
Summary This application note begins with an overview of the steps necessary to include a Xilinx CORE 
Generator macro in a Verilog design. Next, the Input/Output Files, page 2 describes the Xilinx 
CORE Generator™ 3.1i files used in a Verilog HDL design project. The remaining sections 
describe the steps to simulate a Xilinx 3.li CORE Generator Verilog design, as follows:

• Compiling the CORE Generator libraries — how to create simulator libraries, map the 
created libraries, and compile the XilinxCoreLib CORE Generator libraries to user-created 
libraries.

• Instantiating a Core Generator Macro for Simulation — how to cut and paste VEO 
template information into Verilog HDL files to instantiate the macro. 

• Running a Functional Simulation — how to compile and load a design into different 
simulators for functional simulation

• Running a Timing Simulation — how to compile and load a design into different simulators 
for functional simulation

To download and install IP Updates, go to section Design Files Disclaimer and Download 
Instructions, page 15 for instructions.

Overview The basic steps necessary to include a Xilinx CORE Generator macro in a Verilog design are:

1. Run the CORE Generator to create the macro

2. Use the VEO template for the module declaration to black box the CORE Generator 
module (see Instantiating a Core Generator Macro for Simulation, page 6)

3. Synthesize the design

4. Run the Xilinx implementation tools

Additional steps to perform simulations are: 

1. If the simulator uses precompiled libraries, compile the Xilinx CORE Generator Libraries 
(see Compiling the CORE Generator Libraries, page 3)

2. Use the VEO template to map the user-defined parameters for the macro to the simulation 
model (see Instantiating a Core Generator Macro for Simulation, page 6)

3. Run the functional or timing simulation (see Running a Functional Simulation and Running 
a Timing Simulation, below)

Application Note: FPGAs

XAPP410 (v1.0) June 11, 2001

Simulating a Xilinx 3.1i CORE Generator 
Verilog Design

R

XAPP410 (v1.0) June 11, 2001 www.xilinx.com 1
1-800-255-7778

© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm. 
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm


Simulating a Xilinx 3.1i CORE Generator Verilog Design
R

Input/Output 
Files

This section describes project and CORE Generator input and output files.

Project Input Files

Project Input Files Description

.COE ASCII data file. It defines the coefficient values for FIR filters and initialization values for 
memory modules (see $XILINX/coregen/data for sample COE files).

.XCO CORE Generator system file placed in the current project directory. It contains the 
parameters used to generate a core, and can be referenced as a log file of the settings 
used to generate a core (for more information, see XCO Files in the Xilinx CORE 
Generator System User Guide 3.1i).

Project Output Files

Project Output Files Description

.EDN EDIF implementation netlist for the core. It is an input file to the Xilinx Implementation 
Tools (NGDBuild) and specifies how the CORE will be implemented.

Note: The EDN file is used for implementation only. The Xilinx implementation tools 
read the EDN and other EDIF design files during the translate step (NGDBuild).

.VEO Verilog template file. The components in this file can be used as a guide to create the 
core’s Verilog instantiation and pass parameters to a Verilog behavioral model (for 
further information, see “Using the CORE Generator Verilog Design Flow Procedure,” 
in the CORE Generator System User Guide 3.1i).

.VHO VHDL template file. The components in this file can be used to instantiate a core and 
pass parameters to the VHDL behavioral model through a configuration declaration (for 
further information, see “Using the CORE Generator VHDL Design Flow Procedure,” in 
the CORE Generator System User Guide 3.1i). 

Note: The VEO and VHO template files are used to instantiate cores into HDL files. 
They are not used directly for implementation or simulation.

.MIF Memory Initialization File generated by the CORE Generator System. It specifies 
initialization values for block RAM modules during an HDL functional simulation. To 
produce an MIF file, direct the CORE Generator to produce an EDIF implementation 
netlist and either a Verilog or VDHL behavioral simulation output.

Note: The MIF file is generated by the CORE Generator from the COE file. It is used for 
simulation only. For distributed memory, the MIF file is generated with initial default 
values if the user does not specify values.

.PRJ The coregen.prj file contains a record of installed cores with current version 
information. It is produced when a project is created if all project options have been 
selected. To allow users to load the new project from the CORE Generator GUI, a link 

Coefficients Parameter file

Verilog .COE .XCO

VHDL .COE .XCO

Implementation Template Memory Init
CoreGen 

Log Coefficients
Project 

File

Verilog .EDN .VEO .MIF .LOG .COE .PRJ

VHDL .EDN .VHO .MIF .LOG .COE .PRJ
2 www.xilinx.com XAPP410 (v1.0) June 11, 2001
1-800-255-7778

http://www.xilinx.com


Simulating a Xilinx 3.1i CORE Generator Verilog Design
R

to the new project is written to the known.prj file, located in the 
$XLINX/coregen/preferences directory.

System Input/Output Files Description
Except for the get_models.log file, the default location for the files listed below is the 
$XILINX/verilog/src/XilinxCoreLib directory. The default location for the get_models.log file is 
the $XILINX/verilog/src directory. 

get_models.log 

Log file that contains user-visible messages displayed during a get_models run. The log file 
is written to the directory specified in the get_models command line (get_models –dest 
path_to_directory). If a destination directory is not specified, get_models extracts files to 
the $XILINX/verilog/src/XilinxCoreLib directory.

verilog_analyze_order 

Contains a list of CORE Generator Verilog behavioral models in suggested compilation 
order for Verilog simulators (such as Synopsys VCS, Cadence NC-Verilog and MTI). 

vhdl_analyze_order 

Contains a list of CORE Generator VHDL behavioral models in compilation order. More 
than one compilation order may be valid for the library.

XilinxCoreLib/*.v 

Verilog behavioral models extracted from the IP installed in the CORE Generator tree.

XilinxCoreLib/*.vhd 

VHDL behavioral models extracted from the IP installed in the CORE Generator tree. 

XilinxCoreLib/*_comp.vhd 

VHDL component declaration files for each CORE Generator IP module extracted from the 
CORE Generator.

Compiling the 
CORE 
Generator 
Libraries

This section describes the steps necessary to create and map a library, then compile the 
XilinxCoreLib CORE Generator libraries to the created library.

Note: Uncompiled XilinxCoreLib Verilog libraries are located in the $XlLINX/verilog/src/XilinxCoreLib 
directory. To extract library files to a destination directory, run get_models with the -dest parameter 
(see the get_models.log file description, above), then compile the extracted models. 

MTI-Verilog
The information, below, on compiling the CORE Generator libraries applies to ModelSim PE, 
EE, and SE. ModelSim XE uses precompiled libraries, which can be downloaded from 
http://support.xilinx.com/support/mxelibs.htm. ModelSim XE users who download an IP 
update also must download the precompiled CORE Generator IP Update libraries.

For information on compiling Xilinx CORE Generator libraries and on how to use an MTI script to 
compile the libraries, go to http://support.xilinx.com/techdocs/8066.htm. This solution contains a 
link to TCL scripts that can be run from MTI to compile the CORE Generator libraries.

Note: For additional information on compiling the Xilinx libraries (Unisim, Simprim, and others),

go to http://support.xilinx.com/techdocs/2561.htm 

To create, map, and compile the libraries, as follows:

1. Create the xilinxcorelib_ver library, as follows: 

vlib xilinxcorelib_ver

2. Map the library to update the modelsim.ini file, which allows ModelSim to identify the 
library, as follows:
XAPP410 (v1.0) June 11, 2001 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com
http://support.xilinx.com/techdocs/2561.htm
http://support.xilinx.com/techdocs/8066.htm
http://support.xilinx.com/support/mxelibs.htm


Simulating a Xilinx 3.1i CORE Generator Verilog Design
R

vmap xilinxcorelib_ver complete/path/to/xilinxcorelib_ver

Note: If the MODELSIM environment variable is used to point to the modelsim.ini file, write 
permission access to the modelsim.ini file must be enabled. If write permission access is not enabled, 
copy the modelsim.ini file to the local project directory, unset the MODELSIM variable, then run the 
vmap command, as shown above.

3. Compile the XilinxCoreLib libraries

The verilog_analyze_order file, located in the $XILINX/verilog/src/XilinxCoreLib directory, 
contains a list of the Verilog behavioral model filenames in compilation order. Each file in 
the compilation list can be compiled separately by invoking the vlog command for each file 
in the list, as follows: 

vlog –work xilinxcorelib_ver 
\$XILINX/verilog/src/XilinxCoreLib/filename.v

To avoid performing repetitive manual compilations, do the following: 

1. Copy the verilog_analyze_order file from the $XILINX/verilog/src/XilinxCoreLib directory to 
the local directory.

2. Insert the vlog command shown above at the beginning of each Verilog filename listed in 
the local verilog_analyze_order file.

3. Save the modified file as verilog_anaIyze_order.do in the local directory.

4. Run the verilog_anaIyze_order.do file from the MTI command line or select Macro -> 
Execute Macro from the ModelSim pulldown menu, then select the 
verilog_anaIyze_order.do file.

NC-Verilog
NC-Verilog uses shared precompiled libraries. Compile the libraries, as follows:

1. Create a library definitions file (if necessary—see the Note, below), named cds.lib.This file 
lists the names and locations of accessible libraries and includes statements that map 
logical library names to physical directory paths.

Note: Cadence provides the nclaunch utility program to setup the necessary initialization files and 
compile the Verilog source libraries. The nclaunch program is included as part of Xilinx 3.1i and later 
releases. If nclaunch is unavailable, the cds.lib file must be created manually to map physical 
locations to logical names. 

The cds.lib can be created with any text editor, as follows:

a. Use the UNIX mkdir command, as follows:

mkdir -p <compile_dir>/xilinxcorelib_ver

b. Use INCLUDE or SOFTINCLUDE to specify the location of the master cds.lib file (this 
makes logical library names available to all designs). For example:

INCLUDE $CDS_INST_DIR/share/local/xilinx/cds.lib

Edit $CDS_INST_DIR/share/local/xilinx/cds.lib to include

DEFINE xilinxcorelib_ver <compile_dir>/xilinxcorelib_ver

The following is a sample cds.lib file:

DEFINE simprims /ncv/libs/verilog/simprims

DEFINE uni3000 /ncv/libs/verilog/uni3000

DEFINE uni5200 /ncv/libs/verilog/uni5200

DEFINE uni9000 /ncv/libs/verilog/uni9000
4 www.xilinx.com XAPP410 (v1.0) June 11, 2001
1-800-255-7778

http://www.xilinx.com


Simulating a Xilinx 3.1i CORE Generator Verilog Design
R

DEFINE unisims /ncv/libs/verilog/unisims

DEFINE xilinxcorelib_ver /ncv/libs/verilog/xilinxcorelib_ver

2. Create a configuration variables file named hdl.var. This file defines variables that configure 
the user environment. The variables LIB_MAP, VIEW_MAP and WORK specify the search 
order of the libraries and views when the elaborator resolves instances.

a. To make variable settings available to all designs, use INCLUDE or SOFTINCLUDE to 
specify the location of the master hdl.var file, for example:

INCLUDE $CDS_INST_DIR/share/local/xilinx/hdl.var

Edit $CDS_INST_DIR/share/local/xilinx/hdl.var

SOFTINCLUDE $CDS_INST_DIR/tools/inca/files/hdl.var

DEFINE LIB_MAP ( $LIB_MAP, \

         <compile_dir>/xilinxcorelib_ver => xilinxcorelib_ver)

DEFINE VIEW_MAP ( $VIEW_MAP, .v => v)

b. Edit the hdl.var file to list the search order of the simulation libraries according to the 
family to be simulated:

The following is a sample hdl.var file:

DEFINE LIB_MAP ($LIB_MAP, /ncv/libs/verilog/simprims => 
simprims)

DEFINE LIB_MAP ($LIB_MAP, /ncv/libs/verilog/uni3000 => uni3000)

DEFINE LIB_MAP ($LIB_MAP, /ncv/libs/verilog/uni5200 => uni5200)

DEFINE LIB_MAP ($LIB_MAP, /ncv/libs/verilog/uni9000 => uni9000)

DEFINE LIB_MAP ($LIB_MAP, /ncv/libs/verilog/simprims => 
simprims)

DEFINE LIB_MAP ($LIB_MAP, /ncv/libs/verilog/xilinxcorelib_ver=> \ 
xilinxcorelib_ver)

DEFINE VIEW_MAP ($VIEW_MAP, .v => v)

3. Parse and analyze the XilinxCoreLib simulation libraries using ncvlog (the libraries can be 
compiled in the order specified in the verilog_analyze_order file), as follows:

ncvlog -messages -work xilinxcorelib_ver \

$XILINX/verilog/src/XilinxCoreLib/*.v

For additional information on compiling the Xilinx libraries (Unisim, Simprim, and others), go to 
http://support.xilinx.com/techdocs/2554.htm

Note: Scripts for UNIX OS users are available in the Xilinx install that compile the Cadence’s Affirma 
NC-Verilog libraries. They are located at $XILINX/bin/<platform>/compile_hdl.pl.

Note: Due to the presence of INCLUDE statements in libraries, it may be necessary to run the 
“ncvlog” command from the directory that contains the “XilinxCoreLib” uncompiled libraries.

VCS (5.0.1a and later)
VCS uses shared precompiled libraries. Compile the libraries, as follows:
XAPP410 (v1.0) June 11, 2001 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com
http://support.xilinx.com/techdocs/2554.htm


Simulating a Xilinx 3.1i CORE Generator Verilog Design
R

vcs -Mdir=<compile_dir>/xilinxcorelib \

$XILINX/verilog/src/XilinxCoreLib/*.v

The -Mdir=<compile_dir> option specifies the pathname of the central directory where VCS 
creates the generated files. This option allows team members in a large design to share 
compiled files for new or improved modules. See 
http://support.xilinx.com/techdocs/6330.htm for additional information on compiling the 
Xilinx libraries (Unisim, Simprim, and others).

Note: VCS can be run in one of two ways: 1) by using library source files with compile-time options 
(similar to Verilog-XL) or 2) by using shared precompiled libraries as described above (see the 
appropriate sections, below, to run functional and timing simulations). 

Verilog-XL
Verilog-XL uses the library source files with a compile-time option, so pre-compilation is not 
necessary. Please refer to Running a Functional Simulation, page 9 and Running a Timing 
Simulation, page 12 sections for information on running Verilog-XL simulations.

Instantiating a 
Core Generator 
Macro for 
Simulation

This section describes how cut and paste VEO template information into HDL files for 
simulation. More specifically, it shows how parameters are passed for Verilog simulations.

This design example uses a CORE Generator macro two levels down in the hierarchy to 
illustrate how parameters are passed to macros for functional simulation. The 
RAMB4_S16_S16 component is a 4096-bit dual-ported dedicated random access memory 
block with synchronous write capability. Each port independently accesses the same set of 
4,096 memory cells. Since this example generates a 512-bit memory image, it does exercise 
the entire depth of the block RAM. 

The top level instantiates a macro at the second level. The second level instantiates the CORE 
Generator macro.

In the test-fixture (tf_bram32x16.v), stimulus generation and response checking is performed 
entirely in code. Verifying results behaviorally in this manner is an extremely efficient simulation 
6 www.xilinx.com XAPP410 (v1.0) June 11, 2001
1-800-255-7778

http://www.xilinx.com
http://support.xilinx.com/techdocs/6330.htm


Simulating a Xilinx 3.1i CORE Generator Verilog Design
R

method. If the design does not function properly, text output error messages are displayed to 
alert the designer 

VEO Template
This section explains how library inclusion, module declaration, and module instantiation 
information can be cut and pasted from the Verilog VEO template file. 

top.v (Top level that Instantiates the Second Level)

The example in this section only instantiates the second level in the hierarchy to create a 
bidirectional bus. Therefore, it is not necessary to cut and paste information into the top.v file 
(see the complete design example files for top.v file information).

Bram32x16.v (Second Level in the hierarchy that contains a CORE Generator Macro)

A black-box methodology is used to instantiate the CORE Generator module (modules 
instantiated as black boxes are not elaborated or optimized). The following section from the 
VEO template file can be used to instantiate the CORE Generator macro in a Verilog HDL file. 
The instance name should be specified, as indicated, and the port connections changed to the 
appropriate signal names. 

// Insert the marked text, below, into a Verilog file to instantiate
// this core.
// Change the instance name and port connections
// (in parentheses) to the appropriate signal names.

//----------- Begin Cut here for INSTANTIATION Template ---// 
INST_TAG
core32x16 YourInstanceName (

.ADDRA(ADDRA),

.CLKA(CLKA),

.ADDRB(ADDRB),

.CLKB(CLKB),

.DIA(DIA),

.WEA(WEA),

.DIB(DIB),

.WEB(WEB),

.ENA(ENA),

.ENB(ENB),

.RSTA(RSTA),

.RSTB(RSTB),

.DOA(DOA),

.DOB(DOB));

// INST_TAG_END ------ End INSTANTIATION Template ---------

Core32x16.v (CORE Generator macro file—for the core only)

Library Inclusion

Some simulators allow libraries to be specified when a design is loaded. If this is not possible, 
the xilinxcorelib library can be specified with a Verilog directive in the HDL code that 
instantiates the CORE Generator macro. A section of the VEO template file can be used for this 
purpose, as shown in the following example:

// A Verilog compiler/interpreter may require the following
// option or it’s equivalent to help locate the Xilinx Core Library:
// +incdir+${XILINX}/verilog/src
// In this example, ${XILINX} refers to the XILINX software
// installation directory.
XAPP410 (v1.0) June 11, 2001 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com


Simulating a Xilinx 3.1i CORE Generator Verilog Design
R

//----------- Begin Cut here for LIBRARY inclusion --------// LIB_TAG

// synopsys translate_off

‘include "XilinxCoreLib/C_MEM_DP_BLOCK_V1_0.v"

// synopsys translate_on

// LIB_TAG_END ------- End LIBRARY inclusion --------------

Module Declaration

The following CORE Generator module declaration section of the VEO template file can be cut 
and pasted into a Verilog HDL file. This section passes parameters to the simulation model for 
a particular implementation of a design.

Note: It may be necessary to change the path to the MIF file if a COE file is used to initialize the 
contents of memory.

// The following code must appear after the module in which it
// is to be instantiated. Make sure that the translate_off/_on
// compiler directives are correct for the synthesis tool(s).

//----------- Begin Cut here for MODULE Declaration -------// MOD_TAG
module core32x16 (ADDRA,CLKA, ADDRB, CLKB, DIA, WEA, 
DIB, WEB, ENA, ENB, RSTA, RSTB, DOA, DOB);

input [4 : 0] ADDRA;
input CLKA;
input [4 : 0] ADDRB;
input CLKB;
input [15 : 0] DIA;
input WEA;
input [15 : 0] DIB;
input WEB;
input ENA;
input ENB;
input RSTA;
input RSTB;
output [15 : 0] DOA;
output [15 : 0] DOB;

// synopsys translate_off

C_MEM_DP_BLOCK_V1_0 #(
5,5,1,1,"0",32,32,1,1,1,1,1,1,1,1,1,1,1,1,1,
"/complete/path/to/core32x16.mif",
16,0,1,1,1,1,1,16,16)

inst (
.ADDRA(ADDRA),.CLKA(CLKA), .ADDRB(ADDRB),
.CLKB(CLKB), .DIA(DIA), .WEA(WEA), .DIB(DIB),
.WEB(WEB), .ENA(ENA), .ENB(ENB), .RSTA(RSTA),
.RSTB(RSTB), .DOA(DOA), .DOB(DOB));

// synopsys translate_on

endmodule

// MOD_TAG_END ------- End MODULE Declaration -------------
8 www.xilinx.com XAPP410 (v1.0) June 11, 2001
1-800-255-7778

http://www.xilinx.com


Simulating a Xilinx 3.1i CORE Generator Verilog Design
R

Testfixture.v (Testfixture)

For the complete set of testfixture design example files, go to Design Files Disclaimer and 
Download Instructions, page 15. This testfixture example does not fully simulate the CORE 
Generator macro.

Running a 
Functional 
Simulation

This section describes how to compile and load a design into different simulators for functional 
simulation.

MTI-Verilog

1. If not already created, create a library to compile, as follows:

vlib library_name

2. Compile the Verilog files, as follows:

vlog $XILINX/verilog/src/glbl.v file1.v file2.v file3.v

3. Load the design in the testfixture module and glbl, specify the unisim_ver library for any 
instantiated Xilinx components, and specify the library xilinxcorelib, as follows:

vsim –L library_name top_level_module glbl

4. After the GUI starts, add waves and signals, then simulate the design.

Application Note Example:

vlib work
vlog $XILINX/verilog/src/glbl.v tf_bram32x16.v top_bram32x16.v 
\bram32x16.v core32x16.v
vsim -L unisims_ver -L xilinxcorelib_ver test glbl
add wave *
run -all

NC-Verilog
NC-Verilog simulations can be run in one of two ways: 

1. Use library source files with compile-time options (similar to Verilog-XL):

For RTL simulation, according to the makeup of the design (LogiBLOX, Xilinx instantiated 
primitives, or Coregen components), use the following command lines:

ncxlmode -y $XILINX/verilog/src/unisims -y \ 
\$XILINX/verilog/src/simprims \

   +incdir+$XILINX/verilog/src +libext+.v \ 
$XILINX/verilog/src/glbl.v \

 <testfixture>.v <design>.v

The $XILINX/verilog/src/unisims directory contains the Unified components for RTL 
simulation and generic simulation primitives for any gate level or timing simulation.

Application Note Examples:

Using library source files with compile-time options:

ncxlmode -y $XILINX/verilog/src/unisims –y \ 
$XILINX/verilog/src/XilinxCoreLib +incdir+$XILINX/verilog/src \ 
+libext+.v tf_bram32x16.v top_bram32x16.v bram32x16.v core32x16.v

2. Use shared precompiled libraries (see Compiling the CORE Generator Libraries, page 3 
for instructions to compile the libraries for NC-Verilog—Unisim, Simprim, and others). 
Create a work directory where the design will be compiled, as follows:
XAPP410 (v1.0) June 11, 2001 www.xilinx.com 9
1-800-255-7778

http://www.xilinx.com


Simulating a Xilinx 3.1i CORE Generator Verilog Design
R

Mkdir WORK

a. Map the WORK directory in the cds.lib and hdl.var files, as follows:

Add the following to the cds.lib file:

DEFINE WORK ./WORK

Add the following to the hdl.var file on the line before (above) the DEFINE VIEW_MAP 
line:

DEFINE LIB_MAP ($LIB_MAP, ./WORK => WORK)

b. Compile and simulate the design, as follows:

ncvlog -messages -update $XILINX/verilog/src/glbl.v \ 
<testfixture>.v <design>.v

 ncelab -messages testfixture_name glbl

 ncsim -messages testfixture_name

The -update option of ncvlog enables incremental compilation.

Application Note Examples:

Using shared precompiled libraries:

ncvlog -messages -WORK WORK tf_bram32x16.v top_bram32x16.v 
bram32x16.v core32x16.v

ncelab -messages -timescale 1ns/1ps test glbl

ncsim -messages test

Note: Due to the presence of INCLUDE statements in libraries, it may be necessary to run the 
“ncvlog” command from the directory that contains the “XilinxCoreLib” uncompiled libraries.

Note: Due to the presence of the INCLUDE statement in the library files, it may be necessary to copy 
glbl.v to the current directory. As an alternative, use the –update $XILINX/verilog/src/glbl.v option with 
the ncvlog command.

Note: Use the –timescale option with ncelab if any HDL file does not contain the timescale directive.

VCS
VCS simulations can be run in one of two ways: 

1. Use library source files with compile-time options (similar to Verilog-XL):

For RTL simulation, according to the makeup of the design (LogiBLOX, Xilinx instantiated 
primitives, or Coregen components), use the following command lines:

vcs -y $XILINX/verilog/src/unisims -y $XILINX/verilog/src/simprims \ 

+incdir+$XILINX/verilog/src +libext+.v $XILINX/verilog/src/glbl.v \ 

-Mupdate -R <testfixture>.v <design>.v 

The $XILINX/verilog/src/unisims directory contains the Unified components for RTL 
simulations and generic simulation primitives for gate-level and/or timing simulations. 

The -R option automatically simulates the executable after compilation

The -Mupdate option enables incremental compilation. Modules are recompiled for the 
following reasons: 

a. The target of a hierarchical reference has changed 

b. A compile-time constant (for example, a parameter) has changed.

c. Ports instantiated in the module have changed. 

d. Module inlining. For faster simulation, groups of module definitions are merged into 
one module definition in the VCS file. The affected modules are recompiled. 
Recompilation only occurs once.
10 www.xilinx.com XAPP410 (v1.0) June 11, 2001
1-800-255-7778

http://www.xilinx.com


Simulating a Xilinx 3.1i CORE Generator Verilog Design
R

Application Note Examples:

Using library source files with compile-time options:

vcs -y $XILINX/verilog/src/unisims -y $XILINX/verilog/src/XilinxCoreLib \ 

+incdir+$XILINX/verilog/src +libext+.v $XILINX/verilog/src/glbl.v -Mupdate -R \ 

tf_bram32x16.v top_bram32x16.v bram32x16.v core32x16.v

2. Use shared precompiled libraries: 

Before using VCS, compile simulation libraries to <compiled_lib_dir> go to 
(http://support.xilinx.com/techdocs/ 6330.htm) for information on how to compile Xilinx 
Verilog libraries for VCS (Unisim, Simprim, and others). 

For RTL simulation, according to the makeup of the design (LogiBLOX, Xilinx instantiated 
primitives, or Coregen components), use the following command lines:

vcs -Mupdate -Mlib=<compiled_dir>/unisims_ver -y $XILINX/verilog/src/unisims \ 

-Mlib=<compiled_dir>/simprims_ver -y $XILINX/verilog/src/simprims \ 

-Mlib=<compiled_dir>/xilinxcorelib_ver - +incdir+$XILINX/verilog/src \ 

+libext+.v $XILINX/verilog/src/glbl.v -R <testfixture>.v <design>.v 

The unisims_ver directory contains the Unified components for RTL simulations. The 
simprims_ver directory contains generic simulation primitives for any gate-level or timing 
simulations. The XilinxCoreLib area directory contains the Coregen components for RTL 
simulations.

The -R option automatically simulates the executable after compilation

The -Mlib=<compiled_lib_dir> option provides VCS with a central location for descriptor 
information prior to compilation and a location for object files when it links the executable. 

The -Mupdate option enables incremental compilation. Modules are recompiled for the 
following reasons: 

a. The target of a hierarchical reference has changed 

b. A compile-time constant (for example, a parameter) has changed

c. Ports instantiated in the module have changed 

d. Module in-lining. For faster simulation, groups of module definitions are merged into 
one module definition in the VCS file. The affected modules are recompiled. 
Recompilation only occurs once.

Application Note Examples:

Using shared precompiled libraries:

vcs -Mupdate -Mlib=/vcs/lib/unisims_ver -y $XILINX/verilog/src/unisims \ 

-Mlib=/vcs/lib/xilinxcorelib_ver –y $XILINX/verilog/src/XilinxCoreLib  \ 
+incdir+$XILINX/verilog/src +libext+.v $XILINX/verilog/src/glbl.v  \

-R tf_bram32x16.v top_bram32x16.v bram32x16.v core32x16.v
XAPP410 (v1.0) June 11, 2001 www.xilinx.com 11
1-800-255-7778

http://www.xilinx.com
http://support.xilinx.com/techdocs/ 6330.htm


Simulating a Xilinx 3.1i CORE Generator Verilog Design
R

Verilog-XL
For RTL simulation, according to the makeup of the design (LogiBLOX, Xilinx instantiated 
primitives, or Coregen components), use the following command lines:

verilog -y $XILINX/verilog/src/unisims –y \ 
$XILINX/verilog/src/simprims \
 +incdir+$XILINX/verilog/src +libext+.v $XILINX/verilog/src/glbl.v \
 <testfixture>.v <design>.v

The $XILINX/verilog/src/unisims directory contains the Unified components for RTL 
simulations. The $XILINX/verilog/src/simprims directory contains generic simulation primitives 
for gate-level and/or timing simulations. 

Application Note Examples:

verilog -y $XILINX/verilog/src/unisims –y $XILINX/verilog/src/XilinxCoreLib \ 

+incdir+$XILINX/verilog/src +libext+.v tf_bram32x16.v top_bram32x16.v bram32x16.v \ 

core32x16.v

Functional 
Simulation 
Hints, Tips, and 
Common 
Problems

The following are hints and cautions that apply to running functional simulations:

• Path to the MIF file — When using the VEO template file, be sure to modify the path to the 
MIF file must be modified to initialize components.

• INCLUDE path — If the INCLUDE statement from the VEO template is used, it may be 
necessary to change the "/"and the path to which it points.

• glbl.v errors — If glbl.v errors occur, copy the glbl.v to the project directory or, if applicable, 
set the appropriate simulator runtime option to point to the $XILINX/verilog/src/glbl.v file.

Running a 
Timing 
Simulation

This section describes how to load the backend timing simulations into different simulators (to 
compile Xilinx Simprim libraries required for compiled simulators, see the links to solutions 
contained in the appropriate simulator section in Compiling the CORE Generator Libraries, 
page 3).

MTI-Verilog

1. If not already created, create a library to compile, as follows:

vlib library_name

2. Compile the Verilog files, as follows:

vlog $XILINX/verilog/src/glbl.v file1.v file2.v file3.v

3. Load the design in the testfixture module and glbl, and specify the simprim_ver library, as 
the back annotated netlist contains all Xilinx primitive components, as follows

Vsim –L simprims_ver top_level_module glbl

4. After the GUI starts, add waves and signals, then simulate the design

Application Note Example:

vlib work
vlog $XILINX/verilog/src/glbl.v tf_bram32x16.v time_sim.v
vsim -L simprims_ver test glbl
add wave *
run -all

NC-Verilog
NC-Verilog simulations can be run in one of two ways: 
12 www.xilinx.com XAPP410 (v1.0) June 11, 2001
1-800-255-7778

http://www.xilinx.com


Simulating a Xilinx 3.1i CORE Generator Verilog Design
R

1. Use library source files with compile-time options:

For timing simulations or post-Ngd2ver, the Simprim-based libraries are used. At the 
command line, specify the following: 

ncxlmode -y $XILINX/verilog/src/simprims $XILINX/verilog/src/glbl.v \ 

+libext+.v <testfixture>.v <design>.v

Application Note Examples:

Using library source files with compile-time options:

ncxlmode -y $XILINX/verilog/src/simprims +libext+.v $XILINX/verilog/src/glbl.v \ 

tf_bram32x16.v time_sim.v

2. Use shared precompiled libraries:

For timing simulations or post-Ngd2ver, the Simprim-based libraries are used. At the 
command line, specify the following: 

ncvlog -messages -update $XILINX/verilog/src/glbl.v <testfixture>.v time_sim.v 

ncelab -messages -autosdf testfixture_name glbl 

ncsim -messages testfixture_name 

See Xilinx Solution 947 (http://support.xilinx.com/techdocs/947.htm) for instructions to 
back annotate the SDF file for timing simulations.

Application Note Examples:

Using shared precompiled libraries:

ncvlog –messages –WORK WORK $XILINX/verilog/src/glbl.v tf_bram32x16.v time_sim.v

 ncelab -messages -autosdf test glbl

 ncsim -messages test

VCS
VCS simulations can be run in one of two ways: 

1. Use library source files with compile-time options:

For timing simulations or post-Ngd2ver, the Simprim-based libraries are used. At the 
command line, specify the following: 

vcs +compsdf -y $XILINX/verilog/src/simprims $XILINX/verilog/src/glbl.v \ 

+libext+.v -Mupdate -R <testfixture>.v time_sim.v 

See Xilinx Solution 6349 (http://support.xilinx.com/techdocs/6349.htm) for instructions to 
back annotate the SDF file for timing simulations. 

The -R option automatically simulates the executable after compilation

The -Mupdate option enables incremental compilation. Modules are recompiled for the 
following reasons: 

a. The target of a hierarchical reference has changed.

b. A compile-time constant (for example, a parameter) has changed.

c. Ports instantiated in the module have changed. 

d. Module in-lining. For faster simulation, groups of module definitions are merged into 
one module definition in the VCS file. The affected modules are recompiled. 
Recompilation only occurs once.

Application Note Example:
XAPP410 (v1.0) June 11, 2001 www.xilinx.com 13
1-800-255-7778

http://www.xilinx.com
http://support.xilinx.com/techdocs/947.htm
http://support.xilinx.com/techdocs/6349.htm


Simulating a Xilinx 3.1i CORE Generator Verilog Design
R

Using library source files with compile-time options:

vcs +compsdf -y $XILINX/verilog/src/simprims $XILINX/verilog/src/glbl.v \ 

+libext+.v -Mupdate -R tf_bram32x16.v time_sim.v

2. To use shared precompiled libraries

For timing simulations or post-Ngd2ver, the Simprim-based libraries are used. At the 
command line, specify the following: 

vcs +compsdf -Mupdate -Mlib=<compiled_lib_dir>/simprims_ver \ 

-y $XILINX/verilog/src/simprims $XILINX/verilog/src/glbl.v +libext+.v \ 

-R <testfixture>.v time_sim.v 

See Xilinx Solution 6349 (http://support.xilinx.com/techdocs/6349.htm) for instructions 
to back annotate the SDF file for timing simulations. 

The -R option automatically simulates the executable after compilation

The -Mlib=<compiled_lib_dir> option provides VCS with a central location for descriptor 
information prior to compilation and a location for object files when it links the executable. 

The -M update option enables incremental compilation. Modules are recompiled for the 
following reasons: 

a. The target of a hierarchical reference has changed. 

b. A compile-time constant (for example, a parameter) has changed. 

c. Ports instantiated in the module have changed.

d. Module in-lining. For faster simulation, groups of module definitions are merged into 
one module definition in the VCS file. The affected modules are recompiled. 
Recompilation only occurs once.

Application Note Example:

Using shared precompiled libraries:

vcs +compsdf -Mupdate -Mlib=/vcs/lib/simprims_ver \ 

-y $XILINX/verilog/src/simprims $XILINX/verilog/src/glbl.v +libext+.v \ 

-R tf_bram32x16.v time_sim.v

Verilog-XL
For timing simulations or post-Ngd2ver, the Simprim-based libraries are used.

At the command-line, specify the following:

verilog -y $XILINX/verilog/src/simprims $XILINX/verilog/src/glbl.v \
 +libext+.v <testfixture>.v <design>.v

See Xilinx Solution 3167 (http://support.xilinx.com/techdocs/3167.htm) for instructions to 
specify Xilinx Simprim libraries using the -ul switch with Ngd2ver (instead of using the -y switch 
in Verilog-XL).

Application Note Example:

verilog -y $XILINX/verilog/src/simprims $XILINX/verilog/src/glbl.v \
 +libext+.v tf_bram32x16.v time_sim.v
14 www.xilinx.com XAPP410 (v1.0) June 11, 2001
1-800-255-7778

http://www.xilinx.com
http://support.xilinx.com/techdocs/6349.htm
http://support.xilinx.com/techdocs/3167.htm


Simulating a Xilinx 3.1i CORE Generator Verilog Design
R

Downloading 
and Installing IP 
Updates

IP Updates and instructions are available from the Xilinx website at:

http://support.xilinx.com/ipcenter/coregen/updates.htm

The general procedure for installing IP Update No. 2 is described below. For additional 
information, see the Update documentation (provided as part of the downloaded files and also 
available on the Xilinx IP Update download page at the link shown above).

IP Update No. 2 Install Instructions
• Although not required, Xilinx recommends installation of the latest 3.2i Software Service 

Pack. 

• The IP Update is available in two formats: as a ZIP file and a TAR file. Windows users 
should unpack the ZIP file using WinZip (versions 7.0 SR-1 or later are recommended). 
Unix users should use the TAR file ("tar.gz", which is compressed with "gzip"). It can be 
unpacked with UNIX command line utilities gzip or tar (note the problems mentioned 
below that can occur with older versions of the UNIX "tar" commands). Unix users also 
may be able to use and unpack the ZIP file, but see Xilinx Answer #7711 for issues 
related to this procedure. 

• To install the Update No. 2:

- Quit the CORE Generator application if is running.

- Download 32i_ip_update2.zip (ZIP file) or 32i_ip_update2.tar.gz (TAR file), and save it 
in a temporary directory.

- Extract the ZIP file or tar.gz archive to the $XILINX directory. Make sure to preserve 
relative paths (for example, 
coregen/ip/xilinx/baseblox_v1_0/com/xilinx/ip/baseblox_v1_0/ ).

• Delete the corelib.xml file located in the $XILINX/coregen/ip directory. This forces the 
CORE Generator to regenerate its database during startup. 

• Restart the Xilinx CORE Generator. The Xilinx CORE Generator automatically detects 
that a new IP has been added and provides the user with three update options for the 
current CORE Generator project: 1) Update "All" cores to their latest versions, 2) Add only 
"New" cores, or 3) make a "Custom" selection of available cores. To confirm a successful 
installation, make sure the new cores are listed in the CORE Generator GUI (for example, 
confirm that "ADPCM for Virtex" appears in the "Communication & 
Networking/Telecommunication" folder).

Design Files 
Disclaimer and 
Download 
Instructions

Limited Warranty and Disclaimer. These designs are provided "as is". Xilinx and its licensors 
make and you receive no warranties or conditions, express, implied, statutory or otherwise, and 
Xilinx specifically disclaims any implied warranties of merchantability, non-infringement, or 
fitness for a particular purpose. Xilinx does not warrant that the functions contained in these 
designs will meet your requirements, or that the operation of these designs will be 
uninterrupted or error free, or that defects in the Designs will be corrected. Furthermore, Xilinx 
does not warrant or make any representations regarding use or the results of the use of the 
designs in terms of correctness, accuracy, reliability, or otherwise.

Limitation of Liability. In no event will Xilinx or its licensors be liable for any loss of data, lost 
profits, cost or procurement of substitute goods or services, or for any special, incidental, 
consequential, or indirect damages arising from the use or operation of the designs or 
accompanying documentation, however caused and on any theory of liability. This limitation will 
apply even if Xilinx has been advised of the possibility of such damage. This limitation shall 
apply not-withstanding the failure of the essential purpose of any limited remedies herein. 

Note: The application note design files are located at:

ftp://ftp.xilinx.com/pub/applications/xapp/XAPP410.zip

and

ftp://ftp.xilinx.com/pub/applications/xapp/XAPP410.tar.gz
XAPP410 (v1.0) June 11, 2001 www.xilinx.com 15
1-800-255-7778

http://www.xilinx.com
ftp://ftp.xilinx.com/pub/applications/xapp/XAPP410.tar.gz
ftp://ftp.xilinx.com/pub/applications/xapp/XAPP410.tar.gz
http://support.xilinx.com/ipcenter/coregen/updates.htm
http://www.support.xilinx.com/techdocs/7711.htm


Simulating a Xilinx 3.1i CORE Generator Verilog Design
R

Revision 
History

The following table shows the revision history for this document.  

Date Version Revision

06/11/01 1.0 Initial Xilinx release.
16 www.xilinx.com XAPP410 (v1.0) June 11, 2001
1-800-255-7778

http://www.xilinx.com

	Summary
	Overview
	Input/Output Files
	Project Input Files
	Project Input Files Description

	Project Output Files
	Project Output Files Description

	System Input/Output Files Description

	Compiling the CORE Generator Libraries
	MTI-Verilog
	NC-Verilog
	VCS (5.0.1a and later)
	Verilog-XL

	Instantiating a Core Generator Macro for Simulation
	VEO Template
	top.v (Top level that Instantiates the Second Level)
	Bram32x16.v (Second Level in the hierarchy that contains a CORE Generator Macro)
	Core32x16.v (CORE Generator macro file—for the core only)
	Library Inclusion

	Testfixture.v (Testfixture)


	Running a Functional Simulation
	MTI-Verilog
	Application Note Example:

	NC-Verilog
	VCS
	Verilog-XL
	Application Note Examples:


	Functional Simulation Hints, Tips, and Common Problems
	Running a Timing Simulation
	MTI-Verilog
	Application Note Example:

	NC-Verilog
	Application Note Examples:

	VCS
	Application Note Example:

	Verilog-XL
	Application Note Example:


	Downloading and Installing IP Updates
	IP Update No. 2 Install Instructions

	Design Files Disclaimer and Download Instructions
	Revision History

