
Microcontrollers don’t make the world go
round, but they most certainly help us get
around in the world. You can find microcon-
trollers in automobiles, microwave ovens,
automatic teller machines, VCRs, point of
sale terminals, robotic devices, wireless tele-
phones, home security systems, and satellites,
just to name a very few applications.

In the never-ending quest for faster, better,
cheaper products, advanced designers are
now pairing complex programmable logic
devices (CPLDs) with microcontrollers to
take advantage of the strengths of each.

Microcontrollers are naturally good at
sequential processes and computationally
intensive tasks, as well as a host of non-
time-critical tasks. CPLDs such as Xilinx
CoolRunner™ devices are ideal for paral-
lel processing, high-speed operations, and
applications where lots of inputs and out-
puts are required.

Although there are faster and more power-
ful microcontrollers in the field, 8-bit
microcontrollers own much of the market
because of their low cost and low power
characteristics. The typical operational

speed of an 8-bit microcontroller is around
20 MHz, but some microcontroller cores
divide clock frequency internally and use
multiple clock cycles per instruction (oper-
ations often include fetch-and-execute
instruction cycles). Thus, with a clock divi-
sion of two and with each instruction tak-
ing up to three cycles, the actual speed of a
20 MHz microcontroller is divided by six.
This works out to an operational speed of
only 3.33 MHz.

CoolRunner CPLDs are much faster than
microcontrollers and can easily reach
system speeds in excess of 100 MHz.
Today, we are even seeing CoolRunner
devices with input to output delays as
short as 3.5 ns, which equates to impres-
sive system speeds as fast as 285 MHz.
CoolRunner CPLDs make ideal partners
for microcontrollers, because they not
only perform high-speed tasks, they per-
form those tasks with ultra low power
consumption.

Also, Xilinx offers free software and low
cost hardware design tools to support
CPLD integration with microcontrollers.
The Xilinx CPLD design process is quite
similar to that used on microcontrollers, so
designers can quickly learn how to parti-
tion their designs across a CPLD and a
microcontroller to maximum advantage.

So far, a design partition over a microcon-
troller and a CPLD sounds good in theory,
but will it work in the field? We will devote
the rest of this article to design examples that
show how you can enhance a typical micro-
controller design by utilizing the computa-
tional strengths of the microcontroller and
the speed of a CoolRunner CPLD.

Conventional Stepper Motor Control

A frequent use of microcontrollers is to run
stepper motors. Figure 1 depicts a typical
four-phase stepper motor driving circuit.
The four windings have a common con-
nection to the motor supply voltage (Vss),
which typically ranges from 5 volts to 30
volts. A high power NPN transistor drives
each of the four phases. (Incidentally,
MOSFETs – metal oxide semiconductor
field effect transistors – can also be used to
drive stepper motors.)

Innovations Hardware

Partitioning your design over a CPLD and a
microcontroller enhances speed and performance –
and reduces system design costs and time to market.

Get the Most Out of
Microcontroller-Based
Designs: Put a Xilinx
CPLD Onboard

36

by Karen Parnell
European Marketing Manager, High Volume Products, Xilinx
Karen.parnell@xilinx.com

mailto:karen.parnell@xilinx.com

Innovations Hardware

Each motor phase current may range from
100 mA to as much as 10 A. The transis-
tor selection depends on the drive current,
power dissipation, and gain. The series
resistors should be selected to limit the
current to 8 mA per output to suit either
the microcontroller or CPLD outputs.
The basic control sequence of a four-
phase motor is achieved by activating one
phase at a time.

At the low cost end, the motor rotor rotates
through 7.5 degrees per step, or 48 steps
per revolution. The more accurate, higher
cost versions have a basic resolution of 1.8
degrees per step. Furthermore, it is possible
to half-step these motors to achieve a reso-
lution of 0.9 degrees per step. Stepper
motors tend to have a much lower torque
than other motors, which is advantageous
in precise positional control.

The examples that follow show how either
a microcontroller or a CPLD can be used
to control stepper motor tasks to varying
degrees of accuracy. We can see from
Figure 2 that the design flow for both is
quite similar.

Both flows start with text entry. Assembly
language targets microcontrollers. ABEL
(Advanced Boolean Expression Language)
hardware description language targets
CPLDs. After the text “description” is
entered, the design is either compiled

microcontroller or CPLD. We can then pro-
gram the devices in-system using an inex-
pensive ISP (in-system programming) cable.

One of the advantages of a CPLD over a
microcontroller occurs during board level
testing. Using a JTAG boundary scan, the
CPLD can be fully tested on the board. The
CPLD can also be used as a “gateway” to test
the rest of the board functionality. After the
board level test is completed, the CPLD can
then be programmed with the final code in-
system via the JTAG port.

(A JTAG boundary scan – formally known
as IEEE/ANSI standard 1149.1_1190 – is a
set of design rules, which facilitate testing,
device programming, and debugging at the
chip, board, and system levels.)

Microcontrollers can include monitor debug
code internal to the device for limited code
testing and debugging. With the advent of
flash-based microcontrollers, these can now
also be programmed in-system.

(microcontroller) or synthesized (CPLD).
Next, the design is verified by some form of
simulation or test. Once verified, the design
is downloaded to the target device – either a

0100

1111

1110
1100

Assembly Language or C Code

Specification

Compile

Simulation/
In-circuit
Emulation

Verification

Download/
Program

Implementation

Microcontroller

0100

1111

1110
1100

Hardware Description Language (HDL)
ABEL or VHDL

Specification

Synthesis

Simulation

Verification

Download/
Program

Implementation

CPLD

Fitting

Test
Vectors

Object
Code

Compiled Code/
Machine Code

Netlist

Microcontroller Design Flow CPLD Design Flow

37

Figure 1 - Stepper motor controller

Figure 2 - Design flow comparisons

Using a Microcontroller to Control
a Stepper Motor

Figure 3 shows assembly lan-
guage targeting a Philips
80C552 microcontroller. The
stepper motor the microcon-
troller will control has four sets
of coils. When logic level pat-
terns are applied to each set of
coils, the motor steps through
its angles. The speed of the step-
per motor shaft depends on how
fast the logic level patterns are
applied to the four sets of coils.
The manufacturer’s motor spec-
ification data sheet provides the
stepping motor code. A very
common stepping code is given
by the following hexadecimal
numbers:

A 9 5 6

Each hex digit is equal to four
binary bits:

1010 1001 0101 0110

These binary bits represent voltage levels
applied to each of the coil driver circuits.
The steps are:

1010 5V 0V 5V 0V

1001 5V 0V 0V 5V

0101 0V 5V 0V 5V

0110 0V 5V 5V 0V

If you send this pattern repeatedly, then the
motor shaft rotates. The assembly language
program in Figure 3 continually rotates the
stepper motor shaft. By altering the value
of R0 in the delay loop, this will give fine
control over speed; altering the value of R1
will give coarse variations in speed.

Stepper Motor Control Using a CPLD

Figure 4 shows a design written in ABEL
hardware description language. Within the
Xilinx CPLD, four inputs are required to
fully control the stepper motor. The clock
(clk) input synchronizes the logic and
determines the speed of rotation. The
motor advances one step per clock period.
The angle of rotation of the shaft will

depend on the specific motor
used. The direction (dir) control
input changes the sequence at the
outputs (ph1 to ph4) to reverse the
motor direction. The enable input
(en) determines whether the
motor is rotating or holding. The
active low reset input (rst) initial-
izes the circuit to ensure the cor-
rect starting sequence is provided
to the outputs.

The phase equations (ph1 to ph4)
are written with a colon and
equal sign (:=) to indicate a reg-
istered implementation of the
combinatorial equation. Each
phase equation is either enabled
(en), indicating that the motor is
rotating, or disabled (!en), indi-
cating that the current active
phase remains on and the motor
is locked. The value of the direc-
tion input (dir) determines
which product term is used to
sequence clockwise or counter-
clockwise. The asynchronous

equations (for example, ph1.AR=!rst)
initialize the circuit.

The ABEL hardware description motor
control module can be embedded with-
in a macro function and saved as a re-
useable standard logic block, which can
be shared by many designers within the
same organization – this is the beauty of
design re-use. This “hardware” macro
function is independent of any other
function or event not related to its oper-
ation. Therefore, it cannot be affected
by extraneous system interrupts or other
unconnected system state changes. Such
independence is critical in safety sys-
tems. Extraneous system interrupts in a
purely software-based system could
cause indeterminate states that are hard
to test or simulate.

Innovations Hardware

38

$MOD552 ; include file for 80C552
ORG 0 ; reset address
SJMP START ; jump over reserved area
ORG 30H:program start address

START: MOV P1,#0AH;move hex 0A into lower
;4 bits of port 1

ACAL DELAY ;call subroutine step hold
;delay

MOV P1, #09H ;move hex 09 into lower
;4 bits of port 1

ACALL DELAY
MOV P1,#05H
ACALL DELAY
MOV P1, #06H
ACALL DELAY
SJMP START ;repeat stepping pattern

;
;Double loop delay

DELAY: MOV R1, #0FFH ;put hex FF into register 1
OUTER: MOV R0, #0FFH ;put hex FF into register 0
INNER: DJNZ R0, INNER;decrement r0 until it is 0

DJNZ R1,OUTER;dec r1, go to outer until
; r1 = 0

RET ;return from subroutine

Figure 3 - Assembly language program to rotate the
stepper motor shaft

MODULE step1
Title 'step1_abl'

Declarations
clk PIN; //input to determine speed of rotation
en PIN; //determines whether motor rotating or holding
dir PIN; //motor direction control
rst PIN; //resets & initialises circuit
ph1 PIN istype 'reg'; //output to motor phase 1
ph2 PIN istype 'reg'; // output to motor phase 2
ph3 PIN istype 'reg'; // output to motor phase 3
ph4 PIN istype 'reg' ; // output to motor phase 4

Equations
//Stepper motor controller description
ph1 := !dir * en * (!ph1 * !ph2 * !ph3 * !ph4)

+ dir * en * (!ph1 * ph2 * !ph3 * !ph4)
+ !en * ph1;

ph2 := !dir * en * (!ph1 * !ph2 * !ph3 * !ph4)
+ dir * en * (!ph1 * ph2 * !ph3 * !ph4)
+ !en * ph2;

ph3 := !dir * en * (!ph1 * !ph2 * !ph3 * !ph4)
+ dir * en * (!ph1 * ph2 * !ph3 * !ph4)
+ !en * ph3;

ph4 := !dir * en * (!ph1 * !ph2 * !ph3 * !ph4)
+ dir * en * (!ph1 * ph2 * !ph3 * !ph4)
+ !en * ph4;

ph1.PR = !rst;
ph2.AR = !rst;
ph3.AR = !rst;
ph4.AR = !rst;

end step1

Stepper

dir

en

clk
rst

ph1

ph2

ph3

ph4

Macro Function
Figure 4 - Using a CPLD to
control a stepper motor

39

PC-Based Motor Control

Our next example (Figures 5 and 6) is more
complex, because now the motor is con-
nected to a PC-based system via an RS232
serial connection. This implementation has
a closed loop system controlling rotation,
speed, and direction. There is also the addi-

tion of a safety-critical emergency stop,
which has the highest level of system inter-
rupt. This means that if the emergency stop
is activated, it will override any other
process or interrupt and will immediately
stop the motor from rotating.

This design example uses only a microcon-
troller. The main functions it performs are:

• Interrupt control

• Status feedback to the PC

• Accurate motor control.

This configuration would probably be
implemented in a single microcontroller

device with specific motor control periph-
erals, such as a capture-compare unit. This
configuration would also need a built-in
UART (Universal Asynchronous Receiver
Transmitter). These extra functions usually
add extra cost to the overall microcon-
troller device.

Due to the nature of the microcontroller,
the interrupt handling must be thoroughly
mapped out, because interrupts could
affect the speed of the motor. In a safety-
critical system, emergency stops imple-
mented in software require exhaustive test-
ing and verification before they can be used

in the final system to ensure that they oper-
ate properly under all software related con-
ditions, including software bugs and
potential software states. The output from
the motor rotation sensor is very fast, so
control of the speed of the motor could
cause problems if system interrupts
occurred.

Design Partitioning

As we noted before, microcontrollers are
very good at computational tasks, and
CPLDs are excellent in high speed systems
and have an abundance of I/Os. Figure 7
shows how we can use a microcontroller
and a CPLD in a partitioned design to
achieve the greatest control over a stepper
motor.

The microcontroller:

• Interprets ASCII commands from the PC.

• Reports status of the motor to the PC.

• Converts required speed into control
vectors (small mathematical algorithm).

• Decides direction of rotation of the
motor.

• Computes stop point and sets a value
into the pulse count comparison register.

• Monitors progress (control loop) and
adapts speed.

• Recovers from emergency stops.

Innovations Hardware

Emergency Stop
Highest Priority
Interrupt

Motor
Controller

Motor Position Feedback (interrupt)

Sense Line

Stepper Motor

360

M

RS232

Maxim
RS232 I/F

Start Bit

Microcontroller
To Stepper
Motor

Speed/Position
Feedback
from Motor

RS232 I/P

Emergency Stop I/P
Highest Priority

RS232

Start Bit (Interrupt or keep polling?)

UART

Sense Line

360

M
Speed and
Direction
Control

Stepper Motor

Counter

M
ic

ro
co

n
tr

o
lle

r

Register

Comparator

FIFO

FIFO

UART

Rx

Tx

Emergency Stop Emergency Stop

Interrupt

Motor Position
Feedback

BYTE

BYTE

Microcontroller Data Bus

Implemented in CPLD

Could be implemented in CPLD
(microcontroller functionality
dependent)

Figure 5 - Design partitioning

Figure 6 - Microcontroller Implementation

Figure 7 - Partitioned Design: Microcontroller and CPLD

Innovations Hardware

Although the microcontroller performs
recovery from emergency stops, the actual
emergency stop is implemented by the
CPLD, because this is the safety-critical
part of the design. Because the CPLD is
considered independent hardware, safety-
critical proving and sign off are more
straightforward than software safety sys-
tems. Additionally, all of the high-speed
interface functions are also implemented in
the CPLD, because it is very fast and has
abundant inputs and outputs.

Meanwhile, the UART and FIFO (First in,
First Out) sections of the design can be
implemented in the microcontroller in the
form of a costed microcontroller peripher-
al or may be implemented in a larger more
granular programmable logic device like a
field programmable gate array (FPGA) –
for example, a Xilinx Spartan™ device.
Using a programmable logic device in a
design has the added benefit of the ability
to absorb any other discrete logic elements
on the printed circuit board or in the total
design into the CPLD. Under this new
configuration, we can consider the CPLD
as offering hardware-based subroutines or
as a mini co-processor.

The microcontroller still performs ASCII
string manipulation and mathematical
functions, but it now has more time to per-
form these operations – without interrup-
tion. The motor control is now independ-
ently stable and safe.

Microcontroller/CPLD design partitioning
can reduce overall system costs. This solu-
tion uses low cost devices to implement the
functions they do best – computational
functions in the microcontroller and high
speed, high I/O tasks in the CPLD. In safe-
ty-critical systems, why not put the safety
critical functions (e.g., emergency stop), in
hardware (CPLDs) to cut down safety sys-
tem approval time scales?

System testing can also be made easier by
implementing the difficult-to-simulate
interrupt handling into programmable
logic. Low cost microcontrollers are now in
the region of US$1.00, but if your design
requires extra peripherals (e.g., capture-
compare unit for accurate motor control,

analog-to-digital converters, or UARTs),
this can quadruple the cost of your micro-
controller. A low cost microcontroller cou-
pled with a low cost CPLD from Xilinx can
deliver the same performance – at approxi-
mately half the cost.

In low power applications, microcon-
trollers are universally accepted as low
power devices and have been the automat-
ic choice of designers. The CoolRunner
family of ultra low power CPLDs are an
ideal fit in this arena and may be used to
complement your low power microcon-
troller to integrate designs in battery pow-
ered, portable designs (<100 µA current
consumption at standby).

Conclusion

Microcontrollers are ideally suited to com-
putational tasks, whereas CPLDs are suited
to very fast, I/O intensive operations.
Partitioning your design across the two
devices can increase overall system speeds,
reduce costs, and potentially absorb all of
the other discrete logic functions in a
design – thus presenting a truly reconfig-
urable system.

The design process for a microcontroller is
very similar to that of a programmable
logic device. This permits a shorter learn-
ing and designing cycle. Full functioning
software design tools for Xilinx CPLDs are
free of charge and may be downloaded
from the Xilinx website. Thus, your first
project using CPLDs can not only be quick
and painless, but very cost-effective.

40

The following URLs provide detailed
information on the topics and
hardware discussed in this article:

Xilinx Website: www.xilinx.com

Xilinx CoolRunner CPLDs:
www.xilinx.com/products/xpla3.htm

Xilinx Free CPLD design software:
www.xilinx.com/products/software/
webpowered.htm

Year 2001 Worldwide Xilinx
Event Schedules

Year 2001 North American Event Schedule
April 10-12 Embedded Systems Conference 2001

San Francisco, CA
April 22-26 NAB 2001

Las Vegas, NV
April 30 - May 2 FCCM 2001

Rohnert Park, CA
May 8-10 ICASSP 2001

Salt Lake City, UT
May 8-10 Networld + Interop Spring 2001

Las Vegas, CA
May 15-16 Applied Computing Conference 2001

Santa Clara, CA
May 22 Embedded Computing Show 2001

Phoenix, AZ
May 24 Embedded Computing Show 2001

Albuquerque, NM
June 18-20 38th Design Automation Conference

Las Vegas, CA
June 24-27 2001 ASEE Conference & Expo

Albuquerque, NM
June 21-23 WITI Technology Summit 2001

Santa Clara, CA
July 16-20 NSREC 2001

Vancouver, BC
Aug 14-16 Embedded Internet Conference 2001

San Jose, CA
Sept 2001 SNUG 2001 Boston

Boston, MA
Sept 26-28 MAPLD 2001

Johns Hopkins, MD
Oct 1-4 Communication Design Conf. 2001

San Jose, CA
Oct 10-13 Frontiers in Education 2001

Reno, NV
Oct 29-Nov 1 NCF Infovision 2001

Chicago, IL
Oct 30 Embedded Computing Show 2001

San Diego, CA
Year 2001 European Event Schedule
May 16 - 17 ESS 2001 - Embedded Systems Show

London, England
Oct 9 - 11 Embedded Systems Conference

Stuttgart, Germany
Year 2001 Asia Pacific Event Schedule
March 26-27 IIC 2001

Shanghai, China
March 29-30 IIC 2001

Beijing, China
April 2-3 IIC 2001

Shenzhen, China
June 27-28 IIC Expo 2001

Seoul, Korea
July 2-3 IIC Expo 2001

Taipei, Taiwan
Oct 3-4 EDA&T 2001

Hsinchu, Taiwan
Nov 2001 Xilinx Technical Seminars 2001

Asia Pacific
Year 2001 Japanese Event Schedule
June 2001 Xilinx KK Expo 2001

Tokyo and Osaka, Japan
Nov 2001 Xilinx Technical Seminars 2001

Japan and SE Asia
Nov 2001 MST Fair 2001

Tokyo, Japan

For more information about Xilinx Worldwide Events, please contact one
of the following Xilinx team members or see our website at:
www.xilinx.com/company/events.htm
• North American Shows: Darby Mason-Merchant at: darby.mason-merchant@xilinx.

or Jennifer Waibel at: jennifer.waibel@xilinx.com
• European Shows: Andrea Fionda at: andrea.fionda@xilinx.com

or Andrew Stock at: andrew.stock@xilinx.com
• Japanese Shows: Yumi Homura at: yumi.homura@xilinx.com
• Asia Pacific Shows: Mary Leung at: mary.leung@xilinx.com

products/xpla3.htm
products/software/webpowered.htm
company/events.htm
mailto:darby.mason-merchant@xilinx.com
mailto:jennifer.waibel@xilinx.com
mailto:andrea.fionda@xilinx.com
mailto:andrew.stock@xilinx.com
mailto:yumi.homura@xilinx.com
mailto:mary.leung@xilinx.com

