
Summary The ANSI/SMPTE 259M-1997 standard specifies a serial digital interface (SDI) for digital video
equipment operating at either the 525-line, 60 Hz video standard or the 625-line, 50 Hz video
standard.[1] The SDI standard describes how to transport both composite and component
digital video over standard video coax. SDI is widely accepted and often forms the video
transportation "backbone" of television studios and broadcast centers.

This is one in a series of application notes describing SDI implementation in Xilinx FPGAs.
Figure 1 is a block diagram showing correlation between the various application notes and the
elements of the SDI link.

This application note focuses on the SDI encoder. The reference design includes several
implementations of the SDI encoder optimized for use with the Virtex™-II FPGA series and
other Xilinx FPGA families. Both serial (bit-rate) and parallel (word-rate) implementations of the
SDI encoder are presented. Also included are examples illustrating using a Xilinx FPGA as an
alternative to several commercially available SDI encoder devices, the Gennum GS9002 and
the Cypress CY7C9235.

A test bench and several diagnostic modules are included for testing the SDI encoder modules
described in this application note, and the SDI decoder modules described in XAPP288: Video
Decoder[4].

SDI
Introduction

Digital Video Formats
The SDI standard describes how to transport standard definition digital video serially over a
video coax cable. This standard describes the encoding and decoding processes performed on
the video bitstream for transportation across the physical layer. The standard also describes
the electrical and mechanical characteristics of the physical layer. However, it does not define
the actual format of the digital video data. Additional standards for the definitions of SDI
compatible digital video formats are:

• ANSI/SMPTE 125M, ANSI/SMPTE 267M, and ITU-R BT.601-5 for 4 x 3 and 16 x 9 aspect
ratio 4:2:2 component digital video. [1][2]

Application Note: Virtex-II Multimedia and MicroBlaze Development Board

XAPP298 (v1.0) November 2, 2001

Serial Digital Interface (SDI) Video
Encoder
Author: John F. Snow

R

Figure 1: SDI Block Diagram and Application Notes

SDI
Preprocessor

XAPP299

Ancillary
Data

Digital
Video

SDI Video
Encoder

XAPP298

Test Pattern
Generator

XAPP248

SDI
Driver

XAPP247

SDI
Equalization

& CDR
XAPP247

SDI Video
Decoder

XAPP288

SDI
Postprocessor

XAPP299

Ancillary
Data

Digital
Video

Data

Clock

SDI
bitstream

x298_01_101901
XAPP298 (v1.0) November 2, 2001 www.xilinx.com 1
1-800-255-7778

© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Serial Digital Interface (SDI) Video Encoder
R

• ANSI/SMPTE 244M for composite NTSC digital video [1]

• IEC 1179 (now called IEC 61179) for composite PAL digital video [3]

The SDI standard does not cover high definition digital video. Another standard, SMPTE 292M,
defines a serial digital interface standard for high definition digital video, commonly called
HD-SDI. The bandwidth requirements for high definition video are significantly higher than for
standard definition video. Also, video components in the HD-SDI standard are interleaved
differently than in the SDI standard. Because implementing an HD-SDI encoder involves higher
bandwidth requirements and different formats than a standard definition SDI encoder, it is not
covered in this application note.

All digital video formats supported by the SDI standard use either eight bit or ten bit-per-data
word. Although the SDI standard always sends ten-bit data across the link, with proper handling
it can transport eight-bit digital video formats. When eight-bit video is used, the two least
significant bits of a ten-bit input to the SDI encoder may be tied High or Low.

Encoding and Decoding
Prior to sending digital video serially across the physical layer, an SDI transmitter must encode
the video according to the SDI standard. By design, this encoding process ensures that the
serial bitstream has sufficient level transitions to allow the receiver to recover the clock and
data. After the receiver captures the serial data, the decoder must reverse the encoding
process to recover the original video data.

The SDI standard uses two generator polynomials, normally expressed as linear feedback shift
registers (LFSR), to implement two separate encoding stages. First, the video bitstream is
scrambled using the generator polynomial:

The output of this first encoding stage is referred to as the scrambled non-return-to-zero (NRZ)
bitstream.

The second encoding stage uses the generator polynomial:

It converts the scrambled NRZ bitstream to a polarity-free scrambled NRZ-inverted (NRZI)
bitstream. NRZI is DC balanced for transmission across the physical layer. If the bitstream is
inverted between the transmitter and the receiver, then the polarity-free nature of the SDI
bitstream allows the decoder to properly recover the original data.

The SDI decoder reverses the encoding process by using the same generator polynomials in
reverse order: G2 to convert from NRZI to NRZ and then G1 to descramble the bitstream.

Figure 2 illustrates the encoding and decoding processes when implemented in LFSRs. The
circles with plus symbols inside are exclusive-OR gates. The boxes represent individual flip-
flops. The LSB of a data word is sent first.

Figure 2: SDI Encoding and Decoding Processes

G1 x() x
9

x
4

1+ +=

G2 x() x 1+=

Serial
Video In

SDI Scrambler

++

+

Encoded
Video Out

Encoded
Video In

SDI Descrambler G1(x) = x9 + x4 + 1

G1(x) = x9 + x4 + 1 G2(x) = x + 1

G2(x) = x + 1

++

+

Decoded
Video Out

x298_02_101901
2 www.xilinx.com XAPP298 (v1.0) November 2, 2001
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Video Encoder
R

Framing and TRS Clipping
After decoding the video bitstream, the receiver must determine where individual ten-bit words
begin and end in the serial bitstream. This process is called framing. In order to frame the
bitstream, a unique and recognizable pattern must be sent periodically for the framer to use as
a framing reference.

All of the digital video formats supported by SDI share similar definitions for the timing
reference signal (TRS) symbols. TRS symbols delineate between the active and inactive
portions of the video. For component video standards, two TRS symbols are sent per line of
video: one at the start of the active video called SAV, and one at the end of active video called
EAV. For composite video standards, one TRS symbol is sent per line. A TRS symbol is sent as
four consecutive words, formatted as:

3ff 000 000 XYZ

The first three words of the TRS symbol, called the preamble, form a unique sequence in the
bitstream. The fourth word, called XYZ, varies depending on the specific digital video format
being transported.

Since the TRS preamble is common across all the supported digital video formats, is sent on a
regular basis, and is unique in the bitstream, it is used as the framing reference. Upon detecting
a sequence of ten consecutive ones and twenty consecutive zeros, a framer in the SDI receiver
can determine the proper boundaries of all subsequent data words in the bitstream.

When transporting eight-bit digital video formats, the SDI transmitter must convert the eight-bit
video words into the native SDI ten-bit format. This must be done properly in order to generate
valid 10-bit TRS preambles. The transformation of eight-bit digital video into SDI compatible
ten-bit digital video is called TRS clipping. The SDI standard requires forcing all data values
between hex 3fc and 3ff to a value of 3ff prior to encoding. Likewise, values between 000
and 003 must be forced to a value of 000.

SDI Bit Rates
The bit rates supported by SDI range from 143 Mb/s to 360 Mb/s, depending on the digital
video format being transported. The SDI standard defines four different bit rates as "support
levels" (shown in Table 1). SDI compliant equipment is not required to support all bit rates. A
piece of equipment supporting bit rates up to 270 Mb/s is said to conform to ANS/SMPTE
259M-ABC, since it supports levels A, B, and C.

Error Detection
The SDI standard does not mandate the use of an error detection mechanism. Some of the
digital video standards, SMPTE 125M for example, specify error detection bits in the XYZ word
of the TRS to determine the validity of the TRS symbol. However, the SDI standard highly
recommends embedding error detection check words into the SDI video stream as described in
SMPTE RP 165-1994. Techniques for generating and inserting these check words are
described in XAPP299: Ancillary Data and EDH Processors. [5]

Table 1: SDI Standard Bit Rates

Support Level Bit Rate Video Format Standard

Level A 143 Mb/s NTSC composite ANSI/SMPTE 244M-1995

Level B 177 Mb/s PAL composite IEC 61179

Level C 270 Mb/s 4 x 3
4:2:2 component

ANSI/SMPTE 125M-1995 and
ITU-R BT.601-5

Level D 360 Mb/s 16 x 9
4:2:2 component

ANSI/SMPTE 267M-1995 and
ITU-R BT.601-5
XAPP298 (v1.0) November 2, 2001 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Video Encoder
R

Clock Jitter Considerations
Any SDI encoder that generates a serial SDI bit stream generally requires a clock running at
the SDI bit rate for the parallel-to-serial converter. A bit-rate serial clock can be generated in the
FPGA by multiplying the parallel data clock using a Virtex-II DCM. Alternatively, an external
clock multiplier circuit may be used to provide a serial clock to the FPGA.

The SDI standard allows for a maximum peak-to-peak jitter of 0.2 times the serial clock period.
If the SDI link is running at 360 Mb/s, then the maximum jitter allowed is about 550 ps.

Parallel digital video standards allow relatively large amounts of clock jitter on the parallel clock.
For example, the SMPTE 125M standard allows up to 3 ns of peak-to-peak jitter on the parallel
clock. This can make the parallel clock unsuitable for use as a reference to the clock multiplier.

The Virtex-II DCM does not filter out clock jitter on the reference clock. Any jitter on the parallel
clock becomes jitter on the serial clock, with additional jitter added by the DCM and the clock
distribution network. If a parallel clock from a SMPTE 125M video source is used as the
reference clock, the resulting serial clock jitter could greatly exceed the SDI jitter specification.

If the designer cannot ensure that the parallel clock has sufficiently low jitter to make it suitable
for use as a reference to the DCM, then an external clock regenerator or clock multiplier
capable of reducing the parallel clock jitter must be used.

Jitter considerations for SDI implementations in Xilinx FPGAs will be covered in more detail in
XAPP247: MicroBlaze and Multimedia Development Board: SDI Physical Layer
Implementation.

Reference
Design

The reference design files are available on the Xilinx FTP site at: XAPP298.zip. The reference
design includes several different SDI encoder implementations, a TRS clipper module,
diagnostic modules, and a test bench.

TRS Clipper
TRS clipping is required to support eight-bit digital video in the ten-bit SDI protocol. The
trs_clipper module is a simple combinatorial design. If the eight most significant bits of the
video word are all zeros, the module forces the two least significant bits to zeros. If the eight
most significant bits are all ones, the two least significant bits are forced to ones. Otherwise, the
two least significant bits pass through the module unchanged. An enable input to the TRS
clipper module is provided to disable the TRS clipping function if desired.

Figure 3 shows a block diagram of how the TRS clipper is used in an SDI transmitter. This block
diagram uses a DCM to multiply the parallel clock by five. The serializer shifts out two bits every
five clock cycles into DDR flip-flops. This was done instead of using the DCM to multiply the
parallel clock by ten because the CLKFX output of the Virtex-II DCM currently can not run fast
enough to generate a bit-rate clock for the highest SDI bit rates. By using a half bit-rate clock
and the DDR hardware in the Virtex-II IOBs, a Virtex-II design can easily serialize data at the
maximum SDI bit-rate.

Figure 3: Example SDI Transmitter with TRS Clipper

Video In
10

1X clock DCM

TRS
clipper

10 10

8 MSBs

2

Chip Enable

2-bit
serializer

5X clock

parallel
scrambler

Encoded
Serial
Bitstream

10input
reg

x298_03_101601

Load

D
D
R

4 www.xilinx.com XAPP298 (v1.0) November 2, 2001
1-800-255-7778

http://www.xilinx.com
ftp://ftp.xilinx.com/pub/applications/xapp/xapp298.zip

Serial Digital Interface (SDI) Video Encoder
R

Bit-Rate Serial Scrambler
The scrambling process involves "division" of the incoming bitstream by the generator
polynomials. A simple LFSR implementation is shown in Figure 4. A serial implementation
results in a very small amount of hardware. However, a serial implementation must run at the
full bit-rate of the SDI interface, up to 360 MHz.

The HDL files ser_scrambler.* contain the bit-rate serial SDI scrambler using a LFSR. As
shown in Reference Design Results, this implementation is very small. In a Virtex-II FPGA,
the serial scrambler runs fast enough to support the highest bit rate specified by the SDI
standard.

The serial scrambler module has two control inputs, scram and nrzi, to enable the scrambler
and the NRZ-to-NRZI conversion, respectively. These control signals allow the two encoding
stages to be bypassed if the data to be sent is non-SDI compliant. In normal SDI operation,
both inputs should be High.

Half Bit-Rate Serial Scrambler
The Virtex-II architecture features double data-rate (DDR) output flip-flops and a DDR MUX in
the IOB. A scrambler module that processes two bits per clock cycle can be used to drive the
DDR flip-flops in an IOB. This allows the clock to the scrambler to run at one-half the SDI bit
rate rather than at the full bit rate as required for a serial SDI scrambler.

Figure 5 shows a block diagram of an SDI scrambler that processes two bits per clock cycle.
The HDL files ser_scrambler2.* contain the module shown in the block diagram. As the
Reference Design Results section shows, this implementation is only slightly larger than the
bit-rate serial scrambler previously described. Since it only needs to run at half the SDI bit-rate,
this design can easily support the highest SDI bit-rates.

The X9002 module described later in this application note is an example of how to use the
ser_scrambler2 module with the Virtex-II DCM and DDR features to implement an SDI encoder.

Figure 4: Bit-rate Serial SDI Scrambler

Figure 5: SDI Scrambler Processing Two Bits Per Clock Cycle

Video In
in

reg

NRZ-to-NRZI

10

Parallel-in
Serial-out
Register

Load
scram

sreg[9:5]

Shift Register

sreg[4:1]

nrzi

sreg0
Shift Register Encoded

Video
Out

Scrambler

x298_04_101901

CLK
(bit rate)

Video In
in

reg
10

Parallel-in Shift Reg
Shifts 2 bits Every CLK

Load

SCRAM

even bits 8:2

Shift Registers

NRZI

odd bits 9:1

D0

D1

6 2

1

48

7 359

SOUT1

SOUT0

Output
Flip-Flops

x298_05_101901

CLK
(Half-Bit Rate)
XAPP298 (v1.0) November 2, 2001 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Video Encoder
R

Parallel Scrambler
The scrambler function can also be implemented in a parallel manner, processing one ten-bit
word every clock cycle. This requires more hardware but only needs to run at one-tenth the bit
rate of the SDI link.

In some situations, it is advantageous to use a larger parallel scrambler implementation. Since
the parallel descrambler only has to run at the word rate, lower performance FPGAs can be
used to support the highest SDI bit rates. With some lower performance FPGAs, it may be
necessary to use an external device to serialize and transmit the encoded parallel data
generated by the FPGA.

Figure 6 shows a block diagram of the module described in the par_scrambler.* files. This
module accepts a ten-bit input word and generates a ten-bit output word every clock cycle.
There are two clock cycles of latency through the scrambler. Also refer to Figure 3 for an
example of using the par_scrambler in an SDI transmitter.

Ten 3-input XOR gates implement the SDI scrambler function. The incoming data bits are
combined with the nine bits scrambled in the previous clock cycle and stored in the scram_reg.
The least significant five bits of the incoming data word are scrambled and fed back into the
scrambler to generate the five most significant data bits.

The NRZ-to-NRZI converter is implemented with ten two-input gates that XOR each bit with the
bit that preceded it in the bitstream. This requires 11 bits to generate ten NRZI bits. The
eleventh bit is the MSB stored in the out_reg.

X9002 Example: An Alternative Solution
The Gennum GS9002 was one of the first commercially available SDI encoder integrated
circuits. It contained a TRS clipper, an SDI scrambler, and a PLL used to generate the serial
clock from the parallel data clock. Although the GS9002 is now obsolete, Xilinx FPGAs can
provide an alternative solution when redesigning equipment originally using a GS9002.

Figure 7 is a block diagram of the X9002 module provided in the reference design. A
Virtex-II DCM multiplies the parallel data clock by five to synthesize a clock that runs at half the
SDI bit rate. Two phases of this five times clock, 180° out of phase, are synthesized to drive the
DDR logic. A TRS clipper circuit feeds clipped parallel video data to a ser_scrambler2 module
where it is encoded and serialized. Virtex-II DDR flip-flops and a DDR MUX are used to
generate the SDI serial bitstream output.

Figure 6: Parallel Scrambler Block Diagram

Video In

NRZ-to-NRZI

10

Load
scram nrzi

Scrambler

Encoded
Video
Out

10

[4:0]

scram
reg

[9:1]

10

10

out
reg

10

outreg[9]

x298_06_101901

CLK
(word rate)
6 www.xilinx.com XAPP298 (v1.0) November 2, 2001
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Video Encoder
R

A GS9002 provides a bit-rate clock through a differential PECL driver. This bit-rate clock is for
reference and diagnostic purposes and is not required by the SDI standard. The X9002 module
duplicates this functionality by using a second DCM to double the five times clock. Rather than
using the second DCM to multiply the parallel clock by a factor of ten, the second DCM doubles
the five times clock generated by the first DCM. This cascaded DCM configuration was used
because the CLKFX output of the Virtex-II DCM currently is not capable of generating a
360 MHz output, but the CLK2X output is capable of this speed.

DDR flip-flops are used to drive the serial clock out of the FPGA. This technique ensures a
nearly 50% duty cycle on the clock output. This second DCM and associated global clock
buffers and the DDR hardware can be easily removed from the design if the reference serial
clock output is not required.

Figure 7: X9002 Example Block Diagram

TRS
Clipper

10 10

8 MSBs

2

CLKIN

ser_

scrambler

2

x298_07_101901

CLKFB

CLKFX

CLKFX180

CLK0

clk_in

DCM
IBUFG

BUFG

BUFG

BUFG
clk (word-rate)

clk5x

clk5x180

clk5x

Load
Generator

clk5x

clk

DDR

FF

DDR

FF

clk5x180

clk5x

OBUF_LVPECL

DDR
MUX

0

1

(word rate)

D0

D1

load

Input
Regpd

10 sdo_p

sdo_n

sync_det

CLKIN

CLKFB

CLK2X

CLK2X180

clk5x

DCM
BUFG

BUFG

clk10x

clk10x180

DDR

FF

DDR

FF

OBUF_LVPECL

DDR
MUX

sck_p

sck_n

VCC

GND

OBUF_LVPECL

clk
XAPP298 (v1.0) November 2, 2001 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Video Encoder
R

X7C9235 Example: An Alternative Solution
The Cypress CY7C9235 SMPTE 259M/DVB-ASI Scrambler-Controller is a parallel
implementation of an SDI encoder. It accepts a ten-bit video word and generates a ten-bit
encoded video word every clock cycle. The CY7C9235 is designed to operate in two modes, an
SDI compliant mode and a DVB-ASI mode when used in conjunction with a Cypress
CY7B9234 transmitter. In SDI mode, the CY7B9234 simply serializes the SDI encoded data
supplied by the CY7C9235. In DVB-ASI mode, the CY7C9235 passes the data to the
CY7B9234 unmodified and the CY7B9234 performs 8B/10B encoding on the data before
serializing it.

Figure 8 is a block diagram of the X7C9235 module provided in the reference design. The
module includes an instance of the par_scrambler module to do parallel encoding of the video
data. This design example does not implement the DVB-ASI mode features of the Cypress
CY7C9235.

Testing Figure 9 shows the block diagram of a test bench developed for simulation verification of the
SDI encoder modules in this application note and the SDI decoder modules from XAPP288:
Video Decoder.[4]

Figure 8: X7C9235 Example Block Diagram

pd
10

ckw

TRS
clipper

10 10

8 MSBs

2

trs_filt

Parallel
Scrambler

10Input
reg

x298_08_101901

bypass

q

trs_det
8 www.xilinx.com XAPP298 (v1.0) November 2, 2001
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Video Encoder
R

Figure 9: SDI Test-Bench Block Diagram

=

color
bars

clock
gen

pclk
clk
clk2
par_ld

(word rate)
(bit rate)
(half bit rate)
(once every 10 clks)

pclk

8-bit
convert

eight-bit

TRS
clipper

pathos
trs

pclk

ser_
scrambler

clk par_ld

noise
gen

clk

sdi1_stream

ser_
scrambler

2

clk2 par_ld

DDR

pclk

delay

par_
scrambler

pclk

noise
gen

clk

sdi2_streamserializer

clk par_ld

ser_
descrambler

sdi1_stream

clk

ser_
framer

clk

FIFO read_fifos
fifo1_rdy

FIFO

fifo0_out
fifo0_rdy
read_fifos

compare

fifo1_out

ser_
framer_

srl16

clk

FIFO read_fifos
fifo2_rdy
fifo2_out

par_
descrambler

sdi2_stream

pclk

par_
framer

pclk

FIFO read_fifos
fifo3_rdy

par_
framer_

mult

pclk

FIFO read_fifos
fifo4_rdy
fifo4_out

deserializer

clk

fifo3_out

XAPP298_09_101901

X7c9235

pclk

noise
gen

clk

sdi3_streamserializer

clk par_ld

X9002

pclk

noise
gen

clk

sdi4_stream

X7c9335sdi3_stream

pclk

FIFO read_fifos
fifocy_rdydeserializer

clk

fifocy_out

X011sdi4_stream

clk

FIFO read_fifos
fifocl_rdy
fifocl_out
XAPP298 (v1.0) November 2, 2001 www.xilinx.com 9
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Video Encoder
R

The test bench includes a simple color bar test pattern generator to serve as the source of the
video to be sent through the SDI link. The color bar generator and other test pattern generators
are described in XAPP248: Digital Video Test Pattern Generator.[7]

The video data generated by the color bar generator passes through a pathological TRS test
case generator. This module passes the active video data and TRS symbols unchanged.
During the horizontal blanking period, the module inserts pathological test sequences. These
sequences resemble TRS symbols but differ by just a single bit.

The ten-bit digital video out of the pathological test case generator can be forced to a simulated
worst case eight-bit value to exercise the TRS clipper. If the eight_bit signal is asserted, bit zero
of the video is forced to a one and bit one is forced to a zero. This will cause the TRS clipper to
clip both the all-zeros and all-ones cases. When the pathological test case generator is actively
inserting its test cases, as indicated by the assertion of the replace signal, the TRS clipper must
be disabled. If it were not, the TRS clipper could turn some of the TRS-like test cases into valid
TRS symbols.

The output from the TRS clipper is fed into the various SDI scrambler modules and to a FIFO
module. The data in the FIFO module is used as a reference for comparison against the data
recovered by the SDI decoders.

The two-bit wide data path from the half bit-rate scrambler, ser_scrambler2, is connected to a
DDR flip-flop pair and a MUX to generate a serial bitstream. This bitstream is directly compared
against the serial bitstream from the serial scrambler, ser_scrambler, and any differences are
reported as errors.

The bitstream from the ser_scrambler module passes through a noise generator module before
passing to the serial decoders. This noise generator module is capable of corrupting the
bitstream in two ways. The noise generator can inject a burst of noise that corrupts random bits
in the bitstream. This is intended to simulate electrical noise injected onto the signal. This noise
mode is not used in this testbench. It is intended for use with the error detection processors that
will be described in XAPP299.

The noise generator can also insert or remove and random number of consecutive bits (from
one to nine bits) from the bitstream. This will cause the data recovered by the SDI decoder to
be unframed and invalid and will force the SDI decoder to reframe at the next TRS symbol. This
simulates what happens if the SDI decoder becomes unsynchronized. In actual systems this
can occur for a number of different reasons, such as when the video stream is switched to a
different, unsynchronized video source. The noise generator only inserts or removes whole bits
to test that the SDI decoder will detect the offset and reframe. It is not intended to simulate
partial bit jitter for testing the clock and data recovery unit. The period between bit insertion or
removal is controlled by the OFF_PERIOD parameter in the noise generator module code.

The parallel scrambler module also encodes the video data from the trs_clipper module. The
data from the parallel scrambler is serialized and then sent through a noise generator module.
The resulting bitstream is called sdi2_stream and drives the parallel SDI decoder chains.

The SDI bitstreams are each descrambled and framed by the descrambler and framer modules
from XAPP288[4]. The data out of each framer is written into a FIFO module. The output of each
FIFO module is compared against the reference video stream stored in the FIFO connected to
the output of the trs_clipper module.

The X9002 and X7C9235 encoder modules contain their own TRS clipper circuits and are
connected to the output of the 10-bit to 8-bit converter. There is a noise generator module
connected to the output of each of these two modules. The serial bitstream from the X7C9235
encoder drives the X7C9335 decoder. The serial bitstream from the X9002 encoder drives the
X011 decoder (see XAPP288[4]).

The sdi_fifo module is designed to simplify the comparison of video streams passing through
SDI links that have different latencies. Framer designs react differently to the insertion of noise,
especially offset noise. To make the comparison easier, the noise generators are monitored to
determine when any of them inserts offset noise. As soon as this occurs, all the FIFOs are
flushed and they stop storing data until the next TRS symbol is written into the FIFO. In this way,
10 www.xilinx.com XAPP298 (v1.0) November 2, 2001
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Video Encoder
R

only properly framed data from the various SDI decoder chains will be compared against the
reference video data.

Verification of the actual hardware of an SDI link involves more than just verifying that a color
bar pattern can be passed through the link. The primary areas of concern are the cable
equalization and clock and data recovery. Refer to XAPP247[6] for more information about
testing these areas.

The patho_trs module can be synthesized and placed in an SDI transmitter design. When
enabled, the patho_trs module’s pathological test cases are inserted during the horizontal
blanking period. These test cases verify that the receiver’s framer function does not falsely
detect a TRS symbol when it receives bit sequences similar to TRS symbols. The patho_trs
module also generates bit sequences that differ from ANC symbols by one bit. An ANC symbol
represents the beginning of an ancillary data block. The ANC-like test patterns generated by
patho_trs can be used to verify the proper operation of the receiver logic that looks for ANC
blocks.

Reference
Design Results

Table 2 shows the results after place and route of the various modules implemented in this
application note. All results were obtained using the Verilog versions of the designs with Xilinx
ISE version 4.1i. Results using the VHDL files are not shown but are essentially identical.
Virtex-II results are for a -5 speed grade device. Spartan™-II results are for a -6 speed grade
device.

The ser_scrambler module must run as fast as the bit rate of the SDI link. The ser_scrambler2
and X9002 modules run at half the bit rate. The par_scrambler, trs_clipper, X7C9235, and the
patho_trs modules run at the word rate (one-tenth the bit rate).

Conclusion Virtex-II and Spartan-II FPGAs can implement the SDI encoder function. Because the SDI
encoder uses very few FPGA resources, it can be placed in the same device along with other
related video functions resulting in a highly integrated design.

Three different implementations of the SDI scrambler are described in this application note.
This will allow designers to trade-off clock rate versus FPGA area when creating an SDI
encoder design. The half-bit rate scrambler is particularly well suited for use with the DDR
support in the Virtex-II IOBs.

Table 2: Design Results

File Name

XST

Size LUTs/FFs Virtex-II Speed Spartan-II Speed

ser_scrambler.v 12/20 450 MHz 280 MHz

ser_scrambler2.v 14/21 300 MHz N/A

par_scrambler.v 29/20 150 MHz 110 MHz

trs_clipper.v 8/0 2.5 ns 4.8 ns

X9002.v 28/33 250 MHz N/A

X7C9235.v 35/34 150 MHz 110 MHz

patho_trs.v 55/85 150 MHz 120 MHz

Notes:

The ser_scrambler2 and X9002 modules use features unique to the Virtex-II series.
XAPP298 (v1.0) November 2, 2001 www.xilinx.com 11
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Video Encoder
R

References 1. All the SMPTE standards referenced in this application note are available from The Society
of Motion Picture and Television Engineers. These standards can be purchased at the
SMPTE web site: http://www.smpte.org.

2. The ITU-R BT.601-5 standard can be purchased from the International Telecommunication
Union at http://www.itu.int/itudoc/itu-r/rec/bt/.

3. The IEC 1179 standard is now called the IEC 61179 standard and can be purchased from
the International Electrotechnical Commission at http://www.iec.ch/webstore.

4. Xilinx application note XAPP288: MicroBlaze and Multimedia Development Board: Serial
Digital Interface (SDI) Video Decoder by John F. Snow.

5. Xilinx application note XAPP299: MicroBlaze and Multimedia Development Board: Serial
Digital Interface (SDI) Ancillary Data and EDH Processors by John F. Snow.

6. Xilinx application note XAPP247: MicroBlaze and Multimedia Development Board: Serial
Digital Interface (SDI) Physical Layer Implementation by John F. Snow.

7. Xilinx application note XAPP248: MicroBlaze and Multimedia Development Board: Digital
Video Test Pattern Generators

Revision
History

The following table shows the revision history for this document.

Date Version Revision

11/02/01 1.0 Initial Xilinx release.
12 www.xilinx.com XAPP298 (v1.0) November 2, 2001
1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com/xapp/xapp288.pdf
http://www.smpte.org
http://www.itu.int/itudoc/itu-r/rec/bt/
http://www.itu.int/itudoc/itu-r/rec/bt/

	Summary
	SDI Introduction
	Digital Video Formats
	Encoding and Decoding
	Framing and TRS Clipping
	SDI Bit Rates
	Error Detection
	Clock Jitter Considerations

	Reference Design
	TRS Clipper
	Bit-Rate Serial Scrambler
	Half Bit-Rate Serial Scrambler
	Parallel Scrambler
	X9002 Example: An Alternative Solution
	X7C9235 Example: An Alternative Solution

	Testing
	Reference Design Results
	Conclusion
	References
	Revision History

