
28

Fast Integer Multipliers
This application example was prepared by Ken Chapman, a Xilinx Field Applications

Engineer based in England. An abbreviated version appeared in EDN Magazine’s Design
Ideas column in March, 1993, and was recently chosen the overall 1993 Design Idea win-
ner. Congratulations, Ken!

Digital multipliers are needed in
many system applications, including digital
filters, correlators, and neural networks.
These multipliers typically are required to
handle operands of up to 16 bits, and
need to provide results in less than 50 ns
(20 MHz systems). Figure 1 is a common
module found in many signal processing
applications. (For example, with the out-
put ‘y’ applied to an activation function,
this would be a simple neuron.)

The increasing density of program-
mable logic devices has led to complete
systems and sub-systems being imple-
mented in one FPGA device. However,
digital multipliers generally are considered
too slow when implemented in FPGAs, or
too large to make effective use of a pro-
grammable part. As an alternative, dedi-
cated multiplier devices are connected to

the main system, often resulting in a per-
formance degradation caused by the de-
lays inherent in getting the data to and
from the multiplier device. (Often, these
data movements are time-multiplexed to
reduce the large I/O requirement.) Thus,
techniques for implementing a compact
and fast digital multiplier in a program-
mable part are needed.

Implementation Techniques
There are three main implementations

of digital multipliers:

1) Shift and Add — One operand is
shifted to the left by one bit each cycle
and applied to an accumulator when
the corresponding bit in the second
operand is high.

2) Look-up table — The operands are
applied as addresses to a pre-pro-
grammed memory that outputs the
result.

3) Logical tree — Each of the resultant
bits are a logic function of the relevant
bits of each operand.

Using a 16-bit x 16-bit multiplier as an
example, let’s consider each technique.

The shift and add implementation is
compact but very slow. The result is ob-
tained after 16 clock cycles and the accu-
mulator must be 32-bits wide. The accu-
mulator will determine the maximum
clock rate dependent on the carry logic
chain. This implementation also precludes
any new operands from being applied
until the calculation has been completed,
read, and cleared.

The speed of the look-up table solu-
tion depends on the speed of the memory
used, but rapidly becomes unwieldy as
operand size increases. This 16x16 ex-
ample requires a 4,294,967,296 x 32-bit
memory! Small multipliers work well this
way, such as a 4-bit x 4-bit multiply imple-
mented in a byte-wide ROM.

Some very complex implementations of
logical trees have been developed em-
ploying product sharing, and are to be
found in many dedicated arithmetic de-
vices. The gate count is high and can be
considered a reduced version of the ROM
table. The logic involved tends to have

Figure 1

29

high fan-in requirements (up to 32 inputs).
The XC4000 FPGA architecture includes

the types of logic resources needed for
digital multipliers:

• High-density devices are available
(currently, up to 25,000 gates), provid-
ing ample density for a multiplier and
substantial additional logic.

• Fast, dedicated carry logic circuitry
provides for compact and high-speed
simple arithmetic functions such as
addition.

• The XC4000 architecture includes the
ability to configure custom blocks of
RAM and ROM using the look-up-table-
based function generators.
Having all these features available

means that any of the described tech-
niques may be implemented.

Fast and Compact Multipliers
If the multiplier needs to be both fast

and compact, the choice of multiplier
implementations can be difficult.

The compact shift and add technique
may be too slow for many applications,
but is easily implemented in the XC4000
architecture. The accumulator can make
excellent use of the fast carry logic, with a
reasonably low cycle time (even for a
result of 32 bits).

A look-up table built from a custom
ROM block is ideal for small multipliers.
Since any configurable logic block (CLB)
can be configured as either two 16 x 1
memories or a single 32 x 1 memory, it is
easy to see how small look-up tables can
be implemented. Unfortunately, the larger
memory requirements of larger operands
can use up the available CLB resources
rapidly. Operands with more than four
bits soon become difficult to handle.

Logic trees can be implemented, but
again, as the operand width increases, the
fan-in requirement of the logic soon ex-

ceeds the nine inputs available to a CLB.
As a result, functions have to be split. This
prevents a compact design, and impacts
performance due to the multiple block
delays between the oper-
ands and the result. How-
ever, the XC4000 device
architecture does offer an
easy way to pipeline any
design, using the two regis-
ters in each CLB. Once
again, operands of more
than four bits become an
escalating problem to
handle.

The real strengths of the
XC4000 FPGA architecture in this applica-
tion are its ability to handle small look-up
tables, provide logic functions of less than
nine inputs, and form fast adders of any
size. Therefore, the ideal solution may be
to use a hybrid technique tailored to these
properties: using small look-up tables for
partial products and combining the results
by addition.

Anatomy of a Hybrid Multiplier
Partial products are formed by splitting

the first operand into sections and multi-
plying each section by all of the second
operand. These products contain all the
information about the multiplication that
must then be combined by addition, while
at the same time restoring the bit weight-
ing of the sections from the first operand.

Figure 2 is a block diagram of the
implementation of an 8 x 8 multiplier that
multiplies the two operands called
‘X_OPERAND’ and ‘A_OPERAND’. (X-
BLOX modules could be used to enter this
design easily in a block diagram format.)
The first operand is split into two nibbles.
Both nibbles produce a 12-bit partial
product after multiplication by the second
operand. These products are applied to a

Using FPGAs

Continued on the next page

❝The real strengths of
the XC4000 FPGA architecture
in this application are its ability
to handle small look-up tables,
provide logic functions of less

than nine inputs, and form fast
adders of any size. ❞

30

16-bit combining adder to form the final
16-bit result.

To restore the weighting factor of the
two nibbles, the 12-bit partial products are
expanded into 16-bit operands. The prod-
uct from the low order nibble, with a
weighting of one, is converted to 16 bits
by padding four additional MSBs with the
value of zero. The product from the high
order nibble, with a weighting of 16, is
effectively shifted by four bits using four
additional LSBs, again with value of zero.
The resulting 16-bit operands form the
inputs to the adder.

It is not possible for the adder to over-
flow because it is known that an integer
multiply of two operands with ‘n’ and ‘m’
bits (respectively) will generate an ‘n+m’
bit result. In this 8-bit x 8-bit example, the
maximum result occurs when multiplying
FF x FF = FE01 (hex).

To create a compact, fast and easy-to-
implement design, make the look-up
tables for the partial products as small as
possible. The simple 16 x 1 memory ele-
ments are combined to expand the width
of the memory to that required for the

partial products. In this example, 16 x 12
memories are synthesized using just six
CLBs, each containing two 16 x 1 tables.

A memory with 16 addresses has 4
address lines, meaning that only the
nibble section from the X_OPERAND can
be applied. The need to connect the
A_OPERAND has been totally eliminated
in this design by ensuring that only those
partial products that can be obtained by a
single value of A_OPERAND are available
at any one time. In other words, at any
given time, the X_OPERAND can only be
multiplied by a constant, as determined by
the contents of the look-up tables.

By preloading the look-up tables with
only those partial products that can be
obtained from the present value of
A_OPERAND, the size of the look-up table
is greatly reduced. These partial products
in the look-up table are, quite simply:

0, 1 x A_OPERAND, 2 x A_OPERAND, ... , 15 x

A_OPERAND

These 16 partial products must be
recalculated and reloaded for each new
value of A_OPERAND. Building the look-

Fast Integer
Multipliers
Using FPGAs
Continued from the previous page

Figure 2

31

up tables from RAM means that the 16
partial products relating to a given value
of A_OPERAND can be modified. This is
performed using an accumulator, address
counter and small state machine that ac-
cesses each location of the memory and
stores a new product. Both tables are
modified to contain the same data, so
each nibble of the X_OPERAND is multi-
plied by the same value.

Clearly, the multiplier can not be used
for the period during which the table
contents are being modified, and results
cannot be obtained quickly when chang-
ing the value of A_OPERAND. In contrast,
changes in the X_OPERAND will give a
result with minimal delay, and the data
path can easily be pipelined to optimize
performance in a clocked system.

Most applications can tolerate the time
spent modifying the look-up tables for a
new value of the A_OPERAND. Consider
the module of Figure 1. In many cases,
only the ability to modify ‘A’ is required in
order to tune a system. Another example
is video processing, where ‘A’ is changed
only at the end of each page, during the
screen fly-back.

For some applications, ‘A’ will be fixed
from the design concept and throughout
the life of the system. (Computer simula-
tions may provide the optimum values for
multiplicands and offsets in the system.)
In these cases, the look-up tables can be
implemented as ROMs in the XC4000 with
the partial products pre-defined, thereby
eliminating the overhead logic needed to
program the tables and increasing perfor-
mance by removing the address multiplex-
ers from the data path. The reconfigurable
nature of XC4000 devices would still per-
mit different contents to be loaded into
the look-up tables (representing different
values for A_OPERAND) by using multiple
device configuration bitstreams.

The technique expands easily by units
of four bits on the X_OPERAND, where
each additional nibble connects to a sepa-

rate look-up table. The size and contents
of each table are determined by the sec-
ond operand (A_OPERAND). Further
levels of combining adders are required
for more than two look-up tables. These
will impact performance, but their effect
can be minimized with a pipelined design
(registers at the table outputs and each
adder). Negative values in two’s-comple-
ment format can be converted using
simple ‘invert and add 1’ pipeline stages
where necessary, handling the sign bits
separately.

For example, a 16 x 16 multiplier of
this type uses four tables to generate 20-
bit partial products corresponding to each
nibble. Two 24-bit combining adders are
used to form partial products for the high
and low order bytes of the input data. A
final 32-bit adder combines these prod-
ucts, restoring the weighting of 256 to the
high order product (a shift of 8 bits).

Performance
The figures shown in Table 1 are worst

case for an XC4000-5 device. The designs
were each processed using the Xilinx
automatic tools without user intervention.

The combinatorial speed is taken as a
device pin-to-pin delay, including 10 nano-
seconds of I/O delays. Since the multiplier
is generally imbedded in the system, these
time values may be deducted in estimat-
ing in-system performance.

Pipelined speed is determined by the
speed of the slowest element, which is
the largest adder in the system. ◆

8 x 8-bit 8 x 8-bit 16 x 16-bit 16 x 16-bit
RAM ROM RAM ROM

Style Look-up Look-up Look-up Look-up

CLB Count 39 22 117 84

Combinatorial
Delay 56 ns 46 ns 96 ns 88 ns

Pipelined
Performance 39.9 MHz 41.3 MHz 25 MHz 25.5 MHz

Table 1: Performance of hybrid multipliers implemented in an XC4000-5 FPGA

