
Summary This application note describes how the Virtex™-II architecture can be leveraged to implement
a Double Data Rate (DDR) Fast Cycle RAM (FCRAM) controller.

Introduction Typical DRAM memories are based on a common memory core and cell array. Starting with this
same core technology, slight changes in the peripheral logic circuitry have allowed a wide range
of higher performance memories to be created, such as EDO, SDRAM, DDR SDRAM, and
Direct Rambus DRAM (RDRAM).

However, in continuing to use this same core technology, memories have also inherited the
same limitations that exist in the core architecture. So rather than try to continue to target this
interface, FCRAM boosts internal performance by redesigning the internal DRAM core. This
redesigned core decreases memory latency as well as power consumption. FCRAM therefore
offers a great replacement for traditional memory technologies any time large memory
densities, high effective bandwidth, or low power consumption are required. Some typical uses
of FCRAM range from servers and hardware accelerators to networking devices. FCRAM™ is
a trademark of Fujitsu Ltd., Japan.

This application note describes a FCRAM controller design implemented in Virtex-II devices. A
brief overview of FCRAM basics are presented, followed by a detailed description of the
implemented controller.

DDR FCRAM
Review

Basics
This section is a general overview for those unfamiliar with the FCRAM interface and operation.
Those already familiar with this memory can go directly to the FCRAM Controller Design
section.

FCRAM devices operate at a core voltage of 2.5V with SSTL-II I/O. This application note
targets the first revision (indicated by FCRAM speed grades -22/-24/-30), which have a
maximum clock frequency of 154 MHz. These devices are offered by Fujitsu and Toshiba in
256 Mb densities with a x8 or a x16 configuration (these refer to the number of data (DQ) pins
per device).

FCRAM uses a DDR interface that transfers data on both the rising and falling edge of the clock
(CLK). Because this effectively doubles the data throughput of the device while maintaining the
same clock frequency, this technique has become quite popular in many DRAMs. The rising
(positive) clock edge is defined at the point in which CLK transitions High and CLK transitions
Low.

FCRAMs are addressed by row (upper address), column (lower address), and bank (typical
FCRAMs have four banks). A memory access (a read or a write operation) is burst oriented,
meaning that a memory access starts at a selected bank and address and continues for a set
number in a programmed sequence.

The FCRAM control logic consists of two signals, CS and FN. Each FCRAM operation is
determined by two consecutive command inputs. The first command determines the read

Application Note: Virtex-II Series

XAPP266 (1.0) February 27, 2002

Synthesizable FCRAM Controller
Author: Curtis Fischaber

R

XAPP266 (1.0) February 27, 2002 www.xilinx.com 1
1-800-255-7778

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Synthesizable FCRAM Controller
R

(RDA) or write (WRA) branch of the controller state machine. Following an RDA command,
either a read command (LAL) or a mode register set (MRS) command can be executed.
Following a WRA command, either a write command (LAL) or a memory refresh (REF)
command can be executed.

An overview of the FCRAM state machine is shown in Figure 1. This diagram has been
simplified for single bank operation. The dashed lines indicate an automatic sequence.

All FCRAM address and command signals are latched in by the FCRAM on the positive edge
of clock. Similar to conventional DDR DRAMs, FCRAM uses a bidirectional data strobe signal
(DQS). This strobe is typically used as the clock to capture the data during both reads and
writes. During a memory read, the strobe is sent edge aligned with the data from the FCRAM.
Therefore, it is the responsibility of the controller to delay the strobe in order to capture the data.
During a memory write, the controller must deliver the strobe center-aligned with the data at the
FCRAM pins. The FCRAM device then internally matches the delays between the DQ and DQS
to capture the data. The FCRAM specification dictates that for every byte of data (eight DQ
lines) there is a DQS.

Read Operation
The FCRAM read command (Figure 2) is initiated by the RDA command. This command is
issued by asserting CS Low and asserting FN High. The target bank and upper address are
activated during the RDA command. On the following clock cycle, the LAL command is given.
This command is issued by deasserting CS High. The lower address is activated during the
LAL command.

Data is available from the controller CAS latency (CL) cycles after the read command is issued.
The rising and falling edges of DQS indicate valid data on the DQ bus. DQS continues to toggle
until the burst length is complete.

Figure 1: FCRAM State Machine Diagram

Active
(Restore)

PDEN
(PD = L)

PDEX
(PD = H)

MRS

RDA

LALLAL

REF

WRA

PD = L

SELFX
(PD = H)

x266_01_090601

SELF-
REFRESH

AUTO-
REFRESH

WRITE
(Buffer)

READ

MODE
REGISTER

DESL
(Idle)

POWER
DOWN

Active
2 www.xilinx.com XAPP266 (1.0) February 27, 2002
1-800-255-7778

http://www.xilinx.com

Synthesizable FCRAM Controller
R

Write Operation
The FCRAM write command (Figure 3) is initiated by the WRA command. This command is
issued by asserting CS Low and deasserting FN Low. The target bank and upper address are
activated during the WRA command. On the following clock cycle, the LAL command is given.
This command is issued by deasserting CS High. The lower address is activated during the
LAL command.

The data must be presented TDS (data-in setup time) prior to the data strobe (DQS) edge. The
first rising edge of DQS typically occurs write data latency (WL) cycles after the LAL command
has been issued. The remaining data inputs must be supplied on the subsequent falling and
rising edge of DQS until the burst length is complete.

Figure 2: Read Operation Timing

CLK

0 1 2 3 4 5

CLK

COMMAND

ADDR

CAS

Q0

Q0 Q1 Q2 Q3

Q1 Q2 Q3

UA

BANK

DQS

CL = 2

DQ

DQS

DQ

CL = 3

x266_02_090401

Latency = 2

CAS
Latency = 3

DESLDESLDESLLALRDA

BA X X X

LA X X X

X

X

X

X

X

DESL
XAPP266 (1.0) February 27, 2002 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

Synthesizable FCRAM Controller
R

Mode Register Set (MRS)
Mode registers define the specific FCRAM mode of operation. On power up, the mode registers
are undefined and must be programmed. Once programmed, the register contents are
maintained until the power is lost, or until another MRS command is issued and its contents
updated.

The FCRAM MRS mode is initiated by the RDA command. This command is issued by
asserting CS Low and asserting FN High. In setting the mode registers, the bank and address
inputs are ignored during the RDA command. On the following clock cycle, the MRS command
is given. This command is issued by asserting CS Low. The values for configuring the FCRAM
are issued on the bank and address pins during the MRS command.

Typical FCRAMs have two mode registers, standard, and extended mode registers. Each of
these mode registers must be separately configured and are selected based upon the bank
input during the MRS command.

The address pins during the MRS command contain the desired FCRAM configuration
information. The standard mode register configuration programs the Burst Length (A[2:0]), the
Burst Type (A3), the CAS Latency (A[6:4]), and the Test Mode (A7).

The extended mode register configuration programs the DLL Enable (A0) and Output Driver
Impedance Control (A1).

Burst Length (BL)

Read and write accesses to the FCRAM are burst oriented. This means that once a row and
column are selected, a read or write command will progress across "burst length" number of
columns. The burst length setting is programmable, and FCRAM memories support bursts of
two and four locations.

Figure 3: Write Operation Timing

CLK

CLK

COMMAND

ADDR

CAS

Q1 Q3

Q1 Q3

BANK

DQS

WL = 1

DQ

DQS

DQ

WL = 2

x266_03_062701

Latency = 2

CAS
Latency = 3 TDS

LAL DESL DESL DESL DESL

LA X X X X X

XXXXX XBA

WRA

UA

Q0 Q2

Q2Q0
4 www.xilinx.com XAPP266 (1.0) February 27, 2002
1-800-255-7778

http://www.xilinx.com

Synthesizable FCRAM Controller
R

Burst Type (BT)

Accesses within a burst can be programmed to be sequential or interleaved.

CAS Latency (CL)

During a read operation, CL is the delay in clock cycles between the registration of a read
command (LAL) and the point at which data is valid. During a write operation, CL is the delay
in clock cycles between the registration of the write branch selection (WRA) and the point at
which data must be supplied to the FCRAM.

Test Mode

Test mode operation is reserved for supplier use. During normal operating mode, this bit should
be set to zero.

DLL Enable

By setting this bit to zero, the DLL is enabled. Not all suppliers support disabling the DLL.

Output Driver Impedance Control

At the time of this application note, this field is currently not supported by FCRAM
manufacturers. Therefore, this field should be set to zero.

Refresh
FCRAM is similar to other DRAMs in that the conventional capacitor cell is used, which requires
refresh operations to be periodically performed in order to maintain the data written into the cell.
FCRAM supports auto-refresh and self-refresh.

Auto-refresh is initiated with the WRA command (asserting CS Low and deasserting FN Low),
followed by the REF command (asserting CS Low). If the PD pin is asserted Low within two
clock cycles of the REF command, the FCRAM will enter the self-refresh state and remain
there until PD is released.

FCRAM
Controller
Design

This section describes the design of a Virtex-II FCRAM controller. The controller has a user
interface and an FCRAM interface. The design is written in Verilog and can be modified easily
to fit different memory configurations.

The controller design has the following features:

• Programmable burst lengths of two and four

• Programmable CAS latency of two and three

• User initiated and controller initiated refresh

• Initialization sequence

• "Hidden" implementation of lower-level FCRAM functions

• Uses DQS to capture data during an FCRAM read

• Interfaces with DDR FCRAM up to 154 MHz in a Virtex-II -5 device.

Unlike traditional SDRAM, FCRAM does not provide the option to keep the bank/row open after
a transaction. Instead, it automatically closes the row and precharges the bank after each
access. Therefore, the user must issue a new read or write for each "burst-length" sized
access.

Since the FCRAM can only operate with burst lengths of two or four, utilizing the maximum
throughput of the FCRAM device could potentially be a rather large overhead for the user.
Because these burst lengths are each completed with two clock cycles, the user would have to
continually issue a new memory access command every other clock cycle. Before these
commands could be issued, the user should check for possible FCRAM violations, such as
bank collisions, read-write turnaround times and an expired refresh counter. Further
information about these violations can be found in the FCRAM Controller Operation section.
XAPP266 (1.0) February 27, 2002 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

Synthesizable FCRAM Controller
R

Rather than require the user interface to be aware of these issues and take the appropriate
action, the FCRAM controller simplifies the user interface by monitoring for these types of
violations. The user then can simply issue a memory access command, a starting bank and
address location, the number of transfers to be completed, and the FCRAM controller
automatically handles all the details of the implementation.

Figure 4 is the top-level block diagram of the FCRAM controller. The module fcram_cntrl is the
top level FCRAM controller block (Figure 5). It contains sub-modules such as the clock
generation circuitry, the controller state machine, the refresh counter, the address counter, and
the data path to the FCRAM. All signal references and descriptions are with respect to this
module. The module user_int is a placeholder for the user interface. In this example, it passes
on (either directly or through a pipeline stage) the system signals to the FCRAM controller.

Figure 4: Top Level Block Diagram

ddr_clk

ddr_clkb

ddr_ad

ddr_ba

ddr_csb

ddr_fn

ddr_pdb

ddr_dq

ddr_dqs

DDR
FCRAM

FCRAM
CONTROLLER

(fcram_cntrl)

VIRTEX-II

u_reset_n

u_clk

u_addr

u_cmd

u_data_i

u_data_o

fpga_clk

u_num_xfers

u_ack

u_data_req

u_data_val

u_init_parms

u_ref_parms

u_ref_enable

USER
INTERFACE

(user_int)

x266_04_011802
6 www.xilinx.com XAPP266 (1.0) February 27, 2002
1-800-255-7778

http://www.xilinx.com

Synthesizable FCRAM Controller
R

Figure 5: fcram_cntrl Block Diagram

ddr_dq

ddr_dqs

u_clk
clk_dcm

ddr_clk
ddr_clkb

clk

addr_cntrlu_addr

u_cmd

u_data_i

u_num_xfers

u_ack

u_init_parms

u_ref_parms

u_ref_enable

u_data_req

ddr_ad

ddr_ba

ddr_csb

ddr_fn

ddr_pdb

burst_length

cas_latency

controller

refresh_cntrl refresh

data_path
data_strobe

u_data_o

bank_conflict

data_mask

clk90
rclk

x266_05_011802

u_data_val
XAPP266 (1.0) February 27, 2002 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com

Synthesizable FCRAM Controller
R

FCRAM
Controller
Operation

Table 1 lists the user interface signals to the FCRAM controller. Table 2 lists the interface
signals to the FCRAM devices.

Table 1: User Interface to FCRAM Controller

Pin Name Direction Width Description

u_reset_n In 1 Reset, active Low

u_clk In 1 Input clock

u_addr In 27 Address: u_addr = {bank(2), row(15), col(10)}

u_cmd In 3 Command to be executed by controller

[0 x x] NOP
[1 0 0] Write Request
[1 1 0] Read Request
[1 0 1] Self Refresh Request
[1 1 1] Auto Refresh Request

u_data_i In 32 Write Data

u_data_o Out 32 Read Data

u_num_xfers In 4 Number of 32-bit data values to transfer

u_ack Out 1 The controller has acknowledged a command issued by the user interface
(guarantees execution)

u_data_req Out 1 Write data value (u_data_i) is supplied by user

u_data_val Out 1 Read data value (u_data_o) is valid

u_init_parms In 10 Initialization parameters: u_init_parms = {CL(3),BL(3),TE,BT,DE,DIC}

u_ref_parms In 20 Refresh interval parameters:

u_ref_parms = {ref_burst_cnt[3:0], ref_interval_cnt[15:0]}

u_ref_enable In 1 Enable automatic controller refresh

fpga_clk Out 1 FCRAM Controller internal clock

Notes:
1. MSB: In this design, the higher order bits are the MSB. For example, u_cmd[2:0] = 100 is a write request

Table 2: Controller Interface to the FCRAM Devices

Pin Name Direction Width Description

ddr_clk Out 1 Clock

ddr_clkb Out 1 Inverted clock

ddr_ad Out 15 Address

ddr_ba Out 2 Bank address

ddr_csb Out 1 Command

ddr_fn Out 1 Command

ddr_pdb Out 1 Command

ddr_dq In/Out 16 Data

ddr_dqs In/Out 2 Data Strobe
8 www.xilinx.com XAPP266 (1.0) February 27, 2002
1-800-255-7778

http://www.xilinx.com

Synthesizable FCRAM Controller
R

Data Bus Widths

This application note targets a x16 FCRAM device. However, the data widths are
parametizable, and may be easily modified in the HDL code to support various memory
configurations, including multiple FCRAM devices. Specific details about modifying memory
configurations can be found in Appendix A. For illustrative purposes, this application note
refers to a data transfer on the user interface as a 32-bit transfer. If the data width is changed,
replace the 32-bit references found throughout this application note with the modified value.

No Operation (IDLE/DESL)
Set u_cmd = 0xx

This command keeps the controller in an IDLE state.

Initialization
The initialization sequence allows the user to set the mode registers of the FCRAM (Table 3).
This initialization stage occurs automatically at power on, as well as every time the controller is
reset. Therefore, the user is not required to issue commands such as Mode Register Set (MRS)
and Extended Mode Register Set (EMRS).

During this sequence, the user interface supplies the initialization parameters to the FCRAM
controller. Initialization parameters are passed from the user interface via u_init_parms, and
are described as:

u_init_parms[9:0] = {CL(3),BL(3),TE,BT,DE,DIC}

Table 3: Initialization Parameter Description

Parameter Name Width Description

CL 3 CAS Latency
[0 0 x] RESERVED
[0 1 0] 2
[0 1 1] 4
[1 x x] RESERVED

BL 3 Burst Length
[0 0 0] RESERVED
[0 0 1] 2
[0 1 0] 4
[0 1 1] RESERVED
[1 x x] RESERVED

TE 1 Test Mode
[0] REGULAR MODE (default)
[1] TEST MODE

BT 1 Burst Type
[0] SEQUENTIAL
[1] INTERLEAVE

DE 1 DLL Enable
[0] DLL ENABLE (default)
[1] DLL DISABLE

DIC1 1 Output Drive Impedance Control
[0] STANDARD
[1] RESERVED

Notes:
1. The DIC option is not currently supported by FCRAM manufacturers, but has been included for

future compatibility. Therefore, this bit must be tied Low. [u_init_parms(0)=0]
XAPP266 (1.0) February 27, 2002 www.xilinx.com 9
1-800-255-7778

http://www.xilinx.com

Synthesizable FCRAM Controller
R

When the reset signal is released, the system first waits for the DCM to lock. Once this occurs,
the controller latches in the u_init_parms vector and begins the reset/initialization process.
Table 4 shows the FCRAM process specifications.

The EMRS, MRS, and REF commands (after the reset condition completes) can occur in any
order. Because Ilock is with respect to the EMRS command, this reference design issues the
commands in the order listed to minimize the required initialization time.

The reference design issues all commands except those indicated with an asterisk. The Ilock
clock cycles must occur before issuing the final four Write commands (one to each bank).
Some possible ways to complete the startup sequence include issuing the required commands
from the user interface at start-up, or modifying the HDL code. Once the commands are issued,
the initialization sequence is complete and the FCRAM device is ready for normal operation.
Any commands issued while the controller is in an initialization process will violate the FCRAM
specification. Further details are provided in the Initialization Sequence.

Refresh
There are two ways that refreshes can be performed.

User Initiated Refresh

The user interface indicates that this mode is to be used by setting u_ref_enable = 0. In
this mode, the user is required to issue the desired refresh command to the FCRAM controller.
This is done by setting u_cmd = 101 (for Self-Refresh) or u_cmd = 111 (for Auto-Refresh).
Once the controller has acknowledged this command (by asserting u_ack), the controller then
handles the refresh by issuing the required commands to the FCRAM. In the case of a Self-
Refresh request, the controller remains in the refresh state as long as the Self-Refresh
command is given.

It is the responsibility of the user interface in this mode to ensure refresh commands occur often
enough to meet the FCRAM specification.

Controller Initiated Refresh

The user interface indicates that this mode is to be used by setting u_ref_enable = 1. In
this mode, the controller automatically issues an auto-refresh command to the FCRAM when
the refresh interval timer expires.

These refresh commands are only acknowledged during incoming request boundaries. That is,
a refresh command will not interrupt a command currently in progress or be inserted in the

Table 4: Powerup Initialization and Reset Conditions

Command Comments

DESL 12 or more cycles

MRS MRS command with reset address

DESL Maintain same address for four or more cycles

DESL Change address

DESL Maintain previous address for four or more cycles - End of RESET condition

EMRS Set extended mode register

MRS Set mode register

REF Issue two or more auto-refresh commands

*Ilock Wait for Ilock clock cycles after EMRS

*WRITE Issue a write command to all four banks
10 www.xilinx.com XAPP266 (1.0) February 27, 2002
1-800-255-7778

http://www.xilinx.com

Synthesizable FCRAM Controller
R

middle of a multiple burst access. Once the refresh interval timer expires and the current
operation completes, the refresh will have highest priority.

The user passes parameters to the controller as follows:

u_ref_parms = {ref_burst_cnt(4), ref_interval_cnt(16)}

where,

ref_burst_cnt specifies how many refreshes should occur in a row (burst refresh), and
ref_interval_cnt specifies how often (in clock cycles) a refresh should occur.

Burst Refresh

According to the FCRAM specification, one must wait at least TREFI-MIN (auto-refresh interval)
before another auto-refresh command is issued. It also states that the maximum time between
auto-refreshes is TREFI-MAX. But these specifications can be distributed by issuing multiple
refreshes (up to eight) in a row. This is the concept of a burst refresh.

For example, if at time zero a single auto-refresh command is issued, the next auto-refresh
cannot happen until TREFI-MIN cycles and must happen before TREFI-MAX cycles. If instead a
burst of n auto-refreshes occur, these can be done immediately in a row (do not have to wait
TREFI-MIN cycles), but one must now wait n x (TREFI-MIN) cycles before the next auto-refresh
command, and no more than n x (TREFI-MAX).

Therefore, the more refreshes done in a "burst", the longer one can wait before another auto-
refresh must be issued. However, this also will tie up the memory for a longer time while the
auto-refreshes are being performed.

Calculating Refresh Interval

If one is not careful in choosing this value, it is possible to violate the FCRAM specification. One
should first choose the number of refreshes to be performed in a row (ref_burst_cnt).
Given the TREFI minimum and maximum values from an FCRAM data sheet, as well as the
clock frequency (TCK), one can calculate the values as follows:

ref_interval_cntMIN=(tREFI-MIN)x(ref_burst_cnt)/TCK
ref_interval_cntMAX=(tREFI-MAX)x(ref_burst_cnt)/TCK –(u_num_xfers+IRC)

It could be possible that a read or a write transaction is in progress when the auto-refresh
counter expires. Therefore, one should include the maximum number of transfers possible, as
well as the IDLE time one must wait after a memory access before one can perform a refresh.
These values are included in the ref_interval_cntMAX calculation above.

Note that both the ref_interval_cnt and the ref_burst_cnt include an extra bit for
future growth.

Memory Accesses
This section outlines the commands and signals required in order to successfully perform a
Read or a Write request to the FCRAM controller.

In general, a memory access works as follows:

• User supplies the desired memory and bank location of the memory access

• User supplies the number of transfers for the memory access

• User issues the read or write command to the controller

• The FCRAM controller acknowledges the command (u_ack = 1). Once this
acknowledgement occurs, the user may release the memory address, bank location,
number of transfers, and the memory access command. At this point, the user may issue
the next command to ensure the controller pipeline remains full.

• The user should supply data (during a write) or receive data (during a read).

Burst Transfers

This section explains the controller implementation of a burst memory access.
XAPP266 (1.0) February 27, 2002 www.xilinx.com 11
1-800-255-7778

http://www.xilinx.com

Synthesizable FCRAM Controller
R

A single FCRAM memory access is limited to burst length (BL) number of data values, where
a data value equals the width of the FCRAM data bus. If the user requires multiple memory
accesses to consecutive memory locations, the FCRAM controller can automatically string
these memory accesses together to form a burst memory access.

This is accomplished from the user interface through u_num_xfers. The value is the number
of clock cycles that data will be transferred to or from the controller via the data buses
u_data_i or u_data_o.

For example, setting u_num_xfers = 1 for a write operation requests data on u_data_i for
one clock cycle, or stated another way u_data_req is High for one clock cycle. Similarly,
setting u_num_xfers = 1 for a read provides data on u_data_o for one clock cycle, or
stated another way u_data_val is High for one clock cycle. Note also that a transfer on the
system bus represents two transfers on the FCRAM (DDR) bus. Therefore, for a full burst when
BL = 2, set u_num_xfers = 1. Likewise, for a full burst when BL = 4, set
u_num_xfers = 2.

Similarly, issuing 16 consecutive data transfers on the FCRAM bus can be implemented by a
single command from the user interface by setting u_num_xfers = 8. Because
u_num_xfers is a 4-bit number, the user interface has the option of performing up to 16
consecutive memory accesses, or 32 data transfers on the FCRAM bus.

Address Translation

The starting point for the memory access is supplied via u_addr. This bus maps to the bank,
row, and column address on the FCRAM interface as follows:

u_addr[26:0] = {ba, row, col}

u_addr[26:25] = bank[1:0]
u_addr[24:10] = row[14:0]
u_addr[9:0] = col[9:0]

Notes:
1. A 10-bit column value allows the FCRAM controller to be expandable for future FCRAMs. However,

one should also ensure that the column addresses beyond what the chosen FCRAM devices support
are not accessed. For example, a x16 device uses seven column address bits, therefore
u_addr[9:7] should be set to zero. Consult your FCRAM data sheet for other memory
configurations.

Once the command has been accepted (u_ack = 1), the controller latches in the values
supplied on u_addr. These values are decoded; and during the first command (WRA/RDA),
the controller outputs to the FCRAM the upper (row) address and the bank address. During the
second command, the controller outputs to the FCRAM the lower address (column).

During each successive read or write operation (combination of WRA/RDA and LAL) within a
given request (i.e., u_num_xfers number of transfers has not yet completed), the controller
automatically increments the bank address by one. Recall (from the Burst Length within the
Mode Register Set (MRS) section) that once a row and column are selected, a read or write
command will progress across "burst length" number of columns. Therefore, when the bank
address overflows (i.e., transitions from three to zero), the current address (addr[24:0]) is
incremented by the programmed burst length (BL). During a multiple burst access, this
accesses the memory through the banks, across the columns, and finally down the rows.

Access Rules

According to the FCRAM specification, once a bank access occurs one must wait IRC cycles
(read/write cycle time) before accessing the same bank again. Therefore if a user attempted to
issue multiple reads, writes, or a combination of read and write to the same bank within IRC
cycles, a bank conflict violation occurs.

Additionally, when issuing a read command followed by a write command to different banks,
one must wait IRWD clock cycles (read-write turnaround time) before that command can be
executed. Ignoring this specification causes a read-write turnaround violation.
12 www.xilinx.com XAPP266 (1.0) February 27, 2002
1-800-255-7778

http://www.xilinx.com

Synthesizable FCRAM Controller
R

Because the write-read turnaround (IWRD) time is one clock cycle, write-read violations should
not occur.

Rather than force the user interface to be aware of these potential problems, the FCRAM
controller monitors for bank collisions and read-write turnaround violations. If a requested
command would violate the FCRAM specification, the FCRAM controller will handle these
conflicts (such as insert IDLE states until the parameter is met).

Read Request

In order to perform a read request, the user interface should set the following:

u_addr[26:0] = {ba, row, col}
u_num_xfers = Number of 32 bit data values to be transferred
u_cmd = 110

These values should be maintained until the command is acknowledged by the FCRAM
controller (u_ack = 1). Once this acknowledgment occurs, the user interface may release
these values and issue the next command. u_data_val will go High indicating that u_data_o
contains valid read data.

Write Request

In order to perform a write request, the user interface should set the following:

u_addr[26:0] = {ba, row, col}
u_num_xfers = Number of 32 bit data values to be transferred
u_data_i = First 32-bit data value
u_cmd = 100

These values should be maintained until the command is acknowledged by the FCRAM
controller (u_ack = 1). Once this acknowledgement occurs, the user interface may release
u_addr, u_num_xfers, and u_cmd. The first data piece on u_data_i should be maintained
until the controller requests the data, which is done through u_data_req. The first rising clock
edge after u_data_req is asserted High indicates acceptance of the current 32-bit data value
on u_data_i, and the next 32-bit data value should be made available on the next clock.

Data Mask
A data mask (DM) allows the user to "mask off" pieces of data during a write command. There
are two mechanisms for specifying the data mask depending on the part used (bond out
option):

1. Via traditional separate external DM pins.

2. Via encoded mask passed through the address pins (specifically during the LAL command,
on pins A14-A11.

The encoded mask method was supplied because it scales better with frequency. This
implementation of the FCRAM controller is based off the second implementation – the
embedded data mask.

The data mask function implemented in this controller is only applicable for BL = 4 and for an
odd number of transactions. This works as follows:

The user interface specifies to the controller how many 32-bit data transfers are to be done. If
the user specifies an odd number of 32-bit data transfers (e.g., u_num_xfers = 3), this
corresponds to one and a half full burst transactions. Because of this half transaction, the
FCRAM controller must mask out the last clock cycle of the write command.

This is done through the data mask feature. The controller automatically derives the
appropriate data mask value from the u_num_xfers and passes this value to the FCRAM via
the address pins during the LAL cycle. In this design, there is no way to manually specify a data
mask through the user interface.

The data mask is provided for all memory writes during the lower address access. This means
that all even transfers and all odd transfers until the last memory transfer will have the mask
XAPP266 (1.0) February 27, 2002 www.xilinx.com 13
1-800-255-7778

http://www.xilinx.com

Synthesizable FCRAM Controller
R

value set for "write all words." The final transfer in an odd memory transfer with BL = 4 will have
the mask value set for "write first two words."

FCRAM
Controller
Details

Digital Clock Manager (DCM) Implementation
This section describes the clk_dcm block. The reference design clocking scheme uses the
Virtex-II DCMs, global clock networks, and IOB DDR registers. Figure 6 shows the clocking
structure.The first DCM, DCM_CLK, generates two clock outputs. One clock output (clk) will
directly follow the users input clock (u_clk). The second clock output (clk90) will be a 90°
phase shifted version of u_clk. The clk output also drives the IOB DDR flip-flops used to
generate the FCRAM clock (ddr_clk and ddr_clkb).

The second DCM, DCM_RCLK, generates one clock output. This clock (rclk) is a phase shifted
version of the users input clock (u_clk). It is used to recapture data during a memory read
from the DQS clock domain. Once captured on the rclk clock domain, the reference design
transfers the read data to the main system clock domain (clk). The phase shift value will be
specific to each system, and therefore must be programmed accordingly. Further details on this
clocking scheme is found in the Read Data Path and in the Read Recapture Timing Analysis.

Data Path
The Virtex-II devices have enhanced IOBs for direct implementation of DDR functions. This
application note leverages this enhanced technology, allowing for full DDR support to be
completely contained within the IOBs. Additionally, it allows for all inputs and outputs to the
DDR FCRAM interface to be registered within the IOB to minimum clock-to-out delays. Figure 7
shows a standard DDR implementation for a single IOB in the Virtex-II device.

Figure 6: DCM Implementation in the clk_dcm Block

u_clk

u_reset

IBUFG_SSTL2_I

IPAD

CLKIN

CLKFB

CLKFB

RST

DCM

DCM_RCLK

CLKIN

RST

CLK0

CLK90

CLK180

CLK270
CLKDV

LOCKED

DCM

DCM_CLK

locked

CLK2X

CLK0

CLK90

CLK180

CLK270
CLKDV

LOCKED
CLK2X

BUFG

(PHASE_SHIFT)

BUFG

rclk

BUFG
clk90

clk

C0
C1

Q

FDDR

D0
D1

1
0

C0
C1

Q

FDDR

D0
D1

0
1

OPAD
OBUF_SSTL2_I

ddr_clk

ddr_clkb
OBUF_SSTL2_I

OPAD

x266_06_013102
14 www.xilinx.com XAPP266 (1.0) February 27, 2002
1-800-255-7778

http://www.xilinx.com

Synthesizable FCRAM Controller
R

Figure 8 shows a simplified schematic view of the data path and the data strobe generation
logic. To present a general view of the data path, this figure has removed the HDL hierarchical
boundaries. Additional details are available in the data_path and the data_strobe HDL files.

For all input signals, an SRL label is used to indicate multiple stage pipeline delays. These
delays allow the data (ddr_dq) and data strobe (ddr_dqs) signals to align with the FCRAM
control signals. Since the user data buses (u_data_i and u_data_o) are SDR and the
FCRAM data bus is DDR, the user data buses are twice as wide as the FCRAM data bus. Also
note that even though not indicated by Figure 8, the ddr_dqs 3-state and output flip-flops, and
the ddr_dq 3-state, output and input flip-flop are implemented in the Virtex-II IOBs.

Figure 7: DDR IOB Example Implementation

tx[1]

tx[0]

en

PAD
rx[0]

rx[1]

tx_clk

rx_clk

D Q

D Q

D Q

x266_07_020602

C0
C1

Q

FDDR

D0
D1
XAPP266 (1.0) February 27, 2002 www.xilinx.com 15
1-800-255-7778

http://www.xilinx.com

Synthesizable FCRAM Controller
R

Write Data Path

During memory writes, the controller must provide the strobe center aligned with the data at the
pins of the FCRAM. Additionally, the FCRAM specification gives a relationship between CLK
and DQS at the pins of the FCRAM. Generally, the DQS and CLK signals should be
approximately phase aligned, although the specification does allow for some skew. In order to
minimize this variance, both CLK and DQS are forwarded through DDR flip-flops clocked off
clk and clk.

Generated by the controller block, the dqs_enable signal controls the 3-state output while the
dqs_reset signal holds the DQS flip-flop in reset. These signals allow the DQS timing
parameters (such as the DQS preamble setup time) to be met. Once the dqs_reset signal is
released, the DDR flip-flop inputs tied to a static one or zero generate the toggling nature of
DQS.

Because DQS is generated from clk, the DQ signals are forwarded through DDR flip-flops
clocked off of clk90. This naturally center aligns the data strobe with the data. The write_en
signal is generated by the controller block and controls the 3-state output of the data path. The
u_data_i is the user data input. Because both of these signals are synchronous to the clk
domain, they are first transferred to clk, and then to the clk90 domain. This eases the timing
requirements of the clock domain transfer.

Figure 8: Data Path

ddr_dq

n
D Q

ddr_dqs

D Q

D Q

R

D Q

clk

dqs_enable

dqs_reset

rclk

D Q

D Q

D Q

D Q

u_data_i
SRL

write_en

u_data_o

u_data_val

DDR FCRAM

CE

CEread_en

SRL

SRL

sync_dqs2clk

SRL

x266_08_021502

clk90

n/8

2n

n

2n

n

dqsC0
C1

C0
C1

Q
FDDR
D0
D1

1
0

Q
FDDR
D0
D1
16 www.xilinx.com XAPP266 (1.0) February 27, 2002
1-800-255-7778

http://www.xilinx.com

Synthesizable FCRAM Controller
R

Read Data Path

During memory reads, the FCRAM device provides the DQ and DQS signals to the FPGA. This
reference design uses DQS as the clock to capture the read data DQ. DQS is distributed on
dedicated local clocking resources, as described in Pinout Constraints for Local Clock
Distribution. Because DQS is strobing in nature, data captured on the DQS domain must be
immediately recaptured.

In order to recapture the data, a relationship between the DQS domain and the system clock
domain must be found. The arrival of the data during a memory read will depend on system
dependent factors such as board layout. Because of these variables, this reference design uses
a DCM to generate a phase shifted version of the system clock (rclk). This allows a designer
to align the recapture clock with the DQS clock domain, as outlined in Read Recapture Timing
Analysis.

Data in the DQS domain is written by the rclk directly into a dual-port LUT RAM. The system
clock reads the data out of the dual-port LUT RAM. Because the recapture clock is
asynchronous to the internal system clock, all transfers between clock domains are double-
registered to remove any setup, hold, or metastability issues. This recapture and
synchronization logic is handled by the sync_dqs2clk module. As shown in Figure 8, this
module receives the read data, the recaptures the clock, the system clock, and the enable
signals (not shown). It generates the u_data_val and u_data_o signals for the user
interface synchronous to the system clock domain.

Controller State Machine
A simplified view of the main controller state machine is shown in Figure 9. This state machine
is coded as a one-hot state machine and contains replicated states to reduce the required
decoding at each level. Because Figure 9 presents a general overview of the state machine,
most duplicate states are omitted. Further information is found in the state machine portion of
the controller HDL file.

Upon powerup, the controller is in an IDLE state. When reset is released and the DCM locks,
the controller automatically begins the initialization process. Once this sequence is completed,
the controller moves into the main IDLE state where it is able to accept Read, Write, and
Refresh commands.

Figure 9: State Machine Diagram

RDA WRA

LAL LAL

(~xfers_done) |
(xfers_done & read & ~refresh
& ~bank_conflict)

(~xfers_done) |
(xfers_done & write & ~refresh
& ~bank_conflict)

IDLE

IDLE
(RESET)

Power up
Initialization

IDLE
(BANK

CONFLICT)

read write

reset

bank_conflict
bank_conflict

reset

refresh

WRA

REFRESH

IDLE
(BANK

CONFLICT)

x266_09_013102
XAPP266 (1.0) February 27, 2002 www.xilinx.com 17
1-800-255-7778

http://www.xilinx.com

Synthesizable FCRAM Controller
R

Read Command

If u_cmd is set to a read command, the controller enters the RDA state followed by the LAL
state. The controller continues to loop through these states until the number of transfers
specified has completed. This condition occurs when u_num_xfers completes, which asserts
xfers_done = 1.

Once xfers_done is asserted, it is possible for the controller to accept another command. If
the user has issued another read command, the refresh counter has not expired (indicated by
refresh = 0), and the specified address does not cause a bank conflict (indicated by
bank_conflict = 1), then it is possible for the read command to be immediately executed.
This is seen in the state machine by the controller moving back into the RDA state, which
begins another read command.

If the issued read command causes a bank conflict, then the controller goes to the IDLE
(BANK_CONFLICT) state. Likewise, if the issued command is a write command, then the
controller must ensure that the read-write turnaround time of the FCRAM is not violated and
therefore the controller moves to the IDLE (BANK_CONFLICT) state. This allows the controller
to insert IDLE states until the requested bank can be accessed again, as required by the
FCRAM specification. This ensures that no access violations can occur.

Finally, if xfers_done is asserted and the refresh counter has expired (indicated by
refresh = 1), or if the issued command is not a read or a write command, then the controller
will go to the IDLE state. If refresh is asserted, then the controller will automatically go to the
WRA state and then into the REFRESH state, where an auto-refresh will be performed.
Otherwise the controller will remain in the IDLE state until the next valid command is issued.

Write Command

If u_cmd is set to a write command, the controller enters the WRA state followed by the LAL
state. The controller continues to loop through these states until u_num_xfers completes,
which asserts xfers_done = 1.

Once xfers_done is asserted, it is possible for the controller to accept another command. If
the user has issued another write command, the refresh counter has not expired
(refresh = 0), and the specified address does not cause a bank conflict, then it is possible
for the write command to be immediately executed. This is seen in the state machine by the
controller moving into back into the WRA state, which begins another write command.

If the issued write command causes a bank conflict, then the controller goes to the IDLE
(BANK_CONFLICT) state. This allows the controller to insert IDLE states until the requested
bank can be accessed again, as required by the FCRAM specification. This ensures that no
access violations can occur.

Finally, if xfers_done has been asserted, but the issued command is not a write command or
if the refresh counter has expired (refresh = 1), the controller goes to the IDLE state. If
refresh has been asserted, then the controller automatically goes to the WRA state and then
into the REFRESH state, where an auto-refresh is performed. Otherwise, the controller
remains in the IDLE state until the next valid command is issued.

Timing
Diagrams

Initialization Sequence
Figure 10 shows the initialization sequence. Initially, the system should be held in reset
(u_reset_n = 0) and the initialization data (u_init_parms and u_ref_parms) should be
provided to the user interface. In the reference design the system reset is a combination of the
user reset and the DCM locked signals. Therefore, when reset is released (u_reset_n = 1),
the system waits for the DCM to lock (LOCK_DLL). Once the DCM locks, the controller state
machine is released from reset and automatically begins the Powerup Initialization and
Reset Conditions.

According to the FCRAM specification, the FCRAM DLL is enabled during the EMRS
command. Therefore, the user must also wait for the FCRAM DLL to lock (which occurs ILOCK
cycles after the EMRS command has been issued) before issuing any commands. Once the
18 www.xilinx.com XAPP266 (1.0) February 27, 2002
1-800-255-7778

http://www.xilinx.com

Synthesizable FCRAM Controller
R

FCRAM DLL locks, the user must issue the four write commands (one to each bank). As
indicated in Figure 10, it takes "INIT TIME" clock cycles to issue the power-up initialization
commands up to the EMRS command. In this reference design, INIT TIME depends on the
programmed CL; for CL = 2, INIT TIME = 29 clock cycles, for CL = 3, INIT TIME = 32 clock
cycles. Therefore, once the DCM is locked, the user interface can not issue the four Write
commands until INIT TIME + ILOCK clock cycles. Once these commands are issued, the
initialization sequence is complete and the system is ready for normal operation.

Write Cycle
Figure 11 is a timing diagram for consecutive write commands with BL = 4 and CL = 2. In this
example, u_num_xfers is set to two for both memory transfers. This requires the user
interface to supply data via u_data_i for four clock cycles, as indicated by u_data_req.

Following cycle T2, a WRITE command is issued on u_cmd. Because the controller is in an
IDLE state, it is able to immediately accept the command, and at cycle T3 it moves into the
WRA state and asserts the u_ack signal, indicating that the request was accepted.

Because the controller expects that the data required to satisfy the write request is available
when the write request was made, u_data_i contains the first two data pieces for the write. At
T4 u_data_req is driven High by the controller. At the next rising clock edge (T5) the controller
accepts these two data pieces, and therefore at the following clock cycle the next data pieces
are supplied. Because u_num_xfers is set to two, two 32-bit values are presented by the user
interface to satisfy the transaction. Notice that this satisfies a complete burst for the FCRAM
when the burst length has been programmed to four.

The second memory operation is issued as soon as the first command is acknowledged.
Therefore, once u_ack is asserted at T4, the user interface issues the second write command
as well as the desired address, bank, and number of transfers. Because u_num_xfers for the
first write request was for two, the earliest this second command can be acknowledged is two
clock cycles later. This occurs at T5.

Since these are consecutive writes and no bank conflicts occurred, the bandwidth for the
FCRAM is fully utilized.

Figure 10: Initialization Timing Diagram

u_clk

u_cmd

controller state IDLE

LOCK_DLL

u_reset_n

IDLE

u_ack

ILOCK

NOP

u_init_parms init_data

x266_10_012402

INITIALIZATION IDLE WRA

INIT_TIME

WRITE
XAPP266 (1.0) February 27, 2002 www.xilinx.com 19
1-800-255-7778

http://www.xilinx.com

Synthesizable FCRAM Controller
R

Figure 12 gives another write example, again with BL = 4 and CL = 2. In this example,
u_num_xfers is set to five. This requires the user interface to supply data via u_data_i for
five clock cycles, as indicated by u_data_req.

The starting address is listed as R0, C0, starting at bank two (BA2). Notice that the bank
address is automatically incremented as the consecutive write commands are issued to the
FCRAM. Also note that u_num_xfers set to five with a burst length of four corresponds to two
full-burst writes and half of the third-burst write. Therefore, for the first two write commands the
data mask during the WRA command will be set to "write all words." The FCRAM controller has
the responsibility of recognizing the final "odd" transfer and setting the data mask to "write first
two words" during the appropriate LAL command.This occurs at cycle T11.

When the bank value overflows at T10, the bank address wraps around, and the column
address is automatically incremented by burst length. Because BL = 4 and the starting column
address is C0, the first command writes across columns C0, C1, C2, and C3. Therefore, when
the bank address overflows at T10, the target address is automatically incremented to C4. This
occurs at T11.

Notice that for u_num_xfers = 5, the required data transfer completes at cycle T12.
However, according to the FCRAM specification, the DQS input must continue through the end
of burst length, even if the data mask command has been issued. Therefore, DQS continues
through cycle T13 as required.

Figure 11: Write Timing Diagram

u_clk

NOPu_cmd WRITE

T1 T6 T7 T8 T9 T10 T11 T12T3T2 T4 T5

u_addr

u_num_xfers

u_data_i

u_ack

u_data_req

2

ddr_ad

ddr_ba

ddr_dqs

ddr_dq

ddr_cmd

ddr_clk

IDLE LAL

R0 C0

D2A D4A

controller state IDLE LAL

WRITE

2

LAL IDLE

LAL

R1 C1

BA1

D2B D4B

NOP

x266_11_020102

WRA

BA0

WRA

D3B D4B

WRA

D1B D2BD3A D4AD1A D2A

WRA

BA1, ADDR1BA0, ADDR0

D1A D3A D1B D3B
20 www.xilinx.com XAPP266 (1.0) February 27, 2002
1-800-255-7778

http://www.xilinx.com

Synthesizable FCRAM Controller
R

Read Cycle
Figure 13 shows consecutive read commands with BL = 4 and CL = 2.

Following cycle T2, a READ command is issued on u_cmd. Because the controller is in an IDLE
state, it is able to immediately accept the command. At cycle T3 the controller moves into the
RDA state and asserts the u_ack signal, indicating that the request was accepted.

Since u_num_xfers = 2, the controller will return two 32-bit data values on u_data_o. The
signal u_data_val indicates that current 32-bit value on u_data_o is valid data from a read
request.

The second read request is issued as soon as u_ack is seen from the first read request.
Because u_num_xfers is set to two for both read requests, the controller will provide data to
the user interface for four clock cycles, as indicated by u_data_val.

Since these are consecutive reads and no bank conflicts occurred, the bandwidth for the
FCRAM is fully utilized.

Figure 14 gives another read example, again with BL = 4 and CL = 2.

In this example, u_num_xfers is configured for three data transfers. Since the burst length is
configured as four, this satisfies one full memory read and half of the second memory read. The
FCRAM controller automatically issues these successive read commands and increments the
bank address for the second command at T8. According to the FCRAM specification, read
commands do not use the data masks. Therefore, the read command returns data for the two
full reads, and it will be up to the FCRAM controller to "mask" the final odd transfer. This is done
through the use of u_data_val, which transitions Low at T16 to indicate the three
u_num_xfers have completed.

Figure 12: Write Timing Diagram (2)

T14T13T11T10T9T8T7T6T5T4T3T2T1 T12

x266_12_021502

NOP WRITE

D1A D2A D3A D4A

BA2, R0, C0

5

WRAIDLE LAL IDLE

R0 C0

BA2

WRAIDLE LAL

NOP

WRA LAL IDLE

WRA LAL

R0 C0

BA3

LAL

WRA LAL

BA0

D1A D2A D3A D4A D5A D6A D7A D8A D9A D10A

R0

WRA

D7A D8A D9A D10AD5A D6A

clk

u_cmd

u_addr

u_num_xfers

u_data_i

u_ack

u_data_req

ddr_ad

ddr_ba

ddr_dq

ddr_dqs

ddr_cmd

controller state

ddr_clk

DM + C4
XAPP266 (1.0) February 27, 2002 www.xilinx.com 21
1-800-255-7778

http://www.xilinx.com

Synthesizable FCRAM Controller
R

I/O Timing
Analysis

The maximum data rate of a fully synchronous system is limited as the clock-to-out of the
transmitting device, the flight time of the signal, and the setup time of the receiving device
approaches the bit rate time. In an SDR system, the bit rate is simply the reciprocal of the clock
frequency (100 MHz SDR = 100 Mb/s = 10 ns bit rate). By using DDR, the bit rate decreases
accordingly (100 MHz DDR = 200 Mb/s = 5 ns bit rate).

Figure 13: Read Timing Diagram

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T14 T15T13

x266_13_0201102

clk

NOPu_cmd

u_addr

u_num_xfers

u_ack

2

ddr_ad

ddr_ba

ddr_dqs

ddr_dq

ddr_cmd IDLE LAL IDLE

R0 C0

BA0

controller state IDLE LAL IDLE

LAL

R0 C0

BA1

u_data_val

2

u_data_o D1B D2B

ddr_clk

D1A D3A D1B D3B

LAL

READ

RDA

NOP

BA1, R0, C0

READ

BA0, R0, C0

RDA

RDA RDA

D1A D2A D3A D4A

D4A D2B D4BD2A

Figure 14: Read Timing Diagram (2)

clk

ddr_clk

NOPu_cmd

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

u_addr
u_num
_xfers
u_ack

3

ddr_ad

ddr_ba
ddr_dqs

ddr_dq

ddr_cmd IDLE LAL IDLE

R0 C0

controller
state IDLE IDLE

LAL

R0 C0

D1A D2A D3A D4A D5A D6A D7A D8A

u_data_val

u_data_o

T16

x266_14_020802

D1A D2A D5A D6AD3A D4A

BA1BA0

READ

BA0, R0, C0

NOP

LALRDA RDA LAL

RDARDA
22 www.xilinx.com XAPP266 (1.0) February 27, 2002
1-800-255-7778

http://www.xilinx.com

Synthesizable FCRAM Controller
R

As clock frequencies continue to increase, this concept begins to limit system performance.
The solution implemented by DRAM vendors to boost performance past these limitations is a
source-synchronous clocking scheme using a bidirectional data strobe (DQS).

This section includes a sample timing analysis of the reference design. The analysis uses a -5
speed grade Virtex-II device and a -22 speed grade FCRAM device. The parameters used for
this analysis are listed in Table 5 and Table 6. Values for these parameters should be taken
from the most recent datasheets. For this sample analysis, Virtex-II values are taken from the
Xilinx Virtex-II datasheet v1.6(1).

Read Timing Analysis
During a memory read, the FCRAM device will generate the DQ and DQS signals to be
received by the FPGA. Figure 15 shows the timing relationship of these signals taken from the
FCRAM specification.

Table 5: Parameters for a -22 Speed Grade FCRAM

Parameter Description Min Max Units

tCK Clock cycle time 6.5 10 ns

tQSQV Data output valid time from DQS 0.4 x tCK – 0.4 - ns

tQSQ Data output skew from DQS –0.52 0.52 ns

tDS Data input setup time from DQS 0.6 - ns

tDH Data input hold time from DQS 0.6 - ns

tDSPREH DQS input preamble hold time 0.25 x tCK - ns

tCKQS DQS access time from clock –0.85 0.85 ns

tDQSS DQS Low to High setup time 0.75 x tCK 1.25 x tCK ns

tIS Input setup time (except for DQS and data) 1.0 - ns

tIH Input hold time (except for DQS and data) 1.0 - ns

Table 6: Parameters for a Virtex-II Device

Parameter Description

TIOPI Input pad delay (SSTL2)

TIOPICK Input setup time, no delay (SSTL2)

TIOICKP Input hold time, no delay (SSTL2)

TICKOFDCM Global clock and off with DCM

TOSSTL2_I Output switching adjustment (SSTL2-I)

TOSSTL2_II Output switching adjustment (SSTL2-II)

Figure 15: AC Timing of Read Mode for DQS and DQ
x266_15_090401

DQS

DQ

At FCRAM

DQ0 DQ1

tQSQtQSQ

tQSQV
XAPP266 (1.0) February 27, 2002 www.xilinx.com 23
1-800-255-7778

http://www.xilinx.com

Synthesizable FCRAM Controller
R

The FCRAM specification (Figure 15) guarantees "tQSQV = Data Output Valid Time from DQS".
The worst-case data output window from the FCRAM is found when
"tQSQ = Data Output Skew from DQS" is removed from tQSQV. One must verify that from this
window the setup and hold timing for a read cycle can be met at the Virtex-II IOBs.

Figure 15 shows that DQS and DQ will be approximately edge-aligned during a memory read.
Therefore, it is the responsibility of the controller to delay the DQS so that the setup and hold
time for the Virtex-II IOBs are met across the eight DQ inputs.

Because of the fixed resources in an FPGA, it is difficult to find a route to delay DQS to meet
this delay requirement. However, it is possible to determine the route delay for the DQS line
inside the FPGA and add additional delay on the board to position the DQS within the DQ data
valid window.

Figure 16 shows the timing relationships of DQ to DQS at the pins of the FCRAM, at the pins of
the FPGA, and at the IOB flip-flops. In Figure 16, the trace delay value for the DQ lines is
referenced as tDQ, and the trace delay value for the DQS line is tDQS.

Once DQS arrives at the pins of the FPGA, it enters an IOB and is routed to the eight data (DQ)
IOBs. Therefore, the DQS internal FPGA delay is comprised of the delay through an SSTL2
pad plus the routing delay to the DQ loads. This is represented in Figure 16 as tDQS_INT_DELAY,
with the skew of the DQS signal across the eight DQ loads represented as tDQS_INT_SKEW.
Because the data (DQ) signals are latched in the IOB, there is no route delay.

Figure 16: Set Up and Hold Timing Diagram for Read Cycle

x266_16_092401

DQS

DQ

DQS

DQ

DQS

DQ

At FCRAM

DQ0
tQSQ

tQSQV

tDQS

tDQ

tSU tHO

tIOICKPtIOPICK

tDQ_INT_DELAY

tDQS_INT_DELAY

tDQ_INT_DELAY

tDQS_INT_SKEW

DQ0

At pins
of FPGA

At IOB
flip-flop

of FPGA
DQ0
24 www.xilinx.com XAPP266 (1.0) February 27, 2002
1-800-255-7778

http://www.xilinx.com

Synthesizable FCRAM Controller
R

Because this design uses a local clocking scheme to distribute DQS, certain pinout restrictions
must be followed. These are listed in Pinout Constraints for Local Clock Distribution. If
these criteria are met, the designer should see route delays similar to the sample delays listed
in Table 7.

Worst-case setup occurs with the maximum data (DQ) delay and minimum clock (DQS) delay.
Likewise, worst-case hold occurs with the maximum clock (DQS) delay and minimum data (DQ)
delay. As seen in Figure 16, the difference between tSU (setup) and tIOPICK is the slack on
setup. Likewise, the difference between tHO (hold) and tIOICKP is the slack on hold.

In these equations, the desired result is the trace differential between DQS and DQ
(tDQS – tDQ). This will give the amount of delay required to center DQS within the data valid
window of DQ. Therefore, solving these inequalities for (tDQS – tDQ) gives:

(EQ 1)

Using sample values from the Virtex-II data sheet, version 1.6 (Reference 1) gives the
resultant:

This result shows that there is a little more than 1 ns of margin. This analysis is done assuming
maximum timing for the FPGA. Due to the internal route delay of DQS, minimum timing
analysis should also be done to ensure proper operation at best and worst-cases.

Because minimum timing numbers are not yet available, this analysis assumes a prorating
factor (PF) as shown in Table 8.

Minimum timing occurs at the best process corner, operating at the highest voltage and lowest
temperature. Because these effects are across the entire die (FPGA), a worst-case timing in

Table 7: Sample Internal Data Path (DQ) and Data Strobe (DQS) Routing Parameters

Parameter Description Min Max Units

tDQ_INT_DELAY Input package delay 0.000 0.000 ns

tDQS_ROUTE_DELAY
(Note 1)

Routing delay from pad input to DQ loads 0.320 ns

tDQS_INT_DELAY Input clock delay (tIOPI_SSTL2) +
tDQS_ROUTE_DELAY

1.50 ns

tDQS_INT_SKEW

(Note 1)
Routing variation -0.050 0.050 ns

Notes:
1. These values are based on implementation results and, therefore, actual trace numbers should be

substituted. Manually lock IOBs to ensure proper placement.

tSU tDQS tDQSINTDELAY tDQSINTSKEWMIN+ +() tQSQ tDQ tDQINTDELAY+ +()– tIOPICK>=

tHO tQSQV tQSQ–() tDQS tQSQ– tDQ–()– tDQINTDELAY tDQSINTDELAY tDQSINTSKEWMAX+() tIOICKP>–+=

Table 8: Virtex-II Minimum Timing Prorating

Parameter Description Value

PF Prorating factor (percentage of maximum value) 0.25

tIOPICK tDQSINTDELAY tDQSINTSKEWMIN+()– tQSQ tDQINTDELAY+() tDQS tDQ–<+

… tIOICKP–< tQSQV tDQINTDELAY tDQSINTDELAY tDQSINTSKEWMAX+()–+ +

1.38 1.50 0.05–()– 0.52 0.0+()+ tDQS tDQ 0.81–()– 0.4 6.5×() 0.4–() 0.0 1.50 0.050+()–+ +<–<

0.450ns tDQS tDQ 1.460ns<–<
XAPP266 (1.0) February 27, 2002 www.xilinx.com 25
1-800-255-7778

http://www.xilinx.com

Synthesizable FCRAM Controller
R

one IOB would never exist with a best-case timing in an adjacent IOB. Therefore, this analysis
prorates all Virtex-II parameters equally.

From EQ 1 the following minimum timing equation is determined:

 (EQ 2)

Combining these gives the following range for (tDQS – tDQ):

Write Timing Analysis
The critical timing for the write cycle is the setup and hold of DQ around DQS. During a memory
write, the FCRAM controller generates DQS center aligned with DQ. This creates a one-
quarter cycle setup and hold time on the output of the FPGA. However, as discussed in Read
Timing Analysis, there is a requirement to offset DQS from DQ through additional trace delay.
Figure 17 gives a sample timing diagram for a write command with CL = 2. As shown, these
trace delays generate additional setup time and subtract from the hold time.

The trace delay of DQ is listed as tDQ, the trace delay of DQS is listed as tDQS, and the trace
delay of the CLK is listed as tCLK. The equations for these relationships are shown below, with
the FCRAM setup (tDS) and hold (tDH) values listed in Table 3. The difference between TSU
(setup) and TDS is the slack on setup. Similarly, the difference between THO (hold) and TDH is
the slack on hold.

tIOPICK PF×() tDQSINTDELAY tDQSINTSKEWMIN+() PF×()– tQSQ tDQINTDELAY PF×()+() tDQS tDQ–<+

… tIOICKP– PF×()< tQSQV tDQINTDELAY PF×() PF tDQSINTDELAY tDQSINTSKEWMAX+()–+ +

1.38 0.25×() 1.50 0.05–()· 0.25– 0.52 0.00 0.25×()+() tDQS tDQ–<+

… 0.81–() 0.25×()–< 0.4 6.5×() 0.4–() 0.00 0.25×() 0.25 1.50 0.050+()–+ +

0.503ns tDQS tDQ 2.015ns<–<

0.503ns tDQS tDQ 1.460ns<–<

Figure 17: Write Timing Diagram

x266_17_012402

CLK

CMD

T2T1

TSU THO

DESLLAL (After WRA)

DQS

DQ

DQS

DQ

Output from
FPGA

At Pins of
FCRAM

DQ0 DQ1

DQ0 DQ1

CLK

tCLK tDQS

tDQ tDS tDH

tDQSS

tSU

tCK
4

---------- t+
DQS

tDQ tDS>–=

tHO

tCK
4

---------- tDQ tDQS tDH>–+=
26 www.xilinx.com XAPP266 (1.0) February 27, 2002
1-800-255-7778

http://www.xilinx.com

Synthesizable FCRAM Controller
R

Solving these equations for (tDQS – tDQ) gives:

(EQ 3)

Another timing requirement that must be met during the Write cycle is the relationship between
DQS and the CLK. This requirement is specified as the DQS Low to High setup time (tDQSS),
and is the time from the rising edge of the CLK to the rising edge of DQS, as indicated in
Figure 17. The FCRAM specification gives both a minimum and maximum value for this
parameter (Table 4). Because DQS and CLK are both generated through DDR flip-flops
clocked off the same clock, there is originally one clock cycle (tCK) worth of setup time.
However, the trace lengths of both CLK and DQS will adjust this value, as well as the output
standard adjustment (not shown in Figure 17, but CLK is SSTL2_I, DQS is SSTL2_II per the
FCRAM recommendation). Equation 4 highlights this relationship:

 (EQ 4)

Solving using the values from Table 4:

Read Recapture Timing Analysis
During a memory Read, data is captured by the IOB flip-flops with the DQS signal. Because
DQS is a strobing signal, there is no guarantee of a successive clock edge moving the data
from the IOB into the second stage of the data path. Therefore, the data must be recaptured
from DQS to another clock domain.

This reference design uses a phase-shifted version of the user clock to do this data recapture.
In order to use this method, the designer must calculate the required phase shift. This is
outlined in Figure 18. The FCRAM clock (ddr_clk) is generated by forwarding the internal
user clock through the IOB DDR flip-flops. This clock will travel from the FPGA to the FCRAM
(tCLK).

As stated in the FCRAM specification, upon receiving the clock, the memory will output the
DQS signal within ±tCKQS. The DQS signal travels from the FCRAM to the FPGA (tDQS), where
it is routed to the IOB flip-flops (tDQS_INT_DELAY).

The phase shift feature of the DCM is used to align the recapture clock with the DQS signal
internal to the FPGA. Because data is transferred from the DQS domain to the recapture clock
domain, the recapture clock should be positioned at the earliest possible arrival of DQS. This
ensures the greatest time for the clock domain transfer. Equation 5 is for the recapture clock
phase shift:

(EQ 5)

The timing relationship between the DQS and the recapture clock must be constrained. Under
best case conditions, there will be one clock period to transfer from the DQS to the recapture
clock domain. Under worst case conditions, the transfer from the DQS to the recapture clock
domain will have one period minus the difference between the maximum and minimum path
timing. Using the prorating value given in Table 8 gives the following equation:

 (EQ 6)

Where:

tDS

tCK
4

----------– tDQS tDQ

tCK
4

---------- tDH–<–<

1.025– ns tDQS tDQ– 1.025ns< <

tDQSS MIN() tCK tDQS TOSSTL2 II() tCLK– TOSSTL2 I()–+ + tDQSS MAX()< <

1.015– ns tDQS tCLK– 2.235ns< <

T et Phase Shiftarg TICKOFDCM PF×() tCLK MIN() tDQS MIN() tDQSINTDELAY MIN()+ + +=

DQS to rclk tCK Phase Shift Max()– Phase Shift Min()–=

Phase Shift Max() TICKOFDCM tCLK MAX() tCKQS MAX() tDQS MAX() tDQSINTDELAY MAX()+ + + +=

Phase Shift Min() T et Phase Shiftarg=
XAPP266 (1.0) February 27, 2002 www.xilinx.com 27
1-800-255-7778

http://www.xilinx.com

Synthesizable FCRAM Controller
R

Control Timing Analysis
All address and control signals are generated by the controller on the falling edge of clk. This
naturally creates 1/2 cycle setup and hold timing. These values will be offset by the trace delay
of the clock (tCLK) and by the trace delays of the command / address signals (tCMD). The
command and address setup (tIS) and hold (tIH) are listed in Table 3.

Solving these equations for (tCLK – tCMD) gives equation 7.

(EQ 7)

Timing Analysis Summary
This section provided a sample analysis of the critical I/O timing in the reference design. The
equations are a starting point to form relationships between the clock, data, data strobe, and
address/control trace lines between the FPGA and the FCRAM. These relationships guarantee
the required I/O timing for both the FPGA and the FCRAM. This analysis should be customized
as required to fit a user specific design.

Equations 1 through 3 constrain the relationship between the data and the data strobe traces.

(EQ 1)

 (EQ 2)

Figure 18: Clock to DQS Output Delay Time
x266_16_020802

u_clk

T1 T2

ddr_clk

At FPGA

TICKOFDCM

ddr_clk
tCLK

tDQS

tCKQS tCKQS

tDQS_INT_DELAY

At FCRAM

DQS

At FPGA
DQS at IOB

flip-flop

DQS

TSU

tCK
2

---------- tCLK tCMD–+ tIS>=

THO

tCK
2

---------- tCMD tCLK–+ tIH>=

tIS

tCK
2

----------– tCLK tCMD–
tCK

2
---------- tIH–< <

2.25– ns tCLK tCMD– 2.25 ns< <

tIOPICK tDQSINTDELAY tDQSINTSKEWMIN+()– tQSQ tDQINTDELAY+() tDQS tDQ–<+

… tIOICKP–< tQSQV tDQINTDELAY tDQSINTDELAY tDQSINTSKEWMAX+()–+ +

tIOPICK PF×() tDQSINTDELAY tDQSINTSKEWMIN+() PF×()– tQSQ tDQINTDELAY PF×()+() tDQS tDQ–<+

… tIOICKP– PF×()< tQSQV tDQINTDELAY PF×() PF tDQSINTDELAY tDQSINTSKEWMAX+()–+ +
28 www.xilinx.com XAPP266 (1.0) February 27, 2002
1-800-255-7778

http://www.xilinx.com

Synthesizable FCRAM Controller
R

(EQ 3)

Equation 4 specifies the preamble timing for DQS. This generates a relationship between DQS
and the clock traces.

 (EQ 4)

Equation 7 constrains the relationship between the address / control signals and the clock
traces between the FPGA and the FCRAM.

(EQ 7)

The values used in the sample timing analysis give the following relationships:

Equation 5 shows a sample calculation to tune the positioning of the recapture clock to a
specific system. Equation 6 allows a designer to ensure the path from the data strobe to the
recapture clock is properly constrained.

(EQ 5)

 (EQ 6)

Pinout Constraints for Local Clock Distribution
Before choosing a pinout, the proper resources need to be available for routing the DQS lines
from the pad input to the clock pin of the data loads. One way to ensure this is to use the global
clock trees to distribute the DQS lines. However, since each DQS line only drives eight data
loads, this is a fairly inefficient use of valuable clocking resources.

Virtex-II devices contain local clock distribution networks along the left and right edges of the
device. These networks allow for a signal to enter an IOB and connect to a high-speed, low-
skew, local routing resource that connects directly from an IOB to a fixed number IOB clock
pins. This section gives an overview of these resources and describes how to successfully use
them to distribute the DQS clock lines.

As described in the Virtex-II data sheet (Reference 1), each Input/Output Tile contains four
IOBs that share a switch-matrix. IOB PAD4 is the top IOB, IOB PAD1 is the bottom IOB. In order
for the DQS signal to access a local clock line, the DQS pad must be placed in IOB PAD4 (the
top IOB). If IOB PAD4 is not available in the target package for a given tile, then the Input/Output
Tile may not be used to for the DQS signal.

Placing the DQS pad in IOB PAD4 gives direct access to a local clock line. This local clock line
is a HEX line spanning five rows above the chosen DQS Input/Output Tile (and may also drive
back into the chosen DQS Input/Output Tile), and spanning six rows below the chosen DQS
Input/Output Tile. The data (DQ) pads must be placed within these 12 rows.

tDS

tCK
4

----------– tDQS tDQ

tCK
4

---------- tDH–<–<

tDQSS MIN() tCK tDQS TOSSTL2 II() tCLK– TOSSTL2 I()–+ + tDQSS MAX()< <

tIS

tCK
2

----------– tCLK tCMD–
tCK

2
---------- tIH–< <

0.503 ns tDQS tDQ 1.025 ns<–<

1.015– ns tDQS tCLK 2.235 ns<–<

2.25– ns tCLK tCMD– 2.25 ns< <

T et Phase Shiftarg TICKOFDCM PF×() tCLK MIN() tDQS MIN() tDQSINTDELAY MIN()+ + +=

DQS to rclk tCK Phase Shift Max()– Phase Shift Min()–=
XAPP266 (1.0) February 27, 2002 www.xilinx.com 29
1-800-255-7778

http://www.xilinx.com

Synthesizable FCRAM Controller
R

A sample image from FPGA editor (Figure 19) shows a DQS pad (sixth tile or row down from
the top) driving the DQ pads located five rows above, as well as six rows below, the DQS pad
location. A sample pinout is included with the design files.

Figure 19: Sample DQS Routing

x266_19_021102
30 www.xilinx.com XAPP266 (1.0) February 27, 2002
1-800-255-7778

http://www.xilinx.com

Synthesizable FCRAM Controller
R

Design
Implementation

The reference design includes Verilog source code, constraints file, and a sample
implementation script. The design uses three global clock buffers and two DCMs. For a 16-bit
data bus, the design requires approximately 600 slices. The reference design is available on
the Xilinx FTP site: ftp://ftp.xilinx.com/pub/applications/xapp/xapp266.zip

References Refer to the following documents for additional details.

1. Xilinx Inc., Virtex-II 1.5V Field Programmable Gate Arrays, Data sheet, 2002
www.xilinx.com.

2. Xilinx Inc., XAPP200, Synthesizable 1.6 GBytes/s DDR SDRAM Controller, Application
Note, 2000

3. Toshiba Inc., DDR FCRAM, Data sheet, 2001

4. Fujitsu Inc., DDR FCRAM, Data sheet, 2001

Conclusion FCRAM is a high performance, low power memory well suited for applications that require large
memory densities and high effective bandwidths. This application note presents a general
overview of this memory technology, and gives an example of how the Xilinx Virtex-II family
FPGA architecture may be leveraged to implement a FCRAM controller.

FCRAM devices use a source-synchronous interface where a bi-directional data strobe is
forwarded along with the data and used as the clock to capture data. Timing analysis in this
type of system introduces challenges above a traditional fully synchronous system. Therefore,
this application note provides a sample timing analysis, including timing diagrams and
equations, to help designers verify timing budgets.

Before completing timing closure, board-level timing must be analyzed. Xilinx strongly
recommends the use of a board-level design tool for this analysis, including IBIS simulations to
ensure proper signal integrity. This analysis should include simulations of trace stackup, trace
lengths, pin capacitance due to FCRAM device loading, and verification of proper termination
on all signals. Additionally one must ensure adherence to the Simultaneously Switching
Outputs (SSO) guidelines as listed in the Virtex-II User Guide.

Although the reference design targets a single x16 FCRAM device, the Verilog code may be
easily modified to target different memory configurations, as described in Appendix A.
XAPP266 (1.0) February 27, 2002 www.xilinx.com 31
1-800-255-7778

ftp://ftp.xilinx.com/pub/applications/xapp/xapp266.zip
http://www.xilinx.com
http://www.xilinx.com/partinfo/databook.htm#virtex
http://www.xilinx.com/xapps/xapp200.pdf
http://www.toshiba.com/taec/
http://www.fme.fujitsu.com/products/fcram_new/faq.html

Synthesizable FCRAM Controller
R

Appendix A The following changes need to be made to the Verilog HDL source code to change the DDR
FCRAM memory bus widths.

• define.v

Change the memory bus width to the desired value:

‘define DDR_DATA_WIDTH <desired width>

Some components are instantiated in the HDL code, and therefore will need to be modified by
the user to support various memory bus widths.

• data_path.v

The data_path module instantiates the DDR input and output flip-flops for the DQ bus.
Instantiations for eight DQ bits (one byte) are contained in the v2_ddr_iob module, which can
be found in the data_path.v HDL file. The number of instantiations must be changed to
match the required external memory bus width. For example, if the interface is a single x16
memory, there would be two instantiations of the v2_ddr_iob module. If the interface is multiple
FCRAM devices to form a x72 bit bus, this would require nine instantiations of this module.
Within the HDL file, search for the "DDR IOB Instantiations" section, and modify the number of
instantiations to match the target bus width.

• data_strobe.v

The data_strobe module instantiates the DDR output flip-flop for the DQS signal. Instantiations
for a single DQS bit is contained in the v2_dqs_iob module, which can be found in the
data_strobe.v HDL file. The number of instantiations must be changed to match the
required external memory configuration. For example, if the interface is a single x16 memory
that contains a data strobe per byte, this would require two instantiations of the v2_dqs_iob
module. If the interface is multiple FCRAM devices to form a x72 bit bus, this would require nine
instantiations of this module. Within the HDL file, search for the "DQS I/O Block Instantiations"
section, and modify the number of instantiations to match the target memory configuration.

If the reference design is configured to control multiple FCRAM devices, then the designer must
look at signal loading. The clock, address, and control signals are shared across all memory
devices. As devices are added, the performance of these signals will decrease. Therefore, IBIS
and other board level simulations should be performed to determine the optimal loading and
placement of these signals. Typically, the memory vendor supplies additional information on
suggested loading. If duplicate drivers are required, then the HDL code should be modified to
support these changes.

Revision
History

The following table shows the revision history for this document.

Date Version Revision

02/27/02 1.0 Initial Xilinx release.
32 www.xilinx.com XAPP266 (1.0) February 27, 2002
1-800-255-7778

http://www.xilinx.com

	Summary
	Introduction
	DDR FCRAM Review
	Basics
	Read Operation
	Write Operation
	Mode Register Set (MRS)
	Burst Length (BL)
	Burst Type (BT)
	CAS Latency (CL)
	Test Mode
	DLL Enable
	Output Driver Impedance Control

	Refresh

	FCRAM Controller Design
	FCRAM Controller Operation
	Data Bus Widths
	No Operation (IDLE/DESL)
	Initialization
	Refresh
	User Initiated Refresh
	Controller Initiated Refresh
	Burst Refresh
	Calculating Refresh Interval

	Memory Accesses
	Burst Transfers
	Address Translation
	Access Rules
	Read Request
	Write Request

	Data Mask

	FCRAM Controller Details
	Digital Clock Manager (DCM) Implementation
	Data Path
	Write Data Path
	Read Data Path

	Controller State Machine
	Read Command
	Write Command

	Timing Diagrams
	Initialization Sequence
	Write Cycle
	Read Cycle

	I/O Timing Analysis
	Read Timing Analysis
	Write Timing Analysis
	Read Recapture Timing Analysis
	Control Timing Analysis
	Timing Analysis Summary
	Pinout Constraints for Local Clock Distribution

	Design Implementation
	References
	Conclusion
	Appendix A
	Revision History

