
Introduction With the availability of large Virtex™ devices, designers should consider partitioning a single,
large design into several modules. Design partitioning can provide several benefits, including:

• Complexity Management – Large designs are generally difficult to manage when kept as
a single, monolithic entity. By dividing a design into smaller pieces, each piece can be
understood and implemented separately

• Work Flow Management – The work flow of a large design can be managed more
effectively if portions of the design are assigned for independent implementation by
individual team members

• Module Insulation – If a design is partitioned, finalized static portions of the design are
not affected by timing, layout, and other changes made to dynamic modules

• Design partitioning involves additional costs as well as benefits. These costs include:

• Planning - Additional overhead costs are necessary to correctly partition a design

• Communication – Additional design costs are incurred to implement communication
between design partitions

Increased investment in planning and communication is typical of large digital design projects
(customers accustomed to ASIC design flows should be familiar with the cost-benefit principles
involved).

To ease the task of design partitioning, Xilinx provides a new Modular Design feature in
Alliance™ Series 3.1i. The remainder of this application note describes recommended design
entry, implementation and simulation flows when working in the Alliance Series Modular Design
context.

Note: Appendix D lists known limitations associated with the initial release of Modular Design. These
limitations will be addressed in future Alliance Series software releases.

Of course, whenever a new, complex design modality is used for the first time, a learning curve
must be overcome. Therefore, it is particularly important to make sure that the design to be
partitioned is an appropriate candidate for Modular Design. Modular Design is most
appropriate when:

• The design is large and can be logically divided into self-contained pieces (see a further
discussion of this point, below)

• The design consists of smaller, self contained sub-designs that will be implemented by
different members of a design team

It is equally important to recognize when not to use Modular Design. Modular Design is not
appropriate for implementing the following types of designs:

• An existing, large ASIC design that did not start with Modular Design concepts in mind. If
the design began without an effective functional and physical partitioning of the design into
appropriate modules, Modular Design will add time to the design flow, and provide few
benefits

• A single, heavily-interconnected design that seeks to achieve the highest possible speeds.
The overhead necessary to implement a Modular Design flow precludes obtaining the
fastest clock speeds

To maximize the benefits of Modular Design, it is critically important to properly structure and
partition the design at the HDL source level. Specifically, the design must be partitioned into
separate modules. This requirement leads to the following two fundamental questions:

Application Note: FPGAs

XAPP404 (v1.2) April 20, 2001

Xilinx Alliance 3.1i Modular Design
R

XAPP404 (v1.2) April 20, 2001 www.xilinx.com 1
1-800-255-7778

© 2000 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Xilinx Alliance 3.1i Modular Design
R

1. What exactly is a module? and more importantly,

2. What is a properly designed module?

While there are no rigid definitions to apply to answer these questions, there are guidelines that
can aid proper module creation. Ultimately, designers develop their own set of rules and
guidelines for module creation, but these initial guidelines should provide a helpful starting
point. Generally, well-behaved modules should comply with the following rules:

• Well-Defined Ports – A port is a connection that goes into or out of a module. Typically, a
port is connected to a wire or signal defined at the top level of the HDL source

• Minimal Number of Ports – A module with a small, rather than large, number of ports or
connections to external logic is preferable. Self-contained modules with minimal functional
dependence on outside modules can be optimally implemented

• Minimal Global Logic – Global logic is logic that is not [not?] distributed on the target
chip. Examples [“of global logic”?] include I/O pins leading onto or off the chip, DLLs,
and other global clock-modification resources

• Registered Module Outputs – Output registration leads to efficient logic packing during
the implementation mapping phase

• No Chip-Location Dependencies – For example, a module should not require a BRAM
to be located in the column adjacent to the module

• Minimum Number of Modules – As a general rule, the number of modules should equal
the minimum number of engineers necessary to implement the entire design

Modular Design requires standard HDL synthesis coding practices. Designs that deviate from
the norms are not suitable candidates for a Modular Design flow.

Design Entry
and Synthesis
Flow

This section explains how to take a modular design through FPGA Express/FPGA Compiler II,
LeonardoSpectrum, or Synplify for input to the Xilinx tools.

Note: FPGA Express and FPGA Compiler II exhibit equivalent behavior with respect to the issues
addressed in this application note.

Creating the Top-Level Netlist
Before beginning a modular design, designers must reach a consensus on a top-level design.
The top-level design should include all design modules or partitions, global logic (such as clock
resources), and logic to connect modules to each other and to I/O ports.

Each module is instantiated and synthesized separately, as explained, below, and exemplified
in Appendix A. The top-level code in Appendix A instantiates three modules: module_a,
module_b, and module_c, which are named instance_a, instance_b, and instance_c,
respectively. The examples also include nets and logic that connect modules to other modules
and to ports. Each module is instantiated as a ‘black box,’ with only ports and port directions
defined.

Top-Level Code Guidelines:

• All lower-level modules must be declared to define port directionality and bus
width. VHDL synthesis requires component declarations for all instantiated components
in the HDL code. The component can be declared in the code or in a library package
included in the HDL source. An undeclared component will produce a synthesis tool error

Verilog synthesis requires declarations for user modules only, not library primitives (see the
example in Appendix A). If user modules are defined and described in the same project,
module declarations are unnecessary—this is the case, for example, if synthesis tools can
produce multiple EDIF netlists from a single project. However, if a user module is described
in a different project, or if it is a CORE Generator module, then a module declaration is
required.
2 www.xilinx.com XAPP404 (v1.2) April 20, 2001
1-800-255-7778

http://www.xilinx.com

Xilinx Alliance 3.1i Modular Design
R

Failure to assign port directions will result in the following error:

ERROR:NgdBuild:604 - No driver was found for logical net ’X’ for this modular design.

Ports with an undefined direction were found connected to the net. Please assign a
direction to these ports.

• All lower-level modules must be synthesized as black boxes. Black-box instantiation
may require the use of a synthesis tool directive. If lower-level modules are not
synthesized as black boxes, the resulting flat, non-modular design will produce an error
during the ngdbuild initial mode, as follows:

ERROR:Ngd:819 - Modular design: initial mode must have at least one inactive module

ERROR:NgdBuild:558 - Modular Design cannot be annotated

• Modular Design supports two levels of module hierarchy. Modular Design currently
supports a top level with modules instantiated within the top level. It currently does not
allow a module to include another module

• Modular Design does not allow multiple instantiations of a module. Each module
instantiation must have a separate module definition, even if module instantiations will use
the same port definitions and functions

Example of acceptable coding if module_a and module_b are functionally identical:

--VHDL
instance_a: module_a port map(...)
instance_b: module_b port map(...)

//Verilog
module_a instance_a (...)
module_b instance_b (...)

Example of unacceptable coding (multiple instantiation of same module):

--VHDL
instance_a: module_a port map (...)
instance_b: module_a port map (...)

//Verilog
module_a instance_a (...)
module_a instance_b (...)

Although the unacceptable examples, above, conform to standard VHDL and Verilog
coding practice, they are incompatible with the current Modular Design release. A separate
synthesis is not required to produce an EDIF netlist for module_b: you can copy
module_a.edf to module_b.edf. However, all implementation steps should be run
separately for module_a and module_b, as explained below.

• I/O registers must be inferred in top-level code. This is a limitation of the current
Modular Design release. To meet timing requirements, it may be necessary to move
registers out of top-level modules to infer output registers. Otherwise, registration of
module outputs is recommended.

• 3-state buffers that drive the same net/bus should be inferred at the top-level with
local control logic. Isolating this eases the mutually-exclusive requirement for the control
[further clarification? what’s “this” and how does the mutually-exclusive
requirement of the control tie to the caption?]

• If 3-state signals are outputs of a lower-level module, they must be declared in the
HDL code as “inout” signal types in both the top-level component declaration and
the module-level port map.

• Use meaningful signal names to connect to module ports or between modules in
the top-level code. Using the same name for the signal and its associated port is
recommended since top-level signal names are used in the back-annotated simulation
XAPP404 (v1.2) April 20, 2001 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

Xilinx Alliance 3.1i Modular Design
R

netlist (see the Simulation Flow section, below, for additional information)

Creating Lower-Level Modules
Xilinx Alliance 3.1i Modular Design requires a separate EDIF netlist for each lower-level
module. To generate EDIF netlists for a modular design, follow these suggestions and
guidelines:

1. Most synthesis tools generate only one EDIF netlist for each project. To meet Modular
Design’s separate-netlist requirement, lower-level modules must be synthesized separately
from the top level, and a separate project must be created for each lower-level module as
well as for the top-level. (Exception: In LeonardoSpectrum, it is possible to create multiple
EDIF netlists for one project. This technique is described in Vendor Specific Notes in
Appendix C.) The EDIF netlists of lower-level modules must be identical to their module
names—for example, module_a.edf, module_b.edf and module_c.edf. Do not use module
instantiation names—for example, instance_a, instance_b, and instance_c—or ngdbuild
will not be able to match the netlists to the module [OK?] names specified in the top-level
EDIF

2. Modules must be synthesized without I/O insertion. This option is available in most
synthesis tools (see Vendor Specific Notes in Appendix C).

3. Although the recommended practice is to declare external I/Os in the top-level, it is possible
to include external I/Os in a module without modifying the top-level code. These I/Os
should not directly connect to module ports since they cannot [“currently” was inserted
here; does it refer to the current release of Modular Design or to the synthesis tools?
clarification is needed] be processed by the [“synthesis”?] tools. For example, a
designer may wish to add temporary external I/Os in the module for simulation. This can be
accomplished by explicitly instantiating IBUF/IBUFG/BUFGP as well as OBUF connections
(Appendix B contains sample module code that includes external I/O instantiations)

Constraining at the Module Level
Global and top-level constraints can be entered with synthesis tools when synthesizing the top
level. However, most module-specific constraints must either be 1) manually entered, or 2)
created using the Floorplanner through a UCF file. Module-specific constraints include
constraints with hierarchical reference and area constraints (for a further discussion, see the
Implementation Flow section, below).

Note: Some synthesis tools write default constraints for a synthesis project to an NCF file. To avoid
conflict between NCF files, disable this NCF-writing option when synthesizing lower-level modules.

Implementation
Flow

Since the initial release of Modular Design does not support the Design Manager/Flow Engine,
the design flow described below is implemented with command line options to batch tools. The
steps may seem involved, at first, but it is important to realize that many steps are only
necessary when creating and modifying design partitions. Further, in a modular design, design
tasks are divided among team members, and different steps can be performed by different
team members at different times.

There are three primary phases in a Modular Design flow (a “-modular” switch with arguments
has been added to the ngdbuild tool to allow a designer to specify the current Modular design
phase). The three Modular Design phases are:

1. Initial Budgeting

This phase begins when a design, which has been partitioned with HDK tools, is brought
into the Xilinx FPGA tools. During this phase, resources are allocated, and modules are
sized, positioned, and connected to each other.
4 www.xilinx.com XAPP404 (v1.2) April 20, 2001
1-800-255-7778

http://www.xilinx.com

Xilinx Alliance 3.1i Modular Design
R

2. Active Module Implementation

During this phase, defined modules are implemented using information generated by the
initial budgeting phase (initial budgeting module size and location information). The full
suite of FPGA design and implementation tools are available for implementing each
module.

3. Final Assembly

During this phase, the final design is assembled. Final logic assembly is guided by
information generated by the active module implementation phase. The guided-assembly
process is fast and efficient, allowing [“synthesis”?] tools to treat the whole design as an
entity for constraint resolution, buffer alignment, and other operations.

Each of the three modular design phases is described in detail below.

Initial Budgeting Phase
The initial budgeting phase is at the top level of the design flow and is normally performed or
overseen by the team leader. The purpose of the initial budgeting phase is threefold: 1) to
position global logic—that is, logic not contained in a lower-level module, 2) to size and position
each module (defined in the HDL netlists) on the target-implementation chip, and 3) to position
the input/output ports (nets that flow into or out of a module) of each module so that later
module implementations are aligned correctly. The team leader typically performs this critically
important phase of the flow. Once the initial budgeting information is defined and phase-two
implementation begins, revisions to the initial budgeting information are difficult and time-
consuming.

During phase one, a target device for the design is specified (device, package and speed).
Module definitions are also decided. It is recommended that all global logic and nets be placed
in the top-level design, including all I/Os, clock nets, DLLs, RAMs, and other resources that are
not evenly distributed across the target chip. By doing this, all of the top-level resources can be
placed during this phase and used later in the active module implementation phase to provide
modules with maximum context.

The main steps of this phase are 1) create an NGD file of the top-level design without module
implementation information, 2) add timing constraints 3) use the Floorplanner to position global
logic, size and position each module on the target chip, and position the module ports for
correct alignment. Each of these steps is described below. It is assumed that the netlist for the
top-level design is contained in the "top.edf” file (all files used and produced during this phase
should be placed in a directory that phase-two module implementers can access).

1. Create an NGD file of the top-level design without module implementation information

This is the first step in the design flow that uses the ngdbuild -modular switch, which
indicates that a Modular Design flow is in progress. The “initial” argument is passed with
the -modular switch to indicate to ngdbuild that this is the initial budgeting phase of the
modular design. The netlist describing each module should not be available to ngdbuild—
this ensures that each module will be treated as a black box for the active module
implementation phase. To perform this step, run the following command:

ngdbuild –modular initial top.edf

Two output files are created: top.ngo and top.ngd. The top.ngo file is used in the remaining
steps of this phase and in all steps in the active module implementation phase. The top.ngd
file is not used in any remaining step of the modular design.

2. Add timing constraints

Constrain any global clocks with a period constraint. PERIOD and IO timing constraints for
all clocks and I/Os can be placed at the top level. After timing constraints are added,
ngdbuild must be used to place these constraints in the top.ngd file, as follows:

constraints_editor top.ngd
XAPP404 (v1.2) April 20, 2001 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

Xilinx Alliance 3.1i Modular Design
R

These timing constraints will be saved in the top.ucf file, which is used by all steps in the
active module implementation phase.

Note: If there are no clock loads at the top-level design, the clock net will not appear in the
Constraints Editor. If this is the case, another method must be used to define PERIOD and IO timing
constraints—for example, by using NCF constraints from the front-end tool. Another approach is to
add a dummy register at the top level, driven by the clock net. This technique allows access to the
clock net in the Constraints Editor. Since the dummy register does not have a load, it will be removed
during the mapping phase.

3. Use the Floorplanner to position global logic, size and position each module on the target
chip, and position module ports for correct alignment.

It is recommended that all logic that is present at the top level of the design be constrained
to fixed locations in the top-level floorplan. As explained in the Design Entry/Synthesis
section, below, HDL source should provide that all 3-state drivers reside at the top level of
the design. This requirement is necessary to ensure that all BUFT symbols driving the
same long-line net are manually placed in the same row.

Area assignment consists of sizing and positioning the target area for each module
implementation on the target chip. It also includes positioning module ports for correct
implementation alignment (any net that connects into or out of a module is considered a
port net). Each module/port pair is indicated in the tools as a piece of “pseudo-logic,” which
can be positioned to pull the logic within a module to the desired location. Pseudo-logic is
not part of the final design, and only used during module implementation. At this point in
the design flow, module size must be estimated (Floorplanner currently does not specify
required module size, therefore this information must be estimated from other sources).
Each module should be sized and positioned on the chip with the Floorplan->Assign Area
Constraint menu item.

Next, each port of each module must be placed so buses align properly. For example, a net
that connects module A and module B has two ports that must be constrained. (Again,
these ports are “pseudo-logic,” used only to force alignment of internal module logic—they
will be removed from the design during the final assembly phase.) The port for module A
should be positioned outside the previously assigned boundary of Module A, and the port
for Module B should be positioned outside the previously assigned boundary of Module B.
If Module A is positioned to the left of Module B, the ports of Module A that connect to
Module B should go in the column just to the right of boundary of Module A (it is permissible
to place the ports associated with Module A into the area defined for Module B to avoid
leaving empty rows and columns between modules).

The "Floorplan->Distribute Options-" menu item can be used to obtain Floorplanner
port-placement assistance. Use the Floorplan option to position all unplaced ports. Use
the Enable option to place ports as module areas. Use the Ripup option to remove all
auto-floorplanned ports.

Note: Port placements made by Floorplanner may not be the best placements for a design—they
should be reviewed before the design enters the active module implementation phase.

The commands used to perform the tasks described in this step are:

Floorplanner top.ngd
File->Read Constraints: top.ucf
Open “Primitives” hierarchy
Place each component
Select “Module” hierarchy
Floorplan->Assign Area Constraint
Use left mouse button to draw rectangular area
Floorplan->Distribute Options
Floorplan
Open “Module hierarchy”
Review and/or place each port (pseudo*) component
File->Write Constraints: top.ucf
6 www.xilinx.com XAPP404 (v1.2) April 20, 2001
1-800-255-7778

http://www.xilinx.com

Xilinx Alliance 3.1i Modular Design
R

Exit

Placement constraints are saved in the top.ucf file. This file will be used during the active
module implementation phase.

In summary, the following commands are used during the initial budgeting phase of a modular
design:

• ngdbuild –modular initial top.edf

• constraints_editor top.ngd

• floorplanner top.ngd

At this point in the modular design, all global logic should be positioned, each module should be
sized and positioned, and the ports for each module should be positioned. To avoid having to
return and repeat this initial phase later in the design flow, perform a final review to make sure
modules are properly defined and all modules and ports are correctly positioned.

Active Module Implementation Phase
The goal of the active module implementation phase is to implement each module defined in
the initial budgeting phase. This phase is performed for each module. Place the files for each
module in a separate directory—these module files will be used during the during the final
assembly phase. Different team members—called “module implementers”—should be
assigned separate modules, and each member should work with a separate set of module files.
During this phase, each set of module files normally is invisible to the team leader, who works
at the top level of the design (see the Initial Budgeting Phase description, above). Typically, a
team leader will not also work as a model implementer unless the team has an insufficient

Figure 1: Example of Floorplanner Use During the Initial Budgeting Phase

Assign
Area
Constraint

Place
Ports

Place
Global
Logic
XAPP404 (v1.2) April 20, 2001 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com

Xilinx Alliance 3.1i Modular Design
R

number of implementers to handle all design modules. Once this phase is complete (all
modules have been implemented), the team leader can begin the final assembly phase.

Each module uses the ngo and ucf files produced in the initial budgeting phase. Each module
is implemented independently from all other modules, and each uses the top-level design as a
testbench to provide context during module implementation. Further, during the
implementation of a module, the top-level design treats each module as the only module in the
design. It is important to understand this point to understand file usage during module
implementation. For example, when a module is implemented, the implementation output
filename is taken from the top-level filename (top.ncd is the name of the output file), not from
the name of the module being implemented. Module implementation information is contained in
this output file, as well as top-level design implementation information. During this phase, the
ngo file from the top level design will be used in read-only mode, while the ucf file from top-level
design will be used in read/write mode. To simplify file usage, logic below the top.ngo file is
referenced directly by the top.ucf file, which is copied into the module implementation directory
to allow for modifications not needed by the top-level design.

The full suite of Xilinx implementation tools is available for individual module implementation,
including the simulation of the module independently from the top-level design. This means that
designers can use any of the map and par command line switches as well as the Floorplanner
to achieve the desired implementation. The fpga_editor also can be used, but care must be
taken not violate any of the area constraints or placement information previously generated.
Simulation can be used to verify that each module meets it specifications. The mapper and par
have been modified to recognize the active module implementation phase and to maintain all
logic and routing within defined module boundaries. To guarantee that each module
implementation is compatible with other module implementations, logic optimization does not
occur across a module boundary defined in the top-level design.

The primary steps of this phase are 1) create an NGD file for the module, 2) if necessary, add
timing constraints specific to the module, 3) map module logic, 4) place and route the module,
5) if necessary, floorplan placement information, 6) if desired, simulate the module, and 7)
publish the module implementation information to the team leader.

The work for this phase should be performed in the directory created by the module
implementer. It will only be accessible to the team leader during the final assembly, after it has
been explicitly published to a central directory.

Here are the active mode implementation steps (it is assumed that the netlist for the module is
contained in the file “moda.edf” after synthesis, and that the information for the top-level design,
named “top.*,” is contained in the “top_directory”):

1. Create an NGD file for the module

As explained above, the NGD file for a module will be given the name of the top-level
design, and will contain implementation information for both the top-level design and the
module. A copy of the top-level UCF file, which contains constraint information for the top-
level design, will be used (the module implementer can append any module-specific
constraints to this file).

To perform this step, first create an empty directory, then copy the top.ucf file into the
directory. Next, copy or create the EDIF moda.edf file, which describes the logic of the
module. Then, run ngdbuild using the –modular switch with the “module” argument to
indicate that this is the active module implementation phase of the modular design. Also,
the name of the current module should also be given with the –active switch, to allow future
tools to use [what?]. Commands for this step are as follows (the example assumes
moda.edf has been created, and top.ucf has been copied to the directory): [but doesn’t
the first command, below, perform the copy operation?]

cp top_directory/top.ucf . (UNIX)

copy top_directory\top.ucf (PC)

ngdbuild –modular module –active moda –uc top.ucf top_directory/top.ngo
8 www.xilinx.com XAPP404 (v1.2) April 20, 2001
1-800-255-7778

http://www.xilinx.com

Xilinx Alliance 3.1i Modular Design
R

The output file, top.ngd, contains the implementation logic for the top-level design and the
module.

2. Add timing constraints specific to this module

The Constraints Editor can be used to add any module-specific constraints. These are the
timing requirements for the design that the module must meet. This step can be skipped if
module constraint information is not needed. For module-level timing constraints, the user
can enter a PERIOD for any local clocks and port timing by using the modular version of the
OFFSET constraint. Port timing allows the user to specify the path delay requirement for
data to propagate from the port to setup at the register (for inputs) or from the clock pin of
the register to the port (for outputs). The Constraints Editor, which shows each port on the
Ports Tab, can be used to create the appropriate OFFSET group/constraint. If the user is
editing the UCF manually, a TPSYNC point must be created using the port net name.
Several ports with equivalent timing requirements and clocks can use the same TPSYNC
name. Next, an OFFSET constraint is needed to correlate with each TPSYNC group. The
syntax is similar to OFFSET PAD GROUP syntax, except that the TPSYNC group name is
used. An OFFSET constraint on a module port must be relative to the actual clock pad
net—most likely located in the top-level design—not to the clock port on the module. Port-
to-port timing can be specified using the TPSYNC names in a FROM TO constraint.
Remember: the top.ngd file contains the constraint information referenced above..

The commands used here are:

constraints_editor top.ngd

ngdbuild –modular module –active moda top_directory/top.ngo
XAPP404 (v1.2) April 20, 2001 www.xilinx.com 9
1-800-255-7778

http://www.xilinx.com

Xilinx Alliance 3.1i Modular Design
R

The timing constraints will be saved in the top.ucf file, then folded back into the top.ngd file
for use by other implementation tools.

3. Map module logic

Since range constraints and active module information have been saved in the top.ngd file,
additional switches are not required to map this design—the current mapping switches can
be used to obtain the desired results. The map command identifies the NGD file as a
module implementation, then scans the NGD file to identify the logical block with the name
of the active module. Next, it scans each port on the active module, adding pseudo logic
(discussed earlier) to port nets to provide drivers/loads. The pseudo logic will not be
propagated into the final design. The command used here is:

map top.ngd <additional_map_switches>

Use <additional_map_switches> to specify any of the allowable mapper switches. The size
and position of each module (its range constraints) are expanded as a range for each slice
within the module, then written to the top.pcf output file. All information for the active
module, as well as context information for the [“top-“?] level design, is written to the
top.ncd output file.

Figure 2: Example of Constraints Editor Usage

Create Group Result: These are
a group of ports identified using
the TPSYNC keyword creating
a group of ports named
N_d_ports

3. Select
group
name from
pulldown
and press
"Pad to
Setup…"

2. Enter
group
name and
press
"Create
Group"

1. Highlight
group of
common
ports

Pad to Setup… Result: This is the
timing constraint that puts a timing
requirement on the group
N_d_ports.
10 www.xilinx.com XAPP404 (v1.2) April 20, 2001
1-800-255-7778

http://www.xilinx.com

Xilinx Alliance 3.1i Modular Design
R

4. Place and route the module

Since range constraints and active module information have been saved in the top.ncd file
generated by the mapper, additional switches are not required for par to place and route the
design—the current par switches can be used to obtain the desired results. All pseudo logic will
be placed outside of the range defined for the module boundary. The command used here is:

par top.ncd output_ncd_filename <additional_par_switches>

Use <additional_par_switches> to specify any of the allowable par switches. The
output_ncd_filename is the name to be given to the placed and routed NCD file, which is
distinct from the mapped NCD file. This argument can be used, below, to quicken the publish
step. If the area described for the module is too small or incorrectly sized to contain the physical
logic for the module, the top.ucf generated by the initial budgeting phase must be regenerated.
This means the initial budgeting phase must be repeated, and previously implemented
modules may need to be reimplemented. [more information? when is reimplementation
necessary?]

5. If necessary, floorplan placement information

If reports indicate that the module implementation does not meet timing constraints or is
otherwise unsatisfactory, Floorplanner can be used to explicitly reposition logic. All
Floorplanner commands are available to work with the module, but Floorplanner will report
any attempt to violate the assigned range constraints for the module. After floorplanning is
complete, the map and par steps must be repeated. The commands for this step are :

floorplanner top.ncd

map top.ngd …

par top.ncd output_ncd_filename …..

Note: In most cases, this step will not be necessary.

6. If desired, simulate the module

There are two simulation modes available at this stage in the design flow. The first is normal
simulation using the top-level design for context. The top-level design can be back-
annotated and completely simulated. The commands to perform this simulation are the
usual commands for correlated back annotation, as follows:

ngdanno -o top.nga <output_ncd_filename> top.ngm

ngd2ver top.nga

-or-

ngd2vhdl top.nga

The advantage of this approach is that the logic in the top-level design is included in the
simulation. The disadvantage is that inactive modules are undefined, and signals
connected to module ports are left dangling. Therefore, it normally is necessary to probe
and/or stimulate dangling signals to obtain meaningful simulation results.

The second simulation mode is to simulate the module independent of the design context.
This can be accomplished with following commands:

ngdanno -o mod.nga -module <output_ncd_filename>

ngd2{ver|vhdl} mod.nga

In the resulting simulation netlist, the top-level ports will be those of the module itself. This
netlist can be instantiated in a testbench that exercises the module only (see the Simulation
Flow section, below for additional information on simulation modes and operations).

7. Publish the module implementation information to the team leader

The final step of the active module implementation phase is the publication of the
generated module implementation files to the team leader for use in the final assembly
XAPP404 (v1.2) April 20, 2001 www.xilinx.com 11
1-800-255-7778

http://www.xilinx.com

Xilinx Alliance 3.1i Modular Design
R

phase. These files should be published to the PIM directory (the Previously Implemented
Module directory created by the team leader) using the pimcreate executable. During this
step, the module implementation files should be renamed to the name of the implemented
module. Although not required, the pimcreate –ncd switch can be used to quicken the
publish operation (this switch avoids having pimcreate load multiple NCD files to determine
the required information. [may be helpful to specify what type of information pimcreate
normally looks for?] The command to publish files to the team leader (pim_path, below,
is the path to the PIM directory) is :

pimcreate pim_path –ncd output_ncd_filename

In summary, the following commands are used to perform the basic steps in the active module
implementation phase of a modular design :

• ngdbuild –modular module –active moda top_directory/top.ngo

• constraints_editor top.ngd

• ngdbuild –modular module –active moda top_directory/top.ngo

• map top.ngd …

• par top.ncd output_ncd_filename …

• floorplanner top.ngd

• map top.ngd …

• par top.ncd output_ncd_filename …

• ngdanno –module output_ncd_filename

• pimcreate pim_path –ncd output_ncd_filename

At the conclusion of a single pass through the active module implementation phase as
described, above, the implementation of one design module is complete. Each step in this
stage must be repeated to implement each additional module in the modular design (an
additional pass through this phase is required for each additional module).

Final Assembly Phase
The team leader is responsible for this phase of the design. It can begin once all
implementation modules have been published to the team leader. The goal of the final
assembly phase is to produce a complete design from the information generated in the
previous two Modular Design phases. If the overall design meets its timing constraints and
simulation values, the final assembly phase can begin. However, if overall design criteria are
not met, the active module implementation phase and, in rare cases, the initial budgeting phase
must be repeated before the design is ready for the final assembly phase.

This phase first builds a complete NGD file from the NGO file for the top-level design together
with the NGO files for each of the referenced modules. Then, the complete design is mapped
and routed using guide information contained in the NGM and NCD files published for each of
the referenced modules. The use of guide information at this step greatly speeds the overall
implementation run time. Since all top level-logic has been positioned, and each module and its
ports have been sized and positioned, the design should assemble as specified. However, even
if module assigned areas do not overlap, in some cases resource contention among modules
can occur due to module use of global logic or routing resources. Also, even if each module
meets its timing constraints, the overall design may not meet its timing constraints due to
additive delays. If either of these conditions occur, or if the overall design is otherwise
unacceptable, one or more modules will need to be reimplemented before the final design can
be assembled. Although it is possible to use tools during this phase to directly constrain or
manipulate resources contained in a module, this technique is not recommended since it
renders published module information invalid.

Although the work for this phase can be performed in the directory where the initial budgeting
phase was performed, doing so is not recommended since the assembly may change top.ucf,
the top-level constraints file. If this occurs, the file cannot used for future module
implementation. To avoid this problem, a separate directory should be created for this phase. To
12 www.xilinx.com XAPP404 (v1.2) April 20, 2001
1-800-255-7778

http://www.xilinx.com

Xilinx Alliance 3.1i Modular Design
R

prepare the final assembly directory, copy each of the files generated in the initial budgeting
phase to it.

Each step in the final assembly phase is described, below. The information in each step uses
the following assumptions and conventions: 1) information for the top-level design is contained
in "top.*" files, 2) the PIM directory is located at pim_path, and 3) each module is named
“moda,” “modb,” and so forth.

1. Create the NGD file for the entire design

Since all NGO files for referenced modules have been published into the PIM directory,
ngdbuild can be used to assemble all blocks into a complete design. Again, none of the
pseudo logic used in the active module implementation phase appears in any of the
associated NGO files. Consequently, this extra logic will NOT be added to the full design.
Ngdbuild is run using the “assemble” argument to the “–modular” switch to indicate this is
the final assembly phase of the modular design. The path to the PIM directory must be
specified as well as the names of each module implementation. Currently, each module
name must be specified, but future software release functionality will be added that implies
the names of all modules if no module name is specified. The following command assumes
there are two published modules in the modular design, “moda” and “modb:”

ngdbuild –modular assemble –pimpath pim_path –use_pim
moda –use_pim modb top.ngo

This command reads the previously created top.ucf constraints file in the current directory.
Command output is written to the top.ngd file, which represents the logic of the full design.
The specified PIM information will be written into the top.ngd file for future tool use.

2. Map the full design

The mapping step uses the PIM information in the input NGD file to guide the mapping of
all associated PIM logic. Use of guide information allows any top-level constraints pushed
into module implementations to be correctly processed. Since the PIM information was
placed into the top.ngd file during the previous step, no additional flags are required to
perform the mapping process (use of mapping flags is optional). The command to use for
this step is:

map top.ngd <other_map_flags>

Use <other_map_flags> to specify any of the available mapping flags. Command output
will be mapped to the top.ncd and top.ngm files. Also, PIM information found in the top.ngd
file is propagated into these files for later use. The map report, top.mrp, can be examined
to see how guide information for each module was processed.

3. Place and route the full design

The placement and routing of the full design can now be performed. This step use the
previously generated PIM information as guide information, which greatly speeds
implementation time. Also, the use of guide information results in tool optimizations (though
not across module boundaries) that increase the quality of the overall design result. Since
previously provided PIM information is contained in the top.ncd file, no additional par flags
are required (use of par flags is optional). Here is the command to use to perform this step:

par top.ncd top_impl.ncd <additional_par_flags>

The name assigned to the placed and routed NCD output file is “top_impl.” Optional par
flags can be specified in <additional_par_flags>. The par report file, top_impl.par, can be
consulted to view the performance of the overall design together with associated guide
information.

Note: Currently, the guide information in the par file incorrectly takes into account the failure to guide
pseudo-logic in the PIM guide files, but not in the top.ncd file. This incorrect functionality should be
ignored (it will be fixed in a future software release).
XAPP404 (v1.2) April 20, 2001 www.xilinx.com 13
1-800-255-7778

http://www.xilinx.com

Xilinx Alliance 3.1i Modular Design
R

4. Simulate the full design

The final step in the Modular Design flow (other than bitstream generation) is the simulation
of the full design to verify that it meets its timing specifications. This process is described in
the next section.

Simulation Flow Functional and timing simulation can be performed on each module during the active module
implementation phase. Simulation of the entire design can be performed during the final
assembly phase.

Simulating the Module
A module can be simulated during the active module implementation phase. There are two
simulation methods:

1. A module can be simulated directly, independent of the top-level design. Independent
module simulation is performed with the following commands:

ngdanno -o <module_name>.nga -module <toplevel>.ncd
Example: ngdanno –module –o module_a.ngo top.ncd

For VHDL, run:
ngd2vhdl –te <module_name> <module_name>.nga
Example: ngd2vhdl –te module_a module_a.nga

For Verilog, run:
ngd2ver –tm <module_name> <module_name>.nga
Example: ngd2ver –tm module_a module_a.nga

Notice the use of the –te and –tm options in the VHDL and Verilog examples, respectively.
These options are used to rename the top-level entity to module_a, as indicated. If these
renaming options are not used, the resulting VHDL/Verilog entity/module will be named
“top.”

The resulting simulation netlist will contain only module-level logic and ports. This netlist
can be instantiated in a testbench that exercises just the module.

Current Limitations:

All ports and internal signal names appear in the back-annotated netlist in terms of the top-
level netlist. The ports are named after the top-level signals they connect to, and the
internal signals have the instance name tagged in front of them. For example, port B2A_IN
of module_a will be named B2A (B2A is the top-level signal that connects to port B2A_IN).
The internal signal Q0_OUT in module_a will appear as:

signal INSTANCE_A_Q0_OUT : std_logic; -- In VHDL
wire \instance_a/Q0_OUT ; // in Verilog

Timing simulation will reflect the timing of components within the module. However, delay
and timing values of module ports should be ignored until a complete design simulation is
performed. Boundary timing is meaningless when simulating a module since port loads
and drivers are not known.

2. The top-level design with its active module can be back-annotated and completely
simulated. This simulation can be performed using the standard commands for correlated
back annotation, as follows:

ngdanno -o top.nga <toplevel>.ncd top.ngm

VHDL:
ngd2vhdl top.nga

Verilog:
ngd2ver top.nga
14 www.xilinx.com XAPP404 (v1.2) April 20, 2001
1-800-255-7778

http://www.xilinx.com

Xilinx Alliance 3.1i Modular Design
R

The advantage of this approach is that top-level design logic is included in the simulation.
The disadvantage is that inactive modules will be undefined, and the signals connected to
their ports will be left dangling. Therefore, it will be necessary to probe or stimulate (or both
probe and stimulate) dangling signals to yield meaningful simulation results.

In VHDL, internal signals can not be driven from the testbench, but some simulation tools
allow access to these signals from a script/command file or from the GUI. Please refer to
tool documentation for more information.

In Verilog, users can access internal signals from the testbench as well as from a script or
command file.

Simulating the Entire Design
The entire design can be simulated in the assembly mode. The commands are:

ngdanno –o top.nga <toplevel>.ncd top.ngm

For VHDL:
ngd2vhdl top.nga

For Verilog:
ngd2ver top.nga

There are no restrictions for simulation of the full design during the final assembly phase.

Appendix A –
Synthesis
Examples for
the Top-Level
Design

VHDL Example

library IEEE;
use IEEE.std_logic_1164.all;
entity top is port (ipad_dll_clk_in: in std_logic;

 dll_rst : in std_logic;
top2a_c: in std_logic;
top2b: in std_logic;
obuft_out: out std_logic;

 mod_c_out: out std_logic;
moda_clk_pad: in std_logic;
moda_data: in std_logic;
moda_out: out std_logic;
modb_clk_pad: in std_logic;
modb_data: in std_logic;
modb_out: out std_logic;
modc_clk_pad: in std_logic;
modc_data: in std_logic;
modc_out: out std_logic

) ;
end top;
architecture modular of top is
signal dll_clk_in : std_logic;
signal clk_top : std_logic;
signal dll_clk_out: std_logic;
signal a2top_obuft_i: std_logic;
signal a2c: std_logic;
signal a2b: std_logic;
signal b2top_obuft_t: std_logic;
signal b2c: std_logic;
signal b2a: std_logic;
signal c2and2: std_logic;
signal c2a: std_logic;
XAPP404 (v1.2) April 20, 2001 www.xilinx.com 15
1-800-255-7778

http://www.xilinx.com

Xilinx Alliance 3.1i Modular Design
R

signal a_and_c: std_logic;
signal moda_clk: std_logic;
signal modb_clk: std_logic;
signal modc_clk: std_logic;
component IBUFG is port(I : in std_logic; O : out std_logic);
end component;
component CLKDLL is port (
 CLKIN : in std_logic;
 CLKFB : in std_logic;
 RST : in std_logic;
 CLK0 : out std_logic;
 CLK90 : out std_logic;
 CLK180 : out std_logic;
 CLK270 : out std_logic;
 CLKDV : out std_logic;
 CLK2X : out std_logic;
 LOCKED : out std_logic);
 end component;
 component BUFG
 port (
 I : in std_logic;
 O : out std_logic);
 end component;
component BUFGP
 port (
 I : in std_logic;
 O : out std_logic);
 end component;
-- Declare modules at top-level to get port directionality
component module_a is port(CLK_TOP: in std_logic;

B2A_IN: in std_logic;
TOP2A_IN: in std_logic;
C2A_IN: in std_logic;
MODA_DATA : in std_logic;
MODA_CLK : in std_logic;
A2B_OUT: out std_logic;

 A2TOP_OBUFT_I_OUT: out std_logic;
 A2c_ouT: out std_logic;

MODA_OUT : out std_logic
);
end component;

component module_b is port(CLK_TOP: in std_logic;
A2B_IN: in std_logic;
TOP2B_IN: in std_logic;
A_AND_C_IN: in std_logic;
MODB_DATA: in std_logic;
MODB_CLK: in std_logic;
MODB_OUT : out std_logic;

 B2A_OUT: out std_logic;
B2TOP_OBUFT_T_OUT: out std_logic;
B2C_OUT: out std_logic);

end component;
component module_c is port(CLK_TOP: in std_logic;

B2C_IN: in std_logic;
TOP2A_C_IN: in std_logic;
A2C_IN: in std_logic;
16 www.xilinx.com XAPP404 (v1.2) April 20, 2001
1-800-255-7778

http://www.xilinx.com

Xilinx Alliance 3.1i Modular Design
R

MODC_DATA: in std_logic;
MODC_CLK: in std_logic;
MODC_OUT: out std_logic;
C2A_OUT: out std_logic;
C2TOP_OUT: out std_logic;
C2AND2_OUT: out std_logic);

end component;
begin
ibuf_dll: IBUFG port map(I =>ipad_dll_clk_in,

O => dll_clk_in);
dll_1: CLKDLL port map(CLKIN => dll_clk_in,

CLKFB => clk_top,
CLK0 => dll_clk_out,

 RST => dll_rst);
globalclk: BUFG port map(O => clk_top,

 I => dll_clk_out);
bufg_moda : BUFGP port map (O => moda_clk,

I => moda_clk_pad);
bufg_modb : BUFGP port map (O => modb_clk,

I => modb_clk_pad);
bufg_modc : BUFGP port map (O => modc_clk,

I => modc_clk_pad);

-- A simple piece of external logic at top level
a_and_c <= c2and2 and b2a;
-- Tri-state output
obuft_out <= a2top_obuft_i when b2top_obuft_t = ’0’ else ’Z’;
instance_a: module_a port map (CLK_TOP =>clk_top,

TOP2A_IN =>top2a_c,
C2A_IN =>c2a,
B2A_IN => b2a,
MODA_DATA => moda_data,
MODA_CLK => moda_clk,
MODA_OUT => moda_out,
A2B_OUT => a2b,
A2TOP_OBUFT_I_OUT => a2top_obuft_i,
A2C_OUT => a2c) ;

instance_b: module_b port map (CLK_TOP => clk_top,
TOP2B_IN => top2b,
A2B_IN => a2b,
A_AND_C_IN => a_and_c,
MODB_DATA => modb_data,

 MODB_CLK => modb_clk,
 MODB_OUT => modb_out,

B2TOP_OBUFT_T_OUT => b2top_obuft_t,
B2C_OUT => b2c,
B2A_OUT => b2a);

instance_c: module_c port map (CLK_TOP => clk_top,
TOP2A_C_IN => top2a_c,
B2C_IN => b2c,
A2C_IN => a2c,
MODC_DATA => modc_data,

 MODC_CLK => modc_clk,
 MODC_OUT => modc_out,

C2TOP_OUT => mod_c_out,
C2AND2_OUT => c2and2,
C2A_OUT => c2a);
XAPP404 (v1.2) April 20, 2001 www.xilinx.com 17
1-800-255-7778

http://www.xilinx.com

Xilinx Alliance 3.1i Modular Design
R

end modular;

Verilog Example
module top (ipad_dll_clk_in, dll_rst, top2a_c, top2b, obuft_out,

mod_c_out, moda_data, moda_clk_pad, moda_out, modb_data,
modb_clk_pad, modb_out, modc_data, modc_clk_pad, modc_out) ;
input ipad_dll_clk_in;
input dll_rst;
input top2a_c;
input top2b;
output obuft_out;
output mod_c_out;
input moda_data;
input moda_clk_pad;
output moda_out;
input modb_data;
input modb_clk_pad;
output modb_out;
input modc_data;
input modc_clk_pad;
output modc_out;
//wire ipad_dll_clk_out;
wire clk_top;
wire dll_clk_out;
wire a2top_obuft_i;
wire a2c;
wire a2b;
wire b2top_obuft_t;
wire b2c;
wire b2a;
wire c2and2;
wire c2a;
wire a_and_c;
wire moda_clk;
wire modb_clk;
wire modc_clk;
IBUFG ibuf_dll (.I(ipad_dll_clk_in),

.O(dll_clk_in));
CLKDLL dll_1 (.CLKIN(dll_clk_in),

.CLKFB(clk_top),

.CLK0(dll_clk_out),

.RST(dll_rst));
BUFG globalclk (.O(clk_top),

.I(dll_clk_out));
BUFGP bufg_moda (.O(moda_clk),
 .I(moda_clk_pad));
BUFGP bufg_modb (.O(modb_clk),
 .I(modb_clk_pad));
BUFGP bufg_modc (.O(modc_clk),
 .I(modc_clk_pad));
// A simple piece of external logic at top level
assign a_and_c = c2and2 && b2a;
// Tri-state output
assign obuft_out = (!b2top_obuft_t) ? a2top_obuft_i : 1’bz;
module_a instance_a (.CLK_TOP(clk_top),

.B2A_IN(b2a),
18 www.xilinx.com XAPP404 (v1.2) April 20, 2001
1-800-255-7778

http://www.xilinx.com

Xilinx Alliance 3.1i Modular Design
R

.TOP2A_IN(top2a_c),

.C2A_IN(c2a),

.MODA_DATA(moda_data),

.MODA_CLK (moda_clk),

.MODA_OUT (moda_out),

.A2B_OUT(a2b),

.A2TOP_OBUFT_I_OUT(a2top_obuft_i),

.A2C_OUT(a2c)) ;
module_b instance_b (.CLK_TOP(clk_top),

.TOP2B_IN(top2b),

.A2B_IN(a2b),

.A_AND_C_IN(a_and_c),

.MODB_DATA(modb_data),

.MODB_CLK(modb_clk),

.MODB_OUT(modb_out),

.B2TOP_OBUFT_T_OUT(b2top_obuft_t),

.B2C_OUT(b2c),

.B2A_OUT(b2a));
module_c instance_c (.CLK_TOP(clk_top),

.TOP2A_C_IN(top2a_c),

.B2C_IN(b2c),

.A2C_IN(a2c),

.MODC_DATA(modc_data),

.MODC_CLK(modc_clk),

.MODC_OUT(modc_out),

.C2TOP_OUT(mod_c_out),

.C2AND2_OUT(c2and2),

.C2A_OUT(c2a));
endmodule
// Declare modules at top-level to get port directionality
module module_a (CLK_TOP, B2A_IN, TOP2A_IN, C2A_IN, MODA_DATA,
MODA_CLK, MODA_OUT, A2B_OUT, A2TOP_OBUFT_I_OUT, A2C_OUT) ;
input CLK_TOP ;
input B2A_IN ;
input TOP2A_IN ;
input C2A_IN ;
input MODA_DATA;
input MODA_CLK;
output MODA_OUT;
output A2B_OUT ;
output A2TOP_OBUFT_I_OUT ;
output A2C_OUT ;
endmodule

module module_b (CLK_TOP, A2B_IN, TOP2B_IN, A_AND_C_IN, MODB_DATA,
MODB_CLK, MODB_OUT, B2A_OUT, B2TOP_OBUFT_T_OUT, B2C_OUT) ;
input CLK_TOP ;
input A2B_IN ;
input TOP2B_IN ;
input A_AND_C_IN ;
input MODB_DATA;
input MODB_CLK;
output MODB_OUT;
output B2A_OUT ;
output B2TOP_OBUFT_T_OUT ;
output B2C_OUT ;
endmodule
XAPP404 (v1.2) April 20, 2001 www.xilinx.com 19
1-800-255-7778

http://www.xilinx.com

Xilinx Alliance 3.1i Modular Design
R

module module_c (CLK_TOP, B2C_IN, TOP2A_C_IN, A2C_IN, MODC_DATA,
MODC_CLK, MODC_OUT, C2A_OUT, C2TOP_OUT, C2AND2_OUT) ;
input CLK_TOP ;
input B2C_IN ;
input TOP2A_C_IN ;
input A2C_IN ;
input MODC_DATA;
input MODC_CLK;
output MODC_OUT;
output C2A_OUT ;
output C2TOP_OUT ;
output C2AND2_OUT ;
endmodule

Appendix B –
HDL Code
Examples for
Inserting I/Os in
a Module

VHDL Example

library IEEE;
use IEEE.std_logic_1164.all;
entity module_a is port (CLK_TOP : in std_logic;

B2A_IN: in std_logic;
TOP2A_IN: in std_logic;
C2A_IN: in std_logic;
MODA_DATA : in std_logic;
MODA_CLK : in std_logic;
MODA_OUT : out std_logic;
A2B_OUT: out std_logic;
A2TOP_OBUFT_I_OUT: out std_logic;

 A2C_OUT: out std_logic) ;
end module_a;
architecture modular of module_a is
-- add your signal declarations here
signal Q0_OUT, Q1_OUT, Q2_OUT, Q3_OUT : std_logic;
signal AND4_OUT: std_logic ;
signal OR4_OUT : std_logic;
begin
AND4_OUT <= Q0_OUT and Q1_OUT and Q2_OUT and Q3_OUT ;
OR4_OUT <= Q0_OUT or Q1_OUT or Q2_OUT or Q3_OUT ;
TOP_CLK: process(CLK_TOP)
begin
if (CLK_TOP’event and CLK_TOP = ’1’) then

Q0_OUT <= MODA_DATA ;
Q2_OUT <= TOP2A_IN ;
MODA_OUT <= OR4_OUT ;
A2B_OUT <= AND4_OUT ;

end if;
end process TOP_CLK;
CLK_MODA: process(MODA_CLK)
begin
if (MODA_CLK’event and MODA_CLK = ’1’) then

Q1_OUT <= B2A_IN ;
Q3_OUT <= C2A_IN ;
A2TOP_OBUFT_I_OUT <= AND4_OUT ;
A2C_OUT <= OR4_OUT ;

end if;
20 www.xilinx.com XAPP404 (v1.2) April 20, 2001
1-800-255-7778

http://www.xilinx.com

Xilinx Alliance 3.1i Modular Design
R

end process CLK_MODA;
end modular;

 Verilog Example
module module_a (CLK_TOP, B2A_IN, TOP2A_IN, C2A_IN, MODA_DATA,
MODA_CLK, MODA_OUT, A2B_OUT, A2TOP_OBUFT_I_OUT, A2C_OUT);
input CLK_TOP ;
input B2A_IN ;
input TOP2A_IN ;
input C2A_IN ;
input MODA_DATA, MODA_CLK;
output MODA_OUT;
output A2B_OUT ;
output A2TOP_OBUFT_I_OUT ;
output A2C_OUT ;
// add your declarations here
reg Q0_OUT, Q1_OUT, Q2_OUT, Q3_OUT ;
reg A2B_OUT, A2TOP_OBUFT_I_OUT, A2C_OUT ;
reg MODA_OUT;
wire AND4_OUT ;
wire OR4_OUT ;
// add your code here
assign AND4_OUT = Q0_OUT && Q1_OUT && Q2_OUT && Q3_OUT ;
assign OR4_OUT = Q0_OUT || Q1_OUT || Q2_OUT || Q3_OUT ;
always @ (posedge CLK_TOP)
begin : TOP_CLK

Q0_OUT <= MODA_DATA ;
Q2_OUT <= TOP2A_IN ;

MODA_OUT <= OR4_OUT ;
A2B_OUT <= AND4_OUT ;

end
always @ (posedge MODA_CLK)
begin : CLK_MODA

Q1_OUT <= B2A_IN ;
Q3_OUT <= C2A_IN ;

A2TOP_OBUFT_I_OUT <= AND4_OUT ;
A2C_OUT <= OR4_OUT ;

end
endmodule

In the above example, the module has two external inputs (IPAD_MODA_CLK and
IPAD_MODA_DATA), and one external output (OPAD_MODA_OUT). For these external I/Os,
IBUF, OBUF, and BUFGP are instantiated.

The lower-level port declaration is different from top-level declaration of module_a. Specifically,
lower-level module_a has three additional ports. With Modular Design, ngdbuild will ignore this
port mismatch and use module_a.edf to describe module_a. These I/Os will be present in the
design and available for simulation.
XAPP404 (v1.2) April 20, 2001 www.xilinx.com 21
1-800-255-7778

http://www.xilinx.com

Xilinx Alliance 3.1i Modular Design
R

Appendix C –
Vendor-Specific
Notes

This section provides vendor-specific information on the following subjects:

• Creating a Separate Netlist for Each Module

• Disabling I/O Insertion

• Instantiating Primitives

Creating a Netlist for Each Module
In Synplify or FPGA Express/FPGA Compiler II version 3.3.1 or earlier, each design project
creates one netlist. A project is required for the top level and for each lower-level module (four
projects are created in the previous examples: for top, module_a, module_b, and module_c.).
The top-level project will be synthesized with I/O insertion and the lower levels will be
synthesized without I/O insertion.

FPGA Express/FPGA Compiler II (version 3.4 or later) includes a new Incremental Synthesis
feature. This feature allows each design module to be synthesized individually within a project.
Exporting the design produces a separate EDIF for each module, tagged with a Block Root
designation. This attribute is set under the Modules tab within the FPGA Express/FPGA
Compiler II Constraints Editor, as shown in the Figure 3.

In LeonardoSpectrum, multiple netlists from a single project can be created from the GUI as
well as from the script. The following script describes the method for a VHDL design:

set part v50ecs144
load_library xcve
read ./top.vhd
optimize -target xcve -hier preserve
present_design .work.top.modular
auto_write -format edf top.edf
read ./module_a.vhd
read ./module_b.vhd
read ./module_c.vhd
optimize -target xcve -hier preserve
present_design .work.module_a.modular
auto_write -format edf module_a.edf
present_design .work.module_b.modular
auto_write -format edf module_b.edf
present_design .work.module_c.modular
auto_write -format edf module_c.edf

The following script describes the method for a Verilog design:

set part v50ecs144
load_library xcve
read ./module_a.v

Figure 3: FPGA Constraint Editor, "How to Assign Block Root"
22 www.xilinx.com XAPP404 (v1.2) April 20, 2001
1-800-255-7778

http://www.xilinx.com

Xilinx Alliance 3.1i Modular Design
R

read ./module_b.v
read ./module_c.v
read ./top.v
optimize -target xcve -hier preserve
present_design .work.module_a.INTERFACE
auto_write -format edf module_a.edf
present_design .work.module_b.INTERFACE
auto_write -format edf module_b.edf
present_design .work.module_c.INTERFACE
auto_write -format edf module_c.edf
NOOPT .work.module_a.INTERFACE
NOOPT .work.module_b.INTERFACE
NOOPT .work.module_c.INTERFACE
present_design .work.top.INTERFACE
auto_write -format edf top.edf

Disabling I/O Insertion

In Synplify, click the Change button next to Target, or select Target->Set Device Options.
Then, check the Disable I/O insertion box.(Figure 4)

Figure 4: Disabling I/O Insertion in Synplify
XAPP404 (v1.2) April 20, 2001 www.xilinx.com 23
1-800-255-7778

http://www.xilinx.com

Xilinx Alliance 3.1i Modular Design
R

In FPGA Express, click the Create Implementation icon after Update. Check “Do not insert I/O
pads.” (Figure 5).

In LeonardoSpectrum (Figure 6),

Figure 5: Disabling I/O Insertion in FPGA Express

Figure 6: Disabling I/O Insertion in LeonardoSpectrum
24 www.xilinx.com XAPP404 (v1.2) April 20, 2001
1-800-255-7778

http://www.xilinx.com

Xilinx Alliance 3.1i Modular Design
R

Instantiating Primitives

Synthesis tools support different methods to instantiate primitive components. Most synthesis
tools recognize primitive components when the correct library or device is targeted.

• In FPGA Express, all instantiated components must be declared in VHDL. Module
declarations are not necessary in Verilog. Also, if an IBUFG is instantiated in the top-level
Verilog code, FPGA express inserts IBUF before IBUFG, causing an ngdbuild error. A
workaround is to instantiate the IPAD, omitting the port declaration. This is not an issue in
a VHDL design.

• LeonardoSpectrum instantiates components in a manner similar to FPGA Express—that
is, all VHDL components must be declared. However, Verilog module declaration is not
necessary.

• Synplify provides Virtex primitives in “library virtex” (VHDL) and “virtex.v” (Verilog). These
are available in $SYNPLICITY/lib/xilinx. Primitives may be called and port mapped without
component or module declarations.

Appendix D –
Tool Limitations
in the First
Modular Design
Release

The Constraints Editor identifies clock signals by recognizing clock pin loads. Consequently,
the Constraints Editor will not recognize the clock signal during the initial budgeting phase
unless a clock pin load exists at the top level of the design.

An OFFSET constraint on a module port must be relative to the actual clock pad net (most likely
["located" "specified"?] in the top-level design), not to the module clock port

Par guide information in the report file refers to failures to guide pseudo logic.

Revision
History

The following table shows the revision history for this document.

Date Version Revision

04/14/00 1.0 Initial Xilinx release.

06/15/00 1.1 Added note to have all 3-state drivers within a lower level module
declared as "inout". Added cmd line example to show copying of top-
level UCF to module directories. Fixed NGDBUILD command line for
module impl. Phase to include -uc switch. Added tcl script for
exemplar verilog design

04/21/01 1.2 Moved Synthesis examples into an Appendix A, B and C. Renamed
Appendix on known limitations to be Appendix D. Added description
of floorplanning with auto port placement during Initial Budgeting.
Removed notes about limitations that have been fixed
XAPP404 (v1.2) April 20, 2001 www.xilinx.com 25
1-800-255-7778

http://www.xilinx.com

	Introduction
	Design Entry and Synthesis Flow
	Creating the Top-Level Netlist
	Top-Level Code Guidelines:

	Creating Lower-Level Modules
	Constraining at the Module Level

	Implementation Flow
	Initial Budgeting Phase
	Active Module Implementation Phase
	Final Assembly Phase

	Simulation Flow
	Simulating the Module
	Simulating the Entire Design

	Appendix A – Synthesis Examples for the Top-Level Design
	VHDL Example
	Verilog Example

	Appendix B – HDL Code Examples for Inserting I/Os in a Module
	VHDL Example
	Verilog Example

	Appendix C – Vendor-Specific Notes
	Creating a Netlist for Each Module
	Disabling I/O Insertion
	Instantiating Primitives

	Appendix D – Tool Limitations in the First Modular Design Release
	Revision History

