL simulation.
// There is no defparam needed for Post P&R 

simulation.
// exemplar translate_off
defparam RAM0.INIT="0101", RAM1.INIT="AAAA", 

RAM2.INIT="FFFF", RAM3.INIT="5555";
// exemplar translate_on
assign DATA_BUS = !WE ? DATA_OUT : 4'hz;
// Instantaition of 4 16X1 Synchronous RAMs
// Use the xc_props attribute to pass the INIT 

property
RAM16X1S RAM3 (.O (DATA_OUT[3]), .D (DATA_BUS[3]),

.A3 (ADDR[3]), .A2 (ADDR[2]), .A1 (ADDR[1]),

.A0 (ADDR[0]), .WE (WE), .WCLK (CLK))
/* exemplar attribute RAM3 INIT 5555 */;

RAM16X1S RAM2 (.O (DATA_OUT[2]), .D (DATA_BUS[2]),
.A3 (ADDR[3]), .A2 (ADDR[2]), .A1 (ADDR[1]),
.A0 (ADDR[0]), .WE (WE), .WCLK (CLK))
/* exemplar attribute RAM2 INIT FFFF */;

RAM16X1S RAM1 (.O (DATA_OUT[1]), .D (DATA_BUS[1]),
.A3 (ADDR[3]), .A2 (ADDR[2]), .A1 (ADDR[1]),
.A0 (ADDR[0]), .WE (WE), .WCLK (CLK))
/* exemplar attribute RAM1 INIT AAAA */;

RAM16X1S RAM0 (.O (DATA_OUT[0]), .D (DATA_BUS[0]),
.A3 (ADDR[3]), .A2 (ADDR[2]), .A1 (ADDR[1]),
.A0 (ADDR[0]), .WE (WE), .WCLK (CLK))
/* exemplar attribute RAM0 INIT 0101 */;

endmodule
module RAM16X1S (O,D,A3, A2, A1, A0, WE, WCLK);
output O;
input D;
input A3;
input A2;
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input A1;
input A0;
input WE;
input WCLK;

endmodule

• Synplify example

// This example shows how to create a
// 16x4 RAM using Xilinx RAM16X1S component.
`include "xc4000.v"
module RAM_INIT_EX1 (DATA_BUS, ADDR, WE, CLK);
input [3:0] ADDR;
inout [3:0] DATA_BUS;
input WE, CLK;
wire [3:0] DATA_OUT;
// Only for Simulation -- the defparam will not
// synthesize
// Use the defparam for RTL simulation.
// There is no defparam needed for Post P&R
//simulation.
// synthesis translate_off
defparam RAM0.INIT="0101", RAM1.INIT="AAAA", 

RAM2.INIT="FFFF", RAM3.INIT="5555";
// synthesis translate_on
assign DATA_BUS = !WE ? DATA_OUT : 4'hz;
// Instantaition of 4 16X1 Synchronous RAMs
// Use the xc_props attribute to pass the INIT 

property
RAM16X1S RAM3 (.O (DATA_OUT[3]), .D (DATA_BUS[3]),

.A3 (ADDR[3]), .A2 (ADDR[2]), .A1 (ADDR[1]),

.A0 (ADDR[0]), .WE (WE), .WCLK (CLK))
/* synthesis xc_props="INIT=5555" */;

RAM16X1S RAM2 (.O (DATA_OUT[2]), .D (DATA_BUS[2]),
.A3 (ADDR[3]), .A2 (ADDR[2]), .A1 (ADDR[1]),
.A0 (ADDR[0]), .WE (WE), .WCLK (CLK))
/* synthesis xc_props="INIT=FFFF" */;

RAM16X1S RAM1 (.O (DATA_OUT[1]), .D (DATA_BUS[1]),
.A3 (ADDR[3]), .A2 (ADDR[2]), .A1 (ADDR[1]),
.A0 (ADDR[0]), .WE (WE), .WCLK (CLK))
/* synthesis xc_props="INIT=AAAA" */;

RAM16X1S RAM0 (.O (DATA_OUT[0]), .D (DATA_BUS[0]),
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.A3 (ADDR[3]), .A2 (ADDR[2]), .A1 (ADDR[1]),

.A0 (ADDR[0]), .WE (WE), .WCLK (CLK))
/* synthesis xc_props="INIT=0101" */;

endmodule

Inferring Distributed SelectRAM+ in VHDL

The following examples provide VHDL coding styles for Leonar-
doSpectrum and Synplify. FPGA Express/FPGA Compiler II 
currently do not infer RAM.

• VHDL example of 32x8 (32 words by 8 bits per word) synchro-
nous dual port RAM.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity ram_32x8d_infer is
generic( d_width : integer := 8;

addr_width : integer := 5;
mem_depth : integer := 32);

port (o : out STD_LOGIC_VECTOR(d_width - 1 downto 
0);

we, clk : in STD_LOGIC;
d : in STD_LOGIC_VECTOR(d_width - 1 downto 

0);
raddr, waddr : in STD_LOGIC_VECTOR(addr_width 

- 1 downto 0));
end ram_32x8d_infer;
architecture xilinx of ram_32x8d_infer is
type mem_type is array (mem_depth - 1 downto 0) of
STD_LOGIC_VECTOR (d_width - 1 downto 0);
signal mem : mem_type;
begin
process(clk, we, waddr)
begin
if (rising_edge(clk)) then
if (we = ’1’) then

mem(conv_integer(waddr)) <= d;
end if;

end if;
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end process;
process(raddr)
begin
o <= mem(conv_integer(raddr));
end process;
end xilinx;

• VHDL example of 32x8 (32 words by 8 bits per word) synchro-
nous single port RAM example.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
entity ram_32x8s_infer is
generic( d_width : integer := 8;
addr_width : integer := 5;
mem_depth : integer := 32);
port (o : out STD_LOGIC_VECTOR(d_width - 1 downto 

0);
we, wclk : in STD_LOGIC;
d : in STD_LOGIC_VECTOR(d_width - 1 downto 

0);
addr : in STD_LOGIC_VECTOR(addr_width - 1 

downto 0));
end ram_32x8s_infer;
architecture xilinx of ram_32x8s_infer is
type mem_type is array (mem_depth - 1 downto 0) of 

STD_LOGIC_VECTOR (d_width - 1 downto 0);
signal mem : mem_type;

begin
process(wclk, we, addr)
begin
if (rising_edge(wclk)) then
if (we = ’1’) then

mem(conv_integer(addr)) <= d;
end if;

end if;
end process;
o <= mem(conv_integer(addr));
end xilinx;
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Inferring Distributed SelectRAM+ in Verilog

The following examples provide Verilog coding hints for Synplify 
and LeonardoSpectrum. FPGA Express/FPGA Compiler II currently 
do not infer RAM.

• Verilog example of 32x8 (32 words by 8 bits per word) synchro-
nous dual port RAM.

module ram_32x8d_infer (o, we, d, raddr, waddr,
 clk);
parameter d_width = 8, addr_width = 5;
output [d_width - 1:0] o;
input we, clk;
input [d_width - 1:0] d;
input [addr_width - 1:0] raddr, waddr;
reg [d_width - 1:0] o;
reg [d_width - 1:0] mem [(1 << addr_width) 1:0];
always @(posedge clk)
if (we)

mem[waddr] = d;
always @(mem or raddr)
o = mem[raddr];

endmodule

• Verilog example of 32x8 (32 words by 8 bits per word) synchronous, 
single-port RAM.

module ram_32x8s_infer (o, we, d, addr, wclk);
parameter d_width = 8, addr_width = 5;
output [d_width - 1:0] o;
input we, wclk;
input [d_width - 1:0] d;
input [addr_width - 1:0] addr;
reg [d_width - 1:0] mem [(1 << addr_width) 1:0];
always @(posedge wclk)
if (we)

mem[addr] = d;
assign o = mem[addr];
endmodule

Implementing ROMs
ROMs can be implemented as follows.
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• Use RTL descriptions of ROMs

• Instantiate 16x1 and 32x1 ROM primitives

The following examples are RTL VHDL and Verilog ROM coding 
examples.

RTL Description of a ROM VHDL Example

Note LeonardoSpectrum does not infer ROM.

Use the following coding example for FPGA Express and Synplify.

--
--  Behavioral 16x4 ROM Example
--           rom_rtl.vhd
--

library IEEE;
use IEEE.std_logic_1164.all;

entity rom_rtl is
     port (ADDR: in INTEGER range 0 to 15;
           DATA: out STD_LOGIC_VECTOR (3 downto 0));

end rom_rtl;

architecture XILINX of rom_rtl is

subtype ROM_WORD is STD_LOGIC_VECTOR (3 downto 0);
type ROM_TABLE is array (0 to 15) of ROM_WORD;
constant ROM: ROM_TABLE := ROM_TABLE'(
 ROM_WORD'("0000"),
 ROM_WORD'("0001"),
 ROM_WORD'("0010"),
 ROM_WORD'("0100"),
 ROM_WORD'("1000"),
 ROM_WORD'("1100"),
 ROM_WORD'("1010"),
 ROM_WORD'("1001"),
 ROM_WORD'("1001"),
 ROM_WORD'("1010"),
 ROM_WORD'("1100"),
 ROM_WORD'("1001"),
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 ROM_WORD'("1001"),
 ROM_WORD'("1101"),
 ROM_WORD'("1011"),
 ROM_WORD'("1111"));
 
begin

DATA <= ROM(ADDR);  -- Read from the ROM

end XILINX;

RTL Description of a ROM Verilog Example

Note LeonardoSpectrum does not infer ROM.

Use the following coding example for FPGA Express and Synplify.

/*
 * ROM_RTL.V
 * Behavioral Example of 16x4 ROM
*/

module rom_rtl(ADDR, DATA) ;
input [3:0] ADDR ;
output [3:0] DATA ;
reg [3:0] DATA ;

// A memory is implemented
// using a case statement

always @(ADDR)
begin

case (ADDR)
4'b0000 : DATA = 4'b0000 ;
4'b0001 : DATA = 4'b0001 ;
4'b0010 : DATA = 4'b0010 ;
4'b0011 : DATA = 4'b0100 ;
4'b0100 : DATA = 4'b1000 ;
4'b0101 : DATA = 4'b1000 ;
4'b0110 : DATA = 4'b1100 ;
4'b0111 : DATA = 4'b1010 ;
4'b1000 : DATA = 4'b1001 ;
4'b1001 : DATA = 4'b1001 ;
4'b1010 : DATA = 4'b1010 ;
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4'b1011 : DATA = 4'b1100 ;
4'b1100 : DATA = 4'b1001 ;
4'b1101 : DATA = 4'b1001 ;
4'b1110 : DATA = 4'b1101 ;
4'b1111 : DATA = 4'b1111 ;

endcase
end

endmodule

When using an RTL description of a ROM, the synthesis tool creates 
ROMs from random logic gates that are implemented using function 
generators.

Another method for implementing ROMs is instantiating the 16x1 or 
32x1 ROM primitives. To define the ROM value, use the Set Attribute 
or equivalent command to set the INIT property on the ROM compo-
nent.

Note Refer to your synthesis tool documentation for the correct 
syntax.

This type of command writes the ROM contents to the netlist file so 
the Xilinx tools can initialize the ROM. The INIT value should be 
specified in hexadecimal values. See the VHDL and Verilog RAM 
examples in the following section for examples of this property using 
a RAM primitive.

Implementing Distributed SelectRAM+

Distributed SelectRAM+ can either be instantiated or inferred.Thefollowing 
sections describe and give examples of both instantiating and inferring 
distributed SelectRAM+.

The following RAM Primitives are available for instantiation.

• Static level-sensitive RAM (RAM16x1, RAM32x1). These primitives 
are not available in Spartan and Spartan-XL.

• Static synchronous single-port RAM (RAM16x1S, RAM32x1S)

• Static synchronous dual-port RAM (RAM16x1D, RAM32x1D)

For more information on distributed SelectRAM+, please see the 
Libraries Guide.
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Implementing FIFO
Xilinx provides several Application Notes describing the use of FIFO 
when implementing FPGAs. Please refer to the following Xilinx 
Application Notes for more information:

• XAPP053: “Implementing FIFOs in XC4000 Series RAM” (7/96) 
(http://www.xilinx.com/xapp/xapp053.pdf)

• XAPP051: “Synchronous and Asynchronous FIFO Designs” (9/96) 
(http://www.xilinx.com/xapp/xapp051.pdf)

Additionally, synchronous FIFO cores are available for XC4000XLA and 
Spartan/Spartan-XL with the Xilinx CORE Generator.

Using CORE Generator to Implement Memory
If you must instantiate memory, use CORE Generator to create a 
memory module larger than 32X1 (16X1 for Dual Port). Imple-
menting memory with CORE Generator is similar to implementing 
any module with CORE Generator except for defining the Memory 
initialization file. Reference the memory module datasheets that 
come with every CORE Generator module for specific information on 
the initialization file.

Implementing Multiplexers
A 4-to-1 multiplexer is efficiently implemented in a single XC4000 or 
Spartan family CLB. The six input signals (four inputs, two select 
lines) use the F, G, and H function generators. Multiplexers that are 
larger than 4-to-1 exceed the capacity of one CLB. For example, a 16-
to-1 multiplexer requires five CLBs and has two logic levels. These 
additional CLBs increase area and delay. Xilinx recommends that you 
use internal high impedance buffers (BUFTs) to implement large 
multiplexers.

Large multiplexers built with BUFTs have the following advantages.

• Can vary in width with only minimal impact on area and delay

• Can have as many inputs as there are high impedance buffers per 
horizontal longline in the target device

• Have one-hot encoded selector inputs
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This last point is illustrated in the following VHDL and Verilog 
designs of a 5-to-1 multiplexer built with gates. Typically, the gate 
version of this multiplexer has binary encoded selector inputs and 
requires three select inputs (SEL<2:0>). The schematic representation 
of this design is shown in the “5-to-1 MUX Implemented with Gates” 
figure. 

Some synthesis tools include commands that allow you to switch 
between multiplexers with gates or with 3-states. Check with your 
synthesis vendor for more information.

The VHDL and Verilog designs provided at the end of this section 
show a 5-to-1 multiplexer built with high impedance buffers. The 
high impedance buffer version of this multiplexer has one-hot 
encoded selector inputs and requires five select inputs (SEL<4:0>). 
The schematic representation of these designs is shown in the “5-to-1 
MUX Implemented with Gates” figure.

Mux Implemented with Gates VHDL Example
The following example shows a MUX implemented with Gates.

-- MUX_GATE.VHD
-- 5-to-1 Mux Implemented in Gates
-- May 1997 

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity mux_gate is

port (SEL: in STD_LOGIC_VECTOR (2 downto 0);
A,B,C,D,E: in STD_LOGIC; 

SIG: out STD_LOGIC);
end mux_gate;

architecture RTL of mux_gate is
begin

SEL_PROCESS: process (SEL,A,B,C,D,E)
begin

case SEL is 
when "000"  => SIG <= A; 
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when "001"  => SIG <= B; 
when "010"  => SIG <= C; 
when "011"  => SIG <= D; 
when others => SIG <= E; 

end case; 
end process SEL_PROCESS;

end RTL;

Mux Implemented with Gates Verilog Example
The following example shows a MUX implemented with Gates.

/* MUX_GATE.V 
* May 1997 */

module mux_gate (A,B,C,D,E,SEL,SIG);

input A,B,C,D,E;
input [2:0] SEL;
output SIG;
reg SIG;

always @ (A or B or C or D or SEL)
case (SEL)

3'b000:
SIG=A;

3'b001:
SIG=B;

3'b010:
SIG=C;

3'b011:
SIG=D;

3'b100:
SIG=E;

default: SIG=A;
endcase

endmodule
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Figure 4-8  5-to-1 MUX Implemented with Gates

Mux Implemented with BUFTs VHDL Example
The following example shows a MUX implemented with BUFTs.

-- MUX_TBUF.VHD
-- 5-to-1 Mux Implemented in 3-State Buffers
-- May 1997 

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity mux_tbuf is
port (SEL: in STD_LOGIC_VECTOR (4 downto 0);
A,B,C,D,E: in STD_LOGIC; 

SIG

A
B
C
D
E

SEL<0>

SEL<2>
SEL<1>

X6229
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SIG: out STD_LOGIC);
end mux_tbuf;

architecture RTL of mux_tbuf is
begin
 

SIG <= A when (SEL(0)='0') else 'Z'; 
SIG <= B when (SEL(1)='0') else 'Z'; 
SIG <= C when (SEL(2)='0') else 'Z'; 
SIG <= D when (SEL(3)='0') else 'Z'; 
SIG <= E when (SEL(4)='0') else 'Z';

end RTL;

Mux Implemented with BUFTs Verilog Example
The following example shows a MUX implemented with BUFTs.

/* MUX_TBUF.V
 * May 1997 */

module mux_tbuf (A,B,C,D,E,SEL,SIG);

input A,B,C,D,E;
input [4:0] SEL;
output SIG;
reg SIG;
 

always @ (SEL or A)
begin

if (SEL[0]==1'b0)
SIG=A;

else
SIG=1'bz;

end
 
always @ (SEL or B)
begin 

if (SEL[1]==1'b0)
SIG=B;

else
SIG=1'bz;

end
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always @ (SEL or C)
begin

if (SEL[2]==1'b0)
SIG=C;

else
SIG=1'bz;

end

always @ (SEL or D)
begin

if (SEL[3]==1'b0) 
SIG=D; 

else 
SIG=1'bz;

end

always @ (SEL or E)
begin 

if (SEL[4]==1'b0)
SIG=E;

else
SIG=1'bz;

end
endmodule



Architecture Specific HDL Coding Styles for 

Synthesis and Simulation Design Guide 4-89

Figure 4-9  5-to-1 MUX Implemented with BUFTs 

A comparison of timing and area for a 5-to-1 multiplexer built with 
gates and high impedance buffers in an XC4013XLABG256-07 device 
is provided in the following table. When the multiplexer is imple-
mented with high impedance buffers, no CLBs are used and the delay 
is smaller. 

Table 4-3  Timing/Area for 5-to-1 MUX (XC4013XLABG256-07)

Timing/Area Using BUFTs Using Gates

Longest Path SEL(4) to SIG D to SIG

SEL<0>

SEL<1>

SEL<2>

SEL<3>

SEL<4>

A

B

C

D

E

SIG

X6228
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Using Pipelining
You can use pipelining to dramatically improve device performance. 
Pipelining increases performance by restructuring long data paths 
with several levels of logic and breaking it up over multiple clock 
cycles. This method allows a faster clock cycle and, as a result, an 
increased data throughput at the expense of added data latency. 
Because the Xilinx FPGA devices are register-rich, this is usually an 
advantageous structure for FPGA designs because the pipeline is 
created at no cost in terms of device resources. Because data is now 
on a multi-cycle path, special considerations must be used for the rest 
of your design to account for the added path latency. You must also 
be careful when defining timing specifications for these paths.

Some synthesis tools have limited capability for constraining multi-
cycle paths, or translate these constraints to Xilinx implementation 
constraints. Check your synthesis tool documentation for information 
on multi-cycle paths. If your tool cannot translate the constraint but 
can synthesize to a multi-cycle path, you can add the constraint to the 
UCF file.

Before Pipelining
In the following example, the clock speed is limited by the clock-to 
out-time of the source flip-flop; the logic delay through four levels of 
logic; the routing associated with the four function generators; and 
the setup time of the destination register.

Timing 10.09 ns (3 level of logic) 9.65 ns (4 levels of logic)

Area 1 CLBs, 5 BUFTs 2 CLBs

Table 4-3  Timing/Area for 5-to-1 MUX (XC4013XLABG256-07)

Timing/Area Using BUFTs Using Gates
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Figure 4-10  Before Pipelining

After Pipelining
This is an example of the same data path in the previous example 
after pipelining. Because the flip-flop is contained in the same CLB as 
the function generator, the clock speed is limited by the clock-to-out 
time of the source flip-flop; the logic delay through one level of logic; 
one routing delay; and the setup time of the destination register. In 
this example, the system clock runs much faster than in the previous 
example.

Figure 4-11  After Pipelining

Design Hierarchy
HDL designs can either be synthesized as a flat module or as many 
small modules. Each methodology has its advantages and disadvan-
tages, but as higher density FPGAs are created, the advantages of 
hierarchical designs outweigh any disadvantages.

Advantages to building hierarchical designs are as follows.

• Easier and faster verification/simulation

• Allows several engineers to work on one design at the same time
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• Speeds up design compilation

• Reduces design time by allowing design module re-use for this 
and future designs.

• Allows you to produce designs that are easier to understand

• Allows you to efficiently manage the design flow

Disadvantages to building hierarchical designs are as follows.

• Design mapping into the FPGA may not be as optimal across 
hierarchical boundaries; this can cause lesser device utilization 
and decreased design performance

• Design file revision control becomes more difficult

• Designs become more verbose

Most of the disadvantages listed above can be overcome with careful 
design consideration when choosing the design hierarchy.

Using Synthesis Tools with Hierarchical Designs
By effectively partitioning your designs, you can significantly reduce 
compile time and improve synthesis results. Here are some recom-
mendations for partitioning your designs.

Restrict Shared Resources to Same Hierarchy Level

Resources that can be shared should be on the same level of hier-
archy. If these resources are not on the same level of hierarchy, the 
synthesis tool cannot determine if these resources should be shared.

Compile Multiple Instances Together

You may want to compile multiple occurrences of the same instance 
together to reduce the gate count. However, to increase design speed, 
do not compile a module in a critical path with other instances.

Restrict Related Combinatorial Logic to Same 
Hierarchy Level

Keep related combinatorial logic in the same hierarchical level to 
allow the synthesis tool to optimize an entire critical path in a single 
operation. Boolean optimization does not operate across hierarchical 
boundaries. Therefore, if a critical path is partitioned across bound-
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aries, logic optimization is restricted. In addition, constraining 
modules is difficult if combinatorial logic is not restricted to the same 
level of hierarchy.

Separate Speed Critical Paths from Non-critical Paths

To achieve satisfactory synthesis results, locate design modules with 
different functions at different levels of the hierarchy. Design speed is 
the first priority of optimization algorithms. To achieve a design that 
efficiently utilizes device area, remove timing constraints from design 
modules.

Restrict Combinatorial Logic that Drives a Register to 
Same Hierarchy Level

To reduce the number of CLBs used, restrict combinatorial logic that 
drives a register to the same hierarchical block.

Restrict Module Size

Restrict module size to 100 - 200 CLBs. This range varies based on 
your computer configuration; the time required to complete each 
optimization run; if the design is worked on by a design team; and 
the target FPGA routing resources. Although smaller blocks give you 
more control, you may not always obtain the most efficient design. 
For the final compilation of your design, you may want to compile 
fully from the top down. Check with your synthesis vendor for 
guidelines.

Register All Outputs

Arrange your design hierarchy so that registers drive the module 
output in each hierarchical block. Registering outputs makes your 
design easier to constrain because you only need to constrain the 
clock period and the ClockToSetup of the previous module. If you 
have multiple combinatorial blocks at different levels of the hier-
archy, you must manually calculate the delay for each module. Also, 
registering the outputs of your design hierarchy can eliminate any 
possible problems with logic optimization across hierarchical bound-
aries.
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Restrict One Clock to Each Module or to Entire 
Design

By restricting one clock to each module, you only need to describe the 
relationship between the clock at the top level of the design hierarchy 
and each module clock. By restricting one clock to the entire design, 
you only need to describe the clock at the top level of the design hier-
archy.

Note See your synthesis tool documentation for more information on 
optimizing logic across hierarchical boundaries and compiling hierar-
chical designs.

Incremental Design (ECO)
For information on Incremental Design (ECO), please refer to the following 
Application Notes:

• XAPP165: “Using Xilinx and Exemplar for Incremental Designing 
(ECO)”, application note, v1.0 (8/9/99) (http://www.xilinx.com/xapp 
xapp165.pdf).

• XAPP164: “Using Xilinx and Synplify for Incremental 
Designing(ECO)”, application note, v1.0 (8/6/99) (http://
www.xilinx.com/xapp xapp164.pdf).
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Chapter 5

Architecture Specific HDL Coding Styles for 
Spartan-II, Virtex, Virtex-E, and Virtex-II

This chapter includes coding techniques to help you improve 
synthesis results. It includes the following sections.

• “Introduction”

• “Instantiating Components”

• “Using Boundary Scan (JTAG 1149.1)”

• “Using Global Clock Buffers”

• “Using Advanced Clock Management,”

• “Using Dedicated Global Set/Reset Resource”

• “Implementing Inputs and Outputs”

• “Encoding State Machines”

• “Implementing Operators and Generate Modules”

• “Implementing Memory”

• “Implementing Shift Register (Virtex/E/II and Spartan-II)”

• “Implementing Multiplexers”

• “Using Pipelining”

• “Design Hierarchy”

• “Modular Design and Incremental Design (ECO)”

Introduction
This chapter highlights the features and synthesis techniques in 
designing with Xilinx Virtex/E/II and Spartan-II FPGAs. Virtex/E 
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and Spartan-II devices share many architectural similarities. Virtex-II 
provides an architecture that is substantially different from Virtex, 
Virtex-E, and Spartan-II; however, many of the synthesis design tech-
niques apply the same way to all these devices. Unless otherwise 
stated, the features and examples in this chapter apply to all Virtex/
E/II and Spartan-II devices.

• Advanced clock management

• On-chip RAM and ROM

• IEEE 1149.1 — compatible boundary scan logic support

• Flexible I/O with Adjustable Slew-rate Control and Pull-up/
Pull-down Resistors

• Various drive strength.

• Various I/O standards.

• Dedicated high-speed carry-propagation circuit

You can use these device characteristics to improve resource utili-
zation and enhance the speed of critical paths in your HDL 
designs. The examples in this chapter are provided to help you 
incorporate these system features into your HDL designs. 

Instantiating Components
Xilinx provides a set of libraries that your Synthesis tool can infer 
from your HDL code description. However, architecture specific and 
customized components must be explicitly instantiated as compo-
nents in your design.

Instantiating FPGA Primitives
Architecture specific components are available for instantiation. 
These components are marked as primitive in the “Libraries Guide”. 
Components marked as macro in the “Libraries Guide” should not be 
instantiated in HDL code. 

FPGA primitives can be instantiated in VHDL and Verilog.

• VHDL example (declaring component and port map)

library IEEE;
use IEEE.std_logic_1164.all;
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-- Add the following two lines if using 
Synplify:

-- library virtex;

-- use virtex.components.all;
entity flops is port(
di: in std_logic;
ce : in std_logic;
clk: in std_logic;
qo: out std_logic;
rst: in std_logic);
end flops;
-- remove the following component declaration
-- if using Synplify

architecture inst of flops is
component FDCE port( D: in std_logic;

CE: in std_logic;
C: in std_logic;
CLR: in std_logic;
Q: out std_logic);

end component;

begin
U0 : FDCE port map(D => di,

CE=> ce,
C => clk,
CLR => rst,
Q => qo);

end inst;

Note To use this example in Synplify, you need to add the Xilinx 
primitive library and remove the component declarations as 
noted above.

The Virtex library contains primitives of Virtex and Spartan-II 
architectures. Replace ‘virtex’ with the appropriate device family 
if you are targeting other Xilinx FPGA architecture

If you are designing with a Virtex-E device, use the virtexe 
library. If you are designing with a Virtex-II device, use the 
virtex2 library.

• Verilog Example.
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module flops (d1, ce, clk, q1, rst);
input d1;
input ce;
input clk;
output q1;
input rst;

FDCE u1 (.D(d1),
.CE(ce),
.C (clk),
.CLR(rst),
.Q (q1));

endmodule

Note To use the above example in Synplify, add the following 
line.

‘include “<path_to>/<architecture>.v”

The <architecture>.v files are located in $SYNPLICITY/lib/
xilinx. Where $SYNPLICITY identifies your Synplicity install 
area.

To use the above example with Virtex, Virtex-II and Spartan-II 
devices, replace <architecture> with virtex. To use a Virtex-E 
device, replace with virtexe. To use a Virtex-II device, replace 
<architecture> with virtex2.

Instantiating CORE Generator Modules
The CORE Generator allows you to generate complex ready-to-use 
functions such as FIFO, Filter, Divider, RAM, and ROM. Core Gener-
ator will generate EDIF netlist to describe the functionality and a 
component instantiation template for HDL instantiation. For more 
information on the use and functions created by the CORE Generator, 
see the “CORE Generator Guide”.

In VHDL, you can declare the component and port map as shown in 
the “Instantiating FPGA Primitives” section above. Synthesis tools will 
assume a black box for components that do not have a VHDL func-
tional description.

In Verilog, an empty module must be declared to get port direction-
ality. In addition, Synplify requires a syn_black_box directive 
declared on a black box as shown in the example below. FPGA 
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Express and LeonardoSpectrum will assume a black box for empty 
modules.

Example of Black Box Directive and Empty Module Declaration.

module r256x16s (
addr,
di,
clk,
we,
en,
rst,
do); //synthesis syn_black_box

input [7:0] addr;
input [15:0] di;
input clk;
input we;
input en;
input rst;
output [15:0] do;
endmodule

module top (addrp, dip, clkp, wep, enp, rstp, dop);
input [7:0] addrp;
input [15:0] dip;
input clkp;
input wep;
input enp;
input rstp;
output [15:0] dop;
r256x16s U0(

.addr(addrp),

.di(dip),

.clk(clkp),

.we(wep),

.en(enp),

.rst(rstp),

.do(dop));
endmodule
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Using Boundary Scan (JTAG 1149.1) 
Virtex/E/II and Spartan-II FPGAs contain boundary scan facilities 
that are compatible with IEEE Standard 1149.1.

You can access the built-in boundary scan logic between power-up 
and the start of configuration.

In a configured Virtex/E/II and Spartan-II device, basic boundary 
scan operations are always available. BSCAN_VIRTEX, 
BSCAN_VIRTEX2 and BSCAN_SPARTAN2 are instantiated only if 
users want to create internal boundary scan chains in a Virtex/Virtex-
E /Virtex-II or Spartan-II device.

For specific information on boundary scan for an architecture, refer to 
the “Libraries Guide” and “The Programmable Logic Data Book”. For 
information on configuration and readback of Virtex/Virtex-E/
Spartan-II FPGAs refer to XAPP 139 at http://www.xilinx.com/
xapp/xapp139.pdf.

Instantiating the Boundary Scan Symbol in Virtex, 
Virtex-E, Virtex-II and Spartan-II

The BSCAN_VIRTEX, BSCAN_VIRTEX2 and BSCAN_SPARTAN2 
symbol are used to create internal boundary scan chains in a Virtex/
E/II and Spartan-II devices, respectively. The 4-pin JTAG interface 
(TDI, TDO, TCK, and TMS) are dedicated pins in these devices. To 
use normal JTAG for boundary scan purposes, just hook up the JTAG 
pins to the port and go. The pins on the BSCAN_VIRTEX, 
BSCAN_VIRTEX2 and BSCAN_SPARTAN2 symbols do not need to 
be instantiated and connected unless those special functions are 
needed to drive an internal scan chain.

The following example shows how to instantiate BSCAN_VIRTEX. 
Figure 4-2 shows how BSCAN_VIRTEX is connected in this design.

Replace BSCAN_VIRTEX with BSCAN_SPARTAN2 for a Spartan-II, and 
BSCAN_VIRTEX2 for a Virtex-II device. Refer to the “Libraries Guide” to 
verify component pinout information.

Note BSCAN_VIRTEX2 provides an additional output pin named 
“CAPTURE”. This pin is will output HIGH when the boundary scan is in 
Capture-DR state.
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Boundary Scan VHDL Example

The following is an example of how to instantiate a BSCAN_VIRTEX. 

-- VIRTEX/VIRTEX-E Boundary Scan code

library IEEE;
use IEEE.std_logic_1164.all;

entity flops is port(
di: in std_logic;
ce : in std_logic;
clk: in std_logic;
qo: out std_logic
);
end flops;

architecture inst of flops is
component FDCE port( D: in std_logic;

CE: in std_logic;
C: in std_logic;
CLR: in std_logic;
Q: out std_logic);

end component;
component BSCAN_VIRTEX port ( TDO1 : in std_logic;

TDO2: in std_logic;
UPDATE : out std_logic;
SHIFT: out std_logic;
RESET: out std_logic;
TDI: out std_logic;
SEL1: out std_logic;
DRCK1: out std_logic;
SEL2: out std_logic;
DRCK2: out std_logic);

end component;

signal q1,rst,tdo1,update, shift, reset,
tdi,sel1,drck1 : std_logic;
begin
U4: BSCAN_VIRTEX port map(TDO1 => tdo1,

TDO2 => ’0’ ,
UPDATE => update,
SHIFT => shift,
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RESET => rst,
TDI => tdi,
SEL1 => sel1,
DRCK1 => drck1,
SEL2 => open,
DRCK2 => open);

U0 : FDCE port map(D => di,
CE=> update,
C => clk,
CLR => shift,
Q => tdo1);

U1: FDCE port map(D => tdi,
CE=> sel1,
C => drck1,
CLR => rst,
Q => q1);

U2: FDCE port map(D => q1,
CE=> ce,
C => clk,
CLR => rst,
Q => qo);

end inst;

Boundary Scan Verilog Example

The following is an example of how to instantiate a BSCAN_VIRTEX. 

//VIRTEX/VIRTEX-E Boundary Scan code
//Undriven input pins (TDO1 in this example) may be 

connected to GND
module vbscan (di,clk, qo, rst);
input di;
input clk;
output qo;
input rst;
wire 
q0,update,shift,reset,tdi,sel1,drck1,sel2,drck2,tdo

1, tdo2;
BSCAN_VIRTEX bscanvirtex( //.TDO1(),

.TDO2(tdo2),

.UPDATE(update),

.SHIFT(shift),

.RESET(reset),
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.TDI(tdi),

.SEL1(),

.DRCK1(),

.SEL2(sel2),

.DRCK2(drck2)) ;
FDCE u0(.D(di),

.CE(update),

.C (clk),

.CLR (reset),

.Q (tdo2));
FDCE u1 (.D (shift),

.CE(tdi),

.C (clk),

.CLR(sel2),
.Q (q1));

FDCE u2(.D (q1),
.CE(drck2),
.C (clk),
.CLR (rst),
.Q (qo)) ;

endmodule
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Figure 5-1  BSCAN_VIRTEX Schematic

Using Global Clock Buffers
For designs with global signals, use global clock buffers to take 
advantage of the low-skew, high-drive capabilities of the dedicated 
global buffer tree of the target device. Your synthesis tool automati-
cally inserts a clock buffer whenever an input signal drives a clock 
signal or whenever an internal clock signal reaches a certain fanout. 
The Xilinx implementation software automatically selects the clock 
buffer that is appropriate for your specified design architecture. 

Some synthesis tools also limit global buffer insertions to match the 
number of buffers available on the device. Refer to your synthesis 
tool documentation for detailed information.

You can instantiate the clock buffers if your design requires a special 
architecture-specific buffer or if you want to specify how the clock 
buffer resources should be allocated. 
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Table 5-1 summarizes global buffer (BUFG) resources in Virtex, 
Virtex-E, Virtex-II and Spartan-II devices.

Virtex/E/II, and Spartan-II devices include two tiers of global 
routing resources referred to as primary global and secondary local 
clock routing resources.

Note In Virtex-II, BUFG is available for instantiation, but will be 
implemented with BUFGMUX.

• The primary global routing resources are dedicated global nets 
with dedicated input pins that are designed to distribute high-
fanout clock signals with minimal skew. Each global clock net can 
drive all CLB, IOB, and Block SelectRAM+ clock pins. The 
primary global nets may only be driven by the global buffers 
(BUFG), one for each global net. There are four primary global 
nets in Virtex/E and Spartan-II. There are sixteen in Virtex-II.

• The secondary local clock routing resources consist of backbone 
lines or longlines. These secondary resources are more flexible 
than the primary resources since they are not restricted to routing 
clock signal only. These backbone lines are accessed differently 
between Virtex/E/Spartan-II and Virtex-II devices as follows:

♦ In Virtex/E and Spartan-II devices, there are 12 longlines 
across the top of the chip and 12 across bottom. From these 
lines, up to 12 unique signals per column can be distributed 
via the 12 longlines in the column. To use this, you must 
specify the USELOWSKEWLINES constraint in the UCF file. 
For more information on the USELOWSKEWLINES 
constraint syntax, refer to the “Libraries Guide”.

♦ In Virtex-II, longlines resources are more abundant. There are 
many ways in which the secondary clocks or high fanout 
signals can be routed using a pattern of resources that result 
in low skew.  The Xilinx Implementation tools will automati-
cally use these resources based on various constraints in your 
design. Additionally, the USELOWSKEWLINES constraint 
can be applied to access this routing resource. 

Table 5-1  Global Buffer Resources

Buffer Type Virtex Virtex-E Virtex-II Spartan-II

BUFG 4 4 N/A 4

BUFGMUX N/A N/A 16 N/A
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Inserting Clock Buffers
Many synthesis tools automatically insert a global buffer (BUFG) 
when an input port drives a register’s clock pin or when an internal 
clock signal reaches a certain fanout. A BUFGP (an IBUFG-BUFG 
connection) is inserted for the external clock whereas a BUFG is 
inserted for an internal clock. Most synthesis tools will also allow you 
to control BUFG insertions manually if you have more clock pins 
than the available BUFGs resources.

FPGA Express will infer up to four clock buffers for pure clock nets. 
You can also instantiate clock buffers or assign them via the Express 
Constraints Editor.

Note Synthesis tools currently insert BUFGs for all Virtex/E/II and 
Spartan-II designs. If a BUFGMUX is needed in a Virtex-II design, it 
must be instantiated.

LeonardoSpectrum will force clock signals to global buffers when the 
resources are available. The best way to control unnecessary BUFG 
insertions is to turn off global buffer insertion, then use the buffer_sig 
attribute to push BUFGs onto the desired signals. By doing this the 
user will not have to instantiate any BUFG components. As long as 
"chip" options is used to optimize the IBUFs, they will be auto-
inserted for the input.

The following is a syntax example of the buffer_sig attribute.

set_attribute -port clk1 -name buffer_sig -value 
BUFG

set_attribute -port clk2 -name buffer_sig -value 
BUFG

Synplify will assign a BUFG to any input signal that directly drives a 
clock. The maximum number of global buffers is defined as 4. Auto-
insertion of the BUFG for internal clocks occur with a fanout 
threshold of 16 loads. To turn off automatic clock buffers insertion, 
use the syn_noclockbuf attribute. This attribute can be applied to the 
entire module/architecture or a specific signal. To change the 
maximum number of global buffer insertion, you may set an attribute 
in the .sdc file as follows.

define_global_attribute xc_global buffers (8)

Refer to your synthesis tool documentation for a detailed syntax 
information. 
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Instantiating Global Clock Buffers
You can instantiate global buffers in your code as described in this 
section.

Instantiating Buffers Driven from a Port

You can instantiate global buffers and connect them to high-fanout 
ports in your code rather than inferring them from a synthesis tool 
script. If you do instantiate global buffers, verify that the Pad param-
eter is not specified for the buffer.

In Virtex/E/II and Spartan-II designs, synthesis tools insert BUFGP 
for clock signals which access a dedicated clock pin. To have a regular 
input pin to a clock buffer connection, you must use an IBUF-BUFG 
connection. This is done by instantiating BUFG after disabling global 
buffer insertion. 

Instantiating Buffers Driven from Internal Logic

Some synthesis tools require you to instantiate a global buffer in your 
code to use the dedicated routing resource if a high-fanout signal is 
sourced from internal flip-flops or logic (such as a clock divider or 
multiplexed clock), or if a clock is driven from a non-dedicated I/O 
pin. The following VHDL and Verilog examples instantiate a BUFG 
for an internal multiplexed clock circuit.

Note Synplify will infer a global buffer for a signal that has 16 or 
greater fanouts.

• VHDL Example

-----------------------------------------------

-- CLOCK_MUX_BUFG.VHD Version 1.1 --

-- This is an example of an instantiation of --

-- global buffer (BUFG) from an internally  --

-- driven signal, a multiplexed clock.       --

-- March 1998                                --

-----------------------------------------------

library IEEE;

use IEEE.std_logic_1164.all;
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entity clock_mux is

port (DATA, SEL: in STD_LOGIC;

SLOW_CLOCK, FAST_CLOCK: in  STD_LOGIC;

DOUT: out STD_LOGIC);

end clock_mux;

architecture XILINX of clock_mux is

signal CLOCK: STD_LOGIC;

signal CLOCK_GBUF: STD_LOGIC;

component BUFG

    port (I: in  STD_LOGIC; 

          O: out STD_LOGIC);

end component;

begin

Clock_MUX: process (SEL, FAST_CLOCK, SLOW_CLOCK)

    begin

       if (SEL = '1') then 

CLOCK <= FAST_CLOCK;

        else

CLOCK <= SLOW_CLOCK;

        end if;

    end process;

GBUF_FOR_MUX_CLOCK: BUFG

   port map (I => CLOCK,

 O => CLOCK_GBUF);
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Data_Path: process (CLOCK_GBUF)

 begin

 if (CLOCK_GBUF'event and CLOCK_GBUF='1')then

 DOUT <= DATA;

 end if;

 end process;

end XILINX;

• Verilog Example

 //////////////////////////////////////////////

 // CLOCK_MUX_BUFG.V Version 1.1 //

 // This is an example of an instantiation of //

 // global buffer (BUFG) from an internally  //

 // driven signal, a multipled clock.         //

 // March 1998                                //

///////////////////////////////////////////////

module clock_mux(DATA,SEL,SLOW_CLOCK,FAST_CLOCK,
DOUT);

 input  DATA, SEL;

   input  SLOW_CLOCK, FAST_CLOCK;

   output DOUT;

    reg   CLOCK;

    wire   CLOCK_GBUF;

    reg    DOUT;

always @ (SEL or FAST_CLOCK or SLOW_CLOCK)

begin

        if (SEL == 1'b1)
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            CLOCK <= FAST_CLOCK;

        else

            CLOCK <= SLOW_CLOCK;

end

BUFG GBUF_FOR_MUX_CLOCK (.O(CLOCK_GBUF),

.I(CLOCK));

    always @ (posedge CLOCK_GBUF)

        DOUT = DATA;

endmodule

Using Advanced Clock Management
Virtex/E, and Spartan-II devices feature Clock Delay-Locked Loop 
(CLKDLL) for advanced clock management. The CLKDLL can elimi-
nate skew between the clock input pad and internal clock-input pins 
throughout the device. CLKDLL also provides four quadrature 
phases of the source clock. With CLKDLL you can eliminate clock-
distribution delay, double the clock, or divide the clock. The CLKDLL 
also operates as a clock mirror. By driving the output from a DLL off-
chip and then back on again, the CLKDLL can be used to de-skew a 
board level clock among multiple Virtex, Virtex-E, and Spartan-II 
devices. For detailed information on using CLKDLLs, refer to the 
“Libraries Guide” and application notes, XAPP 132 and XAPP 174 at 
http://www.xilinx.com/apps/xapp.htm.

In Virtex-II devices, the Digital Clock Manager (DCM) is available for 
advanced clock management. The DCM contains four main features 
listed below. For more information on the functionality of these 
features, refer to the “Libraries Guide” and the “Virtex-II Handbook.”

• Delay Locked Loop (DLL) — The DLL feature is very similar to 
CLKDLL.

• Digital Phase Shifter (DPS) — The DPS provides a clock shifted by 
a fixed or variable phase skew.
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• Digital Frequency Synthesizer (DFS) — The DFS produces a wide 
range of possible clock frequency related to the input clock.

• Digital Spread Spectrum (DSS) — The DSS broadens the frequency 
spectrum of the output clock by speeding up and slowing down 
the clock within a few percent of the target frequency.

Using CLKDLL (Virtex/E, Spartan II)
There are four CLKDLLs in each Virtex/Spartan-II device and eight 
in each Virtex-E device. There are also four global clock input buffer 
(IBUFG) in the Virtex/E and Spartan-II devices to bring external 
clock in to the CLKDLL. The VHDL/Verilog example below shows a 
possible connection and usage of CLKDLL in your design. Cascading 
three CLKDLLs in Virtex/Spartan-II device is not allowed due to 
excessive jitter. 

Synthesis tools currently do not infer CLKDLLs. The following exam-
ples shows how to instantiate CLKDLLs in your VHDL and Verilog 
code.

• VHDL Example.

library IEEE;
use IEEE.std_logic_1164.all;
entity CLOCK_TEST is
  port(
   ACLK                : in  std_logic;
-- off chip feedback, connected to OUTBCLK on the board.
    BCLK                : in  std_logic;
--OUT CLOCK
    OUTBCLK             : out std_logic;
    DIN                 : in  std_logic_vector(1 downto 0);
    RESET               : in  std_logic;
    QOUT                : out std_logic_vector (1 downto 0);
-- CLKDLL lock signal
    BCLK_LOCK           : out std_logic

Table 5-2  CLKDLL and DCM Resources

Virtex/
Spartan-II

Virtex-E Virtex-II

CLKDLL 4 8 N/A

DCM N/A N/A 4 - 12



Synthesis and Simulation Design Guide

5-18 Xilinx Development System

    );
end CLOCK_TEST;
architecture RTL of CLOCK_TEST is
  component IBUFG
    port (
      I : in  std_logic;
      O : out std_logic);
  end component;
  component BUFG
    port (
     I : in  std_logic;

O : out std_logic);
  end component;
  component CLKDLL
    port (
CLKIN  : in std_logic;
      CLKFB  : in std_logic;
      RST    : in std_logic;
      CLK0   : out std_logic;
      CLK90  : out std_logic;
      CLK180 : out std_logic;
      CLK270 : out std_logic;
      CLKDV : out std_logic;
     CLK2X  : out std_logic;

LOCKED : out std_logic);
  end component;
  -- Glock signals
  signal ACLK_ibufg     : std_logic;
  signal BCLK_ibufg     : std_logic;
  signal ACLK_2x        : std_logic;
  signal ACLK_2x_design : std_logic;
  signal ACLK_lock      : std_logic;
begin
  ACLK_ibufg_inst : IBUFG
    port map (
      I => ACLK,
      O => ACLK_ibufg
      );
  BCLK_ibufg_inst : IBUFG
    port map (
      I => BCLK,
      O => BCLK_ibufg



Architecture Specific HDL Coding Styles for Spar-

Synthesis and Simulation Design Guide 5-19

      );
  ACLK_bufg : BUFG
    port map (
      I => ACLK_2x,
      O => ACLK_2x_design
      );
  ACLK_dll : CLKDLL
    port map (
CLKIN      => ACLK_ibufg,
      CLKFB      => ACLK_2x_design,
      RST        => ’0’,
      CLK2X      => ACLK_2x,
      CLK0       => OPEN,
      CLK90      => OPEN,
      CLK180     => OPEN,
      CLK270     => OPEN,
      CLKDV      => OPEN,
     LOCKED     => ACLK_lock
      );
BCLK_dll_out : CLKDLL
     port map (
       CLKIN     => ACLK_ibufg,
       CLKFB     => BCLK_ibufg,
       RST       => ’0’,
       CLK2X     => OUTBCLK,
       CLK0      => OPEN,
       CLK90     => OPEN,
       CLK180    => OPEN,
       CLK270    => OPEN,
       CLKDV     => OPEN,
      LOCKED    => BCLK_lock
       );
process (ACLK_2x_design, RESET)
begin
 if RESET = ’1’ then
  QOUT <= "00";
 elsif ACLK_2x_design’event and ACLK_2x_design = ’1’ then
  if ACLK_lock = ’1’ then
   QOUT <= DIN;
  end if;
 end if;
end process;
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END RTL;

Note To use this example in Synplify, include the following 
library.

library virtex;
use virtex.components.all;

• Verilog Example.

// Verilog example

// In this example ACLK’s frequency is doubled, 
used inside and outside the chip.

// BCLK and OUTBCLK are connected in the board 
outside the chip.

module clock_test(ACLK, DIN, QOUT, BCLK, 
OUTBCLK, BCLK_LOCK, RESET);

 input   ACLK, BCLK;

 input RESET;

 input [1:0] DIN;

 output [1:0] QOUT;

output OUTBCLK, BCLK_LOCK;

reg [1:0] QOUT;

IBUFG CLK_ibufg_A

      (.I (ACLK),

      .O(ACLK_ibufg)

      );

BUFG ACLK_bufg

      (.I (ACLK_2x),

       .O (ACLK_2x_design)

     );

IBUFG CLK_ibufg_B

      (.I (BCLK),     // connected to OUTBCLK 
outside
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      .O(BCLK_ibufg)

      );

CLKDLL ACLK_dll_2x   // 2x clock

      (.CLKIN(ACLK_ibufg),

      .CLKFB(ACLK_2x_design),

      .RST(1’b0),

      .CLK2X(ACLK_2x),

      .CLK0(),

      .CLK90(),

.CLK180(),

      .CLK270(),

      .CLKDV(),

      .LOCKED(ACLK_lock)

      );

CLKDLL BCLK_dll_OUT  // off-chip synchronization

      (.CLKIN(ACLK_ibufg),

.CLKFB(BCLK_ibufg), // BCLK and OUTBCLK is 
connected outside the chip.

.RST(1’b0),

.CLK2X(OUTBCLK),  //connected to BCLK outside

.CLK0(),

.CLK90(),

.CLK180(),

.CLK270(),

.CLKDV(),

.LOCKED(BCLK_LOCK)

      );

always @(posedge ACLK_2x_design or posedge 
RESET)
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begin

if (RESET)

 QOUT[1:0] <= 2’b00;

else if (ACLK_lock)

 QOUT[1:0] <= DIN[1:0];

end

endmodule

Note To use this example in Synplify, add the following line:

‘include "<path_to>/virtex.v"

Using the Additional CLKDLL in Virtex-E
There are eight CLKDLLs in each Virtex-E device, with four located at 
the top and four at the bottom. Refer to the “DLLs in Virtex-E 
Devices” figure below. The basic operations of the DLLs in the Virtex-
E devices remains the same as in the Virtex and Spartan-II devices, 
but the connections may have changed for some configurations.
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Figure 5-2  DLLs in Virtex-E Devices

Two DLLs located in the same half-edge (top-left, top-right, bottom-
right, bottom-left) can be connected together, without using a BUFG 
between the CLKDLLs, to generate a 4x clock. Refer to the “DLL 
Generation of 4x Clock in Virtex-E Devices” figure below.
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Figure 5-3  DLL Generation of 4x Clock in Virtex-E Devices

Below are examples of coding a CLKDLL in both VHDL and Verilog.

• VHDL Example.

library IEEE;
use IEEE.std_logic_1164.all;
entity CLOCK_TEST is
  port(
ACLK : in  std_logic;
DIN : in  std_logic_vector(1 downto 0);
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RESET : in  std_logic;
QOUT : out std_logic_vector (1 downto 0);
    -- CLKDLL lock signal
BCLK_LOCK           : out std_logic
    );
end CLOCK_TEST;
architecture RTL of CLOCK_TEST is
  component IBUFG
    port (
      I : in  std_logic;
      O : out std_logic);
  end component;
  component BUFG
    port (
      I : in  std_logic;
      O : out std_logic);
  end component;
  component CLKDLL
    port (
      CLKIN  : in std_logic;
      CLKFB  : in std_logic;
      RST    : in std_logic;
      CLK0   : out std_logic;
      CLK90  : out std_logic;
      CLK180 : out std_logic;
      CLK270 : out std_logic;
      CLKDV : out std_logic;
      CLK2X  : out std_logic;
      LOCKED : out std_logic);
end component;
  -- Glock signals
  signal ACLK_ibufg             : std_logic;
  signal ACLK_2x, BCLK_4x       : std_logic;
  signal BCLK_4x_design         : std_logic;
  signal BCLK_lockin            : std_logic;
begin
  ACLK_ibufginst : IBUFG
    port map (
      I => ACLK,
      O => ACLK_ibufg
      );
  BCLK_bufg: BUFG
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    port map (
      I => BCLK_4x, O => BCLK_4x_design);
  ACLK_dll : CLKDLL
    port map (
      CLKIN      => ACLK_ibufg,
      CLKFB      => ACLK_2x,
      RST        => ’0’,
      CLK2X      => ACLK_2x,
      CLK0       => OPEN,
      CLK90      => OPEN,
      CLK180     => OPEN,
      CLK270     => OPEN,
      CLKDV      => OPEN,
      LOCKED     => OPEN
      );
   BCLK_dll : CLKDLL
     port map (
       CLKIN     => ACLK_2x,
       CLKFB     => BCLK_4x_design,
       RST       => ’0’,
       CLK2X     => BCLK_4x,

CLK0      => OPEN,
       CLK90     => OPEN,
       CLK180    => OPEN,
       CLK270    => OPEN,
       CLKDV     => OPEN,
       LOCKED    => BCLK_lockin
       );
process (BCLK_4x_design, RESET)
begin
 if RESET = ’1’ then
  QOUT <= "00";
 elsif BCLK_4x_design’event and BCLK_4x_design = 

’1’ 
then
  if BCLK_lockin = ’1’ then
   QOUT <= DIN;
  end if;
 end if;
end process;
 BCLK_lock <= BCLK_lockin;
END RTL;
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Note Synplify users need to add the following line,

library virtex;
use virtex.components.all;

• Verilog Example.

module clock_test(ACLK, DIN, QOUT, BCLK_LOCK, 
RESET);

 input   ACLK;
 input RESET;
 input [1:0] DIN;
 output [1:0] QOUT;
 output BCLK_LOCK;
reg [1:0] QOUT;
IBUFG CLK_ibufg_A
      (.I (ACLK),
      .O(ACLK_ibufg)
      );
BUFG BCLK_bufg
      (.I (BCLK_4x),
       .O (BCLK_4x_design)
      );
CLKDLL ACLK_dll_2x   // 2x clock
      (.CLKIN(ACLK_ibufg),
      .CLKFB(ACLK_2x),
      .RST(1’b0),
      .CLK2X(ACLK_2x),
      .CLK0(),
      .CLK90(),
      .CLK180(),
      .CLK270(),
      .CLKDV(),
      .LOCKED()
      );
CLKDLL BCLK_dll_4x  // 4x clock
      (.CLKIN(ACLK_2x),
      .CLKFB(BCLK_4x_design), // BCLK_4x after bufg
      .RST(1’b0),
      .CLK2X(BCLK_4x),
      .CLK0(),
      .CLK90(),
.CLK180(),
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      .CLK270(),
      .CLKDV(),
      .LOCKED(BCLK_LOCK)
      );
always @(posedge BCLK_4x_design or posedge RESET)
begin
if (RESET)
 QOUT[1:0] <= 2’b00;
else if (BCLK_LOCK)
 QOUT[1:0] <= DIN[1:0];
end
endmodule

Note Synplify users should add the appropriate library. Please 
see the “Instantiating FPGA Primitives” section in this chapter.

Using BUFGDLL
BUFGDLL macro is the simplest way to provide zero propagation 
delay for a high-fanout on-chip clock from the external input. This 
macro uses the IBUFG, CLKDLL and BUFG primitive to implement 
the most basic DLL application. Refer to the “BUFGDLL Schematic” 
figure below.
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Figure 5-4  BUFGDLL Schematic

In LeonardoSpectrum, set the following attribute in the command 
line or TCL script.

set_attribute -port <CLOCK_PORT> -name PAD -value 
BUFGDLL

LeonardoSpectrum support implementation of BUFGDLL with 
CLKDLLHF component. To use this implementation, set the 
following attribute.

set_attribute -port <CLOCK_PORT> -name PAD -value 
BUFGDLLHF

In Synplify, set the following attribute in SDC file.

define_attribute <port_name> xc_clockbuftype {BUFGDLL}

This attribute can be applied to the clock port in HDL code as well.

CLKDLL Attributes
To specify how the signal on CLKDIV pin is frequency divided with 
respect to the CLK0 pin, the CLKDV_DIVIDE property can be set. 
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The values allowed for this property are 1.5, 2, 2.5, 3, 4, 5, 8, or 16. The 
default is 2.

In HDL code, CLKDV_DIVIDE property is set as an attribute to the 
CLKDLL instance.

The following are VHDL and Verilog coding examples of CLKDLL 
attributes.

• VHDL Example.

library IEEE;
use IEEE.std_logic_1164.all;
entity CLOCK_TEST is
  port(
    ACLK                : in  std_logic;
    DIN : in  std_logic_vector(1 downto 0);
    RESET               : in  std_logic;
    QOUT : out std_logic_vector (1 downto 0)
    );
end CLOCK_TEST;
architecture RTL of CLOCK_TEST is
  component IBUFG
    port (
      I : in  std_logic;
      O : out std_logic);
  end component;
  component BUFG
    port (
      I : in  std_logic;
      O : out std_logic);
  end component;
  component CLKDLL
    port (
      CLKIN  : in std_logic;
      CLKFB  : in std_logic;
      RST    : in std_logic;
      CLK0   : out std_logic;
      CLK90  : out std_logic;
      CLK180 : out std_logic;
      CLK270 : out std_logic;
      CLKDV : out std_logic;
      CLK2X  : out std_logic;
      LOCKED : out std_logic);
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  end component;
  -- Glock signals
signal ACLK_ibufg             : std_logic;
  signal div_2, div_2_design    : std_logic;
  signal ACLK0, ACLK0bufg       : std_logic;
attribute CLKDV_DIVIDE: string;
attribute CLKDV_DIVIDE of ACLK_dll : label is "2";
begin
  ACLK_ibufginst : IBUFG
    port map (
      I => ACLK,
      O => ACLK_ibufg
      );
  ACLK_bufg: BUFG
    port map (
      I => ACLK0, O => ACLK0bufg);
  DIV_bufg: BUFG
    port map (
      I => div_2, O => div_2_design);
  ACLK_dll : CLKDLL
    port map (
      CLKIN      => ACLK_ibufg,
      CLKFB      => ACLK0bufg,
      RST        => ’0’,
      CLK2X      => OPEN,
      CLK0       => ACLK0,
      CLK90      => OPEN,
      CLK180     => OPEN,
      CLK270     => OPEN,
      CLKDV      => div_2,
      LOCKED     => OPEN
      );
process (div_2_design, RESET)
begin
if RESET = ’1’ then
  QOUT <= "00";
 elsif div_2_design’event and div_2_design = ’1’ 

then
   QOUT <= DIN;
 end if;
end process;
END RTL;
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• Verilog Example.

module clock_test(ACLK, DIN, QOUT, RESET);
 input   ACLK;
 input RESET;
 input [1:0] DIN;
 output [1:0] QOUT;
reg [1:0] QOUT;
IBUFG CLK_ibufg_A
      (.I (ACLK),
      .O(ACLK_ibufg)
      );
BUFG div_CLK_bufg
      (.I (div_2),
       .O (div_2_design)
      );
BUFG clk0_bufg ( .I(clk0), .O(clk_bufg));
CLKDLL ACLK_div_2   // div by 2
      (.CLKIN(ACLK_ibufg),
      .CLKFB(clk_bufg),
      .RST(1’b0),
      .CLK2X(),
      .CLK0(clk0),
      .CLK90(),
      .CLK180(),
      .CLK270(),
      .CLKDV(div_2),
      .LOCKED()
); //exemplar attribute ACLK_div_2 CLKDV_DIVIDE 2
always @(posedge div_2_design or posedge RESET)
begin
if (RESET)
 QOUT[1:0] <= 2’b00;
else
 QOUT[1:0] <= DIN[1:0];
end
endmodule

Using DCM In Virtex-II
Synthesis tools currently do not automatically infer DCM. Hence, the 
DCM has to be instantiated in your VHDL and Verilog designs. 
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Please refer to the Design Consideration section (Chapter 2) of the 
“Virtex-II Handbook” for information on the various features in the 
DCM. This book can be found on the Xilinx website at 
www.xilinx.com.

The following examples shows how to instantiate DCM and apply a 
DCM attribute in VHDL and Verilog. 

Note Please refer to Chapter 3, “General HDL Coding Style” for more 
information on passing attributes in the HDL code to different 
synthesis vendors.

VHDL Example
-- Using a DCM for Virtex-II (VHDL)
--
-- This code uses the phased clock output CLK0 of
-- the DCM
-- The Spread Spectrum option is enabled using the
-- attribute DSS_MODE set to SPREAD_8
--
-- The following code passes the attribute for the
-- 3 following synthesis tools: Synplify, 
-- FPGA Compiler II and LeonardoSpectrum.
library IEEE;
use IEEE.std_logic_1164.all;
entity clock_block is
  port (
    CLK_PAD             : in  std_logic;
   SPREAD_SPECTRUM_YES : in  std_logic;
    RST_DLL             : in  std_logic;
    CLK_out             : out std_logic;
    LOCKED              : out std_logic
    );
end clock_block;
architecture STRUCT of clock_block is
  signal CLK, CLK_int, CLK_dcm : std_logic;
  attribute DSS_MODE : string;
  attribute DSS_MODE of U2: label is "SPREAD_8";
  component IBUFG
    port (
      I : in  std_logic;
      O : out std_logic);
  end component;
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  component BUFG
    port (
      I : in  std_logic;
      O : out std_logic);
  end component;
  component DCM is
 port (
                    CLKFB    : in  std_logic;
                    CLKIN    : in  std_logic;
               DSSEN    : in  std_logic;
                    PSCLK    : in  std_logic;
                    PSEN     : in  std_logic;
                    PSINCDEC : in  std_logic;
                    RST      : in  std_logic;
                  CLK0     : out std_logic;
                    CLK90    : out std_logic;
                    CLK180   : out std_logic;
                    CLK270   : out std_logic;
                    CLK2X    : out std_logic;
                    CLK2X180 : out std_logic;
                    CLKDV    : out std_logic;
                    CLKFX    : out std_logic;
                    CLKFX180 : out std_logic;
                    LOCKED   : out std_logic;
                    PSDONE   : out std_logic;

STATUS   : out std_logic_vector
 (7 downto 0));
  end component;
begin
  U1 : IBUFG port map ( I => CLK_PAD, O => CLK_int);
  U2 : DCM port map (
    CLKFB    => CLK,
    CLKIN    => CLK_int,
    DSSEN    => SPREAD_SPECTRUM_YES,
    PSCLK    => '0',
    PSEN     => '0',
    PSINCDEC => '0',
    RST      => RST_DLL,
    CLK0     => CLK_dcm,
    LOCKED   => LOCKED);
  U3 : BUFG port map (I => CLK_dcm, O => CLK);
  CLK_out <= CLK;
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end architecture STRUCT;

• Verilog Example

// Using a DCM for Virtex-II (Verilog)
//
// This code uses the phased clock output CLK0 of
// the DCM
// The Spread Spectrum option is enabled using the 
// attribute DSS_MODE set to SPREAD_8
//
// The following code passes the attribute for the 
// 3 following synthesis tools: Synplify,
// FPGA Compiler II and LeonardoSpectrum.
module clock_top (clk_pad, spread_spectrum_yes,
rst_dll,

clk_out, locked);
input    clk_pad, spread_spectrum_yes, rst_dll;
output   clk_out, locked;
wire     clk, clk_int, clk_dcm;
IBUFG u1 (.I (clk_pad), .O (clk_int));
DCM u2 (.CLKFB    (clk),

   .CLKIN    (clk_int),
   .DSSEN    (spread_spectrum_yes),
   .PSCLK    (1'b0),
   .PSEN     (1'b0),
   .PSINCDEC (1'b0),
   .RST      (rst_dll),
   .CLK0     (clk_dcm),
   .LOCKED   (locked)) /* synthesis 

DSS_MODE="SPREAD_8" */; 
   // synopsys attribute DSS_MODE "SPREAD_8"
   // exemplar attribute u2 DSS_MODE SPREAD_8

BUFG u3(.I (clk_dcm), .O (clk));
assign clk_out = clk;

endmodule // clock_top

Using Dedicated Global Set/Reset Resource
Using GSR in Virtex/E/II and Spartan-II devices must be considered 
carefully. Synthesis tools automatically infer GSRs for these devices; 
however, STARTUP_VIRTEX, STARTUP_VIRTEX2 and 
STARTUP_SPARTAN2 can be instantiated in your code in order to 
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access the GSR resource. Xilinx’s recommendation for Virtex/E/II 
and Spartan-II designs is to write the high fan out set/reset signal 
explicitly in the HDL code and not use the STARTUP_VIRTEX, 
STARTUP_VIRTEX2, or STARTUP_SPARTAN2 blocks. There are two 
advantages to this method.

1.  This method gives you a faster speed. The set/reset signal will 
be routed onto the secondary longlines in the device, which are 
global lines with minimal skews and high speed. Therefore, the 
reset/set signal on the secondary lines has much faster speed 
than the speed of the GSR net of the STARTUP_VIRTEX block. 
Since Virtex is rich in routings, placing and routing this signal on 
the global lines can be easily done by our software.

2. The trce program will analyze the delays of the explicitly 
written set/reset signal. You can read the .twr file (report file of 
the trce program) and find out exactly how fast its speed is. The 
trce command does not analyze the delays on the GSR net of 
the STARTUP_VIRTEX, STARTUP_VIRTEX2, or 
STARTUP_SPARTAN2. Hence, using explicit set/reset signal will 
improve your design accountability.

For Virtex/E/II and Spartan-II devices, the Global Set/Reset (GSR) 
signal is, by default, set to active high (globally resets device when 
logic equals 1). You can change this to active low by inverting the 
GSR signal before connecting it to the GSR input of the STARTUP 
component.

Note See the “Simulating Your Design” chapter for more information 
on simulating the Global Set/Reset.

Startup State
The GSR pin on the STARTUP block or the GSRIN pin on the 
STARTBUF block drives the GSR net and connects to each flip-flop’s 
Preset and Clear pin. When you connect a signal from a pad to the 
STARTUP block’s GSR pin, the GSR net is activated. Because the GSR 
net is built into the silicon it does not appear in the pre-routed netlist 
file. When the GSR signal is asserted High (the default), all flip-flops 
and latches are set to the state they were in at the end of configura-
tion. When you simulate the routed design, the gate simulator trans-
lation program correctly models the GSR function.
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Note See the “Simulating Your Design” chapter for more information 
on STARTUP and STARTBUF.

The following VHDL and Verilog example shows a 
STARTUP_VIRTEX instantiation using both GSR and GTS pins for 
FPGA Express and LeonardoSpectrum.

• VHDL example.

-- This example uses both GTS and GSR pins. 

-- Unconnected STARTUP pins are omitted from

-- component declaration.

library IEEE;

use IEEE.std_logic_1164.all;

entity setreset is

port (CLK: in std_logic;        

DIN1 : in STD_LOGIC;

DIN2: in STD_LOGIC;

RESET: in STD_LOGIC;

GTSInput: in STD_LOGIC;

DOUT1: out STD_LOGIC;

DOUT2: out STD_LOGIC;

DOUT3: out STD_LOGIC);

end setreset ;

architecture RTL of setreset is

component STARTUP_VIRTEX

port( GSR, GTS: in std_logic);

end component;

begin             

startup_inst: STARTUP port map(GSR => RESET, GTS 
=> GTSInput);

reset_process: process (CLK, RESET)
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begin

if (RESET = '1') then

DOUT1 <= '0';

elsif ( CLK'event and CLK ='1') then

DOUT1  <= DIN1;       

end if;

end process;

gtsprocess:process (GTSInput)

begin

if GTSInput = '0' then

DOUT3 <= '0';

DOUT2 <= DIN2;

else

DOUT2 <= 'Z';

DOUT3 <= 'Z';

end if;

end process;

end RTL;

• Verilog example.

// This example uses both GTS and GSR pins

// Unused STARTUP pins are omitted from module

// declaration.

module setreset(CLK,DIN1, DIN2,RESET, GTSInput, 

DOUT1,DOUT2,DOUT3);

input CLK;        

input DIN1;

input DIN2;

input RESET;
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input GTSInput;

output DOUT1;

output DOUT2;

output DOUT3;

reg DOUT1;

STARTUP startup_inst(.GSR(RESET), .GTS(GTSInput));

always @(posedge CLK or posedge RESET) 

begin

if (RESET)

DOUT1 = 1'b0;

else

DOUT1 = DIN1;       

end

assign DOUT3 = (GTSInput == 1'b0)? 1'b0: 1'bZ;

assign DOUT2 = (GTSInput == 1'b0)? DIN2: 1'bZ;

endmodule

module STARTUP( GSR, GTS); 

input GSR;

input GTS; 

endmodule

The following VHDL/Verilog examples show a STARTUP_VIRTEX 
instantiation using both GSR and GTS pins in Synplify. In the exam-
ples, STARTUP_VIRTEX_GSR and STARTUP_VIRTEX_GTS are 
instantiated together to get the GSR and GTS pins connected. The 
resulting EDIF netlist will have only one STARTUP_VIRTEX block 
with GTS and GSR connections. The CLK pin of the 
STARTUP_VIRTEX will be unconnected. If all pins (GSR, GTS, and 
CLK) in the STARTUP block are needed, use STARTUP_VIRTEX to 
port map the pins. 

• VHDL example

library IEEE,virtex,synplify;
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use synplify.attributes.all;

use virtex.components.all;

use IEEE.std_logic_1164.all;

entity setreset is

port (CLK: in std_logic;

DIN1 : in STD_LOGIC;

DIN2: in STD_LOGIC;

RESET: in STD_LOGIC;

GTSInput: in STD_LOGIC;

DOUT1: out STD_LOGIC;

DOUT2: out STD_LOGIC;

DOUT3: out STD_LOGIC);

end setreset ;

architecture RTL of setreset is

begin                           

u0: STARTUP_VIRTEX_GSR port map(GSR => RESET);

u1: STARTUP_VIRTEX_GTS port map(GTS => 
GTSInput);

reset_process: process (CLK, RESET)

begin

if (RESET = '1') then

DOUT1 <= '0';

elsif ( CLK'event and CLK ='1') then

DOUT1  <= DIN1;

end if;

end process;

gtsprocess:process (GTSInput)

begin
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if GTSInput = '0' then

DOUT3 <= '0';

DOUT2 <= DIN2;

else

DOUT2 <= 'Z';

DOUT3 <= 'Z';

end if;

end process;

end RTL;

• Verilog example

`include "path/to/virtex.v"

 module setreset(CLK,DIN1, DIN2,RESET, GTSInput, 

DOUT1,DOUT2,DOUT3);

input CLK;

input DIN1;

input DIN2;

input RESET;

input GTSInput;

output DOUT1;

output DOUT2;

output DOUT3;

reg DOUT1;

STARTUP_VIRTEX_GSR startup_inst(.GSR(RESET));

STARTUP_VIRTEX_GTS startup_2(.GTS(GTSInput));

always @(posedge CLK or posedge RESET)

begin

if (RESET)

DOUT1 = 1'b0;



Synthesis and Simulation Design Guide

5-42 Xilinx Development System

else

DOUT1 = DIN1; 

end

assign DOUT3 = (GTSInput == 1'b0)? 1'b0: 1'bZ;

assign DOUT2 = (GTSInput == 1'b0)? DIN2: 1'bZ;

endmodule

Preset vs. Clear 
The Virtex/E/II and Spartan-II family flip-flops are configured as 
either preset (asynchronous set) or clear (asynchronous reset) during 
startup. Automatic assertion of the GSR net presets or clears each flip-
flop after the FPGA is configured. You can assert the GSR pin at any 
time to produce this global effect. You can also preset or clear indi-
vidual flip-flops with the flip-flop’s dedicated Preset or Clear pin. 
When a Preset or Clear pin on a flip-flop is connected to an active 
signal, the state of that signal controls the startup state of the flip-flop. 
For example, if you connect an active signal to the Preset pin, the flip-
flop starts up in the preset state. If you do not connect the Clear or 
Preset pin, the default startup state is a clear state. To change the 
default to preset, assign an INIT=1 to the Virtex/E/II or Spartan-II 
flip-flop.

I/O flip-flops and latches in Virtex, Virtex-E, Virtex-II, and Spartan-II 
have SR pin which can be configured as a synchronous Set, a 
synchronous Reset, an asynchronous Preset, or an asynchronous 
Clear. The SR pin can be driven by any user logic, but INIT will also 
work for these flip-flops.

Below are examples of setting register INIT using ROCBUF. In the 
HDL code, the instantiated ROCBUF connects the set/reset signal. 
The Xilinx tools will automatically remove the ROCBUF during 
implementation leaving the set/reset signal active only during 
power-up.

• VHDL Example.

library IEEE;
 use IEEE.std_logic_1164.all;

entity d_register is
port (CLK : in std_logic;
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RESET : in std_logic;
D0: in std_logic;
D1: in std_logic;
Q0 : out std_logic;
Q1 : out std_logic);

end d_register;
architecture XILINX of d_register is

signal RESET_int : std_logic;
component ROCBUF is  port (I : in STD_LOGIC;

O : out STD_LOGIC);
end component;
begin
U1: ROCBUF port map (I => RESET, O => RESET_int);
process (CLK, RESET_int)

begin
if RESET_int = '1' then

Q0 <= '0';
Q1 <= '1';

elsif  rising_edge(CLK) then
Q0 <= D0;
Q1 <= D1; 

end if;
end process;

end XILINX;

• Verilog example

/*

 Note: In Synplify, set blackbox attribute for 
ROCBUF as follows:

module ROCBUF (I, O); //synthesis syn_black_box

input I;

output O;

endmodule 

*/

module ROCBUF (I, O); 

input I;

output O;
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endmodule

module rocbuf_example (reset, clk, d0, d1, q0, 
q1);

input reset;

input clk ;

input d0;

input d1;

output q0 ;

output q1 ;

reg q0, q1;

wire reset_int;

ROCBUF u1 (.I(reset), .O(reset_int));

always @ (posedge clk or posedge reset_int) 
begin

if  (reset_int) begin

q0 = 1'b0;

q1 = 1'b1;

end

else

begin

q0 = d0;

q1 = d1;

end

end

endmodule 

Implementing Inputs and Outputs
FPGAs have limited logic resources in the user-configurable inputs/
output blocks (IOB). You can move logic that is normally imple-
mented with CLBs to IOBs. By moving logic from CLBs to IOBs, addi-
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tional logic can be implemented in the available CLBs. Using IOBs 
also improves design performance by increasing the number of avail-
able routing resources.

The Virtex/E/II, and Spartan-II IOBs feature SelectI/O inputs and outputs 
that support a wide variety of I/O signaling standards. In addition, each IOB 
provides three storage elements. The following sections discuss IOB features 
in more detail.

I/O Standards
The following table summarizes the I/O standards supported in 
Virtex/E/II and Spartan-II devices. A complete table is available in 
the “Libraries Guide”.

Table 5-3  I/O Standard in Virtex/E/II and Spartan-II Devices

I/O 
Standard

Virtex/
Spartan-II

Virtex-E Virtex-II

LVTTL 
(default)

√ √ √

AGP √ √ √

CTT √ √

GTL √ √ √

GTLP √ √ √

HSTL Class 
I

√ √ √

HSTL Class 
II

√

HSTL Class 
III

√ √ √

HSTL Class 
IV

√ √ √

LVCMOS2 √

LVCMOS15 √

LVCMOS18 √ √

LVCMOS25, 
33

√
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For Virtex, Virtex-E, and Spartan-II devices, Xilinx provides a set of 
IBUF, IBUFG, IOBUF, and OBUF with its SelectI/O variants. For 
example, IBUF_GTL, IBUFG_PCI66_3, IOBUF_HSTL_IV, 
OBUF_LVCMOS2. Alternatively, an IOSTANDARD attribute can be 
set to a specific I/O standard and attached to an IBUF, IBUFG, 
IOBUF, and OBUF. The IOSTANDARD attribute can be set in the user 
constraint file (UCF) or in the netlist by the synthesis tool.

The Virtex-II library includes certain SelectI/O components for 
compatibility with other architectures. However, the recommended 
method for using SelectI/O components for Virtex-II is to attach an 
IOSTANDARD attribute to IBUF/IBUFG/IOBUF/OBUF. For 
example, attach IOSTANDARD=GTLP to an IBUF instead of using 
the IBUF_GTLP. 

The default for the IOSTANDARD attribute is LVTTL. For all Virtex/
E/II and Spartan-II devices, you must specify IBUF, IBUFG, IOBUF 
or OBUF on the IOSTANDARD attribute if LVTTL is not desired.

LVCZ_15, 
18, 25, 33

√

LVCZ_DV2
_15, 18, 25, 
33

√

LVDS √ √

LVPECL √ √

PCI33_5

PCI33_3, 
PCI66_3

√ √ √

PCIX √

SSTL2 Class 
I and Class 
II

√ √ √

SSTL3 Class 
I and Class 
II

√ √ √

Table 5-3  I/O Standard in Virtex/E/II and Spartan-II Devices

I/O 
Standard

Virtex/
Spartan-II

Virtex-E Virtex-II
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For more information on I/O standards and components, please refer 
to the “Libraries Guide”.

Inputs
Virtex/E/II, and Spartan-II inputs can be configured the I/O stan-
dards listed above. 

In FPGA Express, these special IOB components exist in the synthesis 
library and can be instantiated in your HDL code or selected from the 
GUI. A complete list of components understood by FPGA Express 
can be found in the lib\virtex directory under the FPGA Express tree 
(%XILINX%\synth for Foundation users). FPGA Express will under-
stand these components and will not attempt to place any I/O logic 
on these ports. Users will be alerted by this warning:

Warning: Existing pad cell ’/ver1-Optimized/U1’ is 
connected to the port ’clk’ - no pads cells inserted 
at this port. (FPGA-PADMAP-1)

Note FPGA Express/FPGA Compiler II 3.4 and older does not recog-
nize LVDS and LVPECL I/O standard. Use the IOSTANDARD 
attribute on I/O buffer components when instantiating these I/O 
standards.

In LeonardoSpectrum, insert appropriate buffers on selected ports in 
the constraints editor. Alternatively, you can set the following 
attribute in TCL script after the read but before the optimize 
options.

PAD  <IO_standard>  <portname>

The following is an example of setting an I/O standard in Leonar-
doSpectrum.

PAD IBUF_AGP data (7:0) 

In Synplify, users can set xc_padtype attribute in SCOPE (Synplify’s 
constraint editor) or in HDL code as shown below:

• VHDL Example.

library ieee, synplify;
use ieee.std_logic_1164.all;
use synplify.attributes.all;
entity test_padtype is

port( a : in std_logic_vector(3 downto 0);
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b : in std_logic_vector(3 downto 0);
clk, rst, en : in std_logic;
bidir : inout std_logic_vector(3 downto 0);
q : out std_logic_vector(3 downto 0));

attribute xc_padtype of a : signal is 
"IBUF_SSTL3_I";

attribute xc_padtype of bidir : signal is 
"IOBUF_HSTL_III";

attribute xc_padtype of q : signal is "OBUF_S_8";
end entity;

• Verilog Example

module test_padtype (a, b, clk, rst, en, bidir, q);
input [3:0] a /* synthesis xc_padtype = "IBUF_AGP" 

*/;
input [3:0] b;
input clk, rst, en;
inout [3:0] bidir /* synthesis xc_padtype = 

"IOBUF_CTT" */;
output [3:0] q /* synthesis xc_padtype = 

"OBUF_F_12" */;

Note Refer to IBUF_selectIO in the Libraries Guide for a list of avail-
able IBUF_selectIO values.

Outputs
Virtex/E/II and Spartan-II outputs can also be configured to any of 
I/O standards listed in the I/O standards section. An OBUF that uses 
the LVTTL, LVCMOS15, LVCMOS18, LVCMOS25, or LVCMOS33 
signaling standards has selectable drive and slew rates using the 
DRIVE and SLOW or FAST constraints. The defaults are DRIVE=12 
mA and SLOW slew.

In addition, you can control the slew rate and drive power for LVTTL 
outputs using OBUF_<slew>_<drive_power>. 

Refer to OBUF_selectIO in the “Libraries Guide” for a list of available 
OBUF_selectIO values. You can use the examples in the Inputs 
section to configure OBUF to an I/O standard.
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Using IOB Register and Latch
Virtex/E, and Spartan-II IOBs contain three storage elements. The 
three IOB storage elements function either as edge-triggered D-type 
flip-flops or as level sensitive latches. Each IOB has a clock (CLK) 
signal shared by the three flip-flops and independent clock enable 
(CE) signals for each flip-flop. 

In addition to the CLK and CE control signals, the three flip-flops 
share a Set/Reset(SR). However, each flip-flop can be independently 
as a synchronous set, a synchronous reset, an asynchronous preset, or 
an asynchronous clear. FDCP (asynchronous reset and set) and FDRS 
(synchronous reset and set) register configurations are not available 
in IOBs.

Virtex-II IOBs also contain three storage elements with an option to 
configure them as FDCP, FDRS, and Dual-Data Rate (DDR) registers. 
Each register has an independent CE signal. The OTCLK1 and 
OTCLK2 clock pins are shared between the output and tristated 
enable register. A separate clock (ICLK1 and ICLK2) drive the input 
register. The set and reset signals (SR and REV) are shared by the 
three registers.

Virtex/E/II, and Spartan-II devices no longer have primitives that 
correspond to the synchronous elements in the IOB’s. There are a few 
ways to infer usage of these FF’s if the rules for pulling them into the 
IOB are followed. The following rules apply.

• All FF’s that are to be pulled into the IOB must have a fanout of 1, 
this applies to input, output and tristated enable registers. For 
example, if there is a 32 bit bidirectional bus then the tristated 
enable signal must be replicated in the original design so that it 
will have a fanout of 1.

• In Virtex/E and Spartan-II devices, all FF’s must share the same 
clock and reset signal, they can have independent clock enables.

• In Virtex-II devices, output and tristated enable registers must 
share the same clock. All FF’s must share the same set and reset 
signals.

One way you can pull FF’s into the IOB is to use the IOB=TRUE 
setting. Another way is to pull FF’s into the IOB using the map -pr 
command which will be discussed in a later section. Some synthesis 
tools will apply IOB=TRUE attribute and allow you to merge a FF to 
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an IOB by setting an attribute. Refer to your synthesis tool documen-
tation for the correct attribute and settings.

In FPGA Express, you can set the attribute for each port into which a 
flip flop should be merged. This will not work for tristated enable flip 
flops.

In LeonardoSpectrum you can select MAP IOB Registers from the 
Technology tab in the GUI or set the following attribute in your TCL 
script:

set virtex_map_iob_registers TRUE

In Synplify, attach the syn_useioff attribute to the module or 
architecture of top-level in one of these ways: 

• Add the attribute in SCOPE. The constraint file syntax looks like 
this:

define_global_attribute syn_useioff 1 

• Add the attribute in the VHDL/Verilog top-level source code as 
follows:

♦ VHDL example

architecture rtl of test is

attribute syn_useioff : boolean;

attribute syn_useioff of rtl : architecture 
is true;

♦ Verilog example

module test(d, clk, q) /* synthesis syn_useioff 
= 1 */;

Using Output Enable IOB Register

The following VHDL and Verilog example illustrate how to infer 
output enable register. See the above section for an attribute to turn I/
O register inference in synthesis tools. 

Note If using FPGA Express to synthesis the VHDL example below, 
use map -pr option to force output enable register to IOB. Verilog 
example works fine.

• VHDL Example
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library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- the following two lines is used for 
-- LeonardoSpectrum synthesis tool only.
library exemplar;
use exemplar.exemplar_1164.all;
entity tri_state is
Port ( data_in_p : in std_logic_vector(7 downto 0);

clk : in std_logic;
tri_state_a: in std_logic;
tri_state_b :in std_logic;

data_out : out std_logic_vector(7 downto 0));
end tri_state;
architecture behavioral of tri_state is
signal data_in : std_logic_vector(7 downto 0);
signal data_in_r :std_logic_vector(7 downto 0);
signal tri_state_cntrl: std_logic_vector(7 downto 

0);
signal temp_tri_state : std_logic_vector(7 downto 

0);
-- Attribute below is for LeonardoSpectrum
-- synthesis tool only
attribute preserve_signal : boolean;
attribute preserve_signal of temp_tri_state : 
signal is TRUE;
begin

G1:  for I in 0 to 7 generate
temp_tri_state(I) <= tri_state_a AND 

tri_state_b;   -- create duplicate input signal
end generate;

process (tri_state_cntrl, data_in_r) begin
 G2:  for J in 0 to 7 loop

if (tri_state_cntrl(J) = '0') then  -- tri-
state data_out

data_out(J) <= data_in_r(J);

else data_out(J) <= 'Z';
end if;

end loop;
end process;

process(clk) begin
if clk'event and clk='1' then 
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data_in <= data_in_p;-- register for input
data_in_r <= data_in;-- register for output
for I in 0 to 7 loop
tri_state_cntrl(I) <= temp_tri_state(I);-- 

register tri-state
end loop;

end if;
end process;

end behavioral;

• Verilog Example

////////////////////////////////////////////////
// Inferring output enable register //

// October 2000 //

////////////////////////////////////////////////
module tri_state (data_in_p, clk, tri_state_a, 
tri_state_b, data_out);
   input[7:0] data_in_p; 
   input clk; 
   input tri_state_a; 
   input tri_state_b; 
   output[7:0] data_out; 
   reg[7:0] data_out;
   reg[7:0] data_in; 
   reg[7:0] data_in_r; 
   reg[7:0] tri_state_cntrl; 
   wire[7:0] temp_tri_state; 
   assign temp_tri_state[0] = tri_state_a & 
tri_state_b ; // create duplicate input signal
   assign temp_tri_state[1] = tri_state_a & 
tri_state_b ; 
   assign temp_tri_state[2] = tri_state_a & 
tri_state_b ; 
   assign temp_tri_state[3] = tri_state_a & 
tri_state_b ; 
   assign temp_tri_state[4] = tri_state_a & 
tri_state_b ; 
   assign temp_tri_state[5] = tri_state_a & 
tri_state_b ; 
   assign temp_tri_state[6] = tri_state_a & 
tri_state_b ; 
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   assign temp_tri_state[7] = tri_state_a & 
tri_state_b ;  
// exemplar attribute temp_tri_state 
preserve_signal TRUE
   always @(tri_state_cntrl or data_in_r)
   begin
      begin : xhdl_1
         integer J;
         for(J = 0; J <= 7; J = J + 1)
         begin : G2
            if (!(tri_state_cntrl[J]))
            begin
               data_out[J] <= data_in_r[J] ; 
         end
            else// tri-state data_out
            begin
               data_out[J] <= 1'bz ; 
            end 
         end
      end 
   end 
   always @(posedge clk)
   begin
         data_in <= data_in_p ; // register for 
input
         data_in_r <= data_in ; // register for 
output
         tri_state_cntrl[0] <= temp_tri_state[0] ;
         tri_state_cntrl[1] <= temp_tri_state[1] ;  
         tri_state_cntrl[2] <= temp_tri_state[2] ;
         tri_state_cntrl[3] <= temp_tri_state[3] ;
         tri_state_cntrl[4] <= temp_tri_state[4] ;
         tri_state_cntrl[5] <= temp_tri_state[5] ;
         tri_state_cntrl[6] <= temp_tri_state[6] ;
         tri_state_cntrl[7] <= temp_tri_state[7] ;
      end 
endmodule

Using -pr Option with MAP

Use the –pr (pack registers) option when running MAP. The –pr {i | o 
|  b} (input | output | both) option specifies to the MAP program to 
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move registers into IOBs when possible. For example: map -pr b 
<design_name.ngd>

Virtex-E IOBs
Virtex-E has the same IOB structure and features as Virtex and 
Spartan-II devices except for the available I/O standards.

Additional I/O Standards

Virtex-E devices has two additional I/O standards: LVPECL and 
LVDS. 

Because LVDS and LVPECL require two signal lines to transmit one 
data bit, it is handled differently from any other I/O standards. A 
UCF or an NCF file with complete pin loc information must be 
created to ensure that the I/O banking rules are not violated. If a UCF 
or NCF file is not used, PAR will issue errors. 

The input buffer of these two I/O standards may be placed in wide 
number of IOB locations. The exact locations are dependent on the 
package that is used. The Virtex-E package information lists the 
possible locations as IO_L#P for the P-side and IO_L#N for the N-side 
where # is the pair number. Only one input buffer is required to be 
instantiated in the design and placed on the correct IO_L#P location. 
The N-side of the buffer will be reserved and no other IOB will be 
allowed to be placed on this location.

The output buffer may be placed in a wide number of IOB locations. 
The exact locations are dependent on the package that is used. The 
Virtex-E package information lists the possible locations as IO_L#P 
for the P-side and IO_L#N for the N-side where # is the pair number. 
However, both output buffers are required to be instantiated in the 
design and placed on the correct IO_L#P and IO_L#N locations. In 
addition, the output (O) pins must be inverted with respect to each 
other. (one HIGH and one LOW). Failure to follow these rules will 
lead to DRC errors in the software.

The following examples show VHDL and Verilog coding for LVDS I/
O standards targeting a V50ECS144 device. AUCF example is also 
provided.

• VHDL Example.

library IEEE;
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use IEEE.std_logic_1164.all;

--Synplify users add appropriate virtex library.

entity LVDSIO is

port (CLK, DATA, Tin: in STD_LOGIC; 

IODATA_p, IODATA_n: inout STD_LOGIC;

Q_p, Q_n : out STD_LOGIC

);

end LVDSIO;

architecture BEHAV of LVDSIO is

component IBUF_LVDS is port (I : in STD_LOGIC;

O : out STD_LOGIC);

end component;

component OBUF_LVDS is port (I : in STD_LOGIC;

O : out STD_LOGIC);

end component;

component IOBUF_LVDS is port (I : in STD_LOGIC;

T : in STD_LOGIC;

IO : inout STD_LOGIC;

O : out STD_LOGIC);

end component;

component INV is port (I : in STD_LOGIC;

O : out STD_LOGIC);

end component; 

component IBUFG_LVDS is port(I : in STD_LOGIC;

O : out STD_LOGIC);

end component;

component BUFG is port(I : in STD_LOGIC;

O : out STD_LOGIC);
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end component;

signal iodata_in : std_logic;

signal iodata_n_out: std_logic;

signal iodata_out: std_logic;

signal DATA_int : std_logic;

signal Q_p_int  : std_logic;

signal Q_n_int  : std_logic;

signal CLK_int : std_logic;

signal CLK_ibufgout : std_logic;

signal Tin_int   : std_logic;

begin

UI1: IBUF_LVDS port map ( I => DATA, O => 
DATA_int);

UI2: IBUF_LVDS port map (I => Tin, O => 
Tin_int);

UO_p: OBUF_LVDS port map ( I => Q_p_int, O => 
Q_p);

UO_n: OBUF_LVDS port map ( I => Q_n_int, O => 
Q_n);

UIO_p: IOBUF_LVDS port map ( I => iodata_out, T 
=> Tin_int, IO => iodata_p, 

O => iodata_in);  

UIO_n: IOBUF_LVDS port map ( I => iodata_n_out, 
T => Tin_int, IO => iodata_n,

O => open);

UINV: INV port map ( I => iodata_out, O => 

iodata_n_out);

UIBUFG : IBUFG_LVDS port map ( I => CLK, O => 

CLK_ibufgout);

UBUFG : BUFG port map (I => CLK_ibufgout, O => 
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CLK_int);

My_D_Reg: process (CLK_int, DATA_int)

begin

if (CLK_int'event and CLK_int='1') then

Q_p_int <= DATA_int;

end if;

end process; -- End My_D_Reg

iodata_out <= DATA_int and iodata_in;

Q_n_int <= not Q_p_int;

end BEHAV;

• Verilog Example.

module LVDSIOinst (CLK, DATA, Tin, 

IODATA_p, IODATA_n, Q_p, Q_n) ;

input    CLK, DATA, Tin; 

inout    IODATA_p, IODATA_n;

output  Q_p, Q_n;

wire iodata_in;

wire iodata_n_out;

wire iodata_out;

wire DATA_int;

reg Q_p_int;

wire Q_n_int;

wire CLK_int;

wire CLK_ibufgout;

wire Tin_int;
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IBUF_LVDS UI1 ( .I(DATA), .O( DATA_int));

IBUF_LVDS UI2 (.I(Tin), .O (Tin_int));

OBUF_LVDS UO_p ( .I(Q_p_int), .O(Q_p));

OBUF_LVDS UO_n ( .I(Q_n_int), .O(Q_n));

IOBUF_LVDS UIO_p ( .I(iodata_out), .T(Tin_int), 

.IO(IODATA_p), 

.O (iodata_in));  

IOBUF_LVDS UIO_n ( .I (iodata_n_out), 
.T(Tin_int), 

.IO(IODATA_n),

.O ());

INV UINV ( .I(iodata_out), .O(iodata_n_out));

IBUFG_LVDS UIBUFG ( .I(CLK), .O(CLK_ibufgout));

BUFG UBUFG (.I(CLK_ibufgout), .O(CLK_int));

always @ (posedge CLK_int)

begin

Q_p_int <= DATA_int;

end

assign iodata_out = DATA_int && iodata_in;

assign Q_n_int = ~Q_p_int;

endmodule

• UCF example tagetting V50ECS144

NET CLK LOC = A6;       #GCLK3

NET DATA LOC = A4;      #IO_L0P_YY

NET Q_p LOC = A5;       #IO_L1P_YY

NET Q_n LOC = B5;       #IO_L1N_YY

NET iodata_p LOC = D8;  #IO_L3P_yy
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NET iodata_n LOC = C8;  #IO_L3N_yy

NET Tin LOC = F13; 

#IO_L10P

FPGA Express does not recognize LVDS and LVDS I/O buffers as a 
valid primitive. Special techniques must be used when synthesizing 
these primitives in your design. Otherwise, FPGA Express will insert 
I/O buffers, causing errors when the design run through the Xilinx 
implementation tools.

The following examples use the IOSTANDARD attribute on I/O 
buffers as a work around for LVDS buffers. This example can also be 
used with other synthesis tools to configure I/O standards with the 
IOSTANDARD attribute.

• VHDL Example

library IEEE;

use IEEE.std_logic_1164.all;

entity flip_flop is

port(d: in std_logic;

clk : in std_logic;

q : out std_logic;

q_n : out std_logic);

end flip_flop;

architecture flip_flop_arch of flip_flop is

component IBUF

port(I: in std_logic;

O: out std_logic);

end component;

component OBUF

port(I: in std_logic;
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O: out std_logic);

end component;

attribute IOSTANDARD : string;

attribute LOC : string;

attribute IOSTANDARD of u1 : label is "LVDS";

attribute IOSTANDARD of u2 : label is "LVDS";

attribute IOSTANDARD of u3 : label is "LVDS";

------------------------------------------------

-- Pin location A5 on the cs144

-- package represents the 

-- 'positive' LVDS pin.

-- Pin location D8 represents the

-- 'positive' LVDS pin.

-- Pin location C8 represents the

-- 'negative' LVDS pin.

------------------------------------------------

attribute LOC of u1 : label is "A5";

attribute LOC of u2 : label is "D8";

attribute LOC of u3 : label is "C8";

signal d_lvds, q_lvds, q_lvds_n : std_logic;

begin

u1: IBUF port map (d,d_lvds);

u2: OBUF port map (q_lvds,q);

u3: OBUF port map (q_lvds_n,q_n);

process (clk) begin

if clk'event and clk = '1' then

q_lvds <= d_lvds;

end if;
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end process;

q_lvds_n <= not(q_lvds);

end flip_flop_arch;

• Verilog Example.

module flip_flop (d, clk, q, q_n);

/*********************************/

// Pin location A5 on the cs144

// package represents the 

// 'positive' LVDS pin.

// Pin location D8 represents the

// 'positive' LVDS pin.

// Pin location C8 represents the

// 'negative' LVDS pin.

/*********************************/

input d;//synopsys attribute LOC "A5"

input clk;

output q;//synopsys attribute LOC "D8"

output q_n;//synopsys attribute LOC "C8"

wire d,clk,d_lvds,q;

reg q_lvds;

IBUF u1 (.I(d), .O(d_lvds));

//synopsys attribute IOSTANDARD "LVDS"

OBUF u2 (.I(q_lvds), .O(q));

//synopsys attribute IOSTANDARD "LVDS"

OBUF u3 (.I(q_lvds_n), .O(q_n));

//synopsys attribute IOSTANDARD "LVDS"

always @(posedge clk) q_lvds=d_lvds;

assign q_lvds_n=~q_lvds;
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endmodule

Reference Xilinx Answer Database in http://support.xilinx.com for 
more information.

In LeonardoSpectrum and Synplify, you can instantiate the selectI/O 
components or use the attribute discussed in “Inputs” section, but 
make sure that the output and its inversion are declared and config-
ured properly.

Virtex-II IOB
Virtex-II offers more Select I/O configuration than Virtex/E and 
Spartan-II as shown in Table 5-3. IOSTANDARD and synthesis tools’ 
specific attribute can be use to configure the Select I/O.

Additionally, Virtex-II provides digitally controlled impedance (DCI) 
I/Os which are useful in improving signal integrity and avoiding the 
use of external resistors.  This option is only available for most of the 
single ended I/O standards. To access this option you can instantiate 
the 'DCI' suffixed I/Os from the library such as HSTL_IV_DCI.

For the low-voltage differential signaling, additional IBUFDS, 
OBUFDS, OBUFTDS, and IOBUFDS components are available. These 
components simplifies the task of instantiating the differential 
signaling standard.

Differential Signaling in Virtex-II

Differential signaling in Virtex-II can be configured using IBUFDS, 
OBUFDS, OBUFTDS. The IBUFDS is two-inputs one-output buffer. 
The OBUFDS is one-input two-outputs buffer. Reference the 
“Libraries Guide” for the component diagram and description.

LVDS_25, LVDS_33, LVDSEXT_33, and LVPECL_33 are valid 
IOSTANDARD value to attach to differential signaling buffers. If no 
IOSTANDARD is attached, the default is LVDS_33.

The following is the VHDL and Verilog example instantiating differ-
ential signaling buffers.

• VHDL Example

--------------------------------------------

-- LVDS_33_IO.VHD Version 1.0             --
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-- Example of a behavioral description of --

-- differential signal I/O standard using --

-- LeonardoSpectrum attribute.--

-- HDL Synthesis Design Guide for FPGAs   --

-- October  2000                          --

--------------------------------------------

library IEEE;

use IEEE.std_logic_1164.all;

--use exemplar.exemplar_1164.all;

entity LVDS_33_IO is

port (CLK_p, CLK_n, DATA_p, DATA_n, Tin_p,

Tin_n: in STD_LOGIC;

datain2_p, datain2_n  : in STD_LOGIC; 

ODATA_p, ODATA_n: out STD_LOGIC;

Q_p, Q_n : out STD_LOGIC);

end LVDS_33_IO;

architecture BEHAV of LVDS_33_IO is

component IBUFDS is port (I : in STD_LOGIC;

IB: in STD_LOGIC;

O : out STD_LOGIC);

end component;

component OBUFDS is port (I : in STD_LOGIC;

O : out STD_LOGIC;

OB : out STD_LOGIC);

end component;

component OBUFTDS is port (I : in STD_LOGIC;

T : in STD_LOGIC;

O : out STD_LOGIC;
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OB: out STD_LOGIC);

end component;

component IBUFGDS is port(I : in STD_LOGIC;

IB: in STD_LOGIC;

O : out STD_LOGIC);

end component;

component BUFG is port(I : in STD_LOGIC;

 O : out STD_LOGIC);

end component;

signal datain2 : std_logic;

signal odata_out: std_logic;

signal DATA_int : std_logic;

signal Q_int  : std_logic;

signal CLK_int : std_logic;

signal CLK_ibufgout : std_logic;

signal Tin_int   : std_logic;

begin

UI1: IBUFDS port map ( I => DATA_p, IB => DATA_n, 
O => DATA_int);

UI2: IBUFDS port map ( I => datain2_p, IB => 
datain2_n, O => datain2);

UI3: IBUFDS port map (I => Tin_p, IB => Tin_n, O 
=> Tin_int);

UO1: OBUFDS port map ( I => Q_int, O => Q_p, OB 
=> Q_n);

UO2: OBUFTDS port map ( I => odata_out, T => 
Tin_int, O => odata_p, 

OB => odata_n);  

UIBUFG : IBUFGDS port map ( I => CLK_p, IB => 
CLK_n, O => CLK_ibufgout);
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UBUFG : BUFG port map (I => CLK_ibufgout, O => 

CLK_int);

My_D_Reg: process (CLK_int, DATA_int)

begin

if (CLK_int'event and CLK_int='1') then

Q_int <= DATA_int;

end if;

end process; -- End My_D_Reg

odata_out <= DATA_int and datain2;

end BEHAV;

• Verilog Example

//------------------------------------------

// LVDS_33_IO.v Version 1.0               --

// Example of a behavioral description of --

// differential signal I/O standard       --

// HDL Synthesis Design Guide for FPGAs   --

// October 2000                           --

//------------------------------------------

module LVDS_33_IO (CLK_p, CLK_n, DATA_p, DATA_n, 

DATAIN2_p, DATAIN2_n, Tin_p, Tin_n, ODATA_p, 

ODATA_n, Q_p, Q_n) ;

input    CLK_p, CLK_n, DATA_p, DATA_n,

DATAIN2_p, DATAIN2_n, Tin_p, Tin_n; 

output    ODATA_p, ODATA_n;

output Q_p, Q_n;

wire datain2;

wire odata_in;

wire odata_out;
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wire DATA_int;

reg Q_int;

wire CLK_int;

wire CLK_ibufgout;

wire Tin_int;

IBUFDS UI1 ( .I(DATA_p), .IB(DATA_n), .O( 

DATA_int));

IBUFDS UI2 (.I(Tin_p), .IB(Tin_n), .O 
(Tin_int));

IBUFDS UI3 (.I(DATAIN2_p), .IB(DATAIN2_n), 

.O(datain2));

OBUFDS UO1 ( .I(Q_int), .O(Q_p), .OB(Q_n));

OBUFTDS UO2 ( .I(odata_out), .T(Tin_int), 

.O(ODATA_p),.OB(ODATA_n)); 

IBUFGDS UIBUFG ( .I(CLK_p), .IB(CLK_n), 

.O(CLK_ibufgout));

BUFG UBUFG (.I(CLK_ibufgout), .O(CLK_int));

always @ (posedge CLK_int)

begin

Q_int <= DATA_int;

end

assign odata_out = DATA_int && datain2;

endmodule

Encoding State Machines 
The traditional methods used to generate state machine logic result in 
highly-encoded states. State machines with highly-encoded state 
variables typically have a minimum number of flip-flops and wide 
combinatorial functions. These characteristics are acceptable for PAL 
and gate array architectures. However, because FPGAs have many 
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flip-flops and narrow function generators, highly-encoded state vari-
ables can result in inefficient implementation in terms of speed and 
density.

One-hot encoding allows you to create state machine implementa-
tions that are more efficient for FPGA architectures. You can create 
state machines with one flip-flop per state and decreased width of 
combinatorial logic. One-hot encoding is usually the preferred 
method for large FPGA-based state machine implementation. For 
small state machines (fewer than 8 states), binary encoding may be 
more efficient. To improve design performance, you can divide large 
(greater than 32 states) state machines into several small state 
machines and use the appropriate encoding style for each.

Three design examples are provided in this section to illustrate the 
three coding methods (binary, enumerated type, and one-hot) you 
can use to create state machines. All three examples contain the same 
Case statement. To conserve space, the complete Case statement is 
only included in the binary encoded state machine example; refer to 
this example when reviewing the enumerated type and one-hot 
examples. 

Some synthesis tools allow you to add an attribute, such as 
type_encoding_style, to your VHDL code to set the encoding style. 
This is a synthesis vendor attribute (not a Xilinx attribute). Refer to 
your synthesis tool documentation for information on attribute-
driven state machine synthesis.

Using Binary Encoding
The state machine bubble diagram in the following figure shows the 
operation of a seven-state machine that reacts to inputs A through E 
as well as previous-state conditions. The binary encoded method of 
coding this state machine is shown in the VHDL and Verilog exam-
ples that follow. These design examples show you how to take a 
design that has been previously encoded (for example, binary 
encoded) and synthesize it to the appropriate decoding logic and 
registers. These designs use three flip-flops to implement seven 
states.
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Figure 5-5  State Machine Bubble Diagram

Binary Encoded State Machine VHDL Example

The following is a binary encoded state machine VHDL example.

-------------------------------------------------
-- BINARY.VHD Version 1.0                      --
-- Example of a binary encoded state machine   --
-- May 1997                                    --
-------------------------------------------------
Library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity binary is
 port (CLOCK, RESET : in STD_LOGIC;
 A, B, C, D, E: in BOOLEAN;

SINGLE, MULTI, CONTIG: out STD_LOGIC);
end binary;

architecture BEHV of binary is

type STATE_TYPE is (S1, S2, S3, S4, S5, S6, S7);
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attribute ENUM_ENCODING: STRING;
attribute ENUM_ENCODING of STATE_TYPE:type is "001 010 011 100 101
110 111";

signal CS, NS: STATE_TYPE;

begin
 SYNC_PROC: process (CLOCK, RESET)
  begin
     if (RESET='1') then
 CS <= S1;
 elsif (CLOCK'event and CLOCK = '1') then
 CS <= NS;

end if;
end process; --End REG_PROC

COMB_PROC: process (CS, A, B, C, D, E)
begin

case CS is
when S1 =>

MULTI  <= '0';
CONTIG <= '0';
SINGLE <= '0';
if (A and not B and C) then

NS <= S2;
elsif (A and B and not C) then

NS <= S4;
else

NS <= S1;
end if;

when S2 =>
   MULTI  <= '1';

CONTIG <= '0'
SINGLE <= '0';
if (not D) then

NS <= S3;
else

NS <= S4;
end if;

  when S3 =>
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MULTI  <= '0';
CONTIG <= '1';
SINGLE <= '0';
if (A or D) then

NS <= S4;
else

NS <= S3;
end if;

when S4 =>
MULTI  <= '1';
CONTIG <= '1';
SINGLE <= '0';
if (A and B and not C) then

NS <= S5;
else

NS <= S4;
end if;

 when S5 =>
MULTI  <= '1';
CONTIG <= '0';
SINGLE <= '0';
NS <= S6;

when S6 =>
MULTI  <= '0';
CONTIG <= '1';
SINGLE <= '1';
if (not E) then

NS <= S7;
else 

NS <= S6;
  end if;

when S7 =>
MULTI  <= '0';
CONTIG <= '1';
SINGLE <= '0';
if (E) then

NS <= S1;
else

NS <= S7;
end if;

end case;
  end process; -- End COMB_PROC
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end BEHV;

 Binary Encoded State Machine Verilog Example

/////////////////////////////////////////////////
// BINARY.V Version 1.0                        //
// Example of a binary encoded state machine   //
// May 1997                                    //
/////////////////////////////////////////////////
module binary (CLOCK, RESET, A, B, C, D, E, SINGLE, MULTI, CONTIG);

input    CLOCK, RESET;
input    A, B, C, D, E;
output   SINGLE, MULTI, CONTIG;

reg      SINGLE, MULTI, CONTIG;
// Declare the symbolic names for states
parameter [2:0]

S1 = 3'b001,
S2 = 3'b010,
S3 = 3'b011,
S4 = 3'b100,
S5 = 3'b101,
S6 = 3'b110,
S7 = 3'b111;

// Declare current state and next state variables
reg [2:0] CS;
reg [2:0] NS;

// state_vector CS

always @ (posedge CLOCK or posedge RESET)
begin

if (RESET == 1'b1)
CS = S1;

else
CS = NS;

end
always @ (CS or A or B or C or D or D or E)
begin
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case (CS)
S1 :
begin

MULTI  = 1'b0;
CONTIG = 1'b0;
SINGLE = 1'b0;

if (A && ~B && C)
NS = S2;

else if (A && B && ~C)
NS = S4;

else
NS = S1;

end 
S2 :
begin

MULTI  = 1'b1;
CONTIG = 1'b0;
SINGLE = 1'b0;

if (!D)
NS = S3;

else
NS = S4;

end 
S3 :

 begin
MULTI  = 1'b0;
CONTIG = 1'b1;
SINGLE = 1'b0;
if (A || D) 

NS = S4;
else

NS = S3;
end 

        
S4 :
begin

MULTI  = 1'b1;
CONTIG = 1'b1;
SINGLE = 1'b0;
if (A && B && ~C)

NS = S5;
else
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NS = S4;
end

S5 :
begin

MULTI  = 1'b1;
CONTIG = 1'b0;
SINGLE = 1'b0;
NS = S6;
end

S6 :
begin

MULTI  = 1'b0; 
CONTIG = 1'b1;
SINGLE = 1'b1;
if (!E)

NS = S7;
else

NS = S6;
end 
S7 :
begin

MULTI  = 1'b0;
CONTIG = 1'b1;
SINGLE = 1'b0;
if (E) 

NS = S1;
else 

NS = S7;
end 

endcase
end

endmodule

Using Enumerated Type Encoding
The recommended encoding style for state machines depends on 
which synthesis tool you are using. Some synthesis tools encode 
better than others depending on the device architecture and the size 
of the decode logic. You can explicitly declare state vectors or you can 
allow your synthesis tool to determine the vectors. Xilinx recom-
mends that you use enumerated type encoding to specify the states 
and use the Finite State Machine (FSM) extraction commands to 
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extract and encode the state machine as well as to perform state mini-
mization and optimization algorithms. The enumerated type method 
of encoding the seven-state machine is shown in the following VHDL 
and Verilog examples. The encoding style is not defined in the code, 
but can be specified later with the FSM extraction commands. Alter-
natively, you can allow your compiler to select the encoding style that 
results in the lowest gate count when the design is synthesized. Some 
synthesis tools automatically find finite state machines and compile 
without the need for specification.

Note Refer to the previous VHDL and Verilog Binary Encoded State 
Machine examples for the complete Case statement portion of the 
code.

Enumerated Type Encoded State Machine VHDL 
Example 

Library IEEE;
use IEEE.std_logic_1164.all;
entity enum is

port (CLOCK, RESET : in STD_LOGIC;
A, B, C, D, E: in BOOLEAN;
SINGLE, MULTI, CONTIG: out STD_LOGIC);

end enum;

architecture BEHV of enum is

type STATE_TYPE is (S1, S2, S3, S4, S5, S6, S7);

signal CS, NS: STATE_TYPE;

begin
 SYNC_PROC: process (CLOCK, RESET)
 begin
 if (RESET='1') then
 CS <= S1;
 elsif (CLOCK'event and CLOCK = '1') then
 CS <= NS;
 end if;
 end process; --End SYNC_PROC
 COMB_PROC: process (CS, A, B, C, D, E)
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begin
 case CS is
 when S1 =>
 MULTI  <= '0';
 CONTIG <= '0';
 SINGLE <= '0'; 
. 
. 
.

Enumerated Type Encoded State Machine Verilog 
Example

///////////////////////////////////////////////////
// ENUM.V Version 1.0 //
// Example of an enumerated encoded state machine//
// May 1997                                      //
///////////////////////////////////////////////////

module enum (CLOCK, RESET, A, B, C, D, E,
SINGLE, MULTI, CONTIG);

input  CLOCK, RESET;
input  A, B, C, D, E;
output SINGLE, MULTI, CONTIG;

reg    SINGLE, MULTI, CONTIG;

// Declare the symbolic names for states
parameter [2:0]

S1 = 3'b000,
S2 = 3'b001,
S3 = 3'b010,
S4 = 3'b011,

 S5 = 3'b100,
    S6 = 3'b101,

S7 = 3'b110;

// Declare current state and next state variables
reg [2:0] CS;
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reg [2:0] NS;

// state_vector CS

always @ (posedge CLOCK or posedge RESET)
begin

if (RESET == 1'b1)
     CS = S1;
 else
 CS = NS;
end

always @ (CS or A or B or C or D or D or E)
begin
case (CS)
     S1 :
     begin
     MULTI  = 1'b0;
     CONTIG = 1'b0;
     SINGLE = 1'b0;
     if (A && ~B && C) 
         NS = S2;
     else if (A && B && ~C)
         NS = S4;
     else
         NS = S1;
     end
.
.
.

Using One-Hot Encoding
One-hot encoding allows you to create state machine implementa-
tions that are more efficient for FPGA architectures. One-hot 
encoding is usually the preferred method for large FPGA-based state 
machine implementation.

The following examples show a one-hot encoded state machine. Use 
this method to control the state vector specification or when you 
want to specify the names of the state registers. These examples use 
one flip-flop for each of the seven states. If you are using FPGA 
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Express, use enumerated type, and avoid using the “when others” 
construct in the VHDL case statement. This construct can result in a 
very large state machine.

Note Refer to the previous VHDL and Verilog Binary Encoded State 
Machine examples for the complete Case statement portion of the 
code. 

One-hot Encoded State Machine VHDL Example

Library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity one_hot is
port (CLOCK, RESET : in STD_LOGIC;

A, B, C, D, E: in BOOLEAN;
SINGLE, MULTI, CONTIG: out STD_LOGIC);

end one_hot;

architecture BEHV of one_hot is

type STATE_TYPE is (S1, S2, S3, S4, S5, S6, S7);
attribute ENUM_ENCODING: STRING;
attribute ENUM_ENCODING of STATE_TYPE: type is 
"0000001 0000010 0000100 0001000 0010000 0100000 1000000 ";

signal CS, NS: STATE_TYPE;

begin 

SYNC_PROC: process (CLOCK, RESET)
begin

if (RESET='1') then
CS <= S1;

elsif (CLOCK'event and CLOCK = '1') then
CS <= NS;
end if;

end process; --End SYNC_PROC
COMB_PROC: process (CS, A, B, C, D, E)
begin
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case CS is
when S1 =>

MULTI  <= '0';
CONTIG <= '0';
SINGLE <= '0';

if (A and not B and C) then
NS <= S2;

elsif (A and B and not C) then
NS <= S4;

else
NS <= S1;

end if;
.
.
.

One-hot Encoded State Machine Verilog Example

 //////////////////////////////////////////////////
// ONE_HOT.V Version 1.0                          //
// Example of a one-hot encoded state machine    //
// Xilinx HDL Synthesis Design Guide for FPGAs  //
// May 1997                                    //
////////////////////////////////////////////////

module one_hot (CLOCK, RESET, A, B, C, D, E,
              SINGLE, MULTI, CONTIG);

input   CLOCK, RESET;
input   A, B, C, D, E;
output  SINGLE, MULTI, CONTIG;

reg SINGLE, MULTI, CONTIG;

// Declare the symbolic names for states
parameter [6:0]

S1 = 7'b0000001,
S2 = 7'b0000010,
S3 = 7'b0000100,
S4 = 7'b0001000,
S5 = 7'b0010000,
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S6 = 7'b0100000,
S7 = 7'b1000000;

// Declare current state and next state variables
reg [2:0] CS;
reg [2:0] NS;

// state_vector CS
 
 always @ (posedge CLOCK or posedge RESET) 
 begin
 if (RESET == 1'b1)
 CS = S1;
 else
 CS = NS;
end

always @ (CS or A or B or C or D or D or E)
begin

case (CS)
     S1 :
         begin
 MULTI  = 1'b0;
 CONTIG = 1'b0;
 SINGLE = 1'b0;
 if (A && ~B && C) 
 NS = S2;
 else if (A && B && ~C)
 NS = S4;
 else
 NS = S1; 
end
 .
 .
 .

Accelerating FPGA Macros with One-Hot Approach
Most synthesis tools provide a setting for finite state machine (FSM) 
encoding. This setting will prompt synthesis tools to automatically 
extract state machines in your design and perform special optimiza-
tions to achieve better performance. The default option for FSM 
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encoding is “One-Hot” for most synthesis tools. However, this setting 
can be changed to other encoding such as binary, grey, sequential, etc.

In FPGA Express, FSM encoding is set to “One-Hot” by default. To 
change this setting, select Synthesis-> Options -> Project Tab. Avail-
able options are: One-Hot, Binary, and Zero One-Hot.

In LeonardoSpectrum, FSM encoding is set to “Auto” by default 
which differs depending on Bit Width of your state machine. To 
change this setting to a specific value, select Input tab. Available 
options are: Binary, One-Hot, Random, Gray, and Auto.

In Synplify, the Symbolic FSM Complier option can be accessed from 
the main GUI. When set, the FSM Compiler extracts the state 
machines as symbolic graphs, and then optimizes them by re-
encoding the state representations and generating a better logic opti-
mization starting point for the state machines. This usually results in 
one-hot encoding. However, you may override the default on a 
register by register bases with the syn_encoding directive/attribute. 
Available options are: One-Hot, Gray, Sequential, and Safe.

Summary of Encoding Styles 
In the three previous examples, the state machine’s possible states are 
defined by an enumeration type. Use the following syntax to define 
an enumeration type.

type type_name is (enumeration_literal {, enumeration_literal} );

After you have defined an enumeration type, declare the signal repre-
senting the states as the enumeration type as follows.

type STATE_TYPE is (S1, S2, S3, S4, S5, S6, S7);
signal CS, NS: STATE_TYPE;

The state machine described in the three previous examples has 
seven states. The possible values of the signals CS (Current_State) 
and NS (Next_State) are S1, S2, ... , S6, S7. 

To select an encoding style for a state machine, specify the state 
vectors. Alternatively, you can specify the encoding style when the 
state machine is compiled. Xilinx recommends that you specify an 
encoding style. If you do not specify a style, your compiler selects a 
style that minimizes the gate count. For the state machine shown in 
the three previous examples, the compiler selected the binary 
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encoded style: S1=“000”, S2=”001”, S3=”010”, S4=”011”, S5=”100”, 
S6=”101”, and S7=”110”. 

You can use the FSM extraction tool to change the encoding style of a 
state machine. For example, use this tool to convert a binary-encoded 
state machine to a one-hot encoded state machine.

Note Refer to your synthesis tool documentation for instructions on 
how to extract the state machine and change the encoding style.

Initializing the State Machine
When creating a state machine, especially when you use one-hot 
encoding, add the following lines of code to your design to ensure 
that the FPGA is initialized to a Set state.

• VHDL Example

SYNC_PROC: process (CLOCK, RESET)

begin

    if (RESET=’1’) then

CS <= s1;

• Verilog Example

always @ (posedge CLOCK or posedge RESET)

begin

if (RESET == 1’b 1)

CS = S1;

Alternatively, you can assign an INIT=S attribute to the initial 
state register to specify the initial state. Refer to your synthesis 
tool documentation for information on assigning this attribute.

In the Binary Encode State Machine example, the RESET signal 
forces the S1 flip-flop to be preset (initialized to 1) while the other 
flip-flops are cleared (initialized to 0).

Implementing Operators and Generate Modules
Xilinx FPGAs feature carry logic elements that can be used for 
optimal implementation of operators and generate modules. 
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Synthesis tools infer the carry logic automatically when a specific 
coding style or operator is used.

Adder and Subtracter
Synthesis tools will infer carry logic in Virtex/E/II and Spartan-II 
devices when an adder and Subtracter is described (+ or - operator). 

Multiplier
Synthesis tools will utilize the carry logic by inferring XORCY, 
MUXCY, and MULT_AND when a multiplier is described. 

LeonardoSpectrum features a pipeline multiplier which involves 
putting levels of registers in the logic to introduce parallelism and, as 
a result, improve speed. A certain construct in the input RTL source 
code description is required to allow the pipelined multiplier feature 
to take effect. The following example shows this construct.

• VHDL Example

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity multiply is
generic (size :integer := 16; level:integer:=4);

port (
clk : in std_logic;
Ain : in std_logic_vector (size-1 downto 0);
Bin : in std_logic_vector (size-1 downto 0);
Qout : out std_logic_vector (2*size-1 downto 0)

);
end multiply;
architecture RTL of multiply is
type levels_of_registers is array (level-1
downto 0) of unsigned (2*size-1 downto 0);

signal reg_bank :levels_of_registers;
signal a, b : unsigned (size-1 downto 0);

begin
Qout <= std_logic_vector (reg_bank (level-1));

process
begin

wait until clk’event and clk = ’1’;
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a <= unsigned(Ain);
b <= unsigned(Bin);
reg_bank (0) <= a * b;
for i in 1 to level-1 loop

reg_bank (i) <= reg_bank (i-1);
end loop;

end process;
end architecture RTL;

• Verilog Example.

module multiply (clk, ain, bin, q);
parameter size = 16;
parameter level = 4;
input     clk;
input [size-1:0] ain, bin;
output [2*size-1:0] q;
reg [size-1:0]      a, b;
reg [2*size-1:0]    reg_bank [level-1:0];
integer             i;
always @(posedge clk)

begin
a <= ain;
b <= bin;

end
always @(posedge clk)

reg_bank[0] <= a * b;
always @(posedge clk)

for (i = 1;i < level; i=i+1)
reg_bank[i] <= reg_bank[i-1];

assign q = reg_bank[level-1];
endmodule // multiply

Virtex-II devices feature a large amount of 18 X 18-bit twos-complement 
embedded multipliers. These embedded multipliers are not yet inferred by 
the synthesis tools. Please refer to the release notes for your synthesis tool to 
verify support for these new features. At this time you must instantiate the 18 
X 18-bit embedded multiplier. Please Refer to the “Virtex Handbook” for the 
HDL instantiation template.
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Counters
When describing a counter in HDL, the arithmetic operator ’+’ will 
infer the carry chain. The synthesis tools will then infer the MUXCY 
element for the counter.

count <= count + 1; -- This will infer MUXCY 

This implementation will provide a very effective solution especially 
for all purpose counters.

Below is an example of a loadable binary counter:

• VHDL Example

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity counter is

port (d : in std_logic_vector (7 downto 0);

ld, ce, clk, rst : in std_logic;

q : out std_logic_vector (7 downto 0));

end counter;

architecture behave of counter is

signal count : std_logic_vector (7 downto 0);

begin

 process (clk, rst)

 begin

if rst = ’1’ then

count <= (others => ’0’);

elsif rising_edge(clk) then

if ld = ’1’ then

count <= d;
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elsif ce = ’1’ then

count <= count + ’1’;

end if;

end if;

end process;

q <= count;

end behave;

• Verilog Example

module counter(d, ld, ce, clk, rst, q);
input [7:0]  d;
input ld, ce, clk, rst;
output [7:0] q;
reg [7:0]    count;
always @(posedge clk or posedge rst) 

begin
if (rst)

count <= 0;
else if (ld)

count <= d;
else if (ce)

count <= count + 1;
end

assign q = count;
endmodule

For application that require faster counters, LFSR can implement high 
performance and area efficient counters.  LFSR will require very 
minimum logic (only a XOR or XNOR feedback).

For smaller counters it is also effective to use the Johnson encoded 
counters.  This type of counter does not use the carry chain but 
provides a fast performance.

The following is an example of a sequence for a 3 bit johnson counter.

000

001

011
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111

110

100

• VHDL Example

library IEEE;
use IEEE.STD_LOGIC_1164.all;
entity johnson is

generic (size : integer := 3);
port (clk   : in std_logic;

reset : in std_logic;
qout  : out std_logic_vector(size-1 downto 0));

end johnson;
architecture RTL of johnson is

signal q : std_logic_vector(size-1 downto 0);
begin  -- RTL

process(clk, reset)
begin

if reset = ’1’ then
q <= (others => ’0’);

elsif clk’event and clk=’1’ then
for i in 1 to size - 1 loop

q(i) <= q(i-1);
end loop;  -- i
q(0) <= not q(size-1);

end if; 
end process;
qout <= q;

end RTL;

• Verilog Example

module johnson (clk, reset, q);
parameter size = 4;

input     clk, reset;
output [size-1:0] q;
reg [size-1:0]    q;
integer           i;
always @(posedge clk or posedge reset)

if (reset)
q <= 0;

else
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begin
for (i=1;i<size;i=i+1)

q[i] <= q[i-1];
q[0] <= ~q[size-1];

end
endmodule // johnson

Comparator
Magnitude comparator '>' or '<'  will infer carry chain logic and result 
in fast implementations in Xilinx devices. Equality comparator '==' 
will be implemented using LUTs

• VHDL example

-- Unsigned 8-bit greater or equal comparator.

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity compar is

port(A,B : in std_logic_vector(7 downto 0);

cmp : out std_logic);

end compar;

architecture archi of compar is

begin

cmp <= '1' when A >= B

else '0';

end archi;

• Verilog example

// Unsigned 8-bit greater or equal comparator.

module compar(A, B, cmp);

input [7:0] A;

input [7:0] B;

output cmp;
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assign cmp = A >= B ? 1'b1 : 1'b0;

endmodule

Encoder and Decoders
Synthesis tools might infer MUXF5 and MUXF6 for encoder and 
decoder in Virtex/E/II and Spartan-II devices. Virtex-II devices 
feature additional components, MUXF7 and MUXF8 to use with the 
encoder and decoder. These components are not yet inferred by the 
synthesis tools, but you can instantiate them. Reference the “Virtex 
Handbook” Design Consideration section for instantiation examples.

LeonardoSpectrum will infer MUXCY when an if-then-else priority 
encoder is described in the code. This will result in a faster encoder.

LeonardoSpectrum Priority Encoding HDL Example

• VHDL Example.

library IEEE;
use IEEE.std_logic_1164.all;
entity prior is

generic (size: integer := 8);
port(
clk: in std_logic;

cond1 : in std_logic_vector(size downto 1);
cond2 : in std_logic_vector(size downto 1);
data  : in std_logic_vector(size downto 1);
q     : out std_logic);

end prior;

architecture RTL of prior is
signal   data_ff, cond1_ff, cond2_ff: std_logic_vector(size

downto 1);
begin

process(clk)
begin
if clk’event and clk= ’1’ then

data_ff <= data;
cond1_ff <= cond1;
cond2_ff <= cond2;
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end if;
end process;
process(clk)

begin
if (clk’event and clk = ’1’) then

if (cond1_ff(1)= ’1’ and cond2_ff(1)= ’1’) then
q <= data_ff(1);

elsif (cond1_ff(2)= ’1’ and cond2_ff(2)= ’1’) then
q <= data_ff(2);

elsif (cond1_ff(3)= ’1’ and cond2_ff(3)=’1’) then
q <= data_ff(3);

elsif (cond1_ff(4)= ’1’ and cond2_ff(4)= ’1’) then
q <= data_ff(4);

elsif (cond1_ff(5)= ’1’ and cond2_ff(5)=’1’) then
q <= data_ff(5);

elsif (cond1_ff(6)= ’1’ and cond2_ff(6)=’1’) then
q <= data_ff(6);

elsif (cond1_ff(7)= ’1’ and cond2_ff(7)= ’1’) then
q <= data_ff(7);

elsif (cond1_ff(8)= ’1’ and cond2_ff(8)=’1’) then
q <= data_ff(8);

else
q <= ’0’;

end if;
end if;

end process;
end RTL;

• Verilog Example.

module prior(clk, cond1, cond2, data, q);
parameter size = 8;
input clk;
input [1:size] data, cond1, cond2 ;
output q;
reg [1:size]   data_ff, cond1_ff, cond2_ff;
reg q;
always @(posedge clk)
begin

data_ff = data;
cond1_ff = cond1;
cond2_ff = cond2;

end
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always @(posedge clk)
if (cond1_ff[1] && cond2_ff[1])

q = data_ff[1];
else if (cond1_ff[2] && cond2_ff[2])

q = data_ff[2];
else if (cond1_ff[3] && cond2_ff[3])

q = data_ff[3];
else if (cond1_ff[4] && cond2_ff[4])

q = data_ff[4];
else if (cond1_ff[5] && cond2_ff[5])

q = data_ff[5];
else if (cond1_ff[6] && cond2_ff[6])

q = data_ff[6];
else if (cond1_ff[7] && cond2_ff[7])

q = data_ff[7];
else if (cond1_ff[8] && cond2_ff[8])

q = data_ff[8];
else q = 1’b0;

endmodule // prior

Implementing Memory
Virtex/E and Spartan-II FPGAs provide distributed on-chip RAM or 
ROM memory capabilities. CLB function generators can be config-
ured as ROM (ROM16X1, ROM32X1); edge-triggered, single-port 
(RAM16X1S, RAM32X1S) RAM; or dual-port (RAM16x1D) RAM. 
Level sensitive RAMs are not available for the Virtex/E and Spartan-
II families. 

Virtex-II CLB function generators are much larger and can be config-
ured as larger ROM and edge-triggered, single port and dual port 
RAM. Available ROM primitive components in Virtex-II are 
ROM16X1 and ROM32X1. Available single port RAM primitives 
components in Virtex-II are RAM16X1S, RAM16X2S, RAM16X4S, 
RAM16X8S, RAM32X1S, RAM32X2S, RAM32X4S, RAM32X8S, 
RAM64X1S, RAM64X2S, and RAM128X1S. Available dual port RAM 
primitive components in Virtex-II are RAM16X1D, RAM32X1D, and 
RAM64X1D.

In addition to distributed RAM and ROM capabilities, Virtex/E/II, 
and Spartan-II FPGAs provide edge-triggered Block SelectRAM+ in 
large blocks. Virtex/E and Spartan-II devices provide 4096(4k) bits: 
RAMB4_Sn and RAMB4_Sm_Sn. Virtex-II devices provide larger 
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Block SelectRAM+ in 16384 (16k) bits size: RAMB16_Sn and 
RAMB16_Sm_Sn. Where Sm and Sn are configurable port widths. See 
the “Libraries Guide” for more information on these components.

The edge-triggered capability simplifies system timing and provides 
better performance for RAM-based designs. This RAM can be used 
for status registers, index registers, counter storage, constant coeffi-
cient multipliers, distributed shift registers, LIFO stacks, latching, or 
any data storage operation. The dual-port RAM simplifies FIFO 
designs.

Implementing Block SelectRAM+
Virtex/E/II, and Spartan-II FPGAs incorporate several large Block 
SelectRAM+ memories. These complement the distributed Selec-
tRAM+ that provide shallow RAM structures implemented in CLBs. 
The Block SelectRAM is a True Dual-Port RAM which allows for 
large, discrete blocks of memory.

Block SelectRAM+ memory blocks are organized in columns. All 
Virtex and Spartan-II devices contain two such columns; one along 
each vertical edge. In Virtex-E, the Block SelectRAM+ column is 
inserted every 12 CLB columns. In Virtex-EM (Virtex-E with extended 
memory), the Block SelectRAM+ column is inserted every 4 CLB 
columns. In Virtex-II, there are at least four Block SelectRAM+ 
columns and a column is inserted every 12 CLB columns in larger 
devices.

Instantiating Block SelectRAM+

The following coding examples provide VHDL and Verilog coding 
styles for FPGA Express, LeonardoSpectrum, and Synplify.

Instantiating Block SelectRAM+ VHDL Example

• FPGA Express and LeonardoSpectrum

With FPGA Express and LeonardoSpectrum you can instantiate a 
RAMB* cell as a blackbox. The INIT_** attribute can be passed as 
a string in the HDL file as well as the script file. The VHDL Code 
Example below shows how to pass INIT in the VHDL file. 

• LeonardoSpectrum
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With LeonardoSpectrum you can pass an INIT string in an 
LeonardoSpectrum command script. The following code sample 
illustrates this method.

set_attribute -instance "inst_ramb4_s4" -name
INIT_00 -type string -value
"1F1E1D1C1B1A191817161514131211100F0E0D0C0B0A09
80706050403020100"

• VHDL Code Example.

library IEEE;
use IEEE.std_logic_1164.all;

entity spblkrams is
port(CLK         : in std_logic;

EN          : in std_logic;
RST         : in std_logic;
WE          : in std_logic;

ADDR        : in std_logic_vector(11 downto 0);
DI          : in std_logic_vector(15 downto 0);
DORAMB4_S4  : out std_logic_vector(3 downto 0);
DORAMB4_S8  : out std_logic_vector(7 downto 0));
end;
architecture struct of spblkrams is
component RAMB4_S4
port (DI     : in STD_LOGIC_VECTOR (3 downto 0);

EN     : in STD_ULOGIC;
WE     : in STD_ULOGIC;
RST    : in STD_ULOGIC;
CLK    : in STD_ULOGIC;
ADDR   : in STD_LOGIC_VECTOR (9 downto 0);

DO     : out STD_LOGIC_VECTOR (3 downto 0));
end component;
component RAMB4_S8
port (DI     : in STD_LOGIC_VECTOR (7 downto 0);

EN     : in STD_ULOGIC;
WE     : in STD_ULOGIC;
RST    : in STD_ULOGIC;
CLK    : in STD_ULOGIC;
ADDR   : in STD_LOGIC_VECTOR (8 downto 0);

DO     : out STD_LOGIC_VECTOR (7 downto 0));
end component;
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attribute INIT_00: string;
attribute INIT_00 of INST_RAMB4_S4: label is
"1F1E1D1C1B1A191817161514131211100F0E0D0C0B0A09
80706050403020100";
attribute INIT_00 of INST_RAMB4_S8: label is
"1F1E1D1C1B1A191817161514131211100F0E0D0C0B0A09
80706050403020100";
begin

INST_RAMB4_S4 : RAMB4_S4 port map (
DI => DI(3 downto 0),
EN => EN,
WE => WE,
RST => RST,
CLK => CLK,
ADDR => ADDR(9 downto 0),
DO => DORAMB4_S4
);

INST_RAMB4_S8 : RAMB4_S8 port map (
DI => DI(7 downto 0),
EN => EN,
WE => WE,
RST => RST,
CLK => CLK,
ADDR => ADDR(8 downto 0),
DO => DORAMB4_S8
);

end struct;

• Synplify

With Synplify you can instantiate the RAMB* cells by using the 
Xilinx family library supplied with Synplify. The following code 
example will illustrate instantiating a RAMB* cell.

library IEEE;
use IEEE.std_logic_1164.all;
library virtex;
use virtex.components.all;
library synplify;
use synplify.attributes.all;

entity RAMB4_S8_synp is
generic (INIT_00, INIT_01 : string :=
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"0000000000000000000000000000000000000000000000000
00000000000000");

port (WE, EN, RST, CLK : in std_logic;
ADDR : in std_logic_vector(8 downto 0);
DI : in std_logic_vector(7 downto 0);
DO : out std_logic_vector(7 downto 0));

end RAMB4_S8_synp;
architecture XILINX of RAMB4_S8_synp is

component RAMB4_S8
port (WE, EN, RST, CLK: in STD_LOGIC;

ADDR: in STD_LOGIC_VECTOR(8 downto 0);
DI: in STD_LOGIC_VECTOR(7 downto 0);
DO: out STD_LOGIC_VECTOR(7 downto 0));

end component;
attribute xc_props of u1 : label is "INIT_00=" & 
INIT_00 & ",INIT_01=" & INIT_01;
begin
U1 : RAMB4_S8

port map (WE => WE, EN => EN, RST => RST, CLK =>
CLK, ADDR => ADDR, DI => DI, DO => DO);

end XILINX;

library IEEE;
use IEEE.std_logic_1164.all;

entity block_ram_ex is
port (CLK, WE : in std_logic;

ADDR : in std_logic_vector(8 downto 0);
DIN : in std_logic_vector(7 downto 0);
DOUT : out std_logic_vector(7 downto 0));

end block_ram_ex;

architecture XILINX of block_ram_ex is
component RAMB4_S8_synp
generic( INIT_00, INIT_01 : string := 

"0000000000000000000000000000000000000000000000000
00000000000000");
port (WE, EN, RST, CLK: in STD_LOGIC;

ADDR: in STD_LOGIC_VECTOR(8 downto 0);
DI: in STD_LOGIC_VECTOR(7 downto 0);
DO: out STD_LOGIC_VECTOR(7 downto 0));
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end component;
begin
U1 : RAMB4_S8_synp
generic map (
INIT_00 =>
"0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0
23456789ABCDEF",
INIT_01 =>
"FEDCBA9876543210FEDCBA9876543210FEDCBA9876543210F
DCBA9876543210")
port map (WE => WE, EN => ’1’, RST => ’0’, CLK => 
CLK, ADDR => ADDR, DI => DIN,

DO => DOUT);
end XILINX;

Instantiating Block SelectRAM+ Verilog Example

Verilog examples of Block SelectRAM+ instantiation are described 
below.

• FPGA Express

With FPGA Express the INIT attribute has to be set in the HDL 
code. See the following example.

module block_ram_ex (CLK, WE, ADDR, DIN, DOUT);
input CLK, WE;
input [8:0] ADDR;
input [7:0] DIN;
output [7:0] DOUT;

RAMB4_S8 U0 (.WE(WE), .EN(1’b1), .RST(1’b0),
.CLK(CLK),
.ADDR(ADDR), .DI(DIN), .DO(DOUT)); 
//synopsys attribute 

INIT_00 “1F1E1D1C1B1A1918171615141312111

00F0E0D0C0B0A0980706050403020100”

endmodule

• LeonardoSpectrum

With LeonardoSpectrum the INIT attribute can be set in the HDL 
code or in the command line. See the following example.

set_attribute -instance "inst_ramb4_s4" -name
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INIT_00 -type string value
"1F1E1D1C1B1A191817161514131211100F0E0D0C0B0A09080
06050403020100"

• LeonardoSpectrum block_ram_ex verilog example

module block_ram_ex (CLK, WE, ADDR, DIN, DOUT);
  input CLK, WE;
   input [8:0] ADDR;
   input [7:0] DIN;
   output [7:0] DOUT;
   RAMB4_S8 U0 (.WE(WE), .EN(1’b1), .RST(1’b0), 

.CLK(CLK),
     .ADDR(ADDR), .DI(DIN), .DO(DOUT));

 //exemplar attribute U0 INIT_00 

1F1E1D1C1B1A191817161514131211100F0E0D0C0B0A090

80706050403020100

endmodule

• Synplicity block_ram_ex verilog example.

 ‘include "<synplicity_install>/lib/xilinx/
virtex.v"

 module block_ram_ex (CLK, WE, ADDR, DIN, DOUT);
 input CLK, WE;
 input [8:0] ADDR;
 input [7:0] DIN;
 output [7:0] DOUT;
 // synthesis translate_off
 defparam

    U0.INIT_00 = 

256’h0123456789ABCDEF0123456789ABCDEF0

123456789ABCDEF0123456789ABCDEF,

    U0.INIT_01 = 

256’hFEDCBA9876543210FEDCBA9876543210FED

CBA9876543210FEDCBA9876543210;

 // synthesis translate_on
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RAMB4_S8 U0 (.WE(WE), .EN(1’b1), .RST(1’b0), 
.CLK(CLK),

    .ADDR(ADDR), .DI(DIN), .DO(DOUT)) /* 
synthesis 

xc_props="INIT_00=0123456789ABCDEF0123

456789ABCDEF0123456789ABCDEF0123456789ABCDEF, 

INIT_01=FEDCBA9876543210FEDCBA9876543210FEDCBA

9876543210FEDCBA9876543210"*;

endmodule

Instantiating Block SelectRAM+ in Virtex-II

Virtex-II devices provide 16384-bit data memory and 2048-bit parity 
memory, totaling to 18Mbit memory in each Block SelectRAM+. 
These RAMB16_Sn (single port) and RAMB16_Sm_Sn (dual port) 
blocks are configurable to various width and depth. The “Virtex 
Handbook” provides VHDL and Verilog templates for Virtex-II Block 
SelectRAM+ instantiations. You can also refer to the “Libraries Guide” 
for a more detailed component and attribute description.

Inferring Block SelectRAM+

The following coding examples provide VHDL and Verilog coding 
styles for FPGA Express, LeonardoSpectrum, and Synplify. For 
Virtex/E and Spartan-II devices, the RAMB4_Sn or RAMB4_Sm_Sn 
will be inferred. For Virtex-II devices, RAMB16_Sn or 
RAMB16_Sm_Sn will be inferred.

Inferring Block RAM VHDL Example

Block SelectRAM+ can be inferred by some synthesis tools. Inferred 
RAM must be initialized in the UCF file. Not all Block SelectRAM+ 
features can be inferred. Those features will pointed out in this 
section.

• FPGA Express

RAM inference is not supported by FPGA Express.

• LeonardoSpectrum
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LeonardoSpectrum can map your memory statements in Verilog or 
VHDL to the block RAMs on all Virtex devices. The following is a list 
of the details for block SelectRAM+ in LeonardoSpectrum.

♦ Virtex Block RAMs are completely synchronous - both read 
and write operations are synchronous.

♦  LeonardoSpectrum infers single port RAMs - RAMs with 
both read and write on the same address - and, dual port 
RAMs - RAMs with separate read and write addresses. 
Currently, LeonardoSpectrum does not infer dual port RAMs 
that read both read and write address.

♦ Virtex Block RAMs support RST (reset) and ENA (enable) 
pins. Currently, LeonardoSpectrum does not infer RAMs 
which use the functionality of the RST and ENA pins.

♦ By default, RAMs will be mapped to block SelectRAM+ if 
possible. You can disable mapping to block SelectRAM+ by 
setting the attribute block_ram to false.

• LeonardoSpectrum VHDL Example.

library ieee, exemplar;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity ram_example1 is
generic(data_width: integer:= 8;

address_width:integer := 8;
mem_depth: integer:= 256);

port (data: in std_logic_vector(data_width-1
downto 0);
address: in unsigned(address_width-1 downto 0);
we, clk: in std_logic;
q: out std_logic_vector(data_width-1 downto 0));
end ram_example1;
architecture ex1 of ram_example1 is
type mem_type is array (mem_depth-1 downto 0) of
std_logic_vector (data_width-1 downto 0);
signal mem: mem_type;
signal raddress : unsigned(address_width-1
downto 0);
begin
l0: process (clk, we, address)
begin
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if (clk = ’1’ and clk’event) then
raddress <= address;
if (we = ’1’) then
mem(to_integer(raddress)) <= data;
end if;
end if;
end process;
l1: process (clk, address)
begin
if (clk = ’1’ and clk’event) then
q <= mem(to_integer(address));
end if;
end process;
end ex1;

• Synplify

You can enable the usage of Block SelectRAMs by setting the 
attribute syn_ramstyle to "block_ram". Place the attribute on the 
output signal driven by the inferred RAM. Remember to include 
the range of the output signal (bus) as part of the name.

For example,

define_attribute {a|dout[3:0]} syn_ramstyle
"block_ram"

The following are limitations of inferring Block selectRAMs:

♦ ENA/ENB pins currently are inaccessible. The are always 
tied to “1”.

♦ RSTA/RSTB pins currently are inaccessible. They are always 
inactive.

♦ Automatic inference is not yet supported. The syn_ramstyle 
attribute is required for inferring Block RAMs.

♦ Initialization of RAMs is not supported.

♦ Dual port with Read-Write on a port is not supported.

• Synplify VHDL Example.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
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entity ram_example1 is
generic(data_width: integer:= 8;

address_width:integer := 8;
mem_depth: integer:= 256);

port (data: in std_logic_vector(data_width-1
downto 0);
address: in std_logic_vector(address_width-1
downto 0);

we, clk: in std_logic;
q: out std_logic_vector(data_width-1 downto

0));
end ram_example1;

architecture rtl of ram_example1 is
type mem_array is array (mem_depth-1 downto 0)
of std_logic_vector (data_width-1 downto 0);

signal mem: mem_array;
attribute syn_ramstyle : string;
attribute syn_ramstyle of mem : signal is

"block_ram";
signal raddress :

std_logic_vector(address_width-1 
downto 0);

begin
l0: process (clk)
begin
if (clk = ’1’ and clk’event) then
raddress <= address;

if (we = ’1’) then
mem(CONV_INTEGER(address)) <= data;

end if;
end if;
end process;
q <= mem(CONV_INTEGER(raddress));

end rtl;

Inferring Block RAM Verilog Example

The following coding examples provide Verilog coding styles for 
FPGA Express, LeonardoSpectrum, and Synplify.

• FPGA Express
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FPGA Express does not infer RAMs. All RAMs must be instantiated 
via primitives or cores.

• LeonardoSpectrum

Refer to the VHDL example in the section above for restrictions in 
inferring Block SelectRAM+.

• LeonardoSpectrum Verilog Example

module ram(din, we, addr, clk, dout);
parameter data_width=7,

address_width=6,mem_elements=64;
input [data_width-1:0] din;
input [address_width-1:0] addr;
input we, clk;
output [data_width-1:0] dout;
reg [data_width-1:0] mem[mem_elements-1:0];

/* Exemplar attribute mem block_ram FALSE. This
comment sets the block_ram attribute to FALSE on
the signal mem.The block_ram attribute must be
set on the memory signal.*/

reg [address_width - 1:0] addr_reg;
always @(posedge clk)
begin

addr_reg <= addr;
if (we)
mem[addr] <= din;

end
assign dout = mem[addr_reg];

endmodule

• Synplify Verilog Example

module sp_ram(din, addr, we, clk, dout);
parameter data_width=16,

address_width=10,mem_elements=600;
input [data_width-1:0] din;
input [address_width-1:0] addr;
input we, clk;
output [data_width-1:0] dout;
reg [data_width-1:0] mem[mem_elements-1:0] /
*synthesis syn_ramstyle = "block_ram" */;
reg [address_width - 1:0] addr_reg;
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always @(posedge clk)
begin

addr_reg <= addr;
if (we)

mem[addr] <= din;
end
assign dout = mem[addr_reg];

endmodule

Implementing Distributed SelectRAM+

Distributed SelectRAM+ can either be instantiated or inferred.The 
following sections describe and give examples of both instantiating 
and inferring distributed SelectRAM+

The following RAM Primitives are available for instantiation.

• Static synchronous single-port RAM (RAM16x1S, RAM32x1S)

Additional single-port RAM available for Virtex-II devices only: 
RAM16X2S, RAM16X4S, RAM16X8S, RAM32X1S, RAM32X2S, 
RAM32X4S, RAM32X8S, RAM64X1S, RAM64X2S, and 
RAM128X1S.

• Static synchronous dual-port RAM (RAM16x1D, RAM32x1D)

Additional dual-port RAM available dual port RAM available for 
Virtex-II devices only: RAM64X1D.

For more information on distributed SelectRAM, refer to the 
“Libraries Guide”.

Instantiating Distributed SelectRAM+ in VHDL

The following coding examples provide VHDL coding hints for 
FPGA Express, and LeonardoSpectrum.

• FPGA Express

-- This example shows how to create a

-- 16x4s RAM using xilinx RAM16x1S component.

library IEEE;

use IEEE.std_logic_1164.all;

--use IEEE.std_logic_unsigned.all;
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entity ram_16x4s is

port (o: out std_logic_vector(3 downto 0);

we : in std_logic;

clk: in std_logic;

d: in std_logic_vector(3 downto 0);

a: in std_logic_vector(3 downto 0));

end ram_16x4s;

architecture xilinx of ram_16x4s is

component RAM16x1S is 

port (O : out std_logic;

D : in std_logic; 

A3, A2, A1, A0 : in std_logic;

WE, WCLK : in std_logic);

end component;

attribute INIT: string;

attribute INIT of U0: label is "FFFF";

attribute INIT of U1: label is "ABCD";

attribute INIT of U2: label is "BCDE";

attribute INIT of U3: label is "CDEF";

begin

U0 : RAM16x1S 

port map (O => o(0), WE => we, WCLK => clk, D 
=> d(0), A0 => 

a(0), A1 => a(1), A2 => a(2), A3 => a(3));

U1 : RAM16x1S 

port map (O => o(1), WE => we, WCLK => clk, D 

=> d(1), A0 => a(0), A1 => a(1), A2 => a(2), 
A3 => a(3));

U2 : RAM16x1S 
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port map (O => o(2), WE => we, WCLK => clk, D 

=> d(2), A0 => a(0), A1 => a(1), A2 => a(2), 
A3 => a(3));

U3 : RAM16x1S 

port map (O => o(3), WE => we, WCLK => clk, D 
=> d(3), A0 => 

a(0), A1 => a(1), A2 => a(2), A3 => a(3));

end xilinx;

• LeonardoSpectrum

-- This example shows how to create a

-- 16x4s RAM using xilinx RAM16x1S component.

library IEEE;

use IEEE.std_logic_1164.all;

entity ram_16x1s is

generic (init_val : string := "0000" );

port (O : out std_logic;

D : in std_logic;

A3, A2, A1, A0: in std_logic;

WE, CLK : in std_logic);

end ram_16x1s;

architecture xilinx of ram_16x1s is

attribute INIT: string;

attribute INIT of u1 : label is init_val;

component RAM16X1S is port (O : out std_logic;

D : in std_logic;

WE: in std_logic;

WCLK: in std_logic;

A0: in std_logic;
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A1: in std_logic;

A2: in std_logic;

A3: in std_logic);

end component; 

begin

U1 : RAM16X1S port map (O => O, WE => WE,  WCLK 
=>

CLK, D => D, A0 => A0, A1 => A1, A2 => A2, A3 => 
A3);

end xilinx;

library IEEE;

use IEEE.std_logic_1164.all;

--use IEEE.std_logic_unsigned.all;

entity ram_16x4s is

port (o: out std_logic_vector(3 downto 0);

we : in std_logic;

clk: in std_logic;

d: in std_logic_vector(3 downto 0);

a: in std_logic_vector(3 downto 0));

end ram_16x4s;

architecture xilinx of ram_16x4s is

component ram_16x1s

generic (init_val: string := "0000");

port (O : out std_logic;

D : in std_logic; 

A3, A2, A1, A0 : in std_logic;

WE, CLK : in std_logic);

end component;
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begin

U0 : ram_16x1s generic map ("FFFF")

port map (O => o(0), WE => we, CLK => clk, 

D => d(0), A0 => a(0), A1 => a(1),

A2 => a(2),A3 => a(3));

U1 : ram_16x1s generic map ("ABCD")

port map (O => o(1), WE => we, CLK => clk,

D => d(1), A0 => a(0), A1 => a(1), 

A2 => a(2), A3 => a(3));

U2 : ram_16x1s generic map ("BCDE")

port map (O => o(2), WE => we, CLK => clk, 

D => d(2), A0 => a(0), A1 => a(1), 

A2 => a(2), A3 => a(3));

U3 : ram_16x1s generic map ("CDEF")

port map (O => o(3), WE => we, CLK => clk, 

D => d(3), A0 => a(0), A1 => a(1), 

A2 => a(2), A3 => a(3));

end xilinx;

• Synplify

-- This example shows how to create a

-- 16x4s RAM using xilinx RAM16x1S component.

library IEEE;

use IEEE.std_logic_1164.all;

library virtex;

use virtex.components.all;

library synplify;

use synplify.attributes.all;
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entity ram_16x1s is

generic (init_val : string := "0000" );

port (O : out std_logic;

D : in std_logic;

A3, A2, A1, A0: in std_logic;

WE, CLK : in std_logic);

end ram_16x1s;

architecture xilinx of ram_16x1s is

attribute xc_props: string;

attribute xc_props of u1 : label is "INIT=" & 
init_val;

begin

U1 : RAM16X1S port map (O => O, WE => WE,  WCLK 
=>

CLK, D => D, A0 => A0, A1 => A1, A2 => A2, A3 => 
A3);

end xilinx;

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

entity ram_16x4s is

port (o: out std_logic_vector(3 downto 0);

we : in std_logic;

clk : in std_logic;



Synthesis and Simulation Design Guide

5-108 Xilinx Development System

d: in std_logic_vector(3 downto 0);

a: in std_logic_vector(3 downto 0));

end ram_16x4s;

architecture xilinx of ram_16x4s is

component ram_16x1s

generic (init_val: string := "0000");

port (O : out std_logic;

D : in std_logic;

A3, A2, A1, A0 : in std_logic;

WE, CLK : in std_logic);

end component;

begin

U0 : ram_16x1s generic map ("FFFF")

port map (O => o(0), WE => we, CLK => clk,

D =>d(0), A0 => a(0), A1 => a(1),

A2 => a(2), A3 => a(3));

U1 : ram_16x1s generic map ("ABCD")

port map (O => o(1), WE => we, CLK => clk, 

D => d(1), A0 => a(0), A1 => a(1), 

A2 => a(2), A3 => a(3));

U2 : ram_16x1s generic map ("BCDE")

port map (O => o(2), WE => we, CLK => clk, 

D => d(2), A0 => a(0), A1 => a(1), 

A2 => a(2), A3 => a(3));

U3 : ram_16x1s generic map ("CDEF")
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port map (O => o(3), WE => we, CLK => clk,

D => d(3), A0 => a(0), A1 => a(1), 

A2 => a(2), A3 => a(3));

end xilinx;

Instantiating Distributed SelectRAM+ in Verilog

The following coding provides Verilog coding hints for FPGA 
Express, Synplify and LeonardoSpectrum.

• FPGA Express/FPGA Compiler II

// This example shows how to create a

// 16x4 RAM using Xilinx RAM16X1S component.

module RAM_INIT_EX1 (DATA_BUS, ADDR, WE, CLK);

input [3:0] ADDR;

inout [3:0] DATA_BUS;

input WE, CLK;

wire [3:0] DATA_OUT;

// Only for Simulation -- the defparam will not 
synthesize

// Use the defparam for RTL simulation.

// There is no defparam needed for Post P&R 
simulation.

// synopsys translate_off

defparam RAM0.INIT="0101", RAM1.INIT="AAAA", 

RAM2.INIT="FFFF", RAM3.INIT="5555";

// synopsys translate_on

assign DATA_BUS = !WE ? DATA_OUT : 4'hz;

// Instantaition of 4 16X1 Synchronous RAMs

// Use the xc_props attribute to pass the INIT 
property



Synthesis and Simulation Design Guide

5-110 Xilinx Development System

RAM16X1S RAM3 (.O (DATA_OUT[3]), .D 
(DATA_BUS[3]),

.A3 (ADDR[3]), .A2 (ADDR[2]), .A1 (ADDR[1]),

.A0 (ADDR[0]), .WE (WE), .WCLK (CLK)) ; 

/* synopsys attribute INIT "5555" */

RAM16X1S RAM2 (.O (DATA_OUT[2]), .D 
(DATA_BUS[2]),

.A3 (ADDR[3]), .A2 (ADDR[2]), .A1 (ADDR[1]),

.A0 (ADDR[0]), .WE (WE), .WCLK (CLK));

/* synopsys attribute INIT "FFFF" */

RAM16X1S RAM1 (.O (DATA_OUT[1]), .D 
(DATA_BUS[1]),

.A3 (ADDR[3]), .A2 (ADDR[2]), .A1 (ADDR[1]),

.A0 (ADDR[0]), .WE (WE), .WCLK (CLK));

/* synopsys attribute INIT "AAAA" */

RAM16X1S RAM0 (.O (DATA_OUT[0]), .D 
(DATA_BUS[0]),

.A3 (ADDR[3]), .A2 (ADDR[2]), .A1 (ADDR[1]),

.A0 (ADDR[0]), .WE (WE), .WCLK (CLK));

/* synopsys attribute INIT "0101" */

endmodule

module RAM16X1S (O,D,A3, A2, A1, A0, WE, WCLK);

output O;

input D;

input A3;

input A2;

input A1;

input A0;

input WE;
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input WCLK;

endmodule

• LeonardoSpectrum

// This example shows how to create a

// 16x4 RAM using Xilinx RAM16X1S component.

module RAM_INIT_EX1 (DATA_BUS, ADDR, WE, CLK);

input [3:0] ADDR;

inout [3:0] DATA_BUS;

input WE, CLK;

wire [3:0] DATA_OUT;

// Only for Simulation -- the defparam will not 
synthesize

// Use the defparam for RTL simulation.

// There is no defparam needed for Post P&R 
simulation.

// exemplar translate_off

defparam RAM0.INIT="0101", RAM1.INIT="AAAA", 

RAM2.INIT="FFFF", RAM3.INIT="5555";

// exemplar translate_on

assign DATA_BUS = !WE ? DATA_OUT : 4'hz;

// Instantaition of 4 16X1 Synchronous RAMs

// Use the xc_props attribute to pass the INIT 
property

RAM16X1S RAM3 (.O (DATA_OUT[3]), .D 
(DATA_BUS[3]),

.A3 (ADDR[3]), .A2 (ADDR[2]), .A1 (ADDR[1]),

.A0 (ADDR[0]), .WE (WE), .WCLK (CLK))

/* exemplar attribute RAM3 INIT 5555 */;

RAM16X1S RAM2 (.O (DATA_OUT[2]), .D 
(DATA_BUS[2]),
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.A3 (ADDR[3]), .A2 (ADDR[2]), .A1 (ADDR[1]),

.A0 (ADDR[0]), .WE (WE), .WCLK (CLK))

/* exemplar attribute RAM2 INIT FFFF */;

RAM16X1S RAM1 (.O (DATA_OUT[1]), .D 
(DATA_BUS[1]),

.A3 (ADDR[3]), .A2 (ADDR[2]), .A1 (ADDR[1]),

.A0 (ADDR[0]), .WE (WE), .WCLK (CLK))

/* exemplar attribute RAM1 INIT AAAA */;

RAM16X1S RAM0 (.O (DATA_OUT[0]), .D 
(DATA_BUS[0]),

.A3 (ADDR[3]), .A2 (ADDR[2]), .A1 (ADDR[1]),

.A0 (ADDR[0]), .WE (WE), .WCLK (CLK))

/* exemplar attribute RAM0 INIT 0101 */;

endmodule

module RAM16X1S (O,D,A3, A2, A1, A0, WE, WCLK);

output O;

input D;

input A3;

input A2;

input A1;

input A0;

input WE;

input WCLK;

endmodule

• Synplify

// This example shows how to create a

// 16x4 RAM using Xilinx RAM16X1S component.

`include "virtex.v"

module RAM_INIT_EX1 (DATA_BUS, ADDR, WE, CLK);
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input [3:0] ADDR;

inout [3:0] DATA_BUS;

input WE, CLK;

wire [3:0] DATA_OUT;

// Only for Simulation -- the defparam will not

// synthesize

// Use the defparam for RTL simulation.

// There is no defparam needed for Post P&R

//simulation.

// synthesis translate_off

defparam RAM0.INIT="0101", RAM1.INIT="AAAA", 

RAM2.INIT="FFFF", RAM3.INIT="5555";

// synthesis translate_on

assign DATA_BUS = !WE ? DATA_OUT : 4'hz;

// Instantaition of 4 16X1 Synchronous RAMs

// Use the xc_props attribute to pass the INIT 

property

RAM16X1S RAM3 (.O (DATA_OUT[3]), .D 
(DATA_BUS[3]),

.A3 (ADDR[3]), .A2 (ADDR[2]), .A1 (ADDR[1]),

.A0 (ADDR[0]), .WE (WE), .WCLK (CLK))

/* synthesis xc_props="INIT=5555" */;

RAM16X1S RAM2 (.O (DATA_OUT[2]), .D 
(DATA_BUS[2]),

.A3 (ADDR[3]), .A2 (ADDR[2]), .A1 (ADDR[1]),

.A0 (ADDR[0]), .WE (WE), .WCLK (CLK))

/* synthesis xc_props="INIT=FFFF" */;

RAM16X1S RAM1 (.O (DATA_OUT[1]), .D 
(DATA_BUS[1]),
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.A3 (ADDR[3]), .A2 (ADDR[2]), .A1 (ADDR[1]),

.A0 (ADDR[0]), .WE (WE), .WCLK (CLK))

/* synthesis xc_props="INIT=AAAA" */;

RAM16X1S RAM0 (.O (DATA_OUT[0]), .D 
(DATA_BUS[0]),

.A3 (ADDR[3]), .A2 (ADDR[2]), .A1 (ADDR[1]),

.A0 (ADDR[0]), .WE (WE), .WCLK (CLK))

/* synthesis xc_props="INIT=0101" */;

endmodule

Inferring Distributed SelectRAM+ in VHDL

The following coding examples provide VHDL and Verilog coding 
styles for FPGA Express, LeonardoSpectrum, and Synplify.

• FPGA Express

FPGA Express does not infer RAMs.

• LeonardoSpectrum and Synplify

The following is a 32x8 (32 words by 8 bits per word) synchro-
nous, dual-port RAM example.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
entity ram_32x8d_infer is

generic( d_width : integer := 8;
addr_width : integer := 5;
mem_depth : integer := 32);

port (o : out STD_LOGIC_VECTOR(d_width - 1
downto 0);

we, clk : in STD_LOGIC;
d : in STD_LOGIC_VECTOR(d_width - 1

downto 0);
raddr, waddr : in

STD_LOGIC_VECTOR(addr_width - 1 downto 0));
end ram_32x8d_infer;

architecture xilinx of ram_32x8d_infer is
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type mem_type is array (mem_depth - 1 downto
0) of STD_LOGIC_VECTOR (d_width - 1 downto 0);

signal mem : mem_type;
begin

process(clk, we, waddr)
begin

if (rising_edge(clk)) then
if (we = ’1’) then

mem(conv_integer(waddr)) <= d;
end if;
end if;

end process;
process(raddr)
begin

o <= mem(conv_integer(raddr));
end process;

end xilinx;

• The following is a 32x8 (32 words by 8 bits per word) synchro-
nous, single-port RAM example.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity ram_32x8s_infer is
generic( d_width : integer := 8;

addr_width : integer := 5;
mem_depth : integer := 32);

port (o : out STD_LOGIC_VECTOR(d_width - 1
downto 0);

we, wclk : in STD_LOGIC;
d : in STD_LOGIC_VECTOR(d_width - 1

downto 0);
addr : in STD_LOGIC_VECTOR(addr_width - 1

downto 0));
end ram_32x8s_infer;

architecture xilinx of ram_32x8s_infer is
type mem_type is array (mem_depth - 1 downto

0) of STD_LOGIC_VECTOR (d_width - 1 downto 0);
signal mem : mem_type;

begin
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process(wclk, we, addr)
begin

if (rising_edge(wclk)) then
if (we = ’1’) then
mem(conv_integer(addr)) <= d;
end if;

end if;
end process;
o <= mem(conv_integer(addr));

end xilinx;

Inferring Distributed SelectRAM+ in Verilog

The following coding examples provide Verilog coding hints for 
FPGA Express, Synplify and LeonardoSpectrum.

• FPGA Express

FPGA Express does not infer RAMs.

• LeonardoSpectrum and Synplify

The following is a 32x8 (32 words by 8 bits per word) synchro-
nous, dual-port RAM example.

module ram_32x8d_infer (o, we, d, raddr, waddr, 
clk);

parameter d_width = 8, addr_width = 5;
output [d_width - 1:0] o;
input we, clk;
input [d_width - 1:0] d;
input [addr_width - 1:0] raddr, waddr;

reg [d_width - 1:0] o;
reg [d_width - 1:0] mem [(1 << addr_width) 1:0];

always @(posedge clk)
if (we)

mem[waddr] = d;

always @(mem or raddr)
o = mem[raddr];

endmodule
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The following is a 32x8 (32 words by 8 bits per word) synchro-
nous, single-port RAM example.

module ram_32x8s_infer (o, we, d, addr, wclk);
parameter d_width = 8, addr_width = 5;
output [d_width - 1:0] o;
input we, wclk;
input [d_width - 1:0] d;
input [addr_width - 1:0] addr;

reg [d_width - 1:0] mem [(1 << addr_width) 1:0];

always @(posedge wclk)
if (we)

mem[addr] = d;
assign o = mem[addr];
endmodule

Implementing ROMs
ROMs can be implemented as follows.

• Use RTL descriptions of ROMs

• Instantiate 16x1 and 32x1 ROM primitives

The following examples are RTL VHDL and Verilog ROM coding 
examples.

RTL Description of a ROM VHDL Example

Note LeonardoSpectrum does not infer ROM.

Use the following coding example for FPGA Express and Synplify.

--
--  Behavioral 16x4 ROM Example
--           rom_rtl.vhd
--

library IEEE;
use IEEE.std_logic_1164.all;

entity rom_rtl is
     port (ADDR: in INTEGER range 0 to 15;
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           DATA: out STD_LOGIC_VECTOR (3 downto 0));

end rom_rtl;

architecture XILINX of rom_rtl is

subtype ROM_WORD is STD_LOGIC_VECTOR (3 downto 0);
type ROM_TABLE is array (0 to 15) of ROM_WORD;
constant ROM: ROM_TABLE := ROM_TABLE'(
 ROM_WORD'("0000"),
 ROM_WORD'("0001"),
 ROM_WORD'("0010"),
 ROM_WORD'("0100"),
 ROM_WORD'("1000"),
 ROM_WORD'("1100"),
 ROM_WORD'("1010"),
 ROM_WORD'("1001"),
 ROM_WORD'("1001"),
 ROM_WORD'("1010"),
 ROM_WORD'("1100"),
 ROM_WORD'("1001"),
 ROM_WORD'("1001"),
 ROM_WORD'("1101"),
 ROM_WORD'("1011"),
 ROM_WORD'("1111"));
 
begin

DATA <= ROM(ADDR);  -- Read from the ROM

end XILINX;

RTL Description of a ROM Verilog Example

Note LeonardoSpectrum does not infer ROM.

Use the following coding example for FPGA Express and Synplify.

/*
 * ROM_RTL.V
 * Behavioral Example of 16x4 ROM
*/

module rom_rtl(ADDR, DATA) ;
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input [3:0] ADDR ;
output [3:0] DATA ;
reg [3:0] DATA ;

// A memory is implemented
// using a case statement

always @(ADDR)
begin

case (ADDR)
4'b0000 : DATA = 4'b0000 ;
4'b0001 : DATA = 4'b0001 ;
4'b0010 : DATA = 4'b0010 ;
4'b0011 : DATA = 4'b0100 ;
4'b0100 : DATA = 4'b1000 ;
4'b0101 : DATA = 4'b1000 ;
4'b0110 : DATA = 4'b1100 ;
4'b0111 : DATA = 4'b1010 ;
4'b1000 : DATA = 4'b1001 ;
4'b1001 : DATA = 4'b1001 ;
4'b1010 : DATA = 4'b1010 ;
4'b1011 : DATA = 4'b1100 ;
4'b1100 : DATA = 4'b1001 ;
4'b1101 : DATA = 4'b1001 ;
4'b1110 : DATA = 4'b1101 ;
4'b1111 : DATA = 4'b1111 ;

endcase
end

endmodule

With the VHDL and Verilog examples above, synthesis tools create 
ROMs using function generators (LUTs and MUXFs) or the ROM 
primitives.

Another method for implementing ROMs is instantiating the 16x1 or 
32x1 ROM primitives. To define the ROM value, use the Set Attribute 
or equivalent command to set the INIT property on the ROM compo-
nent.

Note Refer to your synthesis tool documentation for the correct 
syntax.



Synthesis and Simulation Design Guide

5-120 Xilinx Development System

This type of command writes the ROM contents to the netlist file so 
the Xilinx tools can initialize the ROM. The INIT value should be 
specified in hexadecimal values. See the VHDL and Verilog RAM 
examples in the following section for examples of this property using 
a RAM primitive.

Implementing FIFO
FIFO can be implemented with FPGA RAMs. For more information 
on implementing FIFO using FPGAs, reference the following Appli-
cation Notes:

Xilinx provide several Application Notes describing the use of FIFO 
when implementing FPGAs. Please refer to the following Xilinx 
Application Notes for more information:

• Xilinx XAPP175: “High Speed FIFOs in Spartan-II FPGAs”, applica-
tion note, v1.0 (11/99) (http://www.xilinx.com/xapp/
xapp175.pdf)

• Xilinx XAPP131: “170MHz FIFOs using the Virtex Block Selec-
tRAM+ Feature”, v 1.2 (9/99) (http://www.xilinx.com/xapp/
xapp131.pdf)

Implementing CAM
Content Addressable Memory (CAM) or associative memory is a 
storage device which can be addressed by its own contents. 

Xilinx provide several Application Notes describing CAM designs in 
Virtex FPGAs. Please refer to the following Xilinx Application Notes 
for more information:

• XAPP201: “An Overview of Multiple CAM Designs in Virtex Family 
Devices” v 1.1(9/99) (http://www.xilinx.com/xapp/
xapp201.pdf)

• XAPP202: “Content Addressable Memory (CAM) in ATM Applica-
tions” v 1.1 (9/99) (http://www.xilinx.com/xapp/xapp202.pdf)

• XAPP203: “Designing Flexible, Fast CAMs with Virtex Family 
FPGAs” v 1.1 (9/99) (http://www.xilinx.com/xapp/
xapp203.pdf)
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• XAPP204: “Using Block SelectRAM+ for High-Performance Read/
Write CAMs” v1.1 (10/99) (http://www.xilinx.com/xapp/
xapp204.pdf)

Using CORE Generator to Implement Memory
If you must instantiate memory, use the CORE Generator to create a 
memory module larger than 32X1 (16X1 for Dual Port). Imple-
menting memory with the CORE Generator is similar to imple-
menting any module with CORE Generator except for defining the 
Memory initialization file. Please reference the memory module 
datasheets that come with every CORE Generator module for specific 
information on the initialization file.

Implementing Shift Register (Virtex/E/II and Spartan-
II)

The SRL16 is a very efficient way to create shift registers without 
using up flip-flop resources. You can create shift registers that vary in 
length from one to sixteen bits. The SRL16 is a shift register look up 
table (LUT) whose inputs (A3, A2, A1) determine the length of the 
shift register. The shift register may be of a fixed, static length or it 
may be dynamically adjusted. The shift register LUT contents are 
initialized by assigning a four-digit hexadecimal number to an INIT 
attribute. The first, or the left-most, hexadecimal digit is the most 
significant bit. If an INIT value is not specified, it defaults to a value 
of four zeros (0000) so that the shift register LUT is cleared during 
configuration. The data (D) is loaded into the first bit of the shift 
register during the Low-to-High clock (CLK) transition. During 
subsequent Low-to-High clock transitions data is shifted to the next 
highest bit position as new data is loaded. The data appears on the Q 
output when the shift register length determined by the address 
inputs is reached.

The Static Length Mode of SRL16 implements any shift register 
length from 1 to 16 bits in one LUT. Shift register length is (N+1) 
where N is the input address. Synthesis tools will implement longer 
shift registers with multiple SRL16 and additional combinatorial 
logic for multiplexing.

In Virtex-II devices, additional cascading shift register LUTs 
(SRLC16) are available. SRLC16 supports synchronous shift-out 
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output of the last (16th) bit. This output has a dedicated connection to 
the input of the next SRLC16 inside the CLB. With four slices and 
dedicated multiplexers (MUXF5, MUXF6, and so forth) available in 
one Virtex-II CLB, up to a 128-bit shift register can be implemented 
effectively using SRLC16. Current synthesis tools (Synplify 6.0, 
LeonardoSpectrum 2000.1a2, and FPGA Express/Compiler II 3.5) do 
not yet infer the SRLC16. For more information, please refer to the 
“Virtex Handbook”. 

Dynamic Length Mode can be implemented using SRL16 or SRLC16. 
Each time a new address is applied to the 4-input address pins, the 
new bit position value is available on the Q output after the time 
delay to access the LUT. Currently, the shift register components must 
be instantiated to implement this mode. Future releases of your 
synthesis tool might support inferencing this feature. Please refer to 
the latest release of your synthesis tool’s documentation for more 
information.

Inferring SRL16 in VHDL
Use the following coding example for FPGA Express, Synplify and 
LeonardoSpectrum.

• FPGA Express

<PRE>
process (CLK)
begin

if CLK’event and CLK=’1’ 
then 
REG <= DIN & REG(15 downto 1);

end if;
DOUT <= REG(0);
end process;
</PRE>

--Add a clock enable signal to infer an SRL16E

--component:

<PRE>

process (CLK)
begin

if CLK’event and CLK=’1’
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then
if CE=’1’
then

REG <= DIN & REG(15 downto 1);
end if;

end if;
DOUT <= REG(0);

end process;
</PRE>

• LeonardoSpectrum and Synplify

LeonardoSpectrum 1999.1h and later will automatically infer the 
SRL16. In Synplify, the SRL is mapped by default when possible. For 
LeonardoSpectrum and Synplify, use the following example:

-- VHDL example design of SRL16 inference for 
Virtex

-- This design infer 16 SRL16 with 16 pipeline 
delay

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
entity pipeline_delay is generic (cycle :integer
:= 16;

width :integer := 16);
port (input :in std_logic_vector(width - 1

downto 0);
clk :in std_logic;
output :out std_logic_vector(width - 1 downto

0));
attribute clock_node :boolean;
attribute clock_node of clk : signal is TRUE;

end pipeline_delay;
architecture behav of pipeline_delay is
type my_type is array (0 to cycle -1) of
std_logic_vector(width -1 downto 0);
signal int_sig :my_type;

begin
main :process (clk)
begin
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if clk’event and clk = ’1’ then
int_sig <= input & int_sig(0 to cycle - 2);
end if;

end process main;
output <= int_sig(cycle -1);
end behav;

Inferring SRL16 in Verilog
Use the following coding example for FPGA Express, Synplify and 
LeonardoSpectrum.

• FPGA Express

<PRE>
always @(posedge clk)
begin

int  = {din, int[15:1]};
end
assign dout = int[0];
</PRE>
<PRE>
always @(posedge clk)
begin

if (ce)
int  = {din, int[15:1]};

end
assign dout = int[0];
</PRE>

• LeonardoSpectrum and Synplify

// Verilog Example SRL
//This design infer 3 SRL16 with 4 pipeline delay
module srle_example (clk, enable, data_in,
result);
parameter cycle=4;
parameter width = 3;
input clk, enable;
input [0:width] data_in;
output [0:width] result;
reg [0:width-1] shift [cycle-1:0];
integer i;
always @(posedge clk)
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begin
if (enable == 1) begin

for (i = (cycle-1);i >0; i=i-1) shift[i] =
shift[i-1];
shift[0] = data_in;
end

end
assign result = shift[cycle-1];
endmodule

Implementing LFSR
The SRL (Shift Register LUT) implements very efficient shift registers 
and can be used to implement Linear Feedback Shift Registers. Xilinx 
Application Note XAPP 210 describes the implementation of Linear 
Feedback Shift Registers (LFSR) using the Virtex SRL macro. One half 
of a CLB can be configured to implement a 15-bit LFSR, one CLB can 
implement a 52-bit LFSR, and with two CLBs a 118-bit LFSR is imple-
mented. 

The XApp 210 can be downloaded from the following Xilinx web site.

http://support.xilinx.com/xapp/xapp210.pdf

Implementing Multiplexers
A 4-to-1 multiplexer can be efficiently implemented in a single 
Virtex/E/II and Spartan-II family slice. The six input signals (four 
inputs, two select lines) uses a combination of two LUTs and MUXF5 
available in every slice. Up to 9 input functions can be implemented 
with this configuration. 

In the Virtex/E and Spartan-II families, larger multiplexers can be 
implemented using two adjacent slices in one CLB with its dedicated 
MUXF5s and a MUXF6. 

Virtex-II slices contain dedicated two-input multiplexers (one 
MUXF5 and one MUXFX per slice). MUXF5 is used to combine two 
LUTs. MUXFX can be used as MUXF6, MUXF7, and MUXF8 to 
combine 4, 8, and 16 LUTs, respectively. Please refer to the “Virtex-II 
Handbook” for more information on designing large multiplexer in 
Virtex-II. This book can be found on the Xilinx website at 
www.xilinx.com.
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In addition, you can use internal tristate buffers (BUFTs) to imple-
ment large multiplexers. Large multiplexers built with BUFTs have 
the following advantages.

• Can vary in width with only minimal impact on area and delay

• Can have as many inputs as there are tristate buffers per hori-
zontal longline in the target device

• Have one-hot encoded selector inputs

This last point is illustrated in the following VHDL and Verilog 
designs of a 5-to-1 multiplexer built with gates. Typically, the gate 
version of this multiplexer has binary encoded selector inputs and 
requires three select inputs (SEL<2:0>). The schematic representation 
of this design is shown in the “5-to-1 MUX Implemented with Gates” 
figure. 

Some synthesis tools include commands that allow you to switch 
between multiplexers with gates or with tristates. Check with your 
synthesis vendor for more information.

The VHDL and Verilog designs provided at the end of this section 
show a 5-to-1 multiplexer built with tristate buffers. The tristate 
buffer version of this multiplexer has one-hot encoded selector inputs 
and requires five select inputs (SEL<4:0>). The schematic representa-
tion of these designs is shown in the “5-to-1 MUX Implemented with 
Gates” figure.

Mux Implemented with Gates VHDL Example
The following example shows a MUX implemented with Gates.

-- MUX_GATE.VHD
-- 5-to-1 Mux Implemented in Gates
-- May 1997 

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity mux_gate is

port (SEL: in STD_LOGIC_VECTOR (2 downto 0);
A,B,C,D,E: in STD_LOGIC; 



Architecture Specific HDL Coding Styles for Spar-

Synthesis and Simulation Design Guide 5-127

SIG: out STD_LOGIC);
end mux_gate;

architecture RTL of mux_gate is
begin

SEL_PROCESS: process (SEL,A,B,C,D,E)
begin

case SEL is 
when "000"  => SIG <= A; 
when "001"  => SIG <= B; 
when "010"  => SIG <= C; 
when "011"  => SIG <= D; 
when others => SIG <= E; 

end case; 
end process SEL_PROCESS;

end RTL;

Mux Implemented with Gates Verilog Example
The following example shows a MUX implemented with Gates.

/* MUX_GATE.V 
* May 1997 */

module mux_gate (A,B,C,D,E,SEL,SIG);

input A,B,C,D,E;
input [2:0] SEL;
output SIG;
reg SIG;

always @ (A or B or C or D or SEL)
case (SEL)

3'b000:
SIG=A;

3'b001:
SIG=B;

3'b010:
SIG=C;

3'b011:
SIG=D;
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3'b100:
SIG=E;

default: SIG=A;
endcase

endmodule

Figure 5-6  5-to-1 MUX Implemented with Gates

Wide MUX Mapped to MUXFs
Synthesis tools will use MUXF5 and MUXF6 to implement wide 
multiplexers. MUXF5 will be used to map 9-input function and 
MUXF6 to map up to 18-input function.

Currently, not all of the synthesis tools infer MUXF7 and MUXF8 for 
Virtex-II wide muxes. Please refer to the your synthesis tool’s current 
documentation for updates on using this function. See the “Virtex-II 
Handbook” for instantiation examples
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Mux Implemented with BUFTs VHDL Example
The following example shows a MUX implemented with BUFTs.

-- MUX_TBUF.VHD
-- 5-to-1 Mux Implemented in 3-State Buffers
-- May 1997 

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity mux_tbuf is
port (SEL: in STD_LOGIC_VECTOR (4 downto 0);
A,B,C,D,E: in STD_LOGIC; 

SIG: out STD_LOGIC);
end mux_tbuf;

architecture RTL of mux_tbuf is
begin
 

SIG <= A when (SEL(0)='0') else 'Z'; 
SIG <= B when (SEL(1)='0') else 'Z'; 
SIG <= C when (SEL(2)='0') else 'Z'; 
SIG <= D when (SEL(3)='0') else 'Z'; 
SIG <= E when (SEL(4)='0') else 'Z';

end RTL;

Mux Implemented with BUFTs Verilog Example
The following example shows a MUX implemented with BUFTs.

/* MUX_TBUF.V
 * May 1997 */

module mux_tbuf (A,B,C,D,E,SEL,SIG);

input A,B,C,D,E;
input [4:0] SEL;
output SIG;
reg SIG;
 

always @ (SEL or A)
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begin
if (SEL[0]==1'b0)

SIG=A;
else

SIG=1'bz;
end

 
always @ (SEL or B)
begin 

if (SEL[1]==1'b0)
SIG=B;

else
SIG=1'bz;

end

always @ (SEL or C)
begin

if (SEL[2]==1'b0)
SIG=C;

else
SIG=1'bz;

end

always @ (SEL or D)
begin

if (SEL[3]==1'b0) 
SIG=D; 

else 
SIG=1'bz;

end

always @ (SEL or E)
begin 

if (SEL[4]==1'b0)
SIG=E;

else
SIG=1'bz;

end
endmodule
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Figure 5-7  5-to-1 MUX Implemented with BUFTs 

Using Pipelining
You can use pipelining to dramatically improve device performance. 
Pipelining increases performance by restructuring long data paths 
with several levels of logic and breaking it up over multiple clock 
cycles. This method allows a faster clock cycle and, as a result, an 
increased data throughput at the expense of added data latency. 
Because the Xilinx FPGA devices are register-rich, this is usually an 
advantageous structure for FPGA designs because the pipeline is 
created at no cost in terms of device resources. Because data is now 
on a multi-cycle path, special considerations must be used for the rest 
of your design to account for the added path latency. You must also 
be careful when defining timing specifications for these paths.
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Some synthesis tools have limited capability for constraining multi-
cycle paths, or translate these constraints to Xilinx implementation 
constraints. Check your synthesis tool documentation for information 
on multi-cycle paths. If your tool cannot translate the constraint but 
can synthesize to a multi-cycle path, you can add the constraint to the 
UCF file.

Before Pipelining
In the following example, the clock speed is limited by the clock-to 
out-time of the source flip-flop; the logic delay through four levels of 
logic; the routing associated with the four function generators; and 
the setup time of the destination register.

Figure 5-8  Before Pipelining

After Pipelining
This is an example of the same data path in the previous example 
after pipelining. Because the flip-flop is contained in the same CLB as 
the function generator, the clock speed is limited by the clock-to-out 
time of the source flip-flop; the logic delay through one level of logic; 
one routing delay; and the setup time of the destination register. In 
this example, the system clock runs much faster than in the previous 
example.
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Figure 5-9  After Pipelining

Design Hierarchy
HDL designs can either be synthesized as a flat module or as many 
small modules. Each methodology has its advantages and disadvan-
tages, but as higher density FPGAs are created, the advantages of 
hierarchical designs outweigh any disadvantages.

Advantages to building hierarchical designs are as follows.

• Easier and faster verification/simulation

• Allows several engineers to work on one design at the same time

• Speeds up design compilation

• Reduces design time by allowing design module re-use for this 
and future designs.

• Allows you to produce designs that are easier to understand

• Allows you to efficiently manage the design flow

Disadvantages to building hierarchical designs are as follows.

• Design mapping into the FPGA may not be as optimal across 
hierarchical boundaries; this can cause lesser device utilization 
and decreased design performance

• Design file revision control becomes more difficult

• Designs become more verbose

Most of the disadvantages listed above can be overcome with careful 
design consideration when choosing the design hierarchy.
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 Using Synthesis Tools with Hierarchical Designs
By effectively partitioning your designs, you can significantly reduce 
compile time and improve synthesis results. Here are some recom-
mendations for partitioning your designs.

Restrict Shared Resources to Same Hierarchy Level

Resources that can be shared should be on the same level of hier-
archy. If these resources are not on the same level of hierarchy, the 
synthesis tool cannot determine if these resources should be shared.

Compile Multiple Instances Together

You may want to compile multiple occurrences of the same instance 
together to reduce the gate count. However, to increase design speed, 
do not compile a module in a critical path with other instances.

Restrict Related Combinatorial Logic to Same 
Hierarchy Level

Keep related combinatorial logic in the same hierarchical level to 
allow the synthesis tool to optimize an entire critical path in a single 
operation. Boolean optimization does not operate across hierarchical 
boundaries. Therefore, if a critical path is partitioned across bound-
aries, logic optimization is restricted. In addition, constraining 
modules is difficult if combinatorial logic is not restricted to the same 
level of hierarchy.

Separate Speed Critical Paths from Non-critical Paths

To achieve satisfactory synthesis results, locate design modules with 
different functions at different levels of the hierarchy. Design speed is 
the first priority of optimization algorithms. To achieve a design that 
efficiently utilizes device area, remove timing constraints from design 
modules.

Restrict Combinatorial Logic that Drives a Register to 
Same Hierarchy Level

To reduce the number of CLBs used, restrict combinatorial logic that 
drives a register to the same hierarchical block.
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Restrict Module Size

Restrict module size to 100 - 200 CLBs. This range varies based on 
your computer configuration; the time required to complete each 
optimization run; if the design is worked on by a design team; and 
the target FPGA routing resources. Although smaller blocks give you 
more control, you may not always obtain the most efficient design. 
For the final compilation of your design, you may want to compile 
fully from the top down. Check with your synthesis vendor for 
guidelines.

Register All Outputs

Arrange your design hierarchy so that registers drive the module 
output in each hierarchical block. Registering outputs makes your 
design easier to constrain because you only need to constrain the 
clock period and the ClockToSetup of the previous module. If you 
have multiple combinatorial blocks at different levels of the hier-
archy, you must manually calculate the delay for each module. Also, 
registering the outputs of your design hierarchy can eliminate any 
possible problems with logic optimization across hierarchical bound-
aries.

Restrict One Clock to Each Module or to Entire 
Design

By restricting one clock to each module, you only need to describe the 
relationship between the clock at the top level of the design hierarchy 
and each module clock. By restricting one clock to the entire design, 
you only need to describe the clock at the top level of the design hier-
archy.

Note See your synthesis tool documentation for more information on 
optimizing logic across hierarchical boundaries and compiling hierar-
chical designs.

Modular Design and Incremental Design (ECO)
For information on Incremental Design (ECO), please refer to the 
following Application Notes:

• XAPP165: “Using Xilinx and Exemplar for Incremental Designing 
(ECO)”, application note, v1.0 (8/9/99) (http://
www.xilinx.com/xapp/xapp165.pdf).
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• XAPP164: “Using Xilinx and Synplify for Incremental Designing 
(ECO)”, application note, v1.0 (8/6/99) (http://
www.xilinx.com/xapp/xapp164.pdf).

Xilinx Development Systems feature Modular Design to help you 
plan and manage large design. Reference the following URL and 
application note for more information on Modular Design feature:

• Xilinx Modular Design URL:

http://www.xilinx.com/products/software/moddes/
moddes.htm

• XAPP404: “Xilinx Modular Design”, application note.

http://www.xilinx.com/xapp/xapp404.pdf
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Chapter 6

Simulating Your Design

This chapter describes the basic HDL simulation flow using the Alli-
ance software. It includes the following sections.

• “Introduction”

• “Adhering to Industry Standards”

• “Simulation Points”

• “VHDL/Verilog Libraries and Models”

• “Compiling HDL Libraries”

• “Running NGD2VHDL and NGD2VER”

• “Understanding the Global Signals for Simulation”

• “Simulating VHDL”

• “Simulating Verilog”

• “Running Simulation”

• “LMG SmartModels”

• “IBIS”

• “STAMP”

Introduction
Increasing design size and complexity, as well as recent improve-
ments in design synthesis and simulation tools have made HDL the 
preferred design language of most integrated circuit designers. The 
two leading HDL synthesis and simulation languages today are 
Verilog and VHDL. Both of these languages are adopted IEEE stan-
dards.
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The Xilinx implementation tools software is designed to be used with 
several HDL synthesis and simulation tools that provide a solution 
for programmable logic designs from beginning to end. The Xilinx 
software provides libraries, netlist readers and netlist writers along 
with the powerful place and route software that integrates with your 
HDL design environment on PC and UNIX workstation platforms.

Adhering to Industry Standards
The standards in the following table are supported by the Xilinx 
simulation flow.

The Xilinx Series software currently supports the Verilog IEEE 1364 
Standard, VHDL IEEE Standard 1076.4 for Vital (Vital 95), and SDF 
version 2.1.

Built-in Verilog support allows you to simulate with Cadence 
Verilog-XL and other compatible simulators. 

VHDL Initiative Towards ASIC Libraries (VITAL) was created to 
promote the standardization and interchangeability of VHDL 
libraries and simulators from various vendors. It also defines a stan-
dard for timing back-annotation to VHDL simulators. 

Most simulator vendors have agreed to use the IEEE-STD 1076.4 
VITAL standard for the acceleration of gate-level simulations. Check 
with your simulator vendor to confirm that this standard is being 
followed, and to verify proper settings and VHDL packages for this 
standard. The simulator may also accelerate IEEE-STD-1164, the stan-
dard logic package for types. 

The Xilinx VHDL libraries are tied to the IEEE-STD-1076.4-95 VITAL 
standard for simulation acceleration. This VITAL 95 is in turn based 

Table 6-1  Standards Supported by Xilinx Simulation Flow

Description Version

VHDL Language IEEE-STD-1076-87

Verilog Language IEEE-STD-1364-95

VITAL Modeling Standard IEEE-STD-1076.4-95

Standard Delay Format (SDF) 2.1

Std_logic Data Type IEEE-STD-1164-93
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on the IEEE-STD-1076-87 VHDL language. Because of this the Xilinx 
libraries must be compiled as 1076-87.

VITAL libraries include some additional processing for timing checks 
and back-annotation styles. The UniSim library turns these timing 
checks off for unit delay functional simulation. The SimPrim back-
annotation library keeps these checks on by default.

Simulation Points
Xilinx supports functional and timing simulation of HDL designs at 
three primary points in the HDL design flow. There are two addi-
tional points at which functional simulation can occur; Functional 
Post-NGDBuild, and Functional Post-MAP. The second two points 
are optional. The “Three Primary Simulation Points for HDL 
Designs” figure below shows the points of the design flow. All five 
points are described in the following section.

1. Register Transfer Level (RTL) simulation which may include the 
following:

♦ Instantiated UniSim library components

♦ LogiBLOX models

♦ XilinxCoreLib models (CORE Generator)

2. Post-synthesis functional simulation (Pre-NGDBuild) with one of 
the following:

♦ Gate-level UniSim library components

♦ LogiBLOX models

♦ XilinxCoreLib models (CORE Generator)

or

♦ Gate-level pre-route SimPrim library components (Post-
NGDBuild or Post-MAP))

3. Post-implementation back-annotated timing simulation with the 
following:

♦ SimPrim library components

♦ Standard Delay Format (SDF) files
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Figure 6-1  Three Primary Simulation Points for HDL Designs

The three primary simulation points can be expanded to allow for 
two additional post-synthesis simulations, as shown in the following 
table. These two additional points can be used when the synthesis 
tool either cannot write VHDL or Verilog, or if the netlist is not in 
terms of UniSim components.

Table 6-2  Five Simulation Points in HDL Design Flow

Simulation 
UniSim

LogiBLOX 
Models

XilinxCoreL
ib Models

SimPrim SDF

1. RTL X X X

2. Post-Synthesis X X X

3. Functional Post-
NGDBuild (Optional)

X

4. Functional Post-MAP 
(Optional)

X X
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These simulation points are described in detail in the following 
sections. The libraries required to support the simulation flows are 
described in detail in the “Understanding Global Signals for Simula-
tion” section. The new flows and libraries now support closer func-
tional equivalence of initialization behavior between functional and 
timing simulations. 

Different simulation libraries are used to support simulation before 
and after running NGDBuild. Prior to NGDBuild, your design is 
expressed as a UniSim netlist containing Unified Library compo-
nents. After NGDBuild, your design is a netlist containing SimPrims. 
Although these library changes are fairly transparent, there are two 
important considerations to keep in mind; one, you must specify 
different simulation libraries for pre- and post-implementation simu-
lation, and two, there are different gate-level cells in pre- and post-
implementation netlists.

For Verilog, the Standard Delay Format (SDF) file is automatically 
read when the simulator compiles the Verilog simulation netlist. 
Within the simulation netlist there is the Verilog system task 
$sdf_annotate which specifies the name of the SDF file to be read.

For VHDL, the user specifies the location of the SDF file. The method 
for doing so is different depending on the simulator being used. Typi-
cally, a command line or GUI switch is used to read in the SDF file.

Register Transfer Level (RTL)
The RTL-level (behavioral) simulation allows the user to verify or 
simulate a description at the system or chip level. This first pass 
simulation is typically performed to verify code syntax and to 
confirm that the code is functioning as intended. At this step, no 
timing information is provided and simulation should be performed 
in unit-delay mode to avoid the possibility of a race condition.

RTL simulation is not architecture-specific unless the design contains 
instantiated UniSim, CORE Generator, or LogiBLOX components. To 
support these instantiations, Xilinx provides the UniSim, LogiBLOX, 

5. Post-Route Timing X X

Table 6-2  Five Simulation Points in HDL Design Flow

Simulation 
UniSim

LogiBLOX 
Models

XilinxCoreL
ib Models

SimPrim SDF
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and XilinxCoreLib libraries. The user can instantiate LogiBLOX or 
CORE Generator components if the user does not want to rely on the 
module generation capabilities of the synthesis tool, or if the design 
requires larger memory structures.

A general suggestion for the initial design creation is to keep the code 
behavioral. Avoid instantiating specific components unless necessary. 
This allows for more readable code, faster and simpler simulation, 
code portability (the ability to migrate to different device families) 
and code reuse (the ability to use the same code in future designs). 
However, you may find it necessary to instantiate components struc-
turally in order to obtain the desired design structure or performance.

Post-Synthesis (Pre-NGDBuild) Gate-Level 
Simulation

Most synthesis tools have the ability to write out a post-synthesis 
HDL netlist for a design. If the VHDL or Verilog netlists are written 
for UniSim library components, you may then use the netlists to 
simulate the design and evaluate the synthesis results. However, this 
method is not supported by Xilinx if the netlists are written in terms 
of the vendor’s own simulation models.

The instantiated LogiBLOX or CORE Generator models are used for 
any post-synthesis simulation because these modules are processed 
as a “black box” during synthesis. It is important that you maintain 
the consistency of the initialization behavior with the behavioral 
model used for RTL, post-synthesis simulation, and the structural 
model used after implementation. In addition, the initialization 
behavior must work with the method used for synthesized logic and 
cores.

Post-NGDBuild (Pre-Map) Gate-Level Simulation
The post-NGDBuild (pre-map) gate-level functional simulation is 
used when it is not possible to simulate the direct output of the 
synthesis tool. This occurs when the tool cannot write UniSim-
compatible VHDL or Verilog netlists. In this case, the .ngd file 
produced from NGDBUILD is the input into one of the Xilinx simula-
tion netlisters, NGD2VER or NGD2VHDL. NGD2VER and 
NGD2VHDL create a structural simulation netlist based on the 
SIMPRIM models. 
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Like post-synthesis simulation, pre-NGDBuild simulation, this simu-
lation allows you to verify that your design has been synthesized 
correctly, and you can begin to identify any differences due to the 
lower level of abstraction. Unlike the post-synthesis pre-NGDBuild 
simulation, there are GSR and GTS nets that must be initialized, just 
as for post-map partial timing simulation.

Post-Map Partial Timing (CLB and IOB Block Delays)
You may also perform simulation after mapping the design. Post-
Map simulation occurs before placing and routing. This simulation 
will include the block delays for the design but not the routing 
delays. This is generally a good metric to test whether the design is 
meeting the timing requirements before additional time is spent 
running the design through a complete place and route.

As with the post-NGDBuild simulation, NGD2VER or NGD2VHDL 
is used to create the structural simulation netlist based on SIMPRIM 
models.

When you run one of the simulation netlister tools, NGD2VER or 
NGD2VHDL, an SDF file is created. The delays for the design are 
stored in the SDF file and contains all block or logic delays. However, 
it will not contain any of the routing delays for the design since the 
design has not yet been placed and routed. At this point, all block 
delay values in the SDF file are worst case values. Actual device block 
delays are generally shorter under normal operating conditions.

Timing Simulation Post-Route Full Timing (Block and 
Net Delays)

After your design has completed the place and route process in the 
Xilinx Implementation Tools, a timing simulation netlist can be 
created. It is not until this stage of design implementation that you 
will start to see how your design will behave in the circuit. The 
overall functionality of the design was defined in the beginning 
stages but it is not until the design has been placed and routed that all 
of the timing information of the design can be accurately calculated.

The previous simulations that used NGD2VER or NGD2VHDL 
created a structural netlist based on SIMPRIM models. However, this 
netlist will come from the placed and routed .ncd file. This netlist has 
GSR and GTS nets that must be initialized. For more information on 
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initializing the GSR and GRTS nets, please refer to the “Under-
standing the Global Signals for Simulation”” section in this chapter.

When you run timing simulation, an SDF file is created as with the 
post-MAP simulation. However, this SDF file contains all block and 
routing delays for the design. All delays are worst case values.

Providing Stimulus
Before simulation is performed, you should create a testbench or test 
fixture to apply the stimulus to the design. A testbench is HDL code 
written for the simulator that will instantiate the design netlist(s), 
initialize the design and then apply stimuli to verify the functionality 
of the design. You can also set up the testbench to display the desired 
simulation output to a file, waveform or screen. 

The testbench has many advantages over interactive simulation 
methods. For one, it allows repeatable simulation throughout the 
design process. It also provides documentation of the test conditions. 

There are several methods to create a testbench and simulate a 
design. A testbench can be very simple in structure that sequentially 
applies stimulus to specific inputs. A testbench may also be very 
complex, including subroutine calls, stimulus read in from external 
files, conditional stimulus or other more complex structures.

NGD2VER and NGD2VHDL can optionally create a template test-
bench or test fixture which may simplify the simulation of the design. 
You may simply add your stimulus to test for desired outputs. The –tf 
for NGD2VER or –tb for NGD2VHDL switch will create the test 
fixture or testbench template. The Verilog test fixture file has a .tv 
extension and the VHDL test bench file has a .tvhd extension.

Xilinx recommends giving the name test to the main module in a 
Verilog testfixture file. This name is consistent with the name of the 
test fixture module that is written later in the design flow by 
NGD2VER during post-NGDBuild, post-MAP, or post-route simula-
tion. If this naming consistency is maintained, you can use the same 
test fixture file for simulation at all stages of the design flow with 
minimal modification.
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VHDL/Verilog Libraries and Models
The five simulation points listed previously require the UniSim, 
CORE Generator (XilinxCoreLib), LogiBLOX and SimPrim libraries. 

The first point, RTL simulation, is a behavioral description of your 
design at the register transfer level. RTL simulation is not architec-
ture-specific unless your design contains instantiated UniSim, CORE 
Generator, or LogiBLOX components. To support these instantiations, 
Xilinx provides a functional UniSim library, a CORE Generator 
Behavioral XilinxCoreLib library, and a behavioral LogiBLOX library. 
You can also instantiate LogiBLOX or CORE Generator components if 
you do not want to rely on the module generation capabilities of your 
synthesis tool, or if your design requires larger memory structures.

The second simulation point is post-synthesis (pre-NGDBuild) gate-
level simulation. If the UniSim library, and CORE Generator or Logi-
BLOX components are used, then the UniSim as well as CORE Gener-
ator and LogiBLOX libraries are used. The synthesis tool must write 
out the HDL netlist using UniSim primitives. Otherwise, the 
synthesis vendor will provide it’s own post-synthesis simulation 
library.

The third, fourth, and fifth points (post-NGDBuild, post-map, and 
post-route) use the SimPrim library. The following table indicates 
what library is required for each of the five simulation points

Table 6-3  Simulation Phase Library Information

Simulation Point Compilation Order of Library Required

RTL UniSim
LogiBLOX
XilinxCoreLib

Post-Synthesis UniSim (Device dependent)
LogiBLOX
XilinxCoreLib

Post-NGDBuild SimPrim

Post-MAP SimPrim

Post-Route SimPrim
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Locating Library Source Files
The following table provides information on the location of the simu-
lation library source files, as well as the order for a typical compila-
tion.

Using the UniSim Library 
The UniSim Library, used for functional simulation only, contains 
default unit delays. This library includes all the Xilinx Unified 
Library components that are inferred by most popular synthesis 

Table 6-4  Simulation Library Source Files

 Library

Location of Source 
Files

Compile Order

Verilog
VITAL
VHDL

Verilog
VITAL
VHDL

UniSim 4K 
Family, 
Spartan/2/
XL and 
Virtex/E

$XILINX/
verilog/
src/
unisims

 $XILINX/
vhdl/src/
unisims

Compile not 
required for
Verilog-XL;
see vendor docu-
mentation for other 
simulators

Required;
typical compilation order: 
unisim_VCOMP.vhd
unisim_VPKG.vhd
unisim_VITAL.vhd
unisim_VCFG4K.vhd 
(optional)

Xilinx-
CoreLib 
(Device 
Indepen-
dent)

$XILINX/
verilog/
src/
Xilinx-
CoreLib

$XILINX/
vhdl/src/
Xilinx-
CoreLib

Compile not 
required for
Verilog-XL;
see vendor docu-
mentation for other 
simulators

Compilation order required;
See the vhdl_analyze_order 
file located in $XILINX/
vhdl/src/XilinxCoreLib/ 
for the required compile 
order

LogiBLOX
(Device
Indepen-
dent)

None; 
uses 
SimPrim 
library

 $XILINX/
vhdl/src/
logiblox

None; uses 
SimPrim library

Required;
typical compilation order: 
mvlutil.vhd
mvlarith.vhd
logiblox.vhd

SimPrim
(Device
Indepen-
dent)

$XILINX/
verilog/
src/
simprims

 $XILINX/
vhdl/src/
simprims

Not required for
Verilog-XL;
see vendor docu-
mentation for other 
simulators

Required;
typical compilation order:
simprim_Vcomponents.vhd
simprim_Vpackage.vhd
simprim_VITAL.vhd 
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tools. In addition, the UniSim Library includes components that are 
commonly instantiated, such as IOs and memory cells. You should 
use your synthesis tool’s module generators (such as LogiBLOX) to 
generate higher order functions, such as adders, counters, and large 
RAMs. 

UniSim Library Structure

The UniSim library directory structure is different for VHDL and 
Verilog. There is only one VHDL library for all Xilinx technologies 
because the implementation differences between architectures are not 
important for unit delay functional simulation. There are only a few 
cases where functional differences occur. 

In these few cases, configuration statements are used to choose 
between architectures for the components. One library makes it easy 
to switch between technologies. It is left up to the user and the 
synthesis tool to use technology-appropriate cells.

For Verilog, separate libraries are provided for common technologies 
which share the same functionality. This combined library makes it 
easy to retarget to other technologies. It is not a requirement to 
change the library mapping statements when you switch from Virtex 
to Virtex-E or Spartan to Virtex.

Some synthesis vendors have these macros in their libraries, and can 
expand them to gates. You can use the HDL output from synthesis to 
simulate these macros. 

The VHDL UniSim Library source files are found in $XILINX/vhdl/
src/unisims. The following is a list of VHDL UniSim Library files.

• unisim_VCOMP.vhd (component declaration file)

• unisim_VCOMP52K.vhd (substitutional component declaration 
file for XC5200 designs)

• unisim_VPKG.vhd (package file)

• unisim_VITAL.vhd (model file)

• unisim_VITAL52K.vhd (additional model file for XC5200 
designs)

• unisim_VCFG4K.vhd (configuration file for XC4K edge 
decoders)
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• unisim_VCFG52K.vhd (configuration file for XC5200 internal 
decoders)

The following is a list of Verilog UniSim Library locations.

• $XILINX/verilog/src/uni3000 (Series 3K)

• $XILINX/verilog/src/unisims (Series 4KE, 4KX, 4KXL, 4KXLA, 
Spartan, SpartanXL, Spartan-II, Virtex, Virtex-E)

• $XILINX/verilog/src/uni5200 (Series 5200)

• $XILINX/verilog/src/uni9000 (Series 9500)

Note Verilog reserves the names buf, pullup, and pulldown; the 
Xilinx versions are changed to buff, pullup1, pullup2, or pulldown2, 
and then mapped to the proper cell during implementation.

Using the LogiBLOX Library
LogiBLOX is a module generator used for modules such as adders, 
counters, and large memory blocks. Refer to the LogiBLOX Guide for 
more information. You can enter the desired parameters into Logi-
BLOX and select a HDL model as output. Most LogiBLOX modules 
contain registers and require global set/reset (GSR) initialization. 
Since the modules do not contain output buffers going off-chip, the 
global tristate enable (GTS) initialization does not apply.

LogiBLOX Library Structure

The LogiBLOX library is not a library of modules. It is a set of pack-
ages required by the LogiBLOX models that are created “on-the-fly” 
by the LogiBLOX tool.

The VHDL source files are in $XILINX/vhdl/src/logiblox. The 
following is a list of the VHDL LogiBLOX library files.

• mvlutil.vhd

• mvlarith.vhd

• logiblox.vhd

Note For Verilog, the LogiBLOX model is a structural netlist of 
SimPrim models. Do not synthesize this netlist; it is for functional 
simulation only. For VHDL the netlist is also for simulation. Do 
not synthesize the netlist.
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Using the CORE Generator XilinxCoreLib Library
CORE Generator is a graphical interactive design tool for creating 
high-level modules such as counters, shift registers, RAM and multi-
plexers. You can customize and pre-optimize the modules to take 
advantage of the inherent architectural features of the Xilinx FPGA 
devices, such as Fast Carry Logic for arithmetic functions, and on-
chip, dual-port and synchronous RAM. You can also select the appro-
priate HDL model type as output.

The CORE Generator HDL library models are used for RTL simula-
tion. The models do not use library components for global signals.

CORE Generator Library Structure

The VHDL CORE Generator library source files are found in 
$XILINX/vhdl/src/XilinxCoreLib.

The Verilog CORE Generator library source files are found in 
$XILINX/verilog/src/XilinxCoreLib.

Using the Simprim Library
The SimPrim library is used for post Ngdbuild (gate level functional), 
post-Map (partial timing), and post-place-and-route (full timing) 
simulations. This library is architecture independent.

SimPrim Library Structure

The VHDL SimPrim Library source files are found in $XILINX/
vhdl/src/simprims.

The Verilog SimPrim Library source files are found in $XILINX/
verilog/src/simprims.

Compiling HDL Libraries
For some simulators, such as NC-Verilog, VCS, VSS, and ModelSim, 
you may need to compile the HDL libraries before you can use them 
for design simulations. The advantages of compiling Verilog libraries 
are speed of execution and economy of memory.

Xilinx provides a perl utility to specifically compile the HDL libraries 
with most popular simulators. The utility is available at $XILINX/
bin/<platform>/compile_hdl.pl
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Using the Xilinx Compile Utility
The compile_hdl.pl utility will compile the UNISIMS, LogiBLOX and 
SIMPRIMS libraries for most popular simulators. For compiling the 
CoreGEN library, refer to the “Compiling CORE Generator Libraries” 
section.

To compile libraries using the compile_hdl.pl utility, type the compile 
script at the command line. Use the following syntax.

compile_hdl.pl <mtiverilog|mtivhdl|ncver-
ilog|vcs|vcsi|vss>[path_name]

Based on the simulation software vendor you specify, the script 
compiles the libraries and places them in the appropriate directory in 
$XILINX. If you want to place the compiled libraries in a different 
directory specify a path name. After compiling the libraries, the script 
also creates and initialization file for the simulator. This file is place in 
the directory from which you ran the compile script. The naming 
conventions for initialization files are provided in the following table.

The initialization file defines the locations of the compiled libraries. 
When doing a simulation you must provide the initialization file 
either by copying the file to the directory where the HDL files are to 
be compiled and the simulation is to be run. Alternatively, the vendor 
environment variable can be set to the location of your master initial-
ization file. You must set this variable since the installation does not 
initially declare the path for you.

Table 6-5  Initialization File Names

Simulation Software Vendor Initialization File Names

MTI-VLOG for Verilog modlesim.ini

MTI-VCOM for VHDL modlesim.ini

NC-Verilog cds.lib
hdl.var

VSS .synopsys_vss.setup

VCS N/A

VCSi N/A
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Compiling CORE Generator Libraries
For information on compiling the CORE Generator Libraries (VHDL 
and Verilog), please refer to the following web site, http://
support.xilinx.com/techdocs/8733.htm.

Running NGD2VHDL and NGD2VER
Xilinx provides programs that will create a netlist file from your 
VHDL or Verilog NGD file. You can run either netlist from the Design 
Manager or the command line. Both options are described below.

Creating a Simulation Netlist
You can create a timing simulation netlist from the Design Manager 
or from the command line, as described in this section.

From the Design Manager

1. Select Design → Options in the Design Manager.

or

Select Setup → Options in the Flow Engine.

The Options dialog box appears.

2. Select the Simulation drop-down list in the Options dialog box 
and select the appropriate simulation netlist type. This will auto-
matically use the appropriate options to create the specified 
netlist

3. Select the Edit Options button next to the Simulation drop-down 
list.

The Simulation Options dialog box appears.

4. Select the General tab.

5. In the General tab, select the applicable options as follows.

♦ Format

Specify the netlist format to use for simulation. The format is 
usually VHDL or Verilog for synthesis designs.
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♦ Correlate Simulation Data to Input Design

This option enables signal back annotation to the original 
compiled netlist. By default, this option is off. Since many of 
the internal signal and instance names of the design were 
probably created by the synthesis tool and contain names 
that have no meaning to the designer, this step is not usually 
necessary and disabling this feature will decrease the run 
time of the Alliance Series software.

♦ Simulation Netlist Name (default is time_sim)

6. Select the VHDL/Verilog tab. There are several options to choose 
from. For more information on these options, see the “Design 
Manager/Flow Engine Guide.”

♦ Bring Out Global Set/Reset Net as a Port

This option creates an external port in the simulation netlist 
to allow control of the power-on-reset from a port. 

♦ Bring Out Global Tristate Net as a Port

♦ Generate Test Fixture/Testbench File

This option will create a testbench.

♦ Include uselib Directive in Verilog File

♦ Generate Pin File

♦ Retain Hierarchy in Netlist. (You must also choose the Corre-
late Simulation Data to Input Design option when choosing 
this option)

♦ Rename Architecture Name to:.

7. Click OK in the Simulation Options dialog box.

8. Click OK in the Options dialog box.

9. When you implement your design, the Flow Engine produces 
timing simulation data files.

From the Command Line

Note To display the available options for the programs in this section, 
enter the program executable name at the prompt without any argu-
ments. For complete descriptions of these options, refer to the Devel-
opment System Reference Guide.
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1. Run NGDAnno on your placed and routed .ncd file.

For back-annotated output (signals correlated to original netlist), 
enter the following.

ngdanno –p design.pcf design.ncd design.ngm

For output that is not back-annotated (faster run time), enter the 
following.

ngdanno design.ncd

2. Run the NGD2XXX program for the particular netlist you want 
to create.

For VHDL, enter the following.

ngd2vhdl [options] design.nga

For Verilog, enter the following.

ngd2ver [options] design.nga

Note For post-NGDBuild and post-Map simulation, step 1 is 
skipped. You can move to step 2 if you are doing post-NGDBuild 
or post-Map simulation.

Enabling ‘X’ Propagation
The "X" propagation option can now be enabled or disabled in timing 
simulation on memory elements such as flops and memories.

For Verilog, ‘X’ propagation is enabled by default. To disable ‘X’ 
propagation use the +no_notifier option which is native to your 
simulator. This option disables the toggling of the notifier register 
argument of the timing check system tasks. By default, the notifier is 
toggled when there is a timing check violation, and the notifier 
usually causes a UDP to propagate an ‘X’. Therefore, the +no_notifier 
option suppresses ‘X’ propagation on timing violations.

For VHDL, this is done with the -xon option within NGD2VHDL. 
The -xon option specifies the output behavior when timing violations 
occur on synchronous elements. If this option is set to equal true, any 
synchronous elements that violate a setup time trigger "X" on the 
outputs. If the option is set to equal false, the signal’s previous value 
is retained. If this option is not set by the user, -xon is set to true by 
default.
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Min/Typ/Max Simulation
During simulation you have the option of specifying one delay mode 
from either minimum delays, typical delays, or maximum delays. 
However, each field will contain the maximum delays value. The 
Xilinx Alliance tools state the worst case numbers by default. 
Currently, it is not possible to generate one SDF file that contains 
separate values for the min/typ/max fields.

You can specify to get the minimum delay, but all three fields, min/
typ/max, will hold the same minimum delays value. To generate a 
simulation netlist with minimum delays, type the following:

ngdanno -s min design.ncd

For VHDL, enter the following:

ngd2vhdl [options] design.nga

For Verilog, enter the following:

ngd2ver [options] design.nga

Minimum delays may only be available for select FPGA families. The 
minimum delays are for all speed grades of a device.  They are not 
suggested for use for any worst case analysis (i.e. setup, min clock, 
max data).  These minimum speeds files were created to allow users 
to check timing between chips on a board. For further details, please 
see http://support.xilinx.com/techdocs/4422.htm.

Prorating Simulation
Prorating is a linear scaling operation. It applies to existing speed file 
delays and is applied globally to all delays. The prorating constraints, 
VOLTAGE and TEMPERATURE, provide a method for determining 
timing delay characteristics based on known environmental parame-
ters.

The VOLTAGE constraint provides a means of prorating delay char-
acteristics based on the specified voltage. The UCF syntax is as 
follows:

VOLTAGE=value[V]

Where value is an integer or real number specifying the voltage and 
units is an optional parameter specifying the unit of measure.
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The TEMPERATURE constraint provides a means of prorating device 
delay characteristics based on the specified junction temperature. The 
UCF syntax is as follows:

TEMPERATURE=value[C |F| K]

Where value is an integer or a real number specifying the tempera-
ture. C, K, and F are the temperature units: F is degrees Fahrenheit, K 
is degrees Kelvin, and C is degrees Celsius, the default.

Note Each architecture has its own specific range of valid operating 
temperatures and voltages. If the entered temperature or voltage 
does not fall within the supported range, the constraint is ignored 
and an architecture-specific default value is used instead.

For simulation, the VOLTAGE and TEMPERATURE constraints will 
be processed from the UCF file into the PCF file. To generate a simu-
lation netlist using prorating, type the following:

ngdanno -p design.pcf design.ncd

For VHDL, enter the following:

ngd2vhdl [options] design.nga

For Verilog, enter the following:

ngd2ver [options] design.nga

Note Do not combine both minimum timing and prorating (-s and -
p). Combining both minimum values would override prorating.

Prorating may only be available for select FPGA families, and it is not 
intended for military and industrial ranges. It is applicable only 
within the commercial ranges.

Understanding the Global Signals for Simulation
Xilinx FPGAs have register (flip-flops and latches) set/reset circuitry 
that pulses at the end of the configuration mode. This pulse is auto-
matic and does not need to be programmed. All the flip-flops and 
latches receive this pulse through a dedicated global GSR (Global Set-
Reset) net. The registers either set or reset, depending on how the 
registers are defined.

It is important to address the built-in reset circuitry behavior in your 
designs starting with the first simulation to ensure that the simula-
tions agree at the three primary points.
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If you do not simulate GSR behavior prior to synthesis and place and 
route, your RTL and possibly post-synthesis simulations will not 
initialize to the same state as your post-route timing simulation. As a 
result, the various design descriptions will not be functionally equiv-
alent and your simulation results will not match. Some synthesis 
tools can identify, from the behavioral description, the GSR net, and 
will place the STARTUP module on the net to direct the implementa-
tion tools to use the global network. However, other synthesis tools 
interpret behavioral descriptions literally, and will introduce addi-
tional logic into your design to implement a function. Without 
specific instructions to use device global networks, the Xilinx imple-
mentation tools will use general purpose logic and interconnect 
resources to redundantly build functions already provided by the 
silicon.

If GSR behavior is not described, the chip will initialize during 
configuration, and the post-route netlist will include this net that 
must be driven during simulation. This section includes the method-
ology to describe this behavior, as well as the GTS behavior for 
output buffers.

In addition to the set/reset pulse, all output buffers are set to a high 
impedence state during configuration mode with the dedicated 
global output tristate enable (GTS) net. 

The GSR net requires special handling during synthesis, simulation, 
and implementation to prevent them from being assigned to 
normally routed nets, which uses valuable routing resources and 
degrades design performance. The GSR net receives a reset-on-
configuration pulse from the initialization controller, as shown in the 
following figure. 
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Figure 6-2  Built-in FPGA Initialization Circuitry

This pulse occurs during the configuration mode of the FPGA. 
However, for ease of simulation, it is usually inserted at time zero of 
the test bench, before logical simulation is initiated. The pulse width 
is device-dependent and can vary widely, depending on process 
voltage and temperature changes. The pulse is guaranteed to be long 
enough to overcome all net delays on the reset special-purpose net. 
The parameter for the pulse width is TPOR, as described in The 
Programmable Logic Data Book.

The tristate-on-configuration circuit shown in the “Built-in FPGA 
Initialization Circuitry” also occurs during the configuration mode of 
the FPGA. Just as for the reset-on-configuration simulation, it is 
usually inserted at time zero of the test bench before logical simula-
tion is initiated. The pulse drives all outputs to the tristate condition 
they are in during the configuration of the FPGA. All general-
purpose outputs are affected whether they are regular, tristate, or bi-
directional outputs during normal operation. This ensures that the 
outputs do not erroneously drive other devices as the FPGA is being 
configured. The pulse width is device-dependent and can vary 
widely with process and temperature changes. The pulse is guaran-
teed to be long enough to overcome all net delays on the GTS net. The 
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generating circuitry is separate from the reset-on-configuration 
circuit. The pulse width parameter is TPOR, as described in The 
Programmable Logic Data Book. Simulation models use this pulse width 
parameter for determining HDL simulation for global reset and 
tristate circuitry.

If a global set/reset is desired for behavioral simulation, it must be 
included in the behavioral code. Any described register in the code 
must have a common signal that will asynchronously set or reset the 
register depending on the desired result. Similarly, if a global tristate-
state is desired for simulation, it should be described in the code as 
well.

Simulating VHDL

Defining Global Signals in VHDL
In VHDL designs, any signals that are stimulated or monitored from 
outside a module must be declared as ports. Global GSR and GTS 
signals are used to initialize the simulation and require access ports if 
controlled from the test bench. However, the addition of these ports 
makes the pre- and post-implementation versions of your design 
different, and your original test bench is no longer applicable to both 
versions of your design. Since the port lists for the two versions of 
your design are different, the socket in the test bench matches only 
one of them. To address this issue, five new cells are provided for 
VHDL simulation: ROC, ROCBUF, TOC, TOCBUF, and STARTBUF.

Verilog can simulate internal signals, and these signals are driven 
directly from the test bench. However, interpretive Verilog (such as 
Verilog-XL) and compiled Verilog (such as MTI or NC-Verilog) 
require a different approach for handling the libraries.

The VHDL global signal simulation methodology follows the sche-
matic flow in that there is no need to incorporate any ports into 
designs for simulators to mimic the device’s global reset (GSR) or 
global tristate (GTS) networks. These signals are not part of the cell’s 
pin list, do not appear in the netlist, and are not implemented in the 
resulting design. These global signals are mapped into the equivalent 
signals in the back-end simulation model. Using this methodology 
with schematic designs, you can fully simulate the silicon’s built-in 
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global networks and implement your design without causing conges-
tion of the general-purpose routing resources and degrading the 
clock speed.

Setting VHDL Global Set/Reset Emulation in 
Functional Simulation

When using the VHDL UniSim library, it is important to control the 
global signals for reset and output tristate enable. If do not control 
these signals, your timing simulation results will not match your 
functional simulation results because the initialization differs.

VHDL simulation does not support test bench driven internal global 
signals. If the test bench drives the global signal, a port is required. 
Otherwise, the global net must be driven by a component within the 
architecture.

Also, the register components do not have pins for the global signals 
because you do not want to wire to these special pre-laid nets. 
Instead, you want implementation to use the dedicated network on 
the chip.

The VHDL UniSim library uses special components to drive the local 
reset and tristate enable signals. These components use the local 
signal connections to emulate the global signal, and also provide the 
implementation directives to ensure that the pre-routed wires are 
used.

You can instantiate these special components in the RTL description 
to ensure that all functional simulations match the timing simulation 
with respect to global signal initialization. 

For functional simulation, the global reset and output tristate enable 
signals can be emulated in two ways:

• Instantiating the STARTUP library component. This component 
is available for the Virtex, VirtexE, Virtex2 and Spartan-II fami-
lies.

• Using local reset and tristate enable signals in the design. Special 
implementation directives are put on the nets to move them to 
special pre-routed nets for global signals.
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Global Signal Considerations (VHDL)
The following are important considerations for VHDL simulation, 
synthesis, and implementation of global signals in FPGAs.

• The global signals have automatically generated pulses that 
always occur even if the behavior is not described in the front-
end description. The back-annotated netlist has these global 
signals, to match the silicon, even if the source design does not.

• The simulation and synthesis models for registers (flip-flops and 
latches) and output buffers do not contain pins for the global 
signals. This is necessary to maintain compatibility with sche-
matic libraries that do not require the pin to model the global 
signal behavior.

• VHDL does not have a standardized method for handling global 
signals that is acceptable within a VITAL-compatible library.

• LogiBLOX generates modules that are represented as behavioral 
models and require a different way to handle the global signal, 
yet still maintain compatibility with the method used for general 
user-defined logic and LogiBLOX.

• Intellectual property cores from the CORE Generator are repre-
sented as behavioral models and require a different way to 
handle the global signal, yet still maintain compatibility with the 
method used for general user-defined logic and LogiBLOX.

• The design is represented at different levels of abstraction during 
the pre- and post-synthesis and implementation phases of the 
design process. The solutions work for all three levels and give 
consistent results.

• The place and route tools must be given special directives to 
identify the global signals in order to use the built-in circuitry 
instead of the general-purpose logic.
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GSR Network Design Cases
When defining a methodology to control a device’s global set/reset 
(GSR) network, you should consider the following three general 
cases.

Note Reset-on-Configuration for FPGAs is similar to Power-on-Reset 
for ASICs except it occurs during power-up and during configuration 
of the FPGA.

Case 1 is defined as follows.

• Automatic pulse generation of the Reset-On-Configuration signal

• No control of GSR through a test bench

• Involves initialization of the sequential elements in a design 
during power-on, or initialization during configuration of the 
device

• Need to define the initial states of a design’s sequential elements, 
and have these states reflected in the implemented and simulated 
design

• Two sub-cases

♦ In Case 1A, you do not provide the simulation with an initial-
ization pulse. The simulation model provides its own mecha-
nism for initializing its sequential elements (such as the real 
device does when power is first applied). 

♦ In Case 1B, you can control the initializing power-on reset 
pulse from a test bench without a global reset pin on the 

Table 6-6  GSR Design Cases

Name Description

Case 1

Case 1A
Case 1B

Reset-On-Configuration pulse only; no user control of 
GSR
Simulation model ROC initializes sequential elements
User initializes sequential elements with ROCBUF 
model and simulation vectors

Case 2
Case 2A
Case 2B

User control of GSR after Power-on-Reset
External Port driving GSR
External Port driving GSR (Virtex and Spartan-II)

Case 3 Don’t Care
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FPGA. This case is applicable when system-level issues make 
your design’s initialization synchronous to an off-chip event. 
In this case, you provide a pulse that initializes your design 
at the start of simulation time, and possibly provide further 
pulses as simulation time progresses (perhaps to simulate 
cycling power to the device). Although you are providing the 
reset pulse to the simulation model, this pulse is not required 
for the implemented device. A reset port is not required on 
the implemented device, however, a reset port is required in 
the behavioral code through which your reset pulse can be 
applied with test vectors during simulation.

Using VHDL Reset-On-Configuration (ROC) Cell (Case 
1A)

For Case 1A, the ROC (Reset-On-Configuration) instantiated compo-
nent model is used. This model creates a one-shot pulse for the global 
set/reset signal. The pulse width is a generic and can be configured to 
match the device and conditions specified. The ROC cell is in the 
post-routed netlist and, with the same pulse width, it mimics the pre-
route global set/reset net. The following is an example of an ROC 
cell.

Note The TPOR parameter from The Programmable Logic Data Book is 
used as the WIDTH parameter.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
library UNISIM;
use UNISIM.all;
entity EX_ROC is

port (CLOCK, ENABLE : in std_logic;
CUP, CDOWN : out std_logic_vector (3 downto 0));

end EX_ROC;
architecture A of EX_ROC is

signal GSR : std_logic;
signal COUNT_UP, COUNT_DOWN : std_logic_vector (3 downto 0);
component ROC

port (O : out std_logic);
end component;

begin
U1 : ROC port map (O => GSR);
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UP_COUNTER : process (CLOCK, ENABLE, GSR)
begin

if (GSR = '1') then
COUNT_UP <= "0000";

elsif (CLOCK'event AND CLOCK = '1') then
if (ENABLE = '1') then

COUNT_UP <= COUNT_UP + "0001";
end if;

end if;
end process UP_COUNTER;
DOWN_COUNTER : process (CLOCK, ENABLE, GSR, COUNT_DOWN) 
begin 

if (GSR = '1' OR COUNT_DOWN = "0101") then 
COUNT_DOWN <= "1111"; 

elsif (CLOCK'event AND CLOCK = '1') then 
if (ENABLE = '1') then

COUNT_DOWN <= COUNT_DOWN - "0001";
end if;

end if;
end process DOWN_COUNTER;
CUP <= COUNT_UP;
CDOWN <= COUNT_DOWN;

end A;

Using ROC Cell Implementation Model (Case 1A)

Complementary to the previous VHDL model is an implementation 
model that guides the place and route tool to connect the net driven 
by the ROC cell to the special purpose net.

This cell is created during back-annotation if you do not use the –gp 
or STARTUP block options. It can be instantiated in the front end to 
match functionality with GSR (in both functional and timing simula-
tion.) During back-annotation, the entity and architecture for the 
ROC cell is placed in your design’s output VHDL file. In the front 
end, the entity and architecture are in the UniSim Library, requiring 
only a component instantiation. The ROC cell generates a one-time 
initial pulse to drive the GSR net starting at time zero for a specified 
pulse width. You can set the pulse width with a generic in a configu-
ration statement. The default value of the pulse width is 0 ns. This 
value disables the ROC cell and causes the global set/reset to be held 
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low. (Active low resets are handled within the netlist itself and need 
to be inverted before using.) 

ROC Test Bench (Case 1A)

With the ROC cell you can simulate with the same test bench used in 
RTL simulation, and you can control the width of the global set/reset 
signal in your implemented design. ROC cells require a generic 
WIDTH value, usually specified with a configuration statement. 
Otherwise, a generic map is required as part of the component instan-
tiation. You can set the generic with any generic mapping method. Set 
the width generic after consulting The Programmable Logic Data Book 
for the particular part and mode implemented. For example, an 
XC4000E part can vary from 10 ms to 130 ms. Use the TPOR param-
eter in the Configuration Switching Characteristics tables for Master, 
Slave, and Peripheral modes. The following is the test bench for the 
ROC example.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

library UNISIM;
use UNISIM.all;

entity test_ofex_roc is end test_ofexroc;

architecture inside of test_ofex_roc is

Component ex_roc
Port ( CLOCK, ENABLE: in STD_LOGIC;

CUP, CDOWN: out STD_LOGIC_VECTOR (3 downto 0));
End component;
.
.
.

Begin

UUT: ex_roc port map(. . . .);
.
.
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.
End inside;

The best method for mapping the generic is a configuration in your 
test bench, as shown in the following example.

Configuration overall of test_ofexroc is
For inside

For UUT:ex_roc
For A

          For U1:ROC use entity UNISIM.ROC (ROC_V)
 Generic map (WIDTH=>52 ns);

End for;
End for;

End for;
End overall;

This configuration is for pre-NGDBuild simulation. A similar config-
uration is used for post-NGDBuild simulation. The ROC, TOC, and 
OSC4 are mapped to the WORK library, and corresponding architec-
ture names may be different. Review the .vhd file created by 
NGD2VHDL for the current entity and architecture names for post-
NGDBuild simulation.

ROC Model in Four Design Phases (Case 1A)

The following figure shows the progression of the ROC model and its 
interpretation in the four main design phases.
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Figure 6-3  ROC Simulation and Implementation

• Behavioral Phase—In this phase, the behavioral or RTL description 
registers are inferred from the coding style, and the ROC cell can 
be instantiated. If it is not instantiated, the signal is not driven 
during simulation or is driven within the architecture by code 
that cannot be synthesized. Some synthesizers infer the local 
resets that are best for the global signal and insert the ROC cell 
automatically. When this occurs, instantiation may not be 
required unless RTL level simulation is needed. The synthesizer 
may allow you to select the reset line to drive the ROC cell. Xilinx 
recommends instantiation of the ROC cell during RTL coding 
because the global signal is easily identified. This also ensures 
that GSR behavior at the RTL level matches the behavior of the 
post-synthesis and implementation netlists.
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• Synthesized Phase—In this phase, inferred registers are mapped to 
a technology and the ROC instantiation is either carried from the 
RTL or inserted by the synthesis tools. As a result, consistent 
global set/reset behavior is maintained between the RTL and 
synthesized structural descriptions during simulation.

• Implemented Phase—During implementation, the ROC is removed 
from the logical description that is placed and routed as a pre-
existing circuit on the chip. The ROC is removed by making the 
output of the ROC cell appear as an open circuit. Then the imple-
mentation tool can trim all the nets driven by the ROC to the local 
sets or resets of the registers, and the nets are not routed in 
general purpose routing. All set/resets for the registers are auto-
matically assumed to be driven by the global set/reset net so data 
is not lost.

• Back-annotated Phase—In this phase, the Xilinx VHDL netlist 
program assumes all registers are driven by the GSR net; replaces 
the ROC cell; and rewires it to the GSR nets in the back-annotated 
netlist. The GSR net is a fully wired net and the ROC cell is 
inserted to drive it. A similar VHDL configuration can be used to 
set the generic for the pulse width.

Using VHDL ROCBUF Cell (Case 1B)

For Case 1B, the ROCBUF (Reset-On-Configuration Buffer) instanti-
ated component is used. This component creates a buffer for the 
global set/reset signal, and provides an input port on the buffer to 
drive the global set reset line. This port must be declared in the entity 
list and driven in RTL simulation. During the place and route process, 
this port is removed so it is not implemented on the chip. ROCBUF 
does not reappear in the post-routed netlist. Instead, you can select an 
implementation option to add a global set/reset port to the back-
annotated netlist. The nets driven by a ROCBUF must be an active 
High set/reset. A buffer is not necessary since the implementation 
directive is no longer required.

The following example illustrates how to use the ROCBUF in your 
designs. 

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
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library UNISIM;
use UNISIM.all;
entity EX_ROCBUF is

port (CLOCK, ENABLE, SRP : in std_logic;
CUP, CDOWN : out std_logic_vector (3 downto 0));

end EX_ROCBUF;
architecture A of EX_ROCBUF is

signal GSR : std_logic;
signal COUNT_UP, COUNT_DOWN : std_logic_vector (3 downto 0);
component ROCBUF

port (I : in std_logic;
O : out std_logic);

end component;
begin

U1 : ROCBUF port map (I => SRP, O => GSR);
UP_COUNTER : process (CLOCK, ENABLE, GSR)
begin

if (GSR = '1') then
COUNT_UP <= "0000";

elsif (CLOCK'event AND CLOCK = '1') then
if (ENABLE = '1') then

COUNT_UP <= COUNT_UP + "0001";
end if;

end if;
end process UP_COUNTER;
DOWN_COUNTER : process (CLOCK, ENABLE, GSR, COUNT_DOWN)
begin

if (GSR = '1' OR COUNT_DOWN = "0101") then
COUNT_DOWN <= "1111";

elsif (CLOCK'event AND CLOCK = '1') then
if (ENABLE = '1') then

COUNT_DOWN <= COUNT_DOWN - "0001";
end if;

end if;
end process DOWN_COUNTER;
CUP <= COUNT_UP;
CDOWN <= COUNT_DOWN;

end A;
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ROCBUF Model in Four Design Phases (Case 1B)

The following figure shows the progression of the ROCBUF model 
and its interpretation in the four main design phases.

Figure 6-4  ROCBUF Simulation and Implementation

• Behavioral Phase—In this phase, the behavioral or RTL description 
registers are inferred from the coding style, and the ROCBUF cell 
can be instantiated. If it is not instantiated, the signal is not driven 
during simulation, or it is driven within the architecture by code 
that cannot be synthesized. Use the ROCBUF cell instead of the 
ROC cell when you want test bench control of GSR simulation. 
Xilinx recommends instantiating the ROCBUF cell during RTL 
coding because the global signal is easily identified, and you are 
not relying on a synthesis tool feature that may not be available if 
ported to another tool. This also ensures that GSR behavior at the 
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RTL level matches the behavior of the post-synthesis and imple-
mentation netlists.

• Synthesized Phase—In this phase, inferred registers are mapped to 
a technology and the ROCBUF instantiation is either carried from 
the RTL or inserted by the synthesis tools. As a result, consistent 
global set/reset behavior is maintained between the RTL and 
synthesized structural descriptions during simulation.

• Implemented Phase—During implementation, the ROCBUF is 
removed from the logical description that is placed and routed as 
a pre-existing circuit on the chip. The ROCBUF is removed by 
making the input and the output of the ROCBUF cell appear as 
an open circuit. Then the implementation tool can trim the port 
that drives the ROCBUF input, as well as the nets driven by the 
ROCBUF output. As a result, nets are not routed in general 
purpose routing. All set/resets for the registers are automatically 
assumed to be driven by the global set/reset net so data is not 
lost. You can use a VHDL netlist tool option to add the port back.

• Back-annotated Phase—In this phase, the Xilinx VHDL netlist 
program starts with all registers initialized by the GSR net, and it 
replaces the ROC cell it would normally insert with a port if the 
GSR port option is selected. The GSR net is a fully wired net 
driven by the added GSR port. A ROCBUF cell is not required 
because the port is sufficient for simulation, and implementation 
directives are not required

Using VHDL STARTBUF Block (Case 2A)

The STARTUP block is traditionally instantiated to identify the GSR 
signals for implementation if the global reset or tristate is connected 
to a chip pin. However, this implementation directive component 
cannot be simulated, and causes warning messages from the simu-
lator. However, you can use the STARTBUF cell instead, which can be 
simulated.   STARTUP blocks are allowed if the warnings can be 
addressed or safely ignored. 

For Cases 2A, use the STARTBUF cell. This cell provides access to the 
input and output ports of the STARTUP cell that direct the implemen-
tation tool to use the global networks. The input and output port 
names differ from the names of the corresponding ports of the 
STARTUP cell. This was done for the following reasons.
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• To make the STARTBUF a model that can be simulated with 
inputs and outputs. The STARTUP cell hangs from the net it is 
connected to.

• To make one model that works for all Xilinx technologies. The 
XC4000 and XC5200 families require different STARTUP cells 
because the XC5200 has a global reset (GR) net and not a GSR. 
For the Virtex and Spartan families, see Case 2B.

The mapping to the architecture-specific STARTUP cell from the 
instantiation of the STARTBUF is done during implementation. 
The STARTBUF pins have the suffix “IN” (input port) or “OUT” 
(output port). Two additional output ports, GSROUT and 
GTSOUT, are available to drive a signal for clearing or setting a 
design's registers (GSROUT), or for tristating your design's I/Os 
(GTSOUT).

The input ports, GSRIN and GTSIN, can be connected either 
directly or indirectly via combinational logic to input ports of 
your design. Your design's input ports appear as input pins in the 
implemented design. The design input port connected to the 
input port, GSRIN, is then referred to as the device reset port, and 
the design input port connected to the input port, GTSIN, is 
referred to as the device tristate port. The following table shows 
the correspondence of pins between STARTBUF and STARTUP.

Table 6-7  STARTBUF/STARTUP Pin Descriptions

STARTBUF Pin 
Name

Connection 
Point

XC4000 
STARTUP Pin 
Name

XC5200 
STARTUP Pin 
Name

Spartan

GSRIN Global Set/
Reset Port of 
Design

GSR GR GSR

GTSIN Global Tristate 
Port of Design

GTS GTS GTS

GSROUT All Registers 
Asynchronous 
Set/Reset

Not Available 
For Simulation 
Only

Not Available 
For Simulation 
Only

Not Available 
For Simulation 
Only

GTSOUT All Output 
Buffers Tristate 
Control

Not Available 
For Simulation 
Only

Not Available 
For Simulation 
Only

N/A
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Note Using STARTBUF indicates that you want to access the 
global set/reset and/or tristate pre-routed networks available in 
your design's target device. As a result, you must provide the 
stimulus for emulating the automatic pulse as well as the user-
defined set/reset. This allows you complete control of the reset 
network from the test bench.

The following example shows how to use the STARTBUF cell.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
library UNISIM;
use UNISIM.all;
entity EX_STARTBUF is

port (CLOCK, ENABLE, DRP, DTP : in std_logic;
CUP, CDOWN : out std_logic_vector (3 downto 0));

end EX_STARTBUF
architecture A of EX_STARTBUF is

signal GSR, GSRIN_NET, GROUND, GTS : std_logic;
signal COUNT_UP, COUNT_DOWN : std_logic_vector (3 downto 0);
component STARTBUF

port (GSRIN, GTSIN, CLKIN : in std_logic; GSROUT, GTSOUT,
DONEINOUT, Q1Q4OUT, Q2OUT, Q3OUT : out std_logic);

end component;
begin

CLKIN Port or INternal 
Logic

CLK CLK CLK

Q2OUT Port Or Internal 
Logic

Q2 Q2 Q2

Q3OUT Port Or Internal 
Logic

Q3 Q3 Q3

OUT Port Or Internal 
Logic

Q1Q4 Q1Q4 Q1Q4

DONEINOUT Port Or Internal 
Logic

DONEIN DONEIN DONEIN

Table 6-7  STARTBUF/STARTUP Pin Descriptions

STARTBUF Pin 
Name

Connection 
Point

XC4000 
STARTUP Pin 
Name

XC5200 
STARTUP Pin 
Name

Spartan
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GROUND <= '0';
GSRIN_NET <= NOT DRP;
U1 : STARTBUF port map (GSRIN => GSRIN_NET, GTSIN => DTP,

CLKIN => GROUND, GSROUT => GSR, GTSOUT => GTS);
UP_COUNTER : process (CLOCK, ENABLE, GSR)
begin

if (GSR = '1') then
COUNT_UP <= "0000";

elsif (CLOCK'event AND CLOCK = '1') then
if (ENABLE = '1') then

COUNT_UP <= COUNT_UP + "0001";
end if;

end if;
end process UP_COUNTER;
DOWN_COUNTER : process (CLOCK, ENABLE, GSR, COUNT_DOWN) 
begin

if (GSR = '1' OR COUNT_DOWN = "0101") then
COUNT_DOWN <= "1111"; 

elsif (CLOCK'event AND CLOCK = '1') then
if (ENABLE = '1') then

COUNT_DOWN <= COUNT_DOWN - "0001";
end if;

end if;
end process DOWN_COUNTER;
CUP <= COUNT_UP when (GTS = '0' AND COUNT_UP /= "0000") else

"ZZZZ";
CDOWN <= COUNT_DOWN when (GTS = '0') else "ZZZZ";

end A;

Using VHDL STARTBUF_VIRTEX Block and 
STARTBUF_SPARTAN2 Block (Case 2B)

The STARTUP_VIRTEX and STARTUP_SPARTAN2 blocks can be 
instantiated to identify the GSR signals for implementation if the 
global reset or tristate is connected to a chip pin. However, these cells 
can not be simulated as there is no simulation model for them.

The VHDL STARTBUF_VIRTEX and STARTBUF_SPARTAN2 blocks 
can not be used to simulate the GSR signal during any pre-NGDBuild 
Unisim VHDL simulations.You will not be able to reset the design 
after simulation time ‘0’, however the design will start up in the 
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correct state.You can do a pre-NGDBuild UniSim simulation of the 
GTS signal. Please see the GTS Network Design Cases section.

Note Post-NGDBuild SimPrim VHDL simulation of GSR is 
supported. To correctly back-annotate a GSR signal, instantiate a 
STARTUP_VIRTEX, STARTBUF_VIRTEX, STARTUP_SPARTAN2, or 
STARTBUF_SPARTAN2 symbol and correctly connect the GSR input 
signal of the component. When back annotated, your GSR signal is 
correctly connected to the associated registers and RAM blocks

Xilinx recommends that you use the local routing for Virtex devices 
as opposed to using the dedicated GSR. If the design resources are 
available using this method will provide better performance.

If you do not plan on bringing the GSR pin out to a device pin, but 
want to have access to it for simulation you can use the ROC or 
ROCBUF with any device including Virtex, Virtex-E and and Spartan-
II.

Table 6-8  Virtex/E and Spartan-II STARTBUF/STARTUP Pins

STARTBUF 
Pin Names

Connection 
Points

Virtex/E 
STARTUP 
Pin Names

Spartan-II 
STARTUP 
Pin Names

GSRIN Global Set/
Reset Port 
of Design

GSR GSR

GTSIN Global 
Tristate Port 
of Design

GTS GTS

CLKIN Port or 
Internal 
Logic

CLK CLK

GTSOUT All Output 
Buffers 
Tristate 
Control

N/A N/A
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GTS Network Design Cases
Just as for the global set/reset net there are three cases for using your 
device’s output tristate enable (GTS) network, as shown in the 
following table.

Case A is defined as follows.

• Tristating of output buffers during power-on or configuration of 
the device

• Output buffers are tristated and reflected in the implemented and 
simulated design

•  Two sub-cases

♦ In Case A1, you do not provide the simulation with an initial-
ization pulse. The simulation model provides its own mecha-
nism for initializing its sequential elements (such as the real 
device does when power is first applied). 

♦ In Case A2, you can control the initializing Tristate-On-
Configuration pulse. This case is applicable when system-
level issues make your design’s configuration synchronous 
with an off-chip event. In this case, you provide a pulse to 
tristate the output buffers at the start of simulation time, and 
possibly provide further pulses as simulation time progresses 
(perhaps to simulate cycling power to the device). Although 
you are providing the Tristate-On-Configuration pulse to the 
simulation model, this pulse is not required for the imple-
mented device. A Tristate-On-Configuration port is not 

Table 6-9  GTS Design Cases

Name Description

Case A
Case A1

Case A2

Tristate-On-Configuration only; no user control of GTS
Simulation Model TOC tristates output buffers during 
configuration or power-up 
User initializes sequential elements with TOCBUF 
model and simulation vectors

Case B
Case B1
Case B2

User control of GTS after Tristate-On-Configuration 
External PORT driving GTS
External Port driving GTS (Virtex and Spartan-II

Case C Don’t Care
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required on the implemented device, however, a TOC port is 
required in the behavioral code through which your TOC 
pulse can be applied with test vectors during simulation.

Using VHDL Tristate-On-Configuration (TOC)

The TOC cell is created if you do not use the –tp or STARTUP block 
options. The entity and architecture for the TOC cell is placed in the 
design’s output VHDL file. The TOC cell generates a one-time initial 
pulse to drive the GSR net starting at time ‘0’ for a user-defined pulse 
width. The pulse width can be set with a generic. The default WIDTH 
value is 0 ns, which disables the TOC cell and holds the tristate enable 
low. (Active low tristate enables are handled within the netlist itself; 
you must invert this signal before using it.) 

The TOC cell enables you to simulate with the same test bench as in 
the RTL simulation, and also allows you to control the width of the 
tristate enable signal in your implemented design.

The TOC components require a value for the generic WIDTH, usually 
specified with a configuration statement. Otherwise, a generic map is 
required as part of the component instantiation.

You may set the generic with any generic mapping method you 
choose. Set the WIDTH generic after consulting The Programmable 
Logic Data Book for the particular part and mode you have imple-
mented. For example, an XC4000E part can vary from 10 ms to 130 
ms. Use the TPOR (Power-On Reset) parameter found in the Configu-
ration Switching Characteristics tables for Master, Slave, and Periph-
eral modes.

VHDL TOC Cell (Case A1)

For Case A1, use the TOC (Tristate-On-Configuration) instantiated 
component. This component creates a one-shot pulse for the global 
Tristate-On-Configuration signal. The pulse width is a generic and 
can be selected to match the device and conditions you want. The 
TOC cell is in the post-routed netlist and, with the same pulse width 
set, it mimics the pre-route Tristate-On-Configuration net.

TOC Cell Instantiation (Case A1)

The following is an example of how to use the TOC cell.
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Note The TPOR parameter from The Programmable Logic Data Book is 
used as the WIDTH parameter in this example.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
library UNISIM;
use UNISIM.all;
entity EX_TOC is

port (CLOCK, ENABLE : in std_logic;
CUP, CDOWN : out std_logic_vector (3 downto 0));

end EX_TOC;
architecture A of EX_TOC is

signal GSR, GTS : std_logic;
signal COUNT_UP, COUNT_DOWN : std_logic_vector (3 downto 0);
component ROC

port (O : out std_logic);
end component;
component TOC

port (O : out std_logic);
end component;

begin
U1 : ROC port map (O => GSR);
U2 : TOC port map (O => GTS);
UP_COUNTER : process (CLOCK, ENABLE, GSR)
begin

if (GSR = '1') then
COUNT_UP <= "0000";

elsif (CLOCK'event AND CLOCK = '1') then
if (ENABLE = '1') then

COUNT_UP <= COUNT_UP + "0001";
end if;

end if;
end process UP_COUNTER;
DOWN_COUNTER : process (CLOCK, ENABLE, GSR, COUNT_DOWN)
begin

if (GSR = '1' OR COUNT_DOWN = "0101") then
COUNT_DOWN <= "1111";

elsif (CLOCK'event AND CLOCK = '1') then
if (ENABLE = '1') then

COUNT_DOWN <= COUNT_DOWN - "0001";
end if;
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end if;
end process DOWN_COUNTER;
CUP <= COUNT_UP when (GTS = '0' AND COUNT_UP /= "0000") else

"ZZZZ";
CDOWN <= COUNT_DOWN when (GTS = '0') else "ZZZZ";

end A;

TOC Test Bench (Case A1)

The following is the test bench for the TOC example.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

library UNISIM;
use UNISIM.all;

entity test_ofex_toc is end test_ofextoc;

architecture inside of test_ofex_toc is

Component ex_toc
Port ( CLOCK, ENABLE: in STD_LOGIC;

CUP, CDOWN: out STD_LOGIC_VECTOR (3 downto 0));
End component;
.
.
.
Begin

UUT: ex_toc port map(. . . .);
.
.
.
End inside;

The best method for mapping the generic is a configuration in the test 
bench, as shown in the following example.

Configuration overall of test_ofextoc is
For inside

For UUT:ex_toc
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For A
          For U1:TOC use entity UNISIM.TOC (TOC_V)

Generic map (WIDTH=>52 ns);
End for;

End for;
End for;
End overall;

This configuration is for pre-NGDBuild simulation. A similar config-
uration is used for post-NGDBuild simulation. The ROC, TOC, and 
OSC4 are mapped to the WORK library, and corresponding architec-
ture names may be different. Review the .vhd file created by 
NGD2VHDL for the current entity and architecture names for post-
NGDBuild simulation.

TOC Model in Four Design Phases (Case A1)

The following figure shows the progression of the TOC model and its 
interpretation in the four main design phases.
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Figure 6-5  TOC Simulation and Implementation

• Behavioral Phase—In this phase, the behavioral or RTL description 
of the output buffers are inferred from the coding style. The TOC 
cell can be instantiated. If it is not instantiated, the GTS signal is 
not driven during simulation or is driven within the architecture 
by code that cannot be synthesized. Some synthesizers can infer 
which of the local output tristate enables is best for the global 
signal, and will insert the TOC cell automatically so instantiation 
may not be required unless RTL level simulation is desired. The 
synthesizer may also allow you to select the output tristate enable 
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line you want driven by the TOC cell. Instantiation of the TOC 
cell in the RTL description is recommended because you can 
immediately identify what signal is the global signal, and you are 
not relying on a synthesis tool feature that may not be available if 
ported to another tool.

• Synthesized Phase—In this phase, the inferred registers are 
mapped to a device, and the TOC instantiation is either carried 
from the RTL or is inserted by the synthesis tools. This results in 
maintaining consistent global output tristate enable behavior 
between the RTL and the synthesized structural descriptions 
during simulation.

• Implemented Phase—During implementation, the TOC is removed 
from the logical description that is placed and routed because it is 
a pre-existing circuit on the chip. The TOC is removed by making 
the input and output of the TOC cell appear as an open circuit. 
This allows the router to remove all nets driven by the TOC cell 
as if they were undriven nets. The VHDL netlist program 
assumes all output tristate enables are driven by the global 
output tristate enable so data is not lost.

• Back-annotation Phase—In this phase, the VHDL netlist tool re-
inserts a TOC component for simulation purposes. The GTS net is 
a fully wired net and the TOC cell is inserted to drive it. You can 
use a configuration similar to the VHDL configuration for RTL 
simulation to set the generic for the pulse width.

Using VHDL TOCBUF (Case A2)

For Case A2, use the TOCBUF (Tristate-On-Configuration Buffer) 
instantiated component model. This model creates a buffer for the 
global output tristate enable signal. You now have an input port on 
the buffer to drive the global set reset line. The implementation 
model directs the place and route tool to remove the port so it is not 
implemented on the actual chip. The TOCBUF cell does not reappear 
in the post-routed netlist. Instead, you can select an option on the 
implementation tool to add a global output tristate enable port to the 
back-annotated netlist. A buffer is not necessary because the imple-
mentation directive is no longer required.

TOCBUF Model Example (Case A2)

The following is an example of the TOCBUF model.
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library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
library UNISIM;
use UNISIM.all;
entity EX_TOCBUF is

port (CLOCK, ENABLE, SRP, STP : in std_logic; 
CUP, CDOWN : out std_logic_vector (3 downto 0));

end EX_TOCBUF;
architecture A of EX_TOCBUF is

signal GSR, GTS : std_logic;
signal COUNT_UP, COUNT_DOWN : std_logic_vector (3 downto 0);
component ROCBUF

port (I : in std_logic;
O : out std_logic);

end component;
component TOCBUF

port (I : in std_logic;
O : out std_logic);

end component;
begin

U1 : ROCBUF port map (I => SRP, O => GSR);
U2 : TOCBUF port map (I => STP, O => GTS);
UP_COUNTER : process (CLOCK, ENABLE, GSR)
begin

if (GSR = '1') then
COUNT_UP <= "0000";

elsif (CLOCK'event AND CLOCK = '1') then
if (ENABLE = '1') then

COUNT_UP <= COUNT_UP + "0001";
end if;

end if;
end process UP_COUNTER;
DOWN_COUNTER : process (CLOCK, ENABLE, GSR, COUNT_DOWN)
begin

if (GSR = '1' OR COUNT_DOWN = "0101") then
COUNT_DOWN <= "1111";

elsif (CLOCK'event AND CLOCK = '1') then
if (ENABLE = '1') the

COUNT_DOWN <= COUNT_DOWN - "0001";
end if;

end process DOWN_COUNTER;
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CUP <= COUNT_UP when (GTS = '0' AND COUNT_UP /= "0000") else
"ZZZZ";

CDOWN <= COUNT_DOWN when (GTS = '0') else "ZZZZ";
end A;

TOCBUF Model in Four Design Phases (Case A2)

The following figure shows the progression of the TOCBUF model 
and its interpretation in the four main design phases. 

Figure 6-6  TOCBUF Simulation and Implementation

• Behavioral Phase—In this phase, the behavioral or RTL description 
of the output buffers are inferred from the coding style and may 
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be inserted. You can instantiate the TOCBUF cell. If it is not 
instantiated, the GTS signal is not driven during simulation or it 
is driven within the architecture by code that cannot be synthe-
sized. Some synthesizers can infer the local output tristate 
enables that make the best global signals, and will insert the 
TOCBUF cell automatically. As a result, instantiation may not be 
required unless you want RTL level simulation. The synthesizer 
can allow you to select the output tristate enable line you want 
driven by the TOCBUF cell. Instantiation of the TOCBUF cell in 
the RTL description is recommended because you can immedi-
ately identify which signal is the global signal and you are not 
relying on a synthesis tool feature that may not be available if 
ported to another tool.

• Synthesized Phase—In this phase, the inferred output buffers are 
mapped to a device and the TOCBUF instantiation is either 
carried from the RTL or is inserted by the synthesis tools. This 
maintains consistent global output tristate enable behavior 
between the RTL and the synthesized structural descriptions 
during simulation.

• Implemented Phase—In this phase, the TOCBUF is removed from 
the logical description that is placed and routed because it is a 
pre-existing circuit on the chip. 

The TOCBUF is removed by making the input and output of the 
TOCBUF cell appear as an open circuit. This allows the router to 
remove all nets driven by the TOCBUF cell as if they were 
undriven nets. The VHDL netlist program assumes all output 
tristate enables are driven by the global output tristate enable so 
data is not lost.

• Back-annotated Phase—In this phase, the TOCBUF cell does not 
reappear in the post-routed netlist. Instead, you can select an 
option in the implementation tool to add a global output tristate 
enable port to the back-annotated netlist. A buffer is not neces-
sary because the implementation directive is no longer required. 
If the option is not selected, the VHDL netlist tool re-inserts a 
TOCBUF component for simulation purposes. The GTS net is a 
fully wired net and the TOCBUF cell is inserted to drive it. You 
can use a configuration similar to the VHDL configuration used 
for RTL simulation to set the generic for the pulse width.
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Using VHDL STARTBUF Block (Case B1)

The STARTBUF block can be simulated in cases where the STARTUP 
block causes warning messages from the simulator. The STARTUP 
block is normally instantiated to identify the GR, PRLD, GSR or GTS 
signals for implementation if the global reset or tristate is connected 
to a chip pin. However, this implementation directive cannot be 
simulated. STARTUP blocks should only be used in cases where error 
messages can be addressed or safely ignored.

For Case B1use the STARTBUF cell. This cell provides access to the 
input and output ports of the STARTUP cell that direct the implemen-
tation tool to use the global networks. The input and output port 
names differ from the names of the corresponding ports of the 
STARTUP cell. This was done for the following reasons.

• To make the STARTBUF a model that can be simulated with 
inputs and outputs. The STARTUP cell hangs from the net it is 
connected to.

• To make one model that works for all Xilinx technologies. The 
XC4000 and XC5200 families require different STARTUP cells 
because the XC5200 has a global reset (GR) net and not a GSR.

The mapping to the architecture-specific STARTUP cell from the 
instantiation of the STARTBUF is done during implementation. The 
STARTBUF pins have the suffix “IN” (input port) or “OUT” (output 
port). Two additional output ports, GSROUT and GTSOUT, are avail-
able to drive a signal for clearing or setting a design's registers 
(GSROUT), or for tristating your design's I/Os (GTSOUT).

The input ports, GSRIN and GTSIN, can be connected either directly 
or indirectly via combinational logic to input ports of your design. 
Your design's input ports appear as input pins in the implemented 
design. The design input port connected to the input port, GSRIN, is 
then referred to as the device reset port, and the design input port 
connected to the input port, GTSIN, is referred to as the device 
tristate port. Please refer to the above “STARTBUF/STARTUP Pin 
Descriptions” table, which shows the correspondence of pins between 
STARTBUF and STARTUP.

Note Using STARTBUF indicates that you want to access the global 
set/reset and/or tristate pre-routed networks available in your 
design's target device. As a result, you must provide the stimulus for 
emulating the automatic pulse as well as the user-defined set/reset. 
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This allows you complete control of the reset network from the test 
bench.

For a VHDL design example of using the global tristate network 
please refer to the “Using VHDL STARBUF Block (Case 2a)”, in the 
GSR Network Design Cases section.

Using VHDL STARTBUF_VIRTEX Block and 
STARTBUF_SPARTAN2 Block (Case B2)

The STARTUP_VIRTEX and STARTUP_SPARTAN2 blocks can be 
instantiated to identify the GTS signal for implementation if the 
global reset or tristate is connected to a chip pin. However, these cells 
can not be simulated as there is no simulation model for them.

The VHDL STARBUF_VIRTEX and STARBUF_SPARTAN2 blocks can 
do a pre-NGDBuild UniSim simulation of the GTS signal. You can 
also correctly back-annotate a GTS signal by instantiating a 
STARTUP_VIRTEX, STARTBUF_VIRTEX, STARTUP_SPARTAN2, or 
STARTBUF_SPARTAN2 symbol and correctly connect the GTS input 
signal of the component.

Note You can not simulate the GSR signal during any pre-NGDBuild 
Unisim VHDL simulations.You will not be able to reset the design 
after simulation time ‘0’, however the design will start up in the 
correct state.

See the following table for Virtex and Spartan-II correspondence of 
pins between STARTBUF and STARTUP. 

Table 6-10  Virtex/E and Spartan2 STARTBUF/STARTUP Pins

STARTBUF 
Pin Names

Connection 
Points

Virtex/E 
STARTUP Pin 
Names

Spartan-II 
STARTUP Pin 
Names

GSRIN Global Set/
Reset Port of 
Design

GSR GSR

GTSIN Global Tristate 
Port of Design

GTS GTS



Simulating Your Design

Synthesis and Simulation Design Guide 6-51

STARTBUF_VIRTEX Model Example (Case B2)

The following is an example of the STARTBUF_VIRTEX model.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
library UNISIM;
use UNISIM.all;
entity EX_STARTBUF is

port (CLOCK, ENABLE, RESET, STP : in std_logic;
CUP, CDOWN : out std_logic_vector (3 downto 0));

end EX_STARTBUF;

architecture A of EX_STARTBUF is
signal GTS_sig : std_logic;
signal COUNT_UP, COUNT_DOWN : std_logic_vector (3 downto 0);
signal ZERO : std_ulogic := ‘0’;

component STARTBUF_VIRTEX
port (GSRIN, GTSIN, CLKIN : in std_logic; O : out std_logic);

end component;

begin
U1 :STARTBUF_VIRTEX port map (GTSIN=>STP,GSRIN=>ZERO, CLKIN=>ZERO

GTSOUT=>GTS_sig);
UP_COUNTER : process (CLOCK, ENABLE, RESET)

begin
if (RESET = '1') then

COUNT_UP <= "0000";

CLKIN Port of Internal 
Logic

CLK CLK

GTSOUT All Output 
Buffers Tristate 
Control

N/A N/A

Table 6-10  Virtex/E and Spartan2 STARTBUF/STARTUP Pins

STARTBUF 
Pin Names

Connection 
Points

Virtex/E 
STARTUP Pin 
Names

Spartan-II 
STARTUP Pin 
Names



Synthesis and Simulation Design Guide

6-52 Xilinx Development System

elsif (CLOCK'event AND CLOCK = '1') then
if (ENABLE = '1') then

COUNT_UP <= COUNT_UP + "0001";
end if;

end if;
end process UP_COUNTER;

DOWN_COUNTER : process (CLOCK, ENABLE, RESET, COUNT_DOWN)
begin

if (RESET = '1' OR COUNT_DOWN = "0101") then
COUNT_DOWN <= "1111";

elsif (CLOCK'event AND CLOCK = '1') then
if (ENABLE = '1') then

COUNT_DOWN <= COUNT_DOWN - "0001";
end if;

end if;
end process DOWN_COUNTER;
CUP <= COUNT_UP when (GTS_sig='0' AND COUNT_UP /= "0000") else

"ZZZZ";
CDOWN <= COUNT_DOWN when (GTS_sig = '0') else "ZZZZ";

end A;

Simulating Special Components in VHDL
The following section provides a description and examples of using 
special components such as the Block RAM for Virtex.

Boundary Scan and Readback

The Boundary Scan and Readback circuitry can not be simulated at 
this time. Efforts are being made to create models for these compo-
nents and should be available in the near future.

Differential I/O (LVDS, LVPECL)

The inputs of the differential pair are currently modeled with only the 
positive side. Whereas, the outputs have both pairs, positive and 
negative. For details, please see http://support.xilinx.com/tech-
docs/8187.htm.

The following is an example of Differential I/O.

entity lvds_ex is 
port (data: in std_logic;
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data_op: out std_logic;
data_on: out std_logic);
end entity lvds_ex;
architecture lvds_arch of lvds_ex is
signal data_n_int : std_logic;
component OBUF_LVDS port (

I : in std_logic;
O : out std_logic);

end component;
component IBUF_LVDS port (

I : in std_logic;
O : out std_logic);

end component;
begin
--Input side
I0: IBUF_LVDS port map (I => data), O =>data_int);
--Output side
OP0: OBUF_LVDS port map (I => data_int, O => 

data_op);
data_n_int = not(data_int);
ON0: OBUF_LVDS port map (I => data_n_int, O => 

data_on);
end arch_lvds_ex;

Simulating a LUT

The LUT (look-up table) component is initialized for simulation by a 
generic mapping to the INIT attribute.

The following is an example in which a LUT is initialized.

entity lut_ex is
port (LUT1_IN, LUT2_IN : in std_logic_vector(1 

downto 0);
LUT1_OUT, LUT2_OUT : out std_logic_vector(1 downto 

0));
end entity lut_ex;
architecture lut_arch of lut_ex is 
component LUT1
generic (INIT: std_logic_vector(1 downto 0) := 

“10”);
port (O : out std_logic;
I0 : in std_logic);
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end component;
component LUT2
generic (INIT: std_logic_vector(3 downto 0) := 

“0000”);
port (O : out std_logic;
I0, I1: in std_logic);
end component;
begin
-- LUT1 used as an inverter
U0: LUT1 generic map (INIT => “01”)
port map (O => LUT1_OUT(0), I0 => LUT1_IN(0));
-- LUT1 used as a buffer
U1: LUT1 generic map (INIT => “10”)
port map (O => LUT1_OUT(1), I0 => LUT1_IN(1));
--LUT2 used as a 2-input AND gate
U2: LUT2 generic map (INIT => “1000”)
port map (O => LUT2_OUT(0), I1 => LUT2_IN(1), I0 => 

LUT2_IN(0));
--LUT2 used as 2-input NAND gate
U3: LUT2 generic map (INIT => “0111”)
port map (O => LUT2_OUT(1), I1 => (LUT2_IN(1), I0 

=> LUT2_IN(0));
end lut_arch;

Simulating Virtex Block RAM

By Default the Virtex Block RAMs will come up initialized to zero in 
all data locations starting at time zero. For a post-NGDBuild, post-
MAP, or Post-PAR (timing) simulation the Block RAMs will initialize 
to the value the user specifies in the UCF, or if an INIT value was 
given in the input design file to NGDBuild. For a pre-synthesis or 
post-synthesis (Pre-NGDBuild) functional simulation you must use a 
configuration statement to apply an initial value to the Block RAM.

The following is an example of using a configuration statement to 
apply an initial value to a block RAM.

LIBRARY ieee;
use IEEE.std_logic_1164.all;
Library UNISIM;
use UNISIM.vcomponents.all;
entity ex_blkram is
port(CLK, EN, RST, WE : in std_logic;
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ADDR : in std_logic_vector(11 downto 0);
DI : in std_logic_vector(15 downto 0);

DORAMB4_S4  : out std_logic_vector(3 downto 0));
end;

architecture struct of ex_blkram is

component RAMB4_S4
port (DI : in STD_LOGIC_VECTOR (3 downto 0);

EN : in STD_ULOGIC;
WE : in STD_ULOGIC;
RST : in STD_ULOGIC;
CLK : in STD_ULOGIC;
ADDR : in STD_LOGIC_VECTOR (9 downto 0);
DO : out STD_LOGIC_VECTOR (3 downto 0));

end component;

begin
INST_RAMB4_S4 : RAMB4_S4 port map

DI => DI(3 downto 0),
EN => EN,
WE => WE,
RST => RST,
CLK => CLK,
ADDR => ADDR(9 downto 0),
DO => DORAMB4_S4

end struct;

Block RAM Testbench

The following is a Block RAM testbench coding example.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
entity ex_blkram_tb is
end;
architecture tb of ex_blkram_tb is
component ex_blkram

port(CLK, EN, RST, WE : in std_logic;
DI : in std_logic_vector(15 downto 0);
ADDR : in std_logic_vector(11 downto 0);
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DORAMB4_S4 : out std_logic_vector(3 downto 
0));

end component;
constant CLK_PERIOD : time := 100 ns;
signal CLK_TB, EN_TB, RST_TB, WE_TB, TRST_TB,
std_logic;
signal DI_TB : std_logic_vector(15 downto 0);
signal ADDR_TB : std_logic_vector(11 downto 0);
signal DORAMB4_S4_TB : std_logic_vector(3 downto 

0);
begin
uut : ex_blkram port map (....);
.
.
.
end tb;

configuration cfg_ex_blkram_tb of ex_blkram_tb is
for tb
end for;

end cfg_ex_blkram_tb;

The best method for mapping the generic block RAM is in a configu-
ration. The configuration can be all in the test bench or as shown in 
these examples. The configuration is in the following separate config-
uration file. This can all be contained in the testbench. If it is in a sepa-
rate file then it must be compiled last. Run the simulation on the 
configuration in order for the generic mapping to apply.

Block RAM Configuration

The following is a block RAM configuration example.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
library UNISIM;
use UNISIM.vcomponents.all;

configuration cfg_ex_blkram_tb of ex_blkram_tb is
for tb

for uut : ex_blkram use entity work.ex_blkram(struct);
for struct
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for INST_RAMB4_S4 : RAMB4_S4 use entity 
unisim.RAMB4_S4(RAMB4_S4_V)
generic map (INIT_00 => 
X"1F1E1D1C1B1A191817161514131211100F0E0D0C0B0A09080706050403020100
",

INIT_01 => 
X"3F3E3D3C3B3A393837363534333231302F2E2D2C2B2A29282726252423222120
",

INIT_02=>
X"5F5E5D5C5B5A595857565554535251504F4E4D4C4B4A49484746454443424140
",
.
.
.

INIT_08=>
X"1F1E1D1C1B1A191817161514131211100F0E0D0C0B0A09080706050403020100
",

INIT_09=>
X"3F3E3D3C3B3A393837363534333231302F2E2D2C2B2A29282726252423222120
",

INIT_0A=>
X"5F5E5D5C5B5A595857565554535251504F4E4D4C4B4A49484746454443424140
",
.

.

.

INIT_0F=>
X"FFFEFDFCFBFAF9F8F7F6F5F4F3F2F1F0EFEEEDECEBEAE9E8E7E6E5E4E3E2E1E0
");

end for;
end for;

end for;
end for;

end cfg_ex_blkram_tb;
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Simulating the Virtex Clock DLL

When Functionally simulating the Virtex Clock DLL generic maps 
will have to be used when specifying the Clock Divide and Duty 
Correction values. All other aspects of the CLKDLL will be simulated 
properly. By default the Clock Divide is set to 2 and Duty Correction 
is set to true. This example will set the Clock Divide to 4, and set the 
Duty Correction to False. In the testbench the clock is set to a non-
50% duty cycle to see Duty correction in the simulation if the generic 
is not set to false.

Note You must use a UCF file to pass the Clock Divide and Duty 
Correction values to the Xilinx implementation tools. Depending on 
the synthesis tool INIT attributes may be used too.

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;
Library UNISIM;
use UNISIM.vcomponents.all;
entity clkdlls is
 port(CLK_LF, RST_LF : in std_logic;
  CLK90_LF, CLK180_LF : out std_logic;
  CLK270_LF, CLK2X_LF : out std_logic;
  CLKDV_LF, LOCKED_LF : out std_logic;
  LFCount   : out std_logic_vector(3 downto 0));

end;
architecture struct of clkdlls is
component CLKDLL
 port (CLKIN   : in std_logic;
  CLKFB   : in std_logic;
  RST     : in std_logic;
  CLK0    : out std_logic;
  CLK90   : out std_logic;
  CLK180  : out std_logic;
  CLK270  : out std_logic;
  CLK2X   : out std_logic;
  CLKDV   : out std_logic;
  LOCKED  : out std_logic);

end component;
component IBUFG
 port (I : in std_logic;
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 O : out std_logic);
end component;
component BUFG
 port (I : in std_logic;
 O : out std_logic);

end component;
signal COUNT: integer range 0 to 15 := 0;
signal sigCLK_LF, sigCLK0_LF, sigCLKFB_LF, CLK0_LF 

: std_logic;
signal sigLFCount : std_logic_vector (3 downto 0);

begin
INST_IBUFGLF : IBUFG port map (I => CLK_LF, O => 

sigCLK_LF);
INST_BUFGLF : BUFG port map (I => sigCLK0_LF, O => 

sigCLKFB_LF);
INST_CLKDLL : CLKDLL port map (CLKIN => sigCLK_LF, 

CLKFB => sigCLKFB_LF,
RST   => RST_LF, CLK0  => sigCLK0_LF, CLK90 => 

CLK90_LF,
CLK180 => CLK180_LF, CLK270 => CLK270_LF, CLK2X 

=>CLK2X_LF,
CLKDV => CLKDV_LF, LOCKED => LOCKED_LF);
CLK0_LF <= sigCLK0_LF;

procCLKDLLCount: process (CLK0_LF)

begin
 if (CLK0_LF’event and CLK0_LF = ’1’) then
  sigLFCount <= sigLFCount + "0001";
 end if;

LFCount <= sigLFCount;
end process;
end struct;

Clock DLL Testbench

The following is an example of a clock DLL testbench.

library IEEE;
use IEEE.std_logic_1164.all;
library unisim;
use unisim.vcomponents.all;
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entity clkdlls_tb is
end;
architecture tb of clkdlls_tb is
component clkdlls
 port(CLK_LF, RST_LF : in std_logic;
  CLK90_LF, CLK180_LF : out std_logic;
  CLK270_LF, CLK2X_LF : out std_logic;
  CLKDV_LF, LOCKED_LF : out std_logic);

end component;
signal CLK_LF_TB, RST_LF_TB : std_logic;
signal CLK90_LF_TB, CLK180_LF_TB, CLK270_LF_TB : 

std_logic;
signal CLK2X_LF_TB, CLKDV_LF_TB, LOCKED_LF_TB : 

std_logic;
constant CLK_PERIOD_LF : time :=40 ns;
begin
-- Define CLKLF
 procCLKLF : process (CLK_LF_TB)
  begin
  if (CLK_LF_TB = ’1’) then
    CLK_LF_TB <= ’0’ after CLK_PERIOD_LF*1/4;
  elsif (CLK_LF_TB = ’0’) then
    CLK_LF_TB <= ’1’ after CLK_PERIOD_LF*3/4;
  else
    CLK_LF_TB <= ’1’ after CLK_PERIOD_LF*1/4;
  end if;
 end process;

  -- Define RST_LF_TB
RST_LF_TB <= ’1’,
’0’ after 400 ns,
’1’ after 800 ns,
’0’ after 1200 ns;

uut_clkdlls : clkdlls port map (
 CLK_LF    => CLK_LF_TB, RST_LF    => RST_LF_TB,
 CLK90_LF  => CLK90_LF_TB, CLK180_LF => 
CLK180_LF_TB,
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 CLK270_LF => CLK270_LF_TB, CLK2X_LF  => 
CLK2X_LF_TB,

 CLKDV_LF  => CLKDV_LF_TB, LOCKED_LF => 
LOCKED_LF_TB);

end tb;
configuration cfg_clkdlls_tb of clkdlls_tb is
 for tb
 end for;

end cfg_clkdlls_tb;

Clock DLL Configuration

The configuration will set the clock divide to 4 and turn off duty cycle 
correction. To see duty cycle correction in simulation simply don’t set 
the generic, as in the commented line.

library IEEE;
use IEEE.std_logic_1164.all;
library UNISIM;
use UNISIM.vcomponents.all;
configuration cfg_clkdlls_tb of clkdlls_tb is
for tb
for uut_clkdlls : clkdlls use entity 

work.clkdlls(struct);
for struct
for all : clkdll use entity unisim.clkdll(clkdll_v)
generic map (DUTY_CYCLE_CORRECTION => FALSE, 
CLKDV_DIVIDE => 4.0); 
-- generic map (CLKDV_DIVIDE => 4.0);
end for;
end for;
end for;
end for;
end cfg_clkdlls_tb;

Using Oscillators
Oscillator output can vary within a fixed range. This cell is not 
included in the SimPrim library because you cannot drive global 
signals in VHDL designs. Schematic simulators can define and drive 
global nets so the cell is not required. Verilog has the ability to drive 
nets within a lower level module as well. Therefore the oscillator cells 
are only required in VHDL. After back-annotation, their entity and 
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architectures are contained in your design’s VHDL output. For func-
tional simulation, they can be instantiated and simulated with the 
UniSim Library. 

The period of the base frequency must be set in order for the simula-
tion to proceed, since the default period of 0 ns disables the oscillator. 
The oscillator’s frequency can vary significantly with process and 
temperature.

Before you set the base period parameter, consult The Programmable 
Logic Data Book for the part you are using. For example, the section in 
The Programmable Logic Data Book for the XC4000 Series On-Chip 
Oscillator states that the base frequency can vary from 4MHz to 10 
MHz, and is nominally 8 MHz. This means that the base period 
generic “period_8m” in the XC4000E OSC4 VHDL model can range 
from 250ns to 100ns. An example of this follows.

Oscillator VHDL Example

The following is an example of an Oscillator VHDL component.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

library UNISIM;
use UNISIM.all;

entity test1 is
port (DATAIN: in STD_LOGIC;
DATAOUT: out STD_LOGIC);
end test1;

architecture inside of test1 is

signal RST: STD_LOGIC;

component ROC
port(O: out STD_LOGIC);
end component;

component OSC4
port(F8M: out STD_LOGIC);
end component;
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signal internalclock: STD_LOGIC;
begin
U0: ROC port map (RST);

U1: OSC4 port map (F8M=>internalclock);

process(internalclock)
begin
if (RST='1') then
DATAOUT <= '0';

elsif(internalclock'event and internalclock='1') 
then

DATAOUT <= DATAIN;

end if;

end process;

end inside;

Oscillator Test Bench

The following is an example of an Oscillator test bench.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

library UNISIM;
use UNISIM.all;

entity test_oftest1 is end test_oftest1;

architecture inside of test_oftest1 is

component test1
port(DATAIN: in STD_LOGIC;
DATAOUT: out STD_LOGIC);
end component;

signal userdata, userout: STD_LOGIC;
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begin

UUT: test1 port 
map(DATAIN=>userdata,DATAOUT=>userout);

myinput: process
begin
userdata <= '1';
wait for 299 ns;
userdata <= '0';
wait for 501 ns;
end process;

end inside;

configuration overall of test_oftest1 is
for inside

for UUT:test1
for inside

for U0:ROC use entity 
UNISIM.ROC(ROC_V)

generic map (WIDTH=> 52 ns);
end for;

for U1:OSC4 use entity 
UNISIM.OSC4(OSC4_V)

generic map (PERIOD_8M=> 25 ns);
end for;

end for;
end for;

end for;
end overall;

This configuration is for pre-NGDBuild simulation. A similar config-
uration is used for post-NGDBuild simulation. The ROC, TOC, and 
OSC4 are mapped to the WORK library, and corresponding architec-
ture names may be different. Review the .vhd file created by 
NGD2VHDL for the current entity and architecture names for post-
NGDBuild simulation.
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Simulating Verilog

Defining Global Signals in Verilog
To specify the global set/reset or global reset, you must first define 
them in the $XILINX/verilog/src/glbl.v module. The VHDL 
UniSims library contains the ROC, ROCBUF, TOC, TOCBUF, and 
STARTBUF cells to assist in VITAL VHDL simulation of the global 
set/reset and tristate signals. However, Verilog allows a global signal 
to be modeled as a wire in a global module, and, thus, does not 
contain these cells.

Using the glbl.v Module
The glbl.v module connects the global signals to the design, which is 
why it is necessary to compile this module with the other design files 
and load it along with the design.v file and the testfixture.v file for 
simulation.

The following is the definition of the glbl.v file.

`timescale 1 ns / 1 ps
module glbl();
wire GR;
wire GSR;
wire GTS;
wire PRLD;
endmodule

Defining GSR/GTS in a Test Bench
There are two cases to consider when defining a GSR or GTS in a test 
bench: designs without a STARTUP block and designs with a 
STARTUP block.

Note The terms “test bench” and “test fixture” are used synony-
mously throughout this manual.

Designs Without a Startup Block

When you use the UniSim libraries for RTL simulation, you must set 
the value of the appropriate Verilog global signals (glbl.GSR or 
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glbl.GTS) to the name of the GSR or GTS net, qualified by the appro-
priate scope identifiers.

The global set/reset net is present in your implemented design even 
if you do not instantiate the STARTUP block in your design. The 
function of STARTUP is to give you the option to control the global 
reset net from an external pin. The following example should be 
added to your design code and test fixture to set the GSR and GTS 
pin for XC4000XLA, Spartan/XL, or Virtex devices:

reg GSR;
assign glbl.GSR = GSR;
reg GTS;
assign glbl.GTS = GTS;
initial begin
GSR = 1; GTS = 1;
#100 GSR = 0; GTS = 0;
end

Example 1: No STARTUP With GSR Defined

The following design shows how to drive the GSR signal in a testfix-
ture file at the beginning of a pre-NGDBuild Unified Library func-
tional simulation.

In the design code, declare the GSR as a Verilog wire. The GSR will 
not be specified in the port list for the module. Describe the GSR to 
reset or set every inferred register or latch in your design. GSR does 
not need to be connected to any instantiated registers or latches, as 
shown in the following example.

module my_counter (CLK, D, Q, COUT);
input CLK, D;
output Q;
output [3:0] COUT;

wire GSR;
reg [3:0] COUT;

always @(posedge GSR or posedge CLK)
begin

if (GSR == 1’b1)
COUT = 4’h0;

else
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COUT = COUT + 1’b1;
end

// GSR is modeled as a wire within a global module.
// So,CLR does not need to be connected to GSR and
// the flop will still be reset with GSR.
FDCE U0 (.Q (Q), .D (D), .C (CLK), .CE (1'b1), .CLR 

(1’b0));
endmodule

Since the GSR is declared as a floating wire and is not in the port list, 
the synthesis tool optimizes the GSR signal out of the design. GSR is 
replaced later by the implementation software for all post-implemen-
tation simulation netlists.

In the test fixture file, set GSR to test.uut.GSR (the name of the global 
set/reset signal, qualified by the name of the design instantiation 
instance name and the test fixture instance name). Since there is no 
STARTUP block, a connection to GSR is made in the testfixture via an 
assign statement. See the following example:

`timescale 1 ns / 1 ps
module test;
reg CLK, D;
wire Q;
wire [3:0] COUT;
reg GSR;
assign glbl.GSR = GSR;
assign test.uut.GSR = GSR;
my_counter uut (.CLK (CLK), .D (D), .Q (Q), .COUT 

(COUT));
initial begin
$timeformat(-9,1,”ns”,12);
$display(“\t   T C G D Q C”);
$display(“\t   i L S     O”);
$display(“\t   m K R     U”);
$display(“\t   e         T”);
$monitor(“%t %b %b %b %b %h”, $time, CLK, GSR, D, 
Q, COUT);

end
initial begin

CLK = 0;
forever #25 CLK = ~CLK;

end
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initial begin
#0 {GSR, D} = 2’b11;
#100 {GSR, D} = 2’b10;
#100 {GSR, D} = 2’b00;
#100 {GSR, D} = 2’b01;
#100 $finish;

end
endmodule

Designs with a STARTUP Block

For RTL simulation using the UniSim libraries, asserting global set/
reset and global tri-state when the STARTUP block is specified in the 
design is similar to asserting global set/reset and global tristate 
without a STARTUP block in the design. See the “User-Controlled 
GSR” figure.

Figure 6-7  User-Controlled GSR

To set the GSR pin to set an external input port, the testfixture would 
be written as the following:

reg MYGSR;
initial begin
MYGSR = 1;
#100 MYGSR = 0;
end

X8354

IBUF

Q2

IQ

1917

Q3

Q1Q4

DONEINCLK

GSR

GTS

GSR_INMYGSR

STARTUP

IPAD



Simulating Your Design

Synthesis and Simulation Design Guide 6-69

You must omit the assign statement for the global signal. This is 
because a the global signal, glbl.GSR, is defined within the STARTUP 
block to make the connection between the user logic and the global 
GSR net embedded in the UniSim models for RTL simulation. For 
post-NGDBuild, GSR is connected in the netlist created by 
NGD2VER. Retaining the assign definition causes a possible conflict 
with these connections.

Example 1: STARTUP with GSR Pin Connector

In the following Verilog code, GSR is listed as a top-level port. 
Synthesis sees a connection of GSR to the STARTUP and as well to the 
behaviorally described counter. Although this is correct in the hard-
ware, it is actually an implicit connection, and GSR is only listed as a 
connection to the STARTUP in the implementation netlist.

module my_counter (MYGSR, CLK, D, Q, COUT);
input MYGSR, CLK, D;
output Q;
output [3:0] COUT;

reg [3:0] COUT;

always @(posedge MYGSR or posedge CLK)
begin

if (MYGSR == 1’b1)
COUT = 4’h0;

else
COUT = COUT + 1’b1;

end
// GSR is modeled as a wire within a global module. 

So,
// CLR does not need to be connected to GSR and the 

flop
// will still be reset with GSR.
FDCE U0 (.Q (Q), .D (D), .C (CLK), .CE (1’b1), .CLR 

(1’b0));
STARTUP U1 (.GSR (MYGSR), .GTS (1’b0), .CLK 

(1’b0));
endmodule

The following is an example of controlling the global set/reset signal 
by driving the external MYGSR input port in a test fixture file at the 
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beginning of an RTL or post-synthesis functional simulation when 
there is a STARTUP block.

The global set/reset control signal should be toggled High, then Low 
in an initial block.

reg MYGSR;
initial begin
MYGSR = 1; // To reset/set the device
#100 MYGSR = 0; // To deactivate GSR
end

In addition, the global signal, glbl.GSR, is defined within the 
STARTUP block to make the connection between the user logic and 
the global GSR net embedded in the UniSim models for RTL simula-
tion. For post-NGDBuild functional simulation, post-Map timing 
simulation, and post-route timing simulation, GSR is connected in the 
Verilog netlist that is created by NGD2VER.

Example 2: STARTUP with GTS Pin Connected

In the following figure, MYGTS is an external user signal that 
controls GTS. 
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Figure 6-8  User-Controlled GTS

The following is an example of controlling the global tristate signal 
by driving the external MYGTS input port in a test fixture file at the 
beginning of an RTL or post-synthesis functional simulation when 
there is a STARTUP block. The global GTS model in the UniSim simu-
lation models for output buffers (OBUF, OBUFT, and so on). 

The global tristate control signal should be toggled High, then Low in 
an initial block.

reg MYGTS;

initial begin
MYGTS = 1; // To tristate the device;
#100 MYGTS = 0; // To deactivate GTS
end

Example 3: STARTUP with GTS Pin Not Connected

A Verilog global signal called glbl.GTS is defined within the 
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simulation, and post-route timing simulation, glbl.GTS is defined in 
the Verilog netlist that is created by NGD2VER.

reg GTS;
assign glbl.GTS = GTS;

initial begin
GTS = 1; // To tristate the device;
#100 GTS = 0;// To deactivate GTS
end

Simulating Special Components in Verilog
The following section provides a description and examples of simu-
lating special components for Virtex.

Boundary Scan and Readback

The Boundary Scan and Readback circuitry can not be simulated at 
this time. Efforts are being made to create models for these compo-
nents and should be available in the near future.

Differential I/O (LVDS, LVPECL)

The inputs of the differential pair are currently modeled with only the 
positive side. Whereas, the outputs have both pairs, positive and 
negative. For details, please see http://support.xilinx.com/tech-
docs/8187.htm.

The following is an example of Differential I/O.

module lvds_ex (data, data_op, data_on);
input data;
output data_op, data_on;

// Input side
IBUF_LVDS I0 (.I (data), .O (data_int));

// Output side
OBUF_LVDS OP0 (.I (data_int), .O (data_op));
wire data_n_int = ~data_int;
OBUF_LVDS ON0 (.I (data_n_int), .O (data_on));

endmodule
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LUT

For simulation, the INIT attribute passed by the defparam statement 
is used to initialize contents of the LUT.

The following is an example of the defparam statement being used to 
initialize the contents of a LUT.

module lut_ex (LUT1_OUT, LUT1_IN);
input  [1:0] LUT1_IN;
output [1:0] LUT1_OUT;

// For RTL simulation only.
// The defparam will not synthesize.

// synopsys translate_off
defparam U0.INIT = 2’b01;
defparam U1.INIT = 2’b10;
// synopsys translate_on

// LUT1 used as an inverter
LUT1 U0 (.O (LUT1_OUT[0]), .I0 (LUT1_IN[0]));

// LUT1 used as a buffer
LUT1 U1 (.O (LUT1_OUT[1]), .I0 (LUT1_IN[1]));

endmodule

However, passing the INIT attribute in this manner does not initialize 
the contents for synthesis. All synthesis tools have their own mecha-
nism for passing attributes to the implementation netlist. For 
referneces on today’s popular synthesis tools, refer to the LUT Instan-
tiation and Initialization for Synthesis table.

Table 6-11  LUT Instantiation and Initialization for Synthesis

Synthesizer

FPGA Express http://support.xilinx.com/techdocs/
5334.htm

Synplify http://support.xilinx.com/techdocs/
1992.htm

Leonardo Spectrum http://support.xilinx.com/techdocs/
8207.htm
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SRL16

For simulation, the INIT attribute passed by the defparam statement 
is used to initialize contents of the SRL16.

The following is an example of the defparam statement being used to 
initialize the contents of a SRL16.

module srl16_ex (CLK, DIN, QOUT);
input CLK, DIN;
output QOUT;

// For RTL simulation only.
// The defparam will not synthesize.

// synopsys translate_off
defparam U0.INIT = 16’hAAAA;
// synopsys translate_on

// Static length - 16-bit SRL
SRL16 U0 (.D (DIN), .Q (QOUT), .CLK (CLK),
  .A0 (1’b1), .A1 (1’b1), .A2 (1’b1), .A3 (1’b1));
endmodule

However, passing the INIT attribute in this manner does not initialize 
the contents for synthesis. Please refer to your synthesis vendor’s 
documentation since all synthesis tools have their own mechanism 
for passing attributes to the implementation netlist.

BlockRAM

For simulation, the INIT_0x attributes passed by the defparam state-
ment are used to initialize contents of the BlockRAM.

module bram512x4 (CLK, DATA_BUSA, ADDRA, WEA, 
DATA_BUSB, ADDRB, WEB);

input [9:0] ADDRA, ADDRB;
input CLK, WEA, WEB;
inout [3:0] DATA_BUSA, DATA_BUSB;

wire [3:0] DOA, DOB;

assign DATA_BUSA = !WEA ? DOA : 4’hz;
assign DATA_BUSB = !WEB ? DOB : 4’hz;
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// For RTL simulation only. The defparam will not 
synthesize.

// synopsys translate_off
defparam
U0.INIT_00 = 

256’h5555aaaa5555aaaa5555aaaa5555aaaa5555aaaa,
U0.INIT_01 = 

256’h5555aaaa5555aaaa5555aaaa5555aaaa5555aaaa;
// synopsys translate_on

RAMB4_S4_S4 U0 (.DOA (DOA), .DOB (DOB),
  .ADDRA (ADDRA), .DIA (DATA_BUSA), .ENA (1’b1),
  .CLKA (CLK), .WEA (WEA), .RSTA (1’b0),
  .ADDRB (ADDRB), .DIB (DATA_BUSB), .ENB (1’b1),
  .CLKB (CLK), .WEB (WEB), .RSTB (1’b0));
endmodule

However, passing the INIT_0x attributes in this manner does not 
initialize the memory contents for synthesis since all synthesis tools 
have their own mechanism for passing attributes to the implementa-
tion netlist. For references on today’s synthesis tools, refer to the 
BlockRAM Instantiation and Initialization for Synthesis table.

Another method for passing the INIT_0x attributes to the Alliance 
tools is through the use of a UCF file. For example, the following 
statement defines the initialization string for the code example above.

INST U0 INIT_00 = 
5555aaaa5555aaaa5555aaaa5555aaaa5555aaaa;

INST U0 INIT_01 = 
5555aaaa5555aaaa5555aaaa5555aaaa5555aaaa;

Table 6-12  BlockRAM Instantiation and Initialization for 
Synthesis

Synthesizer

FPGA Express http://support.xilinx.com/techdocs/4392.htm

Synplify http://support.xilinx.com/techdocs/2022.htm

Leonardo Spec-
trum

http://support.xilinx.com/techdocs/7947.htm
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The value of the INIT_0x string is a hexadecimal number that defines 
the initialization string.

CLKDLL

The duty cycle of the CLK0 output is 50-50 unless 
DUTY_CYCLE_CORRECTION attribute is set to FALSE, in which 
case the duty cycle is the same as that of the CLKIN.

The frequency of CLKDV is determined by the value assigned to the 
CLKDV_DIVIDE attribute. The default is 2.

The STARTUP_WAIT is not implemented in the model. Monitor the 
LOCK signal and use it to trigger the release of the GSR signal.

module clkdll_ex (CLKIN_P, RST_P, CLK0_P, CLK90_P, 
CLK180_P,

CLK270_P, CLK2X_P, CLKDV_P, LOCKED_P);
input CLKIN_P, RST_P;
output  CLK0_P, CLK90_P, CLK180_P, CLK270_P, 

CLK2X_P;
output  CLKDV_P;
// Active high indication that DLL is LOCKED to 

CLKIN
output  LOCKED_P;

wire CLKIN, CLK0;

// Input buffer on the clock
IBUFG U0 (.I (CLKIN_P), .O (CLKIN));

// GLOBAL CLOCK BUFFER on the delay compensated 
output

BUFG U2 (.I (CLK0), .O (CLK0_P));

// For RTL simulation only. The defparam will not 
synthesize.

// synopsys translate_off
// CLK0 divided by 1.5 2.0 2.5 3.0 4.0 5.0 8.0 or 

16.0
defparam DLL0.CLKDV_DIVIDE = 4.0;
defparam DLL0.DUTY_CYCLE_CORRECTION = "FALSE";
// synopsys translate_on
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// Instantiate the DLL primitive cell
CLKDLL DLL0 (.CLKIN (CLKIN), .CLKFB(CLK0_P), .RST 

(RST_P),
  .CLK0 (CLK0), .CLK90 (CLK90_P), .CLK180 

(CLK180_P),
 .CLK270 (CLK270_P), .CLK2X (CLK2X_P), .CLKDV 

(CLKDV_P),
  .LOCKED (LOCKED_P));
endmodule

However, passing the CLKDLL attributes in this manner does not 
initialize the contents for synthesis. Please refer to your synthesis 
vendor’s documentation since all synthesis tools have their own 
mechanism for passing attributes to the implementation netlist.

Another method for passing the CLKDLL attributes to the Alliance 
tools is through the use of an UCF file. For example, the following 
statement defines the initialization string for the code example above.

INST DLL0 CLKDV_DIVIDE = 4;
INST DLL0 DUTY_CYCLE_CORRECTION = FALSE;

Running Simulation
When simulating, compile the Verilog source files in any order since 
Verilog is compile order independent. However, VHDL components 
must be compiled bottom-up due to order dependency. Xilinx recom-
mends that you specify the test fixture file before the HDL netlist of 
your design, as in the following examples.

Xilinx recommends giving the name test to the main module in the 
test fixture file. This name is consistent with the name of the test 
fixture module that is written later in the design flow by NGD2VER 
during post-NGDBuild, post-MAP, or post-route simulation. If this 
naming consistency is maintained, you can use the same test fixture 
file for simulation at all stages of the design flow with minimal modi-
fication.

ModelSim Vcom
The following is information regarding ModelSim Vcom.
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Using Shared Pre-Compiled Libraries

Simulation Libraries have to be compiled to compiled_lib_dir before 
using VCS/VCSi. See the “Compiling HDL Libraries” section for 
instruction on how to compile the Xilinx Verilog libraries.

Depending on the makeup of the design (LogiBLOX, Xilinx instanti-
ated primitives, or CORE Generator components), for RTL simula-
tion, specify the following at the command-line

vcom -work work_macro1.vhd logiblox_macro.vhd top_level.vhd test-
bench.vhd testbench_cfg.vhd

For timing simulation or post-Ngd2vhdl, the Simprims-based 
libraries are used. Specify the following at the command-line:

vcom -work  work_design.vhd testbench.vhd

VSS
The following is information regarding VSS.

Using Shared Pre-Compiled Libraries

Simulation Libraries have to be compiled to compiled_lib_dir before 
using VSS vhdlan. See the “Compiling HDL Libraries” section for 
instruction on how to compile the Xilinx VHDL libraries.

Depending on the makeup of the design (LogiBLOX, Xilinx instanti-
ated components, or CORE Generator components), for RTL simula-
tion, specify the following at the command-line.

vhdlan -i macro1.vhd 
vhdlan -i logiblox_macro.vhd
vhdlan -i top_level.vhd 
vhdlan -i testbench.vhd 
vhdlan -i testbench_cfg.vhd

For timing simulation or post-Ngd2vhdl, the Simprims-based 
libraries are used. Specify the following at the command-line.

vhdlan -i design.vhd 
vhdlan -i testbench.vhd

Note Make sure the WORK directory is created and that the 
.synopsys_vss.setup file exists and points to this directory.
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For more information and a tutorial on running the VSS simulator, go 
to Synopsys tutorial at http://support.xilinx.com/support/techsup/
tutorials.

Verilog-XL
Depending on the makeup of the design (LogiBLOX, Xilinx instanti-
ated primitives, or CORE Generator components), for RTL simula-
tion, specify the following at the command-line.

verilog -y $XILINX/verilog/src/unisims -y $XILINX/verilog/src/simprims
+incdir+$XILINX/verilog/src +libext+.v $XILINX/verilog/src/glbl.v
<testfixture>.v <design>.v

The –y switch points the simulator to the HDL models.

For timing simulation or post-NGD2VER, the Simprims-based 
libraries are used. Specify the following at the command-line:

verilog -y $XILINX/verilog/src/simprims $XILINX/verilog/src/glbl.v \ 

+libext+.v <testfixture>.v <design>.v

For more information on specifying Xilinx SimPrims library using the 
-ul switch with NGD2VER instead of using the -y switch in Verilog-
XL, go to http://support.xilinx.com/techdocs/ 3167.htm.

Note You do not need to compile the libraries for Verilog-XL because 
it uses an interpretive compilation of the libraries. 

NC-Verilog
There are two methods to run simulation with NC-Verilog.

1. Using library source files with compile time options (similar to 
Verilog-XL).

2. Using shared pre-compiled libraries.

Using Library Source Files With Compile Time 
Options

Depending on the makeup of the design (LogiBLOX, Xilinx instanti-
ated primitives, or CORE Generator components), for RTL simula-
tion, specify the following at the command-line:

ncxlmode +libext+.v -y $XILINX/verilog/src/unisims -y $XILINX/verilog/

src/simprims +incdir+$XILINX/verilog/src $XILINX/verilog/src/glbl.v
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<testfixture>.v <design>.v

For timing simulation or post-NGD2VER, the Simprims-based 
libraries are used. Specify the following at the command-line.

ncxlmode -y $XILINX/verilog/src/simprims $XILINX/verilog/src/glbl.v 

+libext+.v <testfixture>.v time_sim.v

Using Shared Pre-Compiled Libraries

Simulation Libraries have to be compiled to compiled_lib_dir before 
using NC-Verilog. See the “Compiling HDL Libraries” section for 
instruction on how to compile the Xilinx Verilog libraries.

Depending on the makeup of the design (LogiBLOX, Xilinx instanti-
ated primitives, or CORE Generator components), for RTL simula-
tion, edit the hdl.var and cds.lib files to specify the library mapping.

# cds.lib
DEFINE simprims_ver <compiled_lib_dir>/simprims_ver
DEFINE xilinxcorelib_ver <compiled_lib_dir>/xilinxcorelib_ver
DEFINE worklib worklib

# hdl.var
DEFINE VIEW_MAP ($VIEW_MAP, .v => v) DEFINE LIB_MAP ($LIB_MAP, 
<compiled_lib_dir>/unisims_ver => unisims_ver)
DEFINE LIB_MAP ($LIB_MAP, <compiled_lib_dir>/simprims_ver => 
simprims_ver)
DEFINE LIB_MAP ($LIB_MAP, <compiled_lib_dir>/simprims_ver => 
xilinxcorelib_ver)
DEFINE LIB_MAP ($LIB_MAP, + => worklib)
// After setting up the libraries, now compile and simulate the design:

ncvlog -messages -update $XILINX/verilog/src/glbl.v <testfixture>.v 
<design>.v
ncelab -messages testfixture_name glbl
ncsim -messages testfixture_name

The -update option of Ncvlog enables incremental compilation.

For timing simulation or post-Ngd2ver, the Simprims-based libraries 
are used. Specify the following at the command-line:

ncvlog -messages -update $XILINX/verilog/src/glbl.v 
<testfixture>.v time_sim.v
ncelab -messages -autosdf testfixture_name glbl
ncsim -messages testfixture_name
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For more information on how to back-annotate the SDF file for timing 
simulation, go to http://support.xilinx.com/techdocs/947.htm.

VCS/VCSi
VCS and VCSi are identical except that VCS is more highly opti-
mized, resulting in greater speed for RTL and mixed level designs. 
Pure gate level designs run with comparable speed. However, VCS 
and VCSi are guaranteed to provide the exact same simulation 
results. VCSi is invoked using the vcsi command rather than the 
vcs. command

There are two methods to run simulation with VCS/VCSi.

1. Using library source files with compile time options (similar to 
Verilog-XL).

2. Using shared pre-compiled libraries.

Using Library Source Files With Compile Time 
Options

Depending on the makeup of the design (LogiBLOX, Xilinx instanti-
ated primitives, or CORE Generator components), for RTL simula-
tion, specify the following at the command-line.

vcs -y $XILINX/verilog/src/unisims -y $XILINX/verilog/src/simprims
incdir+$XILINX/verilog/src +libext+.v $XILINX/verilog/src/glbl.v
-Mupdate -R <testfixture>.v <design>.v

 For timing simulation or post-NGD2VER, the Simprims-based 
libraries are used. Specify the following at the command-line.

vcs +compsdf -y $XILINX/verilog/src/simprims $XILINX/verilog/src/glbl.v
+libext+.v -Mupdate -R <testfixture>.v time_sim.v

The -R option automatically simulates the executable after compila-
tion .

The -Mupdate option enables incremental compilation. Modules will 
be recompiled because of one of the following reasons:

1. Target of a hierarchical reference has changed.

2. Some compile time constant such as a parameter has changed.

3. Ports of a module instantiated in the module has changed.
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4. Module inlining. For example, merging, internally in VCS, of a 
group of module definitions into a larger module definition 
which leads to faster simulation. These affected modules are 
again recompiled. This is done only once.

For more information on how to back-annotate the SDF file for timing 
simulation, go to http://support.xilinx.com/techdocs/6349.htm.

Using Shared Pre-Compiled Libraries

Simulation Libraries have to be compiled to compiled_lib_dir before 
using VCS/VCSi. See the “Compiling HDL Libraries” section for 
instruction on how to compile the Xilinx Verilog libraries.

Depending on the makeup of the design (LogiBLOX, Xilinx instanti-
ated primitives, or CORE Generator components), for RTL simula-
tion, specify the following at the command-line

vcs -Mupdate -Mlib=<compiled_dir>/unisims_ver -y $XILINX/verilog/src/
unisims -Mlib=<compiled_dir>/simprims_ver -y $XILINX/verilog/src/simprims 
-Mlib=<compiled_dir>/xilinxcorelib_ver +incdir+$XILINX/verilog/src
+libext+.v $XILINX/verilog/src/glbl.v -R <testfixture>.v <design>.v

 For timing simulation or post-NGD2VER, the Simprims-based 
libraries are used. Specify the following at the command-line.

vcs +compsdf -y $XILINX/verilog/src/simprims $XILINX/verilog/src/glbl.v
+libext+.v-Mupdate -R <testfixture>.v time_sim.v

The -R option automatically simulates the executable after compila-
tion. Finally, the -Mlib=<compiled_lib_dir> option provides VCS 
with a central place to look for the descriptor information before it 
compiles a module and a central place to get the object files when it 
links together the executable.

The -Mupdate option enables incremental compilation. Modules will 
be recompiled because of one of the following reasons:

1. Target of a hierarchical reference has changed.

2. Some compile time constant such as a parameter has changed.

3. Ports of a module instantiated in the module has changed.

4. Module inlining. For example, merging, internally in VCS, of a 
group of module definitions into a larger module definition 
which leads to faster simulation. These affected modules are 
again recompiled. This is done only once.
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For more information on how to back-annotate the SDF file for timing 
simulation, go to http://support.xilinx.com/techdocs/6349.htm.

ModelSim Vlog
There are two methods to run simulation with ModelSim Vlog.

1. Using library source files with compile time options (similar to 
Verilog-XL).

2. Using shared pre-compiled libraries.

Using Library Source Files With Compile Time 
Options

Depending on the makeup of the design (LogiBLOX, Xilinx instanti-
ated primitives, or CORE Generator components), for RTL simula-
tion, specify the following at the ModelSim prompt:

set XILINX $env(XILINX)

vlog -y $XILINX/verilog/src/unisims -y $XILINX/verilog/src/simprims

+incdir+$XILINX/verilog/src +libext+.v $XILINX/verilog/src/glbl.v -incr

<testfixture>.v <design>.v

vsim <testfixture> glbl

For timing simulation or post-NGD2VER, the Simprims-based 
libraries are used. Specify the following at the ModelSim prompt:

vlog -y $XILINX/verilog/src/simprims $XILINX/verilog/src/glbl.v 

+libext+.v <testfixture>.v time_sim.v -incr

vsim <testfixture> glbl +libext+.v <testfixture>.v

The -incr option enables incremental compilation.

Using Shared Pre-Compiled Libraries

Simulation Libraries have to be compiled to compiled_lib_dir before 
usingModelSim Vlog. See the “Compiling HDL Libraries” section for 
instruction on how to compile the Xilinx Verilog libraries.

Depending on the makeup of the design (LogiBLOX, Xilinx instanti-
ated primitives, or CORE Generator components), for RTL simula-
tion, specify the following at the ModelSim prompt:

set XILINX $env(XILINX)
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vlog $XILINX/verilog/src/glbl.v <testfixture>.v time_sim.v -incr

vsim -L unisims_ver -L simprims_ver -L xilinxcorelib_ver <testfixture> 
glbl

For timing simulation or post-NGD2VER, the Simprims-based 
libraries are used. Specify the following at the ModelSim prompt:

vlog $XILINX/verilog/src/glbl.v <testfixture>.v time_sim.v -incr 

vsim -L simprims_ver <testfixture> glbl

The -incr option enables incremental compilation. The -L 
<compiled_lib_dir> option provides VSIM with a library to search for 
design units instantiated from Verilog.

LMG SmartModels
The Synopsys Logic Modeling Group (LMG) distributes SWIFT 
SmartModels for a large number of Xilinx devices. Instead of simu-
lating devices at the gate level, SmartModels represent the FPGA as 
"black boxes" that accept input stimulus and respond with appro-
priate output behavior. Such behavioral models are well suited for 
distribution in object code form because they provide improved 
performance over gate-level models.

IBIS
The Xilinx IBIS models provide information on I/O characteristics. 
The IBIS models can be used for the following.

1. To model best case and worst case models by using the min, max 
current w/the proper min, max ramp rates.

2. To model SSO (Simultaneous Switching Output). These are 
mainly the package inductance, other associated parasitics and 
the number of buffers switching. IBIS specifies R, L and C in 
matrix format and t he use of a matrix for the inductance 
accounts for the "loop"inductance i.e. the mutuals between the 
pins. Specifying the mutual inductance is necessary to account 
for SSO event simulation.

3. To (v2.1) model RTC (Rise Time Controlled), GTO (Gradual Turn 
on) or Slew rate controlled outputs. The se are defined under 
[Rising Waveform] and [Falling Waveform] keywords.
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4. To model ground bounce. IBIS contains the package parasitic 
information necessary to simulate ground bounce. Even though 
the data is available within the model file, not all simulators may 
be able to use it to simulate ground bounce. Refer to your respec-
tive simulator for support.

The Xilinx IBIS models are available for download at:

ftp://ftp.xilinx.com/pub/swhelp/ibis/

STAMP
The Xilinx 3.1i development system supports Stamp Model Genera-
tion. This feature supports the use of board level Static Timing Anal-
ysis tools, such as Mentor Graphics’ Tau and Viewlogic’s Blast. With 
these tools, users of Xilinx programmable logic products can accel-
erate board level design verification.

Using the -stamp switch in the Xilinx program Trace, will write out 
the stamp models.

For more information on creating the STAMP files, options to use in 
Trace, and integrating it with Tau and Blast, please see the Applica-
tion note at http://support.xilinx.com/xapp/xapp166.pdf
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