
Summary An oscilloscope is a data aquisition device frequently used to measure and display voltage at a
particular source. The Handspring VisorTM line of personal computers is an ideal candidate for
such an application because it has a built-in LCD screen, a Motorola Dragon BallTM processor,
and includes a SpringboardTM expansion slot. The LCD screen can easily be used for
displaying the voltage versus time waveform, the processor can be used for collection of data,
and the Springboard module can contain the necessary hardware for the oscilloscope
implementation. This application note will discuss the design of a simple oscilloscope for the
Handspring Visor using a Xilinx CoolRunnerTM CPLD to interface a Texas Instruments
ADS7870 Data Acquisition System to the Handspring Springboard expansion slot.

This Oscilloscope design is an extension of XAPP146, "Designing an Eight Channel Digital Volt
Meter with the Insight Springboard Kit." Instead of displaying the voltage as numerical text, this
design will display the voltage for a single channel as a graph versus time. Note that both the
Digital Volt Meter design and the Oscilloscope design build upon the TI ADS7870 Data
Acquisition System Interface described in XAPP355. This Application Note will not discuss the
ADS7870 Interface in detail. Readers should familiarize themselves wiith XAPP355 before
proceeding.

All related source code will also be provided for download. To obtain the VHDL code described
in this document, go to section "VHDL Code Download" on page 10 for instructions

Overview This application note presents a straightforward oscilloscope design. Once the oscilloscope
application is launched, the Visor’s LCD screen will automatically display and update the
voltage waveform associated with the signal connected to analog input channel 0 of of the
ADS7870. Thirty-eight points will be continuously plotted and erased. The signal will be
sampled and stored in SRAM at a rate of 52 ksps (kilo samples/second). This means that the
time between two consecutive plotted points will be 19.2 uS. Changes in frequency of the
analog input will be instantaneously detected and displayed on the Visor’s LCD screen.

The ADS7870 has been configured for single ended operation, which means that the analog
input signal can vary from 0V to a maximum of 2.5V. If a wider input voltage is desired, external
biasing can be introduced. Also, if the voltage source in question has differential outputs, the
ADS7870 can be configured accordingly. However, these two options will not be discussed in
this Application Note.

Application Note: CPLD

XAPP 149 (v1.0) June 6, 2001

Designing an Oscilloscope with the
Insight Springboard Kit

R

XAPP 149 (v1.0) June 6, 2001 www.xilinx.com 1
1-800-255-7778

© 2000 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at
http://www.xilinx.com/legal.htm. All other trademarks and registered trademarks are the property of their respective owners.

Designing an Oscilloscope with the Insight Springboard Kit R
Figure 1: Oscilloscope Application

Operational
Flow

Figure 2 shows the operational flow of the Digital Volt Meter design. The Handspring
application enters an infinite loop in which it first issues a command to the Xilinx CoolRunner
CPLD. Upon receiving this specific data and address value, the CoolRunner CPLD commands
the ADS7870 to begin converting. Immediately after the ADS7870 is ordered to convert, the
first analog input channel, LN0, is sampled thirty-eight times, with each result written to SRAM
locations 1-38, respectively. When all results have been written to SRAM, the CoolRunner
CPLD allows the Visor to read the contents in SRAM, calculate the voltage, and display the
voltage as a graphed time series across the LCD screen.
2 www.xilinx.com XAPP 149 (v1.0) June 6, 2001
1-800-255-7778

Designing an Oscilloscope with the Insight Springboard Kit R
Figure 2: Operational Flow of a Digital Volt Meter Design

Issue Convert Command

Write result to SRAM location 1

Sample Channel 0 (#1)

Sample Channel 0 (#2)

Write result to SRAM location 2

Sample Channel 0 (#3)
Write result to SRAM location 3

Sample Channel 38
Write result to SRAM location 38

 Read 38 Conversion Results

(Read SRAM location 1-38)

Calculate Voltages of each
Conversion

Plot 38 Points

Remove 38 Points
and Redraw X axis

Write result to SRAM location 1
Sample Channel 0 (#1)

Sample Channel 0 (#2)
Write result to SRAM location 2

Sample Channel 0 (#3)
Write result to SRAM location 3

Sample Channel 38

Write result to SRAM location 38
XAPP 149 (v1.0) June 6, 2001 www.xilinx.com 3
1-800-255-7778

Designing an Oscilloscope with the Insight Springboard Kit R
Notice that the shaded area in Figure 2 represents tasks which are done in hardware. The
boxes outside of the shaded area represent tasks done by software (Handspring). In other
words, the data aquisition process is done completely in hardware, while data gathering is done
by the Handspring Visor.

This is a classic scheme, as many processors are not fast enough handle high speed data
transfers. This is especially true in the case of the Handspring Visor, which utilizes a Motorola
Dragon Ball processor running at 16 MHz (33 MHz on the premium models). For very fast
transactions, such as handling data from a high speed A/D converter, dedicated external
hardware is often used to handle the bus transactions. The data can then be stored in memory
(SRAM) for the slower processor to read.

In this case, the Xilinx CoolRunner CPLD’s combination of high speed and low power make it
an ideal candidate for high speed data manipulation.

VHDL Interface XAPP355 provides and explains the Texas Instruments ADS7870 Data Aquisition System
interface. The VHDL code presented in XAPP355 is intended to be a "building block" for future
designs. A detailed understanding of the VHDL code is not needed. Rather, the designer needs
only to focus on the details of the ADS7870. If certain aspects of the ADS7870 need to be
adjusted, the "constants" section of the VHDL code can then be modified to accordingly.

This reference design shows how to customize the original code presented in XAPP355. Slight
changes have been made to the "constants" section. Figure 3 below shows the portions of the
"constants" section that have been modified.

As shown, only the first analog input channel of the ADS7870 (LN0) has been configured for
single-ended operation. The locations in SRAM that will store the conversion results have also
been defined. Table 1 shows the conversion result address map.
4 www.xilinx.com XAPP 149 (v1.0) June 6, 2001
1-800-255-7778

Designing an Oscilloscope with the Insight Springboard Kit R
Figure 3: Modified "Constants" Section

-- *************** DIRECT MODE CONVERSION SINGLE ENDED CHANNEL 0 ********************

constant DM_SNG_LN0_EN : BOOLEAN := TRUE;

constant DM_SNG_LN0 : STD_LOGIC_VECTOR(7 downto 0) := "10001000";

constant SRAM_OFFSET0 : STD_LOGIC_VECTOR (22 downto 0) := "00000000000000000000000";

constant SRAM_HIGH0 : STD_LOGIC_VECTOR (22 downto 0) := "00000000000000000100110";

-- *************** DIRECT MODE CONVERSION SINGLE ENDED CHANNEL 1 *********************

constant DM_SNG_LN1_EN : BOOLEAN := FALSE;

constant DM_SNG_LN1 : STD_LOGIC_VECTOR(7 downto 0) := "10001001";

constant SRAM_OFFSET1 : STD_LOGIC_VECTOR (22 downto 0) := "00000000000000000001000";

constant SRAM_HIGH1 : STD_LOGIC_VECTOR (22 downto 0) := "00000000000000000001111";

-- *************** DIRECT MODE CONVERSION SINGLE ENDED CHANNEL 2 *********************

constant DM_SNG_LN2_EN : BOOLEAN := FALSE;

constant DM_SNG_LN2 : STD_LOGIC_VECTOR(7 downto 0) := "10001010";

constant SRAM_OFFSET2 : STD_LOGIC_VECTOR (22 downto 0) := "00000000000000000010000";

constant SRAM_HIGH2 : STD_LOGIC_VECTOR (22 downto 0) := "00000000000000000010111";

-- *************** DIRECT MODE CONVERSION SINGLE ENDED CHANNEL 3 *********************

constant DM_SNG_LN3_EN : BOOLEAN := FALSE;

constant DM_SNG_LN3 : STD_LOGIC_VECTOR(7 downto 0) := "10001011";

constant SRAM_OFFSET3 : STD_LOGIC_VECTOR (22 downto 0) := "00000000000000000011000";

constant SRAM_HIGH3 : STD_LOGIC_VECTOR (22 downto 0) := "00000000000000000011111";

-- *************** DIRECT MODE CONVERSION SINGLE ENDED CHANNEL 4 *********************

constant DM_SNG_LN4_EN : BOOLEAN := FALSE;

constant DM_SNG_LN4 : STD_LOGIC_VECTOR(7 downto 0) := "10001100";

constant SRAM_OFFSET4 : STD_LOGIC_VECTOR (22 downto 0) := "00000000000000000100000";

constant SRAM_HIGH4 : STD_LOGIC_VECTOR (22 downto 0) := "00000000000000000100111";

-- *************** DIRECT MODE CONVERSION SINGLE ENDED CHANNEL 5 *********************

constant DM_SNG_LN5_EN : BOOLEAN := FALSE;

constant DM_SNG_LN5 : STD_LOGIC_VECTOR(7 downto 0) := "10001101";

constant SRAM_OFFSET5 : STD_LOGIC_VECTOR (22 downto 0) := "00000000000000000101000";

constant SRAM_HIGH5 : STD_LOGIC_VECTOR (22 downto 0) := "00000000000000000101111";

-- *************** DIRECT MODE CONVERSION SINGLE ENDED CHANNEL 6 *********************

constant DM_SNG_LN6_EN : BOOLEAN := FALSE;

constant DM_SNG_LN6 : STD_LOGIC_VECTOR(7 downto 0) := "10001110";

constant SRAM_OFFSET6 : STD_LOGIC_VECTOR (22 downto 0) := "00000000000000000110000";

constant SRAM_HIGH6 : STD_LOGIC_VECTOR (22 downto 0) := "00000000000000000110111";

-- *************** DIRECT MODE CONVERSION SINGLE ENDED CHANNEL 7 *********************

constant DM_SNG_LN7_EN : BOOLEAN := FALSE;

constant DM_SNG_LN7 : STD_LOGIC_VECTOR(7 downto 0) := "10001111";

constant SRAM_OFFSET7 : STD_LOGIC_VECTOR (22 downto 0) := "00000000000000000111000";

constant SRAM_HIGH7 : STD_LOGIC_VECTOR (22 downto 0) := "00000000000000000111111";
XAPP 149 (v1.0) June 6, 2001 www.xilinx.com 5
1-800-255-7778

Designing an Oscilloscope with the Insight Springboard Kit R
Table 1: SRAM Locations

PocketC Code The PocketC source code is shown in Appendix A. As stated in XAPP147, the Xilinx Native
Library, "IOLib.prc", which defines the functions "IORead" and "IOWrite", is needed in order for
PocketC to access the Springboard IO. IOLib.prc must also be installed on the Handspring
Visor in order for this DVM Application to work.

The PocketC code is simple because the ADS7870 is interfaced through hardware. The
program is comprised of an infinite loop during which two major tasks are done:

1) Initiating a new conversion

2) Retrieving, computing and displaying results stored in SRAM

Note that the code for this oscilloscope implementation is very similar to the code described in
XAPP146, "Designing an 8 Channel Digital Volt Meter for the Insight Springboard Kit". Please
refer to XAPP146 for a more detailed explanations of how the software computes voltage from
samples stored in SRAM.

Initiating a New Conversion

The CoolRunner CPLD will only begin a new conversion process upon receiving a Springboard
address of 0x2900003E and a Springboard data value of 0xFFFF followed by an address of
0x2900003E and a data value of 0x0000.

The following two PocketC commands accomplish this:

IOWrite(0x2900003e,0xffff);

IOWrite(0x2900003e,0x0000);

Retrieving, Computing and Displaying Results

Immediately after initiating a new conversion, the software retrieves and computes the 38
samples which are stored in SRAM. Notice that a wait state is not needed between the time
when a new conversion is initiated, and the time when the results are retrieved. The hardware

Channel Sample #
SRAM Location

(A17..A0)

SRAM Location

(Decimal)

0 1 000000000000000001 1

2 000000000000000010 2

3 000000000000000011 3

...
...

...

38 000000000000100110 38
6 www.xilinx.com XAPP 149 (v1.0) June 6, 2001
1-800-255-7778

Designing an Oscilloscope with the Insight Springboard Kit R
will have completed its entire chain of events well before the software executes its next line of
code.

The PocketC code that is used to retrieve, compute and display the results is shown below:

//Plot 38 points:

for(n=0;(n<38);n++){

addr=addr+2;

result=IORead(addr); //Retrieve conversion result from SRAM

result=result>>4; //Shift

volt=result;

volt=(volt/2047)*2.5; //Compute Voltage

array_y[array_cnt]=format(volt,2); //Store in array

array_cnt=array_cnt+1;//increment pointer

plotpoint(format(volt,2),n); //Plot the computed voltage

}

As shown above, each sample must go through three steps. First, the sample is read from
SRAM. Next, a voltage is computed from this sample. The voltage is stored as an element in an
array, and finally, this voltage is plotted to the screen via the plotpoint() function.

It is necessary to store the 38 computed voltages in an array in order to remove these samples
from the screen. The following routine removes the previously plotted points:

//Then "Unplot the 38 points:

b=0;

for(j=0;(j<38);j++){

unplot(array_y[j], b);//Unplot

b=b+1;

}

After the points are removed, the cycle starts again. A new conversion is initiated, and results
are first displayed, then removed.

Conclusion Many of the useful features found on common oscilloscopes--like triggering, time-scaling, and
attenuation--have not been implemented in this oscilloscope design, but can be easily
implemented in software.

However, the design presented here can be used by many other Springboard applications
which require an analog signal to be displayed on the screen. An example of such an
application is a spectrum analyzer, which would read a microphone output, perform some
digital signal processing in software, and display a person’s speech pattern across the Visor
screen.

The uses for the design provided here are far-reaching. Instead of providing a full oscilloscope
implmentation, this Application Note demonstrates how to properly use the ADS7870 VHDL
Interface as described in XAPP355. Both this note and XAPP146 show that the ADS7870
interface is easy to use and fully customizable.
XAPP 149 (v1.0) June 6, 2001 www.xilinx.com 7
1-800-255-7778

Designing an Oscilloscope with the Insight Springboard Kit R
Appendix A:
PocketC Code

//Oscilloscope

@cid "OSC1";

@ver "1.0";

@name "Oscilloscope";

@dbname "Oscilloscope";

@licon1 "xilinx.bmp";

@sicon1 "small1.bmp";

library "IOLib" //Xilinx Native Library, Defines IOWrite, IORead.

int ytop,xlft;

float gRange,lrange;

//********** Drawaxis Function ********************

//

// Purpose: This function draws the X axis

//***

drawaxis(float hrange, float lr){

int y,x,n;

float r;

 ytop=20;

 xlft=30;

 lrange=lr;

 gRange=hrange-lrange;

 r=gRange/10;

 line(1,xlft,ytop,xlft,ytop+120);

 line(1,xlft,ytop+120, xlft+120,ytop+120);

 textattr(0,1,0);

 for (n=0;n<11;n++){

 y=(120-(n*12))+ytop-5;

 x=(n*12)+xlft-2;

 text(xlft-25,y,format((n*r)+lrange, 1));

 line(1,xlft-3,y+5,xlft+120,y+5);

 text(x,142,n);

 }

}

//********** Plotpoint Function ********************
8 www.xilinx.com XAPP 149 (v1.0) June 6, 2001
1-800-255-7778

Designing an Oscilloscope with the Insight Springboard Kit R
//

// Purpose: This function plots each point of the graph

//***

plotpoint(float val, int item){

int x,y;

y=(int) (120-(((val-lrange)/gRange)*120)+ ytop);

x=(item*3)+xlft;

rect(1,x-1,y-1,x+2,y+2,1);

}

//********** Unplot Function ********************

//

// Purpose: This function removes the previously plotted points

//***

unplot(float val, int item){

int x,y;

y=(int) (120-(((val-lrange)/gRange)*120)+ ytop);

x=(item*3)+xlft;

rect(0,x-1,y-1,x+2,y+2,1);

}

//********** Main Function ********************

//

// Purpose: Main

//***

main(){

int result, addr, n, b, j;

float volt;

float array_y[38];

int array_cnt;

graph_on();

clearg();

rect(0,0,0,165,165,1);

while(1){

//Tell CoolRunner CPLD to do a new conversion.

//38 Conversion results will be written to SRAM.
XAPP 149 (v1.0) June 6, 2001 www.xilinx.com 9
1-800-255-7778

Designing an Oscilloscope with the Insight Springboard Kit R
IOWrite(0x2900003e,0xffff);

IOWrite(0x2900003e,0x0000);

//Draw (or Redraw) the X, Y Axis'

drawaxis(2.5,0);

addr=0x29000002; //start addr1

array_cnt=0; //reset array to 0

//Plot 38 points:

for(n=0;(n<38);n++){

addr=addr+2;

result=IORead(addr); //Retrieve conversion result from SRAM

result=result>>4; //Shift

volt=result;

volt=(volt/2047)*2.5; //Compute Voltage

array_y[array_cnt]=format(volt,2); //Store in array

array_cnt=array_cnt+1;//increment pointer

plotpoint(format(volt,2),n); //Plot the computed voltage

}

//Then "Unplot the 38 points:

b=0;

for(j=0;(j<38);j++){

unplot(array_y[j], b);//Unplot

b=b+1;

}

}

}

References Tektronix: XYZs of Oscilloscopes

http://www.tek.com/Measurement/cgi-bin/framed.pl?Document=/Measurement/App_Notes/
XYZs/&FrameSet=oscilloscopes

VHDL Code
Download

VHDL source code and test benches are available for this design. THE DESIGN IS
PROVIDEDTO YOU "AS IS". XILINX MAKES AND YOU RECEIVE NO WARRANTIES OR
CONDITIONS, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, AND XILINX
SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY, NON-
INFRINGEMENT, OR FITNESS FOR A PARTICULAR PURPOSE. While this design has been
verified on hardware, it should be used only as an example design, not as a fully functional
core. XILINX does not warrant the performance, functionality, or operation of this Design will
10 www.xilinx.com XAPP 149 (v1.0) June 6, 2001
1-800-255-7778

http://www.tek.com/Measurement/cgi-bin/framed.pl?Document=/Measurement/App_Notes/XYZs/&FrameSet=oscilloscopes

Designing an Oscilloscope with the Insight Springboard Kit R
meet your requirements, or that the operation of the Design will be uninterrupted or error free,
or that defects in the Design will be corrected. Furthermore, XILINX does not warrant or make
any representations regarding use or the results of the use of the Design in terms of
correctness, accuracy, reliability or otherwise.

XAPP149 - http://www.xilinx.com/products/xaw/coolvhdlq.htm

Revision
History

The following table shows the revision history for this document.

Date Version Revision

06/07/01 1.0 Initial Xilinx release.
XAPP 149 (v1.0) June 6, 2001 www.xilinx.com 11
1-800-255-7778

http://www.xilinx.com/products/xaw/coolvhdlq.htm
http://www.xilinx.com/products/xaw/coolvhdlq.htm

	Summary
	Overview
	Operational Flow
	VHDL Interface
	PocketC Code
	Initiating a New Conversion
	Retrieving, Computing and Displaying Results

	Conclusion
	Appendix A: PocketC Code
	References
	VHDL Code Download
	Revision History

