
Summary This application note covers the logic equivalency flow using Xilinx ISE software with Synopsys
Formality. The target audience is designers familiar with the independent Xilinx HDL software
design flow.

Introduction With rapid increases in FPGA design sizes, new simulation and logic verification
methodologies must be explored to expedite the verification of design logic and functionality.
For logic equivalency checking, formal verification is quickly gaining acceptance by designers
creating multi-million gate designs, because of its accuracy and speed. Using Synopsys
Formality with Xilinx FPGA designs, designers can check logic equivalency between the RTL
(pre-synthesis) and post-implementation (after PAR) designs.

Formal verification requires the presence of a reference (verified) design, against which it
checks the other design netlists (post-synthesis, post-implementation). A netlist at any point in
the design flow, for example pre-synthesis or post-implementation, can be used as the
reference. However, the RTL (pre-synthesis) netlist is most commonly used as the reference.
The Xilinx/Formality formal verification flow currently supports only the Verilog language.

Software and
Device Support

The formal verification flow between Xilinx designs and Synopsys Formality is supported by the
following software:

• Xilinx Software: ISE Alliance 4.1I (UNIX version only) and later

• Synopsys Software: FPGA Compiler II version 3.6 and later, and Formality version
2001.06 and later

• Platform Support: Solaris 2.7 and later

Formal Verification is available for the following devices:

• Spartan™-II

• Virtex™, Virtex-E, and Virtex-II

Flow Summary The following verification points are available for the Xilinx - Formality formal verification flow:

1. RTL — This is the pre-synthesis design code, usually used as the reference design.

2. Post-NGDBuild — This is equivalent to the post-synthesis netlist, consisting of gate-level
SIMPRIM primitives.

3. Post-MAP — At this stage, the design has been mapped into the target device by the Xilinx
implementation tools, but has not been routed as yet.

4. Post-PAR — At this stage, the design is completely placed and routed, and the resulting
structural netlist closely resembles the design layout as it will appear in silicon.

Verifications can be done between any two points listed above, for example RTL vs. Post-
NGDBuild, RTL vs. Post-PAR, or Post-NGDBuild vs. Post-PAR. The formal verification flow with
Xilinx designs and Formality is shown in Figure 1.

Application Note: FPGA

XAPP414 (v1.1) October 2, 2001

Xilinx/Synopsys Formality Verification
Flow
Authors: Mujtaba Hamid and Yenni Totong

R

XAPP414 (v1.1) October 2, 2001 www.xilinx.com 1
1-800-255-7778

© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Xilinx/Synopsys Formality Verification Flow
R

Sample Flows Below are two sample flows that can be run using Xilinx designs and Formality. The first
example compares the logic equivalency between the RTL (pre-synthesis) and the Post-
NGDBUILD designs. The second example checks the equivalency between the RTL and Post-
PAR (back-annotated) designs. Neither of these flows check for timing issues, since Formality
is a logic equivalency checker.

RTL vs. Post-NGDBuild
Reference design - Behavioral (RTL) Verilog design (netlist)

Implementation design - Post-NGDBuild Verilog netlist

The flow is comprised of the following steps:

1. Synthesize the Verilog design files with Synopsys FPGA Compiler II, targeting a Xilinx
(Virtex/Virtex-E/Virtex-II/Spartan-II) FPGA. An EDIF netlist file is produced at the end of
this step.

2. Create the Post-NGDBuild Verilog netlist, using the Xilinx implementation tool from the GUI
or the command line.

From the GUI:

a. Create a Xilinx ISE Project using the EDIF netlist from Step 1.

b. Create a Post-NGDBUILD Verilog netlist using the Xilinx ISE tools.

Note: For more information on running ISE, refer to the ISE documentation available in the ISE Quick
Start Guide (with the ISE 4.1I software) or the http://support.xilinx.com Xilinx support site.

Figure 1: Xilinx/Formality Formal Verification Flow

NGDBuild

Unisims

Simprims

Xilinx Implementation

Library Cells

MAP

Formal Verification Tool

core2formal.pl

RTL(Verilog) HDL
Synthesis

EDIFsCORE Generator
Module (HDL

instantiation file,
EDIF)

PAR

NGDAnno

NGD2Ver

xilinx2verplex.pl

Flatten NGD file

EDIF File

HDL Instantiation FileRT code, possibly with
primitive cell instantation
(UNISIM components)
as the golden design

Flatten Verilog
Structural Netlist in
Simprim Primitive
cells as a revised
design

Structural HDL describing
CORE Generator Module
as part of golden design

Mapped NCD

PAR-ed NCD

NGA file

X413_01_100101
2 www.xilinx.com XAPP414 (v1.1) October 2, 2001
1-800-255-7778

http://www.xilinx.com
http://support.xilinx.com

Xilinx/Synopsys Formality Verification Flow
R

From UNIX Terminal window:

a. Set up the Xilinx environment variables.

b. Process the EDIF file:

>ngdbuild <filename>.edf

c. Create Post-NGDBuild Verilog:

>ngd2ver <infile>.ngd <outfile>.v

Note: If <outfile>.v is not supplied, ngd2ver outputs the same filename as the input file.

3. From the UNIX terminal window, run the ‘xilinx2formality.pl’ script:

>xilperl $XILINX/verilog/bin/<platform>/xilinx2formality.pl <filename>.v > <outfile>.v

Notes:
1. xilperl is a Perl application available with the Xilinx ISE software.
2. <platform> can be "sol" for solaris UNIX workstation, "hp" for HP UNIX workstation, or "nt"

for PC platform.
3. Xilinx2verplex.pl removes extra cells in the Verilog netlist that are not needed for formal

verification.

4. If a CORE Generator module is instantiated in your design, run ‘core2formal’ to create a
‘reference’ description for the module. Refer to the Verification of Designs Containing
Xilinx CoreGEN Components section for more information.

5. Run the Formality flow to compare the two versions of the Verilog netlists. Refer to the
Formality Flow section.

RTL vs post PAR
Reference design: Behavioral (RTL) Verilog netlist.

Implemented design: Post-PAR Verilog netlist.

The flow is as follows:

1. Synthesize the Verilog design files with Synopsys FPGA Compiler II, targeting a Xilinx
(Virtex/Virtex-E/Virtex-II/Spartan-II) FPGA. An EDIF netlist file is produced at the end of
this step.

2. Create Post-PAR Verilog netlist from the GUI or the command line.

From the GUI:

a. Launch the Xilinx software, and create a Xilinx ISE Project, using the EDIF netlists from
Step 1.

b. Create a Post-PAR Verilog netlist using the Xilinx ISE tools.

The Xilinx ISE tools run NGDBuild, MAP, PAR, and NGDANNO and NGD2Ver to create a
Post-PAR Verilog netlist.
XAPP414 (v1.1) October 2, 2001 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

Xilinx/Synopsys Formality Verification Flow
R

From the UNIX Terminal window:

a. Process EDIF:

>ngdbuild <filename>.edf

b. Run MAP:

>map -o <mapped>.ncd <filename>.ngd

c. Run PAR:

>par <mapped>.ncd <par>.ncd <pcffile>.pcf

d. Process Post-PAR NCD for annotation:

>ngdanno <par>.ncd

e. Create a Post-PAR Verilog file:

>ngd2ver <par>.nga <outfile>.v

3. From the UNIX terminal window, run the ‘xilinx2formality.pl’ script:

>xilperl $XILINX/verilog/bin/<platform>/xilinx2formality.pl <filename>.v > <outfile>.v

Notes:
1. xilperl is a Perl application available with the Xilinx ISE software.
2. <platform> can be "sol" for solaris UNIX workstation, "hp" for HP UNIX workstation, or "nt"

for PC platform.
3. Xilinx2verplex.pl removes extra cells in the Verilog netlist that are not needed for formal

verification.

4. If a CORE Generator module is instantiated in your design, run ‘core2formal’ to create a
‘reference’ description for the module. Refer to the Verification of Designs Containing
Xilinx CoreGEN Components section for more information.

5. Run the Formality flow to compare the two versions of the Verilog netlists. Refer to the
Formality Flow section.

Formality Flow This section briefly describes the Formality verification flow. For more detailed information or
assistance on this flow, contact Synopsys Technical Support.

Before running Formality, make sure that the required design files have been created, as
outlined in the previous section.

Setting Up the Environment
Setup environment variables to point to a Formality and Xilinx installation. Required variables
are shown in Table 1.

Table 1: Environment Variables Needed to Setup Synopsys Formality and Xilinx

Name of Variable Location Pointed by the Variable

Synopsys Variables

SYNOPSYS <synopsys_install_directory>/<platform>

LM_LICENSE_FILE <port>@<license_server> or
<license_install_directory>/<license_file>

PATH $SYNOPSYS/fm/bin $path

Xilinx Variables

XILINX <xilinx_install_directory>

PATH $XILINX/bin/sol
4 www.xilinx.com XAPP414 (v1.1) October 2, 2001
1-800-255-7778

http://www.xilinx.com

Xilinx/Synopsys Formality Verification Flow
R

Synopsys uses a setup file for each project. Create this ".synopsys_fm.setup" file in the project
directory by copying the template from $XILINX/verilog/formality/template.synopsys_fm.setup
and renaming it to ".synopsys_fm.setup".

For more information on the use and customization possibilities of the ".synopsys_fm.setup"
file, contact Synopsys.

Setting Up Xilinx Verification Libraries
The two Xilinx Verification libraries that must be used along with Formality for Formal
Verification are:

• UNISIMS — The UNISIMS library contains the Xilinx primitives in RTL format. This library
is required if the design contains any Xilinx primitives; for example, DCMs or block RAM.

• SIMPRIMS — The SIMPRIMS library contains the Xilinx primitives for back-annotated
Verification (Post-NGDBUILD, Post-PAR). Since the back-annotated library is comprised
completely of these gate-level primitives, this library must be compiled before verifying a
Post-NGDBUILD or Post-PAR design.

The libraries must be read into Formality upon the start of the Verification flow. More details on
this are provided in the Verifying Design section.

Verifying
Design

All formality commands can be run either from the GUI or the UNIX terminal prompt. This
section steps through the flow using the GUI; however, these commands can be added into a
script that can be launched from a terminal prompt.

1. The ".synopsys_fm.setup" file should already be present in the project directory. The setup
file must contain the Xilinx verification library path information, project path information, and
other necessary directives for the Xilinx-Formality flow. The following lines comprise a
sample file:

set signature_analysis_matching true

set dir [exec pwd]

set XILINX /path/to/xilinx/install

set search_path
". $XILINX/verilog/formality/unisims $XILINX/verilog/formality/simprims "

Add these commands to the ".synopsys_fm.setup" file, if needed. Save and close the file.

Additionally, ensure that the $XILINX variable is pointing at the correct location for the Xilinx
install directory.

2. Start up the GUI by typing "formality" at the UNIX terminal prompt. Figure 2 shows the
Formality GUI.

The main section of the GUI shows the transcript of the commands and the log file
generated. The commands can be entered in the bottom section of the GUI. Alternatively,
a script can be called from the GUI by selecting File > Run Script from the pull-down menu.

3. The Xilinx Verification libraries, UNISIMS and SIMPRIMS, must be read into Formality
before comparing the designs. To read the libraries, enter the following commands at the
Formality command prompt:

set XILINX /path/to/xilinx/install/

source $XILINX/verilog/formality/unisims/unisims.fms

source $XILINX/verilog/formality/simprims/simprims.fms

Formality reads the contents of the Xilinx verification libraries. This might take up to ten
minutes, depending on your network connection speed and processor speed.

4. Select File-> Open container.

5. Browse to xilinxlib.fsc and click "Open".
XAPP414 (v1.1) October 2, 2001 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

Xilinx/Synopsys Formality Verification Flow
R

6. Enter ‘rtl’ for the container name. This container is used to store the RTL (reference)
design. The RTL container GUI displays, as shown in Figure 3.

Figure 2: Formality Main GUI

Figure 3: RTL Container GUI
6 www.xilinx.com XAPP414 (v1.1) October 2, 2001
1-800-255-7778

http://www.xilinx.com

Xilinx/Synopsys Formality Verification Flow
R

7. In the rtl - Container window, select File > Read Design from the pull-down menu..

8. Select all of the RTL files in the design.

Note: If you have CoreGEN modules in your design, do not select the <coregen_module>.v files at
this time. The CoreGEN modules are added later. This is because the coregen modules are already
instantiated as a black box in your design. To read the description of coregen modules, you must
override the black box component. Otherwise, the following error occurs:

Error: You are declaring a module 'tenths' which is already declared.
(File:<coregen_module>.v)

9. Select Open on the "Read Design" browser window (see Figure 4) .

10. Click OK on the next window, to accept all the default settings.

11. Click on the + sign next to WORK and select the top-level design module.

12. Select the top-level module, Right-Click on that module and select "Set as Reference."

13. Select File > Link Design > Use Default Options from the rtl-container's pull-down menu.

14. Repeat steps 3 to 5 to create a container called "imp." This container is used to store the
implemented design.

15. In the imp-Container window, select File > Read Design from the pull-down menu.

16. Select the implemented Verilog file. This can be after NGDBUILD or after PAR. Ensure that
this file has been processed through the xilinx2formality.pl script. See the Sample Flows
section for more details.

Figure 4: Read Design Options GUI
XAPP414 (v1.1) October 2, 2001 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com

Xilinx/Synopsys Formality Verification Flow
R

17. Repeat steps 8 to 10 for the "imp" container window.

18. Right Click on the toplevel.v and select "Set as Implementation."

19. Select File > Link Design > use Default Options from the imp-container pull-down menu.

20. To include any CoreGEN modules to the reference design, refer to the Verification of
Designs Containing Xilinx CoreGEN Components section.

21. From the Formality Console window, click Run -> Verify -> All Compare Points. If the
designs compare successfully, the result is shown in the GUI under the "Verification"
section, as shown in Figure 5.

Once verification has completed, several reports can be generated to see passing and failing
points. All of these report options are available under the "Report" pull-down menu in Formality.

An example of a "Passing Points" report is shown in Figure 6. This report is divided into two
columns, one each for the Reference and Implementation designs. On each row, the report
shows the signals in the two designs that were deemed logically equivalent by Formality.

Figure 5: Formality Transcript Showing Results of Verification
8 www.xilinx.com XAPP414 (v1.1) October 2, 2001
1-800-255-7778

http://www.xilinx.com

Xilinx/Synopsys Formality Verification Flow
R

Verification of
Designs
Containing
Xilinx CoreGEN
Components

To assist completion of FPGA designs, Xilinx provides designers with IP of varying complexity.
This IP is provided with the CoreGEN tool, part of the Xilinx ISE software package. However,
since CoreGEN IP is provided as an EDIF netlist rather than as synthesizable Verilog code, a few
steps are required to add the Xilinx CoreGEN macros into the Golden RTL design for checking in
Conformal LEC. To convert the IP into a format acceptable to Conformal, the netlist must be run
through the Xilinx NGDBUILD and NGD2VER tools and then processed by the xilinx2verplex.pl
utility. Xilinx provides a "core2formal.pl" PERL script to run the commands necessary.

This PERL script is available in $XILINX/verilog/bin/<platform>/core2formal.pl.

To run these commands, you must set up the Xilinx environment.

The command is as follows:

>xilperl $XILINX/verilog/bin/<platform>/core2formal.pl -<vendor> -<family>
<coregen_module>.edn

Notes:
1. For Conformal LEC, the <vendor> option must be "verplex".
2. The <family> option can be virtex, virtexe, virtex2, and spartan2.

- <platform> can be "sol" for solaris UNIX workstation, "hp" for HP UNIX workstation, or "nt" for
PC platform.

Figure 6: Passing Points Report in Formality
XAPP414 (v1.1) October 2, 2001 www.xilinx.com 9
1-800-255-7778

http://www.xilinx.com

Xilinx/Synopsys Formality Verification Flow
R

The PERL script runs the following commands:

ngdbuild –p <family> <coregen_module>.edn

ngd2ver –r –w <coregen_module>.ngd <coregen_module>_ngd.v

xilperl xilinx2verplex.pl <coregen_module>_ngd.v > <coregen_module>_for.v

Known Issues Known issues with the Formal Verification flow using Xilinx designs and Formality are listed
below. Known issues reported after the date of this publication are documented in Xilinx
Answer Records, available at http://support.xilinx.com on the web.

1. Verification of RAM resources inferred by the synthesis tools is not supported by Formality.
This is because inferred components make it difficult for formal verification tools to find
appropriate compare points in the designs.

2. Verification with retiming turned on in synthesis is not supported by Formality. Synthesis
tools change and move around logic during retiming, and this causes difficulty for formal
verification tools attempting to find appropriate compare points between designs. If
retiming is turned on, some points do not compare successfully during formal verification.

3. Designs using distributed SelectRAM resources have difficulty matching to back-end
designs, because the implementation tools break up the SelectRAM instances into smaller
components, which makes it difficult for formality to compare the RTL and Implemented
versions of SelectRAM resources. The recommendation is either to not use SelectRAM
resources, or to use the small RAM16x1 SelectRAM primitive in the RTL design, as shown
in Figure 7.

Figure 7: 32-bit RAM Composed of Smaller Primitives

dpra1

X_RAMD32

dpra0

a0

dpra2

dpra3

d

a1

a2

a3

wclk

we

dpra4

a4

A0

DP_9

RAM16X1D

A1

A2

A3

D DPO

DPRA0SPO

DPRA1

DPRA2

DPRA3

WCLK

WE

A0

DP_10

F5MUX_0

X_MUX2

RAM16X1D

A1

A2

A3

D DPO

DPRA0SPO

DPRA1

IA

dpo

X413_05_091001

WSGAND

X_AND2

X_INV
I0 O

WSJAND

I O

I1

WSFAND

X_AND2

I0 O

I1

IB O

SEL

DPRA2

DPRA3

WCLK

WE
10 www.xilinx.com XAPP414 (v1.1) October 2, 2001
1-800-255-7778

http://www.xilinx.com
http://support.xilinx.com

Xilinx/Synopsys Formality Verification Flow
R

4. If the option is selected to bring GSR or GTS as a port in the back-annotated design, then
the compare points for these ports must be removed; otherwise, they are reported as
unmatched points by Formality. This can be accomplished via the Formality GUI by
selecting Setup > Compare Points > Remove in the pull-down menu, as shown in Figure 8.

5. Designs that are retargeted from one device to another without resynthesizing the design
can cause errors in Formality. Since the size and width of block RAM resources are
different in different devices, it is recommended to resynthesize to the new device when
retargeting a design. If the retargeting is done only at the back-end, some components are
mismatched in formal verification, since they do not match the components used in the RTL
design.

6. If the design instantiates the FDDRRSE or FDDRCPE components for dual-data-rate
ports, the SIMPRIMS component, X_MUXDDR, must be renamed to match the component
used in the front-end. Without doing this, these points result in mis-compares in Formality.

7. If the "-bp" option is used in Xilinx Map during Implementation, Formal verification does not
work correctly. The "-bp" switch pushes logic into unused block RAM areas, but these
changes makes logic equivalency checking impossible for the parts of the design pushed
inside block RAM areas, because Formality cannot see inside block RAM resources.

8. If the synthesis tool merges registers during the optimization process, this causes errors
during formal verification, because some compare points are missing for Formality. This
problem can be resolved by using a script called "makeconstraints," provided by Synopsys,
that generates a constraints file to inform Formality of the registers that were merged
during Synthesis by FPGA Compiler II. Note that this script works only with FPGA Compiler
II. This script is provided in text format in the Formality Run Scripts section.

9. Map inserts a pull-up for internal 3-state buffers. This causes some uncompared points in
formal verification. These can be worked around in these ways:

- Manually instruct formality to not compare these points.

- Remove the pull-up instantiations manually from the back-end netlist.

- Add pull-ups to internal 3-state buffers in the RTL design.

Figure 8: Removing Compare Point
XAPP414 (v1.1) October 2, 2001 www.xilinx.com 11
1-800-255-7778

http://www.xilinx.com

Xilinx/Synopsys Formality Verification Flow
R

Formality Run
Scripts

Formality can be run using either the GUI or command line scripts. This section provides two
command line scripts.

Formality Flow Script
This script lays out the basic formality verification flow and runs through most of the steps
outlined in the Verifying Design section.

create_cont rtl

create_cont post_syn

set search_path ". ./RTL $XILINX/verilog/formality/simprims
$XILINX/verilog/formality/unisims"

set hdlin_ignore_full_case false

set hdlin_ignore_parallel_case false

set hdlin_error_on_mismatch_message false

read_ver -c rtl [glob ./RTL/*.v]

source $XILINX/verilog/formality/unisims/unisims.fms

set_ref rtl:/WORK/<design_dir>

link $ref

current_cont post_syn

source $XILINX/verilog/formality/simprims/simprims.fms

read_verilog -container post_syn ./<design>.v.MOD

set_imp post_syn:/WORK/<design_dir>

link $impl

#set name_match_allow_subset_match true

set signature_analysis_matching true

set_compare_rule $impl -from {/f1} -to {}

#current_design $ref

#current_design $impl

source ./remove_cp_impl.fms

source ./set_constraints.fms

verify -no

report_failing_points > failing_points
12 www.xilinx.com XAPP414 (v1.1) October 2, 2001
1-800-255-7778

http://www.xilinx.com

Xilinx/Synopsys Formality Verification Flow
R

Workaround for Register Merging
This script provides the workaround for register merging by FPGA Compiler II. More details on
this issue are provided in the Known Issues section.

#!/bin/sh

fc2_report=$1

tmpfile=${fc2_report}$$

grep and get all of the Duplicate cells merges messages

get just the two paths

remove the single quotes

grep "Warning: Duplicate cells .*merged." ${fc2_report} | awk '{printf("%s
%s\n",$4,$6) }' | \

sed -e "s/\'/ /g" > ${tmpfile}

get the design name

designName=`cat ${tmpfile} | awk -F/ '{print $2}' | uniq | head -1`

remove the /designname

change <> to []

print the set_constraint commands

cat ${tmpfile} | sed -e "s/\/${designName}//g" | sed -e "s/</[/g" | sed -e "s/>/]/g" | \

awk '{printf("set_constraint coupled \" [file tail %s] [file tail %s] \" \

[file dirname [tr $ref%s]] \n",$1,$2,$1)}' > ${fc2_report}.constraints

if [-f ${tmpfile}] ; then

 rm ${tmpfile}

fi

Support
Information

For additional support on the Xilinx/Formality flow, contact Synopsys customer support. The
contact information is:

Email: Support_center@synopsys.com

Phone: (650) 584-4200

(800) 245-8005

Revision
History

The following table shows the revision history for this document.

Date Version Revision

09/18/01 1.0 Initial Xilinx release.

10/02/01 1.1 Changed Support Information.
XAPP414 (v1.1) October 2, 2001 www.xilinx.com 13
1-800-255-7778

http://www.xilinx.com

	Summary
	Introduction
	Software and Device Support
	Flow Summary
	Sample Flows
	RTL vs. Post-NGDBuild
	RTL vs post PAR

	Formality Flow
	Setting Up the Environment
	Setting Up Xilinx Verification Libraries

	Verifying Design
	Verification of Designs Containing Xilinx CoreGEN Components
	Known Issues
	Formality Run Scripts
	Formality Flow Script
	Workaround for Register Merging

	Support Information
	Revision History

