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Summary of Virtex-II Pro Features
• High-performance Platform FPGA solution including

- Up to sixteen Rocket I/O™ embedded multi-gigabit 
transceiver blocks (based on Mindspeed's 
SkyRail™ technology)

- Up to four IBM® PowerPC® RISC processor blocks
• Based on Virtex™-II Platform FPGA technology

- Flexible logic resources
- SRAM-based in-system configuration
- Active Interconnect™ technology
- SelectRAM™ memory hierarchy
- Dedicated 18-bit x 18-bit multiplier blocks
- High-performance clock management circuitry
- SelectI/O™-Ultra technology
- Digitally Controlled Impedance (DCI) I/O

The members and resources of the Virtex-II Pro family are
shown in Table 1.

Rocket I/O Features
• Full-duplex serial transceiver (SERDES) capable of 

baud rates from 622 Mb/s to 3.125 Gb/s
• 80 Gb/s duplex data rate (16 channels)
• Monolithic clock synthesis and clock recovery (CDR)
• Fibre Channel, Gigabit Ethernet, 10 Gb Attachment 

Unit Interface (XAUI), and Infiniband-compliant 
transceivers

• 8-, 16-, or 32-bit selectable internal FPGA interface

• 8B /10B encoder and decoder
• 50Ω /75Ω on-chip selectable transmit and receive 

terminations
• Programmable comma detection
• Channel bonding support (two to sixteen channels)
• Rate matching via insertion/deletion characters
• Four levels of selectable pre-emphasis
• Five levels of output differential voltage
• Per-channel internal loopback modes
• 2.5V transceiver supply voltage

PowerPC RISC Core Features
• Embedded 300+ MHz Harvard architecture core
• Low power consumption: 0.9 mW/MHz
• Five-stage data path pipeline
• Hardware multiply/divide unit
• Thirty-two 32-bit general purpose registers
• 16 KB two-way set-associative instruction cache
• 16 KB two-way set-associative data cache
• Memory Management Unit (MMU)

- 64-entry unified Translation Look-aside Buffers 
(TLB)

- Variable page sizes (1 KB to 16 MB)
• Dedicated on-chip memory (OCM) interface
• Supports IBM CoreConnect™ bus architecture
• Debug and trace support
• Timer facilities  

0
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Table  1:  Virtex-II Pro FPGA Family Members

Device

Rocket I/O 
Transceiver 

Blocks

PowerPC 
Processor 

Blocks

CLB 
(1 CLB = 4 slices = Max 128 bits)

18 X 18 Bit 
Multiplier 

Blocks

Block SelectRAM

DCMs
Max

I/O Pads
Array 

Row x Col Slices

Maximum 
Distributed 
RAM (Kb)

18 Kb 
Blocks

Max 
Block RAM 

(Kb)

XC2VP2 4 0 16 x 22 1,408 44 12 12 216 4 204

XC2VP4 4 1 40 x 22 3,008 94 28 28 504 4 348

XC2VP7 8 1 40 x 34 4,928 154 44 44 792 4 396

XC2VP20 8 2 56 x 46 9,280 290 88 88 1,584 8 564

XC2VP50 16 4 88 x 70 22,592 706 216 216 3,888 8 852

http:www.xilinx.com/legal.htm
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Virtex-II Pro Platform FPGA Technology
• SelectRAM memory hierarchy

- Up to 4 Mb of True Dual-Port RAM in 18 Kb block 
SelectRAM resources

- Up to 706 Kb of distributed SelectRAM resources
- High-performance interfaces to external memory

• Arithmetic functions
- Dedicated 18-bit x 18-bit multiplier blocks
- Fast look-ahead carry logic chains

• Flexible logic resources
- Up to 45,184 internal registers/latches with Clock 

Enable
- Up to 45,184 look-up tables (LUTs) or cascadable 

variable (1 to 16 bits) shift registers
- Wide multiplexers and wide-input function support
- Horizontal cascade chain and Sum-of-Products 

support
- Internal 3-state busing

• High-performance clock management circuitry
- Up to eight Digital Clock Manager (DCM) modules

· Precise clock de-skew
· Flexible frequency synthesis
· High-resolution phase shifting

- 16 global clock multiplexer buffers in all parts
• Active Interconnect technology

- Fourth-generation segmented routing structure
- Fast, predictable routing delay, independent of 

fanout
- Deep sub-micron noise immunity benefits

• SelectI/O-Ultra technology
- Up to 852 user I/Os
- Twenty two single-ended standards and 

five differential standards
- Programmable LVTTL and LVCMOS sink/source 

current (2 mA to 24 mA) per I/O
- Digitally Controlled Impedance (DCI) I/O: on-chip 

termination resistors for single-ended I/O standards
- PCI support(1)

- Differential signaling
· 840 Mb/s Low-Voltage Differential Signaling I/O 

(LVDS) with current mode drivers
· Bus LVDS I/O
· HyperTransport (LDT) I/O with current driver 

buffers
· Built-in DDR input and output registers

- Proprietary high-performance SelectLink 
technology for communications between Xilinx 
devices
· High-bandwidth data path
· Double Data Rate (DDR) link
· Web-based HDL generation methodology

• SRAM-based in-system configuration
- Fast SelectMAP™ configuration
- Triple Data Encryption Standard (DES) security 

option (bitstream encryption)
- IEEE1532 support 
- Partial reconfiguration
- Unlimited reprogrammability
- Readback capability

• Supported by Xilinx Foundation™ and Alliance™ 
series development systems
- Integrated VHDL and Verilog design flows
- ChipScope™ Integrated Logic Analyzer

• 0.13-µm, nine-layer copper process with 90 nm 
high-speed transistors

• 1.5V (VCCINT) core power supply, dedicated 2.5V 
VCCAUX auxiliary and VCCO I/O power supplies

• IEEE 1149.1 compatible boundary-scan logic support
• Flip-Chip and Wire-Bond Ball Grid Array (BGA) 

packages in standard 1.00 mm pitch
• Each device 100% factory tested

General Description
The Virtex-II Pro family is a platform FPGA for designs that
are based on IP cores and customized modules. The family
incorporates multi-gigabit transceivers and PowerPC CPU
cores in Virtex-II Pro Series FPGA architecture. It empow-
ers complete solutions for telecommunication, wireless, net-
working, video, and DSP applications. 

The leading-edge 0.13µm CMOS nine-layer copper process
and the Virtex-II Pro architecture are optimized for high per-
formance designs in a wide range of densities. Combining a
wide variety of flexible features and IP cores, the
Virtex-II Pro family enhances programmable logic design
capabilities and is a powerful alternative to mask-pro-
grammed gate arrays. 

1. PCI supported in some banks only.
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Architecture

Virtex-II Pro Array Overview
Virtex-II Pro devices are user-programmable gate arrays
with various configurable elements and embedded cores
optimized for high-density and high-performance system
designs. Virtex-II Pro devices implement the following func-
tionality:

• Embedded high-speed serial transceivers enable data 
bit rate up to 3.125 Gb/s per channel.

• Embedded IBM PowerPC 405 RISC CPU cores 
provide performance of 300+ MHz.

• SelectI/O-Ultra blocks provide the interface between 
package pins and the internal configurable logic. Most 
popular and leading-edge I/O standards are supported 
by the programmable IOBs.

• Configurable Logic Blocks (CLBs) provide functional 
elements for combinatorial and synchronous logic, 
including basic storage elements. BUFTs (3-state 
buffers) associated with each CLB element drive 
dedicated segmentable horizontal routing resources.

• Block SelectRAM memory modules provide large 
18 Kb storage elements of True Dual-Port RAM.

• Embedded multiplier blocks are 18-bit x 18-bit 
dedicated multipliers.

• Digital Clock Manager (DCM) blocks provide 
self-calibrating, fully digital solutions for clock 
distribution delay compensation, clock multiplication 
and division, and coarse- and fine-grained clock phase 
shifting.

A new generation of programmable routing resources called
Active Interconnect Technology interconnects all of these
elements. The general routing matrix (GRM) is an array of
routing switches. Each programmable element is tied to a
switch matrix, allowing multiple connections to the general
routing matrix. The overall programmable interconnection is
hierarchical and designed to support high-speed designs.

All programmable elements, including the routing
resources, are controlled by values stored in static memory
cells. These values are loaded in the memory cells during
configuration and can be reloaded to change the functions
of the programmable elements.

Virtex-II Pro Features
This section briefly describes Virtex-II Pro features.

Rocket I/O Multi-Gigabit Transceiver Cores

The Rocket I/O Multi-Gigabit Transceiver core, based on
Mindspeed’s SkyRail technology, is a flexible paral-
lel-to-serial and serial-to-parallel transceiver embedded
core used for high-bandwidth interconnection between
buses, backplanes, or other subsystems. 

Multiple user instantiations in an FPGA are possible, provid-
ing up to 80 Gb/s of full-duplex raw data transfer. Each

channel can be operated at a maximum data transfer rate of
3.125 Gb/s. 

Each Rocket I/O core implements the following functional-
ity:

• Serializer and deserializer (SERDES)
• Monolithic clock synthesis and clock recovery (CDR)
• Fibre Channel, Gigabit Ethernet, XAUI, and Infiniband 

compliant transceivers
• 8-, 16-, or 32-bit selectable FPGA interface
• 8B/10B encoder and decoder with bypassing option on 

each channel
• Channel bonding support (two to sixteen channels)

- Elastic buffers for inter-chip deskewing and 
channel-to-channel alignment

• Receiver clock recovery tolerance of up to 
75 non-transitioning bits

• 50Ω /75Ω on-chip selectable TX and RX terminations
• Programmable comma detection
• Rate matching via insertion/deletion characters
• Automatic lock-to-reference function
• Optional TX and RX data inversion
• Four levels of pre-emphasis support
• Per-channel serial and parallel transmitter-to-receiver 

internal loopback modes
• Cyclic Redundancy Check (CRC) support

PowerPC 405 Processor Block 

The PPC405 RISC CPU can execute instructions at a sus-
tained rate of one instruction per cycle. On-chip instruction
and data cache reduce design complexity and improve sys-
tem throughput.

The PPC405 features include:

• PowerPC RISC CPU
- Implements the PowerPC User Instruction Set 

Architecture (UISA) and extensions for embedded 
applications

- Thirty-two 32-bit general purpose registers (GPRs)
- Static branch prediction
- Five-stage pipeline with single-cycle execution of 

most instructions, including loads/stores
- Unaligned and aligned load/store support to cache, 

main memory, and on-chip memory
- Hardware multiply/divide for faster integer 

arithmetic (4-cycle multiply, 35-cycle divide)
- Enhanced string and multiple-word handling
- Big/little endian operation support

• Storage Control
- Separate instruction and data cache units, both 

two-way set-associative and non-blocking
- Eight words (32 bytes) per cache line
- 16 KB array Instruction Cache Unit (ICU), 16 KB 

array Data Cache Unit (DCU) 
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- Operand forwarding during instruction cache line fill
- Copy-back or write-through DCU strategy
- Doubleword instruction fetch from cache improves 

branch latency
• Virtual mode memory management unit (MMU)

- Translation of the 4 GB logical address space into 
physical addresses

- Software control of page replacement strategy
- Supports multiple simultaneous page sizes ranging 

from 1 KB to 16 MB 
• OCM controllers provide dedicated interfaces between 

Block SelectRAM memory and processor core 
instruction and data paths for high-speed access

• PowerPC timer facilities
- 64-bit time base
- Programmable interval timer (PIT)
- Fixed interval timer (FIT)
- Watchdog timer (WDT)

• Debug Support
- Internal debug mode
- External debug mode
- Debug Wait mode
- Real Time Trace debug mode
- Enhanced debug support with logical operators
- Instruction trace and trace-back support
- Forward or backward trace

• Two hardware interrupt levels support
• Advanced power management support

Input/Output Blocks (IOBs)

IOBs are programmable and can be categorized as follows:

• Input block with an optional single data rate (SDR) or 
double data rate (DDR) register

• Output block with an optional SDR or DDR register and 
an optional 3-state buffer to be driven directly or 
through an SDR or DDR register

• Bidirectional block (any combination of input and output 
configurations)

These registers are either edge-triggered D-type flip-flops
or level-sensitive latches.

IOBs support the following single-ended I/O standards:

• LVTTL
• LVCMOS (3.3V, 2.5V, 1.8V, and 1.5V)
• PCI (33 and 66 MHz)
• GTL and GTLP
• HSTL 1.5V and 1.8V (Class I, II, III, and IV)
• SSTL (3.3V and 2.5V, Class I and II)

The DCI I/O feature automatically provides on-chip termina-
tion for each single-ended I/O standard.

The IOB elements also support the following differential sig-
naling I/O standards:

• LVDS and Extended LVDS (2.5V only)
• BLVDS (Bus LVDS)
• ULVDS
• LDT

Two adjacent pads are used for each differential pair. Two or
four IOB blocks connect to one switch matrix to access the
routing resources.

Configurable Logic Blocks (CLBs)

CLB resources include four slices and two 3-state buffers.
Each slice is equivalent and contains:

• Two function generators (F & G)
• Two storage elements
• Arithmetic logic gates
• Large multiplexers
• Wide function capability
• Fast carry look-ahead chain
• Horizontal cascade chain (OR gate)

The function generators F & G are configurable as 4-input
look-up tables (LUTs), as 16-bit shift registers, or as 16-bit
distributed SelectRAM memory.

In addition, the two storage elements are either
edge-triggered D-type flip-flops or level-sensitive latches.

Each CLB has internal fast interconnect and connects to a
switch matrix to access general routing resources.

Block SelectRAM Memory

The block SelectRAM memory resources are 18 Kb of True
Dual-Port RAM, programmable from 16K x 1 bit to 512 x 36
bit, in various depth and width configurations. Each port is
totally synchronous and independent, offering three
"read-during-write" modes. Block SelectRAM memory is
cascadable to implement large embedded storage blocks.
Supported memory configurations for dual-port and sin-
gle-port modes are shown in Table 2.  

18 X 18 Bit Multipliers

A multiplier block is associated with each SelectRAM mem-
ory block. The multiplier block is a dedicated 18 x 18-bit 2s
complement signed multiplier, and is optimized for opera-
tions based on the block SelectRAM content on one port.
The 18 x 18 multiplier can be used independently of the
block SelectRAM resource. Read/multiply/accumulate oper-
ations and DSP filter structures are extremely efficient.

Both the SelectRAM memory and the multiplier resource
are connected to four switch matrices to access the general
routing resources.

Table  2:  Dual-Port and Single-Port Configurations

16K x 1 bit 4K x 4 bits 1K x 18 bits

8K x 2 bits 2K x 9 bits 512 x 36 bits

http://www.xilinx.com
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Global Clocking

The DCM and global clock multiplexer buffers provide a
complete solution for designing high-speed clock schemes. 

Up to eight DCM blocks are available. To generate
deskewed internal or external clocks, each DCM can be
used to eliminate clock distribution delay. The DCM also
provides 90-, 180-, and 270-degree phase-shifted versions
of its output clocks. Fine-grained phase shifting offers
high-resolution phase adjustments in increments of 1/256 of
the clock period. Very flexible frequency synthesis provides
a clock output frequency equal to a fractional or integer mul-
tiple of the input clock frequency. For exact timing parame-
ters, see Virtex-II Pro™ Platform FPGAs: DC and
Switching Characteristics.

Virtex-II Pro devices have 16 global clock MUX buffers, with
up to eight clock nets per quadrant. Each clock MUX buffer
can select one of the two clock inputs and switch glitch-free
from one clock to the other. Each DCM can send up to four
of its clock outputs to global clock buffers on the same edge.
Any global clock pin can drive any DCM on the same edge.

Routing Resources

The IOB, CLB, block SelectRAM, multiplier, and DCM ele-
ments all use the same interconnect scheme and the same
access to the global routing matrix. Timing models are
shared, greatly improving the predictability of the perfor-
mance of high-speed designs.

There are a total of 16 global clock lines, with eight available
per quadrant. In addition, 24 vertical and horizontal long
lines per row or column, as well as massive secondary and
local routing resources, provide fast interconnect.
Virtex-II Pro buffered interconnects are relatively unaffected
by net fanout, and the interconnect layout is designed to
minimize crosstalk.

Horizontal and vertical routing resources for each row or
column include:

• 24 long lines
• 120 hex lines
• 40 double lines
• 16 direct connect lines (total in all four directions)

Boundary Scan

Boundary-scan instructions and associated data registers
support a standard methodology for accessing and config-

uring Virtex-II Pro devices, complying with IEEE standards
1149.1 and 1532. A system mode and a test mode are
implemented. In system mode, a Virtex-II Pro device will
continue to function while executing non-test bound-
ary-scan instructions. In test mode, boundary-scan test
instructions control the I/O pins for testing purposes. The
Virtex-II Pro Test Access Port (TAP) supports BYPASS,
PRELOAD, SAMPLE, IDCODE, and USERCODE non-test
instructions. The EXTEST, INTEST, and HIGHZ test instruc-
tions are also supported.

Configuration

Virtex-II Pro devices are configured by loading the bitstream
into internal configuration memory using one of the follow-
ing modes:

• Slave-serial mode
• Master-serial mode
• Slave SelectMAP mode
• Master SelectMAP mode
• Boundary-Scan mode (IEEE 1532)

A Data Encryption Standard (DES) decryptor is available
on-chip to secure the bitstreams. One or two triple-DES key
sets can be used to optionally encrypt the configuration data.

The Xilinx System Advanced Configuration Enviornment
(System ACE) family offers high-capacity and flexible solu-
tion for FPGA configuration as well as program/data storage
for the processor. See DS080, System ACE Compact-
Flash Solution for more information.

Readback and Integrated Logic Analyzer

Configuration data stored in Virtex-II Pro configuration
memory can be read back for verification. Along with the
configuration data, the contents of all flip-flops/latches, dis-
tributed SelectRAM, and block SelectRAM memory
resources can be read back. This capability is useful for
real-time debugging.

The Xilinx ChipScope Integrated Logic Analyzer (ILA) cores
and Integrated Bus Analyzer (IBA) cores, along with the
ChipScope Pro Analyzer software, provide a complete solu-
tion for accessing and verifying user designs within
Virtex-II Pro devices. 

http://www.xilinx.com/partinfo/ds080.pdf
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IP Core and Reference Support
Intellectual Property is part of the Platform FPGA solution.
In addition to the existing FPGA fabric cores, the list below
shows some of the currently available hardware and soft-
ware intellectual properties specially developed for
Virtex-II Pro by Xilinx. Each IP core is modular, portable,
Real-Time Operating System (RTOS) independent, and
CoreConnect compatible for ease of design migration.
Refer to www.xilinx.com for the latest and most complete
list of cores. 

Hardware Cores 
• Bus Infrastructure cores (arbiters, bridges, and more) 

• Memory cores (Flash, SRAM, and more) 
• Peripheral cores (UART, IIC, and more) 
• Networking cores (ATM, Ethernet, and more) 

Software Cores 
• Boot code 
• Test code 
• Device drivers 
• Protocol stacks 
• RTOS integration 
• Customized board support package

Virtex-II Pro Device/Package Combinations and Maximum I/Os
Offerings include ball grid array (BGA) packages with
1.0 mm pitch. In addition to traditional wire-bond intercon-
nects, flip-chip interconnect is used in some of the BGA
offerings. The use of flip-chip interconnect offers more I/Os
than are possible in wire-bond versions of the similar pack-
ages. Flip-chip construction offers the combination of high
pin count and excellent power dissipation.

The Virtex-II Pro device/package combination table
(Table 3) details the maximum number of I/Os for each
device and package using wire-bond or flip-chip technology.

• FG denotes wire-bond fine-pitch BGA (1.00 mm pitch). 
• FF denotes flip-chip fine-pitch BGA (1.00 mm pitch).
• BF denotes flip-chip fine-ptich BGA (1.27 mm pitch).

Table  3:  Virtex-II Pro Device/Package Combinations and Maximum Number of Available I/Os 
(Advance Information)

Package Pitch (mm) Size (mm)

User Available I/Os

XC2VP2 XC2VP4 XC2VP7 XC2VP20 XC2VP50

FG256 1.00 17 x 17 140 140

FG456 1.00 23 x 23 156 248 248

FF672 1.00 27 x 27 204 348 396

FF896 1.00 31 x 31 396 556

FF1152 1.00 35 x 35 564 692

FF1517 1.00 40 x 40 852

BF957 1.27 40 x 40 564 584
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Virtex-II Pro Ordering Information
Virtex-II Pro ordering information is shown in Figure 1. 

NOTE: Maximum serial transceiver baud rates for flipchip and wirebond packages are 3.125 Gb/s and 2.5 Gb/s respectively.

Revision History
This section records the change history for this module of the data sheet.  

Virtex-II Pro Data Sheet Modules
The Virtex-II Pro Data Sheet contains the following modules:

• Virtex-II Pro Platform FPGAs: Introduction and 
Overview (Module 1)

• Virtex-II Pro™ Platform FPGAs: Functional 
Description (Module 2)

• Virtex-II Pro™ Platform FPGAs: DC and Switching 
Characteristics (Module 3)

• Virtex-II Pro Platform FPGAs: Pinout Information 
(Module 4)

Figure 1:  Virtex-II Pro Ordering Information

Date Version Revision

01/31/02 1.0 Initial Xilinx release.

Example: XC2VP7-7FG456C

Device Type Temperature Range:
   C = Commercial (Tj = 0˚C to +85˚C)
   I = Industrial (Tj = -40˚C to +100˚C)

Number of Pins

Package Type

Speed Grade
(-6, -7, -8)

DS083_02_102301
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Virtex-II Pro Array Functional 
Description  

This module describes the following Virtex-II Pro functional
components, as shown in Figure 1: 

• Embedded Rocket I/O™ Multi-Gigabit Transceivers 
(MGTs)

• Processor Blocks containing embedded IBM® 
PowerPC® 405 RISC CPU (PPC405) cores and 
integration circuitry.

• FPGA fabric based on Virtex-II architecture.

For a detailed description of the PPC405 core programming
models and internal core operations, refer to the PowerPC
405 User Manual and the Processor Block Manual.

For detailed Rocket I/O digital and analog design consider-
ations, refer to the Rocket I/O User Guide.

All of the documents above, as well as a complete listing
and description of Xilinx-developed Intellectual Property
cores for Virtex-II Pro, are available on the Xilinx website at
www.xilinx.com/virtex2pro.

Virtex-II Pro Compared to Virtex-II Devices
Virtex-II Pro is built on the Virtex-II FPGA architecture. Most
FPGA features are identical to Virtex-II. The differences are
described below:

• Virtex-II Pro is the first FPGA family incorporating 
embedded PPC405 cores and Rocket I/O MGTs.

• VCCAUX, the auxiliary supply voltage, is 2.5V instead of 
3.3V as for Virtex-II devices. Advanced processing at 
0.13 µm has resulted in a smaller die, faster speed, 
and lower power consumption.

• The Virtex-II Pro family is neither bitstream-compatible 
nor pin-compatible with the Virtex-II family. However, 
Virtex-II designs can be compiled into Virtex-II Pro 
devices.

• All banks support 2.5V (and below) I/O standards. 
3.3V I/O standards including PCI are supported in 
certain banks only. (See Table 4-1, page 448.) 
LVPECL, LVDS_33, LVDSEXT_33, LVDCI_DV2_33, 
and AGP-2X are not supported.

Functional Description: Rocket I/O 
Multi-Gigabit Transceiver (MGT) 
This section summarizes the features of the Rocket I/O
multi-gigabit transceiver. For an in-depth discussion of the
Rocket I/O MGT, refer to the Rocket I/O User Guide.

Overview
The embedded Rocket I/O multi-gigabit transceiver core is
based on Mindspeed’s SkyRail™ technology. Up to sixteen
transceiver cores are available. The transceiver core is
designed to operate at any baud rate in the range of

622 Mb/s to 3.125 Gb/s per channel. This includes specific
baud rates used by various standards as listed in Table 1.
.

0
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Figure 1:  Virtex-II Pro Generic Architecture Overview
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Table  1:  Standards Supported by the Rocket I/O MGT

Mode
Channels 
(Lanes)

I/O 
Baud Rate 

(Gb/s)

Internal Clock 
Rate (REFCLK) 

(MHz)

Fibre Channel 1
1.06 53

2.12 106

Gbit Ethernet 1 1.25 62.5

XAUI 4 3.125 156.25
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The serial bit rate need not be configured in the transceiver,
as the operating frequency is implied by the received data
and reference clock applied.

The Rocket I/O transceiver core consists of the Physical
Media Attachment (PMA) and Physical Coding Sublayer
(PCS). The PMA contains the serializer and deserializer.
The PCS contains the bypassable 8B/10B encoder/
decoder, elastic buffers, and Cyclic Redundancy Check
(CRC) units. The encoder and decoder handle the 8B/10B
coding scheme. The elastic buffers support the clock cor-
rection (rate matching) and channel bonding features. The
CRC units perform CRC generation and checking. 

Figure 2 shows the Rocket I/O high-level block diagram and
FPGA interface signals. 

Infiniband 1, 4, 12 2.5 125

Aurora (Xilinx) 1, 2, 3, 4, ... 0.840 - 3.125 42.00-156.25

Custom mode 1, 2, 3, 4, ... up to 3.125 up to 156.25

Table  1:  Standards Supported by the Rocket I/O MGT

Mode
Channels 
(Lanes)

I/O 
Baud Rate 

(Gb/s)

Internal Clock 
Rate (REFCLK) 

(MHz)
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Figure 2:  Rocket I/O Block Diagram
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Clock Synthesizer
Synchronous serial data reception is facilitated by a
clock/data recovery circuit. This circuit uses a fully mono-
lithic Phase Lock Loop (PLL), which does not require any
external components. The clock/data recovery circuit
extracts both phase and frequency from the incoming data
stream. The recovered clock is presented on output
RXRECCLK at 1/20 of the serial received data rate.

The gigabit transceiver multiplies the reference frequency
provided on the reference clock input (REFCLK) by 20. The
multiplication of the clock is achieved by using a fully mono-
lithic PLL that does not require any external components.

No fixed phase relationship is assumed between REFCLK,
RXRECCLK, and/or any other clock that is not tied to either
of these clocks. When the 4-byte or 1-byte receiver data
path is used, RXUSRCLK and RXUSRCLK2 have different
frequencies, and each edge of the slower clock is aligned to
a falling edge of the faster clock. The same relationships
apply to TXUSRCLK and TXUSRCLK2. 

Clock and Data Recovery
The clock/data recovery (CDR) circuits will lock to the refer-
ence clock automatically if the data is not present. For
proper operation, the frequency of the reference clock must
be within ±100 ppm of the nominal frequency.

It is critical to keep power supply noise low in order to mini-
mize common and differential noise modes into the
clock/data recovery circuitry. Refer to the Rocket I/O User
Guide for more details.

Transmitter

FPGA Transmit Interface

The FPGA can send either one, two, or four characters of
data to the transmitter. Each character can be either 8 bits
or 10 bits wide. If 8-bit data is applied, the additional inputs
become control signals for the 8B/10B encoder. When the
8B/10B encoder is bypassed, the 10-bit character order is
generated as follows:

TXCHARDISPMODE[0] (first bit transmitted)
TXCHARDISPVAL[0]
TXDATA[7:0] (last bit transmitted is TXDATA[0])

8B/10B Encoder

A bypassable 8B/10B encoder is included. The encoder
uses the same 256 data characters and 12 control charac-
ters that are used for Gigabit Ethernet, Fibre Channel, and
InfiniBand. 

The encoder accepts 8 bits of data along with a K-character
signal for a total of 9 bits per character applied, and
generates a 10 bit character for transmission. If the
K-character signal is High, the data is encoded into one of
the twelve possible K-characters available in the 8B/10B
code. If the K-character input is Low, the 8 bits are encoded

as standard data. If the K-character input is High, and a
user applies other than one of the twelve possible
combinations, TXKERR indicates the error.

Disparity Control

The 8B/10B encoder is initialized with a negative running
disparity. Unique control allows forcing the current running
disparity state.

TXRUNDISP signals its current running disparity. This may
be useful in those cases where there is a need to manipu-
late the initial running disparity value.

Bits TXCHARDISPMODE and TXCHARDISPVAL control
the generation of running disparity before each byte.

For example, the transceiver can generate the sequence

K28.5+ K28.5+ K28.5– K28.5–
or 
K28.5– K28.5– K28.5+ K28.5+ 

by specifying inverted running disparity for the second and
fourth bytes.

Transmit FIFO

Proper operation of the circuit is only possible if the FPGA
clock (TXUSRCLK) is frequency-locked to the reference
clock (REFCLK). Phase variations up to one clock cycle are
allowable. The FIFO has a depth of four. Overflow or under-
flow conditions are detected and signaled at the interface.
Bypassing of this FIFO is programmable.

Serializer

The multi-gigabit transceiver multiplies the reference fre-
quency provided on the reference clock input (REFCLK) by
20. Clock multiplication is achieved by using a fully mono-
lithic PLL requiring no external components. Data is con-
verted from parallel to serial format and transmitted on the
TXP and TXN differential outputs. Bit 0 is transmitted first
and bit 19 is transmitted last.

The electrical connection of TXP and TXN can be inter-
changed through configuration. This option can be con-
trolled by an input (TXPOLARITY) at the FPGA transmitter
interface. This facilitates recovery from situations where
printed circuit board traces have been reversed.

Transmit Termination

On-chip termination is provided at the transmitter, eliminat-
ing the need for external termination. Programmable
options exist for 50Ω (default) and 75Ω termination.

Pre-Emphasis Circuit and Swing Control

Four selectable levels of pre-emphasis (10% [default], 20%,
25%, and 33%) are available. Optimizing this setting allows
the transceiver to drive up to 20 inches of FR4 at the maxi-
mum baud rate.

The programmable output swing control can adjust the dif-
ferential output level between 400 mV and 800 mV in four
increments of 100 mV.

http://www.xilinx.com


Virtex-II Pro™ Platform FPGAs: Functional Description
R

DS083-2 (v1.0) January 31, 2002 www.xilinx.com 87
Advance Product Specification 1-800-255-7778

Receiver

Deserializer

The Rocket I/O transceiver core accepts serial differential
data on its RXP and RXN inputs. The clock/data recovery
circuit extracts the clock and retimes incoming data to this
clock. It uses a fully monolithic PLL requiring no external
components. The clock/data recovery circuitry extracts both
phase and frequency from the incoming data stream. The
recovered clock is presented on output RXRECCLK at 1/20
of the received serial data rate.

The receiver is capable of handling either transition-rich
8B/10B streams or scrambled streams, and can withstand a
string of up to 75 non-transitioning bits without an error.

Word alignment is dependent on the state of comma detect
bits. If comma detect is enabled, the transceiver will recog-
nize up to two 10-bit preprogrammed characters. Upon
detection of the character or characters, the comma detect
output is driven high and the data is synchronously aligned.
If a comma is detected and the data is aligned, no further
alignment alteration will take place. If a comma is received
and realignment is necessary, the data is realigned and an
indication is given at the receiver interface. The realignment
indicator is a distinct output. The transceiver will continu-
ously monitor the data for the presence of the 10-bit charac-
ter(s). Upon each occurrence of the 10-bit character, the
data is checked for word alignment. If comma detect is dis-
abled, the data will not be aligned to any particular pattern.
The programmable option allows a user to align data on
comma+, comma–, both, or a unique user-defined and pro-
grammed sequence.

The receiver can be configured to reverse the RXP and
RXN inputs. This can be useful in the event that printed cir-
cuit board traces have been reversed.

Receiver Termination

On-chip termination is provided at the receiver, eliminating
the need for external termination. The receiver includes pro-
grammable on-chip termination circuitry for 50Ω (default) or
75Ω impedance.

8B/10B Decoder

An optional 8B/10B decoder is included. A programmable
option allows the decoder to be bypassed. When the
8B/10B decoder is bypassed, the 10-bit character order is,
for example,

RXCHARISK[0] (first bit received)
RXRUNDISP[0]
RXDATA[7:0] (last bit received is RXDATA[0])

The decoder uses the same table that is used for Gigabit
Ethernet, Fibre Channel, and InfiniBand. In addition to
decoding all data and K-characters, the decoder has sev-
eral extra features. The decoder separately detects both
“disparity errors” and “out-of-band” errors. A disparity error
is the reception of 10-bit character that exists within the

8B/10B table but has an incorrect disparity. An out-of-band
error is the reception of a 10-bit character that does not exist
within the 8B/10B table. It is possible to obtain an
out-of-band error without having a disparity error. The
proper disparity is always computed for both legal and ille-
gal characters. The current running disparity is available at
the RXRUNDISP signal.

The 8B/10B decoder performs a unique operation if
out-of-band data is detected. If out-of-band data is
detected, the decoder signals the error and passes the ille-
gal 10-bits through and places them on the outputs. This
can be used for debugging purposes if desired.

The decoder also signals the reception of one of the 12 valid
K-characters. In addition, a programmable comma detect is
included. The comma detect signal registers a comma on
the receipt of any comma+, comma–, or both. Since the
comma is defined as a 7-bit character, this includes several
out-of-band characters. Another option allows the decoder
to detect only the three defined commas (K28.1, K28.5, and
K28.7) as comma+, comma–, or both. In total, there are six
possible options, three for valid commas and three for "any
comma."

It should be noted that all bytes (1, 2, or 4) at the RX FPGA
interface will each have their own individual 8B/10B indica-
tors (K-character, disparity error, out-of-band error, current
running disparity, and comma detect).

Loopback
In order to facilitate testing without having the need to either
apply patterns or measure data at GHz rates, two program-
mable loop-back features are available. 

One option, serial loopback, places the gigabit transceiver
into a state where transmit data is directly fed back to the
receiver. An important point to note is that the feedback path
is at the output pads of the transmitter. This tests the
entirety of the transmitter and receiver.

The second loopback path is a parallel path that checks the
digital circuitry. When the parallel option is enabled, the
serial loopback path is disabled. However, the transmitter
outputs remain active and data is transmitted over a link. If
TXINHIBIT is asserted, TXP is forced to 0 until TXINHIBIT
is de-asserted.

Elastic and Transmitter Buffers 
Both the transmitter and the receiver include buffers
(FIFOs) in the datapath. This section gives the reasons for
including the buffers and outlines their operation. 

Receiver Buffer

The receiver buffer is required for two reasons: 

• Clock corection to accommodate the slight difference in 
frequency between the recovered clock RXRECCLK 
and the internal FPGA user clock RXUSRCLK 

• Channel bonding to allow realignment of the input 
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stream to ensure proper alignment of data being read 
through multiple transceivers

The receiver uses an elastic buffer, where "elastic" refers to
the ability to modify the read pointer for clock correction and
channel bonding. 

Clock Correction 

Clock RXRECCLK (the recovered clock) reflects the data
rate of the incoming data. Clock RXUSRCLK defines the
rate at which the FPGA fabric consumes the data. Ideally,
these rates are identical. However, since the clocks typically
have different sources, one of the clocks will be faster than
the other. The receiver buffer accommodates this difference
between the clock rates. See Figure 3.

Nominally, the buffer is always half full. This is shown in the
top buffer, Figure 3, where the shaded area represents buff-
ered data not yet read. Received data is inserted via the
write pointer under control of RXRECCLK. The FPGA fabric
reads data via the read pointer under control of RXUSR-
CLK. The half full/half empty condition of the buffer gives a
cushion for the differing clock rates. This operation contin-
ues indefinitely, regardless of whether or not "meaningful"
data is being received. When there is no meaningful data to
be received, the incoming data will consist of IDLE charac-
ters or other padding. 

If RXUSRCLK is faster than RXRECCLK, the buffer
becomes more empty over time. The clock correction logic
corrects for this by decrementing the read pointer to reread
a repeatable byte sequence. This is shown in the middle
buffer, Figure 3, where the solid read pointer decrements to
the value represented by the dashed pointer. By decrement-
ing the read pointer instead of incrementing it in the usual
fashion, the buffer is partially refilled. The transceiver design
will repeat a single repeatable byte sequence when neces-
sary to refill a buffer. If the byte sequence length is greater
than one, and if attribute CLK_COR_REPEAT_WAIT is 0,
then the transceiver may repeat the same sequence multi-
ple times until the buffer is refilled to the desired extent. 

Similarly, if RXUSRCLK is slower than RXRECCLK, the
buffer will fill up over time. The clock correction logic cor-
rects for this by incrementing the read pointer to skip over a
removable byte sequence that need not appear in the final
FPGA fabric byte stream. This is shown in the bottom buffer,
Figure 3, where the solid read pointer increments to the
value represented by the dashed pointer. This accelerates
the emptying of the buffer, preventing its overflow. The
transceiver design will skip a single byte sequence when
necessary to partially empty a buffer. If attribute
CLK_COR_REPEAT_WAIT is 0, the transceiver may also
skip two consecutive removable byte sequences in one step
to further empty the buffer when necessary. 

These operations require the clock correction logic to recog-
nize a byte sequence that can be freely repeated or omitted
in the incoming data stream. This sequence is generally an
IDLE sequence, or other sequence comprised of special
values that occur in the gaps separating packets of mean-
ingful data. These gaps are required to occur sufficiently
often to facilitate the timely execution of clock correction. 

Channel Bonding

Some gigabit I/O standards such as Infiniband specify the
use of multiple transceivers in parallel for even higher data
rates. Words of data are split into bytes, with each byte sent
over a separate channel (transceiver). See Figure 4. 

The top half of the figure shows the transmission of words
split across four transceivers (channels or lanes). PPPP,
QQQQ, RRRR, SSSS, and TTTT represent words sent over
the four channels. 

Figure 3:  Clock Correction in Receiver
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The bottom-left portion of the figure shows the initial situa-
tion in the FPGA’s receivers at the other end of the four
channels. Due to variations in transmission delay—espe-
cially if the channels are routed through repeaters—the
FPGA fabric may not correctly assemble the bytes into com-
plete words. The bottom-left illustration shows the incorrect
assembly of data words PQPP, QRQQ, RSRR, etc. 

To support correction of this misalignment, the data stream
will include special byte sequences that define correspond-
ing points in the several channels. In the bottom half of
Figure 4, the shaded "P" bytes represent these special
characters. Each receiver recognizes the "P" channel bond-
ing character, and remembers its location in the buffer. At
some point, one transceiver designated as the master
instructs all the transceivers to align to the channel bonding
character "P" (or to some location relative to the channel
bonding character). After this operation, the words transmit-
ted to the FPGA fabric will be properly aligned: RRRR,
SSSS, TTTT, etc., as shown in the bottom-right portion of
Figure 4. To ensure that the channels remain properly
aligned following the channel bonding operation, the master
transceiver must also control the clock correction operations
described in the previous section for all channel-bonded
transceivers. 

Transmitter Buffer

The transmitter's buffer write pointer (TXUSRCLK) is fre-
quency-locked to its read pointer (REFCLK). Therefore,
clock correction and channel bonding are not required. The
purpose of the transmitter's buffer is to accommodate a
phase difference between TXUSRCLK and REFCLK. A
simple FIFO suffices for this purpose. A FIFO depth of four
will permit reliable operation with simple detection of over-
flow or underflow, which could occur if the clocks are not fre-
quency-locked. 

CRC
The Rocket I/O transceiver CRC logic supports the 32-bit
invariant CRC calculation used by Infiniband, FibreChannel,
and Gigabit Ethernet. 

On the transmitter side, the CRC logic recognizes where the
CRC bytes should be inserted and replaces four place-
holder bytes at the tail of a data packet with the computed
CRC. For Gigabit Ethernet and FibreChannel, transmitter
CRC may adjust certain trailing bytes to generate the
required running disparity at the end of the packet. 

On the receiver side, the CRC logic verifies the received
CRC value, supporting the same standards as above. 

The CRC logic also supports a user mode, with a simple
data packet stucture beginning and ending with
user-defined SOP and EOP characters. 

Configuration 
This section outlines functions that may be selected or con-

trolled by configuration. Xilinx implementation software sup-
ports 16 transceiver primitives, as shown in Table 2. 

Each of the above primitives defines default values for the
configuration attributes, allowing some number of them to
be modified by the user. 

Refer to the Rocket I/O User Guide for more details.

Reset / Power Down
The receiver and transmitter have their own synchronous
reset inputs. The transmitter reset recenters the transmis-
sion FIFO, and resets all transmitter registers and the
8B/10B decoder. The receiver reset recenters the receiver
elastic buffer, and resets all receiver registers and the
8B/10B encoder. Neither reset signal has any effect on the
PLLs. 

The Power Down module is controlled by the POWER-
DOWN input pin on the transceiver core. The Power down
pin on the FPGA package has no effect on the transceiver
core.

Power Sequencing
Although applying power in a random order does not dam-
age the device, it is recommended to apply power in the fol-
lowing sequence to minimize power-on current:

1. Apply FPGA fabric power supplies (VCCINT and 
VCCAUX) in any order.

2. Apply AVCCAUXRX.

3. Apply AVCCAUXTX, VTTX, and VTRX in any order.

Table  2:  Supported Rocket I/O Transceiver Primitives

GT_CUSTOM Fully customizable by user

GT_FIBRE_CHAN_1 Fibre Channel, 1-byte data path

GT_FIBRE_CHAN_2 Fibre Channel, 2-byte data path

GT_FIBRE_CHAN_4 Fibre Channel, 4-byte data path

GT_ETHERNET_1 Gigabit Ethernet, 1-byte data path

GT_ETHERNET_2 Gigabit Ethernet, 2-byte data path

GT_ETHERNET_4 Gigabit Ethernet, 4-byte data path

GT_XAUI_1 10-gigabit Ethernet, 1-byte data path

GT_XAUI_2 10-gigabit Ethernet, 2-byte data path

GT_XAUI_4 10-gigabit Ethernet, 4-byte data path

GT_INFINIBAND_1 Infiniband, 1-byte data path

GT_INFINIBAND_2 Infiniband, 2-byte data path

GT_INFINIBAND_4 Infiniband, 4-byte data path

GT_AURORA_1 Xilinx protocol, 1-byte data path

GT_AURORA_2 Xilinx protocol, 2-byte data path

GT_AURORA_4 Xilinx protocol, 4-byte data path 
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Functional Description: 
Processor Block  

This section briefly describes the interfaces and compo-
nents of the Processor Block. The subsequent section,
Functional Description: PowerPC 405 Core beginning on
page 93, offers a summary of major PPC405 core features.
For an in-depth discussion on both Processor Block and
PPC405, refer to the Processor Block Manual and the
PPC405 User Manual.

Processor Block Overview
Figure 5 shows the internal architecture of the Processor
Block.

Within the Virtex-II Pro Processor Block, there are four com-
ponents:

• Embedded IBM PowerPC 405-D5 RISC CPU core 
• On-Chip Memory (OCM) controllers and interfaces
• Clock/control interface logic
• CPU-FPGA Interfaces

Embedded PowerPC 405 RISC Core
The PowerPC 405D5 core is a 0.13 µm implementation of
the IBM PowerPC 405D4 core. The advanced process tech-
nology enables the embedded PowerPC 405 (PPC405)
core to operate at 300+ MHz while maintaining low power

consumption. Specially designed interface logic integrates
the core with the surrounding CLBs, block RAMs, and gen-
eral routing resources. Up to four Processor Blocks can be
available in a single Virtex-II Pro device.

The PPC405 core implements the PowerPC User Instruc-
tion Set Architecture (UISA), user-level registers, program-
ming model, data types, and addressing modes for 32-bit
fixed-point operations. 64-bit operations, auxiliary proces-
sor operations, and floating-point operations are trapped
and can be emulated in software.

Most of the PPC405 core features are compatible with the
specifications for the PowerPC Virtual Environment
Architecture (VEA) and Operating Environment Architecture
(OEA). They also provide a number of optimizations and
extensions to the lower layers of the PowerPC Architecture.
The full architecture of the PPC405 is defined by the
PowerPC Embedded Environment and the PowerPC UISA. 

On-Chip Memory (OCM) Controllers

Introduction

The OCM controllers serve as dedicated interfaces
between the block RAMs in the FPGA fabric (see 18 Kb
Block SelectRAM Resources, page 113) and OCM sig-
nals available on the embedded PPC405 core. The OCM
signals on the PPC405 core are designed to provide very
quick access to a fixed amount of instruction and data mem-
ory space. The OCM controller provides an interface to both
the 64-bit Instruction-Side Block RAM (ISBRAM) and the
32-bit Data-Side Block RAM (DSBRAM). The designer can
choose to implement:

• ISBRAM only
• DSBRAM only
• Both ISBRAM and DSBRAM
• No ISBRAM and no DSBRAM

One of OCM’s primary advantages is that it guarantees a
fixed latency of execution for a higher level of determinism.
Additionally, it reduces cache pollution and thrashing, since
the cache remains available for caching code from other
memory resources.

Typical applications for DSOCM include scratch-pad mem-
ory, as well as use of the dual-port feature of block RAM to
enable bidirectional data transfer between processor and
FPGA. Typical applications for ISOCM include storage of
interrupt service routines. 

Functional Features

Common Features

• Separate Instruction and Data memory interface 
between Processor core and BRAMs in FPGA

• Dedicated interface to Device Control Register (DCR) 
bus for ISOCM and DSOCM

• Single-cycle and multi-cycle mode option for I-side and 
D-side interfaces

Figure 5:  Processor Block Architecture
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• Single cycle = one clock cycle; multi-cycle = minimum 
of two and maximum of eight clock cycles

• FPGA configurable DCR addresses within DSOCM 
and ISOCM

• Independent 16 MB logical memory space available 
within PPC405 memory map for each of the DSOCM 
and ISOCM. The number of block RAMs in the device 
may limit the maximum amount of OCM supported.

• Maximum of 64K and 128K bytes addressable from 
DSOCM and ISOCM interfaces, respectively, using 
address outputs from OCM directly without additional 
decoding logic

Data-Side OCM (DSOCM)

• 32-bit Data Read bus and 32-bit Data Write bus
• Byte write access to DSBRAM support
• Second port of dual port DSBRAM is available to 

read/write from an FPGA interface
• 22-bit address to DSBRAM port 
• 8-bit DCR Registers: DSCNTL, DSARC
• Three alternatives to write into DSBRAM: BRAM 

initialization, CPU, FPGA H/W using second port

Instruction-Side OCM (ISOCM)

The ISOCM interface contains a 64-bit read only port, for
instruction fetches, and a 32-bit write only port, to initialize
or test the ISBRAM. When implementing the read only port,
the user must deassert the write port inputs. The preferred
method of initializing the ISBRAM is through the configura-
tion bitstream.

• 64-bit Data Read Only bus (two instructions per cycle)
• 32-bit Data Write Only bus (through DCR)
• Separate 21-bit address to ISBRAM 
• 8-bit DCR Registers: ISCNTL, ISARC
• 32-bit DCR Registers: ISINIT, ISFILL
• Two alternatives to write into ISBRAM: BRAM 

initialization, DCR and write instruction

Clock/Control Interface Logic
The clock/control interface logic provides proper initializa-
tion and connections for PPC405 clock/power manage-
ment, resets, PLB cycle control, and OCM interfaces. It also
couples user signals between the FPGA fabric and the
PPC405 CPU core.

The processor clock connectivity is similar to CLB clock
pins. It can connect either to global clock nets or general
routing resources. Therefore the processor clock source
can come from DCM, CLB, or user package pin.

CPU-FPGA Interfaces
All Processor Block user pins link up with the general FPGA
routing resources through the CPU-FPGA interface. There-

fore processor signals have the same routability as other
non-Processor Block user signals. Longlines and hex lines
travel across the Processor Block both vertically and hori-
zontally, allowing signals to route through the Processor
Block.

Processor Local Bus (PLB) Interfaces

The PPC405 core accesses high-speed system resources
through PLB interfaces on the instruction and data cache
controllers. The PLB interfaces provide separate 32-bit
address/64-bit data buses for the instruction and data sides. 

The cache controllers are both PLB masters. PLB arbiters
can be implemented on FPGA fabric and are available as
soft IP cores.

Device Control Register (DCR) Bus Interface

The device control register (DCR) bus has 10 bits of
address space for components external to the PPC405
core. Using the DCR bus to manage status and configura-
tion registers reduces PLB traffic and improves system
integrity. System resources on the DCR bus are protected
or isolated from wayward code since the DCR bus is not
part of the system memory map. 

On-Chip Memory (OCM) Interfaces

Access to optional, user-configurable direct-mapped mem-
ory is through the OCM interfaces. The OCM interfaces can
have the same access time as a cache hit, depending on
the clock frequency and block RAM size. OCM may be
attached to the PPC405 core through the instruction OCM
interface and/or the data OCM interface.

Instruction side OCM is often used to hold critical code such
as an interrupt handler that requires guaranteed low-latency
deterministic access. Data side OCM offers the same fixed
low-latency access and is used to hold critical data such as
filter coefficients for a DSP application or packets for fast
processing. Refer to On-Chip Memory (OCM) Controllers,
page 90, for more information.

External Interrupt Controller (EIC) Interface

Two level-sensitive user interrupt pins (critical and non-criti-
cal) are available. They can be either driven by user defined
logic or Xilinx soft interrupt controller IP core outside the
Processor Block.

Clock/Power Management (CPM) Interface

The CPM interface supports several methods of clock distri-
bution and power management.Three modes of operation
that reduce power consumption below the normal opera-
tional level are available.

Reset Interface

There are three user reset input pins (core, chip, and sys-
tem) and three user reset output pins for different levels of
reset, if required.
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Debug Interface

Debugging interfaces on the PPC405 core, consisting of the
JTAG and Trace ports, offer access to resources internal to
the core and assist in software development. The JTAG port
provides basic JTAG chip testing functionality as well as the
ability for external debug tools to gain control of the proces-
sor for debug purposes. The Trace port furnishes program-
mers with a mechanism for acquiring instruction execution
traces.

The JTAG port complies with IEEE Std 1149.1, which
defines a test access port (TAP) and boundary scan
architecture. Extensions to the JTAG interface provide
debuggers with processor control that includes stopping,
starting, and stepping the PPC405 core. These extensions
are compliant with the IEEE 1149.1 specifications for
vendor-specific extensions.

The Trace port provides instruction execution trace informa-
tion to an external trace tool. The PPC405 core is capable of
back trace and forward trace. Back trace is the tracing of
instructions prior to a debug event while forward trace is the
tracing of instructions after a debug event.

The processor JTAG port can be accessed independently
from the FPGA JTAG port, or the two can be programmati-
cally linked together and accessed via the FPGA’s dedi-
cated JTAG pins.

CoreConnect™ Bus Architecture  

The Processor Block is compatible with the CoreConnect™
bus architecture. Any CoreConnect compliant cores includ-
ing Xilinx soft IP can integrate with the Processor Block
through this high-performance bus architecture imple-
mented on FPGA fabric.

The CoreConnect architecture provides three buses for
interconnecting Processor Blocks, Xilinx soft IP, third party
IP, and custom logic, as shown in Figure 6:

• Processor Local Bus (PLB)
• On-Chip Peripheral Bus (OPB)
• Device Control Register (DCR) bus

High-performance peripherals connect to the high-band-
width, low-latency PLB. Slower peripheral cores connect to
the OPB, which reduces traffic on the PLB, resulting in
greater overall system performance.

For more information, refer to:
http://www-3.ibm.com/chips/techlib/techlib.nfs
/productfamilies/CoreConnect_Bus_Architecture/

Figure 6:  CoreConnect Block Diagram
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Functional Description: 
PowerPC 405 Core
This section offers a brief overview of the various functional
blocks shown in Figure 7. 

PPC405 Core
The PPC405 core is a 32-bit Harvard architecture proces-
sor. It consists of the following functional blocks as shown in
Figure 7:

• Cache units
• Memory Management unit
• Fetch Decode unit
• Execution unit
• Timers
• Debug logic unit

It operates on instructions in a five stage pipeline consisting
of a fetch, decode, execute, write-back, and load write-back
stage. Most instructions execute in a single cycle, including
loads and stores.

Instruction and Data Cache
The PPC405 core provides an instruction cache unit (ICU)
and a data cache unit (DCU) that allow concurrent accesses
and minimize pipeline stalls. The instruction and data cache
array are 16 KB each. Both cache units are two-way set
associative. Each way is organized into 256 lines of 32
bytes (eight words). The instruction set provides a rich
assortment of cache control instructions, including instruc-
tions to read tag information and data arrays.

The PPC405 core accesses external memory through the
instruction (ICU) and data cache units (DCU). The cache
units each include a 64-bit PLB master interface, cache
arrays, and a cache controller. The ICU and DCU handle
cache misses as requests over the PLB to another PLB
device such as an external bus interface unit. Cache hits are
handled as single cycle memory accesses to the instruction
and data caches.

Instruction Cache Unit (ICU)

The ICU provides one or two instructions per cycle to the
instruction queue over a 64-bit bus. A line buffer (built into
the output of the array for manufacturing test) enables the
ICU to be accessed only once for every four instructions, to
reduce power consumption by the array.

The ICU can forward any or all of the four or eight words of
a line fill to the EXU to minimize pipeline stalls caused by
cache misses. The ICU aborts speculative fetches aban-
doned by the EXU, eliminating unnecessary line fills and
enabling the ICU to handle the next EXU fetch. Aborting
abandoned requests also eliminates unnecessary external
bus activity, thereby increasing external bus utilization.

Data Cache Unit (DCU)

The DCU transfers one, two, three, four, or eight bytes per
cycle, depending on the number of byte enables presented
by the CPU. The DCU contains a single-element command
and store data queue to reduce pipeline stalls; this queue
enables the DCU to independently process load/store and
cache control instructions. Dynamic PLB request prioritiza-
tion reduces pipeline stalls even further. When the DCU is
busy with a low-priority request while a subsequent storage

Figure 7:  PPC405 Core Block Diagram
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operation requested by the CPU is stalled; the DCU auto-
matically increases the priority of the current request to the
PLB.

The DCU provides additional features that allow the pro-
grammer to tailor its performance for a given application.
The DCU can function in write-back or write-through mode,
as controlled by the Data Cache Write-through Register
(DCWR) or the Translation Look-aside Buffer (TLB); the
cache controller can be tuned for a balance of performance
and memory coherency. Write-on-allocate, controlled by the
store word on allocate (SWOA) field of the Core Configura-
tion Register 0 (CCR0), can inhibit line fills caused by store
misses, to further reduce potential pipeline stalls and
unwanted external bus traffic.

Fetch and Decode Logic
The fetch and decode logic maintains a steady flow of
instructions to the execution unit by placing up to two
instructions in the fetch queue. The fetch queue consists of
three buffers: pre-fetch buffer 1 (PFB1), pre-fetch buffer 0
(PFB0) and decode (DCD). The fetch logic ensures that
instructions proceed directly to decode when the queue is
empty.

Static branch prediction as implemented on the PPC405
core takes advantage of some standard statistical proper-
ties of code. Branches with negative address displacement
are by default assumed taken. Branches that do not test the
condition or count registers are also predicted as taken. The
PPC405 core bases branch prediction upon these default
conditions when a branch is not resolved and speculatively
fetches along the predicted path. The default prediction can
be overridden by software at assembly or compile time.

Branches are examined in the decode and pre-fetch buffer 0
fetch queue stages. Two branch instructions can be handled
simultaneously. If the branch in decode is not taken, the
fetch logic fetches along the predicted path of the branch
instruction in pre-fetch buffer 0. If the branch in decode is
taken, the fetch logic ignores the branch instruction in
pre-fetch buffer 0. 

Execution Unit
The PPC405 core has a single issue execution unit (EXU),
which contains the register file, arithmetic logic unit (ALU),
and the multiply-accumulate (MAC) unit. The execution unit
performs all 32-bit PowerPC integer instructions in hard-
ware.

The register file is comprised of thirty-two 32-bit general
purpose registers (GPR), which are accessed with three
read ports and two write ports. During the decode stage,
data is read out of the GPRs and fed to the execution unit.
Likewise, during the write-back stage, results are written to
the GPR. The use of the five ports on the register file
enables either a load or a store operation to execute in par-
allel with an ALU operation. 

Memory Management Unit (MMU)
The PPC405 core has a 4 GB address space, which is pre-
sented as a flat address space.

The MMU provides address translation, protection func-
tions, and storage attribute control for embedded applica-
tions. The MMU supports demand-paged virtual memory
and other management schemes that require precise con-
trol of logical-to-physical address mapping and flexible
memory protection. Working with appropriate system-level
software, the MMU provides the following functions:

• Translation of the 4 GB effective address space into 
physical addresses

• Independent enabling of instruction and data 
translation/protection

• Page-level access control using the translation 
mechanism

• Software control of page replacement strategy
• Additional control over protection using zones
• Storage attributes for cache policy and speculative 

memory access control

The MMU can be disabled under software control. If the
MMU is not used, the PPC405 core provides other storage
control mechanisms.

Translation Look-Aside Buffer (TLB)

The Translation Look-Aside Buffer (TLB) is the hardware
resource that controls translation and protection. It consists
of 64 entries, each specifying a page to be translated. The
TLB is fully associative; a given page entry can be placed
anywhere in the TLB. The translation function of the MMU
occurs pre-cache. Cache tags and indexing use physical
addresses.

Software manages the establishment and replacement of
TLB entries. This gives system software significant flexibility
in implementing a custom page replacement strategy. For
example, to reduce TLB thrashing or translation delays,
software can reserve several TLB entries in the TLB for glo-
bally accessible static mappings. The instruction set pro-
vides several instructions used to manage TLB entries.
These instructions are privileged and require the software
to be executing in supervisor state. Additional TLB instruc-
tions are provided to move TLB entry fields to and from
GPRs.

The MMU divides logical storage into pages. Eight page
sizes (1 KB, 4 KB, 16 KB, 64 KB, 256 KB, 1 MB, 4 MB, and
16 MB) are simultaneously supported, such that, at any
given time, the TLB can contain entries for any combination
of page sizes. In order for a logical to physical translation to
exist, a valid entry for the page containing the logical
address must be in the TLB. Addresses for which no TLB
entry exists cause TLB-Miss exceptions.

To improve performance, four instruction-side and eight
data-side TLB entries are kept in shadow arrays. The
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shadow arrays allow single-cycle address translation and
also help to avoid TLB contention between load/store and
instruction fetch operations. Hardware manages the
replacement and invalidation of shadow-TLB entries; no
system software action is required.

Memory Protection

When address translation is enabled, the translation mech-
anism provides a basic level of protection.

The Zone Protection Register (ZPR) enables the system
software to override the TLB access controls. For example,
the ZPR provides a way to deny read access to application
programs. The ZPR can be used to classify storage by type;
access by type can be changed without manipulating indi-
vidual TLB entries.

The PowerPC Architecture provides WIU0GE (write-back /
write-through, cacheability, user-defined 0, guarded,
endian) storage attributes that control memory accesses,
using bits in the TLB or, when address translation is dis-
abled, storage attribute control registers.

When address translation is enabled, storage attribute con-
trol bits in the TLB control the storage attributes associated
with the current page. When address translation is disabled,
bits in each storage attribute control register control the
storage attributes associated with storage regions. Each
storage attribute control register contains 32 fields. Each
field sets the associated storage attribute for a 128 MB
memory region.

Timers
The PPC405 core contains a 64-bit time base and three tim-
ers, as shown in Figure 8: 

• Programmable Interval Timer (PIT)
• Fixed Interval Timer (FIT)
• Watchdog Timer (WDT)

The time base counter increments either by an internal sig-
nal equal to the CPU clock rate or by a separate external
timer clock signal. No interrupts are generated when the
time base rolls over. The three timers are synchronous with
the time base. 

The PIT is a 32-bit register that decrements at the same rate
as the time base is incremented. The user loads the PIT
register with a value to create the desired delay. When the
register reaches zero, the timer stops decrementing and
generates a PIT interrupt. Optionally, the PIT can be pro-
grammed to auto-reload the last value written to the PIT
register, after which the PIT continues to decrement.

The FIT generates periodic interrupts based on one of four
selectable bits in the time base. When the selected bit
changes from 0 to 1, the PPC405 core generates a FIT
interrupt.

The WDT provides a periodic critical-class interrupt based
on a selected bit in the time base. This interrupt can be used

for system error recovery in the event of software or system
lockups. Users may select one of four time periods for the
interval and the type of reset generated if the WDT expires
twice without an intervening clear from software. If enabled,
the watchdog timer generates a reset unless an exception
handler updates the WDT status bit before the timer has
completed two of the selected timer intervals.

Interrupts
The PPC405 provides an interface to an interrupt controller
that is logically outside the PPC405 core. This controller
combines the asynchronous interrupt inputs and presents
them to the core as a single interrupt signal. The sources of
asynchronous interrupts are external signals, the
JTAG/debug unit, and any implemented peripherals.

Debug Logic
All architected resources on the PPC405 core can be
accessed through the debug logic. Upon a debug event, the
PPC405 core provides debug information to an external
debug tool. Three different types of tools are supported
depending on the debug mode: ROM monitors, JTAG
debuggers, and instruction trace tools.

In internal (intrusive) debug mode, a debug event enables
exception-handling software at a dedicated interrupt vector
to take over the CPU core and communicate with a debug
tool. The debug tool has read-write access to all registers
and can set hardware or software breakpoints. ROM moni-
tors typically use the internal debug mode.

Figure 8:  Relationship of Timer Facilities to Base Clock
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In external (non-intrusive) debug mode, the CPU core enters
stop state (stops instruction execution) when a debug event
occurs. This mode offers a debug tool non-intrusive
read-write access to all registers in the PPC405 core. Once
the CPU core is in stop state, the debug tool can start the
CPU core, step an instruction, freeze the timers, or set hard-
ware or software break points. In addition to CPU core con-
trol, the debug logic is capable of writing instructions into the
instruction cache, eliminating the need for external memory
during initial board bring up. Communication to a debug tool
using external debug mode is through the JTAG port.

Debug wait mode offers the same functionality as external
debug mode with one exception. In debug wait mode, the
CPU core goes into wait state instead of stop state after a
debug event. Wait state is identical to stop state until an
interrupt occurs. In wait state, the PPC405 core can vector
to an exception handler, service an interrupt and return to
wait state. This mode is particularly useful when debugging
real time control systems.

Real-time trace debug mode is always enabled. The debug
logic continuously broadcasts instruction trace information
to the trace port. When a debug event occurs, the debug
logic signals an external debug tool to save instruction trace
information before and after the event. The number of
instructions traced depends on the trace tool.

Debug events signal the debug logic to stop the CPU core,
put the CPU core in debug wait state, cause a debug excep-
tion or save instruction trace information.

Big Endian and Little Endian Support
The PPC405 core supports big endian or little endian byte
ordering for instructions stored in external memory. Since
the PowerPC architecture is big endian internally, the ICU
rearranges the instructions stored as little endian into the
big endian format. Therefore, the instruction cache always
contains instructions in big endian format so that the byte
ordering is correct for the execution unit. This feature allows
the 405 core to be used in systems designed to function in a
little endian environment.

Functional Description: FPGA 

Input/Output Blocks (IOBs)
Virtex-II Pro I/O blocks (IOBs) are provided in groups of two
or four on the perimeter of each device. Each IOB can be
used as input and/or output for single-ended I/Os. Two IOBs
can be used as a differential pair. A differential pair is always
connected to the same switch matrix, as shown in Figure 9.

IOB blocks are designed for high-performance I/Os, sup-
porting 22 single-ended standards, as well as differential
signaling with LVDS, LDT, and bus LVDS.

Supported I/O Standards

Virtex-II Pro IOB blocks feature SelectI/O inputs and out-
puts that support a wide variety of I/O signaling standards.
In addition to the internal supply voltage (VCCINT = 1.5V),
output driver supply voltage (VCCO) is dependent on the I/O
standard (see Table 3 and Table 4). An auxiliary supply volt-
age (VCCAUX = 2.5V) is required, regardless of the I/O

standard used. For exact supply voltage absolute maximum
ratings, see Virtex-II Pro™ Platform FPGAs: DC and
Switching Characteristics (Module 3).
 

Figure 9:  Virtex-II Pro Input/Output Tile
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Table  3:  Supported Single-Ended I/O Standards

I/O
Standard

Output
VCCO

Input
VCCO

Input
VREF

Board 
Termination 

Voltage 
(VTT)

LVTTL 3.3 3.3 N/A N/A

LVCMOS33 3.3 3.3 N/A N/A

LVCMOS25 2.5 2.5 N/A N/A

LVCMOS18 1.8 1.8 N/A N/A

LVCMOS15 1.5 1.5 N/A N/A

PCI33_3 3.3 3.3 N/A N/A

PCI66_3 3.3 3.3 N/A N/A

GTL Note (1) Note (1) 0.8 1.2

GTLP Note (1) Note (1) 1.0 1.5

HSTL_I 1.5 N/A 0.75 0.75

HSTL_II 1.5 N/A 0.75 0.75

HSTL_III 1.5 N/A 0.9 1.5

HSTL_IV 1.5 N/A 0.9 1.5

HSTL_I_18 1.8 N/A 0.9 0.9

HSTL_II_18 1.8 N/A 0.9 0.9

HSTL_III _18 1.8 N/A 1.08 1.8

HSTL_IV_18 1.8 N/A 1.08 1.8
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All of the user IOBs have fixed-clamp diodes to VCCO and to
ground. The IOBs are not compatible or compliant with 5V
I/O standards (not 5V tolerant).

Table 5 lists supported I/O standards with Digitally Con-
trolled Impedance. See Digitally Controlled Impedance
(DCI), page 101.  

Logic Resources

IOB blocks include six storage elements, as shown in
Figure 10. 

Each storage element can be configured either as an
edge-triggered D-type flip-flop or as a level-sensitive latch.
On the input, output, and 3-state path, one or two DDR reg-
isters can be used. 

Double data rate is directly accomplished by the two regis-
ters on each path, clocked by the rising edges (or falling
edges) from two different clock nets. The two clock signals
are generated by the DCM and must be 180 degrees out of
phase, as shown in Figure 11. There are two input, output,
and 3-state data signals, each being alternately clocked out.

SSTL2_I 2.5 N/A 1.25 1.25

SSTL2_II 2.5 N/A 1.25 1.25

SSTL3_I 3.3 N/A 1.5 1.5

SSTL3_II 3.3 N/A 1.5 1.5

Notes: 
1. VCCO of GTL or GTLP should not be lower than the 

termination voltage or the voltage seen at the I/O pad.

Table  4:  Supported Differential Signal I/O Standards

I/O
Standard

Output
VCCO

Input 
VCCO

Input
VREF

 Output
VOD

LDT_25 2.5 N/A N/A 0.500 - 0.740

LVDS_25 2.5 N/A N/A 0.250 - 0.400

LVDSEXT_25 2.5 N/A N/A 0.330 - 0.700

BLVDS_25 2.5 N/A N/A 0.250 - 0.450

ULVDS_25 2.5 N/A N/A 0.500 - 0.740

Table  5:  Supported DCI I/O Standards

I/O
Standard

Output
VCCO

Input
VCCO

Input
VREF

Termination
Type

LVDCI_33(1) 3.3 3.3 N/A Series

LVDCI_25 2.5 2.5 N/A Series

LVDCI_DV2_25 2.5 2.5 N/A Series

LVDCI_18 1.8 1.8 N/A Series

LVDCI_DV2_18 1.8 1.8 N/A Series

LVDCI_15 1.5 1.5 N/A Series

LVDCI_DV2_15 1.5 1.5 N/A Series

GTL_DCI 1.2 1.2 0.8 Single

GTLP_DCI 1.5 1.5 1.0 Single

HSTL_I_DCI 1.5 1.5 0.75 Split

HSTL_II_DCI 1.5 1.5 0.75 Split

HSTL_III_DCI 1.5 1.5 0.9 Single

HSTL_IV_DCI 1.5 1.5 0.9 Single

Table  3:  Supported Single-Ended I/O Standards

I/O
Standard

Output
VCCO

Input
VCCO

Input
VREF

Board 
Termination 

Voltage 
(VTT) HSTL_I_DCI_18 1.8 1.8 0.9 Split

HSTL_II_DCI_18 1.8 1.8 0.9 Split

HSTL_III_DCI_18 1.8 1.8 1.08 Single

HSTL_IV_DCI_18 1.8 1.8 1.08 Single

SSTL2_I_DCI(2) 2.5 2.5 1.25 Split

SSTL2_II_DCI(2) 2.5 2.5 1.25 Split

SSTL3_I_DCI(2) 3.3 3.3 1.5 Split

SSTL3_II_DCI(2) 3.3 3.3 1.5 Split

Notes: 
1. LVDCI_XX is LVCMOS controlled impedance buffers, 

matching the reference resistors or half of the reference 
resistors.

2. These are SSTL compatible.

Figure 10:  Virtex-II Pro IOB Block

Table  5:  Supported DCI I/O Standards (Continued)

I/O
Standard

Output
VCCO

Input
VCCO

Input
VREF

Termination
Type

Reg
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Reg
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Reg
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PAD
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Reg
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Reg

OCK2

DDR mux

Output

IOB
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This DDR mechanism can be used to mirror a copy of the
clock on the output. This is useful for propagating a clock
along the data that has an identical delay. It is also useful for

multiple clock generation, where there is a unique clock
driver for every clock load. Virtex-II Pro devices can pro-
duce many copies of a clock with very little skew.  

Each group of two registers has a clock enable signal (ICE
for the input registers, OCE for the output registers, and
TCE for the 3-state registers). The clock enable signals are
active High by default. If left unconnected, the clock enable
for that storage element defaults to the active state. 

Each IOB block has common synchronous or asynchronous
set and reset (SR and REV signals).

SR forces the storage element into the state specified by the
SRHIGH or SRLOW attribute. SRHIGH forces a logic 1.
SRLOW forces a logic “0”. When SR is used, a second input
(REV) forces the storage element into the opposite state. The
reset condition predominates over the set condition. The ini-
tial state after configuration or global initialization state is
defined by a separate INIT0 and INIT1 attribute. By default,
the SRLOW attribute forces INIT0, and the SRHIGH attribute
forces INIT1.

For each storage element, the SRHIGH, SRLOW, INIT0,
and INIT1 attributes are independent. Synchronous or
asynchronous set / reset is consistent in an IOB block. 

All the control signals have independent polarity. Any
inverter placed on a control input is automatically absorbed.

Each register or latch, independent of all other registers or
latches, can be configured as follows:

• No set or reset
• Synchronous set
• Synchronous reset
• Synchronous set and reset
• Asynchronous set (preset)
• Asynchronous reset (clear)
• Asynchronous set and reset (preset and clear)

The synchronous reset overrides a set, and an asynchro-
nous clear overrides a preset.

Refer to Figure 12. 

Figure 11:  Double Data Rate Registers
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Input/Output Individual Options

Each device pad has optional pull-up/pull-down resistors
and weak-keeper circuit in the LVCMOS SelectI/O configu-
ration, as illustrated in Figure 13. Values of the optional
pull-up and pull-down resistors fall within a range of 40 KΩ
to 120 KΩ when VCCO = 2.5V (from 2.38V to 2.63V only).
The clamp diode is always present, even when power is not. 

The optional weak-keeper circuit is connected to each out-
put. When selected, the circuit monitors the voltage on the
pad and weakly drives the pin High or Low. If the pin is con-
nected to a multiple-source signal, the weak-keeper holds
the signal in its last state if all drivers are disabled. Maintain-
ing a valid logic level in this way eliminates bus chatter. An
enabled pull-up or pull-down overrides the weak-keeper cir-
cuit.

Figure 12:  Register / Latch Configuration in an IOB Block
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Figure 13:  LVCMOS SelectI/O Standard
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LVTTL sinks and sources current up to 24 mA. The current
is programmable for LVTTL and LVCMOS SelectI/O stan-
dards (see Table 6). Drive strength and slew rate controls

for each output driver minimize bus transients. For LVDCI
and LVDCI_DV2 standards, drive strength and slew rate
controls are not available.  

Figure 14 shows the SSTL2 and HSTL configurations.
HSTL can sink current up to 48 mA. (HSTL IV)  

All pads are protected against damage from electrostatic
discharge (ESD) and from over-voltage transients.
Virtex-II Pro uses two memory cells to control the configura-
tion of an I/O as an input. This is to reduce the probability of
an I/O configured as an input from flipping to an output
when subjected to a single event upset (SEU) in space
applications.

Prior to configuration, all outputs not involved in configura-
tion are forced into their high-impedance state. The
pull-down resistors and the weak-keeper circuits are inac-
tive. The dedicated pin HSWAP_EN controls the pull-up
resistors prior to configuration. By default, HSWAP_EN is
set High, which disables the pull-up resistors on user I/O
pins. When HSWAP_EN is set Low, the pull-up resistors are
activated on user I/O pins.

All Virtex-II Pro IOBs (except Rocket I/O pins) support IEEE
1149.1 and IEEE 1532 compatible boundary scan testing.

Input Path

The Virtex-II Pro IOB input path routes input signals directly
to internal logic and / or through an optional input flip-flop or
latch, or through the DDR input registers. An optional delay
element at the D-input of the storage element eliminates
pad-to-pad hold time. The delay is matched to the internal
clock-distribution delay of the Virtex-II Pro device, and when
used, assures that the pad-to-pad hold time is zero.

Each input buffer can be configured to conform to any of the
low-voltage signaling standards supported. In some of
these standards the input buffer utilizes a user-supplied
threshold voltage, VREF. The need to supply VREF imposes
constraints on which standards can be used in the same
bank. See I/O banking description.

Output Path

The output path includes a 3-state output buffer that drives
the output signal onto the pad. The output and / or the
3-state signal can be routed to the buffer directly from the
internal logic or through an output / 3-state flip-flop or latch,
or through the DDR output / 3-state registers.

Each output driver can be individually programmed for a
wide range of low-voltage signaling standards. In most sig-
naling standards, the output High voltage depends on an
externally supplied VCCO voltage. The need to supply VCCO
imposes constraints on which standards can be used in the
same bank. See I/O banking description.

I/O Banking

Some of the I/O standards described above require VCCO
and VREF voltages. These voltages are externally supplied
and connected to device pins that serve groups of IOB
blocks, called banks. Consequently, restrictions exist about
which I/O standards can be combined within a given bank.

Eight I/O banks result from dividing each edge of the FPGA
into two banks, as shown in Figure 15 and Figure 16. Each
bank has multiple VCCO pins, all of which must be con-
nected to the same voltage. This voltage is determined by
the output standards in use. 

Table  6:  LVTTL and LVCMOS Programmable Currents (Sink and Source)

SelectI/O Programmable Current (Worst-Case Guaranteed Minimum)

LVTTL 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA 24 mA

LVCMOS33 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA 24 mA

LVCMOS25 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA 24 mA

LVCMOS18 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA n/a

LVCMOS15 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA n/a

Figure 14:  SSTL or HSTL SelectI/O Standards
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Within a bank, output standards can be mixed only if they
use the same VCCO. Compatible standards are shown in
Table 7. GTL and GTLP appear under all voltages because
their open-drain outputs do not depend on VCCO.

Some input standards require a user-supplied threshold
voltage, VREF. In this case, certain user-I/O pins are auto-
matically configured as inputs for the VREF voltage. Approx-
imately one in six of the I/O pins in the bank assume this
role. 

VREF pins within a bank are interconnected internally, and
consequently only one VREF voltage can be used within
each bank. However, for correct operation, all VREF pins in
the bank must be connected to the external reference volt-
age source. 

The VCCO and the VREF pins for each bank appear in the
device pinout tables. Within a given package, the number of
VREF and VCCO pins can vary depending on the size of

device. In larger devices, more I/O pins convert to VREF
pins. Since these are always a superset of the VREF pins
used for smaller devices, it is possible to design a PCB that
permits migration to a larger device if necessary. 

All VREF pins for the largest device anticipated must be con-
nected to the VREF voltage and not used for I/O. In smaller
devices, some VCCO pins used in larger devices do not con-
nect within the package. These unconnected pins can be
left unconnected externally, or, if necessary, they can be
connected to the VCCO voltage to permit migration to a
larger device.

Digitally Controlled Impedance (DCI)
Today’s chip output signals with fast edge rates require ter-
mination to prevent reflections and maintain signal integrity.
High pin count packages (especially ball grid arrays) can
not accommodate external termination resistors.

Virtex-II Pro DCI provides controlled impedance drivers and
on-chip termination for single-ended I/Os. This eliminates
the need for external resistors, and improves signal integrity.
The DCI feature can be used on any IOB by selecting one of
the DCI I/O standards.

When applied to inputs, DCI provides input parallel termina-
tion. When applied to outputs, DCI provides controlled
impedance drivers (series termination) or output parallel
termination.

DCI operates independently on each I/O bank. When a DCI
I/O standard is used in a particular I/O bank, external refer-
ence resistors must be connected to two dual-function pins

Figure 15:  Virtex-II Pro I/O Banks: Top View for 
Wire-Bond Packages

(CS, FG, and BG)

Figure 16:  Virtex-II Pro I/O Banks: Top View for 
Flip-Chip Packages (FF and BF)
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Table  7:  Compatible Output Standards

VCCO Compatible Standards(1)

3.3V(2) PCI(3), LVTTL, SSTL3 (I & II), LVCMOS33, 
LVDCI_33, SSTL3_DCI (I & II)(1)

2.5V SSTL2 (I & II), LVCMOS25, GTL, GTLP, 
LVDS_25, LVDSEXT_25, LVDCI_25, 
LVDCI_DV2_25, SSTL2_DCI (I & II), LDT, 
ULVDS, BLVDS

1.8V HSTL (I, II, III, & IV), HSTL_DCI (I,II, III & IV), 
LVCMOS18, GTL, GTLP, LVDCI_18, 
LVDCI_DV2_18

1.5V HSTL (I, II, III, & IV), HSTL_DCI (I,II, III & IV), 
LVCMOS15, GTL, GTLP, LVDCI_15, 
LVDCI_DV2_15, GTLP_DCI

1.2V GTL_DCI

Notes: 
1. LVPECL, LVDS_33, LVDSEXT_33, and AGP-2X are not 

supported.
2. Perfect impedance matching is required for 3.3V standards.
3. For optimum performance, it is recommended that PCI be 

used in conjunction with LVDCI_33. Contact Xilinx for more 
details.
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on the bank. These resistors, voltage reference of N transis-
tor (VRN) and the voltage reference of P transistor (VRP)
are shown in Figure 17.  

When used with a terminated I/O standard, the value of the
resistors are specified by the standard (typically 50Ω).
When used with a controlled impedance driver, the resistors
set the output impedance of the driver within the specified
range (20Ω to 100Ω). For all series and parallel termina-
tions listed in Table 8 and Table 9, the reference resistors
must have the same value for any given bank. One percent
resistors are recommended.

The DCI system adjusts the I/O impedance to match the two
external reference resistors, or half of the reference resis-
tors, and compensates for impedance changes due to volt-
age and/or temperature fluctuations. The adjustment is
done by turning parallel transistors in the IOB on or off.

Controlled Impedance Drivers 
(Series Termination)

DCI can be used to provide a buffer with a controlled output
impedance. It is desirable for this output impedance to
match the transmission line impedance (Z0). Virtex-II Pro
input buffers also support LVDCI and LVDCI_DV2 I/O stan-
dards. 

Controlled Impedance Terminations 
(Parallel Termination)

DCI also provides on-chip termination for SSTL3, SSTL2,
HSTL (Class I, II, III, or IV), and GTL/GTLP receivers or
transmitters on bidirectional lines.

Table 9 lists the on-chip parallel terminations available in
Virtex-II Pro devices. VCCO must be set according to Table 5.
Note that there is a VCCO requirement for GTL_DCI and
GTLP_DCI, due to the on-chip termination resistor.

Figure 17:  DCI in a Virtex-II Pro Bank

Figure 18:  Internal Series Termination
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Table  8:  SelectI/O Controlled Impedance Buffers

VCCO DCI DCI Half Impedance

3.3V LVDCI_33 N/A

2.5V LVDCI_25 LVDCI_DV2_25

1.8V LVDCI_18 LVDCI_DV2_18

1.5V LVDCI_15 LVDCI_DV2_15

Table  9:  SelectI/O Buffers With On-Chip Parallel 
Termination

I/O Standard
External 

Termination
On-Chip 

Termination

SSTL3 Class I SSTL3_I SSTL3_I_DCI(1)

SSTL3 Class II SSTL3_II SSTL3_II_DCI(1)

SSTL2 Class I SSTL2_I SSTL2_I_DCI(1)

SSTL2 Class II SSTL2_II SSTL2_II_DCI(1)

HSTL Class I
HSTL_I HSTL_I_DCI

HSTL_I_18 HSTL_I_DCI_18

HSTL Class II
HSTL_II HSTL_II_DCI

HSTL_II_18 HSTL_II_DCI_18

HSTL Class III
HSTL_III HSTL_III_DCI

HSTL_III_18 HSTL_III_DCI_18

HSTL Class IV
HSTL_IV HSTL_IV_DCI

HSTL_IV_18 HSTL_IV_DCI_18

GTL GTL GTL_DCI

GTLP GTLP GTLP_DCI

Notes: 
1. SSTL Compatible
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Figure 19 provides examples illustrating the use of the HSTL_IV_DCI, HSTL_II_DCI, and SSTL2_DCI I/O standards.  

Figure 19:  DCI Usage Examples
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Configurable Logic Blocks (CLBs)
The Virtex-II Pro configurable logic blocks (CLB) are orga-
nized in an array and are used to build combinatorial and
synchronous logic designs. Each CLB element is tied to a
switch matrix to access the general routing matrix, as
shown in Figure 20. A CLB element comprises 4 similar
slices, with fast local feedback within the CLB. The four
slices are split in two columns of two slices with two inde-
pendent carry logic chains and one common shift chain. 

Slice Description

Each slice includes two 4-input function generators, carry
logic, arithmetic logic gates, wide function multiplexers and
two storage elements. As shown in Figure 21, each 4-input
function generator is programmable as a 4-input LUT, 16
bits of distributed SelectRAM memory, or a 16-bit vari-
able-tap shift register element. 

Figure 20:  Virtex-II Pro CLB Element

Slice
X1Y1

Slice
X1Y0

Slice
X0Y1

Slice
X0Y0

Fast
Connects
to neighbors

Switch
Matrix

DS083-2_32_122001

SHIFT
CIN

COUT

TBUF

COUT

CIN

TBUF

Figure 21:  Virtex-II Pro Slice Configuration 

Register/
Latch

MUXF5

MUXFx

CY
SRL16

RAM16

LUT
G

Register/
Latch

Arithmetic Logic

CY
LUT

F

DS083-2_31_122001

SRL16

RAM16

ORCY

http://www.xilinx.com


Virtex-II Pro™ Platform FPGAs: Functional Description
R

DS083-2 (v1.0) January 31, 2002 www.xilinx.com 105
Advance Product Specification 1-800-255-7778

The output from the function generator in each slice drives both the slice output and the D input of the storage element.
Figure 22 shows a more detailed view of a single slice.

Configurations

Look-Up Table

Virtex-II Pro function generators are implemented as
4-input look-up tables (LUTs). Four independent inputs are
provided to each of the two function generators in a slice (F
and G). These function generators are each capable of
implementing any arbitrarily defined boolean function of four
inputs. The propagation delay is therefore independent of
the function implemented. Signals from the function gener-
ators can exit the slice (X or Y output), can input the XOR
dedicated gate (see arithmetic logic), or input the carry-logic
multiplexer (see fast look-ahead carry logic), or feed the D

input of the storage element, or go to the MUXF5 (not
shown in Figure 22). 

In addition to the basic LUTs, the Virtex-II Pro slice contains
logic (MUXF5 and MUXFX multiplexers) that combines
function generators to provide any function of five, six,
seven, or eight inputs. The MUXFX is either MUXF6,
MUXF7, or MUXF8 according to the slice considered in the
CLB. Selected functions up to nine inputs (MUXF5 multi-
plexer) can be implemented in one slice. The MUXFX can
also be a MUXF6, MUXF7, or MUXF8 multiplexer to map
any function of six, seven, or eight inputs and selected wide
logic functions.

Figure 22:  Virtex-II Pro Slice (Top Half)
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Register/Latch

The storage elements in a Virtex-II Pro slice can be config-
ured either as edge-triggered D-type flip-flops or as
level-sensitive latches. The D input can be directly driven by
the X or Y output via the DX or DY input, or by the slice
inputs bypassing the function generators via the BX or BY
input. The clock enable signal (CE) is active High by default.
If left unconnected, the clock enable for that storage ele-
ment defaults to the active state.

In addition to clock (CK) and clock enable (CE) signals,
each slice has set and reset signals (SR and BY slice
inputs). SR forces the storage element into the state speci-
fied by the attribute SRHIGH or SRLOW. SRHIGH forces a
logic 1 when SR is asserted. SRLOW forces a logic 0. When
SR is used, an optional second input (BY) forces the stor-
age element into the opposite state via the REV pin. The
reset condition is predominant over the set condition. (See
Figure 23.)

The initial state after configuration or global initial state is
defined by a separate INIT0 and INIT1 attribute. By default,
setting the SRLOW attribute sets INIT0, and setting the
SRHIGH attribute sets INIT1.

For each slice, set and reset can be set to be synchronous
or asynchronous. Virtex-II Pro devices also have the ability
to set INIT0 and INIT1 independent of SRHIGH and
SRLOW.

The control signals clock (CLK), clock enable (CE) and
set/reset (SR) are common to both storage elements in one
slice. All of the control signals have independent polarity. Any
inverter placed on a control input is automatically absorbed. 

The set and reset functionality of a register or a latch can be
configured as follows:

• No set or reset
• Synchronous set
• Synchronous reset
• Synchronous set and reset
• Asynchronous set (preset)
• Asynchronous reset (clear)
• Asynchronous set and reset (preset and clear)

The synchronous reset has precedence over a set, and an
asynchronous clear has precedence over a preset.

Distributed SelectRAM Memory

Each function generator (LUT) can implement a 16 x 1-bit
synchronous RAM resource called a distributed SelectRAM
element. The SelectRAM elements are configurable within
a CLB to implement the following:

• Single-Port 16 x 8-bit RAM
• Single-Port 32 x 4-bit RAM
• Single-Port 64 x 2-bit RAM
• Single-Port 128 x 1-bit RAM
• Dual-Port 16 x 4-bit RAM
• Dual-Port 32 x 2-bit RAM
• Dual-Port 64 x 1-bit RAM

Distributed SelectRAM memory modules are synchronous
(write) resources. The combinatorial read access time is
extremely fast, while the synchronous write simplifies
high-speed designs. A synchronous read can be imple-
mented with a storage element in the same slice. The dis-
tributed SelectRAM memory and the storage element share
the same clock input. A Write Enable (WE) input is active
High, and is driven by the SR input.

Table 10 shows the number of LUTs (2 per slice) occupied
by each distributed SelectRAM configuration. 

Figure 23:  Register / Latch Configuration in a Slice
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Table  10:  Distributed SelectRAM Configurations

RAM Number of LUTs

16 x 1S 1

16 x 1D 2

32 x 1S 2

32 x 1D 4

64 x 1S 4

64 x 1D 8

128 x 1S 8

Notes: 
1. S = single-port configuration; D = dual-port configuration
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For single-port configurations, distributed SelectRAM mem-
ory has one address port for synchronous writes and asyn-
chronous reads.

For dual-port configurations, distributed SelectRAM mem-
ory has one port for synchronous writes and asynchronous
reads and another port for asynchronous reads. The func-
tion generator (LUT) has separated read address inputs
(A1, A2, A3, A4) and write address inputs (WG1/WF1,
WG2/WF2, WG3/WF3, WG4/WF4). 

In single-port mode, read and write addresses share the
same address bus. In dual-port mode, one function genera-
tor (R/W port) is connected with shared read and write
addresses. The second function generator has the A inputs
(read) connected to the second read-only port address and
the W inputs (write) shared with the first read/write port
address.

Figure 24, Figure 25, and Figure 26 illustrate various exam-
ple configurations.
 

 

 

Similar to the RAM configuration, each function generator
(LUT) can implement a 16 x 1-bit ROM. Five configurations
are available: ROM16x1, ROM32x1, ROM64x1,
ROM128x1, and ROM256x1. The ROM elements are cas-
cadable to implement wider or/and deeper ROM. ROM con-
tents are loaded at configuration. Table 11 shows the
number of LUTs occupied by each configuration.

Shift Registers

Each function generator can also be configured as a 16-bit
shift register. The write operation is synchronous with a
clock input (CLK) and an optional clock enable, as shown in
Figure 27. A dynamic read access is performed through the
4-bit address bus, A[3:0]. The configurable 16-bit shift regis-

Figure 24:  Distributed SelectRAM (RAM16x1S)

Figure 25:  Single-Port Distributed SelectRAM 
(RAM32x1S)
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Figure 26:  Dual-Port Distributed SelectRAM 
(RAM16x1D)

Table  11:  ROM Configuration

ROM Number of LUTs

16 x 1 1

32 x 1 2

64 x 1 4

128 x 1 8 (1 CLB)

256 x 1 16 (2 CLBs)
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ter cannot be set or reset. The read is asynchronous; how-
ever, the storage element or flip-flop is available to
implement a synchronous read. Any of the 16 bits can be
read out asynchronously by varying the address. The stor-
age element should always be used with a constant
address. For example, when building an 8-bit shift register
and configuring the addresses to point to the 7th bit, the 8th
bit can be the flip-flop. The overall system performance is
improved by using the superior clock-to-out of the flip-flops.

 

An additional dedicated connection between shift registers
allows connecting the last bit of one shift register to the first
bit of the next, without using the ordinary LUT output. (See
Figure 28.) Longer shift registers can be built with dynamic
access to any bit in the chain. The shift register chaining
and the MUXF5, MUXF6, and MUXF7 multiplexers allow up
to a 128-bit shift register with addressable access to be
implemented in one CLB.

 

Figure 27:  Shift Register Configurations
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Figure 28:  Cascadable Shift Register
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Multiplexers

Virtex-II Pro function generators and associated multiplex-
ers can implement the following:

• 4:1 multiplexer in one slice
• 8:1 multiplexer in two slices
• 16:1 multiplexer in one CLB element (4 slices) 
• 32:1 multiplexer in two CLB elements (8 slices)

Each Virtex-II Pro slice has one MUXF5 multiplexer and
one MUXFX multiplexer. The MUXFX multiplexer imple-
ments the MUXF6, MUXF7, or MUXF8, as shown in
Figure 29. Each CLB element has two MUXF6 multiplexers,
one MUXF7 multiplexer and one MUXF8 multiplexer. Exam-
ples of multiplexers are shown in the Virtex-II Pro User
Guide. Any LUT can implement a 2:1 multiplexer. 

Fast Lookahead Carry Logic

Dedicated carry logic provides fast arithmetic addition and
subtraction. The Virtex-II Pro CLB has two separate carry
chains, as shown in the Figure 30. 

The height of the carry chains is two bits per slice. The carry
chain in the Virtex-II Pro device is running upward. The ded-
icated carry path and carry multiplexer (MUXCY) can also
be used to cascade function generators for implementing
wide logic functions.

Figure 29:  MUXF5 and MUXFX multiplexers
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Arithmetic Logic

The arithmetic logic includes an XOR gate that allows a
2-bit full adder to be implemented within a slice. In addition,

a dedicated AND (MULT_AND) gate (shown in Figure 22)
improves the efficiency of multiplier implementation.

Figure 30:  Fast Carry Logic Path
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Sum of Products

Each Virtex-II Pro slice has a dedicated OR gate named
ORCY, ORing together outputs from the slices carryout and
the ORCY from an adjacent slice. The ORCY gate with the
dedicated Sum of Products (SOP) chain are designed for

implementing large, flexible SOP chains. One input of each
ORCY is connected through the fast SOP chain to the output
of the previous ORCY in the same slice row. The second input
is connected to the output of the top MUXCY in the same slice,
as shown in Figure 31. 

LUTs and MUXCYs can implement large AND gates or
other combinatorial logic functions. Figure 32 illustrates

LUT and MUXCY resources configured as a 16-input AND
gate. 

Figure 31:  Horizontal Cascade Chain
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Figure 32:  Wide-Input AND Gate (16 Inputs)
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3-State Buffers

Introduction

Each Virtex-II Pro CLB contains two 3-state drivers
(TBUFs) that can drive on-chip buses. Each 3-state buffer
has its own 3-state control pin and its own input pin. 

Each of the four slices have access to the two 3-state buff-
ers through the switch matrix, as shown in Figure 33.
TBUFs in neighboring CLBs can access slice outputs by
direct connects. The outputs of the 3-state buffers drive hor-
izontal routing resources used to implement 3-state buses. 

The 3-state buffer logic is implemented using AND-OR logic
rather than 3-state drivers, so that timing is more predict-
able and less load dependant especially with larger devices. 

Locations / Organization

Four horizontal routing resources per CLB are provided for
on-chip 3-state buses. Each 3-state buffer has access alter-
nately to two horizontal lines, which can be partitioned as
shown in Figure 34. The switch matrices corresponding to
SelectRAM memory and multiplier or I/O blocks are
skipped. 

Number of 3-State Buffers

Table 12 shows the number of 3-state buffers available in
each Virtex-II Pro device. The number of 3-state buffers is
twice the number of CLB elements.

CLB/Slice Configurations
Table 13 summarizes the logic resources in one CLB. All of
the CLBs are identical and each CLB or slice can be imple-

mented in one of the configurations listed. Table 14 shows
the available resources in all CLBs.

Figure 33:  Virtex-II Pro 3-State Buffers
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Table  12:  Virtex-II Pro 3-State Buffers

Device
3-State Buffers 

per Row
Total Number 

of 3-State Buffers

XC2VP2 44 704

XC2VP4 44 1,760

XC2VP7 68 2,720

XC2VP20 92 5,152

XC2VP50 140 12,320

Figure 34:  3-State Buffer Connection to Horizontal Lines
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Table  13:  Logic Resources in One CLB

Slices LUTs Flip-Flops MULT_ANDs
Arithmetic & 
Carry-Chains

SOP 
Chains

Distributed 
SelectRAM

Shift 
Registers TBUF

4 8 8 8 2 2 128 bits 128 bits 2
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18 Kb Block SelectRAM Resources

Introduction

Virtex-II Pro devices incorporate large amounts of 18 Kb
block SelectRAM. These complement the distributed Selec-
tRAM resources that provide shallow RAM structures imple-
mented in CLBs. Each Virtex-II Pro block SelectRAM is an
18 Kb true dual-port RAM with two independently clocked
and independently controlled synchronous ports that
access a common storage area. Both ports are functionally
identical. CLK, EN, WE, and SSR polarities are defined
through configuration.

Each port has the following types of inputs: Clock and Clock
Enable, Write Enable, Set/Reset, and Address, as well as
separate Data/parity data inputs (for write) and Data/parity
data outputs (for read). 

Operation is synchronous; the block SelectRAM behaves
like a register. Control, address and data inputs must (and
need only) be valid during the set-up time window prior to a
rising (or falling, a configuration option) clock edge. Data
outputs change as a result of the same clock edge.

Configuration

The Virtex-II Pro block SelectRAM supports various config-
urations, including single- and dual-port RAM and various
data/address aspect ratios. Supported memory configura-
tions for single- and dual-port modes are shown in Table 15.

Single-Port Configuration

As a single-port RAM, the block SelectRAM has access to
the 18 Kb memory locations in any of the 2K x 9-bit,

1K x 18-bit, or 512 x 36-bit configurations and to 16 Kb
memory locations in any of the 16K x 1-bit, 8K x 2-bit, or
4K x 4-bit configurations. The advantage of the 9-bit, 18-bit
and 36-bit widths is the ability to store a parity bit for each
eight bits. Parity bits must be generated or checked exter-
nally in user logic. In such cases, the width is viewed as
8 + 1, 16 + 2, or 32 + 4. These extra parity bits are stored
and behave exactly as the other bits, including the timing
parameters. Video applications can use the 9-bit ratio of
Virtex-II Pro block SelectRAM memory to advantage.

Each block SelectRAM cell is a fully synchronous memory
as illustrated in Figure 35. Input data bus and output data
bus widths are identical.  

Dual-Port Configuration

As a dual-port RAM, each port of block SelectRAM has
access to a common 18 Kb memory resource. These are
fully synchronous ports with independent control signals for
each port. The data widths of the two ports can be config-
ured independently, providing built-in bus-width conversion. 

Table 16 illustrates the different configurations available on
ports A and B. 

Table  14:  Virtex-II Pro Logic Resources Available in All CLBs

Device

CLB Array: 
Row x 

Column

Number 
of 

Slices
Number 
of LUTs

Max Distributed 
SelectRAM or 
Shift Register 

(bits)
Number of 
Flip-Flops

Number of 
Carry Chains(1)

Number 
of SOP 

Chains(1)

XC2VP2 16 x 22 1,408 2,816 45,056 2,816 44 32

XC2VP4 40 x 22 3,008 6,016 96,256 6,016 44 80

XC2VP7 40 x 34 4,928 9,856 157,696 9,856 68 80

XC2VP20 56 x 46 9,280 18,560 296,960 18,560 92 112

XC2VP50 88 x 70 22,592 45,184 722,944 45,184 140 176

Notes: 
1. The carry-chains and SOP chains can be split or cascaded.

Table  15:  Dual- and Single-Port Configurations

16K x 1 bit 2K x 9 bits

8K x 2 bits 1K x 18 bits

4K x 4 bits 512 x 36 bits

Figure 35:  18 Kb Block SelectRAM Memory in 
Single-Port Mode

DOP

DIP

ADDR

WE

EN
SSR

CLK

18-Kbit Block SelectRAM

DS031_10_102000

DI

DO

http://www.xilinx.com


Functional Description: FPGA
R

114 www.xilinx.com DS083-2 (v1.0) January 31, 2002
1-800-255-7778 Advance Product Specification

 

If both ports are configured in either 2K x 9-bit, 1K x 18-bit,
or 512 x 36-bit configurations, the 18 Kb block is accessible
from port A or B. If both ports are configured in either 16K x
1-bit, 8K x 2-bit. or 4K x 4-bit configurations, the 16 K-bit
block is accessible from Port A or Port B. All other configu-
rations result in one port having access to an 18 Kb memory
block and the other port having access to a 16 K-bit subset
of the memory block equal to 16 Kbs. 

Each block SelectRAM cell is a fully synchronous memory,
as illustrated in Figure 36. The two ports have independent
inputs and outputs and are independently clocked. 

Port Aspect Ratios

Table 17 shows the depth and the width aspect ratios for the
18 Kb block SelectRAM. Virtex-II Pro block SelectRAM also

includes dedicated routing resources to provide an efficient
interface with CLBs, block SelectRAM, and multipliers. 

Read/Write Operations

The Virtex-II Pro block SelectRAM read operation is fully
synchronous. An address is presented, and the read opera-
tion is enabled by control signal ENA or ENB. Then,
depending on clock polarity, a rising or falling clock edge
causes the stored data to be loaded into output registers.

The write operation is also fully synchronous. Data and
address are presented, and the write operation is enabled
by control signals WEA and WEB in addition to ENA or
ENB. Then, again depending on the clock input mode, a ris-
ing or falling clock edge causes the data to be loaded into
the memory cell addressed.

A write operation performs a simultaneous read operation.
Three different options are available, selected by configura-
tion:

1. WRITE_FIRST

The WRITE_FIRST option is a transparent mode. The 
same clock edge that writes the data input (DI) into the 

Table  16:  Dual-Port Mode Configurations

Port A 16K x 1 16K x 1 16K x 1 16K x 1 16K x 1 16K x 1

Port B 16K x 1 8K x 2 4K x 4 2K x 9 1K x 18 512 x 36

Port A 8K x 2 8K x 2 8K x 2 8K x 2 8K x 2

Port B 8K x 2 4K x 4 2K x 9 1K x 18 512 x 36

Port A 4K x 4 4K x 4 4K x 4 4K x 4

Port B 4K x 4 2K x 9 1K x 18 512 x 36

Port A 2K x 9 2K x 9 2K x 9

Port B 2K x 9 1K x 18 512 x 36

Port A 1K x 18 1K x 18

Port B 1K x 18 512 x 36

Port A 512 x 36

Port B 512 x 36

Figure 36:  18 Kb Block SelectRAM in Dual-Port Mode
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Table  17:  18 Kb Block SelectRAM Port Aspect Ratio

Width Depth Address Bus Data Bus Parity Bus

1 16,384 ADDR[13:0] DATA[0] N/A

2 8,192 ADDR[12:0] DATA[1:0] N/A

4 4,096 ADDR[11:0] DATA[3:0] N/A

9 2,048 ADDR[10:0] DATA[7:0] Parity[0]

18 1,024 ADDR[9:0] DATA[15:0] Parity[1:0]

36 512 ADDR[8:0] DATA[31:0] Parity[3:0]
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memory also transfers DI into the output registers DO, 
as shown in Figure 37. 

2. READ_FIRST

The READ_FIRST option is a read-before-write mode.

The same clock edge that writes data input (DI) into the
memory also transfers the prior content of the memory cell
addressed into the data output registers DO, as shown in
Figure 38. 

 

3. NO_CHANGE

The NO_CHANGE option maintains the content of the out-
put registers, regardless of the write operation. The clock
edge during the write mode has no effect on the content of
the data output register DO. When the port is configured as

NO_CHANGE, only a read operation loads a new value in
the output register DO, as shown in Figure 39.

Control Pins and Attributes

Virtex-II Pro SelectRAM memory has two independent
ports with the control signals described in Table 18. All con-
trol inputs including the clock have an optional inversion. 

Initial memory content is determined by the INIT_xx
attributes. Separate attributes determine the output register
value after device configuration (INIT) and SSR is asserted
(SRVAL). Both attributes (INIT_B and SRVAL) are available
for each port when a block SelectRAM resource is config-
ured as dual-port RAM.

Total Amount of SelectRAM Memory 

Virtex-II Pro SelectRAM memory blocks are organized in
multiple columns. The number of blocks per column
depends on the row size, the number of Processor Blocks,
and the number of Rocket I/O transceivers. 

Table 19 shows the number of columns as well as the total
amount of block SelectRAM memory available for each
Virtex-II Pro device. The 18 Kb SelectRAM blocks are
cascadable to implement deeper or wider single- or dual-port
memory resources.

Figure 37:  WRITE_FIRST Mode

Figure 38:  READ_FIRST Mode
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Figure 39:   NO_CHANGE Mode

Table  18:  Control Functions

Control Signal Function

CLK Read and Write Clock

EN Enable affects Read, Write, Set, Reset

WE Write Enable

SSR Set DO register to SRVAL (attribute)

CLK

WE

Data_in

Data_in

New

aa

Last Read Cycle Content (no change)

Address

Internal 
Memory DO No change during write

Data_out

DI

DS083-2_12_050901

RAM Contents NewOld
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Figure 40 shows the layout of the block RAM columns in the
XC2VP4 device. 

18-Bit x 18-Bit Multipliers

Introduction

A Virtex-II Pro multiplier block is an 18-bit by 18-bit 2’s com-
plement signed multiplier. Virtex-II Pro devices incorporate
many embedded multiplier blocks. These multipliers can be
associated with an 18 Kb block SelectRAM resource or can
be used independently. They are optimized for high-speed
operations and have a lower power consumption compared
to an 18-bit x 18-bit multiplier in slices.

Each SelectRAM memory and multiplier block is tied to four
switch matrices, as shown in Figure 41.  

Association With Block SelectRAM Memory

The interconnect is designed to allow SelectRAM memory
and multiplier blocks to be used at the same time, but some
interconnect is shared between the SelectRAM and the
multiplier. Thus, SelectRAM memory can be used only up to
18 bits wide when the multiplier is used, because the multi-
plier shares inputs with the upper data bits of the
SelectRAM memory.

This sharing of the interconnect is optimized for an
18-bit-wide block SelectRAM resource feeding the multi-
plier. The use of SelectRAM memory and the multiplier with
an accumulator in LUTs allows for implementation of a digi-
tal signal processor (DSP) multiplier-accumulator (MAC)
function, which is commonly used in finite and infinite
impulse response (FIR and IIR) digital filters.

Configuration

The multiplier block is an 18-bit by 18-bit signed multiplier
(2's complement). Both A and B are 18-bit-wide inputs, and
the output is 36 bits. Figure 42 shows a multiplier block.  

Table  19:  Virtex-II Pro SelectRAM Memory Available

Device Columns

Total SelectRAM Memory

Blocks in Kb in Bits

XC2VP2 4 12 216 221,184

XC2VP4 4 28 504 516,096

XC2VP7 6 44 792 811,008

XC2VP20 8 88 1,584 1,622,016

XC2VP50 12 216 3,888 3,981,312

Figure 40:  XC2VP4 Block RAM Column Layout
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Figure 42:  Multiplier Block
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Locations / Organization

Multiplier organization is identical to the 18 Kb SelectRAM
organization, because each multiplier is associated with an
18 Kb block SelectRAM resource.  

In addition to the built-in multiplier blocks, the CLB elements
have dedicated logic to implement efficient multipliers in
logic. (Refer to Configurable Logic Blocks (CLBs),
page 104).

Global Clock Multiplexer Buffers
Virtex-II Pro devices have 16 clock input pins that can also
be used as regular user I/Os. Eight clock pads center on
both the top edge and the bottom edge of the device, as
illustrated in Figure 43. 

The global clock multiplexer buffer represents the input to
dedicated low-skew clock tree distribution in Virtex-II Pro
devices. Like the clock pads, eight global clock multiplexer
buffers are on the top edge of the device and eight are on
the bottom edge.

Each global clock multiplexer buffer can be driven either by
the clock pad to distribute a clock directly to the device, or
by the Digital Clock Manager (DCM), discussed in Digital
Clock Manager (DCM), page 119. Each global clock multi-
plexer buffer can also be driven by local interconnects. The
DCM has clock output(s) that can be connected to global
clock multiplexer buffer inputs, as shown in Figure 44. 

Global clock buffers are used to distribute the clock to some
or all synchronous logic elements (such as registers in
CLBs and IOBs, and SelectRAM blocks. 

Eight global clocks can be used in each quadrant of the
Virtex-II Pro device. Designers should consider the clock
distribution detail of the device prior to pin-locking and floor-
planning. (See the Virtex-II Pro User Guide.)

Table  20:  Multiplier Resources

Device Columns Total Multipliers

XC2VP2 4 12

XC2VP4 4 28

XC2VP7 6 44

XC2VP20 8 88

XC2VP50 12 216

Figure 43:  Virtex-II Pro Clock Pads
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Figure 45 shows clock distribution in Virtex-II Pro devices.  

In each quadrant, up to eight clocks are organized in clock
rows. A clock row supports up to 16 CLB rows (eight up and
eight down).

To reduce power consumption, any unused clock branches
remain static.

Global clocks are driven by dedicated clock buffers (BUFG),
which can also be used to gate the clock (BUFGCE) or to mul-
tiplex between two independent clock inputs (BUFGMUX).

The most common configuration option of this element is as
a buffer. A BUFG function in this (global buffer) mode, is
shown in Figure 46. 

The Virtex-II Pro global clock buffer BUFG can also be con-
figured as a clock enable/disable circuit (Figure 47), as well
as a two-input clock multiplexer (Figure 48). A functional
description of these two options is provided below. Each of
them can be used in either of two modes, selected by con-
figuration: rising clock edge or falling clock edge. 
This section describes the rising clock edge option. For the
opposite option, falling clock edge, just change all "rising"
references to "falling" and all "High" references to "Low",
except for the description of the CE and S levels. The rising
clock edge option uses the BUFGCE and BUFGMUX prim-

itives. The falling clock edge option uses the BUFGCE_1
and BUFGMUX_1 primitives.

BUFGCE

If the CE input is active (High) prior to the incoming rising
clock edge, this Low-to-High-to-Low clock pulse passes
through the clock buffer. Any level change of CE during the
incoming clock High time has no effect.

If the CE input is inactive (Low) prior to the incoming rising
clock edge, the following clock pulse does not pass through
the clock buffer, and the output stays Low. Any level change
of CE during the incoming clock High time has no effect. CE
must not change during a short setup window just prior to
the rising clock edge on the BUFGCE input I. Violating this
setup time requirement can result in an undefined runt
pulse output. 

BUFGMUX

BUFGMUX can switch between two unrelated, even asyn-
chronous clocks. Basically, a Low on S selects the I0 input,
a High on S selects the I1 input. Switching from one clock to
the other is done in such a way that the output High and Low
time is never shorter than the shortest High or Low time of

Figure 45:  Virtex-II Pro Clock Distribution
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either input clock. As long as the presently selected clock is
High, any level change of S has no effect . 

If the presently selected clock is Low while S changes, or if
it goes Low after S has changed, the output is kept Low until
the other ("to-be-selected") clock has made a transition
from High to Low. At that instant, the new clock starts driv-
ing the output. 
The two clock inputs can be asynchronous with regard to
each other, and the S input can change at any time, except
for a short setup time prior to the rising edge of the presently
selected clock; that is, prior to the rising edge of the
BUFGMUX output O. Violating this setup time requirement
can result in an undefined runt pulse output.

All Virtex-II Pro devices have 16 global clock multiplexer
buffers.

Figure 49 shows a switchover from CLK0 to CLK1. 

• The current clock is CLK0.
• S is activated High.
• If CLK0 is currently High, the multiplexer waits for CLK0 

to go Low.
• Once CLK0 is Low, the multiplexer output stays Low 

until CLK1 transitions High to Low.
• When CLK1 transitions from High to Low, the output 

switches to CLK1.
• No glitches or short pulses can appear on the output.

Digital Clock Manager (DCM)
The Virtex-II Pro DCM offers a wide range of powerful clock
management features. 

• Clock De-skew: The DCM generates new system 
clocks (either internally or externally to the FPGA), 
which are phase-aligned to the input clock, thus 
eliminating clock distribution delays.

• Frequency Synthesis: The DCM generates a wide 
range of output clock frequencies, performing very 
flexible clock multiplication and division.

• Phase Shifting: The DCM provides both coarse phase 
shifting and fine-grained phase shifting with dynamic 
phase shift control.

The DCM utilizes fully digital delay lines allowing robust
high-precision control of clock phase and frequency. It also
utilizes fully digital feedback systems, operating dynamically
to compensate for temperature and voltage variations dur-
ing operation.

Up to four of the nine DCM clock outputs can drive inputs to
global clock buffers or global clock multiplexer buffers simul-
taneously (see Figure 50). All DCM clock outputs can simul-
taneously drive general routing resources, including routes
to output buffers. 

The DCM can be configured to delay the completion of the
Virtex-II Pro configuration process until after the DCM has
achieved lock. This guarantees that the chip does not begin
operating until after the system clocks generated by the
DCM have stabilized.
The DCM has the following general control signals:

• RST input pin: resets the entire DCM

• LOCKED output pin: asserted High when all enabled 
DCM circuits have locked.

• STATUS output pins (active High): shown in Table 21.

Figure 48:  Virtex-II Pro BUFGMUX Function

Figure 49:  Clock Multiplexer Waveform Diagram
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Figure 50:  Digital Clock Manager
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Clock De-skew

The DCM de-skews the output clocks relative to the input
clock by automatically adjusting a digital delay line. Addi-
tional delay is introduced so that clock edges arrive at inter-
nal registers and block RAMs simultaneously with the clock
edges arriving at the input clock pad. Alternatively, external
clocks, which are also de-skewed relative to the input clock,
can be generated for board-level routing. All DCM output
clocks are phase-aligned to CLK0 and, therefore, are also
phase-aligned to the input clock.

To achieve clock de-skew, the CLKFB input must be con-
nected, and its source must be either CLK0 or CLK2X. Note
that CLKFB must always be connected, unless only the
CLKFX or CLKFX180 outputs are used and de-skew is not
required.

Frequency Synthesis

The DCM provides flexible methods for generating new
clock frequencies. Each method has a different operating
frequency range and different AC characteristics. The
CLK2X and CLK2X180 outputs double the clock frequency.
The CLKDV output creates divided output clocks with divi-
sion options of 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5,
8, 9, 10, 11, 12, 13, 14, 15, and 16.

The CLKFX and CLKFX180 outputs can be used to pro-
duce clocks at the following frequency:  

where M and D are two integers. Specifications for M and D
are provided under DCM Timing Parameters. By default,
M = 4 and D = 1, which results in a clock output frequency
four times faster than the clock input frequency (CLKIN).

CLK2X180 is phase shifted 180 degrees relative to CLK2X.
CLKFX180 is phase shifted 180 degrees relative to CLKFX.

All frequency synthesis outputs automatically have 50/50
duty cycles, with the exception of the CLKDV output when
performing a non-integer divide in high-frequency mode.
See Table 22 for more details. 

Note that CLK2X and CLK2X180 are not available in
high-frequency mode.  

Phase Shifting

The DCM provides additional control over clock skew
through either coarse or fine-grained phase shifting. The
CLK0, CLK90, CLK180, and CLK270 outputs are each
phase shifted by ¼ of the input clock period relative to each
other, providing coarse phase control. Note that CLK90 and
CLK270 are not available in high-frequency mode. 

Fine-phase adjustment affects all nine DCM output clocks.
When activated, the phase shift between the rising edges of
CLKIN and CLKFB is a specified fraction of the input clock
period. 

In variable mode, the PHASE_SHIFT value can also be
dynamically incremented or decremented as determined by
PSINCDEC synchronously to PSCLK, when the PSEN
input is active. Figure 51 illustrates the effects of fine-phase
shifting. For more information on DCM features, see the
Virtex-II Pro User Guide. 

Table 23 lists fine-phase shifting control pins, when used in
variable mode. 

Table  21:  DCM Status Pins

Status Pin Function

0 Phase Shift Overflow

1 CLKIN Stopped

2 CLKFX Stopped

3 N/A

4 N/A

5 N/A

6 N/A

7 N/A

FREQCLKFX M D⁄( ) FREQCLKIN•=

Table  22:  CLKDV Duty Cycle for Non-integer Divides

CLKDV_DIVIDE Duty Cycle

1.5 1/ 3

2.5 2 / 5

3.5 3 / 7

4.5 4 / 9

5.5 5 / 11

6.5 6 / 13

7.5 7 / 15

Table  23:  Fine Phase Shifting Control Pins

Control Pin Direction Function

PSINCDEC In Increment or decrement

PSEN In Enable ± phase shift

PSCLK In Clock for phase shift

PSDONE Out Active when completed
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Two separate components of the phase shift range must be
understood: 

• PHASE_SHIFT attribute range
• FINE_SHIFT_RANGE DCM timing parameter range

The PHASE_SHIFT attribute is the numerator in the following
equation: 

Phase Shift (ns) = (PHASE_SHIFT/256) * PERIODCLKIN 

The full range of this attribute is always -255 to +255, but its
practical range varies with CLKIN frequency, as constrained
by the FINE_SHIFT_RANGE component, which represents
the total delay achievable by the phase shift delay line. Total
delay is a function of the number of delay taps used in the
circuit. Across process, voltage, and temperature, this abso-
lute range is guaranteed to be as specified under DCM Tim-
ing Parameters. 

Absolute range (fixed mode) = ± FINE_SHIFT_RANGE

Absolute range (variable mode) = ± FINE_SHIFT_RANGE/2

The reason for the difference between fixed and variable
modes is as follows. For variable mode to allow symmetric,
dynamic sweeps from -255/256 to +255/256, the DCM sets
the "zero phase skew" point as the middle of the delay line,

thus dividing the total delay line range in half. In fixed mode,
since the PHASE_SHIFT value never changes after configu-
ration, the entire delay line is available for insertion into
either the CLKIN or CLKFB path (to create either positive or
negative skew). 

Taking both of these components into consideration, the fol-
lowing are some usage examples: 

• If PERIODCLKIN = 2 * FINE_SHIFT_RANGE, then 
PHASE_SHIFT in fixed mode is limited to ± 128, and in 
variable mode it is limited to ± 64. 

• If PERIODCLKIN = FINE_SHIFT_RANGE, then 
PHASE_SHIFT in fixed mode is limited to ± 255, and in 
variable mode it is limited to ± 128. 

• If PERIODCLKIN ≤ 0.5 * FINE_SHIFT_RANGE, then 
PHASE_SHIFT is limited to ± 255 in either mode.

Operating Modes

The frequency ranges of DCM input and output clocks
depend on the operating mode specified, either
low-frequency mode or high-frequency mode, according to
Table 24. For actual values, see Virtex-II Pro Switching
Characteristics (Module 3). The CLK2X, CLK2X180,

Figure 51:  Fine-Phase Shifting Effects
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Table  24:  DCM Frequency Ranges

Output Clock

Low-Frequency Mode High-Frequency Mode

CLKIN Input CLK Output CLKIN Input CLK Output

CLK0, CLK180 CLKIN_FREQ_DLL_LF CLKOUT_FREQ_1X_LF CLKIN_FREQ_DLL_HF CLKOUT_FREQ_1X_HF

CLK90, CLK270 CLKIN_FREQ_DLL_LF CLKOUT_FREQ_1X_LF NA NA

CLK2X, CLK2X180 CLKIN_FREQ_DLL_LF CLKOUT_FREQ_2X_LF NA NA

CLKDV CLKIN_FREQ_DLL_LF CLKOUT_FREQ_DV_LF CLKIN_FREQ_DLL_HF CLKOUT_FREQ_DV_HF

CLKFX, CLKFX180 CLKIN_FREQ_FX_LF CLKOUT_FREQ_FX_LF CLKIN_FREQ_FX_HF CLKOUT_FREQ_FX_HF
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CLK90, and CLK270 outputs are not available in high-fre-
quency mode.

High or low-frequency mode is selected by an attribute.

Routing

DCM and MGT Locations/Organization

Virtex-II Pro DCMs and serial transceivers (MGTs) are
placed on the top and bottom of each block RAM and multi-
plier column in some combination, as shown in Table 25.
The number of DCMs and Rocket I/O transceiver cores total
to twice the number of columns in the device. Refer to
Figure 40, page 116 for an illustration of this in the XC2VP4
device.

Place-and-route software takes advantage of this regular
array to deliver optimum system performance and fast com-
pile times. The segmented routing resources are essential
to guarantee IP cores portability and to efficiently handle an
incremental design flow that is based on modular imple-
mentations. Total design time is reduced due to fewer and
shorter design iterations.

Hierarchical Routing Resources

Most Virtex-II Pro signals are routed using the global rout-
ing resources, which are located in horizontal and vertical
routing channels between each switch matrix. 

As shown in Figure 52, page 123, Virtex-II Pro has fully
buffered programmable interconnections, with a number of
resources counted between any two adjacent switch matrix
rows or columns. Fanout has minimal impact on the perfor-
mance of each net.

• The long lines are bidirectional wires that distribute 
signals across the device. Vertical and horizontal long 
lines span the full height and width of the device.

• The hex lines route signals to every third or sixth block 
away in all four directions. Organized in a staggered 
pattern, hex lines can only be driven from one end. 
Hex-line signals can be accessed either at the 
endpoints or at the midpoint (three blocks from the 
source).

• The double lines route signals to every first or second 
block away in all four directions. Organized in a 
staggered pattern, double lines can be driven only at 
their endpoints. Double-line signals can be accessed 
either at the endpoints or at the midpoint (one block 
from the source).

• The direct connect lines route signals to neighboring 
blocks: vertically, horizontally, and diagonally.

• The fast connect lines are the internal CLB local 
interconnections from LUT outputs to LUT inputs.

Dedicated Routing

In addition to the global and local routing resources, dedi-
cated signals are available.

• There are eight global clock nets per quadrant. (See 
Global Clock Multiplexer Buffers, page 117.)

• Horizontal routing resources are provided for on-chip 
3-state buses. Four partitionable bus lines are provided 
per CLB row, permitting multiple buses within a row. 
(See 3-State Buffers, page 112.) 

• Two dedicated carry-chain resources per slice column 
(two per CLB column) propagate carry-chain MUXCY 
output signals vertically to the adjacent slice. (See 
CLB/Slice Configurations, page 112.) 

• One dedicated SOP chain per slice row (two per CLB 
row) propagate ORCY output logic signals horizontally 
to the adjacent slice. (See Sum of Products, 
page 111.)

• One dedicated shift-chain per CLB connects the output 
of LUTs in shift-register mode to the input of the next 
LUT in shift-register mode (vertically) inside the CLB. 
(See Shift Registers, page 107.)

Table  25:  DCM Organization

Device Columns DCMs MGTs

XC2VP2 4 4 4

XC2VP4 4 4 4

XC2VP7 6 4 8

XC2VP20 8 8 8

XC2VP50 12 8 16
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•

Configuration
Virtex-II Pro devices are configured by loading application
specific configuration data into the internal configuration
memory. Configuration is carried out using a subset of the
device pins, some of which are dedicated, while others can
be re-used as general purpose inputs and outputs once
configuration is complete.

Depending on the system design, several configuration
modes are supported, selectable via mode pins. The mode
pins M2, M1 and M0 are dedicated pins. An additional pin,
HSWAP_EN is used in conjunction with the mode pins to
select whether user I/O pins have pull-ups during configura-
tion. By default, HSWAP_EN is tied High (internal pull-up)
which shuts off the pull-ups on the user I/O pins during con-
figuration. When HSWAP_EN is tied Low, user I/Os have
pull-ups during configuration. Other dedicated pins are
CCLK (the configuration clock pin), DONE, PROG_B, and
the boundary-scan pins: TDI, TDO, TMS, and TCK.
Depending on the configuration mode chosen, CCLK can
be an output generated by the FPGA, or an input accepting
an externally generated clock. The configuration pins and
boundary scan pins are independent of the VCCO. The aux-
iliary power supply (VCCAUX) of 2.5V is used for these pins.
See Virtex-II Pro Switching Characteristics (Module 3).

A persist option is available which can be used to force the
configuration pins to retain their configuration function even
after device configuration is complete. If the persist option is

not selected then the configuration pins with the exception
of CCLK, PROG_B, and DONE can be used as user I/O in
normal operation. The persist option does not apply to the
boundary-scan related pins. The persist feature is valuable
in applications which employ partial reconfiguration or
reconfiguration on the fly.

Virtex-II Pro supports the following five configuration
modes:

• Slave-Serial Mode
• Master-Serial Mode
• Slave SelectMAP Mode
• Master SelectMAP Mode
• Boundary-Scan (JTAG, IEEE 1532) Mode

Refer to Table 26, page 124. 

A detailed description of configuration modes is provided in
the Virtex-II Pro User Guide. 

Slave-Serial Mode

In slave-serial mode, the FPGA receives configuration data
in bit-serial form from a serial PROM or other serial source
of configuration data. The CCLK pin on the FPGA is an
input in this mode. The serial bitstream must be setup at the
DIN input pin a short time before each rising edge of the
externally generated CCLK.

Multiple FPGAs can be daisy-chained for configuration from
a single source. After a particular FPGA has been config-

Figure 52:  Hierarchical Routing Resources
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ured, the data for the next device is routed internally to the
DOUT pin. The data on the DOUT pin changes on the rising
edge of CCLK.

Slave-serial mode is selected by applying [111] to the mode
pins (M2, M1, M0). A weak pull-up on the mode pins makes
slave serial the default mode if the pins are left uncon-
nected. 

Master-Serial Mode

In master-serial mode, the CCLK pin is an output pin. It is the
Virtex-II Pro FPGA device that drives the configuration clock
on the CCLK pin to a Xilinx Serial PROM which in turn feeds
bit-serial data to the DIN input. The FPGA accepts this data
on each rising CCLK edge. After the FPGA has been loaded,
the data for the next device in a daisy-chain is presented on
the DOUT pin after the rising CCLK edge. 

The interface is identical to slave serial except that an inter-
nal oscillator is used to generate the configuration clock
(CCLK). A wide range of frequencies can be selected for
CCLK which always starts at a slow default frequency. Con-
figuration bits then switch CCLK to a higher frequency for
the remainder of the configuration. 

Slave SelectMAP Mode 

The SelectMAP mode is the fastest configuration option.
Byte-wide data is written into the Virtex-II Pro FPGA device
with a BUSY flag controlling the flow of data. An external
data source provides a byte stream, CCLK, an active Low
Chip Select (CS_B) signal and a Write signal (RDWR_B). If
BUSY is asserted (High) by the FPGA, the data must be
held until BUSY goes Low. Data can also be read using the
SelectMAP mode. If RDWR_B is asserted, configuration
data is read out of the FPGA as part of a readback opera-
tion.

After configuration, the pins of the SelectMAP port can be
used as additional user I/O. Alternatively, the port can be
retained to permit high-speed 8-bit readback using the per-
sist option.

Multiple Virtex-II Pro FPGAs can be configured using the
SelectMAP mode, and be made to start-up simultaneously.
To configure multiple devices in this way, wire the individual
CCLK, Data, RDWR_B, and BUSY pins of all the devices in
parallel. The individual devices are loaded separately by
deasserting the CS_B pin of each device in turn and writing
the appropriate data.

Master SelectMAP Mode 

This mode is a master version of the SelectMAP mode. The
device is configured byte-wide on a CCLK supplied by the
Virtex-II Pro FPGA device. Timing is similar to the Slave
SerialMAP mode except that CCLK is supplied by the
Virtex-II Pro FPGA.

Boundary-Scan (JTAG, IEEE 1532) Mode

In boundary-scan mode, dedicated pins are used for config-
uring the Virtex-II Pro device. The configuration is done
entirely through the IEEE 1149.1 Test Access Port (TAP).
Virtex-II Pro device configuration using Boundary scan is
compliant with IEEE 1149.1-1993 standard and the new
IEEE 1532 standard for In-System Configurable (ISC)
devices. The IEEE 1532 standard is backward compliant
with the IEEE 1149.1-1993 TAP and state machine. The
IEEE Standard 1532 for In-System Configurable (ISC)
devices is intended to be programmed, reprogrammed, or
tested on the board via a physical and logical protocol. Con-
figuration through the boundary-scan port is always avail-
able, independent of the mode selection. Selecting the
boundary-scan mode simply turns off the other modes. 

Table  26:  Virtex-II Pro Configuration Mode Pin Settings

Configuration Mode(1) M2 M1 M0 CCLK Direction Data Width Serial DOUT
(2)

Master Serial 0 0 0 Out 1 Yes

Slave Serial 1 1 1 In 1 Yes

Master SelectMAP 0 1 1 Out 8 No

Slave SelectMAP 1 1 0 In 8 No

Boundary Scan 1 0 1 N/A 1 No

Notes: 
1. The HSWAP_EN pin controls the pullups. Setting M2, M1, and M0 selects the configuration mode, while the HSWAP_EN pin controls 

whether or not the pullups are used.
2. Daisy chaining is possible only in modes where Serial DOUT is used. For example, in SelectMAP modes, the first device does NOT 

support daisy chaining of downstream devices.
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Table 27 lists the total number of bits required to configure
each device. 

Configuration Sequence

The configuration of Virtex-II Pro devices is a three-phase
process. First, the configuration memory is cleared. Next,
configuration data is loaded into the memory, and finally, the
logic is activated by a start-up process.

Configuration is automatically initiated on power-up unless
it is delayed by the user. The INIT_B pin can be held Low
using an open-drain driver. An open-drain is required since
INIT_B is a bidirectional open-drain pin that is held Low by a
Virtex-II Pro FPGA device while the configuration memory
is being cleared. Extending the time that the pin is Low
causes the configuration sequencer to wait. Thus, configu-
ration is delayed by preventing entry into the phase where
data is loaded.

The configuration process can also be initiated by asserting
the PROG_B pin. The end of the memory-clearing phase is
signaled by the INIT_B pin going High, and the completion
of the entire process is signaled by the DONE pin going
High. The Global Set/Reset (GSR) signal is pulsed after the
last frame of configuration data is written but before the
start-up sequence. The GSR signal resets all flip-flops on
the device.

The default start-up sequence is that one CCLK cycle after
DONE goes High, the global 3-state signal (GTS) is
released. This permits device outputs to turn on as neces-
sary. One CCLK cycle later, the Global Write Enable (GWE)
signal is released. This permits the internal storage ele-
ments to begin changing state in response to the logic and
the user clock.

The relative timing of these events can be changed via con-
figuration options in software. In addition, the GTS and
GWE events can be made dependent on the DONE pins of
multiple devices all going High, forcing the devices to start
synchronously. The sequence can also be paused at any
stage, until lock has been achieved on any or all DCMs, as
well as DCI.

Readback

In this mode, configuration data from the Virtex-II Pro FPGA
device can be read back. Readback is supported only in the
SelectMAP (master and slave) and Boundary Scan mode.
Along with the configuration data, it is possible to read back
the contents of all registers, distributed SelectRAM, and
block RAM resources. This capability is used for real-time
debugging. For more detailed configuration information, see
the Virtex-II Pro User Guide. 

Bitstream Encryption

Virtex-II Pro devices have an on-chip decryptor using one or
two sets of three keys for triple-key Data Encryption Stan-
dard (DES) operation. Xilinx software tools offer an optional
encryption of the configuration data (bitstream) with a tri-
ple-key DES determined by the designer.

The keys are stored in the FPGA by JTAG instruction and
retained by a battery connected to the VBATT pin, when the
device is not powered. Virtex-II Pro devices can be config-
ured with the corresponding encrypted bitstream, using any
of the configuration modes described previously. 

A detailed description of how to use bitstream encryption is
provided in the Virtex-II Pro User Guide. Your local FAE can
also provide specific information on this feature.

Partial Reconfiguration

Partial reconfiguration of Virtex-II Pro devices can be
accomplished in either Slave SelectMAP mode or Bound-
ary-Scan mode. Instead of resetting the chip and doing a
full configuration, new data is loaded into a specified area of
the chip, while the rest of the chip remains in operation.
Data is loaded on a column basis, with the smallest load unit
being a configuration “frame” of the bitstream (device size
dependent).

Partial reconfiguration is useful for applications that require
different designs to be loaded into the same area of a chip,
or that require the ability to change portions of a design
without having to reset or reconfigure the entire chip.

Table  27:  Virtex-II Pro Bitstream Lengths

Device
Number of 

Configuration Bits

XC2VP2 1,305,440

XC2VP4 3,006,560

XC2VP7 4,485,472

XC2VP20 8,214,624

XC2VP50 19,021,408
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Revision History
This section records the change history for this module of the data sheet. 

Virtex-II Pro Data Sheet Modules
The Virtex-II Pro Data Sheet contains the following modules:

• Virtex-II Pro™ Platform FPGAs: Introduction and 
Overview (Module 1)

• Virtex-II Pro Platform FPGAs: Functional 
Description (Module 2)

• Virtex-II Pro™ Platform FPGAs: DC and Switching 
Characteristics (Module 3)

• Virtex-II Pro Platform FPGAs: Pinout Information 
(Module 4)

Date Version Revision

01/31/02 1.0 Initial Xilinx release.
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6

Virtex-II Pro Electrical Characteristics
Virtex-II Pro devices are provided in -8, -7, and -6 speed
grades, with -8 having the highest performance.

Virtex-II Pro DC and AC characteristics are specified for
both commercial and industrial grades. Except the operat-
ing temperature range or unless otherwise noted, all the DC
and AC electrical parameters are the same for a particular
speed grade (that is, the timing characteristics of a -6 speed
grade industrial device are the same as for a -6 speed grade

commercial device). However, only selected speed grades
and/or devices might be available in the industrial range.

All supply voltage and junction temperature specifications
are representative of worst-case conditions. The parame-
ters included are common to popular designs and typical
applications. Contact Xilinx for design considerations
requiring more detailed information.

All specifications are subject to change without notice.

Virtex-II Pro DC Characteristics

0

Virtex-II Pro™ Platform FPGAs: 
DC and Switching Characteristics

DS083-3 (v1.0) January 31, 2002 0 0 Advance Product Specification
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Table  1:  Absolute Maximum Ratings

Symbol Description Units

VCCINT Internal supply voltage relative to GND –0.5 to 1.65 V

VCCAUX Auxiliary supply voltage relative to GND –0.5 to 3.45 V

VCCO Output drivers supply voltage relative to GND –0.5 to 3.45 V

VBATT Key memory battery backup supply –0.5 to 3.45 V

VREF Input reference voltage –0.5 to 3.45 V

VIN Input voltage relative to GND (user and dedicated I/Os) –0.5(2) to 3.45(4) V

VTS Voltage applied to 3-state output (user and dedicated I/Os) –0.5(3) to 3.45(5) V

VCCAUXRX Auxilliary supply voltage relative to analog ground, GNDA (Rocket I/O pins) –0.5 to 3.45 V

VCCAUXTX Auxilliary supply voltage relative to analog ground, GNDA (Rocket I/O pins) –0.5 to 3.45 V

VTTX Terminal transmit supply voltage relative to GND (Rocket I/O pins) –0.5 to 3.45 V

VTRX Terminal receive supply voltage relative to GND (Rocket I/O pins) –0.5 to 3.45 V

TSTG Storage temperature (ambient) –65 to +150 °C

TSOL Maximum soldering temperature +220 °C

TJ Operating junction temperature +125 °C

Notes: 
1. Stresses beyond those listed under Absolute Maximum Ratings might cause permanent damage to the device. These are stress 

ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions 
is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time might affect device reliability.

2. For 3.3V I/O standards only, I/O input pin voltage, including negative undershoot, must not fall below 0.0V, either on a continuous or 
transient basis (i.e., no negative undershoot is allowed). See Table 6, page 130.

3. For 3.3V I/O standards only, I/O output pin voltage while in 3-state mode must not fall below 0.0V, either on a continuous or transient 
basis. See Table 6, page 130.

4. I/O input pin voltage, including overshoot, must not exceed 3.45V, either on a continuous or transient basis. 
5. I/O output pin voltage while in 3-state mode must not exceed 3.45V, either on a continuous or transient basis.
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Table  2:  Recommended Operating Conditions

Symbol Description Min Max Units

VCCINT

Internal supply voltage relative to GND, TJ = 0 °C to +85°C Commercial 1.425 1.575 V

Internal supply voltage relative to GND, TJ = –40°C to +100°C Industrial 1.425 1.575 V

VCCAUX
(1)

 

Auxiliary supply voltage relative to GND, TJ = 0 °C to +85°C Commercial 2.375 2.625 V

Auxiliary supply voltage relative to GND, TJ = –40°C to +100°C Industrial 2.375 2.625 V

VCCO
(2)

Supply voltage relative to GND, TJ = 0 °C to +85°C Commercial 1.2 3.45(4) V

Supply voltage relative to GND, TJ = –40°C to +100°C Industrial 1.2 3.45(4) V

VBATT
(3)

Battery voltage relative to GND, TJ = 0 °C to +85°C Commercial 1.0 2.63 V

Battery voltage relative to GND, TJ = –40°C to +100°C Industrial 1.0 2.63 V

VCCAUXRX,
VCCAUXTX

Auxilliary supply voltage relative to GNDA Commercial 2.375 2.625 V

Auxilliary supply voltage relative to GNDA Industrial 2.375 2.625 V

VTTX, VTRX

Terminal supply voltage relative to GND Commercial 1.8 2.625 V

Terminal supply voltage relative to GND Industrial 1.8 2.625 V

Notes: 
1. For LVDS operation, VCCAUX min is 2.37V and max is 2.63V.
2. Configuration data is retained even if VCCO drops to 0V.
3. If battery is not used, do not connect VBATT.
4. For 3.3V operation, see Table 4-1, page 448, for banking information.

Table  3:  DC Characteristics Over Recommended Operating Conditions

Symbol Description Device Min Typ Max Units

VDRINT
Data retention VCCINT voltage 
(below which configuration data might be lost)

All 1.2 V

VDRI
Data retention VCCAUX voltage 
(below which configuration data might be lost)

All V

IREF VREF current per bank All µA

IL Input or output leakage current per pin All µA

CIN Input capacitance (sample tested) All pF

IRPU
Pad pull-up (when selected) @ Vin = 0V, VCCO = 3.3V 
(sample tested)

All Note 
(1)

mA

IRPD
Pad pull-down (when selected) @ Vin = 3.6V 
(sample tested)

All Note 
(1)

mA

ICCAUXTX Operating VCCAUXTX supply current 60 mA

ICCAUXRX Operating VCCAUXRX supply current 35 mA

ITTX

Operating ITTX supply current when transmitter is AC coupled 30 mA

Operating ITTX supply current when transmitter is DC coupled 15 mA

ITRX

Operating ITRX supply current when receiver is AC coupled TBD mA

Operating ITRX supply current when receiver is DC coupled 15 mA
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Power-On Power Supply Requirements
Xilinx FPGAs require a certain amount of supply current
during power-on to insure proper device operation. The
actual current consumed depends on the power-on ramp
rate of the power supply.

The VCCINT, VCCAUX, and VCCO power supplies must ramp
on no faster than 100 µs and no slower than 50 ms. Ramp
on is defined as: 0 VDC to minimum supply voltages (see
Table 2, page 128). 

VCCAUX and VCCO for bank 4 must be connected together
(2.5 VDC) to meet the following specification.

Table 5, page 130, shows the minimum current required by
Virtex-II Pro devices for proper power on and configuration.

Power supplies can be turned on in any sequence, as long
as VCCAUX and VCCO are connected together for bank 4.

If any VCCO bank powers up before VCCAUX, then each
bank draws up to 600 mA, worst case, until the VCCAUX
powers on. This does not harm the device. (Note that the
600 mA is peak transient current, which eventually dissi-
pates even if VCCAUX does not power on.) 

PCPU Power dissipation of PowerPC® 405 processor block
mW

/ MHz

PRXTX

Power dissipation of Rocket I/O @ 3.125 Gb/s per channel 350 mW

Power dissipation of Rocket I/O @ 2.5 Gb/s per channel 310 mW

Power dissipation of Rocket I/O @ 1.25 Gb/s per channel 230 mW

Notes: 
1. Internal pull-up and pull-down resistors guarantee valid logic levels at unconnected input pins. These pull-up and pull-down resistors 

do not guarantee valid logic levels when input pins are connected to other circuits.

Table  3:  DC Characteristics Over Recommended Operating Conditions (Continued)

Symbol Description Device Min Typ Max Units

Table  4:  Quiescent Supply Current

Symbol Description Device Min Typ Max Units

ICCINTQ Quiescent VCCINT supply current XC2VP2 mA

XC2VP4 mA

XC2VP7 mA

XC2VP20 mA

XC2VP50 mA

ICCOQ Quiescent VCCO supply current XC2VP2 mA

XC2VP4 mA

XC2VP7 mA

XC2VP20 mA

XC2VP50 mA

ICCAUXQ Quiescent VCCAUX supply current XC2VP2 mA

XC2VP4 mA

XC2VP7 mA

XC2VP20 mA

XC2VP50 mA

Notes: 
1. With no output current loads, no active input pull-up resistors, all I/O pins are 3-state and floating.
2. If DCI or differential signaling is used, more accurate quiescent current estimates can be obtained by using the Power Estimator or 

XPOWER™.
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If the currents minimums shown in Table 5 are met, the
device powers on properly after all three supplies have
passed through their power-on reset threshold voltages.

Once initialized and configured, use the power calculator to
estimate current drain on these supplies.

SelectI/O DC Input and Output Levels
Values for VIL and VIH are recommended input voltages.
Values for IOL and IOH are guaranteed over the recom-
mended operating conditions at the VOL and VOH test
points. Only selected standards are tested. These are cho-

sen to ensure that all standards meet their specifications.
The selected standards are tested at minimum VCCO with
the respective VOL and VOH voltage levels shown. Other
standards are sample tested. 

Table  5:  Power-On Current for Virtex-II Pro Devices

Symbol

Device

UnitsXC2VP2 XC2VP4 XC2VP7 XC2VP20 XC2VP50

ICCINTMIN 250 250 250 250 500 mA

ICCAUXMIN 250 250 250 250 250 mA

ICCOMIN 10 10 10 10 10 mA

Table  6:  DC Input and Output Levels

Input/Output
Standard

VIL VIH VOL VOH IOL IOH

V, min V, max V, min V, max V, Max V, Min mA mA

LVTTL(1) 0.0 0.8 2.0 VCCO 0.4 2.4 24 –24

LVCMOS33 0.0 0.8 2.0 VCCO 0.4 VCCO – 0.4 24 –24

LVCMOS25 –0.5 0.7 1.7 VCCO + 0.4 0.4 VCCO – 0.4 24 –24

LVCMOS18 –0.5 20% VCCO 70% VCCO VCCO + 0.4 0.4  VCCO – 0.45 16 –16

LVCMOS15 –0.5 20% VCCO 70% VCCO VCCO + 0.4 0.4  VCCO – 0.45 16 –16

PCI33_3(2) 0.0 30% VCCO 50% VCCO VCCO 10% VCCO 90% VCCO

PCI66_3(2) 0.0 30% VCCO 50% VCCO VCCO 10% VCCO 90% VCCO

GTLP –0.5 VREF – 0.1 VREF + 0.1 VCCO + 0.4 0.6 n/a 36 n/a

GTL –0.5 VREF – 0.05 VREF + 0.05 VCCO + 0.4 0.4 n/a 40 n/a

HSTL I –0.5 VREF – 0.1 VREF + 0.1 VCCO + 0.4 0.4(3) VCCO – 0.4 8(3) –8(3)

HSTL II –0.5 VREF – 0.1 VREF + 0.1 VCCO + 0.4 0.4(3) VCCO – 0.4 16(3) –16(3)

HSTL III –0.5 VREF – 0.1 VREF + 0.1 VCCO + 0.4 0.4(3) VCCO – 0.4 24(3) –8(3)

HSTL IV –0.5 VREF – 0.1 VREF + 0.1 VCCO + 0.4 0.4(3) VCCO – 0.4 48(3) –8(3)

SSTL3 I 0.0 VREF – 0.2 VREF + 0.2 VCCO VREF – 0.6 VREF + 0.6 8 –8

SSTL3 II 0.0 VREF – 0.2 VREF + 0.2 VCCO VREF – 0.8 VREF + 0.8 16 –16

SSTL2 I –0.5 VREF – 0.2 VREF + 0.2 VCCO + 0.4 VREF – 0.61 VREF + 0.65 7.6 –7.6

SSTL2 II –0.5 VREF – 0.2 VREF + 0.2 VCCO + 0.4 VREF – 0.80 VREF + 0.80 15.2 –15.2

Notes: 
1. VOL and VOH for lower drive currents are sample tested. The DONE pin is always CMOS 2.5 12 mA.
2. For optimum performance, it is recommended that PCI be used in conjunction with LVDCI_33. Contact Xilinx for more details.
3. This applies to 1.5V and 1.8V HSTL.
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LDT DC Specifications (LDT_25)

LVDS DC Specifications (LVDS_25)

Extended LVDS DC Specifications (LVDSEXT_25)

Table  7:  LDT DC Specifications

DC Parameter Symbol Conditions Min Typ Max Units

Supply Voltage VCCO 2.38 2.5 2.63 V

Differential Output Voltage VOD RT = 100 ohm across Q and Q signals 500 600 700 mV

Change in VOD Magnitude ∆ VOD –15 15 mV

Output Common Mode Voltage VOCM RT = 100 ohm across Q and Q signals 560 600 640 mV

Change in VOS Magnitude ∆ VOCM –15 15 mV

Input Differential Voltage VID 200 600 1000 mV

Change in VID Magnitude ∆ VID –15 15 mV

Input Common Mode Voltage VICM 500 600 700 mV

Change in VICM Magnitude ∆ VICM –15 15 mV

Table  8:  LVDS DC Specifications

DC Parameter Symbol Conditions Min Typ Max Units

Supply Voltage VCCO 2.38 2.5 2.63 V

Output High Voltage for Q and Q VOH RT = 100 Ω across Q and Q signals 1.475 V

Output Low Voltage for Q and Q VOL RT = 100 Ω across Q and Q signals 0.925 V

Differential Output Voltage (Q – Q),
Q = High (Q – Q), Q = High

VODIFF RT = 100 Ω across Q and Q signals 250 350 400 mV

Output Common-Mode Voltage VOCM RT = 100 Ω across Q and Q signals 1.125 1.2 1.275 V

Differential Input Voltage (Q – Q),
Q = High (Q – Q), Q = High

VIDIFF Common-mode input voltage = 1.25V 100 350 600 mV

Input Common-Mode Voltage VICM Differential input voltage = ±350 mV 0.3 1.2 2.2 V

Table  9:  Extended LVDS DC Specifications

DC Parameter Symbol Conditions Min Typ Max Units

Supply Voltage VCCO 2.38 2.5 2.63 V

Output High Voltage for Q and Q VOH RT = 100 Ω across Q and Q signals 1.70 V

Output Low Voltage for Q and Q VOL RT = 100 Ω across Q and Q signals 0.705 V

Differential Output Voltage (Q – Q),
Q = High (Q – Q), Q = High

VODIFF RT = 100 Ω across Q and Q signals 440 820 mV

Output Common-Mode Voltage VOCM RT = 100 Ω across Q and Q signals 1.125 1.200 1.275 V

Differential Input Voltage (Q – Q),
Q = High (Q – Q), Q = High

VIDIFF Common-mode input voltage = 1.25V 100 1000 mV

Input Common-Mode Voltage VICM Differential input voltage = ±350 mV 0.3 1.2 2.2 V
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Rocket I/O DC Input and Output Levels

Table  10:  Rocket I/O DC Specifications

DC Parameter Symbol Conditions Min Typ Max Units

Peak-to-Peak Differential Input Voltage DVIN 175 mV

Peak-to-Peak Differential Output Voltage(1,2) DVOUT

800 mV

1000 mV

1200 mV

1400 mV

1600 mV

Notes: 
1. Output swing levels are selectable using TX_DIFF_CTRL attribute. See the Rocket I/O Transceiver section in Chapter 2, or refer to 

the Rocket I/O User Manual for details.
2. Output preemphasis levels are selectable at 10% (default), 20%, 25%, and 33% using the TX_PREEMPHASIS attribute. See the 

Rocket I/O Transceiver section in Chapter 2 or the Rocket I/O User Manual for details.
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Virtex-II Pro Performance Characteristics
This section provides the performance characteristics of
some common functions and designs implemented in
Virtex-II Pro devices. The numbers reported here are fully
characterized worst-case values. Note that these values are
subject to the same guidelines as Virtex-II Pro Switching
Characteristics, page 135 (speed files).

Table 11 provides pin-to-pin values (in nanoseconds)
including IOB delays; that is, delay through the device from
input pin to output pin. In the case of multiple inputs and out-
puts, the worst delay is reported.  

Table 12 shows internal (register-to-register) performance. Values are reported in MHz.  

Table  11:  Pin-to-Pin Performance

Description Pin-to-Pin (w/ I/O delays) Device Used & Speed Grade

Basic Functions:

16-bit Address Decoder

32-bit Address Decoder

64-bit Address Decoder

4:1 MUX

8:1 MUX

16:1 MUX

32:1 MUX

Combinatorial (pad to LUT to pad)

Memory:

Block RAM

Pad to setup

Clock to Pad

Distributed RAM

Pad to setup

Clock to Pad

Table  12:  Register-to-Register Performance 

Description Register-to-Register Performance Device Used & Speed Grade

Basic Functions:

16-bit Address Decoder

32-bit Address Decoder

64-bit Address Decoder

4:1 MUX

8:1 MUX

16:1 MUX

32:1 MUX

Register to LUT to Register

8-bit Adder

16-bit Adder
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64-bit Adder

64-bit Counter

64-bit Accumulator 

Multiplier 18x18 (with Block RAM inputs)

Multiplier 18x18 (with Register inputs)

Memory:

Block RAM

Single-Port 4096 x 4 bits

Single-Port 2048 x 9 bits

Single-Port 1024 x 18 bits

Single-Port 512 x 36 bits

Dual-Port A:4096 x 4 bits & B:1024 x 18 bits

Dual-Port A:1024 x 18 bits & B:1024 x 18 bits

Dual-Port A:2048 x 9 bits & B: 512 x 36 bits

Distributed RAM

Single-Port 32 x 8-bit

Single-Port 64 x 8-bit

Single-Port 128 x 8-bit

Dual-Port 16 x 8

Dual-Port 32 x 8

Dual-Port 64 x 8

Dual-Port 128 x 8

Shift Registers

128-bit SRL

256-bit SRL

FIFOs (Async. in Block RAM)

1024 x 18-bit

1024 x 18-bit

FIFOs (Sync. in SRL)

128 x 8-bit

128 x 16-bit

CAMs in Block RAM

32 x 9-bit

64 x 9-bit

128 x 9-bit

256 x 9-bit

Table  12:  Register-to-Register Performance  (Continued)

Description Register-to-Register Performance Device Used & Speed Grade
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Virtex-II Pro Switching Characteristics
Switching characteristics are specified on a
per-speed-grade basis and can be designated as Advance,
Preliminary, or Production. Note that Virtex-II Pro Perfor-
mance Characteristics, page 133 are subject to these
guidelines, as well. Each designation is defined as follows:

Advance: These speed files are based on simulations only
and are typically available soon after device design specifi-
cations are frozen. Although speed grades with this desig-
nation are considered relatively stable and conservative,
some under-reporting might still occur.

Preliminary: These speed files are based on complete ES
(engineering sample) silicon characterization. Devices and
speed grades with this designation are intended to give a
better indication of the expected performance of production
silicon. The probability of under-reporting delays is greatly
reduced as compared to Advance data.

Production: These speed files are released once enough
production silicon of a particular device family member has
been characterized to provide full correlation between
speed files and devices over numerous production lots.
There is no under-reporting of delays, and customers
receive formal notification of any subsequent changes. Typ-
ically, the slowest speed grades transition to Production
before faster speed grades.
Since individual family members are produced at different
times, the migration from one category to another depends
completely on the status of the fabrication process for each

device. Table 13 correlates the current status of each
Virtex-II Pro device with a corresponding speed file desig-
nation.

All specifications are always representative of worst-case
supply voltage and junction temperature conditions. 

Testing of Switching Characteristics
All devices are 100% functionally tested. Internal timing
parameters are derived from measuring internal test pat-
terns. Listed below are representative values. For more
specific, more precise, and worst-case guaranteed data,
use the values reported by the static timing analyzer (TRCE
in the Xilinx Development System) and back-annotate to the
simulation net list. Unless otherwise noted, values apply to
all Virtex-II Pro devices.

CAMs in SRL

32 x 16-bit

64 x 32-bit

128 x 40-bit

256 x 48-bit

1024 x 16-bit

1024 x 72-bit

Table  12:  Register-to-Register Performance  (Continued)

Description Register-to-Register Performance Device Used & Speed Grade

Table  13:  Virtex-II Pro Device Speed Grade 
Designations

Device

Speed Grade Designations

Advance Preliminary Production

XC2VP2 -8, -7, -6

XC2VP4 -8, -7, -6

XC2VP7 -8, -7, -6

XC2VP20 -8, -7, -6

XC2VP50 -8, -7, -6
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PowerPC Switching Characteristics

Table  14:  Processor Clocks Absolute AC Characteristics

Speed Grade

-8 -7 -6

Description Min Max Min Max Min Max Units

CPMC405CLOCK frequency MHz

JTAGC405TCK frequency(1) MHz

Notes: 
1. The theoretical maximum frequency of this clock is one-half the CPMC405CLOCK. However, the achievable maximum is dependent 

on the system, and will be much less

Table  15:  Processor Block Switching Characteristics

Speed Grade

Description Symbol -8 -7 -6 Units

Setup and Hold Relative to Clock 
(CPMC405CLOCK)

Device Control Register Bus control 
inputs

TPCCK_DCR/TPCKC_DCR ns, min

Device Control Register Bus data 
inputs

TPDCK_DCR/TPCKD_DCR ns, min

Clock and Power Management 
control inputs

TPCCK_CPM/TPCKC_CPM ns, min

Reset control inputs TPCCK_RST/TPCKC_RST ns, min

Debug control inputs TPCCK_DBG/TPCKC_DBG ns, min

Trace control inputs TPCCK_TRC/TPCKC_TRC ns, min

External Interrupt Controller control 
inputs

TPCCK_EIC/TPCKC_EIC ns, min

Clock to Out

Device Control Register Bus control 
outputs

TPCKCO_DCR ns, max

Device Control Register Bus 
address outputs

TPCKAO_DCR ns, max

Device Control Register Bus data 
outputs

TPCKDO_DCR ns, max

Clock and Power Management 
control outputs

TPCKCO_CPM ns, max

Reset control outputs TPCKCO_RST ns, max

Debug control outputs TPCKCO_DBG ns, max

Trace control outputs TPCKCO_TRC ns, max
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Clock   

CPMC405CLOCK minimum pulse 
width, high

TCPWH ns, min

CPMC405CLOCK minimum pulse 
width, low

TCPWL ns, min

Table  15:  Processor Block Switching Characteristics (Continued)

Speed Grade

Description Symbol -8 -7 -6 Units

Table  16:  Processor Block PLB Switching Characteristics

Speed Grade

Description Symbol -8 -7 -6 Units

Setup and Hold Relative to Clock 
(PLBCLK)

Processor Local Bus(ICU/DCU) 
control inputs

TPCCK_PLB/TPCKC_PLB ns, min

Processor Local Bus (ICU/DCU) 
data inputs

TPDCK_PLB/TPCKD_PLB ns, min

Clock to Out

Processor Local Bus(ICU/DCU) 
control outputs

TPCKCO_PLB ns, max

Processor Local Bus(ICU/DCU) 
address bus outputs

TPCKAO_PLB ns, max

Processor Local Bus(ICU/DCU) 
data bus outputs

TPCKDO_PLB ns, max

Clock   

PLBCLK minimum pulse width, high TPPWH ns, min

PLBCLK minimum pulse width, low TPPWL ns, min

Table  17:  Processor Block JTAG Switching Characteristics

Speed Grade

Description Symbol -8 -7 -6 Units

Setup and Hold Relative to Clock 
(JTAGC405TCK)

JTAG control inputs TPCCK_JTAG/TPCKC_JTAG ns, min

JTAG reset input TPCCK_JTAGRST/
TPCKC_JTAGRST

ns, min

Clock to Out

JTAG control outputs TPCKCO_JTAG ns, max
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Clock   

JTAGC405TCK minimum pulse 
width, high

TJPWH ns, min

JTAGC405TCK minimum pulse 
width, low

TJPWL ns, min

Table  17:  Processor Block JTAG Switching Characteristics (Continued)

Speed Grade

Description Symbol -8 -7 -6 Units

Table  18:  PowerPC 405 Data-Side On-Chip Memory Switching Characteristics

Speed Grade

Description Symbol -8 -7 -6 Units

Setup and Hold Relative to Clock 
(BRAMDSOCMCLK)

Data-Side On-Chip Memory data 
bus inputs

TPDCK_DSOCM/TPCKD_DSOCM ns, min

Clock to Out

Data-Side On-Chip Memory control 
outputs

TPCKCO_DSOCM ns, max

Data-Side On-Chip Memory 
address bus outputs

TPCKAO_DSOCM ns, max

Data-Side On-Chip Memory data 
bus outputs

TPCKDO_DSOCM ns, max

Clock   

BRAMDSOCMCLK minimum pulse 
width, high

TDPWH ns, min

BRAMDSOCMCLK minimum pulse 
width, low

TDPWL ns, min

Table  19:  PowerPC 405 Instruction-Side On-Chip Memory Switching Characteristics

Speed Grade

Description Symbol -8 -7 -6 Units

Setup and Hold Relative to Clock 
(BRAMISOCMCLK)

Instruction-Side On-Chip Memory 
data bus inputs

TPDCK_ISOCM/TPCKD_ISOCM ns, min

Clock to Out

Instruction-Side On-Chip Memory 
control outputs

TPCKCO_ISOCM ns, max

Instruction-Side On-Chip Memory 
address bus outputs

TPCKAO_ISOCM ns, max

Instruction-Side On-Chip Memory 
data bus outputs

TPCKDO_ISOCM ns, max
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Rocket I/O Switching Characteristics

Clock   

BRAMISOCMCLK minimum pulse 
width, high

TIPWH ns, min

BRAMISOCMCLK minimum pulse 
width, low

TIPWL ns, min

Table  19:  PowerPC 405 Instruction-Side On-Chip Memory Switching Characteristics (Continued)

Speed Grade

Description Symbol -8 -7 -6 Units

Table  20:  Rocket I/O Reference Clock Switching Characteristics

All Speed Grades

Description Symbol Conditions Min Typ Max Units

REFCLK frequency range(1) FGCLK 40 Note(1) 156.25 MHz

REFCLK frequency tolerance FGTOL ±100 ppm

REFCLK rise time TRCLK 20% – 80% ns

REFCLK fall time TFCLK 20% – 80% ns

REFCLK duty cycle TDCREF 45 50 55 %

REFCLK total jitter TGJTT peak-to-peak 40 ps

Clock recovery frequency acquisition time TLOCK 10 µs

Clock recovery phase acquisition time TPHASE 960 bits

Bit error rate BER 10–12

Notes: 
1. REFCLK frequency is typically 1/20 of serial data rate.

Figure 1:  Reference Clock (REFCLK) Timing Parameters

DS083-3_01_101801

80%

REFCLK

20%

TFCLK

TRCLK
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Table  21:  Rocket I/O Receiver Switching Characteristics

Description Symbol Conditions Min Typ Max Units

Receive total jitter tolerance TJTOL 0.65 UI(1)

Receive deterministic jitter tolerance TDJTOL 0.41 UI

Receive latency(2) TRXLAT 25 42
RXUSR

CLK
cycles

RXUSRCLK duty cycle TRXDC 45 50 55 %

RXUSRCLK2 duty cycle TRX2DC 45 50 55 %

Bit error rate BER 10–12

Notes: 
1. UI = Unit Interval
2. Receive latency delay from RXP/RXN to RXDATA

Figure 2:  Receive Latency (Maximum)

DS083-3_02_082301

RXDATA[16:0]

RXP/RXN

RXUSRCLK2

TRXLAT DATA ARRIVES

DATA ORIGINATES

0 1 41 42

1 2 .  .  .  .  . 20 821 822 .  .  .  .  . .  .  .  .840 841 84221 22 .  .  .  .  . 820
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Table  22:  Rocket I/O Transmitter Switching Characteristics

Description Symbol Conditions Min Typ Max Units

Serial data rate, full-speed clock

FGTX

Flipchip packages 0.800 3.125 Gb/s

Wirebond packages 0.800 2.5 Gb/s

Serial data rate, half-speed clock
Flipchip packages 0.600 1.0 Gb/s

Wirebond packages 0.600 1.0 Gb/s

Serial data output deterministic jitter TDJ 0.18 UI(1)

Serial data output random jitter TRJ 0.17 UI

TX rise time TRTX
20% – 80%

120 ps

TX fall time TFTX 120 ps

Transmit latency(2) TTXLAT
Including CRC 14 17 TXUSR

CLK
cyclesExcluding CRC 8 11

TXUSRCLK duty cycle TTXDC 45 50 55 %

TXUSRCLK2 duty cycle TTX2DC 45 50 55 %

Notes: 
1. UI = Unit Interval
2. Transmit latency delay from TXDATA to TXP/TXN

Figure 3:  Transmit Latency (Maximum, Including CRC)

DS083-3_03_082301
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Table  23:  Rocket I/O RXUSRCLK Switching Characteristics

Speed Grade

Description Symbol -8 -7 -6 Units

Setup and Hold Relative to Clock 
(RXUSRCLK)

CHBONDI control inputs TGCCK_CHBI/TGCKC_CHBI ns, min

Clock to Out

CHBONDO control outputs TGCKCO_CHBO ns, max

Clock   

RXUSRCLK minimum pulse width, High TGPWH_RX ns, min

RXUSRCLK minimum pulse width, Low TGPWL_RX ns, min

Table  24:  Rocket I/O RXUSRCLK2 Switching Characteristics

Speed Grade

Description Symbol -8 -7 -6 Units

Setup and Hold Relative to Clock 
(RXUSRCLK2)

RXRESET control input TGCCK_RRST/TGCKC_RRST ns, min

RXPOLARITY control input TGCCK_RPOL/TGCKC_RPOL ns, min

ENCHANSYNC control input TGCCK_ECSY/TGCKC_ECSY ns, min

Clock to Out

RXNOTINTABLE status outputs TGCKST_RNIT ns, max

RXDISPERR status outputs TGCKST_RDERR ns, max

RXCHARISCOMMA status outputs TGCKST_RCMCH ns, max

RXREALIGN status output TGCKST_ALIGN ns, max

RXCOMMADET status output TGCKST_CMDT ns, max

RXLOSSOFSYNC status outputs TGCKST_RLOS ns, max

RXCLKCORCNT status outputs TGCKST_RCCCNT ns, max

RXBUFSTATUS status outputs TGCKST_RBSTA ns, max

RXCHECKINGCRC status output TGCKST_RCCRC ns, max

RXCRCERR status output TGCKST_RCRCE ns, max

CHBONDDONE status output TGCKST_CHBD ns, max

RXCHARISK status outputs TGCKST_RKCH ns, max

RXRUNDISP status outputs TGCKST_RRDIS ns, max

RXDATA data outputs TGCKDO_RDAT ns, max

Clock   

RXUSRCLK2 minimum pulse width, High TGPWH_RX2 ns, min

RXUSRCLK2 minimum pulse width, Low TGPWL_RX2 ns, min
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Table  25:  Rocket I/O TXUSRCLK Switching Characteristics

Speed Grade

Description Symbol -8 -7 -6 Units

Setup and Hold Relative to Clock 
(TXUSRCLK2)

CONFIGENABLE control input TGCCK_CFGEN/TGCKC_CFGEN ns, min

TXBYPASS8B10B control inputs TGCCK_TBYP/TGCKC_TBYP ns, min

TXFORCECRCERR control input TGCCK_TCRCE/TGCKC_TCRCE ns, min

TXPOLARITY control input TGCCK_TPOL/TGCKC_TPOL ns, min

TXINHIBIT control inputs TGCCK_TINH/TGCKC_TINH ns, min

LOOPBACK control inputs TGCCK_LBK/TGCKC_LBK ns, min

TXRESET control input TGCCK_TRST/TGCKC_TRST ns, min

TXCHARISK control inputs TGCCK_TKCH/TGCKC_TKCH ns, min

TXCHARDISPMODE control inputs TGCCK_TCDM/TGCKC_TCDM ns, min

TXCHARDISPVAL control inputs TGCCK_TCDV/TGCKC_TCDV ns, min

CONFIGIN data input TGDCK_CFGIN/TGCKD_CFGIN ns, min

TXDATA data inputs TGDCK_TDAT/TGCKD_TDAT ns, min

Clock to Out

TXBUFERR status output TGCKST_TBERR ns, max

TXKERR status outputs TGCKST_TKERR ns, max

TXRUNDISP status outputs TGCKST_TRDIS ns, max

CONFIGOUT data output TGCKDO_CFGOUT ns, max

Clock

TXUSRCLK minimum pulse width, High TGPWH_TX ns, min

TXUSRCLK minimum pulse width, Low TGPWL_TX ns, min

TXUSRCLK2 minimum pulse width, High TGPWH_TX2 ns, min

TXUSRCLK2 minimum pulse width, Low TGPWL_TX2 ns, min
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IOB Input Switching Characteristics

Input delays associated with the pad are specified for LVCMOS 2.5V levels. For other standards, adjust the delays with the
values shown in IOB Input Switching Characteristics Standard Adjustments, page 145.

Table  26:  IOB Input Switching Characteristics

 Speed Grade

Description Symbol Device –8 –7 –6 Units

Propagation Delays

Pad to I output, no delay TIOPI All ns, max

Pad to I output, with delay TIOPID XC2VP2 ns, max

XC2VP4 ns, max

XC2VP7 ns, max

XC2VP20 ns, max

XC2VP50 ns, max

Propagation Delays

Pad to output IQ via transparent 
latch, no delay

TIOPLI All ns, max

Pad to output IQ via transparent 
latch, with delay

TIOPLID XC2VP2 ns, max

XC2VP4 ns, max

XC2VP7 ns, max

XC2VP20 ns, max

XC2VP50 ns, max

Clock CLK to output IQ TIOCKIQ All ns, max

Setup and Hold Times With Respect 
to Clock at IOB Input Register

Pad, no delay TIOPICK/TIOICKP All ns, min

Pad, with delay TIOPICKD/TIOICKPD XC2VP2 ns, max

XC2VP4 ns, max

XC2VP7 ns, max

XC2VP20 ns, max

XC2VP50 ns, max

ICE input TIOICECK/TIOCKICE All ns, min

SR input (IFF, synchronous) TIOSRCKI All ns, min

Set/Reset Delays

SR input to IQ (asynchronous) TIOSRIQ All ns, max 

GSR to output IQ TGSRQ All ns, max

Notes: 
1. Input timing for LVCMOS25 is measured at 1.25V. For other I/O standards, see Table 30.
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IOB Input Switching Characteristics Standard Adjustments

Table  27:  IOB Input Switching Characteristics Standard Adjustments 

  Speed Grade

Description Symbol Standard –8 –7 –6 Units

Data Input Delay Adjustments

Standard-specific data input delay 
adjustments 

TILVTTL LVTTL ns

TILVCMOS33 LVCMOS33 ns

TILVCMOS25 LVCMOS25 ns

TILVCMOS18 LVCMOS18 ns

TILVCMOS15 LVCMOS15 ns

TILVDS_25 LVDS_25 ns

TILVDS_25_EXT LVDS_25_EXT ns

TIPCI33_3 PCI, 33 MHz, 3.3V ns

TIPCI66_3 PCI, 66 MHz, 3.3V ns

TIGTL GTL ns

TIGTLPLUS GTLP ns

TIHSTL_I HSTL I ns

TIHSTL_II HSTL II ns

TIHSTL_III HSTL III ns

TIHSTL_IV HSTL IV ns

TIHSTL_I_18 HSTL_I_18 ns

TIHSTL_II_18 HSTL_II_18 ns

TIHSTL_III_18 HSTL_III_18 ns

TIHSTL_IV_18 HSTL_IV_18 ns

TISSTL2_I SSTL2 I ns

TISSTL2_II SSTL2 II ns

TISSTL3_I SSTL3 I ns

TISSTL3_II SSTL3 II ns

TILVDCI33 LVDCI_33 ns

TILVDCI25 LVDCI_25 ns

TILVDCI18 LVDCI_18 ns

TILVDCI15 LVDCI_15 ns

TILVDCI_DV2_25 LVDCI_DV2_25 ns

TILVDCI_DV2_18 LVDCI_DV2_18 ns

TILVDCI_DV2_15 LVDCI_DV2_15 ns

TIGTL_DCI GTL_DCI ns

TIGTLP_DCI GTLP_DCI ns

TIHSTL_I_DCI HSTL_I_DCI ns
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IOB Output Switching Characteristics
Output delays terminating at a pad are specified for LVCMOS25 with 12 mA drive and fast slew rate. For other standards,
adjust the delays with the values shown in IOB Output Switching Characteristics Standard Adjustments, page 147.  

Standard-specific data input delay 
adjustments (continued)

TIHSTL_II_DCI HSTL_II_DCI ns

TIHSTL_III_DCI HSTL_III_DCI ns

TIHSTL_IV_DCI HSTL_IV_DCI ns

TIHSTL_I_DCI_18 HSTL_I_DCI_18 ns

TIHSTL_II_DCI_18 HSTL_II_DCI_18 ns

TIHSTL_III_DCI_18 HSTL_III_DCI_18 ns

TIHSTL_IV_DCI_18 HSTL_IV_DCI_18 ns

TISSTL2_I_DCI SSTL2_I_DCI ns

TISSTL2_II_DCI SSTL2_II_DCI ns

TISSTL3_I_DCI SSTL3_I_DCI ns

TISSTL3_II_DCI SSTL3_II_DCI ns

TILDT_25 LDT_25 ns

TIULVDS_25 ULVDS_25 ns

Notes: 
1. Input timing for LVTTL is measured at 1.4V. For other I/O standards, see Table 30.

Table  28:  IOB Output Switching Characteristics

  Speed Grade

Description Symbol –8 –7 –6 Units

Propagation Delays

O input to Pad TIOOP ns, max

O input to Pad via transparent latch TIOOLP ns, max

3-State Delays

T input to Pad high-impedance(2) TIOTHZ ns, max

T input to valid data on Pad TIOTON ns, max

T input to Pad high-impedance via 
transparent latch(2) TIOTLPHZ ns, max

T input to valid data on Pad via transparent latch TIOTLPON ns, max

GTS to Pad high-impedance(2) TGTS ns, max

Sequential Delays

Clock CLK to Pad TIOCKP ns, max

Clock CLK to Pad high-impedance 
(synchronous)(2) TIOCKHZ ns, max

Clock CLK to valid data on Pad
(synchronous)

TIOCKON ns, max

Table  27:  IOB Input Switching Characteristics Standard Adjustments  (Continued)

  Speed Grade

Description Symbol Standard –8 –7 –6 Units
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IOB Output Switching Characteristics Standard Adjustments

Output delays terminating at a pad are specified for LVCMOS25 with 12 mA drive and fast slew rate. For other standards,
adjust the delays by the values shown.

Setup and Hold Times Before/After Clock CLK

O input TIOOCK/TIOCKO ns, min

OCE input TIOOCECK/TIOCKOCE ns, min

SR input (OFF) TIOSRCKO/TIOCKOSR ns, min

3-State Setup Times, T input TIOTCK/TIOCKT ns, min

3-State Setup Times, TCE input TIOTCECK/TIOCKTCE ns, min

3-State Setup Times, SR input (TFF) TIOSRCKT/TIOCKTSR ns, min

Set/Reset Delays

SR input to Pad (asynchronous) TIOSRP ns, max

SR input to Pad high-impedance 
(asynchronous)(2) TIOSRHZ ns, max

SR input to valid data on Pad
(asynchronous)

TIOSRON ns, max

GSR to Pad TIOGSRQ ns, max

Notes: 
1. A Zero “0” Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed “best-case”, but 

if a “0” is listed, there is no positive hold time.
2. The 3-state turn-off delays should not be adjusted.

Table  29:  IOB Output Switching Characteristics Standard Adjustments 

  Speed Grade

Description Symbol Standard –8 –7 –6 Units

Output Delay Adjustments

Standard-specific adjustments for 
output delays terminating at pads 
(based on standard capacitive 
load, Csl)

TOLVTTL_S2 LVTTL, Slow, 2 mA ns

TOLVTTL_S4 4 mA ns

TOLVTTL_S6 6 mA ns

TOLVTTL_S8 8 mA ns

TOLVTTL_S12 12 mA ns

TOLVTTL_S16 16 mA ns

TOLVTTL_S24 24 mA ns

TOLVTTL_F2 LVTTL, Fast, 2 mA ns

TOLVTTL_F4 4 mA ns

TOLVTTL_F6 6 mA ns

TOLVTTL_F8 8 mA ns

TOLVTTL_F12 12 mA ns

Table  28:  IOB Output Switching Characteristics (Continued)

  Speed Grade

Description Symbol –8 –7 –6 Units
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Standard-specific adjustments for 
output delays terminating at pads 
(based on standard capacitive 
load, Csl) (continued)

TOLVTTL_F16 16 mA ns

TOLVTTL_F24 24 mA ns

TOLVDS_25 LVDS ns

TOLVDSEXT_25 LVDS ns

TOLDT_25 LDT ns

TOBLVDS_25 BLVDS ns

TOULVDS_25 ULVDS ns

TOPCI33_3 PCI, 33 MHz, 3.3V ns

TOPCI66_3 PCI, 66 MHz, 3.3V ns

TOGTL GTL ns

TOGTLP GTLP ns

TOHSTL_I HSTL I ns

TOHSTL_II HSTL II ns

TOHSTL_IIII HSTL III ns

TOHSTL_IV HSTL IV ns

TOHSTL_I_18 HSTL_I_18 ns

TOHSTL_II_18 HSTL_II_18 ns

TOHSTL_IIII_18 HSTL_III_18 ns

TOHSTL_IV_18 HSTL_IV_18 ns

TOSSTL2_I SSTL2 I ns

TOSSTL2_II SSTL2 II ns

TOSSTL3_I SSTL3 I ns

TOSSTL3_II SSTL3 II ns

TOLVCMOS33_S2 LVCMOS33, Slow, 2 mA ns

TOLVCMOS33_S4 4 mA ns

TOLVCMOS33_S6 6 mA ns

TOLVCMOS33_S8 8 mA ns

TOLVCMOS33_S12 12 mA ns

TOLVCMOS33_S16 16 mA ns

TOLVCMOS33_S24 24 mA ns

TOLVCMOS33_F2 LVCMOS33, Fast, 2 mA ns

TOLVCMOS33_F4 4 mA ns

TOLVCMOS33_F6 6 mA ns

TOLVCMOS33_F8 8 mA ns

TOLVCMOS33_F12 12 mA ns

Table  29:  IOB Output Switching Characteristics Standard Adjustments  (Continued)

  Speed Grade

Description Symbol Standard –8 –7 –6 Units
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Standard-specific adjustments for 
output delays terminating at pads 
(based on standard capacitive 
load, Csl) (continued)

TOLVCMOS33_F16 16 mA ns

TOLVCMOS33_F24 24 mA ns

TOLVCMOS25_S2 LVCMOS25, Slow, 2 mA ns

TOLVCMOS25_S4 4 mA ns

TOLVCMOS25_S6 6 mA ns

TOLVCMOS25_S8 8 mA ns

TOLVCMOS25_S12 12 mA ns

TOLVCMOS25_S16 16 mA ns

TOLVCMOS25_S24 24 mA ns

TOLVCMOS25_F2 LVCMOS25, Fast, 2 mA ns

TOLVCMOS25_F4 4 mA ns

TOLVCMOS25_F6 6 mA ns

TOLVCMOS25_F8 8 mA ns

TOLVCMOS25_F12 12 mA ns

TOLVCMOS25_F16 16 mA ns

TOLVCMOS25_F24 24 mA ns

TOLVCMOS18_S2 LVCMOS18, Slow, 2 mA ns

TOLVCMOS18_S4 4 mA ns

TOLVCMOS18_S6 6 mA ns

TOLVCMOS18_S8 8 mA ns

TOLVCMOS18_S12 12 mA ns

TOLVCMOS18_S16 16 mA ns

TOLVCMOS18_F2 LVCMOS18, Fast, 2 mA ns

TOLVCMOS18_F4 4 mA ns

TOLVCMOS18_F6 6 mA ns

TOLVCMOS18_F8 8 mA ns

TOLVCMOS18_F12 12 mA ns

TOLVCMOS18_F16 16 mA ns

TOLVCMOS15_S2 LVCMOS15, Slow, 2 mA ns

TOLVCMOS15_S4 4 mA ns

TOLVCMOS15_S6 6 mA ns

TOLVCMOS15_S8 8 mA ns

TOLVCMOS15_S12 12 mA ns

TOLVCMOS15_S16 16 mA ns

Table  29:  IOB Output Switching Characteristics Standard Adjustments  (Continued)

  Speed Grade

Description Symbol Standard –8 –7 –6 Units

http://www.xilinx.com


Virtex-II Pro Switching Characteristics
R

150 www.xilinx.com DS083-3 (v1.0) January 31, 2002
1-800-255-7778 Advance Product Specification

Standard-specific adjustments for 
output delays terminating at pads 
(based on standard capacitive 
load, Csl) (continued)

TOLVCMOS15_F2 LVCMOS15, Fast, 2 mA ns

TOLVCMOS15_F4 4 mA ns

TOLVCMOS15_F6 6 mA ns

TOLVCMOS15_F8 8 mA ns

TOLVCMOS15_F12 12 mA ns

TOLVCMOS15_F16 16 mA ns

TOLVDCI33 LVDCI_33 ns

TOLVDCI25 LVDCI_25 ns

TOLVDCI18 LVDCI_18 ns

TOLVDCI15 LVDCI_15 ns

TOLVDCI_DV2_25 LVDCI_DV2_25 ns

TOLVDCI_DV2_18 LVDCI_DV2_18 ns

TOLVDCI_DV2_15 LVDCI_DV2_15 ns

TOGTL_DCI GTL_DCI ns

TOGTLP_DCI GTLP_DCI ns

TOHSTL_I_DCI HSTL_I_DCI ns

TOHSTL_II_DCI HSTL_II_DCI ns

TOHSTL_III_DCI HSTL_III_DCI ns

TOHSTL_IV_DCI HSTL_IV_DCI ns

TOHSTL_I_DCI_18 HSTL_I_DCI_18 ns

TOHSTL_II_DCI_18 HSTL_II_DCI_18 ns

TOHSTL_III_DCI_18 HSTL_III_DCI_18 ns

TOHSTL_IV_DCI_18 HSTL_IV_DCI_18 ns

TOSSTL2_I_DCI SSTL2_I_DCI ns

TOSSTL2_II_DCI SSTL2_II_DCI ns

TOSSTL3_I_DCI SSTL3_I_DCI ns

TOSSTL3_II_DCI SSTL3_II_DCI ns

Table  29:  IOB Output Switching Characteristics Standard Adjustments  (Continued)

  Speed Grade

Description Symbol Standard –8 –7 –6 Units
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Table  30:  Delay Measurement Methodology

Standard VL
(1) VH

(1) Meas. Point VREF (Typ)(2)

LVTTL 0 3 1.4 –

LVCMOS33 0 3.3 1.65 –

LVCMOS25 0 2.5 1.25 –

LVCMOS18 0 1.8 0.9 –

LVCMOS15 0 1.5 0.75 –

PCI33_3 Per PCI Specification –

PCI66_3 Per PCI Specification –

GTL VREF – 0.2 VREF + 0.2 VREF 0.80

GTLP VREF – 0.2 VREF + 0.2 VREF 1.0

HSTL Class I VREF – 0.5 VREF + 0.5 VREF 0.75

HSTL Class II VREF – 0.5 VREF + 0.5 VREF 0.75

HSTL Class III VREF – 0.5 VREF + 0.5 VREF 0.90

HSTL Class IV VREF – 0.5 VREF + 0.5 VREF 0.90

HSTL Class I (1.8V) VREF – 0.5 VREF + 0.5 VREF 1.08

HSTL Class II (1.8V) VREF – 0.5 VREF + 0.5 VREF 1.08

HSTL Class III (1.8V) VREF – 0.5 VREF + 0.5 VREF 1.08

HSTL Class IV (1.8V) VREF – 0.5 VREF + 0.5 VREF 1.08

SSTL3 I & II VREF – 1.0 VREF + 1.0 VREF 1.5

SSTL2 I & II VREF – 0.75 VREF + 0.75 VREF 1.25

LVDS_25 1.2 – 0.125 1.2 + 0.125 1.2

LVDSEXT_25 1.2 – 0.125 1.2 + 0.125 1.2

ULVDS_25 0.6 – 0.125 0.6 + 0.125 0.6

LDT_25 0.6 – 0.125 0.6 + 0.125 0.6

Notes: 
1. Input waveform switches between VLand VH.
2. Measurements are made at VREF (Typ), Maximum, and Minimum. Worst-case values are reported. 
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Table  31:  Standard Capacitive Loads

Standard Csl (pF)

LVTTL Fast Slew Rate, 2mA drive 35

LVTTL Fast Slew Rate, 4mA drive 35

LVTTL Fast Slew Rate, 6mA drive 35

LVTTL Fast Slew Rate, 8mA drive 35

LVTTL Fast Slew Rate, 12mA drive 35

LVTTL Fast Slew Rate, 16mA drive 35

LVTTL Fast Slew Rate, 24mA drive 35

LVTTL Slow Slew Rate, 2mA drive 35

LVTTL Slow Slew Rate, 4mA drive 35

LVTTL Slow Slew Rate, 6mA drive 35

LVTTL Slow Slew Rate, 8mA drive 35

LVTTL Slow Slew Rate, 12mA drive 35

LVTTL Slow Slew Rate, 16mA drive 35

LVTTL Slow Slew Rate, 24mA drive 35

LVCMOS33 35

LVCMOS25 35

LVCMOS18 35

LVCMOS15 35

PCI 33MHZ 3.3V 10

PCI 66 MHz 3.3V 10

GTL 0

GTLP 0

HSTL Class I (1.5V and 1.8V) 20

HSTL Class II (1.5Vand 1.8V 20

HSTL Class III (1.5Vand 1.8V 20

HSTL Class IV1.5Vand 1.8V 20

SSTL2 Class I 30

SSTL2 Class II 30

SSTL3 Class I 30

SSTL3 Class II 30

Notes: 
1. I/O parameter measurements are made with the capacitance values shown above. 
2. I/O standard measurements are reflected in the IBIS model information except where the IBIS format precludes it.
3. Use of IBIS models results in a more accurate prediction of the propagation delay:

a. Model the output in an IBIS simulation into the standard capacitive load. 
b. Record the relative time to the VOH or VOL transition of interest. 
c. Remove the capacitance, and model the actual PCB traces (transmission lines) and actual loads from the appropriate IBIS 

models for driven devices. 

d. Record the results from the new simulation. 
e. Compare with the capacitance simulation. The increase or decrease in delay from the capacitive load delay simulation should 

be added or subtracted from the value above to predict the actual delay. 

http://www.xilinx.com


Virtex-II Pro™ Platform FPGAs: DC and Switching Characteristics
R

DS083-3 (v1.0) January 31, 2002 www.xilinx.com 153
Advance Product Specification 1-800-255-7778

Clock Distribution Switching Characteristics  

CLB Switching Characteristics

Delays originating at F/G inputs vary slightly according to the input used (see Figure 22 in Data Sheet Module 1). The values
listed below are worst-case. Precise values are provided by the timing analyzer.

Table  32:  Clock Distribution Switching Characteristics

 Speed Grade

Description Symbol –8 –7 –6 Units

Global Clock Buffer I input to O output TGIO ns, max

Table  33:  CLB Switching Characteristics

 Speed Grade

Description Symbol –8 –7 –6 Units

Combinatorial Delays

4-input function: F/G inputs to X/Y outputs TILO ns, max

5-input function: F/G inputs to F5 output TIF5 ns, max

5-input function: F/G inputs to X output TIF5X ns, max

FXINA or FXINB inputs to Y output via MUXFX TIFXY ns, max

FXINA input to FX output via MUXFX TINAFX ns, max

FXINB input to FX output via MUXFX TINBFX ns, max

SOPIN input to SOPOUT output via ORCY TSOPSOP ns, max

Incremental delay routing through transparent latch to 
XQ/YQ outputs

TIFNCTL ns, max

Sequential Delays

FF Clock CLK to XQ/YQ outputs TCKO ns, max

Latch Clock CLK to XQ/YQ outputs TCKLO ns, max

Setup and Hold Times Before/After Clock CLK

BX/BY inputs TDICK/TCKDI ns, min

DY inputs TDYCK/TCKDY ns, min

DX inputs TDXCK/TCKDX ns, min

CE input TCECK/TCKCE ns, min

SR/BY inputs (synchronous) TRCK/TCKR ns, min

Clock CLK

Minimum Pulse Width, High TCH ns, min

Minimum Pulse Width, Low TCL ns, min

Set/Reset

Minimum Pulse Width, SR/BY inputs TRPW ns, min

Delay from SR/BY inputs to XQ/YQ outputs
(asynchronous)

TRQ ns, max

Toggle Frequency (MHz) (for export control) FTOG MHz

Notes: 
1. A Zero “0” Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed “best-case”, but 

if a “0” is listed, there is no positive hold time.
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CLB Distributed RAM Switching Characteristics

CLB Shift Register Switching Characteristics

Table  34:  CLB Distributed RAM Switching Characteristics

 Speed Grade

Description Symbol –8 –7 –6 Units

Sequential Delays

Clock CLK to X/Y outputs (WE active) in 16 x 1 mode TSHCKO16 ns, max

Clock CLK to X/Y outputs (WE active) in 32 x 1 mode TSHCKO32 ns, max

Clock CLK to F5 output TSHCKOF5 ns, max

Setup and Hold Times Before/After Clock CLK

BX/BY data inputs (DIN) TDS/TDH ns, min

F/G address inputs TAS/TAH ns, min

CE input (WE) TWES/TWEH ns, min

Clock CLK

Minimum Pulse Width, High TWPH ns, min

Minimum Pulse Width, Low TWPL ns, min

Minimum clock period to meet address write cycle time TWC ns, min

Notes: 
1. A Zero “0” Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed “best-case”, but 

if a “0” is listed, there is no positive hold time.

Table  35:  CLB Shift Register Switching Characteristics

 Speed Grade

Description Symbol –8 –7 –6 Units

Sequential Delays

Clock CLK to X/Y outputs TREG ns, max

Clock CLK to X/Y outputs TREG32 ns, max

Clock CLK to XB output via MC15 LUT output TREGXB ns, max

Clock CLK to YB output via MC15 LUT output TREGYB ns, max

Clock CLK to Shiftout TCKSH ns, max

Clock CLK to F5 output TREGF5 ns, max

Setup and Hold Times Before/After Clock CLK

BX/BY data inputs (DIN) TSRLDS/TSRLDH ns, min

CE input (WS) TWSS/TWSH ns, min

Clock CLK

Minimum Pulse Width, High TSRPH ns, min

Minimum Pulse Width, Low TSRPL ns, min

Notes: 
1. A Zero “0” Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed “best-case”, but 

if a “0” is listed, there is no positive hold time.
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Multiplier Switching Characteristics

Table  36:  Multiplier Switching Characteristics

Speed Grade

Description Symbol –8 –7 –6 Units

Propagation Delay to Output Pin

Input to Pin35 TMULT_P35 ns, max

Input to Pin34 TMULT_P34 ns, max

Input to Pin33 TMULT_P33 ns, max

Input to Pin32 TMULT_P32 ns, max

Input to Pin31 TMULT_P31 ns, max

Input to Pin30 TMULT_P30 ns, max

Input to Pin29 TMULT_P29 ns, max

Input to Pin28 TMULT_P28 ns, max

Input to Pin27 TMULT_P27 ns, max

Input to Pin26 TMULT_P26 ns, max

Input to Pin25 TMULT_P25 ns, max

Input to Pin24 TMULT_P24 ns, max

Input to Pin23 TMULT_P23 ns, max

Input to Pin22 TMULT_P22 ns, max

Input to Pin21 TMULT_P21 ns, max

Input to Pin20 TMULT_P20 ns, max

Input to Pin19 TMULT_P19 ns, max

Input to Pin18 TMULT_P18 ns, max

Input to Pin17 TMULT_P17 ns, max

Input to Pin16 TMULT_P16 ns, max

Input to Pin15 TMULT_P15 ns, max

Input to Pin14 TMULT_P14 ns, max

Input to Pin13 TMULT_P13 ns, max

Input to Pin12 TMULT_P12 ns, max

Input to Pin11 TMULT_P11 ns, max

Input to Pin10 TMULT_P10 ns, max

Input to Pin9 TMULT_P9 ns, max

Input to Pin8 TMULT_P8 ns, max

Input to Pin7 TMULT_P7 ns, max

Input to Pin6 TMULT_P6 ns, max

Input to Pin5 TMULT_P5 ns, max

Input to Pin4 TMULT_P4 ns, max

Input to Pin3 TMULT_P3 ns, max

Input to Pin2 TMULT_P2 ns, max

Input to Pin1 TMULT_P1 ns, max

Input to Pin0 TMULT_P0 ns, max
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Block SelectRAM Switching Characteristics

TBUF Switching Characteristics

JTAG Test Access Port Switching Characteristics

Table  37:  Block SelectRAM Switching Characteristics

Speed Grade

Description Symbol –8 –7 –6 Units

Sequential Delays

Clock CLK to DOUT output TBCKO ns, max

Setup and Hold Times Before Clock CLK

ADDR inputs TBACK/TBCKA ns, min

DIN inputs TBDCK/TBCKD ns, min

EN input TBECK/TBCKE ns, min

RST input TBRCK/TBCKR ns, min

WEN input TBWCK/TBCKW ns, min

Clock CLK

Minimum Pulse Width, High TBPWH ns, min

Minimum Pulse Width, Low TBPWL ns, min

Notes: 
1. A Zero “0” Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed “best-case”, but 

if a “0” is listed, there is no positive hold time.

Table  38:  TBUF Switching Characteristics

Speed Grade

Description Symbol –8 –7 –6 Units

Combinatorial Delays

IN input to OUT output TIO ns, max

TRI input to OUT output high-impedance TOFF ns, max

TRI input to valid data on OUT output TON ns, max

Table  39:  JTAG Test Access Port Switching Characteristics

Speed Grade

Description Symbol –8 –7 –6 Units

TMS and TDI Setup times before TCK TTAPTK ns, min

TMS and TDI Hold times after TCK TTCKTAP ns, min

Output delay from clock TCK to output TDO TTCKTDO ns, max

Maximum TCK clock frequency FTCK
MHz, 
max

http://www.xilinx.com


Virtex-II Pro™ Platform FPGAs: DC and Switching Characteristics
R

DS083-3 (v1.0) January 31, 2002 www.xilinx.com 157
Advance Product Specification 1-800-255-7778

Virtex-II Pro Pin-to-Pin Output Parameter Guidelines
All devices are 100% functionally tested. Listed below are representative values for typical pin locations and normal clock
loading. Values are expressed in nanoseconds unless otherwise noted.

Global Clock Input to Output Delay for LVCMOS25, 12 mA, Fast Slew Rate, 
With DCM

Table  40:  Global Clock Input to Output Delay for LVCMOS25, 12 mA, Fast Slew Rate, 
With DCM

Speed Grade

Description Symbol Device –8 –7 –6 Units

LVCMOS25 Global Clock Input to Output 
Delay using Output Flip-flop, 12 mA, 
Fast Slew Rate, with DCM. 

For data output with different standards, 
adjust the delays with the values shown 
in IOB Output Switching 
Characteristics Standard 
Adjustments, page 147.

Global Clock and OFF with DCM TICKOFDCM XC2VP2 ns

XC2VP4 ns

XC2VP7 ns

XC2VP20 ns

XC2VP50 ns

Notes: 
1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and 

where all accessible IOB and CLB flip-flops are clocked by the global clock net. 
2. Output timing is measured at 50% VCC threshold with 35 pF external capacitive load. For other I/O standards and different loads, see 

Table 30. 
3. DCM output jitter is already included in the timing calculation.
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Global Clock Input to Output Delay for LVCMOS25, 12 mA, Fast Slew Rate, 
Without DCM  
Table  41:  Global Clock Input to Output Delay for LVCMOS25, 12 mA, Fast Slew Rate, 
Without DCM

Speed Grade

Description Symbol Device –8 –7 –6 Units

LVCMOS25 Global Clock Input to Output 
Delay using Output Flip-flop, 12 mA, 
Fast Slew Rate, without DCM. 

For data output with different standards, 
adjust the delays with the values shown 
in IOB Output Switching 
Characteristics Standard 
Adjustments, page 147.

Global Clock and OFF without DCM TICKOF XC2VP2 ns

XC2VP4 ns

XC2VP7 ns

XC2VP20 ns

XC2VP50 ns

Notes: 
1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and 

where all accessible IOB and CLB flip-flops are clocked by the global clock net. 
2. Output timing is measured at 50% VCC threshold with 35 pF external capacitive load. For other I/O standards and different loads, see 

Table 30.
3. DCM output jitter is already included in the timing calculation.

http://www.xilinx.com


Virtex-II Pro™ Platform FPGAs: DC and Switching Characteristics
R

DS083-3 (v1.0) January 31, 2002 www.xilinx.com 159
Advance Product Specification 1-800-255-7778

Virtex-II Pro Pin-to-Pin Input Parameter Guidelines
All devices are 100% functionally tested. Listed below are representative values for typical pin locations and normal clock
loading. Values are expressed in nanoseconds unless otherwise noted

Global Clock Set-Up and Hold for LVCMOS25 Standard, With DCM 
 

Table  42:  Global Clock Set-Up and Hold for LVCMOS25 Standard, With DCM

Speed Grade

Description Symbol Device –8 –7 –6 Units

Input Setup and Hold Time Relative to 
Global Clock Input Signal for 
LVCMOS25 Standard. 

For data input with different standards, 
adjust the setup time delay by the values 
shown in IOB Input Switching 
Characteristics Standard 
Adjustments, page 145.

No Delay

Global Clock and IFF with DCM TPSDCM/TPHDCM XC2VP2 ns

XC2VP4 ns

XC2VP7 ns

XC2VP20 ns

XC2VP50 ns

Notes: 
1. IFF = Input Flip-Flop or Latch 
2. Setup time is measured relative to the Global Clock input signal with the fastest route and the lightest load. Hold time is measured 

relative to the Global Clock input signal with the slowest route and heaviest load.
3. DCM output jitter is already included in the timing calculation.
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Global Clock Set-Up and Hold for LVCMOS25 Standard, Without DCM 
,

DCM Timing Parameters
Testing of switching parameters is modeled after testing
methods specified by MIL-M-38510/605; all devices are
100% functionally tested. Because of the difficulty in directly
measuring many internal timing parameters, those parame-
ters are derived from benchmark timing patterns. The fol-

lowing guidelines reflect worst-case values across the
recommended operating conditions. All output jitter and
phase specifications are determined through statistical
measurement at the package pins.

Operating Frequency Ranges
e

Table  43:  Global Clock Set-Up and Hold for LVCMOS25 Standard, Without DCM

Speed Grade

Description Symbol Device –8 –7 –6 Units

Input Setup and Hold Time Relative to 
Global Clock Input Signal for 
LVCMOS25 Standard. 

For data input with different standards, 
adjust the setup time delay by the values 
shown in IOB Input Switching 
Characteristics Standard 
Adjustments, page 145.

Full Delay

Global Clock and IFF without DCM TPSFD/TPHFD XC2VP2 ns

XC2VP4 ns

XC2VP7 ns

XC2VP20 ns

XC2VP50 ns

Notes: 
1. IFF = Input Flip-Flop or Latch
2. Setup time is measured relative to the Global Clock input signal with the fastest route and the lightest load. Hold time is measured 

relative to the Global Clock input signal with the slowest route and heaviest load.
3. A Zero “0” Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed “best-case”, but 

if a “0” is listed, there is no positive hold time.

Table  44:  Operating Frequency Ranges

Speed Grade

Description Symbol Constraints -8 -7 -6 Units

Output Clocks (Low Frequency Mode)

CLK0, CLK90, CLK180, CLK270 CLKOUT_FREQ_1X_LF_MIN MHz

CLKOUT_FREQ_1X_LF_MAX MHz

CLK2X, CLK2X180 CLKOUT_FREQ_2X_LF_MIN MHz

CLKOUT_FREQ_2X_LF_MAX MHz

CLKDV CLKOUT_FREQ_DV_LF_MIN MHz

CLKOUT_FREQ_DV_LF_MAX MHz

CLKFX, CLKFX180 CLKOUT_FREQ_FX_LF_MIN MHz

CLKOUT_FREQ_FX_LF_MAX MHz
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Input Clocks (Low Frequency Mode)

CLKIN (using DLL outputs)(1) CLKIN_FREQ_DLL_LF_MIN MHz

CLKIN_FREQ_DLL_LF_MAX MHz

CLKIN (using CLKFX outputs)(2) CLKIN_FREQ_FX_LF_MIN MHz

CLKIN_FREQ_FX_LF_MAX MHz

PSCLK PSCLK_FREQ_LF_MIN MHz

PSCLK_FREQ_LF_MAX MHz

Output Clocks (High Frequency Mode)

CLK0, CLK180 CLKOUT_FREQ_1X_HF_MIN MHz

CLKOUT_FREQ_1X_HF_MAX MHz

CLKDV CLKOUT_FREQ_DV_HF_MIN MHz

CLKOUT_FREQ_DV_HF_MAX MHz

CLKFX, CLKFX180 CLKOUT_FREQ_FX_HF_MIN MHz

CLKOUT_FREQ_FX_HF_MAX MHz

Input Clocks (High Frequency Mode)

CLKIN (using DLL outputs)(1) CLKIN_FREQ_DLL_HF_MIN MHz

CLKIN_FREQ_DLL_HF_MAX MHz

CLKIN (using CLKFX outputs)(2) CLKIN_FREQ_FX_HF_MIN MHz

CLKIN_FREQ_FX_HF_MAX MHz

PSCLK PSCLK_FREQ_HF_MIN MHz

PSCLK_FREQ_HF_MAX MHz

Notes: 
1. “DLL outputs” is used here to describe the outputs: CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV.
2. If both DLL and CLKFX outputs are used, follow the more restrictive specification.

Table  44:  Operating Frequency Ranges (Continued)

Speed Grade

Description Symbol Constraints -8 -7 -6 Units
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Input Clock Tolerances
Table  45:  Input Clock Tolerances

Speed Grade

–8 –7 –6

Description Symbol Constraints Min Max Min Max Min Max Units

Input Clock Low/high Pulse Width

PSCLK

CLKIN(3)

PSCLK_PULSE

CLKIN_PULSE

< 1MHz ns

1 - 10 MHz ns

10 - 25 MHz ns

25 - 50 MHz ns

50 - 100 MHz ns

100 - 150 MHz ns

150 - 200 MHz ns

200 - 250 MHz ns

250 - 300 MHz ns

300 - 350 MHz ns

350 - 400 MHz ns

> 400 MHz ns

Input Clock Cycle-Cycle Jitter (Low Frequency Mode)

CLKIN (using DLL outputs)(1) CLKIN_CYC_JITT_DLL_LF ps

CLKIN (using CLKFX outputs)(2) CLKIN_CYC_JITT_FX_LF ps

Input Clock Cycle-Cycle Jitter (High Frequency Mode)

CLKIN (using DLL outputs)(1) CLKIN_CYC_JITT_DLL_HF ps

CLKIN (using CLKFX outputs)(2) CLKIN_CYC_JITT_FX_HF ps

Input Clock Period Jitter (Low Frequency Mode)

CLKIN (using DLL outputs)(1) CLKIN_PER_JITT_DLL_LF ns

CLKIN (using CLKFX outputs)(2) CLKIN_PER_JITT_FX_LF ns

Input Clock Period Jitter (High Frequency Mode)

CLKIN (using DLL outputs)(1) CLKIN_PER_JITT_DLL_HF ns

CLKIN (using CLKFX outputs)(2) CLKIN_PER_JITT_FX_HF ns

Feedback Clock Path Delay Variation

CLKFB off-chip feedback CLKFB_DELAY_VAR_EXT ns

Notes: 
1. “DLL outputs” is used here to describe the outputs: CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV.
2. If both DLL and CLKFX outputs are used, follow the more restrictive specification.
3. Specification also applies to PSCLK.
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Output Clock Jitter

Output Clock Phase Alignment

Table  46:  Output Clock Jitter

Speed Grade

–8 –7 –6

Description Symbol Constraints Min Max Min Max Min Max Units

Clock Synthesis Period Jitter

CLK0 CLKOUT_PER_JITT_0 ps

CLK90 CLKOUT_PER_JITT_90 ps

CLK180 CLKOUT_PER_JITT_180 ps

CLK270 CLKOUT_PER_JITT_270 ps

CLK2X, CLK2X180 CLKOUT_PER_JITT_2X ps

CLKDV (integer division) CLKOUT_PER_JITT_DV1 ps

CLKDV (non-integer division) CLKOUT_PER_JITT_DV2 ps

CLKFX, CLKFX180 CLKOUT_PER_JITT_FX ps

Table  47:  Output Clock Phase Alignment

Speed Grade

–8 –7 –6

Description Symbol Constraints Min Max Min Max Min Max Units

Phase Offset Between CLKIN and CLKFB

CLKIN/CLKFB CLKIN_CLKFB_PHASE ps

Phase Offset Between Any DCM Outputs

All CLK outputs CLKOUT_PHASE ps

Duty Cycle Precision

DLL outputs(1) CLKOUT_DUTY_CYCLE_DLL ps

CLKFX outputs CLKOUT_DUTY_CYCLE_FX ps

Notes: 
1. “DLL outputs” is used here to describe the outputs: CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV.
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Miscellaneous Timing Parameters

Frequency Synthesis

Table  48:  Miscellaneous Timing Parameters

Speed Grade

Description Symbol
Constraints

FCLKIN –8 –7 –6 Units

Time Required to Achieve LOCK

Using DLL outputs(1) LOCK_DLL:

LOCK_DLL_60 > 60MHz us

LOCK_DLL_50_60 50 - 60 MHz us

LOCK_DLL_40_50 40 - 50 MHz us

LOCK_DLL_30_40 30 - 40 MHz us

LOCK_DLL_24_30 24 - 30 MHz us

Using CLKFX outputs LOCK_FX_MIN ms

LOCK_FX_MAX ms

Additional lock time with fine phase 
shifting

LOCK_DLL_FINE_SHIFT us

Fine Phase Shifting

Absolute shifting range FINE_SHIFT_RANGE ns

Delay Lines

Tap delay resolution DCM_TAP_MIN ps

DCM_TAP_MAX ps

Notes: 
1. “”DLL outputs” is used here to describe the outputs: CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV.

Table  49:  Frequency Synthesis

Attribute Min Max

CLKFX_MULTIPLY 2 32

CLKFX_DIVIDE 1 32
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Parameter Cross-Reference

Revision History
This section records the change history for this module of
the data sheet. 

Virtex-II Pro Data Sheet Modules
The Virtex-II Pro Data Sheet contains the following modules:

• Virtex-II Pro™ Platform FPGAs: Introduction and 
Overview (Module 1)

• Virtex-II Pro™ Platform FPGAs: Functional 
Description (Module 2)

• Virtex-II Pro Platform FPGAs: DC and Switching 
Characteristics (Module 3)

• Virtex-II Pro Platform FPGAs: Pinout Information 
(Module 4)

Table  50:  Parameter Cross-Reference

Libraries Guide Data Sheet

DLL_CLKOUT_{MIN|MAX}_LF CLKOUT_FREQ_{1X|2X|DV}_LF

DFS_CLKOUT_{MIN|MAX}_LF CLKOUT_FREQ_FX_LF

DLL_CLKIN_{MIN|MAX}_LF CLKIN_FREQ_DLL_LF

DFS_CLKIN_{MIN|MAX}_LF CLKIN_FREQ_FX_LF

DLL_CLKOUT_{MIN|MAX}_HF CLKOUT_FREQ_{1X|DV}_HF

DFS_CLKOUT_{MIN|MAX}_HF CLKOUT_FREQ_FX_HF

DLL_CLKIN_{MIN|MAX}_HF CLKIN_FREQ_DLL_HF

DFS_CLKIN_{MIN|MAX}_HF CLKIN_FREQ_FX_HF

Date Version Revision

01/31/02 1.0 Initial Xilinx release.
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This document provides Virtex-II Pro Device/Package
Combinations and Maximum I/Os and Virtex-II Pro Pin
Definitions, followed by pinout tables for the following pack-
ages:

• FG256 Fine-Pitch BGA Package

• FG456 Fine-Pitch BGA Package

• FF672 Flip-Chip Fine-Pitch BGA Package

• FF896 Flip-Chip Fine-Pitch BGA Package

• FF1152 Flip-Chip Fine-Pitch BGA Package

• FF1517 Flip-Chip Fine-Pitch BGA Package
• BF957 Flip-Chip BGA Package

Virtex-II Pro Device/Package Combinations and Maximum I/Os
Wire-bond and flip-chip packages are available. Table 1 and
Table 2 show the maximum number of user I/Os possible in
wire-bond and flip-chip packages, respectively. 

• FG denotes wire-bond fine-pitch BGA (1.00 mm pitch). 

• FF denotes flip-chip fine-pitch BGA (1.00 mm pitch).

• BF denotes flip-chip BGA (1.27 mm pitch).

Table 3 shows the number of available I/Os and the number of Rocket I/O™ multi-gigabit transceiver (MGT) pins for each
Virtex-II Pro device/package combination. The number of I/Os per package includes all user I/Os except the fifteen control
pins (CCLK, DONE, M0, M1, M2, PROG_B, PWRDWN_B, TCK, TDI, TDO, TMS, HSWAP_EN, DXN, DXP, AND RSVD) and
the nine (per transceiver) Rocket I/O MGT pins (TXP, TXN, RXP, RXN, AVCCAUXTX, AVCCAUXRX, VTTX, VTRX, and
GNDA). The number of transceivers in the device is the number of Rocket I/O MGT pins in Table 3 divided by nine.  

0
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Table  1:  Wire-Bond Packages Information

Package FG256 FG456

Pitch (mm) 1.00 1.00

Size (mm) 17 x 17 23 x 23

I/Os 140 248

Table  2:  Flip-Chip Packages Information

Package FF672 FF896 FF1152 FF1517 BF957

Pitch (mm) 1.00 1.00 1.00 1.00 1.27

Size (mm) 27 x 27 31 x 31 35 x 35 40 x 40 40 x 40

I/Os 396 556 692 852 584

Table  3:  Virtex-II Pro Available I/Os and Rocket I/O MGT Pins per Device/Package Combination

Device ⇒ XC2VP2 XC2VP4 XC2VP7 XC2VP20 XC2VP50

Package⇓
Available 
User I/Os

Rocket I/O 
MGT Pins

Available 
User I/Os

Rocket I/O 
MGT Pins

Available 
User I/Os

Rocket I/O 
MGT Pins

Available 
User I/Os

Rocket I/O 
MGT Pins

Available 
User I/Os

Rocket I/O 
MGT Pins

FG256 140 36 140 36

FG456 156 72 248 72 248 72

FF672 204 72 348 72 396 72

FF896 396 72 556 72

FF1152 564 144 692 144

FF1517 852 144

BF957 564 108 584 108

http:www.xilinx.com/legal.htm
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Table 4 shows the number of 3.3V SelectI/Os in each bank and the total for each device/package combination.

Virtex-II Pro Pin Definitions
This section describes the pinouts for Virtex-II Pro devices
in the following packages:

• FG256 and FG456: wire-bond fine-pitch BGA of 
1.00 mm pitch

• FF672, FF896, FF1152, and FF1517: flip-chip 
fine-pitch BGA of 1.00 mm pitch 

• BF957: flip-chip BGA of 1.27 mm pitch

All of the devices supported in a particular package are
pinout compatible and are listed in the same table (one

table per package). Pins that are not available for the small-
est devices are listed in right-hand columns.

Each device is split into eight I/O banks to allow for flexibility
in the choice of I/O standards (see the Virtex-II Pro Data
Sheet). Global pins, including JTAG, configuration, and
power/ground pins, are listed at the end of each table.
Table 5 provides definitions for all pin types. 

All Virtex-II Pro pinout tables are available on the distribu-
tion CD-ROM, or on the web (at http://www.xilinx.com).

Table  4:  3.3V SelectI/O Banks

Virtex-II Pro 
Device Package Bank0 Bank1 Bank2 Bank3 Bank4 Bank5 Bank6 Bank7

Total 
3.3V I/Os

2VP2

FG256 17 18 18 53

FG456 21 18 18 57

FF672 27 24 24 75

2VP4

FG256 17 17 17 51

FG456 21 40 42 103

FF672 27 60 60 147

2VP7

FG456 21 40 42 103

FF672 39 60 60 159

FF896 39 60 60 159

2VP20

BF957 57 57 114

FF896 55 84 139

FF1152 57 57 114

2VP50

BF957 59 59 118

FF1152 69 69 138

FF1517 81 81 162

http://www.xilinx.com
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Pin Definitions
Table 5 provides a description of each pin type listed in Virtex-II Pro pinout tables.

Table  5:  Virtex-II Pro Pin Definitions 

Pin Name Direction Description

User I/O Pins

IO_LXXY_# Input/Output All user I/O pins are capable of differential signalling and can implement LVDS, ULVDS, 
BLVDS, or LDT pairs. Each user I/O is labeled “IO_LXXY_#”, where:

IO indicates a user I/O pin.
LXXY indicates a differential pair, with XX a unique pair in the bank and Y = P/N for 
the positive and negative sides of the differential pair.
# indicates the bank number (0 through 7)

Dual-Function Pins

IO_LXXY_#/ZZZ The dual-function pins are labelled “IO_LXXY_#/ZZZ”, where ZZZ can be one of the 
following pins:
Per Bank - VRP, VRN, or VREF 
Globally - GCLKX(S/P), BUSY/DOUT, INIT_B, DIN/D0 – D7, RDWR_B, or CS_B 

With /ZZZ:

DIN / D0, D1, D2, 
D3, D4, D5, D6, 
D7

Input/Output In SelectMAP mode, D0 through D7 are configuration data pins. These pins become 
user I/Os after configuration, unless the SelectMAP port is retained.

In bit-serial modes, DIN (D0) is the single-data input. This pin becomes a user I/O after 
configuration.

CS_B Input In SelectMAP mode, this is the active-low Chip Select signal. The pin becomes a user 
I/O after configuration, unless the SelectMAP port is retained.

RDWR_B Input In SelectMAP mode, this is the active-low Write Enable signal. The pin becomes a user 
I/O after configuration, unless the SelectMAP port is retained.

BUSY/DOUT Output In SelectMAP mode, BUSY controls the rate at which configuration data is loaded. The 
pin becomes a user I/O after configuration, unless the SelectMAP port is retained.

In bit-serial modes, DOUT provides preamble and configuration data to downstream 
devices in a daisy-chain. The pin becomes a user I/O after configuration.

INIT_B Bidirectional 
(open-drain)

When Low, this pin indicates that the configuration memory is being cleared. When held 
Low, the start of configuration is delayed. During configuration, a Low on this output 
indicates that a configuration data error has occurred. The pin becomes a user I/O after 
configuration.

GCLKx (S/P) Input These are clock input pins that connect to Global Clock Buffers. These pins become 
regular user I/Os when not needed for clocks.

VRP Input This pin is for the DCI voltage reference resistor of P transistor (per bank).

VRN Input This pin is for the DCI voltage reference resistor of N transistor (per bank).

ALT_VRP Input This is the alternative pin for the DCI voltage reference resistor of P transistor.

ALT_VRN Input This is the alternative pin for the DCI voltage reference resistor of N transistor.

VREF Input These are input threshold voltage pins. They become user I/Os when an external 
threshold voltage is not needed (per bank).

Dedicated Pins(1) 

CCLK Input/Output Configuration clock. Output in Master mode or Input in Slave mode.
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PROG_B Input Active Low asynchronous reset to configuration logic. This pin has a permanent weak 
pull-up resistor.

DONE Input/Output DONE is a bidirectional signal with an optional internal pull-up resistor. As an output, 
this pin indicates completion of the configuration process. As an input, a Low level on 
DONE can be configured to delay the start-up sequence.

M2, M1, M0 Input Configuration mode selection.

HSWAP_EN Input Enable I/O pullups during configuration.

TCK Input Boundary Scan Clock.

TDI Input Boundary Scan Data Input.

TDO Output Boundary Scan Data Output.

TMS Input Boundary Scan Mode Select.

PWRDWN_B Input Power down pin.

Other Pins

DXN, DXP N/A Temperature-sensing diode pins (Anode: DXP, Cathode: DXN).

VBATT Input Decryptor key memory backup supply. (Do not connect if battery is not used.)

RSVD N/A Reserved pin - do not connect.

VCCO Input Power-supply pins for the output drivers (per bank).

VCCAUX Input Power-supply pins for auxiliary circuits.

VCCINT Input Power-supply pins for the internal core logic.

GND Input Ground.

AVCCAUXRX# Input Analog power supply for receive circuitry of the Rocket I/O multi-gigabit transceiver 
(2.5V).

AVCCAUXTX# Input Analog power supply for transmit circuitry of the Rocket I/O multi-gigabit transceiver 
(2.5V).

VTRXPAD# Input Receive termination supply for the Rocket I/O multi-gigabit transceiver (1.8V - 2.8V).

VTTXPAD# Input Transmit termination supply for the Rocket I/O multi-gigabit transceiver (1.8V - 2.8V).

GNDA# (2) Input Ground for the analog circuitry of the Rocket I/O multi-gigabit transceiver.

RXPPAD# Output Positive differential receive port of the Rocket I/O multi-gigabit transceiver.

RXNPAD# Output Negitive differential receive port of the Rocket I/O multi-gigabit transceiver.

TXPPAD# Input Positive differential transmit port of the Rocket I/O multi-gigabit transceiver.

TXNPAD# Input Negitive differential transmit port of the Rocket I/O multi-gigabit transceiver.

Notes: 
1. All dedicated pins (JTAG and configuration) are powered by VCCAUX (independent of the bank VCCO voltage).
2. Two pads on the die are tied to the same package pin (GNDA) in order to lower the resistance on these connections.  Thus, duplicate 

entries exist for GNDA pins.

Table  5:  Virtex-II Pro Pin Definitions  (Continued)

Pin Name Direction Description
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FG256 Fine-Pitch BGA Package
As shown in Table 6, XC2VP2 and XC2VP4 Virtex-II Pro devices are available in the FG256 fine-pitch BGA package. The
pins in each of these devices are identical. Following this table are the FG256 Fine-Pitch BGA Package Specifications
(1.00mm pitch).

Table  6:  FG256 — XC2VP2 and XC2VP4

Bank Pin Description Pin Number

0  IO_L01N_0/VRP_0  C2

0  IO_L01P_0/VRN_0  C3

0  IO_L02N_0  B3

0  IO_L02P_0  C4

0  IO_L03N_0  A2

0  IO_L03P_0/VREF_0  A3

0  IO_L06N_0  D5

0  IO_L06P_0  C5

0  IO_L07P_0  D6

0  IO_L09N_0  E6

0  IO_L09P_0/VREF_0  E7

0  IO_L69N_0  D7

0  IO_L69P_0/VREF_0  C7

0  IO_L74N_0/GCLK7P  D8

0  IO_L74P_0/GCLK6S  C8

0  IO_L75N_0/GCLK5P  B8

0  IO_L75P_0/GCLK4S  A8

1  IO_L75N_1/GCLK3P  A9

1  IO_L75P_1/GCLK2S  B9

1  IO_L74N_1/GCLK1P  C9

1  IO_L74P_1/GCLK0S  D9

1  IO_L69N_1/VREF_1  C10

1  IO_L69P_1  D10

1  IO_L09N_1/VREF_1  E10

1  IO_L09P_1  E11

1  IO_L07N_1  D11

1  IO_L06N_1  C12

1  IO_L06P_1  D12

1  IO_L03N_1/VREF_1  A14

1  IO_L03P_1  A15
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1  IO_L02N_1  C13

1  IO_L02P_1  B14

1  IO_L01N_1/VRP_1  C14

1  IO_L01P_1/VRN_1  C15

2  IO_L01N_2/VRP_2  E14

2  IO_L01P_2/VRN_2  E15

2  IO_L02N_2  E13

2  IO_L02P_2  F12

2  IO_L03N_2  F13

2  IO_L03P_2  F14

2  IO_L04N_2/VREF_2  F15

2  IO_L04P_2  F16

2  IO_L06N_2  G13

2  IO_L06P_2  G14

2  IO_L85N_2  G15

2  IO_L85P_2  G16

2  IO_L86N_2  G12

2  IO_L86P_2  H13

2  IO_L88N_2/VREF_2  H14

2  IO_L88P_2  H15

2  IO_L90N_2  H16

2  IO_L90P_2  J16

3  IO_L90N_3  J15

3  IO_L90P_3  J14

3  IO_L89N_3  J13

3  IO_L89P_3  K12

3  IO_L87N_3/VREF_3  K16

3  IO_L87P_3  K15

3  IO_L85N_3  K14

3  IO_L85P_3  K13

3  IO_L06N_3  L16

3  IO_L06P_3  L15

3  IO_L05N_3  L14

Table  6:  FG256 — XC2VP2 and XC2VP4

Bank Pin Description Pin Number
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3  IO_L05P_3  L13

3  IO_L03N_3/VREF_3  L12

3  IO_L03P_3  M13

3  IO_L02N_3  M16

3  IO_L02P_3  N16

3  IO_L01N_3/VRP_3  M15

3  IO_L01P_3/VRN_3  M14

4  IO_L01N_4/DOUT  P15

4  IO_L01P_4/INIT_B  P14

4  IO_L02N_4/D0  R14

4  IO_L02P_4/D1  P13

4  IO_L03N_4/D2  T15

4  IO_L03P_4/D3  T14

4  IO_L06N_4/VRP_4  N12

4  IO_L06P_4/VRN_4  P12

4  IO_L07P_4/VREF_4  N11

4  IO_L09N_4  M11

4  IO_L09P_4/VREF_4  M10

4  IO_L69N_4  N10

4  IO_L69P_4/VREF_4  P10

4  IO_L74N_4/GCLK3S  N9

4  IO_L74P_4/GCLK2P  P9

4  IO_L75N_4/GCLK1S  R9

4  IO_L75P_4/GCLK0P  T9

5  IO_L75N_5/GCLK7S  T8

5  IO_L75P_5/GCLK6P  R8

5  IO_L74N_5/GCLK5S  P8

5  IO_L74P_5/GCLK4P  N8

5  IO_L69N_5/VREF_5  P7

5  IO_L69P_5  N7

5  IO_L09N_5/VREF_5  M7

5  IO_L09P_5  M6

5  IO_L07N_5/VREF_5  N6

Table  6:  FG256 — XC2VP2 and XC2VP4

Bank Pin Description Pin Number
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5  IO_L06N_5/VRP_5  P5

5  IO_L06P_5/VRN_5  N5

5  IO_L03N_5/D4  T3

5  IO_L03P_5/D5  T2

5  IO_L02N_5/D6  P4

5  IO_L02P_5/D7  R3

5  IO_L01N_5/RDWR_B  P3

5  IO_L01P_5/CS_B  P2

6  IO_L01P_6/VRN_6  M3

6  IO_L01N_6/VRP_6  M2

6  IO_L02P_6  N1

6  IO_L02N_6  M1

6  IO_L03P_6  M4

6  IO_L03N_6/VREF_6  L5

6  IO_L05P_6  L4

6  IO_L05N_6  L3

6  IO_L06P_6  L2

6  IO_L06N_6  L1

6  IO_L85P_6  K4

6  IO_L85N_6  K3

6  IO_L87P_6  K2

6  IO_L87N_6/VREF_6  K1

6  IO_L89P_6  K5

6  IO_L89N_6  J4

6  IO_L90P_6  J3

6  IO_L90N_6  J2

7  IO_L90P_7  J1

7  IO_L90N_7  H1

7  IO_L88P_7  H2

7  IO_L88N_7/VREF_7  H3

7  IO_L86P_7  H4

7  IO_L86N_7  G5

7  IO_L85P_7  G1

Table  6:  FG256 — XC2VP2 and XC2VP4

Bank Pin Description Pin Number
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7  IO_L85N_7  G2

7  IO_L06P_7  G3

7  IO_L06N_7  G4

7  IO_L04P_7  F1

7  IO_L04N_7/VREF_7  F2

7  IO_L03P_7  F3

7  IO_L03N_7  F4

7  IO_L02P_7  F5

7  IO_L02N_7  E4

7  IO_L01P_7/VRN_7  E2

7  IO_L01N_7/VRP_7  E3

0  VCCO_0  F8

0  VCCO_0  F7

0  VCCO_0  E8

1  VCCO_1  F9

1  VCCO_1  F10

1  VCCO_1  E9

2  VCCO_2  H12

2  VCCO_2  H11

2  VCCO_2  G11

3  VCCO_3  K11

3  VCCO_3  J12

3  VCCO_3  J11

4  VCCO_4  M9

4  VCCO_4  L9

4  VCCO_4  L10

5  VCCO_5  M8

5  VCCO_5  L8

5  VCCO_5  L7

6  VCCO_6  K6

6  VCCO_6  J6

6  VCCO_6  J5

7  VCCO_7  H6

7  VCCO_7  H5

Table  6:  FG256 — XC2VP2 and XC2VP4

Bank Pin Description Pin Number
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7  VCCO_7  G6

N/A  CCLK  N15

N/A  PROG_B  D1

N/A  DONE  P16

N/A  M0  N3

N/A  M1  N2

N/A  M2  P1

N/A  TCK  D16

N/A  TDI  E1

N/A  TDO  E16

N/A  TMS  C16

N/A  PWRDWN_B  N14

N/A  HSWAP_EN  C1

N/A  RSVD  D14

N/A  VBATT  D15

N/A  DXP  D2

N/A  DXN  D3

N/A  AVCCAUXTX6  B5

N/A  VTTXPAD6  B4

N/A  TXNPAD6  A4

N/A  TXPPAD6  A5

N/A  GNDA6  C6

N/A  GNDA6  C6

N/A  RXPPAD6  A6

N/A  RXNPAD6  A7

N/A  VTRXPAD6  B6

N/A  AVCCAUXRX6  B7

N/A  AVCCAUXTX7  B11

N/A  VTTXPAD7  B10

N/A  TXNPAD7  A10

N/A  TXPPAD7  A11

N/A  GNDA7  C11

N/A  GNDA7  C11

N/A  RXPPAD7  A12

Table  6:  FG256 — XC2VP2 and XC2VP4

Bank Pin Description Pin Number

http://www.xilinx.com


Virtex-II Pro™ Platform FPGAs: Pinout Information
R

DS083-4 (v1.0) January 31, 2002 www.xilinx.com Module 4 of 4
Advance Product Specification 1-800-255-7778 177

N/A  RXNPAD7  A13

N/A  VTRXPAD7  B12

N/A  AVCCAUXRX7  B13

N/A  AVCCAUXRX18  R13

N/A  VTRXPAD18  R12

N/A  RXNPAD18  T13

N/A  RXPPAD18  T12

N/A  GNDA18  P11

N/A  GNDA18  P11

N/A  TXPPAD18  T11

N/A  TXNPAD18  T10

N/A  VTTXPAD18  R10

N/A  AVCCAUXTX18  R11

N/A  AVCCAUXRX19  R7

N/A  VTRXPAD19  R6

N/A  RXNPAD19  T7

N/A  RXPPAD19  T6

N/A  GNDA19  P6

N/A  GNDA19  P6

N/A  TXPPAD19  T5

N/A  TXNPAD19  T4

N/A  VTTXPAD19  R4

N/A  AVCCAUXTX19  R5

N/A  VCCINT  N4

N/A  VCCINT  N13

N/A  VCCINT  M5

N/A  VCCINT  M12

N/A  VCCINT  E5

N/A  VCCINT  E12

N/A  VCCINT  D4

N/A  VCCINT  D13

N/A  VCCAUX  R16

N/A  VCCAUX  R1

N/A  VCCAUX  B16

Table  6:  FG256 — XC2VP2 and XC2VP4

Bank Pin Description Pin Number
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N/A  VCCAUX  B1

N/A  GND  T16

N/A  GND  T1

N/A  GND  R2

N/A  GND  R15

N/A  GND  L6

N/A  GND  L11

N/A  GND  K9

N/A  GND  K8

N/A  GND  K7

N/A  GND  K10

N/A  GND  J9

N/A  GND  J8

N/A  GND  J7

N/A  GND  J10

N/A  GND  H9

N/A  GND  H8

N/A  GND  H7

N/A  GND  H10

N/A  GND  G9

N/A  GND  G8

N/A  GND  G7

N/A  GND  G10

N/A  GND  F6

N/A  GND  F11

N/A  GND  B2

N/A  GND  B15

N/A  GND  A16

N/A  GND  A1

Table  6:  FG256 — XC2VP2 and XC2VP4

Bank Pin Description Pin Number
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FG256 Fine-Pitch BGA Package Specifications (1.00mm pitch)

Figure 1:  FG256 Fine-Pitch BGA Package Specifications
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FG456 Fine-Pitch BGA Package
As shown in Table 7, XC2VP2, XC2VP4, and XC2VP7 Virtex-II Pro devices are available in the FG456 fine-pitch BGA
package. The pins in these devices are same, except for the differences shown in the "No Connects" column. Following this
table are the FG456 Fine-Pitch BGA Package Specifications (1.00mm pitch).

Table  7:  FG456 — XC2VP2, XC2VP4, and XC2VP7

Bank Pin Description Pin Number

No Connects

XC2V
P2

XC2V
P4

XC2V
P7

0  IO_L01N_0/VRP_0  D5

0  IO_L01P_0/VRN_0  D6

0  IO_L02N_0  E6

0  IO_L02P_0  E7

0  IO_L03N_0  D7

0  IO_L03P_0/VREF_0  C7

0  IO_L05_0/No_Pair  E8

0  IO_L06N_0  D8

0  IO_L06P_0  C8

0  IO_L07N_0  F9

0  IO_L07P_0  E9

0  IO_L09N_0  D9

0  IO_L09P_0/VREF_0  D10

0  IO_L67N_0  F10

0  IO_L67P_0  E10

0  IO_L69N_0  C10

0  IO_L69P_0/VREF_0  B11

0  IO_L74N_0/GCLK7P  F11

0  IO_L74P_0/GCLK6S  E11

0  IO_L75N_0/GCLK5P  D11

0  IO_L75P_0/GCLK4S  C11

1  IO_L75N_1/GCLK3P  C12

1  IO_L75P_1/GCLK2S  D12

1  IO_L74N_1/GCLK1P  E12

1  IO_L74P_1/GCLK0S  F12

1  IO_L69N_1/VREF_1  B12

1  IO_L69P_1  C13

1  IO_L67N_1  E13

1  IO_L67P_1  F13

1  IO_L09N_1/VREF_1  D13
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1  IO_L09P_1  D14

1  IO_L07N_1  E14

1  IO_L07P_1  F14

1  IO_L06N_1  C15

1  IO_L06P_1  D15

1  IO_L05_1/No_Pair  E15

1  IO_L03N_1/VREF_1  C16

1  IO_L03P_1  D16

1  IO_L02N_1  E16

1  IO_L02P_1  E17

1  IO_L01N_1/VRP_1  D17

1  IO_L01P_1/VRN_1  D18

2  IO_L01N_2/VRP_2  C21

2  IO_L01P_2/VRN_2  C22

2  IO_L02N_2  D21

2  IO_L02P_2  D22

2  IO_L03N_2  E19

2  IO_L03P_2  E20

2  IO_L04N_2/VREF_2  E21

2  IO_L04P_2  E22

2  IO_L06N_2  F19

2  IO_L06P_2  F20

2  IO_L43N_2  F21 NC

2  IO_L43P_2  F22 NC

2  IO_L46N_2/VREF_2  F18 NC

2  IO_L46P_2  G18 NC

2  IO_L48N_2  G19 NC

2  IO_L48P_2  G20 NC

2  IO_L49N_2  G21 NC

2  IO_L49P_2  G22 NC

2  IO_L50N_2  H19 NC

2  IO_L50P_2  H20 NC

2  IO_L52N_2/VREF_2  H21 NC

2  IO_L52P_2  H22 NC

Table  7:  FG456 — XC2VP2, XC2VP4, and XC2VP7

Bank Pin Description Pin Number

No Connects

XC2V
P2

XC2V
P4

XC2V
P7
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2  IO_L54N_2  H18 NC

2  IO_L54P_2  J17 NC

2  IO_L55N_2  J19 NC

2  IO_L55P_2  J20 NC

2  IO_L56N_2  J21 NC

2  IO_L56P_2  J22 NC

2  IO_L58N_2/VREF_2  J18 NC

2  IO_L58P_2  K18 NC

2  IO_L60N_2  K19 NC

2  IO_L60P_2  K20 NC

2  IO_L85N_2  K21

2  IO_L85P_2  K22

2  IO_L86N_2  K17

2  IO_L86P_2  L17

2  IO_L88N_2/VREF_2  L18

2  IO_L88P_2  L19

2  IO_L90N_2  L20

2  IO_L90P_2  L21

3  IO_L90N_3  M21

3  IO_L90P_3  M20

3  IO_L89N_3  M19

3  IO_L89P_3  M18

3  IO_L87N_3/VREF_3  M17

3  IO_L87P_3  N17

3  IO_L85N_3  N22

3  IO_L85P_3  N21

3  IO_L60N_3  N20 NC

3  IO_L60P_3  N19 NC

3  IO_L59N_3  N18 NC

3  IO_L59P_3  P18 NC

3  IO_L57N_3/VREF_3  P22 NC

3  IO_L57P_3  P21 NC

3  IO_L55N_3  P20 NC

3  IO_L55P_3  P19 NC

Table  7:  FG456 — XC2VP2, XC2VP4, and XC2VP7

Bank Pin Description Pin Number

No Connects

XC2V
P2

XC2V
P4

XC2V
P7
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3  IO_L54N_3  P17 NC

3  IO_L54P_3  R18 NC

3  IO_L53N_3  R22 NC

3  IO_L53P_3  R21 NC

3  IO_L51N_3/VREF_3  R20 NC

3  IO_L51P_3  R19 NC

3  IO_L49N_3  T22 NC

3  IO_L49P_3  T21 NC

3  IO_L48N_3  T20 NC

3  IO_L48P_3  T19 NC

3  IO_L47N_3  T18 NC

3  IO_L47P_3  U18 NC

3  IO_L45N_3/VREF_3  U22 NC

3  IO_L45P_3  U21 NC

3  IO_L43N_3  U20 NC

3  IO_L43P_3  U19 NC

3  IO_L06N_3  V22

3  IO_L06P_3  V21

3  IO_L05N_3  V20

3  IO_L05P_3  V19

3  IO_L03N_3/VREF_3  W22

3  IO_L03P_3  W21

3  IO_L02N_3  Y22

3  IO_L02P_3  Y21

3  IO_L01N_3/VRP_3  AA22

3  IO_L01P_3/VRN_3  AB21

4  IO_L01N_4/DOUT  W18

4  IO_L01P_4/INIT_B  W17

4  IO_L02N_4/D0  V17

4  IO_L02P_4/D1  V16

4  IO_L03N_4/D2  W16

4  IO_L03P_4/D3  Y16

4  IO_L05_4/No_Pair  V15

4  IO_L06N_4/VRP_4  W15

Table  7:  FG456 — XC2VP2, XC2VP4, and XC2VP7

Bank Pin Description Pin Number

No Connects

XC2V
P2

XC2V
P4

XC2V
P7
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4  IO_L06P_4/VRN_4  Y15

4  IO_L07N_4  U14

4  IO_L07P_4/VREF_4  V14

4  IO_L09N_4  W14

4  IO_L09P_4/VREF_4  W13

4  IO_L67N_4  U13

4  IO_L67P_4  V13

4  IO_L69N_4  Y13

4  IO_L69P_4/VREF_4  AA12

4  IO_L74N_4/GCLK3S  U12

4  IO_L74P_4/GCLK2P  V12

4  IO_L75N_4/GCLK1S  W12

4  IO_L75P_4/GCLK0P  Y12

5  IO_L75N_5/GCLK7S  Y11

5  IO_L75P_5/GCLK6P  W11

5  IO_L74N_5/GCLK5S  V11

5  IO_L74P_5/GCLK4P  U11

5  IO_L69N_5/VREF_5  AA11

5  IO_L69P_5  Y10

5  IO_L67N_5  V10

5  IO_L67P_5  U10

5  IO_L09N_5/VREF_5  W10

5  IO_L09P_5  W9

5  IO_L07N_5/VREF_5  V9

5  IO_L07P_5  U9

5  IO_L06N_5/VRP_5  Y8

5  IO_L06P_5/VRN_5  W8

5  IO_L05_5/No_Pair  V8

5  IO_L03N_5/D4  Y7

5  IO_L03P_5/D5  W7

5  IO_L02N_5/D6  V7

5  IO_L02P_5/D7  V6

5  IO_L01N_5/RDWR_B  W6

5  IO_L01P_5/CS_B  W5

Table  7:  FG456 — XC2VP2, XC2VP4, and XC2VP7

Bank Pin Description Pin Number

No Connects

XC2V
P2

XC2V
P4

XC2V
P7
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6  IO_L01P_6/VRN_6  AB2

6  IO_L01N_6/VRP_6  AA1

6  IO_L02P_6  Y2

6  IO_L02N_6  Y1

6  IO_L03P_6  W2

6  IO_L03N_6/VREF_6  W1

6  IO_L05P_6  V4

6  IO_L05N_6  V3

6  IO_L06P_6  V2

6  IO_L06N_6  V1

6  IO_L43P_6  U4 NC

6  IO_L43N_6  U3 NC

6  IO_L45P_6  U2 NC

6  IO_L45N_6/VREF_6  U1 NC

6  IO_L47P_6  U5 NC

6  IO_L47N_6  T5 NC

6  IO_L48P_6  T4 NC

6  IO_L48N_6  T3 NC

6  IO_L49P_6  T2 NC

6  IO_L49N_6  T1 NC

6  IO_L51P_6  R4 NC

6  IO_L51N_6/VREF_6  R3 NC

6  IO_L53P_6  R2 NC

6  IO_L53N_6  R1 NC

6  IO_L54P_6  R5 NC

6  IO_L54N_6  P6 NC

6  IO_L55P_6  P4 NC

6  IO_L55N_6  P3 NC

6  IO_L57P_6  P2 NC

6  IO_L57N_6/VREF_6  P1 NC

6  IO_L59P_6  P5 NC

6  IO_L59N_6  N5 NC

6  IO_L60P_6  N4 NC

6  IO_L60N_6  N3 NC

Table  7:  FG456 — XC2VP2, XC2VP4, and XC2VP7

Bank Pin Description Pin Number

No Connects

XC2V
P2

XC2V
P4

XC2V
P7
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6  IO_L85P_6  N2

6  IO_L85N_6  N1

6  IO_L87P_6  N6

6  IO_L87N_6/VREF_6  M6

6  IO_L89P_6  M5

6  IO_L89N_6  M4

6  IO_L90P_6  M3

6  IO_L90N_6  M2

7  IO_L90P_7  L2

7  IO_L90N_7  L3

7  IO_L88P_7  L4

7  IO_L88N_7/VREF_7  L5

7  IO_L86P_7  L6

7  IO_L86N_7  K6

7  IO_L85P_7  K1

7  IO_L85N_7  K2

7  IO_L60P_7  K3 NC

7  IO_L60N_7  K4 NC

7  IO_L58P_7  K5 NC

7  IO_L58N_7/VREF_7  J5 NC

7  IO_L56P_7  J1 NC

7  IO_L56N_7  J2 NC

7  IO_L55P_7  J3 NC

7  IO_L55N_7  J4 NC

7  IO_L54P_7  J6 NC

7  IO_L54N_7  H5 NC

7  IO_L52P_7  H1 NC

7  IO_L52N_7/VREF_7  H2 NC

7  IO_L50P_7  H3 NC

7  IO_L50N_7  H4 NC

7  IO_L49P_7  G1 NC

7  IO_L49N_7  G2 NC

7  IO_L48P_7  G3 NC

7  IO_L48N_7  G4 NC

Table  7:  FG456 — XC2VP2, XC2VP4, and XC2VP7

Bank Pin Description Pin Number

No Connects

XC2V
P2

XC2V
P4

XC2V
P7
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7  IO_L46P_7  G5 NC

7  IO_L46N_7/VREF_7  F5 NC

7  IO_L43P_7  F1 NC

7  IO_L43N_7  F2 NC

7  IO_L06P_7  F3

7  IO_L06N_7  F4

7  IO_L04P_7  E1

7  IO_L04N_7/VREF_7  E2

7  IO_L03P_7  E3

7  IO_L03N_7  E4

7  IO_L02P_7  D1

7  IO_L02N_7  D2

7  IO_L01P_7/VRN_7  C1

7  IO_L01N_7/VRP_7  C2

0  VCCO_0  G9

0  VCCO_0  G11

0  VCCO_0  G10

0  VCCO_0  F8

0  VCCO_0  F7

1  VCCO_1  G14

1  VCCO_1  G13

1  VCCO_1  G12

1  VCCO_1  F16

1  VCCO_1  F15

2  VCCO_2  L16

2  VCCO_2  K16

2  VCCO_2  J16

2  VCCO_2  H17

2  VCCO_2  G17

3  VCCO_3  T17

3  VCCO_3  R17

3  VCCO_3  P16

3  VCCO_3  N16

3  VCCO_3  M16

Table  7:  FG456 — XC2VP2, XC2VP4, and XC2VP7

Bank Pin Description Pin Number

No Connects

XC2V
P2

XC2V
P4

XC2V
P7
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4  VCCO_4  U16

4  VCCO_4  U15

4  VCCO_4  T14

4  VCCO_4  T13

4  VCCO_4  T12

5  VCCO_5  U8

5  VCCO_5  U7

5  VCCO_5  T9

5  VCCO_5  T11

5  VCCO_5  T10

6  VCCO_6  T6

6  VCCO_6  R6

6  VCCO_6  P7

6  VCCO_6  N7

6  VCCO_6  M7

7  VCCO_7  L7

7  VCCO_7  K7

7  VCCO_7  J7

7  VCCO_7  H6

7  VCCO_7  G6

N/A  CCLK  W20

N/A  PROG_B  B1

N/A  DONE  Y18

N/A  M0  Y4

N/A  M1  W3

N/A  M2  Y5

N/A  TCK  B22

N/A  TDI  D3

N/A  TDO  D20

N/A  TMS  A21

N/A  PWRDWN_B  Y19

N/A  HSWAP_EN  A2

N/A  RSVD  C18

N/A  VBATT  C19

Table  7:  FG456 — XC2VP2, XC2VP4, and XC2VP7

Bank Pin Description Pin Number

No Connects

XC2V
P2

XC2V
P4

XC2V
P7
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N/A  DXP  C4

N/A  DXN  C5

N/A  AVCCAUXTX4  B4 NC NC

N/A  VTTXPAD4  B3 NC NC

N/A  TXNPAD4  A3 NC NC

N/A  TXPPAD4  A4 NC NC

N/A  GNDA4  C6 NC NC

N/A  GNDA4  C6 NC NC

N/A  RXPPAD4  A5 NC NC

N/A  RXNPAD4  A6 NC NC

N/A  VTRXPAD4  B5 NC NC

N/A  AVCCAUXRX4  B6 NC NC

N/A  AVCCAUXTX6  B8

N/A  VTTXPAD6  B7

N/A  TXNPAD6  A7

N/A  TXPPAD6  A8

N/A  GNDA6  C9

N/A  GNDA6  C9

N/A  RXPPAD6  A9

N/A  RXNPAD6  A10

N/A  VTRXPAD6  B9

N/A  AVCCAUXRX6  B10

N/A  AVCCAUXTX7  B14

N/A  VTTXPAD7  B13

N/A  TXNPAD7  A13

N/A  TXPPAD7  A14

N/A  GNDA7  C14

N/A  GNDA7  C14

N/A  RXPPAD7  A15

N/A  RXNPAD7  A16

N/A  VTRXPAD7  B15

N/A  AVCCAUXRX7  B16

N/A  AVCCAUXTX9  B18 NC NC

N/A  VTTXPAD9  B17 NC NC

N/A  TXNPAD9  A17 NC NC

Table  7:  FG456 — XC2VP2, XC2VP4, and XC2VP7

Bank Pin Description Pin Number

No Connects

XC2V
P2

XC2V
P4

XC2V
P7
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N/A  TXPPAD9  A18 NC NC

N/A  GNDA9  C17 NC NC

N/A  GNDA9  C17 NC NC

N/A  RXPPAD9  A19 NC NC

N/A  RXNPAD9  A20 NC NC

N/A  VTRXPAD9  B19 NC NC

N/A  AVCCAUXRX9  B20 NC NC

N/A  AVCCAUXRX16  AA20 NC NC

N/A  VTRXPAD16  AA19 NC NC

N/A  RXNPAD16  AB20 NC NC

N/A  RXPPAD16  AB19 NC NC

N/A  GNDA16  Y17 NC NC

N/A  GNDA16  Y17 NC NC

N/A  TXPPAD16  AB18 NC NC

N/A  TXNPAD16  AB17 NC NC

N/A  VTTXPAD16  AA17 NC NC

N/A  AVCCAUXTX16  AA18 NC NC

N/A  AVCCAUXRX18  AA16

N/A  VTRXPAD18  AA15

N/A  RXNPAD18  AB16

N/A  RXPPAD18  AB15

N/A  GNDA18  Y14

N/A  GNDA18  Y14

N/A  TXPPAD18  AB14

N/A  TXNPAD18  AB13

N/A  VTTXPAD18  AA13

N/A  AVCCAUXTX18  AA14

N/A  AVCCAUXRX19  AA10

N/A  VTRXPAD19  AA9

N/A  RXNPAD19  AB10

N/A  RXPPAD19  AB9

N/A  GNDA19  Y9

N/A  GNDA19  Y9

N/A  TXPPAD19  AB8

N/A  TXNPAD19  AB7

Table  7:  FG456 — XC2VP2, XC2VP4, and XC2VP7

Bank Pin Description Pin Number

No Connects

XC2V
P2

XC2V
P4

XC2V
P7
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N/A  VTTXPAD19  AA7

N/A  AVCCAUXTX19  AA8

N/A  AVCCAUXRX21  AA6 NC NC

N/A  VTRXPAD21  AA5 NC NC

N/A  RXNPAD21  AB6 NC NC

N/A  RXPPAD21  AB5 NC NC

N/A  GNDA21  Y6 NC NC

N/A  GNDA21  Y6 NC NC

N/A  TXPPAD21  AB4 NC NC

N/A  TXNPAD21  AB3 NC NC

N/A  VTTXPAD21  AA3 NC NC

N/A  AVCCAUXTX21  AA4 NC NC

N/A  VCCINT  U6

N/A  VCCINT  U17

N/A  VCCINT  T8

N/A  VCCINT  T7

N/A  VCCINT  T16

N/A  VCCINT  T15

N/A  VCCINT  R7

N/A  VCCINT  R16

N/A  VCCINT  H7

N/A  VCCINT  H16

N/A  VCCINT  G8

N/A  VCCINT  G7

N/A  VCCINT  G16

N/A  VCCINT  G15

N/A  VCCINT  F6

N/A  VCCINT  F17

N/A  VCCAUX  M22

N/A  VCCAUX  L1

N/A  VCCAUX  B21

N/A  VCCAUX  B2

N/A  VCCAUX  AB11

N/A  VCCAUX  AA21

Table  7:  FG456 — XC2VP2, XC2VP4, and XC2VP7

Bank Pin Description Pin Number

No Connects

XC2V
P2

XC2V
P4

XC2V
P7
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N/A  VCCAUX  AA2

N/A  VCCAUX  A12

N/A  GND  Y3

N/A  GND  Y20

N/A  GND  W4

N/A  GND  W19

N/A  GND  V5

N/A  GND  V18

N/A  GND  P9

N/A  GND  P14

N/A  GND  P13

N/A  GND  P12

N/A  GND  P11

N/A  GND  P10

N/A  GND  N9

N/A  GND  N14

N/A  GND  N13

N/A  GND  N12

N/A  GND  N11

N/A  GND  N10

N/A  GND  M9

N/A  GND  M14

N/A  GND  M13

N/A  GND  M12

N/A  GND  M11

N/A  GND  M10

N/A  GND  M1

N/A  GND  L9

N/A  GND  L22

N/A  GND  L14

N/A  GND  L13

N/A  GND  L12

N/A  GND  L11

N/A  GND  L10

N/A  GND  K9

Table  7:  FG456 — XC2VP2, XC2VP4, and XC2VP7

Bank Pin Description Pin Number

No Connects

XC2V
P2

XC2V
P4

XC2V
P7
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N/A  GND  K14

N/A  GND  K13

N/A  GND  K12

N/A  GND  K11

N/A  GND  K10

N/A  GND  J9

N/A  GND  J14

N/A  GND  J13

N/A  GND  J12

N/A  GND  J11

N/A  GND  J10

N/A  GND  E5

N/A  GND  E18

N/A  GND  D4

N/A  GND  D19

N/A  GND  C3

N/A  GND  C20

N/A  GND  AB22

N/A  GND  AB12

N/A  GND  AB1

N/A  GND  A22

N/A  GND  A11

N/A  GND  A1

Table  7:  FG456 — XC2VP2, XC2VP4, and XC2VP7

Bank Pin Description Pin Number

No Connects

XC2V
P2

XC2V
P4

XC2V
P7
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FG456 Fine-Pitch BGA Package Specifications (1.00mm pitch)

Figure 2:  FG456 Fine-Pitch BGA Package Specifications
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FF672 Flip-Chip Fine-Pitch BGA Package
As shown in Table 8, XC2VP2, XC2VP4, and XC2VP7 Virtex-II Pro devices are available in the FF672 flip-chip fine-pitch
BGA package. Pins in each of these devices are the same, except for differences shown in the "No Connects" column.
Following this table are the FF672 Flip-Chip Fine-Pitch BGA Package Specifications (1.00mm pitch).

Table  8:  FF672 — XC2VP2, XC2VP4, and XC2VP7

Bank Pin Description
Pin 

Number

No Connects

XC2V
P2

XC2V
P4

XC2V
P7

0  IO_L01N_0/VRP_0  B24   

0  IO_L01P_0/VRN_0  A24   

0  IO_L02N_0  D21   

0  IO_L02P_0  C21   

0  IO_L03N_0  E20   

0  IO_L03P_0/VREF_0  D20   

0  IO_L05_0/No_Pair  F19   

0  IO_L06N_0  E19   

0  IO_L06P_0  E18   

0  IO_L07N_0  D19   

0  IO_L07P_0  C19   

0  IO_L08N_0  B19   

0  IO_L08P_0  A19   

0  IO_L09N_0  G18   

0  IO_L09P_0/VREF_0  F18   

0  IO_L37N_0  D18 NC NC

0  IO_L37P_0  C18 NC NC

0  IO_L38N_0  G17 NC NC

0  IO_L38P_0  H16 NC NC

0  IO_L39N_0  F17 NC NC

0  IO_L39P_0  F16 NC NC

0  IO_L43N_0  E17 NC NC

0  IO_L43P_0  D17 NC NC

0  IO_L44N_0  G16 NC NC

0  IO_L44P_0  G15 NC NC

0  IO_L45N_0  E16 NC NC

0  IO_L45P_0/VREF_0  D16 NC NC

0  IO_L67N_0  F15   

0  IO_L67P_0  E15   

0  IO_L68N_0  D15   

0  IO_L68P_0  C15   
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0  IO_L69N_0  H15   

0  IO_L69P_0/VREF_0  H14   

0  IO_L73N_0  G14   

0  IO_L73P_0  F14   

0  IO_L74N_0/GCLK7P  E14   

0  IO_L74P_0/GCLK6S  D14   

0  IO_L75N_0/GCLK5P  C14   

0  IO_L75P_0/GCLK4S  B14   

1  IO_L75N_1/GCLK3P  B13   

1  IO_L75P_1/GCLK2S  C13   

1  IO_L74N_1/GCLK1P  D13   

1  IO_L74P_1/GCLK0S  E13   

1  IO_L73N_1  F13   

1  IO_L73P_1  G13   

1  IO_L69N_1/VREF_1  H13   

1  IO_L69P_1  H12   

1  IO_L68N_1  C12   

1  IO_L68P_1  D12   

1  IO_L67N_1  E12   

1  IO_L67P_1  F12   

1  IO_L45N_1/VREF_1  D11 NC NC

1  IO_L45P_1  E11 NC NC

1  IO_L44N_1  G12 NC NC

1  IO_L44P_1  G11 NC NC

1  IO_L43N_1  D10 NC NC

1  IO_L43P_1  E10 NC NC

1  IO_L39N_1  F11 NC NC

1  IO_L39P_1  F10 NC NC

1  IO_L38N_1  H11 NC NC

1  IO_L38P_1  G10 NC NC

1  IO_L37N_1  C9 NC NC

1  IO_L37P_1  D9 NC NC

1  IO_L09N_1/VREF_1  F9   

1  IO_L09P_1  G9   

Table  8:  FF672 — XC2VP2, XC2VP4, and XC2VP7

Bank Pin Description
Pin 

Number

No Connects

XC2V
P2

XC2V
P4

XC2V
P7
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1  IO_L08N_1  A8   

1  IO_L08P_1  B8   

1  IO_L07N_1  C8   

1  IO_L07P_1  D8   

1  IO_L06N_1  E9   

1  IO_L06P_1  E8   

1  IO_L05_1/No_Pair  F8   

1  IO_L03N_1/VREF_1  D7   

1  IO_L03P_1  E7   

1  IO_L02N_1  C6   

1  IO_L02P_1  D6   

1  IO_L01N_1/VRP_1  A3   

1  IO_L01P_1/VRN_1  B3   

2  IO_L01N_2/VRP_2  C4   

2  IO_L01P_2/VRN_2  D3   

2  IO_L02N_2  A2   

2  IO_L02P_2  B1   

2  IO_L03N_2  C2   

2  IO_L03P_2  C1   

2  IO_L04N_2/VREF_2  D2   

2  IO_L04P_2  D1   

2  IO_L05N_2  E4   

2  IO_L05P_2  E3   

2  IO_L06N_2  E2   

2  IO_L06P_2  E1   

2  IO_L40N_2/VREF_2   F5 NC NC NC

2  IO_L40P_2   F4 NC NC NC

2  IO_L42N_2   F3 NC NC NC

2  IO_L42P_2   F2 NC NC NC

2  IO_L43N_2  G6 NC   

2  IO_L43P_2  G5 NC   

2  IO_L44N_2  G4 NC   

2  IO_L44P_2  G3 NC   

2  IO_L45N_2  F1 NC   

Table  8:  FF672 — XC2VP2, XC2VP4, and XC2VP7

Bank Pin Description
Pin 

Number

No Connects

XC2V
P2

XC2V
P4

XC2V
P7
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2  IO_L45P_2  G1 NC   

2  IO_L46N_2/VREF_2  H6 NC   

2  IO_L46P_2  H5 NC   

2  IO_L47N_2  H4 NC   

2  IO_L47P_2  H3 NC   

2  IO_L48N_2  H2 NC   

2  IO_L48P_2  H1 NC   

2  IO_L49N_2  J7 NC   

2  IO_L49P_2  J6 NC   

2  IO_L50N_2  J5 NC   

2  IO_L50P_2  J4 NC   

2  IO_L51N_2  J3 NC   

2  IO_L51P_2  J2 NC   

2  IO_L52N_2/VREF_2  K6 NC

2  IO_L52P_2  K5 NC   

2  IO_L53N_2  K4 NC   

2  IO_L53P_2  K3 NC   

2  IO_L54N_2  J1 NC   

2  IO_L54P_2  K1 NC   

2  IO_L55N_2  K7 NC   

2  IO_L55P_2  L8 NC   

2  IO_L56N_2  L7 NC   

2  IO_L56P_2  M7 NC   

2  IO_L57N_2  L6 NC   

2  IO_L57P_2  L5 NC   

2  IO_L58N_2/VREF_2  L4 NC

2  IO_L58P_2  L3 NC   

2  IO_L59N_2  L2 NC   

2  IO_L59P_2  L1 NC   

2  IO_L60N_2  M8 NC   

2  IO_L60P_2  N8 NC   

2  IO_L85N_2  M6   

2  IO_L85P_2  M5   

2  IO_L86N_2  M4   

2  IO_L86P_2  M3   

Table  8:  FF672 — XC2VP2, XC2VP4, and XC2VP7

Bank Pin Description
Pin 

Number

No Connects

XC2V
P2

XC2V
P4
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P7
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2  IO_L87N_2  M2   

2  IO_L87P_2  M1   

2  IO_L88N_2/VREF_2  N7   

2  IO_L88P_2  N6   

2  IO_L89N_2  N5   

2  IO_L89P_2  N4   

2  IO_L90N_2  N3   

2  IO_L90P_2  N2   

3  IO_L90N_3  P2   

3  IO_L90P_3  P3   

3  IO_L89N_3  P4   

3  IO_L89P_3  P5   

3  IO_L88N_3  P6   

3  IO_L88P_3  P7   

3  IO_L87N_3/VREF_3  R1   

3  IO_L87P_3  R2   

3  IO_L86N_3  R3   

3  IO_L86P_3  R4   

3  IO_L85N_3  R5   

3  IO_L85P_3  R6   

3  IO_L60N_3  P8 NC   

3  IO_L60P_3  R8 NC   

3  IO_L59N_3  T1 NC   

3  IO_L59P_3  T2 NC   

3  IO_L58N_3  T3 NC   

3  IO_L58P_3  T4 NC   

3  IO_L57N_3/VREF_3  T5 NC

3  IO_L57P_3  T6 NC   

3  IO_L56N_3  R7 NC   

3  IO_L56P_3  T7 NC   

3  IO_L55N_3  T8 NC   

3  IO_L55P_3  U7 NC   

3  IO_L54N_3  U1 NC   

3  IO_L54P_3  V1 NC   

Table  8:  FF672 — XC2VP2, XC2VP4, and XC2VP7

Bank Pin Description
Pin 

Number

No Connects

XC2V
P2

XC2V
P4
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3  IO_L53N_3  U3 NC   

3  IO_L53P_3  U4 NC   

3  IO_L52N_3  U5 NC   

3  IO_L52P_3  U6 NC   

3  IO_L51N_3/VREF_3  V2 NC

3  IO_L51P_3  V3 NC   

3  IO_L50N_3  V4 NC   

3  IO_L50P_3  V5 NC   

3  IO_L49N_3  V6 NC   

3  IO_L49P_3  V7 NC   

3  IO_L48N_3  W1 NC   

3  IO_L48P_3  W2 NC   

3  IO_L47N_3  W3 NC   

3  IO_L47P_3  W4 NC   

3  IO_L46N_3  W5 NC   

3  IO_L46P_3  W6 NC   

3  IO_L45N_3/VREF_3  Y1 NC

3  IO_L45P_3  AA1 NC   

3  IO_L44N_3  Y3 NC   

3  IO_L44P_3  Y4 NC   

3  IO_L43N_3  Y5 NC   

3  IO_L43P_3  Y6 NC   

3  IO_L42N_3   AA2 NC NC NC

3  IO_L42P_3   AA3 NC NC NC

3  IO_L41N_3   AA4 NC NC NC

3  IO_L41P_3   AA5 NC NC NC

3  IO_L39N_3/VREF_3   AB1 NC NC NC

3  IO_L39P_3   AB2 NC NC NC

3  IO_L06N_3  AB3   

3  IO_L06P_3  AB4   

3  IO_L05N_3  AC1   

3  IO_L05P_3  AC2   

3  IO_L04N_3  AD1   

3  IO_L04P_3  AD2   

3  IO_L03N_3/VREF_3  AE1   

Table  8:  FF672 — XC2VP2, XC2VP4, and XC2VP7

Bank Pin Description
Pin 

Number

No Connects
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3  IO_L03P_3  AF2   

3  IO_L02N_3  AC3   

3  IO_L02P_3  AD4   

3  IO_L01N_3/VRP_3  AE3   

3  IO_L01P_3/VRN_3  AF3   

4  IO_L01N_4/DOUT  AC6   

4  IO_L01P_4/INIT_B  AD6   

4  IO_L02N_4/D0  AB7   

4  IO_L02P_4/D1  AC7   

4  IO_L03N_4/D2  AA7   

4  IO_L03P_4/D3  AA8   

4  IO_L05_4/No_Pair  Y8   

4  IO_L06N_4/VRP_4  AB8   

4  IO_L06P_4/VRN_4  AB9   

4  IO_L07N_4  AC8   

4  IO_L07P_4/VREF_4  AD8   

4  IO_L08N_4  AE8   

4  IO_L08P_4  AF8   

4  IO_L09N_4  Y9   

4  IO_L09P_4/VREF_4  AA9   

4  IO_L37N_4  AC9 NC NC

4  IO_L37P_4  AD9 NC NC

4  IO_L38N_4  Y10 NC NC

4  IO_L38P_4  W11 NC NC

4  IO_L39N_4  AA10 NC NC

4  IO_L39P_4  AA11 NC NC

4  IO_L43N_4  AB10 NC NC

4  IO_L43P_4  AC10 NC NC

4  IO_L44N_4  Y11 NC NC

4  IO_L44P_4  Y12 NC NC

4  IO_L45N_4  AB11 NC NC

4  IO_L45P_4/VREF_4  AC11 NC NC

4  IO_L67N_4  AA12   

4  IO_L67P_4  AB12   

Table  8:  FF672 — XC2VP2, XC2VP4, and XC2VP7

Bank Pin Description
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4  IO_L68N_4  AC12   

4  IO_L68P_4  AD12   

4  IO_L69N_4  W12   

4  IO_L69P_4/VREF_4  W13   

4  IO_L73N_4  Y13   

4  IO_L73P_4  AA13   

4  IO_L74N_4/GCLK3S  AB13   

4  IO_L74P_4/GCLK2P  AC13   

4  IO_L75N_4/GCLK1S  AD13   

4  IO_L75P_4/GCLK0P  AE13   

5  IO_L75N_5/GCLK7S  AE14   

5  IO_L75P_5/GCLK6P  AD14   

5  IO_L74N_5/GCLK5S  AC14   

5  IO_L74P_5/GCLK4P  AB14   

5  IO_L73N_5  AA14   

5  IO_L73P_5  Y14   

5  IO_L69N_5/VREF_5  W14   

5  IO_L69P_5  W15   

5  IO_L68N_5  AD15   

5  IO_L68P_5  AC15   

5  IO_L67N_5  AB15   

5  IO_L67P_5  AA15   

5  IO_L45N_5/VREF_5  AC16 NC NC

5  IO_L45P_5  AB16 NC NC

5  IO_L44N_5  Y15 NC NC

5  IO_L44P_5  Y16 NC NC

5  IO_L43N_5  AC17 NC NC

5  IO_L43P_5  AB17 NC NC

5  IO_L39N_5  AA16 NC NC

5  IO_L39P_5  AA17 NC NC

5  IO_L38N_5  W16 NC NC

5  IO_L38P_5  Y17 NC NC

5  IO_L37N_5  AD18 NC NC

5  IO_L37P_5  AC18 NC NC

Table  8:  FF672 — XC2VP2, XC2VP4, and XC2VP7

Bank Pin Description
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5  IO_L09N_5/VREF_5  AA18   

5  IO_L09P_5  Y18   

5  IO_L08N_5  AF19   

5  IO_L08P_5  AE19   

5  IO_L07N_5/VREF_5  AD19   

5  IO_L07P_5  AC19   

5  IO_L06N_5/VRP_5  AB18   

5  IO_L06P_5/VRN_5  AB19   

5  IO_L05_5/No_Pair  Y19   

5  IO_L03N_5/D4  AA19   

5  IO_L03P_5/D5  AA20   

5  IO_L02N_5/D6  AC20   

5  IO_L02P_5/D7  AB20   

5  IO_L01N_5/RDWR_B  AD21   

5  IO_L01P_5/CS_B  AC21   

6  IO_L01P_6/VRN_6  AF24   

6  IO_L01N_6/VRP_6  AE24   

6  IO_L02P_6  AD23   

6  IO_L02N_6  AC24   

6  IO_L03P_6  AE26   

6  IO_L03N_6/VREF_6  AF25   

6  IO_L04P_6  AD25   

6  IO_L04N_6  AD26   

6  IO_L05P_6  AC25   

6  IO_L05N_6  AC26   

6  IO_L06P_6  AB23   

6  IO_L06N_6  AB24   

6  IO_L39P_6   AB25 NC NC NC

6  IO_L39N_6/VREF_6   AB26 NC NC NC

6  IO_L41P_6   AA22 NC NC NC

6  IO_L41N_6   AA23 NC NC NC

6  IO_L42P_6   AA24 NC NC NC

6  IO_L42N_6   AA25 NC NC NC

6  IO_L43P_6  Y21 NC   
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6  IO_L43N_6  Y22 NC   

6  IO_L44P_6  Y23 NC   

6  IO_L44N_6  Y24 NC   

6  IO_L45P_6  AA26 NC   

6  IO_L45N_6/VREF_6  Y26 NC

6  IO_L46P_6  W21 NC   

6  IO_L46N_6  W22 NC   

6  IO_L47P_6  W23 NC   

6  IO_L47N_6  W24 NC   

6  IO_L48P_6  W25 NC   

6  IO_L48N_6  W26 NC   

6  IO_L49P_6  V20 NC   

6  IO_L49N_6  V21 NC   

6  IO_L50P_6  V22 NC   

6  IO_L50N_6  V23 NC   

6  IO_L51P_6  V24 NC   

6  IO_L51N_6/VREF_6  V25 NC

6  IO_L52P_6  U21 NC   

6  IO_L52N_6  U22 NC   

6  IO_L53P_6  U23 NC   

6  IO_L53N_6  U24 NC   

6  IO_L54P_6  V26 NC   

6  IO_L54N_6  U26 NC   

6  IO_L55P_6  U20 NC   

6  IO_L55N_6  T19 NC   

6  IO_L56P_6  T20 NC   

6  IO_L56N_6  R20 NC   

6  IO_L57P_6  T21 NC   

6  IO_L57N_6/VREF_6  T22 NC

6  IO_L58P_6  T23 NC   

6  IO_L58N_6  T24 NC   

6  IO_L59P_6  T25 NC   

6  IO_L59N_6  T26 NC   

6  IO_L60P_6  R19 NC   

6  IO_L60N_6  P19 NC   
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6  IO_L85P_6  R21   

6  IO_L85N_6  R22   

6  IO_L86P_6  R23   

6  IO_L86N_6  R24   

6  IO_L87P_6  R25   

6  IO_L87N_6/VREF_6  R26   

6  IO_L88P_6  P20   

6  IO_L88N_6  P21   

6  IO_L89P_6  P22   

6  IO_L89N_6  P23   

6  IO_L90P_6  P24   

6  IO_L90N_6  P25   

7  IO_L90P_7  N25   

7  IO_L90N_7  N24   

7  IO_L89P_7  N23   

7  IO_L89N_7  N22   

7  IO_L88P_7  N21   

7  IO_L88N_7/VREF_7  N20   

7  IO_L87P_7  M26   

7  IO_L87N_7  M25   

7  IO_L86P_7  M24   

7  IO_L86N_7  M23   

7  IO_L85P_7  M22   

7  IO_L85N_7  M21   

7  IO_L60P_7  N19 NC   

7  IO_L60N_7  M19 NC   

7  IO_L59P_7  L26 NC   

7  IO_L59N_7  L25 NC   

7  IO_L58P_7  L24 NC   

7  IO_L58N_7/VREF_7  L23 NC

7  IO_L57P_7  L22 NC   

7  IO_L57N_7  L21 NC   

7  IO_L56P_7  M20 NC   

7  IO_L56N_7  L20 NC   
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7  IO_L55P_7  L19 NC   

7  IO_L55N_7  K20 NC   

7  IO_L54P_7  K26 NC   

7  IO_L54N_7  J26 NC   

7  IO_L53P_7  K24 NC   

7  IO_L53N_7  K23 NC   

7  IO_L52P_7  K22 NC   

7  IO_L52N_7/VREF_7  K21 NC

7  IO_L51P_7  J25 NC   

7  IO_L51N_7  J24 NC   

7  IO_L50P_7  J23 NC   

7  IO_L50N_7  J22 NC   

7  IO_L49P_7  J21 NC   

7  IO_L49N_7  J20 NC   

7  IO_L48P_7  H26 NC   

7  IO_L48N_7  H25 NC   

7  IO_L47P_7  H24 NC   

7  IO_L47N_7  H23 NC   

7  IO_L46P_7  H22 NC   

7  IO_L46N_7/VREF_7  H21 NC

7  IO_L45P_7  G26 NC   

7  IO_L45N_7  F26 NC   

7  IO_L44P_7  G24 NC   

7  IO_L44N_7  G23 NC   

7  IO_L43P_7  G22 NC   

7  IO_L43N_7  G21 NC   

7  IO_L42P_7   F25 NC NC NC

7  IO_L42N_7   F24 NC NC NC

7  IO_L40P_7   F23 NC NC NC

7  IO_L40N_7/VREF_7   F22 NC NC NC

7  IO_L06P_7  E26   

7  IO_L06N_7  E25   

7  IO_L05P_7  E24   

7  IO_L05N_7  E23   

7  IO_L04P_7  D26   
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7  IO_L04N_7/VREF_7  D25   

7  IO_L03P_7  C26   

7  IO_L03N_7  C25   

7  IO_L02P_7  B26   

7  IO_L02N_7  A25   

7  IO_L01P_7/VRN_7  D24   

7  IO_L01N_7/VRP_7  C23   

0  VCCO_0  C17   

0  VCCO_0  C20   

0  VCCO_0  H17   

0  VCCO_0  H18   

0  VCCO_0  J14   

0  VCCO_0  J15   

0  VCCO_0  J16   

1  VCCO_1  C7   

1  VCCO_1  H9   

1  VCCO_1  C10   

1  VCCO_1  H10   

1  VCCO_1  J11   

1  VCCO_1  J12   

1  VCCO_1  J13   

2  VCCO_2  G2   

2  VCCO_2  J8   

2  VCCO_2  K2   

2  VCCO_2  K8   

2  VCCO_2  L9   

2  VCCO_2  M9   

2  VCCO_2  N9   

3  VCCO_3  P9   

3  VCCO_3  R9   

3  VCCO_3  T9   

3  VCCO_3  U2   

3  VCCO_3  U8   

3  VCCO_3  V8   
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3  VCCO_3  Y2   

4  VCCO_4  W9   

4  VCCO_4  AD7   

4  VCCO_4  V11   

4  VCCO_4  V12   

4  VCCO_4  V13   

4  VCCO_4  W10   

4  VCCO_4  AD10   

5  VCCO_5  V14   

5  VCCO_5  V15   

5  VCCO_5  V16   

5  VCCO_5  W17   

5  VCCO_5  W18   

5  VCCO_5  AD17   

5  VCCO_5  AD20   

6  VCCO_6  P18   

6  VCCO_6  R18   

6  VCCO_6  T18   

6  VCCO_6  U19   

6  VCCO_6  U25   

6  VCCO_6  V19   

6  VCCO_6  Y25   

7  VCCO_7  G25   

7  VCCO_7  J19   

7  VCCO_7  K19   

7  VCCO_7  K25   

7  VCCO_7  L18   

7  VCCO_7  M18   

7  VCCO_7  N18   

N/A  CCLK  W7   

N/A  PROG_B  D22   

N/A  DONE  AB6   

N/A  M0  AC22   

N/A  M1  W20   
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N/A  M2  AB21   

N/A  TCK  G8   

N/A  TDI  H20   

N/A  TDO  H7   

N/A  TMS  F7   

N/A  PWRDWN_B  AC5   

N/A  HSWAP_EN  E21   

N/A  RSVD  D5   

N/A  VBATT  E6   

N/A  DXP  F20   

N/A  DXN  G19   

N/A  AVCCAUXTX7  B11   

N/A  VTTXPAD7  B12   

N/A  TXNPAD7  A12   

N/A  TXPPAD7  A11   

N/A  GNDA7  C11   

N/A  GNDA7  C11   

N/A  RXPPAD7  A10   

N/A  RXNPAD7  A9   

N/A  VTRXPAD7  B10   

N/A  AVCCAUXRX7  B9   

N/A  AVCCAUXTX9  B6 NC NC

N/A  VTTXPAD9  B7 NC NC

N/A  TXNPAD9  A7 NC NC

N/A  TXPPAD9  A6 NC NC

N/A  GNDA9  C5 NC NC

N/A  GNDA9  C5 NC NC

N/A  RXPPAD9  A5 NC NC

N/A  RXNPAD9  A4 NC NC

N/A  VTRXPAD9  B5 NC NC

N/A  AVCCAUXRX9  B4 NC NC

N/A  AVCCAUXRX16  AE4 NC NC

N/A  VTRXPAD16  AE5 NC NC

N/A  RXNPAD16  AF4 NC NC

N/A  RXPPAD16  AF5 NC NC
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N/A  GNDA16  AD5 NC NC

N/A  GNDA16  AD5 NC NC

N/A  TXPPAD16  AF6 NC NC

N/A  TXNPAD16  AF7 NC NC

N/A  VTTXPAD16  AE7 NC NC

N/A  AVCCAUXTX16  AE6 NC NC

N/A  AVCCAUXRX18  AE9   

N/A  VTRXPAD18  AE10   

N/A  RXNPAD18  AF9   

N/A  RXPPAD18  AF10   

N/A  GNDA18  AD11   

N/A  GNDA18  AD11   

N/A  TXPPAD18  AF11   

N/A  TXNPAD18  AF12   

N/A  VTTXPAD18  AE12   

N/A  AVCCAUXTX18  AE11   

N/A  AVCCAUXTX4  B22 NC NC

N/A  VTTXPAD4  B23 NC NC

N/A  TXNPAD4  A23 NC NC

N/A  TXPPAD4  A22 NC NC

N/A  GNDA4  C22 NC NC

N/A  GNDA4  C22 NC NC

N/A  RXPPAD4  A21 NC NC

N/A  RXNPAD4  A20 NC NC

N/A  VTRXPAD4  B21 NC NC

N/A  AVCCAUXRX4  B20 NC NC

N/A  AVCCAUXTX6  B17   

N/A  VTTXPAD6  B18   

N/A  TXNPAD6  A18   

N/A  TXPPAD6  A17   

N/A  GNDA6  C16   

N/A  GNDA6  C16   

N/A  RXPPAD6  A16   

N/A  RXNPAD6  A15   

N/A  VTRXPAD6  B16   
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N/A  AVCCAUXRX6  B15   

N/A  AVCCAUXRX19  AE15   

N/A  VTRXPAD19  AE16   

N/A  RXNPAD19  AF15   

N/A  RXPPAD19  AF16   

N/A  GNDA19  AD16   

N/A  GNDA19  AD16   

N/A  TXPPAD19  AF17   

N/A  TXNPAD19  AF18   

N/A  VTTXPAD19  AE18   

N/A  AVCCAUXTX19  AE17   

N/A  AVCCAUXRX21  AE20 NC NC

N/A  VTRXPAD21  AE21 NC NC

N/A  RXNPAD21  AF20 NC NC

N/A  RXPPAD21  AF21 NC NC

N/A  GNDA21  AD22 NC NC

N/A  GNDA21  AD22 NC NC

N/A  TXPPAD21  AF22 NC NC

N/A  TXNPAD21  AF23 NC NC

N/A  VTTXPAD21  AE23 NC NC

N/A  AVCCAUXTX21  AE22 NC NC

N/A  VCCINT  H8   

N/A  VCCINT  J9   

N/A  VCCINT  K9   

N/A  VCCINT  U9   

N/A  VCCINT  V9   

N/A  VCCINT  W8   

N/A  VCCINT  H19   

N/A  VCCINT  J10   

N/A  VCCINT  J17   

N/A  VCCINT  J18   

N/A  VCCINT  K11   

N/A  VCCINT  K16   

N/A  VCCINT  K18   
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N/A  VCCINT  L10   

N/A  VCCINT  L17   

N/A  VCCINT  T10   

N/A  VCCINT  T17   

N/A  VCCINT  U11   

N/A  VCCINT  U16   

N/A  VCCINT  U18   

N/A  VCCINT  V10   

N/A  VCCINT  V17   

N/A  VCCINT  V18   

N/A  VCCINT  W19   

N/A  VCCAUX  B2   

N/A  VCCAUX  N1   

N/A  VCCAUX  P1   

N/A  VCCAUX  A13   

N/A  VCCAUX  A14   

N/A  VCCAUX  AE2   

N/A  VCCAUX  B25   

N/A  VCCAUX  N26   

N/A  VCCAUX  P26   

N/A  VCCAUX  AE25   

N/A  VCCAUX  AF13   

N/A  VCCAUX  AF14   

N/A  GND  C3   

N/A  GND  D4   

N/A  GND  E5   

N/A  GND  F6   

N/A  GND  G7   

N/A  GND  Y7   

N/A  GND  AA6   

N/A  GND  AB5   

N/A  GND  AC4   

N/A  GND  AD3   

N/A  GND  C24   

N/A  GND  D23   
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N/A  GND  E22   

N/A  GND  F21   

N/A  GND  G20   

N/A  GND  K10   

N/A  GND  K12   

N/A  GND  K13   

N/A  GND  K14   

N/A  GND  K15   

N/A  GND  K17   

N/A  GND  L11   

N/A  GND  L12   

N/A  GND  L13   

N/A  GND  L14   

N/A  GND  L15   

N/A  GND  L16   

N/A  GND  M10   

N/A  GND  M11   

N/A  GND  M12   

N/A  GND  M13   

N/A  GND  M14   

N/A  GND  M15   

N/A  GND  M16   

N/A  GND  M17   

N/A  GND  N10   

N/A  GND  N11   

N/A  GND  N12   

N/A  GND  N13   

N/A  GND  N14   

N/A  GND  N15   

N/A  GND  N16   

N/A  GND  N17   

N/A  GND  P10   

N/A  GND  P11   

N/A  GND  P12   

N/A  GND  P13   
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N/A  GND  P14   

N/A  GND  P15   

N/A  GND  P16   

N/A  GND  P17   

N/A  GND  R10   

N/A  GND  R11   

N/A  GND  R12   

N/A  GND  R13   

N/A  GND  R14   

N/A  GND  R15   

N/A  GND  R16   

N/A  GND  R17   

N/A  GND  T11   

N/A  GND  T12   

N/A  GND  T13   

N/A  GND  T14   

N/A  GND  T15   

N/A  GND  T16   

N/A  GND  U10   

N/A  GND  U12   

N/A  GND  U13   

N/A  GND  U14   

N/A  GND  U15   

N/A  GND  U17   

N/A  GND  Y20   

N/A  GND  AA21   

N/A  GND  AB22   

N/A  GND  AC23   

N/A  GND  AD24   
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FF672 Flip-Chip Fine-Pitch BGA Package Specifications (1.00mm pitch)

Figure 3:  FF672 Flip-Chip Fine-Pitch BGA Package Specifications

http://www.xilinx.com


Virtex-II Pro™ Platform FPGAs: Pinout Information
R

Module 4 of 4 www.xilinx.com DS083-4 (v1.0) January 31, 2002
216 1-800-255-7778 Advance Product Specification

FF896 Flip-Chip Fine-Pitch BGA Package
As shown in Table 9, the XC2VP7 and XC2VP20 Virtex-II Pro devices are available in the FF896 flip-chip fine-pitch BGA
package. Pins in each of these devices are the same, except for differences shown in the "No Connects" column. Following
this table are the FF896 Flip-Chip Fine-Pitch BGA Package Specifications (1.00mm pitch).

Table  9:  FF896 — XC2VP7 and XC2VP20

Bank Pin Description Pin Number

No Connects

XC2V
P7

XC2V
P20

0  IO_L01N_0/VRP_0  E25   

0  IO_L01P_0/VRN_0  E24   

0  IO_L02N_0  F24   

0  IO_L02P_0  F23   

0  IO_L03N_0  E23   

0  IO_L03P_0/VREF_0  E22   

0  IO_L05_0/No_Pair  G23   

0  IO_L06N_0  H22   

0  IO_L06P_0  G22   

0  IO_L07N_0  F22   

0  IO_L07P_0  F21   

0  IO_L08N_0  D24   

0  IO_L08P_0  C24   

0  IO_L09N_0  H21   

0  IO_L09P_0/VREF_0  G21   

0  IO_L37N_0  E21   

0  IO_L37P_0  D21   

0  IO_L38N_0  D23   

0  IO_L38P_0  C23   

0  IO_L39N_0  H20   

0  IO_L39P_0  G20   

0  IO_L43N_0  E20   

0  IO_L43P_0  D20   

0  IO_L44N_0  B23   

0  IO_L44P_0  A23   

0  IO_L45N_0  H19   

0  IO_L45P_0/VREF_0  G19   

0  IO_L46N_0   E19 NC

0  IO_L46P_0   E18 NC

0  IO_L47N_0   C22 NC

0  IO_L47P_0   B22 NC

0  IO_L48N_0   F20 NC

0  IO_L48P_0   F19 NC
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0  IO_L49N_0   G17 NC

0  IO_L49P_0   F17 NC

0  IO_L50_0/No_Pair   B21 NC

0  IO_L53_0/No_Pair   A21 NC

0  IO_L54N_0   H18 NC

0  IO_L54P_0   G18 NC

0  IO_L56N_0   C21 NC

0  IO_L56P_0   C20 NC

0  IO_L57N_0   J17 NC

0  IO_L57P_0/VREF_0   H17 NC

0  IO_L67N_0  E17   

0  IO_L67P_0  D17   

0  IO_L68N_0  D18   

0  IO_L68P_0  C18   

0  IO_L69N_0  J16   

0  IO_L69P_0/VREF_0  H16   

0  IO_L73N_0  E16   

0  IO_L73P_0  D16   

0  IO_L74N_0/GCLK7P  C16   

0  IO_L74P_0/GCLK6S  B16   

0  IO_L75N_0/GCLK5P  G16   

0  IO_L75P_0/GCLK4S  F16   

1  IO_L75N_1/GCLK3P  F15   

1  IO_L75P_1/GCLK2S  G15   

1  IO_L74N_1/GCLK1P  B15   

1  IO_L74P_1/GCLK0S  C15   

1  IO_L73N_1  D15   

1  IO_L73P_1  E15   

1  IO_L69N_1/VREF_1  H15   

1  IO_L69P_1  J15   

1  IO_L68N_1  C13   

1  IO_L68P_1  D13   

1  IO_L67N_1  D14   

1  IO_L67P_1  E14   

1  IO_L57N_1/VREF_1   H14 NC

1  IO_L57P_1   J14 NC
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1  IO_L56N_1   C11 NC

1  IO_L56P_1   C10 NC

1  IO_L54N_1   G13 NC

1  IO_L54P_1   H13 NC

1  IO_L53_1/No_Pair   A10 NC

1  IO_L50_1/No_Pair   B10 NC

1  IO_L49N_1   F14 NC

1  IO_L49P_1   G14 NC

1  IO_L48N_1   F12 NC

1  IO_L48P_1   F11 NC

1  IO_L47N_1   B9 NC

1  IO_L47P_1   C9 NC

1  IO_L46N_1   E13 NC

1  IO_L46P_1   E12 NC

1  IO_L45N_1/VREF_1  G12   

1  IO_L45P_1  H12   

1  IO_L44N_1  A8   

1  IO_L44P_1  B8   

1  IO_L43N_1  D11   

1  IO_L43P_1  E11   

1  IO_L39N_1  G11   

1  IO_L39P_1  H11   

1  IO_L38N_1  C8   

1  IO_L38P_1  D8   

1  IO_L37N_1  D10   

1  IO_L37P_1  E10   

1  IO_L09N_1/VREF_1  G10   

1  IO_L09P_1  H10   

1  IO_L08N_1  C7   

1  IO_L08P_1  D7   

1  IO_L07N_1  F10   

1  IO_L07P_1  F9   

1  IO_L06N_1  G9   

1  IO_L06P_1  H9   

1  IO_L05_1/No_Pair  G8   

1  IO_L03N_1/VREF_1  E9   

1  IO_L03P_1  E8   
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1  IO_L02N_1  F8   

1  IO_L02P_1  F7   

1  IO_L01N_1/VRP_1  E7   

1  IO_L01P_1/VRN_1  E6   

2  IO_L01N_2/VRP_2  A3   

2  IO_L01P_2/VRN_2  B3   

2  IO_L02N_2  G6   

2  IO_L02P_2  G5   

2  IO_L03N_2  C5   

2  IO_L03P_2  D5   

2  IO_L04N_2/VREF_2  C2   

2  IO_L04P_2  C1   

2  IO_L05N_2  J8   

2  IO_L05P_2  J7   

2  IO_L06N_2  C4   

2  IO_L06P_2  D3  

2  IO_L31N_2  D2 NC

2  IO_L31P_2  D1 NC

2  IO_L32N_2  H6 NC

2  IO_L32P_2  H5 NC

2  IO_L33N_2  E4 NC

2  IO_L33P_2  E3 NC

2  IO_L34N_2/VREF_2  E2 NC

2  IO_L34P_2  E1 NC

2  IO_L35N_2  K8 NC

2  IO_L35P_2  K7 NC

2  IO_L36N_2  F4 NC

2  IO_L36P_2  F3 NC

2  IO_L37N_2  F2 NC

2  IO_L37P_2  F1 NC

2  IO_L38N_2  J6 NC

2  IO_L38P_2  J5 NC

2  IO_L39N_2  G4 NC

2  IO_L39P_2  G3 NC

2  IO_L40N_2/VREF_2   G2 NC

2  IO_L40P_2   G1 NC
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2  IO_L41N_2  L8 NC

2  IO_L41P_2  L7 NC

2  IO_L42N_2  H4 NC

2  IO_L42P_2  H3 NC

2  IO_L43N_2  H2   

2  IO_L43P_2  J2   

2  IO_L44N_2  M8   

2  IO_L44P_2  M7   

2  IO_L45N_2  K6   

2  IO_L45P_2  K5   

2  IO_L46N_2/VREF_2  J1   

2  IO_L46P_2  K1   

2  IO_L47N_2  M6   

2  IO_L47P_2  M5   

2  IO_L48N_2  J4   

2  IO_L48P_2  J3   

2  IO_L49N_2  K2   

2  IO_L49P_2  L2   

2  IO_L50N_2  N8   

2  IO_L50P_2  N7   

2  IO_L51N_2  K4   

2  IO_L51P_2  K3   

2  IO_L52N_2/VREF_2  L1   

2  IO_L52P_2  M1   

2  IO_L53N_2  N6   

2  IO_L53P_2  N5   

2  IO_L54N_2  L5   

2  IO_L54P_2  L4   

2  IO_L55N_2  M2   

2  IO_L55P_2  N2   

2  IO_L56N_2  P9   

2  IO_L56P_2  R9   

2  IO_L57N_2  M4   

2  IO_L57P_2  M3   

2  IO_L58N_2/VREF_2  N1   

2  IO_L58P_2  P1   

2  IO_L59N_2  P8   
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2  IO_L59P_2  P7   

2  IO_L60N_2  N4   

2  IO_L60P_2  N3   

2  IO_L85N_2  P3   

2  IO_L85P_2  P2   

2  IO_L86N_2  R8   

2  IO_L86P_2  R7   

2  IO_L87N_2  P5   

2  IO_L87P_2  P4   

2  IO_L88N_2/VREF_2  R2   

2  IO_L88P_2  T2   

2  IO_L89N_2  R6   

2  IO_L89P_2  R5   

2  IO_L90N_2  R4   

2  IO_L90P_2  R3   

3  IO_L90N_3  U1   

3  IO_L90P_3  V1   

3  IO_L89N_3  T5   

3  IO_L89P_3  T6   

3  IO_L88N_3  T3   

3  IO_L88P_3  T4   

3  IO_L87N_3/VREF_3  U2   

3  IO_L87P_3  U3   

3  IO_L86N_3  T7   

3  IO_L86P_3  T8   

3  IO_L85N_3  U4   

3  IO_L85P_3  U5   

3  IO_L60N_3  V2   

3  IO_L60P_3  W2   

3  IO_L59N_3  T9   

3  IO_L59P_3  U9   

3  IO_L58N_3  V3   

3  IO_L58P_3  V4   

3  IO_L57N_3/VREF_3  W1   

3  IO_L57P_3  Y1   

3  IO_L56N_3  U7   
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3  IO_L56P_3  U8   

3  IO_L55N_3  V5   

3  IO_L55P_3  V6   

3  IO_L54N_3  Y2   

3  IO_L54P_3  AA2   

3  IO_L53N_3  V7   

3  IO_L53P_3  V8   

3  IO_L52N_3  W3   

3  IO_L52P_3  W4   

3  IO_L51N_3/VREF_3  AA1   

3  IO_L51P_3  AB1   

3  IO_L50N_3  W5   

3  IO_L50P_3  W6   

3  IO_L49N_3  Y4   

3  IO_L49P_3  Y5   

3  IO_L48N_3  AA3   

3  IO_L48P_3  AA4   

3  IO_L47N_3  W7   

3  IO_L47P_3  W8   

3  IO_L46N_3  AB3   

3  IO_L46P_3  AB4   

3  IO_L45N_3/VREF_3  AB2   

3  IO_L45P_3  AC2   

3  IO_L44N_3  AA5   

3  IO_L44P_3  AA6   

3  IO_L43N_3  AC3   

3  IO_L43P_3  AC4   

3  IO_L42N_3   AD1 NC

3  IO_L42P_3   AD2 NC

3  IO_L41N_3   Y7 NC

3  IO_L41P_3   Y8 NC

3  IO_L40N_3   AB5 NC

3  IO_L40P_3   AB6 NC

3  IO_L39N_3/VREF_3   AE1 NC

3  IO_L39P_3   AE2 NC

3  IO_L38N_3   AA7 NC

3  IO_L38P_3   AA8 NC

Table  9:  FF896 — XC2VP7 and XC2VP20

Bank Pin Description Pin Number

No Connects

XC2V
P7

XC2V
P20

http://www.xilinx.com


Virtex-II Pro™ Platform FPGAs: Pinout Information
R

DS083-4 (v1.0) January 31, 2002 www.xilinx.com Module 4 of 4
Advance Product Specification 1-800-255-7778 223

3  IO_L37N_3   AD3 NC

3  IO_L37P_3   AD4 NC

3  IO_L36N_3   AF1 NC

3  IO_L36P_3   AF2 NC

3  IO_L35N_3   AC5 NC

3  IO_L35P_3   AC6 NC

3  IO_L34N_3   AF3 NC

3  IO_L34P_3   AF4 NC

3  IO_L33N_3/VREF_3   AE3 NC

3  IO_L33P_3   AE4 NC

3  IO_L32N_3   AB7 NC

3  IO_L32P_3   AB8 NC

3  IO_L31N_3   AE5 NC

3  IO_L31P_3   AF6 NC

3  IO_L06N_3  AG1   

3  IO_L06P_3  AG2   

3  IO_L05N_3  AD5   

3  IO_L05P_3  AD6   

3  IO_L04N_3  AG3   

3  IO_L04P_3  AH4   

3  IO_L03N_3/VREF_3  AH1   

3  IO_L03P_3  AH2   

3  IO_L02N_3  AG5   

3  IO_L02P_3  AH5   

3  IO_L01N_3/VRP_3  AJ3   

3  IO_L01P_3/VRN_3  AK3   

4  IO_L01N_4/DOUT  AG6   

4  IO_L01P_4/INIT_B  AF7   

4  IO_L02N_4/D0  AC9   

4  IO_L02P_4/D1  AD9   

4  IO_L03N_4/D2  AG7   

4  IO_L03P_4/D3  AH7   

4  IO_L05_4/No_Pair  AD8   

4  IO_L06N_4/VRP_4  AG8   

4  IO_L06P_4/VRN_4  AH8   

4  IO_L07N_4  AC10   
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4  IO_L07P_4/VREF_4  AD10   

4  IO_L08N_4  AE7   

4  IO_L08P_4  AE8   

4  IO_L09N_4  AJ8   

4  IO_L09P_4/VREF_4  AK8   

4  IO_L37N_4  AC11   

4  IO_L37P_4  AD11   

4  IO_L38N_4  AF8   

4  IO_L38P_4  AF9   

4  IO_L39N_4  AF10   

4  IO_L39P_4  AG10   

4  IO_L43N_4  AC12   

4  IO_L43P_4  AD12   

4  IO_L44N_4  AE9   

4  IO_L44P_4  AE10   

4  IO_L45N_4  AH9   

4  IO_L45P_4/VREF_4  AJ9   

4  IO_L46N_4   AC13 NC

4  IO_L46P_4   AD13 NC

4  IO_L47N_4   AE11 NC

4  IO_L47P_4   AE12 NC

4  IO_L48N_4   AH10 NC

4  IO_L48P_4   AH11 NC

4  IO_L49N_4   AB14 NC

4  IO_L49P_4   AC14 NC

4  IO_L50_4/No_Pair   AF11 NC

4  IO_L53_4/No_Pair   AG11 NC

4  IO_L54N_4   AJ10 NC

4  IO_L54P_4   AK10 NC

4  IO_L56N_4   AF12 NC

4  IO_L56P_4   AF13 NC

4  IO_L57N_4   AG13 NC

4  IO_L57P_4/VREF_4   AH13 NC

4  IO_L67N_4  AB15   

4  IO_L67P_4  AC15   

4  IO_L68N_4  AD14   

4  IO_L68P_4  AE14   
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4  IO_L69N_4  AF14   

4  IO_L69P_4/VREF_4  AG14   

4  IO_L73N_4  AD15   

4  IO_L73P_4  AE15   

4  IO_L74N_4/GCLK3S  AF15   

4  IO_L74P_4/GCLK2P  AG15   

4  IO_L75N_4/GCLK1S  AH15   

4  IO_L75P_4/GCLK0P  AJ15   

5  IO_L75N_5/GCLK7S  AJ16   

5  IO_L75P_5/GCLK6P  AH16   

5  IO_L74N_5/GCLK5S  AG16   

5  IO_L74P_5/GCLK4P  AF16   

5  IO_L73N_5  AE16   

5  IO_L73P_5  AD16   

5  IO_L69N_5/VREF_5  AG17   

5  IO_L69P_5  AF17   

5  IO_L68N_5  AE17   

5  IO_L68P_5  AD17   

5  IO_L67N_5  AC16   

5  IO_L67P_5  AB16   

5  IO_L57N_5/VREF_5   AH18 NC

5  IO_L57P_5   AG18 NC

5  IO_L56N_5   AF18 NC

5  IO_L56P_5   AF19 NC

5  IO_L54N_5   AK21 NC

5  IO_L54P_5   AJ21 NC

5  IO_L53_5/No_Pair   AG20 NC

5  IO_L50_5/No_Pair   AF20 NC

5  IO_L49N_5   AC17 NC

5  IO_L49P_5   AB17 NC

5  IO_L48N_5   AH20 NC

5  IO_L48P_5   AH21 NC

5  IO_L47N_5   AE19 NC

5  IO_L47P_5   AE20 NC

5  IO_L46N_5   AD18 NC

5  IO_L46P_5   AC18 NC
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5  IO_L45N_5/VREF_5  AJ22   

5  IO_L45P_5  AH22   

5  IO_L44N_5  AE21   

5  IO_L44P_5  AE22   

5  IO_L43N_5  AD19   

5  IO_L43P_5  AC19   

5  IO_L39N_5  AG21   

5  IO_L39P_5  AF21   

5  IO_L38N_5  AF22   

5  IO_L38P_5  AF23   

5  IO_L37N_5  AD20   

5  IO_L37P_5  AC20   

5  IO_L09N_5/VREF_5  AK23   

5  IO_L09P_5  AJ23   

5  IO_L08N_5  AE23   

5  IO_L08P_5  AE24   

5  IO_L07N_5/VREF_5  AD21   

5  IO_L07P_5  AC21   

5  IO_L06N_5/VRP_5  AH23   

5  IO_L06P_5/VRN_5  AG23   

5  IO_L05_5/No_Pair  AD23   

5  IO_L03N_5/D4  AH24   

5  IO_L03P_5/D5  AG24   

5  IO_L02N_5/D6  AD22   

5  IO_L02P_5/D7  AC22   

5  IO_L01N_5/RDWR_B  AF24   

5  IO_L01P_5/CS_B  AG25   

6  IO_L01P_6/VRN_6  AK28   

6  IO_L01N_6/VRP_6  AJ28   

6  IO_L02P_6  AH26   

6  IO_L02N_6  AG26   

6  IO_L03P_6  AH29   

6  IO_L03N_6/VREF_6  AH30   

6  IO_L04P_6  AH27   

6  IO_L04N_6  AG28   

6  IO_L05P_6  AD25   
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6  IO_L05N_6  AD26   

6  IO_L06P_6  AG29   

6  IO_L06N_6  AG30   

6  IO_L31P_6   AF25 NC

6  IO_L31N_6   AE26 NC

6  IO_L32P_6   AB23 NC

6  IO_L32N_6   AB24 NC

6  IO_L33P_6   AE27 NC

6  IO_L33N_6/VREF_6   AE28 NC

6  IO_L34P_6   AF27 NC

6  IO_L34N_6   AF28 NC

6  IO_L35P_6   AC25 NC

6  IO_L35N_6   AC26 NC

6  IO_L36P_6   AF29 NC

6  IO_L36N_6   AF30 NC

6  IO_L37P_6   AD27 NC

6  IO_L37N_6   AD28 NC

6  IO_L38P_6   AA23 NC

6  IO_L38N_6   AA24 NC

6  IO_L39P_6   AE29 NC

6  IO_L39N_6/VREF_6   AE30 NC

6  IO_L40P_6   AB25 NC

6  IO_L40N_6   AB26 NC

6  IO_L41P_6   Y23 NC

6  IO_L41N_6   Y24 NC

6  IO_L42P_6   AD29 NC

6  IO_L42N_6   AD30 NC

6  IO_L43P_6  AC27   

6  IO_L43N_6  AC28   

6  IO_L44P_6  AA25   

6  IO_L44N_6  AA26   

6  IO_L45P_6  AC29   

6  IO_L45N_6/VREF_6  AB29   

6  IO_L46P_6  AB27   

6  IO_L46N_6  AB28   

6  IO_L47P_6  W23   

6  IO_L47N_6  W24   
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6  IO_L48P_6  AA27   

6  IO_L48N_6  AA28   

6  IO_L49P_6  Y26   

6  IO_L49N_6  Y27   

6  IO_L50P_6  W25   

6  IO_L50N_6  W26   

6  IO_L51P_6  AB30   

6  IO_L51N_6/VREF_6  AA30   

6  IO_L52P_6  W27   

6  IO_L52N_6  W28   

6  IO_L53P_6  V23   

6  IO_L53N_6  V24   

6  IO_L54P_6  AA29   

6  IO_L54N_6  Y29   

6  IO_L55P_6  V25   

6  IO_L55N_6  V26   

6  IO_L56P_6  U23   

6  IO_L56N_6  U24   

6  IO_L57P_6  Y30   

6  IO_L57N_6/VREF_6  W30   

6  IO_L58P_6  V27   

6  IO_L58N_6  V28   

6  IO_L59P_6  U22   

6  IO_L59N_6  T22   

6  IO_L60P_6  W29   

6  IO_L60N_6  V29   

6  IO_L85P_6  U26   

6  IO_L85N_6  U27   

6  IO_L86P_6  T23   

6  IO_L86N_6  T24   

6  IO_L87P_6  U28   

6  IO_L87N_6/VREF_6  U29   

6  IO_L88P_6  T27   

6  IO_L88N_6  T28   

6  IO_L89P_6  T25   

6  IO_L89N_6  T26   

6  IO_L90P_6  V30   
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6  IO_L90N_6  U30   

7  IO_L90P_7  R28   

7  IO_L90N_7  R27   

7  IO_L89P_7  R26   

7  IO_L89N_7  R25   

7  IO_L88P_7  T29   

7  IO_L88N_7/VREF_7  R29   

7  IO_L87P_7  P27   

7  IO_L87N_7  P26   

7  IO_L86P_7  R24   

7  IO_L86N_7  R23   

7  IO_L85P_7  P29   

7  IO_L85N_7  P28   

7  IO_L60P_7  N28   

7  IO_L60N_7  N27   

7  IO_L59P_7  P24   

7  IO_L59N_7  P23   

7  IO_L58P_7  P30   

7  IO_L58N_7/VREF_7  N30   

7  IO_L57P_7  M28   

7  IO_L57N_7  M27   

7  IO_L56P_7  R22   

7  IO_L56N_7  P22   

7  IO_L55P_7  N29   

7  IO_L55N_7  M29   

7  IO_L54P_7  L27   

7  IO_L54N_7  L26   

7  IO_L53P_7  N26   

7  IO_L53N_7  N25   

7  IO_L52P_7  M30   

7  IO_L52N_7/VREF_7  L30   

7  IO_L51P_7  K28   

7  IO_L51N_7  K27   

7  IO_L50P_7  N24   

7  IO_L50N_7  N23   

7  IO_L49P_7  L29   
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7  IO_L49N_7  K29   

7  IO_L48P_7  J28   

7  IO_L48N_7  J27   

7  IO_L47P_7  M26   

7  IO_L47N_7  M25   

7  IO_L46P_7  K30   

7  IO_L46N_7/VREF_7  J30   

7  IO_L45P_7  K26   

7  IO_L45N_7  K25   

7  IO_L44P_7  M24   

7  IO_L44N_7  M23   

7  IO_L43P_7  J29   

7  IO_L43N_7  H29   

7  IO_L42P_7   H28 NC

7  IO_L42N_7   H27 NC

7  IO_L41P_7   L24 NC

7  IO_L41N_7   L23 NC

7  IO_L40P_7   G30 NC

7  IO_L40N_7/VREF_7   G29 NC

7  IO_L39P_7   G28 NC

7  IO_L39N_7   G27 NC

7  IO_L38P_7   J26 NC

7  IO_L38N_7   J25 NC

7  IO_L37P_7   F30 NC

7  IO_L37N_7   F29 NC

7  IO_L36P_7   F28 NC

7  IO_L36N_7   F27 NC

7  IO_L35P_7   K24 NC

7  IO_L35N_7   K23 NC

7  IO_L34P_7   E30 NC

7  IO_L34N_7/VREF_7   E29 NC

7  IO_L33P_7   E28 NC

7  IO_L33N_7   E27 NC

7  IO_L32P_7   H26 NC

7  IO_L32N_7   H25 NC

7  IO_L31P_7   D30 NC

7  IO_L31N_7   D29 NC

Table  9:  FF896 — XC2VP7 and XC2VP20

Bank Pin Description Pin Number

No Connects

XC2V
P7

XC2V
P20

http://www.xilinx.com


Virtex-II Pro™ Platform FPGAs: Pinout Information
R

DS083-4 (v1.0) January 31, 2002 www.xilinx.com Module 4 of 4
Advance Product Specification 1-800-255-7778 231

7  IO_L06P_7  D28   

7  IO_L06N_7  C27   

7  IO_L05P_7  J24   

7  IO_L05N_7  J23   

7  IO_L04P_7  C30   

7  IO_L04N_7/VREF_7  C29   

7  IO_L03P_7  D26   

7  IO_L03N_7  C26   

7  IO_L02P_7  G26   

7  IO_L02N_7  G25   

7  IO_L01P_7/VRN_7  B28   

7  IO_L01N_7/VRP_7  A28   

0  VCCO_0  K21   

0  VCCO_0  K20   

0  VCCO_0  K19   

0  VCCO_0  K18   

0  VCCO_0  K17   

0  VCCO_0  K16   

0  VCCO_0  J21   

0  VCCO_0  J20   

0  VCCO_0  J19   

0  VCCO_0  J18   

1  VCCO_1  K15   

1  VCCO_1  K14   

1  VCCO_1  K13   

1  VCCO_1  K12   

1  VCCO_1  K11   

1  VCCO_1  K10   

1  VCCO_1  J13   

1  VCCO_1  J12   

1  VCCO_1  J11   

1  VCCO_1  J10   

2  VCCO_2  R10   

2  VCCO_2  P10   

2  VCCO_2  N10   

2  VCCO_2  N9   
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2  VCCO_2  M10   

2  VCCO_2  M9   

2  VCCO_2  L10   

2  VCCO_2  L9   

2  VCCO_2  K9   

2  VCCO_2  J9   

3  VCCO_3  AB9   

3  VCCO_3  AA9   

3  VCCO_3  Y10   

3  VCCO_3  Y9   

3  VCCO_3  W10   

3  VCCO_3  W9   

3  VCCO_3  V10   

3  VCCO_3  V9   

3  VCCO_3  U10   

3  VCCO_3  T10   

4  VCCO_4  AB13   

4  VCCO_4  AB12   

4  VCCO_4  AB11   

4  VCCO_4  AB10   

4  VCCO_4  AA15   

4  VCCO_4  AA14   

4  VCCO_4  AA13   

4  VCCO_4  AA12   

4  VCCO_4  AA11   

4  VCCO_4  AA10   

5  VCCO_5  AB21   

5  VCCO_5  AB20   

5  VCCO_5  AB19   

5  VCCO_5  AB18   

5  VCCO_5  AA21   

5  VCCO_5  AA20   

5  VCCO_5  AA19   

5  VCCO_5  AA18   

5  VCCO_5  AA17   

5  VCCO_5  AA16   

6  VCCO_6  AB22   

Table  9:  FF896 — XC2VP7 and XC2VP20

Bank Pin Description Pin Number

No Connects

XC2V
P7

XC2V
P20

http://www.xilinx.com


Virtex-II Pro™ Platform FPGAs: Pinout Information
R

DS083-4 (v1.0) January 31, 2002 www.xilinx.com Module 4 of 4
Advance Product Specification 1-800-255-7778 233

6  VCCO_6  AA22   

6  VCCO_6  Y22   

6  VCCO_6  Y21   

6  VCCO_6  W22   

6  VCCO_6  W21   

6  VCCO_6  V22   

6  VCCO_6  V21   

6  VCCO_6  U21   

6  VCCO_6  T21   

7  VCCO_7  R21   

7  VCCO_7  P21   

7  VCCO_7  N22   

7  VCCO_7  N21   

7  VCCO_7  M22   

7  VCCO_7  M21   

7  VCCO_7  L22   

7  VCCO_7  L21   

7  VCCO_7  K22   

7  VCCO_7  J22   

N/A  CCLK  AC7   

N/A  PROG_B  G24   

N/A  DONE  AC8   

N/A  M0  AD24   

N/A  M1  AC24   

N/A  M2  AC23   

N/A  TCK  G7   

N/A  TDI  F26   

N/A  TDO  F5   

N/A  TMS  H8   

N/A  PWRDWN_B  AD7   

N/A  HSWAP_EN  H23   

N/A  RSVD  D6   

N/A  VBATT  H7   

N/A  DXP  H24   

N/A  DXN  D25   

N/A  AVCCAUXTX4  B26   
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N/A  VTTXPAD4  B27   

N/A  TXNPAD4  A27   

N/A  TXPPAD4  A26   

N/A  GNDA4  C25   

N/A  GNDA4  C25   

N/A  RXPPAD4  A25   

N/A  RXNPAD4  A24   

N/A  VTRXPAD4  B25   

N/A  AVCCAUXRX4  B24   

N/A  AVCCAUXTX6  B19   

N/A  VTTXPAD6  B20   

N/A  TXNPAD6  A20   

N/A  TXPPAD6  A19   

N/A  GNDA6  C19   

N/A  GNDA6  C19   

N/A  RXPPAD6  A18   

N/A  RXNPAD6  A17   

N/A  VTRXPAD6  B18   

N/A  AVCCAUXRX6  B17   

N/A  AVCCAUXTX7  B13   

N/A  VTTXPAD7  B14   

N/A  TXNPAD7  A14   

N/A  TXPPAD7  A13   

N/A  GNDA7  C12   

N/A  GNDA7  C12   

N/A  RXPPAD7  A12   

N/A  RXNPAD7  A11   

N/A  VTRXPAD7  B12   

N/A  AVCCAUXRX7  B11   

N/A  AVCCAUXTX9  B6   

N/A  VTTXPAD9  B7   

N/A  TXNPAD9  A7   

N/A  TXPPAD9  A6   

N/A  GNDA9  C6   

N/A  GNDA9  C6   

N/A  RXPPAD9  A5   

N/A  RXNPAD9  A4   
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N/A  VTRXPAD9  B5   

N/A  AVCCAUXRX9  B4   

N/A  AVCCAUXRX16  AJ4   

N/A  VTRXPAD16  AJ5   

N/A  RXNPAD16  AK4   

N/A  RXPPAD16  AK5   

N/A  GNDA16  AH6   

N/A  GNDA16  AH6   

N/A  TXPPAD16  AK6   

N/A  TXNPAD16  AK7   

N/A  VTTXPAD16  AJ7   

N/A  AVCCAUXTX16  AJ6   

N/A  AVCCAUXRX18  AJ11   

N/A  VTRXPAD18  AJ12   

N/A  RXNPAD18  AK11   

N/A  RXPPAD18  AK12   

N/A  GNDA18  AH12   

N/A  GNDA18  AH12   

N/A  TXPPAD18  AK13   

N/A  TXNPAD18  AK14   

N/A  VTTXPAD18  AJ14   

N/A  AVCCAUXTX18  AJ13   

N/A  AVCCAUXRX19  AJ17   

N/A  VTRXPAD19  AJ18   

N/A  RXNPAD19  AK17   

N/A  RXPPAD19  AK18   

N/A  GNDA19  AH19   

N/A  GNDA19  AH19   

N/A  TXPPAD19  AK19   

N/A  TXNPAD19  AK20   

N/A  VTTXPAD19  AJ20   

N/A  AVCCAUXTX19  AJ19   

N/A  AVCCAUXRX21  AJ24   

N/A  VTRXPAD21  AJ25   

N/A  RXNPAD21  AK24   

N/A  RXPPAD21  AK25   

N/A  GNDA21  AH25   
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N/A  GNDA21  AH25   

N/A  TXPPAD21  AK26   

N/A  TXNPAD21  AK27   

N/A  VTTXPAD21  AJ27   

N/A  AVCCAUXTX21  AJ26   

N/A  VCCAUX  AK29   

N/A  VCCAUX  AK16   

N/A  VCCAUX  AK15   

N/A  VCCAUX  AK2   

N/A  VCCAUX  AJ30   

N/A  VCCAUX  AJ1   

N/A  VCCAUX  T30   

N/A  VCCAUX  T1   

N/A  VCCAUX  R30   

N/A  VCCAUX  R1   

N/A  VCCAUX  B30   

N/A  VCCAUX  B1   

N/A  VCCAUX  A29   

N/A  VCCAUX  A16   

N/A  VCCAUX  A15   

N/A  VCCAUX  A2   

N/A  VCCINT  Y19   

N/A  VCCINT  Y18   

N/A  VCCINT  Y17   

N/A  VCCINT  Y16   

N/A  VCCINT  Y15   

N/A  VCCINT  Y14   

N/A  VCCINT  Y13   

N/A  VCCINT  Y12   

N/A  VCCINT  W20   

N/A  VCCINT  W11   

N/A  VCCINT  V20   

N/A  VCCINT  V11   

N/A  VCCINT  U20   

N/A  VCCINT  U11   

N/A  VCCINT  T20   
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N/A  VCCINT  T11   

N/A  VCCINT  R20   

N/A  VCCINT  R11   

N/A  VCCINT  P20   

N/A  VCCINT  P11   

N/A  VCCINT  N20   

N/A  VCCINT  N11   

N/A  VCCINT  M20   

N/A  VCCINT  M11   

N/A  VCCINT  L19   

N/A  VCCINT  L18   

N/A  VCCINT  L17   

N/A  VCCINT  L16   

N/A  VCCINT  L15   

N/A  VCCINT  L14   

N/A  VCCINT  L13   

N/A  VCCINT  L12   

N/A  GND  AK22   

N/A  GND  AK9   

N/A  GND  AJ29   

N/A  GND  AJ2   

N/A  GND  AH28   

N/A  GND  AH17   

N/A  GND  AH14   

N/A  GND  AH3   

N/A  GND  AG27   

N/A  GND  AG22   

N/A  GND  AG19   

N/A  GND  AG12   

N/A  GND  AG9   

N/A  GND  AG4   

N/A  GND  AF26   

N/A  GND  AF5   

N/A  GND  AE25   

N/A  GND  AE18   

N/A  GND  AE13   

N/A  GND  AE6   
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N/A  GND  AC30   

N/A  GND  AC1   

N/A  GND  Y28   

N/A  GND  Y25   

N/A  GND  Y20   

N/A  GND  Y11   

N/A  GND  Y6   

N/A  GND  Y3   

N/A  GND  W19   

N/A  GND  W18   

N/A  GND  W17   

N/A  GND  W16   

N/A  GND  W15   

N/A  GND  W14   

N/A  GND  W13   

N/A  GND  W12   

N/A  GND  V19   

N/A  GND  V18   

N/A  GND  V17   

N/A  GND  V16   

N/A  GND  V15   

N/A  GND  V14   

N/A  GND  V13   

N/A  GND  V12   

N/A  GND  U25   

N/A  GND  U19   

N/A  GND  U18   

N/A  GND  U17   

N/A  GND  U16   

N/A  GND  U15   

N/A  GND  U14   

N/A  GND  U13   

N/A  GND  U12   

N/A  GND  U6   

N/A  GND  T19   

N/A  GND  T18   

N/A  GND  T17   
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N/A  GND  T16   

N/A  GND  T15   

N/A  GND  T14   

N/A  GND  T13   

N/A  GND  T12   

N/A  GND  R19   

N/A  GND  R18   

N/A  GND  R17   

N/A  GND  R16   

N/A  GND  R15   

N/A  GND  R14   

N/A  GND  R13   

N/A  GND  R12   

N/A  GND  P25   

N/A  GND  P19   

N/A  GND  P18   

N/A  GND  P17   

N/A  GND  P16   

N/A  GND  P15   

N/A  GND  P14   

N/A  GND  P13   

N/A  GND  P12   

N/A  GND  P6   

N/A  GND  N19   

N/A  GND  N18   

N/A  GND  N17   

N/A  GND  N16   

N/A  GND  N15   

N/A  GND  N14   

N/A  GND  N13   

N/A  GND  N12   

N/A  GND  M19   

N/A  GND  M18   

N/A  GND  M17   

N/A  GND  M16   

N/A  GND  M15   

N/A  GND  M14   
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N/A  GND  M13   

N/A  GND  M12   

N/A  GND  L28   

N/A  GND  L25   

N/A  GND  L20   

N/A  GND  L11   

N/A  GND  L6   

N/A  GND  L3   

N/A  GND  H30   

N/A  GND  H1   

N/A  GND  F25   

N/A  GND  F18   

N/A  GND  F13   

N/A  GND  F6   

N/A  GND  E26   

N/A  GND  E5   

N/A  GND  D27   

N/A  GND  D22   

N/A  GND  D19   

N/A  GND  D12   

N/A  GND  D9   

N/A  GND  D4   

N/A  GND  C28   

N/A  GND  C17   

N/A  GND  C14   

N/A  GND  C3   

N/A  GND  B29   

N/A  GND  B2   

N/A  GND  A22   

N/A  GND  A9   
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FF896 Flip-Chip Fine-Pitch BGA Package Specifications (1.00mm pitch)

Figure 4:  FF896 Flip-Chip Fine-Pitch BGA Package Specifications
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FF1152 Flip-Chip Fine-Pitch BGA Package
As shown in Table 10, XC2VP20 and XC2VP50 Virtex-II Pro devices are available in the FF1152 flip-chip fine-pitch BGA
package. Pins in each of these devices are the same, except for the differences shown in the No Connect column. Following
this table are the FF1152 Flip-Chip Fine-Pitch BGA Package Specifications (1.00mm pitch).

Table  10:  FF1152 — XC2VP20 and XC2VP50

Bank Pin Description Pin Number

No Connects

XC2V
P20

XC2V
P50

0  IO_L01N_0/VRP_0  E29

0  IO_L01P_0/VRN_0  E28

0  IO_L02N_0  H26

0  IO_L02P_0  G26

0  IO_L03N_0  H25

0  IO_L03P_0/VREF_0  G25

0  IO_L05_0/No_Pair  J25

0  IO_L06N_0  K24

0  IO_L06P_0  J24

0  IO_L07N_0  F26

0  IO_L07P_0  E26

0  IO_L08N_0  D30

0  IO_L08P_0  D29

0  IO_L09N_0  K23

0  IO_L09P_0/VREF_0  J23

0  IO_L19N_0   F24 NC

0  IO_L19P_0   E24 NC

0  IO_L20N_0   D28 NC

0  IO_L20P_0   C28 NC

0  IO_L21N_0   H24 NC

0  IO_L21P_0   G24 NC

0  IO_L25N_0   G23 NC

0  IO_L25P_0   F23 NC

0  IO_L26N_0   E27 NC

0  IO_L26P_0   D27 NC

0  IO_L27N_0   K22 NC

0  IO_L27P_0/VREF_0   J22 NC

0  IO_L37N_0  H22

0  IO_L37P_0  G22

0  IO_L38N_0  D26

0  IO_L38P_0  C26

0  IO_L39N_0  K21
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0  IO_L39P_0  J21

0  IO_L43N_0  F22

0  IO_L43P_0  E22

0  IO_L44N_0  E25

0  IO_L44P_0  D25

0  IO_L45N_0  H21

0  IO_L45P_0/VREF_0  G21

0  IO_L46N_0  D22

0  IO_L46P_0  D23

0  IO_L47N_0  D24

0  IO_L47P_0  C24

0  IO_L48N_0  K20

0  IO_L48P_0  J20

0  IO_L49N_0  F21

0  IO_L49P_0  E21

0  IO_L50_0/No_Pair  C21

0  IO_L53_0/No_Pair  C22

0  IO_L54N_0  L19

0  IO_L54P_0  K19

0  IO_L55N_0  G20

0  IO_L55P_0  F20

0  IO_L56N_0  D21

0  IO_L56P_0  D20

0  IO_L57N_0  J19

0  IO_L57P_0/VREF_0  H19

0  IO_L67N_0  G19

0  IO_L67P_0  F19

0  IO_L68N_0  E19

0  IO_L68P_0  D19

0  IO_L69N_0  L18

0  IO_L69P_0/VREF_0  K18

0  IO_L73N_0  G18

0  IO_L73P_0  F18

0  IO_L74N_0/GCLK7P  E18

0  IO_L74P_0/GCLK6S  D18

0  IO_L75N_0/GCLK5P  J18

Table  10:  FF1152 — XC2VP20 and XC2VP50

Bank Pin Description Pin Number

No Connects

XC2V
P20

XC2V
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0  IO_L75P_0/GCLK4S  H18

1  IO_L75N_1/GCLK3P  H17

1  IO_L75P_1/GCLK2S  J17

1  IO_L74N_1/GCLK1P  D17

1  IO_L74P_1/GCLK0S  E17

1  IO_L73N_1  F17

1  IO_L73P_1  G17

1  IO_L69N_1/VREF_1  K17

1  IO_L69P_1  L17

1  IO_L68N_1  D16

1  IO_L68P_1  E16

1  IO_L67N_1  F16

1  IO_L67P_1  G16

1  IO_L57N_1/VREF_1  H16

1  IO_L57P_1  J16

1  IO_L56N_1  D15

1  IO_L56P_1  D14

1  IO_L55N_1  F15

1  IO_L55P_1  G15

1  IO_L54N_1  K16

1  IO_L54P_1  L16

1  IO_L53_1/No_Pair  C13

1  IO_L50_1/No_Pair  C14

1  IO_L49N_1  E14

1  IO_L49P_1  F14

1  IO_L48N_1  J15

1  IO_L48P_1  K15

1  IO_L47N_1  C11

1  IO_L47P_1  D11

1  IO_L46N_1  D12

1  IO_L46P_1  D13

1  IO_L45N_1/VREF_1  G14

1  IO_L45P_1  H14

1  IO_L44N_1  D10

1  IO_L44P_1  E10

Table  10:  FF1152 — XC2VP20 and XC2VP50

Bank Pin Description Pin Number
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1  IO_L43N_1  E13

1  IO_L43P_1  F13

1  IO_L39N_1  J14

1  IO_L39P_1  K14

1  IO_L38N_1  C9

1  IO_L38P_1  D9

1  IO_L37N_1  G13

1  IO_L37P_1  H13

1  IO_L27N_1/VREF_1   J13 NC

1  IO_L27P_1   K13 NC

1  IO_L26N_1   D8 NC

1  IO_L26P_1   E8 NC

1  IO_L25N_1   F12 NC

1  IO_L25P_1   G12 NC

1  IO_L21N_1   G11 NC

1  IO_L21P_1   H11 NC

1  IO_L20N_1   C7 NC

1  IO_L20P_1   D7 NC

1  IO_L19N_1   E11 NC

1  IO_L19P_1   F11 NC

1  IO_L09N_1/VREF_1  J12

1  IO_L09P_1  K12

1  IO_L08N_1  D6

1  IO_L08P_1  D5

1  IO_L07N_1  E9

1  IO_L07P_1  F9

1  IO_L06N_1  J11

1  IO_L06P_1  K11

1  IO_L05_1/No_Pair  J10

1  IO_L03N_1/VREF_1  G10

1  IO_L03P_1  H10

1  IO_L02N_1  G9

1  IO_L02P_1  H9

1  IO_L01N_1/VRP_1  E7

1  IO_L01P_1/VRN_1  E6

Table  10:  FF1152 — XC2VP20 and XC2VP50

Bank Pin Description Pin Number
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2  IO_L01N_2/VRP_2  D2

2  IO_L01P_2/VRN_2  D1

2  IO_L02N_2  F8

2  IO_L02P_2  F7

2  IO_L03N_2  E4

2  IO_L03P_2  E3

2  IO_L04N_2/VREF_2  E2

2  IO_L04P_2  E1

2  IO_L05N_2  J8

2  IO_L05P_2  J7

2  IO_L06N_2  F5

2  IO_L06P_2  F4

2  IO_L07N_2   G4 NC

2  IO_L07P_2   G3 NC

2  IO_L09N_2   G6 NC

2  IO_L09P_2   G5 NC

2  IO_L10N_2/VREF_2   F2 NC

2  IO_L10P_2   F1 NC

2  IO_L11N_2   L10 NC

2  IO_L11P_2   L9 NC

2  IO_L12N_2   H6 NC

2  IO_L12P_2   H5 NC

2  IO_L13N_2   G2 NC

2  IO_L13P_2   G1 NC

2  IO_L15N_2   J6 NC

2  IO_L15P_2   J5 NC

2  IO_L16N_2/VREF_2   J4 NC

2  IO_L16P_2   J3 NC

2  IO_L17N_2   K8 NC

2  IO_L17P_2   K7 NC

2  IO_L18N_2   H4 NC

2  IO_L18P_2   H3 NC

2  IO_L31N_2  H2

2  IO_L31P_2  H1

2  IO_L32N_2  M10

2  IO_L32P_2  M9

Table  10:  FF1152 — XC2VP20 and XC2VP50
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2  IO_L33N_2  K5

2  IO_L33P_2  K4

2  IO_L34N_2/VREF_2  J2

2  IO_L34P_2  K2

2  IO_L35N_2  L8

2  IO_L35P_2  L7

2  IO_L36N_2  L6

2  IO_L36P_2  L5

2  IO_L37N_2  K1

2  IO_L37P_2  L1

2  IO_L38N_2  N10

2  IO_L38P_2  N9

2  IO_L39N_2  M7

2  IO_L39P_2  M6

2  IO_L40N_2/VREF_2  L2

2  IO_L40P_2  M2

2  IO_L41N_2  N8

2  IO_L41P_2  N7

2  IO_L42N_2  L4

2  IO_L42P_2  L3

2  IO_L43N_2  M4

2  IO_L43P_2  M3

2  IO_L44N_2  P10

2  IO_L44P_2  P9

2  IO_L45N_2  N6

2  IO_L45P_2  N5

2  IO_L46N_2/VREF_2  M1

2  IO_L46P_2  N1

2  IO_L47N_2  P8

2  IO_L47P_2  P7

2  IO_L48N_2  N4

2  IO_L48P_2  N3

2  IO_L49N_2  N2

2  IO_L49P_2  P2

2  IO_L50N_2  R10

2  IO_L50P_2  R9

Table  10:  FF1152 — XC2VP20 and XC2VP50
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2  IO_L51N_2  P6

2  IO_L51P_2  P5

2  IO_L52N_2/VREF_2  P4

2  IO_L52P_2  P3

2  IO_L53N_2  T11

2  IO_L53P_2  U11

2  IO_L54N_2  R7

2  IO_L54P_2  R6

2  IO_L55N_2  P1

2  IO_L55P_2  R1

2  IO_L56N_2  T10

2  IO_L56P_2  T9

2  IO_L57N_2  R4

2  IO_L57P_2  R3

2  IO_L58N_2/VREF_2  R2

2  IO_L58P_2  T2

2  IO_L59N_2  T8

2  IO_L59P_2  T7

2  IO_L60N_2  T6

2  IO_L60P_2  T5

2  IO_L85N_2  T4

2  IO_L85P_2  T3

2  IO_L86N_2  U10

2  IO_L86P_2  U9

2  IO_L87N_2  U6

2  IO_L87P_2  U5

2  IO_L88N_2/VREF_2  U2

2  IO_L88P_2  V2

2  IO_L89N_2  U8

2  IO_L89P_2  U7

2  IO_L90N_2  U4

2  IO_L90P_2  U3

3  IO_L90N_3  V3

3  IO_L90P_3  V4

3  IO_L89N_3  V7

Table  10:  FF1152 — XC2VP20 and XC2VP50
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3  IO_L89P_3  V8

3  IO_L88N_3  V5

3  IO_L88P_3  V6

3  IO_L87N_3/VREF_3  W2

3  IO_L87P_3  Y2

3  IO_L86N_3  V9

3  IO_L86P_3  V10

3  IO_L85N_3  W3

3  IO_L85P_3  W4

3  IO_L60N_3  Y1

3  IO_L60P_3  AA1

3  IO_L59N_3  V11

3  IO_L59P_3  W11

3  IO_L58N_3  W5

3  IO_L58P_3  W6

3  IO_L57N_3/VREF_3  Y3

3  IO_L57P_3  Y4

3  IO_L56N_3  W7

3  IO_L56P_3  W8

3  IO_L55N_3  Y6

3  IO_L55P_3  Y7

3  IO_L54N_3  AA2

3  IO_L54P_3  AB2

3  IO_L53N_3  W9

3  IO_L53P_3  W10

3  IO_L52N_3  AA3

3  IO_L52P_3  AA4

3  IO_L51N_3/VREF_3  AB1

3  IO_L51P_3  AC1

3  IO_L50N_3  Y9

3  IO_L50P_3  Y10

3  IO_L49N_3  AA5

3  IO_L49P_3  AA6

3  IO_L48N_3  AB3

3  IO_L48P_3  AB4

3  IO_L47N_3  AA7
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3  IO_L47P_3  AA8

3  IO_L46N_3  AB5

3  IO_L46P_3  AB6

3  IO_L45N_3/VREF_3  AC2

3  IO_L45P_3  AD2

3  IO_L44N_3  AA9

3  IO_L44P_3  AA10

3  IO_L43N_3  AC3

3  IO_L43P_3  AC4

3  IO_L42N_3  AD1

3  IO_L42P_3  AE1

3  IO_L41N_3  AB7

3  IO_L41P_3  AB8

3  IO_L40N_3  AC6

3  IO_L40P_3  AC7

3  IO_L39N_3/VREF_3  AD3

3  IO_L39P_3  AD4

3  IO_L38N_3  AB9

3  IO_L38P_3  AB10

3  IO_L37N_3  AD5

3  IO_L37P_3  AD6

3  IO_L36N_3  AE2

3  IO_L36P_3  AF2

3  IO_L35N_3  AD7

3  IO_L35P_3  AD8

3  IO_L34N_3  AE4

3  IO_L34P_3  AE5

3  IO_L33N_3/VREF_3  AG1

3  IO_L33P_3  AG2

3  IO_L32N_3  AC9

3  IO_L32P_3  AC10

3  IO_L31N_3  AF3

3  IO_L31P_3  AF4

3  IO_L18N_3   AH1 NC

3  IO_L18P_3   AH2 NC

3  IO_L17N_3   AE7 NC
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3  IO_L17P_3   AE8 NC

3  IO_L16N_3   AF5 NC

3  IO_L16P_3   AF6 NC

3  IO_L15N_3/VREF_3   AG3 NC

3  IO_L15P_3   AG4 NC

3  IO_L14N_3   AD9 NC

3  IO_L14P_3   AD10 NC

3  IO_L13N_3   AH3 NC

3  IO_L13P_3   AH4 NC

3  IO_L12N_3   AJ1 NC

3  IO_L12P_3   AJ2 NC

3  IO_L11N_3   AF7 NC

3  IO_L11P_3   AF8 NC

3  IO_L09N_3/VREF_3   AK1 NC

3  IO_L09P_3   AK2 NC

3  IO_L07N_3   AG5 NC

3  IO_L07P_3   AG6 NC

3  IO_L06N_3  AL1

3  IO_L06P_3  AL2

3  IO_L05N_3  AG7

3  IO_L05P_3  AH8

3  IO_L04N_3  AH5

3  IO_L04P_3  AH6

3  IO_L03N_3/VREF_3  AK3

3  IO_L03P_3  AK4

3  IO_L02N_3  AJ7

3  IO_L02P_3  AJ8

3  IO_L01N_3/VRP_3  AJ4

3  IO_L01P_3/VRN_3  AJ5

4  IO_L01N_4/DOUT  AL5

4  IO_L01P_4/INIT_B  AL6

4  IO_L02N_4/D0  AG9

4  IO_L02P_4/D1  AH9

4  IO_L03N_4/D2  AK6

4  IO_L03P_4/D3  AK7
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4  IO_L05_4/No_Pair  AF10

4  IO_L06N_4/VRP_4  AL7

4  IO_L06P_4/VRN_4  AM7

4  IO_L07N_4  AE11

4  IO_L07P_4/VREF_4  AF11

4  IO_L08N_4  AG10

4  IO_L08P_4  AH10

4  IO_L09N_4  AK8

4  IO_L09P_4/VREF_4  AL8

4  IO_L19N_4   AE12 NC

4  IO_L19P_4   AF12 NC

4  IO_L20N_4   AJ9 NC

4  IO_L20P_4   AK9 NC

4  IO_L21N_4   AL9 NC

4  IO_L21P_4   AM9 NC

4  IO_L25N_4   AG11 NC

4  IO_L25P_4   AH11 NC

4  IO_L26N_4   AH12 NC

4  IO_L26P_4   AJ12 NC

4  IO_L27N_4   AK10 NC

4  IO_L27P_4/VREF_4   AL10 NC

4  IO_L37N_4  AE13

4  IO_L37P_4  AF13

4  IO_L38N_4  AG13

4  IO_L38P_4  AH13

4  IO_L39N_4  AJ11

4  IO_L39P_4  AK11

4  IO_L43N_4  AE14

4  IO_L43P_4  AF14

4  IO_L44N_4  AJ13

4  IO_L44P_4  AK13

4  IO_L45N_4  AL11

4  IO_L45P_4/VREF_4  AM11

4  IO_L46N_4  AE15

4  IO_L46P_4  AF15

4  IO_L47N_4  AG14
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4  IO_L47P_4  AH14

4  IO_L48N_4  AL13

4  IO_L48P_4  AL12

4  IO_L49N_4  AD16

4  IO_L49P_4  AE16

4  IO_L50_4/No_Pair  AJ14

4  IO_L53_4/No_Pair  AK14

4  IO_L54N_4  AM14

4  IO_L54P_4  AM13

4  IO_L55N_4  AF16

4  IO_L55P_4  AG16

4  IO_L56N_4  AH15

4  IO_L56P_4  AJ15

4  IO_L57N_4  AL14

4  IO_L57P_4/VREF_4  AL15

4  IO_L67N_4  AD17

4  IO_L67P_4  AE17

4  IO_L68N_4  AH16

4  IO_L68P_4  AJ16

4  IO_L69N_4  AK16

4  IO_L69P_4/VREF_4  AL16

4  IO_L73N_4  AF17

4  IO_L73P_4  AG17

4  IO_L74N_4/GCLK3S  AH17

4  IO_L74P_4/GCLK2P  AJ17

4  IO_L75N_4/GCLK1S  AK17

4  IO_L75P_4/GCLK0P  AL17

5  IO_L75N_5/GCLK7S  AL18

5  IO_L75P_5/GCLK6P  AK18

5  IO_L74N_5/GCLK5S  AJ18

5  IO_L74P_5/GCLK4P  AH18

5  IO_L73N_5  AG18

5  IO_L73P_5  AF18

5  IO_L69N_5/VREF_5  AL19

5  IO_L69P_5  AK19
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5  IO_L68N_5  AJ19

5  IO_L68P_5  AH19

5  IO_L67N_5  AE18

5  IO_L67P_5  AD18

5  IO_L57N_5/VREF_5  AL20

5  IO_L57P_5  AL21

5  IO_L56N_5  AJ20

5  IO_L56P_5  AH20

5  IO_L55N_5  AG19

5  IO_L55P_5  AF19

5  IO_L54N_5  AM22

5  IO_L54P_5  AM21

5  IO_L53_5/No_Pair  AK21

5  IO_L50_5/No_Pair  AJ21

5  IO_L49N_5  AE19

5  IO_L49P_5  AD19

5  IO_L48N_5  AL23

5  IO_L48P_5  AL22

5  IO_L47N_5  AH21

5  IO_L47P_5  AG21

5  IO_L46N_5  AF20

5  IO_L46P_5  AE20

5  IO_L45N_5/VREF_5  AM24

5  IO_L45P_5  AL24

5  IO_L44N_5  AK22

5  IO_L44P_5  AJ22

5  IO_L43N_5  AF21

5  IO_L43P_5  AE21

5  IO_L39N_5  AK24

5  IO_L39P_5  AJ24

5  IO_L38N_5  AH22

5  IO_L38P_5  AG22

5  IO_L37N_5  AF22

5  IO_L37P_5  AE22

5  IO_L27N_5/VREF_5   AL25 NC

5  IO_L27P_5   AK25 NC
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5  IO_L26N_5   AJ23 NC

5  IO_L26P_5   AH23 NC

5  IO_L25N_5   AH24 NC

5  IO_L25P_5   AG24 NC

5  IO_L21N_5   AM26 NC

5  IO_L21P_5   AL26 NC

5  IO_L20N_5   AK26 NC

5  IO_L20P_5   AJ26 NC

5  IO_L19N_5   AF23 NC

5  IO_L19P_5   AE23 NC

5  IO_L09N_5/VREF_5  AL27

5  IO_L09P_5  AK27

5  IO_L08N_5  AH25

5  IO_L08P_5  AG25

5  IO_L07N_5/VREF_5  AF24

5  IO_L07P_5  AE24

5  IO_L06N_5/VRP_5  AM28

5  IO_L06P_5/VRN_5  AL28

5  IO_L05_5/No_Pair  AF25

5  IO_L03N_5/D4  AK28

5  IO_L03P_5/D5  AK29

5  IO_L02N_5/D6  AH26

5  IO_L02P_5/D7  AG26

5  IO_L01N_5/RDWR_B  AL29

5  IO_L01P_5/CS_B  AL30

6  IO_L01P_6/VRN_6  AJ30

6  IO_L01N_6/VRP_6  AJ31

6  IO_L02P_6  AJ27

6  IO_L02N_6  AJ28

6  IO_L03P_6  AK31

6  IO_L03N_6/VREF_6  AK32

6  IO_L04P_6  AH29

6  IO_L04N_6  AH30

6  IO_L05P_6  AH27

6  IO_L05N_6  AG28
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6  IO_L06P_6  AL33

6  IO_L06N_6  AL34

6  IO_L07P_6   AG29 NC

6  IO_L07N_6   AG30 NC

6  IO_L09P_6   AK33 NC

6  IO_L09N_6/VREF_6   AK34 NC

6  IO_L11P_6   AF27 NC

6  IO_L11N_6   AF28 NC

6  IO_L12P_6   AJ33 NC

6  IO_L12N_6   AJ34 NC

6  IO_L13P_6   AH31 NC

6  IO_L13N_6   AH32 NC

6  IO_L14P_6   AD25 NC

6  IO_L14N_6   AD26 NC

6  IO_L15P_6   AG31 NC

6  IO_L15N_6/VREF_6   AG32 NC

6  IO_L16P_6   AF29 NC

6  IO_L16N_6   AF30 NC

6  IO_L17P_6   AE27 NC

6  IO_L17N_6   AE28 NC

6  IO_L18P_6   AH33 NC

6  IO_L18N_6   AH34 NC

6  IO_L31P_6  AF31

6  IO_L31N_6  AF32

6  IO_L32P_6  AC25

6  IO_L32N_6  AC26

6  IO_L33P_6  AG33

6  IO_L33N_6/VREF_6  AG34

6  IO_L34P_6  AE30

6  IO_L34N_6  AE31

6  IO_L35P_6  AD27

6  IO_L35N_6  AD28

6  IO_L36P_6  AF33

6  IO_L36N_6  AE33

6  IO_L37P_6  AD29

6  IO_L37N_6  AD30
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6  IO_L38P_6  AB25

6  IO_L38N_6  AB26

6  IO_L39P_6  AD31

6  IO_L39N_6/VREF_6  AD32

6  IO_L40P_6  AC28

6  IO_L40N_6  AC29

6  IO_L41P_6  AB27

6  IO_L41N_6  AB28

6  IO_L42P_6  AE34

6  IO_L42N_6  AD34

6  IO_L43P_6  AC31

6  IO_L43N_6  AC32

6  IO_L44P_6  AA25

6  IO_L44N_6  AA26

6  IO_L45P_6  AD33

6  IO_L45N_6/VREF_6  AC33

6  IO_L46P_6  AB29

6  IO_L46N_6  AB30

6  IO_L47P_6  AA27

6  IO_L47N_6  AA28

6  IO_L48P_6  AB31

6  IO_L48N_6  AB32

6  IO_L49P_6  AA29

6  IO_L49N_6  AA30

6  IO_L50P_6  Y25

6  IO_L50N_6  Y26

6  IO_L51P_6  AC34

6  IO_L51N_6/VREF_6  AB34

6  IO_L52P_6  AA31

6  IO_L52N_6  AA32

6  IO_L53P_6  W25

6  IO_L53N_6  W26

6  IO_L54P_6  AB33

6  IO_L54N_6  AA33

6  IO_L55P_6  Y28

6  IO_L55N_6  Y29
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6  IO_L56P_6  W27

6  IO_L56N_6  W28

6  IO_L57P_6  Y31

6  IO_L57N_6/VREF_6  Y32

6  IO_L58P_6  W29

6  IO_L58N_6  W30

6  IO_L59P_6  W24

6  IO_L59N_6  V24

6  IO_L60P_6  AA34

6  IO_L60N_6  Y34

6  IO_L85P_6  W31

6  IO_L85N_6  W32

6  IO_L86P_6  V25

6  IO_L86N_6  V26

6  IO_L87P_6  Y33

6  IO_L87N_6/VREF_6  W33

6  IO_L88P_6  V29

6  IO_L88N_6  V30

6  IO_L89P_6  V27

6  IO_L89N_6  V28

6  IO_L90P_6  V31

6  IO_L90N_6  V32

7  IO_L90P_7  U32

7  IO_L90N_7  U31

7  IO_L89P_7  U28

7  IO_L89N_7  U27

7  IO_L88P_7  V33

7  IO_L88N_7/VREF_7  U33

7  IO_L87P_7  U30

7  IO_L87N_7  U29

7  IO_L86P_7  U26

7  IO_L86N_7  U25

7  IO_L85P_7  T32

7  IO_L85N_7  T31

7  IO_L60P_7  T30
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7  IO_L60N_7  T29

7  IO_L59P_7  T28

7  IO_L59N_7  T27

7  IO_L58P_7  T33

7  IO_L58N_7/VREF_7  R33

7  IO_L57P_7  R32

7  IO_L57N_7  R31

7  IO_L56P_7  T26

7  IO_L56N_7  T25

7  IO_L55P_7  R34

7  IO_L55N_7  P34

7  IO_L54P_7  R29

7  IO_L54N_7  R28

7  IO_L53P_7  U24

7  IO_L53N_7  T24

7  IO_L52P_7  P32

7  IO_L52N_7/VREF_7  P31

7  IO_L51P_7  P30

7  IO_L51N_7  P29

7  IO_L50P_7  R26

7  IO_L50N_7  R25

7  IO_L49P_7  P33

7  IO_L49N_7  N33

7  IO_L48P_7  N32

7  IO_L48N_7  N31

7  IO_L47P_7  P28

7  IO_L47N_7  P27

7  IO_L46P_7  N34

7  IO_L46N_7/VREF_7  M34

7  IO_L45P_7  N30

7  IO_L45N_7  N29

7  IO_L44P_7  P26

7  IO_L44N_7  P25

7  IO_L43P_7  M32

7  IO_L43N_7  M31

7  IO_L42P_7  L32
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7  IO_L42N_7  L31

7  IO_L41P_7  N28

7  IO_L41N_7  N27

7  IO_L40P_7  M33

7  IO_L40N_7/VREF_7  L33

7  IO_L39P_7  M29

7  IO_L39N_7  M28

7  IO_L38P_7  N26

7  IO_L38N_7  N25

7  IO_L37P_7  L34

7  IO_L37N_7  K34

7  IO_L36P_7  L30

7  IO_L36N_7  L29

7  IO_L35P_7  L28

7  IO_L35N_7  L27

7  IO_L34P_7  K33

7  IO_L34N_7/VREF_7  J33

7  IO_L33P_7  K31

7  IO_L33N_7  K30

7  IO_L32P_7  M26

7  IO_L32N_7  M25

7  IO_L31P_7  H34

7  IO_L31N_7  H33

7  IO_L18P_7   H32 NC

7  IO_L18N_7   H31 NC

7  IO_L17P_7   K28 NC

7  IO_L17N_7   K27 NC

7  IO_L16P_7   J32 NC

7  IO_L16N_7/VREF_7   J31 NC

7  IO_L15P_7   J30 NC

7  IO_L15N_7   J29 NC

7  IO_L13P_7   G34 NC

7  IO_L13N_7   G33 NC

7  IO_L12P_7   H30 NC

7  IO_L12N_7   H29 NC

7  IO_L11P_7   L26 NC
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7  IO_L11N_7   L25 NC

7  IO_L10P_7   F34 NC

7  IO_L10N_7/VREF_7   F33 NC

7  IO_L09P_7   G30 NC

7  IO_L09N_7   G29 NC

7  IO_L07P_7   G32 NC

7  IO_L07N_7   G31 NC

7  IO_L06P_7  F31

7  IO_L06N_7  F30

7  IO_L05P_7  J28

7  IO_L05N_7  J27

7  IO_L04P_7  E34

7  IO_L04N_7/VREF_7  E33

7  IO_L03P_7  E32

7  IO_L03N_7  E31

7  IO_L02P_7  F28

7  IO_L02N_7  F27

7  IO_L01P_7/VRN_7  D34

7  IO_L01N_7/VRP_7  D33

0  VCCO_0  C29

0  VCCO_0  E20

0  VCCO_0  F25

0  VCCO_0  L20

0  VCCO_0  L21

0  VCCO_0  L22

0  VCCO_0  L23

0  VCCO_0  M18

0  VCCO_0  M19

0  VCCO_0  M20

0  VCCO_0  M21

0  VCCO_0  M22

1  VCCO_1  C6

1  VCCO_1  E15

1  VCCO_1  F10

1  VCCO_1  L12
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1  VCCO_1  L13

1  VCCO_1  L14

1  VCCO_1  L15

1  VCCO_1  M13

1  VCCO_1  M14

1  VCCO_1  M15

1  VCCO_1  M16

1  VCCO_1  M17

2  VCCO_2  F3

2  VCCO_2  K6

2  VCCO_2  M11

2  VCCO_2  N11

2  VCCO_2  N12

2  VCCO_2  P11

2  VCCO_2  P12

2  VCCO_2  R5

2  VCCO_2  R11

2  VCCO_2  R12

2  VCCO_2  T12

2  VCCO_2  U12

3  VCCO_3  V12

3  VCCO_3  W12

3  VCCO_3  Y5

3  VCCO_3  Y11

3  VCCO_3  Y12

3  VCCO_3  AA11

3  VCCO_3  AA12

3  VCCO_3  AB11

3  VCCO_3  AB12

3  VCCO_3  AC11

3  VCCO_3  AE6

3  VCCO_3  AJ3

4  VCCO_4  AC13

4  VCCO_4  AC14

4  VCCO_4  AC15

4  VCCO_4  AC16
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4  VCCO_4  AC17

4  VCCO_4  AD12

4  VCCO_4  AD13

4  VCCO_4  AD14

4  VCCO_4  AD15

4  VCCO_4  AJ10

4  VCCO_4  AK15

4  VCCO_4  AM6

5  VCCO_5  AC18

5  VCCO_5  AC19

5  VCCO_5  AC20

5  VCCO_5  AC21

5  VCCO_5  AC22

5  VCCO_5  AD20

5  VCCO_5  AD21

5  VCCO_5  AD22

5  VCCO_5  AD23

5  VCCO_5  AJ25

5  VCCO_5  AK20

5  VCCO_5  AM29

6  VCCO_6  V23

6  VCCO_6  W23

6  VCCO_6  Y23

6  VCCO_6  Y24

6  VCCO_6  Y30

6  VCCO_6  AA23

6  VCCO_6  AA24

6  VCCO_6  AB23

6  VCCO_6  AB24

6  VCCO_6  AC24

6  VCCO_6  AE29

6  VCCO_6  AJ32

7  VCCO_7  F32

7  VCCO_7  K29

7  VCCO_7  M24

7  VCCO_7  N23
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7  VCCO_7  N24

7  VCCO_7  P23

7  VCCO_7  P24

7  VCCO_7  R23

7  VCCO_7  R24

7  VCCO_7  R30

7  VCCO_7  T23

7  VCCO_7  U23

N/A  CCLK  AE9

N/A  PROG_B  J26

N/A  DONE  AE10

N/A  M0  AF26

N/A  M1  AE26

N/A  M2  AE25

N/A  TCK  J9

N/A  TDI  H28

N/A  TDO  H7

N/A  TMS  K10

N/A  PWRDWN_B  AF9

N/A  HSWAP_EN  K25

N/A  RSVD  G8

N/A  VBATT  K9

N/A  DXP  K26

N/A  DXN  G27

N/A  AVCCAUXTX2   B32 NC

N/A  VTTXPAD2   B33 NC

N/A  TXNPAD2   A33 NC

N/A  TXPPAD2   A32 NC

N/A  GNDA2   C30 NC

N/A  GNDA2   C30 NC

N/A  RXPPAD2   A31 NC

N/A  RXNPAD2   A30 NC

N/A  VTRXPAD2   B31 NC

N/A  AVCCAUXRX2   B30 NC

N/A  AVCCAUXTX4  B28
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N/A  VTTXPAD4  B29

N/A  TXNPAD4  A29

N/A  TXPPAD4  A28

N/A  GNDA4  C27

N/A  GNDA4  C27

N/A  RXPPAD4  A27

N/A  RXNPAD4  A26

N/A  VTRXPAD4  B27

N/A  AVCCAUXRX4  B26

N/A  AVCCAUXTX5   B24 NC

N/A  VTTXPAD5   B25 NC

N/A  TXNPAD5   A25 NC

N/A  TXPPAD5   A24 NC

N/A  GNDA5   C23 NC

N/A  GNDA5   C23 NC

N/A  RXPPAD5   A23 NC

N/A  RXNPAD5   A22 NC

N/A  VTRXPAD5   B23 NC

N/A  AVCCAUXRX5   B22 NC

N/A  AVCCAUXTX6  B20

N/A  VTTXPAD6  B21

N/A  TXNPAD6  A21

N/A  TXPPAD6  A20

N/A  GNDA6  C20

N/A  GNDA6  C20

N/A  RXPPAD6  A19

N/A  RXNPAD6  A18

N/A  VTRXPAD6  B19

N/A  AVCCAUXRX6  B18

N/A  AVCCAUXTX7  B16

N/A  VTTXPAD7  B17

N/A  TXNPAD7  A17

N/A  TXPPAD7  A16

N/A  GNDA7  C15

N/A  GNDA7  C15

N/A  RXPPAD7  A15
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N/A  RXNPAD7  A14

N/A  VTRXPAD7  B15

N/A  AVCCAUXRX7  B14

N/A  AVCCAUXTX8   B12 NC

N/A  VTTXPAD8   B13 NC

N/A  TXNPAD8   A13 NC

N/A  TXPPAD8   A12 NC

N/A  GNDA8   C12 NC

N/A  GNDA8   C12 NC

N/A  RXPPAD8   A11 NC

N/A  RXNPAD8   A10 NC

N/A  VTRXPAD8   B11 NC

N/A  AVCCAUXRX8   B10 NC

N/A  AVCCAUXTX9  B8

N/A  VTTXPAD9  B9

N/A  TXNPAD9  A9

N/A  TXPPAD9  A8

N/A  GNDA9  C8

N/A  GNDA9  C8

N/A  RXPPAD9  A7

N/A  RXNPAD9  A6

N/A  VTRXPAD9  B7

N/A  AVCCAUXRX9  B6

N/A  AVCCAUXTX11   B4 NC

N/A  VTTXPAD11   B5 NC

N/A  TXNPAD11   A5 NC

N/A  TXPPAD11   A4 NC

N/A  GNDA11   C5 NC

N/A  GNDA11   C5 NC

N/A  RXPPAD11   A3 NC

N/A  RXNPAD11   A2 NC

N/A  VTRXPAD11   B3 NC

N/A  AVCCAUXRX11   B2 NC

N/A  AVCCAUXRX14   AN2 NC

N/A  VTRXPAD14   AN3 NC

N/A  RXNPAD14   AP2 NC

Table  10:  FF1152 — XC2VP20 and XC2VP50

Bank Pin Description Pin Number

No Connects

XC2V
P20

XC2V
P50
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N/A  RXPPAD14   AP3 NC

N/A  GNDA14   AM5 NC

N/A  GNDA14   AM5 NC

N/A  TXPPAD14   AP4 NC

N/A  TXNPAD14   AP5 NC

N/A  VTTXPAD14   AN5 NC

N/A  AVCCAUXTX14   AN4 NC

N/A  AVCCAUXRX16  AN6

N/A  VTRXPAD16  AN7

N/A  RXNPAD16  AP6

N/A  RXPPAD16  AP7

N/A  GNDA16  AM8

N/A  GNDA16  AM8

N/A  TXPPAD16  AP8

N/A  TXNPAD16  AP9

N/A  VTTXPAD16  AN9

N/A  AVCCAUXTX16  AN8

N/A  AVCCAUXRX17   AN10 NC

N/A  VTRXPAD17   AN11 NC

N/A  RXNPAD17   AP10 NC

N/A  RXPPAD17   AP11 NC

N/A  GNDA17   AM12 NC

N/A  GNDA17   AM12 NC

N/A  TXPPAD17   AP12 NC

N/A  TXNPAD17   AP13 NC

N/A  VTTXPAD17   AN13 NC

N/A  AVCCAUXTX17   AN12 NC

N/A  AVCCAUXRX18  AN14

N/A  VTRXPAD18  AN15

N/A  RXNPAD18  AP14

N/A  RXPPAD18  AP15

N/A  GNDA18  AM15

N/A  GNDA18  AM15

N/A  TXPPAD18  AP16

N/A  TXNPAD18  AP17

N/A  VTTXPAD18  AN17

Table  10:  FF1152 — XC2VP20 and XC2VP50
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N/A  AVCCAUXTX18  AN16

N/A  AVCCAUXRX19  AN18

N/A  VTRXPAD19  AN19

N/A  RXNPAD19  AP18

N/A  RXPPAD19  AP19

N/A  GNDA19  AM20

N/A  GNDA19  AM20

N/A  TXPPAD19  AP20

N/A  TXNPAD19  AP21

N/A  VTTXPAD19  AN21

N/A  AVCCAUXTX19  AN20

N/A  AVCCAUXRX20   AN22 NC

N/A  VTRXPAD20   AN23 NC

N/A  RXNPAD20   AP22 NC

N/A  RXPPAD20   AP23 NC

N/A  GNDA20   AM23 NC

N/A  GNDA20   AM23 NC

N/A  TXPPAD20   AP24 NC

N/A  TXNPAD20   AP25 NC

N/A  VTTXPAD20   AN25 NC

N/A  AVCCAUXTX20   AN24 NC

N/A  AVCCAUXRX21  AN26

N/A  VTRXPAD21  AN27

N/A  RXNPAD21  AP26

N/A  RXPPAD21  AP27

N/A  GNDA21  AM27

N/A  GNDA21  AM27

N/A  TXPPAD21  AP28

N/A  TXNPAD21  AP29

N/A  VTTXPAD21  AN29

N/A  AVCCAUXTX21  AN28

N/A  AVCCAUXRX23   AN30 NC

N/A  VTRXPAD23   AN31 NC

N/A  RXNPAD23   AP30 NC

N/A  RXPPAD23   AP31 NC

N/A  GNDA23   AM30 NC

Table  10:  FF1152 — XC2VP20 and XC2VP50
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N/A  GNDA23   AM30 NC

N/A  TXPPAD23   AP32 NC

N/A  TXNPAD23   AP33 NC

N/A  VTTXPAD23   AN33 NC

N/A  AVCCAUXTX23   AN32 NC

N/A  VCCINT  L11

N/A  VCCINT  L24

N/A  VCCINT  M12

N/A  VCCINT  M23

N/A  VCCINT  N13

N/A  VCCINT  N14

N/A  VCCINT  N15

N/A  VCCINT  N16

N/A  VCCINT  N17

N/A  VCCINT  N18

N/A  VCCINT  N19

N/A  VCCINT  N20

N/A  VCCINT  N21

N/A  VCCINT  N22

N/A  VCCINT  P13

N/A  VCCINT  P22

N/A  VCCINT  R13

N/A  VCCINT  R22

N/A  VCCINT  T13

N/A  VCCINT  T22

N/A  VCCINT  U13

N/A  VCCINT  U22

N/A  VCCINT  V13

N/A  VCCINT  V22

N/A  VCCINT  W13

N/A  VCCINT  W22

N/A  VCCINT  Y13

N/A  VCCINT  Y22

N/A  VCCINT  AA13

N/A  VCCINT  AA22

Table  10:  FF1152 — XC2VP20 and XC2VP50
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N/A  VCCINT  AB13

N/A  VCCINT  AB14

N/A  VCCINT  AB15

N/A  VCCINT  AB16

N/A  VCCINT  AB17

N/A  VCCINT  AB18

N/A  VCCINT  AB19

N/A  VCCINT  AB20

N/A  VCCINT  AB21

N/A  VCCINT  AB22

N/A  VCCINT  AC12

N/A  VCCINT  AC23

N/A  VCCINT  AD11

N/A  VCCINT  AD24

N/A  VCCAUX  C3

N/A  VCCAUX  C4

N/A  VCCAUX  C17

N/A  VCCAUX  C18

N/A  VCCAUX  C31

N/A  VCCAUX  C32

N/A  VCCAUX  D3

N/A  VCCAUX  D32

N/A  VCCAUX  U1

N/A  VCCAUX  V1

N/A  VCCAUX  U34

N/A  VCCAUX  V34

N/A  VCCAUX  AL3

N/A  VCCAUX  AL32

N/A  VCCAUX  AM3

N/A  VCCAUX  AM4

N/A  VCCAUX  AM17

N/A  VCCAUX  AM18

N/A  VCCAUX  AM31

N/A  VCCAUX  AM32

N/A  GND  AF34
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N/A  GND  B34

N/A  GND  C1

N/A  GND  C2

N/A  GND  C10

N/A  GND  C16

N/A  GND  C19

N/A  GND  C25

N/A  GND  C33

N/A  GND  C34

N/A  GND  D4

N/A  GND  D31

N/A  GND  E5

N/A  GND  E12

N/A  GND  E23

N/A  GND  E30

N/A  GND  F6

N/A  GND  F29

N/A  GND  G7

N/A  GND  G28

N/A  GND  B1

N/A  GND  H8

N/A  GND  H12

N/A  GND  H15

N/A  GND  H20

N/A  GND  J1

N/A  GND  H27

N/A  GND  AF1

N/A  GND  K3

N/A  GND  K32

N/A  GND  M5

N/A  GND  M8

N/A  GND  M27

N/A  GND  M30

N/A  GND  P14

N/A  GND  P15

N/A  GND  P16

Table  10:  FF1152 — XC2VP20 and XC2VP50
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N/A  GND  P17

N/A  GND  P18

N/A  GND  P19

N/A  GND  P20

N/A  GND  P21

N/A  GND  R8

N/A  GND  R14

N/A  GND  R15

N/A  GND  R16

N/A  GND  R17

N/A  GND  R18

N/A  GND  R19

N/A  GND  R20

N/A  GND  R21

N/A  GND  R27

N/A  GND  T1

N/A  GND  T14

N/A  GND  T15

N/A  GND  T16

N/A  GND  T17

N/A  GND  T18

N/A  GND  T19

N/A  GND  T20

N/A  GND  T21

N/A  GND  T34

N/A  GND  U14

N/A  GND  U15

N/A  GND  U16

N/A  GND  U17

N/A  GND  U18

N/A  GND  U19

N/A  GND  U20

N/A  GND  U21

N/A  GND  V14

N/A  GND  V15

N/A  GND  V16
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N/A  GND  V17

N/A  GND  V18

N/A  GND  V19

N/A  GND  V20

N/A  GND  V21

N/A  GND  W1

N/A  GND  W14

N/A  GND  W15

N/A  GND  W16

N/A  GND  W17

N/A  GND  W18

N/A  GND  W19

N/A  GND  W20

N/A  GND  W21

N/A  GND  W34

N/A  GND  Y8

N/A  GND  Y14

N/A  GND  Y15

N/A  GND  Y16

N/A  GND  Y17

N/A  GND  Y18

N/A  GND  Y19

N/A  GND  Y20

N/A  GND  Y21

N/A  GND  Y27

N/A  GND  AA14

N/A  GND  AA15

N/A  GND  AA16

N/A  GND  AA17

N/A  GND  AA18

N/A  GND  AA19

N/A  GND  AA20

N/A  GND  AA21

N/A  GND  AC5

N/A  GND  AC8

N/A  GND  AC27
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N/A  GND  AC30

N/A  GND  AE3

N/A  GND  AE32

N/A  GND  H23

N/A  GND  AG8

N/A  GND  AG12

N/A  GND  AG15

N/A  GND  AG20

N/A  GND  AG23

N/A  GND  AG27

N/A  GND  J34

N/A  GND  AH7

N/A  GND  AH28

N/A  GND  AJ6

N/A  GND  AJ29

N/A  GND  AK5

N/A  GND  AK12

N/A  GND  AK23

N/A  GND  AK30

N/A  GND  AL4

N/A  GND  AL31

N/A  GND  AM1

N/A  GND  AM2

N/A  GND  AM10

N/A  GND  AM16

N/A  GND  AM19

N/A  GND  AM25

N/A  GND  AM33

N/A  GND  AM34

N/A  GND  AN1

N/A  GND  AN34
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FF1152 Flip-Chip Fine-Pitch BGA Package Specifications (1.00mm pitch)

Figure 5:  FF1152 Flip-Chip Fine-Pitch BGA Package Specifications
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FF1517 Flip-Chip Fine-Pitch BGA Package
As shown in Table 11, the XC2VP50 Virtex-II Pro device is available in the FF1517 flip-chip fine-pitch BGA package.
Following this table are the FF1517 Flip-Chip Fine-Pitch BGA Package Specifications (1.00mm pitch).

Table  11:  FF1517 — XC2VP50

Bank Pin Description Pin Number

0  IO_L01N_0/VRP_0  F32

0  IO_L01P_0/VRN_0  E32

0  IO_L02N_0  K29

0  IO_L02P_0  J29

0  IO_L03N_0  K28

0  IO_L03P_0/VREF_0  K27

0  IO_L05_0/No_Pair  H30

0  IO_L06N_0  H29

0  IO_L06P_0  G29

0  IO_L07N_0  G31

0  IO_L07P_0  F31

0  IO_L08N_0  D32

0  IO_L08P_0  C32

0  IO_L09N_0  J28

0  IO_L09P_0/VREF_0  H28

0  IO_L19N_0  G30

0  IO_L19P_0  F30

0  IO_L20N_0  E31

0  IO_L20P_0  D31

0  IO_L21N_0  J27

0  IO_L21P_0  H27

0  IO_L25N_0  F29

0  IO_L25P_0  E29

0  IO_L26N_0  E30

0  IO_L26P_0  D30

0  IO_L27N_0  K26

0  IO_L27P_0/VREF_0  J26

0  IO_L37N_0  G28

0  IO_L37P_0  F28

0  IO_L38N_0  D29

0  IO_L38P_0  C29

0  IO_L39N_0  K25

0  IO_L39P_0  J25

0  IO_L43N_0  G27

0  IO_L43P_0  F27
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0  IO_L44N_0  D28

0  IO_L44P_0  C28

0  IO_L45N_0  L24

0  IO_L45P_0/VREF_0  K24

0  IO_L46N_0  H26

0  IO_L46P_0  G26

0  IO_L47N_0  E27

0  IO_L47P_0  D27

0  IO_L48N_0  H25

0  IO_L48P_0  G25

0  IO_L49N_0  F25

0  IO_L49P_0  E25

0  IO_L50_0/No_Pair  E26

0  IO_L53_0/No_Pair  D26

0  IO_L54N_0  J24

0  IO_L54P_0  H24

0  IO_L55N_0  G24

0  IO_L55P_0  F24

0  IO_L56N_0  D25

0  IO_L56P_0  C25

0  IO_L57N_0  K23

0  IO_L57P_0/VREF_0  J23

0  IO_L58N_0  G23

0  IO_L58P_0  F23

0  IO_L59N_0  E24

0  IO_L59P_0  D24

0  IO_L60N_0  K22

0  IO_L60P_0  J22

0  IO_L64N_0  H22

0  IO_L64P_0  G22

0  IO_L65N_0  D23

0  IO_L65P_0  C23

0  IO_L66N_0  K21

0  IO_L66P_0/VREF_0  J21

0  IO_L67N_0  F22

0  IO_L67P_0  E22

0  IO_L68N_0  D22

0  IO_L68P_0  C22

Table  11:  FF1517 — XC2VP50
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0  IO_L69N_0  H21

0  IO_L69P_0/VREF_0  G21

0  IO_L73N_0  F21

0  IO_L73P_0  E21

0  IO_L74N_0/GCLK7P  D21

0  IO_L74P_0/GCLK6S  C21

0  IO_L75N_0/GCLK5P  F20

0  IO_L75P_0/GCLK4S  E20

1  IO_L75N_1/GCLK3P  H20

1  IO_L75P_1/GCLK2S  J20

1  IO_L74N_1/GCLK1P  C19

1  IO_L74P_1/GCLK0S  D19

1  IO_L73N_1  E19

1  IO_L73P_1  F19

1  IO_L69N_1/VREF_1  G19

1  IO_L69P_1  H19

1  IO_L68N_1  C18

1  IO_L68P_1  D18

1  IO_L67N_1  E18

1  IO_L67P_1  F18

1  IO_L66N_1/VREF_1  J19

1  IO_L66P_1  K19

1  IO_L65N_1  C17

1  IO_L65P_1  D17

1  IO_L64N_1  G18

1  IO_L64P_1  H18

1  IO_L60N_1  J18

1  IO_L60P_1  K18

1  IO_L59N_1  D16

1  IO_L59P_1  E16

1  IO_L58N_1  F17

1  IO_L58P_1  G17

1  IO_L57N_1/VREF_1  J17

1  IO_L57P_1  K17

1  IO_L56N_1  C15

1  IO_L56P_1  D15

1  IO_L55N_1  F16

Table  11:  FF1517 — XC2VP50
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1  IO_L55P_1  G16

1  IO_L54N_1  H16

1  IO_L54P_1  J16

1  IO_L53_1/No_Pair  D14

1  IO_L50_1/No_Pair  E14

1  IO_L49N_1  E15

1  IO_L49P_1  F15

1  IO_L48N_1  G15

1  IO_L48P_1  H15

1  IO_L47N_1  D13

1  IO_L47P_1  E13

1  IO_L46N_1  G14

1  IO_L46P_1  H14

1  IO_L45N_1/VREF_1  K16

1  IO_L45P_1  L16

1  IO_L44N_1  C12

1  IO_L44P_1  D12

1  IO_L43N_1  F13

1  IO_L43P_1  G13

1  IO_L39N_1  J15

1  IO_L39P_1  K15

1  IO_L38N_1  C11

1  IO_L38P_1  D11

1  IO_L37N_1  F12

1  IO_L37P_1  G12

1  IO_L27N_1/VREF_1  J14

1  IO_L27P_1  K14

1  IO_L26N_1  D10

1  IO_L26P_1  E10

1  IO_L25N_1  E11

1  IO_L25P_1  F11

1  IO_L21N_1  H13

1  IO_L21P_1  J13

1  IO_L20N_1  D9

1  IO_L20P_1  E9

1  IO_L19N_1  F10

1  IO_L19P_1  G10

1  IO_L09N_1/VREF_1  H12

Table  11:  FF1517 — XC2VP50
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1  IO_L09P_1  J12

1  IO_L08N_1  C8

1  IO_L08P_1  D8

1  IO_L07N_1  F9

1  IO_L07P_1  G9

1  IO_L06N_1  G11

1  IO_L06P_1  H11

1  IO_L05_1/No_Pair  H10

1  IO_L03N_1/VREF_1  K13

1  IO_L03P_1  K12

1  IO_L02N_1  J11

1  IO_L02P_1  K11

1  IO_L01N_1/VRP_1  E8

1  IO_L01P_1/VRN_1  F8

2  IO_L01N_2/VRP_2  E4

2  IO_L01P_2/VRN_2  E3

2  IO_L02N_2  G8

2  IO_L02P_2  H7

2  IO_L03N_2  C5

2  IO_L03P_2  D5

2  IO_L04N_2/VREF_2  D2

2  IO_L04P_2  D1

2  IO_L05N_2  J8

2  IO_L05P_2  J7

2  IO_L06N_2  E6

2  IO_L06P_2  F5

2  IO_L07N_2  E2

2  IO_L07P_2  E1

2  IO_L08N_2  K9

2  IO_L08P_2  K8

2  IO_L09N_2  G6

2  IO_L09P_2  G5

2  IO_L10N_2/VREF_2  G4

2  IO_L10P_2  G3

2  IO_L11N_2  N12

2  IO_L11P_2  N11

2  IO_L12N_2  F4

Table  11:  FF1517 — XC2VP50
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2  IO_L12P_2  F3

2  IO_L13N_2  F2

2  IO_L13P_2  F1

2  IO_L14N_2  L8

2  IO_L14P_2  L7

2  IO_L15N_2  H6

2  IO_L15P_2  H5

2  IO_L16N_2/VREF_2  H4

2  IO_L16P_2  H3

2  IO_L17N_2  P12

2  IO_L17P_2  P11

2  IO_L18N_2  J6

2  IO_L18P_2  J5

2  IO_L19N_2  G2

2  IO_L19P_2  G1

2  IO_L20N_2  N10

2  IO_L20P_2  N9

2  IO_L21N_2  K7

2  IO_L21P_2  K6

2  IO_L22N_2/VREF_2  H2

2  IO_L22P_2  H1

2  IO_L23N_2  R12

2  IO_L23P_2  R11

2  IO_L24N_2  J4

2  IO_L24P_2  J3

2  IO_L25N_2  J2

2  IO_L25P_2  J1

2  IO_L26N_2  P10

2  IO_L26P_2  P9

2  IO_L27N_2  K5

2  IO_L27P_2  K4

2  IO_L28N_2/VREF_2  K2

2  IO_L28P_2  K1

2  IO_L29N_2  P8

2  IO_L29P_2  P7

2  IO_L30N_2  L6

2  IO_L30P_2  L5

2  IO_L31N_2  L3
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2  IO_L31P_2  L2

2  IO_L32N_2  R10

2  IO_L32P_2  R9

2  IO_L33N_2  N8

2  IO_L33P_2  N7

2  IO_L34N_2/VREF_2  M4

2  IO_L34P_2  M3

2  IO_L35N_2  T12

2  IO_L35P_2  T11

2  IO_L36N_2  M6

2  IO_L36P_2  M5

2  IO_L37N_2  M2

2  IO_L37P_2  M1

2  IO_L38N_2  T10

2  IO_L38P_2  T9

2  IO_L39N_2  N6

2  IO_L39P_2  N5

2  IO_L40N_2/VREF_2  N4

2  IO_L40P_2  N3

2  IO_L41N_2  U12

2  IO_L41P_2  U11

2  IO_L42N_2  P5

2  IO_L42P_2  P4

2  IO_L43N_2  N2

2  IO_L43P_2  N1

2  IO_L44N_2  T8

2  IO_L44P_2  T7

2  IO_L45N_2  R7

2  IO_L45P_2  R6

2  IO_L46N_2/VREF_2  P2

2  IO_L46P_2  P1

2  IO_L47N_2  U10

2  IO_L47P_2  U9

2  IO_L48N_2  R5

2  IO_L48P_2  R4

2  IO_L49N_2  R3

2  IO_L49P_2  R2

2  IO_L50N_2  V12
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2  IO_L50P_2  V11

2  IO_L51N_2  T6

2  IO_L51P_2  T5

2  IO_L52N_2/VREF_2  T2

2  IO_L52P_2  T1

2  IO_L53N_2  V10

2  IO_L53P_2  V9

2  IO_L54N_2  T4

2  IO_L54P_2  T3

2  IO_L55N_2  U4

2  IO_L55P_2  U3

2  IO_L56N_2  V8

2  IO_L56P_2  V7

2  IO_L57N_2  U7

2  IO_L57P_2  U6

2  IO_L58N_2/VREF_2  U2

2  IO_L58P_2  U1

2  IO_L59N_2  W12

2  IO_L59P_2  W11

2  IO_L60N_2  V6

2  IO_L60P_2  V5

2  IO_L85N_2  V4

2  IO_L85P_2  V3

2  IO_L86N_2  W10

2  IO_L86P_2  W9

2  IO_L87N_2  W6

2  IO_L87P_2  W5

2  IO_L88N_2/VREF_2  V2

2  IO_L88P_2  V1

2  IO_L89N_2  W8

2  IO_L89P_2  W7

2  IO_L90N_2  W4

2  IO_L90P_2  W3

3  IO_L90N_3  AA3

3  IO_L90P_3  AA4

3  IO_L89N_3  AA7

3  IO_L89P_3  AA8
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3  IO_L88N_3  AA5

3  IO_L88P_3  AA6

3  IO_L87N_3/VREF_3  AB1

3  IO_L87P_3  AB2

3  IO_L86N_3  AA9

3  IO_L86P_3  AA10

3  IO_L85N_3  AB3

3  IO_L85P_3  AB4

3  IO_L60N_3  AC1

3  IO_L60P_3  AC2

3  IO_L59N_3  AA11

3  IO_L59P_3  AA12

3  IO_L58N_3  AB5

3  IO_L58P_3  AB6

3  IO_L57N_3/VREF_3  AC3

3  IO_L57P_3  AC4

3  IO_L56N_3  AB7

3  IO_L56P_3  AB8

3  IO_L55N_3  AC6

3  IO_L55P_3  AC7

3  IO_L54N_3  AD1

3  IO_L54P_3  AD2

3  IO_L53N_3  AB9

3  IO_L53P_3  AB10

3  IO_L52N_3  AD5

3  IO_L52P_3  AD6

3  IO_L51N_3/VREF_3  AD3

3  IO_L51P_3  AD4

3  IO_L50N_3  AB11

3  IO_L50P_3  AB12

3  IO_L49N_3  AE4

3  IO_L49P_3  AE5

3  IO_L48N_3  AE2

3  IO_L48P_3  AE3

3  IO_L47N_3  AC9

3  IO_L47P_3  AC10

3  IO_L46N_3  AE6

3  IO_L46P_3  AE7
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3  IO_L45N_3/VREF_3  AF1

3  IO_L45P_3  AF2

3  IO_L44N_3  AD7

3  IO_L44P_3  AD8

3  IO_L43N_3  AF4

3  IO_L43P_3  AF5

3  IO_L42N_3  AG1

3  IO_L42P_3  AG2

3  IO_L41N_3  AC11

3  IO_L41P_3  AC12

3  IO_L40N_3  AG3

3  IO_L40P_3  AG4

3  IO_L39N_3/VREF_3  AH1

3  IO_L39P_3  AH2

3  IO_L38N_3  AD9

3  IO_L38P_3  AD10

3  IO_L37N_3  AF7

3  IO_L37P_3  AF8

3  IO_L36N_3  AH3

3  IO_L36P_3  AH4

3  IO_L35N_3  AD11

3  IO_L35P_3  AD12

3  IO_L34N_3  AG5

3  IO_L34P_3  AG6

3  IO_L33N_3/VREF_3  AJ2

3  IO_L33P_3  AJ3

3  IO_L32N_3  AE9

3  IO_L32P_3  AE10

3  IO_L31N_3  AH5

3  IO_L31P_3  AH6

3  IO_L30N_3  AK1

3  IO_L30P_3  AK2

3  IO_L29N_3  AG7

3  IO_L29P_3  AG8

3  IO_L28N_3  AJ5

3  IO_L28P_3  AJ6

3  IO_L27N_3/VREF_3  AL1

3  IO_L27P_3  AL2
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3  IO_L26N_3  AF9

3  IO_L26P_3  AF10

3  IO_L25N_3  AK4

3  IO_L25P_3  AK5

3  IO_L24N_3  AM1

3  IO_L24P_3  AM2

3  IO_L23N_3  AE11

3  IO_L23P_3  AE12

3  IO_L22N_3  AM3

3  IO_L22P_3  AM4

3  IO_L21N_3/VREF_3  AL3

3  IO_L21P_3  AL4

3  IO_L20N_3  AG9

3  IO_L20P_3  AG10

3  IO_L19N_3  AK6

3  IO_L19P_3  AK7

3  IO_L18N_3  AN1

3  IO_L18P_3  AN2

3  IO_L17N_3  AF11

3  IO_L17P_3  AF12

3  IO_L16N_3  AL5

3  IO_L16P_3  AL6

3  IO_L15N_3/VREF_3  AP1

3  IO_L15P_3  AP2

3  IO_L14N_3  AJ7

3  IO_L14P_3  AJ8

3  IO_L13N_3  AM5

3  IO_L13P_3  AM6

3  IO_L12N_3  AN3

3  IO_L12P_3  AN4

3  IO_L11N_3  AG11

3  IO_L11P_3  AG12

3  IO_L10N_3  AN5

3  IO_L10P_3  AN6

3  IO_L09N_3/VREF_3  AR1

3  IO_L09P_3  AR2

3  IO_L08N_3  AK8

3  IO_L08P_3  AK9
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3  IO_L07N_3  AR3

3  IO_L07P_3  AR4

3  IO_L06N_3  AP3

3  IO_L06P_3  AP4

3  IO_L05N_3  AL7

3  IO_L05P_3  AL8

3  IO_L04N_3  AP5

3  IO_L04P_3  AR6

3  IO_L03N_3/VREF_3  AT1

3  IO_L03P_3  AT2

3  IO_L02N_3  AM7

3  IO_L02P_3  AN8

3  IO_L01N_3/VRP_3  AT5

3  IO_L01P_3/VRN_3  AU5

4  IO_L01N_4/DOUT  AP7

4  IO_L01P_4/INIT_B  AR7

4  IO_L02N_4/D0  AP8

4  IO_L02P_4/D1  AR8

4  IO_L03N_4/D2  AT8

4  IO_L03P_4/D3  AU8

4  IO_L05_4/No_Pair  AM10

4  IO_L06N_4/VRP_4  AR9

4  IO_L06P_4/VRN_4  AT9

4  IO_L07N_4  AK11

4  IO_L07P_4/VREF_4  AL11

4  IO_L08N_4  AN9

4  IO_L08P_4  AP9

4  IO_L09N_4  AR10

4  IO_L09P_4/VREF_4  AT10

4  IO_L19N_4  AK12

4  IO_L19P_4  AK13

4  IO_L20N_4  AN10

4  IO_L20P_4  AP10

4  IO_L21N_4  AP11

4  IO_L21P_4  AR11

4  IO_L25N_4  AL12

4  IO_L25P_4  AM12
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4  IO_L26N_4  AM11

4  IO_L26P_4  AN11

4  IO_L27N_4  AT11

4  IO_L27P_4/VREF_4  AU11

4  IO_L37N_4  AL13

4  IO_L37P_4  AM13

4  IO_L38N_4  AN12

4  IO_L38P_4  AP12

4  IO_L39N_4  AT12

4  IO_L39P_4  AU12

4  IO_L43N_4  AK14

4  IO_L43P_4  AL14

4  IO_L44N_4  AN13

4  IO_L44P_4  AP13

4  IO_L45N_4  AR13

4  IO_L45P_4/VREF_4  AT13

4  IO_L46N_4  AK15

4  IO_L46P_4  AL15

4  IO_L47N_4  AM14

4  IO_L47P_4  AN14

4  IO_L48N_4  AR14

4  IO_L48P_4  AT14

4  IO_L49N_4  AJ16

4  IO_L49P_4  AK16

4  IO_L50_4/No_Pair  AP15

4  IO_L53_4/No_Pair  AR15

4  IO_L54N_4  AT15

4  IO_L54P_4  AU15

4  IO_L55N_4  AM15

4  IO_L55P_4  AN15

4  IO_L56N_4  AN16

4  IO_L56P_4  AP16

4  IO_L57N_4  AR16

4  IO_L57P_4/VREF_4  AT16

4  IO_L58N_4  AL16

4  IO_L58P_4  AM16

4  IO_L59N_4  AN17

4  IO_L59P_4  AP17
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4  IO_L60N_4  AT17

4  IO_L60P_4  AU17

4  IO_L64N_4  AK17

4  IO_L64P_4  AL17

4  IO_L65N_4  AM18

4  IO_L65P_4  AN18

4  IO_L66N_4  AP18

4  IO_L66P_4/VREF_4  AR18

4  IO_L67N_4  AK18

4  IO_L67P_4  AL18

4  IO_L68N_4  AM19

4  IO_L68P_4  AN19

4  IO_L69N_4  AT18

4  IO_L69P_4/VREF_4  AU18

4  IO_L73N_4  AK19

4  IO_L73P_4  AL19

4  IO_L74N_4/GCLK3S  AP19

4  IO_L74P_4/GCLK2P  AR19

4  IO_L75N_4/GCLK1S  AT19

4  IO_L75P_4/GCLK0P  AU19

5  IO_L75N_5/GCLK7S  AU21

5  IO_L75P_5/GCLK6P  AT21

5  IO_L74N_5/GCLK5S  AR21

5  IO_L74P_5/GCLK4P  AP21

5  IO_L73N_5  AL21

5  IO_L73P_5  AK21

5  IO_L69N_5/VREF_5  AU22

5  IO_L69P_5  AT22

5  IO_L68N_5  AN21

5  IO_L68P_5  AM21

5  IO_L67N_5  AL22

5  IO_L67P_5  AK22

5  IO_L66N_5/VREF_5  AR22

5  IO_L66P_5  AP22

5  IO_L65N_5  AN22

5  IO_L65P_5  AM22

5  IO_L64N_5  AL23
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5  IO_L64P_5  AK23

5  IO_L60N_5  AU23

5  IO_L60P_5  AT23

5  IO_L59N_5  AP23

5  IO_L59P_5  AN23

5  IO_L58N_5  AM24

5  IO_L58P_5  AL24

5  IO_L57N_5/VREF_5  AT24

5  IO_L57P_5  AR24

5  IO_L56N_5  AP24

5  IO_L56P_5  AN24

5  IO_L55N_5  AN25

5  IO_L55P_5  AM25

5  IO_L54N_5  AU25

5  IO_L54P_5  AT25

5  IO_L53_5/No_Pair  AR25

5  IO_L50_5/No_Pair  AP25

5  IO_L49N_5  AK24

5  IO_L49P_5  AJ24

5  IO_L48N_5  AT26

5  IO_L48P_5  AR26

5  IO_L47N_5  AN26

5  IO_L47P_5  AM26

5  IO_L46N_5  AL25

5  IO_L46P_5  AK25

5  IO_L45N_5/VREF_5  AT27

5  IO_L45P_5  AR27

5  IO_L44N_5  AP27

5  IO_L44P_5  AN27

5  IO_L43N_5  AL26

5  IO_L43P_5  AK26

5  IO_L39N_5  AU28

5  IO_L39P_5  AT28

5  IO_L38N_5  AP28

5  IO_L38P_5  AN28

5  IO_L37N_5  AM27

5  IO_L37P_5  AL27

5  IO_L27N_5/VREF_5  AU29
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5  IO_L27P_5  AT29

5  IO_L26N_5  AN29

5  IO_L26P_5  AM29

5  IO_L25N_5  AM28

5  IO_L25P_5  AL28

5  IO_L21N_5  AR29

5  IO_L21P_5  AP29

5  IO_L20N_5  AP30

5  IO_L20P_5  AN30

5  IO_L19N_5  AK27

5  IO_L19P_5  AK28

5  IO_L09N_5/VREF_5  AT30

5  IO_L09P_5  AR30

5  IO_L08N_5  AP31

5  IO_L08P_5  AN31

5  IO_L07N_5/VREF_5  AL29

5  IO_L07P_5  AK29

5  IO_L06N_5/VRP_5  AT31

5  IO_L06P_5/VRN_5  AR31

5  IO_L05_5/No_Pair  AM30

5  IO_L03N_5/D4  AU32

5  IO_L03P_5/D5  AT32

5  IO_L02N_5/D6  AR32

5  IO_L02P_5/D7  AP32

5  IO_L01N_5/RDWR_B  AR33

5  IO_L01P_5/CS_B  AP33

6  IO_L01P_6/VRN_6  AU35

6  IO_L01N_6/VRP_6  AT35

6  IO_L02P_6  AN32

6  IO_L02N_6  AM33

6  IO_L03P_6  AT38

6  IO_L03N_6/VREF_6  AT39

6  IO_L04P_6  AR34

6  IO_L04N_6  AP35

6  IO_L05P_6  AL32

6  IO_L05N_6  AL33

6  IO_L06P_6  AP36
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6  IO_L06N_6  AP37

6  IO_L07P_6  AR36

6  IO_L07N_6  AR37

6  IO_L08P_6  AK31

6  IO_L08N_6  AK32

6  IO_L09P_6  AR38

6  IO_L09N_6/VREF_6  AR39

6  IO_L10P_6  AN34

6  IO_L10N_6  AN35

6  IO_L11P_6  AG28

6  IO_L11N_6  AG29

6  IO_L12P_6  AN36

6  IO_L12N_6  AN37

6  IO_L13P_6  AM34

6  IO_L13N_6  AM35

6  IO_L14P_6  AJ32

6  IO_L14N_6  AJ33

6  IO_L15P_6  AP38

6  IO_L15N_6/VREF_6  AP39

6  IO_L16P_6  AL34

6  IO_L16N_6  AL35

6  IO_L17P_6  AF28

6  IO_L17N_6  AF29

6  IO_L18P_6  AN38

6  IO_L18N_6  AN39

6  IO_L19P_6  AK33

6  IO_L19N_6  AK34

6  IO_L20P_6  AG30

6  IO_L20N_6  AG31

6  IO_L21P_6  AL36

6  IO_L21N_6/VREF_6  AL37

6  IO_L22P_6  AM36

6  IO_L22N_6  AM37

6  IO_L23P_6  AE28

6  IO_L23N_6  AE29

6  IO_L24P_6  AM38

6  IO_L24N_6  AM39

6  IO_L25P_6  AK35
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6  IO_L25N_6  AK36

6  IO_L26P_6  AF30

6  IO_L26N_6  AF31

6  IO_L27P_6  AL38

6  IO_L27N_6/VREF_6  AL39

6  IO_L28P_6  AJ34

6  IO_L28N_6  AJ35

6  IO_L29P_6  AG32

6  IO_L29N_6  AG33

6  IO_L30P_6  AK38

6  IO_L30N_6  AK39

6  IO_L31P_6  AH34

6  IO_L31N_6  AH35

6  IO_L32P_6  AE30

6  IO_L32N_6  AE31

6  IO_L33P_6  AJ37

6  IO_L33N_6/VREF_6  AJ38

6  IO_L34P_6  AG34

6  IO_L34N_6  AG35

6  IO_L35P_6  AD28

6  IO_L35N_6  AD29

6  IO_L36P_6  AH36

6  IO_L36N_6  AH37

6  IO_L37P_6  AF32

6  IO_L37N_6  AF33

6  IO_L38P_6  AD30

6  IO_L38N_6  AD31

6  IO_L39P_6  AH38

6  IO_L39N_6/VREF_6  AH39

6  IO_L40P_6  AG36

6  IO_L40N_6  AG37

6  IO_L41P_6  AC28

6  IO_L41N_6  AC29

6  IO_L42P_6  AG38

6  IO_L42N_6  AG39

6  IO_L43P_6  AF35

6  IO_L43N_6  AF36

6  IO_L44P_6  AD32
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6  IO_L44N_6  AD33

6  IO_L45P_6  AF38

6  IO_L45N_6/VREF_6  AF39

6  IO_L46P_6  AE33

6  IO_L46N_6  AE34

6  IO_L47P_6  AC30

6  IO_L47N_6  AC31

6  IO_L48P_6  AE37

6  IO_L48N_6  AE38

6  IO_L49P_6  AE35

6  IO_L49N_6  AE36

6  IO_L50P_6  AB28

6  IO_L50N_6  AB29

6  IO_L51P_6  AD36

6  IO_L51N_6/VREF_6  AD37

6  IO_L52P_6  AD34

6  IO_L52N_6  AD35

6  IO_L53P_6  AB30

6  IO_L53N_6  AB31

6  IO_L54P_6  AD38

6  IO_L54N_6  AD39

6  IO_L55P_6  AC33

6  IO_L55N_6  AC34

6  IO_L56P_6  AB32

6  IO_L56N_6  AB33

6  IO_L57P_6  AC36

6  IO_L57N_6/VREF_6  AC37

6  IO_L58P_6  AB34

6  IO_L58N_6  AB35

6  IO_L59P_6  AA28

6  IO_L59N_6  AA29

6  IO_L60P_6  AC38

6  IO_L60N_6  AC39

6  IO_L85P_6  AB36

6  IO_L85N_6  AB37

6  IO_L86P_6  AA30

6  IO_L86N_6  AA31

6  IO_L87P_6  AB38
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6  IO_L87N_6/VREF_6  AB39

6  IO_L88P_6  AA34

6  IO_L88N_6  AA35

6  IO_L89P_6  AA32

6  IO_L89N_6  AA33

6  IO_L90P_6  AA36

6  IO_L90N_6  AA37

7  IO_L90P_7  W37

7  IO_L90N_7  W36

7  IO_L89P_7  W33

7  IO_L89N_7  W32

7  IO_L88P_7  V39

7  IO_L88N_7/VREF_7  V38

7  IO_L87P_7  W35

7  IO_L87N_7  W34

7  IO_L86P_7  W31

7  IO_L86N_7  W30

7  IO_L85P_7  V37

7  IO_L85N_7  V36

7  IO_L60P_7  V35

7  IO_L60N_7  V34

7  IO_L59P_7  W29

7  IO_L59N_7  W28

7  IO_L58P_7  U39

7  IO_L58N_7/VREF_7  U38

7  IO_L57P_7  U34

7  IO_L57N_7  U33

7  IO_L56P_7  V33

7  IO_L56N_7  V32

7  IO_L55P_7  U37

7  IO_L55N_7  U36

7  IO_L54P_7  T37

7  IO_L54N_7  T36

7  IO_L53P_7  V31

7  IO_L53N_7  V30

7  IO_L52P_7  T39

7  IO_L52N_7/VREF_7  T38
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7  IO_L51P_7  T35

7  IO_L51N_7  T34

7  IO_L50P_7  V29

7  IO_L50N_7  V28

7  IO_L49P_7  R38

7  IO_L49N_7  R37

7  IO_L48P_7  R36

7  IO_L48N_7  R35

7  IO_L47P_7  U31

7  IO_L47N_7  U30

7  IO_L46P_7  P39

7  IO_L46N_7/VREF_7  P38

7  IO_L45P_7  R34

7  IO_L45N_7  R33

7  IO_L44P_7  T33

7  IO_L44N_7  T32

7  IO_L43P_7  N39

7  IO_L43N_7  N38

7  IO_L42P_7  P36

7  IO_L42N_7  P35

7  IO_L41P_7  U29

7  IO_L41N_7  U28

7  IO_L40P_7  N37

7  IO_L40N_7/VREF_7  N36

7  IO_L39P_7  N35

7  IO_L39N_7  N34

7  IO_L38P_7  T31

7  IO_L38N_7  T30

7  IO_L37P_7  M39

7  IO_L37N_7  M38

7  IO_L36P_7  M35

7  IO_L36N_7  M34

7  IO_L35P_7  T29

7  IO_L35N_7  T28

7  IO_L34P_7  M37

7  IO_L34N_7/VREF_7  M36

7  IO_L33P_7  N33

7  IO_L33N_7  N32
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7  IO_L32P_7  R31

7  IO_L32N_7  R30

7  IO_L31P_7  L38

7  IO_L31N_7  L37

7  IO_L30P_7  L35

7  IO_L30N_7  L34

7  IO_L29P_7  P33

7  IO_L29N_7  P32

7  IO_L28P_7  K39

7  IO_L28N_7/VREF_7  K38

7  IO_L27P_7  K36

7  IO_L27N_7  K35

7  IO_L26P_7  P31

7  IO_L26N_7  P30

7  IO_L25P_7  J39

7  IO_L25N_7  J38

7  IO_L24P_7  J37

7  IO_L24N_7  J36

7  IO_L23P_7  R29

7  IO_L23N_7  R28

7  IO_L22P_7  H39

7  IO_L22N_7/VREF_7  H38

7  IO_L21P_7  K34

7  IO_L21N_7  K33

7  IO_L20P_7  N31

7  IO_L20N_7  N30

7  IO_L19P_7  G39

7  IO_L19N_7  G38

7  IO_L18P_7  J35

7  IO_L18N_7  J34

7  IO_L17P_7  P29

7  IO_L17N_7  P28

7  IO_L16P_7  H37

7  IO_L16N_7/VREF_7  H36

7  IO_L15P_7  H35

7  IO_L15N_7  H34

7  IO_L14P_7  L33

7  IO_L14N_7  L32
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7  IO_L13P_7  F39

7  IO_L13N_7  F38

7  IO_L12P_7  F37

7  IO_L12N_7  F36

7  IO_L11P_7  N29

7  IO_L11N_7  N28

7  IO_L10P_7  G37

7  IO_L10N_7/VREF_7  G36

7  IO_L09P_7  G35

7  IO_L09N_7  G34

7  IO_L08P_7  K32

7  IO_L08N_7  K31

7  IO_L07P_7  E39

7  IO_L07N_7  E38

7  IO_L06P_7  F35

7  IO_L06N_7  E34

7  IO_L05P_7  J33

7  IO_L05N_7  J32

7  IO_L04P_7  D39

7  IO_L04N_7/VREF_7  D38

7  IO_L03P_7  D35

7  IO_L03N_7  C35

7  IO_L02P_7  H33

7  IO_L02N_7  G32

7  IO_L01P_7/VRN_7  E37

7  IO_L01N_7/VRP_7  E36

0  VCCO_0  P25

0  VCCO_0  P24

0  VCCO_0  P23

0  VCCO_0  P22

0  VCCO_0  P21

0  VCCO_0  N26

0  VCCO_0  N25

0  VCCO_0  N24

0  VCCO_0  N23

0  VCCO_0  N22

0  VCCO_0  N21
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0  VCCO_0  N20

0  VCCO_0  H23

0  VCCO_0  F26

0  VCCO_0  E28

1  VCCO_1  P20

1  VCCO_1  P19

1  VCCO_1  P18

1  VCCO_1  P17

1  VCCO_1  P16

1  VCCO_1  P15

1  VCCO_1  N19

1  VCCO_1  N18

1  VCCO_1  N17

1  VCCO_1  N16

1  VCCO_1  N15

1  VCCO_1  N14

1  VCCO_1  H17

1  VCCO_1  F14

1  VCCO_1  E12

2  VCCO_2  Y13

2  VCCO_2  W14

2  VCCO_2  W13

2  VCCO_2  V14

2  VCCO_2  V13

2  VCCO_2  U14

2  VCCO_2  U13

2  VCCO_2  T14

2  VCCO_2  T13

2  VCCO_2  R14

2  VCCO_2  R13

2  VCCO_2  R8

2  VCCO_2  P13

2  VCCO_2  M7

2  VCCO_2  L4

3  VCCO_3  AJ4

3  VCCO_3  AH7

3  VCCO_3  AF13

3  VCCO_3  AE14
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3  VCCO_3  AE13

3  VCCO_3  AE8

3  VCCO_3  AD14

3  VCCO_3  AD13

3  VCCO_3  AC14

3  VCCO_3  AC13

3  VCCO_3  AB14

3  VCCO_3  AB13

3  VCCO_3  AA14

3  VCCO_3  AA13

3  VCCO_3  Y14

4  VCCO_4  AR12

4  VCCO_4  AP14

4  VCCO_4  AM17

4  VCCO_4  AG20

4  VCCO_4  AG19

4  VCCO_4  AG18

4  VCCO_4  AG17

4  VCCO_4  AG16

4  VCCO_4  AG15

4  VCCO_4  AG14

4  VCCO_4  AF19

4  VCCO_4  AF18

4  VCCO_4  AF17

4  VCCO_4  AF16

4  VCCO_4  AF15

5  VCCO_5  AR28

5  VCCO_5  AP26

5  VCCO_5  AM23

5  VCCO_5  AG26

5  VCCO_5  AG25

5  VCCO_5  AG24

5  VCCO_5  AG23

5  VCCO_5  AG22

5  VCCO_5  AG21

5  VCCO_5  AF25

5  VCCO_5  AF24

5  VCCO_5  AF23
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5  VCCO_5  AF22

5  VCCO_5  AF21

5  VCCO_5  AF20

6  VCCO_6  AJ36

6  VCCO_6  AH33

6  VCCO_6  AF27

6  VCCO_6  AE32

6  VCCO_6  AE27

6  VCCO_6  AE26

6  VCCO_6  AD27

6  VCCO_6  AD26

6  VCCO_6  AC27

6  VCCO_6  AC26

6  VCCO_6  AB27

6  VCCO_6  AB26

6  VCCO_6  AA27

6  VCCO_6  AA26

6  VCCO_6  Y27

7  VCCO_7  Y26

7  VCCO_7  W27

7  VCCO_7  W26

7  VCCO_7  V27

7  VCCO_7  V26

7  VCCO_7  U27

7  VCCO_7  U26

7  VCCO_7  T27

7  VCCO_7  T26

7  VCCO_7  R32

7  VCCO_7  R27

7  VCCO_7  R26

7  VCCO_7  P27

7  VCCO_7  M33

7  VCCO_7  L36

N/A  CCLK  AT6

N/A  PROG_B  E33

N/A  DONE  AL10

N/A  M0  AT33
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N/A  M1  AT34

N/A  M2  AL30

N/A  TCK  E7

N/A  TDI  F33

N/A  TDO  F7

N/A  TMS  D6

N/A  PWRDWN_B  AT7

N/A  HSWAP_EN  D34

N/A  RSVD  D7

N/A  VBATT  J10

N/A  DXP  J30

N/A  DXN  D33

N/A  AVCCAUXTX2  B35

N/A  VTTXPAD2  B36

N/A  TXNPAD2  A36

N/A  TXPPAD2  A35

N/A  GNDA2  C34

N/A  GNDA2  C34

N/A  RXPPAD2  A34

N/A  RXNPAD2  A33

N/A  VTRXPAD2  B34

N/A  AVCCAUXRX2  B33

N/A  AVCCAUXTX4  B31

N/A  VTTXPAD4  B32

N/A  TXNPAD4  A32

N/A  TXPPAD4  A31

N/A  GNDA4  C31

N/A  GNDA4  C31

N/A  RXPPAD4  A30

N/A  RXNPAD4  A29

N/A  VTRXPAD4  B30

N/A  AVCCAUXRX4  B29

N/A  AVCCAUXTX5  B27

N/A  VTTXPAD5  B28

N/A  TXNPAD5  A28

N/A  TXPPAD5  A27

N/A  GNDA5  C27

N/A  GNDA5  C27
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N/A  RXPPAD5  A26

N/A  RXNPAD5  A25

N/A  VTRXPAD5  B26

N/A  AVCCAUXRX5  B25

N/A  AVCCAUXTX6  B23

N/A  VTTXPAD6  B24

N/A  TXNPAD6  A24

N/A  TXPPAD6  A23

N/A  GNDA6  C24

N/A  GNDA6  C24

N/A  RXPPAD6  A22

N/A  RXNPAD6  A21

N/A  VTRXPAD6  B22

N/A  AVCCAUXRX6  B21

N/A  AVCCAUXTX7  B18

N/A  VTTXPAD7  B19

N/A  TXNPAD7  A19

N/A  TXPPAD7  A18

N/A  GNDA7  C16

N/A  GNDA7  C16

N/A  RXPPAD7  A17

N/A  RXNPAD7  A16

N/A  VTRXPAD7  B17

N/A  AVCCAUXRX7  B16

N/A  AVCCAUXTX8  B14

N/A  VTTXPAD8  B15

N/A  TXNPAD8  A15

N/A  TXPPAD8  A14

N/A  GNDA8  C13

N/A  GNDA8  C13

N/A  RXPPAD8  A13

N/A  RXNPAD8  A12

N/A  VTRXPAD8  B13

N/A  AVCCAUXRX8  B12

N/A  AVCCAUXTX9  B10

N/A  VTTXPAD9  B11

N/A  TXNPAD9  A11

N/A  TXPPAD9  A10
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N/A  GNDA9  C9

N/A  GNDA9  C9

N/A  RXPPAD9  A9

N/A  RXNPAD9  A8

N/A  VTRXPAD9  B9

N/A  AVCCAUXRX9  B8

N/A  AVCCAUXTX11  B6

N/A  VTTXPAD11  B7

N/A  TXNPAD11  A7

N/A  TXPPAD11  A6

N/A  GNDA11  C6

N/A  GNDA11  C6

N/A  RXPPAD11  A5

N/A  RXNPAD11  A4

N/A  VTRXPAD11  B5

N/A  AVCCAUXRX11  B4

N/A  AVCCAUXRX14  AV4

N/A  VTRXPAD14  AV5

N/A  RXNPAD14  AW4

N/A  RXPPAD14  AW5

N/A  GNDA14  AU6

N/A  GNDA14  AU6

N/A  TXPPAD14  AW6

N/A  TXNPAD14  AW7

N/A  VTTXPAD14  AV7

N/A  AVCCAUXTX14  AV6

N/A  AVCCAUXRX16  AV8

N/A  VTRXPAD16  AV9

N/A  RXNPAD16  AW8

N/A  RXPPAD16  AW9

N/A  GNDA16  AU9

N/A  GNDA16  AU9

N/A  TXPPAD16  AW10

N/A  TXNPAD16  AW11

N/A  VTTXPAD16  AV11

N/A  AVCCAUXTX16  AV10

N/A  AVCCAUXRX17  AV12

N/A  VTRXPAD17  AV13
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N/A  RXNPAD17  AW12

N/A  RXPPAD17  AW13

N/A  GNDA17  AU13

N/A  GNDA17  AU13

N/A  TXPPAD17  AW14

N/A  TXNPAD17  AW15

N/A  VTTXPAD17  AV15

N/A  AVCCAUXTX17  AV14

N/A  AVCCAUXRX18  AV16

N/A  VTRXPAD18  AV17

N/A  RXNPAD18  AW16

N/A  RXPPAD18  AW17

N/A  GNDA18  AU16

N/A  GNDA18  AU16

N/A  TXPPAD18  AW18

N/A  TXNPAD18  AW19

N/A  VTTXPAD18  AV19

N/A  AVCCAUXTX18  AV18

N/A  AVCCAUXRX19  AV21

N/A  VTRXPAD19  AV22

N/A  RXNPAD19  AW21

N/A  RXPPAD19  AW22

N/A  GNDA19  AU24

N/A  GNDA19  AU24

N/A  TXPPAD19  AW23

N/A  TXNPAD19  AW24

N/A  VTTXPAD19  AV24

N/A  AVCCAUXTX19  AV23

N/A  AVCCAUXRX20  AV25

N/A  VTRXPAD20  AV26

N/A  RXNPAD20  AW25

N/A  RXPPAD20  AW26

N/A  GNDA20  AU27

N/A  GNDA20  AU27

N/A  TXPPAD20  AW27

N/A  TXNPAD20  AW28

N/A  VTTXPAD20  AV28

N/A  AVCCAUXTX20  AV27
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N/A  AVCCAUXRX21  AV29

N/A  VTRXPAD21  AV30

N/A  RXNPAD21  AW29

N/A  RXPPAD21  AW30

N/A  GNDA21  AU31

N/A  GNDA21  AU31

N/A  TXPPAD21  AW31

N/A  TXNPAD21  AW32

N/A  VTTXPAD21  AV32

N/A  AVCCAUXTX21  AV31

N/A  AVCCAUXRX23  AV33

N/A  VTRXPAD23  AV34

N/A  RXNPAD23  AW33

N/A  RXPPAD23  AW34

N/A  GNDA23  AU34

N/A  GNDA23  AU34

N/A  TXPPAD23  AW35

N/A  TXNPAD23  AW36

N/A  VTTXPAD23  AV36

N/A  AVCCAUXTX23  AV35

N/A  VCCINT  AH28

N/A  VCCINT  AH12

N/A  VCCINT  AG27

N/A  VCCINT  AG13

N/A  VCCINT  AF26

N/A  VCCINT  AF14

N/A  VCCINT  AE25

N/A  VCCINT  AE24

N/A  VCCINT  AE23

N/A  VCCINT  AE22

N/A  VCCINT  AE21

N/A  VCCINT  AE20

N/A  VCCINT  AE19

N/A  VCCINT  AE18

N/A  VCCINT  AE17

N/A  VCCINT  AE16

N/A  VCCINT  AE15
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N/A  VCCINT  AD25

N/A  VCCINT  AD24

N/A  VCCINT  AD16

N/A  VCCINT  AD15

N/A  VCCINT  AC25

N/A  VCCINT  AC15

N/A  VCCINT  AB25

N/A  VCCINT  AB15

N/A  VCCINT  AA25

N/A  VCCINT  AA15

N/A  VCCINT  Y25

N/A  VCCINT  Y15

N/A  VCCINT  W25

N/A  VCCINT  W15

N/A  VCCINT  V25

N/A  VCCINT  V15

N/A  VCCINT  U25

N/A  VCCINT  U15

N/A  VCCINT  T25

N/A  VCCINT  T24

N/A  VCCINT  T16

N/A  VCCINT  T15

N/A  VCCINT  R25

N/A  VCCINT  R24

N/A  VCCINT  R23

N/A  VCCINT  R22

N/A  VCCINT  R21

N/A  VCCINT  R20

N/A  VCCINT  R19

N/A  VCCINT  R18

N/A  VCCINT  R17

N/A  VCCINT  R16

N/A  VCCINT  R15

N/A  VCCINT  P26

N/A  VCCINT  P14

N/A  VCCINT  N27

N/A  VCCINT  N13

N/A  VCCINT  M28
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N/A  VCCINT  M12

N/A  VCCAUX  AV20

N/A  VCCAUX  AU36

N/A  VCCAUX  AU20

N/A  VCCAUX  AU4

N/A  VCCAUX  AT37

N/A  VCCAUX  AT3

N/A  VCCAUX  AL31

N/A  VCCAUX  AL9

N/A  VCCAUX  AK30

N/A  VCCAUX  AK10

N/A  VCCAUX  AA39

N/A  VCCAUX  AA1

N/A  VCCAUX  Y39

N/A  VCCAUX  Y38

N/A  VCCAUX  Y2

N/A  VCCAUX  Y1

N/A  VCCAUX  W39

N/A  VCCAUX  W1

N/A  VCCAUX  K30

N/A  VCCAUX  K10

N/A  VCCAUX  J31

N/A  VCCAUX  J9

N/A  VCCAUX  D37

N/A  VCCAUX  D3

N/A  VCCAUX  C36

N/A  VCCAUX  C20

N/A  VCCAUX  C4

N/A  VCCAUX  B20

N/A  GND  AW38

N/A  GND  AW37

N/A  GND  AW20

N/A  GND  AW3

N/A  GND  AW2

N/A  GND  AV39

N/A  GND  AV38

N/A  GND  AV37

N/A  GND  AV3
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N/A  GND  AV2

N/A  GND  AV1

N/A  GND  AU39

N/A  GND  AU38

N/A  GND  AU37

N/A  GND  AU30

N/A  GND  AU26

N/A  GND  AU14

N/A  GND  AU10

N/A  GND  AU3

N/A  GND  AU2

N/A  GND  AU1

N/A  GND  AT36

N/A  GND  AT20

N/A  GND  AT4

N/A  GND  AR35

N/A  GND  AR23

N/A  GND  AR17

N/A  GND  AR5

N/A  GND  AP34

N/A  GND  AP6

N/A  GND  AN33

N/A  GND  AN20

N/A  GND  AN7

N/A  GND  AM32

N/A  GND  AM8

N/A  GND  AK37

N/A  GND  AK20

N/A  GND  AK3

N/A  GND  AJ39

N/A  GND  AJ1

N/A  GND  AF37

N/A  GND  AF34

N/A  GND  AF6

N/A  GND  AF3

N/A  GND  AE39

N/A  GND  AE1

N/A  GND  AD23

Table  11:  FF1517 — XC2VP50
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N/A  GND  AD22

N/A  GND  AD21

N/A  GND  AD20

N/A  GND  AD19

N/A  GND  AD18

N/A  GND  AD17

N/A  GND  AC35

N/A  GND  AC32

N/A  GND  AC24

N/A  GND  AC23

N/A  GND  AC22

N/A  GND  AC21

N/A  GND  AC20

N/A  GND  AC19

N/A  GND  AC18

N/A  GND  AC17

N/A  GND  AC16

N/A  GND  AC8

N/A  GND  AC5

N/A  GND  AB24

N/A  GND  AB23

N/A  GND  AB22

N/A  GND  AB21

N/A  GND  AB20

N/A  GND  AB19

N/A  GND  AB18

N/A  GND  AB17

N/A  GND  AB16

N/A  GND  AA38

N/A  GND  AA24

N/A  GND  AA23

N/A  GND  AA22

N/A  GND  AA21

N/A  GND  AA20

N/A  GND  AA19

N/A  GND  AA18

N/A  GND  AA17

N/A  GND  AA16

Table  11:  FF1517 — XC2VP50

Bank Pin Description Pin Number

http://www.xilinx.com


Virtex-II Pro™ Platform FPGAs: Pinout Information
R

DS083-4 (v1.0) January 31, 2002 www.xilinx.com Module 4 of 4
Advance Product Specification 1-800-255-7778 311

N/A  GND  AA2

N/A  GND  Y37

N/A  GND  Y36

N/A  GND  Y33

N/A  GND  Y30

N/A  GND  Y24

N/A  GND  Y23

N/A  GND  Y22

N/A  GND  Y21

N/A  GND  Y20

N/A  GND  Y19

N/A  GND  Y18

N/A  GND  Y17

N/A  GND  Y16

N/A  GND  Y10

N/A  GND  Y7

N/A  GND  Y4

N/A  GND  Y3

N/A  GND  W38

N/A  GND  W24

N/A  GND  W23

N/A  GND  W22

N/A  GND  W21

N/A  GND  W20

N/A  GND  W19

N/A  GND  W18

N/A  GND  W17

N/A  GND  W16

N/A  GND  W2

N/A  GND  V24

N/A  GND  V23

N/A  GND  V22

N/A  GND  V21

N/A  GND  V20

N/A  GND  V19

N/A  GND  V18

N/A  GND  V17

N/A  GND  V16
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N/A  GND  U35

N/A  GND  U32

N/A  GND  U24

N/A  GND  U23

N/A  GND  U22

N/A  GND  U21

N/A  GND  U20

N/A  GND  U19

N/A  GND  U18

N/A  GND  U17

N/A  GND  U16

N/A  GND  U8

N/A  GND  U5

N/A  GND  T23

N/A  GND  T22

N/A  GND  T21

N/A  GND  T20

N/A  GND  T19

N/A  GND  T18

N/A  GND  T17

N/A  GND  R39

N/A  GND  R1

N/A  GND  P37

N/A  GND  P34

N/A  GND  P6

N/A  GND  P3

N/A  GND  L39

N/A  GND  L1

N/A  GND  K37

N/A  GND  K20

N/A  GND  K3

N/A  GND  H32

N/A  GND  H8

N/A  GND  G33

N/A  GND  G20

N/A  GND  G7

N/A  GND  F34

N/A  GND  F6
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N/A  GND  E35

N/A  GND  E23

N/A  GND  E17

N/A  GND  E5

N/A  GND  D36

N/A  GND  D20

N/A  GND  D4

N/A  GND  C39

N/A  GND  C38

N/A  GND  C37

N/A  GND  C30

N/A  GND  C26

N/A  GND  C14

N/A  GND  C10

N/A  GND  C3

N/A  GND  C2

N/A  GND  C1

N/A  GND  B39

N/A  GND  B38

N/A  GND  B37

N/A  GND  B3

N/A  GND  B2

N/A  GND  B1

N/A  GND  A38

N/A  GND  A37

N/A  GND  A20

N/A  GND  A3

N/A  GND  A2
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FF1517 Flip-Chip Fine-Pitch BGA Package Specifications (1.00mm pitch)

Figure 6:  FF1517 Flip-Chip Fine-Pitch BGA Package Specifications
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BF957 Flip-Chip BGA Package
As shown in Table 12, XC2VP20 and XC2VP50 Virtex-II Pro devices are available in the BF957 flip-chip BGA package. Pins
in each of these devices are the same, except for the differences shown in the "No Connects" column. Following this table
are the BF957 Flip-Chip BGA Package Specifications (1.27mm pitch).

Table  12:  BF957 — XC2VP20 and XC2VP50

Bank Pin Description Pin Number

No Connects

XC2V
P20

XC2V
P50

0  IO_L01N_0/VRP_0  E26

0  IO_L01P_0/VRN_0  E25

0  IO_L02N_0  H23

0  IO_L02P_0  G23

0  IO_L03N_0  F25

0  IO_L03P_0/VREF_0  F24

0  IO_L05_0/No_Pair  G24

0  IO_L06N_0  J22

0  IO_L06P_0  H22

0  IO_L07N_0  F23

0  IO_L07P_0  E23

0  IO_L08N_0  D25

0  IO_L08P_0  C25

0  IO_L09N_0  K21

0  IO_L09P_0/VREF_0  J21

0  IO_L19N_0   G22 NC

0  IO_L19P_0   F22 NC

0  IO_L37N_0  H21

0  IO_L37P_0  G21

0  IO_L38N_0  E24

0  IO_L38P_0  D24

0  IO_L39N_0  K20

0  IO_L39P_0  J20

0  IO_L43N_0  F21

0  IO_L43P_0  E21

0  IO_L44N_0  D23

0  IO_L44P_0  D22

0  IO_L45N_0  H20

0  IO_L45P_0/VREF_0  G20

0  IO_L46N_0  F20

0  IO_L46P_0  E20

0  IO_L47N_0  C22

0  IO_L47P_0  C21
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0  IO_L48N_0  K19

0  IO_L48P_0  J19

0  IO_L49N_0  H19

0  IO_L49P_0  G19

0  IO_L50_0/No_Pair  D21

0  IO_L53_0/No_Pair  D20

0  IO_L54N_0  K18

0  IO_L54P_0  J18

0  IO_L55N_0  F18

0  IO_L55P_0  E18

0  IO_L56N_0  E19

0  IO_L56P_0  D19

0  IO_L57N_0  H18

0  IO_L57P_0/VREF_0  G18

0  IO_L67N_0  H17

0  IO_L67P_0  G17

0  IO_L68N_0  D18

0  IO_L68P_0  C18

0  IO_L69N_0  K17

0  IO_L69P_0/VREF_0  J17

0  IO_L73N_0  F17

0  IO_L73P_0  E17

0  IO_L74N_0/GCLK7P  D17

0  IO_L74P_0/GCLK6S  C17

0  IO_L75N_0/GCLK5P  F16

0  IO_L75P_0/GCLK4S  E16

1  IO_L75N_1/GCLK3P  H16

1  IO_L75P_1/GCLK2S  J16

1  IO_L74N_1/GCLK1P  C15

1  IO_L74P_1/GCLK0S  D15

1  IO_L73N_1  E15

1  IO_L73P_1  F15

1  IO_L69N_1/VREF_1  J15

1  IO_L69P_1  K15

1  IO_L68N_1  C14

1  IO_L68P_1  D14

1  IO_L67N_1  G15
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1  IO_L67P_1  H15

1  IO_L57N_1/VREF_1  G14

1  IO_L57P_1  H14

1  IO_L56N_1  D13

1  IO_L56P_1  E13

1  IO_L55N_1  E14

1  IO_L55P_1  F14

1  IO_L54N_1  J14

1  IO_L54P_1  K14

1  IO_L53_1/No_Pair  D12

1  IO_L50_1/No_Pair  D11

1  IO_L49N_1  G13

1  IO_L49P_1  H13

1  IO_L48N_1  J13

1  IO_L48P_1  K13

1  IO_L47N_1  C11

1  IO_L47P_1  C10

1  IO_L46N_1  E12

1  IO_L46P_1  F12

1  IO_L45N_1/VREF_1  G12

1  IO_L45P_1  H12

1  IO_L44N_1  D10

1  IO_L44P_1  D9

1  IO_L43N_1  E11

1  IO_L43P_1  F11

1  IO_L39N_1  J12

1  IO_L39P_1  K12

1  IO_L38N_1  D8

1  IO_L38P_1  E8

1  IO_L37N_1  G11

1  IO_L37P_1  H11

1  IO_L19N_1   F10 NC

1  IO_L19P_1   G10 NC

1  IO_L09N_1/VREF_1  J11

1  IO_L09P_1  K11

1  IO_L08N_1  C7

1  IO_L08P_1  D7

1  IO_L07N_1  E9

Table  12:  BF957 — XC2VP20 and XC2VP50
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1  IO_L07P_1  F9

1  IO_L06N_1  H10

1  IO_L06P_1  J10

1  IO_L05_1/No_Pair  G8

1  IO_L03N_1/VREF_1  F8

1  IO_L03P_1  F7

1  IO_L02N_1  G9

1  IO_L02P_1  H9

1  IO_L01N_1/VRP_1  E7

1  IO_L01P_1/VRN_1  E6

2  IO_L01N_2/VRP_2  D2

2  IO_L01P_2/VRN_2  D1

2  IO_L02N_2  K9

2  IO_L02P_2  K8

2  IO_L03N_2  C4

2  IO_L03P_2  D3

2  IO_L04N_2/VREF_2  E2

2  IO_L04P_2  E1

2  IO_L05N_2  L10

2  IO_L05P_2  L9

2  IO_L06N_2  E4

2  IO_L06P_2  E3

2  IO_L18N_2   F5 NC

2  IO_L18P_2   F4 NC

2  IO_L31N_2  G4

2  IO_L31P_2  G3

2  IO_L32N_2  J7

2  IO_L32P_2  J6

2  IO_L33N_2  G6

2  IO_L33P_2  G5

2  IO_L34N_2/VREF_2  F2

2  IO_L34P_2  F1

2  IO_L35N_2  K7

2  IO_L35P_2  K6

2  IO_L36N_2  H5

2  IO_L36P_2  H4

2  IO_L37N_2  G2
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2  IO_L37P_2  G1

2  IO_L38N_2  M10

2  IO_L38P_2  M9

2  IO_L39N_2  J4

2  IO_L39P_2  J3

2  IO_L40N_2/VREF_2  H2

2  IO_L40P_2  H1

2  IO_L41N_2  L8

2  IO_L41P_2  L7

2  IO_L42N_2  K5

2  IO_L42P_2  K4

2  IO_L43N_2  J2

2  IO_L43P_2  J1

2  IO_L44N_2  M8

2  IO_L44P_2  M7

2  IO_L45N_2  L6

2  IO_L45P_2  L5

2  IO_L46N_2/VREF_2  K2

2  IO_L46P_2  K1

2  IO_L47N_2  N10

2  IO_L47P_2  N9

2  IO_L48N_2  L4

2  IO_L48P_2  L3

2  IO_L49N_2  L2

2  IO_L49P_2  L1

2  IO_L50N_2  M6

2  IO_L50P_2  M5

2  IO_L51N_2  M4

2  IO_L51P_2  M3

2  IO_L52N_2/VREF_2  M2

2  IO_L52P_2  M1

2  IO_L53N_2  N8

2  IO_L53P_2  N7

2  IO_L54N_2  N5

2  IO_L54P_2  N4

2  IO_L55N_2  N2

2  IO_L55P_2  N1

2  IO_L56N_2  P10
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2  IO_L56P_2  P9

2  IO_L57N_2  P6

2  IO_L57P_2  P5

2  IO_L58N_2/VREF_2  P4

2  IO_L58P_2  P3

2  IO_L59N_2  P8

2  IO_L59P_2  P7

2  IO_L60N_2  R6

2  IO_L60P_2  R5

2  IO_L85N_2  P2

2  IO_L85P_2  P1

2  IO_L86N_2  R10

2  IO_L86P_2  R9

2  IO_L87N_2  R4

2  IO_L87P_2  R3

2  IO_L88N_2/VREF_2  R2

2  IO_L88P_2  R1

2  IO_L89N_2  R8

2  IO_L89P_2  R7

2  IO_L90N_2  T5

2  IO_L90P_2  T6

3  IO_L90N_3  U1

3  IO_L90P_3  U2

3  IO_L89N_3  T8

3  IO_L89P_3  T9

3  IO_L88N_3  U3

3  IO_L88P_3  U4

3  IO_L87N_3/VREF_3  V1

3  IO_L87P_3  V2

3  IO_L86N_3  U7

3  IO_L86P_3  U8

3  IO_L85N_3  U5

3  IO_L85P_3  U6

3  IO_L60N_3  V3

3  IO_L60P_3  V4

3  IO_L59N_3  U9

3  IO_L59P_3  U10

Table  12:  BF957 — XC2VP20 and XC2VP50
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3  IO_L58N_3  V5

3  IO_L58P_3  V6

3  IO_L57N_3/VREF_3  W1

3  IO_L57P_3  W2

3  IO_L56N_3  V7

3  IO_L56P_3  V8

3  IO_L55N_3  W4

3  IO_L55P_3  W5

3  IO_L54N_3  Y1

3  IO_L54P_3  Y2

3  IO_L53N_3  V9

3  IO_L53P_3  V10

3  IO_L52N_3  Y3

3  IO_L52P_3  Y4

3  IO_L51N_3/VREF_3  AA1

3  IO_L51P_3  AA2

3  IO_L50N_3  W7

3  IO_L50P_3  W8

3  IO_L49N_3  Y5

3  IO_L49P_3  Y6

3  IO_L48N_3  AB1

3  IO_L48P_3  AB2

3  IO_L47N_3  W9

3  IO_L47P_3  W10

3  IO_L46N_3  AA3

3  IO_L46P_3  AA4

3  IO_L45N_3/VREF_3  AC1

3  IO_L45P_3  AC2

3  IO_L44N_3  Y7

3  IO_L44P_3  Y8

3  IO_L43N_3  AA5

3  IO_L43P_3  AA6

3  IO_L42N_3  AD1

3  IO_L42P_3  AD2

3  IO_L41N_3  AA7

3  IO_L41P_3  AA8

3  IO_L40N_3  AB4

3  IO_L40P_3  AB5
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3  IO_L39N_3/VREF_3  AC3

3  IO_L39P_3  AC4

3  IO_L38N_3  Y9

3  IO_L38P_3  Y10

3  IO_L37N_3  AD4

3  IO_L37P_3  AD5

3  IO_L36N_3  AE1

3  IO_L36P_3  AE2

3  IO_L35N_3  AB6

3  IO_L35P_3  AB7

3  IO_L34N_3  AE3

3  IO_L34P_3  AE4

3  IO_L33N_3/VREF_3  AF1

3  IO_L33P_3  AF2

3  IO_L32N_3  AC6

3  IO_L32P_3  AC7

3  IO_L31N_3  AE5

3  IO_L31P_3  AE6

3  IO_L18N_3   AG1 NC

3  IO_L18P_3   AG2 NC

3  IO_L17N_3   AA9 NC

3  IO_L17P_3   AA10 NC

3  IO_L06N_3  AH1

3  IO_L06P_3  AH2

3  IO_L05N_3  AB8

3  IO_L05P_3  AB9

3  IO_L04N_3  AF4

3  IO_L04P_3  AF5

3  IO_L03N_3/VREF_3  AG3

3  IO_L03P_3  AG4

3  IO_L02N_3  AD6

3  IO_L02P_3  AD7

3  IO_L01N_3/VRP_3  AH3

3  IO_L01P_3/VRN_3  AJ4

4  IO_L01N_4/DOUT  AG6

4  IO_L01P_4/INIT_B  AG7

4  IO_L02N_4/D0  AF7
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4  IO_L02P_4/D1  AF8

4  IO_L03N_4/D2  AH7

4  IO_L03P_4/D3  AJ7

4  IO_L05_4/No_Pair  AE8

4  IO_L06N_4/VRP_4  AG8

4  IO_L06P_4/VRN_4  AH8

4  IO_L07N_4  AC10

4  IO_L07P_4/VREF_4  AD10

4  IO_L08N_4  AD9

4  IO_L08P_4  AE9

4  IO_L09N_4  AF9

4  IO_L09P_4/VREF_4  AG9

4  IO_L19N_4   AB11 NC

4  IO_L19P_4   AC11 NC

4  IO_L37N_4  AB12

4  IO_L37P_4  AC12

4  IO_L38N_4  AE10

4  IO_L38P_4  AF10

4  IO_L39N_4  AH9

4  IO_L39P_4  AH10

4  IO_L43N_4  AD11

4  IO_L43P_4  AE11

4  IO_L44N_4  AF11

4  IO_L44P_4  AG11

4  IO_L45N_4  AJ10

4  IO_L45P_4/VREF_4  AJ11

4  IO_L46N_4  AB13

4  IO_L46P_4  AC13

4  IO_L47N_4  AD12

4  IO_L47P_4  AE12

4  IO_L48N_4  AH11

4  IO_L48P_4  AH12

4  IO_L49N_4  AB14

4  IO_L49P_4  AC14

4  IO_L50_4/No_Pair  AF12

4  IO_L53_4/No_Pair  AG12

4  IO_L54N_4  AG13

4  IO_L54P_4  AH13
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4  IO_L55N_4  AD14

4  IO_L55P_4  AE14

4  IO_L56N_4  AD13

4  IO_L56P_4  AE13

4  IO_L57N_4  AF14

4  IO_L57P_4/VREF_4  AG14

4  IO_L67N_4  AB15

4  IO_L67P_4  AC15

4  IO_L68N_4  AD15

4  IO_L68P_4  AE15

4  IO_L69N_4  AH14

4  IO_L69P_4/VREF_4  AJ14

4  IO_L73N_4  AC16

4  IO_L73P_4  AD16

4  IO_L74N_4/GCLK3S  AF15

4  IO_L74P_4/GCLK2P  AG15

4  IO_L75N_4/GCLK1S  AH15

4  IO_L75P_4/GCLK0P  AJ15

5  IO_L75N_5/GCLK7S  AJ17

5  IO_L75P_5/GCLK6P  AH17

5  IO_L74N_5/GCLK5S  AG17

5  IO_L74P_5/GCLK4P  AF17

5  IO_L73N_5  AG16

5  IO_L73P_5  AF16

5  IO_L69N_5/VREF_5  AJ18

5  IO_L69P_5  AH18

5  IO_L68N_5  AE17

5  IO_L68P_5  AD17

5  IO_L67N_5  AC17

5  IO_L67P_5  AB17

5  IO_L57N_5/VREF_5  AG18

5  IO_L57P_5  AF18

5  IO_L56N_5  AE19

5  IO_L56P_5  AD19

5  IO_L55N_5  AE18

5  IO_L55P_5  AD18

5  IO_L54N_5  AH19
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5  IO_L54P_5  AG19

5  IO_L53_5/No_Pair  AG20

5  IO_L50_5/No_Pair  AF20

5  IO_L49N_5  AC18

5  IO_L49P_5  AB18

5  IO_L48N_5  AH20

5  IO_L48P_5  AH21

5  IO_L47N_5  AE20

5  IO_L47P_5  AD20

5  IO_L46N_5  AC19

5  IO_L46P_5  AB19

5  IO_L45N_5/VREF_5  AJ21

5  IO_L45P_5  AJ22

5  IO_L44N_5  AG21

5  IO_L44P_5  AF21

5  IO_L43N_5  AE21

5  IO_L43P_5  AD21

5  IO_L39N_5  AH22

5  IO_L39P_5  AH23

5  IO_L38N_5  AF22

5  IO_L38P_5  AE22

5  IO_L37N_5  AC20

5  IO_L37P_5  AB20

5  IO_L19N_5   AC21 NC

5  IO_L19P_5   AB21 NC

5  IO_L09N_5/VREF_5  AG23

5  IO_L09P_5  AF23

5  IO_L08N_5  AE23

5  IO_L08P_5  AD23

5  IO_L07N_5/VREF_5  AD22

5  IO_L07P_5  AC22

5  IO_L06N_5/VRP_5  AH24

5  IO_L06P_5/VRN_5  AG24

5  IO_L05_5/No_Pair  AE24

5  IO_L03N_5/D4  AJ25

5  IO_L03P_5/D5  AH25

5  IO_L02N_5/D6  AF24

5  IO_L02P_5/D7  AF25
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5  IO_L01N_5/RDWR_B  AG25

5  IO_L01P_5/CS_B  AG26

6  IO_L01P_6/VRN_6  AJ28

6  IO_L01N_6/VRP_6  AH29

6  IO_L02P_6  AD25

6  IO_L02N_6  AD26

6  IO_L03P_6  AG28

6  IO_L03N_6/VREF_6  AG29

6  IO_L04P_6  AF27

6  IO_L04N_6  AF28

6  IO_L05P_6  AB23

6  IO_L05N_6  AB24

6  IO_L06P_6  AH30

6  IO_L06N_6  AH31

6  IO_L17P_6   AA22 NC

6  IO_L17N_6   AA23 NC

6  IO_L18P_6   AG30 NC

6  IO_L18N_6   AG31 NC

6  IO_L31P_6  AE26

6  IO_L31N_6  AE27

6  IO_L32P_6  AC25

6  IO_L32N_6  AC26

6  IO_L33P_6  AF30

6  IO_L33N_6/VREF_6  AF31

6  IO_L34P_6  AE28

6  IO_L34N_6  AE29

6  IO_L35P_6  AB25

6  IO_L35N_6  AB26

6  IO_L36P_6  AE30

6  IO_L36N_6  AE31

6  IO_L37P_6  AD27

6  IO_L37N_6  AD28

6  IO_L38P_6  Y22

6  IO_L38N_6  Y23

6  IO_L39P_6  AC28

6  IO_L39N_6/VREF_6  AC29

6  IO_L40P_6  AB27
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6  IO_L40N_6  AB28

6  IO_L41P_6  AA24

6  IO_L41N_6  AA25

6  IO_L42P_6  AD30

6  IO_L42N_6  AD31

6  IO_L43P_6  AA26

6  IO_L43N_6  AA27

6  IO_L44P_6  Y24

6  IO_L44N_6  Y25

6  IO_L45P_6  AC30

6  IO_L45N_6/VREF_6  AC31

6  IO_L46P_6  AA28

6  IO_L46N_6  AA29

6  IO_L47P_6  W22

6  IO_L47N_6  W23

6  IO_L48P_6  AB30

6  IO_L48N_6  AB31

6  IO_L49P_6  Y26

6  IO_L49N_6  Y27

6  IO_L50P_6  W24

6  IO_L50N_6  W25

6  IO_L51P_6  AA30

6  IO_L51N_6/VREF_6  AA31

6  IO_L52P_6  Y28

6  IO_L52N_6  Y29

6  IO_L53P_6  V22

6  IO_L53N_6  V23

6  IO_L54P_6  Y30

6  IO_L54N_6  Y31

6  IO_L55P_6  W27

6  IO_L55N_6  W28

6  IO_L56P_6  V24

6  IO_L56N_6  V25

6  IO_L57P_6  W30

6  IO_L57N_6/VREF_6  W31

6  IO_L58P_6  V26

6  IO_L58N_6  V27

6  IO_L59P_6  U22
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6  IO_L59N_6  U23

6  IO_L60P_6  V28

6  IO_L60N_6  V29

6  IO_L85P_6  U26

6  IO_L85N_6  U27

6  IO_L86P_6  U24

6  IO_L86N_6  U25

6  IO_L87P_6  V30

6  IO_L87N_6/VREF_6  V31

6  IO_L88P_6  U28

6  IO_L88N_6  U29

6  IO_L89P_6  T23

6  IO_L89N_6  T24

6  IO_L90P_6  U30

6  IO_L90N_6  U31

7  IO_L90P_7  T26

7  IO_L90N_7  T27

7  IO_L89P_7  R25

7  IO_L89N_7  R24

7  IO_L88P_7  R31

7  IO_L88N_7/VREF_7  R30

7  IO_L87P_7  R29

7  IO_L87N_7  R28

7  IO_L86P_7  R23

7  IO_L86N_7  R22

7  IO_L85P_7  P31

7  IO_L85N_7  P30

7  IO_L60P_7  R27

7  IO_L60N_7  R26

7  IO_L59P_7  P25

7  IO_L59N_7  P24

7  IO_L58P_7  P29

7  IO_L58N_7/VREF_7  P28

7  IO_L57P_7  P27

7  IO_L57N_7  P26

7  IO_L56P_7  P23

7  IO_L56N_7  P22
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7  IO_L55P_7  N31

7  IO_L55N_7  N30

7  IO_L54P_7  N28

7  IO_L54N_7  N27

7  IO_L53P_7  N25

7  IO_L53N_7  N24

7  IO_L52P_7  M31

7  IO_L52N_7/VREF_7  M30

7  IO_L51P_7  M29

7  IO_L51N_7  M28

7  IO_L50P_7  M27

7  IO_L50N_7  M26

7  IO_L49P_7  L31

7  IO_L49N_7  L30

7  IO_L48P_7  L29

7  IO_L48N_7  L28

7  IO_L47P_7  N23

7  IO_L47N_7  N22

7  IO_L46P_7  K31

7  IO_L46N_7/VREF_7  K30

7  IO_L45P_7  L27

7  IO_L45N_7  L26

7  IO_L44P_7  M25

7  IO_L44N_7  M24

7  IO_L43P_7  J31

7  IO_L43N_7  J30

7  IO_L42P_7  K28

7  IO_L42N_7  K27

7  IO_L41P_7  L25

7  IO_L41N_7  L24

7  IO_L40P_7  H31

7  IO_L40N_7/VREF_7  H30

7  IO_L39P_7  J29

7  IO_L39N_7  J28

7  IO_L38P_7  M23

7  IO_L38N_7  M22

7  IO_L37P_7  G31

7  IO_L37N_7  G30
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7  IO_L36P_7  H28

7  IO_L36N_7  H27

7  IO_L35P_7  K26

7  IO_L35N_7  K25

7  IO_L34P_7  F31

7  IO_L34N_7/VREF_7  F30

7  IO_L33P_7  G27

7  IO_L33N_7  G26

7  IO_L32P_7  J26

7  IO_L32N_7  J25

7  IO_L31P_7  G29

7  IO_L31N_7  G28

7  IO_L18P_7   F28 NC

7  IO_L18N_7   F27 NC

7  IO_L06P_7  E29

7  IO_L06N_7  E28

7  IO_L05P_7  L23

7  IO_L05N_7  L22

7  IO_L04P_7  E31

7  IO_L04N_7/VREF_7  E30

7  IO_L03P_7  D29

7  IO_L03N_7  C28

7  IO_L02P_7  K24

7  IO_L02N_7  K23

7  IO_L01P_7/VRN_7  D31

7  IO_L01N_7/VRP_7  D30

0  VCCO_0  M19

0  VCCO_0  M18

0  VCCO_0  M17

0  VCCO_0  L20

0  VCCO_0  L19

0  VCCO_0  L18

0  VCCO_0  L17

0  VCCO_0  E22

0  VCCO_0  C26

0  VCCO_0  C19

1  VCCO_1  M15
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1  VCCO_1  M14

1  VCCO_1  M13

1  VCCO_1  L15

1  VCCO_1  L14

1  VCCO_1  L13

1  VCCO_1  L12

1  VCCO_1  E10

1  VCCO_1  C13

1  VCCO_1  C6

2  VCCO_2  R12

2  VCCO_2  R11

2  VCCO_2  P12

2  VCCO_2  P11

2  VCCO_2  N12

2  VCCO_2  N11

2  VCCO_2  N3

2  VCCO_2  M11

2  VCCO_2  J5

2  VCCO_2  F3

3  VCCO_3  AF3

3  VCCO_3  AC5

3  VCCO_3  Y11

3  VCCO_3  W12

3  VCCO_3  W11

3  VCCO_3  W3

3  VCCO_3  V12

3  VCCO_3  V11

3  VCCO_3  U12

3  VCCO_3  U11

4  VCCO_4  AJ13

4  VCCO_4  AJ6

4  VCCO_4  AG10

4  VCCO_4  AA15

4  VCCO_4  AA14

4  VCCO_4  AA13

4  VCCO_4  AA12

4  VCCO_4  Y15

4  VCCO_4  Y14
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4  VCCO_4  Y13

5  VCCO_5  AJ26

5  VCCO_5  AJ19

5  VCCO_5  AG22

5  VCCO_5  AA20

5  VCCO_5  AA19

5  VCCO_5  AA18

5  VCCO_5  AA17

5  VCCO_5  Y19

5  VCCO_5  Y18

5  VCCO_5  Y17

6  VCCO_6  AF29

6  VCCO_6  AC27

6  VCCO_6  Y21

6  VCCO_6  W29

6  VCCO_6  W21

6  VCCO_6  W20

6  VCCO_6  V21

6  VCCO_6  V20

6  VCCO_6  U21

6  VCCO_6  U20

7  VCCO_7  R21

7  VCCO_7  R20

7  VCCO_7  P21

7  VCCO_7  P20

7  VCCO_7  N29

7  VCCO_7  N21

7  VCCO_7  N20

7  VCCO_7  M21

7  VCCO_7  J27

7  VCCO_7  F29

N/A  CCLK  AC8

N/A  PROG_B  J24

N/A  DONE  AH6

N/A  M0  AH27

N/A  M1  AC24

N/A  M2  AH26
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N/A  TCK  J8

N/A  TDI  H26

N/A  TDO  H6

N/A  TMS  H7

N/A  PWRDWN_B  AH5

N/A  HSWAP_EN  H25

N/A  RSVD  D6

N/A  VBATT  D5

N/A  DXP  D27

N/A  DXN  D26

N/A  AVCCAUXTX2   B27 NC

N/A  VTTXPAD2   B28 NC

N/A  TXNPAD2   A28 NC

N/A  TXPPAD2   A27 NC

N/A  GNDA2   C27 NC

N/A  GNDA2   C27 NC

N/A  RXPPAD2   A26 NC

N/A  RXNPAD2   A25 NC

N/A  VTRXPAD2   B26 NC

N/A  AVCCAUXRX2   B25 NC

N/A  AVCCAUXTX4  B23

N/A  VTTXPAD4  B24

N/A  TXNPAD4  A24

N/A  TXPPAD4  A23

N/A  GNDA4  C24

N/A  GNDA4  C24

N/A  RXPPAD4  A22

N/A  RXNPAD4  A21

N/A  VTRXPAD4  B22

N/A  AVCCAUXRX4  B21

N/A  AVCCAUXTX6  B19

N/A  VTTXPAD6  B20

N/A  TXNPAD6  A20

N/A  TXPPAD6  A19

N/A  GNDA6  C20

N/A  GNDA6  C20

N/A  RXPPAD6  A18

N/A  RXNPAD6  A17

Table  12:  BF957 — XC2VP20 and XC2VP50

Bank Pin Description Pin Number

No Connects

XC2V
P20
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N/A  VTRXPAD6  B18

N/A  AVCCAUXRX6  B17

N/A  AVCCAUXTX7  B14

N/A  VTTXPAD7  B15

N/A  TXNPAD7  A15

N/A  TXPPAD7  A14

N/A  GNDA7  C12

N/A  GNDA7  C12

N/A  RXPPAD7  A13

N/A  RXNPAD7  A12

N/A  VTRXPAD7  B13

N/A  AVCCAUXRX7  B12

N/A  AVCCAUXTX9  B10

N/A  VTTXPAD9  B11

N/A  TXNPAD9  A11

N/A  TXPPAD9  A10

N/A  GNDA9  C8

N/A  GNDA9  C8

N/A  RXPPAD9  A9

N/A  RXNPAD9  A8

N/A  VTRXPAD9  B9

N/A  AVCCAUXRX9  B8

N/A  AVCCAUXTX11   B6 NC

N/A  VTTXPAD11   B7 NC

N/A  TXNPAD11   A7 NC

N/A  TXPPAD11   A6 NC

N/A  GNDA11   C5 NC

N/A  GNDA11   C5 NC

N/A  RXPPAD11   A5 NC

N/A  RXNPAD11   A4 NC

N/A  VTRXPAD11   B5 NC

N/A  AVCCAUXRX11   B4 NC

N/A  AVCCAUXRX14   AK4 NC

N/A  VTRXPAD14   AK5 NC

N/A  RXNPAD14   AL4 NC

N/A  RXPPAD14   AL5 NC

N/A  GNDA14   AJ5 NC

N/A  GNDA14   AJ5 NC

Table  12:  BF957 — XC2VP20 and XC2VP50

Bank Pin Description Pin Number

No Connects

XC2V
P20
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P50
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N/A  TXPPAD14   AL6 NC

N/A  TXNPAD14   AL7 NC

N/A  VTTXPAD14   AK7 NC

N/A  AVCCAUXTX14   AK6 NC

N/A  AVCCAUXRX16  AK8

N/A  VTRXPAD16  AK9

N/A  RXNPAD16  AL8

N/A  RXPPAD16  AL9

N/A  GNDA16  AJ8

N/A  GNDA16  AJ8

N/A  TXPPAD16  AL10

N/A  TXNPAD16  AL11

N/A  VTTXPAD16  AK11

N/A  AVCCAUXTX16  AK10

N/A  AVCCAUXRX18  AK12

N/A  VTRXPAD18  AK13

N/A  RXNPAD18  AL12

N/A  RXPPAD18  AL13

N/A  GNDA18  AJ12

N/A  GNDA18  AJ12

N/A  TXPPAD18  AL14

N/A  TXNPAD18  AL15

N/A  VTTXPAD18  AK15

N/A  AVCCAUXTX18  AK14

N/A  AVCCAUXRX19  AK17

N/A  VTRXPAD19  AK18

N/A  RXNPAD19  AL17

N/A  RXPPAD19  AL18

N/A  GNDA19  AJ20

N/A  GNDA19  AJ20

N/A  TXPPAD19  AL19

N/A  TXNPAD19  AL20

N/A  VTTXPAD19  AK20

N/A  AVCCAUXTX19  AK19

N/A  AVCCAUXRX21  AK21

N/A  VTRXPAD21  AK22

N/A  RXNPAD21  AL21

N/A  RXPPAD21  AL22

Table  12:  BF957 — XC2VP20 and XC2VP50

Bank Pin Description Pin Number

No Connects

XC2V
P20
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N/A  GNDA21  AJ24

N/A  GNDA21  AJ24

N/A  TXPPAD21  AL23

N/A  TXNPAD21  AL24

N/A  VTTXPAD21  AK24

N/A  AVCCAUXTX21  AK23

N/A  AVCCAUXRX23   AK25 NC

N/A  VTRXPAD23   AK26 NC

N/A  RXNPAD23   AL25 NC

N/A  RXPPAD23   AL26 NC

N/A  GNDA23   AJ27 NC

N/A  GNDA23   AJ27 NC

N/A  TXPPAD23   AL27 NC

N/A  TXNPAD23   AL28 NC

N/A  VTTXPAD23   AK28 NC

N/A  AVCCAUXTX23   AK27 NC

N/A  VCCAUX  AK29

N/A  VCCAUX  AK16

N/A  VCCAUX  AK3

N/A  VCCAUX  AJ30

N/A  VCCAUX  AJ16

N/A  VCCAUX  AJ2

N/A  VCCAUX  T30

N/A  VCCAUX  T29

N/A  VCCAUX  T3

N/A  VCCAUX  T2

N/A  VCCAUX  C30

N/A  VCCAUX  C16

N/A  VCCAUX  C2

N/A  VCCAUX  B29

N/A  VCCAUX  B16

N/A  VCCAUX  B3

N/A  VCCINT  AA21

N/A  VCCINT  AA16

N/A  VCCINT  AA11

N/A  VCCINT  Y20

N/A  VCCINT  Y16

Table  12:  BF957 — XC2VP20 and XC2VP50

Bank Pin Description Pin Number

No Connects

XC2V
P20

XC2V
P50
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N/A  VCCINT  Y12

N/A  VCCINT  W19

N/A  VCCINT  W18

N/A  VCCINT  W17

N/A  VCCINT  W16

N/A  VCCINT  W15

N/A  VCCINT  W14

N/A  VCCINT  W13

N/A  VCCINT  V19

N/A  VCCINT  V13

N/A  VCCINT  U19

N/A  VCCINT  U13

N/A  VCCINT  T21

N/A  VCCINT  T20

N/A  VCCINT  T19

N/A  VCCINT  T13

N/A  VCCINT  T12

N/A  VCCINT  T11

N/A  VCCINT  R19

N/A  VCCINT  R13

N/A  VCCINT  P19

N/A  VCCINT  P13

N/A  VCCINT  N19

N/A  VCCINT  N18

N/A  VCCINT  N17

N/A  VCCINT  N16

N/A  VCCINT  N15

N/A  VCCINT  N14

N/A  VCCINT  N13

N/A  VCCINT  M20

N/A  VCCINT  M16

N/A  VCCINT  M12

N/A  VCCINT  L21

N/A  VCCINT  L16

N/A  VCCINT  L11

N/A  GND  AL30

N/A  GND  AL29

N/A  GND  AL16

Table  12:  BF957 — XC2VP20 and XC2VP50

Bank Pin Description Pin Number

No Connects

XC2V
P20
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N/A  GND  AL3

N/A  GND  AL2

N/A  GND  AK31

N/A  GND  AK30

N/A  GND  AK2

N/A  GND  AK1

N/A  GND  AJ31

N/A  GND  AJ29

N/A  GND  AJ23

N/A  GND  AJ9

N/A  GND  AJ3

N/A  GND  AJ1

N/A  GND  AH28

N/A  GND  AH16

N/A  GND  AH4

N/A  GND  AG27

N/A  GND  AG5

N/A  GND  AF26

N/A  GND  AF19

N/A  GND  AF13

N/A  GND  AF6

N/A  GND  AE25

N/A  GND  AE16

N/A  GND  AE7

N/A  GND  AD29

N/A  GND  AD24

N/A  GND  AD8

N/A  GND  AD3

N/A  GND  AC23

N/A  GND  AC9

N/A  GND  AB29

N/A  GND  AB22

N/A  GND  AB16

N/A  GND  AB10

N/A  GND  AB3

N/A  GND  W26

N/A  GND  W6

N/A  GND  V18

Table  12:  BF957 — XC2VP20 and XC2VP50

Bank Pin Description Pin Number

No Connects

XC2V
P20
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N/A  GND  V17

N/A  GND  V16

N/A  GND  V15

N/A  GND  V14

N/A  GND  U18

N/A  GND  U17

N/A  GND  U16

N/A  GND  U15

N/A  GND  U14

N/A  GND  T31

N/A  GND  T28

N/A  GND  T25

N/A  GND  T22

N/A  GND  T18

N/A  GND  T17

N/A  GND  T16

N/A  GND  T15

N/A  GND  T14

N/A  GND  T10

N/A  GND  T7

N/A  GND  T4

N/A  GND  T1

N/A  GND  R18

N/A  GND  R17

N/A  GND  R16

N/A  GND  R15

N/A  GND  R14

N/A  GND  P18

N/A  GND  P17

N/A  GND  P16

N/A  GND  P15

N/A  GND  P14

N/A  GND  N26

N/A  GND  N6

N/A  GND  K29

N/A  GND  K22

N/A  GND  K16

N/A  GND  K10

Table  12:  BF957 — XC2VP20 and XC2VP50

Bank Pin Description Pin Number

No Connects

XC2V
P20
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P50
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N/A  GND  K3

N/A  GND  J23

N/A  GND  J9

N/A  GND  H29

N/A  GND  H24

N/A  GND  H8

N/A  GND  H3

N/A  GND  G25

N/A  GND  G16

N/A  GND  G7

N/A  GND  F26

N/A  GND  F19

N/A  GND  F13

N/A  GND  F6

N/A  GND  E27

N/A  GND  E5

N/A  GND  D28

N/A  GND  D16

N/A  GND  D4

N/A  GND  C31

N/A  GND  C29

N/A  GND  C23

N/A  GND  C9

N/A  GND  C3

N/A  GND  C1

N/A  GND  B31

N/A  GND  B30

N/A  GND  B2

N/A  GND  B1

N/A  GND  A30

N/A  GND  A29

N/A  GND  A16

N/A  GND  A3

N/A  GND  A2

Table  12:  BF957 — XC2VP20 and XC2VP50

Bank Pin Description Pin Number

No Connects

XC2V
P20
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P50
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BF957 Flip-Chip BGA Package Specifications (1.27mm pitch)

Figure 7:  BF957 Flip-Chip BGA Package Specifications
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Revision History
This section records the change history for this module of the data sheet. 

Virtex-II Pro Data Sheet Modules
The Virtex-II Pro Data Sheet contains the following modules:

• Virtex-II Pro™ Platform FPGAs: Introduction and 
Overview (Module 1)

• Virtex-II Pro™ Platform FPGAs: Functional 
Description (Module 2)

• Virtex-II Pro™ Platform FPGAs: DC and Switching 
Characteristics (Module 3)

• Virtex-II Pro Platform FPGAs: Pinout Information 
(Module 4)
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Preface

About This Book

This document is intended to serve as a stand-alone reference for application and system 
programmers of the PowerPC® 405D5 processor. It combines information from the 
following documents:

• PowerPC 405 Embedded Processor Core User’s Manual published by IBM Corporation 
(IBM order number SA14-2339-01).

• The IBM PowerPC Embedded Environment Architectural Specifications for IBM PowerPC 
Embedded Controllers, published by IBM Corporation.

• PowerPC Microprocessor Family: The Programming Environments published by IBM 
Corporation (IBM order number G522-0290-01).

• IBM PowerPC Embedded Processors Application Note: PowerPC 400 Series Caches: 
Programming and Coherency Issues.

• IBM PowerPC Embedded Processors Application Note: PowerPC 40x Watch Dog Timer.
• IBM PowerPC Embedded Processors Application Note: Programming Model Differences 

of the IBM PowerPC 400 Family and 600/700 Family Processors.

Document Organization
• Chapter 1, Introduction to the PPC405, provides a general understanding of the 

PPC405 as an implementation of the PowerPC embedded-environment architecture. 
This chapter also contains an overview of the features supported by the PPC405.

• Chapter 2, Operational Concepts, introduces the processor operating modes, 
execution model, synchronization, operand conventions, and instruction conventions.

• Chapter 3, User Programming Model, describes the registers and instructions 
available to application software.

• Chapter 4, PPC405 Privileged-Mode Programming Model, introduces the registers 
and instructions available to system software.

• Chapter 5, Memory-System Management, describes the operation of the memory 
system, including caches. Real-mode storage control is also described in this chapter.

• Chapter 6, Virtual-Memory Management, describes virtual-to-physical address 
translation as supported by the PPC405. Virtual-mode storage control is also 
described in this chapter.

• Chapter 7, Exceptions and Interrupts, provides details of all exceptions recognized by 
the PPC405 and how software can use the interrupt mechanism to handle exceptions.

• Chapter 8, Timer Resources, describes the timer registers and timer-interrupt controls 
available in the PPC405.

• Chapter 9, Debugging, describes the debug resources available to software and 
hardware debuggers.

• Chapter 10, Reset and Initialization, describes the state of the PPC405 following reset 
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and the requirements for initializing the processor.
• Chapter 11, Instruction Set, provides a detailed description of each instruction 

supported by the PPC405.
• Appendix A, Register Summary, is a reference of all registers supported by the 

PPC405.
• Appendix B, Instruction Summary, lists all instructions sorted by mnemonic, opcode, 

function, and form. Each entry for an instruction shows its complete encoding. 
General instruction-set information is also provided.

• Appendix C, Simplified Mnemonics, lists the simplified mnemonics recognized by 
many PowerPC assemblers. These mnemonics provide a shorthand means of 
specifying frequently-used instruction encodings and can greatly improve assembler 
code readability.

• Appendix D, Programming Considerations, provides information on improving 
performance of software written for the PPC405.

• Appendix E, PowerPC® 6xx/7xx Compatibility, describes the programming model 
differences between the PPC405 and PowerPC 6xx and 7xx series processors.

• Appendix F, PowerPC® Book-E Compatibility, describes the programming model 
differences between the PPC405 and PowerPC Book-E processors.

Document Conventions

General Conventions
Table 1 lists the general notational conventions used throughout this document.

Table P-1: General Notational Conventions

Convention Definition

mnemonic Instruction mnemonics are shown in lower-case bold.

. (period) Update. When used as a character in an instruction 
mnemonic, a period (.) means that the instruction 
updates the condition-register field.

! (exclamation) In instruction listings, an exclamation (!) indicates the 
start of a comment.

variable Variable items are shown in italic.

<optional> Optional items are shown in angle brackets.

ActiveLow An overbar indicates an active-low signal.

n A decimal number.

0xn A hexadecimal number.

0bn A binary number.

(rn) The contents of GPR rn.

(rA|0) The contents of the register rA, or 0 if the rA instruction 
field is 0.

cr_bit Used in simplified mnemonics to specify a CR-bit 
position (0 to 31) used as an operand.
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Instruction Fields
Table 2 lists the instruction fields used in the various instruction formats. They are found in 
the instruction encodings and pseudocode, and are referred to throughout this document 
when describing instructions. The table includes the bit locations for the field within the 
instruction encoding.

cr_field Used in simplified mnemonics to specify a CR field 
(0 to 7) used as an operand.

OBJECTb A single bit in any object (a register, an instruction, an 
address, or a field) is shown as a subscripted number or 
name.

OBJECTb:b A range of bits in any object (a register, an instruction, 
an address, or a field).

OBJECTb,b, . . . A list of bits in any object (a register, an instruction, an 
address, or a field).

REGISTER[FIELD] Fields within any register are shown in square brackets.

REGISTER[FIELD, FIELD . . .] A list of fields in any register.

REGISTER[FIELD:FIELD] A range of fields in any register.

Table P-1: General Notational Conventions (Continued)

Convention Definition

Table P-2: Instruction Field Definitions

Field Location Description

AA 30 Absolute-address bit (branch instructions).

0—The immediate field represents an address relative to the 
current instruction address (CIA). The effective address (EA) of 
the branch is either the sum of the LI field sign-extended to 32 
bits and the branch instruction address, or the sum of the BD 
field sign-extended to 32 bits and the branch instruction address.

1—The immediate field represents an absolute address. The EA of 
the branch is either the LI field or the BD field, sign-extended to 
32 bits.

BD 16:29 An immediate field specifying a 14-bit signed two’s-complement 
branch displacement. This field is concatenated on the right with 
0b00 and sign-extended to 32 bits.

BI 11:15 Specifies a bit in the CR used as a source for the condition of a 
conditional-branch instruction.

BO 6:10 Specifies options for conditional-branch instructions. See 
Conditional Branch Control, page 367

crbA 11:15 Specifies a bit in the CR used as a source of a CR-logical instruction.

crbB 16:20 Specifies a bit in the CR used as a source of a CR-logical instruction.

crbD 6:10 Specifies a bit in the CR used as a destination of a CR-Logical 
instruction.
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crfD 6:8 Specifies a field in the CR used as a target in a compare or mcrf 
instruction.

crfS 11:13 Specifies a field in the CR used as a source in a mcrf instruction.

CRM 12:19 The field mask used to identify CR fields to be updated by the 
mtcrf instruction.

d 16:31 Specifies a 16-bit signed two’s-complement integer displacement 
for load/store instructions.

DCRF 11:20 A split field used to specify a device control register (DCR). The 
field is used to form the DCR number (DCRN).

E 16 A single-bit immediate field in the wrteei instruction specifying the 
value to be written to the MSR[EE] bit.

LI 6:29 An immediate field specifying a 24-bit signed two’s-complement 
branch displacement. This field is concatenated on the right with 
0b00 and sign-extended to 32 bits.

LK 31 Link bit.

0—Do not update the link register (LR).

1—Update the LR with the address of the next instruction.

MB 21:25 Mask begin. Used in rotate-and-mask instructions to specify the 
beginning bit of a mask.

ME 26:30 Mask end. Used in rotate-and-mask instructions to specify the 
ending bit of a mask.

NB 16:20 Specifies the number of bytes to move in an immediate-string load 
or immediate-string store.

OE 21 Enables setting the OV and SO fields in the fixed-point exception 
register (XER) for extended arithmetic.

OPCD 0:5 Primary opcode. Primary opcodes, in decimal, appear in the 
instruction format diagrams presented with individual 
instructions. The OPCD field name does not appear in instruction 
descriptions.

rA 11:15 Specifies a GPR source operand and/or destination operand.

rB 16:20 Specifies a GPR source operand.

Rc 31 Record bit.

0—Instruction does not update the CR.

1—Instruction updates the CR to reflect the result of an 
operation.

See Condition Register (CR), page 361 for a further discussion of 
how the CR bits are set.

rD 6:10 Specifies a GPR destination operand.

rS 6:10 Specifies a GPR source operand.

SH 16:20 Specifies a shift amount.

Table P-2: Instruction Field Definitions (Continued)

Field Location Description
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Pseudocode Conventions
Table 3 lists additional conventions used primarily in the pseudocode describing the 
operation of each instruction. 

SIMM 16:31 An immediate field used to specify a 16-bit signed-integer value.

SPRF 11:20 A split field used to specify a special purpose register (SPR). The 
field is used to form the SPR number (SPRN).

TBRF 11:20 A split field used to specify a time-base register (TBR). The field is 
used to form the TBR number (TBRN).

TO 6:10 Specifies the trap conditions, as defined in the tw and twi 
instruction descriptions.

UIMM 16:31 An immediate field used to specify a 16-bit unsigned-integer value.

XO 21:30 Extended opcode for instructions without an OE field. Extended 
opcodes, in decimal, appear in the instruction format diagrams 
presented with individual instructions. The XO field name does 
not appear in instruction descriptions.

XO 22:30 Extended opcode for instructions with an OE field. Extended 
opcodes, in decimal, appear in the instruction format diagrams 
presented with individual instructions. The XO field name does 
not appear in instruction descriptions.

Table P-2: Instruction Field Definitions (Continued)

Field Location Description

Table P-3: Pseudocode Conventions

Convention Definition

← Assignment

∧ AND logical operator

¬ NOT logical operator

∨ OR logical operator

⊕ Exclusive-OR (XOR) logical operator

+ Two’s-complement addition

– Two’s-complement subtraction, unary minus

× Multiplication

÷ Division yielding a quotient

% Remainder of an integer division. For example, (33 % 32) = 1.

|| Concatenation

=, ≠ Equal, not-equal relations

<, > Signed comparison relations

,  Unsigned comparison relations

c0:3 A four-bit object used to store condition results in compare 
instructions.

<
u
>
u
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nb The bit or bit value b is replicated n times.

x Bit positions that are don’t-cares.

CEIL(n) Least integer ≥ n.

CIA Current instruction address. The 32-bit address of the instruction 
being described by a sequence of pseudocode. This address is 
used to set the next instruction address (NIA). Does not 
correspond to any architected register.

DCR(DCRN) A specific device control register, as indicated by DCRN.

DCRN The device control register number formed using the split DCRF 
field in a mfdcr or mtdcr instruction.

do Do loop. “to” and “by” clauses specify incrementing an iteration 
variable. “while” and “until” clauses specify terminating 
conditions. Indenting indicates the scope of a loop.

EA Effective address. The 32-bit address that specifies a location in 
main storage. Derived by applying indexing or indirect 
addressing rules to the specified operand. 

EXTS(n) The result of extending n on the left with sign bits.

if...then...else... Conditional execution: if condition then a else b, where a and b 
represent one or more pseudocode statements. Indenting 
indicates the ranges of a and b. If b is null, the else does not 
appear.

instruction(EA) An instruction operating on a data-cache block or instruction-
cache block associated with an EA.

leave Leave innermost do-loop or the do-loop specified by the leave 
statement.

MASK(MB,ME) Mask having 1’s in positions MB through ME (wrapping if 
MB > ME) and 0’s elsewhere.

MS(addr, n) The number of bytes represented by n at the location in main 
storage represented by addr.

NIA Next instruction address. The 32-bit address of the next 
instruction to be executed. In pseudocode, a successful branch is 
indicated by assigning a value to NIA. For instructions that do 
not branch, the NIA is CIA +4.

RESERVE Reserve bit. Indicates whether a process has reserved a block of 
storage.

ROTL((RS),n) Rotate left. The contents of RS are shifted left the number of bits 
specified by n.

SPR(SPRN) A specific special-purpose register, as indicated by SPRN.

Table P-3: Pseudocode Conventions (Continued)

Convention Definition
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Operator Precedence
Table 4 lists the pseudocode operators and their associativity in descending order of 
precedence
:

Registers
Table 5 lists the PPC405 registers and their descriptive names. 

SPRN The special-purpose register number formed using the split 
SPRF field in a mfspr or mtspr instruction

TBR(TBRN) A specific time-base register, as indicated by TBRN.

TBRN The time-base register number formed using the split TBRF field 
in a mftb instruction.

Table P-3: Pseudocode Conventions (Continued)

Convention Definition

Table P-4: Operator Precedence

Operators Associativity

REGISTERb, REGISTER[FIELD], function evaluation Left to right

nb Right to left

¬, – (unary minus) Right to left

×, ÷ Left to right

+, – Left to right

|| Left to right

=, ≠, <, >, , Left to right

∧ , ⊕ Left to right

∨ Left to right

← None

<
u
>
u

Table P-5: PPC405 Registers

Register Descriptive Name

CCR0 Core-configuration register 0

CR Condition register

CTR Count register

DACn Data-address compare n

DBCRn Debug-control register n

DBSR Debug-status register

DCCR Data-cache cacheability register

DCWR Data-cache write-through register
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DEAR Data-error address register

DVCn Data-value compare n

ESR Exception-syndrome register

EVPR Exception-vector prefix register

GPR General-purpose register. Specific GPRs are identified using the 
notational convention rn (see below)

IACn Instruction-address compare n

ICCR Instruction-cache cacheability register

ICDBDR Instruction-cache debug-data register

LR Link register

MSR Machine-state register

PID Process ID 

PIT Programmable-interval timer

PVR Processor-version register

rn Specifies GPR n (r15, for example)

SGR Storage-guarded register

SLER Storage little-endian register

SPRGn SPR general-purpose register n

SRRn Save/restore register n

SU0R Storage user-defined 0 register

TBL Time-base lower 

TBU Time-base upper

TCR Timer-control register

TSR Timer-status register

USPRGn User SPR general-purpose register n

XER Fixed-point exception register

ZPR Zone-protection register

Table P-5: PPC405 Registers (Continued)

Register Descriptive Name

atomic access A memory access that attempts to read from and write to the 
same address uninterrupted by other accesses to that address. 
The term refers to the fact that such transactions are indivisible.

big endian A memory byte ordering where the address of an item 
corresponds to the most-significant byte.
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Book-E An version of the PowerPC architecture designed specifically 
for embedded applications.

cache block Synonym for cacheline.

cacheline A portion of a cache array that contains a copy of contiguous 
system-memory addresses. Cachelines are 32-bytes long and 
aligned on a 32-byte address.

clear To write a bit value of 0.

cache set Synonym for congruence class.

congruence class A collection of cachelines with the same index.

dirty An indication that cache information is more recent than the 
copy in memory.

doubleword Eight bytes, or 64 bits.

effective address The untranslated memory address as seen by a program.

exception An abnormal event or condition that requires the processor’s 
attention. They can be caused by instruction execution or an 
external device. The processor records the occurrence of an 
exception and they often cause an interrupt to occur.

fill buffer A buffer that receives and sends data and instructions between 
the processor and PLB. It is used when cache misses occur and 
when access to non-cacheable memory occurs.

flush A cache or TLB operation that involves writing back a modified 
entry to memory, followed by an invalidation of the entry.

GB Gigabyte, or one-billion bytes.

halfword Two bytes, or 16 bits.

hit For cache arrays and TLB arrays, an indication that requested 
information exists in the accessed array.

interrupt The process of stopping the currently executing program so that 
an exception can be handled.

invalidate A cache or TLB operation that causes an entry to be marked as 
invalid. An invalid entry can be subsequently replaced.

KB Kilobyte, or one-thousand bytes.

line buffer A buffer located in the cache array that can temporarily hold the 
contents of an entire cacheline. It is loaded with the contents of 
a cacheline when a cache hit occurs.

little endian A memory byte ordering where the address of an item 
corresponds to the least-significant byte.

logical address Synonym for effective address.

MB Megabyte, or one-million bytes.

memory Collectively, cache memory and system memory.

miss For cache arrays and TLB arrays, an indication that requested 
information does not exist in the accessed array.
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OEA The PowerPC operating-environment architecture, which 
defines the memory-management model, supervisor-level 
registers and instructions, synchronization requirements, the 
exception model, and the time-base resources as seen by 
supervisor programs.

on chip In system-on-chip implementations, this indicates on the same 
chip as the processor core, but external to the processor core.

pending As applied to interrupts, this indicates that an exception 
occurred, but the interrupt is disabled. The interrupt occurs 
when it is later enabled.

physical address The address used to access physically-implemented memory. 
This address can be translated from the effective address. When 
address translation is not used, this address is equal to the 
effective address.

PLB Processor local bus.

privileged mode The operating mode typically used by system software. 
Privileged operations are allowed and software can access all 
registers and memory.

process A program (or portion of a program) and any data required for 
the program to run.

problem state Synonym for user mode.

real address Synonym for physical address.

scalar Individual data objects and instructions. Scalars are of arbitrary 
size.

set To write a bit value of 1.

sticky A bit that can be set by software, but cleared only by the 
processor. Alternatively, a bit that can be cleared by software, 
but set only by the processor.

string A sequence of consecutive bytes.

supervisor state Synonym for privileged mode.

system memory Physical memory installed in a computer system external to the 
processor core, such RAM, ROM, and flash.

tag As applied to caches, a set of address bits used to uniquely 
identify a specific cacheline within a congruence class. As 
applied to TLBs, a set of address bits used to uniquely identify 
a specific entry within the TLB.

UISA The PowerPC user instruction-set architecture, which defines 
the base user-level instruction set, registers, data types, the 
memory model, the programming model, and the exception 
model as seen by user programs.

user mode The operating mode typically used by application software. 
Privileged operations are not allowed in user mode, and 
software can access a restricted set of registers and memory.
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Additional Reading
In addition to the source documents listed on page 311, the following documents contain 
additional information of potential interest to readers of this manual:

• The PowerPC Architecture: A Specification for a New Family of RISC Processors, IBM 
5/1994. Published by Morgan Kaufmann Publishers, Inc. San Francisco (ASIN: 
1558603166).

• Book E: Enhanced PowerPC Architecture, IBM 3/2000.
• The PowerPC Compiler Writer’s Guide, IBM 1/1996. Published by Warthman Associates, 

Palo Alto, CA (ISBN 0-9649654-0-2).
• Optimizing PowerPC Code : Programming the PowerPC Chip in Assembly Language, by 

Gary Kacmarcik (ASIN: 0201408392)
• PowerPC Programming Pocket Book, by Steve Heath (ISBN 0750621117).
• Computer Architecture: A Quantitative Approach, by John L. Hennessy and David A. 

Patterson.
•

VEA The PowerPC virtual-environment architecture, which defines 
a multi-access memory model, the cache model, cache-control 
instructions, and the time-base resources as seen by user 
programs.

virtual address An intermediate address used to translate an effective address 
into a physical address. It consists of a process ID and the 
effective address. It is only used when address translation is 
enabled.

word Four bytes, or 32 bits.
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Chapter 1

Introduction to the PPC405

The PPC405 is a 32-bit implementation of the PowerPC® embedded-environment architecture 
that is derived from the PowerPC architecture. Specifically, the PPC405 is an embedded 
PowerPC 405D5 processor core.

The PowerPC architecture provides a software model that ensures compatibility between 
implementations of the PowerPC family of microprocessors. The PowerPC architecture 
defines parameters that guarantee compatible processor implementations at the 
application-program level, allowing broad flexibility in the development of derivative 
PowerPC implementations that meet specific market requirements.

This chapter provides an overview of the PowerPC architecture and an introduction to the 
features of the PPC405 core.

PowerPC Architecture Overview
The PowerPC architecture is a 64-bit architecture with a 32-bit subset. The material in this 
document only covers aspects of the 32-bit architecture implemented by the PPC405.

In general, the PowerPC architecture defines the following:

• Instruction set
• Programming model
• Memory model
• Exception model
• Memory-management model
• Time-keeping model

Instruction Set
The instruction set specifies the types of instructions (such as load/store, integer arithmetic, 
and branch instructions), the specific instructions, and the encoding used for the 
instructions. The instruction set definition also specifies the addressing modes used for 
accessing memory.

Programming Model
The programming model defines the register set and the memory conventions, including 
details regarding the bit and byte ordering, and the conventions for how data are stored.

Memory Model
The memory model defines the address-space size and how it is subdivided into pages. It 
also defines attributes for specifying memory-region cacheability, byte ordering (big-
endian or little-endian), coherency, and protection.
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Exception Model
The exception model defines the set of exceptions and the conditions that can cause those 
exceptions. The model specifies exception characteristics, such as whether they are precise 
or imprecise, synchronous or asynchronous, and maskable or non-maskable. The model 
defines the exception vectors and a set of registers used when interrupts occur as a result of 
an exception. The model also provides memory space for implementation-specific 
exceptions.

Memory-Management Model
The memory-management model defines how memory is partitioned, configured, and 
protected. The model also specifies how memory translation is performed, defines special 
memory-control instructions, and specifies other memory-management characteristics.

Time-Keeping Model
The time-keeping model defines resources that permit the time of day to be determined and 
the resources and mechanisms required for supporting timer-related exceptions.

PowerPC Architecture Levels
These above aspects of the PowerPC architecture are defined at three levels . This layering 
provides flexibility by allowing degrees of software compatibility across a wide range of 
implementations. For example, an implementation such as an embedded controller can 
support the user instruction set, but not the memory management, exception, and cache 
models where it might be impractical to do so. 

The three levels of the PowerPC architecture are defined in Table 1-1.

The PowerPC architecture requires that all PowerPC implementations adhere to the UISA, 
offering compatibility among all PowerPC application programs. However, different 
versions of the VEA and OEA are permitted.

Embedded applications written for the PPC405 are compatible with other PowerPC 
implementations. Privileged software generally is not compatible. The migration of 

Table 1-1: Three Levels of PowerPC Architecture

User Instruction-Set Architecture 
(UISA)

Virtual Environment Architecture 
(VEA)

Operating Environment 
Architecture (OEA)

• Defines the architecture level to 
which user-level (sometimes 
referred to as problem state) 
software should conform

• Defines the base user-level 
instruction set, user-level 
registers, data types, floating-
point memory conventions, 
exception model as seen by user 
programs, memory model, and 
the programming model

• Defines additional user-level 
functionality that falls outside 
typical user-level software 
requirements

• Describes the memory model for 
an environment in which 
multiple devices can access 
memory

• Defines aspects of the cache 
model and cache-control 
instructions

• Defines the time-base resources 
from a user-level perspective

• Defines supervisor-level 
resources typically required by 
an operating system

• Defines the memory-
management model, supervisor-
level registers, synchronization 
requirements, and the exception 
model

• Defines the time-base resources 
from a supervisor-level 
perspective

Note: All PowerPC implementations 
adhere to the UISA.

Note: Implementations that conform 
to the VEA level are guaranteed to 
conform to the UISA level.

Note: Implementations that conform 
to the OEA level are guaranteed to 
conform to the UISA and VEA levels.
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privileged software from the PowerPC architecture to the PPC405 is in many cases 
straightforward because of the simplifications made by the PowerPC embedded-
environment architecture. Software developers who are concerned with cross-
compatibility of privileged software between the PPC405 and other PowerPC 
implementations should refer to Appendix E, PowerPC® 6xx/7xx Compatibility.

Latitude Within the PowerPC Architecture Levels
Although the PowerPC architecture defines parameters necessary to ensure compatibility 
among PowerPC processors, it also allows a wide range of options for individual 
implementations. These are:

• Some resources are optional, such as certain registers, bits within registers, 
instructions, and exceptions.

• Implementations can define additional privileged special-purpose registers (SPRs), 
exceptions, and instructions to meet special system requirements, such as power 
management in processors designed for very low-power operation.

• Implementations can define many operating parameters. For example, the PowerPC 
architecture can define the possible condition causing an alignment exception. A 
particular implementation can choose to solve the alignment problem without 
causing an exception.

• Processors can implement any architectural resource or instruction with assistance 
from software (that is, they can trap and emulate) as long as the results (aside from 
performance) are identical to those specified by the architecture. In this case, a 
complete implementation requires both hardware and software.

• Some parameters are defined at one level of the architecture and defined more 
specifically at another. For example, the UISA defines conditions that can cause an 
alignment exception and the OEA specifies the exception itself.

Features Not Defined by the PowerPC Architecture
Because flexibility is an important feature of the PowerPC architecture, many aspects of 
processor design (typically relating to the hardware implementation) are not defined, 
including the following:

System-Bus Interface

Although many implementations can share similar interfaces, the PowerPC architecture 
does not define individual signals or the bus protocol. For example, the OEA allows each 
implementation to specify the signal or signals that trigger a machine-check exception.

Cache Design

The PowerPC architecture does not define the size, structure, replacement algorithm, or 
mechanism used for maintaining cache coherency. The PowerPC architecture supports, 
but does not require, the use of separate instruction and data caches.

Execution Units

The PowerPC architecture is a RISC architecture, and as such has been designed to 
facilitate the design of processors that use pipelining and parallel execution units to 
maximize instruction throughput. However, the PowerPC architecture does not define the 
internal hardware details of an implementation. For example, one processor might 
implement two units dedicated to executing integer-arithmetic instructions and another 
might implement a single unit for executing all integer instructions.

Other Internal Microarchitecture Issues

The PowerPC architecture does not specify the execution unit responsible for executing a 
particular instruction. The architecture does not define details regarding the instruction-
fetch mechanism, how instructions are decoded and dispatched, and how results are 
written to registers. Dispatch and write-back can occur in-order or out-of-order. Although 

http://www.xilinx.com


326 www.xilinx.com March 2002 Release
1-800-255-7778 Virtex-II Pro™ Platform FPGA Documentation

Chapter 1: Introduction to the PPC405
R

the architecture specifies certain registers, such as the GPRs and FPRs, implementations 
can use register renaming or other schemes to reduce the impact of data dependencies and 
register contention.

Implementation-Specific Registers

Each implementation can have its own unique set of implementation registers that are not 
defined by the architecture.

PowerPC Embedded-Environment Architecture
The PowerPC embedded-environment architecture is optimized for embedded controllers. 
This architecture is a forerunner to the PowerPC Book-E architecture. The PowerPC 
embedded-environment architecture provides an alternative definition for certain features 
specified by the PowerPC VEA and OIA. Implementations that adhere to the PowerPC 
embedded-environment architecture also adhere to the PowerPC UISA. PowerPC 
embedded-environment processors are 32-bit only implementations and thus do not 
include the special 64-bit extensions to the PowerPC UISA. Also, floating-point support 
can be provided either in hardware or software by PowerPC embedded-environment 
processors.

Figure 1-1 shows the relationship between the PowerPC embedded-environment 
architecture, the PowerPC architecture, and the PowerPC Book-E architecture.

The PowerPC embedded-environment architecture features:

• Memory management optimized for embedded software environments.
• Cache-management instructions for optimizing performance and memory control in 

complex applications that are graphically and numerically intensive.
• Storage attributes for controlling memory-system behavior.

Figure 1-1: Relationship of PowerPC Architectures
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• Special-purpose registers for controlling the use of debug resources, timer resources, 
interrupts, real-mode storage attributes, memory-management facilities, and other 
architected processor resources.

• A device-control-register address space for managing on-chip peripherals such as 
memory controllers.

• A dual-level interrupt structure and interrupt-control instructions.
• Multiple timer resources.
• Debug resources that enable hardware-debug and software-debug functions such as 

instruction breakpoints, data breakpoints, and program single-stepping.

Virtual Environment
The virtual environment defines architectural features that enable application programs to 
create or modify code, to manage storage coherency, and to optimize memory-access 
performance. It defines the cache and memory models, the timekeeping resources from a 
user perspective, and resources that are accessible in user mode but are primarily used by 
system-library routines. The following summarizes the virtual-environment features of the 
PowerPC embedded-environment architecture:

• Storage model:
- Storage-control instructions as defined in the PowerPC virtual-environment 

architecture. These instructions are used to manage instruction caches and data 
caches, and for synchronizing and ordering instruction execution.

- Storage attributes for controlling memory-system behavior. These are: write-
through, cacheability, memory coherence (optional), guarded, and endian.

- Operand-placement requirements and their effect on performance.
• The time-base function as defined by the PowerPC virtual-environment architecture, 

for user-mode read access to the 64-bit time base.
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Operating Environment
The operating environment describes features of the architecture that enable operating 
systems to allocate and manage storage, to handle errors encountered by application 
programs, to support I/O devices, and to provide operating-system services. It specifies 
the resources and mechanisms that require privileged access, including the memory-
protection and address-translation mechanisms, the exception-handling model, and 
privileged timer resources. Table 1-2 summarizes the operating-environment features of 
the PowerPC embedded-environment architecture.

Table 1-2: Operating-Environment Features of the PowerPC Embedded-Environment Architecture

Operating 
Environment

Features

Register model • Privileged special-purpose registers (SPRs) and instructions for accessing those 
registers

• Device control registers (DCRs) and instructions for accessing those registers

Storage model • Privileged cache-management instructions
• Storage-attribute controls
• Address translation and memory protection
• Privileged TLB-management instructions

Exception model • Dual-level interrupt structure supporting various exception types
• Specification of interrupt priorities and masking
• Privileged SPRs for controlling and handling exceptions
• Interrupt-control instructions
• Specification of how partially executed instructions are handled when an interrupt 

occurs

Debug model • Privileged SPRs for controlling debug modes and debug events
• Specification for seven types of debug events
• Specification for allowing a debug event to cause a reset
• The ability of the debug mechanism to freeze the timer resources

Time-keeping model • 64-bit time base
• 32-bit decrementer (the programmable-interval timer)
• Three timer-event interrupts:

- Programmable-interval timer (PIT)
- Fixed-interval timer (FIT)
- Watchdog timer (WDT)

• Privileged SPRs for controlling the timer resources
• The ability to freeze the timer resources using the debug mechanism

Synchronization 
requirements

• Requirements for special registers and the TLB
• Requirements for instruction fetch and for data access
• Specifications for context synchronization and execution synchronization

Reset and initialization 
requirements

• Specification for two internal mechanisms that can cause a reset:
- Debug-control register (DBCR) 
- Timer-control register (TCR)

• Contents of processor resources after a reset
• The software-initialization requirements, including an initialization code example
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PowerPC Book-E Architecture
The PowerPC Book-E architecture extends the capabilities introduced in the PowerPC 
embedded-environment architecture. Although not a PowerPC Book-E implementation, 
many of the features available in the 32-bit subset of the PowerPC Book-E architecture are 
available in the PPC405. The PowerPC Book-E architecture and the PowerPC embedded-
environment architecture differ in the following general ways:

• 64-bit addressing and 64-bit operands are available. Unlike 64-bit mode in the 
PowerPC UISA, 64-bit support in PowerPC Book-E architecture is non-modal and 
instead defines new 64-bit instructions and flags.

• Real mode is eliminated, and the memory-management unit is active at all times. The 
elimination of real mode results in the elimination of real-mode storage-attribute 
registers.

• Memory synchronization requirements are changed in the architecture and a 
memory-barrier instruction is introduced.

• A small number of new instructions are added to the architecture and several 
instructions are removed.

• Several SPR addresses and names are changed in the architecture, as are the 
assignment and meanings of some bits within certain SPRs.

Embedded applications written for the PPC405 are compatible with PowerPC Book-E 
implementations. Privileged software is, in general, not compatible, but the differences are 
relatively minor. Software developers who are concerned with cross-compatibility of 
privileged software between the PPC405 and PowerPC Book-E implementations should 
refer to Appendix F, PowerPC® Book-E Compatibility.

PPC405 Features
The PPC405 processor core is an implementation of the PowerPC embedded-environment 
architecture. The processor provides fixed-point embedded applications with high 
performance at low power consumption. It is compatible with the PowerPC UISA. Much 
of the PPC405 VEA and OEA support is also available in implementations of the PowerPC 
Book-E architecture. Key features of the PPC405 include:

• A fixed-point execution unit fully compliant with the PowerPC UISA:
- 32-bit architecture, containing thirty-two 32-bit general purpose registers (GPRs).

• PowerPC embedded-environment architecture extensions providing additional 
support for embedded-systems applications:
- True little-endian operation
- Flexible memory management
- Multiply-accumulate instructions for computationally intensive applications
- Enhanced debug capabilities
- 64-bit time base
- 3 timers: programmable interval timer (PIT), fixed interval timer (FIT), and 

watchdog timer (All are synchronous with the time base)
• Performance-enhancing features, including:

- Static branch prediction
- Five-stage pipeline with single-cycle execution of most instructions, including 

loads and stores
- Multiply-accumulate instructions
- Hardware multiply/divide for faster integer arithmetic (4-cycle multiply, 35-cycle 

divide)
- Enhanced string and multiple-word handling
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- Support for unaligned loads and unaligned stores to cache arrays, main memory, 
and on-chip memory (OCM)

- Minimized interrupt latency
• Integrated instruction-cache:

- 16 KB, 2-way set associative
- Eight words (32 bytes) per cacheline
- Fetch line buffer
- Instruction-fetch hits are supplied from the fetch line buffer
- Programmable prefetch of next-sequential line into the fetch line buffer
- Programmable prefetch of non-cacheable instructions: full line (eight words) or 

half line (four words)
- Non-blocking during fetch line fills

• Integrated data-cache:

- 16 KB, 2-way set associative
- Eight words (32 bytes) per cacheline
- Read and write line buffers
- Load and store hits are supplied from/to the line buffers
- Write-back and write-through support
- Programmable load and store cacheline allocation
- Operand forwarding during cacheline fills
- Non-blocking during cacheline fills and flushes

• Support for on-chip memory (OCM) that can provide memory-access performance 
identical to a cache hit

• Flexible memory management:
- Translation of the 4 GB logical-address space into the physical-address space
- Independent control over instruction translation and protection, and data 

translation and protection
- Page-level access control using the translation mechanism
- Software control over the page-replacement strategy
- Write-through, cacheability, user-defined 0, guarded, and endian (WIU0GE) 

storage-attribute control for each virtual-memory region
- WIU0GE storage-attribute control for thirty-two 128 MB regions in real mode
- Additional protection control using zones

• Enhanced debug support with logical operators:
- Four instruction-address compares
- Two data-address compares
- Two data-value compares
- JTAG instruction for writing into the instruction cache
- Forward and backward instruction tracing

• Advanced power management support

Privilege Modes
Software running on the PPC405 can do so in one of two privilege modes: privilieged and 
user. The privilege modes supported by the PPC405 are described in Processor Operating 
Modes, page 343.
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Privileged Mode
Privileged mode allows programs to access all registers and execute all instructions 
supported by the processor. Normally, the operating system and low-level device drivers 
operate in this mode.

User Mode
User mode restricts access to some registers and instructions. Normally, application 
programs operate in this mode.

Address Translation Modes
The PPC405 also supports two modes of address translation: real and virtual. Refer to 
Chapter 6, Virtual-Memory Management, for more information on address translation.

Real Mode
In real mode, programs address physical memory directly.

Virtual Mode
In virtual mode, programs address virtual memory and virtual-memory addresses are 
translated by the processor into physical-memory addresses. This allows programs to 
access much larger address spaces than might be implemented in the system.

Addressing Modes
Whether the PPC405 is running in real mode or virtual mode, data addressing is supported 
by the load and store instructions using one of the following addressing modes:

• Register-indirect with immediate index—A base address is stored in a register, and a 
displacement from the base address is specified as an immediate value in the 
instruction.

• Register-indirect with index—A base address is stored in a register, and a 
displacement from the base address is stored in a second register.

• Register indirect—The data address is stored in a register.

Instructions that use the two indexed forms of addressing also allow for automatic updates 
to the base-address register. With these instruction forms, the new data address is 
calculated, used in the load or store data access, and stored in the base-address register.

The data-addressing modes are described in Operand-Address Calculation, page 378.

With sequential-instruction execution, the next-instruction address is calculated by adding 
four bytes to the current-instruction address. In the case of branch instructions, however, 
the next-instruction address is determined using one of four branch-addressing modes:

• Branch to relative—The next-instruction address is at a location relative to the current-
instruction address.

• Branch to absolute—The next-instruction address is at an absolute location in 
memory.

• Branch to link register—The next-instruction address is stored in the link register.
• Branch to count register—The next-instruction address is stored in the count register.

The branch-addressing modes are described in Branch-Target Address Calculation, 
page 372.

Data Types
PPC405 instructions support byte, halfword, and word operands. Multiple-word operands 
are supported by the load/store multiple instructions and byte strings are supported by 
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the load/store string instructions. Integer data are either signed or unsigned, and signed 
data is represented using two’s-complement format.

The address of a multi-byte operand is determined using the lowest memory address 
occupied by that operand. For example, if the four bytes in a word operand occupy 
addresses 4, 5, 6, and 7, the word address is 4. The PPC405 supports both big-endian (an 
operand’s most-significant byte is at the lowest memory address) and little-endian (an 
operand’s least-significant byte is at the lowest memory address) addressing.

See Operand Conventions, page 347, for more information on the supported data types 
and byte ordering.

Register Set Summary
Figure 1-2, page 333 shows the registers contained in the PPC405. Descriptions of the 
registers are in the following sections.
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General-Purpose Registers
The processor contains thirty-two 32-bit general-purpose registers (GPRs), identified as r0 
through r31. The contents of the GPRs are read from memory using load instructions and 
written to memory using store instructions. Computational instructions often read 
operands from the GPRs and write their results in GPRs. Other instructions move data 
between the GPRs and other registers. GPRs can be accessed by all software. See General-
Purpose Registers (GPRs), page 360, for more information.

Figure 1-2: PPC405 Registers
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Special-Purpose Registers
The processor contains a number of 32-bit special-purpose registers (SPRs). SPRs provide 
access to additional processor resources, such as the count register, the link register, debug 
resources, timers, interrupt registers, and others. Most SPRs are accessed only by 
privileged software, but a few, such as the count register and link register, are accessed by 
all software. See User Registers, page 359, and Privileged Registers, page 429 for more 
information.

Machine-State Register
The 32-bit machine-state register (MSR) contains fields that control the operating state of the 
processor. This register can be accessed only by privileged software. See Machine-State 
Register, page 431, for more information.

Condition Register
The 32-bit condition register (CR) contains eight 4-bit fields, CR0–CR7. The values in the CR 
fields can be used to control conditional branching. Arithmetic instructions can set CR0 
and compare instructions can set any CR field. Additional instructions are provided to 
perform logical operations and tests on CR fields and bits within the fields. The CR can be 
accessed by all software. See Condition Register (CR), page 361, for more information.

Device Control Registers
The 32-bit device control registers (not shown) are used to configure, control, and report 
status for various external devices that are not part of the PPC405 processor. Although the 
DCRs are not part of the PPC405 implementation, they are accessed using the mtdcr and 
mfdcr instructions. The DCRs can be accessed only by privileged software. See the PPC405 
Processor Block Manual for more information on implementing DCRs.

PPC405 Organization
As shown in Figure 1-3, the PPC405 processor contains the following elements:

• A 5-stage pipeline consisting of fetch, decode, execute, write-back, and load write-
back stages

• A virtual-memory-management unit that supports multiple page sizes and a variety 
of storage-protection attributes and access-control options

• Separate instruction-cache and data-cache units
• Debug support, including a JTAG interface
• Three programmable timers

The following sections provide an overview of each element.
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Central-Processing Unit
The PPC405 central-processing unit (CPU) implements a 5-stage instruction pipeline 
consisting of fetch, decode, execute, write-back, and load write-back stages. 

The fetch and decode logic sends a steady flow of instructions to the execute unit. All 
instructions are decoded before they are forwarded to the execute unit. Instructions are 
queued in the fetch queue if execution stalls. The fetch queue consists of three elements: 
two prefetch buffers and a decode buffer. If the prefetch buffers are empty instructions 
flow directly to the decode buffer.

Up to two branches are processed simultaneously by the fetch and decode logic. If a branch 
cannot be resolved prior to execution, the fetch and decode logic predicts how that branch 
is resolved, causing the processor to speculatively fetch instructions from the predicted 
path. Branches with negative-address displacements are predicted as taken, as are 
branches that do not test the condition register or count register. The default prediction can 
be overridden by software at assembly or compile time. This capability is described further 
in Branch Prediction, page 370.

The PPC405 has a single-issue execute unit containing the general-purpose register file 
(GPR), arithmetic-logic unit (ALU), and the multiply-accumulate unit (MAC). The GPRs 
consist of thirty-two 32-bit registers that are accessed by the execute unit using three read 
ports and two write ports. During the decode stage, data is read out of the GPRs for use by 
the execute unit. During the write-back stage, results are written to the GPR. The use of five 
read/write ports on the GPRs allows the processor to execute load/store operations in 
parallel with ALU and MAC operations.

Figure 1-3: PPC405 Organization
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The execute unit supports all 32-bit PowerPC UISA integer instructions in hardware, and is 
compliant with the PowerPC embedded-environment architecture specification. Floating-
point operations are not supported.

The MAC unit supports implementation-specific multiply-accumulate instructions and 
multiply-halfword instructions. MAC instructions operate on either signed or unsigned 
16-bit operands, and they store their results in a 32-bit GPR. These instructions can 
produce results using either modulo arithmetic or saturating arithmetic. All MAC 
instructions have a single cycle throughput. See Multiply-Accumulate Instruction-Set 
Extensions, page 405 for more information.

Exception Handling Logic
Exceptions are divided into two classes: critical and noncritical. The PPC405 CPU services 
exceptions caused by error conditions, the internal timers, debug events, and the external 
interrupt controller (EIC) interface. Across the two classes, a total of 19 possible exceptions 
are supported, including the two provided by the EIC interface. 

Each exception class has its own pair of save/restore registers. SRR0 and SRR1 are used for 
noncritical interrupts, and SRR2 and SRR3 are used for critical interrupts. The exception-
return address and the machine state are written to these registers when an exception 
occurs, and they are automatically restored when an interrupt handler exits using the 
return-from-interrupt (rfi) or return-from critical-interrupt (rfci) instruction. Use of 
separate save/restore registers allows the PPC405 to handle critical interrupts 
independently of noncritical interrupts.

See Chapter 7, Exceptions and Interrupts, for information on exception handling in the 
PPC405.

Memory Management Unit
The PPC405 supports 4 GB of flat (non-segmented) address space. The memory-
management unit (MMU) provides address translation, protection functions, and storage-
attribute control for this address space. The MMU supports demand-paged virtual 
memory using multiple page sizes of 1 KB, 4 KB, 16 KB, 64 KB, 256 KB, 1 MB, 4 MB and 
16 MB. Multiple page sizes can improve memory efficiency and minimize the number of 
TLB misses. When supported by system software, the MMU provides the following 
functions:

• Translation of the 4 GB logical-address space into a physical-address space.
• Independent enabling of instruction translation and protection from that of data 

translation and protection.
• Page-level access control using the translation mechanism.
• Software control over the page-replacement strategy.
• Additional protection control using zones.
• Storage attributes for cache policy and speculative memory-access control.

The translation look-aside buffer (TLB) is used to control memory translation and 
protection. Each one of its 64 entries specifies a page translation. It is fully associative, and 
can simultaneously hold translations for any combination of page sizes. To prevent TLB 
contention between data and instruction accesses, a 4-entry instruction and an 8-entry data 
shadow-TLB are maintained by the processor transparently to software.

Software manages the initialization and replacement of TLB entries. The PPC405 includes 
instructions for managing TLB entries by software running in privileged mode. This 
capability gives significant control to system software over the implementation of a page 
replacement strategy. For example, software can reduce the potential for TLB thrashing or 
delays associated with TLB-entry replacement by reserving a subset of TLB entries for 
globally accessible pages or critical pages.

Storage attributes are provided to control access of memory regions. When memory 
translation is enabled, storage attributes are maintained on a page basis and read from the 
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TLB when a memory access occurs. When memory translation is disabled, storage 
attributes are maintained in storage-attribute control registers. A zone-protection register 
(ZPR) is provided to allow system software to override the TLB access controls without 
requiring the manipulation of individual TLB entries. For example, the ZPR can provide a 
simple method for denying read access to certain application programs.

Chapter 6, Virtual-Memory Management, describes these memory-management 
resources in detail.

Instruction and Data Caches
The PPC405 accesses memory through the instruction-cache unit (ICU) and data-cache 
unit (DCU). Each cache unit includes a PLB-master interface, cache arrays, and a cache 
controller. Hits into the instruction cache and data cache appear to the CPU as single-cycle 
memory accesses. Cache misses are handled as requests over the PLB bus to another PLB 
device, such as an external-memory controller.

The PPC405 implements separate instruction-cache and data-cache arrays. Each is 16 KB in 
size, is two-way set-associative, and operates using 8-word (32 byte) cachelines. The caches 
are non-blocking, allowing the PPC405 to overlap instruction execution with reads over 
the PLB (when cache misses occur).

The cache controllers replace cachelines according to a least-recently used (LRU) 
replacement policy. When a cacheline fill occurs, the most-recently accessed line in the 
cache set is retained and the other line is replaced. The cache controller updates the LRU 
during a cacheline fill.

The ICU supplies up to two instructions every cycle to the fetch and decode unit. The ICU 
can also forward instructions to the fetch and decode unit during a cacheline fill, 
minimizing execution stalls caused by instruction-cache misses. When the ICU is accessed, 
four instructions are read from the appropriate cacheline and placed temporarily in a line 
buffer. Subsequent ICU accesses check this line buffer for the requested instruction prior to 
accessing the cache array. This allows the ICU cache array to be accessed as little as once 
every four instructions, significantly reducing ICU power consumption.

The DCU can independently process load/store operations and cache-control instructions. 
The DCU can also dynamically reprioritize PLB requests to reduce the length of an 
execution stall. For example, if the DCU is busy with a low-priority request and a 
subsequent storage operation requested by the CPU is stalled, the DCU automatically 
increases the priority of the current (low-priority) request. The current request is thus 
finished sooner, allowing the DCU to process the stalled request sooner. The DCU can 
forward data to the execute unit during a cacheline fill, further minimizing execution stalls 
caused by data-cache misses.

Additional features allow programmers to tailor data-cache performance to a specific 
application. The DCU can function in write-back or write-through mode, as determined by 
the storage-control attributes. Loads and stores that do not allocate cachelines can also be 
specified. Inhibiting certain cacheline fills can reduce potential pipeline stalls and 
unwanted external-bus traffic.

See Chapter 5, Memory-System Management, for details on the operation and control of 
the PPC405 caches.

Timer Resources
The PPC405 contains a 64-bit time base and three timers. The time base is incremented 
synchronously using the CPU clock or an external clock source. The three timers are 
incremented synchronously with the time base. (See Chapter 8, Timer Resources, for more 
information on these features.) The three timers supported by the PPC405 are:

• Programmable Interval Timer
• Fixed Interval Timer
• Watchdog Timer
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Programmable Interval Timer

The programmable interval timer (PIT) is a 32-bit register that is decremented at the time-base 
increment frequency. The PIT register is loaded with a delay value. When the PIT count 
reaches 0, a PIT interrupt occurs. Optionally, the PIT can be programmed to automatically 
reload the last delay value and begin decrementing again.

Fixed Interval Timer

The fixed interval timer (FIT) causes an interrupt when a selected bit in the time-base register 
changes from 0 to 1. Programmers can select one of four predefined bits in the time-base 
for triggering a FIT interrupt.

Watchdog Timer

The watchdog timer causes a hardware reset when a selected bit in the time-base register 
changes from 0 to 1. Programmers can select one of four predefined bits in the time-base 
for triggering a reset, and the type of reset can be defined by the programmer.

Note: The time-base register alone does not cause interrupts to occur.

Debug
The PPC405 debug resources include special debug modes that support the various types 
of debugging used during hardware and software development. These are:

• Internal-debug mode for use by ROM monitors and software debuggers
• External-debug mode for use by JTAG debuggers
• Debug-wait mode, which allows the servicing of interrupts while the processor appears 

to be stopped
• Real-time trace mode, which supports event triggering for real-time tracing

Debug events are supported that allow developers to manage the debug process. Debug 
modes and debug events are controlled using debug registers in the processor. The debug 
registers are accessed either through software running on the processor or through the 
JTAG port. The JTAG port can also be used for board tests.

The debug modes, events, controls, and interfaces provide a powerful combination of 
debug resources for hardware and software development tools. Chapter 9, Debugging, 
describes these resources in detail.

PPC405 Interfaces
The PPC405 provides a set of interfaces that supports the attachment of cores and user 
logic. The software resources used to manage the PPC405 interfaces are described in the 
Core-Configuration Register, page 459 . For information on the hardware operation, use, 
and electrical characteristics of these interfaces, refer to the PPC405 Processor Block 
Manual. The following interfaces are provided:

• Processor local bus interface
• Device control register interface
• Clock and power management interface
• JTAG port interface
• On-chip interrupt controller interface
• On-chip memory controller interface

Processor Local Bus

The processor local bus (PLB) interface provides a 32-bit address and three 64-bit data buses 
attached to the instruction-cache and data-cache units. Two of the 64-bit buses are attached 
to the data-cache unit, one supporting read operations and the other supporting write 
operations. The third 64-bit bus is attached to the instruction-cache unit to support 
instruction fetching.
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Device Control Register

The device control register (DCR) bus interface supports the attachment of on-chip registers 
for device control. Software can access these registers using the mfdcr and mtdcr 
instructions.

Clock and Power Management

The clock and power-management interface supports several methods of clock distribution 
and power management.

JTAG Port

The JTAG port interface supports the attachment of external debug tools. Using the JTAG 
test-access port, a debug tool can single-step the processor and examine internal-processor 
state to facilitate software debugging. This capability complies with the IEEE 1149.1 
specification for vendor-specific extensions, and is therefore compatible with standard 
JTAG hardware for boundary-scan system testing.

On-Chip Interrupt Controller

The on-chip interrupt controller interface is an external interrupt controller that combines 
asynchronous interrupt inputs from on-chip and off-chip sources and presents them to the 
core using a pair of interrupt signals (critical and noncritical). Asynchronous interrupt 
sources can include external signals, the JTAG and debug units, and any other on-chip 
peripherals.

On-Chip Memory Controller

An on-chip memory (OCM) interface supports the attachment of additional memory to the 
instruction and data caches that can be accessed at performance levels matching the cache 
arrays.
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Chapter 2

Operational Concepts

This chapter describes the operational concepts governing the PPC405 programming 
model. These concepts include the execution and memory-access models, processor 
operating modes, memory organization and management, and instruction conventions.

Execution Model
From a software viewpoint, PowerPC® processors implement a sequential-execution model. 
That is, the processors appear to execute instructions in program order. Internally and 
invisible to software, PowerPC processors can execute instructions out-of-order and can 
speculatively execute instructions. The processor is responsible for maintaining an in-
order execution state visible to software. The execution of an instruction sequence can be 
interrupted by an exception caused by one of the executing instructions or by an 
asynchronous event. The PPC405 does not support out-of-order instruction execution. 
However, the processor does support speculative instruction execution, typically by 
predicting the outcome of branch instructions.

As described in Ordering Memory Accesses, page 448, the PowerPC architecture specifies 
a weakly consistent memory model for shared-memory multiprocessor systems. The 
weakly consistent memory model allows system bus operations to be reordered 
dynamically. The goal of reordering bus operations is to reduce the effect of memory 
latency and improving overall performance. In single-processor systems, loads and stores 
can be reordered dynamically to allow efficient utilization of the processor bus. Loads can 
be performed speculatively to enhance the speculative-execution capabilities. This model 
provides an opportunity for significantly improved performance over a model that has 
stronger memory-consistency rules, but places the responsibility for access ordering on the 
programmer. 

When a program requires strict instruction-execution ordering or memory-access ordering 
for proper execution, the programmer must insert the appropriate ordering or 
synchronization instructions into the program. These instructions are described in 
Synchronizing Instructions, page 424. The concept of synchronization is described in the 
Synchronization Operations section that follows.

The PPC405 supports many aspects of the weakly consistent model but not all of them. 
Specifically, the PPC405 does not provide hardware support for multiprocessor memory 
coherency and does not support speculative loads. If the order of memory accesses is 
important to the correct operation of a program, care must be taken in porting such a 
program from the PPC405 to a processor that supports multiprocessor memory coherency 
and speculative loads.
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Synchronization Operations
Various forms of synchronizing operations can be used by programs executing on the 
PPC405 processor to control the behavior of instruction execution and memory accesses. 
Synchronizing operations fall into the following three categories:

• Context synchronization
• Execution synchronization
• Storage synchronization

Each synchronization category is described in the following sections. Instructions 
provided by the PowerPC architecture for synchronization purposes are described on 
page 424.

Context Synchronization
The state of the execution environment (privilege level, translation mode, and memory 
protection) defines a program’s context. An instruction or event is context synchronizing if 
the operation satisfies all of the following conditions:

• Instruction dispatch is halted when the operation is recognized by the processor. This 
means the instruction-fetch mechanism stops issuing (sending) instructions to the 
execution units.

• The operation is not initiated (for instructions, this means dispatched) until all prior 
instructions complete execution to a point where they report any exceptions they 
cause to occur. In the case of an instruction-synchronize (isync) instruction, the isync 
does not complete execution until all prior instructions complete execution to a point 
where they report any exceptions they cause to occur.

• All instructions that precede the operation complete execution in the context they 
were initiated. This includes privilege level, translation mode, and memory 
protection.

• All instructions following the operation complete execution in the new context 
established by the operation.

• If the operation is an exception, or directly causes an exception to occur (for example, 
the sc instruction causes a system-call exception), the operation is not initiated until 
all higher-priority exceptions are recognized by the exception mechanism.

The system-call instruction (sc), return-from-interrupt instructions (rfi and rfci), and most 
exceptions are examples of context-synchronizing operations.

Context-synchronizing operations do not guarantee that subsequent memory accesses are 
performed using the memory context established by previous instructions. When 
memory-access ordering must be enforced, storage-synchronizing instructions are 
required.

Execution Synchronization
An instruction is execution synchronizing if it satisfies the conditions of the first two items 
(as described above) for context synchronization:

• Instruction dispatch is halted when the operation is recognized by the processor. This 
means the instruction-fetch mechanism stops issuing (sending) instructions to the 
execution units.

• The operation is not initiated until all instructions in execution complete to a point 
where they report any exceptions they cause to occur. In the case of a synchronize 
(sync) instruction, the sync does not complete execution until all prior instructions 
complete execution to a point where they report any exceptions they cause to occur.

The sync and move-to machine-state register (mtmsr) instructions are examples of execution-
synchronizing instructions.
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All context-synchronizing instructions are execution synchronizing. However, unlike a 
context-synchronizing operation, there is no guarantee that subsequent instructions 
execute in the context established by an execution-synchronizing instruction. The new 
context becomes effective sometime after the execution-synchronizing instruction 
completes and before or during a subsequent context-synchronizing operation.

Storage Synchronization
The PowerPC architecture specifies a weakly consistent memory model for shared-
memory multiprocessor systems. With this model, the order that the processor performs 
memory accesses, the order that those accesses complete in memory, and the order that 
those accesses are viewed as occurring by another processor can all differ. The PowerPC 
architecture supports storage-synchronizing operations that provide a capability for 
enforcing memory-access ordering, allowing programs to share memory. Support is also 
provided to allow programs executing on a processor to share memory with some other 
mechanism that can access memory, such as an I/O device.

Device control registers (DCRs) are treated as memory-mapped registers from a 
synchronization standpoint. Storage-synchronization operations must be used to enforce 
synchronization of DCR reads and writes.

Processor Operating Modes
The PowerPC architecture defines two levels of privilege, each with an associated 
processor operating mode:

• Privileged mode
• User mode

The processor operating mode is controlled by the privilege-level field in the machine-state 
register (MSR[PR]). When MSR[PR] = 0, the processor operates in privileged mode. When 
MSR[PR] = 1, the processor operates in user mode. MSR[PR] = 0 following reset, placing 
the processor in privileged mode. See Machine-State Register, page 431 for more 
information on this register.

Attempting to execute a privileged instruction when in user mode causes a privileged-
instruction program exception (see Program Interrupt (0x0700), page 511).

Throughout this book, the terms privileged and system are used interchangeably to refer to 
software that operates under the privileged-programming model. Likewise, the terms user 
and application are used to refer to software that operates under the user-programming 
model. Registers and instructions are defined as either privileged or user, indicating which 
of the two programming models they belong to. User registers and user instructions 
belong to both the user-programming and privileged-programming models.

Privileged Mode
Privileged mode allows programs to access all registers and execute all instructions 
supported by the processor. The privileged-programming model comprises the entire register 
set and instruction set supported by the PPC405. Operating systems are typically the only 
software that runs in privileged mode. 

The registers available only in privileged mode are shown in Figure 4-1, page 430. Refer to 
the corresponding section describing each register for more information. The instructions 
available only in privileged mode are shown in Table 4-3, page 434. The operation of each 
instruction is described in Chapter 11, Instruction Set.

Privileged mode is sometimes referred to as supervisor state.
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User Mode
User mode restricts access to some registers and instructions. The user-programming model 
comprises the register set and instruction set supported by the processor running in user 
mode, and is a subset of the privileged-programming model. Operating systems typically 
confine the execution of application programs to user mode, thereby protecting system 
resources and other software from the effects of errant applications.

The registers available in user mode are shown in Figure 3-1, page 360. Refer to the 
corresponding section in Chapter 3 for a description of each register. All instructions are 
available in user mode except as shown in Table 4-3, page 434.

User mode is sometimes referred to as problem state. 

Memory Organization
PowerPC programs reference memory using an effective address computed by the 
processor when executing a load, store, branch, or cache-control instruction, and when 
fetching the next-sequential instruction. Depending on the address-relocation mode, this 
effective address is either used to directly access physical memory or is treated as a virtual 
address that is translated into physical memory.

Effective-Address Calculation
Programs reference memory using an effective address (also called a logical address). An 
effective address (EA) is the 32-bit unsigned sum computed by the processor when 
accessing memory, executing a branch instruction, or fetching the next-sequential 
instruction. An EA is often referred to as the next-instruction address (NIA) when it is used 
to fetch an instruction (sequentially or as the result of a branch). The input values and 
method used by the processor to calculate an EA depend on the instruction that is 
executed.

When accessing data in memory, effective addresses are calculated in one of the following 
ways:

• EA = (rA|0)—this is referred to as register-indirect addressing.
• EA = (rA|0) + offset—this is referred to as register-indirect with immediate-index 

addressing.
• EA = (rA|0) + (rB)—this is referred to as register-indirect with index addressing.

Note: In the above, the notation (rA|0) specifies the following:
If the rA instruction field is 0, the base address is 0.
If the rA instruction field is not 0, the contents of register rA are used as the base address.

When instructions execute sequentially, the next-instruction effective address is the 
current-instruction address (CIA) + 4. This is because all instructions are four bytes long. 
When branching to a new address, the next-instruction effective address is calculated in 
one of the following ways:

• NIA = CIA + displacement—this is referred to as branch-to-relative addressing.
• NIA = displacement—this is referred to as branch-to-absolute addressing.
• NIA = (LR)—this is referred to as branch to link-register addressing.
• NIA = (CTR)—this is referred to as branch to count-register addressing.

When the NIA is calculated for a branch instruction, the two low-order bits (30:31) are 
always cleared to 0, forcing word-alignment of the address. This is true even when the 
address is contained in the LR or CR, and the register contents are not word-aligned. 

All effective-address computations are performed by the processor using unsigned binary 
arithmetic. Carries from bit 0 are ignored and the effective address wraps from the 
maximum address (232-1) to address 0 when the calculation overflows.
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Physical Memory
Physical memory represents the address space of memory installed in a computer system, 
including memory-mapped I/O devices. Generally, the amount of physical memory 
actually available in a system is smaller than that supported by the processor. When 
address translation is supported by the operating system—as it is in virtual-memory 
systems—the very-large virtual-address space is translated into the smaller physical-
address space using the memory-management resources supported by the processor.

The PPC405 supports up to four gigabytes of physical memory using a 32-bit physical 
address. A hierarchical-memory system involving external (system) memory and the 
caches internal to the processor are employed to support that address space. The PPC405 
supports separate level-1 (L1) caches for instructions and data. The operation and control 
of these caches is described in Chapter 5, Memory-System Management.

Virtual Memory
Virtual memory is a relocatable address space that is generally larger than the physical-
memory space installed in a computer system. Operating systems relocate (map) 
applications and data in virtual memory so it appears that more memory is available than 
actually exists. Virtual memory software moves unused instructions and data between 
physical memory and external storage devices (such as a hard drive) when insufficient 
physical memory is available. The PPC405 supports a 40-bit virtual address that allows 
privileged software to manage a one-terabyte virtual-memory space.

Memory Management
Memory management describes the collection of mechanisms used to translate the addresses 
generated by programs into physical-memory addresses. Memory management also 
consists of the mechanisms used to characterize memory-region behavior, also referred to 
as storage control. Memory management is performed by privileged-mode software and is 
completely transparent to user-mode programs running in virtual mode.

The PPC405 is a PowerPC embedded-environment implementation. The memory-
management resources defined by the PowerPC embedded-environment architecture (and 
its successor, the PowerPC Book-E architecture) differ significantly from the resources 
defined by the PowerPC architecture. The resources defined by the PowerPC embedded 
environment architecture are well-suited for the special requirements of embedded-system 
applications. The resources defined by the PowerPC architecture better meet the 
requirements of desktop and commercial-workstation systems. 

Generally, the differences between the two memory-management mechanisms are as 
follows:

• The PPC405 supports software page translation and provides special instructions for 
managing the page tables and the translation look-aside buffer (TLB) internal to the 
processor. The page-translation table format, organization, and search algorithms are 
software-dependent and transparent to the PPC405 processor. The PowerPC 
architecture, on the other hand, defines the page-translation table organization, 
format, and search algorithms. It does not define support for the special page table 
and TLB instructions but instead assumes the processor hardware is responsible for 
searching page tables and updating the TLB.

• The PPC405 supports variable-sized pages. The PowerPC architecture defines fixed-size 
pages of 4 KB.

• The PPC405 does not support the segment-translation mechanism defined by the 
PowerPC architecture.

• The PPC405 does not support the block-address-translation (BAT) mechanism defined 
by the PowerPC architecture.
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• Additional storage-control attributes not defined by the PowerPC architecture are 
supported by the PPC405. The methods for using these attributes to characterize 
memory regions also differ.

At a high level, Figure 2-1 shows the differences between 32-bit memory management in 
the PowerPC embedded-environment architecture (and PowerPC Book-E architecture) 
and in the PowerPC architecture. See Chapter 6, Virtual-Memory Management for more 
information on the resources supported by the PPC405. Additional information on the 
differences with the PowerPC architecture is described in Appendix E, PowerPC® 6xx/7xx 
Compatibility. PowerPC Book-E architecture extends the resources first defined by the 
PowerPC embedded-environment architecture. A description of those extensions is in 
Appendix F, PowerPC® Book-E Compatibility.

Addressing Modes
Programs can use 32-bit effective addresses to reference the 4 GB physical-address space 
using one of two addressing modes:

• Real mode
• Virtual mode

Real mode and virtual mode are enabled and disabled independently for instruction 
fetches and data accesses. The instruction-fetch address mode is controlled using the 
instruction-relocate (IR) field in the machine-state register (MSR). When MSR[IR] = 0, 
instruction fetches are performed in real mode. When MSR[IR] = 1, instruction fetches are 
performed in virtual mode. Similarly, the data-access address mode is controlled using the 
data-relocate (DR) field in the MSR. When MSR[DR] = 0, data accesses are performed in 
real mode. Setting MSR[DR] = 1 enables virtual mode for data accesses. See Virtual Mode, 
page 472 for more information on these fields.

Figure 2-1: PowerPC 32-Bit Memory Management
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Real Mode
In real mode, an effective address is used directly as the physical address into the 4 GB 
address space. Here, the logical-address space is mapped directly onto the physical-
address space.

Virtual Mode
In virtual mode, address translation is enabled. Effective addresses are translated into 
physical addresses using the memory-management unit, as shown in Figure 2-1, page 346. 
In this mode, pages within the logical-address space are mapped onto pages in the 
physical-address space. An overview of memory management is provided in the following 
section.

Operand Conventions
Bit positions within registers and memory operands (bytes, halfwords, and words) are 
numbered consecutively from left to right, starting with zero. The most-significant bit is 
always numbered 0. The number assigned to the least-significant bit depends on the size of 
the register or memory operand, as follows:

• Byte—the least-significant bit is numbered 7.
• Halfword—the least-significant bit is numbered 15.
• Word—the least-significant bit is numbered 31.

A bit set to 1 has a numerical value associated with its position (b) relative to the least-
significant bit (lsb). This value is equal to 2(lsb-b). For example, if bit 5 is set to 1 in a byte, 
halfword, or word memory operand, its value is determined as follows:

• Byte—the value is 2(7-5), or 4 .
• Halfword—the value is 2(15-5), or 1024 .
• Word—the value is 2(31-5), or 67108864 .

Bytes in memory are addressed consecutively starting with zero. The PPC405 supports 
both big-endian and little-endian byte ordering, with big-endian being the default byte 
ordering. Bit ordering within bytes and registers is always big endian.

The operand length is implicit for each instruction. Memory operands can be bytes (eight 
bits), halfwords (two bytes), words (four bytes), or strings (one to 128 bytes). For the 
load/store multiple instructions, memory operands are a sequence of words. The address 
of any memory operand is the address of its first byte (that is, of its lowest-numbered byte). 
Figure 2-2 shows how word, halfword, and byte operands appear in memory (using big-
endian ordering) and in a register. The memory operand appears on the left in this diagram 
and the equivalent register representation appears on the right.

The following sections describe the concepts of byte ordering and data alignment, and 
their significance to the PowerPC PPC405.
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Figure 2-2: Operand Data Types
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Byte Ordering
The order that addresses are assigned to individual bytes within a scalar (a single data 
object or instruction) is referred to as endianness. Halfwords, words, and doublewords all 
consist of more than one byte, so it is important to understand the relationship between the 
bytes in a scalar and the addresses of those bytes. For example, when the processor loads a 
register with a value from memory, it needs to know which byte in memory holds the high-
order byte, which byte holds the next-highest-order byte, and so on.

Computer systems generally use one of the following two byte orders to address data:

• Big-endian ordering assigns the lowest-byte address to the highest-order (“left-most”) 
byte in the scalar. The next sequential-byte address is assigned to the next-highest 
byte, and so on. The term “big endian” is used because the “big end” of the scalar 
(when considered as a binary number) comes first in memory.

• Little-endian ordering assigns the lowest-byte address to the lowest-order (“right-
most”) byte in the scalar. The next sequential-byte address is assigned to the next-
lowest byte, and so on. The term “little endian” is used because the “little end” of the 
scalar (when considered as a binary number) comes first in memory.

The following sections further describe the differences between big-endian and little-
endian byte ordering. The default byte ordering assumed by the PPC405 is big-endian. 
However, the PPC405 also fully supports little-endian peripherals and memory.

Structure-Mapping Examples
The following C language structure, s, contains an assortment of scalars and a character 
string. The comments show the values assumed in each structure element. These values 
show how the bytes comprising each structure element are mapped into memory.

struct {
int a; /* 0x1112_1314 word */
long long b; /* 0x2122_2324_2526_2728 doubleword */
char *c; /* 0x3132_3334 word */
char d[7]; /* 'A','B','C','D','E','F','G' array of bytes */
short e; /* 0x5152 halfword */
int f; /* 0x6162_6364 word */

} s;

C structure-mapping rules permit the use of padding (skipped bytes) to align scalars on 
desirable boundaries. The structure-mapping examples show how each scalar aligns on its 
natural boundary (the alignment boundary is equal to the scalar size). This alignment 
introduces padding of four bytes between a and b, one byte between d and e, and two bytes 
between e and f. The same amount of padding is present in both big-endian and little-
endian mappings.
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Big-Endian Mapping

The big-endian mapping of structure s follows. The contents of each byte, as defined in 
structure s, is shown as a (hexadecimal) number or character (for the string elements). Data 
addresses (in hexadecimal) are shown below the corresponding data value.

Little-Endian Mapping

The little-endian mapping of structure s follows.

Little-Endian Byte Ordering Support
Except as noted, this book describes the processor from the perspective of big-endian 
operations. However, the PPC405 processor also fully supports little-endian operations. 
This support is provided by the endian (E) storage attribute described in the following 
sections. The endian-storage attribute is defined by both the PowerPC embedded-
environment architecture and PowerPC Book-E architecture.

Little-endian mode, defined by the PowerPC architecture, is not implemented by the PPC405. 
Little-endian mode does not support true little-endian memory accesses. This is because 
little-endian mode modifies memory addresses rather than reordering bytes as they are 
accessed. Memory-address modification restricts how the processor can access misaligned 
data and I/O. The PPC405 little-endian support does not have these restrictions.

11 12 13 14

0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07

21 22 23 24 25 26 27 28

0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F

31 32 33 34 'A' 'B' 'C' 'D'

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17

'E' 'F' 'G' 51 52

0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F

61 62 63 64

0x20 0x21 0x22 0x23 0x24 0x25 0x26 0x27

14 13 12 11

0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07

28 27 26 25 24 23 22 21

0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F

34 33 32 31 'A' 'B' 'C' 'D'

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17

'E' 'F' 'G' 52 51

0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F

64 63 62 61

0x20 0x21 0x22 0x23 0x24 0x25 0x26 0x27
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Endian (E) Storage Attribute
The endian (E) storage attribute allows the PPC405 to support direct connection of little-
endian peripherals and memory containing little-endian instructions and data. An E 
storage attribute is associated with every memory reference—instruction fetch, data load, 
and data store. The E attribute specifies whether the memory region being accessed should 
be interpreted as big endian (E = 0) or little endian (E = 1).

If virtual mode is enabled (MSR[IR] = 1 or MSR[DR] = 1), the E field in the corresponding 
TLB entry defines the endianness of a memory region. When virtual mode is disabled 
(MSR[IR] = 0 and MSR[DR] = 0), the SLER defines the endianness of a memory region. See 
Chapter 6, Virtual-Memory Management for more information on virtual memory, and 
Storage Little-Endian Register (SLER), page 455 for more information on the SLER.

When a memory region is defined as little endian, the processor accesses those bytes as if 
they are arranged in true little-endian order. Unlike the little-endian mode defined by the 
PowerPC architecture, no address modification is performed when accessing memory 
regions designated as little endian. Instead, the PPC405 reorders the bytes as they are 
transferred between the processor and memory. 

On-the-fly reversal of bytes in little-endian memory regions is handled in one of two ways, 
depending on whether the memory access is an instruction fetch or a data access (load or 
store). The following sections describe byte reordering for both types of memory accesses.

Little-Endian Instruction Fetching

Instructions are word (four-byte) data types that are always aligned on word boundaries in 
memory. Instructions stored in a big-endian memory region are arranged with the most-
significant byte (MSB) of the instruction word at the lowest byte address.

Consider the big-endian mapping of instruction p at address 0x00, where, for example, p is 
an add r7,r7,r4 instruction (instruction opcode bytes are shown in hexadecimal on top, 
with the corresponding byte address shown below):

In the little-endian mapping, instruction p is arranged with the least-significant byte (LSB) 
of the instruction word at the lowest byte address:

The instruction decoder on the PPC405 assumes the instructions it receives are in big-
endian order. When an instruction is fetched from memory, the instruction must be placed 
in the instruction queue in big-endian order so that the instruction is properly decoded. 
When instructions are fetched from little-endian memory regions, the four bytes of an 
instruction word are reversed by the processor before the instruction is decoded. This byte 
reversal occurs between memory and the instruction-cache unit (ICU) and is transparent to 
software. The ICU always stores instructions in big-endian order regardless of whether the 
instruction-memory region is defined as big endian or little endian. This means the bytes 
are already in the proper order when an instruction is transferred from the ICU to the 
instruction decoder.

If the endian-storage attribute is changed, the affected memory region must be reloaded 
with program and data structures using the new endian ordering. If the endian ordering of 

MSB LSB

7C E7 22 14

0x00 0x01 0x02 0x03

LSB MSB

14 22 E7 7C

0x00 0x01 0x02 0x03
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instruction memory changes, the ICU must be made coherent with the updates. This is 
accomplished by invalidating the ICU and updating the instruction memory with 
instructions using the new endian ordering. Subsequent fetches from the updated memory 
region are interpreted correctly before they are cached and decoded. See Instruction-
Cache Control Instructions, page 456 for information on instruction-cache invalidation.

Little-Endian Data Accesses

Unlike instruction fetches, data accesses from little-endian memory regions are not byte-
reversed between memory and the data-cache unit (DCU). The data-byte ordering stored 
in memory depends on the data size (byte, halfword, or word). The data size is not known 
until the data item is moved between memory and a general-purpose register. In the 
PPC405, byte reversal of load and store accesses is performed between the DCU and the 
GPRs.

When accessing data in a little-endian memory region, the processor automatically does 
the following regardless of data alignment:

• For byte loads/stores, no reordering occurs
• For halfword loads/stores, bytes are reversed within the halfword
• For word loads/stores, bytes are reversed within the word

The big-endian and little-endian mappings of the structure s, shown in Structure-
Mapping Examples, page 349, demonstrate how the size of a data item determines its byte 
ordering. For example:

• The word a has its four bytes reversed within the word spanning addresses 0x00–0x03
• The halfword e has its two bytes reversed within the halfword spanning addresses 

0x1C–0x1D
• The array of bytes d (where each data item is a byte) is not reversed when the big-

endian and little-endian mappings are compared (For example, the character 'A' is 
located at address 14 in both the big-endian and little-endian mappings)

In little-endian memory regions, data alignment is treated as it is in big-endian memory 
regions. Unlike little-endian mode in the PowerPC architecture, no special alignment 
exceptions occur when accessing data in little-endian memory regions versus big-endian 
regions.

Load and Store Byte-Reverse Instructions

When accessing big-endian memory regions, load/store instructions move the more-
significant register bytes to and from the lower-numbered memory addresses and the less-
significant register bytes are moved to and from the higher-numbered memory addresses. 
The load/store with byte-reverse instructions, as described in Load and Store with Byte-
Reverse Instructions, page 385, do the opposite. The more-significant register bytes are 
moved to and from the higher-numbered memory addresses, and the less-significant 
register bytes are moved to and from the lower-numbered memory addresses.

Even though the load/store with byte-reverse instructions can be used to access little-
endian memory, the E storage attribute provides two advantages over using those 
instructions:

• The load/store with byte-reverse instructions do not solve the problem of fetching 
instructions from a little-endian memory region. Only the E storage attribute 
mechanism supports little-endian instruction fetching.

• Typical compilers cannot make general use of the load/store with byte-reverse 
instructions, so these instructions are normally used only in device drivers written in 
hand-coded assembler. However, compilers can take full advantage of the E storage-
attribute mechanism, allowing application programmers working in a high-level 
language, such as C, to compile programs and data structures using little-endian 
ordering.
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Operand Alignment
The operand of a memory-access instruction has a natural alignment boundary equal to 
the operand length. In other words, the natural address of an operand is an integral 
multiple of the operand length. A memory operand is said to be aligned if it is aligned on 
its natural boundary, otherwise it is misaligned.

All instructions are words and are always aligned on word boundaries.

Table 2-1 shows the value required by the least-significant four address bits (bits 28:31) of 
each data type for it to be aligned in memory. A value of x in a given bit position indicates 
the address bit can have a value of 0 or 1.

The concept of alignment can be generally applied to any data in memory. For example, a 
12-byte data item is said to be word aligned if its address is a multiple of four.

Some instructions require aligned memory operands. Also, alignment can affect 
performance. For single-register memory access instructions, the best performance is 
obtained when memory operands are aligned.

Alignment and Endian Storage Control
The endian storage-control attribute (E) does not affect how the processor handles operand 
alignment. Data alignment is handled identically for accesses to big-endian and little-
endian memory regions. No special alignment exceptions occur when accessing data in 
little-endian memory regions. However, alignment exceptions that apply to big-endian 
memory accesses also apply to little-endian memory accesses.

Performance Effects of Operand Alignment
The performance of accesses varies depending on the following parameters:

• Operand size
• Operand alignment
• Boundary crossing:

- None
- Cache block
- Page

To obtain the best performance across the widest range of PowerPC embedded-
environment implementations and PowerPC Book-E processor implementations, 
programmers should assume the alignment performance effects described in Figure 2-2. 
This table applies to both big-endian and little-endian accesses. Figure 2-2 also applies to 
PowerPC processors running in the default big-endian mode. However, those same 
processors suffer further performance degradation when running in PowerPC little-
endian mode.

Table 2-1: Memory Operand Alignment Requirements

Data Type Size
Aligned Address

Bits 28:31

Byte 8 Bits xxxx

Halfword 2 Bytes xxx0

Word 4 Bytes xx00

Doubleword 8 Bytes x000
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Alignment Exceptions
Misalignment occurs when addresses are not evenly divided by the data-object size. The 
PPC405 automatically handles misalignments within word boundaries and across word 
boundaries, generally at a cost in performance. Some instructions cause an alignment 
exception if their operand is not properly aligned, as shown in Table 2-3.

Cache-control instructions ignore the four least-significant bits of the EA. No alignment 
restrictions are placed on an EA when executing a cache-control instruction. However, 
certain storage-control attributes can cause an alignment exception to occur when a cache-
control instruction is executed. If data-address translation is disabled (MSR[DR]=0) and a 
dcbz instruction references a non-cacheable memory region, or the memory region uses a 
write-through caching policy, an alignment exception occurs. The alignment exception 
allows the operating system to emulate the write-through caching policy. See Alignment 
Interrupt (0x0600), page 510 for more information.

Instruction Conventions

Instruction Forms
Opcode tables and instruction listings often contain information regarding the instruction 
form. This information refers to the type of format used to encode the instruction. Grouping 
instructions by format is useful for programmers that must deal directly with machine-
level code, particularly programmers that write assemblers and disassemblers.

The formats used for the instructions of the PowerPC embedded-environment architecture 
are shown in Instructions Grouped by Form, page 792. The Instruction Set Information, 
page 797 also shows the form used by each instruction, listed alphabetically by mnemonic.

Table 2-2: Performance Effects of Operand Alignment

Operand Boundary Crossing

Size Byte Alignment None Cache Block Page

Byte 1 Optimal Not Applicable

Halfword 2 Optimal Not Applicable

1 Good Good Poor

Word 4 Optimal Not Applicable

<4 Good Good Poor

Multiple Word 4 Good Good Good1

Byte String 1 Good Good Poor

Note: Assumes both pages have identical storage-control attributes. Performance is poor 
otherwise.

Table 2-3: Instructions Causing Alignment Exceptions

Mnemonic Condition

dcbz EA is in non-cacheable or write-through memory.

dcread, lwarx, stwcx EA is not word aligned.
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Instruction Classes
PowerPC instructions belong to one of the following three classes:

• Defined
• Illegal
• Reserved

An instruction class is determined by examining the primary opcode, and the extended 
opcode if one exists. If the opcode and extended opcode combination does not specify a 
defined instruction or reserved instruction, the instruction is illegal. Although the 
definitions of these terms are consistent among PowerPC processor implementations, the 
assignment of these classifications is not. For example, an instruction specific to 64-bit 
implementations is considered defined for 64-bit implementations but illegal for 32-bit 
implementations.

In future versions of the PowerPC architecture, instruction encodings that are now illegal 
or reserved can become defined (by being added to the architecture) or reserved (by being 
assigned a special purpose in an implementation).

Boundedly Undefined

The results of executing an instruction are said to be boundedly undefined if those results 
could be achieved by executing an arbitrary sequence of instructions, starting in the 
machine state prior to executing the given instruction. Boundedly-undefined results for an 
instruction can vary between implementations and between different executions on the 
same implementation.

Defined Instruction Class
Defined instructions contain all the instructions defined by the PowerPC architecture. 
Defined instructions are guaranteed to be supported by all implementations of the 
PowerPC architecture. The only exceptions are the instructions defined only for 64-bit 
implementations, instructions defined only for 32-bit implementations, and instructions 
defined only for embedded implementations. A PowerPC processor can invoke the illegal-
instruction error handler (through the program-interrupt handler) when an 
unimplemented instruction is encountered, allowing emulation of the instruction in 
software.

A defined instruction can have preferred forms and invalid forms as described in the 
following sections.

Preferred Instruction Forms

A preferred form of a defined instruction is one in which the instruction executes in an 
efficient manner. Any form other than the preferred form can take significantly longer to 
execute. The following instructions have preferred forms:

• Load-multiple and store-multiple instructions
• Load-string and store-string instructions
• OR-immediate instruction (preferred form of no-operation)

Invalid Instruction Forms

An invalid form of a defined instruction is one in which one or more operands are coded 
incorrectly and in a manner that can be deduced only by examining the instruction 
encoding (primary and extended opcodes). For example, coding a value of 1 in a reserved 
bit (normally cleared to 0) produces an invalid instruction form.

The following instructions have invalid forms:

• Branch-conditional instructions
• Load with update and store with update instructions
• Load multiple instructions
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• Load string instructions
• Integer compare instructions

On the PPC405, attempting to execute an invalid instruction form generally yields a 
boundedly-undefined result, although in some cases a program exception (illegal-
instruction error) can occur.

Optional Instructions

The PowerPC architecture allows implementations to optionally support some defined 
instructions. The PPC405 does not implement the following instructions:

• Floating-point instructions
• External-control instructions (eciwx, ecowx)
• Invalidate TLB entry (tlbie)

Illegal Instruction Class
Illegal instructions are grouped into the following categories:

• Unused primary opcodes. The following primary opcodes are defined as illegal but 
can be defined by future extensions to the architecture:

1, 5, 6, 56, 57, 60, 61

• Unused extended opcodes. Unused extended opcodes can be derived from 
information in Instructions Sorted by Opcode, page 781. The following primary 
opcodes have unused extended opcodes:

19, 31, 59, 63

• An instruction consisting entirely of zeros is guaranteed to be an illegal instruction. 
This increases the probability that an attempt to execute data or uninitialized memory 
causes an illegal-instruction error. If only the primary opcode consists of all zeros, the 
instruction is considered a reserved instruction, as described in the following section.

An attempt to execute an illegal instruction causes an illegal-instruction error (program 
exception). With the exception of an instruction consisting entirely of zeros, illegal 
instructions are available for future addition to the PowerPC architecture.

Reserved Instruction Class
Reserved instructions are allocated to specific implementation-dependent purposes not 
defined by the PowerPC architecture. An attempt to execute an unimplemented reserved 
instruction causes an illegal-instruction error (program exception). The following types of 
instructions are included in this class:

• Instructions for the POWER architecture that have not been included in the PowerPC 
architecture.

• Implementation-specific instructions used to conform to the PowerPC architecture 
specification. For example, load data-TLB entry (tlbld) and load instruction-TLB entry 
(tlbli) instructions in the PowerPC 603™.

• The instruction with primary opcode 0, when the instruction does not consist entirely 
of binary zeros.

• Any other implementation-specific instruction not defined by the PowerPC 
architecture.

PowerPC Embedded-Environment Instructions

To support functions required in embedded-system applications, the PowerPC embedded-
environment architecture defines instructions that are not part of the PowerPC 
architecture. Table 2-4 lists the instructions specific to the PPC405 and other PowerPC 
embedded-environment family implementations. From the standpoint of the PowerPC 
architecture, these instructions are part of the reserved class and are implementation 
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dependent. Programs using these instructions are not portable to implementations that do 
not support the PowerPC embedded-environment architecture.

In the table, the syntax “[o]” indicates the instruction has an overflow-enabled form that 
updates XER[OV,SO] as well as a non-overflow-enabled form. The syntax “[.]” indicates 
the instruction has a record form that updates CR[CR0] as well as a non-record form. The 
headings “defined” and “allocated”, as they are used in Table 2-4, are described in the 
following section, PowerPC Book-E Instruction Classes.

PowerPC Book-E Instruction Classes
The PowerPC Book-E architecture defines four instruction classes:

• Defined
• Allocated
• Reserved
• Preserved

Referring to Table 2-4, the first two columns indicate which PPC405 instructions are part of 
the defined instruction class and are guaranteed support in PowerPC Book-E processor 
implementations. The last three columns indicate which PPC405 instructions are part of 
the allocated instruction class. Support of these instructions by PowerPC Book-E 
processors is implementation-dependent.

Defined Book-E Instruction Class
The defined instruction class consists of all instructions defined by the PowerPC Book E 
architecture. In general, defined instructions are guaranteed to be supported by a PowerPC 
Book E processor as specified by the architecture, either within the processor 
implementation itself or within emulation software supported by the operating system.

Allocated Book-E Instruction Class
The allocated instruction class contains the set of instructions used for implementation-
dependent and application-specific use, outside the scope of the PowerPC Book E 
architecture.

Table 2-4: PowerPC Embedded-Environment Instructions

Defined (Book-E) Allocated (Book-E)

mfdcr

mtdcr

rfci

wrtee

wrteei

tlbre

tlbsx[.]

tlbwe

dccci

dcread

iccci

icread

macchw[o][.]

macchws[o][.]

macchwsu[o][.]

macchwu[o][.]

machhw[o][.]

machhws[o][.]

machhwsu[o][.]

machhwu[o][.]

maclhw[o][.]

maclhws[o][.]

maclhwsu[o][.]

maclhwu[o][.]

nmacchw[o][.]

nmacchws[o][.]

nmachhw[o][.]

nmachhws[o][.]

nmaclhw[o][.]

nmaclhws[o][.]

mulchw[.]

mulchwu[.]

mulhhw[.]

mulhhwu[.]

mullhw[.]

mullhwu[.]
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Reserved Book-E Instruction Class
The reserved instruction class consists of all instruction primary opcodes (and associated 
extended opcodes, if applicable) that do not belong to either the defined class or the 
allocated class.

Preserved Book-E Instruction Class
The preserved instruction class is provided to support backward compatibility with previous 
generations of this architecture.
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Chapter 3

User Programming Model

This chapter describes the processor resources and instructions available to all programs 
running on the PPC405, whether they are running in user mode or privileged mode. These 
resources and instructions are referred to as the user-programming model, which is a subset 
of the privileged-programming model. Applications are typically restricted to running in 
user mode. System software runs in privileged mode and has access to all register 
processor resources, and can execute all instructions supported by the PPC405. System 
software typically creates a context (execution environment) that protects itself and other 
applications from the effects of an errant application program. 

The remaining chapters in this book generally describe aspects of the privileged-
programming model and are not relevant to application programmers. There are two 
exceptions:

• Chapter 5, Memory-System Management, describes cache management features 
available to both system and application programs.

• Chapter 8, Timer Resources, describes the time base, which can be read by 
application programs.

User Registers
Figure 3-1 shows the user registers supported by the PPC405, all of which are available to 
software running in user mode and privileged mode. In the PPC405, all user registers are 
32-bits wide, except for the time base as described in Time Base, page 524. Floating-point 
registers are not supported by the PPC405.
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Special-Purpose Registers (SPRs)
Most registers in the PPC405 are special-purpose registers, or SPRs. SPRs control the 
operation of debug facilities, timers, interrupts, storage control attributes, and other 
processor resources. All SPRs can be accessed explicitly using the move to special-purpose 
register (mtspr) and move from special-purpose register (mfspr) instructions. See Special-
Purpose Register Instructions, page 424 for more information on these instructions. A few 
registers are accessed as a by-product of executing certain instructions. For example, some 
branch instructions access and update the link register.

The PPC405 SPRs in the user-programming model are shown in Figure 3-1. The SPR 
number (SPRN) for each SPR is shown above the corresponding register. See Appendix A, 
Special-Purpose Registers, page 770  for a complete list of all SPRs (user and privileged) 
supported by the PPC405.

Simplified instruction mnemonics are available for the mtspr and mfspr instructions for 
some SPRs. See Special-Purpose Registers, page 830 for more information.

General-Purpose Registers (GPRs)
The PPC405 contains thirty-two 32-bit general-purpose registers (GPRs), numbered r0 
through r31, as shown in Figure 3-2. Data from memory are read into GPRs using load 
instructions and the contents of GPRs are written to memory using store instructions. Most 
integer instructions use the GPRs for source and destination operands.

Figure 3-1: PPC405 User Registers

UG011_30_033101

USPRG0

User-SPR General-Purpose
Registers
(SPR 0x100)

SPR General-Purpose
Registers (read only)

SPRG4

SPR 0x104

SPRG5

SPR 0x105

SPRG6

SPR 0x106

SPRG7

SPR 0x107

Time-Base Registers
(read only)

TBU

TBR 0x10C

TBL

TBR 0x10D

General-Purpose Registers

r0

.

.

.

r1

r31

CR

Condition Register

CTR

Count Register
SPR 0x009

LR

Link Register
SPR 0x008

XER

Fixed-Point Exception Register
SPR 0x001

0 31

Figure 3-2: General Purpose Registers (R0-R31)
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Condition Register (CR)
The condition register (CR) is a 32-bit register that reflects the result of certain instructions 
and provides a mechanism for testing and conditional branching. The bits in the CR are 
grouped into eight 4-bit fields, CR0–CR7, as shown in Figure 3-3. The bits within an 
arbitrary CRn field are shown in Figure 3-4. In this figure, the bit positions shown are 
relative positions within the field rather than absolute positions within the CR register.

In the PPC405, the CR fields are modified in the following ways:

• The mtcrf instruction can update specific fields in the CR from a GPR.
• The mcrxr instruction can update a CR field with the contents of XER[0:3].
• The mcrf instruction can copy one CR field into another CR field.
• The condition-register logical instructions can update specific bits in the CR.
• The integer-arithmetic instructions can update CR0 to reflect their result.
• The integer-compare instructions can update a specific CR field to reflect their result.

Conditional-branch instructions can test bits in the CR and use the results of such a test as 
the branch condition.

CR0 Field
The CR0 field is updated to reflect the result of an integer instruction if the Rc opcode field 
(record bit) is set to 1. The addic., andi., and andis. instructions also update CR0 to reflect 
the result they produce. For all of these instructions, CR0 is updated as follows:

• The instruction result is interpreted as a signed integer and algebraically compared to 
0. The first three bits of CR0 (CR0[0:2]) are updated to reflect the result of the algebraic 
comparison.

• The fourth bit of CR0 (CR0[3]) is copied from XER[SO].

The CR0 bits are interpreted as described in Table 3-1. If any portion of the result is 
undefined, the value written into CR0[0:2] is undefined.

0 3 4 7 8 11 12 15 16 19 20 23 24 27 28 31

CR0 CR1 CR2 CR3 CR4 CR5 CR6 CR7

Figure 3-3: Condition Register (CR)

0 1 2 3

LT GT EQ SO

Figure 3-4: CRn Field
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CR1 Field
In PowerPC® implementations that support floating-point operations, the CR1 field can be 
updated by the processor to reflect the result of those operations. Because the PPC405 does 
not support floating-point operations in hardware, CR1 is not updated in this manner.

CRn Fields (Compare Instructions)
Any one of the eight CRn fields (including CR0 and CR1) can be updated to reflect the 
result of a compare instruction. The CRn-field bits are interpreted as described in Table 3-2.

Table 3-1: CR0-Field Bit Settings

Bit Name Function Description

0 LT Negative

0—Result is not negative.

1—Result is negative.

This bit is set when the result is negative, otherwise it is cleared.

1 GT Positive

0—Result is not positive.

1—Result is positive.

This bit is set when the result is positive (and not zero), otherwise 
it is cleared.

2 EQ Zero

0—Result is not equal to zero.

1—Result is equal to zero.

This bit is set when the result is zero, otherwise it is cleared.

3 SO Summary overflow

0—No overflow occurred.

1—Overflow occurred.

This is a copy of the final state of XER[SO] at the completion of the 
instruction.

Table 3-2: CRn-Field Bit Settings

Bit Name Function Description

0 LT Less than

0—rA is not less than.

1—rA is less than.

This bit is set when

rA < SIMM or rB (signed comparison), or

rA < UIMM or rB (unsigned comparison),

otherwise it is cleared.

1 GT Greater than

0—rA is not greater than.

1—rA is greater than.

This bit is set when

rA > SIMM or rB (signed comparison), or

rA > UIMM or rB (unsigned comparison),

otherwise it is cleared.

2 EQ Equal to

0—rA is not equal.

1—rA is equal.

This bit is set when

rA = SIMM or rB (signed comparison), or

rA = UIMM or rB (unsigned comparison),

otherwise it is cleared.

3 SO Summary overflow

0—No overflow occurred.

1—Overflow occurred.

This is a copy of the final state of XER[SO] at the completion of the 
instruction.
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Fixed-Point Exception Register (XER)
The fixed-point exception register (XER) is a 32-bit register that reflects the result of 
arithmetic operations that have resulted in an overflow or carry. This register is also used 
to indicate the number of bytes to be transferred by load/store string indexed instructions. 
Figure 3-5 shows the format of the XER. The bits in the XER are defined as shown in 
Table 3-3.

The XER is an SPR with an address of 1 (0x001) and can be read and written using the 
mfspr and mtspr instructions. The mcrxr instruction can be used to move XER[0:3] into 
one of the seven CR fields.

Link Register (LR)
The link register (LR) is a 32-bit register that is used by branch instructions, generally for 
the purpose of subroutine linkage. Two types of branch instructions use the link register:

• Branch-conditional to link-register (bclrx) instructions read the branch-target address from 
the LR.

• Branch instructions with the link-register update-option enabled load the LR with the 
effective address of the instruction following the branch instruction. The link-register 
update-option is enabled when the branch-instruction LK opcode field (bit 31) is set 
to 1.

The format of LR is shown in Figure 3-6.

0 1 2 3 24 25 31

SO OV CA TBC

Figure 3-5: Fixed Point Exception Register (XER)

Table 3-3: Fixed Point Exception Register (XER) Bit Definitions

Bit Name Function Description

0 SO Summary overflow

0—No overflow occurred.

1—Overflow occurred.

SO is set to 1 whenever an instruction (except mtspr) sets the 
overflow bit (XER[OV]). Once set, the SO bit remains set until it is 
cleared to 0 by an mtspr instruction (specifying the XER) or an 
mcrxr instruction. SO can be cleared to 0 and OV set to 1 using an 
mtspr instruction.

1 OV Overflow

0—No overflow occurred.

1—Overflow occurred.

OV can be modified by instructions when the overflow-enable bit 
in the instruction encoding is set (OE=1). Add, subtract, and negate 
instructions set OV=1 if the carry out from the result msb is not 
equal to the carry out from the result msb + 1. Otherwise, they clear 
OV=0. Multiply and divide set OV=1 if the result cannot be 
represented in 32 bits. mtspr can be used to set OV=1, and mtspr 
and mcrxr can be used to clear OV=0.

2 CA Carry

0—Carry did not occur.

1—Carry occurred.

CA can be modified by add-carrying, subtract-from-carrying, add-
extended, and subtract-from-extended instructions. These instructions 
set CA=1 when there is a carry out from the result msb. Otherwise, 
they clear CA=0. Shift-right algebraic instructions set CA=1 if any 1 
bits are shifted out of a negative operand. Otherwise, they clear 
CA=0. mtspr can be used to set CA=1, and mtspr and mcrxr can be 
used to clear CA=0.

3:24 Reserved

25:31 TBC Transfer-byte count TBC is modified using the mtspr instruction. It specifies the 
number of bytes to be transferred by a load-string word indexed 
(lswx) or store-string word indexed (stswx) instruction.

http://www.xilinx.com


364 www.xilinx.com March 2002 Release
1-800-255-7778 Virtex-II Pro™ Platform FPGA Documentation

Chapter 3: User Programming Model
R

The LR is an SPR with an address of 8 (0x008) and can be read and written using the mfspr 
and mtspr instructions. It is possible for the processor to prefetch instructions along the 
target path specified by the LR provided the LR is loaded sufficiently ahead of the branch 
to link-register instruction, giving branch-prediction hardware time to calculate the branch 
address.

The two least-significant bits (LR[30:31]) can be written with any value. However, those 
bits are ignored and assumed to have a value of 0 when the LR is used as a branch-target 
address.

Some PowerPC processors implement a software-invisible link-register stack for 
performance reasons. Although the PPC405 processor does not implement such a stack, 
certain programming conventions should be followed so that software running on 
multiple PowerPC processors can benefit from this stack. See Link-Register Stack, 
page 371 for more information.

Count Register (CTR)
The count register (CTR) is a 32-bit register that can be used by branch instructions in the 
following two ways:

• The CTR can hold a loop count that is decremented by a conditional-branch 
instruction with an appropriately coded BO opcode field. The value in the CTR wraps 
to 0xFFFF_FFFF if the value in the register is 0 prior to the decrement. See 
Conditional Branch Control, page 367 for information on encoding the BO opcode 
field.

• The CTR can hold the branch-target address used by branch-conditional to count-register 
(bcctrx) instructions.

The format of CTR is shown in Figure 3-7.

The CTR is an SPR with an address of 9 (0x009) and can be read and written using the 
mfspr and mtspr instructions. It is possible for the processor to prefetch instructions along 
the target path specified by the CTR provided the CTR is loaded sufficiently ahead of the 
branch to count-register instruction, giving branch-prediction hardware time to calculate 
the branch address.

The two least-significant bits (CTR[30:31]) can be written with any value. However, those 
bits are ignored and assumed to have a value of 0 when the CTR is used as a branch-target 
address.

User-SPR General-Purpose Register
The user-SPR general-purpose register (USPRG0) is a 32-bit register that can be used by 
application software for any purpose. The value stored in this register does not have an 
effect on the operation of the PPC405 processor.

The format of USPRG0 is shown in Figure 3-8.

0 31

Branch Address

Figure 3-6: Link Register (LR)

0 31

Count

Figure 3-7: Count Register (CTR)
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The USPRG0 is an SPR with an address of 256 (0x100) and can be read and written using 
the mfspr and mtspr instructions.

SPR General-Purpose Registers
The SPR general-purpose registers (SPRG0–SPRG7) are 32-bit registers that can be used by 
system software for any purpose. Four of the registers (SPRG4–SPRG7) are available from 
user mode with read-only access. Application software can read the contents of SPRG4–
SPRG7, but cannot modify them. The values stored in these registers do not affect the 
operation of the PPC405 processor.

The format of all SPRGn registers is shown in Figure 3-9.

The SPRGn registers are SPRs with the following addresses:

• SPRG4—260 (0x104).
• SPRG5—261 (0x105).
• SPRG6—262 (0x106).
• SPRG7—263 (0x107).

These registers can be read using the mfspr instruction. In privileged mode, system 
software accesses these registers using different SPR numbers (see page 432).

Time-Base Registers
The time base is a 64-bit incrementing counter implemented as two 32-bit registers. The 
time-base upper register (TBU) holds time-base bits 0:31, and the time-base lower register 
(TBL) holds time-base bits 32:63. Figure 3-10 shows the format of the time base.

The TBU and TBL registers are SPRs with user-mode read access and privileged-mode 
write access. Reading the time-base registers requires use of the mftb instruction with the 
following addresses:

• TBU—269 (0x10D).
• TBL—268 (0x10C).

See Time Base, page 524, for information on using the time base.

0 31

General-Purpose Application-Software Data

Figure 3-8: User SPR General-Purpose Register (USPRG0)

0 31

General-Purpose System-Software Data

Figure 3-9: SPR General-Purpose Registers (SPRG4–SPRG7)

0 31

TBU (Time Base [0:31])

0 31

TBL (Time Base [32:63])

Figure 3-10: Time-Base Register
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Exception Summary
An exception is an event that can be caused by a number of sources, including:

• Error conditions arising from instruction execution.
• Internal timer resources.
• Internal debug resources.
• External peripherals.

When an exception occurs, the processor can interrupt the currently executing program so 
that system software can deal with the exception condition. The action taken by an 
interrupt includes saving the processor context and transferring control to a 
predetermined exception-handler address operating under a new context. When the 
interrupt handler completes execution, it can return to the interrupted program by 
executing a return-from-interrupt instruction.

Exceptions are handled by privileged software. The exception mechanism is described in 
Chapter 7, Exceptions and Interrupts. Following is a list of exceptions that can be caused 
by the execution of an instruction in user mode.

• Data-Storage Exception.

An attempt to access data in memory that results in a memory-protection violation 
causes the data-storage interrupt handler to be invoked.

• Instruction-Storage Exception.

An attempt to access instructions in memory that result in a memory-protection 
violation causes the instruction-storage interrupt handler to be invoked.

• Alignment Exception.

An attempt to access memory with an invalid effective-address alignment (for the 
specific instruction) causes the alignment-interrupt handler to be invoked.

• Program Exception.

Three different types of interrupt handlers can be invoked when a program exception 
occurs: illegal instruction, privileged instruction, and system trap. The conditions 
causing a program interrupt include:

- An attempt to execute an illegal instruction causes the illegal-instruction interrupt 
handler to be invoked.

- An attempt to execute an optional instruction not implemented by the PPC405 
causes the illegal-instruction interrupt handler to be invoked.

- An attempt by a user-level program to execute a supervisor-level instruction 
causes the privileged-instruction interrupt handler to be invoked.

- An attempt to execute a defined instruction with an invalid form causes either the 
illegal-instruction interrupt handler or the privileged-instruction interrupt 
handler to be invoked.

- Executing a trap instruction can cause the system-trap interrupt handler to be 
invoked.

• Floating-Point Unavailable Exception.

On processors that support floating-point instructions, executing such instructions 
when the floating-point unit is disabled (MSR[FP]=0) invokes the floating-point-
unavailable interrupt handler.

• System-Call Exception.

The execution of an sc instruction causes the system-call interrupt handler to be 
invoked. The interrupt handler can be used to call a system-service routine.

• Data TLB-Miss Exception.
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If data translation is enabled, an attempt to access data in memory when a valid TLB 
entry is not present causes the data TLB-miss interrupt handler to be invoked.

• Instruction TLB-Miss Exception.

If instruction translation is enabled, an attempt to access instructions in memory when 
a valid TLB entry is not present causes the instruction TLB-miss interrupt handler to be 
invoked.

Other exceptions can occur during user-mode program execution that are not directly 
caused by instruction execution. These are also described in Chapter 7:

• Machine-check exceptions.
• Exceptions caused by external devices.
• Exceptions caused by a timer.
• Debug exceptions.

Branch and Flow-Control Instructions
Branch instructions redirect program flow by altering the next-instruction address non-
sequentially. Branches unconditionally or conditionally alter program flow forward or 
backward using either an absolute address or an address relative to the branch-instruction 
address. Branches calculate the target address using the contents of the CTR, LR, or fields 
within the branch instruction. Optionally, a branch-return address can be automatically 
loaded into the LR by setting the LK instruction-opcode bit to 1. This option is useful for 
specifying the return address for subroutine calls and causes the address of the instruction 
following the branch to be loaded in the LR. Branches are used for all non-sequential 
program flow including jumps, loops, calls and returns.

Branch-conditional instructions redirect program flow if a tested condition is true. These 
instructions can test a bit value within the CR, the value of the CTR, or both. Condition-
register logical instructions are provided to set up the tests for branch-conditional 
instructions.

Conditional Branch Control
With branch-conditional instructions, the BO opcode field specifies the branch-control 
conditions and how the branch affects the CTR. The BO field can specify a test of the CR 
and it can specify that the CTR be decremented and tested. The BO field can also be 
initialized to reverse the default prediction performed by the processor. The bits within the 
BO field are defined as shown in Table 3-4.

Table 3-4: BO Field Bit Definitions

BO Bit Description

BO[0] CR Test Control

0—Test the CR bit specified by the BI opcode field for the value indicated by BO[1].

1—Do not test the CR.

BO[1] CR Test Value

0—Test for CR[BI]=0.

1—Test for CR[BI]=1.
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The 5-bit BI opcode field in branch-conditional instructions specifies which of the 32 bits in 
the CR are used in the branch-condition test. For example, if BI=0b01010, CR10 is used in 
the test.

In some encodings of the BO field, certain BO bits are ignored. Ignored bits can be assigned 
a meaning in future extensions of the PowerPC architecture and should be cleared to 0. 
Valid BO field encodings are shown in Table 3-5. In this table, z indicates the ignored bits 
that should be cleared to 0. The y bit (BO[4]) specifies the branch-prediction behavior for 
the instruction as described in Specifying Branch-Prediction Behavior, page 370.

Branch Instructions
The following sections describe the branch instructions defined by the PowerPC 
architecture. A number of simplified mnemonics are defined for the branch instructions. 
See Branch Instructions, page 821 for more information.

Branch Unconditional
Table 3-6 lists the PowerPC unconditional branch instructions. These branches specify a 26-
bit signed displacement to the branch-target address by appending the 24-bit LI instruction 
field with 0b00. The displacement value gives unconditional branches the ability to cover 
an address range of ±32 MB.

BO[2] CTR Test Control

0—Decrement CTR by one, and test whether CTR satisfies the condition specified by 
BO[3].

1—Do not change or test CTR.

BO[3] CTR Test Value

0—Test for CTR ≠ 0.

1—Test for CTR=0.

BO[4] Branch Prediction Reversal

0—Apply standard branch prediction.

1—Reverse the standard branch prediction.

Table 3-5: Valid BO Opcode-Field Encoding

BO[0:4] Description

0000y Decrement the CTR. Branch if the decremented CTR ≠ 0 and CR[BI]=0.

0001y Decrement the CTR. Branch if the decremented CTR = 0 and CR[BI]=0.

001zy Branch if CR[BI]=0.

0100y Decrement the CTR. Branch if the decremented CTR ≠ 0 and CR[BI]=1.

0101y Decrement the CTR. Branch if the decremented CTR=0 and CR[BI]=1.

011zy Branch if CR[BI]=1.

1z00y Decrement the CTR. Branch if the decremented CTR ≠ 0.

1z01y Decrement the CTR. Branch if the decremented CTR = 0.

1z1zz Branch always.

Table 3-4: BO Field Bit Definitions (Continued)

BO Bit Description
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Branch Conditional
Table 3-7 lists the PowerPC branch-conditional instructions. The BO field specifies the 
condition tested by the branch, as shown in Table 3-5, page 368. The BI field specifies the 
CR bit used in the test. These branches specify a 16-bit signed displacement to the branch-
target address by appending the 14-bit BD instruction field with 0b00. The displacement 
value gives conditional branches the ability to cover an address range of ±32 KB.

Branch Conditional to Link Register
Table 3-8 lists the PowerPC branch-conditional to link-register instructions. The BO field 
specifies the condition tested by the branch, as shown in Table 3-5, page 368. The BI field 
specifies the CR bit used in the test. The branch-target address is read from the LR, with 
LR[30:31] cleared to zero to form a word-aligned address. Using the 32-bit LR as a branch 
target gives these branches the ability to cover the full 4 GB address range.

Table 3-6: Branch-Unconditional Instructions

Mnemonic Name Operation
Operand 
Syntax

b Branch Branch to relative address.. tgt_addr

ba Branch Absolute Branch to absolute address.

bl Branch and Link Branch to relative address. LR is updated with the 
address of the instruction following the branch.

bla Branch Absolute and Link Branch to absolute address. LR is updated with the 
address of the instruction following the branch.

Table 3-7: Branch-Conditional Instructions

Mnemonic Name Operation
Operand 
Syntax

bc Branch Conditional Branch-conditional to relative address.. BO,BI,tgt_addr

bca Branch Conditional Absolute Branch-conditional to absolute address.

bcl Branch Conditional and Link Branch-conditional to relative address. LR is 
updated with the address of the instruction 
following the branch.

bcla Branch Conditional Absolute and 
Link

Branch-conditional to absolute address. LR is 
updated with the address of the instruction 
following the branch.

Table 3-8: Branch-Conditional to Link-Register Instructions

Mnemonic Name Operation
Operand 
Syntax

bclr Branch Conditional to Link Register Branch-conditional to address in LR. BO,BI

bclrl Branch Conditional to Link Register 
and Link

Branch-conditional to address in LR. LR is updated 
with the address of the instruction following the 
branch.
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Branch Conditional to Count Register
Table 3-9 lists the PowerPC branch-conditional to count-register instructions. The BO field 
specifies the condition tested by the branch, as shown in Table 3-5, page 368. The BI field 
specifies the CR bit used in the test. The branch-target address is read from the CTR, with 
CTR[30:31] cleared to zero to form a word-aligned address. Using the 32-bit CTR as a 
branch target gives these branches the ability to cover the full 4 GB address range.

Branch Prediction
Conditional branches alter program flow based on the value of bits in the CR. If a condition 
is met by the CR bits, the branch instruction alters the next-instruction address non-
sequentially. Otherwise, the next-sequential instruction following the branch is executed. 
When the processor encounters a conditional branch, it scans the execution pipelines to 
determine whether an instruction in progress can affect the CR bit tested by the branch. If 
no such instruction is found, the branch can be resolved immediately by checking the bit in 
the CR and taking the action defined by the branch instruction.

However, if a CR-altering instruction is detected, the branch is considered unresolved until 
the CR-altering instruction completes execution and writes its result to the CR. Prior to that 
time, the processor can predict how the branch is resolved. First, the processor uses special 
dynamic prediction hardware to analyze instruction flow and branch history to predict 
resolution of the current branch. If branches are predicted correctly, performance 
improvements can be realized because instruction execution does not stall waiting for the 
branch to be resolved. The PowerPC architecture provides software with the ability to 
override (reverse) the dynamic prediction using a static prediction hint encoded in the 
instruction opcode. This can be useful when it is known at compile time that a branch is 
likely to behave contrary to what the processor expects. The use of static prediction is 
described in the next section, Specifying Branch-Prediction Behavior.

When a prediction is made, instructions are fetched from the predicted execution path. If 
the processor determines the prediction was incorrect after the CR-altering instruction 
completes execution, all instructions fetched as a result of the prediction are discarded by 
the processor. Instruction fetch is restarted along the correct path. If the prediction was 
correct, instruction fetch and execution proceed normally along the predicted (and now 
resolved) path.

Branch prediction is most effective when the branch-target address is computed well in 
advance of resolving the branch. If a branch instruction contains immediate addressing 
operands, the processor can compute the branch-target address ahead of branch 
resolution. If the branch instruction uses the LR or CTR for addressing, it is important that 
the register is loaded by software sufficiently ahead of the branch instruction.

Specifying Branch-Prediction Behavior
All PowerPC processors predict a conditional branch as taken using the following rules:

• For the bcx instruction with a negative value in the displacement operand, the branch 
is predicted taken. 

• For all other branch-conditional instructions (bcx with a non-negative value in the 
displacement operand, bclrx, or bcctrx), the branch is predicted not taken.

Table 3-9: Branch-Conditional to Count-Register Instructions

Mnemonic Name Operation
Operand 
Syntax

bcctr Branch Conditional to Count Register Branch-conditional to address in CTR. BO,BI

bcctrl Branch Conditional to Count Register 
and Link

Branch-conditional to address in CTR. LR is 
updated with the address of the instruction 
following the branch.
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Algorithmically, a branch is predicted taken if:

((BO[0] ∧  BO[2]) ∨  s) = 1

where s is the sign bit of the displacement operand, if the instruction has a displacement 
operand (bit 16 of the branch-conditional instruction encoding). 

When the result of the above equation is 0, the branch is predicted not-taken and the 
processor speculatively fetches instructions that sequentially follow the branch 
instruction.

Examining the above equation, BO[0] ∧  BO[2]=1 only when the conditional branch tests 
nothing, meaning the branch is always taken. In this case, the processor predicts the branch 
as taken.

If the conditional branch tests anything (BO[0] ∧  BO[2]=0), s controls the prediction. In the 
bclrx and bcctrx instructions, bit 16 (s) is reserved and always 0. In this case those 
instructions are predicted not-taken.

Only the bcx instructions can specify a displacement value. The bcx instructions are 
commonly used at the end of loops to control the number of times a loop is executed. Here, 
the branch is taken every time the loop is executed except the last time, so a branch should 
normally be predicted as taken. Because the branch target is at the beginning of the loop, 
the branch displacement is negative and s=1, so the processor predicts the branch as taken. 
Forward branches have a positive displacement and are predicted not-taken.

When the y bit (BO[4]) is cleared to 0, the default branch prediction behavior described 
above is followed by the processor. Setting the y bit to 1 reverses the above behavior. For 
branch always encoding (BO[0], BO[2]), branch prediction cannot be reversed (no y bit is 
recognized).

The sign of the displacement operand (s) is used as described above even when the target 
is an absolute address. The default value for the y bit should be 0. Compilers can set this bit 
if it they determine that the prediction corresponding to y=1 is more likely to be correct 
than the prediction corresponding to y=0. Compilers that do not statically predict branches 
should always clear the y bit.

Link-Register Stack
Some processor implementations keep a stack (history) of the LR values most recently 
used by branch-and-link instructions. Those processors use this software-invisible stack to 
predict the target address of nested-subroutine returns. Although the PPC405 processor 
does not implement such a stack, the following programming conventions should be 
followed so that software running on multiple PowerPC processors can benefit from this 
stack.

In the following examples, let A, B, and Glue represent subroutine labels:

• When obtaining the address of the next instruction, use the following form of branch-
and-link:

bcl 20,31,$+4

• Loop counts:

Keep loop counts in the CTR, and use one of the branch-conditional instructions to 
decrement the count and to control branching (for example, branching back to the start 
of a loop if the decremented CTR value is nonzero).

• Computed “go to”, case statements, etc.:

Use the CTR to hold the branch-target address, and use the bcctr instruction with the 
link register option disabled (LK=0) to branch to the selected address.

• Direct subroutine linkage, where A calls B and B returns to A:
- A calls B—use a branch instruction that enables the LR (LK=1).
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- B returns to A—use the bclr instruction with the link-register option disabled 
(LK=0). The return address is in, or can be restored to, the LR.

• Indirect subroutine linkage, where A calls Glue, Glue calls B, and B returns to A rather 
than to Glue.

Such a calling sequence is common in linkage code where the subroutine that the 
programmer wants to call, B, is in a different module than the caller, A. The binder 
inserts “glue” code to mediate the branch:

- A calls Glue—use a branch instruction that sets the LR with the link-register 
option enabled (LK=1).

- Glue calls B—write the address of B in the CTR, and use the bcctr instruction with 
the link-register option disabled (LK=0).

- B returns to A—use the bclr instruction with the link-register option disabled 
(LK=0). The return address is in, or can be restored to, the LR.

Branch-Target Address Calculation
Branch instructions compute the effective address (EA) of the next instruction using the 
following addressing modes:

• Branch to relative (conditional and unconditional).
• Branch to absolute (conditional and unconditional).
• Branch to link register (conditional only).
• Branch to count register (conditional only).

Instruction addresses are always assumed to be word aligned. PowerPC processors ignore 
the two low-order bits of the generated branch-target address.

Branch to Relative
Instructions that use branch-to-relative addressing generate the next-instruction address by 
right-extending 0b00 to the immediate-displacement operand (LI), and then sign-
extending the result. That result is added to the current-instruction address to produce the 
next-instruction address. Branches using this addressing mode must have the absolute-
addressing option disabled by clearing the AA instruction field (bit 30) to 0. The link-
register update option is enabled by setting the LK instruction field (bit 31) to 1. This 
option causes the effective address of the instruction following the branch instruction to be 
loaded into the LR.

Figure 3-11 shows how the branch-target address is generated when using the branch-to-
relative addressing mode.
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Branch-Conditional to Relative
If the branch conditions are met, instructions that use branch-conditional to relative 
addressing generate the next-instruction address by appending 0b00 to the immediate-
displacement operand (BD) and sign-extending the result. That result is added to the 
current-instruction address to produce the next-instruction address. Branches using this 
addressing mode must have the absolute-addressing option disabled by clearing the AA 
instruction field (bit 30) to 0. The link-register update option is enabled by setting the LK 
instruction field (bit 31) to 1. This option causes the effective address of the instruction 
following the branch instruction to be loaded into the LR.

Figure 3-12 shows how the branch-target address is generated when using the branch-
conditional to relative addressing mode.

Figure 3-11: Branch-to-Relative Addressing
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Figure 3-12: Branch-Conditional to Relative Addressing
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Branch to Absolute
Instructions that use branch-to-absolute addressing generate the next-instruction address by 
appending 0b00 to the immediate-displacement operand (LI) and sign-extending the 
result. Branches using this addressing mode must have the absolute-addressing option 
enabled by setting the AA instruction field (bit 30) to 1. The link-register update option is 
enabled by setting the LK instruction field (bit 31) to 1. This option causes the effective 
address of the instruction following the branch instruction to be loaded into the LR.

Figure 3-13 shows how the branch-target address is generated when using the branch-to-
absolute addressing mode.

Branch-Conditional to Absolute
If the branch conditions are met, instructions that use branch-conditional to absolute 
addressing generate the next-instruction address by appending 0b00 to the immediate-
displacement operand (BD) and sign-extending the result. Branches using this addressing 
mode must have the absolute-addressing option enabled by setting the AA instruction 
field (bit 30) to 1. The link-register update option is enabled by setting the LK instruction 
field (bit 31) to 1. This option causes the effective address of the instruction following the 
branch instruction to be loaded into the LR.

Figure 3-14 shows how the branch-target address is generated when using the branch-
conditional to absolute-addressing mode.

Figure 3-13: Branch-to-Absolute Addressing
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Figure 3-14: Branch-Conditional to Absolute Addressing
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Branch-Conditional to Link Register
If the branch conditions are met, the branch-conditional to link-register instruction generates 
the next-instruction address by reading the contents of the LR and clearing the two low-
order bits to zero. The link-register update option is enabled by setting the LK instruction 
field (bit 31) to 1. This option causes the effective address of the instruction following the 
branch instruction to be loaded into the LR.

Figure 3-15 shows how the branch-target address is generated when using the branch-
conditional to link-register addressing mode.

Branch-Conditional to Count Register
If the branch conditions are met, the branch-conditional to count-register instruction 
generates the next-instruction address by reading the contents of the CTR and clearing the 
two low-order bits to zero. The link-register update option is enabled by setting the LK 
instruction field (bit 31) to 1. This option causes the effective address of the instruction 
following the branch instruction to be loaded into the LR.

Figure 3-16 shows how the branch-target address is generated when using the branch-
conditional to count-register addressing mode.

Figure 3-15: Branch-Conditional to Link-Register Addressing
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Figure 3-16: Branch-Conditional to Count-Register Addressing
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Condition-Register Logical Instructions
Table 3-10 lists the PowerPC condition-register logical instructions. The condition-register 
logical instructions perform logical operations on any two bits within the CR and store the 
result of the operation in any CR bit. The move condition-register field instruction is used to 
move any CR field (each field comprising four bits) to any other CR-field location. All of 
these instructions are considered flow-control instructions because they are generally used 
to set up conditions for testing by the branch-conditional instructions and to reduce the 
number of branches in a code sequence. Simplified mnemonics are defined for the 
condition-register logical instructions. See CR-Logical Instructions, page 828 for more 
information.

In Table 3-10, the instruction-operand fields crbA, crbB, and crbD all specify a single bit 
within the CR. The instruction-operand fields crfD and crfS specify a 4-bit field within the 
CR.

System Call
Table 3-11 lists the PowerPC system-call instruction. The sc instruction is a user-level 
instruction that can be used by a user-mode program to transfer control to a privileged-
mode program (typically a system-service routine). Executing the sc instruction causes a 
system-call exception to occur. See System-Call Interrupt (0x0C00), page 514 for more 
information on the operation of this instruction.

Table 3-10: Condition-Register Logical Instructions

Mnemonic Name Operation
Operand 
Syntax

crand Condition Register AND CR-bit crbA is ANDed with CR-bit crbB and the 
result is stored in CR-bit crbD.

crbD,crbA,crbB

crandc Condition Register AND with 
Complement

CR-bit crbA is ANDed with the complement of CR-
bit crbB and the result is stored in CR-bit crbD.

creqv Condition Register Equivalent CR-bit crbA is XORed with CR-bit crbB and the 
complemented result is stored in CR-bit crbD.

crnand Condition Register NAND CR-bit crbA is ANDed with CR-bit crbB and the 
complemented result is stored in CR-bit crbD.

crnor Condition Register NOR CR-bit crbA is ORed with CR-bit crbB and the 
complemented result is stored in CR-bit crbD.

cror Condition Register OR CR-bit crbA is ORed with CR-bit crbB and the 
result is stored in CR-bit crbD.

crorc Condition Register OR with 
Complement

CR-bit crbA is ORed with the complement of CR-
bit crbB and the result is stored in CR-bit crbD.

crxor Condition Register XOR CR-bit crbA is XORed with CR-bit crbB and the 
result is stored in CR-bit crbD.

mcrf Move Condition Register Field CR-field crfS is copied into CR-field crfD. No other 
CR fields are modified.

crfD,crfS

Table 3-11: System-Call Instruction

Mnemonic Name Operation
Operand 
Syntax

sc System Call Causes a system-call exception to occur. —
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System Trap
Table 3-12 lists the PowerPC system-trap instructions. System-trap instructions are 
normally used by software-debug applications to set breakpoints. These instructions test 
for a specified set of conditions and cause a program exception to occur if any of the 
conditions are met. If the tested conditions are not met, instruction execution continues 
normally with the instruction following the system-trap instruction (a program exception 
does not occur). The system-trap handler can be called from the program-interrupt handler 
when it is determined that a system-trap instruction caused the exception. See Program 
Interrupt (0x0700), page 511 for more information on program exceptions caused by the 
system-trap instructions.

Trap instructions can also be used to cause a debug exception. See Trap-Instruction Debug 
Event, page 546 for more information.

Simplified mnemonics are defined for the system-trap instructions. See Trap Instructions, 
page 832 for more information.

The TO operand field in the system-trap instructions specifies the test conditions 
performed on the remaining two operands. Multiple test conditions can be set 
simultaneously, expanding the number of possible conditions that can cause the trap 
(program exception). If all bits in the TO operand field are set, the trap always occurs 
because one of the trap conditions is always met. The bits within the TO field are defined 
as shown in Table 3-13.

Table 3-12: System-Trap Instructions

Mnemonic Name Operation
Operand 
Syntax

tw Trap Word The contents of rA are compared with rB. A 
program exception occurs if the comparison meets 
any test condition enabled by the TO operand.

TO,rA,rB

twi Trap Word Immediate The contents of rA are compared with the sign-
extended SIMM operand. A program exception 
occurs if the comparison meets any test condition 
enabled by the TO operand.

TO,rA,SIMM

Table 3-13: TO Field Bit Definitions

TO Bit Description

TO[0] Less-than arithmetic comparison.

0—Ignore trap condition.

1—Trap if first operand is arithmetically less-than second operand.

TO[1] Greater-than arithmetic comparison.

0—Ignore trap condition.

1—Trap if first operand is arithmetically greater-than second operand.
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Integer Load and Store Instructions
The integer load and store instructions move data between the general-purpose registers 
and memory. Several types of loads and stores are supported by the PowerPC instruction 
set:

• Load and zero
• Load algebraic
• Store
• Load with byte reverse and store with byte reverse
• Load multiple and store multiple
• Load string and store string
• Memory synchronization instructions

Memory accesses performed by the load and store instructions can occur out of order. 
Synchronizing instructions are provided to enforce strict memory-access ordering. See 
Synchronizing Instructions, page 424 for more information.

In general, the PowerPC architecture defines a sequential-execution model. When a store 
instruction modifies an instruction-memory location, software synchronization is required 
to ensure subsequent instruction fetches from that location obtain the modified version of 
the instruction. See Self-Modifying Code, page 467 for more information.

Operand-Address Calculation
Integer load and store instructions generate effective addresses using one of three 
addressing modes: register-indirect with immediate index, register-indirect with index, or 
register indirect. These addressing modes are described in the following sections. For some 
instructions, update forms that load the calculated effective address into rA are also 
provided.

In the PPC405 processor, loads and stores to unaligned addresses can suffer from 
performance degradation. Refer to Performance Effects of Operand Alignment, page 353 
for more information.

Register-Indirect with Immediate Index
Load and store instructions using this addressing mode contain a signed, 16-bit immediate 
index (d operand) and a general-purpose register operand, rA. The index is sign-extended 
to 32 bits and added to the contents of rA to generate the effective address. If the rA 
instruction field is 0 (specifying r0), a value of zero—rather than the contents of r0—is 
added to the sign-extended immediate index. The option to specify rA or 0 is shown in the 
instruction description as (rA|0).

TO[2] Equal-to arithmetic comparison.

0—Ignore trap condition.

1—Trap if first operand is arithmetically equal-to second operand.

TO[3] Less-than unsigned comparison.

0—Ignore trap condition.

1—Trap if first operand is less-than second operand.

TO[4] Greater-than unsigned comparison.

0—Ignore trap condition.

1—Trap if first operand is greater-than second operand.

Table 3-13: TO Field Bit Definitions (Continued)

TO Bit Description
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Figure 3-17 shows how an effective address is generated when using register-indirect with 
immediate-index addressing.

Register-Indirect with Index
Load and store instructions using this addressing mode contain two general-purpose 
register operands, rA and rB. The contents of these two registers are added to generate the 
effective address. If the rA instruction field is 0 (specifying r0), a value of zero—rather than 
the contents of r0—is added to rB. The option to specify rA or 0 is shown in the instruction 
description as (rA|0).

Figure 3-18 shows how an effective address is generated when using register-indirect with 
index addressing.

Figure 3-17: Register-Indirect with Immediate-Index Addressing
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Register Indirect
Only load-string and store-string instructions can use this addressing mode. This mode 
uses only the contents of the general-purpose register specified by the rA operand as the 
effective address. Rather than using the contents of r0, a zero in the rA operand causes an 
effective address of zero to be generated. The option to specify rA or 0 is shown in the 
instruction descriptions as (rA|0). 

Figure 3-19 shows how an effective address is generated when using register-indirect 
addressing.

Figure 3-18: Register-Indirect with Index Addressing
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Figure 3-19: Register-Indirect Addressing
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Load Instructions
Integer-load instructions read an operand from memory and store it in a GPR destination 
register, rD. Each type of load is characterized by what they do with unused high-order 
bits in rD when the operand size is less than a word (32 bits). Load-and-zero instructions 
clear the unused high-order bits in rD to zero. Load-algebraic instructions fill the unused 
high-order bits in rD with a copy of the most-significant bit in the operand.

Load-with-update instructions are provided, but the following two rules apply:

• rA must not be equal to 0. If rA = 0, the instruction form is invalid.
• rA must not be equal to rD. If rA = rD, the instruction form is invalid.

In the PPC405, the above invalid instruction forms produce a boundedly-undefined result. 
In other PowerPC implementations, those forms can cause a program exception.

Load Byte and Zero 
Table 3-14 lists the PowerPC load byte and zero instructions. These instructions load a byte 
from memory into the lower-eight bits of rD and clear the upper-24 bits of rD to 0.

Load Halfword and Zero
Table 3-15 lists the PowerPC load halfword and zero instructions. These instructions load a 
halfword from memory into the lower-16 bits of rD and clear the upper-16 bits of rD to 0.

Table 3-14: Load Byte and Zero Instructions

Mnemonic Name Addressing Mode
Operand 
Syntax

lbz Load Byte and Zero Register-indirect with immediate index

EA = (rA|0) + d

rD,d(rA)

lbzu Load Byte and Zero with Update Register-indirect with immediate index 

EA = (rA) + d

rA ← EA 

rA ≠ 0, rA ≠ rD

lbzx Load Byte and Zero Indexed Register-indirect with index

EA = (rA|0) + (rB)

rD,rA,rB

lbzux Load Byte and Zero with Update 
Indexed

Register-indirect with index

EA = (rA) + (rB)

rA ← EA

rA ≠ 0, rA ≠ rD
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Load Word and Zero
Table 3-16 lists the PowerPC load word and zero instructions. These instructions load a word 
from memory into rD.

Load Halfword Algebraic
Table 3-17 lists the PowerPC load halfword algebraic instructions. These instructions load a 
halfword from memory into the lower-16 bits of rD. The upper-16 bits of rD are filled with 
a copy of the most-significant bit (bit 16) of the operand.

Table 3-15: Load Halfword and Zero Instructions

Mnemonic Name Addressing Mode
Operand 
Syntax

lhz Load Halfword and Zero Register-indirect with immediate index

EA = (rA|0) + d

rD,d(rA)

lhzu Load Halfword and Zero with Update Register-indirect with immediate index 

EA = (rA) + d

rA ← EA 

rA ≠ 0, rA ≠ rD

lhzx Load Halfword and Zero Indexed Register-indirect with index

EA = (rA|0) + (rB)

rD,rA,rB

lhzux Load Halfword and Zero with Update 
Indexed

Register-indirect with index

EA = (rA) + (rB)

rA ← EA

rA ≠ 0, rA ≠ rD

Table 3-16: Load-Word and Zero Instructions

Mnemonic Name Addressing Mode
Operand 
Syntax

lwz Load Word and Zero Register-indirect with immediate index

EA = (rA|0) + d

rD,d(rA)

lwzu Load Word and Zero with Update Register-indirect with immediate index 

EA = (rA) + d

rA ← EA 

rA ≠ 0, rA ≠ rD

lwzx Load Word and Zero Indexed Register-indirect with index

EA = (rA|0) + (rB)

rD,rA,rB

lwzux Load Word and Zero with Update 
Indexed

Register-indirect with index

EA = (rA) + (rB)

rA ← EA

rA ≠ 0, rA ≠ rD
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Table 3-17: Load Halfword Algebraic Instructions

Mnemonic Name Addressing Mode
Operand 
Syntax

lha Load Halfword Algebraic Register-indirect with immediate index

EA = (rA|0) + d

rD,d(rA)

lhau Load Halfword Algebraic with 
Update

Register-indirect with immediate index 

EA = (rA) + d

rA ← EA 

rA ≠ 0, rA ≠ rD

lhax Load Halfword Algebraic Indexed Register-indirect with index

EA = (rA|0) + (rB)

rD,rA,rB

lhaux Load Halfword Algebraic with 
Update Indexed

Register-indirect with index

EA = (rA) + (rB)

rA ← EA

rA ≠ 0, rA ≠ rD
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Store Instructions
Integer-store instructions read an operand from a GPR source register, rS, and write it into 
memory. Store-with-update instructions are provided, but the following two rules apply:

• rA must not be equal to 0. If rA = 0, the instruction form is invalid.
• If rS = rA, rS is written to memory first, and then the effective address is loaded into 

rS.

In the PPC405, the above invalid instruction form produces a boundedly-undefined result. 
In other PowerPC implementations, that form can cause a program exception.

Store Byte
Table 3-18 lists the PowerPC store byte instructions. These instructions store the lower-eight 
bits of rS into the specified byte location in memory.

Store Halfword 
Table 3-19 lists the PowerPC store halfword instructions. These instructions store the lower-
16 bits of rS into the specified halfword location in memory.

Table 3-18: Store Byte Instructions

Mnemonic Name Addressing Mode
Operand 
Syntax

stb Store Byte Register-indirect with immediate index

EA = (rA|0) + d

rS,d(rA)

stbu Store Byte with Update Register-indirect with immediate index 

EA = (rA) + d

rA ← EA

rA ≠ 0

stbx Store Byte Indexed Register-indirect with index

EA = (rA|0) + (rB)

rS,rA,rB

stbux Store Byte with Update Indexed Register-indirect with index

EA = (rA) + (rB)

rA ← EA

rA ≠ 0
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Store Word 
Table 3-20 lists the PowerPC store word instructions. These instructions store the entire 
contents of rS into the specified word location in memory.

Load and Store with Byte-Reverse Instructions
Table 3-21 lists the PowerPC load and store with byte-reverse instructions. Figure 3-20 shows 
(using big-endian memory) how bytes are moved between memory and the GPRs for each 
of the byte-reverse instructions. When an lhbrx instruction is executed, the unloaded bytes 
in rD are cleared to 0.

When used in a system operating with the default big-endian byte order, these instructions 
have the effect of loading and storing data in little-endian order. Likewise, when used in a 
system operating with little-endian byte order, these instructions have the effect of loading 

Table 3-19: Store Halfword Instructions

Mnemonic Name Addressing Mode
Operand 
Syntax

sth Store Halfword Register-indirect with immediate index

EA = (rA|0) + d

rS,d(rA)

sthu Store Halfword with Update Register-indirect with immediate index 

EA = (rA) + d

rA ← EA

rA ≠ 0

sthx Store Halfword Indexed Register-indirect with index

EA = (rA|0) + (rB)

rS,rA,rB

sthux Store Halfword with Update Indexed Register-indirect with index

EA = (rA) + (rB)

rA ← EA

rA ≠ 0

Table 3-20: Store Word Instructions

Mnemonic Name Addressing Mode
Operand 
Syntax

stw Store Word Register-indirect with immediate index

EA = (rA|0) + d

rS,d(rA)

stwu Store Word with Update Register-indirect with immediate index 

EA = (rA) + d

rA ← EA

rA ≠ 0

stwx Store Word Indexed Register-indirect with index

EA = (rA|0) + (rB)

rS,rA,rB

stwux Store Word with Update Indexed Register-indirect with index

EA = (rA) + (rB)

rA ← EA

rA ≠ 0
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and storing data in big-endian order. For more information about big-endian and little-
endian byte ordering, see Byte Ordering, page 349.

Load and Store Multiple Instructions
Table 3-22 lists the PowerPC load and store multiple instructions and their operation. 
Figure 3-21 shows how bytes are moved between memory and the GPRs for each of these 
instructions.

These instructions are used to move blocks of data between memory and the GPRs. When 
the load multiple word instruction (lmw) is executed, rD through r31 are loaded with n 

Table 3-21: Load and Store with Byte-Reverse Instructions

Mnemonic Name Addressing Mode
Operand 
Syntax

lhbrx Load Halfword Byte-Reverse Indexed Register-indirect with index

EA = (rA|0) + (rB)

rD,rA,rB

lwbrx Load Word Byte-Reverse Indexed

sthbrx Store Halfword Byte-Reverse Indexed Register-indirect with index

EA = (rA|0) + (rB)

rS,rA,rB

stwbrx Store Word Byte-Reverse Indexed

Figure 3-20: Load and Store with Byte-Reverse Instructions
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consecutive words from memory, where n=32-rD. For the lmw instruction, if rA is in the 
range of registers to be loaded, or if rD=0, the instruction form is invalid. When the store 
multiple word instruction (stmw) is executed, the n consecutive words in rS through r31 are 
stored into memory, where n=32-rS.

Load and Store String Instructions
Table 3-23 lists the PowerPC load and store string instructions and their addressing modes. 
See the individual instruction listings in Chapter 11, Instruction Set for more information 
on their operation and restrictions on the instruction forms.

Table 3-22: Load and Store Multiple Instructions

Mnemonic Name Addressing Mode
Operand 
Syntax

lmw Load Multiple Word Register-indirect with immediate index

EA = (rA|0) + d

rD,d(rA)

stmw Store Multiple Word Register-indirect with immediate index

EA = (rA|0) + d

rS,d(rA)

Figure 3-21: Load and Store Multiple Instructions
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These instructions are used to move up to 32 consecutive bytes of data between memory 
and the GPRs without concern for alignment. The instructions can be used for short moves 
between arbitrary memory locations or for long moves between misaligned memory 
fields. Performance of these instructions is degraded if the leading and/or trailing bytes 
are not aligned on a word boundary (see Performance Effects of Operand Alignment, 
page 353 for more information).

The immediate form of the instructions take the byte count, n, from the NB instruction 
field. If NB=0, then n=32. The indexed forms take the byte count from XER[25:31]. Unlike 
the immediate forms, if XER[25:31]=0, then n=0. For the lswx instruction, the contents of 
rD are undefined if n=0.

The n bytes are loaded into and stored from registers beginning with the most-significant 
register byte. For loads, any unfilled low-order register bytes are cleared to 0. The sequence 
of registers loaded or stored wraps through r0 if necessary. Figure 3-22 shows an example 
of the string-instruction operation.

Table 3-23: Load and Store String Instructions

Mnemonic Name Addressing Mode
Operand 
Syntax

lswi Load String Word Immediate Register-indirect 

EA = (rA|0)

rD,rA,NB

lswx Load String Word Indexed Register-indirect with index

EA = (rA|0) + (rB)

rD,rA,rB

stswi Store String Word Immediate Register-indirect 

EA = (rA|0)

rS,rA,NB

stswx Store String Word Indexed Register-indirect with index

EA = (rA|0) + (rB)

rS,rA,rB
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Integer Instructions
Integer instructions operate on the contents of GPRs. They use the GPRs (and sometimes 
immediate values coded in the instruction) as source operands. Results are written into 
GPRs. These instructions do not operate on memory locations. Integer instructions treat 
the source operands as signed integers unless the instruction is explicitly identified as 
performing an unsigned operation. For example, the multiply high-word unsigned (mulhwu) 
and divide-word unsigned (divwu) instructions interpret both operands as unsigned 
integers.

The following types of integer instructions are supported by the PowerPC architecture:

• Arithmetic Instructions
• Logical Instructions
• Compare Instructions
• Rotate Instructions
• Shift Instructions

The arithmetic, shift, and rotate instructions can update and/or read bits from the XER. 
Those instructions, plus the integer-logical instructions, can also update bits in the CR. 
Unless otherwise noted, when XER and/or CR are updated, they reflect the value written 

Figure 3-22: Load and Store String Instructions
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to the destination register. XER and CR can be updated by the integer instructions in the 
following ways:

• The XER[CA] bit is updated to reflect the carry out of bit 0 in the result.
• The XER[OV] bit is set or cleared to reflect a result overflow. When XER[OV] is set, 

XER[SO] is also set to reflect a summary overflow. XER[SO] can only be cleared using 
the mtspr and mcrxr instructions. Instructions that update these bits have the 
overflow-enable (OE) bit set to 1 in the instruction encoding. This is indicated by the 
“o” suffix in the instruction mnemonic.

• Bits in CR0 (CR[0:3]) are updated to reflect a signed comparison of the result to zero. 
Instructions that update CR0 have the record (Rc) bit set to 1 in the instruction 
encoding. This is indicated by the “.” suffix in the instruction mnemonic. See CR0 
Field, page 361, for information on how these bits are updated.

Instructions that update XER[OV] or XER[CA] can delay the execution of subsequent 
instructions. See Fixed-Point Exception Register (XER), page 363 for more information on 
these register bits.

Arithmetic Instructions
The integer-arithmetic instructions support addition, subtraction, multiplication, and 
division between operands in the GPRs and in some cases between GPRs and signed-
immediate values.

Integer-Addition Instructions
Table 3-24 shows the PowerPC integer-addition instructions. The instructions in this table 
are grouped by the type of addition operation they perform. For each type of instruction 
shown, the “Operation” column indicates the addition-operation performed, and on an 
instruction-by-instruction basis, how the XER and CR registers are updated (if at all). 
“SIMM” indicates an immediate value that is sign-extended prior to being used in the 
operation.

The add-extended instructions can be used to perform addition on integers larger than 32 
bits. For example, assume a 64-bit integer i is represented by the register pair r3:r4, where 
r3 contains the most-significant 32 bits of i, and r4 contains the least-significant 32 bits. The 
64-bit integer j is similarly represented by the register pair r5:r6. The 64-bit result i+j=r 
(represented by the pair r7:r8) is produced by pairing adde with addc as follows:

addc r8,r6,r4 ! Add the least-significant words and record a 
! carry.

adde r7,r5,r3 ! Add the most-significant words, using 
! previous carry.

Table 3-24: Integer-Addition Instructions

Mnemonic Name Operation
Operand 
Syntax

Add Instructions rD is loaded with the sum (rA) + (rB).

add Add XER and CR0 are not updated. rD,rA,rB

add. Add and Record CR0 is updated to reflect the result.

addo Add with Overflow Enabled XER[OV,SO] are updated to reflect the result.

addo. Add with Overflow Enabled and 
Record

XER[OV,SO] and CR0 are updated to reflect the 
result.
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Add-Carrying Instructions rD is loaded with the sum (rA) + (rB).

addc Add Carrying XER[CA] is updated to reflect the result. rD,rA,rB

addc. Add Carrying and Record XER[CA] and CR0 are updated to reflect the re-
sult.

addco Add Carrying with Overflow Enabled  XER[CA,OV,SO] are updated to reflect the result.

addco. Add Carrying with Overflow Enabled 
and Record

 XER[CA,OV,SO] and CR0 are updated to reflect 
the result.

Add-Immediate Instructions rD is loaded with the sum (rA|0) + SIMM.

addi Add Immediate XER and CR0 are not updated. rD,rA,SIMM

addic Add Immediate Carrying  XER[CA] is updated to reflect the result.

addic. Add Immediate Carrying and Record  XER[CA] and CR0 are updated to reflect the re-
sult.

Add Immediate-Shifted Instructions rD is loaded with the sum (rA|0) + (SIMM ||0x0000).

addis Add Immediate Shifted XER and CR0 are not updated. rD,rA,SIMM

Add-Extended Instructions rD is loaded with the sum (rA) + (rB) + XER[CA].

adde Add Extended XER[CA] is updated to reflect the result. rD,rA,rB

adde. Add Extended and Record XER[CA] and CR0 are updated to reflect the re-
sult.

addeo Add Extended with Overflow 
Enabled

XER[CA,OV,SO] are updated to reflect the result.

addeo. Add Extended with Overflow 
Enabled and Record

XER[CA,OV,SO] and CR0 are updated to reflect 
the result.

Add to Minus-One-Extended Instructions rD is loaded with the sum (rA) + XER[CA] + 0xFFFF_FFFF.

addme Add to Minus One Extended XER[CA] is updated to reflect the result. rD,rA

addme. Add to Minus One Extended and 
Record

XER[CA] and CR0 are updated to reflect the re-
sult.

addmeo Add to Minus One Extended with 
Overflow Enabled

XER[CA,OV,SO] are updated to reflect the result.

addmeo. Add to Minus One Extended with 
Overflow Enabled and Record

XER[CA,OV,SO] and CR0 are updated to reflect 
the result.

Table 3-24: Integer-Addition Instructions (Continued)

Mnemonic Name Operation
Operand 
Syntax
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Integer-Subtraction Instructions
Table 3-25 shows the PowerPC integer-subtraction instructions. The instructions in this table 
are grouped by the type of subtraction operation they perform. For each type of instruction 
shown, the “Operation” column indicates the subtraction-operation performed. The 
column also shows, on an instruction-by-instruction basis, how the XER and CR registers 
are updated (if at all). The subtraction operation is expressed as addition so that the two’s-
complement operation is clear. “SIMM” indicates an immediate value that is sign-
extended prior to being used in the operation.

The integer-subtraction instructions subtract the second operand (rA) from the third 
operand (rB). Simplified mnemonics are provided with a more familiar operand ordering, 
whereby the third operand is subtracted from the second. Simplified mnemonics are also 
defined for the addi instruction to provide a subtract-immediate operation. See Subtract 
Instructions, page 831 for more information.

The subtract-from extended instructions can be used to perform subtraction on integers 
larger than 32 bits. For example, assume a 64-bit integer i is represented by the register pair 
r3:r4, where r3 contains the most-significant 32 bits of i, and r4 contains the least-significant 
32 bits. The 64-bit integer j is similarly represented by the register pair r5:r6. The 64-bit 
result i−j=r (represented by the pair r7:r8) is produced by pairing subfe with subfc as 
follows:

subfc r8,r6,r4 ! Subtract the least-significant words and record a 
! carry.

subfe r7,r5,r3 ! Subtract the most-significant words, using 
! previous carry.

Add to Zero-Extended Instructions rD is loaded with the sum (rA) + XER[CA].

addze Add to Zero Extended XER[CA] is updated to reflect the result. rD,rA

addze. Add to Zero Extended and Record XER[CA] and CR0 are updated to reflect the re-
sult.

addzeo Add to Zero Extended with Overflow 
Enabled

XER[CA,OV,SO] are updated to reflect the result.

addzeo. Add to Zero Extended with Overflow 
Enabled and Record

XER[CA,OV,SO] and CR0 are updated to reflect 
the result.

Table 3-24: Integer-Addition Instructions (Continued)

Mnemonic Name Operation
Operand 
Syntax

Table 3-25: Integer-Subtraction Instructions

Mnemonic Name Operation
Operand 
Syntax

Subtract-From Instructions rD is loaded with the sum ¬ (rA) + (rB) + 1.

subf Subtract from XER and CR0 are not updated. rD,rA,rB

subf. Subtract from and Record CR0 is updated to reflect the result.

subfo Subtract from with Overflow Enabled XER[OV,SO] are updated to reflect the result.

subfo. Subtract from with Overflow Enabled 
and Record

XER[OV,SO] and CR0 are updated to reflect the 
result.
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Negation Instructions
Table 3-26 shows the PowerPC integer-negation instructions. Negation takes the operand 
specified by rA and writes the two’s-compliment equivalent in rD. For each instruction 
shown, the “Operation” column indicates (on an instruction-by-instruction basis) how the 
XER and CR registers are updated (if at all). 

Subtract- From Carrying Instructions rD is loaded with the sum ¬ (rA) + (rB) + 1.

subfc Subtract from Carrying XER[CA] is updated to reflect the result. rD,rA,rB

subfc. Subtract from Carrying and Record XER[CA] and CR0 are updated to reflect the re-
sult.

subfco Subtract from Carrying with 
Overflow Enabled

 XER[CA,OV,SO] are updated to reflect the result.

subfco. Subtract from Carrying with 
Overflow Enabled and Record

 XER[CA,OV,SO] and CR0 are updated to reflect 
the result.

Subtract-From Immediate Instructions rD is loaded with the sum ¬ (rA) + SIMM + 1.

subfic Subtract from Immediate Carrying  XER[CA] is updated to reflect the result. rD,rA,SIMM

Subtract-From Extended Instructions rD is loaded with the sum ¬ (rA) + (rB) + XER[CA].

subfe Subtract from Extended XER[CA] is updated to reflect the result. rD,rA,rB

subfe. Subtract from Extended and Record XER[CA] and CR0 are updated to reflect the re-
sult.

subfeo Subtract from Extended with 
Overflow Enabled

XER[CA,OV,SO] are updated to reflect the result.

subfeo. Subtract from Extended with 
Overflow Enabled and Record

XER[CA,OV,SO] and CR0 are updated to reflect 
the result.

Subtract-From Minus-One-Extended Instructions rD is loaded with the sum ¬ (rA) + XER[CA] + 0xFFFF_FFFF.

subfme Subtract from Minus One Extended XER[CA] is updated to reflect the result. rD,rA

subfme. Subtract from Minus One Extended 
and Record

XER[CA] and CR0 are updated to reflect the re-
sult.

subfmeo Subtract from Minus One Extended 
with Overflow Enabled

XER[CA,OV,SO] are updated to reflect the result.

subfmeo. Subtract from Minus One Extended 
with Overflow Enabled and Record

XER[CA,OV,SO] and CR0 are updated to reflect 
the result.

Subtract-From Zero-Extended Instructions rD is loaded with the sum ¬ (rA) + XER[CA].

subfze Subtract from Zero Extended XER[CA] is updated to reflect the result. rD,rA

subfze. Subtract from Zero Extended and 
Record

XER[CA] and CR0 are updated to reflect the re-
sult.

subfzeo Subtract from Zero Extended with 
Overflow Enabled

XER[CA,OV,SO] are updated to reflect the result.

subfzeo. Subtract from Zero Extended with 
Overflow Enabled and Record

XER[CA,OV,SO] and CR0 are updated to reflect 
the result.

Table 3-25: Integer-Subtraction Instructions (Continued)

Mnemonic Name Operation
Operand 
Syntax
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Multiply Instructions
Table 3-27 shows the PowerPC integer-multiply instructions. Multiplication of two 32-bit 
values can result in a 64-bit result. The multiply low-word instructions are used with the 
multiply high-word instructions to calculate the full 64-bit product. For each type of 
instruction shown, the “Operation” column indicates the multiplication-operation 
performed. The column also shows, on an instruction-by-instruction basis, how the XER 
and CR registers are updated (if at all). “SIMM” indicates an immediate value that is sign-
extended prior to being used in the operation.

Table 3-26: Negation Instructions

Mnemonic Name Operation
Operand 
Syntax

Negation Instructions rD is loaded with the sum ¬ (rA) + 1.

neg Negate XER and CR0 are not updated. rD,rA

neg. Negate and Record CR0 is updated to reflect the result.

nego Negate with Overflow Enabled XER[OV,SO] are updated to reflect the result.

nego. Negate with Overflow Enabled and 
Record

XER[OV,SO] and CR0 are updated to reflect the 
result.

Table 3-27: Multiply Instructions

Mnemonic Name Operation
Operand 
Syntax

Multiply Low-Word Instructions rD is loaded with the low-32 bits of the product (rA) × (rB).

mullw Multiply Low Word XER and CR0 are not updated. rD,rA,rB

mullw. Multiply Low Word and Record CR0 is updated to reflect the result.

mullwo Multiply Low Word with Overflow 
Enabled

XER[OV,SO] are updated to reflect the result.

mullwo. Multiply Low Word with Overflow 
Enabled and Record

XER[OV,SO] and CR0 are updated to reflect the 
result.

Multiply Low-Word Immediate Instructions rD is loaded with the low-32 bits of the product (rA) × SIMM.

mulli Multiply Low Immediate XER and CR0 are not updated. rD,rA,SIMM

Multiply High-Word Instructions rD is loaded with the high-32 bits of the product (rA) × (rB).

mulhw Multiply High Word XER and CR0 are not updated. rD,rA,rB

mulhw. Multiply High Word and Record CR0 is updated to reflect the result.

Multiply High-Word Unsigned Instructions rD is loaded with the high-32 bits of the product (rA) × (rB). The 
contents of rA and rB are interpreted as unsigned integers.

mulhwu Multiply High Word XER and CR0 are not updated. rD,rA,rB

mulhwu. Multiply High Word and Record CR0 is updated to reflect the result.
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Divide Instructions
Table 3-28 shows the PowerPC integer-divide instructions. Only the low-32 bits of the 
quotient are returned. The remainder is not supplied as a result of executing these 
instructions. For each type of instruction shown, the “Operation” column indicates the 
divide-operation performed. The column also shows, on an instruction-by-instruction 
basis, how the XER and CR registers are updated (if at all).

Logical Instructions
The logical instructions perform bit operations on the 32-bit operands. If an immediate 
value is specified as an operand, the processor either zero-extends or left-shifts it prior to 
performing the operation, depending on the instruction. If the instruction has the record 
(Rc) bit set to 1 in the instruction encoding, CR0 (CR[0:3]) is updated to reflect the result of 
the operation. A set Rc bit is indicated by the “.” suffix in the instruction mnemonic.

The logical instructions do not update any bits in the XER register.

In the operand syntax for logical instructions, the rA operand specifies a destination register 
rather than a source register. rS is used to specify one of the source registers.

AND and NAND Instructions
Table 3-29 shows the PowerPC AND and NAND instructions. For each type of instruction 
shown, the “Operation” column indicates the Boolean operation performed. The column 
also shows, on an instruction-by-instruction basis, whether the CR0 field is updated.

Table 3-28: Divide Instructions

Mnemonic Name Operation
Operand 
Syntax

Divide-Word Instructions rD is loaded with the low-32 bits of the 64-bit quotient (rA) ÷ (rB).

divw Divide Word XER and CR0 are not updated. rD,rA,rB

divw. Divide Word and Record CR0 is updated to reflect the result.

divwo Divide Word with Overflow Enabled XER[OV,SO] are updated to reflect the result.

divwo. Divide Word with Overflow Enabled 
and Record

XER[OV,SO] and CR0 are updated to reflect the 
result.

Divide-Word Unsigned Instructions rD is loaded with the low-32 bits of the 64-bit quotient (rA) ÷ (rB). 
The contents of rA and rB are interpreted as unsigned integers.

divwu Divide Word Unsigned XER and CR0 are not updated. rD,rA,rB

divwu. Divide Word Unsigned and Record CR0 is updated to reflect the result.

divwuo Divide Word Unsigned with Overflow 
Enabled

XER[OV,SO] are updated to reflect the result.

divwuo. Divide Word Unsigned with Overflow 
Enabled and Record

XER[OV,SO] and CR0 are updated to reflect the 
result.
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OR and NOR Instructions
Table 3-30 shows the PowerPC OR and NOR instructions. For each type of instruction 
shown, the “Operation” column indicates the Boolean operation performed. The column 
also shows, on an instruction-by-instruction basis, whether the CR0 field is updated.

Simplified mnemonics are provided for some common operations that use the OR and 
NOR instructions, such as move register and complement (not) register. See Other 
Simplified Mnemonics, page 834 for more information.

Table 3-29: AND and NAND Instructions

Mnemonic Name Operation
Operand 
Syntax

AND Instructions rA is loaded with the logical result (rS) AND (rB).

and AND CR0 is not updated. rA,rS,rB

and. AND and Record CR0 is updated to reflect the result.

AND-Immediate Instructions rA is loaded with the logical result (rS) AND UIMM.

andi. AND Immediate and Record CR0 is updated to reflect the result. rA,rS,UIMM

AND Immediate-Shifted Instructions rA is loaded with the logical result (rS) AND (UIMM ||0x0000)

andis. AND Immediate Shifted and Record CR0 is updated to reflect the result. rA,rS,UIMM

AND with Complement Instructions rA is loaded with the logical result (rS) AND ¬ (rB).

andc AND with Complement CR0 is not updated. rA,rS,rB

andc. AND with Complement and Record CR0 is updated to reflect the result.

NAND Instructions rA is loaded with the logical result ¬ ((rS) AND (rB)).

nand NAND CR0 is not updated. rA,rS,rB

nand. NAND and Record CR0 is updated to reflect the result.

Table 3-30: OR and NOR Instructions

Mnemonic Name Operation
Operand 
Syntax

NOR Instructions rA is loaded with the logical result ¬ ((rS) OR (rB)).

nor NOR CR0 is not updated. rA,rS,rB

nor. NOR and Record CR0 is updated to reflect the result.

OR Instructions rA is loaded with the logical result (rS) OR (rB).

or OR CR0 is not updated. rA,rS,rB

or. OR and Record CR0 is updated to reflect the result.

OR-Immediate Instructions rA is loaded with the logical result (rS) OR UIMM.

ori OR Immediate CR0 is not updated. rA,rS,UIMM
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XOR and Equivalence Instructions
Table 3-31 shows the PowerPC XOR and equivalence (XNOR) instructions. For each type of 
instruction shown, the “Operation” column indicates the Boolean operation performed. 
The column also shows, on an instruction-by-instruction basis, whether the CR0 field is 
updated.

Sign-Extension Instructions
Table 3-32 shows the sign-extension instructions. These instructions sign-extend the value 
in the rS register and write the result in the rA register. For each type of instruction shown, 
the “Operation” column indicates the operation performed. The column also shows, on an 
instruction-by-instruction basis, whether the CR0 field is updated.

OR Immediate-Shifted Instructions rA is loaded with the logical result (rS) OR (UIMM ||0x0000)

oris OR Immediate Shifted CR0 is not updated. rA,rS,UIMM

OR with Complement Instructions rA is loaded with the logical result (rS) OR ¬ (rB).

orc OR with Complement CR0 is not updated. rA,rS,rB

orc. OR with Complement and Record CR0 is updated to reflect the result.

Table 3-30: OR and NOR Instructions (Continued)

Mnemonic Name Operation
Operand 
Syntax

Table 3-31: XOR and Equivalence Instructions

Mnemonic Name Operation
Operand 
Syntax

Equivalence Instructions rA is loaded with the logical result ¬ ((rS) XOR (rB)).

eqv Equivalent CR0 is not updated. rA,rS,rB

eqv. Equivalent and Record CR0 is updated to reflect the result.

XOR Instructions rA is loaded with the logical result (rS) XOR (rB).

xor XOR CR0 is not updated. rA,rS,rB

xor. XOR and Record CR0 is updated to reflect the result.

XOR-Immediate Instructions rA is loaded with the logical result (rS) XOR UIMM.

xori XOR Immediate CR0 is not updated. rA,rS,UIMM

XOR Immediate-Shifted Instructions rA is loaded with the logical result (rS) XOR (UIMM ||0x0000)

xoris XOR Immediate Shifted CR0 is not updated. rA,rS,UIMM
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Count Leading-Zeros Instructions
Table 3-33 shows the count leading-zeros instructions. These instructions count the number 
of consecutive zero bits in the rS register starting at bit 0. The count result is written to the 
rA register. For each type of instruction shown, the “Operation” column indicates the 
operation performed. The column also shows, on an instruction-by-instruction basis, 
whether the CR0 field is updated.

Compare Instructions
The integer-compare instructions support algebraic and logical comparisons between 
operands in the GPRs and between GPRs and immediate values. Immediate values are 
signed in algebraic comparisons and unsigned in logical comparisons.

All compare instructions have four operands. The first operand, crfD, specifies the field in 
the CR register that is updated with the comparison result. The left-most three bits in the 
CR field are updated to reflect a less-than, greater-than, or equal comparison. The fourth 
(least-significant) bit is updated with a copy of XER[SO]. The crfD operand can be omitted 
if the comparison results are written to CR0. See CRn Fields (Compare Instructions), 
page 362 for more information on the CR fields.

The second operand specifies the operand length. This is referred to the “L” bit in the 
compare-instruction encoding. When using the compare instructions on 32-bit PowerPC 
implementations like the PPC405, this bit must always be coded as 0. It cannot be omitted 
from the standard instruction syntax. Simplified mnemonics are provided that omit this 
operand. See Compare Instructions, page 828 for more information.

The last two operands specify the quantities to be compared (the contents of a register and 
a register or immediate value).

Table 3-32: Sign-Extension Instructions

Mnemonic Name Operation
Operand 
Syntax

Extend-Sign Byte Instructions rA[24:31] is loaded with (rS[24:31]). The remaining bits rA[0:23] are 
each loaded with a copy of (rS[24]).

extsb Extend Sign Byte CR0 is not updated. rA,rS

extsb. Extend Sign Byte and Record CR0 is updated to reflect the result.

Extend-Sign Halfword Instructions rA[16:31] is loaded with (rS[16:31]). The remaining bits rA[0:15] are 
each loaded with a copy of (rS[16]).

extsh Extend Sign Halfword CR0 is not updated. rA,rS

extsh. Extend Sign Halfword and Record CR0 is updated to reflect the result.

Table 3-33: Count Leading-Zeros Instructions

Mnemonic Name Operation
Operand 
Syntax

Count Leading-Zeros Instructions rA is loaded with a count of leading zeros in rS.

cntlzw Count Leading Zeros Word CR0 is not updated. rA,rS

cntlzw. Count Leading Zeros Word and 
Record

CR0 is updated to reflect the result. CR0[LT] is al-
ways cleared to 0.
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Algebraic-Comparison Instructions
Table 3-34 shows the PowerPC algebraic-comparison instructions. During comparison, both 
operands are treated as signed integers. If a comparison is made with a signed-immediate 
value (SIMM), that value is sign-extended by the processor prior to performing the 
comparison.

Logical-Comparison Instructions
Table 3-35 shows the PowerPC logical-comparison instructions. During comparison, both 
operands are treated as unsigned integers. If a comparison is made with an unsigned-
immediate value (UIMM), that value is zero extended by the processor prior to performing 
the comparison.

Rotate Instructions
Rotate instructions operate on 32-bit data in the GPRs, returning the result in a second 
GPR. These instructions rotate data to the left—the direction of least-significant bit to most-
significant bit. Bits rotated out of the most-significant bit (bit 0) are rotated into the least-
significant bit (bit 31). Programmers can achieve apparent right rotation using these left-
rotation instructions by specifying a rotation amount of 32-n, where n is the number of bits 
to rotate right.

If the rotate instruction has the record (Rc) bit set to 1 in the instruction encoding, CR0 
(CR[0:3]) is updated to reflect the result of the operation. A set Rc bit is indicated by the “.” 
suffix in the instruction mnemonic. Rotate instructions do not update any bits in the XER 
register.

In the operand syntax for rotate instructions, the rA operand specifies the destination 
register rather than a source register. rS is used to specify the source register.

Simplified mnemonics using the rotate instructions are provided for easy coding of 
extraction, insertion, left or right justification, and other bit-manipulation operations. See 
Rotate and Shift Instructions, page 829 for more information.

Table 3-34: Algebraic-Comparison Instructions

Mnemonic Name Operation
Operand 
Syntax

cmp Compare crfD[LT,GT,EQ] are loaded with the result of 
algebraically comparing (rA) with (rB). CR[SO] is 
loaded with a copy of XER[SO].

crfD,0,rA,rB

cmpi Compare Immediate crfD[LT,GT,EQ] are loaded with the result of 
algebraically comparing (rA) with SIMM. CR[SO] 
is loaded with a copy of XER[SO].

crfD,0,rA,SIMM

Table 3-35: Logical-Comparison Instructions

Mnemonic Name Operation
Operand 
Syntax

cmpl Compare Logical crfD[LT,GT,EQ] are loaded with the result of 
logically comparing (rA) with (rB). CR[SO] is 
loaded with a copy of XER[SO].

crfD,0,rA,rB

cmpli Compare Logical Immediate crfD[LT,GT,EQ] are loaded with the result of 
logically comparing (rA) with UIMM. CR[SO] is 
loaded with a copy of XER[SO].

crfD,0,rA,UIMM
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Mask Generation
The rotate instructions write their results into the destination register under the control of 
a mask specified in the rotate-instruction encoding. The mask is used to write or insert a 
partial result into the destination register.

Rotate masks are 32-bits long. Two instruction-opcode fields are used to specify the mask: 
MB and ME. MB is a 5-bit field specifying the starting bit position of the mask and ME is a 
5-bit field specifying the ending bit position of the mask. The mask consists of all 1’s from 
MB to ME inclusive and all 0’s elsewhere. If MB > ME, the string of 1’s wraps around from 
bit 31 to bit 0. In this case, 0’s are found from ME to MB exclusive. The generation of an all-
zero mask is not possible.

The function of the MASK(MB,ME) generator is summarized as:

if MB < ME then
mask[MB:ME] = 1’s
mask[all remaining bits] = 0’s

else
mask[MB:31] = ones
mask[0:ME] = ones
mask[all remaining bits] = 0’s

Figure 3-23 shows the generated mask for both cases.

Rotate Left then AND-with-Mask Instructions
Table 3-36 shows the PowerPC rotate left then AND-with-mask instructions. For each type of 
instruction shown, the “Operation” column indicates the rotate operation performed. The 
column also shows, on an instruction-by-instruction basis, whether the CR0 field is 
updated.

Figure 3-23: Rotate Mask Generation

UG011_15_033101

MB < ME
0 MB ME 31

0 0 . . . 0 1 1 . . . 1 0 0 . . . 0

MB > ME
0 ME MB 31

1 1 . . . 1 0 0 . . . 0 1 1 . . . 1

Table 3-36: Rotate Left then AND-with-Mask Instructions

Mnemonic Name Operation
Operand 
Syntax

Rotate Left then AND-with-Mask Immediate 
Instructions

rA is loaded with the masked result of left-rotating (rS) the number of 
bits specified by SH. The mask is specified by operands MB and ME.

rlwinm Rotate Left Word Immediate then 
AND with Mask

CR0 is not updated. rA,rS,SH,MB,ME

rlwinm. Rotate Left Word Immediate then 
AND with Mask and Record

CR0 is updated to reflect the result.
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These instructions left rotate GPR contents and logically AND the result with the mask 
prior to writing it into the destination GPR. The destination register contains the rotated 
result in the unmasked bit positions (mask bits with 1’s), and 0’s in the masked bit 
positions (mask bits with 0’s). Rotation amounts are specified using an immediate field in 
the instruction (the SH opcode field) or using a value in a register.

Figure 3-24 shows an example of a rotate left then AND-with-mask immediate instruction. 
In this example, the rotation amount is 16 bits as specified by the SH field in the instruction. 
The mask specifies an unmasked byte in bit positions 16:23 (MB=16, ME=23) and masks all 
other bit positions. The example shows the original contents of the destination register, rA, 
and the source register, rS. rS is left-rotated 16 bits and the result is written to rA after 
ANDing with the mask. This has the effect of extracting byte 0 from rS (rS[0:7]) and placing 
it in byte 2 of rA (rA[16:23]).

Rotate Left then Mask-Insert Instructions
Table 3-36 shows the PowerPC rotate left then mask-insert instructions. For each type of 
instruction shown, the “Operation” column indicates the rotate operation performed. The 

Rotate Left then AND-with-Mask Instructions rA is loaded with the masked result of left-rotating (rS) the number of 
bits specified by (rB). The mask is specified by operands MB and ME.

rlwnm Rotate Left Word then AND with 
Mask

CR0 is not updated. rA,rS,rB,MB,ME

rlwnm. Rotate Left Word then AND with 
Mask and Record

CR0 is updated to reflect the result.

Table 3-36: Rotate Left then AND-with-Mask Instructions (Continued)

Mnemonic Name Operation
Operand 
Syntax

Figure 3-24: Rotate Left then AND-with-Mask Immediate Example

UG011_16_033101

rS
0 31

0x88 0x77 0x66 0x55

Rotate
rS

Rotate by SH=16 bits

0 31

0x66 0x55 0x88 0x77

rA
0 31

0xFF 0xEE 0xDD 0xCC

rA
0 31

0x00 0x00 0x88 0x00

Mask
MB=16
ME=23

0 16 23 31

1111_1111 0000_00000000_0000_0000_0000
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column also shows, on an instruction-by-instruction basis, whether the CR0 field is 
updated.

These instructions left rotate GPR contents and insert the results into the destination GPR 
under control of the mask. The destination register contains the rotated result in the 
unmasked bit positions (mask bits with 1’s) and the original contents of the destination 
register in the masked bit positions (mask bits with 0’s). Rotation amounts are specified 
using an immediate field in the instruction (the SH opcode field).

Figure 3-25 shows an example of a rotate left then mask-insert immediate instruction. In 
this example, the rotation amount is 16 bits as specified by the SH field in the instruction. 
The mask specifies an unmasked byte in bit positions 16:23 (MB=16, ME=23) and masks all 
other bit positions. The example shows the original contents of the destination register, rA, 
and the source register, rS. rS is rotated 16 bits and the result is inserted into rA after 
ANDing with the mask. This has the effect of extracting byte 0 from rS (rS[0:7]) and 
inserting it into byte 2 of rA (rA[16:23]), leaving all remaining bytes in rA unmodified.

Table 3-37: Rotate Left then Mask-Insert Instructions

Mnemonic Name Operation
Operand 
Syntax

Rotate Left then Mask-Insert Immediate 
Instructions

The masked result of left-rotating (rS) the number of bits specified by 
SH is inserted into rA. The mask is specified by operands MB and ME.

rlwimi Rotate Left Word Immediate then 
Mask Insert

CR0 is not updated. rA,rS,SH,MB,ME

rlwimi. Rotate Left Word Immediate then 
Mask Insert and Record

CR0 is updated to reflect the result.

Figure 3-25: Rotate Left then Mask-Insert Immediate Example
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rS
0 31

0x88 0x77 0x66 0x55

Rotate
rS

Rotate by SH=16 bits

0 31

0x66 0x55 0x88 0x77

rA
0 31

0xFF 0xEE 0xDD 0xCC

rA
0 31

0xFF 0xEE 0x88 0xCC

Mask
MB=16
ME=23

0 16 23 31

1111_1111 0000_00000000_0000_0000_0000
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Shift Instructions
Shift instructions operate on 32-bit data in the GPRs and return the result in a GPR. Both 
logical and algebraic shifts are provided:

• Logical left-shift instructions shift bits from the direction of least-significant bit to most-
significant bit. Bits shifted out of bit 0 are lost. The vacated bit positions on the right 
are filled with zeros.

• Logical right-shift instructions shift bits from the direction of most-significant bit to 
least-significant bit. Bits shifted out of bit 31 are lost. The vacated bit positions on the 
left are filled with zeros.

• Algebraic right-shift instructions shift bits from the direction of most-significant bit to 
least-significant bit. Bits shifted out of bit 31 are lost. The vacated bit positions on the 
left are filled with a copy of the original bit 0 (the value prior to starting the shift).

If the shift instruction has the record (Rc) bit set to 1 in the instruction encoding, CR0 
(CR[0:3]) is updated to reflect the result of the operation. A set Rc bit is indicated by the “.” 
suffix in the instruction mnemonic. Algebraic right-shift instructions update XER[CA] to 
reflect the result of the operation but the other shift instructions do not modify XER[CA]. 
XER[OV,SO] are not modified by any shift instructions.

In the operand syntax for shift instructions, the rA operand specifies the destination register 
rather than a source register. rS is used to specify the source register.

Simplified mnemonics using the rotate instructions are provided for coding of logical shift-
left immediate and logical shift-right immediate operations. See Rotate and Shift 
Instructions, page 829 for more information.

Logical-Shift Instructions
Table 3-38 shows the PowerPC logical-shift instructions. For each type of instruction shown, 
the “Operation” column indicates the shift operation performed. The column also shows, 
on an instruction-by-instruction basis, whether the CR0 field is updated. XER is not 
updated by these instructions.

Figure 3-26 shows two examples of logical-shift operations. The top example shows a left 
shift of seven bits, and the bottom example shows a right shift of seven bits. As is seen in 
these examples, bits shifted out of the register are lost and vacated bits are filled with zeros.

Table 3-38: Logical-Shift Instructions

Mnemonic Name Operation
Operand 
Syntax

Shift-Left-Logical Instructions rA is loaded with the result of logically left-shifting (rS) the number 
of bits specified by (rB).

slw Shift Left Word CR0 is not updated. rA,rS,rB

slw. Shift Left Word and Record CR0 is updated to reflect the result.

Shift-Right-Logical Instructions rA is loaded with the result of logically right-shifting (rS) the 
number of bits specified by (rB).

srw Shift Right Word CR0 is not updated. rA,rS,rB

srw. Shift Right Word and Record CR0 is updated to reflect the result.
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Algebraic-Shift Instructions
Table 3-39 shows the PowerPC algebraic-shift instructions. For each type of instruction 
shown, the “Operation” column indicates the shift operation performed. The column also 
shows, on an instruction-by-instruction basis, whether the CR0 field is updated. XER[CA] 
is always updated by these instructions to reflect the result.

The shift-right-algebraic instructions can be followed by an addze instruction to 
implement a divide-by-2n operation. See Multiple-Precision Shifts, page 840, for more 
information.

Figure 3-26: Logical-Shift Examples

UG011_18_033101

Shift by 7 bits

rS
0 31

1000_0111_0110_0101_0100_0011_0010_0001

rA
0 31

0000_0001_0000_1110_1100_1010_1000_0110

0 31

0000_0001_0000_1110_1100_1010_1000_0110 010_0001

1000_011

rS
0 31

1000_0111_0110_0101_0100_0011_0010_0001

rA
0 31

1011_0010_1010_0001_1001_0000_1000_0000

0 31

1011_0010_1010_0001_1001_0000_1000_0000 Shift by 7 bits

Right Shift

Left Shift

Table 3-39: Algebraic-Shift Instructions

Mnemonic Name Operation
Operand 
Syntax

Shift-Right-Algebraic Immediate Instructions rA is loaded with the result of algebraically right-shifting (rS) the 
number of bits specified by SH.

srawi Shift Right Algebraic Word Immediate CR0 is not updated. XER[CA] is updated to reflect 
the result.

rA,rS,SH

srawi. Shift Right Algebraic Word Immediate 
and Record

CR0 and XER[CA] are updated to reflect the re-
sult.
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Figure 3-27 shows an example of an algebraic-shift operation. In this example, a shift of 
seven bits is performed. Bits shifted out of the least-significant register bit are lost and 
vacated bits on the left side are filled with a copy of the original bit 0 (prior to the shift). In 
this example, the original value of bit 0 is 0b1.

Multiply-Accumulate Instruction-Set Extensions
The PPC405 supports an integer multiply-accumulate instruction-set extension that provides 
functions usable by certain computationally intensive applications, such as those that 
implement DSP algorithms. These instructions comply with the architectural requirements 
for auxiliary-processor units (APUs) defined by the PowerPC embedded-environment 
architecture and the PowerPC Book-E architecture. They are considered implementation-
dependent instructions and are not part of the PowerPC architecture, the PowerPC 
embedded-environment architecture, or the PowerPC Book-E architecture. Programs that 
use these instructions are not portable to all PowerPC implementations.

The multiply-accumulate instruction-set extensions include multiply-accumulate 
instructions, negative multiply-accumulate instructions, and multiply-halfword 
instructions.

Modulo and Saturating Arithmetic
The multiply-accumulate and negative multiply-accumulate instructions produce a 33-bit 
intermediate result. The method used to store this result in the 32-bit destination register 
depends on whether the instruction performs modulo arithmetic or saturating arithmetic.

With modulo-arithmetic instructions, the most-significant bit in the intermediate result is 
discarded and the low-32 bits of this result are stored in the destination register.

With saturating-arithmetic instructions, the low 32-bits of the intermediate result are 
stored in the destination register if the intermediate result does not overflow 32-bits. 
However, if the intermediate result overflows what is representable in 32-bits, the 

Shift-Right-Algebraic Instructions rA is loaded with the result of algebraically right-shifting (rS) the 
number of bits specified by (rB).

sraw Shift Right Algebraic Word CR0 is not updated. XER[CA] is updated to reflect 
the result.

rA,rS,rB

sraw. Shift Right Algebraic Word and 
Record

CR0 and XER[CA] are updated to reflect the re-
sult.

Table 3-39: Algebraic-Shift Instructions (Continued)

Mnemonic Name Operation
Operand 
Syntax

Figure 3-27: Algebraic-Shift Example

UG011_19_033101

Shift by 7 bits

rS
0 31

1000_0111_0110_0101_0100_0011_0010_0001

rA
0 31

1111_1111_0000_1110_1100_1010_1000_0110

0 31

1111_1111_0000_1110_1100_1010_1000_0110 010_0001

http://www.xilinx.com


406 www.xilinx.com March 2002 Release
1-800-255-7778 Virtex-II Pro™ Platform FPGA Documentation

Chapter 3: User Programming Model
R

instruction loads the nearest representable value into the destination register. For the 
various instruction forms, these results are:

• Signed arithmetic—if the result exceeds 231−1 (> 0x7FFF_FFFF), the instruction loads 
the destination register with 231−1.

• Signed arithmetic—if the result is less than −231 (< 0x8000_0000), the instruction loads 
the destination register with −231.

• Unsigned arithmetic—if the result exceeds 232−1 (> 0xFFFF_FFFF), the instruction 
loads the destination register with 232−1.

Multiply-Accumulate Instructions

Multiply-Accumulate Cross-Halfword to Word Instructions
Table 3-40 shows the PPC405 integer multiply-accumulate cross-halfword to word instructions. 
These instructions take the lower halfword of the first source operand (rA[16:31]) and 
multiply it with the upper halfword of the second source operand (rB[0:15]), producing a 
32-bit product. The product is signed or unsigned, depending on the instruction. This 
product is added to the value in the destination register, rD, producing a 33-bit 
intermediate result. Generally, rD is loaded with the lower-32 bits of the 33-bit 
intermediate result. However, if the instruction performs saturating arithmetic and the 
intermediate result overflows, rD is loaded with the nearest representable value (see 
Modulo and Saturating Arithmetic, above).

For each type of instruction shown in Table 3-40, the “Operation” column indicates the 
multiply-accumulate operation performed. The column also shows, on an instruction-by-
instruction basis, how the XER and CR registers are updated (if at all).

Table 3-40: Multiply-Accumulate Cross-Halfword to Word Instructions

Mnemonic Name Operation
Operand 
Syntax

Multiply-Accumulate Cross-Halfword to Word 
Modulo Signed Instructions

rD is added to the signed product (rA[16:31]) × (rB[0:15]), 
producing a 33-bit result. The low-32 bits of this result are stored in 
rD.

macchw Multiply Accumulate Cross Halfword 
to Word Modulo Signed

XER and CR0 are not updated. rD,rA,rB

macchw. Multiply Accumulate Cross Halfword 
to Word Modulo Signed and Record

CR0 is updated to reflect the result.

macchwo Multiply Accumulate Cross Halfword 
to Word Modulo Signed with 
Overflow Enabled

XER[OV,SO] are updated to reflect the result.

macchwo. Multiply Accumulate Cross Halfword 
to Word Modulo Signed with 
Overflow Enabled and Record

XER[OV,SO] and CR0 are updated to reflect the 
result.
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Figure 3-28 shows the operation of the integer multiply-accumulate cross-halfword to 
word instructions. 

Multiply-Accumulate Cross-Halfword to Word 
Saturate Signed Instructions

rD is added to the signed product (rA[16:31]) × (rB[0:15]), 
producing a 33-bit result. If the result does not overflow, the low-32 
bits of this result are stored in rD. Otherwise, the nearest-
representable value is stored in rD.

macchws Multiply Accumulate Cross Halfword 
to Word Saturate Signed

XER and CR0 are not updated. rD,rA,rB

macchws. Multiply Accumulate Cross Halfword 
to Word Saturate Signed and Record

CR0 is updated to reflect the result.

macchwso Multiply Accumulate Cross Halfword 
to Word Saturate Signed with 
Overflow Enabled

XER[OV,SO] are updated to reflect the result.

macchwso. Multiply Accumulate Cross Halfword 
to Word Saturate Signed with 
Overflow Enabled and Record

XER[OV,SO] and CR0 are updated to reflect the 
result.

Multiply-Accumulate Cross-Halfword to Word 
Saturate Unsigned Instructions

rD is added to the unsigned product (rA[16:31]) × (rB[0:15]), 
producing a 33-bit result. If the result does not overflow, the low-32 
bits of this result are stored in rD. Otherwise, the nearest-
representable value is stored in rD.

macchwsu Multiply Accumulate Cross Halfword 
to Word Saturate Unsigned

XER and CR0 are not updated. rD,rA,rB

macchwsu. Multiply Accumulate Cross Halfword 
to Word Saturate Unsigned and 
Record

CR0 is updated to reflect the result.

macchwsuo Multiply Accumulate Cross Halfword 
to Word Saturate Unsigned with 
Overflow Enabled

XER[OV,SO] are updated to reflect the result.

macchwsuo. Multiply Accumulate Cross Halfword 
to Word Saturate Unsigned with 
Overflow Enabled and Record

XER[OV,SO] and CR0 are updated to reflect the 
result.

Multiply-Accumulate Cross-Halfword to Word 
Modulo Unsigned Instructions

rD is added to the unsigned product (rA[16:31]) × (rB[0:15]), 
producing a 33-bit result. The low-32 bits of this result are stored in 
rD.

macchwu Multiply Accumulate Cross Halfword 
to Word Modulo Unsigned

XER and CR0 are not updated. rD,rA,rB

macchwu. Multiply Accumulate Cross Halfword 
to Word Modulo Unsigned and 
Record

CR0 is updated to reflect the result.

macchwuo Multiply Accumulate Cross Halfword 
to Word Modulo Unsigned with 
Overflow Enabled

XER[OV,SO] are updated to reflect the result.

macchwuo. Multiply Accumulate Cross Halfword 
to Word Modulo Unsigned with 
Overflow Enabled and Record

XER[OV,SO] and CR0 are updated to reflect the 
result.

Table 3-40: Multiply-Accumulate Cross-Halfword to Word Instructions (Continued)

Mnemonic Name Operation
Operand 
Syntax
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Multiply-Accumulate High-Halfword to Word Instructions
Table 3-41 shows the PPC405 multiply-accumulate high-halfword to word instructions. These 
instructions multiply the high halfword of both source operands, rA[0:15] and rB[0:15], 
producing a 32-bit product. The product is signed or unsigned, depending on the 
instruction. This product is added to the value in the destination register, rD, producing a 
33-bit intermediate result. Generally, rD is loaded with the lower-32 bits of the 33-bit 
intermediate result. However, if the instruction performs saturating arithmetic and the 
intermediate result overflows, rD is loaded with the nearest representable value (see 
Modulo and Saturating Arithmetic, page 405).

For each type of instruction shown in Table 3-41, the “Operation” column indicates the 
multiply-accumulate operation performed. The column also shows, on an instruction-by-
instruction basis, how the XER and CR registers are updated (if at all).

Figure 3-28: Multiply-Accumulate Cross-Halfword to Word Operation
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Table 3-41: Multiply-Accumulate High-Halfword to Word Instructions

Mnemonic Name Operation
Operand 
Syntax

Multiply-Accumulate High-Halfword to Word 
Modulo Signed Instructions

rD is added to the signed product (rA[0:15]) × (rB[0:15]), producing 
a 33-bit result. The low-32 bits of this result are stored in rD.

machhw Multiply Accumulate High Halfword 
to Word Modulo Signed

XER and CR0 are not updated. rD,rA,rB

machhw. Multiply Accumulate High Halfword 
to Word Modulo Signed and Record

CR0 is updated to reflect the result.

machhwo Multiply Accumulate High Halfword 
to Word Modulo Signed with 
Overflow Enabled

XER[OV,SO] are updated to reflect the result.

machhwo. Multiply Accumulate High Halfword 
to Word Modulo Signed with 
Overflow Enabled and Record

XER[OV,SO] and CR0 are updated to reflect the 
result.
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Figure 3-29 shows the operation of the multiply-accumulate high-halfword to word 
instructions. 

Multiply-Accumulate High-Halfword to Word 
Saturate Signed Instructions

rD is added to the signed product (rA[0:15]) × (rB[0:15]), producing 
a 33-bit result. If the result does not overflow, the low-32 bits of this 
result are stored in rD. Otherwise, the nearest-representable value 
is stored in rD.

machhws Multiply Accumulate High Halfword 
to Word Saturate Signed

XER and CR0 are not updated. rD,rA,rB

machhws. Multiply Accumulate High Halfword 
to Word Saturate Signed and Record

CR0 is updated to reflect the result.

machhwso Multiply Accumulate High Halfword 
to Word Saturate Signed with 
Overflow Enabled

XER[OV,SO] are updated to reflect the result.

machhwso. Multiply Accumulate High Halfword 
to Word Saturate Signed with 
Overflow Enabled and Record

XER[OV,SO] and CR0 are updated to reflect the 
result.

Multiply-Accumulate High-Halfword to Word 
Saturate Unsigned Instructions

rD is added to the unsigned product (rA[0:15]) × (rB[0:15]), 
producing a 33-bit result. If the result does not overflow, the low-32 
bits of this result are stored in rD. Otherwise, the nearest-
representable value is stored in rD.

machhwsu Multiply Accumulate High Halfword 
to Word Saturate Unsigned

XER and CR0 are not updated. rD,rA,rB

machhwsu. Multiply Accumulate High Halfword 
to Word Saturate Unsigned and 
Record

CR0 is updated to reflect the result.

machhwsuo Multiply Accumulate High Halfword 
to Word Saturate Unsigned with 
Overflow Enabled

XER[OV,SO] are updated to reflect the result.

machhwsuo. Multiply Accumulate High Halfword 
to Word Saturate Unsigned with 
Overflow Enabled and Record

XER[OV,SO] and CR0 are updated to reflect the 
result.

Multiply-Accumulate High-Halfword to Word 
Modulo Unsigned Instructions

rD is added to the unsigned product (rA[0:15]) × (rB[0:15]), 
producing a 33-bit result. The low-32 bits of this result are stored in 
rD.

machhwu Multiply Accumulate High Halfword 
to Word Modulo Unsigned

XER and CR0 are not updated. rD,rA,rB

machhwu. Multiply Accumulate High Halfword 
to Word Modulo Unsigned and 
Record

CR0 is updated to reflect the result.

machhwuo Multiply Accumulate High Halfword 
to Word Modulo Unsigned with 
Overflow Enabled

XER[OV,SO] are updated to reflect the result.

machhwuo. Multiply Accumulate High Halfword 
to Word Modulo Unsigned with 
Overflow Enabled and Record

XER[OV,SO] and CR0 are updated to reflect the 
result.

Table 3-41: Multiply-Accumulate High-Halfword to Word Instructions (Continued)

Mnemonic Name Operation
Operand 
Syntax
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Multiply-Accumulate Low-Halfword to Word Instructions
Table 3-42 shows the PPC405 multiply-accumulate low-halfword to word instructions. These 
instructions multiply the low halfword of both source operands, rA[16:31] and rB[16:31], 
producing a 32-bit product. The product is signed or unsigned, depending on the 
instruction. This product is added to the value in the destination register, rD, producing a 
33-bit intermediate result. Generally, rD is loaded with the lower-32 bits of the 33-bit 
intermediate result. However, if the instruction performs saturating arithmetic and the 
intermediate result overflows, rD is loaded with the nearest representable value (see 
Modulo and Saturating Arithmetic, page 405).

For each type of instruction shown in Table 3-42, the “Operation” column indicates the 
multiply-accumulate operation performed. The column also shows, on an instruction-by-
instruction basis, how the XER and CR registers are updated (if at all).

Figure 3-29: Multiply-Accumulate High-Halfword to Word Operation
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Table 3-42: Multiply-Accumulate Low-Halfword to Word Instructions

Mnemonic Name Operation
Operand 
Syntax

Multiply-Accumulate Low-Halfword to Word Modulo 
Signed Instructions

rD is added to the signed product (rA[16:31]) × (rB[16:31]), 
producing a 33-bit result. The low-32 bits of this result are stored in 
rD.

maclhw Multiply Accumulate Low Halfword 
to Word Modulo Signed

XER and CR0 are not updated. rD,rA,rB

maclhw. Multiply Accumulate Low Halfword 
to Word Modulo Signed and Record

CR0 is updated to reflect the result.

maclhwo Multiply Accumulate Low Halfword 
to Word Modulo Signed with 
Overflow Enabled

XER[OV,SO] are updated to reflect the result.

maclhwo. Multiply Accumulate Low Halfword 
to Word Modulo Signed with 
Overflow Enabled and Record

XER[OV,SO] and CR0 are updated to reflect the 
result.

Multiply-Accumulate Low-Halfword to Word 
Saturate Signed Instructions

rD is added to the signed product (rA[16:31]) × (rB[16:31]), 
producing a 33-bit result. If the result does not overflow, the low-32 
bits of this result are stored in rD. Otherwise, the nearest-
representable value is stored in rD.

maclhws Multiply Accumulate Low Halfword 
to Word Saturate Signed

XER and CR0 are not updated. rD,rA,rB

maclhws. Multiply Accumulate Low Halfword 
to Word Saturate Signed and Record

CR0 is updated to reflect the result.

maclhwso Multiply Accumulate Low Halfword 
to Word Saturate Signed with 
Overflow Enabled

XER[OV,SO] are updated to reflect the result.

maclhwso. Multiply Accumulate Low Halfword 
to Word Saturate Signed with 
Overflow Enabled and Record

XER[OV,SO] and CR0 are updated to reflect the 
result.

Multiply-Accumulate Low-Halfword to Word 
Saturate Unsigned Instructions

rD is added to the unsigned product (rA[16:31]) × (rB[16:31]), 
producing a 33-bit result. If the result does not overflow, the low-32 
bits of this result are stored in rD. Otherwise, the nearest-
representable value is stored in rD.

maclhwsu Multiply Accumulate Low Halfword 
to Word Saturate Unsigned

XER and CR0 are not updated. rD,rA,rB

maclhwsu. Multiply Accumulate Low Halfword 
to Word Saturate Unsigned and 
Record

CR0 is updated to reflect the result.

maclhwsuo Multiply Accumulate Low Halfword 
to Word Saturate Unsigned with 
Overflow Enabled

XER[OV,SO] are updated to reflect the result.

maclhwsuo. Multiply Accumulate Low Halfword 
to Word Saturate Unsigned with 
Overflow Enabled and Record

XER[OV,SO] and CR0 are updated to reflect the 
result.
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Multiply-Accumulate Low-Halfword to Word Modulo 
Unsigned Instructions

rD is added to the unsigned product (rA[16:31]) × (rB[16:31]), 
producing a 33-bit result. The low-32 bits of this result are stored in 
rD.

maclhwu Multiply Accumulate Low Halfword 
to Word Modulo Unsigned

XER and CR0 are not updated. rD,rA,rB

maclhwu. Multiply Accumulate Low Halfword 
to Word Modulo Unsigned and 
Record

CR0 is updated to reflect the result.

maclhwuo Multiply Accumulate Low Halfword 
to Word Modulo Unsigned with 
Overflow Enabled

XER[OV,SO] are updated to reflect the result.

maclhwuo. Multiply Accumulate Low Halfword 
to Word Modulo Unsigned with 
Overflow Enabled and Record

XER[OV,SO] and CR0 are updated to reflect the 
result.

Table 3-42: Multiply-Accumulate Low-Halfword to Word Instructions (Continued)

Mnemonic Name Operation
Operand 
Syntax
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Figure 3-30 shows the operation of the multiply-accumulate low-halfword to word 
instructions. 

Negative Multiply-Accumulate Instructions

Negative Multiply-Accumulate Cross-Halfword to Word Instructions
Table 3-43 shows the PPC405 negative multiply-accumulate cross-halfword to word 
instructions. These instructions take the lower halfword of the first source operand 
(rA[16:31]) and multiply it with the upper halfword of the second source operand 
(rB[0:15]), producing a signed 32-bit product. This product is negated and added to the 
value in the destination register, rD, producing a 33-bit intermediate result (this is the same 
as subtracting the product from rD). Generally, rD is loaded with the lower-32 bits of the 
33-bit intermediate result. However, if the instruction performs saturating arithmetic and 
the intermediate result overflows, rD is loaded with the nearest representable value (see 
Modulo and Saturating Arithmetic, above).

For each type of instruction shown in Table 3-43, the “Operation” column indicates the 
negative multiply-accumulate operation performed. The column also shows, on an 
instruction-by-instruction basis, how the XER and CR registers are updated (if at all).

Figure 3-30: Multiply-Accumulate Low-Halfword to Word Operation
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Table 3-43: Negative Multiply-Accumulate Cross-Halfword to Word Instructions

Mnemonic Name Operation
Operand 
Syntax

Negative Multiply-Accumulate Cross-Halfword to 
Word Modulo Signed Instructions

The signed product (rA[16:31]) × (rB[0:15]) is subtracted from rD, 
producing a 33-bit result. The low-32 bits of this result are stored in 
rD.

nmacchw Negative Multiply Accumulate Cross 
Halfword to Word Modulo Signed

XER and CR0 are not updated. rD,rA,rB

nmacchw. Negative Multiply Accumulate Cross 
Halfword to Word Modulo Signed 
and Record

CR0 is updated to reflect the result.

nmacchwo Negative Multiply Accumulate Cross 
Halfword to Word Modulo Signed 
with Overflow Enabled

XER[OV,SO] are updated to reflect the result.

nmacchwo. Negative Multiply Accumulate Cross 
Halfword to Word Modulo Signed 
with Overflow Enabled and Record

XER[OV,SO] and CR0 are updated to reflect the 
result.

Negative Multiply-Accumulate Cross-Halfword to 
Word Saturate Signed Instructions

The signed product (rA[16:31]) × (rB[0:15]) is subtracted from rD, 
producing a 33-bit result. If the result does not overflow, the low-32 
bits of this result are stored in rD. Otherwise, the nearest-
representable value is stored in rD.

nmacchws Negative Multiply Accumulate Cross 
Halfword to Word Saturate Signed

XER and CR0 are not updated. rD,rA,rB

nmacchws. Negative Multiply Accumulate Cross 
Halfword to Word Saturate Signed 
and Record

CR0 is updated to reflect the result.

nmacchwso Negative Multiply Accumulate Cross 
Halfword to Word Saturate Signed 
with Overflow Enabled

XER[OV,SO] are updated to reflect the result.

nmacchwso. Negative Multiply Accumulate Cross 
Halfword to Word Saturate Signed 
with Overflow Enabled and Record

XER[OV,SO] and CR0 are updated to reflect the 
result.
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Figure 3-31 shows the operation of the negative multiply-accumulate cross-halfword to 
word instructions. 

Negative Multiply-Accumulate High-Halfword to Word Instructions
Table 3-44 shows the PPC405 negative multiply-accumulate high-halfword to word 
instructions. These instructions multiply the high halfword of both source operands, 
rA[0:15] and rB[0:15], producing a signed 32-bit product. This product is negated and 
added to the value in the destination register, rD, producing a 33-bit intermediate result 
(this is the same as subtracting the product from rD). Generally, rD is loaded with the 
lower-32 bits of the 33-bit intermediate result. However, if the instruction performs 
saturating arithmetic and the intermediate result overflows, rD is loaded with the nearest 
representable value (see Modulo and Saturating Arithmetic, page 405).

For each type of instruction shown in Table 3-44, the “Operation” column indicates the 
negative multiply-accumulate operation performed. The column also shows, on an 
instruction-by-instruction basis, how the XER and CR registers are updated (if at all).

Figure 3-31: Negative Multiply-Accumulate Cross-Halfword to Word Operation
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Figure 3-32 shows the operation of the negative multiply-accumulate high-halfword to 
word instructions. 

Table 3-44: Negative Multiply-Accumulate High-Halfword to Word Instructions

Mnemonic Name Operation
Operand 
Syntax

Negative Multiply-Accumulate High-Halfword to 
Word Modulo Signed Instructions

The signed product (rA[0:15]) × (rB[0:15]) is subtracted from rD, 
producing a 33-bit result. The low-32 bits of this result are stored in 
rD.

nmachhw Negative Multiply Accumulate High 
Halfword to Word Modulo Signed

XER and CR0 are not updated. rD,rA,rB

nmachhw. Negative Multiply Accumulate High 
Halfword to Word Modulo Signed 
and Record

CR0 is updated to reflect the result.

nmachhwo Negative Multiply Accumulate High 
Halfword to Word Modulo Signed 
with Overflow Enabled

XER[OV,SO] are updated to reflect the result.

nmachhwo. Negative Multiply Accumulate High 
Halfword to Word Modulo Signed 
with Overflow Enabled and Record

XER[OV,SO] and CR0 are updated to reflect the 
result.

Negative Multiply-Accumulate High-Halfword to 
Word Saturate Signed Instructions

The signed product (rA[0:15]) × (rB[0:15]) is subtracted from rD, 
producing a 33-bit result. If the result does not overflow, the low-32 
bits of this result are stored in rD. Otherwise, the nearest-
representable value is stored in rD.

nmachhws Negative Multiply Accumulate High 
Halfword to Word Saturate Signed

XER and CR0 are not updated. rD,rA,rB

nmachhws. Negative Multiply Accumulate High 
Halfword to Word Saturate Signed 
and Record

CR0 is updated to reflect the result.

nmachhwso Negative Multiply Accumulate High 
Halfword to Word Saturate Signed 
with Overflow Enabled

XER[OV,SO] are updated to reflect the result.

nmachhwso. Negative Multiply Accumulate High 
Halfword to Word Saturate Signed 
with Overflow Enabled and Record

XER[OV,SO] and CR0 are updated to reflect the 
result.
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Negative Multiply-Accumulate Low-Halfword to Word Instructions
Table 3-45 shows the PPC405 negative multiply-accumulate low-halfword to word instructions. 
These instructions multiply the low halfword of both source operands, rA[16:31] and 
rB[16:31], producing a signed 32-bit product. This product is negated and added to the 
value in the destination register, rD, producing a 33-bit intermediate result (this is the same 
as subtracting the product from rD). Generally, rD is loaded with the lower-32 bits of the 
33-bit intermediate result. However, if the instruction performs saturating arithmetic and 
the intermediate result overflows, rD is loaded with the nearest representable value (see 
Modulo and Saturating Arithmetic, page 405).

For each type of instruction shown in Table 3-45, the “Operation” column indicates the 
negative multiply-accumulate operation performed. The column also shows, on an 
instruction-by-instruction basis, how the XER and CR registers are updated (if at all).

Figure 3-32: Negative Multiply-Accumulate High-Halfword to Word Operation
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Table 3-45: Negative Multiply-Accumulate Low-Halfword to Word Instructions

Mnemonic Name Operation
Operand 
Syntax

Negative Multiply-Accumulate Low-Halfword to 
Word Modulo Signed Instructions

The signed product (rA[16:31]) × (rB[16:31]) is subtracted from rD, 
producing a 33-bit result. The low-32 bits of this result are stored in 
rD.

nmaclhw Negative Multiply Accumulate Low 
Halfword to Word Modulo Signed

XER and CR0 are not updated. rD,rA,rB

nmaclhw. Negative Multiply Accumulate Low 
Halfword to Word Modulo Signed 
and Record

CR0 is updated to reflect the result.

nmaclhwo Negative Multiply Accumulate Low 
Halfword to Word Modulo Signed 
with Overflow Enabled

XER[OV,SO] are updated to reflect the result.

nmaclhwo. Negative Multiply Accumulate Low 
Halfword to Word Modulo Signed 
with Overflow Enabled and Record

XER[OV,SO] and CR0 are updated to reflect the 
result.

Negative Multiply-Accumulate Low-Halfword to 
Word Saturate Signed Instructions

The signed product (rA[16:31]) × (rB[16:31]) is subtracted from rD, 
producing a 33-bit result. If the result does not overflow, the low-32 
bits of this result are stored in rD. Otherwise, the nearest-
representable value is stored in rD.

nmaclhws Negative Multiply Accumulate Low 
Halfword to Word Saturate Signed

XER and CR0 are not updated. rD,rA,rB

nmaclhws. Negative Multiply Accumulate Low 
Halfword to Word Saturate Signed 
and Record

CR0 is updated to reflect the result.

nmaclhwso Negative Multiply Accumulate Low 
Halfword to Word Saturate Signed 
with Overflow Enabled

XER[OV,SO] are updated to reflect the result.

nmaclhwso. Negative Multiply Accumulate Low 
Halfword to Word Saturate Signed 
with Overflow Enabled and Record

XER[OV,SO] and CR0 are updated to reflect the 
result.

http://www.xilinx.com


March 2002 Release www.xilinx.com 419
Virtex-II Pro™ Platform FPGA Documentation 1-800-255-7778

Multiply-Accumulate Instruction-Set Extensions
R

Figure 3-33 shows the operation of the negative multiply-accumulate low-halfword to 
word instructions. 

Multiply Halfword to Word Instructions

Multiply Cross-Halfword to Word Instructions
Table 3-46 shows the PPC405 multiply cross-halfword to word instructions. These instructions 
take the lower halfword of the first source operand (rA[16:31]) and multiply it with the 
upper halfword of the second source operand (rB[0:15]), producing a 32-bit product. The 
product is signed or unsigned, depending on the instruction.

For each type of instruction shown in Table 3-46, the “Operation” column indicates the 
multiply operation performed. The column also shows, on an instruction-by-instruction 
basis, how the CR register is updated (if at all). The XER register is not updated by these 
instructions.

Figure 3-33: Negative Multiply-Accumulate Low-Halfword to Word Operation
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Table 3-46: Multiply Cross-Halfword to Word Instructions

Mnemonic Name Operation
Operand 
Syntax

Multiply Cross-Halfword to Word Signed Instructions rD is loaded with the signed product (rA[16:31]) × (rB[0:15]).

mulchw Multiply Cross Halfword to Word 
Signed

CR0 is not updated. rD,rA,rB

mulchw. Multiply Cross Halfword to Word 
Signed and Record

CR0 is updated to reflect the result.
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Figure 3-34 shows the operation of the multiply cross-halfword to word instructions. 

Multiply High-Halfword to Word Instructions
Table 3-47 shows the PPC405 multiply high-halfword to word instructions. These instructions 
multiply the high halfword of both source operands, rA[0:15] and rB[0:15], producing a 32-
bit product. The product is signed or unsigned, depending on the instruction.

For each type of instruction shown in Table 3-47, the “Operation” column indicates the 
multiply operation performed. The column also shows, on an instruction-by-instruction 
basis, how the CR register is updated (if at all). The XER register is not updated by these 
instructions.

Multiply Cross-Halfword to Word Unsigned 
Instructions

rD is loaded with the unsigned product (rA[16:31]) × (rB[0:15]).

mulchwu Multiply Cross Halfword to Word 
Unsigned

CR0 is not updated. rD,rA,rB

mulchwu. Multiply Cross Halfword to Word 
Unsigned and Record

CR0 is updated to reflect the result.

Table 3-46: Multiply Cross-Halfword to Word Instructions (Continued)

Mnemonic Name Operation
Operand 
Syntax

Figure 3-34: Multiply Cross-Halfword to Word Operation

UG011_26_033101

rD
0 31

rA
0 3116

rB
0 3115

×

Table 3-47: Multiply High-Halfword to Word Instructions

Mnemonic Name Operation
Operand 
Syntax

Multiply High-Halfword to Word Signed Instructions rD is loaded with the signed product (rA[0:15]) × (rB[0:15]).

mulhhw Multiply High Halfword to Word 
Signed

CR0 is not updated. rD,rA,rB

mulhhw. Multiply High Halfword to Word 
Signed and Record

CR0 is updated to reflect the result.
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Figure 3-35 shows the operation of the multiply high-halfword to word instructions. 

Multiply Low-Halfword to Word Instructions
Table 3-48 shows the PPC405 multiply low-halfword to word instructions. These instructions 
multiply the low halfword of both source operands, rA[16:31] and rB[16:31], producing a 
32-bit product. The product is signed or unsigned, depending on the instruction.

For each type of instruction shown in Table 3-48, the “Operation” column indicates the 
multiply operation performed. The column also shows, on an instruction-by-instruction 
basis, how the CR register is updated (if at all). The XER register is not updated by these 
instructions.

Multiply High-Halfword to Word Unsigned 
Instructions

rD is loaded with the unsigned product (rA[0:15]) × (rB[0:15]).

mulhhwu Multiply High Halfword to Word 
Unsigned

CR0 is not updated. rD,rA,rB

mulhhwu. Multiply High Halfword to Word 
Unsigned and Record

CR0 is updated to reflect the result.

Table 3-47: Multiply High-Halfword to Word Instructions (Continued)

Mnemonic Name Operation
Operand 
Syntax

Figure 3-35: Multiply High-Halfword to Word Operation
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Table 3-48: Multiply Low-Halfword to Word Instructions

Mnemonic Name Operation
Operand 
Syntax

Multiply Low-Halfword to Word Signed Instructions rD is loaded with the signed product (rA[16:31]) × (rB[16:31]).

mullhw Multiply Low Halfword to Word 
Signed

CR0 is not updated. rD,rA,rB

mullhw. Multiply Low Halfword to Word 
Signed and Record

CR0 is updated to reflect the result.
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Figure 3-36 shows the operation of the multiply low-halfword to word instructions. 

Floating-Point Emulation
The PPC405 is an integer processor and does not support the execution of floating-point 
instructions in hardware. System software can provide floating-point emulation support 
using one of two methods.

The preferred method is to supply a call interface to subroutines within a floating-point 
run-time library. The individual subroutines can emulate the operation of floating-point 
instructions. This method requires the recompilation of floating-point software in order to 
add the call interface and link in the library routines.

Alternatively, system software can use the program interrupt. Attempted execution of 
floating-point instructions on the PPC405 causes a program interrupt to occur due to an 
illegal instruction. The interrupt handler must be able to decode the illegal instruction and 
call the appropriate library routines to emulate the floating-point instruction using integer 
instructions. This method is not preferred due to the overhead associated with executing 
the interrupt handler. However, this method supports software containing PowerPC 
floating-point instructions without requiring recompilation. See Program Interrupt 
(0x0700), page 511, for more information.

Processor-Control Instructions
In user mode, processor-control instructions are used to read from and write to the 
condition register (CR) and the special-purpose registers (SPRs). Instructions that access 
the time base are also considered processor-control instructions, but are discussed 
separately in Chapter 8, Timer Resources.

Multiply Low-Halfword to Word Unsigned 
Instructions

rD is loaded with the unsigned product (rA[16:31]) × (rB[16:31]).

mullhwu Multiply Low Halfword to Word 
Unsigned

CR0 is not updated. rD,rA,rB

mullhwu. Multiply Low Halfword to Word 
Unsigned and Record

CR0 is updated to reflect the result.

Table 3-48: Multiply Low-Halfword to Word Instructions (Continued)

Mnemonic Name Operation
Operand 
Syntax

Figure 3-36: Multiply Low-Halfword to Word Operation
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Condition-Register Move Instructions
The condition-register move instructions shown in Table 3-49 are used to read and write the 
condition register using a GPR as a destination or source register, and for writing a CR field 
from the XER register. Not included in this category are other instructions that access the 
CR. See Condition-Register Logical Instructions, page 376, for information on 
instructions used to manipulate bits and fields in the CR. See Conditional Branch Control, 
page 367, for information on how certain branch instructions use values in the CR as 
branch conditions.

mtcrf Field Mask (CRM)
The mtcrf instruction uses an 8-bit field mask (CRM) specified in the instruction encoding 
to control which CR fields are loaded from rS. As shown in Figure 3-37, each bit in CRM 
corresponds to one of the 4-bit CR fields, with the most-significant CRM bit corresponding 
to CR0 and the least-significant CRM bit corresponding to CR7. When mtcrf is executed, a 
CR field is loaded with the corresponding bits in rS only when the associated CRM mask 
bit is set to 1. If the mask bit is cleared to 0, the CR field is unchanged.

Figure 3-38 shows an example of how the CRM field is used. In this example, 
CRM = 0b01100100, causing CR1, CR2, and CR5 to be updated with the corresponding bits 
in rS. All remaining CR fields are unchanged.

Table 3-49: Condition-Register Move Instructions

Mnemonic Name Operation
Operand 
Syntax

mcrxr Move to Condition Register from XER The CR field specified by the crfD operand is 
loaded with XER[0:3]. The remaining bits in the 
CR are not modified. The contents of XER[0:3] are 
cleared to 0.

crfD

mfcr Move from Condition Register rD is loaded with the contents of CR. rD

mtcrf Move to Condition Register Fields CR is loaded with the contents of rS under the 
control of a field mask specified by the CRM op-
erand.

CRM,rS

Figure 3-37: mtcrf Field Mask (CRM) Format
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Special-Purpose Register Instructions
The special-purpose register instructions shown in Table 3-50 are used to read and write the 
special-purpose registers (SPRs) using a GPR as a destination or source register. The SPR 
number (SPRN) shown in the operand syntax column appears as a decimal value in the 
assembler listing. Within the instruction opcode, this number is encoded using a split-field 
notation. For more information, see Split-Field Notation, page 571.

Synchronizing Instructions
Table 3-51 lists the PowerPC synchronization instructions. The types of synchronization 
defined by the PowerPC architecture are described in Synchronization Operations, 
page 342.

Figure 3-38: mtcrf Example

rS

4 8 12 16 20 240 28 31

CRM 0 1 1 0 0 1 0 0
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CR1 CR2 CR3 CR4 CR5 CR6

rS[4:7] rS[8:11] rS[20:23]

CR0 CR7

CR

Unchanged

Table 3-50: Special-Purpose Register Instructions

Mnemonic Name Operation
Operand 
Syntax

mfspr Move from Special Purpose Register rD is loaded with the contents of the SPR specified 
by SPRN.

rD,SPRN

mtspr Move to Special Purpose Register The SPR specified by SPRN is loaded with the 
contents of rS.

SPRN,rS
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Implementation of eieio and sync Instructions
In the PPC405, eieio and sync are implemented identically for the following reasons:

• The PowerPC architecture only requires the eieio instruction to perform storage 
synchronization, but it does allow PowerPC processors to implement eieio as an 
execution-synchronizing instruction. The PPC405 implements eieio in such a manner.

• As defined by the PowerPC architecture, sync is used to synchronize memory 
accesses across all processors in a multiprocessor environment. Because the PPC405 
does not provide hardware support for multiprocessor memory coherency, sync does 
not guarantee memory ordering across multiple PPC405 processors. This results in 
the same storage-synchronization capability as the eieio instruction.

In implementations that provide hardware support for multiprocessor memory coherency, 
sync can take significantly longer to execute than eieio. PPC405 programmers should 
consider whether their software is expected to run on other platforms and use the sync 
instruction in favor of eieio only when necessary.

Synchronization Effects of PowerPC Instructions
Additional PowerPC instructions can cause synchronizing operations to occur. All 
instructions that result in some form of synchronization are listed in Table 3-52.

Table 3-51: Synchronizing Instructions

Mnemonic Name Operation
Operand 
Syntax

eieio Enforce In-Order Execution of I/O Provides an ordering function for loads and stores. 
All storage accesses that precede eieio complete 
before storage accesses following eieio.

—

isync Instruction Synchronize Ensures all previous instructions complete before 
the isync instruction completes. isync also 
prevents other instructions from beginning 
execution until the isync instruction completes. 
Prefetched instructions are discarded so that 
subsequent instructions are fetched and executed 
in the context established by instructions preceding 
the isync. Memory-access ordering is not 
guaranteed. Memory accesses caused by previous 
instructions are not necessarily ordered with 
respect to memory accesses by other devices.

sync Synchronize Ensures that all instructions preceding the sync 
instruction appear to complete before the sync 
instruction completes, and that no subsequent 
instructions are executed until after the sync 
instruction completes. Memory accesses caused by 
previous instructions are completed with respect to 
memory accesses by other devices.
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Semaphore Synchronization
Table 3-53 lists the PowerPC semaphore-synchronization instructions. These instructions are 
used to implement common semaphore operations, including test and set, compare and 
swap, exchange memory, and fetch and add. Examples of these semaphore operations are 
found in Synchronization Examples, page 837.

The lwarx and stwcx. instructions are typically used by system programs and are called by 
application programs as needed. Generally, a program uses lwarx to load a semaphore 
from memory, causing a reservation to be set (the processor maintains the reservation 
internally). The program can compute a result based on the semaphore value and 
conditionally store the result back to the same memory location using the stwcx. 
instruction. The conditional store is performed based on the existence of the reservation 
established by the preceding lwarx instruction. If the reservation exists when the store is 
executed, the store is performed and CR0[EQ] is set to 1. If the reservation does not exist 
when the store is executed, the target memory location is not modified and CR0[EQ] is 
cleared to 0.

Table 3-52: Synchronization Effects of PowerPC Instructions

Context Synchronizing Execution Synchronizing Storage Synchronizing

isync

rfci2

rfi2

sc

eieio1

isync

mtmsr2

rfci2

rfi2

sc

sync

eieio

sync

Notes: 
1. As implemented on the PPC405.
2. Privileged instruction.

Table 3-53: Semaphore Synchronization Instructions

Mnemonic Name Operation
Operand 
Syntax

lwarx Load Word and Reserve Indexed rD is loaded with the word in memory addressed 
using register-indirect with index addressing:

EA = (rA|0) + (rB)

A reservation corresponding to the address is 
maintained by the processor.

rD,rA,rB

stwcx. Store Word Conditional Indexed An effective address is computed using register-
indirect with index addressing:

EA = (rA|0) + (rB)

If a reservation exists, the contents of rS are stored 
into the memory word specified by the effective 
address, and the reservation is cleared. If a 
reservation does not exist, rS is not stored.

CR0[EQ] is set to 1 if the reservation exists, 
otherwise it is cleared to 0.

rS,rA,rB
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If the store is successful, the sequence of instructions from the semaphore load to the 
semaphore store appear to be executed atomically—no other device modified the 
semaphore location between the read and the update. Other devices can read from the 
semaphore location during the operation.

For a semaphore operation to work properly, the lwarx instruction must be paired with an 
stwcx. instruction, and both must specify identical effective addresses. The reservation 
granularity in the PPC405 is a word. For both instructions, the effective address must be 
word aligned, otherwise an alignment exception occurs. 

In the PPC405, the conditional store is always performed when a reservation exists, even if 
the store address does not match the load address that set the reservation. This operation is 
allowed by the PowerPC architecture, but is not guaranteed to be supported on all 
PowerPC implementations. It is good programming practice to always specify identical 
addresses for lwarx and stwcx. pairs.

The PPC405 can maintain only one reservation at a time. The address associated with the 
reservation can be changed by executing a subsequent lwarx instruction. The conditional 
store is performed based upon the reservation established by the last lwarx instruction 
executed. Executing an stwcx. instruction always clears a reservation held by the 
processor, whether the address matches that established by the lwarx.

Exceptions do not clear reservations, although an interrupt handler can clear a reservation.

Memory-Control Instructions
Table 3-54 lists the PowerPC memory-control instructions available to programs running in 
user mode. See Cache Instructions, page 456 for a detailed description of each instruction.

Table 3-54: Memory-Control Instructions, User Mode

Mnemonic Name

dcba Data Cache Block Allocate

dcbf Data Cache Block Flush

dcbst Data Cache Block Store

dcbt Data Cache Block Touch

dcbtst Data Cache Block Touch for Store

dcbz Data Cache Block Set to Zero

icbi Instruction Cache Block Invalidate

icbt Instruction Cache Block Touch
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Chapter 4

PPC405 Privileged-Mode Programming 
Model

This chapter presents an overview of the processor resources and instructions available to 
privileged-mode programs running on the PPC405. These resources and instructions are 
part of the privileged-programming model. From privileged mode, software can access all 
processor resources and can execute all instructions supported by the PPC405. Typically, 
only system software runs in privileged mode and applications run in user mode. 

The remaining chapters in this book present portions of the system-programming 
resources in greater detail, as follows:

• Chapter 5, Memory-System Management describes the resources available for 
managing the caches and memory protection.

• Chapter 6, Virtual-Memory Management describes the PPC405 address-translation 
capabilities.

• Chapter 7, Exceptions and Interrupts describes the exception mechanism and how 
the processor interrupts program execution so that exceptions can be handled.

• Chapter 8, Timer Resources describes the time base and timer registers.
• Chapter 9, Debugging describes the resources available in the PPC405 for debugging 

software and hardware.

Privileged Registers
Figure 4-1 shows additional registers supported by the PPC405 in privileged mode. These 
registers are accessed by software only when the processor is operating in privileged 
mode. In the PPC405, all privileged registers are 32 bits wide except for the time base, as 
described in Time Base, page 524.

The machine-state register, SPR general-purpose registers, and processor-version register 
are described in the following sections of this chapter. This chapter also describes device 
control registers which are implemented outside the PPC405 but are accessed by software 
running on the PPC405. The remaining privileged registers are described in other chapters 
as follows:

• The core-configuration register (CCR0) is described in Cache Control, page 456.
• The processor ID register (PID) is described in Virtual Mode, page 472.
• The zone-protection register (ZPR) is described in Virtual-Mode Access Protection, 

page 482.
• The storage-attribute control registers are described in Memory-System Control, 

page 451.
• The exception-handling registers are described in Interrupt-Handling Registers, 

page 497.
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• The debug registers are described in Debug Registers, page 537.
• The timer registers, including the time base, are described in Timer Resources, 

page 523.

Figure 4-1: PPC405 Privileged Registers
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SRR0

SPR 0x01A

SRR1

SPR 0x01B

SRR2

SPR 0x3DE

SRR3

SPR 0x3DF

Debug Registers

DBSR

SPR 0x3F0

DBCR0

SPR 0x3F2

DBCR1

SPR 0x3BD

DAC1

SPR 0x3F6

DAC2

SPR 0x3F7

DVC1

SPR 0x3B6

DVC2

SPR 0x3B7

IAC1

SPR 0x3F4

IAC2

SPR 0x3F5

IAC3

SPR 0x3B4

IAC4

SPR 0x3B5

ICDBR

SPR 0x3D3

Timer Registers

TCR

SPR 0x3DA

TSR

SPR 0x3D8

PIT

SPR 0x3DB
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Special-Purpose Registers
All privileged PPC405 registers except for the machine-state register are special-purpose 
registers, or SPRs. See Appendix A, Special-Purpose Registers, page 770  for a complete list 
of all SPRs (user and privileged) supported by the PPC405.

SPRs are read and written using the move from special-purpose register (mfspr) and move to 
special-purpose register (mtspr) instructions. See Special-Purpose Register Instructions, 
page 435, for more information on these instructions. Simplified instruction mnemonics 
are available for the mtspr and mfspr instructions when accessing certain SPRs. See 
Special-Purpose Registers, page 830, for more information.

Machine-State Register
The machine-state register (MSR) is a 32-bit register that defines the processor state. 
Figure 4-2 shows the format of the MSR. The bits in the MSR are defined as shown in 
Table 4-1. All system software can read and write the MSR using the move from machine-
state register (mfmsr) and move to machine-state register (mtmsr) instructions. The external-
interrupt enable (MSR[EE]) bit can also be updated using the write external enable 
instructions (wrtee and wrteei). See Machine-State Register Instructions, page 435, for 
more information on these instructions.

The MSR is also modified during execution of the system-call instruction (sc), return-from-
interrupt instructions (rfi and rfci), and by the exception mechanism during a control 
transfer to an interrupt handler.

0 6 12 13 14 16 17 18 19 20 21 22 23 26 27 31

AP APE WE CE EE PR FP ME FE0 DWE DE FE1 IR DR

Figure 4-2: Machine-State Register (MSR)

Table 4-1: Machine-State Register (MSR) Bit Definitions

Bit Name Function Description

0:5 Reserved

6 AP Auxiliary Processor Available

(Unsupported)

This bit is unsupported and ignored by the PPC405D5. Software 
should clear this bit to 0.

7:11 Reserved

12 APE APU Exception Enable

(Unsupported)

This bit is unsupported and ignored by the PPC405D5. Software 
should clear this bit to 0.

13 WE Wait State Enable

0—Disabled.

1—Enabled.

When in the wait state, the processor stops fetching and executing 
instructions, and no longer performs memory accesses. The 
processor remains in the wait state until an interrupt or a reset 
occurs, or an external debug tool clears WE. See Processor Wait 
State, page 436, for more information.

14 CE Critical Interrupt Enable

0—Disabled.

1—Enabled.

Controls the critical-input interrupt and the watchdog-timer 
interrupt. See Interrupt Reference, page 502, for more information 
on these interrupts.

15 Reserved

16 EE External Interrupt Enable

0—Disabled.

1—Enabled.

Controls the external interrupts, the programmable-interval timer 
interrupt, and the fixed-interval timer interrupt. See Interrupt 
Reference, page 502, for more information on each interrupt.
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The initial state of the MSR following a processor reset is described in Machine-State 
Register, page 562. 

SPR General-Purpose Registers
The SPR general-purpose registers (SPRG0–SPRG7) are 32-bit registers that can be used for 
any purpose by system software running in privileged mode. The values stored in these 
registers do not affect the operation of the PPC405 processor. 

Four of the registers (SPRG4–SPRG7) are available from user mode with read-only access. 
Application software can read the contents of SPRG4–SPRG7, but cannot modify them.

The format of all SPRGn registers is shown in Figure 4-3.

17 PR Privilege Level

0—Privileged mode.

1—User mode.

Controls the privilege level of the processor. See Processor 
Operating Modes, page 343, for more information.

18 FP Floating-Point Available

(Unsupported)

This bit is unsupported and ignored by the PPC405D5. Software 
should clear this bit to 0.

19 ME Machine-Check Enable.

0—Disabled.

1—Enabled.

Controls the machine-check interrupt. See Machine-Check 
Interrupt (0x0200), page 504, for more information.

20 FE0 Floating-Point Exception-Mode 0

(Unsupported)

This bit is unsupported and ignored by the PPC405. Software 
should clear this bit to 0.

21 DWE Debug Wait Enable

0—Disabled.

1—Enabled.

Controls the debug wait mode. See Debug-Wait Mode, page 537, 
for more information.

22 DE Debug Interrupt Enable

0—Disabled.

1—Enabled.

Controls the debug interrupt. See Debug Interrupt (0x2000), 
page 521, for more information.

23 FE1 Floating-Point Exception-Mode 1

(Unsupported)

This bit is unsupported and ignored by the PPC405D5. Software 
should clear this bit to 0.

24:25 Reserved

26 IR Instruction Relocate

0—Instruction-address transla-
tion is disabled.

1—Instruction-address transla-
tion is enabled.

Controls instruction-address translation. See Chapter 6, Virtual-
Memory Management, for more information. When address 
translation is disabled, the processor is running in real mode. See 
Real Mode, page 471, for an introduction.

27 DR Data Relocate

0—Data-address translation is 
disabled.

1—Data-address translation is 
enabled.

Controls data-address translation. See Chapter 6, Virtual-Memory 
Management, for more information. When address translation is 
disabled, the processor is running in real mode. See Real Mode, 
page 471, for an introduction.

28:31 Reserved

Table 4-1: Machine-State Register (MSR) Bit Definitions (Continued)

Bit Name Function Description
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The SPRGn registers are privileged SPRs with the following addresses:

• SPRG0—272 (0x110)
• SPRG1—273 (0x111)
• SPRG2—274 (0x112)
• SPRG3—275 (0x113)
• SPRG4—276 (0x114)
• SPRG5—277 (0x115)
• SPRG6—278 (0x116)

• SPRG7—279 (0x117)

These registers are read and written using the mfspr and mtspr instructions. User-mode 
software that reads SPRG4–SPRG7 accesses them using different SPR numbers (see 
page 365).

Processor-Version Register
The processor-version register (PVR) is a 32-bit read-only register that uniquely identifies 
the processor. Figure 4-4 shows the format of the PVR. 

The PVR’s PCL bits [22:25] vary according to the Virtex-II Pro™ device type. The PVR has 
a total value of 0x2001_0820 in the 2VP4 and 2VP7 devices (each containing a single 
processor block), and 0x2001_0860 in the 2VP20 and 2VP50 devices (containing two and 
four processor blocks respectively). The bit definitions are shown in Table 4-2.  

The PVR is a privileged read-only SPR with an address of 287 (0x11F). It is read using the 
mfspr instruction. Write access is not supported.

0 31

General-Purpose System-Software Data

Figure 4-3: SPR General-Purpose Registers (SPRG0–SPRG7)

0 11 12 15 16 21 22 25 26 31

OWN PCF CAS PCL AID

Figure 4-4: Processor-Version Register (PVR)

Table 4-2: Processor-Version Register (PVR) Bit Definitions

Bit Name Function/Value Description

0:11 OWN Owner Identifier

0b 0010_0000_0000 (0x200)

Identifies Xilinx as the owner of the 
processor core.

12:15 PCF Processor Core Family

0b 0001 (0x1)

Identifies the processor as belonging to 
the 405 processor-core family.

16:21 CAS Cache Array Sizes

0b 0000_10 (0x02)

Identifying the processor as containing 
16KB instruction and 16KB data caches.

22:25 PCL Processor Core Revision Level

0b 00_00 (0x0) 
for 2VP4, 2VP7 devices

0b 00_01 (0x1) 
for 2VP20, 2VP50 devices

Identifies the processor-core revision 
level. This value is incremented when a 
revision is made to the processor core. 
Differs according to the Xilinx 
Virtex-II Pro device type.

26:31 AID ASIC Identifier

0b 10_0000 (0x20)
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Device Control Registers
Device control registers (DCRs) are 32-bit registers implemented in FPGA logic gates. They 
are not contained within the processor core. The PowerPC embedded-environment 
architecture and PowerPC Book-E architecture define the existence of a DCR-address 
space and the instructions that access the DCRs, but they do not define what the DCRs do 
or how they are to be used. System developers can define DCRs for use in controlling the 
operations of on-chip buses, peripherals, and some processor behavior. The processor 
reads and writes the DCRs over the DCR-bus interface using the mfdcr and mtdcr 
instructions.

See the PPC405 Processor Block Manual for more information on implementing and using 
DCRs.

Privileged Instructions
Table 4-3 lists the privileged instructions supported by the PPC405. Attempted use of these 
instructions when running in user mode causes a program exception.

System Linkage
Application (user-mode) programs transfer control to system-service routines (privileged-
mode programs) using the system-call instruction, sc. Executing the sc instruction causes a 
system-call exception to occur. The system-call interrupt handler determines which 
system-service routine to call and whether the calling application has permission to call 
that service. If permission is granted, the system-call interrupt handler performs the actual 
procedure call to the system-service routine on behalf of the application program. This call 
is typically performed using a branch instruction that updates the link register with the 
return address.

The execution environment expected by the system-service routine requires the execution 
of prologue instructions to set up that environment. Those instructions usually create the 
block of storage that holds procedural information (the activation record), update and 
initialize pointers, and save volatile registers (registers the system-service routine uses). 
Prologue code can be inserted by the linker when creating an executable module, or it can 
be included as stub code in either the system-call interrupt handler or the system-library 
routines.

Returns from the system-service routine reverse the process described above. Control is 
transferred back to the system-call interrupt handler using a branch to link-register 

Table 4-3: PPC405 Privileged Instructions

System Linkage Processor Control
Memory-System 

Management
Virtual-Memory 

Management

rfci

rfi

sc

mfdcr

mfmsr

mfspr(1)

mtdcr

mtmsr

mtspr(2)

wrtee

wrteei

dcbi

dccci

dcread

iccci

icread

tlbia

tlbre

tlbsx

tlbsync

tlbwe

Notes: 
1. Except for CTR, LR, SPRG4–SPRG7, and XER.
2. Except for CTR, LR, and XER.
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instruction. Epilog code is executed to unwind and deallocate the activation record, restore 
pointers, and restore volatile registers. The interrupt handler executes a return-from-
interrupt instruction (rfi) to return to the application.

Table 4-4 lists the PowerPC system-linkage instructions. The sc instruction can be executed 
from user mode and privileged mode. The rfi and rfci instructions are executed only from 
privileged mode.

Processor-Control Instructions
In privileged mode, processor-control instructions are used to read from and write to the 
machine-state register and the special-purpose registers. Instructions that access the time 
base registers are also considered processor-control instructions, but are discussed 
separately in Chapter 8, Timer Resources.

Machine-State Register Instructions
The machine-state register instructions shown in Table 4-5 are used to read and write the 
machine-state register (MSR) using a GPR as a destination or source register. The mtmsr 
instruction shown in Table 4-5 is execution synchronizing. See Execution 
Synchronization, page 342, for more information.

Special-Purpose Register Instructions
The special-purpose register instructions shown in Table 4-6 are used to read and write the 
special-purpose registers (SPRs) using a GPR as a destination or source register. The SPR 
number (SPRN) shown in the operand syntax column can be specified as a decimal or 
hexadecimal value in the assembler listing. Within the instruction opcode, this number is 

Table 4-4: System-Linkage Instruction

Mnemonic Name Operation
Operand 
Syntax

rfi Return from Interrupt Return from noncritical-interrupt handler. See 
Returning from Interrupt Handlers, page 494, 
for more information.

—

rfci Return from Critical Interrupt Return from critical-interrupt handler. See 
Returning from Interrupt Handlers, page 494, 
for more information.

—

sc System Call Causes a system-call exception to occur. See 
System-Call Interrupt (0x0C00), page 514, for 
more information.

—

Table 4-5: Machine-State Register Instructions

Mnemonic Name Operation
Operand 
Syntax

mfmsr Move from Machine State Register rD is loaded with the contents of the machine-state 
register.

rD

mtmsr Move to Machine State Register The machine-state register is loaded with the 
contents of rS.

rS

wrtee Write External Enable MSR[EE] (bit 16) is loaded with the value in rS16. rS

wrteei Write External Enable Immediate MSR[EE] (bit 16) is loaded with the immediate 
value of the instruction E field.

E
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encoded using a split-field notation. For more information, see Split-Field Notation, 
page 571.

Simplified instruction mnemonics are available for the mtspr and mfspr instructions when 
accessing certain SPRs. See Special-Purpose Registers, page 830, for more information.

Device Control Register Instructions
The device control register instructions shown in Table 4-7 are used to read and write the 
device control registers (DCRs) using a GPR as a destination or source register. The DCR 
number (DCRN) shown in the operand syntax column can be specified as a decimal or 
hexadecimal value in the assembler listing. Within the instruction opcode, this number is 
encoded using a split-field notation. For more information, see Split-Field Notation, 
page 571.

Processor Wait State
Software-controlled power management is possible through the use of the processor wait 
state. Wait state is a low-power operating mode that can be used to conserve processor 
energy when the processor is not busy. Wait state is entered when software sets the wait-
state enable bit (MSR[WE]) to 1. 

When in the wait state, the processor stops fetching and executing instructions, and no 
longer performs memory accesses. The processor continues to respond to interrupts, and 
can be restarted through the use of external interrupts or timer interrupts. Wait state can 
also be exited when an external debug tool clears WE or when a reset occurs.

Table 4-6: Special-Purpose Register Instructions

Mnemonic Name Operation
Operand 
Syntax

mfspr Move from Special Purpose Register rD is loaded with the contents of the SPR specified 
by SPRN.

rD,SPRN

mtspr Move to Special Purpose Register The SPR specified by SPRN is loaded with the 
contents of rS.

SPRN,rS

Table 4-7: Device Control Register Instructions

Mnemonic Name Operation
Operand 
Syntax

mfdcr Move from Device Control Register rD is loaded with the contents of the DCR specified 
by DCRN.

rD,DCRN

mtdcr Move to Device Control Register The DCR specified by DCRN is loaded with the 
contents of rS.

DCRN,rS
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Chapter 5

Memory-System Management

This chapter describes how software can manage the interaction between the PPC405 
processor and the memory system. Memory-system management includes cache control, 
the use of storage attributes, and memory-coherency considerations. The virtual-memory 
environment is described separately in Chapter 6, Virtual-Memory Management.

Memory-System Organization
Figure 5-1 shows the memory-system organization supported by the PPC405. The 
processor implements separate internal instruction and data caches, an architectural 
construct known as the Harvard cache model. The PPC405 does not provide hardware 
support for attachment of a level-2 (L2) or higher caches. The processor communicates 
with system memory over the processor local bus (PLB), usually through a memory 
controller. 

The PowerPC architecture does not define the type, organization, implementation, or 
existence of internal or external caches. The cache structure of other PowerPC processors 
can differ from that implemented by the PPC405. To maximize portability, software that 
operates on multiple PowerPC implementations should always assume implemenation of 
a Harvard cache model.

Separate instruction and data on-chip-memory (OCM) can be attached to the PPC405 cache 
controllers using a dedicated processor interface. The performance of OCM accesses can be 
identical to that of a cache hit, depending on how much block RAM (BRAM) is connected 
to the processor through the OCM controllers. Refer to the PPC405 Processor Block 
Manual for more information on the OCM and OCM controllers.  

Figure 5-1: PPC405 Memory-System Organization
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Memory-System Features
The PPC405 memory system supports the following features:

• Separate 64-bit instruction and 64-bit data interfaces to the processor local bus (PLB).
• Separate 64-bit instruction and 32-bit data interfaces to the on-chip memory (OCM).
• Single-cycle access to the OCM (depending on how much BRAM is connected to the 

processor), matching the access time for cache hits.
• Independent, programmable PLB-request priority for the instruction and data 

interfaces.
• Support for big-endian and little-endian memory systems.
• Support for unaligned load and store operations.
• Separate instruction and data caches (Harvard cache model) with the following 

characteristics:
- 16 KB 2-way set-associative cache arrays.

- 32-byte cachelines.
- Programmable line allocation for instruction fetches, data loads, and data stores.
- Non-blocking access for cache hits during line fills (the data cache is also non-

blocking during cache flushes).
- Critical-word bypass for cache misses.
- Programmable PLB request size for non-cacheable memory requests.
- A complete set of cache-control instructions.

• Specific features supported by the instruction-cache include:
- A virtually-indexed and physically-tagged cache array.
- Programmable address pipelining and prefetching for cache misses and non-

cacheable requests.
- Buffering of up to eight non-cacheable instructions in the fill buffer.
- Support for non-cacheable hits into the fill buffer.
- Flash invalidate—one instruction invalidates the entire cache.

• Specific features supported by the data-cache include:
- A physically-indexed and physically-tagged cache array.
- Flexible control over write-back and write-through strategies for each cacheable 

memory region.
- Address pipelining for cache misses.
- Buffering of up to 32 bytes of data in the fill buffer.
- Support for non-cacheable hits into the fill buffer.
- Handling of up to two pending cacheline flushes.
- Handling of up to three pending stores before causing a pipeline stall.

Cache Organization
The PPC405 contains an instruction-cache unit and a data-cache unit. Each cache unit 
contains a 16 KB, 2-way set-associative cache array, plus control logic for managing cache 
accesses. The caches contain copies of the most frequently used instructions and data and 
can typically be accessed much faster than system memory.

Figure 5-2 shows the logical structure of the PPC405 cache arrays. Each cache array is 
organized as a collection of cachelines. There are a total of 512 cachelines in a cache array, 
divided evenly into two ways (one way contains 256 lines). Line n from way A and line n 
from way B make up a set of cachelines, also known as a congruence class. A cache array 
contains a total of 256 sets, or congruence classes.

Each cacheline contains the following pieces of information:
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• A tag used to uniquely identify the line within the congruence class.
• 32 bytes of data that are a copy of a contiguous, 32-byte block of system memory, 

aligned on a 32-byte address boundary. The data can represent either instructions (in 
the instruction cache) or operands (in the data cache).

• An LRU bit that specifies which cacheline within the congruence class is least-recently 
used. Each time a cacheline is accessed, the cache controller marks the other line 
within that congruence class as least-recently used. When a new cacheline is read 
from memory during a cacheline fill, the line in the congruence class marked least-
recently used is replaced.

• A dirty bit that indicates whether the cacheline contains modified information. A 
modified cacheline contains data that is more recent than the copy in system memory. 
The instruction cache does not have a dirty bit.

The 512 total lines of 32 bytes each yields a 16 KB cache size.

Data is selected from the data cache using fields within the data address. Likewise, an 
instruction is selected from the instruction cache using fields within the instruction 
address. The data cache is physically tagged and physically indexed. This means that the 
physical address alone is used to access the data-cache array. The instruction cache is 
physically tagged and virtually indexed. Here, the effective address is used to specify a 
congruence class (set of lines) within the cache, and the physical address is used to specify 
a specific tag. The instruction cache is accessed in this manner for performance reasons, but 
care is required to avoid cache synonyms (see Instruction-Cache Synonyms, page 442). 
Figure 5-3 shows the address fields used in accessing the two caches.

Figure 5-2: Logical Structure of the PPC405 Cache Arrays
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Figure 5-4 shows an example of how the physical-address fields are used to select a data 
operand from the data-cache array. The instruction cache operates in a similar manner, 
using fields from both the physical address and the effective address.

Referring to Figure 5-4, the line field in the data address is used to select a congruence class 
from the cache array. The congruence class contains two lines, one from each way. Each line 
contains a tag, meaning two tags are present in a congruence class. The tag field in the data 
address is compared to both tags in the congruence class. A hit occurs when the data-
address tag field is equal to one of the two tags. A miss occurs when the data-address tag 
field is not equal to either of the tags.

Figure 5-3: Address Fields Used to Access Caches
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When a hit occurs, the cacheline with the matching tag is selected. The data in the selected 
cacheline is loaded into the 32-byte data-cacheline buffer. The byte field in the data address 
is used as an offset into the line buffer. The data located at that byte offset (byte, halfword, 
or word) is read from or written to the line buffer, depending on the operation that initiated 
the cache access. 

Access into the instruction cache operates in a near-identical fashion. The difference is in 
how the 32-byte instruction line buffer is accessed. The line buffer is accessed using the 
byte field from the instruction effective address. However, the low-order two bits (EA30:31) 
are ignored, aligning the access on a word boundary. Four bytes are always read from this 
word-aligned location in the instruction cacheline buffer. 

Instruction-Cache Operation
Figure 5-5 shows how instructions flow from the instruction-cache unit (ICU) to the 
execution pipeline.

All instruction-fetch requests are handled by the ICU. If a fetch address is cacheable, the 
ICU examines the instruction cache for a hit. When a hit occurs, the cacheline is read from 
the instruction cache and loaded into the line buffer. Individual instructions are sent from 
the line buffer to the instruction queue. From there they are either loaded into one of the 
prefetch buffers or are immediately decoded, depending on the current state of the decode 
and execution pipelines. Up to two instructions per clock cycle can be sent to the 
instruction queue from the line buffer.

When a cache miss occurs, or when an instruction address is not cacheable, the ICU sends 
the fetch-address request to system memory over the processor local bus (PLB). A cache 
miss results in a cacheline fill, which appears as an eight-word request on the PLB. The 
request size for non-cacheable instructions can be either four words (half line) or eight 
words (full line) and is programmable using the CCR0 register (see Core-Configuration 
Register, page 459). Full-line (cacheable and non-cacheable) and half-line fetch requests 
are always completed (never aborted), even if the instruction stream branches before the 

Figure 5-5: Instruction Flow from the Instruction-Cache Unit
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remaining instructions are received. As instructions are received by the ICU from the PLB, 
they are placed in the fill buffer.

The ICU requests the target instruction first, but the order instructions are returned 
depends on the design of the PLB device that handles the request (typically a memory 
controller). When the ICU receives the target instruction, it is immediately forwarded from 
the fill buffer to the instruction queue over the bypass path. The remaining instructions are 
received from the PLB and placed in the fill buffer. Subsequent instruction fetches read an 
instruction from the fill buffer if it is already present in the buffer. If a cache miss occurred, 
the instruction-cacheline is loaded with the fill-buffer contents after all instructions are 
received.

Instruction Cacheability Control
Control of instruction cacheability depends on the address-translation mode as follows:

• In real mode, the instruction-cache cacheability register (ICCR) specifies which 
physical-memory regions are cacheable. See Instruction-Cache Cacheability Register 
(ICCR), page 454, for more information.

• In virtual mode, the storage-attribute fields in the page-translation look-aside buffer 
entry (TLB entry) specify which virtual-memory regions are cacheable. See Storage-
Attribute Fields, page 478, for more information.

After a processor reset, the processor operates in real mode and all physical-memory 
regions are marked as non-cacheable (all ICCR bits are cleared to 0). Prior to specifying 
memory regions as cacheable, software must invalidate the instruction cache by executing 
the iccci instruction. (see Cache Instructions, page 456, for information on this 
instruction). After the cache is invalidated, the ICCR can be configured.

Core-Configuration Register, page 459, describes additional software controls that can be 
used to manage instruction prefetching from cacheable and non-cacheable memory.

Instruction-Cache Hint Instruction
The PowerPC embedded-environment architecture and PowerPC Book-E architecture 
define an instruction-cache block touch (icbt) instruction that can be used to improve 
instruction-cache performance. Software uses icbt to indicate that instruction-fetching is 
likely to occur from the specified address in the near future. When PLB bandwidth is 
available, the processor can prefetch the instruction-cacheline associated with the icbt 
operand address. This instruction executes as a no-operation if loading the cacheline 
results in a page-translation exception or a protection exception.

Instruction-Cache Synonyms
NOTE: The following information applies only if instruction address translation is enabled.

Proper cache operation depends on a physical address being cached by at most one 
cacheline. An instruction-cache synonym exists when a single physical address is cached by 
multiple instruction-cachelines. This can occur when software uses page translation to 
map multiple virtual addresses to the same physical address. Cache synonyms pose 
serious problems for system software when managing memory-access protection, page 
translation, and coherency. 

In the PPC405, the instruction cache is physically tagged and virtually indexed. When 
translation is enabled, the physical address is translated from the virtual address. A 
synonym can exist when common bit ranges in the virtual address and physical address 
are used to access the cache. This occurs when bits in the virtual index are involved in 
translating physical-tag bits.

To illustrate the problem, assume 4 KB page translation maps two virtual addresses, 
0x8888_8000 and 0xFFFF_F000, to the same physical address, 0x4444_4000 (see Chapter 6, 
Virtual-Memory Management for information on address translation). When a 4 KB page 
address is translated, the translation mechanism maps each effective-page number (EA0:19) 
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to the same physical-page number (RA0:19). Both effective-page numbers (0x8888_8 and 
0xFFFF_F) are translated into the physical-page number 0x4444_4. The effective-page 
offset (0x000) is not translated and is used as the physical-page offset (RA20:31 = EA20:31).

The ICU uses RA0:21 as the tag and EA19:26 as the index when accessing the instruction 
cache. Overlap between tag and index exists in the bit range 19:21. However, only EA19 is 
used to both index the cache and translate part of the physical tag (EA20:21 is not used to 
translate 4 KB virtual pages). In this example, a synonym exists because the effective 
addresses differ in EA19. The two virtual addresses select different cachelines, even though 
the address translation mechanism maps them to a single physical address.

Because the PPC405 supports variable page sizes, different high-order EA bits are used to 
translate pages. The result is that synonyms can occur to varying degrees based on page 
size:

• 1 KB pages—three bits (EA19:21) are used in indexing and tag comparison, resulting in 
as many as eight synonyms

• 4 KB pages—one bit (EA19) is used in indexing and tag comparison, resulting in two 
possible synonyms

The following two options are available for preventing cache synonyms:

• Avoid mapping multiple virtual pages into a single physical page when using 1 KB or 
4 KB pages sizes

• Use pages sizes of 16 KB or greater if multiple virtual pages must be mapped into a 
single physical page

Data-Cache Operation
Figure 5-6 shows how data flows between the data-cache unit (DCU) and the general-
purpose registers.

All data-load requests and data-store requests are handled by the DCU. If a data address is 
cacheable, the DCU examines the data cache for a hit. A hit causes the cacheline to be read 
from the data cache and loaded into the line buffer. For a load hit, the data value is read 
from the line buffer and written to a GPR. For a store hit, the data value is read from the 
GPR and written to the line buffer and the line buffer is stored back into the data cache. The 
data cache supports byte writeability to improve the performance of byte and halfword 
stores. Load hits and store hits can be completed in one clock cycle.

Figure 5-6: Data Flow to/from the Data-Cache Unit
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If a cache miss occurs or if the data address is not cacheable, the DCU sends the data-
address request to system memory over the processor local bus (PLB). Store misses to 
write-back memory and all load misses cause a cacheline fill. The size of all cacheline fill 
requests over the PLB is 32 bytes. The request size for a store to write-through memory 
(cache hit and cache miss) is one word (four bytes). The request size for a non-cacheable 
data access is programmable using the CCR0 register (see Core-Configuration Register, 
page 459). Cacheline fills are always completed (never aborted) even if the processor does 
not require any other bytes in the line. As data is received by the DCU from the PLB, it is 
placed in the fill buffer.

During a cacheline fill, the DCU requests the target data (load or store) first. However, the 
order data is returned depends on the design of the PLB device that handles the request 
(typically a memory controller). When the DCU receives target load data, it is forwarded 
immediately to the GPR over the bypass path. When the DCU receives target store data, it 
is immediately replaced by the GPR source value using the bypass path. The remaining 
data is received from the PLB and placed in the fill buffer. Subsequent loads and stores 
access the fill buffer if the data is present in the buffer. The data cacheline is loaded with the 
fill-buffer contents after all data are received.

If a cacheline fill replaces a dirty (modified) cacheline, the processor causes a cacheline flush 
to occur prior to loading the cacheline from the fill buffer. A cacheline flush updates system 
memory with the modified data from the cache. All 32 bytes in a cacheline are written 
sequentially to system memory over the PLB, including unmodified bytes.

Data Cacheability Control
Control of data cacheability depends on the address-translation mode:

• Real mode
• Virtual mode

Real Mode

In real mode, the data-cache cacheability register (DCCR) specifies which physical-
memory regions are cacheable. See Data-Cache Cacheability Register (DCCR), page 454, 
for more information.

After a processor reset, the processor operates in real mode and all physical-memory 
regions are marked as non-cacheable (all DCCR bits are cleared to 0). Prior to specifying 
memory regions as cacheable, software must invalidate all data-cache congruence classes 
by executing the dccci instruction once for each class (see Cache Instructions, page 456, for 
information on this instruction). After the congruence classes are invalidated, the DCCR 
can be configured.

Virtual Mode

In virtual mode, the storage-attribute fields in the page-translation look-aside buffer entry 
(TLB entry) specify which virtual-memory regions are cacheable. See Storage-Attribute 
Fields, page 478, for more information.

Data-Cache Write Policy
Cacheable data can be written to the data cache using two write policies:

• Write-back caching
• Write-through caching

Write-Back Caching

In a write-back caching policy, the data cache is updated by a write hit but system memory 
is not updated. A write miss causes the cache to allocate a new cacheline and update that 
line—system memory is not updated.

Write-back caching can improve system performance by minimizing processor local bus 
activity. Write-back cachelines are only written to memory during cacheline replacement 
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or when explicitly flushed using a dcbf or dcbst instruction. Only modified cachelines are 
written.

Write-Through Caching

In a write-through caching policy, both the data cache and system memory are updated by 
a write hit. A write miss updates only system memory—a new cacheline is not allocated.

Write-through caching can simplify the work of maintaining coherency between the data 
cache and system memory. See Software Management of Cache Coherency, page 463, for 
more information.

Control of the data-cache write policy depends on the address-translation mode:

• In real mode, the data-cache write-through register (DCWR) specifies the write policy 
for each physical-memory region. See Data-Cache Write-Through Register (DCWR), 
page 453, for more information.

• In virtual mode, the storage-attribute fields in the page-translation entry (TLB entry) 
specify the data-cache write policy for virtual-memory regions. See Storage-Attribute 
Fields, page 478, for more information.

The write policy is in effect only when a memory region is defined as cacheable. Otherwise, 
it is ignored.

Data-Cache Allocation Control
Software can control data-cacheline allocation and data PLB-request size by using the core-
configuration register 0 (CCR0):

• Load misses from cacheable memory can be prevented from allocating cachelines by 
using the load without allocate bit, CCR0[LWOA]. This can provide a performance 
advantage if memory reads are infrequent and tend to access non-contiguous 
addresses.

• Loads from non-cacheable memory (and those that do not allocate cachelines, as 
described above) can be programmed to generate eight-word PLB requests, or to 
generate only the number of data requested by the CPU. This is controlled using the 
load-word-as-line bit, CCR0[LWL]. If CCR0[LWL]=1, the DCU requests eight words. 
Using an eight-word request size provides the fastest access to sequential non-
cacheable memory. The requested data remains in the data-cache fill buffer until one 
of the following occur:
- A subsequent load replaces the contents of the fill buffer.
- A store to an address contained in the fill buffer occurs.
- A dcbi or dccci instruction is executed that affects an address in the fill buffer. 
- A sync instruction is executed.

Note that if CCR0[LWL]=1 and the target non-cacheable region is also marked as 
guarded (i.e., the G storage attribute is set to 1), the DCU will request only the data 
requested by the CPU.

• Store misses to cacheable memory can be prevented from allocating cachelines by 
using the store without allocate bit, CCR0[SWOA]. Software can use this bit to 
prevent a store miss to write-back memory from allocating a cacheline. Instead, the 
store updates system memory as if a write-through caching policy were in effect. 
Unlike write-through caching, store hits to write-back memory do not automatically 
update system memory when this bit is set.

See Core-Configuration Register, page 459, for more information on these control bits.

Data-Cache Performance
In general, a data-cache hit completes in one cycle without stalling the processor. The DCU 
can perform certain cache operations in parallel to improve performance. Combinations of 
load and store operations—cacheline fills, cacheline flushes, and operations that hit in the 
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cache—can occur simultaneously. However, data-cache performance ultimately depends 
on software-execution dynamics and on the design of the external-memory controller. 
These two factors can combine to adversely affect data-cache performance by introducing 
pipeline stalls.

Pipeline Stalls
A pipeline stall occurs when instruction execution must wait for data to be loaded from or 
stored to memory. If the DCU can access the data immediately, no pipeline stall occurs. If 
the DCU cannot perform the access immediately, a pipeline stall can occur and continues 
until the DCU completes the access. The following events and operations can cause the 
DCU to stall the pipeline:

• A cache miss occurs or software accesses non-cacheable memory. This causes the DCU 
to retrieve data from system memory, which can take many cycles. 

• The fill buffer contents (when full) are transferred to the data cache. During this time 
no other cache access can be performed. The process takes three cycles if the replaced 
cacheline is unmodified and four cycles if the replaced cacheline is modified.

• A load from non-cacheable memory is followed by other non-cacheable loads. The 
loads require at least four cycles to complete.

• More than two loads are pending completion in the DCU. The DCU can accept a 
second load if the first load cannot be completed immediately. If a subsequent DCU 
request of any kind is made, it is not accepted until the previous loads are completed 
by the DCU.

• A store to non-cacheable memory is followed by other non-cacheable stores. The 
stores require at least two cycles to complete.

• More than three stores are pending completion in the DCU. The DCU can accept a 
third store if the first two stores cannot be completed immediately. If a subsequent 
DCU request of any kind is made, it is not accepted until the previous stores are 
completed by the DCU.

• A data-cache control instruction (for example, dcba or dcbst) is executed. This causes 
a pipeline stall until all previous DCU operations complete execution, including loads 
and stores.

• More than two cacheline fills are pending.
• More than two cacheline flushes are pending.
• The on-chip memory (OCM) interface asserts a hold signal. The DCU can accept one 

additional load or store before causing a pipeline stall.

Data-Cache PLB Priority
The processor asserts a data-cache to PLB priority (DPP) signal when a PLB request is issued 
by the DCU. The DPP signal tells the PLB arbiter the priority that should be assigned to the 
DCU request. DPP is a two-bit signal. The high-order bit (DPP0) is controlled by the DCU. 
The low-order bit (DPP1) can be controlled by software using the DDP1 field in the CCR0 
register. See Table 5-6, page 460, for more information on using this CCR0 field.

Table 5-1 shows the conditions under which the DCU asserts and deasserts DPP0. As is 
shown in the table, loads from system memory have highest priority and always 
immediately assert DPP0.
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Data-Cache Hint Instructions
The PowerPC architecture defines data-cache instructions that can be used to improve 
memory performance by providing hints to the processor that memory locations are likely 
to be accessed in the near future. They are:

• Data-cache block touch (dcbt)—This instruction indicates that memory loads are likely 
to occur from the specified address. The processor can prefetch the cacheline 
associated with the address as a result of executing this instruction.

• Data-cache block touch for store (dcbtst)—This instruction indicates that memory stores 
are likely to occur to the specified address. The processor can prefetch the cacheline 
associated with the address as a result of executing this instruction.

Depending on how a processor implementation interacts with the memory subsystem, 
dcbt and dcbst can behave differently. On the PPC405, however, dcbt and dcbtst are 
implemented identically. These instructions execute as a no-operation if loading the 
cacheline were to result in a page-translation exception or a protection exception.

The following instructions can also be used as hint instructions when the contents of an 
address in system memory are not important:

• Data-cache block allocate (dcba)—This instruction allocates a cacheline corresponding to 
the specified address.

• Data-cache block zero (dcbz)—This instruction allocates a cacheline corresponding to 
the specified address and clears the cacheline contents to zero. It can be used to 
initialize cacheable memory locations.

dcba and dcbz do not access memory when allocating a cacheline. It is possible for these 
instructions to allocate cachelines for non-existent physical-memory addresses. A 
subsequent attempt to store the cacheline contents back to system memory can result in 
system problems or cause a machine-check exception to occur.

The dcba instruction executes as a no-operation if loading the cacheline were to result in a 
page-translation exception or a protection exception. On the other hand, dcbz causes a 
data-storage interrupt to occur if loading the cacheline results in a page-translation 
exception or a protection exception.

Accessing Memory
Memory (collectively, system memory and cache memory) is accessed when instructions 
are fetched and when a program executes load and store instructions. Other conditions not 
specified by a program can cause memory accesses to occur, such as cacheline fills and 

Table 5-1: Data-Cache to PLB Priority Examples

If the Current DCU 
Operation...

...Has the 
Following

DPP0 Value...
The Next DCU Operation...

...Updates DPP0 
as Shown

Load from system memory. Assert See first column

Store to system memory

Deassert

Any stalled DCU operation Assert

dcbf Cache hit Deassert

dcbf, dcbst Non-cacheable load Assert

dcbf, dcbst Cacheline flush Assert

dcbt Cache hit Deassert

dcbi, dccci, dcbz Deassert See first column
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cache flushes. The coherency and ordering of these memory accesses are influenced by the 
processor implementation, the memory system design, and software execution.

Memory Coherency
Coherency describes the ordering of reads from and writes to a single memory location. A 
memory system is coherent when the value read from a memory address is always the last 
value written to the address. In a system where all devices read and write from a single, 
shared system memory, memory is always coherent. In systems with memory-caching 
devices, maintaining coherency is less straightforward. For example, a processor cache can 
contain a more recent value for a memory location than system memory. The memory 
system is coherent only when a mechanism is provided to ensure a device receives the 
cached value rather than the system-memory value when read.

The PPC405 does not support memory-coherency management in hardware. Certain 
situations exist where coherency can be lost between system memory and the processor 
caches. On the PPC405, these situations require software management of memory 
coherency. See Software Management of Cache Coherency, page 463, for more 
information.

Atomic Memory Access
An access is atomic if it is always performed in its entirety with no software-visible 
fragmentation. Only the following single-register accesses are guaranteed to be atomic:

• Byte accesses.
• Halfword accesses aligned on halfword boundaries.
• Word accesses aligned on word boundaries.

No other access is guaranteed to be atomic, particularly the following:

• Load and store operations using unaligned operands.
• Accesses resulting from execution of the lmw, stmw, lswi, lswx, stswi, or stswx 

instructions.
• Accesses resulting from execution of cache-management instructions.

The lwarx/stwcx. instruction combination can be used to perform an atomic memory 
access. The lwarx instruction is a load from a word-aligned memory location that has two 
side effects:

• A reservation for a subsequent stwcx. instruction is created.
• The memory coherence mechanism is notified that a reservation exists for the 

memory location accessed by the lwarx.

The stwcx. instruction conditionally stores to a word-aligned memory location based on 
the existence of a reservation created by lwarx. See Synchronizing Instructions, page 424, 
for more information on using these instructions.

Ordering Memory Accesses
The PowerPC architecture specifies a weakly-consistent memory model for shared-
memory multiprocessor systems. The order a processor performs memory accesses, the 
order those accesses complete in memory, and the order those accesses are viewed as 
occurring by another processor can all differ. This model provides an opportunity for 
significantly improved performance over a model applying stronger consistency rules. 
However, the responsibility for memory-access ordering is placed on the programmer. 

When a program requires strict access ordering for proper execution, the programmer 
must insert the appropriate ordering or synchronizing instructions into the program. The 
PowerPC architecture provides the ability to enforce memory-access ordering among 
multiple programs that share memory. Similar means are provided for programs that share 
memory with other hardware devices, such as I/O devices. These are:
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• Enforce in-order execution of I/O instruction—The eieio instruction forces load and store 
memory-access ordering. The instruction acts as a barrier between all loads and stores 
that precede it and those that follow it. eieio can be used to ensure that a sequence of 
load and store operations to an I/O-device control register are performed in the 
desired order.

• Synchronize instruction—The sync instruction guarantees that all preceding coherent 
memory accesses initiated by a program appear to complete before the sync 
instruction completes. No subsequent instructions appear to execute until after the 
sync instruction completes. 

On processors that support hardware-enforced shared-memory coherency, the sync 
instruction also provides synchronization between devices that access memory. The 
PPC405 does not provide hardware-enforced shared-memory coherency support. On 
the PPC405, the sync instruction is implemented identically to eieio.

In systems supporting hardware-enforced shared-memory coherency, sync can take 
significantly longer to execute than eieio. Programmers should avoid using sync when 
eieio performs the required ordering. 

Preventing Inappropriate Speculative Accesses
PowerPC processors can perform speculative memory accesses, either to fetch instructions 
or to load data. A speculative access is any access not required by the sequential-execution 
model. For example, fetching instructions beyond an unresolved conditional branch is 
considered speculative. If the branch prediction is incorrect, the program (as executed) 
never requires the speculatively fetched instructions from the mispredicted path.

Sometimes speculative accesses are inappropriate. For example, an attempt to fetch 
instructions from addresses that do not contain instructions can cause a program to fail. 
Speculatively reading data from a memory-mapped I/O device can cause undesirable 
system behavior. Speculatively reading data from a peripheral status register that is 
cleared automatically after a read can cause unintentional loss of status information.

The PPC405 does not perform speculative data loads, but can speculatively fetch 
instructions. Branch prediction can cause speculative fetching of up to five cacheable 
instructions, or two non-cacheable instructions. If a bctr or blr instruction is predicted as 
taken, speculative fetching down the predicted path does not begin until all updates of the 
CTR or LR ahead of the predicted branch are complete. This prevents speculative accesses 
from unrelated addresses residing temporarily in the CTR and LR.

Using Guarded Storage
Speculative accesses can be prevented by assigning the guarded storage attribute (G) to 
memory locations (see Guarded (G), page 452). An access to a guarded memory location is 
not performed until that access is required by the sequential-execution model and is no 
longer speculative. There is a considerable performance penalty associated with accessing 
guarded memory locations, so the guarded storage attribute should be used only when 
required.

Guarded storage can be specified in two ways, depending on the address-translation 
mode:

• In real mode (MSR[IR]=0), the storage-guarded register (SGR) controls assignment of 
the guarded attribute to memory locations.

• In virtual mode (MSR[IR]=1), the page-translation look-aside buffer (TLB) for a 
virtual-memory page contains a G field that controls assignment of the guarded 
attribute to memory locations.

Marking a memory location as guarded does not completely prevent speculative accesses 
from that memory location. Speculative accesses from guarded storage can occur in the 
following cases:
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• Load instructions—If the memory location is already cached, the location can be 
speculatively accessed.

• Instruction fetch, real mode—If the instruction address is already cached, the 
instruction can be speculatively fetched. If the instruction address is required by the 
sequential-execution model and is in the same physical page or next physical page as 
the previous instruction, it can be speculatively fetched. A real-mode physical page is 
a contiguous 1 KB block of physical memory, aligned on a 1 KB address boundary.

• Instruction fetch, virtual mode—In virtual mode, attempts to fetch instructions either 
from guarded storage or from no-execute memory locations normally cause an 
instruction-storage interrupt to occur. However, the instruction can be cached prior to 
designating the address as guarded or no-execute. If the instruction address is present 
in the cache, the instruction can be speculatively fetched, even if it is later marked as 
guarded or no-execute.

Using Unconditional Branches
Speculative accesses can be prevented without using the guarded storage attribute. This is 
done by placing unconditional branches immediately before memory regions that should 
not be speculatively accessed. When an unconditional branch is fetched by the processor, it 
recognizes it as a break in program flow and knows that the sequential instructions 
following the branch are not executed. The processor does not speculatively fetch those 
instructions and instead fetches from the branch target. Placing unconditional branches at 
the end of physical memory and at addresses bordering I/O devices prevents speculative 
accesses from occurring outside the appropriate regions.

The system-call and interrupt-return instructions (sc, rfi, and rfci) are not recognized by 
the processor as breaks in program flow and speculative fetches can occur past those 
instructions. This can cause problems when one of the speculatively fetched instructions is 
a bctr or blr. For example:

handler: first instruction
more instructions
rfi
subroutine: bctr

The processor can speculatively fetch the bctr target, which is the first instruction of a 
subroutine unrelated to the interrupt handler. Here, the CTR might contain an invalid 
address. To prevent prefetching the bctr, software can insert an unconditional branch 
between the rfi and bctr. The branch can specify itself as the target to guarantee that only 
a valid instruction address is speculatively fetched.

Another example is one where a system-service routine is called to initialize the CTR with 
a branch-target address, as follows:

some instructions
sc
bctr

An unconditional branch cannot be inserted after the sc because the system-service routine 
returns to the instruction following sc when complete. Instead, software can use an mtctr 
instruction to initialize the CTR with a non-sensitive address prior to calling the service 
routine. Speculative fetches down the bctr path occur from the non-sensitive address. The 
mtctr also prevents speculative fetching until the processor updates CTR.

The system-trap instructions (tw and twi) do not require the special handling described 
above. These instructions are typically used by a debugger that sets breakpoints by 
replacing instructions with trap instructions. For example, in the sequence:

mtlr
blr

Replacing the mtlr above with tw or twi leaves the LR uninitialized. It would be 
inappropriate to prefetch from the blr target in this situation. The processor is designed to 
prevent speculative prefetching when executing the system-trap instructions.
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Memory-System Control
Software manages memory-system operation using a combination of synchronization 
instructions (described in the previous section) and storage attributes. These resources 
provide program control over memory coherency, memory-access ordering, and 
speculative memory accesses

Storage Attributes
Storage attributes are used by system software to control how the processor accesses 
memory. These attributes are used to control cacheability, endianness (byte-ordering), and 
speculative accesses. PPC405 software can control five different storage attributes. Three 
attributes—write through (W), caching inhibited (I), and guarded (G)—are defined by the 
PowerPC architecture. Two attributes—user-defined (U0) and endian (E)—are defined by 
the PowerPC embedded environment architecture (the PowerPC Book-E architecture also 
supports these attributes).

The PowerPC architecture defines a memory-coherency attribute (M), but this attribute has 
no effect when used in PPC405 systems.

Management of storage attributes depends on whether address translation is used to 
access memory. In virtual mode, the page translation (TLB) entry for a virtual-memory 
region defines the storage attributes (see Storage-Attribute Fields, page 478). In real mode, 
the storage-attribute control registers are used to define the storage attributes (see Storage-
Attribute Control Registers, page 452).

The following sections describe the function of each attribute.

Write Through (W)
The write-through storage attribute controls the caching policy of a memory region.

When the W attribute is cleared to 0, the memory region has a write-back caching policy. 
Writes that hit the cache update the cacheline but they do not update system memory. 
Writes that miss the cache allocate a new cacheline and update that line, but they do not 
update system memory.

When the W attribute is set to 1, the memory region has a write-through caching policy. 
Writes that hit the cache update both the cacheline and system memory. Writes that miss 
the cache update system memory and do not allocate a new cacheline.

Caching Inhibited (I)
The caching-inhibited storage attribute controls the cacheability of a memory region. The 
value of this attribute and its effect on memory depends on whether the memory access is 
performed in virtual mode or real mode.

In virtual mode, a memory region is cacheable when the I attribute is cleared to 0. When 
the I attribute is set to 1, the memory region is not cacheable. Non-cacheable memory 
accesses bypass the cache and access system memory. It is considered a programming error 
when a memory-access target is resident in the cache and the I attribute is set to 1. The 
result of such an access are undefined.

The interpretation of this attribute is reversed in real-mode, which uses the data-cache 
cacheability register (DCCR) and the instruction-cache cacheability register (ICCR). Here, 
setting I to 1 enables cacheability and clearing I to 0 disables cacheability. See Storage-
Attribute Control Registers, page 452, for more information.

Memory Coherency (M)
The memory-coherency storage attribute controls memory coherency in multiprocessor 
environments. Because the PPC405x3 core does not provide hardware support for 
multiprocessor memory coherency, setting or clearing the M storage attribute has no effect. 
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See Software Management of Cache Coherency, page 463, for more information on 
memory coherency.

Guarded (G)
The guarded storage attribute controls speculative accesses into a memory region.

When the G attribute is cleared to 0, speculative accesses from the memory region can 
occur.

When the G attribute is set to 1, speculative memory accesses (instruction prefetches and 
data loads) are not permitted. The G storage attribute is typically used to protect memory-
mapped I/O from improper access. An instruction fetch from a guarded region does not 
occur until all previous instructions have completed execution, guaranteeing that the 
access is not speculative. Prefetching is disabled for a guarded region. Performance is 
degraded significantly when executing out of guarded regions, and software should avoid 
unnecessarily marking instruction regions as guarded.

See Preventing Inappropriate Speculative Accesses, page 449 for more information on 
guarded storage.

User Defined (U0)
The user-defined storage attribute controls implementation-dependent (processor and/or 
system) behavior of an access into a memory region. For example, some embedded-system 
implementations use the U0 attribute to identify memory regions containing compressed 
instructions. In those implementations, memory regions with U0=1 contain compressed 
instructions, and memory regions with U0=0 contain uncompressed instructions.

If desired, system software can cause an exception to occur when a data store is performed 
to U0 memory locations. This exception condition can be enabled using the U0-exception 
enable bit (U0XE) in the CCR0 register (see Core-Configuration Register, page 459). When 
CCR0[U0XE]=1, a store to memory locations with U0=1 cause a data-storage interrupt to 
occur. When CCR0[U0XE]=0, stores to U0 memory locations do not cause an exception. See 
Data-Storage Interrupt (0x0300), page 506 for information on identifying U0 exceptions. 

If no U0 behavior is implemented by the embedded system, setting and clearing the U0 
attribute has no effect on instruction fetches or data loads. However, the U0-exception 
enable can be used to trigger data-storage interrupts as described above whether the 
system defines U0 behavior.

Endian (E)
The endian attribute controls the byte ordering of accesses into a memory region.

When the E attribute is cleared to 0, memory accesses use big-endian byte ordering. When 
the E attribute is set to 1, memory accesses use little-endian byte ordering. See Byte 
Ordering, page 349 for more information on big-endian and little-endian memory 
accesses.

Storage-Attribute Control Registers
The storage-attribute control registers specify the real-mode storage attributes. In virtual 
mode, these registers are ignored and storage attributes are taken from the page translation 
entries (TLB entries). See Storage-Attribute Fields, page 478 for information on virtual-
mode storage attributes.

The storage-attribute control-registers are 32-bit registers. Each bit is associated with a 128  
MB memory region: bit 0 controls the lowest 128 MB region, bit 1 controls the next-lowest 
128 MB region, and so on. Together, the 32 register bits provide storage control across the 
entire 4 GB physical-address space. The five most-significant effective-address bits (EA0:4) 
are used to select a specific bit within the register. Table 5-2 shows the address ranges 
associated with each register bit.
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The following sections describe the six storage-attribute control registers in the PPC405.

Data-Cache Write-Through Register (DCWR)
The data-cache write-through register (DCWR) specifies real-mode caching policy (the W 
storage attribute). Its format is shown in Figure 5-7. Each bit in the DCWR controls 
whether a physical-memory region (as shown in Table 5-2) has a write-back or write-
through caching policy. This register controls only the data-cache caching policy. The 
caching policy is not applicable to the instruction cache because writes into the instruction-
cache are not supported.

When a bit in the DCWR is cleared to 0, the specified memory region has a write-back 
caching policy. Writes that hit the cache update the cacheline but they do not update 
system memory. Writes that miss the cache allocate a new cacheline and update that line, 
but they do not update system memory. When the bit is set to 1, the specified memory 
region has a write-through caching policy. Writes that hit the cache update both the 
cacheline and system memory. Writes that miss the cache update system memory, but they 
do not allocate a new cacheline.

After a processor reset, all bits in the DCWR are cleared to 0. This establishes a write-back 
caching policy for all real-mode memory.

The DCWR is a privileged SPR with an address of 954 (0x3BA) and can be read and written 
using the mfspr and mtspr instructions.

Table 5-2: Storage-Attribute Control-Register Address Ranges

Register Bit 
Indexed 

with EA0:4

Address Range
Register Bit 

Indexed 
with EA0:4

Address Range

0 0x0000_0000 to 0x07FF_FFFF 16 0x8000_0000 to 0x87FF_FFFF

1 0x0800_0000 to 0x0FFF_FFFF 17 0x8800_0000 to 0x8FFF_FFFF

2 0x1000_0000 to 0x17FF_FFFF 18 0x9000_0000 to 0x97FF_FFFF

3 0x1800_0000 to 0x1FFF_FFFF 19 0x9800_0000 to 0x9FFF_FFFF

4 0x2000_0000 to 0x27FF_FFFF 20 0xA000_0000 to 0xA7FF_FFFF

5 0x2800_0000 to 0x2FFF_FFFF 21 0xA800_0000 to 0xAFFF_FFFF

6 0x3000_0000 to 0x37FF_FFFF 22 0xB000_0000 to 0xB7FF_FFFF

7 0x3800_0000 to 0x3FFF_FFFF 23 0xB800_0000 to 0xBFFF_FFFF

8 0x4000_0000 to 0x47FF_FFFF 24 0xC000_0000 to 0xC7FF_FFFF

9 0x4800_0000 to 0x4FFF_FFFF 25 0xC800_0000 to 0xCFFF_FFFF

10 0x5000_0000 to 0x57FF_FFFF 26 0xD000_0000 to 0xD7FF_FFFF

11 0x5800_0000 to 0x5FFF_FFFF 27 0xD800_0000 to 0xDFFF_FFFF

12 0x6000_0000 to 0x67FF_FFFF 28 0xE000_0000 to 0xE7FF_FFFF

13 0x6800_0000 to 0x6FFF_FFFF 29 0xE800_0000 to 0xEFFF_FFFF

14 0x7000_0000 to 0x77FF_FFFF 30 0xF000_0000 to 0xF7FF_FFFF

15 0x7800_0000 to 0x7FFF_FFFF 31 0xF800_0000 to 0xFFFF_FFFF

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 5-7: Data-Cache Write-Through Register (DCWR)

http://www.xilinx.com


454 www.xilinx.com March 2002 Release
1-800-255-7778 Virtex-II Pro™ Platform FPGA Documentation

Chapter 5: Memory-System Management
R

Data-Cache Cacheability Register (DCCR)
The data-cache cacheability register (DCCR) specifies real-mode data-memory 
cacheability (the I storage attribute). Its format is shown in Figure 5-8. Each bit in the 
DCCR controls whether a physical-memory region (as shown in Table 5-2) is cacheable in 
the data cache.

When a bit in the DCCR is cleared to 0, the specified memory region is not cacheable. 
Memory accesses bypass the data cache and access main memory. It is considered a 
programming error if a memory address is cached by the data cache when the 
corresponding bit in the DCCR is cleared to 0. The result of such an access are undefined. 
When the bit is set to 1, the specified memory region is cacheable, and its caching policy is 
governed by the DCWR register.

After a processor reset, all bits in the DCCR are cleared to 0, indicating that physical 
memory is not cacheable by the data cache. Prior to specifying memory regions as 
cacheable, software must invalidate all data-cache congruence classes by executing the 
dccci instruction once for each class (see Cache Instructions, page 456 for more 
information). After the congruence classes are invalidated, the DCCR can be configured.

The interpretation of the I attribute is reversed in virtual-mode when using page 
translations (TLB entries) to specify cacheability. See Caching Inhibited (I), page 451 for 
more information.

The DCCR is a privileged SPR with an address of 1018 (0x3FA) and can be read and written 
using the mfspr and mtspr instructions.

Instruction-Cache Cacheability Register (ICCR)
The instruction-cache cacheability register (ICCR) specifies real-mode instruction-memory 
cacheability (the I storage attribute). Its format is shown in Figure 5-9. Each bit in the ICCR 
controls whether a physical-memory region (as shown in Table 5-2) is cacheable in the 
instruction cache.

When a bit in the ICCR is cleared to 0, the specified memory region is not cacheable. 
Memory accesses bypass the instruction cache and access main memory. It is considered a 
programming error if a memory address is cached by the instruction cache when the 
corresponding bit in the ICCR is cleared to 0. The result of such an access are undefined. 
When the bit is set to 1, the specified memory region is cacheable.

After a processor reset, all bits in the ICCR are cleared to 0, indicating that physical 
memory is not cacheable by the instruction cache. Prior to specifying memory regions as 
cacheable, software must execute the iccci instruction, which invalidates the entire 
instruction cache (see Cache Instructions, page 456 for more information). After the cache 
is invalidated, the ICCR can be configured.

The polarity of the I attribute is opposite in virtual-mode when using page translations 
(TLB entries) to specify cacheability. See Caching Inhibited (I), page 451 for more 
information.

The ICCR is a privileged SPR with an address of 1019 (0x3FB) and can be read and written 
using the mfspr and mtspr instructions.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 5-8: Data-Cache Cacheability Register (DCCR)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 5-9: Instruction-Cache Cacheability Register (ICCR)

http://www.xilinx.com


March 2002 Release www.xilinx.com 455
Virtex-II Pro™ Platform FPGA Documentation 1-800-255-7778

Memory-System Control
R

Storage Guarded Register (SGR)
The storage guarded register (SGR) specifies guarded memory in real-mode (the G storage 
attribute). Its format is shown in Figure 5-10. Each bit in the SGR controls whether a 
physical-memory region (as shown in Table 5-2) is guarded against speculative accesses. 
This register affects instruction memory only. Speculative loads are not performed on the 
PPC405, so guarding data memory has no effect. See Preventing Inappropriate 
Speculative Accesses, page 449 for more information.

When a bit in the SGR is cleared to 0, the specified memory region is not guarded and 
speculative accesses from the memory region can occur. When the bit is set to 1, the 
specified memory region is guarded and speculative accesses are not permitted.

After a processor reset, all bits in the SGR are set to 1. This establishes all of real-mode 
memory as guarded.

The SGR is a privileged SPR with an address of 953 (0x3B9) and can be read and written 
using the mfspr and mtspr instructions.

Storage User-Defined 0 Register (SU0R)
The storage user-defined 0 register (SU0R) specifies the implementation-dependent 
behavior of real-mode memory accesses (the U0 storage attribute). Its format is shown in 
Figure 5-11. Some embedded-system implementations use the SU0R to identify physical 
memory regions (as shown in Table 5-2) containing compressed instructions. In those 
implementations, memory regions with U0=1 contain compressed instructions and 
memory regions with U0=0 contain uncompressed instructions.

System software can use the U0 storage attribute to implement real-mode write protection. 
Writes to memory regions with U0=1 cause a data-storage exception if the U0 exception 
condition is enabled. This exception condition is enabled by setting the U0-exception 
enable bit (U0XE) in the CCR0 register to 1 (see Core-Configuration Register, page 459). 
When CCR0[U0XE]=0, writes to physical-memory locations do not cause an exception 
when the corresponding SU0R bit is set. See Data-Storage Interrupt (0x0300), page 506 for 
information on the U0 exception condition. 

After a processor reset, all bits in the SU0R are cleared to 0.

The SU0R is a privileged SPR with an address of 956 (0x3BC) and can be read and written 
using the mfspr and mtspr instructions.

Storage Little-Endian Register (SLER)
The storage little-endian register (SLER) specifies the byte ordering for real-mode memory 
accesses (the E storage attribute). Its format is shown in Figure 5-12. Each bit in the SLER 
controls whether a physical-memory region (as shown in Table 5-2) is accessed using big-
endian or little-endian byte ordering. See Byte Ordering, page 349 for more information 
on big-endian and little-endian memory accesses.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 5-10: Storage Guarded Register (SGR)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 5-11: Storage User-Defined 0 Register (SU0R)
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When a bit in the SLER is cleared to 0, the specified memory region is accessed using big-
endian ordering. When the bit is set to 1, the specified memory region is accessed using 
little-endian ordering. 

After a processor reset, all bits in the SLER are cleared to 0. This specifies big-ending 
accesses for all real-mode memory.

The SLER is a privileged SPR with an address of 955 (0x3BB) and can be read and written 
using the mfspr and mtspr instructions.

Cache Control

Cache Instructions
The following sections describe the user and privileged instructions used in cache 
management. Within the instruction name, the term cache block often appears. A cache 
block is synonymous with a cacheline.

Table 5-3 summarizes which cache-control instructions are privileged and which 
instructions can be executed in user mode.

Instruction-Cache Control Instructions
Table 5-4 shows the instruction-cache control instructions supported by the PPC405. These 
instructions provide the ability to invalidate the entire cache array or a single cacheline, 
prefetch instructions into the cache, and debug the cache.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 5-12: Storage Little-Endian Register (SLER)

Table 5-3: Privileged and User Cache-Control Instructions

Instruction Cache Data Cache

Mnemonic Privilege Level Mnemonic Privilege Level

icbi User dcba User

icbt User dcbf User

iccci Privileged dcbi Privileged

icread Privileged dcbst User

dcbt User

dcbtst User

dcbz User

dccci Privileged

dcread Privileged
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Data-Cache Control Instructions
Table 5-5 shows the data-cache control instructions supported by the PPC405. These 
instructions provide the ability to invalidate the entire cache array or a single cacheline, 
prefetch data into the cache, and debug the cache.

Table 5-4: Instruction-Cache Control Instructions

Mnemonic Name Operation
Operand 
Syntax

icbi Instruction Cache Block Invalidate If the instruction specified by the effective address 
(EA) is cached by the instruction cache, the 
cacheline containing that instruction is invalidated.

EA is calculated using register-indirect with index 
addressing:

EA = (rA|0) + (rB)

rA,rB

icbt Instruction Cache Block Touch If the instruction specified by the effective address 
(EA) is cacheable and is not currently cached by the 
instruction cache, the cacheline containing that 
instruction is loaded into the instruction cache 
from system memory.

EA is calculated using register-indirect with index 
addressing:

EA = (rA|0) + (rB)

rA,rB

iccci Instruction Cache Congruence Class 
Invalidate

Invalidates the entire instruction cache. —

icread Instruction Cache Read If the instruction specified by the effective address 
(EA) is cached by the instruction cache, the 
ICDBDR register is loaded with information from 
one of the two ways indexed by the EA. CCR0 
fields specify the cache way, and whether the 
instruction tag or instruction word is loaded into 
the ICDBDR. See icread Instruction, page 468 for 
more information.

EA is calculated using register-indirect with index 
addressing:

EA = (rA|0) + (rB)

rA,rB
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Table 5-5: Data-Cache Control Instructions

Mnemonic Name Operation
Operand 
Syntax

dcba Data Cache Block Allocate An effective address (EA) is calculated using 
register-indirect with index addressing:

EA = (rA|0) + (rB)

This instruction can be used as a hint that a 
program might soon store into EA. It allocates a 
data cacheline for the byte addressed by EA. A 
subsequent store to EA hits the cache, improving 
program performance.

rA,rB

dcbf Data Cache Block Flush If the byte specified by the effective address (EA) is 
cached by the data cache, the cacheline containing 
that byte is invalidated. If the cacheline is modified 
(dirty), the entire contents of the cacheline are 
written to system memory before the line is 
invalidated.

EA is calculated using register-indirect with index 
addressing:

EA = (rA|0) + (rB)

rA,rB

dcbi Data Cache Block Invalidate If the byte specified by the effective address (EA) is 
cached by the data cache, the cacheline containing 
that byte is invalidated. If the cacheline is modified 
(dirty), those modifications are lost.

EA is calculated using register-indirect with index 
addressing:

EA = (rA|0) + (rB)

rA,rB

dcbst Data Cache Block Store If the byte specified by the effective address (EA) is 
cached by the data cache and the cacheline is 
modified (dirty), the entire contents of the 
cacheline are written to system memory. After the 
store completes, the cacheline is marked as 
unmodified (not dirty).

EA is calculated using register-indirect with index 
addressing:

EA = (rA|0) + (rB)

rA,rB

dcbt Data Cache Block Touch If the byte specified by the effective address (EA) is 
cacheable and is not currently cached by the data 
cache, the cacheline containing that byte is loaded 
into the data cache from system memory.

EA is calculated using register-indirect with index 
addressing:

EA = (rA|0) + (rB)

rA,rB

dcbtst Data Cache Block Touch for Store If the byte specified by the effective address (EA) is 
cacheable and is not currently cached by the data 
cache, the cacheline containing that byte is loaded 
into the data cache from system memory.

EA is calculated using register-indirect with index 
addressing:

EA = (rA|0) + (rB)

rA,rB
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The dcbt and dcbtst instructions are implemented identically on the PPC405. On some 
processor implementations, these instructions can cause separate bus operations to occur 
that differentiate data-cache touches for loads from data-cache touches for stores.

dcbz establishes a cacheline without accessing system memory. It is possible for software 
to erroneously use this instruction to establish a cacheline for unimplemented memory 
locations. A subsequent access that attempts to update unimplemented system memory 
(such as a cacheline replacement) can cause unpredictable results or system failure.

Core-Configuration Register
The core-configuration register (CCR0) is a 32-bit register used to configure memory-
system features, including:

• Whether cache misses cause cacheline allocation.
• Whether instruction prefetching is permitted.
• The size of non-cacheable requests over the processor local bus.
• The priority given by the processor when it makes a request over the processor local 

bus on behalf of a cache unit.
• Enablement of the U0 storage-attribute exception.
• Cache-debug features.

Figure 5-13 shows the format of the CCR0. The fields in CCR0 are defined as shown in 
Table 5-6.

dcbz Data Cache Block Clear to Zero An effective address (EA) is calculated using 
register-indirect with index addressing:

EA = (rA|0) + (rB)

If the byte referenced by EA is not cached, a 
cacheline is allocated for that address. The 
cacheline containing the byte referenced by EA is 
cleared to 0 and marked modified (dirty).

If the EA is non-cacheable or write-through, an 
alignment exception occurs. The alignment-
interrupt handler can emulate the operation by 
clearing the corresponding bytes in system 
memory to 0.

rA,rB

dccci Data Cache Congruence Class 
Invalidate

Invalidates both data-cache ways in the 
congruence class specified by the effective address 
(EA). Any modified data is lost.

EA is calculated using register-indirect with index 
addressing:

EA = (rA|0) + (rB)

rA,rB

dcread Data Cache Read If the byte specified by the effective address (EA) is 
cached by the data cache, rD is loaded with 
information from one of the two ways indexed by 
the EA. CCR0 fields specify the cache way and 
whether the data tag or data word is loaded into 
rD. See dcread Instruction, page 469 for more 
information.

EA is calculated using register-indirect with index 
addressing:

EA = (rA|0) + (rB)

rD,rA,rB

Table 5-5: Data-Cache Control Instructions (Continued)

Mnemonic Name Operation
Operand 
Syntax
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0 6 7 8 9 10 11 14 15 20 21 22 23 27 31

LWL LWOA SWOA DPP1 IPP U0XE LBDE PFC PFNC NCRS FWOA CIS CWS

Figure 5-13: Core-Configuration Register (CCR0)

Table 5-6: Core-Configuration Register (CCR0) Field Definitions

Bit Name Function Description

0:5 Reserved

6 LWL Load Word as Line

0—Load only requested data
1—Load entire cacheline

When this bit is set to 1, eight words are loaded into the fill buffer 
when a data-cache load-miss occurs, or when a load from non-
cacheable memory occurs. The requested data is included in the 
eight words. When this bit is cleared to 0, only the requested data 
is loaded.

7 LWOA Load Without Allocate

0—Allocate
1—Do not allocate

When this bit is set to 1, a load miss behaves like a non-cacheable 
load and does not allocate a data cacheline. When cleared to 0, load 
misses allocate a data cacheline.

8 SWOA Store Without Allocate

0—Allocate
1—Do not allocate

When this bit is set to 1, a store miss behaves like a non-cacheable 
store and does not allocate a data cacheline. When cleared to 0, 
store misses to write-back memory allocate a data cacheline.

9 DPP1 DCU PLB-Priority Bit 1

0—DCU PLB priority 0 on bit 1
1—DCU PLB priority 1 on bit 1

Establishes the value of bit 1 in the 2-bit request-priority signal 
driven by the data-cache unit onto the processor local bus (PLB). Bit 
0 is controlled by the processor and cannot be controlled by 
software. See PLB-Request Priority, page 461 for more 
information.

10:11 IPP ICU PLB-Priority Bits 0:1

00—Lowest PLB req priority
01—Next-to-lowest priority
02—Next-to-highest priority
03—Highest PLB req priority

Establishes the value of the 2-bit request-priority signal driven by 
the instruction-cache unit onto the processor local bus (PLB). See 
PLB-Request Priority, page 461 for more information.

12:13 Reserved

14 U0XE Enable U0 Exception

0—Disabled
1—Enabled

Controls data-storage interrupts for memory with the U0 storage 
attribute set. A data-storage interrupt occurs when this bit is set to 
1 and a store is performed to U0 memory. See Data-Storage 
Interrupt (0x0300), page 506 for more information.

15 LDBE Load-Debug Enable

0—Load data is not visible on
the data-side OCM

1—Load data is visible on the
data-side OCM.

16:19 Reserved

20 PFC Prefetching for Cacheable 
Regions

0—Disabled.

1—Enabled.

When this bit is set to 1, the processor can prefetch instructions 
from cacheable memory regions into the instruction-prefetch 
buffers. Clearing this bit to 0 disables prefetching from cacheable 
memory regions, generally at a cost to performance.

21 PFNC Prefetching for Non-Cacheable 
Regions

0—Disabled.

1—Enabled.

When this bit is set to 1, the processor can prefetch instructions 
from non-cacheable memory regions into the instruction-prefetch 
buffers. Clearing this bit to 0 disables prefetching from non-
cacheable memory regions, generally at a cost to performance.
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The CCR0 is a privileged SPR with an address of 947 (0x3B3) and can be read and written 
using the mfspr and mtspr instructions.

PLB-Request Priority
Table 5-7 shows the encoding of the 2-bit PLB-request priority signal. This signal is sent 
from a PLB master to a PLB arbiter indicating the priority of the master request. The arbiter 
uses these signals along with priority signals from other masters to determine which 
request should be granted. The PPC405 ICU and DCU are both PLB masters, and software 
can control their respective PLB-request priority using CCR0[IPP] and CCR0[DPP1].

CCR0 Programming Guidelines
Several fields in CCR0 affect the instruction-cache and data-cache operation. Severe 
problems can occur—including a processor hang—if these fields are modified while the 
cache unit is involved in a PLB operation. To prevent problems, certain code sequences 
must be followed when modifying the CCR0 fields.

The first code example (Sequence 1) can be used to alter any field within CCR0. Use of this 
sequence is required when altering either CCR0[IPP] or CCR0[FWOA], both of which affect 
instruction-cache operation. In this and the following example, registers rN, rM, rX, and rZ 
are any available GPRs.

22 NCRS Non-Cacheable Request Size

0—Request size is four words.

1—Request size is eight words.

Specifies the number of instructions requested from non-cacheable 
memory when an instruction fetch or prefetch occurs. (Requests to 
cacheable memory are always eight words.)

23 FWOA Fetch Without Allocate

0—Allocate.

1—Do not allocate.

When this bit is set to 1, an instruction-fetch miss behaves like a 
non-cacheable fetch and does allocate a data cacheline. When 
cleared to 0, fetch misses from cacheable memory allocate a data 
cacheline.

24:26 Reserved

27 CIS Cache-Information Select

0—Information is cache data.

1—Information is cache tag.

This bit is used by the dcread and icread instructions, and specifies 
whether cache-data or cache-tag information is loaded into the 
destination register. See Cache Debugging, page 468 for more 
information.

28:30 Reserved

31 CWS Cache-Way Select

0—Cache way is A.

1—Cache way is B.

This bit is used by the dcread and icread instructions, and identifies 
the cache way (A or B) from which the cache information specified 
by CCR0[CIS] is read. The information is loaded into the 
destination register. See Cache Debugging, page 468 for more 
information.

Table 5-6: Core-Configuration Register (CCR0) Field Definitions (Continued)

Bit Name Function Description

Table 5-7: PLB-Request Priority Encoding

Bit 0 Bit 1 Definition

0 0 Lowest PLB-request priority.

0 1 Next-to-lowest PLB-request priority.

1 0 Next-to-highest PLB-request priority.

1 1 Highest PLB-request priority.
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! SEQUENCE 1 - Required when altering CCR0[IPP, FWOA].
!
! Turn off interrupts.
mfmsr rM
addis rZ,r0,0x0002 ! CE bit
ori rZ,rZ,0x8000 ! EE bit
andc rZ,rM,rZ ! Turn off MSR[CE,EE]
mtmsr rZ
! Synchronize execution.
sync
! Touch the CCR0-altering function into the instruction cache.
addis rX,r0,seq1@h
ori rX,rX,seq1@l
icbt r0,rX

! Call the CCR0-altering function.
b seq1

back:
! Restore MSR to original value.
mtmsr rM
...

! The following function must be in cacheable memory so that it can be 
touched into the instruction cache.

.align 5 ! Align the CCR0-altering function code on a cacheline
! boundary.

seq1:
! Repeat the instruction-cache touch and synchronize context to
! guarantee the most recent value of CCR0 is read. A total of eight
! instructions are touched into a single cacheline. This function
! example contains seven instructions. If more than eight instructions
! are required, additional lines must be touched into the cache.
icbt r0,rX 
isync ! The CCR0-altering code has been completely

! fetched across the PLB.
mfspr rN,CCR0 ! Read CCR0
! Use and/or instructions to modify any CCR0 bits. Because one cache
! line was touched in this example, up to two instructions can be used 
! to modify CCR0.
andi/ori rN,rN,0xnnnn 
mtspr CCR0,rN ! Update CCR0.
isync ! Refetch instructions under new processor context.
b back ! Branch back to initialization code.

The following code example (Sequence 2) can be used to alter either CCR0[DPP1] or 
CCR0[U0XE]. Sequence 1 can also be used to alter these fields.

! SEQUENCE 2 - Alter CCR0[DPP1, U0XE].
! Turn off interrupts.
mfmsr rM
addis rZ,r0,0x0002 ! CE bit
ori rZ,rZ,0x8000 ! EE bit
andc rZ,rM,rZ ! Turn off MSR[CE,EE]
mtmsr rZ
! Synchronize execution.
sync
! Modify CCR0.
mfspr rN,CCR0 ! Read CCR0
! Use and/or instructions to modify any CCR0 bits.
andi/ori rN,rN,0xnnnn 
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mtspr CCR0,rN ! Update CCR0.
isync ! Refetch instructions under new processor context.
! Restore MSR to original value.
mtmsr rM

Modifications to CCR0[CIS] and CCR0[CWS] do not require special treatment.

Software Management of Cache Coherency
The PPC405 does not support memory-coherency management in hardware. This section 
describes the situations that can cause a loss of memory coherency and the steps software 
must take to prevent such loss.

How Coherency is Lost
Generally, coherency is lost when software shares cacheable memory with external 
devices. When a memory address is cached, the potential for losing memory coherency 
exists each time the address is accessed by any external device in the system. If a device 
reads cacheable system-memory, it can receive incorrect data. This occurs when modified 
data resides in write-back cachelines. Such data is not stored to system memory until the 
modified line is replaced by another line or until it is stored explicitly by a cache-control 
instruction. The use of write-through cachelines does not completely solve the problem. 
When an external device updates a cacheable system-memory location, copies present in 
the cache are not updated.

For example, when a DMA controller reads and writes cacheable system memory, 
coherency can be lost because:

• The processor does not automatically supply the DMA controller with the latest copy 
of data from the cache.

• The processor does not update cached locations with the latest copy written to system 
memory by the DMA controller.

To illustrate how coherency can be lost, consider the initial state of system memory and the 
contents of cache memory shown in the following table. For simplicity, the example uses a 
cacheline size of 16 bytes rather than 32 bytes. Each data element in the table represents a 
word (four bytes), although for clarity only byte values are shown. A row in the system-
memory portion and cache-memory portion of the table each contain 16 data bytes. The 
“V” column indicates whether the cacheline is valid and the “D” column indicates whether 
the line data is dirty (modified). A “—” in the cache-memory portions indicates a don’t 
care.

This example assumes write-back caching is enabled for all system-memory addresses 
represented in the above table (0x1000–0x103F). The following program is executed, 
updating the data words in addresses 0x1004–0x1030:

li r1,0x1004-4 ! Start at address 0x1004.
li r2,12 ! Fill 12 words.
mtctr r2 ! Initialize counter.
li r3,0 ! Initialize data to zero.

System Memory Cache Memory

Address Data (Words) Address V D Data (Words)

1000 A9 2A 3A EB — No No — — — —

1010 0C 93 EE A1 — No No — — — —

1020 EF 39 EB A6 — No No — — — —

1030 3D 5F 8F 34 — No No — — — —
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loop:
stwu r3,4(r1) ! r1=r1+4, write (r3) to address in r1.
addi r3,r3,1 ! Increment data (r3=r3+1).
bdnz loop ! Repeat until done.

As the program executes, cachelines are fetched from system memory into the cache and 
portions of the lines are overwritten with new data as specified by the program. The result 
is shown in the following table. Because the addresses are write-back cacheable, system 
memory is not updated. If an external device reads or writes the gray-shaded system-
memory locations, a loss of coherency occurs. This can be prevented only if software 
flushes the affected lines from cache memory before the external device accesses system 
memory.

To further illustrate coherency loss, assume normal cache operations cause the first two 
cachelines to be replaced by unrelated data. Cacheline replacement updates system 
memory as shown below. Here, fewer system-memory locations are not coherent (shaded 
gray). An “x” indicates a replacement value in the cache unrelated to the program.

Next, assume an external device updates the words at system-memory addresses 0x100C–
0x1024, while at the same time a cacheline reload from 0x1010 occurs. This causes neither 
system memory nor the cache to contain data expected by the programmer (gray-shaded 
locations). 

Coherency Loss Through Dual-Mapping
Some memory controllers support dual-mapping of physical-address ranges. With dual-
mapping, two address ranges are resolved as a single address range. For example, assume 

System Memory Cache Memory

Address Data (Words) Address V D Line Data (Words)

1000 A9 2A 3A EB 1000 Yes Yes A9 00 01 02

1010 0C 93 EE A1 1010 Yes Yes 03 04 05 06

1020 EF 39 EB A6 1020 Yes Yes 07 08 09 0A

1030 3D 5F 8F 34 1030 Yes Yes 0B 5F 8F 34

System Memory Cache Memory

Address Data (Words) Address V D Line Data (Words)

1000 A9 00 01 02 x Yes x x x x x

1010 03 04 05 06 x Yes x x x x x

1020 EF 39 EB A6 1020 Yes Yes 07 08 09 0A

1030 3D 5F 8F 34 1030 Yes Yes 0B 5F 8F 34

System Memory Cache Memory

Address Data (Words) Address V D Line Data (Words)

1000 A9 00 01 FF x Yes x x x x x

1010 FE FD FC FB 1010 Yes No FE FD 05 06

1020 FA F9 EB A6 1020 Yes Yes 07 08 09 0A

1030 3D 5F 8F 34 1030 Yes Yes 0B 5F 8F 34
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a memory controller is programmed to ignore the high-order physical-address bit (bit 0). 
Here, accesses to physical addresses 0x0000_0000 and 0x8000_0000 are resolved by the 
memory controller to the same physical address.

Software running on the PPC405 can specify address ranges as cacheable or non-cacheable 
using the cacheability registers (DCCR and ICCR) in real mode or using page translations 
in virtual mode. Using the above dual-mapping example, assume address 0x0000_0000 is 
cacheable and address 0x8000_0000 is non-cacheable. Software that reads data from 
address 0x0000_0000 does so using the cached copy, and reads from address 0x8000_0000 
use the system-memory copy. Coherency is lost when the cached copy differs from the 
system-memory copy. To prevent this problem, dual-mapping should not be used to 
resolve cacheable address ranges and non-cacheable address ranges into a single address 
range.

Enforcing Coherency With Software
If a processor can cache shared-memory regions, access to those regions must be controlled 
by software. Software must ensure that addresses from a shared-memory region are not 
present in any of the processor caches before granting another device access to the region. 
Software must also avoid cacheable accesses into a shared-memory region until after the 
other device completes its access.

Cacheable accesses to non-shared-memory regions should not inadvertently cache 
information from adjacent, shared-memory regions. It is recommended that the alignment 
and size of shared-memory regions be a multiple of the cacheline size. By configuring all 
shared-memory regions to start on a cacheline boundary and span an integral number of 
cachelines, software can ensure that no cacheline contains a mixture of shared and non-
shared memory.

The instruction and data caches in the PPC405 have a cacheline size of 32 bytes. If a C 
program executing on a PPC405 requires 150 bytes of shared-buffer space, it should 
allocate the corresponding memory region as shown in the following programming 
example. In this example, shared represents the shared-memory region. However, system 
software controls the cacheability of buffer rather than shared. 

#define LINE_LENGTH 32 ! Cacheline length in bytes.
#define BIT_MASK 0x1F ! Address bits that select a byte in line.
char *buffer; ! Buffer allocated by malloc.
char *shared; ! Cacheline-aligned buffer.

! Obtain the buffer.
buffer = (char) malloc(150+2*LINE_LENGTH-2);

! If the buffer is not at the beginning of the cacheline,
! point to the start of the next cacheline.
if (buffer & BIT_MASK != 0)
shared = buffer + LINE_LENGTH - (buffer & BIT_MASK);

else
shared = buffer; ! otherwise use as is

Figure 5-14 shows the placement of buffer and shared in memory after the above 
program is executed (cacheline boundaries are represented by heavy vertical lines). 
Because malloc does not necessarily allocate memory aligned on a cacheline boundary, 
the size of buffer is increased to account for alignment, and to span an integral number of 
cachelines. The second memory region, shared, is overlaid on buffer. The starting 
address of shared is adjusted to fall on the first cacheline boundary within buffer. The 
ending address of shared falls before a cacheline boundary, but that cacheline boundary 
falls within buffer.
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Failure to allocate memory using this technique, or through compiler directives that align 
and pad variables in a similar manner, can cause coherency problems. 

It is important that software control the cacheability of buffer when managing access to 
shared. The alignment and size of buffer is such that information in shared cannot be 
inadvertently cached by accesses to adjacent memory regions. If the cacheability of 
shared is managed instead, it is possible for data near the last address in shared to be 
cached inadvertently.

Cache Flushing
Before another device can access a shared-memory region, software must flush all shared-
memory contents from the data cache. If the region contains executable code, all shared 
contents must be invalidated in the instruction cache. Data-cache flushing and instruction-
cache invalidation are both required if software treats executable code as data (for 
example, moves executable code into or out of a shared-memory region). Invalidating 
shared-memory contents in the instruction cache keeps it coherent with system memory 
when executable code is relocated.

The method used to flush shared memory from the data cache depends on the size of the 
memory region relative to the data-cache size. Flushing shared memory address-by-
address is most efficient when the region is smaller than the data cache. The following code 
sequence is an example of how shared-memory can be flushed from the data cache:

! r1 = start of shared-memory region.
! r2 = end of shared-memory region.
loop:
dcbf 0,r1 ! Flush cacheline at address r1.
addi r1,r1,32 ! Point to the next cacheline.
cmpw r1,r2 ! Check if finished.
ble loop ! If not, continue until done.

In the above example, the dcbf instruction invalidates all data cachelines containing 
shared-memory addresses. If a cacheline contains modified data, it is written back to 
system memory prior to invalidation. No action is taken if the cache does not contain 
addresses from the shared-memory region.

If the shared-memory region is larger than the data cache, flushing the entire data cache 
can often yield better performance than using the process shown above. However, the 
PPC405 does not provide a data-cache flush instruction. Instead, software must replace the 
data-cache contents, forcing writes of all modified lines to system memory. 

The following code sequence uses the dcbz instruction in such a manner. dcbz can be used 
to establish a line in the data cache at an unused (and possibly non-existent) address 
without causing a load from system memory (and consuming PLB bandwidth). By 
executing two dcbz instructions using different addresses in the same congruence class, 
software can flush both cachelines in a set. Afterward, software can execute a dccci 
instruction to invalidate both of these new lines.

<Disable interrupts>
li r1,<start of unused address range as large as data cache>
li r2,16384 ! Cache size in bytes/2.

Figure 5-14: Example of Shared-Memory Allocation
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li r3,256 ! Number of congruence classes in cache.
mtctrr3

loop:
dcbz 0,r1 ! Flush one way of the cache set.
dcbz r2,r1 ! Flush the other way of the cache set.
dccci0,r1 ! Invalidate the cache set.
addi r1,r1,32 ! Point to the next cacheline.
bdnz loop ! Continue until all sets are flushed.
sync ! Ensure cache data has been written.

<Re-enable interrupts>

Interrupts are disabled during the flush procedure to prevent possible system-memory 
corruption occurring due to an unexpected system-memory access. These problems can 
arise if an interrupt occurs after a dcbz establishes a new cacheline but before the dccci 
invalidates that line. Executing the interrupt handler could cause a flush of the new line 
due to normal line replacement. This could corrupt system-memory or cause invalid 
memory accesses. Disabling interrupts eliminates the potential for unexpected cache 
activity.

Self-Modifying Code
Software that updates executable-memory locations is known as self-modifying code. If self-
modifying code operates on cacheable-memory locations, cache-control instructions must 
be executed to maintain coherency between the instruction cache, system memory, and the 
data cache. Data-cache coherency is an issue because the instructions are treated as data 
when they are modified by other instructions.

Software that relocates executable code from one cacheable-memory location to another 
requires the same coherency treatment as self-modifying code. Although instructions are 
not changed, they are treated as data by the program that moves them, and can therefore 
be cached by the data cache.

The following code sequence can be used to enforce coherency between system memory 
and both the instruction and data caches. In this example, instructions are moved 
individually from one memory location to another while caching is enabled. Cache 
coherency is maintained throughout the process. Performance can be improved if software 
prohibits execution of the instructions while they are moved so that the caches are flushed 
and invalidated outside the loop.

! r1 = Instruction source address (word aligned).
! r2 = Instruction target address (word aligned).
! r3 = Number of instructions to move.
addi r1,r1,-4 ! Initialize for use of lwzu and stwu
addi r2,r2,-4
mtctrr3

loop:
lwzu r4,4(r1) ! Read source instruction.
stwu r4,4(r2) ! Write target instruction.
dcbf 0,r2 ! Remove target instruction from data cache.
icbi 0,r2 ! Remove target instruction from instruction cache.
bdnz loop ! Repeat until all instructions are moved.
sync ! Synchronize execution.
isync ! Synchronize context.

Coherency of self-modifying code can be maintained in an similar fashion. Instead of 
moving an instruction from one location to another, the source and target addresses are 
identical. A modifying instruction (or sequence of instructions) is inserted between the 
instruction load and instruction store. Below is a simple assembler-code sequence that can 
be used to maintain cache coherency during self-modifying code operations.
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! rN contains a modified instruction.
stw rN, addr1 ! Store the modified instruction.
dcbst addr1 ! Force instruction to be written to system memory.
sync ! Wait for the system-memory update.
icbi addr1 ! Invalidate unmodified instruction-cache entry.
isync ! The unmodified instruction might be in the 

! prefetch buffers. isync invalidates the prefetch 
! buffers.

Cache Debugging
The PPC405 provides two instructions that can read cache-tag and cache-data information 
for a specific cache congruence class. icread performs this function for the instruction 
cache and dcread performs this function for the data cache. These instructions operate 
under the control of certain bit fields in the CCR0 register (see Core-Configuration 
Register, page 459). The operation of each instruction is described in the following 
sections.

icread Instruction
The icread instruction reads instruction cacheline information for a specific effective 
address. A congruence class is selected from the instruction cache using the effective-
address bits EA22:26. A way is selected from the congruence class using the cache-way select 
field (CWS) in the CCR0 register. CCR0[CWS]=0 selects way A and CCR0[CWS]=1 selects 
way B. The cacheline information in the selected congruence-class and way is loaded into 
the 32-bit instruction-cache debug-data register (ICDBDR). Figure 5-15 shows the format 
of the ICDBDR. The fields in the ICDBDR are defined as shown in Table 5-8.

The ICDBDR is a privileged, read-only SPR with an address of 979 (0x3D3). It can be read 
using the mfspr instruction.

0 22 27 28 31

INFO V LRU

Figure 5-15: Instruction-Cache Debug-Data Register (ICDBDR)

Table 5-8: Instruction-Cache Debug-Data Register (ICDBDR) Field Definitions

Bit Name Function Description

0:21 INFO Instruction-Cache Information

CCR0[CIS]=0—Instruction 
word.

CCR0[CIS]=1—Instruction tag.

Contains either the cacheline tag or a single instruction word from 
the cacheline. If an instruction word is loaded, it is specified using 
effective-address bits EA27:29. CCR0[CIS] controls the type of 
information loaded into this field.

22:26 Reserved

27 V Valid

0—Cacheline is not valid.

1—Cacheline is valid.

Contains a copy of the cacheline valid bit.

28:30 Reserved

31 LRU Least-Recently Used

0—Way A is least-recently 
used.

1—Way B is least-recently 
used.

Contains the LRU bit for the congruence class associated with the 
cacheline.
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Synchronization is required between the icread instruction and the mfspr that reads the 
ICDBDR contents. This guarantees that the values read by mfspr are those loaded by the 
most-recent execution of icread. The following assembler-code sequence provides an 
example:

icread rA,rB ! Read instruction-cache information.
isync ! Ensure icread completes execution.
mficdbdr rD ! Copy information to GPR.

dcread Instruction
The dcread instruction reads data cacheline information for a specific effective address. A 
congruence class is selected from the data cache using the effective-address bits EA19:26. A 
way is selected from the congruence class using the cache-way select field (CWS) in the 
CCR0 register. CCR0[CWS]=0 selects way A and CCR0[CWS]=1 selects way B. The 
cacheline information in the selected congruence-class and way is loaded into the 
destination GPR, rD. Figure 5-15 shows the format of the cache information loaded into rD. 
The information fields loaded in rD are defined as shown in Table 5-8.

0 19 26 27 28 31

INFO D V LRU

Figure 5-16: Information Fields Loaded by dcread into rD

Table 5-9: dcread Information-Field Definitions

Bit Name Function Description

0:18 INFO Data-Cache Information

CCR0[CIS]=0—Data word.

CCR0[CIS]=1—Data tag.

Contains either the cacheline tag or a single data word from the 
cacheline. If a data word is loaded, it is specified using effective-
address bits EA27:29. CCR0[CIS] controls the type of information 
loaded into this field.

19:25 Reserved

26 D Dirty

0—Cacheline is not dirty.

1—Cacheline is dirty.

Contains a copy of the cacheline dirty bit, indicating whether the 
line contains modified data.

27 V Valid

0—Cacheline is not valid.

1—Cacheline is valid.

Contains a copy of the cacheline valid bit.

28:30 Reserved

31 LRU Least-Recently Used

0—Way A is least-recently 
used.

1—Way B is least-recently 
used.

Contains the LRU bit for the congruence class associated with the 
cacheline.
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Chapter 6

Virtual-Memory Management

Programs running on the PPC405 use effective addresses to access a flat 4 GB address 
space. The processor can interpret this address space in one of two ways, depending on the 
translation mode:

• In real mode, effective addresses are used to directly access physical memory.
• In virtual mode, effective addresses are translated into physical addresses by the 

virtual-memory management hardware in the processor.

Virtual mode provides system software with the ability to relocate programs and data 
anywhere in the physical address space. System software can move inactive programs and 
data out of physical memory when space is required by active programs and data. 
Relocation can make it appear to a program that more memory exists than is actually 
implemented by the system. This frees the programmer from working within the limits 
imposed by the amount of physical memory present in a system. Programmers do not 
need to know which physical-memory addresses are assigned to other software processes 
and hardware devices. The addresses visible to programs are translated into the 
appropriate physical addresses by the processor. 

Virtual mode provides greater control over memory protection. Blocks of memory as small 
as 1 KB can be individually protected from unauthorized access. Protection and relocation 
enable system software to support multitasking. This capability gives the appearance of 
simultaneous or near-simultaneous execution of multiple programs.

In the PPC405, virtual mode is implemented by the memory-management unit (MMU). 
The MMU controls effective-address to physical-address mapping and supports memory 
protection. Using these capabilities, system software can implement demand-paged 
virtual memory and other memory management schemes. 

The MMU features are summarized as follows:

• Translates effective addresses into physical addresses.
• Controls page-level access during address translation.
• Provides additional virtual-mode protection control through the use of zones.
• Provides independent control over instruction-address and data-address translation 

and protection.
• Supports eight page sizes: 1 KB, 4 KB, 16 KB, 64 KB, 256 KB, 1 MB, 4 MB, and 16 MB. 

Any combination of page sizes can be used by system software.
• Software controls the page-replacement strategy.

Real Mode
The processor references memory when it fetches an instruction and when it accesses data 
with a load, store, or cache-control instruction. Programs reference memory locations 
using a 32-bit effective address (EA) calculated by the processor based on the address 
mode (see Effective-Address Calculation, page 344). When real mode is enabled, the 
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physical address is identical to the effective address and the processor uses the EA to 
access physical memory. After a processor reset, the processor operates in real mode. Real 
mode can also be enabled independently for instruction fetches and data accesses by 
clearing the appropriate bits in the MSR:

• Clearing the instruction-relocate bit (MSR[IR]) to 0 disables instruction-address 
translation. Instruction fetches from physical memory are performed in real mode 
using the effective address.

• Clearing the data-relocate bit (MSR[DR]) to 0 disables data-address translation. 
Physical-memory data accesses (loads and stores) are performed in real mode using 
the effective address.

Real mode does not provide system software with the level of memory-management 
flexibility available in virtual mode. Storage attributes are associated with real-mode 
memory but access protection is limited (the U0 storage attribute can be used for write 
protection). Implementation of a real-mode memory manager is more straightforward 
than a virtual-mode memory manager. Real mode is often an appropriate solution for 
memory management in simple embedded environments.

See Storage-Attribute Control Registers, page 452, for more information on real-mode 
memory control.

Virtual Mode
In virtual mode, the processor translates an EA into a physical address using the process 
shown in Figure 6-1. Virtual mode can be enabled independently for instruction fetches 
and data accesses by setting the appropriate bits in the MSR:

• Setting the instruction-relocate bit (MSR[IR]) to 1 enables address translation (virtual 
mode) for instruction fetches.

• Setting the data-relocate bit (MSR[DR]) to 1 enables address translation (virtual mode) 
for data accesses (loads and stores).

Figure 6-1: Virtual-Mode Address Translation
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Each address shown in Figure 6-1 contains a page-number field and an offset field. The 
page number represents the portion of the address translated by the MMU. The offset 
represents the byte offset into a page and is not translated by the MMU. The virtual 
address consists of an additional field, called the process ID (PID), which is taken from the 
PID register (see Process-ID Register, page 474). The combination of PID and effective 
page number (EPN) is referred to as the virtual page number (VPN). The value n is 
determined by the page size, as shown in Table 6-2, page 478.

System software maintains a page-translation table that contains entries used to translate 
each virtual page into a physical page (see page 474). The page size defined by a page-
translation entry determines the size of the page number and offset fields. For example, 
when a 4 KB page size is used, the page-number field is 20 bits and the offset field is 12 bits. 
The VPN in this case is 28 bits. See Table 6-2, page 478, for more information on page size.

Then the most frequently used page translations are stored in the translation look-aside 
buffer (TLB). When translating a virtual address, the MMU examines the page-translation 
entries for a matching VPN (PID and EPN). Rather than examining all entries in the table, 
only entries contained in the processor TLB are examined (see page 475, for information on 
the TLB). When a page-translation entry is found with a matching VPN, the corresponding 
physical-page number is read from the entry and combined with the offset to form the 32-
bit physical address. This physical address is used by the processor to reference memory.

System software can use the PID to uniquely identify software processes (tasks, 
subroutines, threads) running on the processor. Independently compiled processes can 
operate in effective-address regions that overlap each other. This overlap must be resolved 
by system software if multitasking is supported. Assigning a PID to each process enables 
system software to resolve the overlap by relocating each process into a unique region of 
virtual-address space. The virtual-address space mappings enable independent translation 
of each process into the physical-address space. Figure 6-2 shows an example of how the 
PID is used in virtual-memory mapping (overlapping areas are shaded gray).

Figure 6-2: Process-Mapping Example

UG011_39_033101

PID A

Process B

Process A

Process C

PID B

PID C

Process A

Process B

Process C

Process A

Process B

Process C

Virtual
Address Space

Effective
Address Space

Physical
Address Space

http://www.xilinx.com


474 www.xilinx.com March 2002 Release
1-800-255-7778 Virtex-II Pro™ Platform FPGA Documentation

Chapter 6: Virtual-Memory Management
R

Process-ID Register
The process-ID register (PID) is a 32-bit register used in virtual-address translation. 
Figure 6-3 shows the format of the PID register. The fields in the PID are defined as shown 
in Table 6-1.

The PID is a privileged SPR with an address of 945 (0x3B1) and is read and written using 
the mfspr and mtspr instructions.

Page-Translation Table
The page-translation table is a software-defined and software-managed data structure 
containing page translations. The requirement for software-managed page translation 
represents an architectural trade-off targeted at embedded-system applications. 
Embedded systems tend to have a tightly controlled operating environment and a well-
defined set of application software. That environment enables virtual-memory 
management to be optimized for each embedded system in the following ways:

• The page-translation table can be organized to maximize page-table search performance 
(also called table walking) so that a given page-translation entry is located quickly. 
Most general-purpose processors implement either an indexed page table (simple 
search method, large page-table size) or a hashed page table (complex search method, 
small page-table size). With software table walking, any hybrid organization can be 
employed that suits the particular embedded system. Both the page-table size and 
access time can be optimized.

• Independent page sizes can be used for application modules, device drivers, system-
service routines, and data. Independent page-size selection enables system software 
to more efficiently use memory by reducing fragmentation (unused memory). For 
example, a large data structure can be allocated to a 16 MB page and a small I/O 
device-driver can be allocated to a 1 KB page.

• Page replacement can be tuned to minimize the occurrence of missing page-
translations. As described in the following section, the most-frequently used page 
translations are stored in the translation look-aside buffer (TLB). Software is 
responsible for deciding which translations are stored in the TLB and which 
translations are replaced when a new translation is required. The replacement 
strategy can be tuned to avoid thrashing, whereby page-translation entries are 
constantly being moved in and out of the TLB. The replacement strategy can also be 
tuned to prevent replacement of critical-page translations, a process sometimes 
referred to as page locking.

The unified 64-entry TLB, managed by software, caches a subset of instruction and data 
page-translation entries accessible by the MMU. Software uses the unified TLB to cache a 
subset of instruction and data page-translation entries for use by the MMU. Software is 

0 23 24 31

PID

Figure 6-3: Process-ID Register (PID)

Table 6-1: Process-ID Register (PID) Field Definitions

Bit Name Function Description

0:23 Reserved

24:31 PID Process Identifier Used to uniquely identify a software process during address 
translation.
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responsible for reading entries from the page-translation table in system memory and 
storing them in the TLB. The following section describes the unified TLB in more detail.

Internally, the MMU also contains a 4-entry shadow TLB for instructions and an 8-entry 
shadow TLB for data. These shadow TLBs are managed entirely by the processor 
(transparent to software) and are used to minimize access conflicts with the unified TLB. 
Figure 6-4 shows the relationship of the page-translation tables and the TLBs.

Translation Look-Aside Buffer
The translation look-aside buffer (TLB) is used by the PPC405 MMU for address 
translation, memory protection, and storage control when the processor is running in 
virtual mode. Each entry within the TLB contains the information necessary to identify a 
virtual page (PID and effective page number), specify its translation into a physical page, 
determine the protection characteristics of the page, and specify the storage attributes 
associated with the page.

The PPC405 TLB is physically implemented as three separate TLBs:

• Unified TLB—The UTLB contains 64 entries and is fully associative. Instruction-page 
and data-page translation can be stored in any UTLB entry. The initialization and 
management of the UTLB is controlled completely by software.

• Instruction Shadow TLB—The ITLB contains four instruction page-translation entries 
and is fully associative. The page-translation entries stored in the ITLB represent the 
four most-frequently accessed instruction-page translations from the UTLB. The ITLB 
is used to minimize contention between instruction translation and UTLB-update 
operations. The initialization and management of the ITLB is controlled completely by 
hardware and is transparent to software.

Figure 6-4: Page-Translation Table and TLB Organization
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• Data Shadow TLB—The DTLB contains eight data page-translation entries and is fully 
associative. The page-translation entries stored in the DTLB represent the eight most-
frequently accessed data-page translations from the UTLB. The DTLB is used to 
minimize contention between data translation and UTLB-update operations. The 
initialization and management of the DTLB is controlled completely by hardware and 
is transparent to software. 

Figure 6-5 shows the address translation flow through the three TLBs.  

Although software is not responsible for managing the shadow TLBs, software must make 
sure the shadow TLBs are invalidated when the UTLB is updated. See Maintaining 
Shadow-TLB Consistency, page 487, for more information.

TLB Entries
Figure 6-6 shows the format of a TLB entry. Each TLB entry is 68 bits and is composed of 
two portions: TLBHI (also referred to as the tag entry), and TLBLO (also referred to as the 
data entry). The fields within a TLB entry are categorized as follows:

• Virtual-page identification—These fields identify the page-translation entry. They are 
compared with the virtual-page number during the translation process.

• Physical-page identification—These fields identify the translated page in physical 
memory.

• Access control—These fields specify the type of access allowed in the page and are 
used to protect pages from improper accesses.

Figure 6-5: ITLB/DTLB/UTLB Address Translation Flow
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• Storage attributes—These fields specify the storage-control attributes, such as whether 
a page is cacheable and how bytes are ordered (endianness).

The following sections describe the fields within each category.

Virtual-Page Identification Fields
The virtual-page identification portion of a TLB entry contains the following fields:

• TAG (TLB-entry tag)—TLBHI, bits 0:21. This field is compared with the EPN portion 
of the EA (EA[EPN]) under the control of the SIZE field. Table 6-2, page 478, shows 
the bit ranges used in comparing the TAG with EA[EPN]. In this table, TAGx:y 
represents the bit range from the TAG field in TLBHI and EAx:y represents the bit 
range from EA[EPN].

• SIZE (Page size)—TLBHI, bits 22:24. This field specifies the page size as shown in 
Table 6-2, page 478. The SIZE field controls the bit range used in comparing the TAG 
field with EA[EPN].

• V (Valid)—TLBHI, bit 25. When this bit is set to 1, the TLB entry is valid and contains 
a page-translation entry. When cleared to 0, the TLB entry is invalid.

• TID (Process Tag)—TLBHI, bits 28:35. This 8-bit field is compared with the PID field 
in the process-ID register. When TID is clear (0x00), the field is ignored and not 
compared with the PID field. A clear TID indicates the TLB entry is used by all 
processes.

Physical-Page Identification Fields
The physical-page identification portion of a TLB entry contains the following field:

• RPN (Physical-page number, or real-page number)—TLBLO, bits 0:21. When a TLB 
hit occurs, this field is read from the TLB entry and is used to form the physical 
address. Depending on the value of the SIZE field, some of the RPN bits are not used 
in the physical address. Software must clear unused bits in this field to 0. See Table 6-2, 
page 478, for information on which bits must be cleared.

Access-Control Fields
The access-control portion of a TLB entry contains the following fields:

• EX (Executable)—TLBLO, bit 22. When this bit is set to 1, the page contains executable 
code and instructions can be fetched from the page. When this bit is cleared to 0, 
instructions cannot be fetched from the page. Attempts to fetch instructions from a 
page with a clear EX bit cause an instruction-storage exception.

• WR (Writable)—TLBLO, bit 23. When this bit is set to 1, the page is writable and store 
instructions can be used to store data at addresses within the page. When this bit is 
cleared to 0, the page is read only (not writable). Attempts to store data into a page 
with a clear WR bit cause a data-storage exception.

• ZSEL (Zone select)—TLBLO, bits 24:27. This field selects one of 16 zone fields (Z0–
Z15) from the zone-protection register (ZPR). For example, if ZSEL=0b0101, zone field 

0 21 22 24 25 26 27 28 35

TAG SIZE V E U0 TID

TLBHI (Tag Entry)

0 21 22 23 24 27 28 29 30 31

RPN EX WR ZSEL W I M G

TLBLO (Data Entry)

Figure 6-6: TLB-Entry Format
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Z5 is selected. The selected ZPR field is used to modify the access protection specified 
by the TLB entry EX and WR fields. It is also used to prevent access to a page by 
overriding the TLB V (valid) field. See Zone Protection, page 482, for more 
information.

Storage-Attribute Fields
The storage-attribute portion of a TLB entry contains the following fields:

• E (Endian)—TLBHI, bit 26. When this bit is set to 1, the page is accessed as a little-
endian page. When cleared to 0, the page is accessed as a big-endian page. See Byte 
Ordering, page 349, for information on little-endian and big-endian byte accesses.

• U0 (User defined)—TLBHI, bit 27. When this bit is set to 1, access to the page is 
governed by a user-defined storage attribute. When cleared to 0, the user-defined 
storage attribute does not govern accesses to the page. See User Defined (U0), 
page 452, for more information.

• W (Write Through)—TLBLO, bit 28. When this bit is set to 1, accesses to the page are 
cached using a write-through caching policy. When cleared to 0, accesses to the page 
are cached using a write-back caching policy. See Write Through (W), page 451, for 
more information.

• I (Caching inhibited)—TLBLO, bit 29. When this bit is set to 1, accesses to the page are 
not cached (caching is inhibited). When cleared to 0, accesses to the page are 
cacheable, under the control of the W attribute (write-through caching policy). See 
Caching Inhibited (I), page 451, for more information.

• M (Memory coherent)—TLBLO, bit 30. Setting and clearing this bit does not affect 
memory accesses in the PPC405. In implementations that support multi-processing, 
this bit can be used to improve the performance of hardware that manages memory 
coherency.

• G (Guarded)—TLBLO, bit 31. When this bit is set to 1, speculative page accesses are 
not allowed (memory is guarded). When cleared to 0, speculative page accesses are 
allowed. The G attribute is often used to protect memory-mapped I/O devices from 
inappropriate accesses. See Guarded (G), page 452, for more information.

In real mode, the storage-attribute control registers are used to define storage attributes. 
See Storage-Attribute Control Registers, page 452 for more information.

Table 6-2 shows the relationship between the TLB-entry SIZE field and the translated page 
size. This table also shows how the page size determines which address bits are involved in 
a tag comparison, which address bits are used as a page offset, and which bits in the 
physical page number are used in the physical address. The final column, “n”, refers to a 
bit position shown in Figure 6-1, page 472. 

When assigning sizes to instruction pages, software must be careful to avoid creating the 
opportunity for instruction-cache synonyms. See Instruction-Cache Synonyms, page 442, 
for more information.

Table 6-2: Page-Translation Bit Ranges by Page Size

Page
Size

SIZE
(TLB Field)

Tag Comparison
Bit Range

Page
Offset

Physical-Page 
Number

RPN Bits
Clear to 0

n
(Figure 6-1)

1 KB 0b000 TAG0:21 ↔ EA0:21 EA22:31 RPN0:21 — 22

4 KB 0b001 TAG0:19 ↔ EA0:19 EA20:31 RPN0:19 20:21 20

16 KB 0b010 TAG0:17 ↔ EA0:17 EA18:31 RPN0:17 18:21 18

64 KB 0b011 TAG0:15 ↔ EA0:15 EA16:31 RPN0:15 16:21 16

256 KB 0b100 TAG0:13 ↔ EA0:13 EA14:31 RPN0:13 14:21 14
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TLB Access
When the MMU translates a virtual address (the combination of PID and effective address) 
into a physical address, it first examines the appropriate shadow TLB for the page-
translation entry. If an entry is found, it is used to access physical memory. If an entry is not 
found, the MMU examines the UTLB for the entry. A delay occurs each time the UTLB 
must be accessed due to a shadow TLB miss. For the ITLB, the miss latency is four cycles. 
The DTLB has a miss latency of three cycles. The DTLB has priority over the ITLB if both 
simultaneously access the UTLB.

Figure 6-7 shows the logical process the MMU follows when examining a page-translation 
entry in one of the shadow TLBs or the UTLB. All valid entries in the TLB are checked. In 
the PPC405, all entries in a specific TLB (shadow or unified) are examined simultaneously. 
A TLB hit occurs when all of the following conditions are met by a TLB entry:

• The entry is valid.
• The TAG field in the entry matches the EA[EPN] under the control of the SIZE field in 

the entry. 
• The TID field in the entry matches the PID. 

If any of the above conditions are not met, a TLB miss occurs. A TLB miss causes an 
exception, as described in TLB-Access Failures, page 480.

A TID value of 0x00 causes the MMU to ignore the comparison between the TID and PID. 
Only the TAG and EA[EPN] are compared. A TLB entry with TID=0x00 represents a 
process-independent translation. Pages that are accessed globally by all processes should 
be assigned a TID value of 0x00. 

A PID value of 0x00 does not identify a process that can access any page. When PID=0x00, 
a page-translation hit only occurs when TID=0x00.

It is possible for software to load the TLB with multiple entries that match an EA[EPN] and 
PID combination. However, this is considered a programming error and results in 
undefined behavior.

When a hit occurs, the MMU reads the RPN field from the corresponding TLB entry. Some 
or all of the bits in this field are used, depending on the value of the SIZE field (see 
Table 6-2, page 478). For example, if the SIZE field specifies a 256 KB page size, RPN0:13 
represents the physical page number and is used to form the physical address. RPN14:21 is 
not used, and software must clear those bits to 0 when initializing the TLB entry. The 
remainder of the physical address is taken from the page-offset portion of the EA. If the 
page size is 256 KB, the 32-bit physical address is formed by concatenating RPN0:13 with 
EA14:31.

Prior to accessing physical memory, the MMU examines the TLB-entry access-control 
fields. These fields indicate whether the currently executing program is allowed to 
perform the requested memory access. See Virtual-Mode Access Protection, page 482, for 
more information.

If access is allowed, the MMU checks the storage-attribute fields to determine how to 
access the page. The storage-attribute fields specify the caching policy and byte ordering 
for memory accesses. See Storage-Attribute Fields, page 478, for more information.

1 MB 0b101 TAG0:11 ↔ EA0:11 EA12:31 RPN0:11 12:21 12

4 MB 0b110 TAG0:9 ↔ EA0:9 EA10:31 RPN0:9 10:21 10

16 MB 0b111 TAG0:7 ↔ EA0:7 EA8:31 RPN0:7 8:21 8

Table 6-2: Page-Translation Bit Ranges by Page Size

Page
Size

SIZE
(TLB Field)

Tag Comparison
Bit Range

Page
Offset

Physical-Page 
Number

RPN Bits
Clear to 0

n
(Figure 6-1)

http://www.xilinx.com


480 www.xilinx.com March 2002 Release
1-800-255-7778 Virtex-II Pro™ Platform FPGA Documentation

Chapter 6: Virtual-Memory Management
R

TLB-Access Failures
A TLB-access failure causes an exception to occur. This interrupts execution of the 
instruction that caused the failure and transfers control to an interrupt handler to resolve 
the failure. A TLB access can fail for two reasons:

• A matching TLB entry was not found, resulting in a TLB miss.
• A matching TLB entry was found, but access to the page was prevented by either the 

storage attributes or zone protection.

When an interrupt occurs, the processor enters real mode by clearing MSR[IR, DR] to 0. In 
real mode, all address translation and memory-protection checks performed by the MMU 
are disabled. After system software initializes the UTLB with page-translation entries, 
management of the PPC405 UTLB is usually performed using interrupt handlers running 
in real mode.

Figure 6-7: General Process for Examining a TLB Entry
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The following sections describe the conditions under which exceptions occur due to TLB-
access failures.

Data-Storage Exception
When data-address translation is enabled (MSR[DR]=1), a data-storage exception occurs 
when access to a page is not permitted for any of the following reasons:

• From user mode:
- The TLB entry specifies a zone field that prevents access to the page 

(ZPR[Zn]=00). This applies to load, store, dcbf, dcbst, dcbz, and icbi instructions.
- The TLB entry specifies a read-only page (TLBLO[WR]=0) that is not otherwise 

overridden by the zone field (ZPR[Zn]≠ 11). This applies to store and dcbz 
instructions.

- The TLB entry specifies a U0 page (TLBHI[U0]=1) and U0 exceptions are enabled 
(CCR0[U0XE]=1). This applies to store and dcbz instructions.

• From privileged mode:
- The TLB entry specifies a read-only page (TLBLO[WR]=0) that is not otherwise 

overridden by the zone field (ZPR[Zn]≠ 10 and ZPR[Zn]≠ 11). This applies to 
store, dcbi, dcbz, and dccci instructions.

- The TLB entry specifies a U0 page (TLBHI[U0]=1) and U0 exceptions are enabled 
(CCR0[U0XE]=1). This applies to store, dcbi, dcbz, and dccci instructions.

See Data-Storage Interrupt (0x0300), page 506, for more information on this exception and 
Zone Protection, page 482, for more information on zone protection.

Instruction-Storage Exception
When instruction-address translation is enabled (MSR[IR]=1), an instruction-storage 
exception occurs when access to a page is not permitted for any of the following reasons:

• From user mode:
- The TLB entry specifies a zone field that prevents access to the page 

(ZPR[Zn]=00).
- The TLB entry specifies a non-executable page (TLBLO[EX]=0) that is not 

otherwise overridden by the zone field (ZPR[Zn]≠ 11).
- The TLB entry specifies a guarded-storage page (TLBLO[G]=1).

• From privileged mode:
- The TLB entry specifies a non-executable page (TLBLO[EX]=0) that is not 

otherwise overridden by the zone field (ZPR[Zn]≠ 10 and ZPR[Zn]≠ 11).
- The TLB entry specifies a guarded-storage page (TLBLO[G]=1).

See Instruction-Storage Interrupt (0x0400), page 508, for more information on this 
exception, Guarded (G), page 452, for more information on guarded storage, and Zone 
Protection, page 482, for more information on zone protection.

Data TLB-Miss Exception
When data-address translation is enabled (MSR[DR]=1), a data TLB-miss exception occurs 
if a valid, matching TLB entry was not found in the TLB (shadow and UTLB). Any load, 
store, or cache instruction (excluding cache-touch instructions) can cause a data TLB-miss 
exception. See Data TLB-Miss Interrupt (0x1100), page 519, for more information.

Instruction TLB-Miss Exception
When instruction-address translation is enabled (MSR[IR]=1), an instruction TLB-miss 
exception occurs if a valid, matching TLB entry was not found in the TLB (shadow and 
UTLB). Any instruction fetch can cause an instruction TLB-miss exception. See Instruction 
TLB-Miss Interrupt (0x1200), page 520, for more information.
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Virtual-Mode Access Protection
System software uses access protection to protect sensitive memory locations from 
improper access. System software can restrict memory accesses for both user-mode and 
privileged-mode software. Restrictions can be placed on reads, writes, and instruction 
fetches. Access protection is available only when instruction or data address translation is 
enabled.

Virtual-mode access control applies to instruction fetches, data loads, data stores, and 
cache operations. The TLB entry for a virtual page specifies the type of access allowed to 
the page. The TLB entry also specifies a zone-protection field in the zone-protection 
register that is used to override the access controls specified by the TLB entry. 

TLB Access-Protection Controls
Each TLB entry controls three types of access:

• Process—Processes are protected from unauthorized access by assigning a unique 
process ID (PID) to each process. When system software starts a user-mode 
application, it loads the PID for that application into the PID register. As the 
application executes, memory addresses are translated using only TLB entries with a 
TLBHI[TID] field that matches the PID. This enables system software to restrict 
accesses for an application to a specific area in virtual memory.

A TLB entry with TID=0x00 represents a process-independent translation. Pages that 
are accessed globally by all processes should be assigned a TID value of 0x00. 

• Execution—The processor executes instructions only if they are fetched from a virtual 
page marked as executable (TLBLO[EX]=1). Clearing TLBLO[EX] to 0 prevents 
execution of instructions fetched from a page, instead causing an instruction-storage 
interrupt (ISI) to occur. The ISI does not occur when the instruction is fetched, but 
instead occurs when the instruction is executed. This prevents speculatively fetched 
instructions that are later discarded (rather than executed) from causing an ISI.

The zone-protection register can override execution protection.

• Read/Write—Data is written only to virtual pages marked as writable 
(TLBLO[WR]=1). Clearing TLBLO[WR] to 0 marks a page as read-only. An attempt to 
write to a read-only page causes a data-storage interrupt (DSI) to occur.

The zone-protection register can override write protection.

TLB entries cannot be used to prevent programs from reading pages. In virtual mode, zone 
protection is used to read-protect pages. This is done by defining a no-access-allowed zone 
(ZPR[Zn] = 00) and using it to override the TLB-entry access protection. Only programs 
running in user mode can be prevented from reading a page. Privileged programs always 
have read access to a page. See Zone Protection below.

Zone Protection
Zone protection is used to override the access protection specified in a TLB entry. Zones are 
an arbitrary grouping of virtual pages with common access protection. Zones can contain 
any number of pages specifying any combination of page sizes. There is no requirement for 
a zone to contain adjacent pages.

The zone-protection register (ZPR) is a 32-bit register used to specify the type of protection 
override applied to each of 16 possible zones. The protection override for a zone is encoded 
in the ZPR as a 2-bit field. The 4-bit zone-select field in a TLB entry (TLBLO[ZSEL]) selects 
one of the 16 zone fields from the ZPR (Z0–Z15). For example, zone Z5 is selected when 
ZSEL = 0b0101. 

Changing a zone field in the ZPR applies a protection override across all pages in that 
zone. Without the ZPR, protection changes require individual alterations to each page-
translation entry within the zone.
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Figure 6-8 shows the format of the ZPR register. The protection overrides encoded by the 
zone fields are shown in Table 6-3.

The ZPR is a privileged SPR with an address of 944 (0x3B0) and is read and written using 
the mfspr and mtspr instructions.

Effect of Access Protection on Cache-Control Instructions
The access-protection mechanisms apply to certain cache-control instructions, depending 
on how those instructions affect data. Cache-control instructions—including those that 
affect the instruction cache—are treated as data loads or data stores by the access-
protection mechanism. If an access-protection violation occurs, the resulting interrupt is a 
data-storage interrupt. The following summarizes how access protection is applied to 
cache-control instructions:

• Cache-control instructions that can modify data are treated as stores (writes) by the 
access-protection mechanism. Instructions that can cause loss of data by invalidating 
cachelines are also treated as stores. TLB write-protection and zone protection are 
used to restrict access by these instructions as follows:
- dcbi—Affected by TLBLO[WR] only. Because this is a privileged instruction, 

access cannot be denied by zone protection.
- dcbz—Affected by TLBLO[WR] and (in user mode only) ZPR[Zn]=00.

• Other cache-control instructions can invalidate an entire cache-congruence class. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Z0 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11 Z12 Z13 Z14 Z15

Figure 6-8: Zone-Protection Register (ZPR)

Table 6-3: Zone-Protection Register (ZPR) Bit Definitions

Bit Name Function Description

0:1 Z0 Zone 0 Protection User Mode (MSR[PR]=1)

00—Override V in TLB entry. 
No access to the page is al-
lowed.

01—No override. Use V, WR, 
and EX from TLB entry.

10—No override. Use V, WR, 
and EX from TLB entry.

11—Override WR and EX. 
Access the page as writable 
and executable.

Privileged Mode (MSR[PR]=0)

00—No override. Use V, WR, 
and EX from TLB entry.

01—No override. Use V, WR, 
and EX from TLB entry.

10—Override WR and EX. 
Access the page as writable 
and executable.

11—Override WR and EX. 
Access the page as writable 
and executable.

2:3 Z1 Zone 1 Protection

4:5 Z2 Zone 2 Protection

6:7 Z3 Zone 3 Protection

8:9 Z4 Zone 4 Protection

10:11 Z5 Zone 5 Protection

12:13 Z6 Zone 6 Protection

14:15 Z7 Zone 7 Protection

16:17 Z8 Zone 8 Protection

18:19 Z9 Zone 9 Protection

20:21 Z10 Zone 10 Protection

22:23 Z11 Zone 11 Protection

24:25 Z12 Zone 12 Protection

26:27 Z13 Zone 13 Protection

28:29 Z14 Zone 14 Protection

30:31 Z15 Zone 15 Protection
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These instructions are not address-specific and can affect multiple pages with 
different access protections. Because they are privileged instructions, access cannot be 
denied by zone protection.
- dccci—Affected by TLBLO[WR] only. This instruction can cause data loss by 

invalidating modified data in the cache-congruence class.
- iccci—Not affected by TLBLO[WR]. The instruction cache cannot hold modified 

data.

Both dccci and iccci can cause TLB-miss interrupts. Because these instructions are not 
address-specific, it is recommended that software does not execute them when data-
relocation is enabled (MSR[DR]=1). 

• Some cache-control instructions update system memory with data already present in 
the cache. These instructions are treated as loads (reads) by the access-protection 
mechanism rather than as stores. The reason is that stores were already used to place 
the modified data into the cache and passed the access-protection check. Therefore, 
these instructions are not affected by TLBLO[WR].
- dcbf—Affected by ZPR[Zn]=00 in user mode only.
- dcbst—Affected by ZPR[Zn]=00 in user mode only.

• Speculative cache-control instructions are restricted by TLB write-protection access 
control and by zone protection. However, if these instructions fail access protection 
checks they do not cause an exception and are instead treated as a “no operation”.
- dcba—Affected by TLBLO[WR] and (in user mode only) ZPR[Zn]=00.
- dcbt—Affected by ZPR[Zn]=00 in user mode only. This instruction is treated as a 

load and is therefore not affected by TLBLO[WR].
- dcbtst—Affected by ZPR[Zn]=00 in user mode only. This instruction is treated as 

a load and is therefore not affected by TLBLO[WR].
- icbt—Affected by ZPR[Zn]=00 in user mode only. This instruction is treated as a 

load and is therefore not affected by TLBLO[WR].
• Certain privileged cache-control instructions are treated as loads and are therefore 

unaffected by TLBLO[WR]. Because they are privileged instructions, access cannot be 
denied when ZPR[Zn]=00. These instructions are:
- dcread.
- icbi.
- icread.

Table 6-4 summarizes the effect of access violations that occur when a cache-control 
instruction is executed. In this table, the “Read-Only Page” column applies to the 
execution of an instruction in privileged mode and (for the non-privileged instructions) 
user mode. The “No-Access Allowed Page” column applies to the execution of instructions 
only in user mode (no-access allowed protection is not available in supervisor mode).

Table 6-4: Effect of Cache-Control Instruction Access Violations

Instruction
Read-Only Page
(TLBLO[WR]=0)

No-Access Allowed Page
(ZPR[Zn]=00)

dcba No operation. No operation.

dcbf No violation—treated as load. Data-storage interrupt.

dcbi Data-storage interrupt. No violation—privileged instruction.

dcbst No violation—treated as load. Data-storage interrupt.

dcbt No violation—treated as load. No operation.

dcbtst No violation—treated as load. No operation.
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UTLB Management
The UTLB serves as the interface between the processor MMU and memory-management 
software. System software manages the UTLB to tell the MMU how to translate virtual 
addresses into physical addresses. When a problem occurs due to a missing translation or 
an access violation, the MMU communicates the problem to system software using the 
exception mechanism. System software is responsible for providing interrupt handlers to 
correct these problems so that the MMU can proceed with memory translation.

Table 6-5 lists the PowerPC TLB-management instructions that enable system software to 
manage UTLB entries. These instructions are used to search the UTLB for specific entries, 
read entries, invalidate entries, and write entries. All of these instructions are privileged.

dcbz Data-storage interrupt. Data-storage interrupt.

dccci Data-storage interrupt. No violation—privileged instruction.

dcread No violation—treated as load. No violation—privileged instruction.

icbi No violation—treated as load. No violation—privileged instruction.

icbt No violation—treated as load. No operation.

iccci Data-storage interrupt. No violation—privileged instruction.

icread No violation—treated as load. No violation—privileged instruction.

Table 6-4: Effect of Cache-Control Instruction Access Violations

Instruction
Read-Only Page
(TLBLO[WR]=0)

No-Access Allowed Page
(ZPR[Zn]=00)

Table 6-5: TLB-Management Instructions

Mnemonic Name Operation
Operand 
Syntax

tlbia TLB Invalidate All Invalidates all UTLB entries by clearing their valid 
bits (TLBHI[V]) to 0. No other fields in the UTLB 
entries are modified.

—

tlbre TLB Read Entry rA contains an index value ranging from 0 to 63. 
Part of the UTLB entry specified by the index in rA 
is loaded into rD. If WS=0, the tag portion (TLBHI) 
is loaded into rD and the PID is updated with the 
TLBHI[TID] field. If WS=1, the data portion 
(TLBLO) is loaded into rD.

rD,rA,WS
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Software reads and writes UTLB entries using the tlbre and tlbwe instructions, 
respectively. These instructions specify an index (numbered 0 to 63) corresponding to one 
of the 64 entries in the UTLB. The tag and data portions are read and written separately, so 
software must execute two tlbre or tlbwe instructions to completely access an entry. The 
UTLB is searched for a specific translation using the tlbsx instruction. tlbsx locates a 
translation using an effective address and loads the corresponding UTLB index into a 
register.

Simplified mnemonics are defined for the TLB read and write instructions. See TLB-
Management Instructions, page 832, for more information.

The tlbia instruction invalidates the entire contents of the UTLB. Individual entries are 
invalidated using the tlbwe instruction to clear the valid bit in the tag portion of a TLB 
entry (TLBHI[V]).

The tlbsync instruction performs no operation on the PPC405 because the processor does 
not provide hardware support for multiprocessor memory coherency.

Recording Page Access and Page Modification
Software management of virtual-memory poses several challenges:

• In a virtual-memory environment, software and data often consume more memory 
than is physically available. Some of the software and data pages must be stored 
outside physical memory, such as on a hard drive, when they are not used. Ideally, the 
most-frequently used pages stay in physical memory and infrequently used pages are 
stored elsewhere.

• When pages in physical-memory are replaced to make room for new pages, it is 
important to know whether the replaced (old) pages were modified. If they were 

tlbsx TLB Search Indexed If a translation is found, rD is loaded with the index 
of the UTLB entry for the page specified by EA. If a 
translation is not found, rD is undefined. The index 
is used by the tlbre and tlbre instructions.

EA is calculated using register-indirect with index 
addressing:

EA = (rA|0) + (rB)

rD,rA,rB

tlbsx. TLB Search Indexed and Record If a translation is found, rD is loaded with the index 
of the UTLB entry for the page specified by EA, and 
CR0[EQ] is set to 1. If a translation is not found, rD 
is undefined and CR0[EQ] is cleared to 0. The index 
is used by the tlbre and tlbre instructions.

EA is calculated using register-indirect with index 
addressing:

EA = (rA|0) + (rB)

tlbsync TLB Synchronize On the PPC405, this instruction performs no 
operation.

—

tlbwe TLB Write Entry rA contains an index value ranging from 0 to 63. 
Part of the UTLB entry specified by the index in rA 
is loaded with the value in rS. If WS=0, the tag 
portion (TLBHI) is loaded from rS and the 
TLBHI[TID] field is updated with the PID. If WS=1, 
the data portion (TLBLO) is loaded from rS.

rS,rA,WS

Table 6-5: TLB-Management Instructions

Mnemonic Name Operation
Operand 
Syntax
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modified, they must be saved prior to loading the replacement (new) pages. If the old 
pages were not modified, the new pages can be loaded without saving the old pages.

• A limited number of page translations are kept in the UTLB. The remaining 
translations must be stored in the page-translation table. When a translation is not 
found in the UTLB (due to a miss), system software must decide which UTLB entry to 
discard so that the missing translation can be loaded. It is desirable for system 
software to replace infrequently used translations rather than frequently used 
translations.

Solving the above problems in an efficient manner requires keeping track of page accesses 
and page modifications. The PPC405 does not track page access and page modification in 
hardware. Instead, system software can use the TLB-miss exceptions and the data-storage 
exception to collect this information. As the information is collected, it can be stored in a 
data structure associated with the page-translation table.

Page-access information is used to determine which pages should be kept in physical 
memory and which are replaced when physical-memory space is required. System 
software can use the valid bit in the TLB entry (TLBHI[V]) to monitor page accesses. This 
requires page translations be initialized as not valid (TLBHI[V]=0) to indicate they have 
not been accessed. The first attempt to access a page causes a TLB-miss exception, either 
because the UTLB entry is marked not valid or because the page translation is not present 
in the UTLB. The TLB-miss handler updates the UTLB with a valid translation 
(TLBHI[V]=1). The set valid bit serves as a record that the page and its translation have 
been accessed. The TLB-miss handler can also record the information in a separate data 
structure associated with the page-translation entry.

Page-modification information is used to indicate whether an old page can be overwritten 
with a new page or the old page must first be stored to a hard disk. System software can 
use the write-protection bit in the TLB entry (TLBLO[WR]) to monitor page modification. 
This requires page translations be initialized as read-only (TLBLO[WR]=0) to indicate they 
have not been modified. The first attempt to write data into a page causes a data-storage 
exception, assuming the page has already been accessed and marked valid as described 
above. If software has permission to write into the page, the data-storage handler marks 
the page as writable (TLBLO[WR]=1) and returns. The set write-protection bit serves as a 
record that a page has been modified. The data-storage handler can also record this 
information in a separate data structure associated with the page-translation entry.

Tracking page modification is useful when virtual mode is first entered and when a new 
process is started.

Maintaining Shadow-TLB Consistency
The PPC405 TLBs are maintained by two different mechanisms: software manages the 
UTLB and the processor manages the shadow TLBs. Software must ensure the shadow 
TLBs remain consistent with the UTLB when updates are made to entries in the UTLB. If 
software updates any field in a UTLB entry, it must synchronize that update with the 
shadow TLBs. Failure to properly synchronize the shadow TLBs can cause unexpected 
behavior. 

Synchronization occurs when the processor hardware replaces a shadow-TLB entry with 
an updated entry from the UTLB. To force a replacement, software must invalidate the 
shadow-TLB entry. This forces the MMU to read the modified entry from the UTLB the 
next time it is accessed. The processor invalidates all shadow-TLB entries when any of the 
following context-synchronizing events occur:

• An isync instruction is executed.
• An sc instruction is executed.
• An interrupt occurs.
• An rfi or rfci instruction is executed.
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TLB entries are normally modified by interrupt handlers. The shadow TLB is 
automatically invalidated when an interrupt occurs. The interrupt also disables address 
translation, placing the processor in real mode. The MMU does not access the UTLB or 
update the shadow TLBs when address translation is disabled. If the interrupt handler 
updates the UTLB and returns from the interrupt handler (using rfi) without enabling 
virtual mode, no additional context synchronization is required. 

However, if virtual mode is enabled by the interrupt handler and the UTLB is updated, 
those updates are not synchronized with the shadow TLBs until an rfi is executed to exit 
the handler. If UTLB updates must be reflected in the shadow TLB while the interrupt 
handler is executing, isync must be executed after updating the UTLB.

As a general rule, software manipulation of UTLB entries should always be followed by a 
context-synchronizing operation, typically an isync instruction.
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Chapter 7

Exceptions and Interrupts

The PowerPC embedded-environment architecture extends the base PowerPC exception 
and interrupt mechanism in the following ways:

• A dual-level interrupt structure is defined supporting critical and noncritical 
interrupts.

• New save/restore registers are defined in support of the dual-level interrupt 
structure.

• A new interrupt-return instruction is defined in support of the dual-level interrupt 
structure.

• New special-purpose registers are defined for recording exception information.
• New exceptions and interrupts are defined.

This chapter describes the exceptions recognized by the PPC405D5 and how the interrupt 
mechanism responds to those exceptions.

Overview
Exceptions are events detected by the processor that often require action by system 
software. Most exceptions are unexpected and are the result of error conditions. A few 
exceptions can be programmed to occur through the use of exception-causing instructions. 
Some exceptions are generated by external devices and communicated to the processor 
using external signalling. Still other exceptions can occur when pre-programmed 
conditions are recognized by the processor.

Interrupts are automatic control transfers that occur as a result of an exception. An 
interrupt occurs when the processor suspends execution of a program after detecting an 
exception. The processor saves the suspended-program machine state and a return address 
into the suspended program. This information is stored in a pair of special registers, called 
save/restore registers. A predefined machine state is loaded by the processor, which transfers 
control to an interrupt handler. An interrupt handler is a system-software routine that 
responds to the interrupt, often by correcting the condition causing the exception. System 
software places interrupt handlers at predefined addresses in physical memory and the 
interrupt mechanism automatically transfers control to the appropriate handler based on 
the exception condition.

An interrupt places the processor in both privileged mode and real mode (instruction-
address and data-address relocation are disabled). Interrupts are context-synchronizing 
events. All instructions preceding the interrupted instruction are guaranteed to have 
completed execution when the interrupt occurs. All instructions following the interrupted 
instruction (in the program flow) are discarded.

Returning from an interrupt handler to an interrupted program requires that the old 
machine state and program return address be restored from the save/restore register pair. 
This is accomplished using a return-from-interrupt instruction. Like interrupts, return-from-
interrupt instructions are context synchronizing.
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Certain interrupts can be disabled (masked) or enabled (unmasked). Disabling an 
interrupt prevents it from occurring when the corresponding exception condition is 
detected by the processor.

Synchronous and Asynchronous Exceptions
Exceptions (and the corresponding interrupt) can be synchronous or asynchronous. 
Synchronous exceptions are directly caused by the execution or attempted execution of an 
instruction. Asynchronous exceptions occur independently of instruction execution. The 
cause of an asynchronous exception is generally not related to the instruction executing at 
the time the exception occurs.

Precise and Imprecise Interrupts
Most interrupts are precise. A precise interrupt occurs in program order and on the 
instruction boundary where the exception is recognized. A precise interrupt causes the 
following to occur:

• The return address points to the excepting instruction. For synchronous exceptions, 
the return address points to either the instruction causing the exception or the 
instruction that immediately follows, depending on the exception condition. For 
asynchronous exceptions, the return address points to the instruction boundary 
where the exception is recognized by the processor.

• All instructions preceding the excepting instruction complete execution before the 
interrupt occurs. However, it is possible that some storage accesses initiated by those 
instructions are not complete with respect to external devices.

• Depending on the exception condition, it is possible for the excepting instruction to 
have completed execution, partially completed execution, or not have begun 
execution.

• No instructions following the excepting instruction are executed prior to transferring 
control to the interrupt handler.

When a imprecise interrupt occurs, the excepting instruction is unrelated to the exception 
condition. Here, there is a delay between the point where the exception is recognized by 
the processor and the time when the interrupt occurs. An imprecise interrupt causes the 
following to occur:

• The excepting instruction follows (in program order) the instruction boundary where 
the exception is recognized by the processor. The delay can span several instructions.

• All instructions preceding the excepting instruction complete execution before the 
interrupt occurs. However, it is possible that some storage accesses initiated by those 
instructions are not complete with respect to external devices.

• It is possible for the excepting instruction to have completed execution, partially 
completed execution, or not have begun execution.

• No instructions following the excepting instruction are executed prior to transferring 
control to the interrupt handler.

On the PPC405, only the machine-check interrupt is imprecise. A machine check can be 
caused indirectly by the execution of an instruction. In this case, it is possible for the 
processor to execute additional instructions before recognizing the occurrence of a 
machine check.

Partially-Executed Instructions
Certain instructions can cause an alignment exception or data-storage exception part-way 
through their execution. When an interrupt occurs, some software-visible state can be 
updated to reflect the partial execution of the excepting instruction. The instructions and 
the effect interrupts have on partial execution are as follows:

• Load-multiple and load-string instructions.
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It is possible that some of the target registers are updated when a data-storage 
exception or an alignment exception occurs. When the instruction is restarted, the 
modified registers are updated again.

• Store-multiple and store-string instructions.

It is possible that some of the target bytes in memory are updated when a data-storage 
exception or an alignment exception occurs. When the instruction is restarted, the 
modified memory locations are updated again.

• Scalar load instructions that cross a word boundary.

It is possible that some memory bytes have been accessed (read) when a data-storage 
exception or alignment exception occurs. However, no registers are updated.

• Scalar store instructions that cross a word boundary.

It is possible that some of the target bytes in memory are updated when a data-storage 
exception or alignment exception occurs. If the instruction is an update form, the 
update register is not updated. When the instruction is restarted, the modified memory 
locations are updated again.

In the above cases, memory protection is never violated by the partial execution of an 
instruction. No other instruction updates software-visible state if an exception occurs part-
way through execution. 

To prevent load and store instructions from being interrupted and restarted, only scalar 
instructions (not string or multiple) should be used to reference memory. Also, one of the 
following two rules must be followed:

• The memory operand must be aligned on the operand-size boundary (see Table 2-1, 
page 353).

• The accessed memory location must be protected by the guarded storage attribute 
(see Guarded (G), page 452).

If a properly-aligned scalar load or store is interrupted, a memory-access request does not 
appear on the processor local bus (PLB). Conversely, the processor does not interrupt a 
properly-aligned scalar load or store once its corresponding memory-access request 
appears on the PLB. Thus, the guarded storage attribute is not required to prevent 
interruption of properly-aligned loads and stores.

PPC405D5 Exceptions and Interrupts
Table 7-1 lists the exceptions supported by the PPC405D5. Included is the exception-vector 
offset into the interrupt-handler table, the exception classification, and a brief description 
of the cause. Gray-shaded rows indicate exceptions that are not supported by the 
PPC405D5 but can occur on other implementations of the PowerPC 405 processor. Refer to 
Interrupt Reference, page 502, for a detailed description of each exception and its 
resulting interrupt.

Table 7-1: Exceptions Supported by the PPC405D5

Exception
Vector
Offset

Classification Cause

Critical Input 0x0100 Critical Asynchronous Precise External critical-interrupt signal.

Machine Check 0x0200 Critical Asynchronous Imprecise External bus error.

Data Storage 0x0300 Noncritical Synchronous Precise Data-access violation.

Instruction Storage 0x0400 Noncritical Synchronous Precise Instruction-access violation.

External 0x0500 Noncritical Asynchronous Precise External noncritical-interrupt 
signal.
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Critical and Noncritical Exceptions
The PPC405 supports critical and noncritical exceptions. Generally, the processor responds 
to critical exceptions before noncritical exceptions (certain debug exceptions are handled at 
a lower priority). Four exceptions and their associated interrupts are critical:

• Critical-input exception.
• Machine-check exception.
• Watchdog-timer exception.
• Debug exception.

Critical interrupts use a different save/restore register pair (SRR2 and SRR3) than is used 
by noncritical interrupts (SRR0 and SRR1). This enables a critical interrupt to interrupt a 
noncritical-interrupt handler. The state saved by the noncritical interrupt is not 
overwritten by the critical interrupt.

Because a different register pair is used for saving processor state, a different instruction is 
used to return from critical interrupt handlers—rfci.

Transferring Control to Interrupt Handlers
Figure 7-1 shows how the components of the PPC405 exception mechanism interact when 
transferring program control to an interrupt handler. 

Alignment 0x0600 Noncritical Synchronous Precise Unaligned operand of dcread, 
lwarx, stwcx.

dcbz to non-cacheable or write-
through memory.

Program 0x0700 Noncritical Synchronous Precise Improper or illegal instruction 
execution.

Execution of trap instructions.

FPU Unavailable 0x0800 Noncritical Synchronous Precise Attempt to execute an FPU 
instruction when FPU is disabled.

System Call 0x0C00 Noncritical Synchronous Precise Execution of sc instruction.

APU Unavailable 0x0F20 Noncritical Synchronous Precise Attempt to execute an APU 
instruction when APU is disabled.

Programmable-Interval 
Timer

0x1000 Noncritical Asynchronous Precise Time-out on the programmable-
interval timer.

Fixed-Interval Timer 0x1010 Noncritical Asynchronous Precise Time-out on the fixed-interval 
timer.

Watchdog Timer 0x1020 Critical Asynchronous Precise Time-out on the watchdog timer.

Data TLB Miss 0x1100 Noncritical Synchronous Precise No data-page translation found.

Instruction TLB Miss 0x1200 Noncritical Synchronous Precise No instruction-page translation 
found.

Debug 0x2000 Critical Asynchronous 
and synchronous

Precise Occurrence of a debug event.

Table 7-1: Exceptions Supported by the PPC405D5 (Continued)

Exception
Vector
Offset

Classification Cause
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Referring to Figure 7-1, the actions performed by the processor when an interrupt occurs 
are:

1. Save the interrupt-return address (effective address).

Generally, the return address is either that of the instruction that caused the exception, 
or the next-sequential instruction that would have executed had no exception 
occurred. It is saved in one of two save/restore registers, depending on the type of 
interrupt:

- Critical interrupts load SRR2 with the return address.
- Noncritical interrupts load SRR0 with the return address.

Refer to the specific interrupt description in Interrupt Reference, page 502 for 
information on the saved return address.

2. Save the interrupted-program state.

Figure 7-1: PPC405 Exception Mechanism
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The contents of the machine-state register (MSR) are copied into one of two 
save/restore registers, depending on the type of interrupt:

- Critical interrupts load SRR3 with a copy of the MSR.
- Noncritical interrupts load SRR1 with a copy of the MSR.

3. Update the exception-syndrome register (ESR), if applicable.

Five exceptions report status information in the ESR when control is transferred to the 
interrupt handler (ESR is not modified by the remaining exceptions):

- Machine check.
- Data storage.
- Instruction storage.
- Program.
- Data TLB miss.

Interrupt handlers use the ESR to determine the cause of an exception.

4. Update the data exception-address register (DEAR), if applicable.

Three exceptions report the address of a failed data access in the DEAR when control 
is transferred to the interrupt handler (DEAR is not modified by the remaining 
exceptions):

- Data storage.
- Alignment.
- Data TLB miss.

5. Load the new program state into the MSR.

All interrupts load new program state into the MSR. The new state places the 
processor in privileged mode. Instruction-address and data-address translation are 
disabled, placing the processor in real mode. Certain interrupts are disabled, 
depending on the exception.

6. Synchronize the processor context.

All interrupts are context synchronizing. The processor fetches and executes the first 
instruction in the interrupt handler in the context established by the new MSR 
contents.

7. Transfer control to the interrupt handler.

An exception-vector offset is associated with each exception. The offset is added to a 
64KB-aligned base address located in the exception-vector prefix register (EVPR). The 
sum represents a physical address that points to the first instruction of the interrupt 
handler.

Interrupt handlers are located in an interrupt-handler table. The available space in this 
table is generally insufficient to hold entire interrupt handlers. Instead, system 
software typically places “glue code” in the table for transferring control to the full 
handler, located elsewhere in memory.

Returning from Interrupt Handlers
System software exits an interrupt handler using one of two privileged instructions. 
Noncritical-interrupt handlers return to an interrupted program using the return-from-
interrupt instruction (rfi). Critical-interrupt handlers return to an interrupted program 
using the return-from-critical-interrupt instruction (rfci). Both instructions operate in a 
similar fashion, with the only difference being the save/restore register pair used to restore 
the interrupted-program state. rfi and rfci perform the following functions:
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1. All previous instructions complete execution in the context they were issued 
(privilege, protection, and address-translation mode).

2. All previous instructions are completed to a point where they can no longer cause an 
exception.

3. The processor loads the MSR with the interrupted-program state from one of two 
save/restore registers, depending on the instruction:
- rfi copies SRR1 into the MSR.
- rfci copies SRR3 into the MSR.

4. Processor context is synchronized.

Both instructions are context synchronizing. The processor fetches and executes the 
instruction at the return address in the interrupted-program context.

5. The processor begins fetching and executing instructions from the interrupted 
program:
- Instructions are fetched from the address in SRR0 following completion of the rfi.
- Instructions are fetched from the address in SRR2 following completion of the 

rfci.

Simultaneous Exceptions and Interrupt Priority
The PPC405 interrupt mechanism responds to exceptions serially. If multiple exceptions 
are pending simultaneously, the associated interrupts occur in a consistent and predictable 
order. Even though critical and noncritical exceptions use different save/restore register 
pairs, simultaneous occurrences of these exceptions are also processed serially. 

The PPC405 uses the interrupt priority shown in Table 7-2 for handling simultaneous 
exceptions. Lower-priority interrupts occur ahead of masked higher-priority interrupts.

Table 7-2: Interrupt Priority for Simultaneous Exceptions

Priority Exception Cause

1 Machine check—Data. External bus error during data access.

2 Debug—Instruction-address compare. Instruction-address compare (IAC) debug event.

3 Machine check—Instruction. Attempted execution of an instruction for which an external bus error 
occurred during instruction fetch.

4 Debug—Exception. Exception (EDE) debug event.

Debug—Unconditional. Unconditional (UDE) debug event.

5 Critical input Critical-interrupt input signal is asserted.

6 Watchdog timer Watchdog timer time-out.

7 Instruction TLB Miss Attempted execution of an instruction from a memory address with no 
valid, matching page translation loaded in the TLB (virtual mode only).

8 Instruction storage—No access. In user mode, attempted execution of an instruction from a memory 
address with no-access-allowed zone protection (virtual mode only).

9 Instruction storage—Non-executable. Attempted execution of an instruction from a non-executable memory 
address (virtual mode only).

Instruction storage—Guarded. Attempted execution of an instruction from a guarded memory address.

http://www.xilinx.com


496 www.xilinx.com March 2002 Release
1-800-255-7778 Virtex-II Pro™ Platform FPGA Documentation

Chapter 7: Exceptions and Interrupts
R

Persistent Exceptions and Interrupt Masking
When certain exceptions are recognized by the processor, system software can prevent the 
corresponding interrupt from occurring by disabling, or masking, the interrupt. In general, 
disabling an interrupt only delays its occurrence. The processor continues to recognize the 
exception. When software re-enables (unmasks) the interrupt, the interrupt occurs. Such 
exceptions are referred to as persistent exceptions.

An persistent exception normally sets a status bit in a specific register associated with the 
exception mechanism. The only way for software to prevent the interrupt from occurring is 
to clear the exception-status bit before unmasking (enabling) the interrupt. Likewise, the 
interrupt handler must clear the exception-status bit to prevent the interrupt from 
reoccurring, should it be re-enabled upon exiting the interrupt handler.

The following exceptions are persistent and their corresponding interrupts can be 
disabled:

10 Program Attempted execution of:
• An illegal instruction.
• Unimplemented floating-point instructions.
• Unimplemented auxiliary-processor instructions.
• A privileged instruction from user mode.
• Execution of a trap instruction that satisfies the trap conditions.

System call Execution of the sc instruction.

FPU unavailable Attempted execution of an implemented floating-point instruction when 
MSR[FP]=0. Not implemented by the PPC405D5.

APU unavailable Attempted execution of an implemented auxiliary-processor instruction 
when MSR[AP]=0. Not implemented by the PPC405D5.

11 Data TLB Miss Attempted access of data from an address with no valid, matching page 
translation loaded in the TLB (virtual mode only).

12 Data storage—No access. In user mode, attempted access of data from a memory address with no-
access-allowed zone protection (virtual mode only).

13 Data storage—Read-only. Attempted data write (store) into a read-only memory address (virtual 
mode only).

Data storage—User defined. Attempted data write (store) into a memory address with the U0 storage 
attribute set to 1, when U0 exceptions are enabled.

14 Alignment Attempted execution of:
• dcbz to a non-cacheable or write-though cacheable address.
• lwarx or stwcx. to an address that is not word aligned.
• dcread to an address that is not word aligned (privileged mode only).

15 Debug—Branch taken. Branch taken (BT) debug event.

Debug—Data-address compare. Data-address compare (DAC) debug event.

Debug—Data-value compare. Data-value compare (DVC) debug event.

Debug—Instruction completion. Instruction completion (IC) debug event.

Debug—Trap instruction. Trap instruction (TDE) debug event.

16 External Noncritical-interrupt input signal is asserted.

17 Fixed-interval timer Fixed-interval timer time-out.

18 Programmable-interval timer Programmable-interval timer time-out.

Table 7-2: Interrupt Priority for Simultaneous Exceptions (Continued)

Priority Exception Cause
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• Critical input—Exception status is recorded in a device control register (DCR) 
associated with the external interrupt controller. The MSR[CE] bit is used to enable 
and disable the interrupt.

• External—Exception status is recorded in a device control register (DCR) associated 
with the external interrupt controller. The MSR[EE] bit is used to enable and disable 
the interrupt.

• Programmable-interval timer—Exception status is recorded in the PIT-status bit of the 
timer-status register, TSR[PIS]. The MSR[EE] bit is used to enable and disable the 
interrupt.

• Fixed-interval timer—Exception status is recorded in the FIT-status bit of the timer-
status register, TSR[FIS]. The MSR[EE] bit is used to enable and disable the interrupt.

• Debug—Imprecise exception status is recorded in the imprecise-debug exception bit 
of the debug-status register, DBSR[IDE]. This indicates that a debug event occurred 
while debug interrupts were disabled. Other bits in the DBSR can be set, indicating 
which debug events occurred while the interrupt was disabled. The MSR[DE] bit is 
used to enable and disable the interrupt.

The watchdog-timer exception is also persistent, but its persistence prevents further 
interrupts from occurring. This function causes an interrupt to occur on a watchdog time-
out but prevents interrupts on subsequent time-outs. Exception status is recorded in the 
watchdog-status bit of the timer-status register, TSR[WIS]. Once the status bit is set, further 
watchdog-timer time-outs do not cause an interrupt. Clearing the bit enables time-out 
interrupts to occur. The MSR[CE] bit is used to enable and disable the interrupt.

The machine-check interrupt can be disabled but the exception is not persistent. Machine-
check exception status is recorded in the machine-check interrupt status bit of the 
exception-syndrome register, ESR[MCI]. However, enabling machine-check interrupts 
when the status bit is set does not necessarily cause the interrupt to occur. Instead, the 
interrupt occurs when the appropriate external bus-error signal is asserted. The error 
signal persists only for the duration of the bus cycle that causes the error.

Interrupt-Handling Registers
When an exception occurs and an interrupt is taken, the interrupt-handling mechanism 
uses the following registers:

• Save/restore register 0 (SRR0)—Contains the return address for noncritical interrupts.
• Save/restore register 1 (SRR1)—Contains a copy of the MSR for noncritical interrupts.
• Save/restore register 2 (SRR2)—Contains the return address for critical interrupts.
• Save/restore register 3 (SRR3)—Contains a copy of the MSR for critical interrupts.
• Exception-vector prefix register (EVPR)—Contains the base address of the interrupt-

handler table.
• Exception-syndrome register (ESR)—Identifies the cause of an exception. ESR is used by 

five exceptions.
• Data exception-address register (DEAR)—Contains the memory-operand effective 

address of the data-access instruction that caused the exception. DEAR is used by 
three exceptions.

The machine-state register is also updated, placing the processor in privileged and real 
mode. The following sections describe the effect of the interrupt-handling mechanism on 
the interrupt-handling registers.

Machine-State Register Following an Interrupt
During an interrupt, the contents of the MSR (see page 431) are loaded into either SRR1 
(noncritical interrupts) or SRR3 (critical interrupts). Depending on the interrupt, the MSR 
is updated with the values shown in Table 7-3.
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Save/Restore Registers 0 and 1
The save/restore registers 0 and 1 (SRR0 and SRR1) are 32-bit registers used to save 
machine state when a noncritical interrupt occurs. The format of each register is shown in 
Figure 7-2.

Table 7-3: Effect of Interrupts on Machine-State Register Contents

Bit Name Interrupt Value Description

0:5 All 0 Reserved

6 AP All 0 This unsupported bit is cleared, but otherwise ignored.

7:11 All 0 Reserved

12 APE All 0 This unsupported bit is cleared, but otherwise ignored.

13 WE All 0 Processor wait state is disabled.

14 CE Critical-Input Interrupt

Machine-Check Interrupt

Watchdog-Timer Interrupt

Debug Interrupt

0 Critical-input interrupts are disabled (masked).

All Others No Change Critical-input interrupts are enabled or disabled.

15 All 0 Reserved

16 EE All 0 External interrupts are disabled (masked).

17 PR All 0 Processor is in privileged mode.

18 FP All 0 This unsupported bit is cleared, but otherwise ignored.

19 ME Machine-Check Interrupt 0 Machine-check interrupts are disabled (masked).

All Others No Change Machine-check interrupts are enabled or disabled.

20 FE0 All 0 This unsupported bit is cleared, but otherwise ignored.

21 DWE All 0 Debug wait-mode is disabled.

22 DE Critical-Input Interrupt

Machine-Check Interrupt

Watchdog-Timer Interrupt

Debug Interrupt

0 Debug interrupts are disabled (masked).

All Others No Change Debug interrupts are enabled or disabled.

23 FE1 All 0 This unsupported bit is cleared, but otherwise ignored.

24:25 All 0 Reserved

26 IR All 0 Instruction-address translation is disabled (real mode).

27 DR All 0 Data-address translation is disabled (real mode).

28:31 All 0 Reserved

0 30 31

Interrupted-Instruction Effective Address 0 0

SRR0
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During a noncritical interrupt, SRR0 is loaded by the processor with the effective address 
of the interrupted instruction (bits 30:31 are always 0, because instruction addresses are 
word aligned). An rfi instruction is used to return from the noncritical-interrupt handler to 
the instruction address stored in SRR0. Depending on the exception, this effective address 
represents either:

• The instruction that caused the exception.
• The instruction that would have executed had no exception occurred. For example, 

when an sc instruction is executed SRR0 is loaded with the instruction effective 
address following the sc.

See the specific instruction for details.

SRR1 is loaded with a copy of the MSR when a noncritical interrupt occurs. An rfi 
instruction restores the machine state by copying the contents of SRR0 into the MSR 
(defined and reserved MSR fields are updated).

SRR0 is a privileged SPR with an address of 26 (0x01A) and SRR1 is a privileged SPR with 
an address of 27 (0x01B). Both registers are read and written using the mfspr and mtspr 
instructions.

Save/Restore Registers 2 and 3
The save/restore registers 2 and 3 (SRR2 and SRR3) are 32-bit registers used to save 
machine state when a critical interrupt occurs. Interrupts defined as critical are:

• Critical-Input Interrupt.

• Machine-Check Interrupt.

• Watchdog-Timer Interrupt.

• Debug Interrupt.

The format of each register is shown in Figure 7-3.

During a critical interrupt, SRR2 is loaded by the processor with the effective address of the 
interrupted instruction (bits 30:31 are always 0, because instruction addresses are word 
aligned). An rfci instruction is used to return from the critical-interrupt handler to the 
instruction address stored in SRR2. Depending on the exception, this effective address 
represents either:

• The instruction that caused the exception.
• The instruction that would have executed had no exception occurred. For example, 

when a watchdog-timer interrupt occurs SRR2 is loaded with the effective address of 
the next-sequential instruction.

0 31

Copy of Machine-State Register

SRR1

Figure 7-2: Save/Restore Registers 0 and 1

0 30 31

Interrupted-Instruction Effective Address 0 0

SRR2

0 31

Copy of Machine-State Register

SRR3

Figure 7-3: Save/Restore Registers 2 and 3
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See the specific instruction for details.

SRR3 is loaded with a copy of the MSR when a critical interrupt occurs. An rfci instruction 
restores the machine state by copying the contents of SRR3 into the MSR (defined and 
reserved MSR fields are updated).

SRR2 is a privileged SPR with an address of 990 (0x3DE) and SRR3 is a privileged SPR with 
an address of 991 (0x3DF). Both registers are read and written using the mfspr and mtspr 
instructions.

Exception-Vector Prefix Register
The exception-vector prefix register (EVPR) is a 32-bit register that contains the base 
address of the interrupt-handler table. Software can locate the interrupt-handler table 
anywhere in physical-address space, with a base address that falls on a 64KB-aligned 
boundary. When an exception occurs, the high-order 16 bits in EVPR are concatenated on 
the left with the 16-bit exception-vector offset (the low-order 16 reserved bits in the EVPR 
are ignored by the processor). The resulting 32-bit exception-vector physical address is 
used by the interrupt mechanism to transfer control to the appropriate interrupt handler. 
Figure 7-4 shows the format of the EVPR register. The fields in the EVPR are defined as 
shown in Table 7-4.

The EVPR is a privileged SPR with an address of 982 (0x3D6) and is read and written using 
the mfspr and mtspr instructions.

Exception-Syndrome Register
The exception-syndrome register (ESR) is a 32-bit register used to identify the cause of the 
following exceptions:

• Program exception.
• Instruction machine-check exception.
• Instruction-storage exception.
• Data-storage exception.
• Data TLB-miss exception.

Figure 7-5 shows the format of the ESR register. The fields in the ESR are defined as shown 
in Table 7-5.

0 15 16 31

EVP

Figure 7-4: Exception-Vector Prefix Register (EVPR)

Table 7-4: Exception-Vector Prefix Register (EVPR) Field Definitions

Bit Name Function Description

0:15 EVP Exception-Vector Prefix Used to locate the interrupt-handler table base address on an 
arbitrary 64KB physical-address boundary.

16:31 Reserved

0 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 31

MCI PIL PPR PTR PEU DST DIZ PFP PAP U0F

Figure 7-5: Exception-Syndrome Register (ESR)
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In general, an exception sets its corresponding ESR bit and clears all other bits. However, if 
machine-check interrupts are not enabled (MSR[ME]=0), a previously set ESR[MCI] bit is 
not cleared when other exceptions occur. This is true whether or not the other exception 
occurs simultaneously with the instruction machine-check exception that sets ESR[MCI]. 
Handling ESR[MCI] in this manner prevents losing a record of an instruction machine-

Table 7-5: Exception-Syndrome Register (ESR) Field Definitions

Bit Name Function Description

0 MCI  Machine Check—Instruction

0—Did not occur.

1—Occurred.

When set to 1, indicates an instruction machine-
check exception occurred.

1:3 Reserved

4 PIL Program—Illegal Instruction

0—Did not occur.

1—Occurred.

When set to 1, indicates an illegal-instruction 
program exception occurred.

5 PPR Program—Privileged Instruction

0—Did not occur.

1—Occurred.

When set to 1, indicates a privileged-instruction 
program exception occurred.

6 PTR Program—Trap Instruction

0—Did not occur.

1—Occurred.

When set to 1, indicates a successful trap-instruction 
compare occurred, resulting in a trap-instruction 
program exception.

7 PEU Program—Unimplemented Instruction

0—Did not occur.

1—Occurred.

Not supported by the PPC405D5.

8 DST Data Storage—Store Instruction

0—Did not occur.

1—Occurred.

When set to 1, indicates a store instruction 
(including dcbi, dcbz, and dccci) caused an 
exception to occur (data-storage exception or data 
TLB-miss exception).

9 DIZ Data and Instruction Storage—Zone Protection

0—Did not occur.

1—Occurred.

When set to 1, indicates a zone-protection violation 
caused a data-storage or instruction-storage 
exception to occur.

For instruction-storage exceptions, DIZ is cleared to 
0 when the exception is caused by a fetch from a 
non-executable address or from guarded storage.

10:11 Reserved

12 PFP Program—Floating-Point Instruction

0—Did not occur.

1—Occurred.

Not supported by the PPC405D5.

13 PAP Program—Auxiliary-Processor Instruction

0—Did not occur.

1—Occurred.

Not supported by the PPC405D5.

14:15 Reserved

16 U0F Data Storage—U0 Protection

0—Did not occur.

1—Occurred.

When set to 1, indicates a U0-protection violation 
caused a data-storage exception to occur.

17:31 Reserved
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check exception when machine-check interrupts are disabled. It is recommended that 
instruction machine-check interrupt handlers clear the ESR[MSI] bit prior to returning to 
the interrupted program.

If machine-check interrupts are enabled (MSR[ME]=1), an instruction machine-check 
exception sets ESR[MCI] and clears all other ESR bits.

The ESR is a privileged SPR with an address of 980 (0x3D4) and is read and written using 
the mfspr and mtspr instructions.

Data Exception-Address Register
The data exception-address register (DEAR) is a 32-bit register that contains the memory-
operand effective address of the data-access instruction that caused one of the following 
exceptions:

• Alignment exception.
• Data-storage exception.
• Data TLB-miss exception.

Figure 7-6 shows the format of the DEAR register.

The DEAR is a privileged SPR with an address of 981 (0x3D5) and is read and written using 
the mfspr and mtspr instructions.

Interrupt Reference
This section describes each interrupt, using the following outline:

• The name of each interrupt is shown, followed by its exception-vector offset.
• Interrupts are classified based on whether they are critical or noncritical, synchronous 

or asynchronous, and precise or imprecise.
• The conditions that cause the exception for which the interrupt occurs are described.
• The methods used to enable and disable (mask) the interrupt are described, if 

applicable.
• The values of the registers affected by taking the interrupt are shown.

0 31

Data-Access Effective Address

Figure 7-6: Data Exception-Address Register (DEAR)
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Critical-Input Interrupt (0x0100)

Interrupt Classification
• Critical—return using the rfci instruction.
• Asynchronous.
• Precise.

Description
A critical-input exception is caused by an external device (usually the external-interrupt 
controller) asserting the critical-interrupt input signal to the processor.

This exception is persistent. To prevent repeated interrupts from occurring, the interrupt 
handler must clear the exception status in the appropriate device control register (DCR) 
associated with the external-interrupt controller before returning, and before re-enabling 
critical interrupts.

This interrupt is enabled using the critical-interrupt enable bit (CE) in the MSR. When 
MSR[CE]=1, the processor recognizes exceptions caused by asserting the critical-interrupt 
input signal and forces a critical-input interrupt to occur. When MSR[CE]=0, the processor 
does not recognize the critical-interrupt input signal and critical-input interrupts cannot 
occur.

All maskable interrupts, except those caused by machine-check exceptions, are disabled 
when a critical-input interrupt occurs. The critical-input interrupt handler should not re-
enable MSR[CE] until it has cleared the exception and saved SRR2 and SRR3. Saving these 
registers avoids potential corruption of the interrupt handler should a watchdog-timer 
interrupt or another critical-input interrupt occur.

In some PowerPC implementations, this exception-vector offset corresponds to a system-
reset interrupt.

Affected Registers

Register Value After Interrupt

SRR0 Not used.

SRR1

SRR2 Loaded with the effective address of the next-sequential instruction to be 
executed at the point the interrupt occurs.

SRR3 Loaded with a copy of the MSR at the point the interrupt occurs.

ESR Not used.

DEAR

MSR [AP, APE, WE, CE, EE, PR, FP, FE0, DWE, DE, FE1, IR, DR] ← 0.

[ME] ← Unchanged.
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Machine-Check Interrupt (0x0200)

Interrupt Classification
• Critical—return using the rfci instruction.
• Asynchronous (not guaranteed to be synchronous).
• Imprecise (not guaranteed to be precise).

Description
A machine-check exception is caused by an error detected on the processor-local bus (PLB). 
External devices assert an error signal to the processor when a machine-check error is 
recognized. The processor supports two external PLB-error signals, one for instructions 
and one for data. This enables the processor to differentiate between machine checks due 
to instruction fetching and those caused by data access.

This interrupt is enabled using the machine-check enable bit (ME) in the MSR. When 
MSR[ME]=1, the processor recognizes exceptions caused by asserting one of the PLB-error 
input signals and forces a machine-check interrupt to occur. When MSR[ME]=0, the 
processor continues to recognize the PLB-error input signals, but an associated machine-
check interrupt does not occur. The exception is not persistent.

All maskable interrupts, including those caused by machine-check exceptions, are 
disabled when a machine-check interrupt occurs. The machine-check interrupt handler 
should not re-enable MSR[ME] until it has saved SRR2 and SRR3. Saving these registers 
avoids potential corruption of the interrupt handler should another machine-check 
interrupt occur.

Instruction Machine-Check Interrupt

Instruction machine-check errors are reported to the processor by an external device 
during an instruction fetch. However, the exception and subsequent interrupt do not occur 
until the processor attempts to execute the instruction that caused the error. If the erroneous 
instruction fetch results in a cache-line fill, any instruction later executed from the 
cacheline can cause the exception to occur. Machine-check exceptions associated with 
cached instructions always invalidate the corresponding instruction-cacheline.

ESR[MCI] is set to 1 by all instruction machine-check exceptions. This is true regardless of 
whether the machine-check interrupt is enabled or not. If machine-check interrupts are 
disabled (MSR[ME]=0), software can periodically examine ESR[MCI] to determine if any 
instruction machine-check exceptions have occurred. Software should clear ESR[MCI] to 0 
before returning from the machine-check interrupt handler to avoid any ambiguity when 
handling subsequent machine-check interrupts.

Data Machine-Check Interrupt

Data machine-check errors are reported to the processor by an external device during a 
data access. Determining the cause is dependent on the system implementation. Generally 
the data machine-check interrupt handler must examine the error-reporting registers 
located in the external-PLB devices to determine the exception cause.
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Affected Registers

Instruction Machine-Check Interrupt

Data Machine-Check Interrupt

Register Value After Interrupt

SRR0 Not used.

SRR1

SRR2 Loaded with the effective address of the instruction that caused the machine-
check exception.

SRR3 Loaded with a copy of the MSR at the point the interrupt occurs.

ESR [MCI] ← 1

All remaining bits are cleared to 0.

DEAR Not used.

MSR [AP, APE, WE, CE, EE, PR, FP, ME, FE0, DWE, DE, FE1, IR, DR] ← 0.

Register Value After Interrupt

SRR0 Not used.

SRR1

SRR2 Loaded with the effective address of the next-sequential instruction to be 
executed at the point the interrupt occurs.

SRR3 Loaded with a copy of the MSR at the point the interrupt occurs.

ESR Not used.

DEAR

MSR [AP, APE, WE, CE, EE, PR, FP, ME, FE0, DWE, DE, FE1, IR, DR] ← 0.
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Data-Storage Interrupt (0x0300)

Interrupt Classification
• Noncritical—return using the rfi instruction.
• Synchronous.
• Precise.

Description
Data-storage exceptions are associated with the execution of an instruction that accesses 
memory, including certain cache-control instructions. A data-storage exception occurs 
when a data access fails for any of the following reasons:

• An access is made to an address with no-access-allowed zone protection (the 
corresponding zone-field value is 0b00). Any load, store, dcbf, dcbst, dcbz, or icbi 
instruction can cause an exception for this reason. No-access-allowed zone protection 
is possible only in user mode with data virtual-mode enabled (MSR[DR]=1).

• A store is made to a read-only address. Read-only addresses can only be specified 
when data virtual-mode is enabled (MSR[DR]=1). Read-only addresses have the 
write-enable bit (TLBLO[WR]) in the corresponding TLB entry cleared to zero. The 
cause of this exception further depends on the privilege mode:
- In user mode, any store or dcbz instruction can cause an exception for this reason. 

No zone-protection override can be specified (the corresponding zone-field value 
is not equal to 0b11).

- In privileged mode, any store, dcbi, dcbz, or dccci instruction can cause an 
exception for this reason. No zone-protection override can be specified (the 
corresponding zone-field value is not equal to 0b10 or 0b11).

• A store is made to an address with the corresponding U0 storage attribute set to 1 and 
U0 exceptions are enabled (CCR0[U0XE]=1). In real mode, the U0 storage attribute is 
specified by the SU0R register. In virtual mode, the U0 storage attribute is specified by 
the TLB entry (TLBHI[U0]) used to translate the address. The instructions that can 
cause an exception for this reason are:
- In user mode, any store or dcbz instruction.
- In privileged mode, any store, dcbi, dcbz, or dccci instruction.

System software can use this exception condition to implement real-mode write 
protection. 

Software cannot disable data-storage interrupts.

Affected Registers

Register Value After Interrupt

SRR0 Loaded with the effective address of the instruction that caused the data-storage 
exception.

SRR1 Loaded with a copy of the MSR at the point the interrupt occurs.

SRR2 Not used.

SRR3
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ESR [DST] ← 1 if the operation is a store, dcbi, dcbz, or dccci, otherwise 0.

[DIZ] ← 1 if the exception was caused by a zone-protection violation, otherwise 
0.

[U0F] ← 1 if the exception was caused by a U0 violation, otherwise 0.

[MCI] ← Unchanged.

All remaining bits are cleared to 0.

DEAR Loaded with the effective address of the failed data-access.

MSR [AP, APE, WE, EE, PR, FP, FE0, DWE, FE1, IR, DR] ← 0.

[CE, ME, DE] ← Unchanged.

Register Value After Interrupt
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Instruction-Storage Interrupt (0x0400)

Interrupt Classification
• Noncritical—return using the rfi instruction.
• Synchronous.
• Precise.

Description
Instruction-storage exceptions are associated with the fetching of an instruction from 
memory. However, an instruction-storage interrupt occurs only if an attempt is made to 
execute the instruction as required by the sequential-execution model. Speculative fetches 
that are later discarded do not cause instruction-storage interrupts. An instruction-storage 
exception occurs when an instruction fetch fails for any of the following reasons:

• An instruction is fetched from an address with no-access-allowed zone protection (the 
corresponding zone-field value is 0b00). No-access-allowed zone protection is 
possible only in user mode with instruction virtual-mode enabled (MSR[IR]=1).

• An instruction is fetched from a non-executable address. Non-executable addresses can 
only be specified when instruction virtual-mode is enabled (MSR[IR]=1). Non-
executable addresses have the write-executable bit (TLBLO[EX]) in the corresponding 
TLB entry cleared to zero. No zone-protection override can be specified:
- In user mode, the corresponding zone-field value is not equal to 0b11.
- In privileged mode, the corresponding zone-field value is not equal to 0b00 or 

0b11.
• An instruction is fetched from guarded storage (G attribute set to 1) regardless of 

privilege. In real mode, guarded storage is specified by the SGR register. In virtual 
mode, guarded storage is specified by the TLB entry (TLBLO[G]) used to translate the 
address.

Software cannot disable instruction-storage interrupts.

Affected Registers

Register Value After Interrupt

SRR0 Loaded with the effective address of the instruction that caused the instruction-
storage exception.

SRR1 Loaded with a copy of the MSR at the point the interrupt occurs.

SRR2 Not used.

SRR3

ESR [DIZ] ← 1 if the exception was caused by a zone-protection violation.

[DIZ] ← 0 if the exception was caused by fetching from a non-executable 
address or from guarded storage.

[MCI] ← Unchanged.

All remaining bits are cleared to 0.

DEAR Not used.

MSR [AP, APE, WE, EE, PR, FP, FE0, DWE, FE1, IR, DR] ← 0.

[CE, ME, DE] ← Unchanged.
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External Interrupt (0x0500)

Interrupt Classification
• Noncritical—return using the rfi instruction.
• Asynchronous.
• Precise.

Description
An external exception is caused by an external device (usually the external-interrupt 
controller) asserting the noncritical-interrupt input signal to the processor.

This exception is persistent. To prevent repeated interrupts from occurring, the interrupt 
handler must clear the exception status in the appropriate device control register (DCR) 
associated with the external-interrupt controller before returning.

This interrupt is enabled using the external-interrupt enable bit (EE) in the MSR. When 
MSR[EE]=1, the processor recognizes exceptions caused by asserting the noncritical-
interrupt input signal and forces an external interrupt to occur. When MSR[EE]=0, the 
processor does not recognize the noncritical-interrupt input signal and external interrupts 
cannot occur.

External interrupts are disabled when an external interrupt occurs. The external interrupt 
handler should not re-enable MSR[EE] until it has cleared the exception and saved SRR0 
and SRR1. Saving these registers avoids potential corruption of the interrupt handler 
should an external interrupt, programmable-interval timer interrupt, or fixed-interval 
timer interrupt occur.

Affected Registers

Register Value After Interrupt

SRR0 Loaded with the effective address of the next-sequential instruction to be 
executed at the point the interrupt occurs.

SRR1 Loaded with a copy of the MSR at the point the interrupt occurs.

SRR2 Not used.

SRR3

ESR

DEAR

MSR [AP, APE, WE, EE, PR, FP, FE0, DWE, FE1, IR, DR] ← 0.

[CE, ME, DE] ← Unchanged.
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Alignment Interrupt (0x0600)

Interrupt Classification
• Noncritical—return using the rfi instruction.
• Synchronous.
• Precise.

Description
Alignment exceptions are caused by the following memory accesses:

• Executing a dcbz instruction with an operand located in non-cacheable or write-
through memory.

• Executing an lwarx instruction with an operand that is not aligned on a word 
boundary.

• Executing an stwcx. instruction with an operand that is not aligned on a word 
boundary.

• From privileged mode (MSR[PR]=0), executing a dcread instruction with an operand 
that is not aligned on a word boundary.

Software cannot disable alignment interrupts.

Affected Registers

Register Value After Interrupt

SRR0 Loaded with the effective address of the instruction that caused the alignment 
exception.

SRR1 Loaded with a copy of the MSR at the point the interrupt occurs.

SRR2 Not used.

SRR3

ESR

DEAR Loaded with the effective address of the operand that caused the alignment 
exception.

MSR [AP, APE, WE, EE, PR, FP, FE0, DWE, FE1, IR, DR] ← 0.

[CE, ME, DE] ← Unchanged.
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Program Interrupt (0x0700)

Interrupt Classification
• Noncritical—return using the rfi instruction.
• Synchronous.
• Precise.

Description
Program exceptions are caused by any of the following conditions:

• Attempted execution of an illegal instruction. Floating-point instructions are 
considered illegal instructions in the PPC405D5. 

• Attempted execution of a privileged instruction from user mode.
• Execution of a trap instruction that satisfies the trap conditions. Following execution 

of a trap instruction, SRR0 contains the address of the trap instruction. To avoid 
repeated program interrupts as a result of returning from the trap handler, software 
should either:
- Replace the trap instruction with a non-trapping instruction.
- Modify the trap conditions to prevent a program interrupt.
- Modify the address in SRR0 to point to the next-sequential instruction in the 

interrupted program prior to executing the rfi.

The following exception conditions do not occur on the PPC405D5 but can occur on other 
versions of the PowerPC 405 processor:

• Exceptions caused by attempting to execute an unimplemented FPU or APU 
instruction. This exception condition sets ESR[PEU]=1.

• Exceptions caused by FPU-instruction errors. This exception condition sets 
ESR[PFP]=1.

• Exceptions caused by APU-instruction errors. This exception condition sets 
ESR[PAP]=1.

Software cannot disable program interrupts.

Affected Registers

Register Value After Interrupt

SRR0 Loaded with the effective address of the instruction that caused the program 
exception.

SRR1 Loaded with a copy of the MSR at the point the interrupt occurs.

SRR2 Not used.

SRR3
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ESR [PIL] ← 1 for attempted execution of an illegal instruction, otherwise 0. This bit 
is set if software attempts to execute a floating-point instruction.

[PPR] ← 1 for attempted execution of a privileged instruction in user mode, 
otherwise 0.

[PTR] ← 1 for exceptions due to trap instructions, otherwise 0.

[MCI] ← Unchanged.

All remaining bits are cleared to 0.

DEAR Not used.

MSR [AP, APE, WE, EE, PR, FP, FE0, DWE, FE1, IR, DR] ← 0.

[CE, ME, DE] ← Unchanged.

Register Value After Interrupt
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FPU-Unavailable Interrupt (0x0800)
Programs running on the PPC405D5 cannot cause this interrupt to occur because the 
floating-point unit is not implemented. It is shown for completeness to assist in porting 
software between systems containing different implementations of the PowerPC 405 
processor.

Interrupt Classification
• Noncritical—return using the rfi instruction.
• Synchronous.
• Precise.

Description
FPU-unavailable exceptions occur when a program attempts to execute an implemented 
floating-point instruction when the FPU is disabled (MSR[FP]=0).

Affected Registers

Register Value After Interrupt

SRR0 Loaded with the effective address of the instruction that caused the FPU-
unavailable exception.

SRR1 Loaded with a copy of the MSR at the point the interrupt occurs.

SRR2 Not used.

SRR3

ESR

DEAR

MSR [AP, APE, WE, EE, PR, FP, FE0, DWE, FE1, IR, DR] ← 0.

[CE, ME, DE] ← Unchanged.
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System-Call Interrupt (0x0C00)

Interrupt Classification
• Noncritical—return using the rfi instruction.
• Synchronous.
• Precise.

Description
System-call exceptions occur as a result of executing the system-call instruction (sc). The sc 
instruction provides a means for a user-level program to call a privileged system-service 
routine. It is assumed that the appropriate linkage information expected by the system-call 
handler is initialized prior to executing the sc instruction.

Affected Registers

Register Value After Interrupt

SRR0 Loaded with the effective address of the instruction following the system-call 
instruction.

SRR1 Loaded with a copy of the MSR at the point the interrupt occurs.

SRR2 Not used.

SRR3

ESR

DEAR

MSR [AP, APE, WE, EE, PR, FP, FE0, DWE, FE1, IR, DR] ← 0.

[CE, ME, DE] ← Unchanged.
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APU-Unavailable Interrupt (0x0F20)
Programs running on the PPC405D5 cannot cause this interrupt to occur because the 
auxiliary-processor unit is not implemented. It is shown for completeness to assist in 
porting software between systems containing different implementations of the PowerPC 
405 processor.

Interrupt Classification
• Noncritical—return using the rfi instruction.
• Synchronous.
• Precise.

Description
APU-unavailable exceptions occur when a program attempts to execute an implemented 
auxiliary-processor instruction when the APU is disabled (MSR[AP]=0).

Affected Registers

Register Value After Interrupt

SRR0 Loaded with the effective address of the instruction that caused the APU-
unavailable exception.

SRR1 Loaded with a copy of the MSR at the point the interrupt occurs.

SRR2 Not used.

SRR3

ESR

DEAR

MSR [AP, APE, WE, EE, PR, FP, FE0, DWE, FE1, IR, DR] ← 0.

[CE, ME, DE] ← Unchanged.
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Programmable-Interval Timer Interrupt (0x1000)

Interrupt Classification
• Noncritical—return using the rfi instruction.
• Asynchronous.
• Precise.

Description
A programmable-interval timer exception is caused by a time-out on the programmable-
interval timer (PIT). A time-out occurs when:

1. The current PIT contents are 1.

2. The PIT is decremented. Decrementing the PIT when the current value is 1 can cause 
the PIT to be loaded either with a value of 0, or cause a new non-zero value to be 
automatically loaded.

When a time-out is detected, the processor sets the PIT-status bit in the timer-status register 
(TSR[PIS]) to 1. At the beginning on the next clock cycle, the set TSR[PIS] bit causes the PIT 
interrupt to occur. Using the mtspr instruction to clear the PIT to 0 does not cause a PIT 
interrupt.

This exception is persistent. To prevent repeated interrupts from occurring, the interrupt 
handler must clear the exception status in TSR[PIS] before returning.

This interrupt is enabled only by setting both of the following:

• The PIT-interrupt enable bit in the timer-control register (TCR[PIE]) must be set to 1.
• The external-interrupt enable bit in the machine-state register (MSR[EE]) must be set 

to 1.

If either TCR[PIE]=0 or MSR[EE]=0, a PIT interrupt does not occur. See Chapter 8, Timer 
Resources, for more information on the PIT, TCR, and TSR.

Affected Registers

The timer-status register (TSR) is also updated as a result of a PIT exception.

Register Value After Interrupt

SRR0 Loaded with the effective address of the next-sequential instruction to be 
executed at the point the interrupt occurs.

SRR1 Loaded with a copy of the MSR at the point the interrupt occurs.

SRR2 Not used.

SRR3

ESR

DEAR

MSR [AP, APE, WE, EE, PR, FP, FE0, DWE, FE1, IR, DR] ← 0.

[CE, ME, DE] ← Unchanged.

Register Value After Exception

TSR [PIS] ← 1.

All others are unchanged.
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Fixed-Interval Timer Interrupt (0x1010)

Interrupt Classification
• Noncritical—return using the rfi instruction.
• Asynchronous.
• Precise.

Description
A fixed-interval timer exception is caused by a time-out on the fixed-interval timer (FIT). 
The processor detects a time-out when a 0 to 1 transition occurs on the time-base bit 
corresponding to the fixed-interval time period.

When a time-out is detected, the processor sets the FIT-status bit in the timer-status register 
(TSR[FIS]) to 1. At the beginning on the next clock cycle, the set TSR[FIS] bit causes the FIT 
interrupt to occur.

This exception is persistent. To prevent repeated interrupts from occurring, the interrupt 
handler must clear the exception status in TSR[FIS] before returning.

This interrupt is enabled only by setting both of the following:

• The FIT-interrupt enable bit in the timer-control register (TCR[FIE]) must be set to 1.
• The external-interrupt enable bit in the machine-state register (MSR[EE]) must be set 

to 1.

If either TCR[FIE]=0 or MSR[EE]=0, a FIT interrupt does not occur. See Chapter 8, Timer 
Resources, for more information on the FIT, TCR, and TSR.

Affected Registers

The timer-status register (TSR) is also updated as a result of a FIT exception.

Register Value After Interrupt

SRR0 Loaded with the effective address of the next-sequential instruction to be 
executed at the point the interrupt occurs.

SRR1 Loaded with a copy of the MSR at the point the interrupt occurs.

SRR2 Not used.

SRR3

ESR

DEAR

MSR [AP, APE, WE, EE, PR, FP, FE0, DWE, FE1, IR, DR] ← 0.

[CE, ME, DE] ← Unchanged.

Register Value After Exception

TSR [FIS] ← 1.

All others are unchanged.

http://www.xilinx.com


518 www.xilinx.com March 2002 Release
1-800-255-7778 Virtex-II Pro™ Platform FPGA Documentation

Chapter 7: Exceptions and Interrupts
R

Watchdog-Timer Interrupt (0x1020)

Interrupt Classification
• Critical—return using the rfci instruction.
• Asynchronous.
• Precise.

Description
A watchdog-timer exception is caused by a time-out on the watchdog timer. For a 
watchdog-timer interrupt to occur, the interrupt must be enabled and the processor must 
be enabled to detect the watchdog-timer exception, as follows:

• The watchdog-timer interrupt is enabled only by setting both of the following:
- The watchdog-interrupt enable bit in the timer-control register (TCR[WIE]) must 

be set to 1.

- The critical-interrupt enable bit in the machine-state register (MSR[CE]) must be 
set to 1.

If either TCR[WIE]=0 or MSR[CE]=0, a watchdog-timer interrupt does not occur.

• The processor detects a watchdog-timer exception when:
- The enable-next-watchdog bit in the timer-status register (TSR[ENW]) is set to 1.
- The watchdog-interrupt status bit in the timer-status register (TSR[WIS]) is 

cleared to 0.
- A 0 to 1 transition occurs on the time-base bit corresponding to the watchdog time 

period.

During the cycle following detection of the watchdog time-out, the processor sets 
TSR[WIS] to 1. At the beginning of the next cycle, the processor detects TSR[WIS]=1 and 
causes the watchdog-timer interrupt to occur.

This exception is persistent, but the persistence prevents further interrupts from occurring. 
This function causes an interrupt to occur on the first watchdog time-out, but prevents 
interrupts on subsequent time-outs. To enable additional interrupts, the interrupt handler 
must clear the exception status in TSR[WIS] before returning.

See Chapter 8, Watchdog-Timer Events, for more information on the watchdog timer and 
its relationship to the TCR and TSR.

Affected Registers

Register Value After Interrupt

SRR0 Not used.

SRR1

SRR2 Loaded with the effective address of the next-sequential instruction to be 
executed at the point the interrupt occurs.

SRR3 Loaded with a copy of the MSR at the point the interrupt occurs.

ESR Not used.

DEAR

MSR [AP, APE, WE, CE, EE, PR, FP, FE0, DWE, DE, FE1, IR, DR] ← 0.

[ME] ← Unchanged.
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The timer-status register (TSR) is also updated as a result of a watchdog-timer interrupt. 

Data TLB-Miss Interrupt (0x1100)

Interrupt Classification
• Noncritical—return using the rfi instruction.
• Synchronous.
• Precise.

Description
Data TLB-miss exceptions can occur only when data translation is enabled (MSR[DR]=1). 
They are associated with the execution of an instruction that accesses memory, including 
certain cache-control instructions. A data TLB-miss exception occurs when no valid TLB 
entry is found with both:

• A TAG field that matches the data effective-address page number (EA[EPN]).
• A TID field that matches the current process ID (PID).

Software cannot disable data TLB-miss interrupts.

See TLB Access, page 479, for more information on how TLB hits and misses are 
determined.

Affected Registers

Register Value After Interrupt

TSR [WIS] ← 1.

All others are unchanged.

Register Value After Interrupt

SRR0 Loaded with the effective address of the instruction that caused the data TLB-
miss exception.

SRR1 Loaded with a copy of the MSR at the point the interrupt occurs.

SRR2 Not used.

SRR3

ESR [DST] ← 1 if the operation is a store, dcbi, dcbz, or dccci, otherwise 0.

[MCI] ← Unchanged.

All remaining bits are cleared to 0.

DEAR Loaded with the effective address of the failed data-access.

MSR [AP, APE, WE, EE, PR, FP, FE0, DWE, FE1, IR, DR] ← 0.

[CE, ME, DE] ← Unchanged.
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Instruction TLB-Miss Interrupt (0x1200)

Interrupt Classification
• Noncritical—return using the rfi instruction.
• Synchronous.
• Precise.

Description
Instruction TLB-miss exceptions can occur only when instruction translation is enabled 
(MSR[IR]=1). An instruction TLB-miss exception occurs when no valid TLB entry is found 
with both:

• A TAG field that matches the instruction effective-address page number (EA[EPN]).
• A TID field that matches the current process ID (PID).

Instruction TLB-miss exceptions are associated with the fetching of an instruction from 
memory. However, an instruction TLB-miss interrupt occurs only if an attempt is made to 
execute the instruction as required by the sequential-execution model. Speculative fetches 
that are later discarded do not cause instruction TLB-miss interrupts.

Software cannot disable instruction TLB-miss interrupts.

See TLB Access, page 479, for more information on how TLB hits and misses are 
determined.

Affected Registers

Register Value After Interrupt

SRR0 Loaded with the effective address of the instruction that caused the instruction 
TLB-miss exception.

SRR1 Loaded with a copy of the MSR at the point the interrupt occurs.

SRR2 Not used.

SRR3

ESR

DEAR

MSR [AP, APE, WE, EE, PR, FP, FE0, DWE, FE1, IR, DR] ← 0.

[CE, ME, DE] ← Unchanged.
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Debug Interrupt (0x2000)

Interrupt Classification
• Critical—return using the rfci instruction.
• The debug interrupt can be synchronous or asynchronous, depending on the debug 

event:

Synchronous debug events:

- BT—Branch taken.
- DAC—Data-address compare.
- DVC—Data-value compare.
- IAC—Instruction-address compare.
- IC—Instruction completion.
- TDE—Trap instruction.

Asynchronous debug events:

- EDE—Exception taken.
- UDE—Unconditional.

• Precise.

Description
A debug exception is caused by an enabled debug event. Debug events are enabled and 
disabled using the debug-control registers (DBCR0 and DBCR1). A debug event occurs 
when a predefined debug condition is met, such as a data-address match.

This exception is persistent. If a debug exception occurs when debug interrupts are 
disabled, the imprecise-debug exception-status bit in the debug-status register is set, 
DBSR[IDE]. This bit is set in addition to other debug-status bits. When debug interrupts are 
later enabled, the set IDE bit causes a debug interrupt to occur immediately. When exiting 
an interrupt handler using an rfci instruction, the interrupt handler must clear DBSR[IDE] 
to prevent repeated interrupts from occurring. To prevent ambiguity in reporting debug 
status, all other DBSR bits should be cleared as well.

This interrupt is enabled using the debug-interrupt enable bit (DE) in the MSR. When 
MSR[DE]=1, the processor recognizes exceptions caused by enabled debug events. When 
MSR[DE]=0, the processor does not cause a debug interrupt when an enabled debug event 
occurs.

All maskable interrupts, except those caused by machine-check exceptions, are disabled 
when a debug interrupt occurs. The debug-interrupt handler should not re-enable 
MSR[DE] until it has cleared the exception and saved SRR2 and SRR3. Saving these 
registers avoids potential corruption of the interrupt handler should a subsequent debug 
interrupt occur.

See Chapter 9, Debugging, for more information on debug events.

Affected Registers

Register Value After Interrupt

SRR0 Not used.

SRR1
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The debug-status register (DBSR) is also updated as a result of a debug interrupt. See 
Debug-Status Register, page 541, for more information on the DBSR.

SRR2 Loaded based on the debug event, as follows:

BT

DAC

IAC

TDE

Loaded with the effective address of the instruction that caused the 
debug exception.

DVC

IC

Loaded with the effective address of the instruction following the 
instruction that caused the debug exception.

EDE Loaded with the 32-bit exception-vector physical address of the 
exception that caused the debug interrupt. This corresponds to the first 
instruction in the interrupt handler.

UDE Loaded with the effective address of the next-sequential instruction to 
be executed at the point the debug interrupt occurs.

SRR3 Loaded with a copy of the MSR at the point the interrupt occurs.

ESR Not used.

DEAR

MSR [AP, APE, WE, CE, EE, PR, FP, FE0, DWE, DE, FE1, IR, DR] ← 0.

[ME] ← Unchanged.

Register Value After Interrupt

DBSR Updated to reflect the debug event.

Register Value After Interrupt
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Chapter 8

Timer Resources

The PPC405 supports several timer resources that can be used for a variety of time-keeping 
functions. Possible uses of these timer resources include:

• Time-of-day computation.
• Data-logging for system-service routines.
• Periodic servicing of time-sensitive external devices.
• Preemptive multitasking.

The timer resources supported by the PPC405 consist of:

• Two timer registers:
- A 64-bit incrementing timer, called the time-base.
- A 32-bit decrementing timer, called the programmable-interval timer.

• Three timer-event interrupts:
- A watchdog-timer interrupt that provides the ability to set critical interrupts that 

can aid in recovery from system failures.
- A programmable-interval timer interrupt that provides the ability to set noncritical 

variable-time interrupts.
- A fixed-interval timer interrupt that provides the ability to set noncritical interrupts 

with a fixed, repeatable time period.
• A timer-control register for setting up and controlling the timer events.
• A timer-status register for recording timer-event status.

Figure 8-1 shows the relationship of the two timers and three timer-event interrupts. The 
two timers are clocked at the same frequency. This frequency is determined using external 
input signals to the processor. Refer to the PPC405 Processor Block Manual for more 
information on setting the timer frequency.
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Time Base
The time base is a 64-bit incrementing counter supported by all PowerPC processors. 
64 bits provide a long time period before rolling over from 0xFFFF_FFFF_FFFF_FFFF to 
0x0000_0000_0000_0000. At a clock rate of 300 MHz, for example, the time base increments 
for about 1,950 years before rolling over. This makes it suitable for certain long-term timing 
functions, such as time-of-day calculation. A time-base rollover is silent—it does not cause 
an exception to timer event. 

The 64-bit time base is implemented as two 32-bit registers. The time-base upper register 
(TBU) holds time-base bits 0:31, and the time-base lower register (TBL) holds time-base bits 
32:63. Figure 8-2 shows the format of the time base.

The TBU and TBL registers are SPRs with user-mode read access and privileged-mode 
write access. Reading the time-base registers requires use of the move from time-base register 
instruction. This instruction, shown in Table 8-1, is similar to the move from SPR 
instruction. The TBR number (TBRN) shown in the operand syntax column can be 
specified as a decimal or hexadecimal value in the assembler listing. Within the instruction 
opcode, this number is encoded using a split-field notation (see Split-Field Notation, 
page 571).

Figure 8-1: PPC405 Timer Resources

UG011_47_033101

Time-Base Upper (TBU)

0 31

Time-Base Lower (TBL)

0 31

Programmable-Interval Timer Events Programmable-Interval Timer (PIT)

0 31
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Clocks (Bit 15)
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217
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Clocks (Bit 11)

Clocks (Bit 15)

Watchdog Timer Events

Fixed-Interval Timer Events

External Clock Source64-Bit Time Base

0 31

TBU (Time Base [0:31])

0 31

TBL (Time Base [32:63])

Figure 8-2: Time-Base Register
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Table 8-2 summarizes the time-base numbers and SPR numbers used by the above 
instructions to access the time base registers. Simplified instruction mnemonics are 
available for reading and writing the time base. See Special-Purpose Registers, page 830, 
for more information.  

Reading and Writing the Time Base
The 64-bit time-base cannot be read or written using a single instruction. Software must 
access the upper and lower portions separately. During the time it takes to execute the 
instructions necessary to access the time base, it is possible for the TBU to be incremented. 
This occurs when TBL rolls over from 0xFFFF_FFFF to 0x0000_0000 (at 300 MHz, this 
happens every 14.3 seconds). If there is a rollover, the values read from or written to TBU 
and TBL can be inconsistent.

Following is a code example for reading the time base. The comparison of old and new 
TBU values within the loop ensures that a consistent pair of TBU and TBL values are read, 
avoiding problems with TBL rollover.

loop:
mftbu rx ! Read TBU.
mftb ry ! Read TBL.
mftbu rz ! Read TBU again.
cmpw rz,rx ! Check for TBU rollover by comparing old and new.
bne loop ! Read the time base again if a rollover occurred.

Following is a code example for writing the time base (simplified mnemonics are used for 
writing the time-base registers). Clearing TBL to 0 before writing it with a non-zero value 
ensures TBL rollover does not occur in the brief time required to update both TBU and 
TBL.

lwz rx,upper_value ! Load upper 32-bit time-base value into rx.
lwz ry,lower_value ! Load lower 32-bit time-base value into ry.
li rz, 0 ! Clear rz.
mttbl rz ! Clear TBL to avoid rollover after writing TBU.
mttbu rx ! Update TBU.
mttbl ry ! Update TBL.

Table 8-1: Time-Base Register Instructions

Mnemonic Name Operation
Operand 
Syntax

mftb Move from Time Base Register This instruction provides read-only access from the 
time base for user and privileged software.

rD is loaded with the contents of the time-base 
register specified by TBRN.

rD,TBRN

mtspr Move to Special Purpose Register This instruction provides write-only access to the 
time base for privileged software.

The time-base register specified by SPRN is loaded 
with the contents of rS.

SPRN,rS

Table 8-2: Time-Base Register Numbers

Register Decimal Hex Access

TBL 268 0x10C User and privileged read-only—mftb.

TBU 269 0x10D

TBL 284 0x11C Privileged write-only—mtspr.

TBU 285 0x11D
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Computing Time of Day
Calculating the time-of-day from the current time-base value requires the following 
information:

• A fixed-reference time.
• The equivalent time-base value corresponding to the fixed reference time.
• The system-dependent time-base update frequency.

Following is an algorithm that calculates the time-of-day. Awkward 64-bit division is 
avoided by assuming the algorithm is initiated by a time-keeping interrupt at least once per 
second. This periodic interrupt can be triggered by the fixed-interval timer or some 
external-interrupt device. The algorithm uses the following variables:

• billion—one billion (1,000,000,000).
• posix_tb—A 64-bit variable containing the last value read from the time base. 
• posix_sec—A 32-bit variable containing the number of seconds that have elapsed since 

the fixed-reference time. When timekeeping actually begins, this variable must be 
initialized with the number of seconds that have elapsed from the fixed-reference 
time. For example, assume:
- The fixed-reference time is 12:00:00 AM, January 1, 2001
- The equivalent time-base value for the fixed-reference time is 0.
- Timekeeping begins at 12:00:00 AM, July 1, 2001.

Using these parameters, this variable is initialized with 0x00EE_9F80, which 
represents the number of seconds that have elapsed since the fixed-reference time.

• posix_ns—A 32-bit variable containing the number of nanoseconds that have elapsed 
since the last time-of-day calculation.

• ticks_per_sec—The number of times the time base increments per second. In this 
example, the processor clock is 300 MHz and the time base is incremented once every 
32 processor clocks. Thus, the variable is set to 0x8F_0D18 (300 MHz ÷ 32 = 9,375,000).

• ns_adj—The number of nanoseconds per increment of the time base. In this example, 
the variable is set to 0x6B (billion ÷ ticks_per_sec = 107).

The following code sequence implements the algorithm:

loop:
mftbu rx ! Read TBU.
mftb ry ! Read TBL.
mftbu rz ! Read TBU again.
cmpw rz, rx ! Check for TBU rollover by comparing old and new.
bne loop ! Read the time base again if a rollover occurred.

! We now have a consistent 64-bit time base in rx and ry.

lwz rz, posix_tb+4 ! Load rz with the low-32 bits of posix_tb.
sub rz, ry, rz ! rz = change in TB since last read.
lwz rw, ns_adj ! Load the number of ns per time-base increment.
mullw rz, rz, rw ! rz = number of elapsed ns since TB last read.
lwz rw, posix_ns ! Load elapsed ns since last computation.
add rz, rz, rw ! rz = new ns since last computation.
lwz rw billion ! A billion nanoseconds is 1 second.
cmpw rz, rw ! Are new elapsed ns more than 1 second?
blt nochange ! Branch if not.
sub rz, rz, rw ! Subtract 1 second from elapsed nanoseconds.
lwz rw, posix_sec ! Load the number of elapsed seconds.
addi rw, rw, 1 ! Add 1 second.
stw rw, posix_sec ! Store the number of elapsed seconds.
nochange:
stw rz, posix_ns ! Update elapsed ns.
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stw rx, posix_tb ! Update record of last time-base value.
stw ry, posix_tb+4

Timekeeping software can use the posix_sec value to compute the current date and time by 
adding it to the fixed reference time.

Varying the Update Frequency
Time-of-day computations require a comparison between the current time-base value and 
a fixed-reference time. This reference time is valid only when the time-base update 
frequency remains fixed. Many embedded systems change the time-base update frequency 
periodically. Changes are often initiated by system software, but hardware can also cause 
a frequency change (for example, a low-power mode that is initiated by a sudden power 
failure). When the frequency changes, a mechanism must be provided to the time-of-day 
calculation routine notifying it of the change. If the change is software initiated, a system 
call to the calculation routine can be used. If the change is hardware initiated, an external 
interrupt can be used.

When the time-of-day calculation routine is called, it must compute new reference values. 
This involves the following: 

• Saving the time-base value at the point the frequency is changed.
• Computing and saving the current time-of-day using the old update frequency and 

the saved time-base value.
• Computing and saving a new value for ticks_per_sec.

Later calls to compute the time-of-day can use the updated variables along with the 
current time-base value to calculate the correct time.

Timer-Event Registers
Three PPC405 registers are defined for managing timer-event interrupts:

• Programmable-interval timer register.
• Timer-control register.
• Timer-status register.

A description of each register is provided in the following sections.

Programmable-Interval Timer Register
The programmable-interval timer (PIT) register is a 32-bit decrementing counter that is 
clocked at the same frequency as the time-base register. It can be used by software to cause 
a PIT interrupt after a variable-length time period elapses. Figure 8-3 shows the format of 
the PIT register.

The PIT is a privileged SPR with an address of 987 (0x3DB). It is read and written using the 
mfspr and mtspr instructions.

When the PIT contains a value of 1 and is decremented, a PIT event occurs. A PIT event can 
be used to cause a PIT interrupt as described in Programmable-Interval Timer Events, 
page 532. Auto-reload mode controls the state of the PIT register when it contains a value 
of 1 and is decremented, as follows:

• In auto-reload mode, the PIT is reloaded with the last value loaded by an mtspr 
instruction. In this mode, the PIT never contains a value of 0. Auto-reload mode is 
enabled by setting the auto-reload enable bit in the timer-control register 

0 31

Time remaining to PIT event

Figure 8-3: Programmable-Interval Timer Register (PIT)

http://www.xilinx.com


528 www.xilinx.com March 2002 Release
1-800-255-7778 Virtex-II Pro™ Platform FPGA Documentation

Chapter 8: Timer Resources
R

(TCR[ARE]=1).
• If auto-reload mode is disabled (TCR[ARE]=0), the PIT decrements from 1 to 0. When 

the PIT contains a value of 0, it stops decrementing until software loads it with a non-
zero value.

Auto-reload mode is disabled after a reset.

Timer-Control Register
The timer-control register (TCR) is a 32-bit register used to control the PPC405 timer 
events. Figure 8-4 shows the format of the TCR. The fields in TCR are defined as shown in 
Table 8-3.

The TCR is a privileged SPR with an address of 986 (0x3DA). It is read and written using 
the mfspr and mtspr instructions.

0 1 2 3 4 5 6 7 8 9 10 31

WP WRC WIE PIE FP FIE ARE

Figure 8-4: Timer-Control Register (TCR)

Table 8-3: Timer-Control Register (TCR) Field Definitions

Bit Name Function Description

0:1 WP Watchdog Period

00—217 clocks
01—221 clocks
10—225 clocks
11—229 clocks

Specifies the period for a watchdog-timer event.

2:3 WRC Watchdog Reset Control

00—No reset
01—Processor reset
10—Chip reset
11—System reset

Specifies the type of reset that occurs as a result of a watchdog-
timer event.

After a bit is set in the WRC field, it cannot be cleared by software. 
Only a reset can clear the bit. This prevents errant code from 
disabling watchdog resets.

4 WIE Watchdog-Interrupt Enable

0—Disabled
1—Enabled

Enables and disables watchdog interrupts.

5 PIE PIT-Interrupt Enable

0—Disabled
1—Enabled

Enables and disables programmable-interval timer interrupts.

6:7 FP FIT Period

00—29 clocks
01—213 clocks
10—217 clocks
11—221 clocks

Specifies the period for a fixed-interval timer event.

8 FIE FIT-Interrupt Enable

0—Disabled
1—Enabled

Enables and disables fixed-interval timer interrupts.

9 ARE Auto-Reload Enable

0—Disabled
1—Enabled

Enables and disables the programmable-interval timer auto-reload 
mode.

10:31 Reserved
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Timer-Status Register
The timer-status register (TSR) is a 32-bit register used to report status for the PPC405 timer 
events. Figure 8-5 shows the format of the TSR. The fields in TSR are defined as shown in 
Table 8-4.

The TSR is a privileged SPR with an address of 984 (0x3D8). Hardware sets the status bits. 
Software is responsible for reading and clearing the bits. It is read using the mfspr 
instruction. The register is cleared, but not directly written, using the mtspr instruction. 
Values in the source register, rS, behave as a mask when clearing the TSR. Here, a value of 
0b1 in any bit position of rS clears the corresponding bit in the TSR. A value of 0b0 in an rS 
bit position does not alter the corresponding bit in the TSR.

Timer-Event Interrupts
Three timer-event interrupts are defined by the PPC405. Each interrupt transfers control to 
a unique exception-vector offset (see Interrupt Reference, page 502, for more 
information):

• Watchdog-timer (WDT) interrupt. This critical interrupt is assigned to exception-
vector offset 0x1020.

• Programmable-interval timer (PIT) interrupt. This noncritical interrupt is assigned to 
exception-vector offset 0x1000.

• Fixed-interval timer (FIT) interrupt. This noncritical interrupt is assigned to 
exception-vector offset 0x1010.

0 1 2 3 4 5 6 31

ENW WIS WRS PIS FIS

Figure 8-5: Timer-Status Register (TSR)

Table 8-4: Timer-Status Register (TSR) Field Definitions

Bit Name Function Description

0 ENW Enable Next Watchdog

0—Next watchdog time-out
sets TSR[ENW]=1

1—Next watchdog time-out
determined by TSR[WIS]

Enables the watchdog-timer event. See Watchdog-Timer Events, 
page 530, for more information.

1 WIS Watchdog-Interrupt Status

0—No interrupt occurred
1—Interrupt occurred

Specifies whether a watchdog interrupt occurred, or could have 
occurred had it been enabled.

2:3 WRS Watchdog Reset Status

00—No reset
01—Processor reset
10—Chip reset
11—System reset

Specifies the type of reset that occurred as a result of a watchdog-
timer event, if the event caused a reset.

4 PIS PIT-Interrupt Status

0—No interrupt pending
1—Interrupt is pending

If programmable-interval timer interrupts are disabled, this bit 
specifies whether a PIT interrupt is pending. If they are enabled, the 
bit specifies whether a PIT interrupt occurred.

5 FIS FIT-Interrupt Status

0—No interrupt pending
1—Interrupt is pending

If fixed-interval timer interrupts are disabled, this bit specifies 
whether a FIT interrupt is pending. If they are enabled, the bit 
specifies whether a FIT interrupt occurred.

6:31 Reserved
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The following sections describe the use of the timer-event registers in managing the 
interrupts.

Watchdog-Timer Events
The watchdog timer can aid in recovery from software or hardware failure. It can be 
programmed to cause a watchdog time-out (also called the watchdog event) after a fixed 
time-period elapses. Watchdog time-outs can be further programmed to cause a critical 
interrupt called the watchdog interrupt. Normally, the watchdog-interrupt handler clears 
the watchdog event before returning. However, if a software or hardware failure prevents 
the interrupt handler from clearing the event, a subsequent watchdog time-out can be 
programmed to force a reset.

Watchdog interrupts are enabled when both of the following bits are set to 1:

• The watchdog-interrupt enable bit in the timer-control register, TCR[WIE].
• The critical-interrupt enable bit in the machine-state register, MSR[CE].
If either TCR[WIE]=0 or MSR[CE]=0, watchdog-timer interrupts are disabled. However, 
watchdog time-outs can be programmed to force a reset whether or not the watchdog 
interrupt is enabled.

A watchdog time-out occurs when a selected bit in the time-base lower register (TBL) 
changes from 0 to 1. The watchdog-period bit in the timer-control register (TCR[WP]) is 
used to select the TBL bit that controls the time-out, as shown in Table 8-5.

Software cannot disable watchdog time-outs. This is because the time-base register is 
always incrementing and a valid watchdog interval is always specified by TCR[WP]. 
Instead of preventing watchdog time-outs, software controls the action taken by the 
processor when a time-out occurs by managing the watchdog-event state machine. A 
timer-control register field and two timer-status register bits are used to control the state 
machine:

• Watchdog-reset control, TCR[WRC]—This field specifies the type of reset to be 
performed when the state machine enters the reset state:
- 00—No reset. The processor ignores the watchdog time-out.
- 01—A processor-only reset occurs. No external devices are reset.
- 10—A chip reset occurs. The processor and all external devices on the same chip 

are reset. No other system components are reset.
- 11—The entire system, including the processor and chip, are reset.

Each bit in TCR[WRC] is sticky. Software can set these bits but cannot clear them. After 
a bit is set only a reset can clear it. 

• Enable next watchdog, TSR[ENW]—This bit performs the following functions:
- When cleared to 0, the TSR[WIS] bit is not updated or used by the processor. 

Watchdog time-outs cannot cause an interrupt or reset. The next watchdog time-
out sets this bit to 1.

Table 8-5: Watchdog Time-Out Periods

TCR[WP] Selected TBL Bit
Time-Base

Clock Period
Watchdog Period
(300 MHz Clock)

00 15 217 0.437 msec

01 11 221 6.99 msec

10 7 225 0.112 sec

11 3 229 1.79 sec
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- When set to 1, the TSR[WIS] bit can be updated and is used by the processor as 
described below. When TSR[ENW]=1, the next watchdog time-out causes a 
watchdog interrupt (if enabled) or forces a reset (if a reset is specified). The value 
of the TSR[WIS] bit determines whether the action taken is an interrupt or a reset. 
In this case, the watchdog time-out that causes an interrupt is often referred to as 
the second watchdog time-out.

The processor sets the TSR[ENW] bit but never clears it. Only software can clear the 
bit.

• Watchdog-interrupt status, TSR[WIS]—This bit is used by the processor only when 
TSR[ENW]=1. It indicates whether or not a watchdog interrupt occurred and controls 
further watchdog interrupts and reset, as follows:
- When cleared to 0, no watchdog interrupt occurred. The next watchdog time-out 

can cause a watchdog interrupt to occur, if the interrupt is enabled. When 
TSR[ENW]=1, the next time-out sets this bit to 1.

- When set to 1, a watchdog interrupt occurred or would have occurred if enabled. 
The next watchdog time-out forces a reset if a reset condition is specified by 
TCR[WRC].

The processor sets the TSR[WIS] bit but never clears it. Only software can clear the bit.

Figure 8-6 shows the watchdog-event state machine and the transitions described in the 
previous paragraphs. The transitions for the interrupt handler and system service routines 
(both shown as dashed lines) are described in the following paragraphs.

Watchdog time-outs can be used to recover from otherwise unrecoverable errors. In the 
absence of software intervention, consecutive watchdog time-outs can cause a reset under 
the control of TCR[WRC]. This happens when the watchdog-event state machine enters 
the “Reset” state shown in Figure 8-6. After a reset, system software can determine the 
cause of the unrecoverable error and take appropriate action.

If no errors occur, software must periodically update the state of the state machine to 
prevent a reset. Figure 8-6, shows three possible methods for properly managing the state 
machine:

• Method (1)—an interrupt handler manages the state machine.

Figure 8-6: Watchdog-Event State Machine
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This method uses the watchdog interrupt. The watchdog interrupt handler clears 
TSR[WIS]=0 before returning. TSR[ENW] is never cleared and is always set to 1. If an 
error prevents watchdog interrupts, consecutive watchdog time-outs force a reset.

• Method (2)—the combination of a system-service routine and an interrupt handler 
manages the state machine.

This method attempts to avoid watchdog interrupts. Here, a system-service routine 
periodically clears the TSR[ENW] bit to 0, preventing watchdog interrupts. The system 
service routine must run more frequently than the watchdog time-out period. The 
fixed-interval timer can be used to initiate this routine at the proper time interval.

If an error prevents the system-service routine from clearing TSR[ENW], the next 
watchdog time-out causes a watchdog interrupt. The interrupt handler can attempt to 
correct the problem and clear both TSR[ENW] and TSR[WIS]. If an error prevents 
watchdog interrupts, another watchdog time-out forces a reset.

• Method (3)—a system-service routine manages the state machine.

This method avoids the watchdog interrupt entirely and requires that the interrupt be 
disabled. A system-service routine periodically clears the TSR[WIS] bit to 0 and leaves 
TSR[ENW] set to 1. If an error prevents the system-service routine from clearing 
TSR[WIS], the next watchdog time-out causes a reset. As with method (2), the system 
service routine must run more frequently than the watchdog time-out period. The 
fixed-interval timer can be used to initiate this routine at the proper time interval.

Disabling Watchdog Time-outs
After a reset (including power-on reset), watchdog interrupts are disabled because 
MSR[CE]=0. However, watchdog time-outs continue to occur because the time-base 
register is always incrementing, and a valid watchdog interval is always specified by 
TCR[WP]. 

Unless prevented by software, consecutive watchdog time-outs cause the state machine to 
enter the “Reset” state shown in Figure 8-6. If the state machine enters the “Reset” state 
and TCR[WRC]=00 (the value following a reset), watchdog time-outs become silent, 
causing neither an interrupt or reset. This effectively disables the event.

Programmable-Interval Timer Events
The programmable-interval timer (PIT) is a 32-bit decrementing register that is clocked at 
the same frequency as the time-base register. The PIT begins decrementing when it is 
loaded with a non-zero value and it stops decrementing when the contents reach 0. When 
the PIT contains a value of 1 and is decremented, a PIT event occurs. The value in the PIT 
following a PIT event depends on whether auto-reload mode is enabled:

• If auto-reload is not enabled (TCR[ARE]=0), the next PIT value is 0 and decrementing 
is halted. Loading the PIT with a value of 0 does not cause a PIT event.

• If auto-reload is enabled (TCR[ARE]=1), the PIT is loaded with the last value written 
to it. Decrementing continues from that value.

A PIT event causes a PIT interrupt when both of the following bits are set to 1:

• The PIT interrupt-enable bit in the timer-control register, TCR[PIE].
• The external-enable bit in the machine-state register, MSR[EE].

PIT events always set the PIT-interrupt status bit in the timer-status register (TSR[PIS]=1). 
This happens whether or not PIT interrupts are enabled. If TSR[PIS]=1 and the PIT 
interrupt is disabled, the PIT interrupt is pending. A PIT interrupt occurs if the status bit is 
set and the interrupt is enabled.

PIT events are disabled as follows:

• Disable PIT interrupts by clearing TCR[PIE]=0. 
• Clear TSR[PIS] to 0 to remove pending PIT interrupts.
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• Halt PIT decrementing by loading the PIT with 0. Alternatively, auto-reload mode can 
be disabled by clearing TCR[ARE]=0. When the PIT reaches to 0, decrementing is 
halted.

Fixed-Interval Timer Events
A fixed-interval timer (FIT) event occurs when a selected bit in the time-base lower register 
(TBL) changes from 0 to 1. The FIT-period bit in the timer-control register (TCR[FP]) is used 
to select the TBL bit controlling the FIT event, as shown in Table 8-6.

Software cannot prevent FIT events from occurring. This is because the time-base register 
is always incrementing and a valid fixed interval is always specified by TCR[FP].

A FIT event causes a FIT interrupt when both of the following bits are set to 1:

• The FIT interrupt-enable bit in the timer-control register, TCR[FIE].
• The external-enable bit in the machine-state register, MSR[EE].

FIT events always set the FIT-interrupt status bit in the timer-status register (TSR[FIS]=1). 
This happens whether or not FIT interrupts are enabled. If TSR[FIS]=1 and the FIT 
interrupt is disabled, the interrupt is considered pending. A FIT interrupt occurs if the 
status bit is set and the interrupt is enabled.

To disable FIT interrupts, software must clear TCR[FIE]=0. TSR[FIS] should be cleared to 0 
to remove pending FIT interrupts.

Table 8-6: Fixed-Interval Timer-Event Periods

TCR[FP] Selected TBL Bit
Time-Base

Clock Period
FIT Period

(300 MHz Clock)

00 23 29 1.71 µsec

01 19 213 27.3 µsec

10 15 217 0.437 msec

11 11 221 6.99 msec
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Chapter 9

Debugging

The PPC405 debugging resources can be used by system software and external hardware 
to implement software debug and trace-capture tools (collectively referred to as debuggers). 
These resources provide the following capabilities:

• Debug modes that support various debug tools and debug tasks commonly used in 
embedded-systems development.

• A debug exception (vector offset 0x2000) for use by debuggers when debug events 
occur.

• A variety of debugging functions (not all functions are available from all debug 
modes):
- Debug Events—Several types of debug events are available from the various 

debug modes. When detected, debug events can cause an interrupt or stop the 
processor, depending on the debug mode.

- Trap Instructions—The trap instructions (tw and twi) can be used to set software 
breakpoints that cause debug events rather than program interrupts.

- Halt—An external debug signal can be used to halt (stop) the processor. No 
instructions are executed during a halt, but processor registers can be read and 
written using the JTAG port. Execution resumes when the external halt signal is 
de-asserted.

- Stop—Stop can be used to halt the processor using the JTAG port rather than the 
external halt signal. No instructions are executed during a halt, but processor 
registers can be read and written using the JTAG port.

- Instruction Step—Using the JTAG port, the processor can be stopped and single-
stepped one instruction at a time.

- Instruction Stuff—Using the JTAG port, the processor can be stopped and 
instructions can be inserted (stuffed) into the processor and executed. The 
instructions do not replace existing instruction.

- Freeze Timers—The JTAG port or a debug-control register can be used to control 
the PPC405 timer resources. The timers can be frozen (stopped) completely, frozen 
only for the duration of debug events, or left running.

- Reset—A processor, chip, or system reset can be forced using the JTAG port, a 
debug-control register, or external signalling.

• Control registers used to manage the debug modes and functions.
• Status registers used to report debug information. 
• Status reporting through the JTAG port, including:

- Execution Status—Indicates whether the processor is stopped, waiting, or running.
- Exception Status—Indicates the status of pending synchronous exceptions.
- Most Recent Reset—Indicates the cause of the most-recent reset.

• A debug interface (JTAG) and a trace interface for connecting external hardware and 
software debug tools.
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Debug Modes
The PPC405 supports the following four debug modes:

• Internal-debug mode for use by software debuggers.
• External-debug mode for use by JTAG debuggers.
• Debug-wait mode for interrupt servicing when a JTAG debugger is in 

use.
• Real-time trace mode for use by instruction-trace tools.

The internal-debug and external-debug modes can be enabled simultaneously. 
Debug-wait mode and real-time trace mode are available only when both the 
internal-debug and external-debug modes are disabled.

Internal-Debug Mode
Internal-debug mode is used during normal program execution and provides 
an effective means for debugging system software and application programs. 
The mode supports setting breakpoints and monitoring processor status. In 
this mode, debug events can cause debug interrupts. The debug-interrupt 
handler is used to collect status information and to alter software-visible 
resources.

Internal-debug mode is enabled by setting the internal-debug mode bit in 
debug-control register 0, DBCR0[IDM]=1. Debug interrupts are enabled by 
setting MSR[DE]=1. An internal debug event can cause a debug interrupt only 
when both DBCR0[IDM]=1 and MSR[DE]=1.

External-Debug Mode
External-debug mode can be used to alter normal program execution. It 
provides the ability to debug system hardware as well as software. The mode 
supports starting and stopping the processor, single-stepping instruction 
execution, setting breakpoints, and monitoring processor status. Access to 
processor resources is provided through the JTAG port. 

External-debug events stop the processor, halting instruction execution. 
External-bus activity continues when the processor is stopped. Processor 
resources are accessed through the JTAG port when the processor is stopped. 
External-debug mode also enables instructions to be stuffed (inserted) into the 
processor through the JTAG port and executed. This capability does not cause 
privileged (program) exceptions, so privileged instructions can be stuffed 
when the processor is in user mode.

Instructions stuffed into the processor can provide access to a variety of 
system resources, including DCRs and system memory. However, memory-
protection mechanisms continue to operate in external-debug mode. Debug 
software can modify the MSR or TLB entries as necessary to enable access into 
protected memory locations.

External-debug mode is enabled by setting the external-debug mode bit in 
debug-control register 0, DBCR0[EDM]=1.

Debug events in external-debug mode can cause debug interrupts if internal-
debug mode is also enabled. Here, the processor stops with a debug-interrupt 
pending. The external debugger can perform debug operations and restart the 
processor. When the processor is restarted the debug interrupt occurs, 
transferring control to the debug-interrupt handler. The handler can be used 
to collect processor-status information and to alter software-visible resources. 
An external debug event can cause a debug interrupt only when both 
DBCR0[IDM]=1 and MSR[DE]=1.
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Debug-Wait Mode
Debug-wait mode causes the processor to enter a state in which interrupts can 
be handled when the processor appears to be stopped. The mode operates in a 
fashion similar to external-debug mode. It supports starting and stopping the 
processor, single-stepping instruction execution, setting breakpoints, and 
monitoring processor status. Access to processor resources is provided 
through the JTAG port.

External-debug events stop the processor, halting instruction execution. 
External-bus activity continues when the processor is stopped. Processor 
resources are accessed through the JTAG port when the processor is stopped. 
External-debug mode also enables instructions to be stuffed (inserted) into the 
processor through the JTAG port and executed. This capability does not cause 
privileged (program) exceptions, so privileged instructions can be stuffed 
when the processor is in user mode.

Unlike external-debug mode, debug-wait mode enables external devices to 
interrupt the processor when it is stopped. The processor transfers control to 
the critical-input interrupt handler (0x0100) or the external-interrupt handler 
(0x0500), as appropriate. After the interrupt handler completes and executes a 
return-from-interrupt instruction, the processor re-enters the stopped state.

Debug-wait mode is enabled by setting the debug-wait mode bit in the MSR, 
MSR[DWE]=1. Internal-debug mode and external debug mode must both be 
disabled (DBCR0[IDM]=0 and DBCR0[EDM]=0).

Real-Time Trace-Debug Mode
Real-time trace-debug mode supports real-time tracing of the instruction 
stream executed by the processor. In this mode, debug events are used to cause 
external trigger events. An external trace tool uses the trigger events to control 
the collection of trace information. The broadcast of trace information occurs 
independently of external trigger events (trace information is always supplied 
by the processor). Real-time trace-debug does not affect processor 
performance.

Real-time trace-debug mode is always enabled. However, the trigger events 
occur only when both internal-debug mode and external debug mode are 
disabled (DBCR0[IDM]=0 and DBCR0[EDM]=0). Most trigger events are 
blocked when either of those two debug modes are enabled.

Information on the trace-debug capabilities, how trace-debug works, and how 
to connect an external trace tool is available in the RISCWatch Debugger User’s 
Guide.

Debug Registers
The PPC405 debug resources include the following registers:

• Debug-control registers (DBCR0 and DBCR1).
• Debug-status register (DBSR).
• Instruction address-compare registers (IAC1–IAC4).
• Data address-compare registers (DAC1–DAC2).
• Data value-compare registers (DVC1–DVC2).

A description of each register is provided in the following sections.
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Debug-Control Registers
Two debug-control registers are supported by the PPC405: DBCR0 and 
DBCR1.

Debug-control register 0 (DBCR0) is used to enable the debug modes. It also is 
used to enable instruction-complete, branch-taken, exception-taken, and trap-
instruction debug events. It controls the various features of the instruction 
address-compare debug event. DBCR0 is also used to freeze the timers during 
a debug event. Figure 9-1 shows the format of the DBCR0 register. The fields in 
the DBCR0 are defined as shown in Table 9-1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 30 31

EDM IDM RST IC BT EDE TDE 1A1 1A2 1A12 1A12X 1A3 1A4 1A34 1A34X 1A12T 1A34T FT

Figure 9-1: Debug-Control Register 0 (DBCR0)

Table 9-1: Debug-Control Register 0 (DBCR0) Field Definitions

Bit Name Function Description

0 EDM External-Debug Mode

0—Disabled
1—Enabled

Specifies whether or not external-debug mode is 
enabled.

1 IDM Internal-Debug Mode

0—Disabled
1—Enabled

Specifies whether or not internal-debug mode is 
enabled.

2:3 RST Reset

00—No reset
01—Processor reset
10—Chip reset
11—System reset

Causes the specified reset to occur when written. 
The reset occurs immediately after the processor 
recognizes the value written to the register.

4 IC Instruction-Complete Debug Event

0—Disabled
1—Enabled

Specifies whether or not the instruction-complete 
debug event is enabled.

5 BT Branch-Taken Debug Event

0—Disabled
1—Enabled

Specifies whether or not the branch-taken debug 
event is enabled.

6 EDE Exception-Taken Debug Event

0—Disabled
1—Enabled

Specifies whether or not the exception debug event 
is enabled.

7 TDE Trap-Instruction Debug Event

0—Disabled
1—Enabled

Specifies whether or not the trap debug event is 
enabled.

8 IA1 Instruction Address-Compare 1 Debug Event

0—Disabled
1—Enabled

Specifies whether or not the instruction address-
compare 1 (IAC1) debug event is enabled.

9 IA2 Instruction Address-Compare 2 Debug Event

0—Disabled
1—Enabled

Specifies whether or not the instruction address-
compare 2 (IAC2) debug event is enabled.
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The DBCR0 is a privileged SPR with an address of 1010 (0x3F2) and is read 
and written using the mfspr and mtspr instructions.

Debug-control register 1 (DBCR1) is used to enable the parameters governing 
the various data address-compare and data value-compare debug events. 
Figure 9-2 shows the format of the DBCR1 register. The fields in the DBCR1 
are defined as shown in Table 9-2.

10 IA12 Instruction-Address Range-Compare 1-2

0—Disabled
1—Enabled

Instruction address-compare registers IAC1 and 
IAC2 specify an address range used by either the 
IAC1 or IAC2 debug events. If address-range 
comparison is disabled, exact-address comparison is 
enabled. 

11 IA12X IA12 Range-Compare Exclusive

0—Inclusive
1—Exclusive

Specifies whether the 1A12 address range (enabled 
by bit 10) is an inclusive range or an exclusive range.

12 IA3 Instruction Address-Compare 3 Debug Event

0—Disabled
1—Enabled

Specifies whether or not the instruction address-
compare 3 (IAC3) debug event is enabled.

13 IA4 Instruction Address-Compare 4 Debug Event

0—Disabled
1—Enabled

Specifies whether or not the instruction address-
compare 4 (IAC4) debug event is enabled.

14 IA34 Instruction-Address Range-Compare 3-4

0—Disabled
1—Enabled

Instruction address-compare registers IAC3 and 
IAC4 specify an address range used by either the 
IAC3 or IAC4 debug events. If address-range 
comparison is disabled, exact-address comparison is 
enabled. 

15 IA34X IA34 Range-Compare Exclusive

0—Inclusive
1—Exclusive

Specifies whether the 1A34 address range (enabled 
by bit 14) is an inclusive range or an exclusive range.

16 IA12T IA12 Range-Compare Toggle

0—No toggle
1—Toggle.

Toggles the value of the 1A12X bit ( bit 11) from 1 to 
0 or 0 to 1 when a debug event caused by a IA12 
range comparison (bit 10) occurs.

17 IA34T IA34 Range-Compare Toggle

0—No toggle
1—Toggle.

Toggles the value of the 1A34X bit ( bit 15) from 1 to 
0 or 0 to 1 when a debug event caused by a IA34 
range comparison (bit 14) occurs.

18:30 Reserved

31 FT Freeze Timers on Debug Event

0—Do not freeze
1—Freeze

Specifies whether the timers are frozen when a 
debug event occurs.

Table 9-1: Debug-Control Register 0 (DBCR0) Field Definitions (Continued)

Bit Name Function Description

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 19 20 23 24 31

D1R D2R D1W D2W D1S D2S DA12 DA12X DV1M DV2M DV1BE DV2BE

Figure 9-2: Debug-Control Register 1 (DBCR1)
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Table 9-2: Debug-Control Register 1 (DBCR1) Field Definitions

Bit Name Function Description

0 D1R Data Address-Compare 1 Read Debug Event

0—Disabled
1—Enabled

Specifies whether or not the data address-compare 1 
(DAC1) debug event is enabled for reads.

1 D2R Data Address-Compare 2 Read Debug Event

0—Disabled
1—Enabled

Specifies whether or not the data address-compare 2 
(DAC2) debug event is enabled for reads.

2 D1W Data Address-Compare 1 Write Debug Event

0—Disabled
1—Enabled

Specifies whether or not the data address-compare 1 
(DAC1) debug event is enabled for writes.

3 D2W Data Address-Compare 2 Write Debug Event

0—Disabled
1—Enabled

Specifies whether or not the data address-compare 2 
(DAC2) debug event is enabled for writes.

4:5 D1S Data Address-Compare 1 Size

00—Compare all bits
01—Ignore least-significant bit
10—Ignore least-significant two bits
11—Ignore least-significant five bits

Specifies the granularity of DAC1 exact-address 
comparisons:

00—Byte granular
01—Halfword granular
10—Word granular
11—Cache-line (8-byte) granular

6:7 D2S Data Address-Compare 2 Size

00—Compare all bits
01—Ignore least-significant bit
10—Ignore least-significant two bits
11—Ignore least-significant five bits

Specifies the granularity of DAC2 exact-address 
comparisons:

00—Byte granular
01—Halfword granular
10—Word granular
11—Cache-line (8-byte) granular

8 DA12 Data-Address Range-Compare 1-2

0—Disabled
1—Enabled

Data address-compare registers DAC1 and DAC2 
specify an address range used by either the DAC1 or 
DAC2 debug events. If address-range comparison is 
disabled, exact-address comparison is enabled. 

9 DA12X DA12 Range-Compare Exclusive

0—Inclusive
1—Exclusive

Specifies whether the DA12 address range (enabled 
by bit 8) is an inclusive range or an exclusive range.

10:11 Reserved

12:13 DV1M Data-Value Compare 1 Mode

00—Undefined
01—All selected bytes must match
10—At least one selected byte must match
11—At least one selected halfword must match

Specifies the conditions under which a data value-
comparison with the DVC1 register causes a debug 
event (DVC1 event). The comparison is made using 
the bytes selected by DV1BE.

14:15 DV2M Data-Value Compare 2 Mode

00—Undefined
01—All selected bytes must match
10—At least one selected byte must match
11—At least one selected halfword must match

Specifies the conditions under which a data value-
comparison with the DVC2 register causes a debug 
event (DVC2 event). The comparison is made using 
the bytes selected by DV2BE.
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The DBCR1 is a privileged SPR with an address of 957 (0x3BD) and is read and 
written using the mfspr and mtspr instructions.

Debug-Status Register
The PPC405 contains a 32-bit debug-status register (DBSR). Fields within the 
register are set by the various debug events to report debug status. The DBSR 
can be updated by a debug event even when all debug modes are disabled. 
DBSR[MRR] is updated by a reset, not by a debug event. Figure 9-3 shows the 
format of the DBSR register. The fields in the DBSR are defined as shown in 
Table 9-3.

16:19 DV1BE Data-Value Compare 1 Byte Enables Specifies which bytes in the DVC1 register are used 
in the comparison. Each DV1BE bit corresponds to a 
byte in the DVC1 register.

DVC1 events are disabled when DV1BE=0b0000.

20:23 DV2BE Data-Value Compare 2 Byte Enables Specifies which bytes in the DVC2 register are used 
in the comparison. Each DV2BE bit corresponds to a 
byte in the DVC2 register.

DVC2 events are disabled when DV2BE=0b0000.

24:31 Reserved

Table 9-2: Debug-Control Register 1 (DBCR1) Field Definitions (Continued)

Bit Name Function Description

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 21 22 23 24 31

IC BT EDE TIE UDE IA1 IA2 DR1 DW1 DR2 DW2 IDE IA3 IA4 MRR

Figure 9-3: Debug-Status Register (DBSR)

Table 9-3: Debug-Status Register (DBSR) Field Definitions

Bit Name Function Description

0 IC Instruction-Complete Debug Event

0—Did not occur
1—Occurred

Indicates whether an instruction-complete debug 
event occurred.

1 BT Branch-Taken Debug Event

0—Did not occur
1—Occurred

Indicates whether a branch-taken debug event 
occurred.

2 EDE Exception-Taken Debug Event

0—Did not occur
1—Occurred

Indicates whether an exception-taken debug event 
occurred.

3 TDE Trap-Instruction Debug Event

0—Did not occur
1—Occurred

Indicates whether a trap-instruction debug event 
occurred.

4 UDE Unconditional Debug Event

0—Did not occur
1—Occurred

Indicates whether an unconditional debug event 
occurred.

5 IA1 Instruction-Address Compare 1 Debug Event

0—Did not occur
1—Occurred

Indicates whether an IAC1 debug event occurred.
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The DBSR is a privileged SPR with an address of 1008 (0x3F0). Hardware sets 
the status bits and software is responsible for reading and clearing the bits. It 
is read using the mfspr instruction. The register is cleared, but not directly 
written, using the mtspr instruction. Values in the source register, rS, behave 
as a mask when clearing the DBSR. Here, a value of 0b1 in any bit position of 
rS clears the corresponding bit in the DBSR. A value of 0b0 in an rS bit position 
does not alter the corresponding bit in the DBSR.

Instruction Address-Compare Registers
The PPC405 contains four 32-bit instruction address-compare registers: IAC1, 
IAC2, IAC3, and IAC4. These registers are used by the instruction address-
compare debug event. Figure 9-4 shows the format of the IACn registers. The 
instruction effective-addresses loaded in these registers must be word aligned 
(address bits 30:31 must be 0).

6 IA2 Instruction-Address Compare 2 Debug Event

0—Did not occur
1—Occurred

Indicates whether an IAC2 debug event occurred.

7 DR1 Data-Address Compare 1 Read Debug Event

0—Did not occur
1—Occurred

Indicates whether a DAC1-read debug event 
occurred.

8 DW1 Data-Address Compare 1 Write Debug Event

0—Did not occur
1—Occurred

Indicates whether a DAC1-write debug event 
occurred.

9 DR2 Data-Address Compare 2 Read Debug Event

0—Did not occur
1—Occurred

Indicates whether a DAC2-read debug event 
occurred.

10 DW2 Data-Address Compare 2 Write Debug Event

0—Did not occur
1—Occurred

Indicates whether a DAC2-write debug event 
occurred.

11 IDE Imprecise Debug Event

0—No debug event occurred
1—At least one debug event occurred

Indicates whether a debug event occurred when 
debug interrupts were disabled (MSR[DE]=0). This 
bit is not set if MSR[DE]=1.

12 IA3 Instruction-Address Compare 3 Debug Event

0—Did not occur
1—Occurred

Indicates whether an IAC3 debug event occurred.

13 IA4 Instruction-Address Compare 4 Debug Event

0—Did not occur
1—Occurred

Indicates whether an IAC4 debug event occurred.

14:21 Reserved

22:23 MRR Most-Recent Reset

00—No reset
01—Processor reset
10—Chip reset
11—System reset

Indicates the type of reset that last occurred.

24:31 Reserved

Table 9-3: Debug-Status Register (DBSR) Field Definitions (Continued)

Bit Name Function Description
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The IACn registers are privileged SPRs with the following addresses:

• IAC1—1012 (0x3F4).
• IAC2—1013 (0x3F5).
• IAC3—948 (0x3B4).
• IAC4—949 (0x3B5).

These registers are read and written using the mfspr and mtspr instructions.

Data Address-Compare Registers
The PPC405 contains two 32-bit data address-compare registers, DAC1 and 
DAC2. These registers are used by the data address-compare debug event. 
Figure 9-5 shows the format of the DACn registers. Any byte-aligned data 
effective-address can be loaded in these registers.

The DACn registers are privileged SPRs with the following addresses:

• DAC1—1014 (0x3F6).
• DAC2—1015 (0x3F7).

These registers are read and written using the mfspr and mtspr instructions.

Data Value-Compare Registers
The PPC405 contains two 32-bit data value-compare registers, DVC1 and 
DVC2. These registers are used by the data value-compare debug event. 
Figure 9-5 shows the format of the DVCn registers. Any data value can be 
loaded in these registers.

The DVCn registers are privileged SPRs with the following addresses:

• DVC1—950 (0x3B6).
• DVC2—951 (0x3B7).

These registers are read and written using the mfspr and mtspr instructions.

Debug Events
A debug event occurs when a debug condition is detected by the processor. 
Debug conditions are enabled using the debug-control registers (DBCR0 and 
DBCR1). Some of the debug events make use of one or more of the compare 
registers (IACn, DACn, and DVCn). Depending on the debug mode, a debug 
event causes the following to occur:

0 29 30 31

Instruction Effective-Address 00

Figure 9-4: Instruction Address-Compare Registers (IAC1–IAC4)

0 31

Data Effective-Address

Figure 9-5: Data Address-Compare Registers (DAC1, DAC2)

0 7 8 15 16 23 24 31

Data-Value Byte 0 Data-Value Byte 1 Data-Value Byte 2 Data-Value Byte 3

Figure 9-6: Data Value-Compare Registers (DVC1, DVC2)
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• In internal-debug mode, a debug event is synonymous with debug 
exception. A debug event can cause a debug interrupt if debug interrupts 
are enabled (MSR[DE]=1). If debug interrupts are disabled, a debug event 
results in a pending debug interrupt. A debug interrupt occurs when a 
debug interrupt is pending and software sets MSR[DE] to 1.

• In external-debug mode, a debug event stops the processor. An external 
debugger connected to the processor through the JTAG port can restart 
the processor. A debug event can also cause a debug interrupt if both 
internal-debug mode and debug exceptions are enabled.

• If debug interrupts are enabled and both internal-debug and external-
debug mode are enabled, a debug event stops the processor and the 
debug interrupt is pending.

• In debug-wait mode, a debug event stops the processor. A critical or 
noncritical external interrupt can restart the processor to handle the 
interrupt. The processor stops again when the interrupt handler is exited. 
An external debugger connected to the processor through the JTAG port 
can restart the processor.

• In real-time trace mode, a debug event can cause an external trigger 
event. Trigger events are used by external tools to collect instruction-trace 
information.

Debug status is recorded in the debug-status register (DBSR). A debug event 
can set debug-status bits even if all debug modes and debug exceptions are 
disabled. System software can use this capability to periodically poll the DBSR 
rather than use debug exceptions. Three events do not operate in this manner:

• Instruction-complete (IC).
• Branch-taken (BT).
• Instruction address-compare (IAC) when toggling is used.

The corresponding sections for these debug events describe the conditions 
under which debug status is not updated.

When debug interrupts are disabled (MSR[DE]=0), debug events are often 
recorded imprecisely. The occurrence of a debug event is reported by the 
debug status register, but the processor continues to operate normally and the 
debug interrupt is pending. When debug interrupts are later enabled, the 
pending interrupt causes a debug interrupt to immediately occur. See 
Imprecise Debug Event, page 556 for more information.

Debug events are not caused by speculatively executed instructions. The 
processor only reports events for resolved instructions that reflect the normal 
operation of the sequential-execution model.

Table 9-4 summarizes the debug resources used by each debug event.

Table 9-4: Debug Resources Used by Debug Events

Debug Event DBCR0 DBCR1 DBSR IAC DAC DVC

IC

Instruction Complete

IC IC

BT

Branch Taken

BT BT

EDE

Exception Taken

EDE EDE
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Instruction-Complete Debug Event
An instruction-complete (IC) debug event occurs immediately after 
completing execution of each instruction. It is enabled by setting DBCR0[IC]=1 
and disabled by clearing DBCR0[IC]=0. The processor reports the occurrence 
of an IC debug event by setting the IC bit in the debug-status register 
(DBSR[IC]) to 1. After an IC event is recorded by a debugger, the status bit 
should be cleared to prevent ambiguity when recording future debug events.

The IC debug event does not set the DBSR status bit if all of the following are 
true:

• Internal-debug mode is enabled.
• Debug exceptions are disabled.
• External-debug mode is disabled.

Instruction completion is a common event (it can occur every processor clock) 
and this condition prevents the DBSR from recording its obvious occurrence 
when exceptions are disabled.

Many instructions do not complete execution when they cause an exception 
(other than the debug exception). Instructions that cause an exception do not 
result in an IC debug event. This sc instruction, however, causes a system-call 
exception after it executes. Here, the debug event occurs after the sc 
instruction, but before control is transferred to the system-call interrupt 
handler.

The IC debug event is useful for single-stepping through a program. Either the 
debug-interrupt handler (internal-debug mode) or an external debugger 
attached to the JTAG port (external-debug mode) can read and report the 
processor state and single-step to the next instruction. 

If debug interrupts are enabled, the SRR2 register is loaded with the effective 
address of the instruction following the one that caused the IC event.

TDE

Trap Instruction

TDE TDE

UDE

Unconditional

UDE

IAC

Instruction Address-Compare

IA1, IA2, IA3, IA4

IA12, IA12X, IA12T

IA34, IA34X, IA34T

IA1, IA2, 
IA3, IA4

IAC1, 
IAC2, 
IAC3, 
IAC4

DAC

Data Address-Compare

D1R, D2R, D1W, D2W

D1S, D2S

DA12, DA12X

DR1, DR2

DW1, DW2

DAC1, 
DAC2

DVC

Data Value-Compare

D1R, D2R, D1W, D2W

D1S, D2S

DV1M, DV2M

DV1BE, DV2BE

DR1, DR2

DW1, DW2

DAC1, 
DAC2

DVC1, 
DVC2

IDE

Imprecise

IDE

Table 9-4: Debug Resources Used by Debug Events (Continued)

Debug Event DBCR0 DBCR1 DBSR IAC DAC DVC
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Branch-Taken Debug Event
A branch-taken (BT) debug event occurs immediately before executing a 
resolved (non-speculative) branch instruction. It is enabled by setting 
DBCR0[BT]=1 and disabled by clearing DBCR0[BT]=0. The processor reports 
the occurrence of a BT debug event by setting the BT bit in the debug-status 
register (DBSR[BT]) to 1. After a BT event is recorded by a debugger, the status 
bit should be cleared to prevent ambiguity when recording future debug 
events.

The BT debug event does not set a DBSR status bit if all of the following are 
true:

• Internal-debug mode is enabled.
• Debug exceptions are disabled.
• External-debug mode is disabled.

Branches are a common event and this condition prevents the DBSR from 
recording their obvious occurrence when exceptions are disabled.

This debug event is useful for single-stepping through branches to narrow the 
search for code sequences of interest. Once identified, debug software can 
enable IC debug events and single-step the code sequence instruction-by-
instruction.

If debug interrupts are enabled, the SRR2 register is loaded with the effective 
address of the branch instruction that caused the BT event.

Exception-Taken Debug Event
An exception-taken (EDE) debug event occurs immediately after an exception 
occurs, but before the first instruction in the exception handler is executed. It is 
enabled by setting DBCR0[EDE]=1 and disabled by clearing DBCR0[EDE]=0. 
The processor reports the occurrence of an EDE debug event by setting the 
EDE bit in the debug-status register (DBSR[EDE]) to 1. After an EDE event is 
recorded by a debugger, the status bit should be cleared to prevent ambiguity 
when recording future debug events.

Noncritical exceptions always cause an EDE event when EDE is enabled. 
Critical exceptions cause an EDE event only when EDE is enabled and 
external-debug mode is enabled.

This debug event is useful for debugging interrupt handlers. Upon entering 
an interrupt handler, debug software can enable IC debug events and single-
step the handler instruction-by-instruction.

If debug interrupts are enabled, the SRR2 register is loaded with the 32-bit 
exception-vector physical address. This corresponds to the effective address of 
the first instruction in the interrupt handler.

Trap-Instruction Debug Event
A trap-instruction (TDE) debug event occurs immediately before executing a 
trap instruction (tw or twi), if the conditions are such that a program exception 
would normally occur (invoking the system trap-handler). If the trap 
conditions are not met, the debug event does not occur and the program 
executes normally. The event is enabled by setting DBCR0[TDE]=1 and 
disabled by clearing DBCR0[TDE]=0. The processor reports the occurrence of 
a TDE debug event by setting the TDE bit in the debug-status register 
(DBSR[TDE]) to 1. After a TDE event is recorded by a debugger, the status bit 
should be cleared to prevent ambiguity when recording future debug events.
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When TDE events are enabled, execution of a trap instruction does not cause a 
program exception if any of the following conditions are true:

• Internal-debug mode is enabled and debug exceptions are enabled.
• External-debug mode is enabled.
• Debug wait-mode is enabled.

A program exception does occur when TDE events are enabled and internal-
debug mode is enabled, but debug interrupts are disabled. In this case, the 
processor records an imprecise-debug exception by setting DBSR[IDE]=1.

If debug interrupts are enabled, the SRR2 register is loaded with the effective 
address of the trap instruction that caused the TDE event.

Unconditional Debug Event
An unconditional (UDE) debug event occurs immediately if either of the 
following two conditions are true:

• An external debugger attached to the JTAG port causes the event.
• The external unconditional-debug-event signal is asserted.

There is no enable bit for this event. The processor reports a UDE event by 
setting the UDE bit in the debug-status register (DBSR[UDE]) to 1. After a 
UDE event is recorded by a debugger, the status bit should be cleared to 
prevent ambiguity when recording future debug events.

If debug interrupts are enabled, the SRR2 register is loaded with the effective 
address of the instruction that would have executed had the UDE event not 
occurred.

Instruction Address-Compare Debug Event
An instruction address-compare (IAC) debug event occurs immediately before 
executing an instruction. The effective address of the instruction must match 
the value contained in one of the four IACn registers. The IAC event is 
controlled by conditions specified in the DBCR0 register. Three IAC 
conditions can be specified:

• Check for an exact instruction-address match.
• Check for an instruction-address match within a range of addresses.
• Check for an instruction-address match outside a range of addresses.

If debug interrupts are enabled, the SRR2 register is loaded with the effective 
address of the instruction that caused the IAC event.

IAC Exact-Address Match
An IAC exact-address match causes a debug event when the effective address 
in the specified IACn register exactly matches the effective address of the 
executing instruction. IACn register comparisons are enabled by setting the 
appropriate IAn enable bits in the DBCR0 register to 1. If a match occurs, the 
corresponding status bit in DBSR is set to 1.

Table 9-6 shows the control bits used to enable the IAC exact-address-match 
debug events, the IACn register used in the comparison, and the debug-status 
register bit set when the event occurs. Any number of the IAC exact-address-
match conditions can be enabled simultaneously. IAC address-range 
comparisons must be disabled as follows:

• DBCR0[IA12]=0 for IAC1 and IAC2 exact-match comparisons.
• DBCR0[IA34]=0 for IAC3 and IAC4 exact-match comparisons.
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The processor does not clear the DBSR status bits when IAC events fail to 
occur. After an IAC event is recorded by a debugger, the corresponding status 
bits should be cleared to prevent ambiguity when recording future debug 
events.

IAC Address-Range Match
An IAC address-range match causes a debug event when the effective address 
of the executing instruction falls within a range of addresses specified an IACn 
register pair, as follows:

• IA12 designates an address range specified by the IAC1 and IAC2 register 
pair. To enable range comparisons using this register pair, software must:
- Set DBCR0[IA12]=1.
- Set either (or both) IA1=1 or IA2=1.

• IA34 designates an address range specified by the IAC3 and IAC4 register 
pair. To enable range comparisons using this register pair, software must:
- Set DBCR0[IA34]=1.
- Set either (or both) IA3=1 or IA4=1.

If IAC address-range comparison is enabled for a register pair, IAC exact-
address comparison is disabled for that register pair.

When an address-range match is detected, the IAn enable bits in DBCR0 
determine which DBSR status bits are set to 1. For example, both DBSR[IA1, 
IA2] are set to 1 if DBCR0[IA1, IA2]=1 when an IA12 address-range match is 
detected. However, only DBSR[IA1] is set to 1 if DBCR0[IA1]=1 and 
DBCR0[IA2]=0 when an IA12 address-range match is detected. The processor 
does not clear the DBSR status bits when IAC events fail to occur. After an IAC 
event is recorded by a debugger, the corresponding status bits should be 
cleared to prevent ambiguity when recording future debug events.

Inclusive and Exclusive Ranges

The DBCR0[IA12X, IA34X] bits specify whether the corresponding address 
ranges are inclusive or exclusive, as follows:

• When clear, the corresponding range is inclusive. 

If DBCR0[IA12X]=0, instruction addresses from (IAC1) to (IAC2)-1 fall 
within the range. Addresses from 0 to (IAC1)-1 and (IAC2) to 
0xFFFF_FFFF fall outside the range.

If DBCR0[IA34X]=0, instruction addresses from (IAC3) to (IAC4)-1 fall 
within the range. Addresses from 0 to (IAC3)-1 and (IAC4) to 
0xFFFF_FFFF fall outside the range.

• When set, the corresponding range is exclusive. 

Table 9-5: IAC Exact-Address Match Resources

Event Enable Bit
(DBCR0)

IAC Range Disable
(DBCR0)

IAC Register Used
Event Status Bit

(DBSR)

IA1 IA12=0 IAC1 IA1

IA2 IAC2 IA2

IA3 IA34=0 IAC3 IA3

IA4 IAC4 IA4
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If DBCR0[IA12X]=1, instruction addresses from 0 to (IAC1)-1 and (IAC2) 
to 0xFFFF_FFFF fall within the range. Addresses from (IAC1) to (IAC2)-1 
fall outside the range. 

If DBCR0[IA34X]=1, instruction addresses from 0 to (IAC3)-1 and (IAC4) 
to 0xFFFF_FFFF fall within the range. Addresses from (IAC3) to (IAC4)-1 
fall outside the range. 

Figure 9-7 illustrates how ranges are specified using DBCR0[IA12X]. No 
shading indicates addresses that are in range and gray-shading indicates 
addresses that are out of range.

Range Toggling

Range comparisons can be set to toggle between inclusive and exclusive each 
time a debug event occurs on the specified range. DBCR0[IA12T]=1 enables 
toggling of the DBCR0[IA12X] bit and DBCR0[IA34T]=1 enables toggling of 
the DBCR0[IA34X] bit. Clearing a toggle bit disables toggling of the 
corresponding range bit. 

As an example, assume IA12 exclusive-range toggling is enabled (IA12T=1 
and IA12X=1):

• The first IAC event occurs when an instruction address is in the exclusive 
IA12 range. The processor clears IA12X to 0.

• The second IAC event occurs when an instruction address is in the 
inclusive IA12 range. The processor sets IA12X to 0.

• The third IAC event occurs when an instruction address is in the 
exclusive IA12 range. The processor clears IA12X to 0.

• And so on.

The IAC debug event does not set a DBSR status bit when toggling is used if 
all of the following are true:

• Internal-debug mode is enabled.
• Debug exceptions are disabled.
• External-debug mode is disabled.

When toggling is enabled IAC events occur frequently. This condition 
prevents the DBSR from recording their obvious occurrence when exceptions 
are disabled.

Data Address-Compare Debug Event
A data address-compare (DAC) debug event occurs before executing a data-
access instruction. The effective address of the operand must match the value 
contained in one of the two DACn registers. Aligned memory accesses 
generate a single effective address that is used in checking for a DAC event. 
Unaligned memory accesses, load/store multiple instructions, and load/store 

0 (IAC1)-1 (IAC1) (IAC2)-1 (IAC2) 0xFFFF_FFFF

Inclusive Range, DBCR0[IA12X]=0

0 (IAC1)-1 (IAC1) (IAC2)-1 (IAC2) 0xFFFF_FFFF

Exclusive Range, DBCR0[IA12X]=1

Figure 9-7: IAC Address-Range Specification
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string instructions can generate multiple effective addresses, all of which are 
used to check for a DAC event. The DAC event is controlled by conditions 
specified in the DBCR1 register. 

A variety of DAC conditions can be specified:

• Check for an exact data-address match.
• Check for a data-address match using halfword, word, or cacheline 

granularity.
• Check for a data-address match within a range of addresses.
• Check for a data-address match outside a range of addresses.

Each of the above DAC conditions can be further controlled to cause a debug 
event only if the matching data access is a read or a write.

If debug interrupts are enabled, the SRR2 register is loaded with the effective 
address of the instruction that caused the DAC event.

DAC Exact-Address Match
A DAC exact-address match causes a debug event when the effective address 
contained in the specified DACn register matches the effective address of the 
operand. Read and write accesses can be checked independently. If a match 
occurs, the corresponding status bit in DBSR is set to 1.

Table 9-6 shows the control bits used to enable the DAC exact-address-match 
debug events, the type of access that is checked by each event, the DACn 
register used in the comparison, and the debug-status register bit set when the 
event occurs. Any number of DAC exact-address-match conditions can be 
enabled simultaneously. DAC address-range comparison must be disabled 
(DBCR1[DA12]=0).

The processor does not clear the DBSR status bits when DAC events fail to 
occur. After a DAC event is recorded by a debugger, the corresponding status 
bits should be cleared to prevent ambiguity when recording future debug 
events.

Specifying Exact-Match Granularity

Software can specify an operand-size granularity for use when performing the 
address comparison with each DAC register. Normally, the comparison checks 
for an exact address match or a byte-granular match. The comparison can be 
modified to check for halfword, word, and cache-line granular matches. This 
is useful when a debugger wants to cause a DAC event to occur when any byte 
in a word is accessed.

Granularity is specified using the DBCR1[D1S] size field for comparisons 
against the DAC1 register and the DBCR1[D2S] size field for comparisons 
against the DAC2 register. This field specifies which low-order address bits 
are ignored during the comparison. Because low-order address bits are 
ignored, the comparison is aligned on an address boundary equivalent to the 

Table 9-6: DAC Exact-Address Match Resources

Event Enable Bit
(DBCR1)

Type of Access 
Checked

DAC Register Used
Event Status Bit

(DBSR)

D1R Load (Read) DAC1 DR1

D1W Store (Write) DW1

D2R Load (Read) DAC2 DR2

D2W Store (Write) DW2
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granularity. The following table shows the possible size-field values, the 
address bits that are ignored during the comparison, and the resulting 
granularity used in the comparison.

Table 9-8 shows an example of using the D1S size field. The table shows how 
comparisons against the DAC address are modified using the size field. The 
first four entries apply byte-granular comparisons and only one of the four 
accesses produces a match. The second set of four entries apply a word-
granular comparison. Here, all four of the accesses produce a match.

The load-string and store-string instructions move bytes of data between 
memory and registers. However, when these instructions are used to access 
data PPC405 moves four bytes at a time by using word-aligned effective 
addresses and an access size of one word. Bytes not required by the 
instructions are discarded. Thus, it is not possible to produce a byte-granular 
DAC match on every byte address referenced by a string instruction. In some 
cases, software must use a word-size granularity to produce a DAC match on 
a specific byte address.

DAC Address-Range Match
A DAC address-range match causes a debug event when the effective address 
of the operand falls within a range specified by the DA12 register pair. DAC1 
and DAC2 form the DA12 pair. DA12 range comparison is enabled by setting 
DBCR1[DA12]=1. When DAC address-range comparison is enabled, DAC 
exact-address comparison is disabled. The DBCR1[D1S, D2S] size bits are not 
used by DAC address-range comparisons.

Read and write accesses can be checked independently. To check read 
accesses, software sets the D1R and/or D2R bits in the DBCR1 register. Only 
one of the two bits must be set to enable read checking for the entire range. If 

Table 9-7: Effect of D1S/D2S Size-Field Encoding

Size-Field Encoding Address Bits Used Address Bits Ignored Granularity

00 0:31 — Byte

01 0:30 31 Halfword

10 0:29 30:31 Word

11 0:26 27:31 Cacheline

Table 9-8: Examples of Using the D1S Size Field

DAC Address
D1S Value

(Granularity)
Operand Address Access Size DAC Match

0x0002
00

(Byte)

0x0000 Byte No

0x0000 Word No

0x0002 Word Yes

0x0003 Byte No

0x0002
10

(Word)

0x0000 Byte Yes

0x0000 Word Yes

0x0002 Word Yes

0x0003 Byte Yes
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a read-access match is detected, the corresponding status bits in the DBSR are 
set (DR1 and/or DR2). Likewise, write-access for the entire range is checked 
by setting the D1W and/or D2W bits in the DBCR1 register. If a write-access 
match is detected, the corresponding status bits in the DBSR are set (DW1 
and/or DW2).

Inclusive and Exclusive Ranges

The DBCR1[DA12X] bit determines whether the address range specified by 
the DACn registers is inclusive or exclusive:

• When DBCR1[DA12X]=0, the range is inclusive. Addresses from (DAC1) 
to (DAC2)-1 fall within the range. Addresses from 0 to (DAC1)-1 and 
(DAC2) to 0xFFFF_FFFF fall outside the range.

• When DBCR1[DA12X]=1, the range is exclusive. Addresses from 0 to 
(DAC1)-1 and (DAC2) to 0xFFFF_FFFF fall within the range. Addresses 
from (DAC1) to (DAC2)-1 fall outside the range.

Figure 9-8 shows the range specification based on the value of 
DBCR1[DA12X]. No shading indicates addresses that are in range and gray-
shading indicates addresses that are out of range.

Table 9-9 summarizes the DBCR1 bits used to control DAC address-range 
comparisons and the DBSR bits used to report their status.

The processor does not clear the DBSR status bits when DAC events fail to 
occur. After a DAC event is recorded by a debugger, the corresponding status 
bits should be cleared to prevent ambiguity when recording future debug 
events.

DAC Events Caused by Cache Instructions
DAC events can be caused by the execution of cache-control instructions. The 
following summarizes the type of DAC events that can occur when a cache-
control instruction is executed:

• Cache-control instructions that can modify data are treated as stores 

0 (DAC1)-1 (DAC1) (DAC2)-1 (DAC2) 0xFFFF_FFFF

Inclusive Range, DBCR1[DA12X]=0

0 (DAC1)-1 (DAC1) (DAC2)-1 (DAC2) 0xFFFF_FFFF

Exclusive Range, DBCR1[DA12X]=1

Figure 9-8: DAC Address-Range Specification

Table 9-9: DAC Address-Range Match Resources

Event Enable Bit
(DBCR1)

DBCR1
[DA12X]

Type of Access Checked
Event Status Bit

(DBSR)

D1R and/or D2R 0 Load (read) inclusive (DAC1) and (DAC2)-1 DR1 and/or DR2

D1W and/or D2W Store (write) inclusive (DAC1) and (DAC2)-1 DW1 and/or DW2

D1R and/or D2R 1 Load (read) exclusive (DAC1) and (DAC2)-1 DR1 and/or DR2

D1W and/or D2W Store (write) exclusive (DAC1) and (DAC2)-1 DW1 and/or DW2
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(writes) by the debug mechanism. Instructions that can cause loss of data 
through invalidation are also treated as stores. Both types of instructions 
can cause DAC-write events. Instructions in this category are dcbi and 
dcbz.

• Cache-control instructions that invalidate unmodified are treated as 
loads. These instructions can cause DAC-read events but not DAC-write 
events. The icbi instruction falls in this category.

• Cache-control instructions that are not address specific do not cause DAC 
events. Instructions in this category are dccci, iccci, dcread, and icread.

• Cache-control instructions that update system memory with data already 
present in the cache are treated as loads (reads) by the access-protection 
mechanism. However, the debug mechanism can be used to cause a 
DAC-write event when these instructions are executed. Instructions in 
this category are dcbf and dcbst.

• Cache-control instructions that are speculative are treated as loads by the 
debug mechanism. These instructions can cause DAC-read events. 
Instructions in this category are dcbt, dcbtst, and icbt.

• Cache-control instructions that allocate cachelines are treated as stores. 
These instructions can cause DAC-write events. The dcba instruction falls 
in this category.

Table 9-10 summarizes the type of DAC event that can occur for each cache-
control instruction.

Data Value-Compare Debug Event
A data value-compare (DVC) debug event occurs when:

1. A DAC match occurs. The operand effective-address of the data-access 
instruction must match the value contained in one of the DACn registers, 
using the conditions specified by the DBCR1 register.

Table 9-10: DAC Events Caused by Cache-Control Instructions

Instruction DAC Read DAC Write

dcba No Yes

dcbf No Yes

dcbi No Yes

dcbst No Yes

dcbt Yes No

dcbtst Yes No

dcbz No Yes

dccci Does not cause DAC events.

dcread Does not cause DAC events.

icbi Yes No

icbt Yes No

iccci Does not cause DAC events.

icread Does not cause DAC events.
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2. If the preceding DAC comparison detects a matching address, the data-
value accessed at that address must match the value contained in one of 
the DVCn registers, using the conditions specified by the DBCR1 register.

The DAC comparison performed in the first step is set up to perform exact-
address or address-range comparisons as described in the previous section 
(Data Address-Compare Debug Event). However, the DAC comparison does 
not cause a DAC debug event. Because DVC and DAC events share the same 
DAC registers, control bits, and status bits, a DAC event is disabled when the 
corresponding DVC event is enabled, as follows:

• If DVC1 events are enabled, DAC1 events are disabled.
• If DVC2 events are enabled, DAC2 events are disabled.
• If DVC1 and DVC2 events are enabled (as in range comparisons), DAC1 

and DAC2 events are disabled.

Unlike DAC events, the DVC event occurs after the data-access instruction 
executes. If debug interrupts are enabled, the SRR2 register is loaded with the 
effective address of the instruction following the one that caused the DVC 
event.

DVC events are enabled by loading a non-zero value (≠ 0b0000) into the byte-
enable controls of the corresponding DVCn register. A non-zero value loaded 
into DBCR1[DV1BE] enables DVC1 events and a non-zero value loaded into 
DBCR1[DV2BE] enables DVC2 events. Referring to Figure 9-6, page 543, the 
byte-enables specify which DVCn register bytes participate in the DVC 
comparison:

• DVnBE0 controls participation of DVCn data-value byte 0.

• DVnBE1 controls participation of DVCn data-value byte 1.

• DVnBE2 controls participation of DVCn data-value byte 2.

• DVnBE3 controls participation of DVCn data-value byte 3.

When a DVnBE bit is set to 1, the specified byte in DVCn is compared against 
the corresponding operand byte. If the bit is cleared to 0, the specified byte is 
not compared. If DVnBE=0b0000, no bytes participate in the comparison and 
the DVCn event is disabled.

The data-value compare-mode bits in DBCR1 control how the enabled DVCn 
bytes are compared against the operand value. The DV1M bits control the 
DVC1 comparison and the DV2M bits control the DVC2 comparison. The 
modes defined by these two-bit fields are:

• 00—The effect of this mode is undefined and should not be used.
• 01—AND mode. All DVCn bytes selected by DVnBE must match the 

corresponding operand bytes.
• 10—OR mode. At least one of the DVCn bytes selected by DVnBE must 

match the corresponding operand byte.
• 11—AND–OR mode. This mode uses the following algorithm to 

determine whether a DVC event occurs:
( DVnBE0 ∧ (DVn[byte_0] = data_value[byte_0]) ∧ 

DVnBE1 ∧ (DVn[byte_1] = data_value[byte_1])) ∨ 
( DVnBE2 ∧ (DVn[byte_2] = data_value[byte_2]) ∧ 

DVnBE3 ∧ (DVn[byte_3] = data_value[byte_3]))

This comparison mode is useful when the byte enables are set to 0b1111. 
Here, a DVC event occurs if either the upper halfword or lower halfword 
of the DVCn register matches the corresponding operand halfword.

Table 9-11 shows example settings of DV1BE and DV1M and how they affect 
detection of a DVC1 match.
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Occasionally, it is desirable to cause a DVC event during an access to 
unaligned data. Software can use both DVC1 and DVC2 to (and the 
corresponding DACn registers) to detect accesses to either portion of the 
misaligned data. However, misaligned accesses can result in the generation of 
two effective addresses that are accessed separately by the processor. If the 
first address causes a DVC event, that event is recorded before completing 
access to the second address. If an interrupt occurs as a result of the DVC 
event, the second access is lost. This can result in a corrupted register and/or 
memory value.

DVC read and write events are enabled by initializing the DAC comparison 
and the DnR and DnW control bits in DBCR1. When a DVC event occurs, 
DBSR status bits are set to reflect the event. Read and write DVC events are 
recorded independently using the DRn and DWn status bits. Table 9-12 
summarizes how the status bits are used by DVC events.

Status bits can be set by either DAC events or DVC events. However, a DAC 
event can occur only when DVC events are disabled. DAC matches do not set 
the status bits if DVC events are enabled but fail to occur. After a DAC or DVC 
event is recorded by a debugger, the corresponding status bits should be 
cleared to prevent ambiguity when recording future debug events.

Table 9-11: Examples of Using DVC1 Controls

Data Value DVC1 Value DV1BE DV1M DVC1 Match

0xABCD_FFFF 0xABCD_0123

0b0111

01 (AND) No

10 (OR) Yes

11 (AND–OR) No

0b1000

01 (AND) Yes

10 (OR) Yes

11 (AND–OR) No

0b1100

01 (AND) Yes

10 (OR) Yes

11 (AND–OR) Yes

0b1111

01 (AND) No

10 (OR) Yes

11 (AND–OR) Yes

Table 9-12: DVC Event Status

DAC Enable Bit
(DBCR1)

Type of Access 
Checked

Registers Used
DVC Status Bit

(DBSR)

D1R Load (Read) DAC1 DVC1 DR1

D1W Store (Write) DW1

D2R Load (Read) DAC2 DVC2 DR2

D2W Store (Write) DW2
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Imprecise Debug Event
Imprecise (IDE) debug events are the result of any debug event occurring 
when debug interrupts are disabled (MSR[DE]=0). Internal-debug mode can 
be enabled or disabled. When this happens, the imprecise-debug-exception bit 
in the debug-status register (DBSR[IDE]) is set to 1. This bit is set in addition to 
all other debug-status bits associated with the actual event. 

If DBSR[IDE]=1 and debug interrupts are enabled, a debug interrupt 
immediately occurs. The SRR2 register is loaded with the effective address of 
the instruction following the one that enabled debug interrupts. For example, 
assume internal-debug mode and debug interrupts are both disabled. If 
MSR[DE] is enabled first, followed by an enable of DBCR0[IDM], SRR2 is 
loaded with the instruction address following the one that enabled 
DBCR0[IDM].

To prevent repeated interrupts from occurring, the interrupt handler must 
clear DBSR[IDE] before returning. After the event is recorded by a debugger, 
debug-status bits should be cleared to prevent ambiguity when recording 
future debug events.

The following debug events can result in an imprecise debug event when 
MSR[DE]=0:

• Instruction complete (IC), if DBCR0[IDM]=0. If internal-debug mode is 
enabled, IC events cannot cause imprecise debug events when 
MSR[DE]=0.

• Branch taken (BT), if DBCR0[IDM]=0. If internal-debug mode is enabled, 
BT events cannot cause imprecise debug events when MSR[DE]=0.

• Exception taken (EDE).
• Trap instruction (TDE).
• Unconditional (UDE).
• Instruction address-compare (IAC). However, if IAC range toggling is 

enabled and internal-debug mode is enabled, IAC events cannot cause 
imprecise debug events when MSR[DE]=0. 

• Data address-compare (DAC).
• Data value-compare (DVC).

This feature is useful for indicating that one or more debug events occurred 
during execution of a critical-interrupt handler (debug interrupts are disabled 
by critical interrupts). Upon returning from the interrupt handler, debug 
interrupts are re-enabled and the processor immediately transfers control to 
the debug-interrupt handler.

Freezing the Timers
The PPC405 timers can be frozen (stopped) when a debug event occurs. This is 
done by setting the freeze timers bit (FT) in DBCR0 to 1. If DBCR0[FT]=1 when 
any debug event occurs, the time base stops incrementing and the 
programmable-interval timer stops decrementing. Freezing the timers also 
prevents the occurance of the PIT, FIT, and WDT timer events. The timers are 
not frozen when a debug event occurs and DBCR0[FT]=0.

After the timers are frozen, they are not unfrozen until the record of all debug 
events is cleared from the debug-status register. All bits in the DBSR except for 
the most-recent reset (MRR) must be cleared to 0 to restart the timers. The 
timers are unfrozen when the processor recognizes the cleared state of the 
DBSR.
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Debug Interface
The PPC405 provides a JTAG interface and trace interface to support testing 
and debugging of both hardware and software. Typically, the JTAG interface is 
exposed at the board level as a JTAG debug port, where an external debugger 
can connect to it using a JTAG connector. The trace interface is also exposed at 
the board level using a separate interface.

JTAG Debug Port
The PPC405 JTAG (Joint Test Action Group) debug port complies with IEEE 
standard 1149.1–1990, IEEE Standard Test Access Port and Boundary Scan 
Architecture. This standard describes a method for accessing internal chip 
resources using a four-signal or five-signal interface. The PPC405 JTAG debug 
port supports scan-based board testing and is further enhanced to support the 
attachment of debug tools. These enhancements comply with the IEEE 1149.1 
specifications for vendor-specific extensions and are compatible with 
standard JTAG hardware for boundary-scan system testing.

The PPC405 JTAG debug port supports the following;

• JTAG Signals—The JTAG debug port implements the four required JTAG 
signals: TCK, TMS, TDI, and TDO. It also implements the optional TRST 
signal.

• JTAG Clock—The frequency of the JTAG clock signal (TCK) can range 
from 0 MHz (DC) to one-half of the processor clock frequency.

• JTAG Reset—The JTAG-debug port logic is reset at the same time the 
system is reset, using the JTAG reset signal (TRST). When TRST is 
asserted, the JTAG TAP controller returns to the test-logic reset state.

The JTAG debug port supports the required extest, idcode, sample/preload, and 
bypass instructions. The optional highz and clamp instructions are also 
supported. Invalid instructions behave as the bypass instruction. 

Refer to the PPC405 Processor Block Manual for more information on the 
JTAG debug-port signals. Information on JTAG is found in the IEEE standard 
1149.1–1990.

JTAG Connector
A male, 16-pin 2x8-header connector is suggested for use as the JTAG debug 
port connector. This connector supports direct attachment to the IBM 
RISCWatch debugger. The layout of the connector is shown in Figure 9-9 and 
the signals are described in Table 9-13. At the board level, the connector 
should be placed as close as possible to the processor chip to ensure signal 
integrity. Position 14 is used as a connection key and does not contain a pin.
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Figure 9-9: JTAG-Connector Physical Layout

UG011_49_033101

15

1

16

2

0.1"

0.1"

Table 9-13: JTAG Connector Signals

Pin I/O Signal Name Description

1 O TDO JTAG test-data out.

2 NC Reserved (no connection)

3 I TDI1 JTAG test-data in.

4 I TRST

5 NC Reserved (no connection)

6 I +Power2 Processor power OK

7 I TCK3 JTAG test clock.

8 NC Reserved (no connection)

9 I TMS JTAG test-mode select.

10 NC Reserved (no connection)

11 I HALT Processor halt.

12 NC Reserved (no connection)

13 NC Reserved (no connection)

14 KEY No pin should be placed at this position.

15 NC Reserved (no connection)

16 GND Ground

Notes: 
1. A 10KΩ pull-up resistor should be connected to this signal to reduce chip-power consumption. 

The pull-up resistor is not required.
2. The +POWER signal, is provided by the board, and indicates whether the processor is 

operating. This signal does not supply power to the debug tools or to the processor. A series 
resistor (1KΩ or less) should be used to provide short-circuit current-limiting protection.

3. A 10KΩ pull-up resistor must be connected to these signals to ensure proper chip operation 
when these inputs are not used.
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BSDL
The boundary-scan description language (BSDL) provides a description of 
component testability features. It is used by automated test-pattern generation 
tools for package-interconnect tests and by electronic design-automation 
(EDA) tools for verification and for synthesizing test logic. BSDL supports 
extensions that can be used for internal-test generation and to write software 
for hardware debugging and diagnostics.

The primary components of BSDL include:

• The logical-port description, which assigns symbolic names to each pin at 
the chip level. Pins are also assigned a logical-type description of in, out, 
inout, buffer, or linkage. This description defines the direction of 
information flow through the pin.

• The physical-pin map, which provides correlation between the chip-level 
logical ports and the physical pin locations on a specific package. A BSDL 
description can contain several physical pin maps that describe different 
packages. Every pin map within the BSDL description is given a unique 
name.

• The instruction statements, which describe bit patterns that must be shifted 
into the instruction register to place the chip into the various test modes 
defined by the BSDL standard. Instruction-statements also support 
instruction descriptions unique to the chip.

• The boundary-register description, which lists each shift cell (also known as 
a shift stage) in the boundary register. Each cell is numbered. Cell 0 is 
defined as the cell closest to the test-data out (TDO) pin. The cell with the 
highest number is defined as the cell closest to the test-data in (TDI) pin. 
Cells contain additional information, including the cell type, the logical 
port associated with the cell, the logical function of the cell, the “safe” 
value for the cell, the “disable” value for the cell, the reset value for the 
cell, and a control number.

For more information, refer to IEEE standard 1149.1b-1994, which defines 
BSDL. This standard is a supplement to IEEE standards 1149.1-1990 (standard 
test-access port) and 1149.1a-1993 (boundary-scan architecture). BSDL is a 
subset of the VHSIC hardware description language (VHDL), a standard defined 
by IEEE 1076-1993.
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Chapter 10

Reset and Initialization

This chapter describes the reset operations recognized by the PPC405, the initial state of the 
PPC405 after a reset, and an example of the initialization code required to configure the 
processor. Initialization of external devices (on-chip or off-chip) is outside the scope of this 
document.

Reset
A reset causes the processor to perform a hardware initialization. It always occurs when the 
processor is powered-up and can occur at any time during normal operation. If it occurs 
during normal operation, instruction execution is immediately halted and all processor 
state is lost. 

The PPC405 recognizes three types of reset:

• A processor reset affects the processor only, including the execution units and cache 
units. External devices (on-chip and off-chip) are not affected. This type of reset is 
sometimes referred to as a core reset.

• A chip reset affects the processor and all other devices or peripherals located on the 
same chip as the processor.

• A system reset affects the processor chip and all other devices or peripherals external to 
the processor chip that are connected to the same system-reset network. The scope of 
a system reset depends on the system implementation.

The type of reset is recorded in the most-recent reset field of the debug-status register 
(DBSR[MRR]). System software can examine this field if it needs to determine the cause of 
a reset. The effect of a reset on the processor is always the same regardless of the type.

Reset is caused by any of the following conditions:

• The processor is powered-up. Normally, the system performs a power-up sequence 
that includes asserting the external reset signals during a system reset.

• During normal operation, a system reset can be asserted using external reset signals. 
The processor logs this as a system reset, never as a processor reset or a chip reset.

• The second time-out of the watchdog timer can be programmed to cause a reset.
• Software can cause a reset by writing a non-zero value into the reset field of debug-

control register 0 (DBCR0[RST]).
• An external debug tool can force a reset through the JTAG debug port.

Throughout this document, the term “reset” is applied collectively to all forms of reset. A 
type of reset is specified explicitly only when it is germane to the discussion.

Processor State After Reset
System software is responsible for fully initializing and configuring most processor 
resources. After a reset, the contents of most PPC405 registers are undefined and software 
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should not rely on any initial values contained in those registers. The machine-
state register and several special-purpose registers have defined contents 
following a reset. This enables the processor to quickly initialize the minimum 
number of registers for proper instruction fetching and execution. 

At the chip level, device control registers can be initialized to defined values 
following a reset. However, the registers and their initial contents are 
implementation-dependent.

Machine-State Register
Following a reset, the machine-state register (MSR) is cleared to 0x0000_0000. 
Table 10-1 lists the implication of reset on the processor state as controlled by 
the MSR.

Special-Purpose Registers
Table 10-2 shows the contents of the special-purpose registers (SPRs) that have 
defined values following a reset. The contents of all other SPRs are undefined 
after a reset.

Table 10-1: MSR State Following Reset

MSR Bit Value Implication

AP 0 Auxiliary-processor unit unavailable.

APE 0 Auxiliary-processor unit exceptions disabled.

WE 0 Wait state disabled.

CE 0 Critical interrupts (external) disabled.

EE 0 Noncritical interrupts (external) disabled.

PR 0 Processor is in privileged mode.

FP 0 Floating-point unit unavailable.

ME 0 Machine-check exceptions disabled.

FE0 0 Floating-point exceptions disabled.

DWE 0 Debug-wait mode disabled.

DE 0 Debug exceptions disabled.

FE1 0 Floating-point exceptions disabled.

IR 0 Processor is in real mode (instruction translation is disabled).

DR 0 Processor is in real mode (data translation is disabled).
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First Instruction
After the processor completes the hardware-initialization sequence caused by 
a reset, it performs an instruction fetch from the address 0xFFFF_FFFC. This 
first instruction is typically an unconditional branch to the initialization code. 
If the instruction at this address is not a branch, instruction fetching wraps to 
address 0x0000_0000. The system must be designed to provide non-volatile 
memory that contains the first instruction and the initialization code.

Because the processor is initially in big endian mode, initialization code must 
be in big endian format. It must remain in big endian format until memory 
and the processor are configured for little-endian operation.

Initialization
During reset, the minimum number of resources required for software 
execution are initialized by the processor. Initialization software is generally 
required to fully configure both the processor and system for normal 
operation. The following provides a checklist of tasks the initialization code 
should follow when performing this configuration.

1. Configure the real-mode memory system by updating the storage-
attribute control registers.
- After reset, all memory is marked as guarded storage, preventing 

speculative instruction fetches. To improve fetch performance, the 

Table 10-2: SPR Contents Following Reset

Register Value Comment

DBCR0 0x0000_0000 Debug modes, events, and instruction comparisons are disabled.

DBCR1 0x0000_0000 Data comparisons are disabled.

DBSR Undefined1 Most-recent reset (MRR) is set as specified in the note.

DCCR 0x0000_0000 Data-cache is disabled.

ESR 0x0000_0000 No exception syndromes are recorded.

ICCR 0x0000_0000 Instruction-cache is disabled.

PVR 0x2001_0820 Identifies the processor.

SGR 0xFFFF_FFFF All memory is guarded.

SLER 0x0000_0000 All memory is big endian.

SU0R 0x0000_0000 All user-defined memory attributes are disabled.

TCR Undefined2 Watchdog-reset control (WRC) is cleared.

TSR Undefined1 Most-recent watchdog reset (WRS) is set as specified in the note.

Notes: 
1. The most-recent reset bits are set as follows:

00—No reset occurred. This is the value of WRS if the watchdog timer did not cause the reset.
01—A processor-only reset occurred.
10—A chip reset occurred.
11—A system reset occurred.

2. WRC is cleared, disabling watchdog time-out resets.
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SGR register should be updated to mark memory as guarded only 
where necessary. All remaining memory should not be guarded.

- Initially, memory is big endian. If little-endian memory is accessed, 
the SLER register must be updated appropriately.

- User-defined storage attributes are disabled. If used by system 
software, they must be enabled in the SU0R register.

2. Configure the CCR0 register to specify how data and instructions are 
loaded from system memory. Because this register is uninitialized, it is 
important for software to update this register to maximize performance. If 
possible:
- Loads, stores, and instruction fetches should allocate cachelines on a 

miss.
- Prefetching should be enabled from cacheable and non-cacheable 

memory.

- The request sizes for non-cacheable instruction fetches and data 
accesses should be set to the cache-line size (8 words).

3. Configure the instruction cache to further improve instruction-fetch 
performance.
- The instruction cache must first be invalidated. The contents of the 

cache are undefined following a reset and it is possible that some 
cachelines are improperly marked valid. Cache invalidation 
guarantees that false hits do not occur.

- After reset, all memory is initialized as non-cacheable (the ICCR 
register is cleared). Software should update this register as 
appropriate to enable instruction caching.

4. Configure the data cache to improve data-access performance.
- Like the instruction cache, the data cache must first be invalidated. 

The contents of the cache are undefined following a reset and it is 
possible that some cachelines are improperly marked valid. Cache 
invalidation guarantees that false hits do not occur.

- The DCWR register must be initialized to specify which memory 
locations use a write-back caching policy and which locations use a 
write-through policy. This specification is required only for those 
locations marked cacheable in the next step.

- After reset, all memory is initialized as non-cacheable (the DCCR 
register is cleared). Software should update this register as 
appropriate to enable data caching.

5. Configure the interrupt-handling mechanism. Internal exceptions are 
always enabled. Up to this point it is important that initialization code not 
cause an exception.
- Interrupt handlers must be loaded into the appropriate system 

memory locations.
- The interrupt-handler table must be loaded with the “glue code” that 

properly transfers control to the interrupt handlers following an 
exception.

- The EVPR register must be loaded with the base address of the 
interrupt-handler table.

- The timer resources must be initialized. If timers are not used, the 
TCR register must be initialized to prevent the occurrence of timer 
exceptions. Timer exceptions are enabled when critical and 
noncritical external exceptions are enabled.
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- Enable critical and noncritical external exceptions by setting their 
enable bits in the MSR register.

6. If necessary, additional processor features can be initialized, including the 
memory-management resources. 

7. System-level initialization is typically required. This often involves 
configuration of external devices and the loading of device drivers into 
system memory.

Following the initialization sequence outlined above, the operating system 
and application software can be loaded and executed.

Sample Initialization Code
Following is sample initialization code that illustrates the steps outlined 
above. The sample code is presented as pseudocode. Where appropriate, 
function calls are given names similar to the PowerPC instruction mnemonics. 
Specific chip-level implementations containing the PPC405 might require a 
different initialization sequence to ensure the processor is properly 
configured.

/* --------------------------------- */
/* PPC405 INITIALIZATION PSEUDOCODE */
/* --------------------------------- */

@0xFFFFFFFC: /* Initial instruction fetch from 
0xFFFF_FFFC. */
ba(init_code); /* Branch to initialization code. */

@init_code:

/* -------------------------------------------- */
/* Configure guarded attribute for performance. */
/* -------------------------------------------- */
mtspr(SGR, guarded_attribute);

/* --------------------------------------------- */
/* Configure endian and user-defined attributes. */
/* --------------------------------------------- */
mtspr(SLER, endian);
mtspr(SU0R, user_defined);

/* --------------- */
/* Configure CCR0. */
/* --------------- */
mtspr(CCR0, prefetch_enables);
mtspr(CCR0, allocate_on_fetch_miss);
mtspr(CCR0, allocate_on_load_miss);
mtspr(CCR0, allocate_on_store_miss);
mtspr(CCR0, non_cachable_line_fill);

/* -------------------------------------------------------- 
*/
/* Invalidate the instruction cache and enable cachability. 
*/
/* -------------------------------------------------------- 
*/
iccci; /* Flash invalidate the 
cache. */
mtspr(ICCR, i_cache_cachability); /* Enable the instruction 
cache */
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isync; /* Synchronize the context. 
*/

/* ------------------------------------------------- */
/* Invalidate the data cache and enable cachability. */
/* ------------------------------------------------- */
address = 0; /* Start with the first congruence class. */

/* Iterate through the data-cache congruence classes. */
for (line = 0; line <256; line++)
{

dccci(address);/* Invalidate the congruence class. */
address += 32; /* Point to the next congruence class. */

}

mtspr(DCWR, write-back, write-through); /* Set the caching 
policy. */
mtspr(DCCR, d_cache_cachability); /* Enable the data 
cache. */
isync; /* Synchronize the 
context. */

/* ---------------------------------- */
/* Prepare the system for interrupts. */
/* ---------------------------------- */

/* Load interrupt handlers. */
/* Initialize interrupt-vector table. */

/* Initialize exception-vector prefix */
mtspr(EVPR, prefix_addr);

/* ------------------------------------------- */
/* Prepare system for asynchronous interrupts. */
/* ------------------------------------------- */

/* Initialize and configure timer resources. */
mtspr(PIT, 0); /* Disable PIT. */
mtspr(TSR, 0xFFFFFFFF); /* Clear TSR */
mtspr(TCR, timer_enable);/* Enable desired timers */
mtspr(TBL, 0); /* First clear TBL to avoid 
rollover. */
mtspr(TBU, time_base_u); /* Set TBU to desired value. */
mtspr(TBL, time_base_l); /* Set TBL to desired value. */
mtspr(PIT, pit_count); /* Initialize PIT. */

/* Enable exceptions immediately to avoid missing timer 
events. */
mtmsr(enable_exceptions);

/* ------------------------------------------------------ */
/* The MSR also controls: */
/* 1. Privileged and user mode */
/* 2. Address translation */
/* These can be initialized by the operating system. */
/* ------------------------------------------------------ */

/* If enabling translation, the TLB must be initialized. */

/* Set the machine state as desired. */
mtmsr(machine_state);
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/* ------------------------------------- */
/* Initialize other processor resources. */
/* ------------------------------------- */

/* ----------------------------------- */
/* Initialize non-processor resources. */
/* ----------------------------------- */

/* ----------------------------------------------- */
/* Branch to operating system or application code. */
/* ----------------------------------------------- */
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Chapter 11

Instruction Set

This chapter lists the PPC405 instructions in alphabetical order by mnemonic. Figure 11-1 
shows an example format for an instruction description.

Each instruction description contains the following information shown in Figure 11-1:

Mnemonic—A short, single-word name for the base instruction. Throughout this 
document, instruction mnemonics are shown in lowercase bold (e.g. add). 

Name—The descriptive name for the instruction. For example, the descriptive name for 
the srawi instruction is Shift Right Algebraic Word Immediate.

Figure 11-1: Instruction Description Format

UG011_50_033101

add
Add

Description
The sum of the contents of register rA and register rB is loaded into register rD.

Pseudocode
(rD) ← (rA) + (rB)

Registers Altered
• rD.

• CR[CR0]LT,GT,EQ,SO if Rc=1.

• XER[SO,OV] if OE=1.

If an overflow occurs, it is possible the contents of CR0 do not reflect the infinitely-
precise result.

Exceptions
• None

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is
implemented by all PowerPC processors.

add rD, rA, rB (OE=0, Rc=0)

add. rD, rA, rB (OE=0, Rc=1)

addo rD, rA, rB (OE=1, Rc=0)

addo. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

31 rD rA rB OE 266 Rc

0 6 11 16 21 22 31

Mnemonic
Name

Syntax

Form
Encoding

Description

Pseudocode

Registers Altered

Exceptions

Compatibility
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Syntax—The assembler syntax used for the instruction. Some instructions have up to four 
possible syntax variations. These variations depend on whether the instruction form 
contains an overflow-enable bit (OE) and/or a record bit (Rc). For these instructions, the 
use of the OE and Rc bits is reflected in the instruction mnemonic.

Form—The format used to encode the instruction. All PowerPC instructions are encoded 
using one of the following forms: A, B, D, I, M, SC, X, XL, XO, XFX, or XFL. See 
Instructions Grouped by Form, page 792 for a description of each form and a list of 
instructions sorted by form.

Encoding—The specific encoding used to specify the instruction and its operands. See 
Instruction Encoding, below for more information.

Description—A description of how each instruction operates on the specified operands. 
The effect of the instruction on the CR and XER registers is also described. For some 
instructions, additional information is provided as to the purpose and use of the 
instruction. Many descriptions have cross-references to more detail in other sections of the 
manual. If simplified mnemonics are defined for an instruction, a cross-reference into 
Appendix C, Simplified Mnemonics is provided.

Pseudocode—A description of the instruction operation using a semi-formal language. 
The pseudocode conventions are used throughout this document and are described in the 
Preface in Pseudocode Conventions, page 315. The precedence of pseudocode operations 
is further described in the Preface in Operator Precedence, page 317.

Registers Altered—A summary of the PowerPC registers that are modified by executing 
the instruction.

Exceptions—A list of the exceptions that can occur as a result of executing the instruction. 
Asynchronous exceptions and exceptions associated with instruction fetching are not 
listed because those exceptions can occur with any instruction. This section also describes 
the effect of invalid instruction forms on instruction execution.

Compatibility—A brief description of instruction portability to other PowerPC 
implementations.

Instruction Encoding 
All instructions are four bytes long and are word aligned. Bits 0:5 always contain the 
primary opcode, which is used to determine the instruction form. The instruction form 
defines fields within the encoding for identifying the operands. Some instruction forms 
define an extended opcode field for specifying additional instructions.

All instruction fields belong to one of the following categories:

• Defined

These instructions contain values, such as opcodes, that cannot be altered. The 
instruction encoding diagrams specify the values of defined fields. If any bit in a 
defined field does not contain the expected value, the instruction is illegal and an 
illegal-instruction exception occurs.

• Variable

These fields contain operands, such as general-purpose register identifiers or 
displacement values, that can vary from instruction to instruction. The instruction 
encoding diagrams specify the operands in variable fields.

• Reserved

Bits in a reserved field should be cleared to 0. In the instruction encoding diagrams, 
reserved fields are shaded and contain a value of 0. If any bit in a reserved field does 
not contain 0, the instruction form is invalid and its result is undefined. Unless 
otherwise noted, invalid instruction forms execute without causing an illegal-
instruction exception.
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Split-Field Notation
Some instructions contain a field with an encoding that is a permutation of the 
corresponding assembler operand. Such fields are called split fields. Split fields are used by 
instructions that move data between the general-purpose registers and the special-purpose 
registers, device-control registers, and the time-base registers. For these instructions, 
assembler operands and split fields are indicated as follows:

• In the mfspr and mtspr instructions, SPRN is the assembler operand and SPRF is the 
split field. SPRF corresponds to SPRN as follows:
- SPRF0:4 is equivalent to SPRN5:9.
- SPRF5:9 is equivalent to SPRN0:4.

• In the mfdcr and mtdcr instructions, DCRN is the assembler operand and DCRF is the 
split field. DCRF corresponds to DCRN as follows:
- DCRF0:4 is equivalent to DCRN5:9.

- DCRF5:9 is equivalent to DCRN0:4.
• In the mftb instruction, TBRN is the assembler operand and TBRF is the split field. 

TBRF corresponds to TBRN as follows:
- TBRF0:4 is equivalent to TBRN5:9.
- TBRF5:9 is equivalent to TBRN0:4.

Throughout this document, references to SPRs, DCRs, and time-base registers use the 
respective SPRN, DCRN, and TBRN values. The assembler handles the conversion to the 
split-field format when encoding the instruction.

Alphabetical Instruction Listing
The following pages list the instructions supported by the PPC405 in alphabetical order.
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add
Add

Description
The sum of the contents of register rA and register rB is loaded into register rD.

Pseudocode
(rD) ← (rA) + (rB)

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

If an overflow occurs, it is possible that the contents of CR0 do not reflect the infinitely 
precise result.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

add rD, rA, rB (OE=0, Rc=0)

add. rD, rA, rB (OE=0, Rc=1)

addo rD, rA, rB (OE=1, Rc=0)

addo. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

31 rD rA rB OE 266 Rc

0 6 1

1

1

6

2

1

2

2

3

1
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addc
Add Carrying

Description
The sum of the contents of register rA and register rB is loaded into register rD. XER[CA] 
is updated to reflect the unsigned magnitude of the resulting sum.

Pseudocode
(rD) ← (rA) + (rB)
if (rD)  232 − 1

then XER[CA] ← 1
else XER[CA] ← 0

Registers Altered
• rD.
• XER[CA].
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

addc rD, rA, rB (OE=0, Rc=0)

addc. rD, rA, rB (OE=0, Rc=1)

addco rD, rA, rB (OE=1, Rc=0)

addco. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

31 rD rA rB OE 10 Rc

0 6 1

1

1

6

2

1

2

2

3

1

>
u
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adde
Add Extended

Description
The sum of the contents of register rA, register rB, and XER[CA] is loaded into register rD. 
XER[CA] is updated to reflect the unsigned magnitude of the resulting sum.

The add-extended instructions can be used to perform addition on integers larger than 32 
bits, as described on page 390.

Pseudocode
(rD) ← (rA) + (rB) + XER[CA]
if (rD)  232 − 1

then XER[CA] ← 1
else XER[CA] ← 0

Registers Altered
• rD.
• XER[CA].
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

adde rD, rA, rB (OE=0, Rc=0)

adde. rD, rA, rB (OE=0, Rc=1)

addeo rD, rA, rB (OE=1, Rc=0)

addeo. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

31 rD rA rB OE 138 Rc

0 6 1

1

1

6

2

1

2

2

3

1

>
u
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addi
Add Immediate

Description
If the rA field is 0, the SIMM field is sign-extended to 32 bits and loaded into register rD. If 
the rA field is nonzero, the SIMM field is sign-extended to 32 bits and added to the contents 
of register rA. The resulting sum is loaded into register rD.

Simplified mnemonics defined for this instruction are described in the following sections:

• Load Address, page 834.
• Load Immediate, page 834.
• Subtract Instructions, page 831.

Pseudocode
(rD) ← (rA|0) + EXTS(SIMM)

Registers Altered
• rD.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

addi rD, rA, SIMM

D Instruction Form

14 rD rA SIMM

0 6 1

1

1

6

3

1
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addic
Add Immediate Carrying

Description
The SIMM field is sign-extended to 32 bits and added to the contents of register rA. The 
resulting sum is loaded into register rD. XER[CA] is updated to reflect the unsigned 
magnitude of the resulting sum.

Simplified mnemonics defined for this instruction are described in Subtract Instructions, 
page 831.

Pseudocode
(rD) ← (rA) + EXTS(SIMM)
if (rD)  232 − 1

then XER[CA] ← 1
else XER[CA] ← 0

Registers Altered
• rD.
• XER[CA].

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

addic rD, rA, SIMM

D Instruction Form

12 rD rA SIMM

0 6 1

1

1

6

3

1

>
u
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addic.
Add Immediate Carrying and Record

Description
The SIMM field is sign-extended to 32 bits and added to the contents of register rA. The 
resulting sum is loaded into register rD. XER[CA] is updated to reflect the unsigned 
magnitude of the resulting sum.

addic. is one of three instructions that implicitly update CR[CR0] without having an RC 
field. The other instructions are andi. and andis..

Simplified mnemonics defined for this instruction are described in Subtract Instructions, 
page 831.

Pseudocode
(rD) ← (rA) + EXTS(SIMM)
if (rD)  232 − 1

then XER[CA] ← 1
else XER[CA] ← 0

Registers Altered
• rD.
• XER[CA].
• CR[CR0]LT, GT, EQ, SO.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

addic. rD, rA, SIMM

D Instruction Form

13 rD rA SIMM

0 6 1

1

1

6

3

1

>
u
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addis
Add Immediate Shifted

Description
If the rA field is 0, the SIMM field is concatenated on the right with sixteen 0-bits and the 
result is loaded into register rD. If the rA field is nonzero, the SIMM field is concatenated 
on the right with sixteen 0-bits and the result is added to the contents of register rA. The 
resulting sum is loaded into register rD.

Simplified mnemonics defined for this instruction are described in the following sections:

• Load Immediate, page 834.
• Subtract Instructions, page 831.

An addis instruction followed by an ori instruction can be used to load an arbitrary 32-bit 
value in a GPR, as shown in the following example:

addis rD, 0, high 16 bits of value
ori rD, rD, low 16 bits of value

Pseudocode
(rD) ← (rA|0) + (SIMM || 160)

Registers Altered
• rD.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

addis rD, rA, SIMM

D Instruction Form

15 rD rA SIMM

0 6 1

1

1

6

3

1

http://www.xilinx.com


March 2002 Release www.xilinx.com 579
Virtex-II Pro™ Platform FPGA Documentation 1-800-255-7778

Alphabetical Instruction Listing
R

addme
Add to Minus One Extended

Description
The sum of the contents of register rA, the XER[CA] bit, and the value −1 is loaded into 
register rD. XER[CA] is updated to reflect the unsigned magnitude of the resulting sum.

The add-extended instructions can be used to perform addition on integers larger than 32 
bits, as described on page 390.

Pseudocode
(rD) ← (rA) + XER[CA] + (−1)
if (rD)  232 − 1

then XER[CA] ← 1
else XER[CA] ← 0

Registers Altered
• rD.
• XER[CA].
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

addme rD, rA (OE=0, Rc=0)

addme. rD, rA (OE=0, Rc=1)

addmeo rD, rA (OE=1, Rc=0)

addmeo. rD, rA (OE=1, Rc=1)

XO Instruction Form

31 rD rA 0 0 0 0 0 OE 234 Rc
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addze
Add to Zero Extended

Description
The sum of the contents of register rA and XER[CA] is loaded into register rD. XER[CA] is 
updated to reflect the unsigned magnitude of the resulting sum.

The add-extended instructions can be used to perform addition on integers larger than 32 
bits, as described on page 390.

Pseudocode
(rD) ← (rA) + XER[CA]
if (rD)  232 − 1

then XER[CA] ← 1
else XER[CA] ← 0

Registers Altered
• rD.
• XER[CA].
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

addze rD, rA (OE=0, Rc=0)

addze. rD, rA (OE=0, Rc=1)

addzeo rD, rA (OE=1, Rc=0)

addzeo. rD, rA (OE=1, Rc=1)

XO Instruction Form

31 rD rA 0 0 0 0 0 OE 202 Rc
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and
AND

Description
The contents of register rS are ANDed with the contents of register rB and the result is 
loaded into register rA.

Pseudocode
(rA) ← (rS) ∧ (rB)

Registers Altered
• rA.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

and rA, rS, rB (Rc=0)

and. rA, rS, rB (Rc=1)

X Instruction Form

31 rS rA rB 28 Rc
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andc
AND with Complement

Description
The contents of register rS are ANDed with the one’s complement of the contents of 
register rB and the result is loaded into register rA.

Pseudocode
(rA) ← (rS) ∧ ¬ (rB)

Registers Altered
• rA.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

andc rA, rS, rB (Rc=0)

andc. rA, rS, rB (Rc=1)

X Instruction Form

31 rS rA rB 60 Rc
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andi.
AND Immediate

Description
The UIMM field is extended to 32 bits by concatenating 16 0-bits on the left. The contents of 
register rS are ANDed with the extended UIMM field and the result is loaded into register 
rA.

andi. is one of three instructions that implicitly update CR[CR0] without having an Rc 
field. The other instructions are addic. and andis..

The andi. instruction can be used to test whether any of the 16 least-significant bits in a 
GPR are 1-bits.

Pseudocode
(rA) ← (rS) ∧ (160 || UIMM)

Registers Altered
• rA.
• CR[CR0]LT, GT, EQ, SO.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

andi. rA, rS, UIMM

D Instruction Form

28 rS rA UIMM
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andis.
AND Immediate Shifted

Description
The UIMM field is extended to 32 bits by concatenating 16 0-bits on the right. The contents 
of register rS are ANDed with the extended UIMM field and the result is loaded into 
register rA.

andis. is one of three instructions that implicitly update CR[CR0] without having an Rc 
field. The other instructions are addic. and andi..

The andis. instruction can be used to test whether any of the 16 most-significant bits in a 
GPR are 1-bits.

Pseudocode
(rA) ← (rS) ∧ (UIMM || 160)

Registers Altered
• rA.
• CR[CR0]LT, GT, EQ, SO.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

andis. rA, rS, UIMM

D Instruction Form

29 rS rA UIMM

0 6 1

1

1

6

3

1

http://www.xilinx.com


March 2002 Release www.xilinx.com 585
Virtex-II Pro™ Platform FPGA Documentation 1-800-255-7778

Alphabetical Instruction Listing
R

b
Branch

Description
target is a 32-bit operand that specifies a displacement to the branch-target address. The 
assembler sets the instruction-opcode LI field to the value of target6:29.

The next instruction address (NIA) is the effective address of the branch target. The NIA is 
calculated by adding the displacement to a base address, which are formed as follows:

• The displacement is obtained by concatenating two 0-bits to the right of the BD field 
and sign-extending the result to 32 bits.

• If the AA field contains 0 (relative addressing), the branch-instruction address is used 
as the base address. The branch-instruction address is the current instruction address 
(CIA).

• If the AA field contains 1 (absolute addressing), the base address is 0.

Program flow is transferred to the NIA. If the LK field contains 1, then the address of the 
instruction following the branch instruction (CIA + 4) is loaded into the LR.

Pseudocode
If AA = 1

then NIA ← EXTS(LI || 0b00)
else NIA ← CIA + EXTS(LI || 0b00)

if LK = 1 then
(LR) ← CIA + 4

Registers Altered
• LR if LK=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

b target (AA=0, LK=0)

ba target (AA=1, LK=0)

bl target (AA=0, LK=1)

bla target (AA=1, LK=1)

I Instruction Form

18 LI AA LK
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bc
Branch Conditional 

Description
target is a 32-bit operand that specifies a displacement to the branch-target address. The 
assembler sets the instruction-opcode BD field to the value of target16:29.

The next instruction address (NIA) is the effective address of the branch target. The NIA is 
calculated by adding the displacement to a base address, which are formed as follows:

• The displacement is obtained by concatenating two 0-bits to the right of the BD field 
and sign-extending the result to 32 bits.

• If the AA field contains 0 (relative addressing), the branch-instruction address is used 
as the base address. The branch-instruction address is the current instruction address 
(CIA).

• If the AA field contains 1 (absolute addressing), the base address is 0.

Program flow is transferred to the NIA. If the LK field contains 1, then the address of the 
instruction following the branch instruction (CIA + 4) is loaded into the LR.

The BO field specifies whether the branch is conditional on the contents of the CTR and/or 
the CR registers and how those conditions are tested. The BO field also specifies whether 
the CTR is decremented. The encoding of the BO field is described in Conditional Branch 
Control, page 367. The BI field specifies which CR bit is tested if the branch is conditional 
on the CR register.

Simplified mnemonics defined for this instruction are described in the following sections:

• ?<Fill in list after appendix is built>

Pseudocode
if BO2 = 0 then

CTR ← CTR − 1
CTR_cond_met ← BO2 ∨ ((CTR ≠ 0) ⊕ BO3))
CR_cond_met ← BO0 ∨ (CRBI = BO1)
if CTR_cond_met ∧  CR_cond_met

then if AA = 1
then NIA ← EXTS(BD || 0b00)
else NIA ← CIA + EXTS(BD || 0b00)

else NIA ← CIA + 4
if LK = 1 then

(LR) ← CIA + 4

Registers Altered
• CTR if BO2=0.

bc BO, BI, target (AA=0, LK=0)

bca BO, BI, target (AA=1, LK=0)

bcl BO, BI, target (AA=0, LK=1)

bcla BO, BI, target (AA=1, LK=1)

B Instruction Form

16 BO BI BD AA LK

0 6 11 16 30 31
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• LR if LK=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.
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bcctr
Branch Conditional to Count Register

Description
The next instruction address (NIA) is the effective address of the branch target. The NIA is 
formed by concatenating the 30 most-significant bits of the CTR with two 0-bits on the 
right. Program flow is transferred to the NIA. If the LK field contains 1, then the address of 
the instruction following the branch instruction (CIA + 4) is loaded into the LR.

The BO field specifies whether the branch is conditional on the contents of the CTR and/or 
the CR registers and how those conditions are tested. The BO field also specifies whether 
the CTR is decremented. The encoding of the BO field is described in Conditional Branch 
Control, page 367. The BI field specifies which CR bit is tested if the branch is conditional 
on the CR register.

Simplified mnemonics defined for this instruction are described in the following sections:

• ?<Fill in list after appendix is built>

Pseudocode
if BO2 = 0 then

CTR ← CTR − 1
CTR_cond_met ← BO2 ∨ ((CTR ≠ 0) ⊕ BO3))
CR_cond_met ← BO0 ∨ (CRBI = BO1)
if CTR_cond_met ∧  CR_cond_met

then NIA ← CTR0:29 || 0b00
else NIA ← CIA + 4

if LK = 1 then
(LR) ← CIA + 4

Registers Altered
• CTR if BO2=0.

• LR if LK=1.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.
• BO2=0. In this case the branch is taken if the branch condition is true. The contents of 

bcctr BO, BI (LK=0)

bcctrl BO, BI (LK=1)

XL Instruction Form

19 BO BI 0 0 0 0 0 528 LK
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the decremented CTR are used as the NIA.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.
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bclr
Branch Conditional to Link Register

Description
The next instruction address (NIA) is the effective address of the branch target. The NIA is 
formed by concatenating the 30 most-significant bits of the LR with two 0-bits on the right. 
Program flow is transferred to the NIA. If the LK field contains 1, then the address of the 
instruction following the branch instruction (CIA + 4) is loaded into the LR.

The BO field specifies whether the branch is conditional on the contents of the CTR and/or 
the CR registers and how those conditions are tested. The BO field also specifies whether 
the CTR is decremented. The encoding of the BO field is described in Conditional Branch 
Control, page 367. The BI field specifies which CR bit is tested if the branch is conditional 
on the CR register.

Simplified mnemonics defined for this instruction are described in the following sections:

• ?<Fill in list after appendix is built>

Pseudocode
if BO2 = 0 then

CTR ← CTR − 1
CTR_cond_met ← BO2 ∨ ((CTR ≠ 0) ⊕ BO3))
CR_cond_met ← BO0 ∨ (CRBI = BO1)
if CTR_cond_met ∧  CR_cond_met

then NIA ← LR0:29 || 0b00
else NIA ← CIA + 4

if LK = 1 then
(LR) ← CIA + 4

Registers Altered
• CTR if BO2=0.

• LR if LK=1.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

bclr BO, BI (LK=0)

bclrl BO, BI (LK=1)

XL Instruction Form

19 BO BI 0 0 0 0 0 16 LK
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Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.
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cmp
Compare 

Description
A 32-bit signed comparison is performed between the contents of register rA and register 
rB. crfD which CR field is updated to reflect the comparison results. The value of XER[SO] 
is loaded into the same CR field.

Simplified mnemonics defined for this instruction are described in Compare Instructions, 
page 828.

Pseudocode
c0:3 ← 0b0000
if (rA) < (rB) then c0 ← 1
if (rA) > (rB) then c1 ← 1
if (rA) = (rB) then c2 ← 1
c3 ← XER[SO]
n ← crfD
CR[CRn] ← c0:3

Registers Altered

• CR[CRn] as specified by the crfD field.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

cmp crfD, 0, rA, rB

X Instruction Form

31 crfD 0 0 rA rB 0 0
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cmpi
Compare Immediate

Description
The SIMM field is sign-extended to 32 bits. A 32-bit signed comparison is performed 
between the contents of register rA and the sign-extended SIMM field. crfD specifies 
which CR field is updated to reflect the comparison results. The value of XER[SO] is loaded 
into the same CR field.

Simplified mnemonics defined for this instruction are described in Compare Instructions, 
page 828.

Pseudocode
c0:3 ← 0b0000
if (rA) < EXTS(SIMM)then c0 ← 1
if (rA) > EXTS(SIMM)then c1 ← 1
if (rA) = EXTS(SIMM)then c2 ← 1
c3 ← XER[SO]
n ← crfD
CR[CRn] ← c0:3

Registers Altered

• CR[CRn] as specified by the crfD field.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

cmpi crfD, 0, rA, SIMM

D Instruction Form

11 crfD 0 0 rA SIMM

0 6 9 11 16 31
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cmpl
Compare Logical 

Description
A 32-bit unsigned comparison is performed between the contents of register rA and 
register rB. crfD specifies which CR field is updated to reflect the comparison results. The 
value of XER[SO] is loaded into the same CR field.

Simplified mnemonics defined for this instruction are described in Compare Instructions, 
page 828.

Pseudocode
c0:3 ← 0b0000
if (rA) (rB) then c0 ← 1
if (rA) (rB) then c1 ← 1
if (rA) = (rB) then c2 ← 1
c3 ← XER[SO]
n ← crfD
CR[CRn] ← c0:3

Registers Altered

• CR[CRn] as specified by the crfD field.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

cmpl crfD, 0, rA, rB

X Instruction Form

31 crfD 0 0 rA rB 32 0
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cmpli
Compare Logical Immediate

Description
The UIMM field is extended to 32 bits by concatenating 16 0-bits on the left. A 32-bit 
unsigned comparison is performed between the contents of register rA and the zero-
extended UIMM field. crfD specifies which CR field is updated to reflect the comparison 
results. The value of XER[SO] is loaded into the same CR field.

Simplified mnemonics defined for this instruction are described in Compare Instructions, 
page 828.

Pseudocode
c0:3 ← 0b0000
if (rA) (160 || UIMM)then c0 ← 1
if (rA) (160 || UIMM)then c1 ← 1
if (rA) = (160 || UIMM)then c2 ← 1
c3 ← XER[SO]
n ← crfD
CR[CRn] ← c0:3

Registers Altered

• CR[CRn] as specified by the crfD field.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

cmpli crfD, 0, rA, UIMM

D Instruction Form

10 crfD 0 0 rA UIMM
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cntlzw 
Count Leading Zeros Word

Description
The consecutive leading 0 bits in register rS are counted and the count is loaded into 
register rA. This count ranges from 0 through 32, inclusive.

Pseudocode
n ← 0
do while n < 32

if (rS)n = 1 then leave
n ← n + 1

(rA) ← n

Registers Altered
• rA.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

cntlzw rA, rS (Rc=0)

cntlzw. rA, rS (Rc=1)

X Instruction Form

31 rS rA 0 0 0 0 0 26 Rc
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crand
Condition Register AND

Description
The CR bit specified by crbA is ANDed with the CR bit specified by crbB and the result is 
loaded into the CR bit specified by crbD.

Pseudocode
CR[crbD] ← CR[crbA] ∧ CR[crbB]

Registers Altered
• CR.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

crand crbD, crbA, crbB

XL Instruction Form

19 crbD crbA crbB 257 0
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crandc
Condition Register AND with Complement

Description
The CR bit specified by crbA is ANDed with the one’s complement of the CR bit specified 
by crbB and the result is loaded into the CR bit specified by crbD.

Pseudocode
CR[crbD] ← CR[crbA] ∧ ¬ CR[crbB]

Registers Altered
• CR.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

crandc crbD, crbA, crbB

XL Instruction Form

19 crbD crbA crbB 129 0
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creqv
Condition Register Equivalent

Description
The CR bit specified by crbA is XORed with the CR bit specified by crbB and the one’s 
complement of the result is loaded into the CR bit specified by crbD.

Simplified mnemonics defined for this instruction are described in CR-Logical 
Instructions, page 828.

Pseudocode
CR[crbD] ← ¬ (CR[crbA] ⊕ CR[crbB])

Registers Altered
• CR.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

creqv crbD, crbA, crbB

XL Instruction Form

19 crbD crbA crbB 289 0
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crnand
Condition Register NAND

Description
The CR bit specified by crbA is ANDed with the CR bit specified by crbB and the one’s 
complement of the result is loaded into the CR bit specified by crbD.

Pseudocode
CR[crbD] ← ¬ (CR[crbA] ∧ CR[crbB])

Registers Altered
• CR.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

crnand crbD, crbA, crbB

XL Instruction Form

19 crbD crbA crbB 225 0
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crnor
Condition Register NOR

Description
The CR bit specified by crbA is ORed with the CR bit specified by crbB and the one’s 
complement of the result is loaded into the CR bit specified by crbD.

Simplified mnemonics defined for this instruction are described in CR-Logical 
Instructions, page 828.

Pseudocode
CR[crbD] ← ¬ (CR[crbA] ∨ CR[crbB])

Registers Altered
• CR.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

crnor crbD, crbA, crbB

XL Instruction Form

19 crbD crbA crbB 33 0
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cror
Condition Register OR

Description
The CR bit specified by crbA is ORed with the CR bit specified by crbB and the result is 
loaded into the CR bit specified by crbD.

Simplified mnemonics defined for this instruction are described in CR-Logical 
Instructions, page 828.

Pseudocode
CR[crbD] ← CR[crbA] ∨ CR[crbB]

Registers Altered
• CR.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

cror crbD, crbA, crbB

XL Instruction Form

19 crbD crbA crbB 449 0
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crorc
Condition Register OR with Complement

Description
The CR bit specified by crbA is ORed with the one’s complement of the CR bit specified by 
crbB and the result is loaded into the CR bit specified by crbD.

Pseudocode
CR[crbD] ← CR[crbA] ∨ ¬ CR[crbB]

Registers Altered
• CR.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

crorc crbD, crbA, crbB

XL Instruction Form

19 crbD crbA crbB 417 0
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crxor
Condition Register XOR

Description
The CR bit specified by crbA is XORed with the CR bit specified by crbB and the result is 
loaded into the CR bit specified by crbD.

Simplified mnemonics defined for this instruction are described in CR-Logical 
Instructions, page 828.

Pseudocode
CR[crbD] ← CR[crbA] ⊕ CR[crbB]

Registers Altered
• CR.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

crxor crbD, crbA, crbB

XL Instruction Form

19 crbD crbA crbB 193 0
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dcba
Data Cache Block Allocate

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

The operation of this instruction depends on the cachability and caching policy of EA as 
follows:

• If EA is cached by the data cache and has a write-back caching policy, the value of all 
bytes in the data cacheline referenced by EA become undefined. The data cacheline 
remains valid.

• If EA is not cached but is cachable with a write-back caching policy, a corresponding 
data cacheline is allocated and the value of the bytes in that line are undefined.

• If EA is cachable and has a write-through caching policy, a no-operation occurs. This 
is true whether or not EA is cached by the data cache.

• If EA is not cachable, a no-operation occurs.

dcba provides a hint that a block of memory is either no longer needed, or will soon be 
written. There is no need to retain the data in the memory block. Establishing a data 
cacheline without reading from main memory can improve performance.

dcba establishes an address in the data cache without copying data from main memory. 
Software must ensure that the established address does not represent an invalid main-
memory address. A subsequent operation could cause the processor to attempt a write of 
the cacheline to the invalid main-memory address, possibly causing a machine-check 
exception to occur.

Pseudocode
EA ← (rA|0) + (rB)
Allocate data cacheline corresponding to EA

Registers Altered
• None.

dcba rA, rB

X Instruction Form

31 0 0 0 0 0 rA rB 758 0
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Exceptions
This instruction is considered a “store” with respect to data-access exceptions. However, 
this instruction does not cause data storage exceptions or data TLB-miss exceptions. If 
conditions occur that would otherwise cause these exceptions, dcba is treated as a no-
operation. This instruction is also considered a “store” with respect to data address-
compare (DAC) debug exceptions. Debug exceptions can occur as a result of executing this 
instruction.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the virtual-environment architecture level (VEA) of the 
PowerPC architecture, the PowerPC embedded-environment architecture, and the 
PowerPC Book-E architecture. Implementation of this instruction is optional, and it is not 
guaranteed to be implemented on all PowerPC processors.
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dcbf
Data Cache Block Flush

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

If EA is cached by the data cache, the corresponding data cacheline is invalidated. If the 
data cacheline is marked as modified, the contents of the cacheline are written (flushed) to 
main memory prior to the invalidation. The flush operation is performed whether or not 
the corresponding storage attribute indicates EA is cachable. If EA is not cached, no 
operation is performed.

Pseudocode
EA ← (rA|0) + (rB)
Flush data cacheline corresponding to EA

Registers Altered
• None.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

This instruction is considered a “load” with respect to the above data-access exceptions. It 
is considered a “store” with respect to data address-compare (DAC) debug exceptions. 
Debug exceptions can occur as a result of executing this instruction.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

dcbf rA, rB

X Instruction Form

31 0 0 0 0 0 rA rB 86 0

0 6 1

1

1

6

2

1

3

1

http://www.xilinx.com


608 www.xilinx.com March 2002 Release
1-800-255-7778 Virtex-II Pro™ Platform FPGA Documentation

Chapter 11: Instruction Set
R

Compatibility
This instruction is defined by the virtual-environment architecture level (VEA) of the 
PowerPC architecture, the PowerPC embedded-environment architecture, and the 
PowerPC Book-E architecture.
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dcbi
Data Cache Block Invalidate

Description
This is a privileged instruction.

An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

If EA is cached by the data cache, the corresponding data cacheline is invalidated. The 
invalidation is performed whether or not the corresponding storage attribute indicates EA 
is cachable. If modified data exists in the cacheline, it is lost. If EA is not cached, no 
operation is performed.

Pseudocode
EA ← (rA|0) + (rB)
Invalidate data cacheline corresponding to EA

Registers Altered
• None.

Exceptions
• Data storage—if the access is prevented by zone protection when data relocation is 

enabled. 
- No-access-allowed zone protection applies only to accesses in user mode. 
- Read-only zone protection applies to user and privileged modes.

A data-storage exception occurs if the U0 storage attribute associated with the EA is set 
to 1 and U0 exceptions are enabled (CCR0[U0XE]=1).

• Data TLB miss—if data relocation is enabled and a valid translation-entry 
corresponding to the EA is not found in the TLB.

• Program—Attempted execution of this instruction from user mode.

This instruction is considered a “store” with respect to the above data-access exceptions. It 
is also considered a “store” with respect to data address-compare (DAC) debug exceptions. 
Debug exceptions can occur as a result of executing this instruction.

dcbi rA, rB

X Instruction Form

31 0 0 0 0 0 rA rB 470 0
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Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the operating-environment architecture level (OEA) of the 
PowerPC architecture, the PowerPC embedded-environment architecture, and the 
PowerPC Book-E architecture.
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dcbst
Data Cache Block Store

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

If EA is cached by the data cache, the corresponding data cacheline is checked to see if it is 
marked modified. If it is modified, it is stored to main memory and marked as unmodified. 
The store operation is performed whether or not the corresponding storage attribute 
indicates EA is cachable. No operation occurs if the data cacheline is unmodified, or if EA 
is not cached.

Pseudocode
EA ← (rA|0) + (rB)
Store modified data cacheline corresponding to EA

Registers Altered
• None.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

This instruction is considered a “load” with respect to the above data-access exceptions. It 
is considered a “store” with respect to data address-compare (DAC) debug exceptions. 
Debug exceptions can occur as a result of executing this instruction.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

dcbst rA, rB

X Instruction Form

31 0 0 0 0 0 rA rB 54 0
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Compatibility
This instruction is defined by the virtual-environment architecture level (VEA) of the 
PowerPC architecture, the PowerPC embedded-environment architecture, and the 
PowerPC Book-E architecture.
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dcbt
Data Cache Block Touch

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

If EA is cachable but not in the data cache, the corresponding cacheline is loaded into the 
data cache from main memory. If EA is already cached, or if the storage attributes indicate 
EA is not cachable, no operation is performed.

This instruction is a hint to the processor that the program will likely load data from EA in 
the near future. The processor can potentially improve performance by loading the 
cacheline into the data cache.

Pseudocode
EA ← (rA|0) + (rB)
Prefetch data cacheline corresponding to EA

Registers Altered
• None.

Exceptions
This instruction is considered a “load” with respect to data-storage exceptions. However, 
this instruction does not cause data storage exceptions or data TLB-miss exceptions. If 
conditions occur that would otherwise cause these exceptions, dcbt is treated as a no-
operation. This instruction is also considered a “load” with respect to data address-
compare (DAC) debug exceptions. Debug exceptions can occur as a result of executing this 
instruction.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

dcbt rA, rB

X Instruction Form

31 0 0 0 0 0 rA rB 278 0
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Compatibility
This instruction is defined by the virtual-environment architecture level (VEA) of the 
PowerPC architecture, the PowerPC embedded-environment architecture, and the 
PowerPC Book-E architecture.
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dcbtst
Data Cache Block Touch for Store

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

If EA is cachable but not in the data cache, the corresponding cacheline is loaded into the 
data cache from main memory. If EA is already cached, or if the storage attributes indicate 
EA is not cachable, no operation is performed.

This instruction is a hint to the processor that the program will likely store data to the EA 
in the near future. The processor can potentially improve performance by loading the 
cacheline into the data cache. In the PPC405, this instruction operates identically to dcbt. In 
other PowerPC implementations, this instruction can cause unique bus cycles to occur and 
additional cache-coherency state can be associated with the cacheline.

Pseudocode
EA ← (rA|0) + (rB)
Prefetch data cacheline corresponding to EA

Registers Altered
• None.

Exceptions
This instruction is considered a “load” with respect to data-storage exceptions. However, 
this instruction does not cause data storage exceptions or data TLB-miss exceptions. If 
conditions occur that would otherwise cause these exceptions, dcbtst is treated as a no-
operation. This instruction is also considered a “load” with respect to data address-
compare (DAC) debug exceptions. Debug exceptions can occur as a result of executing this 
instruction.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

dcbtst rA, rB

X Instruction Form

31 0 0 0 0 0 rA rB 246 0
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Compatibility
This instruction is defined by the virtual-environment architecture level (VEA) of the 
PowerPC architecture, the PowerPC embedded-environment architecture, and the 
PowerPC Book-E architecture.
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dcbz
Data Cache Block Set to Zero

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

The operation of this instruction depends on the cachability and caching policy of EA as 
follows:

• If EA is cached by the data cache and has a write-back caching policy, the value of all 
bytes in the data cacheline referenced by EA are cleared to 0. The data cacheline is 
marked modified.

• If EA is not cached but is cachable with a write-back caching policy, a corresponding 
data cacheline is allocated and the value of the bytes in that line are cleared to 0. The 
data cacheline is marked modified.

• If EA is cachable and has a write-through caching policy, an alignment exception 
occurs. This is true whether or not EA is cached.

• If EA is not cachable, an alignment exception occurs.

dcbz establishes an address in the data cache without copying data from main memory. 
Software must ensure that the established address does not represent an invalid main-
memory address. A subsequent operation could cause the processor to attempt a write of 
the cacheline to the invalid main-memory address, possibly causing a machine-check 
exception to occur.

Pseudocode
EA ← (rA|0) + (rB)
Clear contents of data cacheline corresponding to EA

Registers Altered
• None.

Exceptions
• Alignment—if the EA is marked as non-cachable or write-through. The alignment 

exception handler can emulate the effect of this instruction by storing zeros to the 
corresponding block of main memory.

dcbz rA, rB

X Instruction Form

31 0 0 0 0 0 rA rB 1014 0
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• Data storage—if the access is prevented by zone protection when data relocation is 
enabled. 
- No-access-allowed zone protection applies only to accesses in user mode. 
- Read-only zone protection applies to user and privileged modes.

A data-storage exception occurs if the U0 storage attribute associated with the EA is set 
to 1 and U0 exceptions are enabled (CCR0[U0XE]=1).

• Data TLB miss—if data relocation is enabled and a valid translation-entry 
corresponding to the EA is not found in the TLB.

This instruction is considered a “store” with respect to the above data-access exceptions. It 
is also considered a “store” with respect to data address-compare (DAC) debug exceptions. 
Debug exceptions can occur as a result of executing this instruction.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the virtual-environment architecture level (VEA) of the 
PowerPC architecture, the PowerPC embedded-environment architecture, and the 
PowerPC Book-E architecture.
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dccci
Data Cache Congruence Class Invalidate

Description
This is a privileged instruction.

An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

Both data cachelines in the congruence class specified by EA19:26 are invalidated. The 
invalidation is performed whether or not the corresponding storage attribute indicates EA 
is cachable. The invalidation is also performed whether or not EA is cached in either line. 
If modified data exists in the cachelines, it is lost.

This instruction is intended for use during initialization to invalidate the entire data cache 
before is enabled. A sequence of dccci instructions should be executed, one for each 
congruence class. Afterwards, cachability can be enabled.

Pseudocode
EA ← (rA|0) + (rB)
Invalidate the data-cache congruence class specified by EA19:26

Registers Altered
• None.

Exceptions
• Data storage—if the access is prevented by zone protection when data relocation is 

enabled. 
- No-access-allowed zone protection applies only to accesses in user mode. 
- Read-only zone protection applies to user and privileged modes.

A data-storage exception occurs if the U0 storage attribute associated with the EA is set 
to 1 and U0 exceptions are enabled (CCR0[U0XE]=1).

• Data TLB miss—if data relocation is enabled and a valid translation-entry 
corresponding to the EA is not found in the TLB.

• Program—Attempted execution of this instruction from user mode.

dccci rA, rB

X Instruction Form

31 0 0 0 0 0 rA rB 454 0
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This instruction is considered a “store” with respect to the above data-access exceptions. It 
can cause data-access exceptions related to the EA even though the instruction is not 
address specific (multiple addresses are selected by a single EA). This instruction does not 
cause data address-compare (DAC) debug exceptions.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.
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dcread
Data Cache Read

Description
This is a privileged instruction.

An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

This instruction can be used as a data-cache debugging aid. It is used to read information 
for a specific data cacheline. The cache information is loaded in register rD.

EA19:26 is used to specify a congruence class within the data cache. CCR0[CWS] is used to 
select one of the two cachelines within the congruence class. If CCR0[CWS]=0, the line in 
way A is selected. If CCR0[CWS]=1, the line in way B is selected.

If CCR0[CIS]=0, the information read is a word of data from the selected cacheline. EA27:29 
is used as an index to select the word from the 32-byte line. If CCR0[CIS]=1, the 
information read is the tag associated with the selected cacheline.

Following execution of this instruction, rD contains the following:

dcread rD, rA, rB

X Instruction Form

31 rD rA rB 486 0
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Bit Name Function Description

0:18 INFO Data-Cache Information

CCR0[CIS]=0—Data word.

CCR0[CIS]=1—Data tag.

Contains either the cache-line tag or a single data word from the 
cacheline. If a data word is loaded it is specified using effective-
address bits EA27:29. CCR0[CIS] controls the type of information 
loaded into this field.

19:25 Reserved

26 D Dirty

0—Cacheline is not dirty.

1—Cacheline is dirty.

Contains a copy of the cache-line dirty bit indicating whether or not 
the line contains modified data.
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Pseudocode
EA ← (rA|0) + (rB)
if ((CCR0[CIS] = 0) ∧ (CCR0[CWS] = 0)) then (rD) ← (data-cache data, way A)
if ((CCR0[CIS] = 0) ∧ (CCR0[CWS] = 1)) then (rD) ← (data-cache data, way B)
if ((CCR0[CIS] = 1) ∧ (CCR0[CWS] = 0)) then (rD) ← (data-cache tag, way A)
if ((CCR0[CIS] = 1) ∧ (CCR0[CWS] = 1)) then (rD) ← (data-cache tag, way B)

Registers Altered
• rD.

Exceptions
• Alignment—if the EA is not aligned on a word boundary (EA30:31 ≠ 00).

• Data TLB miss—if data relocation is enabled and a valid translation-entry 
corresponding to the EA is not found in the TLB.

• Program—Attempted execution of this instruction from user mode.

This instruction is considered a “load” with respect to the above data-access exceptions. It 
can cause data TLB-miss exceptions related to EA even though the instruction is not 
address specific (multiple addresses are selected by a single EA). This instruction cannot 
cause data-storage exceptions. This instruction does not cause data address-compare 
(DAC) debug exceptions.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

27 V Valid

0—Cacheline is not valid.

1—Cacheline is valid.

Contains a copy of the cache-line valid bit.

28:30 Reserved

31 LRU Least-Recently Used

0—Way A is least-recently 
used.

1—Way B is least-recently 
used.

Contains the LRU bit for the congruence class associated with the 
cacheline.

Bit Name Function Description
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divw
Divide Word

Description
The contents of register rA (dividend) are divided by the contents of register rB (divisor). 
The quotient is loaded into register rD. Both the dividend and the divisor are interpreted as 
signed integers. The quotient is the unique signed integer that satisfies the equation:

dividend = (quotient × divisor) + remainder
where the remainder has the same sign as the dividend, and:

• 0 ≤ remainder <  divisor , if the dividend is positive.
• − divisor  < remainder ≤ 0, if the dividend is negative.

The 32-bit remainder can be calculated using the following sequence of instructions:

divw rD, rA, rB # rD = quotient
mullw rD, rD, rB # rD = quotient × divisor
subf rD, rD, rA # rD = remainder

The contents of register rD are undefined if an attempt is made to perform either of the 
following invalid divisions:

• 0x8000 0000 ÷ −1.

• n ÷ 0, where n is any number.

The contents of CR[CR0]LT, GT, EQ are undefined if the Rc field is set to 1 and an invalid 
division is performed. Both invalid divisions set XER[OV, SO] to 1 if the OE field contains 
1.

Pseudocode
(rD) ← (rA) ÷ (rB)

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[OV, SO] if OE=1.

Exceptions
• None.

divw rD, rA, rB (OE=0, Rc=0)

divw. rD, rA, rB (OE=0, Rc=1)

divwo rD, rA, rB (OE=1, Rc=0)

divwo. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

31 rD rA rB OE 491 Rc

0 6 1

1

1

6

2
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2
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3

1
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Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.
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divwu
Divide Word Unsigned

Description
The contents of register rA (dividend) are divided by the contents of register rB (divisor). 
The quotient is loaded into register rD. Both the dividend and the divisor are interpreted as 
unsigned integers. The quotient is the unique unsigned integer that satisfies the equation:

dividend = (quotient × divisor) + remainder
where 0 ≤ remainder < divisor.

The 32-bit unsigned remainder can be calculated using the following sequence of 
instructions:

divwu rD, rA, rB # rD = quotient
mullw rD, rD, rB # rD = quotient × divisor
subf rD, rD, rA # rD = remainder

If Rc=1, CR[CR0]LT, GT, EQ are set using a signed comparison of the result to 0 even though 
the instruction produces an unsigned integer as a quotient.

The contents of register rD are undefined if an attempt is made to perform the invalid 
division n ÷ 0 (where n is any number). The contents of CR[CR0]LT, GT, EQ are undefined if 
the Rc field is set to 1 and an invalid division is performed. An invalid division sets 
XER[OV, SO] to 1 if the OE field contains 1.

Pseudocode
(rD) ← (rA) ÷ (rB)

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[OV, SO] if OE=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

divwu rD, rA, rB (OE=0, Rc=0)

divwu. rD, rA, rB (OE=0, Rc=1)

divwuo rD, rA, rB (OE=1, Rc=0)

divwuo. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

31 rD rA rB OE 459 Rc

0 6 1

1

1
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2
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3

1
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eieio
Enforce In Order Execution of I/O

Description
The eieio instruction enforces ordering of load and store operations. It ensures that all 
loads and stores preceding eieio in program order complete with respect to main memory 
before loads and stores following eieio access main memory. It is intended for use in 
managing shared data structures, in accessing memory-mapped I/O, and in preventing 
load/store combining operations in main memory.

With the exception of the dcba and dcbz instructions, eieio does not affect the order of 
cache operations. This is true whether the cache operation is initiated explicitly by the 
execution of a cache-control instruction, or implicitly during the normal operation of the 
cache controller. 

eieio orders memory access, not instruction completion. Non-memory instructions 
following eieio can complete before the memory operations ordered by eieio. The sync 
instruction is used to guarantee ordering of both instruction completion and storage 
access. The PPC405 implements eieio and sync identically (this is permitted by the 
PowerPC architecture). Programmers should use the appropriate ordering instruction to 
maximize the performance of software that is portable between various PowerPC 
implementations.

Pseudocode
Force prior memory accesses to complete before starting subsequent accesses

Registers Altered
• None.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the virtual-environment architecture level (VEA) of the 
PowerPC architecture and the PowerPC embedded-environment architecture. The 
instruction is not part of the PowerPC Book-E architecture.

eieio

X Instruction Form

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 854 0

0 6 2

1

3

1
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eqv
Equivalent

Description
The contents of register rS are XORed with the contents of register rB. A one’s complement 
of the result is calculated and loaded in register rA.

Pseudocode
(rA) ← ¬ ((rS) ⊕ (rB))

Registers Altered
• rA.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

eqv rA, rS, rB (Rc=0)

eqv. rA, rS, rB (Rc=1)

X Instruction Form

31 rS rA rB 284 Rc

0 6 1

1

1

6

2

1

3

1

http://www.xilinx.com


628 www.xilinx.com March 2002 Release
1-800-255-7778 Virtex-II Pro™ Platform FPGA Documentation

Chapter 11: Instruction Set
R

extsb
Extend Sign Byte

Description
The least-significant byte of register rS is sign-extended to 32 bits by replicating bit rS24 into 
bits 0 through 23 of the result. The result is loaded into register rA.

Pseudocode
(rA) ← EXTS(rS24:31)

Registers Altered
• rA.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

extsb rA, rS (Rc=0)

extsb. rA, rS (Rc=1)

X Instruction Form

31 rS rA 0 0 0 0 0 954 Rc

0 6 1

1

1
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extsh
Extend Sign Halfword

Description
The least-significant halfword of register rS is sign-extended to 32 bits by replicating bit 
rS16 into bits 0 through 15 of the result. The result is loaded into register rA.

Pseudocode
(rA) ← EXTS(rS16:31)

Registers Altered
• rA.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

extsh rA, rS (Rc=0)

extsh. rA, rS (Rc=1)

X Instruction Form

31 rS rA 0 0 0 0 0 922 Rc

0 6 1

1

1

6

2

1

3

1

http://www.xilinx.com


630 www.xilinx.com March 2002 Release
1-800-255-7778 Virtex-II Pro™ Platform FPGA Documentation

Chapter 11: Instruction Set
R

icbi
Instruction Cache Block Invalidate

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

If EA is cached by the instruction cache, the corresponding instruction cacheline is 
invalidated. The invalidation is performed whether or not the corresponding storage 
attribute indicates EA is cachable. If EA is not cached, no operation is performed.

Pseudocode
EA ← (rA|0) + (rB)
Invalidate instruction cacheline corresponding to EA

Registers Altered
• None.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

This instruction is considered a “load” with respect to the above data-access exceptions. It 
is also considered a “load” with respect to data address-compare (DAC) debug exceptions. 
Debug exceptions can occur as a result of executing this instruction.

Instruction-storage exceptions and instruction TLB-miss exceptions are associated with 
instruction fetching, not with instruction execution. Exceptions that occur during the 
execution of instruction-cache operations cause data-storage exceptions and data TLB-
miss exceptions.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

icbi rA, rB

X Instruction Form

31 0 0 0 0 0 rA rB 982 0

0 6 1

1

1

6

2

1

3

1

http://www.xilinx.com


March 2002 Release www.xilinx.com 631
Virtex-II Pro™ Platform FPGA Documentation 1-800-255-7778

Alphabetical Instruction Listing
R

Compatibility
This instruction is defined by the virtual-environment architecture level (VEA) of the 
PowerPC architecture, the PowerPC embedded-environment architecture, and the 
PowerPC Book-E architecture.
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icbt
Instruction Cache Block Touch

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

If EA is cachable but not in the instruction cache, the corresponding cacheline is loaded 
into the instruction cache from main memory. If EA is already cached, or if the storage 
attributes indicate the EA is not cachable, no operation is performed.

This instruction is a hint to the processor that the program will likely execute the 
instruction referenced by the EA in the near future. The processor can potentially improve 
performance by loading the cacheline into the instruction cache.

Pseudocode
EA ← (rA|0) + (rB)
Prefetch instruction-cacheline corresponding to EA

Registers Altered
• None.

Exceptions
This instruction is considered a “load” with respect to data-storage exceptions. However, 
this instruction does not cause data storage exceptions or data TLB-miss exceptions. If 
conditions occur that would cause these exceptions, icbt is treated as a no-op. This 
instruction is also considered a “load” with respect to data address-compare (DAC) debug 
exceptions. Debug exceptions can occur as a result of executing this instruction.

Instruction-storage exceptions and instruction TLB-miss exceptions are associated with 
instruction fetching, not with instruction execution. Exceptions that occur during the 
execution of instruction-cache operations cause data-storage exceptions and data TLB-
miss exceptions.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

icbt rA, rB

X Instruction Form

31 0 0 0 0 0 rA rB 262 0

0 6 1

1

1

6

2

1

3

1

http://www.xilinx.com


March 2002 Release www.xilinx.com 633
Virtex-II Pro™ Platform FPGA Documentation 1-800-255-7778

Alphabetical Instruction Listing
R

Compatibility
This instruction is defined by the virtual-environment architecture level (VEA) of the 
PowerPC embedded-environment architecture and the PowerPC Book-E architecture. It is 
not defined by the PowerPC architecture, and is therefore not implemented by all 
PowerPC processors.
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iccci
Instruction Cache Congruence Class Invalidate

Description
This is a privileged instruction.

This instruction invalidates all lines in the instruction cache. The operands are not used. In 
previous implementations, the operands were used to calculate an effective address (EA) 
for use in protection checks. The instruction form is retained for software and tool 
compatibility.

This instruction is intended for use during initialization to invalidate the entire instruction 
cache before is enabled.

Pseudocode
Invalidate the instruction-cache

Registers Altered
• None.

Exceptions
• Program—Attempted execution of this instruction from user mode.

This instruction does not cause data-storage exceptions, data TLB-miss exceptions, or data 
address-compare (DAC) debug exceptions.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

iccci rA, rB

X Instruction Form

31 0 0 0 0 0 rA rB 966 0

0 6 1
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icread
Instruction Cache Read

Description
This is a privileged instruction.

An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

This instruction can be used as an instruction-cache debugging aid. It is used to read 
information for a specific instruction cacheline. The cache information is loaded into the 
ICDBDR.

EA19:26 is used to specify a congruence class within the instruction cache. CCR0[CWS] is 
used to select one of the two cachelines within the congruence class. If CCR0[CWS]=0 the 
line in way A is selected. If CCR0[CWS]=1 the line in way B is selected.

If CCR0[CIS]=0 the information read is the referenced instruction in the selected cacheline. 
EA27:29 is used as an index to select the instruction from the 32-byte line. If CCR0[CIS]=1 
the information read is the tag associated with the selected cacheline.

Following execution of this instruction, ICDBDR contains the following:

icread rA, rB

X Instruction Form

31 0 0 0 0 0 rA rB 998 0

0 6 1

1

1

6

2

1

3

1

Bit Name Function Description

0:21 INFO Instruction-Cache Information

CCR0[CIS]=0—Instruction 
word.

CCR0[CIS]=1—Instruction tag.

Contains either the cache-line tag or a single instruction word from 
the cacheline. If an instruction word is loaded it is specified using 
effective-address bits EA27:29. CCR0[CIS] controls the type of 
information loaded into this field.

22:26 Reserved
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The processor does not automatically wait for the ICDBDR to be updated by an icread 
before executing a mfspr that reads the ICDBDR. An isync instruction should be inserted 
between the icread and the mfspr used to access the ICDBDR.

Pseudocode
EA ← (rA|0) + (rB)
if ((CCR0[CIS] = 0) ∧ (CCR0[CWS] = 0))

then (ICDBDR) ← (instruction-cache word, way A)
if ((CCR0[CIS] = 0) ∧ (CCR0[CWS] = 1))

then (ICDBDR) ← (instruction-cache word, way B)
if ((CCR0[CIS] = 1) ∧ (CCR0[CWS] = 0))

then (ICDBDR) ← (instruction-cache tag, way A)
if ((CCR0[CIS] = 1) ∧ (CCR0[CWS] = 1))

then (ICDBDR) ← (instruction-cache tag, way B)

Registers Altered
• ICDBDR.

Exceptions
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.
• Program—Attempted execution of this instruction from user mode.

This instruction is considered a “load” with respect to the above data-access exceptions. It 
can cause data TLB-miss exceptions related to the EA even though the instruction is not 
address specific (multiple addresses are selected by a single EA). This instruction cannot 
cause data-storage exceptions. This instruction does not cause data address-compare 
(DAC) debug exceptions.

Instruction-storage exceptions and instruction TLB-miss exceptions are associated with 
instruction fetching, not with instruction execution. Exceptions that occur during the 
execution of instruction-cache operations cause data-storage exceptions and data TLB-
miss exceptions.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

27 V Valid

0—Cacheline is not valid.

1—Cacheline is valid.

Contains a copy of the cache-line valid bit.

28:30 Reserved

31 LRU Least-Recently Used

0—Way A is least-recently 
used.

1—Way B is least-recently 
used.

Contains the LRU bit for the congruence class associated with the 
cacheline.

Bit Name Function Description
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isync
Instruction Synchronize

Description
The isync instruction is context synchronizing. It enforces ordering of all instructions 
executed by the processor. It ensures that all instructions preceding isync in program order 
complete before isync completes. Accesses to main memory caused by instructions 
preceding the isync are not guaranteed to have completed. 

Instructions following the isync are not started until the isync completes execution. 
Prefetched instructions are discarded by the execution of isync. All instructions following 
isync are executed in the context established by the instructions preceding the isync.

isync does not affect the processor caches.

Pseudocode
Synchronize context

Registers Altered
• None.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the virtual-environment architecture level (VEA) of the 
PowerPC architecture, the PowerPC embedded-environment architecture, and the 
PowerPC Book-E architecture.

isync

XL Instruction Form

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0

0 6 2
1

3
1
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lbz
Load Byte and Zero

Description
An effective address (EA) is calculated by adding a displacement to a base address, which 
are formed as follows:

• The displacement is formed by sign-extending the 16-bit d instruction field to 32 bits.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

The byte referenced by EA is extended to 32 bits by concatenating 24 0-bits on the left. The 
result is loaded into register rD.

Pseudocode
EA ← (rA|0) + EXTS(d)
(rD) ← 240 || MS(EA,1)

Registers Altered
• rD.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

lbz rD, d(rA)

D Instruction Form

34 rD rA d

0 6 1
1

1
6

3
1
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lbzu
Load Byte and Zero with Update

Description
An effective address (EA) is calculated by adding a displacement to a base address, which 
are formed as follows:

• The displacement is formed by sign-extending the 16-bit d instruction field to 32 bits.
• The contents of register rA are used as the base address.

The byte referenced by EA is extended to 32 bits by concatenating 24 0-bits on the left. The 
result is loaded into register rD. The EA is loaded into rA.

Pseudocode
EA ← (rA) + EXTS(d)
(rD) ← 240 || MS(EA,1)
(rA) ← EA

Registers Altered
• rA.
• rD.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• rA=rD.
• rA=0.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

lbzu rD, d(rA)

D Instruction Form

35 rD rA d

0 6 1
1

1
6

3
1
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lbzux
Load Byte and Zero with Update Indexed

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• The contents of register rA are used as the base address.

The byte referenced by EA is extended to 32 bits by concatenating 24 0-bits on the left. The 
result is loaded into register rD. The EA is loaded into rA.

Pseudocode
EA ← (rA) + (rB)
(rD) ← 240 || MS(EA,1)
(rA) ← EA

Registers Altered
• rA.
• rD.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.
• rA=rD.
• rA=0.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

lbzux rD, rA, rB

X Instruction Form

31 rD rA rB 119 0

0 6 1
1
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lbzx
Load Byte and Zero Indexed

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

The byte referenced by EA is extended to 32 bits by concatenating 24 0-bits on the left. The 
result is loaded into register rD.

Pseudocode
EA ← (rA|0) + (rB)
(rD) ← 240 || MS(EA,1)

Registers Altered
• rD.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

lbzx rD, rA, rB

X Instruction Form

31 rD rA rB 87 0

0 6 1
1
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lha
Load Halfword Algebraic

Description
An effective address (EA) is calculated by adding a displacement to a base address, which 
are formed as follows:

• The displacement is formed by sign-extending the 16-bit d instruction field to 32 bits.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

The halfword referenced by EA is sign-extended to 32 bits and loaded into register rD.

Pseudocode
EA ← (rA|0) + EXTS(d)
(rD) ← EXTS(MS(EA,2))

Registers Altered
• rD.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

lha rD, d(rA)

D Instruction Form

42 rD rA d
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lhau
Load Halfword Algebraic with Update

Description
An effective address (EA) is calculated by adding a displacement to a base address, which 
are formed as follows:

• The displacement is formed by sign-extending the 16-bit d instruction field to 32 bits.
• The contents of register rA are used as the base address.

The halfword referenced by EA is sign-extended to 32 bits and loaded into register rD. The 
EA is loaded into rA.

Pseudocode
EA ← (rA) + EXTS(d)
(rD) ← EXTS(MS(EA,2))
(rA) ← EA

Registers Altered
• rA.
• rD.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• rA=rD.
• rA=0.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

lhau rD, d(rA)

D Instruction Form

43 rD rA d
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lhaux
Load Halfword Algebraic with Update Indexed

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• The contents of register rA are used as the base address.

The halfword referenced by EA is sign-extended to 32 bits and loaded into register rD. The 
EA is loaded into rA.

Pseudocode
EA ← (rA) + (rB)
(rD) ← EXTS(MS(EA,2))
(rA) ← EA

Registers Altered
• rA.
• rD.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.
• rA=rD.
• rA=0.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

lhaux rD, rA, rB

X Instruction Form

31 rD rA rB 375 0
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lhax
Load Halfword Algebraic Indexed

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

The halfword referenced by EA is sign-extended to 32 bits and loaded into register rD.

Pseudocode
EA ← (rA|0) + (rB)
(rD) ← EXTS(MS(EA,2))

Registers Altered
• rD.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

lhax rD, rA, rB

X Instruction Form

31 rD rA rB 343 0
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lhbrx
Load Halfword Byte-Reverse Indexed

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

The memory halfword referenced by EA is byte-reversed and extended to 32 bits by 
concatenating 16 0-bits to its left. The result is loaded into register rD. The byte-reversal 
operation consists of:

• Bits 0:7 of the memory word are loaded into rD[24:31].
• Bits 8:15 of the memory word are loaded into rD[16:23].
• 16 0-bits are loaded into rD[0:15].

Pseudocode
EA ← (rA|0) + (rB)
(rD) ← 160 || MS(EA +1,1) || MS(EA,1)

Registers Altered
• rD.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

lhbrx rD, rA, rB

X Instruction Form

31 rD rA rB 790 0
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lhz
Load Halfword and Zero

Description
An effective address (EA) is calculated by adding a displacement to a base address, which 
are formed as follows:

• The displacement is formed by sign-extending the 16-bit d instruction field to 32 bits.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

The halfword referenced by EA is extended to 32 bits by concatenating 16 0-bits on the left. 
The result is loaded into register rD.

Pseudocode
EA ← (rA|0) + EXTS(d)
(rD) ← 160 || MS(EA,2)

Registers Altered
• rD.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

lhz rD, d(rA)

D Instruction Form

40 rD rA d
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lhzu
Load Halfword and Zero with Update

Description
An effective address (EA) is calculated by adding a displacement to a base address, which 
are formed as follows:

• The displacement is formed by sign-extending the 16-bit d instruction field to 32 bits.
• The contents of register rA are used as the base address.

The halfword referenced by EA is extended to 32 bits by concatenating 16 0-bits on the left. 
The result is loaded into register rD. The EA is loaded into rA.

Pseudocode
EA ← (rA) + EXTS(d)
(rD) ← 160 || MS(EA,2)
(rA) ← EA

Registers Altered
• rA.
• rD.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• rA=rD.
• rA=0.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

lhzu rD, d(rA)

D Instruction Form

41 rD rA d
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lhzux
Load Halfword and Zero with Update Indexed

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• The contents of register rA are used as the base address.

The halfword referenced by EA is extended to 32 bits by concatenating 16 0-bits on the left. 
The result is loaded into register rD. The EA is loaded into rA.

Pseudocode
EA ← (rA) + (rB)
(rD) ← 160 || MS(EA,2)
(rA) ← EA

Registers Altered
• rA.
• rD.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.
• rA=rD.
• rA=0.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

lhzux rD, rA, rB

X Instruction Form

31 rD rA rB 311 0
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lhzx
Load Halfword and Zero Indexed

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

The halfword referenced by EA is extended to 32 bits by concatenating 16 0-bits on the left. 
The result is loaded into register rD.

Pseudocode
EA ← (rA|0) + (rB)
(rD) ← 160 || MS(EA,2)

Registers Altered
• rD.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

lhzx rD, rA, rB

X Instruction Form

31 rD rA rB 279 0
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lmw
Load Multiple Word

Description
An effective address (EA) is calculated by adding a displacement to a base address, which 
are formed as follows:

• The displacement is formed by sign-extending the 16-bit d instruction field to 32 bits.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

Let n = 32 − rD. 

n consecutive words starting at the memory address referenced by EA are loaded into 
GPRs rD through r31.

Pseudocode
EA ← (rA|0) + EXTS(d)
n ← rD
do while n ≤ 31

if ((n ≠ rA) ∨ (n = 31))
then (GPR(n)) ← MS(EA,4)

n ← n + 1
EA ← EA + 4

Registers Altered
• rD through r31.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• rA is in the range of registers to be loaded, including the case rA=rD=0. The word that 
would have been loaded into rA is discarded.

lmw rD, d(rA)

D Instruction Form

46 rD rA d
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Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.
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lswi
Load String Word Immediate

Description
An effective address (EA) is determined by the rA field as follows:

• If the rA field is 0, the EA is 0.
• If the rA field is not 0, the contents of register rA are used as the EA.

Let n specify the byte count. If the NB field is 0, n is 32. Otherwise, n is equal to NB.

Let nr specify the number of registers to load with data. nr = CEIL(n÷4).
Let RFINAL specify the last register to be loaded with data. n consecutive bytes starting at 
the memory address referenced by EA are loaded into GPRs rD through RFINAL. The 
sequence of registers wraps around to r0 if necessary. RFINAL = rD + nr − 1 (modulo 32).

Bytes are loaded in each register starting with the most-significant register byte and ending 
with the least-significant register byte. If the byte count is exhausted before RFINAL is filled, 
the remaining bytes in RFINAL are loaded with 0.

Pseudocode
EA ← (rA|0)
if NB = 0

then n ← 32
else n ← NB

RFINAL ← ((rD + CEIL(n/4) − 1) % 32)
reg ← rD − 1
bit ← 0
do while n > 0

if bit = 0
then

reg ← reg + 1
if reg = 32

then reg ← 0
if ((reg ≠ rA) ∨ (reg = RFINAL))

then (GPR(reg)) ← 0
if ((reg ≠ rA) ∨ (reg = RFINAL))

then (GPR(reg)bit:bit+7) ← MS(EA,1)
bit ← bit + 8
if bit = 32

then bit ← 0
EA ← EA + 1
n ← n − 1

lswi rD, rA, NB

X Instruction Form

31 rD rA NB 597 0
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Registers Altered
• rD and subsequent GPRs as described above.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• rA is in the range of registers to be loaded, including the case rA=rD=0. Bytes that 
would have been loaded into rA are discarded.

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.
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lswx
Load String Word Indexed

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

Let n specify the byte count contained in XER[TBC].

Let nr specify the number of registers to load with data. nr = CEIL(n÷4).
Let RFINAL specify the last register to be loaded with data. n consecutive bytes starting at 
the memory address referenced by EA are loaded into GPRs rD through RFINAL. The 
sequence of registers wraps around to r0 if necessary. RFINAL = rD + nr − 1 (modulo 32).

Bytes are loaded in each register starting with the most-significant register byte and ending 
with the least-significant register byte. If the byte count is exhausted before RFINAL is filled, 
the remaining bytes in RFINAL are loaded with 0.

If XER[TBC] = 0, the contents of register rD are unchanged and lswx is treated as a no-
operation.

Pseudocode
EA ← (rA|0) + (rB)
n ← XER[TBC]
RFINAL ← ((rD + CEIL(n/4) − 1) % 32)
reg ← rD − 1
bit ← 0
do while n > 0

if bit = 0
then

reg ← reg + 1
if reg = 32

then reg ← 0
if ((reg ≠ rA) ∨ (reg = RFINAL))

then (GPR(reg)) ← 0
if ((reg ≠ rA) ∨ (reg = RFINAL))

then (GPR(reg)bit:bit+7) ← MS(EA,1)
bit ← bit + 8

lswx rD, rA, rB

X Instruction Form

31 rD rA rB 533 0

0 6 1
1

1
6

2
1

3
1

http://www.xilinx.com


656 www.xilinx.com March 2002 Release
1-800-255-7778 Virtex-II Pro™ Platform FPGA Documentation

Chapter 11: Instruction Set
R

if bit = 32
then bit ← 0

EA ← EA + 1
n ← n − 1

Registers Altered
• rD and subsequent GPRs as described above.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

If XER[TBC]=0, data-storage and data TLB-miss exceptions do not occur. However, a data 
machine-check exception can occur when XER[TBC]=0 if the following conditions are true:

• The instruction access passes all protection checks.
• The data address is cachable.
• Access of the data address causes a data-cacheline fill request due to a miss.
• The data-cacheline fill request encounters some form of bus error.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• rA is in the range of registers to be loaded, including the case rA=rD=0. Bytes that 
would have been loaded into rA are discarded.

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.
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lwarx
Load Word and Reserve Indexed

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

The word referenced by EA is loaded into register rD. A reservation bit internal to the 
processor is set.

The lwarx and the stwcx. instructions should paired in a loop to create the effect of an 
atomic memory operation for accessing a semaphore. See Semaphore Synchronization, 
page 426 for more information.

Pseudocode
EA ← (rA|0) + (rB)
(rD) ← MS(EA,4)
RESERVE← 1

Registers Altered
• rD.

Exceptions
• Alignment—if the EA is not aligned on a word boundary.
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

lwarx rD, rA, rB

X Instruction Form

31 rD rA rB 20 0
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lwbrx
Load Word Byte-Reverse Indexed

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

The memory word referenced by EA is byte-reversed and the result is loaded into register 
rD. The byte-reversal operation consists of:

• Bits 0:7 of the memory word are loaded into rD[24:31].
• Bits 8:15 of the memory word are loaded into rD[16:23].
• Bits 16:23 of the memory word are loaded into rD[8:15].
• Bits 23:31 of the memory word are loaded into rD[0:7].

Pseudocode
EA ← (rA|0) + (rB)
(rD) ← MS(EA+3,1) || MS(EA+2,1) || MS(EA+1,1) || MS(EA,1)

Registers Altered
• rD.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

lwbrx rD, rA, rB

X Instruction Form

31 rD rA rB 534 0
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lwz
Load Word and Zero

Description
An effective address (EA) is calculated by adding a displacement to a base address, which 
are formed as follows:

• The displacement is formed by sign-extending the 16-bit d instruction field to 32 bits.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

The word referenced by EA is loaded into register rD.

Pseudocode
EA ← (rA|0) + EXTS(d)
(rD) ← MS(EA,4)

Registers Altered
• rD.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

lwz rD, d(rA)

D Instruction Form

32 rD rA d
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lwzu
Load Word and Zero with Update

Description
An effective address (EA) is calculated by adding a displacement to a base address, which 
are formed as follows:

• The displacement is formed by sign-extending the 16-bit d instruction field to 32 bits.
• The contents of register rA are used as the base address.

The word referenced by EA is loaded into register rD. The EA is loaded into rA.

Pseudocode
EA ← (rA) + EXTS(d)
(rD) ← MS(EA,4)
(rA) ← EA

Registers Altered
• rA.
• rD.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• rA=rD.
• rA=0.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

lwzu rD, d(rA)

D Instruction Form

33 rD rA d
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lwzux
Load Word and Zero with Update Indexed

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• The contents of register rA are used as the base address.

The word referenced by EA is loaded into register rD. The EA is loaded into rA.

Pseudocode
EA ← (rA) + (rB)
(rD) ← MS(EA,4)
(rA) ← EA

Registers Altered
• rA.
• rD.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.
• rA=rD.
• rA=0.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

lwzux rD, rA, rB

X Instruction Form

31 rD rA rB 55 0
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Chapter 11: Instruction Set
R

lwzx
Load Word and Zero Indexed

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

The word referenced by EA is loaded into register rD.

Pseudocode
EA ← (rA|0) + (rB)
(rD) ← MS(EA,4)

Registers Altered
• rD.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

lwzx rD, rA, rB

X Instruction Form

31 rD rA rB 23 0
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Alphabetical Instruction Listing
R

macchw
Multiply Accumulate Cross Halfword to Word Modulo Signed

Description
The low-order halfword of rA is multiplied by the high-order halfword of rB. The signed 
product is added to the contents of rD and the sum is stored as a 33-bit temporary result. 
The contents of rD are replaced by the low-order 32 bits of the temporary result. An 
example of this operation is shown in Figure 3-28, page 408.

Pseudocode
prod0:31 ← (rA)16:31 × (rB)0:15 signed
temp0:32 ← prod0:31 + (rD)
(rD) ← temp1:32

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

macchw rD, rA, rB (OE=0, Rc=0)

macchw. rD, rA, rB (OE=0, Rc=1)

macchwo rD, rA, rB (OE=1, Rc=0)

macchwo. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

4 rD rA rB OE 172 Rc
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Chapter 11: Instruction Set
R

macchws
Multiply Accumulate Cross Halfword to Word Saturate Signed

Description
The low-order halfword of rA is multiplied by the high-order halfword of rB. The signed 
product is added to the contents of rD and the sum is stored as a 33-bit temporary result.

If the result does not overflow, the low-order 32 bits of the temporary result are stored in 
rD. If the result overflows, rD is loaded with the nearest representable value. If the result is 
less than −231, the value stored in rD is −231. If the result is greater than 231 − 1, the value 
stored in rD is 231 − 1. An example of this operation is shown in Figure 3-28, page 408.

Pseudocode
prod0:31 ← (rA)16:31 × (rB)0:15 signed
temp0:32 ← prod0:31 + (rD)
if ((prod0 = rD0) ∧  (rD0 ≠ temp1)) 

then (rD) ← (rD0 || 31(¬ rD0))
else (rD) ← temp1:32

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

macchws rD, rA, rB (OE=0, Rc=0)

macchws. rD, rA, rB (OE=0, Rc=1)

macchwso rD, rA, rB (OE=1, Rc=0)

macchwso. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

4 rD rA rB OE 236 Rc
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Alphabetical Instruction Listing
R

macchwsu
Multiply Accumulate Cross Halfword to Word Saturate Unsigned

Description
The low-order halfword of rA is multiplied by the high-order halfword of rB. The 
unsigned product is added to the contents of rD and the sum is stored as a 33-bit 
temporary result.

If the result does not overflow, the low-order 32 bits of the temporary result are stored in 
rD. If the result overflows, rD is loaded with the nearest representable value. If the result is 
greater than 232 − 1, the value stored in rD is 232 − 1. An example of this operation is shown 
in Figure 3-28, page 408.

Pseudocode
prod0:31 ← (rA)16:31 × (rB)0:15 unsigned
temp0:32 ← prod0:31 + (rD)
(rD) ← (temp1:32 ∨ 32temp0)

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

macchwsu rD, rA, rB (OE=0, Rc=0)

macchwsu. rD, rA, rB (OE=0, Rc=1)

macchwsuo rD, rA, rB (OE=1, Rc=0)

macchwsuo. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

4 rD rA rB OE 204 Rc
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R

macchwu
Multiply Accumulate Cross Halfword to Word Modulo Unsigned

Description
The low-order halfword of rA is multiplied by the high-order halfword of rB. The 
unsigned product is added to the contents of rD and the sum is stored as a 33-bit 
temporary result. The contents of rD are replaced by the low-order 32 bits of the temporary 
result. An example of this operation is shown in Figure 3-28, page 408.

Pseudocode
prod0:31 ← (rA)16:31 × (rB)0:15 unsigned
temp0:32 ← prod0:31 + (rD)
(rD) ← temp1:32

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

macchwu rD, rA, rB (OE=0, Rc=0)

macchwu. rD, rA, rB (OE=0, Rc=1)

macchwuo rD, rA, rB (OE=1, Rc=0)

macchwuo. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

4 rD rA rB OE 140 Rc
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Alphabetical Instruction Listing
R

machhw
Multiply Accumulate High Halfword to Word Modulo Signed

Description
The high-order halfword of rA is multiplied by the high-order halfword of rB. The signed 
product is added to the contents of rD and the sum is stored as a 33-bit temporary result. 
The contents of rD are replaced by the low-order 32 bits of the temporary result. An 
example of this operation is shown in Figure 3-29, page 410.

Pseudocode
prod0:31 ← (rA)0:15 × (rB)0:15 signed
temp0:32 ← prod0:31 + (rD)
(rD) ← temp1:32

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

machhw rD, rA, rB (OE=0, Rc=0)

machhw. rD, rA, rB (OE=0, Rc=1)

machhwo rD, rA, rB (OE=1, Rc=0)

machhwo. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

4 rD rA rB OE 44 Rc
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machhws
Multiply Accumulate High Halfword to Word Saturate Signed

Description
The high-order halfword of rA is multiplied by the high-order halfword of rB. The signed 
product is added to the contents of rD and the sum is stored as a 33-bit temporary result.

If the result does not overflow, the low-order 32 bits of the temporary result are stored in 
rD. If the result overflows, rD is loaded with the nearest representable value. If the result is 
less than −231, the value stored in rD is −231. If the result is greater than 231 − 1, the value 
stored in rD is 231 − 1. An example of this operation is shown in Figure 3-29, page 410.

Pseudocode
prod0:31 ← (rA)0:15 × (rB)0:15 signed
temp0:32 ← prod0:31 + (rD)
if ((prod0 = rD0) ∧  (rD0 ≠ temp1))

then (rD) ← (rD0 || 31(¬ rD0))
else (rD) ← temp1:32

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

machhws rD, rA, rB (OE=0, Rc=0)

machhws. rD, rA, rB (OE=0, Rc=1)

machhwso rD, rA, rB (OE=1, Rc=0)

machhwso. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

4 rD rA rB OE 108 Rc
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Alphabetical Instruction Listing
R

machhwsu
Multiply Accumulate High Halfword to Word Saturate Unsigned

Description
The high-order halfword of rA is multiplied by the high-order halfword of rB. The 
unsigned product is added to the contents of rD and the sum is stored as a 33-bit 
temporary result.

If the result does not overflow, the low-order 32 bits of the temporary result are stored in 
rD. If the result overflows, rD is loaded with the nearest representable value. If the result is 
greater than 232 − 1, the value stored in rD is 232 − 1. An example of this operation is shown 
in Figure 3-29, page 410.

Pseudocode
prod0:31 ← (rA)0:15 × (rB)0:15 unsigned
temp0:32 ← prod0:31 + (rD)
(rD) ← (temp1:32 ∨ 32temp0)

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

machhwsu rD, rA, rB (OE=0, Rc=0)

machhwsu. rD, rA, rB (OE=0, Rc=1)

machhwsuo rD, rA, rB (OE=1, Rc=0)

machhwsuo. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

4 rD rA rB OE 76 Rc
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Chapter 11: Instruction Set
R

machhwu
Multiply Accumulate High Halfword to Word Modulo Unsigned

Description
The high-order halfword of rA is multiplied by the high-order halfword of rB. The 
unsigned product is added to the contents of rD and the sum is stored as a 33-bit 
temporary result. The contents of rD are replaced by the low-order 32 bits of the temporary 
result. An example of this operation is shown in Figure 3-29, page 410.

Pseudocode
prod0:31 ← (rA)0:15 × (rB)0:15 unsigned
temp0:32 ← prod0:31 + (rD)
(rD) ← temp1:32

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

machhwu rD, rA, rB (OE=0, Rc=0)

machhwu. rD, rA, rB (OE=0, Rc=1)

machhwuo rD, rA, rB (OE=1, Rc=0)

machhwuo. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

4 rD rA rB OE 12 Rc
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Alphabetical Instruction Listing
R

maclhw
Multiply Accumulate Low Halfword to Word Modulo Signed

Description
The low-order halfword of rA is multiplied by the low-order halfword of rB. The signed 
product is added to the contents of rD and the sum is stored as a 33-bit temporary result. 
The contents of rD are replaced by the low-order 32 bits of the temporary result. An 
example of this operation is shown in Figure 3-30, page 413.

Pseudocode
prod0:31 ← (rA)16:31 × (rB)16:31 signed
temp0:32 ← prod0:31 + (rD)
(rD) ← temp1:32

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

maclhw rD, rA, rB (OE=0, Rc=0)

maclhw. rD, rA, rB (OE=0, Rc=1)

maclhwo rD, rA, rB (OE=1, Rc=0)

maclhwo. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

4 rD rA rB OE 428 Rc
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Chapter 11: Instruction Set
R

maclhws
Multiply Accumulate Low Halfword to Word Saturate Signed

Description
The low-order halfword of rA is multiplied by the low-order halfword of rB. The signed 
product is added to the contents of rD and the sum is stored as a 33-bit temporary result.

If the result does not overflow, the low-order 32 bits of the temporary result are stored in 
rD. If the result overflows, rD is loaded with the nearest representable value. If the result is 
less than −231, the value stored in rD is −231. If the result is greater than 231 − 1, the value 
stored in rD is 231 − 1. An example of this operation is shown in Figure 3-30, page 413.

Pseudocode
prod0:31 ← (rA)16:31 × (rB)16:31 signed
temp0:32 ← prod0:31 + (rD)
if ((prod0 = rD0) ∧  (rD0 ≠ temp1))

then (rD) ← (rD0 || 31(¬ rD0))
else (rD) ← temp1:32

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

maclhws rD, rA, rB (OE=0, Rc=0)

maclhws. rD, rA, rB (OE=0, Rc=1)

maclhwso rD, rA, rB (OE=1, Rc=0)

maclhwso. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

4 rD rA rB OE 492 Rc
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Alphabetical Instruction Listing
R

maclhwsu
Multiply Accumulate Low Halfword to Word Saturate Unsigned

Description
The low-order halfword of rA is multiplied by the low-order halfword of rB. The unsigned 
product is added to the contents of rD and the sum is stored as a 33-bit temporary result.

If the result does not overflow, the low-order 32 bits of the temporary result are stored in 
rD. If the result overflows, rD is loaded with the nearest representable value. If the result is 
greater than 232 − 1, the value stored in rD is 232 − 1. An example of this operation is shown 
in Figure 3-30, page 413.

Pseudocode
prod0:31 ← (rA)16:31 × (rB)16:31 unsigned
temp0:32 ← prod0:31 + (rD)
(rD) ← (temp1:32 ∨ 32temp0)

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

maclhwsu rD, rA, rB (OE=0, Rc=0)

maclhwsu. rD, rA, rB (OE=0, Rc=1)

maclhwsuo rD, rA, rB (OE=1, Rc=0)

maclhwsuo. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

4 rD rA rB OE 460 Rc
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Chapter 11: Instruction Set
R

maclhwu
Multiply Accumulate Low Halfword to Word Modulo Unsigned

Description
The low-order halfword of rA is multiplied by the low-order halfword of rB. The unsigned 
product is added to the contents of rD and the sum is stored as a 33-bit temporary result. 
The contents of rD are replaced by the low-order 32 bits of the temporary result. An 
example of this operation is shown in Figure 3-30, page 413.

Pseudocode
prod0:31 ← (rA)16:31 × (rB)16:31 unsigned
temp0:32 ← prod0:31 + (rD)
(rD) ← temp1:32

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

maclhwu rD, rA, rB (OE=0, Rc=0)

maclhwu. rD, rA, rB (OE=0, Rc=1)

maclhwuo rD, rA, rB (OE=1, Rc=0)

maclhwuo. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

4 rD rA rB OE 396 Rc
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Alphabetical Instruction Listing
R

mcrf
Move Condition Register Field

Description
The contents of the CR field specified by crfS are loaded into the CR field specified by crfD.

Pseudocode
m ← crfS
n ← crfD
(CR[CRn]) ← (CR[CRm])

Registers Altered

• CR[CRn] where n is specified by crfD.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

mcrf crfD, crfS

XL Instruction Form

19 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0
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Chapter 11: Instruction Set
R

mcrxr
Move to Condition Register from XER

Description
The contents of XER0:3 are loaded into the CR field specified by crfD. The contents of 
XER0:3 are then cleared to 0.

Pseudocode
n ← crfD
(CR[CRn]) ← XER0:3
XER0:3 ← 0b0000

Registers Altered

• CR[CRn] where n is specified by the crfD field.

• XER0:3.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

mcrxr crfD

X Instruction Form

31 crfD 0 0 0 0 0 0 0 0 0 0 0 0 512 0

0 6 9 2
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Alphabetical Instruction Listing
R

mfcr
Move from Condition Register

Description
The contents of the CR are loaded into register rD.

Pseudocode
(rD) ← (CR)

Registers Altered
• rD.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

mfcr rD

X Instruction Form

31 rD 0 0 0 0 0 0 0 0 0 0 19 0
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R

mfdcr
Move from Device Control Register

Description
This is a privileged instruction.

The contents of the DCR specified by the DCR number (DCRN) are loaded into register rD. 
The DCRF opcode field is a split field representing DCRN. See Split-Field Notation, 
page 571 for more information.

Pseudocode
DCRN ← DCRF5:9 || DCRF0:4
(rD) ← (DCR(DCRN))

Registers Altered
• rD.

Exceptions
• Program—Attempted execution of this instruction from user mode.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.
• Use of an unsupported DCRF value.

Compatibility
This instruction is defined by the PowerPC embedded-environment architecture and the 
PowerPC Book-E architecture. It is not defined by the PowerPC architecture, and is 
therefore not implemented by all PowerPC processors. The specific registers accessed by 
this instruction are implementation dependent.

mfdcr rD, DCRN

XFX Instruction Form

31 rD DCRF 323 0
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Alphabetical Instruction Listing
R

mfmsr
Move from Machine State Register

Description
This is a privileged instruction.

The contents of the MSR are loaded into register rD.

Pseudocode
(rD) ← (MSR) 

Registers Altered
• rD.

Exceptions
• Program—Attempted execution of this instruction from user mode.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the operating-environment architecture level (OEA) of the 
PowerPC architecture, the PowerPC embedded-environment architecture, and the 
PowerPC Book-E architecture. It is implemented by all PowerPC processors.

mfmsr rD

X Instruction Form

31 rD 0 0 0 0 0 0 0 0 0 0 83 0

0 6 1
1

2
1

3
1

http://www.xilinx.com


680 www.xilinx.com March 2002 Release
1-800-255-7778 Virtex-II Pro™ Platform FPGA Documentation

Chapter 11: Instruction Set
R

mfspr
Move from Special Purpose Register

Description
The contents of the SPR specified by the SPR number (SPRN) are loaded into register rD. 
The SPRF opcode field is a split field representing SPRN. See Split-Field Notation, 
page 571 for more information. See Appendix A, Register Summary for a listing of the 
SPRs supported by the PPC405 and their corresponding SPRN and SPRF values.

Simplified mnemonics defined for this instruction are described in Special-Purpose 
Registers, page 830.

Pseudocode
SPRN ← SPRF5:9 || SPRF0:4
(rD) ← (SPR(SPRN))

Registers Altered
• rD.

Exceptions
• Program—Attempted execution of this instruction from user mode if SPRF[0] (bit 11 

of the instruction opcode) is 1.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.
• Use of an unsupported SPRF value.

Compatibility
This instruction is defined by the PowerPC architecture, the PowerPC embedded-
environment architecture, and the PowerPC Book-E architecture. It is part of the user 
instruction-set architecture (UISA) and the operating-environment architecture (OEA). It is 
implemented by all PowerPC processors. However, not all SPRs supported by the PPC405 
are supported by other PowerPC processors.

mfspr rD, SPRN

XFX Instruction Form

31 rD SPRF 339 0

0 6 1
1

2
1

3
1
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mftb
Move from Time Base

Description
The contents of the TBR specified by the TBR number (TBRN) are loaded into register rD. 
The TBRF opcode field is a split field representing TBRN. See Split-Field Notation, 
page 571 for more information. The following TBRN values are recognized:

• Time-base lower register (TBL)—268 (0x10C).
• Time-base upper register (TBU)—269 (0x10D).

Simplified mnemonics defined for this instruction are described in Special-Purpose 
Registers, page 830.

Pseudocode
TBRN ← TBRF5:9 || TBRF0:4
(rD) ← (TBR(TBRN))

Registers Altered
• rD.

Exceptions
Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.
• Use of an unsupported TBRF value.

Compatibility
This instruction is defined by the virtual-environment architecture level (VEA) of the 
PowerPC architecture and the PowerPC embedded-environment architecture. The 
PowerPC Book-E architecture does not support this instruction, but does support the time-
base registers. Software running on PowerPC Book-E processors must use the mfspr 
instruction to access the time-base registers.

mftb rD, TBRN

XFX Instruction Form

31 rD TBRF 371 0

0 6 1
1

2
1

3
1
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mtcrf
Move to Condition Register Fields

Description
Some or all of the contents of register rS are loaded into the CR under the control of the 
CRM field.

Each bit in the CRM field specifies a set of 4 bits in both the rS and CR registers. If a CRM 
bit is set to 1, the specified set of bits in rS are copied into the corresponding CR bits. If a 
CRM bit is cleared to 0, the specified set of bits in rS are not copied and the corresponding 
CR bits are unchanged. The following table shows the relationship between the CRM field 
and the rS and CR registers. The CRn field is shown for completeness.

See mtcrf Field Mask (CRM), page 423, for more information on the CRM field and an 
example of its use.

Simplified mnemonics defined for this instruction are described in Other Simplified 
Mnemonics, page 834.

Pseudocode
mask ← 4(CRM0) || 4(CRM1) || ... || 4(CRM6) || 4(CRM7)
(CR) ← ((rS) ∧ mask) ∨ ((CR) ∧ ¬ mask)

Registers Altered
• CR.

mtcrf CRM, rS

XFX Instruction Form

31 rS 0 CRM 0 144 0

0 6 1
1

1
2

2
0

2
1

3
1

CRM Bit Number rS Bits CR Bits CRn Field

0 0:3 0:3 CR0

1 4:7 4:7 CR1

2 8:11 8:11 CR2

3 12:15 12:15 CR3

4 16:19 16:19 CR4

5 20:23 20:23 CR5

6 24:27 24:27 CR6

7 28:31 28:31 CR7
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Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.
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mtdcr
Move to Device Control Register

Description
This is a privileged instruction.

The contents of register rS are loaded into the DCR specified by the DCR number (DCRN). 
The DCRF opcode field is a split field representing DCRN. See Split-Field Notation, 
page 571 for more information.

Pseudocode
DCRN ← DCRF5:9 || DCRF0:4
(DCR(DCRN)) ← (rS)

Registers Altered
• DCR(DCRN).

Exceptions
• Program—Attempted execution of this instruction from user mode.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.
• Use of an unsupported DCRF value.

Compatibility
This instruction is defined by the PowerPC embedded-environment architecture and the 
PowerPC Book-E architecture. It is not defined by the PowerPC architecture, and is 
therefore not implemented by all PowerPC processors. The specific registers accessed by 
this instruction are implementation dependent.

mtdcr DCRN, rS

XFX Instruction Form

31 rS DCRF 451 0

0 6 1
1

2
1

3
1
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mtmsr
Move to Machine State Register

Description
This is a privileged instruction.

The contents of register rS are loaded into the MSR.

Pseudocode
(MSR) ← (rS)

Registers Altered
• MSR.

Exceptions
• Program—Attempted execution of this instruction from user mode.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the operating-environment architecture level (OEA) of the 
PowerPC architecture, the PowerPC embedded-environment architecture, and the 
PowerPC Book-E architecture. It is implemented by all PowerPC processors.

mtmsr rS

X Instruction Form

31 rS 0 0 0 0 0 0 0 0 0 0 146 0

0 6 1
1

2
1

3
1
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mtspr
Move to Special Purpose Register

Description
The contents of register rS are loaded into the SPR specified by the SPR number (SPRN). 
The SPRF opcode field is a split field representing SPRN. See Split-Field Notation, 
page 571 for more information. See Appendix A, Register Summary for a listing of the 
SPRs supported by the PPC405 and their corresponding SPRN and SPRF values.

Simplified mnemonics defined for this instruction are described in Special-Purpose 
Registers, page 830.

Pseudocode
SPRN ← SPRF5:9 || SPRF0:4
(SPR(SPRN)) ← (rS)

Registers Altered
• SPR(SPRN).

Exceptions
• Program—Attempted execution of this instruction from user mode if SPRF[0] (bit 11 

of the instruction) is 1.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.
• Use of an unsupported SPRF value.

Compatibility
This instruction is defined by the PowerPC architecture, the PowerPC embedded-
environment architecture, and the PowerPC Book-E architecture. It is part of the user 
instruction-set architecture (UISA) and the operating-environment architecture (OEA). It is 
implemented by all PowerPC processors. However, not all SPRs supported by the PPC405 
are supported by other PowerPC processors.

mtspr SPRN, rS

XFX Instruction Form

31 rS SPRF 467 0

0 6 1
1

2
1

3
1
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mulchw
Multiply Cross Halfword to Word Signed

Description
The low-order halfword of rA is multiplied by the high-order halfword of rB. The resulting 
signed 32-bit product is loaded into register rD. An example of this operation is shown in 
Figure 3-34, page 420.

Pseudocode
(rD)0:31 ← (rA)16:31 × (rB)0:15 signed

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

mulchw rD, rA, rB (Rc=0)

mulchw. rD, rA, rB (Rc=1)

X Instruction Form

4 rD rA rB 168 Rc

0 6 1
1

1
6

2
1

3
1
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mulchwu
Multiply Cross Halfword to Word Unsigned

Description
The low-order halfword of rA is multiplied by the high-order halfword of rB. The resulting 
unsigned 32-bit product is loaded into register rD. An example of this operation is shown 
in Figure 3-34, page 420.

Pseudocode
(rD)0:31 ← (rA)16:31 × (rB)0:15 unsigned

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

mulchwu rD, rA, rB (Rc=0)

mulchwu. rD, rA, rB (Rc=1)

X Instruction Form

4 rD rA rB 136 Rc

0 6 1
1

1
6

2
1

3
1
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mulhhw
Multiply High Halfword to Word Signed

Description
The high-order halfword of rA is multiplied by the high-order halfword of rB. The 
resulting signed 32-bit product is loaded into register rD. An example of this operation is 
shown in Figure 3-35, page 421.

Pseudocode
(rD)0:31 ← (rA)0:15 × (rB)0:15 signed

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

mulhhw rD, rA, rB (Rc=0)

mulhhw. rD, rA, rB (Rc=1)

X Instruction Form

4 rD rA rB 40 Rc

0 6 1
1

1
6

2
1

3
1
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mulhhwu
Multiply High Halfword to Word Unsigned

Description
The high-order halfword of rA is multiplied by the high-order halfword of rB. The 
resulting unsigned 32-bit product is loaded into register rD. An example of this operation 
is shown in Figure 3-35, page 421.

Pseudocode
(rD)0:31 ← (rA)0:15 × (rB)0:15 unsigned

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

mulhhwu rD, rA, rB (Rc=0)

mulhhwu. rD, rA, rB (Rc=1)

X Instruction Form

4 rD rA rB 8 Rc

0 6 1
1

1
6

2
1

3
1
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mulhw
Multiply High Word

Description
The contents of register rA are multiplied with the contents of register rB, forming a 64-bit 
signed product. The most-significant 32 bits of the result are loaded into register rD.

mulhwu should be used if the operands are to be interpreted as unsigned quantities.

This instruction can be used with mullw or mulli to calculate a full 64-bit product.

Pseudocode
prod0:63← (rA) × (rB) signed
(rD) ← prod0:31

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

mulhw rD, rA, rB (Rc=0)

mulhw. rD, rA, rB (Rc=1)

XO Instruction Form

31 rD rA rB 0 75 Rc

0 6 1
1

1
6

2
1

2
2

3
1
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mulhwu
Multiply High Word Unsigned

Description
The contents of register rA are multiplied with the contents of register rB, forming a 64-bit 
unsigned product. The most-significant 32 bits of the result are loaded into register rD.

mulhw should be used if the operands are to be interpreted as signed quantities.

Pseudocode
prod0:63← (rA) × (rB) unsigned
(rD) ← prod0:31

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

mulhwu rD, rA, rB (Rc=0)

mulhwu. rD, rA, rB (Rc=1)

XO Instruction Form

31 rD rA rB 0 11 Rc

0 6 1
1

1
6

2
1

3
1

http://www.xilinx.com


March 2002 Release www.xilinx.com 693
Virtex-II Pro™ Platform FPGA Documentation 1-800-255-7778

Alphabetical Instruction Listing
R

mullhw
Multiply Low Halfword to Word Signed

Description
The low-order halfword of rA is multiplied by the low-order halfword of rB. The resulting 
signed 32-bit product is loaded into register rD. An example of this operation is shown in 
Figure 3-36, page 422.

Pseudocode
(rD)0:31 ← (rA)16:31 × (rB)16:31 signed

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

mullhw rD, rA, rB (Rc=0)

mullhw. rD, rA, rB (Rc=1)

X Instruction Form

4 rD rA rB 424 Rc

0 6 1
1

1
6

2
1

3
1

http://www.xilinx.com


694 www.xilinx.com March 2002 Release
1-800-255-7778 Virtex-II Pro™ Platform FPGA Documentation

Chapter 11: Instruction Set
R

mullhwu
Multiply Low Halfword to Word Unsigned

Description
The low-order halfword of rA is multiplied by the low-order halfword of rB. The resulting 
unsigned 32-bit product is loaded into register rD. An example of this operation is shown 
in Figure 3-36, page 422.

Pseudocode
(rD)0:31 ← (rA)16:31 × (rB)16:31 unsigned

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

mullhwu rD, rA, rB (OE=0, Rc=0)

mullhwu. rD, rA, rB (OE=0, Rc=1)

X Instruction Form

4 rD rA rB 392 Rc

0 6 1
1

1
6

2
1

3
1
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mulli
Multiply Low Immediate

Description
The contents of register rA are multiplied with the sign-extended SIMM field, forming a 
48-bit signed product. The least-significant 32 bits of the product are loaded into register 
rD.

The result loaded into register rD is always correct, regardless of whether the operands are 
interpreted as signed or unsigned integers.

This instruction can be used with mulhw to calculate a full 64-bit product.

Pseudocode
prod0:47← (rA) × EXTS(SIMM) signed
(rD) ← prod16:47

Registers Altered
• rD.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

mulli rD, rA, SIMM

D Instruction Form

7 rD rA SIMM

0 6 1
1

1
6

3
1
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mullw
Multiply Low Word

Description
The contents of register rA are multiplied with the contents of register rB, forming a 64-bit 
signed product. The least-significant 32 bits of the result are loaded into register rD.

If the signed product cannot be represented in 32 bits and OE=1, XER[SO, OV] are set to 1. 
This overflow indication is correct only if the operands are interpreted as signed integers. 
The result loaded into register rD is always correct, regardless of whether the operands are 
interpreted as signed or unsigned integers.

This instruction can be used with mulhw to calculate a full 64-bit product.

Pseudocode
prod0:63← (rA) × (rB) signed
(rD) ← prod32:63

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

mullw rD, rA, rB (OE=0, Rc=0)

mullw. rD, rA, rB (OE=0, Rc=1)

mullwo rD, rA, rB (OE=1, Rc=0)

mullwo. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

31 rD rA rB OE 235 Rc

0 6 1
1

1
6

2
1

2
2

3
1
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nand
NAND

Description
The contents of register rS are ANDed with the contents of register rB and the one’s 
complement of the result is loaded into register rA.

The one’s complement of a number can be obtained using nand with rS = rB.

Pseudocode
(rA) ← ¬ ((rS) ∧ (rB))

Registers Altered
• rA.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

nand rA, rS, rB (Rc=0)

nand. rA, rS, rB (Rc=1)

X Instruction Form

31 rS rA rB 476 Rc

0 6 1
1

1
6

2
1

3
1
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neg
Negate

Description
The two’s complement of the contents of register rA are loaded into register rD.

If rA contains the most-negative number (0x8000_0000), the result is the most-negative 
number and XER[OV] is set to 1 if OE=1.

Pseudocode
(rD) ← ¬ (rA) + 1

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

neg rD, rA (OE=0, Rc=0)

neg. rD, rA (OE=0, Rc=1)

nego rD, rA (OE=1, Rc=0)

nego. rD, rA (OE=1, Rc=1)

XO Instruction Form

31 rD rA 0 0 0 0 0 OE 104 Rc

0 6 1
1

1
6

2
1

2
2

3
1
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nmacchw
Negative Multiply Accumulate Cross Halfword to Word Modulo Signed

Description
The low-order halfword of rA is multiplied by the high-order halfword of rB. The negated 
signed product is added to the contents of rD and the sum is stored as a 33-bit temporary 
result. The contents of rD are replaced by the low-order 32 bits of the temporary result. An 
example of this operation is shown in Figure 3-31, page 415.

Pseudocode
prod0:31 ← (rA)16:31 × (rB)0:15 signed
nprod0:31 ← −1 × prod0:31 signed
temp0:32 ← nprod0:31 + (rD)
(rD) ← temp1:32

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

nmacchw rD, rA, rB (OE=0, Rc=0)

nmacchw. rD, rA, rB (OE=0, Rc=1)

nmacchwo rD, rA, rB (OE=1, Rc=0)

nmacchwo. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

4 rD rA rB OE 174 Rc

0 6 1
1

1
6

2
1

2
2

3
1

http://www.xilinx.com


700 www.xilinx.com March 2002 Release
1-800-255-7778 Virtex-II Pro™ Platform FPGA Documentation

Chapter 11: Instruction Set
R

nmacchws
Negative Multiply Accumulate Cross Halfword to Word Saturate Signed

Description
The low-order halfword of rA is multiplied by the high-order halfword of rB. The negated 
signed product is added to the contents of rD and the sum is stored as a 33-bit temporary 
result.

If the result does not overflow, the low-order 32 bits of the temporary result are stored in 
rD. If the result overflows, rD is loaded with the nearest representable value. If the result is 
less than −231, the value stored in rD is −231. If the result is greater than 231 − 1, the value 
stored in rD is 231 − 1. An example of this operation is shown in Figure 3-31, page 415.

Pseudocode
prod0:31 ← (rA)16:31 × (rB)0:15 signed
nprod0:31 ← −1 × prod0:31 signed
temp0:32 ← nprod0:31 + (rD)
if ((nprod0 = rD0) ∧  (rD0 ≠ temp1)) 

then (rD) ← (rD0 || 31(¬ rD0))
else (rD) ← temp1:32

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

nmacchws rD, rA, rB (OE=0, Rc=0)

nmacchws. rD, rA, rB (OE=0, Rc=1)

nmacchwso rD, rA, rB (OE=1, Rc=0)

nmacchwso. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

4 rD rA rB OE 238 Rc

0 6 1
1

1
6

2
1

2
2

3
1
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nmachhw
Negative Multiply Accumulate High Halfword to Word Modulo Signed

Description
The high-order halfword of rA is multiplied by the high-order halfword of rB. The negated 
signed product is added to the contents of rD and the sum is stored as a 33-bit temporary 
result. The contents of rD are replaced by the low-order 32 bits of the temporary result. An 
example of this operation is shown in Figure 3-32, page 417.

Pseudocode
prod0:31 ← (rA)0:15 × (rB)0:15 signed
nprod0:31 ← −1 × prod0:31 signed
temp0:32 ← nprod0:31 + (rD)
(rD) ← temp1:32

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

nmachhw rD, rA, rB (OE=0, Rc=0)

nmachhw. rD, rA, rB (OE=0, Rc=1)

nmachhwo rD, rA, rB (OE=1, Rc=0)

nmachhwo. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

4 rD rA rB OE 46 Rc
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Chapter 11: Instruction Set
R

nmachhws
Negative Multiply Accumulate High Halfword to Word Saturate Signed

Description
The high-order halfword of rA is multiplied by the high-order halfword of rB. The negated 
signed product is added to the contents of rD and the sum is stored as a 33-bit temporary 
result.

If the result does not overflow, the low-order 32 bits of the temporary result are stored in 
rD. If the result overflows, rD is loaded with the nearest representable value. If the result is 
less than −231, the value stored in rD is −231. If the result is greater than 231 − 1, the value 
stored in rD is 231 − 1. An example of this operation is shown in Figure 3-32, page 417.

Pseudocode
prod0:31 ← (rA)0:15 × (rB)0:15 signed
nprod0:31 ← −1 × prod0:31 signed
temp0:32 ← nprod0:31 + (rD)
if ((nprod0 = rD0) ∧  (rD0 ≠ temp1)) 

then (rD) ← (rD0 || 31(¬ rD0))
else (rD) ← temp1:32

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

nmachhws rD, rA, rB (OE=0, Rc=0)

nmachhws. rD, rA, rB (OE=0, Rc=1)

nmachhwso rD, rA, rB (OE=1, Rc=0)

nmachhwso. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

4 rD rA rB OE 110 Rc

0 6 1
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Alphabetical Instruction Listing
R

nmaclhw
Negative Multiply Accumulate Low Halfword to Word Modulo Signed

Description
The low-order halfword of rA is multiplied by the low-order halfword of rB. The negated 
signed product is added to the contents of rD and the sum is stored as a 33-bit temporary 
result. The contents of rD are replaced by the low-order 32 bits of the temporary result. An 
example of this operation is shown in Figure 3-33, page 419.

Pseudocode
prod0:31 ← (rA)16:31 × (rB)16:31 signed
nprod0:31 ← −1 × prod0:31 signed
temp0:32 ← nprod0:31 + (rD)
(rD) ← temp1:32

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

nmaclhw rD, rA, rB (OE=0, Rc=0)

nmaclhw. rD, rA, rB (OE=0, Rc=1)

nmaclhwo rD, rA, rB (OE=1, Rc=0)

nmaclhwo. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

4 rD rA rB OE 430 Rc

0 6 1
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Chapter 11: Instruction Set
R

nmaclhws
Negative Multiply Accumulate Low Halfword to Word Saturate Signed

Description
The low-order halfword of rA is multiplied by the low-order halfword of rB. The negated 
signed product is added to the contents of rD and the sum is stored as a 33-bit temporary 
result.

If the result does not overflow, the low-order 32 bits of the temporary result are stored in 
rD. If the result overflows, rD is loaded with the nearest representable value. If the result is 
less than −231, the value stored in rD is −231. If the result is greater than 231 − 1, the value 
stored in rD is 231 − 1. An example of this operation is shown in Figure 3-33, page 419.

Pseudocode
prod0:31 ← (rA)16:31 × (rB)16:31 signed
nprod0:31 ← −1 × prod0:31 signed
temp0:32 ← nprod0:31 + (rD)
if ((nprod0 = rD0) ∧  (rD0 ≠ temp1)) 

then (rD) ← (rD0 || 31(¬ rD0))
else (rD) ← temp1:32

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

nmaclhws rD, rA, rB (OE=0, Rc=0)

nmaclhws. rD, rA, rB (OE=0, Rc=1)

nmaclhwso rD, rA, rB (OE=1, Rc=0)

nmaclhwso. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

4 rD rA rB OE 494 Rc
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Alphabetical Instruction Listing
R

nor
NOR

Description
The contents of register rS are ORed with the contents of register rB and the one’s 
complement of the result is loaded into register rA.

The one’s complement of a number can be obtained using nor with rS = rB.

Simplified mnemonics defined for this instruction are described in Other Simplified 
Mnemonics, page 834.

Pseudocode
(rA) ← ¬ ((rS) ∨ (rB))

Registers Altered
• rA.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

nor rA, rS, rB (Rc=0)

nor. rA, rS, rB (Rc=1)

X Instruction Form

31 rS rA rB 124 Rc

0 6 1
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Chapter 11: Instruction Set
R

or
OR

Description
The contents of register rS are ORed with the contents of register rB and the result is loaded 
into register rA.

The contents of one register can be copied into another register using or with rS = rB.

Simplified mnemonics defined for this instruction are described in Other Simplified 
Mnemonics, page 834.

Pseudocode
(rA) ← (rS) ∨ (rB)

Registers Altered
• rA.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

or rA, rS, rB (Rc=0)

or. rA, rS, rB (Rc=1)

X Instruction Form

31 rS rA rB 444 Rc

0 6 1
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Alphabetical Instruction Listing
R

orc
OR with Complement

Description
The contents of register rS are ORed with the one’s complement of the contents of register 
rB and the result is loaded into register rA.

Pseudocode
(rA) ← (rS) ∨ ¬ (rB)

Registers Altered
• rA.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

orc rA, rS, rB (Rc=0)

orc. rA, rS, rB (Rc=1)

X Instruction Form

31 rS rA rB 412 Rc
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Chapter 11: Instruction Set
R

ori
OR Immediate

Description
The UIMM field is extended to 32 bits by concatenating 16 0-bits on the left. The contents of 
the register rS are ORed with the extended UIMM field and the result is loaded into 
register rA.

Simplified mnemonics defined for this instruction are described in Other Simplified 
Mnemonics, page 834. The preferred no-operation (an instruction that does nothing) is:

ori 0,0,0

Pseudocode
(rA) ← (rS) ∨ (160 || UIMM)

Registers Altered
• rA.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

ori rA, rS, UIMM

D Instruction Form

24 rS rA UIMM

0 6 1
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Alphabetical Instruction Listing
R

oris
OR Immediate Shifted

Description
The UIMM field is extended to 32 bits by concatenating 16 0-bits on the right. The contents 
of the register rS are ORed with the extended UIMM field and the result is loaded into 
register rA.

Pseudocode
(rA) ← (rS) ∨ (UIMM || 160)

Registers Altered
• rA.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

oris rA, rS, UIMM

D Instruction Form

25 rS rA UIMM
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Chapter 11: Instruction Set
R

rfci
Return from Critical Interrupt

Description
This is a privileged instruction.

The MSR is loaded with the contents of SRR3. The contents of SRR2 are used as the next-
instruction address (NIA). Program control is transferred to the NIA. This instruction is 
context synchronizing. Instructions fetched from the NIA use the new context loaded into 
the MSR.

Pseudocode
(MSR) ← (SRR3)
Synchronize context
NIA ← (SRR2)

Registers Altered
• MSR.

Exceptions
• Program—Attempted execution of this instruction from user mode.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the operating-environment architecture level (OEA) of the 
the PowerPC embedded-environment architecture and the PowerPC Book-E architecture. 
It is not defined by the PowerPC architecture, and is therefore not implemented by all 
PowerPC processors.

rfci

XL Instruction Form

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 51 0

0 6 2
1

3
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Alphabetical Instruction Listing
R

rfi
Return from Interrupt

Description
This is a privileged instruction.

The MSR is loaded with the contents of SRR1. The contents of SRR0 are used as the next-
instruction address (NIA). Program control is transferred to the NIA. This instruction is 
context synchronizing. Instructions fetched from the NIA use the new context loaded into 
the MSR.

Pseudocode
(MSR) ← (SRR1)
Synchronize context
NIA ← (SRR0)

Registers Altered
• MSR.

Exceptions
• Program—Attempted execution of this instruction from user mode.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the operating-environment architecture level (OEA) of the 
PowerPC architecture, the PowerPC embedded-environment architecture, and the 
PowerPC Book-E architecture. It is implemented by all PowerPC processors.

rfi

XL Instruction Form

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0

0 6 2
1
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Chapter 11: Instruction Set
R

rlwimi
Rotate Left Word Immediate then Mask Insert

Description
The MB field and ME field specify bit positions in a 32-bit mask, m. m is generated with 1-
bits starting at MB and ending at ME, with 0-bits elsewhere. If MB is at a higher bit position 
than ME, the 1-bits in the mask wrap from the highest bit position to the lowest. Rotate-
instruction masks are further described in Mask Generation, page 400.

The contents of register rS are rotated left by the number of bit positions specified by the 
SH field. The rotated data is inserted into register rA under control of the mask. If a mask 
bit contains a 1, the corresponding bit in the rotated data is inserted into the corresponding 
bit of register rA. If a mask bit contains a 0, the corresponding bit in rA is not changed.

This instruction can be used to extract a field from one register and insert it into another 
register.

Simplified mnemonics defined for this instruction are described in Rotate and Shift 
Instructions, page 829.

Pseudocode
m ← MASK(MB, ME)
r ← ROTL((rS), SH)
(rA) ← (r ∧ m) ∨ ((rA) ∧ ¬ m)

Registers Altered
• rA.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

rlwimi rA, rS, SH, MB, ME (Rc=0)

rlwimi. rA, rS, SH, MB, ME (Rc=1)

M Instruction Form

20 rS rA SH MB ME Rc
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Alphabetical Instruction Listing
R

rlwinm
Rotate Left Word Immediate then AND with Mask

Description
The MB field and ME field specify bit positions in a 32-bit mask, m. m is generated with 1-
bits starting at MB and ending at ME, with 0-bits elsewhere. If MB is at a higher bit position 
than ME, the 1-bits in the mask wrap from the highest bit position to the lowest. Rotate-
instruction masks are further described in Mask Generation, page 400.

The contents of register rS are rotated left by the number of bit positions specified by the 
SH field. The rotated data is ANDed with the mask and the result is loaded into register rA.

This instruction can be used to extract, rotate, shift, and clear bit fields.

Simplified mnemonics defined for this instruction are described in Rotate and Shift 
Instructions, page 829.

Pseudocode
m ← MASK(MB, ME)
r ← ROTL((rS), SH)
(rA) ← r ∧ m

Registers Altered
• rA.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

rlwinm rA, rS, SH, MB, ME (Rc=0)

rlwinm. rA, rS, SH, MB, ME (Rc=1)

M Instruction Form

21 rS rA SH MB ME Rc

0 6 1
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Chapter 11: Instruction Set
R

rlwnm
Rotate Left Word then AND with Mask

Description
The MB field and ME field specify bit positions in a 32-bit mask, m. m is generated with 1-
bits starting at MB and ending at ME, with 0-bits elsewhere. If MB is at a higher bit position 
than ME, the 1-bits in the mask wrap from the highest bit position to the lowest. Rotate-
instruction masks are further described in Mask Generation, page 400.

The contents of register rS are rotated left by the number of bit positions specified by the 
contents of register rB27:31. The rotated data is ANDed with the mask and the result is 
loaded into register rA.

This instruction can be used to extract and rotate bit fields.

Simplified mnemonics defined for this instruction are described in Rotate and Shift 
Instructions, page 829.

Pseudocode
m ← MASK(MB, ME)
r ← ROTL((rS), (rB)27:31)
(rA) ← r ∧  m

Registers Altered
• rA.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

rlwnm rA, rS, rB, MB, ME (Rc=0)

rlwnm. rA, rS, rB, MB, ME (Rc=1)

M Instruction Form

23 rS rA rB MB ME Rc
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Alphabetical Instruction Listing
R

sc
System Call

Description
This instruction causes a system-call exception to occur. The contents of the MSR are 
loaded into SRR1. The address of the instruction immediately following the sc instruction 
is loaded into SRR0.

The MSR[WE, EE, PR, DR, IR] bits are cleared to 0.

The exception-vector address is used as the next-instruction address (NIA) and program 
control is transferred to the NIA. The exception vector address is formed by concatenating 
the high halfword of the exception-vector-prefix register (EVPR) to the left of 0x0C00. This 
instruction is context synchronizing. Instructions fetched from the NIA use the new 
context loaded into the MSR.

Pseudocode
(SRR1) ← (MSR)
(MSR[WE, EE, PR, DR, IR])← 0
(SRR0) ← CIA + 4
Synchronize context
NIA ← EVPR0:15 || 0x0C00

Registers Altered
• SRR0.
• SRR1.
• MSR[WE, EE, PR, DR, IR].

Exceptions
• System call—execution of this instruction.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC architecture, the PowerPC embedded-
environment architecture, and the PowerPC Book-E architecture. It is part of the user 
instruction-set architecture (UISA) and the operating-environment architecture (OEA). It is 
implemented by all PowerPC processors. 

sc

SC Instruction Form

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 6 3
0

3
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Chapter 11: Instruction Set
R

slw
Shift Left Word

Description
The contents of register rS are shifted left by the number of bits specified by the contents of 
register rB27:31. Bits shifted left out of the most-significant bit are lost and 0-bits fill vacated 
bit positions on the right. The result is loaded into register rA.

If rB26 = 1, register rA is cleared to zero.

Pseudocode
n ← (rB)27:31
r ← ROTL((rS), n)
if (rB)26 = 0

then m ← MASK(0, 31 − n)
else m ← 320

(rA) ← r ∧ m

Registers Altered
• rA.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

slw rA, rS, rB (Rc=0)

slw. rA, rS, rB (Rc=1)

X Instruction Form

31 rS rA rB 24 Rc
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Alphabetical Instruction Listing
R

sraw
Shift Right Algebraic Word

Description
The contents of register rS are shifted right by the number of bits specified by the contents 
of register rB27:31. Bits shifted right out of the least-significant bit are lost. The most-
significant bit of register rS (rS0) is replicated to fill vacated bit positions on the left. The 
result is loaded into register rA.

If rS contains a negative number and any 1-bits are shifted out of the least-significant bit 
position, XER[CA] is set to 1. Otherwise XER[CA] is cleared to 0.

If rB26 = 1, XER[CA] and all bits in register rA are set to the value of rS0.

Pseudocode
n ← (rB)27:31
r ← ROTL((rS), 32 − n)
if (rB)26 = 0

then m ← MASK(n, 31)
else m ← 320

s ← (rS)0
(rA) ← (r ∧ m) ∨ (32s ∧ ¬ m)
XER[CA] ← s ∧ ((r ∧ ¬ m) ≠ 0)

Registers Altered
• rA.
• XER[CA].
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

sraw rA, rS, rB (Rc=0)

sraw. rA, rS, rB (Rc=1)

X Instruction Form

31 rS rA rB 792 Rc
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Chapter 11: Instruction Set
R

srawi
Shift Right Algebraic Word Immediate

Description
The contents of register rS are shifted right by the number of bits specified by the SH field. 
Bits shifted right out of the least-significant bit are lost. The most-significant bit of register 
rS (rS0) is replicated to fill vacated bit positions on the left. The result is loaded into register 
rA.

If rS contains a negative number and any 1-bits are shifted out of the least-significant bit 
position, XER[CA] is set to 1. Otherwise XER[CA] is cleared to 0.

Pseudocode
n ← SH
r ← ROTL((rS), 32 − n)
m ← MASK(n, 31)
s ← (rS)0
(rA) ← (r ∧ m) ∨ (32s ∧ ¬ m)
XER[CA] ← s ∧ ((r ∧ ¬ m) ≠ 0)

Registers Altered
• rA.
• XER[CA].
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

srawi rA, rS, SH (Rc=0)

srawi. rA, rS, SH (Rc=1)

X Instruction Form

31 rS rA SH 824 Rc

0 6 1
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Alphabetical Instruction Listing
R

srw
Shift Right Word

Description
The contents of register rS are shifted right by the number of bits specified by the contents 
of register rB27:31. Bits shifted right out of the least-significant bit are lost and 0-bits fill the 
vacated bit positions on the left. The result is loaded into register rA.

If rB26 = 1, register rA is cleared to 0.

Pseudocode
n ← (rB)27:31
r ← ROTL((rS), 32 − n)
if (rB)26 = 0

then m ← MASK(n, 31)
else m ← 320

(rA) ← r ∧ m

Registers Altered
• rA.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

srw rA, rS, rB (Rc=0)

srw. rA, rS, rB (Rc=1)

X Instruction Form

31 rS rA rB 536 Rc

0 6 1
1
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Chapter 11: Instruction Set
R

stb
Store Byte

Description
An effective address (EA) is calculated by adding a displacement to a base address, which 
are formed as follows:

• The displacement is formed by sign-extending the 16-bit d instruction field to 32 bits.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

The least-significant byte of register rS is stored into the byte referenced by EA.

Pseudocode
EA ← (rA|0) + EXTS(d)
MS(EA, 1)← (rS)24:31

Registers Altered
• None.

Exceptions
• Data storage—if the access is prevented by zone protection when data relocation is 

enabled. 
- No-access-allowed zone protection applies only to accesses in user mode. 
- Read-only zone protection applies to user and privileged modes.

• Data TLB miss—if data relocation is enabled and a valid translation-entry 
corresponding to the EA is not found in the TLB.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

stb rS, d(rA)

D Instruction Form

38 rS rA d
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stbu
Store Byte with Update

Description
An effective address (EA) is calculated by adding a displacement to a base address, which 
are formed as follows:

• The displacement is formed by sign-extending the 16-bit d instruction field to 32 bits.
• The contents of register rA are used as the base address.

The least-significant byte of register rS is stored into the byte referenced by EA. The EA is 
loaded into rA.

Pseudocode
EA ← (rA) + EXTS(d)
MS(EA, 1)← (rS)24:31
(rA) ← EA

Registers Altered
• rA.

Exceptions
• Data storage—if the access is prevented by zone protection when data relocation is 

enabled. 
- No-access-allowed zone protection applies only to accesses in user mode. 
- Read-only zone protection applies to user and privileged modes.

• Data TLB miss—if data relocation is enabled and a valid translation-entry 
corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• rA=0.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

stbu rS, d(rA)

D Instruction Form

39 rS rA d
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stbux
Store Byte with Update Indexed

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• The contents of register rA are used as the base address.

The least-significant byte of register rS is stored into the byte referenced by EA. The EA is 
loaded into rA.

Pseudocode
EA ← (rA) + (rB)
MS(EA, 1)← (rS)24:31
(rA) ← EA

Registers Altered
• rA.

Exceptions
• Data storage—if the access is prevented by zone protection when data relocation is 

enabled. 
- No-access-allowed zone protection applies only to accesses in user mode. 
- Read-only zone protection applies to user and privileged modes.

• Data TLB miss—if data relocation is enabled and a valid translation-entry 
corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.
• rA=0.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

stbux rS, rA, rB

X Instruction Form

31 rS rA rB 247 0
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stbx
Store Byte Indexed

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

The least-significant byte of register rS is stored into the byte referenced by EA.

Pseudocode
EA ← (rA|0) + (rB)
MS(EA, 1)← (rS)24:31

Registers Altered
• None.

Exceptions
• Data storage—if the access is prevented by zone protection when data relocation is 

enabled. 
- No-access-allowed zone protection applies only to accesses in user mode. 
- Read-only zone protection applies to user and privileged modes.

• Data TLB miss—if data relocation is enabled and a valid translation-entry 
corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

stbx rS, rA, rB

X Instruction Form

31 rS rA rB 215 0

0 6 1
1

1
6

2
1

3
1

http://www.xilinx.com


724 www.xilinx.com March 2002 Release
1-800-255-7778 Virtex-II Pro™ Platform FPGA Documentation

Chapter 11: Instruction Set
R

sth
Store Halfword

Description
An effective address (EA) is calculated by adding a displacement to a base address, which 
are formed as follows:

• The displacement is formed by sign-extending the 16-bit d instruction field to 32 bits.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

The least-significant halfword of register rS is stored into the halfword referenced by EA.

Pseudocode
EA ← (rA|0) + EXTS(d)
MS(EA, 2)← (rS)16:31

Registers Altered
• None.

Exceptions
• Data storage—if the access is prevented by zone protection when data relocation is 

enabled. 
- No-access-allowed zone protection applies only to accesses in user mode. 
- Read-only zone protection applies to user and privileged modes.

• Data TLB miss—if data relocation is enabled and a valid translation-entry 
corresponding to the EA is not found in the TLB.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

sth rS, d(rA)

D Instruction Form

44 rS rA d
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sthbrx
Store Halfword Byte-Reverse Indexed

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

The least-significant halfword of register rS is byte-reversed and stored into the halfword 
referenced by EA as follows:

• rS[24:31] are stored into the byte referenced by EA.
• rS[16:23] are stored into the byte referenced by EA+1.

Pseudocode
EA ← (rA|0) + (rB)
MS(EA, 2)← (rS)24:31 || (rS)16:23

Registers Altered
• None.

Exceptions
• Data storage—if the access is prevented by zone protection when data relocation is 

enabled. 
- No-access-allowed zone protection applies only to accesses in user mode. 
- Read-only zone protection applies to user and privileged modes.

• Data TLB miss—if data relocation is enabled and a valid translation-entry 
corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

sthbrx rS, rA, rB

X Instruction Form

31 rS rA rB 918 0
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sthu
Store Halfword with Update

Description
An effective address (EA) is calculated by adding a displacement to a base address, which 
are formed as follows:

• The displacement is formed by sign-extending the 16-bit d instruction field to 32 bits.
• The contents of register rA are used as the base address.

The least-significant halfword of register rS is stored into the halfword referenced by EA. 
The EA is loaded into rA.

Pseudocode
EA ← (rA) + EXTS(d)
MS(EA, 2)← (rS)16:31
(rA) ← EA

Registers Altered
• rA.

Exceptions
• Data storage—if the access is prevented by zone protection when data relocation is 

enabled. 
- No-access-allowed zone protection applies only to accesses in user mode. 
- Read-only zone protection applies to user and privileged modes.

• Data TLB miss—if data relocation is enabled and a valid translation-entry 
corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• rA=0.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

sthu rS, d(rA)

D Instruction Form

45 rS rA d
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sthux
Store Halfword with Update Indexed

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• The contents of register rA are used as the base address.

The least-significant halfword of register rS is stored into the halfword referenced by EA. 
The EA is loaded into rA.

Pseudocode
EA ← (rA) + (rB)
MS(EA, 2)← (rS)16:31
(rA) ← EA

Registers Altered
• rA.

Exceptions
• Data storage—if the access is prevented by zone protection when data relocation is 

enabled. 
- No-access-allowed zone protection applies only to accesses in user mode. 
- Read-only zone protection applies to user and privileged modes.

• Data TLB miss—if data relocation is enabled and a valid translation-entry 
corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.
• rA=0.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

sthux rS, rA, rB

X Instruction Form

31 rS rA rB 439 0
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sthx
Store Halfword Indexed

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

The least-significant halfword of register rS is stored into the halfword referenced by EA.

Pseudocode
EA ← (rA|0) + (rB)
MS(EA, 2)← (rS)16:31

Registers Altered
• None.

Exceptions
• Data storage—if the access is prevented by zone protection when data relocation is 

enabled. 
- No-access-allowed zone protection applies only to accesses in user mode. 
- Read-only zone protection applies to user and privileged modes.

• Data TLB miss—if data relocation is enabled and a valid translation-entry 
corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

sthx rS, rA, rB

X Instruction Form

31 rS rA rB 407 0
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stmw
Store Multiple Word

Description
An effective address (EA) is calculated by adding a displacement to a base address, which 
are formed as follows:

• The displacement is formed by sign-extending the 16-bit d instruction field to 32 bits.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

Let n = 32 − rS. 

GPRs rS through r31 are stored into n consecutive words starting at the memory address 
referenced by EA.

Pseudocode
EA ← (rA|0) + EXTS(d)
r ← rS
do while r ≤ 31

MS(EA, 4) ← (GPR(r))
r ← r + 1
EA ← EA + 4

Registers Altered
• None.

Exceptions
• Data storage—if the access is prevented by zone protection when data relocation is 

enabled. 
- No-access-allowed zone protection applies only to accesses in user mode. 
- Read-only zone protection applies to user and privileged modes.

• Data TLB miss—if data relocation is enabled and a valid translation-entry 
corresponding to the EA is not found in the TLB.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

stmw rS, d(rA)

D Instruction Form

47 rS rA d
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stswi
Store String Word Immediate

Description
An effective address (EA) is determined by the rA field as follows:

• If the rA field is 0, the EA is 0.
• If the rA field is not 0, the contents of register rA are used as the EA.

Let n specify the byte count. If the NB field is 0, n is 32. Otherwise, n is equal to NB.

Let nr specify the number of registers to supply data. nr = CEIL(n÷4).
GPRs rS through rS + nr − 1 are stored into n consecutive bytes starting at the memory 
address referenced by EA. The sequence of registers wraps around to r0 if necessary. The 
bytes within each register are stored beginning with the most-significant byte and ending 
with the least-significant byte, until the byte count is satisfied.

Pseudocode
EA ← (rA|0)
if NB = 0

then n ← 32
else n ← NB

r ← rS − 1
i ← 0
do while n > 0

if i = 0
then r ← r + 1

if r = 32
then r ← 0

MS(EA,1)←(GPR(r)i:i+7)
i ← i + 8
if i = 32

then i ← 0
EA ← EA + 1
n ← n − 1

Registers Altered
• None.

Exceptions
• Data storage—if the access is prevented by zone protection when data relocation is 

enabled. 

stswi rS, rA, NB

X Instruction Form

31 rS rA NB 725 0
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- No-access-allowed zone protection applies only to accesses in user mode. 
- Read-only zone protection applies to user and privileged modes.

• Data TLB miss—if data relocation is enabled and a valid translation-entry 
corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.
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stswx
Store String Word Indexed

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

Let n specify the byte count contained in XER[TBC].

Let nr specify the number of registers to load with data. nr = CEIL(n÷4).
GPRs rS through rS + nr − 1 are stored into n consecutive bytes starting at the memory 
address referenced by EA. The sequence of registers wraps around to r0 if necessary. The 
bytes within each register are stored beginning with the most-significant byte and ending 
with the least-significant byte, until the byte count is satisfied.

If XER[TBC] = 0, stswx is treated as a no-operation.

Pseudocode
EA ← (rA|0) + (rB)
n ← XER[TBC]
r ← rS − 1
i ← 0
do while n > 0

if i = 0
then r ← r + 1

if r = 32
then r ← 0

MS(EA, 1)← (GPR(r)i:i+7)
i ← i + 8
if i = 32

then i ← 0
EA ← EA + 1
n ← n − 1

Registers Altered
• None.

stswx rS, rA, rB

X Instruction Form

31 rS rA rB 661 0
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Exceptions
• Data storage—if the access is prevented by zone protection when data relocation is 

enabled. 
- No-access-allowed zone protection applies only to accesses in user mode. 
- Read-only zone protection applies to user and privileged modes.

• Data TLB miss—if data relocation is enabled and a valid translation-entry 
corresponding to the EA is not found in the TLB.

If XER[TBC]=0, data-storage and data TLB-miss exceptions do not occur. However, a data 
machine-check exception can occur when XER[TBC]=0 if the following conditions are true:

• The instruction access passes all protection checks.
• The data address is cachable.
• Access of the data address causes a data-cacheline fill request due to a miss.
• The data-cacheline fill request encounters some form of bus error.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.
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stw
Store Word

Description
An effective address (EA) is calculated by adding a displacement to a base address, which 
are formed as follows:

• The displacement is formed by sign-extending the 16-bit d instruction field to 32 bits.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

The contents of register rS are stored into the word referenced by EA.

Pseudocode
EA ← (rA|0) + EXTS(d)
MS(EA, 4)← (rS)

Registers Altered
• None.

Exceptions
• Data storage—if the access is prevented by zone protection when data relocation is 

enabled. 
- No-access-allowed zone protection applies only to accesses in user mode. 
- Read-only zone protection applies to user and privileged modes.

• Data TLB miss—if data relocation is enabled and a valid translation-entry 
corresponding to the EA is not found in the TLB.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

stw rS, d(rA)

D Instruction Form

36 rS rA d
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stwbrx
Store Word Byte-Reverse Indexed

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

The least-significant halfword of register rS is byte-reversed and stored into the halfword 
referenced by EA as follows:

• rS[24:31] are stored into the byte referenced by EA.
• rS[16:23] are stored into the byte referenced by EA+1.
• rS[8:15] are stored into the byte referenced by EA+2.
• rS[0:7] are stored into the byte referenced by EA+3.

Pseudocode
EA ← (rA|0) + (rB)
MS(EA, 4)← (rS)24:31 || (rS)16:23 || (rS)8:15 || (rS)0:7

Registers Altered
• None.

Exceptions
• Data storage—if the access is prevented by zone protection when data relocation is 

enabled. 
- No-access-allowed zone protection applies only to accesses in user mode. 
- Read-only zone protection applies to user and privileged modes.

• Data TLB miss—if data relocation is enabled and a valid translation-entry 
corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

stwbrx rS, rA, rB

X Instruction Form

31 rS rA rB 662 0
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Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.
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stwcx.
Store Word Conditional Indexed

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

If the reservation bit internal to the processor is set to 1 when the instruction is executed, 
the contents of register rS are stored into the word referenced by EA. If the reservation bit 
is cleared to 0 when the instruction is executed, no store operation is performed. Execution 
of this instruction always clears the reservation bit.

CR[CR0] is updated as follows:

• CR[CR0]LT, GT are cleared to 0.

• CR[CR0]EQ is set to the state of the reservation bit before the instruction is executed.

• CR[CR0]SO is set to the contents of the XER[SO] bit.

The lwarx and the stwcx. instructions should paired in a loop to create the effect of an 
atomic memory operation when accessing a semaphore. See Semaphore Synchronization, 
page 426 for more information.

Pseudocode
EA ← (rA|0) + (rB)
if RESERVE = 1

then
MS(EA, 4)← (rS)
RESERVE← 0
(CR[CR0])← 0b00 || 1 || XERso

else
(CR[CR0])← 0b00 || 0 || XERso

Registers Altered
• CR[CR0]LT, GT, EQ, SO.

Exceptions
• Alignment—if the EA is not aligned on a word boundary.

stwcx. rS, rA, rB

X Instruction Form

31 rS rA rB 150 1
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• Data storage—if the access is prevented by zone protection when data relocation is 
enabled. 
- No-access-allowed zone protection applies only to accesses in user mode. 
- Read-only zone protection applies to user and privileged modes.

• Data TLB miss—if data relocation is enabled and a valid translation-entry 
corresponding to the EA is not found in the TLB.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.
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stwu
Store Word with Update

Description
An effective address (EA) is calculated by adding a displacement to a base address, which 
are formed as follows:

• The displacement is formed by sign-extending the 16-bit d instruction field to 32 bits.
• The contents of register rA are used as the base address.

The contents of register rS are stored into the word referenced by EA. The EA is loaded into 
rA.

Pseudocode
EA ← (rA) + EXTS(d)
MS(EA, 4)← (rS)
(rA) ← EA

Registers Altered
• rA.

Exceptions
• Data storage—if the access is prevented by zone protection when data relocation is 

enabled. 
- No-access-allowed zone protection applies only to accesses in user mode. 
- Read-only zone protection applies to user and privileged modes.

• Data TLB miss—if data relocation is enabled and a valid translation-entry 
corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• rA=0.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

stwu rS, d(rA)

D Instruction Form

37 rS rA d
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stwux
Store Word with Update Indexed

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• The contents of register rA are used as the base address.

The contents of register rS are stored into the word referenced by EA. The EA is loaded into 
rA.

Pseudocode
EA ← (rA) + (rB)
MS(EA, 4)← (rS)
(rA) ← EA

Registers Altered
• rA.

Exceptions
• Data storage—if the access is prevented by zone protection when data relocation is 

enabled. 
- No-access-allowed zone protection applies only to accesses in user mode. 
- Read-only zone protection applies to user and privileged modes.

• Data TLB miss—if data relocation is enabled and a valid translation-entry 
corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.
• rA=0.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

stwux rS, rA, rB

X Instruction Form

31 rS rA rB 183 0
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stwx
Store Word Indexed

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

The contents of register rS are stored into the word referenced by EA.

Pseudocode
EA ← (rA|0) + (rB)
MS(EA,4) ← (rS)

Registers Altered
• None.

Exceptions
• Data storage—if the access is prevented by zone protection when data relocation is 

enabled. 
- No-access-allowed zone protection applies only to accesses in user mode. 
- Read-only zone protection applies to user and privileged modes.

• Data TLB miss—if data relocation is enabled and a valid translation-entry 
corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

stwx rS, rA, rB

X Instruction Form

31 rS rA rB 151 0
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subf
Subtract From

Description
The contents of register rA are subtracted from the contents of register rB, producing a 
two’s-complement result that is loaded into register rD. The subtraction operation is 
equivalent to adding the contents of register rB to the one’s complement of register rA and 
adding 1 to the result.

Simplified mnemonics defined for this instruction are described in Subtract Instructions, 
page 831.

Pseudocode
(rD) ← ¬ (rA) + (rB) + 1

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

subf rD, rA, rB (OE=0, Rc=0)

subf. rD, rA, rB (OE=0, Rc=1)

subfo rD, rA, rB (OE=1, Rc=0)

subfo. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

31 rD rA rB OE 40 Rc
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subfc
Subtract from Carrying

Description
The contents of register rA are subtracted from the contents of register rB, producing a 
two’s-complement result that is loaded into register rD. The subtraction operation is 
equivalent to adding the contents of register rB to the one’s complement of register rA and 
adding 1 to the result.

XER[CA] is updated to reflect the unsigned magnitude of the result.

Simplified mnemonics defined for this instruction are described in Subtract Instructions, 
page 831.

Pseudocode
(rD) ← ¬ (rA) + (rB) + 1
if (rD)  232 − 1

then XER[CA] ← 1
else XER[CA] ← 0

Registers Altered
• rD.
• XER[CA].
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

subfc rD, rA, rB (OE=0, Rc=0)

subfc. rD, rA, rB (OE=0, Rc=1)

subfco rD, rA, rB (OE=1, Rc=0)

subfco. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

31 rD rA rB OE 8 Rc
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subfe
Subtract from Extended

Description
The contents of register rB are added to the one’s complement of register rA. The contents 
of XER[CA] are added to the result. The result is loaded into register rD.

XER[CA] is updated to reflect the unsigned magnitude of the result.

The subtract-from extended instructions can be used to perform subtraction on integers 
larger than 32 bits, as described on page 392.

Pseudocode
(rD) ← ¬ (rA) + (rB) + XER[CA]
if (rD)  232 − 1

then XER[CA] ← 1
else XER[CA] ← 0

Registers Altered
• rD.
• XER[CA].
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

subfe rD, rA, rB (OE=0, Rc=0)

subfe. rD, rA, rB (OE=0, Rc=1)

subfeo rD, rA, rB (OE=1, Rc=0)

subfeo. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

31 rD rA rB OE 136 Rc

0 6 1
1

1
6

2
1

2
2

3
1

>
u

http://www.xilinx.com


March 2002 Release www.xilinx.com 745
Virtex-II Pro™ Platform FPGA Documentation 1-800-255-7778

Alphabetical Instruction Listing
R

subfic
Subtract from Immediate Carrying

Description
The contents of register rA are subtracted from the sign-extended SIMM field, producing a 
two’s-complement result that is loaded into register rD. The subtraction operation is 
equivalent to adding the contents of the SIMM field (sign-extended to 32 bits) to the one’s 
complement of register rA and adding 1 to the result.

XER[CA] is updated to reflect the unsigned magnitude of the result.

Pseudocode
(rD) ← ¬ (rA) + EXTS(SIMM) + 1
if (rD)  232 − 1

then XER[CA] ← 1
else XER[CA] ← 0

Registers Altered
• rD.
• XER[CA].

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

subfic rD, rA, SIMM

D Instruction Form

8 rD rA SIMM
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subfme
Subtract from Minus One Extended

Description
The value -1 is added to the one’s complement of register rA. The contents of XER[CA] are 
added to the result. The result is loaded into register rD.

XER[CA] is updated to reflect the unsigned magnitude of the result.

The subtract-from extended instructions can be used to perform subtraction on integers 
larger than 32 bits, as described on page 392.

Pseudocode
(rD) ← ¬ (rA) + 0xFFFF_FFFF + XER[CA]
if (rD)  232 − 1

then XER[CA] ← 1
else XER[CA] ← 0

Registers Altered
• rD.
• XER[CA].
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

subfme rD, rA (OE=0, Rc=0)

subfme. rD, rA (OE=0, Rc=1)

subfmeo rD, rA (OE=1, Rc=0)

subfmeo. rD, rA (OE=1, Rc=1)

XO Instruction Form

31 rD rA 0 0 0 0 0 OE 232 Rc

0 6 1
1

1
6

2
1

2
2

3
1

>
u

http://www.xilinx.com


March 2002 Release www.xilinx.com 747
Virtex-II Pro™ Platform FPGA Documentation 1-800-255-7778

Alphabetical Instruction Listing
R

subfze
Subtract from Zero Extended

Description
The one’s complement of register rA is added to XER[CA] and the result is loaded into 
register rD.

XER[CA] is updated to reflect the unsigned magnitude of the result.

The subtract-from extended instructions can be used to perform subtraction on integers 
larger than 32 bits, as described on page 392.

Pseudocode
(rD) ← ¬ (rA) + XER[CA]
if (rD)  232 − 1

then XER[CA] ← 1
else XER[CA] ← 0

Registers Altered
• rD.
• XER[CA].
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

subfze rD, rA (OE=0, Rc=0)

subfze. rD, rA (OE=0, Rc=1)

subfzeo rD, rA (OE=1, Rc=0)

subfzeo. rD, rA (OE=1, Rc=1)

XO Instruction Form

31 rD rA 0 0 0 0 0 OE 200 Rc
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sync
Synchronize

Description
The sync instruction is execution synchronizing. It enforces ordering of all instructions 
executed by the processor. It ensures that all instructions preceding sync in program order 
complete before sync completes. Accesses to main memory caused by instructions 
preceding the sync are completed before the sync instruction is completed. 

Instructions following the sync are not started until the sync completes execution. Unlike 
the isync instruction, prefetched instructions are not discarded by the execution of sync.

The sync instruction can be used to guarantee ordering of both instruction completion and 
storage access. The eieio instruction orders memory access, not instruction completion. 
Non-memory instructions following eieio can complete before the memory operations 
ordered by eieio. The PPC405, however, implements eieio and sync identically. 
Programmers should use the appropriate ordering instruction to maximize the 
performance of software that is portable between various PowerPC implementations.

Pseudocode
Synchronize execution

Registers Altered
• None.

Exceptions
Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

sync

X Instruction Form

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 598 0
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tlbia
TLB Invalidate All 

Description
This is a privileged instruction.

All TLB entries are invalidated. The instruction invalidates a TLB entry by clearing the 
valid (V) bit in the TLBHI portion of the entry. No other field within the TLB entry is 
modified by this instruction.

The TLB is invalidated regardless of whether address translation is enabled. A context-
synchronizing instruction should follow the tlbia instruction to guarantee that the effect of 
invalidating the TLB is visible to subsequent instructions.

Registers Altered
• None.

Exceptions
• Program—Attempted execution of this instruction from user mode.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined as optional by the operating-environment architecture level 
(OEA) of the PowerPC architecture and the PowerPC embedded-environment 
architecture. Because it is optional it is not implemented by all PowerPC processors. 

tlbia

X Instruction Form

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 370 0

0 6 2
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tlbre
TLB Read Entry

Description
This is a privileged instruction.

This instruction reads an entry from the TLB. rA26:31 contains an index which is used to 
select an entry in the TLB. The WS field specifies which portion of the TLB entry is loaded 
into rD. If WS=0, the tag portion (TLBHI) is loaded into rD and the PID is updated with the 
TLBHI[TID] field. If WS=1, the data portion (TLBLO) is loaded into rD and the PID is not 
modified.

See TLB Entries, page 476 for a description of the TLB-entry format.

The TLB entry is read regardless of whether address translation is enabled.

Simplified mnemonics defined for this instruction are described in TLB-Management 
Instructions, page 832.

Pseudocode
tlb_entry = (rA26:31)
if WS4 = 1

then (rD) ← TLBLO[tlb_entry]
else (rD) ← TLBHI[tlb_entry]

(PID) ← TID from TLB[tlb_entry] 

Registers Altered
• rD.
• PID if WS=0.

Exceptions
• Program—Attempted execution of this instruction from user mode.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.
• WS value greater than 1.

Compatibility
This instruction is defined as optional by the operating-environment architecture level 
(OEA) of the PowerPC embedded-environment architecture and the PowerPC Book-E 

tlbre rD, rA, WS

X Instruction Form

31 rD rA WS 946 0
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architecture. Because it is optional and not defined by the PowerPC architecture it is not 
implemented by all PowerPC processors. 
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tlbsx
TLB Search Indexed

Description
This is a privileged instruction.

An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

The TLB is searched for a valid entry that translates the combination of the EA and current 
PID (PID24:31). If a valid entry is found, the corresponding TLB index is loaded into rD. 

The TLB is searched regardless of whether address translation is enabled.

If Rc=1, CR[CR0] is updated to reflect the search result. If a valid entry is found, 
CR[CR0]EQ is set to 1. If a valid entry is not found, CR[CR0]EQ is cleared to 0.

Pseudocode
EA ← (rA|0) + (rB)
if Rc = 1

then CR[CR0]LT ← 0
CR[CR0]GT ← 0
CR[CR0]SO ← XER[SO]

if Valid TLB entry matching EA and PID is in the TLB
then (rD) ← Index of matching TLB Entry

if Rc = 1
then CR[CR0]EQ ← 1 

else (rD) ← Undefined 
if Rc = 1

then CR[CR0]EQ ← 0 

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• Program—Attempted execution of this instruction from user mode.

tlbsx rD, rA, rB (Rc=0)

tlbsx. rD, rA, rB (Rc=1)

X Instruction Form

31 rD rA rB 914 Rc
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Compatibility
This instruction is defined as optional by the operating-environment architecture level 
(OEA) of the PowerPC embedded-environment architecture and the PowerPC Book-E 
architecture. Because it is optional and not defined by the PowerPC architecture it is not 
implemented by all PowerPC processors. 
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tlbsync
TLB Synchronize 

Description
This is a privileged instruction.

The tlbsync instruction is provided by the PowerPC architecture to support TLB 
synchronization in multi-processor systems. In the PPC405 this instruction performs no 
operation. It is provided to facilitate code portability.

Pseudocode
No operation

Registers Altered
• None.

Exceptions
• Program—Attempted execution of this instruction from user mode.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined as optional by the operating-environment architecture level 
(OEA) of the PowerPC architecture, the PowerPC embedded-environment architecture, 
and the PowerPC Book-E architecture. Because it is optional it is not implemented by all 
PowerPC processors. 

tlbsync

X Instruction Form

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 566 0
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tlbwe
TLB Write Entry 

Description
This is a privileged instruction.

This instruction writes a new entry into the TLB. rA26:31 contains an index which is used to 
select an entry in the TLB. The WS field specifies which portion of the TLB entry is written 
from rS. If WS=0, the tag portion (TLBHI) is written from rS and the PID field (PID24:31) is 
written into the TLBHI[TID] field. If WS=1, the data portion (TLBLO) is written from rS.

See TLB Entries, page 476 for a description of the TLB-entry format.

The TLB entry is written regardless of whether address translation is enabled. A context-
synchronizing instruction should follow the tlbwe instruction to guarantee that the effect 
of writing a TLB entry is visible to subsequent instructions.

Simplified mnemonics defined for this instruction are described in TLB-Management 
Instructions, page 832.

Pseudocode
tlb_entry = (rA26:31)
if WS4 = 1

then TLBLO[tlb_entry] ← (rS)
else TLBHI[tlb_entry] ← (rS)

TID of TLB[tlb_entry] ← (PID24:31)

Registers Altered
• None.

Exceptions
• Program—Attempted execution of this instruction from user mode.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.
• WS value greater than 1.

Compatibility
This instruction is defined as optional by the operating-environment architecture level 
(OEA) of the PowerPC embedded-environment architecture and the PowerPC Book-E 

tlbwe rS, rA, WS

X Instruction Form

31 rS rA WS 978 0
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architecture. Because it is optional and not defined by the PowerPC architecture it is not 
implemented by all PowerPC processors. 
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tw
Trap Word

Description
The TO opcode field specifies the test conditions to be performed on the contents of 
registers rA and rB. See Table 3-13, page 377 for more information on the TO field. If any 
test condition is met, a trap occurs as follows:

• If the trap-instruction debug event is not enabled (DBCR[TDE] = 0, or both 
DBCR[IDM] = 0 and DBCR[EDM] = 0), a program interrupt occurs.

• If the trap-instruction debug event is enabled as an external-debug event 
(DBCR[TDE] = 1 and DBCR[EDM] = 1), the processor enters the debug stop state. An 
external debugger is used to control the processor from this state.

Also, if internal-debug events are enabled (DBCR[IDM] = 1) and debug exceptions are 
disabled (MSR[DE] = 0), an imprecise debug-event is reported by setting DBSR[IDE] to 
1.

• If the trap-instruction debug event is enabled as an internal-debug event 
(DBCR[TDE] = 1, DBCR[IDM] = 1, and DBCR[EDM] = 0), the action taken depends on 
whether debug exceptions are enabled:
- If debug exceptions are enabled (MSR[DE] = 1) a debug interrupt occurs.
- If debug exceptions are disabled (MSR[DE] = 0) a program interrupt occurs. An 

imprecise debug-event is also reported by setting DBSR[IDE] to 1.

Refer to the following for more information:

• Program Interrupt (0x0700), page 511.
• Debug Interrupt (0x2000), page 521.
• Trap-Instruction Debug Event, page 546.
• Internal-Debug Mode, page 536.
• External-Debug Mode, page 536.

Simplified mnemonics defined for this instruction are described in Trap Instructions, 
page 832.

Pseudocode
if ((rA) (rB)) ∧ (TO0 = 1) then trap
if ((rA) (rB)) ∧ (TO1 = 1) then trap
if ((rA) (rB)) ∧ (TO2 = 1) then trap
if ((rA) (rB)) ∧ (TO3 = 1) then trap
if ((rA) (rB)) ∧ (TO4 = 1) then trap

tw TO, rA, rB

X Instruction Form

31 TO rA rB 4 0
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Registers Altered
• None.

Exceptions
• Program—As specified above.
• Debug—As specified above.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors. However, the behavior of the trap as it relates to 
the debug exception is implementation-specific.
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twi
Trap Word Immediate

Description
The TO opcode field specifies the test conditions to be performed on the contents of 
register rA and the sign-extended SIMM field (sign-extended to 32 bits). See Table 3-13, 
page 377 for more information on the TO field. If any test condition is met, a trap occurs as 
follows:

• If the trap-instruction debug event is not enabled (DBCR[TDE] = 0, or both 
DBCR[IDM] = 0 and DBCR[EDM] = 0), a program interrupt occurs.

• If the trap-instruction debug event is enabled as an external-debug event 
(DBCR[TDE] = 1 and DBCR[EDM] = 1), the processor enters the debug stop state. An 
external debugger is used to control the processor from this state.

Also, if internal-debug events are enabled (DBCR[IDM] = 1) and debug exceptions are 
disabled (MSR[DE] = 0), an imprecise debug-event is reported by setting DBSR[IDE] to 
1.

• If the trap-instruction debug event is enabled as an internal-debug event 
(DBCR[TDE] = 1, DBCR[IDM] = 1, and DBCR[EDM] = 0), the action taken depends on 
whether debug exceptions are enabled:
- If debug exceptions are enabled (MSR[DE] = 1) a debug interrupt occurs.
- If debug exceptions are disabled (MSR[DE] = 0) a program interrupt occurs. An 

imprecise debug-event is also reported by setting DBSR[IDE] to 1.

Refer to the following for more information:

• Program Interrupt (0x0700), page 511.
• Debug Interrupt (0x2000), page 521.
• Trap-Instruction Debug Event, page 546.
• Internal-Debug Mode, page 536.
• External-Debug Mode, page 536.

Simplified mnemonics defined for this instruction are described in Trap Instructions, 
page 832.

Pseudocode
if ((rA) EXTS(SIMM))∧ (TO0 = 1) then trap
if ((rA) EXTS(SIMM))∧ (TO1 = 1) then trap
if ((rA) EXTS(SIMM))∧ (TO2 = 1) then trap
if ((rA) EXTS(SIMM))∧ (TO3 = 1) then trap
if ((rA) EXTS(SIMM))∧ (TO4 = 1) then trap

twi TO, rA, SIMM

D Instruction Form

3 TO rA SIMM
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Registers Altered
• None.

Exceptions
• Program—As specified above.
• Debug—As specified above.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors. However, the behavior of the trap as it relates to 
the debug exception is implementation-specific.
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wrtee
Write External Enable

Description
This is a privileged instruction.

MSR[EE] is set to the value specified by bit 16 in register rS.

Pseudocode
MSR[EE] ← (rS)16

Registers Altered
• MSR[EE].

Exceptions
• Program—Attempted execution of this instruction from user mode.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the operating-environment architecture level (OEA) of the 
the PowerPC embedded-environment architecture and the PowerPC Book-E architecture. 
Because it is not defined by the PowerPC architecture it is not implemented by all 
PowerPC processors. 

wrtee rS

X Instruction Form

31 rS 0 0 0 0 0 0 0 0 0 0 131 0

0 6 1
1

2
1

3
1
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wrteei
Write External Enable Immediate

Description
This is a privileged instruction.

MSR[EE] is set to the value specified by the E opcode field.

Pseudocode
MSR[EE] ← E

Registers Altered
• MSR[EE].

Exceptions
• Program—Attempted execution of this instruction from user mode.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the operating-environment architecture level (OEA) of the 
the PowerPC embedded-environment architecture and the PowerPC Book-E architecture. 
Because it is not defined by the PowerPC architecture it is not implemented by all 
PowerPC processors. 

wrteei E

X Instruction Form

31 0 0 0 0 0 0 0 0 0 0 E 0 0 0 0 163 0

0 6 1
6

1
7

2
1

3
1
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xor
XOR

Description
The contents of register rS are XORed with the contents of register rB and the result is 
loaded into register rA.

Pseudocode
(rA) ← (rS) ⊕ (rB)

Registers Altered
• rA.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

xor rA, rS, rB (Rc=0)

xor. rA, rS, rB (Rc=1)

X Instruction Form

31 rS rA rB 316 Rc

0 6 1
1

1
6

2
1

3
1
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xori
XOR Immediate

Description
The UIMM field is extended to 32 bits by concatenating 16 0-bits on the left. The contents of 
register rS are XORed with the extended UIMM field and the result is loaded into register 
rA.

Pseudocode
(rA) ← (rS) ⊕ (160 || UIMM)

Registers Altered
• rA.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

xori rA, rS, UIMM

D Instruction Form

26 rS rA UIMM

0 6 1
1

1
6

3
1
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xoris
XOR Immediate Shifted

Description
The UIMM field is extended to 32 bits by concatenating 16 0-bits on the right. The contents 
of register rS are XORed with the extended UIMM field and the result is loaded into 
register rA.

Pseudocode
(rA) ← (rS) ⊕ (UIMM || 160)

Registers Altered
• rA.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

xoris rA, rS, UIMM

D Instruction Form

27 rS rA UIMM

0 6 1
1

1
6

3
1
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R

Appendix A

Register Summary

This appendix lists the registers supported by the PPC405. Each table following the register 
cross-reference shows the register name, its descriptive name, the register number, 
whether the register is privileged (accessible only from privileged mode), the type of 
access allowed, and the reset value. In these tables, a column headed “Dec” contains 
Decimal values and a column headed “Hex” contains hexadecimal values.

Register Cross-Reference
Table A-1 provides a cross-reference to detailed information on all registers supported by 
the PPC405.

Table A-1: PPC405 Register Cross-Reference

Name Descriptive Name Cross Reference

r0–r31 General-Purpose Registers 0–31 General-Purpose Registers (GPRs), page 360

CR Condition Register Condition Register (CR), page 361

MSR Machine-State Register Machine-State Register, page 431

CCR0 Core-Configuration Register 0 Core-Configuration Register, page 459

CTR Count Register Count Register (CTR), page 364

DAC1 Data Address-Compare 1 Data Address-Compare Registers, page 543

DAC2 Data Address-Compare 2

DBCR0 Debug-Control Register 0 Debug-Control Registers, page 538

DBCR1 Debug-Control Register 1

DBSR Debug-Status Register Debug-Status Register, page 541

DCCR Data-Cache Cacheability Register Data-Cache Cacheability Register (DCCR), page 454

DCWR Data-Cache Write-Through Register Data-Cache Write-Through Register (DCWR), 
page 453

DEAR Data-Error Address Register Data Exception-Address Register, page 502

DVC1 Data Value-Compare 1 Data Value-Compare Registers, page 543

DVC2 Data Value-Compare 2

ESR Exception-Syndrome Register Exception-Syndrome Register, page 500

EVPR Exception-Vector Prefix Register Exception-Vector Prefix Register, page 500
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General-Purpose Registers 
Table A-2 lists the general-purpose registers (GPRs). A binary version of the register 
number is shown to assist in interpreting instruction encodings often found in machine-
code listings.

IAC1 Instruction Address-Compare 1 Instruction Address-Compare Registers, page 542

IAC2 Instruction Address-Compare 2

IAC3 Instruction Address-Compare 3

IAC4 Instruction Address-Compare 4

ICCR Instruction-Cache Cacheability Register Instruction-Cache Cacheability Register (ICCR), 
page 454

ICDBDR Instruction-Cache Debug-Data Register icread Instruction, page 468

LR Link Register Link Register (LR), page 363

PID Process ID Register Process-ID Register, page 474

PIT Programmable-Interval Timer Programmable-Interval Timer Register, page 527

PVR Processor-Version Register Processor-Version Register, page 433

SGR Storage Guarded Register Storage Guarded Register (SGR), page 455

SLER Storage Little-Endian Register Storage Little-Endian Register (SLER), page 455

SPRG0 SPR General-Purpose Register 0 SPR General-Purpose Registers, page 432

SPRG1 SPR General-Purpose Register 1

SPRG2 SPR General-Purpose Register 2

SPRG3 SPR General-Purpose Register 3

SPRG4 SPR General-Purpose Register 4

SPRG5 SPR General-Purpose Register 5

SPRG6 SPR General-Purpose Register 6

SPRG7 SPR General-Purpose Register 7

SRR0 Save/Restore Register 0 Save/Restore Registers 0 and 1, page 498

SRR1 Save/Restore Register 1

SRR2 Save/Restore Register 2 Save/Restore Registers 2 and 3, page 499

SRR3 Save/Restore Register 3

SU0R Storage User-Defined 0 Register Storage User-Defined 0 Register (SU0R), page 455

TBL Time-Base Lower Time Base, page 524

TBU Time-Base Upper

TCR Timer-Control Register Timer-Control Register, page 528

TSR Timer-Status Register Timer-Status Register, page 529

USPRG0 User SPR General-Purpose Register 0 User-SPR General-Purpose Register, page 364

XER Fixed-Point Exception Register Fixed-Point Exception Register (XER), page 363

ZPR Zone-Protection Register Zone Protection, page 482

Table A-1: PPC405 Register Cross-Reference (Continued)

Name Descriptive Name Cross Reference
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Table A-2: General-Purpose Registers

Name Descriptive Name
Register Number

Privileged Access Reset Value
Dec Hex Binary

r0 General-Purpose Register 0 0 0x00 0b00000 No Read/Write Undefined

r1 General-Purpose Register 1 1 0x01 0b00001 No Read/Write Undefined

r2 General-Purpose Register 2 2 0x02 0b00010 No Read/Write Undefined

r3 General-Purpose Register 3 3 0x03 0b00011 No Read/Write Undefined

r4 General-Purpose Register 4 4 0x04 0b00100 No Read/Write Undefined

r5 General-Purpose Register 5 5 0x05 0b00101 No Read/Write Undefined

r6 General-Purpose Register 6 6 0x06 0b00110 No Read/Write Undefined

r7 General-Purpose Register 7 7 0x07 0b00111 No Read/Write Undefined

r8 General-Purpose Register 8 8 0x08 0b01000 No Read/Write Undefined

r9 General-Purpose Register 9 9 0x09 0b01001 No Read/Write Undefined

r10 General-Purpose Register 10 10 0x0A 0b01010 No Read/Write Undefined

r11 General-Purpose Register 11 11 0x0B 0b01011 No Read/Write Undefined

r12 General-Purpose Register 12 12 0x0C 0b01100 No Read/Write Undefined

r13 General-Purpose Register 13 13 0x0D 0b01101 No Read/Write Undefined

r14 General-Purpose Register 14 14 0x0E 0b01110 No Read/Write Undefined

r15 General-Purpose Register 15 15 0x0F 0b01111 No Read/Write Undefined

r16 General-Purpose Register 16 16 0x10 0b10000 No Read/Write Undefined

r17 General-Purpose Register 17 17 0x11 0b10001 No Read/Write Undefined

r18 General-Purpose Register 18 18 0x12 0b10010 No Read/Write Undefined

r19 General-Purpose Register 19 19 0x13 0b10011 No Read/Write Undefined

r20 General-Purpose Register 20 20 0x14 0b10100 No Read/Write Undefined

r21 General-Purpose Register 21 21 0x15 0b10101 No Read/Write Undefined

r22 General-Purpose Register 22 22 0x16 0b10110 No Read/Write Undefined

r23 General-Purpose Register 23 23 0x17 0b10111 No Read/Write Undefined

r24 General-Purpose Register 24 24 0x18 0b11000 No Read/Write Undefined

r25 General-Purpose Register 25 25 0x19 0b11001 No Read/Write Undefined

r26 General-Purpose Register 26 26 0x1A 0b11010 No Read/Write Undefined

r27 General-Purpose Register 27 27 0x1B 0b11011 No Read/Write Undefined

r28 General-Purpose Register 28 28 0x1C 0b11100 No Read/Write Undefined

r29 General-Purpose Register 29 29 0x1D 0b11101 No Read/Write Undefined

r30 General-Purpose Register 30 30 0x1E 0b11110 No Read/Write Undefined

r31 General-Purpose Register 31 31 0x1F 0b11111 No Read/Write Undefined

http://www.xilinx.com


770 www.xilinx.com March 2002 Release
1-800-255-7778 Virtex-II Pro™ Platform FPGA Documentation

Appendix A: Register Summary
R

Machine-State Register and Condition Register
Table A-3 lists the machine-state and condition registers. These registers are accessed using 
special instructions and do not have register numbers associated with them.

Special-Purpose Registers
Table A-4 lists the special-purpose registers sorted by name. The SPRN is the SPR number 
that appears in the assembler syntax. The SPRF is the split-field version of the SPRN that 
appears in the instruction encoding. Table A-5, page 772 lists the special-purpose registers 
sorted by SPRN and Table A-6, page 773 lists the special-purpose registers sorted by SPRF.

The following notes apply to the “Reset Value” column in these tables:

Notes: 
1. The most-recent reset bits are set as follows:

00—No reset occurred. This is the value of WRS if the watchdog timer did not cause the reset.
01—A processor-only reset occurred.
10—A chip reset occurred.
11—A system reset occurred.
All remaining bits are undefined.

2. WRC is cleared, disabling watchdog time-out resets. All remaining bits are undefined.

Table A-3: Machine-State and Condition Registers

Name Descriptive Name Register Number Privileged Access Reset Value

CR Condition Register Not Applicable No Read/Write Undefined

MSR Machine-State Register Not Applicable Yes Read/Write 0x0000_0000

Table A-4: Special-Purpose Registers Sorted by Name

Name Descriptive Name
SPRN SPRF

Privileged Access Reset Value
Dec Hex Hex Binary

CCR0 Core-Configuration Register 0 947 0x3B3 0x27D 0b10011_11101 Yes Read/Write Undefined

CTR Count Register 9 0x009 0x120 0b01001_00000 No Read/Write Undefined

DAC1 Data Address-Compare 1 1014 0x3F6 0x2DF 0b10110_11111 Yes Read/Write Undefined

DAC2 Data Address-Compare 2 1015 0x3F7 0x2FF 0b10111_11111 Yes Read/Write Undefined

DBCR0 Debug-Control Register 0 1010 0x3F2 0x25F 0b10010_11111 Yes Read/Write 0x0000_0000

DBCR1 Debug-Control Register 1 957 0x3BD 0x3BD 0b11101_11101 Yes Read/Write 0x0000_0000

DBSR Debug-Status Register 1008 0x3F0 0x21F 0b10000_11111 Yes Read/Clear Undefined1

DCCR Data-Cache Cacheability Register 1018 0x3FA 0x35F 0b11010_11111 Yes Read/Write 0x0000_0000

DCWR Data-Cache Write-Through Register 954 0x3BA 0x35D 0b11010_11101 Yes Read/Write Undefined

DEAR Data-Error Address Register 981 0x3D5 0x2BE 0b10101_11110 Yes Read/Write Undefined

DVC1 Data Value-Compare 1 950 0x3B6 0x2DD 0b10110_11101 Yes Read/Write Undefined

DVC2 Data Value-Compare 2 951 0x3B7 0x2FD 0b10111_11101 Yes Read/Write Undefined

ESR Exception-Syndrome Register 980 0x3D4 0x29E 0b10100_11110 Yes Read/Write 0x0000_0000

EVPR Exception-Vector Prefix Register 982 0x3D6 0x2DE 0b10110_11110 Yes Read/Write Undefined

IAC1 Instruction Address-Compare 1 1012 0x3F4 0x29F 0b10100_11111 Yes Read/Write Undefined

IAC2 Instruction Address-Compare 2 1013 0x3F5 0x2B5 0b10101_11111 Yes Read/Write Undefined
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Table A-5 lists the special-purpose registers sorted by the SPRN. The SPRN is the SPR 
number that appears in the assembler syntax. This table is useful in interpreting assembler 
listings.

IAC3 Instruction Address-Compare 3 948 0x3B4 0x29D 0b10100_11101 Yes Read/Write Undefined

IAC4 Instruction Address-Compare 4 949 0x3B5 0x2BD 0b10101_11101 Yes Read/Write Undefined

ICCR Instruction-Cache Cacheability 
Register

1019 0x3FB 0x37F 0b11011_11111 Yes Read/Write 0x0000_0000

ICDBDR Instruction-Cache Debug-Data Register 979 0x3D3 0x27E 0b10011_11110 Yes Read-Only Undefined

LR Link Register 8 0x008 0x100 0b01000_00000 No Read/Write Undefined

PID Process ID Register 945 0x3B1 0x23D 0b10001_11101 Yes Read/Write Undefined

PIT Programmable-Interval Timer 987 0x3DB 0x37E 0b11011_11110 Yes Read/Write Undefined

PVR Processor-Version Register 287 0x11F 0x3E8 0b11111_01000 Yes Read-Only 0x2001_0820

SGR Storage Guarded Register 953 0x3B9 0x33D 0b11001_11101 Yes Read/Write 0xFFFF_FFFF

SLER Storage Little-Endian Register 955 0x3BB 0x37D 0b11011_11101 Yes Read/Write 0x0000_0000

SPRG0 SPR General-Purpose Register 0 272 0x110 0x208 0b10000_01000 Yes Read/Write Undefined

SPRG1 SPR General-Purpose Register 1 273 0x111 0x228 0b10001_01000 Yes Read/Write Undefined

SPRG2 SPR General-Purpose Register 2 274 0x112 0x248 0b10010_01000 Yes Read/Write Undefined

SPRG3 SPR General-Purpose Register 3 275 0x113 0x268 0b10011_01000 Yes Read/Write Undefined

SPRG4 SPR General-Purpose Register 4 260 0x104 0x088 0b00100_01000 No Read-Only Undefined

SPRG4 SPR General-Purpose Register 4 276 0x114 0x288 0b10100_01000 Yes Read/Write Undefined

SPRG5 SPR General-Purpose Register 5 261 0x105 0x0A8 0b00101_01000 No Read-Only Undefined

SPRG5 SPR General-Purpose Register 5 277 0x115 0x2A8 0b10101_01000 Yes Read/Write Undefined

SPRG6 SPR General-Purpose Register 6 262 0x106 0x0C8 0b00110_01000 No Read-Only Undefined

SPRG6 SPR General-Purpose Register 6 278 0x116 0x2C8 0b10110_01000 Yes Read/Write Undefined

SPRG7 SPR General-Purpose Register 7 263 0x107 0x0E8 0b00111_01000 No Read-Only Undefined

SPRG7 SPR General-Purpose Register 7 279 0x117 0x2E8 0b10111_01000 Yes Read/Write Undefined

SRR0 Save/Restore Register 0 26 0x01A 0x340 0b11010_00000 Yes Read/Write Undefined

SRR1 Save/Restore Register 1 27 0x01B 0x360 0b11011_00000 Yes Read/Write Undefined

SRR2 Save/Restore Register 2 990 0x3DE 0x3DE 0b11110_11110 Yes Read/Write Undefined

SRR3 Save/Restore Register 3 991 0x3DF 0x3FE 0b11111_11110 Yes Read/Write Undefined

SU0R Storage User-Defined 0 Register 956 0x3BC 0x39D 0b11100_11101 Yes Read/Write 0x0000_0000

TBL Time-Base Lower 284 0x11C 0x388 0b11100_01000 Yes Write-Only Undefined

TBU Time-Base Upper 285 0x11D 0x3A8 0b11101_01000 Yes Write-Only Undefined

TCR Timer-Control Register 986 0x3DA 0x35E 0b11010_11110 Yes Read/Write Undefined2

TSR Timer-Status Register 984 0x3D8 0x31E 0b11000_11110 Yes Read/Clear Undefined1

USPRG0 User SPR General-Purpose Register 0 256 0x100 0x008 0b00000_01000 No Read/Write Undefined

XER Fixed-Point Exception Register 1 0x001 0x020 0b00001_00000 No Read/Write Undefined

ZPR Zone-Protection Register 944 0x3B0 0x21D 0b10000_11101 Yes Read/Write Undefined

Table A-4: Special-Purpose Registers Sorted by Name (Continued)

Name Descriptive Name
SPRN SPRF

Privileged Access Reset Value
Dec Hex Hex Binary
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Table A-5: Special-Purpose Registers Sorted by SPRN

Name Descriptive Name
SPRN SPRF

Privileged Access Reset Value
Dec Hex Hex Binary

XER Fixed-Point Exception Register 1 0x001 0x020 0b00001_00000 No Read/Write Undefined

LR Link Register 8 0x008 0x100 0b01000_00000 No Read/Write Undefined

CTR Count Register 9 0x009 0x120 0b01001_00000 No Read/Write Undefined

SRR0 Save/Restore Register 0 26 0x01A 0x340 0b11010_00000 Yes Read/Write Undefined

SRR1 Save/Restore Register 1 27 0x01B 0x360 0b11011_00000 Yes Read/Write Undefined

USPRG0 User SPR General-Purpose Register 0 256 0x100 0x008 0b00000_01000 No Read/Write Undefined

SPRG4 SPR General-Purpose Register 4 260 0x104 0x088 0b00100_01000 No Read-Only Undefined

SPRG5 SPR General-Purpose Register 5 261 0x105 0x0A8 0b00101_01000 No Read-Only Undefined

SPRG6 SPR General-Purpose Register 6 262 0x106 0x0C8 0b00110_01000 No Read-Only Undefined

SPRG7 SPR General-Purpose Register 7 263 0x107 0x0E8 0b00111_01000 No Read-Only Undefined

SPRG0 SPR General-Purpose Register 0 272 0x110 0x208 0b10000_01000 Yes Read/Write Undefined

SPRG1 SPR General-Purpose Register 1 273 0x111 0x228 0b10001_01000 Yes Read/Write Undefined

SPRG2 SPR General-Purpose Register 2 274 0x112 0x248 0b10010_01000 Yes Read/Write Undefined

SPRG3 SPR General-Purpose Register 3 275 0x113 0x268 0b10011_01000 Yes Read/Write Undefined

SPRG4 SPR General-Purpose Register 4 276 0x114 0x288 0b10100_01000 Yes Read/Write Undefined

SPRG5 SPR General-Purpose Register 5 277 0x115 0x2A8 0b10101_01000 Yes Read/Write Undefined

SPRG6 SPR General-Purpose Register 6 278 0x116 0x2C8 0b10110_01000 Yes Read/Write Undefined

SPRG7 SPR General-Purpose Register 7 279 0x117 0x2E8 0b10111_01000 Yes Read/Write Undefined

TBL Time-Base Lower 284 0x11C 0x388 0b11100_01000 Yes Write-Only Undefined

TBU Time-Base Upper 285 0x11D 0x3A8 0b11101_01000 Yes Write-Only Undefined

PVR Processor-Version Register 287 0x11F 0x3E8 0b11111_01000 Yes Read-Only 0x2001_0820

ZPR Zone-Protection Register 944 0x3B0 0x21D 0b10000_11101 Yes Read/Write Undefined

PID Process ID Register 945 0x3B1 0x23D 0b10001_11101 Yes Read/Write Undefined

CCR0 Core-Configuration Register 0 947 0x3B3 0x27D 0b10011_11101 Yes Read/Write Undefined

IAC3 Instruction Address-Compare 3 948 0x3B4 0x29D 0b10100_11101 Yes Read/Write Undefined

IAC4 Instruction Address-Compare 4 949 0x3B5 0x2BD 0b10101_11101 Yes Read/Write Undefined

DVC1 Data Value-Compare 1 950 0x3B6 0x2DD 0b10110_11101 Yes Read/Write Undefined

DVC2 Data Value-Compare 2 951 0x3B7 0x2FD 0b10111_11101 Yes Read/Write Undefined

SGR Storage Guarded Register 953 0x3B9 0x33D 0b11001_11101 Yes Read/Write 0xFFFF_FFFF

DCWR Data-Cache Write-Through Register 954 0x3BA 0x35D 0b11010_11101 Yes Read/Write Undefined

SLER Storage Little-Endian Register 955 0x3BB 0x37D 0b11011_11101 Yes Read/Write 0x0000_0000

SU0R Storage User-Defined 0 Register 956 0x3BC 0x39D 0b11100_11101 Yes Read/Write 0x0000_0000

DBCR1 Debug-Control Register 1 957 0x3BD 0x3BD 0b11101_11101 Yes Read/Write 0x0000_0000

ICDBDR Instruction-Cache Debug-Data Register 979 0x3D3 0x27E 0b10011_11110 Yes Read-Only Undefined

ESR Exception-Syndrome Register 980 0x3D4 0x29E 0b10100_11110 Yes Read/Write 0x0000_0000

DEAR Data-Error Address Register 981 0x3D5 0x2BE 0b10101_11110 Yes Read/Write Undefined
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Table A-6 lists the special-purpose registers sorted by SPRF. The SPRF is the split-field 
version of the SPRN that appears in the instruction encoding. This table is useful in 
interpreting machine-code listings.

EVPR Exception-Vector Prefix Register 982 0x3D6 0x2DE 0b10110_11110 Yes Read/Write Undefined

TSR Timer-Status Register 984 0x3D8 0x31E 0b11000_11110 Yes Read/Clear Undefined1

TCR Timer-Control Register 986 0x3DA 0x35E 0b11010_11110 Yes Read/Write Undefined2

PIT Programmable-Interval Timer 987 0x3DB 0x37E 0b11011_11110 Yes Read/Write Undefined

SRR2 Save/Restore Register 2 990 0x3DE 0x3DE 0b11110_11110 Yes Read/Write Undefined

SRR3 Save/Restore Register 3 991 0x3DF 0x3FE 0b11111_11110 Yes Read/Write Undefined

DBSR Debug-Status Register 1008 0x3F0 0x21F 0b10000_11111 Yes Read/Clear Undefined1

DBCR0 Debug-Control Register 0 1010 0x3F2 0x25F 0b10010_11111 Yes Read/Write 0x0000_0000

IAC1 Instruction Address-Compare 1 1012 0x3F4 0x29F 0b10100_11111 Yes Read/Write Undefined

IAC2 Instruction Address-Compare 2 1013 0x3F5 0x2B5 0b10101_11111 Yes Read/Write Undefined

DAC1 Data Address-Compare 1 1014 0x3F6 0x2DF 0b10110_11111 Yes Read/Write Undefined

DAC2 Data Address-Compare 2 1015 0x3F7 0x2FF 0b10111_11111 Yes Read/Write Undefined

DCCR Data-Cache Cacheability Register 1018 0x3FA 0x35F 0b11010_11111 Yes Read/Write 0x0000_0000

ICCR Instruction-Cache Cacheability 
Register

1019 0x3FB 0x37F 0b11011_11111 Yes Read/Write 0x0000_0000

Table A-5: Special-Purpose Registers Sorted by SPRN (Continued)

Name Descriptive Name
SPRN SPRF

Privileged Access Reset Value
Dec Hex Hex Binary

Table A-6: Special-Purpose Registers Sorted by SPRF

Name Descriptive Name
SPRN SPRF

Privileged Access Reset Value
Dec Hex Hex Binary

USPRG0 User SPR General-Purpose Register 0 256 0x100 0x008 0b00000_01000 No Read/Write Undefined

XER Fixed-Point Exception Register 1 0x001 0x020 0b00001_00000 No Read/Write Undefined

SPRG4 SPR General-Purpose Register 4 260 0x104 0x088 0b00100_01000 No Read-Only Undefined

SPRG5 SPR General-Purpose Register 5 261 0x105 0x0A8 0b00101_01000 No Read-Only Undefined

SPRG6 SPR General-Purpose Register 6 262 0x106 0x0C8 0b00110_01000 No Read-Only Undefined

SPRG7 SPR General-Purpose Register 7 263 0x107 0x0E8 0b00111_01000 No Read-Only Undefined

LR Link Register 8 0x008 0x100 0b01000_00000 No Read/Write Undefined

CTR Count Register 9 0x009 0x120 0b01001_00000 No Read/Write Undefined

SPRG0 SPR General-Purpose Register 0 272 0x110 0x208 0b10000_01000 Yes Read/Write Undefined

ZPR Zone-Protection Register 944 0x3B0 0x21D 0b10000_11101 Yes Read/Write Undefined

DBSR Debug-Status Register 1008 0x3F0 0x21F 0b10000_11111 Yes Read/Clear Undefined1

SPRG1 SPR General-Purpose Register 1 273 0x111 0x228 0b10001_01000 Yes Read/Write Undefined

PID Process ID Register 945 0x3B1 0x23D 0b10001_11101 Yes Read/Write Undefined

SPRG2 SPR General-Purpose Register 2 274 0x112 0x248 0b10010_01000 Yes Read/Write Undefined

DBCR0 Debug-Control Register 0 1010 0x3F2 0x25F 0b10010_11111 Yes Read/Write 0x0000_0000

SPRG3 SPR General-Purpose Register 3 275 0x113 0x268 0b10011_01000 Yes Read/Write Undefined
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CCR0 Core-Configuration Register 0 947 0x3B3 0x27D 0b10011_11101 Yes Read/Write Undefined

ICDBDR Instruction-Cache Debug-Data Register 979 0x3D3 0x27E 0b10011_11110 Yes Read-Only Undefined

SPRG4 SPR General-Purpose Register 4 276 0x114 0x288 0b10100_01000 Yes Read/Write Undefined

IAC3 Instruction Address-Compare 3 948 0x3B4 0x29D 0b10100_11101 Yes Read/Write Undefined

ESR Exception-Syndrome Register 980 0x3D4 0x29E 0b10100_11110 Yes Read/Write 0x0000_0000

IAC1 Instruction Address-Compare 1 1012 0x3F4 0x29F 0b10100_11111 Yes Read/Write Undefined

SPRG5 SPR General-Purpose Register 5 277 0x115 0x2A8 0b10101_01000 Yes Read/Write Undefined

IAC2 Instruction Address-Compare 2 1013 0x3F5 0x2B5 0b10101_11111 Yes Read/Write Undefined

IAC4 Instruction Address-Compare 4 949 0x3B5 0x2BD 0b10101_11101 Yes Read/Write Undefined

DEAR Data-Error Address Register 981 0x3D5 0x2BE 0b10101_11110 Yes Read/Write Undefined

SPRG6 SPR General-Purpose Register 6 278 0x116 0x2C8 0b10110_01000 Yes Read/Write Undefined

DVC1 Data Value-Compare 1 950 0x3B6 0x2DD 0b10110_11101 Yes Read/Write Undefined

EVPR Exception-Vector Prefix Register 982 0x3D6 0x2DE 0b10110_11110 Yes Read/Write Undefined

DAC1 Data Address-Compare 1 1014 0x3F6 0x2DF 0b10110_11111 Yes Read/Write Undefined

SPRG7 SPR General-Purpose Register 7 279 0x117 0x2E8 0b10111_01000 Yes Read/Write Undefined

DVC2 Data Value-Compare 2 951 0x3B7 0x2FD 0b10111_11101 Yes Read/Write Undefined

DAC2 Data Address-Compare 2 1015 0x3F7 0x2FF 0b10111_11111 Yes Read/Write Undefined

TSR Timer-Status Register 984 0x3D8 0x31E 0b11000_11110 Yes Read/Clear Undefined1

SGR Storage Guarded Register 953 0x3B9 0x33D 0b11001_11101 Yes Read/Write 0xFFFF_FFFF

SRR0 Save/Restore Register 0 26 0x01A 0x340 0b11010_00000 Yes Read/Write Undefined

DCWR Data-Cache Write-Through Register 954 0x3BA 0x35D 0b11010_11101 Yes Read/Write Undefined

TCR Timer-Control Register 986 0x3DA 0x35E 0b11010_11110 Yes Read/Write Undefined2

DCCR Data-Cache Cacheability Register 1018 0x3FA 0x35F 0b11010_11111 Yes Read/Write 0x0000_0000

SRR1 Save/Restore Register 1 27 0x01B 0x360 0b11011_00000 Yes Read/Write Undefined

SLER Storage Little-Endian Register 955 0x3BB 0x37D 0b11011_11101 Yes Read/Write 0x0000_0000

PIT Programmable-Interval Timer 987 0x3DB 0x37E 0b11011_11110 Yes Read/Write Undefined

ICCR Instruction-Cache Cacheability 
Register

1019 0x3FB 0x37F 0b11011_11111 Yes Read/Write 0x0000_0000

TBL Time-Base Lower 284 0x11C 0x388 0b11100_01000 Yes Write-Only Undefined

SU0R Storage User-Defined 0 Register 956 0x3BC 0x39D 0b11100_11101 Yes Read/Write 0x0000_0000

TBU Time-Base Upper 285 0x11D 0x3A8 0b11101_01000 Yes Write-Only Undefined

DBCR1 Debug-Control Register 1 957 0x3BD 0x3BD 0b11101_11101 Yes Read/Write 0x0000_0000

SRR2 Save/Restore Register 2 990 0x3DE 0x3DE 0b11110_11110 Yes Read/Write Undefined

PVR Processor-Version Register 287 0x11F 0x3E8 0b11111_01000 Yes Read-Only 0x2001_0820

SRR3 Save/Restore Register 3 991 0x3DF 0x3FE 0b11111_11110 Yes Read/Write Undefined

Table A-6: Special-Purpose Registers Sorted by SPRF (Continued)

Name Descriptive Name
SPRN SPRF

Privileged Access Reset Value
Dec Hex Hex Binary
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Time-Base Registers
Table A-7 lists the time-base registers accessed (read) using the mftb instruction. These 
registers can be written using the mtspr instruction (see Special-Purpose Registers, 
page 770 for information on the time-base SPRs). The TBRN is the time-base number that 
appears in the assembler syntax. The TBRF is the split-field version of the TBRN that 
appears in the instruction encoding.

Device Control Registers
Device control registers (DCRs) are not architecturally part of the PPC405. DCRs are used 
to control, configure, and record status for functional units implemented outside the 
PPC405 processor but on the same chip. Although the PPC405 does not contain DCRs, the 
mfdcr and mtdcr instructions are used by privileged software to access their contents.

Table A-7: Time-Base Registers

Name Descriptive Name
TBRN TBRF

Privileged Access Reset Value
Dec Hex Hex Binary

TBL Time-Base Lower 268 0x10C 0x188 0b01100_01000 No Read-Only Undefined

TBU Time-Base Upper 269 0x10D 0x1A8 0b01101_01000 No Read-Only Undefined
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Appendix B

Instruction Summary

This appendix lists the PPC405 instruction set sorted by mnemonic, opcode, function, and 
form. A reference table containing general instruction information such as the architecture 
level, privilege level, and compatibility is also provided.

In the following tables, reserved fields are shaded gray and contain a value of zero.

Instructions Sorted by Mnemonic
Table B-1 lists the PPC405 instruction set in alphabetical order by mnemonic.

Table B-1: Instructions Sorted by Mnemonic

0 6 9 11 12 14 16 17 20 21 22 26 30 31

add 31 rD rA rB OE 266 Rc

addc 31 rD rA rB OE 10 Rc

adde 31 rD rA rB OE 138 Rc

addi 14 rD rA SIMM

addic 12 rD rA SIMM

addic. 13 rD rA SIMM

addis 15 rD rA SIMM

addme 31 rD rA 00000 OE 234 Rc

addze 31 rD rA 00000 OE 202 Rc

and 31 rS rA rB 28 Rc

andc 31 rS rA rB 60 Rc

andi. 28 rS rA UIMM

andis. 29 rS rA UIMM

b 18 LI AA LK

bc 16 BO BI BD AA LK

bcctr 19 BO BI 00000 528 LK

bclr 19 BO BI 00000 16 LK

cmp 31 crfD 00 rA rB 0 0

cmpi 11 crfD 00 rA SIMM

cmpl 31 crfD 00 rA rB 32 0

cmpli 10 crfD 00 rA SIMM
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cntlzw 31 rS rA 00000 26 Rc

crand 19 crbD crbA crbB 257 0

crandc 19 crbD crbA crbB 129 0

creqv 19 crbD crbA crbB 289 0

crnand 19 crbD crbA crbB 225 0

crnor 19 crbD crbA crbB 33 0

cror 19 crbD crbA crbB 449 0

crorc 19 crbD crbA crbB 417 0

crxor 19 crbD crbA crbB 193 0

dcba 31 00000 rA rB 758 0

dcbf 31 00000 rA rB 86 0

dcbi 31 00000 rA rB 470 0

dcbst 31 00000 rA rB 54 0

dcbt 31 00000 rA rB 278 0

dcbtst 31 00000 rA rB 246 0

dcbz 31 00000 rA rB 1014 0

dccci 31 00000 rA rB 454 0

dcread 31 rD rA rB 486 0

divw 31 rD rA rB OE 491 Rc

divwu 31 rD rA rB OE 459 Rc

eieio 31 00000 00000 00000 854 0

eqv 31 rS rA rB 284 Rc

extsb 31 rS rA 00000 954 Rc

extsh 31 rS rA 00000 922 Rc

icbi 31 00000 rA rB 982 0

icbt 31 00000 rA rB 262 0

iccci 31 00000 rA rB 966 0

icread 31 00000 rA rB 998 0

isync 19 00000 00000 00000 150 0

lbz 34 rD rA d

lbzu 35 rD rA d

lbzux 31 rD rA rB 119 0

lbzx 31 rD rA rB 87 0

lha 42 rD rA d

lhau 43 rD rA d

lhaux 31 rD rA rB 375 0

lhax 31 rD rA rB 343 0

lhbrx 31 rD rA rB 790 0

Table B-1: Instructions Sorted by Mnemonic (Continued)

0 6 9 11 12 14 16 17 20 21 22 26 30 31
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lhz 40 rD rA d

lhzu 41 rD rA d

lhzux 31 rD rA rB 311 0

lhzx 31 rD rA rB 279 0

lmw 46 rD rA d

lswi 31 rD rA NB 597 0

lswx 31 rD rA rB 533 0

lwarx 31 rD rA rB 20 0

lwbrx 31 rD rA rB 534 0

lwz 32 rD rA d

lwzu 33 rD rA d

lwzux 31 rD rA rB 55 0

lwzx 31 rD rA rB 23 0

macchw 4 rD rA rB OE 172 Rc

macchws 4 rD rA rB OE 236 Rc

macchwsu 4 rD rA rB OE 204 Rc

macchwu 4 rD rA rB OE 140 Rc

machhw 4 rD rA rB OE 44 Rc

machhws 4 rD rA rB OE 108 Rc

machhwsu 4 rD rA rB OE 76 Rc

machhwu 4 rD rA rB OE 12 Rc

maclhw 4 rD rA rB OE 428 Rc

maclhws 4 rD rA rB OE 492 Rc

maclhwsu 4 rD rA rB OE 460 Rc

maclhwu 4 rD rA rB OE 396 Rc

mcrf 19 crfD 00 crfS 00 00000 0 0

mcrxr 31 crfD 00 00000 00000 512 0

mfcr 31 rD 00000 00000 19 0

mfdcr 31 rD DCRF 323 0

mfmsr 31 rD 00000 00000 83 0

mfspr 31 rD SPRF 339 0

mftb 31 rD TBRF 371 0

mtcrf 31 rS 0 CRM 0 144 0

mtdcr 31 rS DCRF 451 0

mtmsr 31 rS 00000 00000 146 0

mtspr 31 rS SPRF 467 0

mulchw 4 rD rA rB 168 Rc

mulchwu 4 rD rA rB 136 Rc

Table B-1: Instructions Sorted by Mnemonic (Continued)

0 6 9 11 12 14 16 17 20 21 22 26 30 31
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mulhhw 4 rD rA rB 40 Rc

mulhhwu 4 rD rA rB 8 Rc

mulhw 31 rD rA rB 0 75 Rc

mulhwu 31 rD rA rB 0 11 Rc

mullhw 4 rD rA rB 424 Rc

mullhwu 4 rD rA rB 392 Rc

mulli 7 rD rA SIMM

mullw 31 rD rA rB OE 235 Rc

nand 31 rS rA rB 476 Rc

neg 31 rD rA 00000 OE 104 Rc

nmacchw 4 rD rA rB OE 174 Rc

nmacchws 4 rD rA rB OE 238 Rc

nmachhw 4 rD rA rB OE 46 Rc

nmachhws 4 rD rA rB OE 110 Rc

nmaclhw 4 rD rA rB OE 430 Rc

nmaclhws 4 rD rA rB OE 494 Rc

nor 31 rS rA rB 124 Rc

or 31 rS rA rB 444 Rc

orc 31 rS rA rB 412 Rc

ori 24 rS rA UIMM

oris 25 rS rA UIMM

rfci 19 00000 00000 00000 51 0

rfi 19 00000 00000 00000 50 0

rlwimi 20 rS rA SH MB ME Rc

rlwinm 21 rS rA SH MB ME Rc

rlwnm 23 rS rA rB MB ME Rc

sc 17 00000 00000 00000 00000 0000 1 0

slw 31 rS rA rB 24 Rc

sraw 31 rS rA rB 792 Rc

srawi 31 rS rA SH 824 Rc

srw 31 rS rA rB 536 Rc

stb 38 rS rA d

stbu 39 rS rA d

stbux 31 rS rA rB 247 0

stbx 31 rS rA rB 215 0

sth 44 rS rA d

sthbrx 31 rS rA rB 918 0

sthu 45 rS rA d

Table B-1: Instructions Sorted by Mnemonic (Continued)

0 6 9 11 12 14 16 17 20 21 22 26 30 31
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Instructions Sorted by Opcode
Table B-2 lists the PPC405 instruction set in numeric order by primary and secondary 
opcode.

sthux 31 rS rA rB 439 0

sthx 31 rS rA rB 407 0

stmw 47 rS rA d

stswi 31 rS rA NB 725 0

stswx 31 rS rA rB 661 0

stw 36 rS rA d

stwbrx 31 rS rA rB 662 0

stwcx. 31 rS rA rB 150 1

stwu 37 rS rA d

stwux 31 rS rA rB 183 0

stwx 31 rS rA rB 151 0

subf 31 rD rA rB OE 40 Rc

subfc 31 rD rA rB OE 8 Rc

subfe 31 rD rA rB OE 136 Rc

subfic 8 rD rA SIMM

subfme 31 rD rA 00000 OE 232 Rc

subfze 31 rD rA 00000 OE 200 Rc

sync 31 00000 00000 00000 598 0

tlbia 31 00000 00000 00000 370 0

tlbre 31 rD rA WS 946 0

tlbsx 31 rD rA rB 914 Rc

tlbsync 31 00000 00000 00000 566 0

tlbwe 31 rS rA WS 978 0

tw 31 TO rA rB 4 0

twi 3 TO rA SIMM

wrtee 31 rS 00000 00000 131 0

wrteei 31 00000 00000 E 0000 163 0

xor 31 rS rA rB 316 Rc

xori 26 rS rA UIMM

xoris 27 rS rA UIMM

Table B-1: Instructions Sorted by Mnemonic (Continued)

0 6 9 11 12 14 16 17 20 21 22 26 30 31
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Table B-2: Instructions Sorted by Opcode

0 6 9 11 12 14 16 17 20 21 22 26 30 31

twi 3 TO rA SIMM

mulhhwu 4 rD rA rB 8 Rc

machhwu 4 rD rA rB OE 12 Rc

mulhhw 4 rD rA rB 40 Rc

machhw 4 rD rA rB OE 44 Rc

nmachhw 4 rD rA rB OE 46 Rc

machhwsu 4 rD rA rB OE 76 Rc

machhws 4 rD rA rB OE 108 Rc

nmachhws 4 rD rA rB OE 110 Rc

mulchwu 4 rD rA rB 136 Rc

macchwu 4 rD rA rB OE 140 Rc

mulchw 4 rD rA rB 168 Rc

macchw 4 rD rA rB OE 172 Rc

nmacchw 4 rD rA rB OE 174 Rc

macchwsu 4 rD rA rB OE 204 Rc

macchws 4 rD rA rB OE 236 Rc

nmacchws 4 rD rA rB OE 238 Rc

mullhwu 4 rD rA rB 392 Rc

maclhwu 4 rD rA rB OE 396 Rc

mullhw 4 rD rA rB 424 Rc

maclhw 4 rD rA rB OE 428 Rc

nmaclhw 4 rD rA rB OE 430 Rc

maclhwsu 4 rD rA rB OE 460 Rc

maclhws 4 rD rA rB OE 492 Rc

nmaclhws 4 rD rA rB OE 494 Rc

mulli 7 rD rA SIMM

subfic 8 rD rA SIMM

cmpli 10 crfD 00 rA SIMM

cmpi 11 crfD 00 rA SIMM

addic 12 rD rA SIMM

addic. 13 rD rA SIMM

addi 14 rD rA SIMM

addis 15 rD rA SIMM

bc 16 BO BI BD AA LK

sc 17 00000 00000 00000 00000 0000 1 0

b 18 LI AA LK

mcrf 19 crfD 00 crfS 00 00000 0 0
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bclr 19 BO BI 00000 16 LK

crnor 19 crbD crbA crbB 33 0

rfi 19 00000 00000 00000 50 0

rfci 19 00000 00000 00000 51 0

crandc 19 crbD crbA crbB 129 0

isync 19 00000 00000 00000 150 0

crxor 19 crbD crbA crbB 193 0

crnand 19 crbD crbA crbB 225 0

crand 19 crbD crbA crbB 257 0

creqv 19 crbD crbA crbB 289 0

crorc 19 crbD crbA crbB 417 0

cror 19 crbD crbA crbB 449 0

bcctr 19 BO BI 00000 528 LK

rlwimi 20 rS rA SH MB ME Rc

rlwinm 21 rS rA SH MB ME Rc

rlwnm 23 rS rA rB MB ME Rc

ori 24 rS rA UIMM

oris 25 rS rA UIMM

xori 26 rS rA UIMM

xoris 27 rS rA UIMM

andi. 28 rS rA UIMM

andis. 29 rS rA UIMM

cmp 31 crfD 00 rA rB 0 0

tw 31 TO rA rB 4 0

subfc 31 rD rA rB OE 8 Rc

addc 31 rD rA rB OE 10 Rc

mulhwu 31 rD rA rB 0 11 Rc

mfcr 31 rD 00000 00000 19 0

lwarx 31 rD rA rB 20 0

lwzx 31 rD rA rB 23 0

slw 31 rS rA rB 24 Rc

cntlzw 31 rS rA 00000 26 Rc

and 31 rS rA rB 28 Rc

cmpl 31 crfD 00 rA rB 32 0

subf 31 rD rA rB OE 40 Rc

dcbst 31 00000 rA rB 54 0

lwzux 31 rD rA rB 55 0

andc 31 rS rA rB 60 Rc

Table B-2: Instructions Sorted by Opcode (Continued)

0 6 9 11 12 14 16 17 20 21 22 26 30 31
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mulhw 31 rD rA rB 0 75 Rc

mfmsr 31 rD 00000 00000 83 0

dcbf 31 00000 rA rB 86 0

lbzx 31 rD rA rB 87 0

neg 31 rD rA 00000 OE 104 Rc

lbzux 31 rD rA rB 119 0

nor 31 rS rA rB 124 Rc

wrtee 31 rS 00000 00000 131 0

subfe 31 rD rA rB OE 136 Rc

adde 31 rD rA rB OE 138 Rc

mtcrf 31 rS 0 CRM 0 144 0

mtmsr 31 rS 00000 00000 146 0

stwcx. 31 rS rA rB 150 1

stwx 31 rS rA rB 151 0

wrteei 31 00000 00000 E 0000 163 0

stwux 31 rS rA rB 183 0

subfze 31 rD rA 00000 OE 200 Rc

addze 31 rD rA 00000 OE 202 Rc

stbx 31 rS rA rB 215 0

subfme 31 rD rA 00000 OE 232 Rc

addme 31 rD rA 00000 OE 234 Rc

mullw 31 rD rA rB OE 235 Rc

dcbtst 31 00000 rA rB 246 0

stbux 31 rS rA rB 247 0

icbt 31 00000 rA rB 262 0

add 31 rD rA rB OE 266 Rc

dcbt 31 00000 rA rB 278 0

lhzx 31 rD rA rB 279 0

eqv 31 rS rA rB 284 Rc

lhzux 31 rD rA rB 311 0

xor 31 rS rA rB 316 Rc

mfdcr 31 rD DCRF 323 0

mfspr 31 rD SPRF 339 0

lhax 31 rD rA rB 343 0

tlbia 31 00000 00000 00000 370 0

mftb 31 rD TBRF 371 0

lhaux 31 rD rA rB 375 0

sthx 31 rS rA rB 407 0

Table B-2: Instructions Sorted by Opcode (Continued)

0 6 9 11 12 14 16 17 20 21 22 26 30 31
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orc 31 rS rA rB 412 Rc

sthux 31 rS rA rB 439 0

or 31 rS rA rB 444 Rc

mtdcr 31 rS DCRF 451 0

dccci 31 00000 rA rB 454 0

divwu 31 rD rA rB OE 459 Rc

mtspr 31 rS SPRF 467 0

dcbi 31 00000 rA rB 470 0

nand 31 rS rA rB 476 Rc

dcread 31 rD rA rB 486 0

divw 31 rD rA rB OE 491 Rc

mcrxr 31 crfD 00 00000 00000 512 0

lswx 31 rD rA rB 533 0

lwbrx 31 rD rA rB 534 0

srw 31 rS rA rB 536 Rc

tlbsync 31 00000 00000 00000 566 0

lswi 31 rD rA NB 597 0

sync 31 00000 00000 00000 598 0

stswx 31 rS rA rB 661 0

stwbrx 31 rS rA rB 662 0

stswi 31 rS rA NB 725 0

dcba 31 00000 rA rB 758 0

lhbrx 31 rD rA rB 790 0

sraw 31 rS rA rB 792 Rc

srawi 31 rS rA SH 824 Rc

eieio 31 00000 00000 00000 854 0

tlbsx 31 rD rA rB 914 Rc

sthbrx 31 rS rA rB 918 0

extsh 31 rS rA 00000 922 Rc

tlbre 31 rD rA WS 946 0

extsb 31 rS rA 00000 954 Rc

iccci 31 00000 rA rB 966 0

tlbwe 31 rS rA WS 978 0

icbi 31 00000 rA rB 982 0

icread 31 00000 rA rB 998 0

dcbz 31 00000 rA rB 1014 0

lwz 32 rD rA d

lwzu 33 rD rA d

Table B-2: Instructions Sorted by Opcode (Continued)

0 6 9 11 12 14 16 17 20 21 22 26 30 31
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Instructions Grouped by Function
Table B-3 though Table B-22 list the PPC405 instruction set grouped by function. Within 
each table, instructions are sorted in alphabetical order by mnemonic.

lbz 34 rD rA d

lbzu 35 rD rA d

stw 36 rS rA d

stwu 37 rS rA d

stb 38 rS rA d

stbu 39 rS rA d

lhz 40 rD rA d

lhzu 41 rD rA d

lha 42 rD rA d

lhau 43 rD rA d

sth 44 rS rA d

sthu 45 rS rA d

lmw 46 rD rA d

stmw 47 rS rA d

Table B-2: Instructions Sorted by Opcode (Continued)

0 6 9 11 12 14 16 17 20 21 22 26 30 31

Table B-3: Integer Add and Subtract Instructions

0 6 11 16 21 22 31

add 31 rD rA rB OE 266 Rc

addc 31 rD rA rB OE 10 Rc

adde 31 rD rA rB OE 138 Rc

addi 14 rD rA SIMM

addic 12 rD rA SIMM

addic. 13 rD rA SIMM

addis 15 rD rA SIMM

addme 31 rD rA 00000 OE 234 Rc

addze 31 rD rA 00000 OE 202 Rc

neg 31 rD rA 00000 OE 104 Rc

subf 31 rD rA rB OE 40 Rc

subfc 31 rD rA rB OE 8 Rc

subfe 31 rD rA rB OE 136 Rc

subfic 8 rD rA SIMM

subfme 31 rD rA 00000 OE 232 Rc

subfze 31 rD rA 00000 OE 200 Rc
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Table B-4: Integer Divide and Multiply Instructions

0 6 11 16 21 22 31

divw 31 rD rA rB OE 491 Rc

divwu 31 rD rA rB OE 459 Rc

mulchw 4 rD rA rB 168 Rc

mulchwu 4 rD rA rB 136 Rc

mulhhw 4 rD rA rB 40 Rc

mulhhwu 4 rD rA rB 8 Rc

mulhw 31 rD rA rB 0 75 Rc

mulhwu 31 rD rA rB 0 11 Rc

mullhw 4 rD rA rB 424 Rc

mullhwu 4 rD rA rB 392 Rc

mulli 7 rD rA SIMM

mullw 31 rD rA rB OE 235 Rc

Table B-5: Integer Multiply-Accumulate Instructions

0 6 11 16 21 22 31

macchw 4 rD rA rB OE 172 Rc

macchws 4 rD rA rB OE 236 Rc

macchwsu 4 rD rA rB OE 204 Rc

macchwu 4 rD rA rB OE 140 Rc

machhw 4 rD rA rB OE 44 Rc

machhws 4 rD rA rB OE 108 Rc

machhwsu 4 rD rA rB OE 76 Rc

machhwu 4 rD rA rB OE 12 Rc

maclhw 4 rD rA rB OE 428 Rc

maclhws 4 rD rA rB OE 492 Rc

maclhwsu 4 rD rA rB OE 460 Rc

maclhwu 4 rD rA rB OE 396 Rc

nmacchw 4 rD rA rB OE 174 Rc

nmacchws 4 rD rA rB OE 238 Rc

nmachhw 4 rD rA rB OE 46 Rc

nmachhws 4 rD rA rB OE 110 Rc

nmaclhw 4 rD rA rB OE 430 Rc

nmaclhws 4 rD rA rB OE 494 Rc
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Table B-6: Integer Compare Instructions

0 6 9 11 16 21 31

cmp 31 crfD 00 rA rB 0 0

cmpi 11 crfD 00 rA SIMM

cmpl 31 crfD 00 rA rB 32 0

cmpli 10 crfD 00 rA SIMM

Table B-7: Integer Logical Instructions

0 6 11 16 21 31

and 31 rS rA rB 28 Rc

andc 31 rS rA rB 60 Rc

andi. 28 rS rA UIMM

andis. 29 rS rA UIMM

cntlzw 31 rS rA 00000 26 Rc

eqv 31 rS rA rB 284 Rc

extsb 31 rS rA 00000 954 Rc

extsh 31 rS rA 00000 922 Rc

nand 31 rS rA rB 476 Rc

nor 31 rS rA rB 124 Rc

or 31 rS rA rB 444 Rc

orc 31 rS rA rB 412 Rc

ori 24 rS rA UIMM

oris 25 rS rA UIMM

xor 31 rS rA rB 316 Rc

xori 26 rS rA UIMM

xoris 27 rS rA UIMM

Table B-8: Integer Rotate Instructions

0 6 11 16 21 26 31

rlwimi 20 rS rA SH MB ME Rc

rlwinm 21 rS rA SH MB ME Rc

rlwnm 23 rS rA rB MB ME Rc

Table B-9: Integer Shift Instructions

0 6 11 16 21 31

slw 31 rS rA rB 24 Rc
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sraw 31 rS rA rB 792 Rc

srawi 31 rS rA SH 824 Rc

srw 31 rS rA rB 536 Rc

Table B-9: Integer Shift Instructions (Continued)

0 6 11 16 21 31

Table B-10: Integer Load Instructions

0 6 11 16 21 31

lbz 34 rD rA d

lbzu 35 rD rA d

lbzux 31 rD rA rB 119 0

lbzx 31 rD rA rB 87 0

lha 42 rD rA d

lhau 43 rD rA d

lhaux 31 rD rA rB 375 0

lhax 31 rD rA rB 343 0

lhz 40 rD rA d

lhzu 41 rD rA d

lhzux 31 rD rA rB 311 0

lhzx 31 rD rA rB 279 0

lwz 32 rD rA d

lwzu 33 rD rA d

lwzux 31 rD rA rB 55 0

lwzx 31 rD rA rB 23 0

Table B-11: Integer Store Instructions

0 6 11 16 21 31

stb 38 rS rA d

stbu 39 rS rA d

stbux 31 rS rA rB 247 0

stbx 31 rS rA rB 215 0

sth 44 rS rA d

sthu 45 rS rA d

sthux 31 rS rA rB 439 0

sthx 31 rS rA rB 407 0

stw 36 rS rA d

stwu 37 rS rA d

stwux 31 rS rA rB 183 0

stwx 31 rS rA rB 151 0
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Table B-12: Integer Load and Store with Byte Reverse Instructions

0 6 11 16 21 31

lhbrx 31 rD rA rB 790 0

lwbrx 31 rD rA rB 534 0

sthbrx 31 rS rA rB 918 0

stwbrx 31 rS rA rB 662 0

Table B-13: Integer Load and Store Multiple Instructions

0 6 11 16 31

lmw 46 rD rA d

stmw 47 rS rA d

Table B-14: Integer Load and Store String Instructions

0 6 11 16 21 31

lswi 31 rD rA NB 597 0

lswx 31 rD rA rB 533 0

stswi 31 rS rA NB 725 0

stswx 31 rS rA rB 661 0

Table B-15: Branch Instructions

0 6 11 16 21 30 31

b 18 LI AA LK

bc 16 BO BI BD AA LK

bcctr 19 BO BI 00000 528 LK

bclr 19 BO BI 00000 16 LK

Table B-16: Condition Register Logical Instructions

0 6 9 11 14 16 21 31

crand 19 crbD crbA crbB 257 0

crandc 19 crbD crbA crbB 129 0

creqv 19 crbD crbA crbB 289 0

crnand 19 crbD crbA crbB 225 0

crnor 19 crbD crbA crbB 33 0

cror 19 crbD crbA crbB 449 0

crorc 19 crbD crbA crbB 417 0

crxor 19 crbD crbA crbB 193 0

mcrf 19 crfD 00 crfS 00 00000 0 0
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Table B-17: System Linkage Instructions

0 6 11 16 21 26 30 31

rfci 19 00000 00000 00000 51 0

rfi 19 00000 00000 00000 50 0

sc 17 00000 00000 00000 00000 0000 1 0

Table B-18: Trap Instructions

0 6 11 16 21 31

tw 31 TO rA rB 4 0

twi 3 TO rA SIMM

Table B-19: Synchronization Instructions

0 6 11 16 21 31

eieio 31 00000 00000 00000 854 0

isync 19 00000 00000 00000 150 0

lwarx 31 rD rA rB 20 0

stwcx. 31 rS rA rB 150 1

sync 31 00000 00000 00000 598 0

Table B-20: Processor Control Instructions

0 6 9 11 12 16 17 20 21 31

mcrxr 31 crfD 00 00000 00000 512 0

mfcr 31 rD 00000 00000 19 0

mfdcr 31 rD DCRF 323 0

mfmsr 31 rD 00000 00000 83 0

mfspr 31 rD SPRF 339 0

mftb 31 rD TBRF 371 0

mtcrf 31 rS 0 CRM 0 144 0

mtdcr 31 rS DCRF 451 0

mtmsr 31 rS 00000 00000 146 0

mtspr 31 rS SPRF 467 0

wrtee 31 rS 00000 00000 131 0

wrteei 31 00000 00000 E 0000 163 0
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Instructions Grouped by Form
Table B-23 though Table B-31 list the PPC405 instruction set grouped by form. Within each 
table, instructions are sorted in numeric order by primary and secondary opcode.

Table B-21: Cache Management Instructions

0 6 11 16 21 31

dcba 31 00000 rA rB 758 0

dcbf 31 00000 rA rB 86 0

dcbi 31 00000 rA rB 470 0

dcbst 31 00000 rA rB 54 0

dcbt 31 00000 rA rB 278 0

dcbtst 31 00000 rA rB 246 0

dcbz 31 00000 rA rB 1014 0

dccci 31 00000 rA rB 454 0

dcread 31 rD rA rB 486 0

icbi 31 00000 rA rB 982 0

icbt 31 00000 rA rB 262 0

iccci 31 00000 rA rB 966 0

icread 31 00000 rA rB 998 0

Table B-22: TLB Management Instructions

0 6 11 16 21 31

tlbia 31 00000 00000 00000 370 0

tlbre 31 rD rA WS 946 0

tlbsx 31 rD rA rB 914 Rc

tlbsync 31 00000 00000 00000 566 0

tlbwe 31 rS rA WS 978 0

Table B-23: B Form

0 6 11 16 30 31

bc 16 BO BI BD AA LK

Table B-24: D Form

0 6 9 11 16 31

twi 3 TO rA SIMM

mulli 7 rD rA SIMM

subfic 8 rD rA SIMM

cmpli 10 crfD 00 rA SIMM
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cmpi 11 crfD 00 rA SIMM

addic 12 rD rA SIMM

addic. 13 rD rA SIMM

addi 14 rD rA SIMM

addis 15 rD rA SIMM

ori 24 rS rA UIMM

oris 25 rS rA UIMM

xori 26 rS rA UIMM

xoris 27 rS rA UIMM

andi. 28 rS rA UIMM

andis. 29 rS rA UIMM

lwz 32 rD rA d

lwzu 33 rD rA d

lbz 34 rD rA d

lbzu 35 rD rA d

stw 36 rS rA d

stwu 37 rS rA d

stb 38 rS rA d

stbu 39 rS rA d

lhz 40 rD rA d

lhzu 41 rD rA d

lha 42 rD rA d

lhau 43 rD rA d

sth 44 rS rA d

sthu 45 rS rA d

lmw 46 rD rA d

stmw 47 rS rA d

Table B-24: D Form (Continued)

0 6 9 11 16 31

Table B-25: I Form

0 6 30 31

b 18 LI AA LK

Table B-26: M Form

0 6 11 16 21 26 31

rlwimi 20 rS rA SH MB ME Rc

rlwinm 21 rS rA SH MB ME Rc

rlwnm 23 rS rA rB MB ME Rc
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Table B-27: SC Form

0 6 11 16 21 26 30 31

sc 17 00000 00000 00000 00000 0000 1 0

Table B-28: X Form

0 6 9 11 16 17 21 31

mulhhwu 4 rD rA rB 8 Rc

mulhhw 4 rD rA rB 40 Rc

mulchwu 4 rD rA rB 136 Rc

mulchw 4 rD rA rB 168 Rc

mullhwu 4 rD rA rB 392 Rc

mullhw 4 rD rA rB 424 Rc

cmp 31 crfD 00 rA rB 0 0

tw 31 TO rA rB 4 0

mfcr 31 rD 00000 00000 19 0

lwarx 31 rD rA rB 20 0

lwzx 31 rD rA rB 23 0

slw 31 rS rA rB 24 Rc

cntlzw 31 rS rA 00000 26 Rc

and 31 rS rA rB 28 Rc

cmpl 31 crfD 00 rA rB 32 0

dcbst 31 00000 rA rB 54 0

lwzux 31 rD rA rB 55 0

andc 31 rS rA rB 60 Rc

mfmsr 31 rD 00000 00000 83 0

dcbf 31 00000 rA rB 86 0

lbzx 31 rD rA rB 87 0

lbzux 31 rD rA rB 119 0

nor 31 rS rA rB 124 Rc

wrtee 31 rS 00000 00000 131 0

mtmsr 31 rS 00000 00000 146 0

stwcx. 31 rS rA rB 150 1

stwx 31 rS rA rB 151 0

wrteei 31 00000 00000 E 0000 163 0

stwux 31 rS rA rB 183 0

stbx 31 rS rA rB 215 0

dcbtst 31 00000 rA rB 246 0

stbux 31 rS rA rB 247 0

icbt 31 00000 rA rB 262 0
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dcbt 31 00000 rA rB 278 0

lhzx 31 rD rA rB 279 0

eqv 31 rS rA rB 284 Rc

lhzux 31 rD rA rB 311 0

xor 31 rS rA rB 316 Rc

lhax 31 rD rA rB 343 0

tlbia 31 00000 00000 00000 370 0

lhaux 31 rD rA rB 375 0

sthx 31 rS rA rB 407 0

orc 31 rS rA rB 412 Rc

sthux 31 rS rA rB 439 0

or 31 rS rA rB 444 Rc

dccci 31 00000 rA rB 454 0

dcbi 31 00000 rA rB 470 0

nand 31 rS rA rB 476 Rc

dcread 31 rD rA rB 486 0

mcrxr 31 crfD 00 00000 00000 512 0

lswx 31 rD rA rB 533 0

lwbrx 31 rD rA rB 534 0

srw 31 rS rA rB 536 Rc

tlbsync 31 00000 00000 00000 566 0

lswi 31 rD rA NB 597 0

sync 31 00000 00000 00000 598 0

stswx 31 rS rA rB 661 0

stwbrx 31 rS rA rB 662 0

stswi 31 rS rA NB 725 0

dcba 31 00000 rA rB 758 0

lhbrx 31 rD rA rB 790 0

sraw 31 rS rA rB 792 Rc

srawi 31 rS rA SH 824 Rc

eieio 31 00000 00000 00000 854 0

tlbsx 31 rD rA rB 914 Rc

sthbrx 31 rS rA rB 918 0

extsh 31 rS rA 00000 922 Rc

tlbre 31 rD rA WS 946 0

extsb 31 rS rA 00000 954 Rc

iccci 31 00000 rA rB 966 0

tlbwe 31 rS rA WS 978 0

Table B-28: X Form (Continued)

0 6 9 11 16 17 21 31
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icbi 31 00000 rA rB 982 0

icread 31 00000 rA rB 998 0

dcbz 31 00000 rA rB 1014 0

Table B-28: X Form (Continued)

0 6 9 11 16 17 21 31

Table B-29: XFX Form

0 6 11 12 20 21 31

mtcrf 31 rS 0 CRM 0 144 0

mfdcr 31 rD DCRF 323 0

mfspr 31 rD SPRF 339 0

mftb 31 rD TBRF 371 0

mtdcr 31 rS DCRF 451 0

mtspr 31 rS SPRF 467 0

Table B-30: XL Form

0 6 9 11 14 16 21 31

mcrf 19 crfD 00 crfS 00 00000 0 0

bclr 19 BO BI 00000 16 LK

crnor 19 crbD crbA crbB 33 0

rfi 19 00000 00000 00000 50 0

rfci 19 00000 00000 00000 51 0

crandc 19 crbD crbA crbB 129 0

isync 19 00000 00000 00000 150 0

crxor 19 crbD crbA crbB 193 0

crnand 19 crbD crbA crbB 225 0

crand 19 crbD crbA crbB 257 0

creqv 19 crbD crbA crbB 289 0

crorc 19 crbD crbA crbB 417 0

cror 19 crbD crbA crbB 449 0

bcctr 19 BO BI 00000 528 LK

Table B-31: XO Form

0 6 11 16 21 22 31

machhwu 4 rD rA rB OE 12 Rc

machhw 4 rD rA rB OE 44 Rc

nmachhw 4 rD rA rB OE 46 Rc

machhwsu 4 rD rA rB OE 76 Rc

machhws 4 rD rA rB OE 108 Rc
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Instruction Set Information
Table B-32 classifies general information about the PPC405 instruction set. A lower-case 
“x” within a cell indicates the instruction is a member of the class specified by the column 
heading.

nmachhws 4 rD rA rB OE 110 Rc

macchwu 4 rD rA rB OE 140 Rc

macchw 4 rD rA rB OE 172 Rc

nmacchw 4 rD rA rB OE 174 Rc

macchwsu 4 rD rA rB OE 204 Rc

macchws 4 rD rA rB OE 236 Rc

nmacchws 4 rD rA rB OE 238 Rc

maclhwu 4 rD rA rB OE 396 Rc

maclhw 4 rD rA rB OE 428 Rc

nmaclhw 4 rD rA rB OE 430 Rc

maclhwsu 4 rD rA rB OE 460 Rc

maclhws 4 rD rA rB OE 492 Rc

nmaclhws 4 rD rA rB OE 494 Rc

subfc 31 rD rA rB OE 8 Rc

addc 31 rD rA rB OE 10 Rc

mulhwu 31 rD rA rB 0 11 Rc

subf 31 rD rA rB OE 40 Rc

mulhw 31 rD rA rB 0 75 Rc

neg 31 rD rA 00000 OE 104 Rc

subfe 31 rD rA rB OE 136 Rc

adde 31 rD rA rB OE 138 Rc

subfze 31 rD rA 00000 OE 200 Rc

addze 31 rD rA 00000 OE 202 Rc

subfme 31 rD rA 00000 OE 232 Rc

addme 31 rD rA 00000 OE 234 Rc

mullw 31 rD rA rB OE 235 Rc

add 31 rD rA rB OE 266 Rc

divwu 31 rD rA rB OE 459 Rc

divw 31 rD rA rB OE 491 Rc

Table B-31: XO Form (Continued)

0 6 11 16 21 22 31
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Table B-32: Instruction Set Information

Mnemonic
PowerPC

Architecture

PowerPC
Embedded

Environment
Architecture

PowerPC
Book-E 

Architecture

Implementation
Specific

Architecture
Level

Privileged Optional Form

add x x x UISA XO

addc x x x UISA XO

adde x x x UISA XO

addi x x x UISA D

addic x x x UISA D

addic. x x x UISA D

addis x x x UISA D

addme x x x UISA XO

addze x x x UISA XO

and x x x UISA X

andc x x x UISA X

andi. x x x UISA D

andis. x x x UISA D

b x x x UISA I

bc x x x UISA B

bcctr x x x UISA XL

bclr x x x UISA XL

cmp x x x UISA X

cmpi x x x UISA D

cmpl x x x UISA X

cmpli x x x UISA D

cntlzw x x x UISA X

crand x x x UISA XL

crandc x x x UISA XL

creqv x x x UISA XL

crnand x x x UISA XL

crnor x x x UISA XL

cror x x x UISA XL

crorc x x x UISA XL

crxor x x x UISA XL

dcba x x x VEA x X

dcbf x x x VEA X

dcbi x x x OEA x X

dcbst x x x VEA X

dcbt x x x VEA X
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dcbtst x x x VEA X

dcbz x x x VEA X

dccci x OEA x X

dcread x OEA x X

divw x x x UISA XO

divwu x x x UISA XO

eieio x x VEA X

eqv x x x UISA X

extsb x x x UISA X

extsh x x x UISA X

icbi x x x VEA X

icbt x x VEA X

iccci x OEA x X

icread x OEA x X

isync x x x VEA XL

lbz x x x UISA D

lbzu x x x UISA D

lbzux x x x UISA X

lbzx x x x UISA X

lha x x x UISA D

lhau x x x UISA D

lhaux x x x UISA X

lhax x x x UISA X

lhbrx x x x UISA X

lhz x x x UISA D

lhzu x x x UISA D

lhzux x x x UISA X

lhzx x x x UISA X

lmw x x x UISA D

lswi x x x UISA X

lswx x x x UISA X

lwarx x x x UISA X

lwbrx x x x UISA X

lwz x x x UISA D

lwzu x x x UISA D

lwzux x x x UISA X

Table B-32: Instruction Set Information (Continued)

Mnemonic
PowerPC

Architecture

PowerPC
Embedded

Environment
Architecture

PowerPC
Book-E 

Architecture

Implementation
Specific

Architecture
Level

Privileged Optional Form
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lwzx x x x UISA X

macchw x UISA XO

macchws x UISA XO

macchwsu x UISA XO

macchwu x UISA XO

machhw x UISA XO

machhws x UISA XO

machhwsu x UISA XO

machhwu x UISA XO

maclhw x UISA XO

maclhws x UISA XO

maclhwsu x UISA XO

maclhwu x UISA XO

mcrf x x x UISA XL

mcrxr x x x UISA X

mfcr x x x UISA X

mfdcr x x OEA x XFX

mfmsr x x x OEA x X

mfspr x x x
UISA

XFX
OEA x1

mftb x x VEA XFX

mtcrf x x x UISA XFX

mtdcr x x OEA x XFX

mtmsr x x x OEA x X

mtspr x x x
UISA

XFX
OEA x1

mulchw x UISA X

mulchwu x UISA X

mulhhw x UISA X

mulhhwu x UISA X

mulhw x x x UISA XO

mulhwu x x x UISA XO

mullhw x UISA X

mullhwu x UISA X

mulli x x x UISA D

mullw x x x UISA XO

Table B-32: Instruction Set Information (Continued)

Mnemonic
PowerPC

Architecture

PowerPC
Embedded

Environment
Architecture

PowerPC
Book-E 

Architecture

Implementation
Specific

Architecture
Level

Privileged Optional Form
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nand x x x UISA X

neg x x x UISA XO

nmacchw x UISA XO

nmacchws x UISA XO

nmachhw x UISA XO

nmachhws x UISA XO

nmaclhw x UISA XO

nmaclhws x UISA XO

nor x x x UISA X

or x x x UISA X

orc x x x UISA X

ori x x x UISA D

oris x x x UISA D

rfci x x OEA x XL

rfi x x x OEA x XL

rlwimi x x x UISA M

rlwinm x x x UISA M

rlwnm x x x UISA M

sc x x x UISA SC

slw x x x UISA X

sraw x x x UISA X

srawi x x x UISA X

srw x x x UISA X

stb x x x UISA D

stbu x x x UISA D

stbux x x x UISA X

stbx x x x UISA X

sth x x x UISA D

sthbrx x x x UISA X

sthu x x x UISA D

sthux x x x UISA X

sthx x x x UISA X

stmw x x x UISA D

stswi x x x UISA X

stswx x x x UISA X

stw x x x UISA D

Table B-32: Instruction Set Information (Continued)

Mnemonic
PowerPC

Architecture

PowerPC
Embedded

Environment
Architecture

PowerPC
Book-E 

Architecture

Implementation
Specific

Architecture
Level

Privileged Optional Form
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Notes: 
1. Execution of this instruction can be either privileged or non-privileged, depending on the SPR 

number.
2. These instructions are not optional if the PowerPC embedded-environment processor or 

PowerPC Book-E processor includes a translation look-aside buffer (TLB). The presence of a TLB 
is optional.

List of Mnemonics and Simplified Mnemonics
Table B-33 provides an alphabetic list of all mnemonics and simplified mnemonics 
described in this document. If the mnemonic is a simplified mnemonic, its equivalent 
mnemonic is listed in the column headed “Equivalent Mnemonic”. Otherwise, the column 
is shaded gray.

stwbrx x x x UISA X

stwcx. x x x UISA X

stwu x x x UISA D

stwux x x x UISA X

stwx x x x UISA X

subf x x x UISA XO

subfc x x x UISA XO

subfe x x x UISA XO

subfic x x x UISA D

subfme x x x UISA XO

subfze x x x UISA XO

sync x x x UISA X

tlbia x x OEA x x X

tlbre x x OEA x x2 X

tlbsx x x OEA x x2 X

tlbsync x x x OEA x x X

tlbwe x x OEA x x2 X

tw x x x UISA X

twi x x x UISA D

wrtee x x OEA X

wrteei x x OEA X

xor x x x UISA X

xori x x x UISA D

xoris x x x UISA D

Table B-32: Instruction Set Information (Continued)

Mnemonic
PowerPC

Architecture

PowerPC
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Architecture

PowerPC
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Table B-33: Complete List of Instruction Mnemonics

Mnemonic
or

Simplified
Mnemonic

Instruction Name
Equivalent
Mnemonic

Reference

add Add page 572

add. Add and Record

addc Add Carrying page 573

addc. Add Carrying and Record

addco Add Carrying with Overflow Enabled

addco. Add Carrying with Overflow Enabled and Record

adde Add Extended page 574

adde. Add Extended and Record

addeo Add Extended with Overflow Enabled

addeo. Add Extended with Overflow Enabled and Record

addi Add Immediate page 575

addic Add Immediate Carrying page 576

addic. Add Immediate Carrying and Record page 577

addis Add Immediate Shifted page 578

addme Add to Minus One Extended page 579

addme. Add to Minus One Extended and Record

addmeo Add to Minus One Extended with Overflow Enabled

addmeo. Add to Minus One Extended with Overflow Enabled and Record

addo Add with Overflow Enabled page 572

addo. Add with Overflow Enabled and Record

addze Add to Zero Extended page 580

addze. Add to Zero Extended and Record

addzeo Add to Zero Extended with Overflow Enabled

addzeo. Add to Zero Extended with Overflow Enabled and Record

and AND page 581

and. AND and Record

andc AND with Complement page 582

andc. AND with Complement and Record

andi. AND Immediate and Record page 583

andis. AND Immediate Shifted and Record page 584

b Branch page 585

ba Branch Absolute

bc Branch Conditional page 586

bca Branch Conditional Absolute
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bcctr Branch Conditional to Count Register page 588

bcctrl Branch Conditional to Count Register and Link

bcl Branch Conditional and Link page 586

bcla Branch Conditional Absolute and Link

bclr Branch Conditional to Link Register page 590

bclrl Branch Conditional to Link Register and Link

bctr Branch to Count Register bcctr page 823

bctrl Branch to Count Register and Link bcctrl page 824

bdnz Branch if Decremented CTR Not Zero bc page 822

bdnza Branch if Decremented CTR Not Zero Absolute bca page 822

bdnzf Branch if Decremented CTR Not Zero and Condition False bc page 822

bdnzfa Branch if Decremented CTR Not Zero and Condition False Absolute bca page 822

bdnzfl Branch if Decremented CTR Not Zero and Condition False and Link bcl page 823

bdnzfla Branch if Decremented CTR Not Zero and Condition False Absolute and Link bcla page 823

bdnzflr Branch if Decremented CTR Not Zero and Condition False to Link Register bclr page 823

bdnzflrl Branch if Decremented CTR Not Zero and Condition False to Link Register and Link bclrl page 824

bdnzl Branch if Decremented CTR Not Zero and Link bcl page 823

bdnzla Branch if Decremented CTR Not Zero Absolute and Link bcla page 823

bdnzlr Branch if Decremented CTR Not Zero to Link Register bclr page 823

bdnzlrl Branch if Decremented CTR Not Zero to Link Register and Link bclrl page 824

bdnzt Branch if Decremented CTR Not Zero and Condition True bc page 822

bdnzta Branch if Decremented CTR Not Zero and Condition True Absolute bca page 822

bdnztl Branch if Decremented CTR Not Zero and Condition True and Link bcl page 823

bdnztla Branch if Decremented CTR Not Zero and Condition True Absolute and Link bcla page 823

bdnztlr Branch if Decremented CTR Not Zero and Condition True to Link Register bclr page 823

bdnztlrl Branch if Decremented CTR Not Zero and Condition True to Link Register and Link bclrl page 824

bdz Branch if Decremented CTR Zero bc page 822

bdza Branch if Decremented CTR Zero Absolute bca page 822

bdzf Branch if Decremented CTR Zero and Condition False bc page 822

bdzfa Branch if Decremented CTR Zero and Condition False Absolute bca page 822

bdzfl Branch if Decremented CTR Zero and Condition False and Link bcl page 823

bdzfla Branch if Decremented CTR Zero and Condition False Absolute and Link bcla page 823

bdzflr Branch if Decremented CTR Zero and Condition False to Link Register bclr page 823

bdzflrl Branch if Decremented CTR Zero and Condition False to Link Register and Link bclrl page 824

bdzl Branch if Decremented CTR Zero and Link bcl page 823

bdzla Branch if Decremented CTR Zero Absolute and Link bcla page 823
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bdzlr Branch if Decremented CTR Zero to Link Register bclr page 823

bdzlrl Branch if Decremented CTR Zero to Link Register and Link bclrl page 824

bdzt Branch if Decremented CTR Zero and Condition True bc page 822

bdzta Branch if Decremented CTR Zero and Condition True Absolute bca page 822

bdztl Branch if Decremented CTR Zero and Condition True and Link bcl page 823

bdztla Branch if Decremented CTR Zero and Condition True Absolute and Link bcla page 823

bdztlr Branch if Decremented CTR Zero and Condition True to Link Register bclr page 823

bdztlrl Branch if Decremented CTR Zero and Condition True to Link Register and Link bclrl page 824

beq Branch if Equal bc page 825

beqa Branch if Equal Absolute bca page 825

beqctr Branch if Equal to Count Register bcctr page 826

beqctrl Branch if Equal to Count Register and Link bcctrl page 827

beql Branch if Equal and Link bcl page 826

beqla Branch if Equal Absolute and Link bcla page 826

beqlr Branch if Equal to Link Register bclr page 826

beqlrl Branch if Equal to Link Register and Link bclrl page 827

bf Branch if Condition False bc page 822

bfa Branch if Condition False Absolute bca page 822

bfctr Branch if Condition False to Count Register bcctr page 823

bfctrl Branch if Condition False to Count Register and Link bcctrl page 824

bfl Branch if Condition False and Link bcl page 823

bfla Branch if Condition False Absolute and Link bcla page 823

bflr Branch if Condition False to Link Register bclr page 823

bflrl Branch if Condition False to Link Register and Link bclrl page 824

bge Branch if Greater Than or Equal bc page 825

bgea Branch if Greater Than or Equal Absolute bca page 825

bgectr Branch if Greater Than or Equal to Count Register bcctr page 826

bgectrl Branch if Greater Than or Equal to Count Register and Link bcctrl page 827

bgel Branch if Greater Than or Equal and Link bcl page 826

bgela Branch if Greater Than or Equal Absolute and Link bcla page 826

bgelr Branch if Greater Than or Equal to Link Register bclr page 826

bgelrl Branch if Greater Than or Equal to Link Register and Link bclrl page 827

bgt Branch if Greater Than bc page 825

bgta Branch if Greater Than Absolute bca page 825

bgtctr Branch if Greater Than to Count Register bcctr page 826

bgtctrl Branch if Greater Than to Count Register and Link bcctrl page 827

Table B-33: Complete List of Instruction Mnemonics (Continued)

Mnemonic
or

Simplified
Mnemonic

Instruction Name
Equivalent
Mnemonic

Reference

http://www.xilinx.com


806 www.xilinx.com March 2002 Release
1-800-255-7778 Virtex-II Pro™ Platform FPGA Documentation

Appendix B: Instruction Summary
R

bgtl Branch if Greater Than and Link bcl page 826

bgtla Branch if Greater Than Absolute and Link bcla page 826

bgtlr Branch if Greater Than to Link Register bclr page 826

bgtlrl Branch if Greater Than to Link Register and Link bclrl page 827

bl Branch and Link page 585

bla Branch Absolute and Link

ble Branch if Less Than or Equal bc page 825

blea Branch if Less Than or Equal Absolute bca page 825

blectr Branch if Less Than or Equal to Count Register bcctr page 826

blectrl Branch if Less Than or Equal to Count Register and Link bcctrl page 827

blel Branch if Less Than or Equal and Link bcl page 826

blela Branch if Less Than or Equal Absolute and Link bcla page 826

blelr Branch if Less Than or Equal to Link Register bclr page 826

blelrl Branch if Less Than or Equal to Link Register and Link bclrl page 827

blr Branch to Link Register bclr page 823

blrl Branch to Link Register and Link bclrl page 824

blt Branch if Less Than bc page 825

blta Branch if Less Than Absolute bca page 825

bltctr Branch if Less Than to Count Register bcctr page 826

bltctrl Branch if Less Than to Count Register and Link bcctrl page 827

bltl Branch if Less Than and Link bcl page 826

bltla Branch if Less Than Absolute and Link bcla page 826

bltlr Branch if Less Than to Link Register bclr page 826

bltlrl Branch if Less Than to Link Register and Link bclrl page 827

bne Branch if Not Equal bc page 825

bnea Branch if Not Equal Absolute bca page 825

bnectr Branch if Not Equal to Count Register bcctr page 826

bnectrl Branch if Not Equal to Count Register and Link bcctrl page 827

bnel Branch if Not Equal and Link bcl page 826

bnela Branch if Not Equal Absolute and Link bcla page 826

bnelr Branch if Not Equal to Link Register bclr page 826

bnelrl Branch if Not Equal to Link Register and Link bclrl page 827

bng Branch if Not Greater Than bc page 825

bnga Branch if Not Greater Than Absolute bca page 825

bngctr Branch if Not Greater Than to Count Register bcctr page 826

bngctrl Branch if Not Greater Than to Count Register and Link bcctrl page 827

Table B-33: Complete List of Instruction Mnemonics (Continued)

Mnemonic
or

Simplified
Mnemonic

Instruction Name
Equivalent
Mnemonic

Reference

http://www.xilinx.com


March 2002 Release www.xilinx.com 807
Virtex-II Pro™ Platform FPGA Documentation 1-800-255-7778

List of Mnemonics and Simplified Mnemonics
R

bngl Branch if Not Greater Than and Link bcl page 826

bngla Branch if Not Greater Than Absolute and Link bcla page 826

bnglr Branch if Not Greater Than to Link Register bclr page 826

bnglrl Branch if Not Greater Than to Link Register and Link bclrl page 827

bnl Branch if Not Less Than bc page 825

bnla Branch if Not Less Than Absolute bca page 825

bnlctr Branch if Not Less Than to Count Register bcctr page 826

bnlctrl Branch if Not Less Than to Count Register and Link bcctrl page 827

bnll Branch if Not Less Than and Link bcl page 826

bnlla Branch if Not Less Than Absolute and Link bcla page 826

bnllr Branch if Not Less Than to Link Register bclr page 826

bnllrl Branch if Not Less Than to Link Register and Link bclrl page 827

bns Branch if Not Summary Overflow bc page 825

bnsa Branch if Not Summary Overflow Absolute bca page 825

bnsctr Branch if Not Summary Overflow to Count Register bcctr page 826

bnsctrl Branch if Not Summary Overflow to Count Register and Link bcctrl page 827

bnsl Branch if Not Summary Overflow and Link bcl page 826

bnsla Branch if Not Summary Overflow Absolute and Link bcla page 826

bnslr Branch if Not Summary Overflow to Link Register bclr page 826

bnslrl Branch if Not Summary Overflow to Link Register and Link bclrl page 827

bso Branch if Summary Overflow bc page 825

bsoa Branch if Summary Overflow Absolute bca page 825

bsoctr Branch if Summary Overflow to Count Register bcctr page 826

bsoctrl Branch if Summary Overflow to Count Register and Link bcctrl page 827

bsol Branch if Summary Overflow and Link bcl page 826

bsola Branch if Summary Overflow Absolute and Link bcla page 826

bsolr Branch if Summary Overflow to Link Register bclr page 826

bsolrl Branch if Summary Overflow to Link Register and Link bclrl page 827

bt Branch if Condition True bc page 822

bta Branch if Condition True Absolute bca page 822

btctr Branch if Condition True to Count Register bcctr page 823

btctrl Branch if Condition True to Count Register and Link bcctrl page 824

btl Branch if Condition True and Link bcl page 823

btla Branch if Condition True Absolute and Link bcla page 823

btlr Branch if Condition True to Link Register bclr page 823

btlrl Branch if Condition True to Link Register and Link bclrl page 824
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clrlslwi Clear Left and Shift Left Immediate rlwinm page 829

clrlslwi. Clear Left and Shift Left Immediate and Record rlwinm.

clrlwi Clear Left Immediate rlwinm

clrlwi. Clear Left Immediate and Record rlwinm.

clrrwi Clear Right Immediate rlwinm

clrrwi. Clear Right Immediate and Record rlwinm.

cmp Compare page 592

cmpi Compare Immediate page 593

cmpl Compare Logical page 594

cmpli Compare Logical Immediate page 595

cmplw Compare Logical Word cmpl page 828

cmplwi Compare Logical Word Immediate cmpli

cmpw Compare Word cmp

cmpwi Compare Word Immediate cmpi

cntlzw Count Leading Zeros Word page 596

cntlzw. Count Leading Zeros Word and Record

crand Condition Register AND page 597

crandc Condition Register AND with Complement page 598

crclr Condition Register Clear crxor page 828

creqv Condition Register Equivalent page 599

crmove Condition Register Move cror page 828

crnand Condition Register NAND page 600

crnor Condition Register NOR page 601

crnot Condition Register Not crnor page 828

cror Condition Register OR page 602

crorc Condition Register OR with Complement page 603

crset Condition Register Set creqv page 828

crxor Condition Register XOR page 604

dcba Data Cache Block Allocate page 605

dcbf Data Cache Block Flush page 607

dcbi Data Cache Block Invalidate page 609

dcbst Data Cache Block Store page 611

dcbt Data Cache Block Touch page 613

dcbtst Data Cache Block Touch for Store page 615

dcbz Data Cache Block Clear to Zero page 617

dccci Data Cache Congruence Class Invalidate page 619
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dcread Data Cache Read page 621

divw Divide Word page 623

divw. Divide Word and Record

divwo Divide Word with Overflow Enabled

divwo. Divide Word with Overflow Enabled and Record

divwu Divide Word Unsigned page 625

divwu. Divide Word Unsigned and Record

divwuo Divide Word Unsigned with Overflow Enabled

divwuo. Divide Word Unsigned with Overflow Enabled and Record

eieio Enforce In-Order Execution of I/O page 626

eqv Equivalent page 627

eqv. Equivalent and Record

extlwi Extract and Left Justify Immediate rlwinm page 829

extlwi. Extract and Left Justify Immediate and Record rlwinm.

extrwi Extract and Right Justify Immediate rlwinm

extrwi. Extract and Right Justify Immediate and Record rlwinm.

extsb Extend Sign Byte page 628

extsb. Extend Sign Byte and Record

extsh Extend Sign Halfword page 629

extsh. Extend Sign Halfword and Record

icbi Instruction Cache Block Invalidate page 630

icbt Instruction Cache Block Touch page 632

iccci Instruction Cache Congruence Class Invalidate page 634

icread Instruction Cache Read page 635

inslwi Insert from Left Immediate rlwimi page 829

inslwi. Insert from Left Immediate and Record rlwimi.

insrwi Insert from Right Immediate rlwimi

insrwi. Insert from Right Immediate and Record rlwimi.

isync Instruction Synchronize page 637

la Load Address addi page 834

lbz Load Byte and Zero page 638

lbzu Load Byte and Zero with Update page 639

lbzux Load Byte and Zero with Update Indexed page 640

lbzx Load Byte and Zero Indexed page 641

lha Load Halfword Algebraic page 642

lhau Load Halfword Algebraic with Update page 643
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lhaux Load Halfword Algebraic with Update Indexed page 644

lhax Load Halfword Algebraic Indexed page 645

lhbrx Load Halfword Byte-Reverse Indexed page 646

lhz Load Halfword and Zero page 647

lhzu Load Halfword and Zero with Update page 648

lhzux Load Halfword and Zero with Update Indexed page 649

lhzx Load Halfword and Zero Indexed page 650

li Load Immediate addi page 834

lis Load Immediate Shifted addis page 834

lmw Load Multiple Word page 651

lswi Load String Word Immediate page 653

lswx Load String Word Indexed page 655

lwarx Load Word and Reserve Indexed page 657

lwbrx Load Word Byte-Reverse Indexed page 658

lwz Load Word and Zero page 659

lwzu Load Word and Zero with Update page 660

lwzux Load Word and Zero with Update Indexed page 661

lwzx Load Word and Zero Indexed page 662

macchw Multiply Accumulate Cross Halfword to Word Modulo Signed page 663

macchw. Multiply Accumulate Cross Halfword to Word Modulo Signed and Record

macchwo Multiply Accumulate Cross Halfword to Word Modulo Signed with Overflow Enabled

macchwo. Multiply Accumulate Cross Halfword to Word Modulo Signed with Overflow Enabled and 
Record

macchws Multiply Accumulate Cross Halfword to Word Saturate Signed page 664

macchws. Multiply Accumulate Cross Halfword to Word Saturate Signed and Record

macchwso Multiply Accumulate Cross Halfword to Word Saturate Signed with Overflow Enabled

macchwso. Multiply Accumulate Cross Halfword to Word Saturate Signed with Overflow Enabled and 
Record

macchwsu Multiply Accumulate Cross Halfword to Word Saturate Unsigned page 665

macchwsu. Multiply Accumulate Cross Halfword to Word Saturate Unsigned and Record

macchwsuo Multiply Accumulate Cross Halfword to Word Saturate Unsigned with Overflow Enabled

macchwsuo. Multiply Accumulate Cross Halfword to Word Saturate Unsigned with Overflow Enabled and 
Record

macchwu Multiply Accumulate Cross Halfword to Word Modulo Unsigned page 666

macchwu. Multiply Accumulate Cross Halfword to Word Modulo Unsigned and Record

macchwuo Multiply Accumulate Cross Halfword to Word Modulo Unsigned with Overflow Enabled

macchwuo. Multiply Accumulate Cross Halfword to Word Modulo Unsigned with Overflow Enabled and 
Record
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machhw Multiply Accumulate High Halfword to Word Modulo Signed page 667

machhw. Multiply Accumulate High Halfword to Word Modulo Signed and Record

machhwo Multiply Accumulate High Halfword to Word Modulo Signed with Overflow Enabled

machhwo. Multiply Accumulate High Halfword to Word Modulo Signed with Overflow Enabled and 
Record

machhws Multiply Accumulate High Halfword to Word Saturate Signed page 668

machhws. Multiply Accumulate High Halfword to Word Saturate Signed and Record

machhwso Multiply Accumulate High Halfword to Word Saturate Signed with Overflow Enabled

machhwso. Multiply Accumulate High Halfword to Word Saturate Signed with Overflow Enabled and 
Record

machhwsu Multiply Accumulate High Halfword to Word Saturate Unsigned page 669

machhwsu. Multiply Accumulate High Halfword to Word Saturate Unsigned and Record

machhwsuo Multiply Accumulate High Halfword to Word Saturate Unsigned with Overflow Enabled

machhwsuo. Multiply Accumulate High Halfword to Word Saturate Unsigned with Overflow Enabled and 
Record

machhwu Multiply Accumulate High Halfword to Word Modulo Unsigned page 670

machhwu. Multiply Accumulate High Halfword to Word Modulo Unsigned and Record

machhwuo Multiply Accumulate High Halfword to Word Modulo Unsigned with Overflow Enabled

machhwuo. Multiply Accumulate High Halfword to Word Modulo Unsigned with Overflow Enabled and 
Record

maclhw Multiply Accumulate Low Halfword to Word Modulo Signed page 671

maclhw. Multiply Accumulate Low Halfword to Word Modulo Signed and Record

maclhwo Multiply Accumulate Low Halfword to Word Modulo Signed with Overflow Enabled

maclhwo. Multiply Accumulate Low Halfword to Word Modulo Signed with Overflow Enabled and 
Record

maclhws Multiply Accumulate Low Halfword to Word Saturate Signed page 672

maclhws. Multiply Accumulate Low Halfword to Word Saturate Signed and Record

maclhwso Multiply Accumulate Low Halfword to Word Saturate Signed with Overflow Enabled

maclhwso. Multiply Accumulate Low Halfword to Word Saturate Signed with Overflow Enabled and 
Record

maclhwsu Multiply Accumulate Low Halfword to Word Saturate Unsigned page 673

maclhwsu. Multiply Accumulate Low Halfword to Word Saturate Unsigned and Record

maclhwsuo Multiply Accumulate Low Halfword to Word Saturate Unsigned with Overflow Enabled

maclhwsuo. Multiply Accumulate Low Halfword to Word Saturate Unsigned with Overflow Enabled and 
Record

maclhwu Multiply Accumulate Low Halfword to Word Modulo Unsigned page 674

maclhwu. Multiply Accumulate Low Halfword to Word Modulo Unsigned and Record

maclhwuo Multiply Accumulate Low Halfword to Word Modulo Unsigned with Overflow Enabled

maclhwuo. Multiply Accumulate Low Halfword to Word Modulo Unsigned with Overflow Enabled and 
Record
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mcrf Move Condition Register Field page 675

mcrxr Move to Condition Register from XER page 676

mfccr0 Move From Core-Configuration Register 0 mfspr page 830

mfcr Move from Condition Register page 677

mfctr Move From Count Register mfspr page 830

mfdac1 Move From Data Address-Compare 1

mfdac2 Move From Data Address-Compare 2

mfdbcr0 Move From Debug-Control Register 0

mfdbcr1 Move From Debug-Control Register 1

mfdbsr Move From Debug-Status Register

mfdccr Move From Data-Cache Cachability Register

mfdcr Move from Device Control Register page 678

mfdcwr Move From Data-Cache Write-Through Register mfspr page 830

mfdear Move From Data-Error Address Register

mfdvc1 Move From Data Value-Compare 1

mfdvc2 Move From Data Value-Compare 2

mfesr Move From Exception-Syndrome Register

mfevpr Move From Exception-Vector Prefix Register

mfiac1 Move From Instruction Address-Compare 1

mfiac2 Move From Instruction Address-Compare 2

mfiac3 Move From Instruction Address-Compare 3

mfiac4 Move From Instruction Address-Compare 4

mficcr Move From Instruction-Cache Cachability Register

mficdbdr Move From Instruction-Cache Debug-Data Register

mflr Move From Link Register

mfmsr Move from Machine State Register page 679

mfpid Move From Process ID Register mfspr page 830

mfpit Move From Programmable-Interval Timer

mfpvr Move From Processor-Version Register

mfsgr Move From Storage Guarded Register

mfsler Move From Storage Little-Endian Register

mfspr Move from Special Purpose Register page 680
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mfsprg0 Move From SPR General-Purpose Register 0 mfspr page 830

mfsprg1 Move From SPR General-Purpose Register 1

mfsprg2 Move From SPR General-Purpose Register 2

mfsprg3 Move From SPR General-Purpose Register 3

mfsprg4 Move From SPR General-Purpose Register 4

mfsprg5 Move From SPR General-Purpose Register 5

mfsprg6 Move From SPR General-Purpose Register 6

mfsprg7 Move From SPR General-Purpose Register 7

mfsrr0 Move From Save/Restore Register 0

mfsrr1 Move From Save/Restore Register 1

mfsrr2 Move From Save/Restore Register 2

mfsrr3 Move From Save/Restore Register 3

mfsu0r Move From Storage User-Defined 0 Register

mftb Move from Time Base Register page 681

mftbl Move From Time-Base Lower mfspr page 830

mftbu Move From Time-Base Upper

mftcr Move From Timer-Control Register

mftsr Move From Timer-Status Register

mfusprg0 Move From User SPR General-Purpose Register 0

mfxer Move From Fixed-Point Exception Register

mfzpr Move From Zone-Protection Register

mr Move Register or

or.

page 834

mr. Move Register and Record

mtccr0 Move to Core-Configuration Register 0 mtspr page 830

mtcr Move to Condition Register mtcrf page 835

mtcrf Move to Condition Register Fields page 682

mtctr Move to Count Register mtspr page 830

mtdac1 Move to Data Address-Compare 1

mtdac2 Move to Data Address-Compare 2

mtdbcr0 Move to Debug-Control Register 0

mtdbcr1 Move to Debug-Control Register 1

mtdbsr Move to Debug-Status Register

mtdccr Move to Data-Cache Cachability Register

mtdcr Move to Device Control Register page 684
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mtdcwr Move to Data-Cache Write-Through Register mtspr page 830

mtdear Move to Data-Error Address Register

mtdvc1 Move to Data Value-Compare 1

mtdvc2 Move to Data Value-Compare 2

mtesr Move to Exception-Syndrome Register

mtevpr Move to Exception-Vector Prefix Register

mtiac1 Move to Instruction Address-Compare 1

mtiac2 Move to Instruction Address-Compare 2

mtiac3 Move to Instruction Address-Compare 3

mtiac4 Move to Instruction Address-Compare 4

mticcr Move to Instruction-Cache Cachability Register

mtlr Move to Link Register

mtmsr Move to Machine State Register page 685

mtpid Move to Process ID Register mtspr page 830

mtpit Move to Programmable-Interval Timer

mtsgr Move to Storage Guarded Register

mtsler Move to Storage Little-Endian Register

mtspr Move to Special Purpose Register page 686

mtsprg0 Move to SPR General-Purpose Register 0 mtspr page 830

mtsprg1 Move to SPR General-Purpose Register 1

mtsprg2 Move to SPR General-Purpose Register 2

mtsprg3 Move to SPR General-Purpose Register 3

mtsprg4 Move to SPR General-Purpose Register 4

mtsprg5 Move to SPR General-Purpose Register 5

mtsprg6 Move to SPR General-Purpose Register 6

mtsprg7 Move to SPR General-Purpose Register 7

mtsrr0 Move to Save/Restore Register 0

mtsrr1 Move to Save/Restore Register 1

mtsrr2 Move to Save/Restore Register 2

mtsrr3 Move to Save/Restore Register 3

mtsu0r Move to Storage User-Defined 0 Register

mttbl Move to Time-Base Lower mtspr page 830

mttbu Move to Time-Base Upper
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mttcr Move to Timer-Control Register mtspr page 830

mttsr Move to Timer-Status Register

mtusprg0 Move to User SPR General-Purpose Register 0

mtxer Move to Fixed-Point Exception Register

mtzpr Move to Zone-Protection Register

mulchw Multiply Cross Halfword to Word Signed page 687

mulchw. Multiply Cross Halfword to Word Signed and Record

mulchwu Multiply Cross Halfword to Word Unsigned page 688

mulchwu. Multiply Cross Halfword to Word Unsigned and Record

mulhhw Multiply High Halfword to Word Signed page 689

mulhhw. Multiply High Halfword to Word Signed and Record

mulhhwu Multiply High Halfword to Word Unsigned page 690

mulhhwu. Multiply High Halfword to Word Unsigned and Record

mulhw Multiply High Word page 691

mulhw. Multiply High Word and Record

mulhwu Multiply High Word Unsigned page 692

mulhwu. Multiply High Word Unsigned and Record

mullhw Multiply Low Halfword to Word Signed page 693

mullhw. Multiply Low Halfword to Word Signed and Record

mullhwu Multiply Low Halfword to Word Unsigned page 694

mullhwu. Multiply Low Halfword to Word Unsigned and Record

mulli Multiply Low Immediate page 695

mullw Multiply Low Word page 696

mullw. Multiply Low Word and Record

mullwo Multiply Low Word with Overflow Enabled page 696

mullwo. Multiply Low Word with Overflow Enabled and Record

nand NAND page 697

nand. NAND and Record

neg Negate page 698

neg. Negate and Record

nego Negate with Overflow Enabled

nego. Negate with Overflow Enabled and Record
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Mnemonic
or

Simplified
Mnemonic

Instruction Name
Equivalent
Mnemonic

Reference

http://www.xilinx.com


816 www.xilinx.com March 2002 Release
1-800-255-7778 Virtex-II Pro™ Platform FPGA Documentation

Appendix B: Instruction Summary
R

nmacchw Negative Multiply Accumulate Cross Halfword to Word Modulo Signed page 699

nmacchw. Negative Multiply Accumulate Cross Halfword to Word Modulo Signed and Record

nmacchwo Negative Multiply Accumulate Cross Halfword to Word Modulo Signed with Overflow 
Enabled

nmacchwo. Negative Multiply Accumulate Cross Halfword to Word Modulo Signed with Overflow 
Enabled and Record

nmacchws Negative Multiply Accumulate Cross Halfword to Word Saturate Signed page 700

nmacchws. Negative Multiply Accumulate Cross Halfword to Word Saturate Signed and Record

nmacchwso Negative Multiply Accumulate Cross Halfword to Word Saturate Signed with Overflow 
Enabled

nmacchwso. Negative Multiply Accumulate Cross Halfword to Word Saturate Signed with Overflow 
Enabled and Record

nmachhw Negative Multiply Accumulate High Halfword to Word Modulo Signed page 701

nmachhw. Negative Multiply Accumulate High Halfword to Word Modulo Signed and Record

nmachhwo Negative Multiply Accumulate High Halfword to Word Modulo Signed with Overflow 
Enabled

nmachhwo. Negative Multiply Accumulate High Halfword to Word Modulo Signed with Overflow 
Enabled and Record

nmachhws Negative Multiply Accumulate High Halfword to Word Saturate Signed page 702

nmachhws. Negative Multiply Accumulate High Halfword to Word Saturate Signed and Record

nmachhwso Negative Multiply Accumulate High Halfword to Word Saturate Signed with Overflow 
Enabled

nmachhwso. Negative Multiply Accumulate High Halfword to Word Saturate Signed with Overflow 
Enabled and Record

nmaclhw Negative Multiply Accumulate Low Halfword to Word Modulo Signed page 703

nmaclhw. Negative Multiply Accumulate Low Halfword to Word Modulo Signed and Record

nmaclhwo Negative Multiply Accumulate Low Halfword to Word Modulo Signed with Overflow 
Enabled

nmaclhwo. Negative Multiply Accumulate Low Halfword to Word Modulo Signed with Overflow 
Enabled and Record

nmaclhws Negative Multiply Accumulate Low Halfword to Word Saturate Signed page 704

nmaclhws. Negative Multiply Accumulate Low Halfword to Word Saturate Signed and Record

nmaclhwso Negative Multiply Accumulate Low Halfword to Word Saturate Signed with Overflow 
Enabled

nmaclhwso. Negative Multiply Accumulate Low Halfword to Word Saturate Signed with Overflow 
Enabled and Record

nop No operation ori page 834

nor NOR page 705

nor. NOR and Record

not Complement (Not) Register nor page 835

not. Complement (Not) Register and Record nor.
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or OR page 706

or. OR and Record

orc OR with Complement page 707

orc. OR with Complement and Record

ori OR Immediate page 708

oris OR Immediate Shifted page 709

rfci Return from Critical Interrupt page 710

rfi Return from Interrupt page 711

rlwimi Rotate Left Word Immediate then Mask Insert page 712

rlwimi. Rotate Left Word Immediate then Mask Insert and Record

rlwinm Rotate Left Word Immediate then AND with Mask page 713

rlwinm. Rotate Left Word Immediate then AND with Mask and Record

rlwnm Rotate Left Word then AND with Mask page 714

rlwnm. Rotate Left Word then AND with Mask and Record

rotlw Rotate Left rlwinm page 829

rotlw. Rotate Left and Record rlwinm.

rotlwi Rotate Left Immediate rlwinm

rotlwi. Rotate Left Immediate and Record rlwinm.

rotrwi Rotate Right Immediate rlwinm

rotrwi. Rotate Right Immediate and Record rlwinm.

sc System Call page 715

slw Shift Left Word page 716

slw. Shift Left Word and Record

slwi Shift Left Immediate rlwinm page 829

slwi. Shift Left Immediate and Record rlwinm.

sraw Shift Right Algebraic Word page 717

sraw. Shift Right Algebraic Word and Record

srawi Shift Right Algebraic Word Immediate page 718

srawi. Shift Right Algebraic Word Immediate and Record

srw Shift Right Word page 719

srw. Shift Right Word and Record

srwi Shift Right Immediate rlwinm page 829

srwi. Shift Right Immediate and Record rlwinm.

stb Store Byte page 720

stbu Store Byte with Update page 721

stbux Store Byte with Update Indexed page 722
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stbx Store Byte Indexed page 723

sth Store Halfword page 724

sthbrx Store Halfword Byte-Reverse Indexed page 725

sthu Store Halfword with Update page 726

sthux Store Halfword with Update Indexed page 727

sthx Store Halfword Indexed page 728

stmw Store Multiple Word page 729

stswi Store String Word Immediate page 730

stswx Store String Word Indexed page 732

stw Store Word page 734

stwbrx Store Word Byte-Reverse Indexed page 735

stwcx. Store Word Conditional Indexed page 737

stwu Store Word with Update page 739

stwux Store Word with Update Indexed page 740

stwx Store Word Indexed page 741

sub Subtract subf page 832

sub. Subtract and Record subf.

subc Subtract Carrying subfc page 832

subc. Subtract Carrying and Record subfc.

subco Subtract Carrying with Overflow Enabled subfco page 832

subco. Subtract Carrying with Overflow Enabled and Record subfco.

subf Subtract from page 742

subf. Subtract from and Record

subfc Subtract from Carrying page 743

subfc. Subtract from Carrying and Record

subfco Subtract from Carrying with Overflow Enabled

subfco. Subtract from Carrying with Overflow Enabled and Record

subfe Subtract from Extended page 744

subfe. Subtract from Extended and Record

subfeo Subtract from Extended with Overflow Enabled

subfeo. Subtract from Extended with Overflow Enabled and Record

subfic Subtract from Immediate Carrying page 745

subfme Subtract from Minus One Extended page 746

subfme. Subtract from Minus One Extended and Record

subfmeo Subtract from Minus One Extended with Overflow Enabled

subfmeo. Subtract from Minus One Extended with Overflow Enabled and Record
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subfo Subtract from with Overflow Enabled page 742

subfo. Subtract from with Overflow Enabled and Record

subfze Subtract from Zero Extended page 747

subfze. Subtract from Zero Extended and Record

subfzeo Subtract from Zero Extended with Overflow Enabled

subfzeo. Subtract from Zero Extended with Overflow Enabled and Record

subi Subtract Immediate addi page 832

subic Subtract Immediate Carrying addic

subic. Subtract Immediate Carrying and Record addic.

subis Subtract Immediate Shifted addis

subo Subtract with Overflow Enabled subfo

subo. Subtract with Overflow Enabled and Record subfo.

sync Synchronize page 748

tlbia TLB Invalidate All page 749

tlbre TLB Read Entry page 750

tlbrehi Read TLBHI Portion of TLB Entry tlbre page 832

tlbrelo Read TLBLO Portion of TLB Entry

tlbsx TLB Search Indexed page 752

tlbsx. TLB Search Indexed and Record

tlbsync TLB Synchronize page 754

tlbwe TLB Write Entry page 755

tlbwehi Write TLBHI Portion of TLB Entry tlbwe page 832

tlbwelo Write TLBLO Portion of TLB Entry

trap Trap if Unconditional tw page 833

tw Trap Word page 757

tweq Trap if Equal tw page 833

tweqi Trap if Equal Immediate twi

twge Trap if Greater Than or Equal tw

twgei Trap if Greater Than or Equal Immediate twi

twgt Trap if Greater Than tw

twgti Trap if Greater Than Immediate twi

twi Trap Word Immediate page 759
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twle Trap if Less Than or Equal tw page 833

twlei Trap if Less Than or Equal Immediate twi

twlge Trap if Logically Greater Than or Equal tw

twlgei Trap if Logically Greater Than or Equal Immediate twi

twlgt Trap if Logically Greater Than tw

twlgti Trap if Logically Greater Than Immediate twi

twlle Trap if Logically Less Than or Equal tw

twllei Trap if Logically Less Than or Equal Immediate twi

twllt Trap if Logically Less Than tw

twllti Trap if Logically Less Than Immediate twi

twlng Trap if Logically Not Greater Than tw

twlngi Trap if Logically Not Greater Than Immediate twi

twlnl Trap if Logically Not Less Than tw

twlnli Trap if Logically Not Less Than Immediate twi

twlt Trap if Less Than tw

twlti Trap if Less Than Immediate twi

twne Trap if Not Equal tw

twnei Trap if Not Equal Immediate twi

twng Trap if Not Greater Than tw

twngi Trap if Not Greater Than Immediate twi

twnl Trap if Not Less Than tw

twnli Trap if Not Less Than Immediate twi

wrtee Write External Enable page 761

wrteei Write External Enable Immediate page 762

xor XOR page 763

xor. XOR and Record

xori XOR Immediate page 764

xoris XOR Immediate Shifted page 765
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Appendix C

Simplified Mnemonics

Simplified mnemonics (sometimes referred to as extended mnemonics) define a shorthand 
used by assemblers for the most-frequently used forms of several instructions.

Branch Instructions
Two classes of simplified branch mnemonics are provided. Table C-2, page 822 
summarizes the simplified branch-conditional mnemonics that test if a condition is true or 
false. The condition tested can include a specific bit (b) in the CR, whether or not the 
contents of the CTR are zero, or both. Table C-8, page 825 summarizes the simplified 
branch-conditional mnemonics that test a comparison condition. Instructions in that table 
specify a CRn field (n) that is checked for a particular comparison result.

True/False Conditional Branches
True/false conditional branches test a condition and branch if the condition is met. The 
condition tested can include a specific bit (b) in the CR, whether or not the contents of the 
CTR are zero, or both. The simplified mnemonics in Table C-2 through Table C-6 are 
formed using the following syntax (angle brackets denote an optional field):

b<CTR decrement><CTR test><CR test><LR target><CTR target><LR update><absolute target>

Table C-1 shows the abbreviations used in the formation of the simplified branch 
mnemonics.

The detailed instruction syntax for the simplified mnemonics listed in Table C-2 are shown 
in Table C-3 through Table C-6. A cross-reference to the appropriate table is shown in the 
column heading of Table C-2.

Table C-1: Abbreviations for True/False Conditional Branches

Abbreviation Description Mnemonic Field

d Decrement CTR CTR decrement

nz Branch if CTR ≠ 0 CTR test

z Branch if CTR = 0 CTR test

f Branch if condition false (CRb=0) CR test

t Branch if condition true (CRb=1) CR test

lr Branch to target address in LR LR target

ctr Branch to target address in CTR CTR target

l Update LR with return address (LK opcode field = 1) LR update

a Branch to absolute address (AA opcode field = 1) absolute target
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Table C-3 lists the simplified-mnemonic assembler syntax for the branch-conditional 
relative and branch-conditional absolute instructions (true/false conditions) that do not 
update the LR. In the following table, target represents the target address of the branch.

Table C-2: Simplified Branch-Conditional Mnemonics, True/False Conditions

Operation

LR not Updated LR Updated

Relative Absolute to LR to CTR Relative Absolute to LR to CTR

Table C-3 Table C-4 Table C-5 Table C-6

Branch Unconditionally — — blr bctr — — blrl bctrl

Branch if Condition True (CRb=1) bt bta btlr btctr btl btla btlrl btctrl

Branch if Condition False (CRb=0) bf bfa bflr bfctr bfl bfla bflrl bfctrl

Decrement CTR,
Branch if CTR ≠ 0

bdnz bdnza bdnzlr — bdnzl bdnzla bdnzlrl —

Decrement CTR,
Branch if CTR ≠ 0 and Condition True (CRb=1)

bdnzt bdnzta bdnztlr — bdnztl bdnztla bdnztlrl —

Decrement CTR,
Branch if CTR ≠ 0 and Condition False (CRb=0)

bdnzf bdnzfa bdnzflr — bdnzfl bdnzfla bdnzflrl —

Decrement CTR,
Branch if CTR = 0

bdz bdza bdzlr — bdzl bdzla bdzlrl —

Decrement CTR,
Branch if CTR = 0 and Condition True (CRb=1)

bdzt bdzta bdztlr — bdztl bdztla bdztlrl —

Decrement CTR,
Branch if CTR = 0 and Condition False (CRb=0)

bdzf bdzfa bdzflr — bdzfl bdzfla bdzflrl —

Table C-3: Branch (True/False) to Relative/Absolute (LK=0)

Operation

LR not Updated

Branch Relative Branch Absolute

Simplified 
Mnemonic

Equivalent
Mnemonic

Simplified 
Mnemonic

Equivalent
Mnemonic

Branch Unconditionally — — — —

Branch if Condition True (CRb=1) bt b, target bc 12, b, target bta b, target bca 12, b, target

Branch if Condition False (CRb=0) bf b, target bc 4, b, target bfa b, target bca 4, b, target

Decrement CTR,
Branch if CTR ≠ 0

bdnz target bc 16, 0, target bdnza target bca 16, 0, target

Decrement CTR,
Branch if CTR ≠ 0 and Condition True (CRb=1)

bdnzt b, target bc 8, b, target bdnzta b, target bca 8, b, target

Decrement CTR,
Branch if CTR ≠ 0 and Condition False (CRb=0)

bdnzf b, target bc 0, b, target bdnzfa b, target bca 0, b, target

Decrement CTR,
Branch if CTR = 0

bdz target bc 18, 0, target bdza target bca 18, 0, target

Decrement CTR,
Branch if CTR = 0 and Condition True (CRb=1)

bdzt b, target bc 10, b, target bdzta b, target bca 10, b, target

Decrement CTR,
Branch if CTR = 0 and Condition False (CRb=0)

bdzf b, target bc 2, b, target bdzfa b, target bca 2, b, target
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Table C-4 lists the simplified-mnemonic assembler syntax for the branch-conditional to LR 
and branch-conditional to CTR instructions (true/false conditions) that do not update the 
LR.

Table C-5 lists the simplified-mnemonic assembler syntax for the branch-conditional 
relative and branch-conditional absolute instructions (true/false conditions) that update 
the LR. In the following table, target represents the target address of the branch.

Table C-4: Branch (True/False) to LR/CTR (LK=0)

Operation

LR not Updated

Branch to LR Branch to CTR

Simplified 
Mnemonic

Equivalent
Mnemonic

Simplified 
Mnemonic

Equivalent
Mnemonic

Branch Unconditionally blr bclr 20, 0 bctr bcctr 20, 0

Branch if Condition True (CRb=1) btlr b bclr 12, b btctr b bcctr 12, b

Branch if Condition False (CRb=0) bflr b bclr 4, b bfctr b bcctr 4, b

Decrement CTR,
Branch if CTR ≠ 0

bdnzlr bclr 16, 0 — —

Decrement CTR,
Branch if CTR ≠ 0 and Condition True (CRb=1)

bdnztlr b bclr 8, b — —

Decrement CTR,
Branch if CTR ≠ 0 and Condition False (CRb=0)

bdnzflr b bclr 0, b — —

Decrement CTR,
Branch if CTR = 0

bdzlr bclr 18, 0 — —

Decrement CTR,
Branch if CTR = 0 and Condition True (CRb=1)

bdztlr b bclr 10, b — —

Decrement CTR,
Branch if CTR = 0 and Condition False (CRb=0)

bdzflr b bclr 2, b — —

Table C-5: Branch (True/False) to Relative/Absolute (LK=1)

Operation

LR Updated

Branch Relative Branch Absolute

Simplified 
Mnemonic

Equivalent
Mnemonic

Simplified 
Mnemonic

Equivalent
Mnemonic

Branch Unconditionally — — — —

Branch if Condition True (CRb=1) btl b, target bcl 12, b, target btla b, target bcla 12, b, target

Branch if Condition False (CRb=0) bfl b, target bcl 4, b, target bfla b, target bcla 4, b, target

Decrement CTR,
Branch if CTR ≠ 0

bdnzl target bcl 16, 0, target bdnzla target bcla 16, 0, target

Decrement CTR,
Branch if CTR ≠ 0 and Condition True (CRb=1)

bdnztl b, target bcl 8, b, target bdnztla b, target bcla 8, b, target

Decrement CTR,
Branch if CTR ≠ 0 and Condition False (CRb=0)

bdnzfl b, target bcl 0, b, target bdnzfla b, target bcla 0, b, target

Decrement CTR,
Branch if CTR = 0

bdzl target bcl 18, 0, target bdzla target bcla 18, 0, target

Decrement CTR,
Branch if CTR = 0 and Condition True (CRb=1)

bdztl b, target bcl 10, b, target bdztla b, target bcla 10, b, target
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Table C-6 lists the simplified-mnemonic assembler syntax for the branch-conditional to LR 
and branch-conditional to CTR instructions (true/false conditions) that update the LR.

Comparison Conditional Branches
Comparison conditional branches examine the specified field in the CR register and 
branch if the comparison outcome is met. The CR field can be omitted from the assembler 
syntax if the CR0 field is used. The simplified mnemonics in Table C-8 through Table C-12 
are formed using the following syntax (angle brackets denote an optional field):

b<comparison><LR target><CTR target><LR update><absolute target>

Table C-7 shows the abbreviations for the comparison operations used in the formation of 
the simplified branch mnemonics. The remaining fields are abbreviated as shown in 
Table C-1, page 821.

Decrement CTR,
Branch if CTR = 0 and Condition False (CRb=0)

bdzfl b, target bcl 2, b, target bdzfla b, target bcla 2, b, target

Table C-5: Branch (True/False) to Relative/Absolute (LK=1) (Continued)

Operation

LR Updated

Branch Relative Branch Absolute

Simplified 
Mnemonic

Equivalent
Mnemonic

Simplified 
Mnemonic

Equivalent
Mnemonic

Table C-6: Branch (True/False) to LR/CTR (LK=1)

Operation

LR Updated

Branch to LR Branch to CTR

Simplified 
Mnemonic

Equivalent
Mnemonic

Simplified 
Mnemonic

Equivalent
Mnemonic

Branch Unconditionally blrl bclrl 20, 0 bctrl bcctrl 20, 0

Branch if Condition True (CRb=1) btlrl b bclrl 12, b btctrl b bcctrl 12, b

Branch if Condition False (CRb=0) bflrl b bclrl 4, b bfctrl b bcctrl 4, b

Decrement CTR,
Branch if CTR ≠ 0

bdnzlrl bclrl 16, 0 — —

Decrement CTR,
Branch if CTR ≠ 0 and Condition True (CRb=1)

bdnztlrl b bclrl 8, b — —

Decrement CTR,
Branch if CTR ≠ 0 and Condition False (CRb=0)

bdnzflrl b bclrl 0, b — —

Decrement CTR,
Branch if CTR = 0

bdzlrl bclrl 18, 0 — —

Decrement CTR,
Branch if CTR = 0 and Condition True (CRb=1)

bdztlrl b bclrl 10, b — —

Decrement CTR,
Branch if CTR = 0 and Condition False (CRb=0)

bdzflrl b bclrl 2, b — —

Table C-7: Abbreviations for Comparison Conditional Branches

Abbreviation Description

lt Less than

le Less than or equal

e Equal
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Table C-8 summarizes the simplified branch-conditional mnemonics that test a 
comparison condition. Instructions in that table specify a CRn field (n) that is checked for 
a particular comparison result. The CR field defaults to CR0 if omitted. The detailed 
instruction syntax for the simplified mnemonics listed in Table C-8 are shown in Table C-9 
through Table C-12. A cross-reference to the appropriate table is shown in the column 
heading of Table C-8.

Table C-9 lists the simplified-mnemonic assembler syntax for the branch-conditional 
relative and branch-conditional absolute instructions (comparison conditions) that do not 
update the LR. In the following table, target represents the target address of the branch.

ge Greater than or equal

gt Greater than

nl Not less than

ne Not equal

ng Not greater than

so Summary overflow

ns Not summary overflow

Table C-7: Abbreviations for Comparison Conditional Branches (Continued)

Abbreviation Description

Table C-8: Simplified Branch-Conditional Mnemonics, Comparison Conditions

Operation

LR not Updated LR Updated

Relative Absolute to LR to CTR Relative Absolute to LR to CTR

Table C-9 Table C-10 Table C-11 Table C-12

Branch if Less Than blt blta bltlr bltctr bltl bltla bltlrl bltctrl

Branch if Less Than or Equal ble blea blelr blectr blel blela blelrl blectrl

Branch if Equal beq beqa beqlr beqctr beql beqla beqlrl beqctrl

Branch if Greater Than or Equal bge bgea bgelr bgectr bgel bgela bgelrl bgectrl

Branch if Greater Than bgt bgta bgtlr bgtctr bgtl bgtla bgtlrl bgtctrl

Branch if Not Less Than bnl bnla bnllr bnlctr bnll bnlla bnllrl bnlctrl

Branch if Not Equal bne bnea bnelr bnectr bnel bnela bnelrl bnectrl

Branch if Not Greater Than bng bnga bnglr bngctr bngl bngla bnglrl bngctrl

Branch if Summary Overflow bso bsoa bsolr bsoctr bsol bsola bsolrl bsoctrl

Branch if Not Summary Overflow bns bnsa bnslr bnsctr bnsl bnsla bnslrl bnsctrl

Table C-9: Branch (Comparison) to Relative/Absolute (LK=0)

Operation

LR not Updated

Branch Relative Branch Absolute

Simplified 
Mnemonic

Equivalent
Mnemonic

Simplified 
Mnemonic

Equivalent
Mnemonic

Branch if Less Than blt n, target bc 12, 4×n+0, target blta n, target bca 12, 4×n+0, target

Branch if Less Than or Equal ble n, target bc 4, 4×n+1, target blea n, target bca 4, 4×n+1, target

Branch if Equal beq n, target bc 12, 4×n+2, target beqa n, target bca 12, 4×n+2, target
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Table C-10 lists the simplified-mnemonic assembler syntax for the branch-conditional to 
LR and branch-conditional to CTR instructions (comparison conditions) that do not 
update the LR.

Table C-11 lists the simplified-mnemonic assembler syntax for the branch-conditional 
relative and branch-conditional absolute instructions (comparison conditions) that update 
the LR. In the following table, target represents the target address of the branch.

Branch if Greater Than or Equal bge n, target bc 4, 4×n+0, target bgea n, target bca 4, 4×n+0, target

Branch if Greater Than bgt n, target bc 12, 4×n+1, target bgta n, target bca 12, 4×n+1, target

Branch if Not Less Than bnl n, target bc 4, 4×n+0, target bnla n, target bca 4, 4×n+0, target

Branch if Not Equal bne n, target bc 4, 4×n+2, target bnea n, target bca 4, 4×n+2, target

Branch if Not Greater Than bng n, target bc 4, 4×n+1, target bnga n, target bca 4, 4×n+1, target

Branch if Summary Overflow bso n, target bc 12, 4×n+3, target bsoa n, target bca 12, 4×n+3, target

Branch if Not Summary Overflow bns n, target bc 4, 4×n+3, target bnsa n, target bca 4, 4×n+3, target

Table C-9: Branch (Comparison) to Relative/Absolute (LK=0) (Continued)

Operation

LR not Updated

Branch Relative Branch Absolute

Simplified 
Mnemonic

Equivalent
Mnemonic

Simplified 
Mnemonic

Equivalent
Mnemonic

Table C-10: Branch (Comparison) to LR/CTR (LK=0)

Operation

LR not Updated

Branch to LR Branch to CTR

Simplified 
Mnemonic

Equivalent
Mnemonic

Simplified 
Mnemonic

Equivalent
Mnemonic

Branch if Less Than bltlr n bclr 12, 4×n+0 bltctr n bcctr 12, 4×n+0

Branch if Less Than or Equal blelr n bclr 4, 4×n+1 blectr n bcctr 4, 4×n+1

Branch if Equal beqlr n bclr 12, 4×n+2 beqctr n bcctr 12, 4×n+2

Branch if Greater Than or Equal bgelr n bclr 4, 4×n+0 bgectr n bcctr 4, 4×n+0

Branch if Greater Than bgtlr n bclr 12, 4×n+1 bgtctr n bcctr 12, 4×n+1

Branch if Not Less Than bnllr n bclr 4, 4×n+0 bnlctr n bcctr 4, 4×n+0

Branch if Not Equal bnelr n bclr 4, 4×n+2 bnectr n bcctr 4, 4×n+2

Branch if Not Greater Than bnglr n bclr 4, 4×n+1 bngctr n bcctr 4, 4×n+1

Branch if Summary Overflow bsolr n bclr 12, 4×n+3 bsoctr n bcctr 12, 4×n+3

Branch if Not Summary Overflow bnslr n bclr 4, 4×n+3 bnsctr n bcctr 4, 4×n+3

Table C-11: Branch (Comparison) to Relative/Absolute (LK=1)

Operation

LR Updated

Branch Relative Branch Absolute

Simplified 
Mnemonic

Equivalent
Mnemonic

Simplified 
Mnemonic

Equivalent
Mnemonic

Branch if Less Than bltl n, target bcl 12, 4×n+0, target bltla n, target bcla 12, 4×n+0, target

Branch if Less Than or Equal blel n, target bcl 4, 4×n+1, target blela n, target bcla 4, 4×n+1, target
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Table C-12 lists the simplified-mnemonic assembler syntax for the branch-conditional to 
LR and branch-conditional to CTR instructions (comparison conditions) that update the 
LR.

Branch Prediction
The low-order bit (y bit) of the BO field in branch-conditional instructions provides a hint 
to the processor about whether the branch is likely to be taken. See Specifying Branch-
Prediction Behavior, page 370 for more information on the y bit. Assemblers should clear 
this bit to 0 unless otherwise directed. Clearing the y bit specifies the following default 
action:

• A conditional branch with a negative displacement field is predicted taken.
• A conditional branch with a non-negative displacement field is predicted not taken 

(fall through).
• A conditional branch to an address in the LR or CTR is predicted not taken (fall 

through).

Branch if Equal beql n, target bcl 12, 4×n+2, target beqla n, target bcla 12, 4×n+2, target

Branch if Greater Than or Equal bgel n, target bcl 4, 4×n+0, target bgela n, target bcla 4, 4×n+0, target

Branch if Greater Than bgtl n, target bcl 12, 4×n+1, target bgtla n, target bcla 12, 4×n+1, target

Branch if Not Less Than bnll n, target bcl 4, 4×n+0, target bnlla n, target bcla 4, 4×n+0, target

Branch if Not Equal bnel n, target bcl 4, 4×n+2, target bnela n, target bcla 4, 4×n+2, target

Branch if Not Greater Than bngl n, target bcl 4, 4×n+1, target bngla n, target bcla 4, 4×n+1, target

Branch if Summary Overflow bsol n, target bcl 12, 4×n+3, target bsola n, target bcla 12, 4×n+3, target

Branch if Not Summary Overflow bnsl n, target bcl 4, 4×n+3, target bnsla n, target bcla 4, 4×n+3, target

Table C-11: Branch (Comparison) to Relative/Absolute (LK=1) (Continued)

Operation

LR Updated

Branch Relative Branch Absolute

Simplified 
Mnemonic

Equivalent
Mnemonic

Simplified 
Mnemonic

Equivalent
Mnemonic

Table C-12: Branch (Comparison) to LR/CTR (LK=1)

Operation

LR Updated

Branch to LR Branch to CTR

Simplified 
Mnemonic

Equivalent
Mnemonic

Simplified 
Mnemonic

Equivalent
Mnemonic

Branch if Less Than bltlrl n bclrl 12, 4×n+0 bltctrl n bcctrl 12, 4×n+0

Branch if Less Than or Equal blelrl n bclrl 4, 4×n+1 blectrl n bcctrl 4, 4×n+1

Branch if Equal beqlrl n bclrl 12, 4×n+2 beqctrl n bcctrl 12, 4×n+2

Branch if Greater Than or Equal bgelrl n bclrl 4, 4×n+0 bgectrl n bcctrl 4, 4×n+0

Branch if Greater Than bgtlrl n bclrl 12, 4×n+1 bgtctrl n bcctrl 12, 4×n+1

Branch if Not Less Than bnllrl n bclrl 4, 4×n+0 bnlctrl n bcctrl 4, 4×n+0

Branch if Not Equal bnelrl n bclrl 4, 4×n+2 bnectrl n bcctrl 4, 4×n+2

Branch if Not Greater Than bnglrl n bclrl 4, 4×n+1 bngctrl n bcctrl 4, 4×n+1

Branch if Summary Overflow bsolrl n bclrl 12, 4×n+3 bsoctrl n bcctrl 12, 4×n+3

Branch if Not Summary Overflow bnslrl n bclrl 4, 4×n+3 bnsctrl n bcctrl 4, 4×n+3
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If the likely outcome (branch or fall through) of a conditional-branch instruction is known, 
a suffix can be added to the mnemonic that tells the assembler how to set the y bit, as 
follows:

• + indicates that the branch should be predicted taken.
• − indicates that the branch should be predicted not taken. 

The suffix can be added to any branch-conditional mnemonic, including simplified 
mnemonics. For example, “blt+ target” indicates the branch to target if CR0 is less than 
instruction should be predicted taken.

For relative and absolute branches, the default value of the y bit depends on whether the 
displacement field is negative or non-negative. With these instructions, the prediction 
override has the following effect: 

• For negative displacement fields:
- A “+” suffix clears the y bit to 0.
- A “−” suffix sets the y bit to 1.

• For non-negative displacement fields:
- A “+” suffix sets the y bit to 1.
- A “−” suffix clears the y bit to 0.

For branches to an address in the LR or CTR, the prediction override has the following 
effect: 

• A “+” suffix sets the y bit to 1.
• A “−” suffix clears the y bit to 0.

Compare Instructions
The PowerPC compare instructions include an L opcode field that specifies whether the 
comparison is performed on a word or doubleword operand. In 32-bit implementations 
like the PPC405, only word comparisons are supported. Simplified mnemonics are shown 
in Table C-13 that dispense with the need to encode the L field in the instruction syntax.

The crfD field can be omitted if the comparison result is placed into the CR0 field. 
Otherwise, the target CR field must be specified as the first operand.

CR-Logical Instructions
The condition register logical instructions, are used to set, clear, copy, or invert a specific 
condition register bit. The simplified mnemonics in Table C-14 provide a shorthand for 
several common operations. The variables bx and by are used to specify individual CR bits.

Table C-13: Simplified Mnemonics for Compare Instructions

Operation Simplified Mnemonic Equivalent Mnemonic

Compare Word Immediate cmpwi crfD, rA, SIMM cmpi crfD, 0, rA, SIMM

Compare Word cmpw crfD, rA, rB cmp crfD, 0, rA, rB

Compare Logical Word Immediate cmplwi crfD, rA, UIMM cmpli crfD, 0, rA, UIMM

Compare Logical Word cmplw crfD, rA, rB cmpl crfD, 0, rA, rB

Table C-14: Simplified Mnemonics for CR-Logical Instructions

Operation Simplified Mnemonic Equivalent Mnemonic

Condition Register Set crset bx creqv bx, bx, bx

http://www.xilinx.com


March 2002 Release www.xilinx.com 829
Virtex-II Pro™ Platform FPGA Documentation 1-800-255-7778

Rotate and Shift Instructions
R

Rotate and Shift Instructions
Although the rotate and shift instructions provide powerful and general ways to 
manipulate register contents, they can be difficult to understand. The simplified 
mnemonics in Table C-15 are provided for the following types of operations:

• Extract—Select a field of n bits starting at bit position b from the source register. Left or 
right justify this field in the target register. Clear all other bits of the target register.

• Insert—Select a left-justified or right-justified field of n bits from the source register. 
Insert this field in the target register starting at bit position b, leaving all other bits in 
the target register unchanged.

• Rotate—Rotate the contents of a register right or left by n bits without masking.
• Shift—Shift the contents of a register right or left by n bits, clearing vacated bits 

(logical shift).
• Clear—Clear the left-most or right-most n bits of a register.
• Clear left and shift left—Clear the left-most b bits of a register and shift the register left 

by n bits. This operation can be used to scale a known non-negative array index by the 
width of an element.

Condition Register Clear crclr bx crxor bx, bx, bx

Condition Register Move crmove bx, by cror bx, by, by

Condition Register Not crnot bx, by crnor bx, by, by

Table C-14: Simplified Mnemonics for CR-Logical Instructions (Continued)

Operation Simplified Mnemonic Equivalent Mnemonic

Table C-15: Simplified Mnemonics for Rotate and Shift Instructions

Operation Simplified Mnemonic Equivalent Mnemonic

Extract and Left Justify Immediate extlwi rA, rS, n, b (n > 0) rlwinm rA, rS, b, 0, n−1

extlwi. rA, rS, n, b (n > 0) rlwinm. rA, rS, b, 0, n−1

Extract and Right Justify Immediate extrwi rA, rS, n, b (n > 0) rlwinm rA, rS, b+n, 32−n, 31

extrwi. rA, rS, n, b (n > 0) rlwinm. rA, rS, b+n, 32−n, 31

Insert from Left Immediate inslwi rA, rS, n, b (n > 0) rlwimi rA, rS, 32−b, b, (b+n)−1

inslwi. rA, rS, n, b (n > 0) rlwimi. rA, rS, 32−b, b, (b+n)−1

Insert from Right Immediate insrwi rA, rS, n, b (n > 0) rlwimi rA, rS, 32−(b+n), b, (b+n)−1

insrwi. rA, rS, n, b (n > 0) rlwimi. rA, rS, 32−(b+n), b, (b+n)−1

Rotate Left Immediate rotlwi rA, rS, n rlwinm rA, rS, n, 0, 31

rotlwi. rA, rS, n rlwinm. rA, rS, n, 0, 31

Rotate Right Immediate rotrwi rA, rS, n rlwinm rA, rS, 32−n, 0, 31

rotrwi. rA, rS, n rlwinm. rA, rS, 32−n, 0, 31

Rotate Left rotlw rA, rS, rB rlwnm rA, rS, rB, 0, 31

rotlw. rA, rS, rB rlwnm. rA, rS, rB, 0, 31

Shift Left Immediate slwi rA, rS, n (n < 32) rlwinm rA, rS, n, 0, 31−n

slwi. rA, rS, n (n < 32) rlwinm. rA, rS, n, 0, 31−n

Shift Right Immediate srwi rA, rS, n (n < 32) rlwinm rA, rS, 32−n, n, 31

srwi. rA, rS, n (n < 32) rlwinm. rA, rS, 32−n, n, 31
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Special-Purpose Registers
Special-purpose register instructions use the SPR number (SPRN) to specify the register 
being read or written. The simplified mnemonics in Table C-16 encode the SPR name as 
part of the mnemonic rather than requiring a numeric SPRN operand.

Clear Left Immediate clrlwi rA, rS, n (n < 32) rlwinm rA, rS, 0, n, 31

clrlwi. rA, rS, n (n < 32) rlwinm. rA, rS, 0, n, 31

Clear Right Immediate clrrwi rA, rS, n (n < 32) rlwinm rA, rS, 0, 0, 31−n

clrrwi. rA, rS, n (n < 32) rlwinm. rA, rS, 0, 0, 31−n

Clear Left and Shift Left Immediate clrlslwi rA, rS, b, n (n ≤ b ≤ 31) rlwinm rA, rS, b−n, 31−n

clrlslwi. rA, rS, b, n (n ≤ b ≤ 31) rlwinm. rA, rS, b−n, 31−n

Table C-15: Simplified Mnemonics for Rotate and Shift Instructions (Continued)

Operation Simplified Mnemonic Equivalent Mnemonic

Table C-16: Simplified Mnemonics for Special-Purpose Register Instructions

Special-Purpose Register

Move to SPR Move from SPR

Simplified 
Mnemonic

Equivalent
Mnemonic

Simplified 
Mnemonic

Equivalent
Mnemonic

Core-Configuration Register 0 mtccr0 rS mtspr 947, rS mfccr0 rD mfspr rD, 947

Count Register mtctr rS mtspr 9, rS mfctr rD mfspr rD, 9

Data Address-Compare 1 mtdac1 rS mtspr 1014, rS mfdac1 rD mfspr rD, 1014

Data Address-Compare 2 mtdac2 rS mtspr 1015, rS mfdac2 rD mfspr rD, 1015

Debug-Control Register 0 mtdbcr0 rS mtspr 1010, rS mfdbcr0 rD mfspr rD, 1010

Debug-Control Register 1 mtdbcr1 rS mtspr 957, rS mfdbcr1 rD mfspr rD, 957

Debug-Status Register mtdbsr rS 1 mtspr 1008, rS 1 mfdbsr rD mfspr rD, 1008

Data-Cache Cachability Register mtdccr rS mtspr 1018, rS mfdccr rD mfspr rD, 1018

Data-Cache Write-Through Register mtdcwr rS mtspr 954, rS mfdcwr rD mfspr rD, 954

Data-Error Address Register mtdear rS mtspr 981, rS mfdear rD mfspr rD, 981

Data Value-Compare 1 mtdvc1 rS mtspr 950, rS mfdvc1 rD mfspr rD, 950

Data Value-Compare 2 mtdvc2 rS mtspr 951, rS mfdvc2 rD mfspr rD, 951

Exception-Syndrome Register mtesr rS mtspr 980, rS mfesr rD mfspr rD, 980

Exception-Vector Prefix Register mtevpr rS mtspr 982, rS mfevpr rD mfspr rD, 982

Instruction Address-Compare 1 mtiac1 rS mtspr 1012, rS mfiac1 rD mfspr rD, 1012

Instruction Address-Compare 2 mtiac2 rS mtspr 1013, rS mfiac2 rD mfspr rD, 1013

Instruction Address-Compare 3 mtiac3 rS mtspr 948, rS mfiac3 rD mfspr rD, 948

Instruction Address-Compare 4 mtiac4 rS mtspr 949, rS mfiac4 rD mfspr rD, 949

Instruction-Cache Cachability Register mticcr rS mtspr 1019, rS mficcr rD mfspr rD, 1019

Instruction-Cache Debug-Data Register — — mficdbdr rD mfspr rD, 979

Link Register mtlr rS mtspr 8, rS mflr rD mfspr rD, 8

Notes: 
1. Performs a clear to zero operation.
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Subtract Instructions
The subtract-from instructions subtract the second operand (rA) from the third operand 
(rB). The simplified mnemonics in Table C-17 use the order in which the third operand is 
subtracted from the second operand.

Process ID Register mtpid rS mtspr 945, rS mfpid rD mfspr rD, 945

Programmable-Interval Timer mtpit rS mtspr 987, rS mfpit rD mfspr rD, 987

Processor-Version Register — — mfpvr rD mfspr rD, 287

Storage Guarded Register mtsgr rS mtspr 953, rS mfsgr rD mfspr rD, 953

Storage Little-Endian Register mtsler rS mtspr 955, rS mfsler rD mfspr rD, 955

SPR General-Purpose Register 0 mtsprg0 rS mtspr 272, rS mfsprg0 rD mfspr rD, 272

SPR General-Purpose Register 1 mtsprg1 rS mtspr 273, rS mfsprg1 rD mfspr rD, 273

SPR General-Purpose Register 2 mtsprg2 rS mtspr 274, rS mfsprg2 rD mfspr rD, 274

SPR General-Purpose Register 3 mtsprg3 rS mtspr 275, rS mfsprg3 rD mfspr rD, 275

SPR General-Purpose Register 4 — — mfsprg4 rD mfspr rD, 260

SPR General-Purpose Register 4 mtsprg4 rS mtspr 276, rS — —

SPR General-Purpose Register 5 — — mfsprg5 rD mfspr rD, 261

SPR General-Purpose Register 5 mtsprg5 rS mtspr 277, rS — —

SPR General-Purpose Register 6 — — mfsprg6 rD mfspr rD, 262

SPR General-Purpose Register 6 mtsprg6 rS mtspr 278, rS — —

SPR General-Purpose Register 7 — — mfsprg7 rD mfspr rD, 263

SPR General-Purpose Register 7 mtsprg7 rS mtspr 279, rS — —

Save/Restore Register 0 mtsrr0 rS mtspr 26, rS mfsrr0 rD mfspr rD, 26

Save/Restore Register 1 mtsrr1 rS mtspr 27, rS mfsrr1 rD mfspr rD, 27

Save/Restore Register 2 mtsrr2 rS mtspr 990, rS mfsrr2 rD mfspr rD, 990

Save/Restore Register 3 mtsrr3 rS mtspr 991, rS mfsrr3 rD mfspr rD, 991

Storage User-Defined 0 Register mtsu0r rS mtspr 956, rS mfsu0r rD mfspr rD, 956

Time-Base Lower mttbl rS mtspr 284, rS mftbl rD mftb rD, 268

Time-Base Upper mttbu rS mtspr 285, rS mftbu rD mftb rD, 269

Timer-Control Register mttcr rS mtspr 986, rS mftcr rD mfspr rD, 986

Timer-Status Register mttsr rS 1 mtspr 984, rS 1 mftsr rD mfspr rD, 984

User SPR General-Purpose Register 0 mtusprg0 rS mtspr 256, rS mfusprg0 rD mfspr rD, 256

Fixed-Point Exception Register mtxer rS mtspr 1, rS mfxer rD mfspr rD, 1

Zone-Protection Register mtzpr rS mtspr 944, rS mfzpr rD mfspr rD, 944

Table C-16: Simplified Mnemonics for Special-Purpose Register Instructions (Continued)

Special-Purpose Register

Move to SPR Move from SPR

Simplified 
Mnemonic

Equivalent
Mnemonic

Simplified 
Mnemonic

Equivalent
Mnemonic

Notes: 
1. Performs a clear to zero operation.
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The effect of a subtract-immediate instruction can be achieved by using an add-immediate 
instruction with a negative immediate operand. In the following table, value represents a 
signed immediate operand.

TLB-Management Instructions
The simplified mnemonics for TLB-management instructions are listed in Table C-18.

Trap Instructions
System-trap instructions use the TO opcode field to specify the trap condition. Simplified 
trap mnemonics are provided for the most common encodings of TO. These mnemonics 
encode the trap condition as part of the mnemonic rather than as a numeric operand. 
Table C-19 shows the abbreviations for the comparison operations used in the formation of 
the simplified trap mnemonics. In this table, the column headed “<U” indicates an 
unsigned less-than comparison and the column headed “>U” indicates an unsigned 
greater-than comparison

Table C-17: Simplified Mnemonics for Subtract Instructions

Operation Simplified Mnemonic Equivalent Mnemonic

Subtract (rA − rB) sub rD, rA, rB subf rD, rB, rA

sub. rD, rA, rB subf. rD, rB, rA

subo rD, rA, rB subfo rD, rB, rA

subo. rD, rA, rB subfo. rD, rB, rA

Subtract Carrying (rA − rB) subc rD, rA, rB subfc rD, rB, rA

subc. rD, rA, rB subfc. rD, rB, rA

subco rD, rA, rB subfco rD, rB, rA

subco. rD, rA, rB subfco. rD, rB, rA

Subtract Immediate (rA − value) subi rD, rA, value addi rD, rA, −value

Subtract Immediate Shifted (rA − value || 160) subis rD, rA, value addis rD, rA, −value

Subtract Immediate Carrying (rA − value) subic rD, rA, value addic rD, rA, −value

Subtract Immediate Carrying and Record (rA − value) subic. rD, rA, value addic. rD, rA, −value

Table C-18: Simplified Mnemonics for TLB-Management Instructions

Operation Simplified Mnemonic Equivalent Mnemonic

Read TLBHI Portion of TLB Entry tlbrehi rD, rA tlbre rD, rA, 0

Read TLBLO Portion of TLB Entry tlbrelo rD, rA tlbre rD, rA, 1

Write TLBHI Portion of TLB Entry tlbwehi rD, rA tlbwe rD, rA, 0

Write TLBLO Portion of TLB Entry tlbwelo rD, rA tlbwe rD, rA, 1
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Table C-20 lists the simplified mnemonics for the system-trap instructions.

Table C-19: Abbreviations for Trap Comparison Conditions

Abbreviation Description TO Encoding < > = <U >U

lt Less than 16 1 0 0 0 0

le Less than or equal 20 1 0 1 0 0

eq Equal 4 0 0 1 0 0

ge Greater than or equal 12 0 1 1 0 0

gt Greater than 8 0 1 0 0 0

nl Not less than 12 0 1 1 0 0

ne Not equal 24 1 1 0 0 0

ng Not greater than 20 1 0 1 0 0

llt Logically less than 2 0 0 0 1 0

lle Logically less than or equal 6 0 0 1 1 0

lge Logically greater than or equal 5 0 0 1 0 1

lgt Logically greater than 1 0 0 0 0 1

lnl Logically not less than 5 0 0 1 0 1

lng Logically not greater than 6 0 0 1 1 0

— Unconditional 31 1 1 1 1 1

Table C-20: Simplified Mnemonics for Trap Instructions

Operation

Trap Word Trap Word Immediate

Simplified 
Mnemonic

Equivalent
Mnemonic

Simplified 
Mnemonic

Equivalent
Mnemonic

Trap if less than twlt rA, rB tw 16, rA, rB twlti rA, SIMM twi 16, rA, SIMM

Trap if less than or equal twle rA, rB tw 20, rA, rB twlei rA, SIMM twi 20, rA, SIMM

Trap if equal tweq rA, rB tw 4, rA, rB tweqi rA, SIMM twi 4, rA, SIMM

Trap if greater than or equal twge rA, rB tw 12, rA, rB twgei rA, SIMM twi 12, rA, SIMM

Trap if greater than twgt rA, rB tw 8, rA, rB twgti rA, SIMM twi 8, rA, SIMM

Trap if not less than twnl rA, rB tw 12, rA, rB twnli rA, SIMM twi 12, rA, SIMM

Trap if not equal twne rA, rB tw 24, rA, rB twnei rA, SIMM twi 24, rA, SIMM

Trap if not greater than twng rA, rB tw 20, rA, rB twngi rA, SIMM twi 20, rA, SIMM

Trap if logically less than twllt rA, rB tw 2, rA, rB twllti rA, SIMM twi 2, rA, SIMM

Trap if logically less than or equal twlle rA, rB tw 6, rA, rB twllei rA, SIMM twi 6, rA, SIMM

Trap if logically greater than or equal twlge rA, rB tw 5, rA, rB twlgei rA, SIMM twi 5, rA, SIMM

Trap if logically greater than twlgt rA, rB tw 1, rA, rB twlgti rA, SIMM twi 1, rA, SIMM

Trap if logically not less than twlnl rA, rB tw 5, rA, rB twlnli rA, SIMM twi 5, rA, SIMM

Trap if logically not greater than twlng rA, rB tw 6, rA, rB twlngi rA, SIMM twi 6, rA, SIMM

Trap if unconditional trap tw 31, rA, rB — twi 31, rA, SIMM
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Other Simplified Mnemonics

No Operation
The preferred form of the no-operation instruction (no-op) is shown in Table C-21.

Load Immediate
The simplified mnemonics in Table C-22 provide a shorthand for loading an immediate 
signed value into a register.

Load Address
The load-address simplified mnemonic in Table C-23 computes the value of a base-
displacement operand (register-indirect with immediate index addressing). This 
mnemonic is useful for obtaining the address of a variable specified by name. The 
assembler substitutes the name variable with the appropriate values of rA and d in the 
address syntax d(rA).

Move Register
The simplified mnemonics in Table C-24 provide a shorthand for moving the contents of a 
GPR to another GPR.

Complement Register
The simplified mnemonics in Table C-25 provide a shorthand for complementing the 
contents of a GPR.

Table C-21: Simplified Mnemonic for No-op

Operation Simplified Mnemonic Equivalent Mnemonic

No operation nop ori 0, 0, 0

Table C-22: Simplified Mnemonics for Load Immediate

Operation Simplified Mnemonic Equivalent Mnemonic

Load Immediate li rD, SIMM addi rD, 0, SIMM

Load Immediate Shifted lis rD, SIMM addis rD, 0, SIMM

Table C-23: Simplified Mnemonic for Load Address

Operation Simplified Mnemonic Equivalent Mnemonic

Load Address la rD, d(rA) addi rD, rA, d

la rD, variable addi rD, rA, d
(rA, d substitution by assembler) 

Table C-24: Simplified Mnemonics for Move Register

Operation Simplified Mnemonic Equivalent Mnemonic

Move Register mr rA, rS or rA, rS, rS

mr. rA, rS or. rA, rS, rS
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Move to Condition Register
The simplified mnemonic in Table C-26 provides a shorthand for copying the contents of a 
GPR into the CR.

Table C-25: Simplified Mnemonics for Complement Register

Operation Simplified Mnemonic Equivalent Mnemonic

Complement (Not) Register not rA, rS nor rA, rS, rS

not. rA, rS nor. rA, rS, rS

Table C-26: Simplified Mnemonic for Move to Condition Register

Operation Simplified Mnemonic Equivalent Mnemonic

Move to Condition Register mtcr rS mtcrf 0xFF, rS
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Appendix D

Programming Considerations

This appendix provides programming examples that can be useful in embedded 
applications.

Synchronization Examples
The following provides general guidelines for using the lwarx and stwcx. instructions:

• The lwarx and stwcx. instructions should be paired and use the same effective 
address (EA). 

• An unpaired stwcx. instruction to an arbitrary EA (scratch address) can be used to 
clear any reservation held by the processor.

• An lwarx instruction can be left unpaired when executing certain synchronization 
primitives if the value loaded by the lwarx is not zero. Test and Set, page 838 provides 
such an example. 

• Minimizing the looping on an lwarx/stwcx. pair increases the likelihood that forward 
progress is made. The sequence shown in Test and Set, page 838 provides such an 
example. This example tests the old value before attempting the store. If the order is 
reversed (store before load), more stwcx. instructions are executed and reservations 
are more likely to be lost between the lwarx and the stwcx. instructions.

• Performance can be improved by minimizing looping on an lwarx instruction that 
fails to return a desired value. Performance can also be improved by using an 
ordinary load instruction to do the initial value check, as follows:
loop: lwz r5,0(r3) #load the word

cmpwi r5,0 #compare word to 0
bne- loop #loop back if word not equal to 0
lwarx r5,0,r3 #try reserving again
cmpwi r5,0 #compare likely to succeed
bne loop
stwcx. r4,0,r3 #try to store nonzero
bne- loop #loop if reservation lost

• Livelock is a state where no progress is made in a multiprocessor environment due to 
the interaction of the processors. Livelock is possible if a loop containing an 
lwarx/stwcx. pair also contains an ordinary store instruction that affects one or more 
bytes in the reservation granule. For example, the first code sequence shown in List 
Insertion, page 840 can cause livelock if two list elements have next element pointers 
in the same reservation granule.

The examples in this appendix show how synchronization instructions are used to emulate 
various synchronization primitives and how more complex forms of synchronization can 
be implemented. Each example assumes that a similar instruction sequence is used by all 
processes requiring synchronization of the accessed data. The examples show a 
conditional sequence that begins with an lwarx instruction. This can be followed by 
memory accesses and/or computations on the loaded value. The sequence ends with a 
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stwcx. instruction. In most of the examples, failure of the stwcx. instruction causes a branch 
back to the lwarx for a repeated attempt. The examples are optimized for the case where 
the stwcx. instruction succeeds by having the conditional-branch prediction bit set 
appropriately.

Fetch and No-Op
The fetch and no-op primitive atomically loads the current value in a memory word. This 
example assumes that the address of the memory word is in r3 and the data is loaded into 
r4.

loop: lwarx r4,0,r3 #load and reserve
stwcx. r4,0,r3 #store old value if still reserved
bne- loop #loop if reservation lost

If the stwcx. succeeds, the destination location is updated with the same value that was 
loaded by the preceding lwarx. Although this store is unnecessary with respect to the 
value in the memory location, its success ensures that the value loaded by the lwarx was 
the most current value.

Fetch and Store
The fetch and store primitive atomically loads and replaces a memory word. This example 
assumes that the address of the memory word is in r3, the new data is stored from r4, and 
the old data is loaded into r5.

loop: lwarx r5,0,r3 #load and reserve
stwcx. r4,0,r3 #store new value if still reserved
bne- loop #loop if reservation lost

Fetch and Add
The fetch and add primitive atomically increments a memory word. This example assumes 
that the incremented (new) data is stored from r0, the address of the memory word to be 
incremented is in r3, the increment value is contained in r4, and the data to be incremented 
is loaded into r5.

loop: lwarx r5,0,r3 #load and reserve
add r0,r4,r5 #increment word
stwcx. r0,0,r3 #store new value if still reserved
bne- loop #loop if reservation lost

Fetch and AND
The fetch and AND primitive atomically ANDs a value into a memory word. This example 
assumes that the ANDed (new) data is stored from r0, the address of the memory word to 
be ANDed is in r3, the AND value is contained in r4, and the data to be ANDed is loaded 
into r5.

loop: lwarx r5,0,r3 #load and reserve
and r0,r4,r5 #AND word
stwcx. r0,0,r3 #store new value if still reserved
bne- loop #loop if reservation lost

The above sequence can be changed to perform any atomic boolean operation on a 
memory word.

Test and Set
This version of the test and set primitive atomically loads a word from memory, ensures 
that the memory word is a nonzero value, and updates CR0[EQ] according to whether the 
value loaded is zero. This example assumes that the address of the memory word is in r3, 
the new (nonzero) data is stored from r4, and the old data is loaded into r5.
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loop: lwarx r5,0,r3 #load and reserve
cmpwi r5, 0 #compare with 0
bne $+12 #branch if not equal to 0
stwcx. r4,0,r3 #try to store non-zero
bne- loop #loop if reservation lost

Compare and Swap
The compare and swap primitive atomically compares a value in a first register with a 
memory word. If they are equal, it stores a value from a second register into the memory 
word. If they are unequal, it moves the word from memory into the first register and 
updates CR0[EQ] to reflect the comparison result. This example assumes that the address 
of the memory word is in r3, the compare value is contained in r4, the new data is stored 
from r5, and the old data is loaded into r6.

loop: lwarx r6,0,r3 #load and reserve
cmpw r4,r6 #compare load value with first register
bne- exit #skip if not equal
stwcx. r5,0,r3 #store second register if still reserved
bne- loop #loop if reservation lost

exit: mr r4,r6 #move load value into first register

The following applies to the above example:

• The semantics are based on the IBM System/370™ compare and swap instruction. Some 
architectures define this primitive differently.

• A compare and swap instruction is useful on machines that lack the synchronization 
capability provided by the lwarx and stwcx. instructions. Although such an 
instruction is atomic, it checks only whether the current value matches the old value. 
An error can occur if the value is changed and restored before being tested.

• In some applications, the second bne− instruction and/or the mr instruction can be 
omitted. The second bne- is used only to indicate that the original values in r4 and r6 
were not equal by exiting the primitive with CR0[EQ]=0. If this indication is not 
required by the application, the second bne- can be omitted. The mr is used only 
when the application requires that the memory word be loaded into the compare 
register (rather than into a third register) if the compared values are not equal. The 
resulting compare and swap primitive does not obey the IBM System/370 semantics 
if either or both of these instructions are omitted.

Lock Acquisition and Release
This example provides a locking algorithm that demonstrates the use of an atomic 
read/modify/write synchronization operation. The argument of the lock and unlock 
procedures is the address of a shared memory location (stored in r3). This argument points 
to a lock that controls access to some shared resource, such as a data structure. The lock is 
open when its value is zero and it is locked when its value is one. Before accessing the 
shared resource, the processor sets the lock by having the lock procedure call test_and_set 
(the procedure executes the code sequence in Test and Set, page 838). This atomically 
updates the old value of the lock with the new value (1) contained in r4. The old value is 
returned in r5 (not shown in the following example). CR0[EQ] is updated by test_and_set 
to indicate whether the value returned in r5 is zero. The lock procedure repeats the 
test_and_set procedure until it successfully changes the lock value from zero to one. 

The processor does not access the shared resource until it sets the lock. After the bne 
instruction checks for the successful test and set operation, the processor executes the isync 
instruction. This synchronizes program context. The sync instruction could be used but 
performance would be degraded because the sync instruction waits for all outstanding 
memory accesses to complete with respect to other processors. This is not required by the 
procedure.
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lock: li r4,1 #obtain new lock
loop: bl test_and_set #test and set

bne- loop #retry until old lock = 0
isync #synchronize context
blr #return

The unlock procedure writes a zero to the lock location. If access to the shared resource 
includes write operations, most applications require a sync instruction to make the shared 
resource modifications visible to all processors before releasing the lock.

unlock:sync #delay until prior stores finish
li r1,0
stw r1,0(r3) #store zero to lock location
blr #return

List Insertion
The following example shows how the lwarx and stwcx. instructions are used to 
implement simple LIFO (last-in-first-out) insertion into a singly linked list. If multiple 
values must be changed atomically or the correct order of insertion depends on the 
element contents, insertion cannot be implemented as shown below and instead requires a 
more complicated strategy (such as lock synchronization).

In this example, list elements are data structures that contain pointers to the next element 
in the list. A new element is inserted after an existing (parent) element. The next element 
pointer in the parent element is copied (stored) unconditionally into the new element. A 
pointer to the new element is stored conditionally into the parent element. 

In this example, it is assumed that the parent element address is in r3, the new element 
address is in r4, and the next element pointers are at offset zero in the respective element 
data structure. It is also assumed that the next element pointer of each list element is in a 
reservation granule separate from that of the next element pointer of all other list elements.

loop: lwarx r2,0,r3 #get next pointer
stw r2,0(r4) #store in new element
sync #synchronize memory (can omit if not MP)
stwcx. r4,0,r3 #add new element to list
bne- loop #loop if reservation lost

In the preceding example, livelock can occur in a multiprocessor system if two list 
elements have next element pointers within the same reservation granule. If it is not 
possible to allocate list elements such that next element pointers are in different reservation 
granules, livelock can be avoided by using the following sequence:

lwz r2,0(r3) #get next pointer
loopl: mr r5,r2 #keep a copy

stw r2,0(r4) #store in new element
sync #synchronize memory

loop2: lwarx r2,0,r3 #get next pointer again
cmpw r2,r5 #loop if changed
bne- loopl #(updated by another processor)
stwcx. r4,0,r3 #add new element to list
bne- loop2 #loop if reservation lost

Multiple-Precision Shifts
Following are programming examples for multiple-precision shifts. A multiple-precision 
shift is a shift of an n-word quantity, where n > 1. The quantity to be shifted is contained in 
n registers. The shift amount is specified either by an immediate value in the instruction or 
by bits 27:31 of a register.

The following examples distinguish between the cases n = 2 and n > 2. If n > 2, the examples 
yield the desired result only when the shift amount is restricted to the range 0–31. When 
n > 2, the number of instructions required is 2n − 1 (immediate shifts) or 3n − 1 (non-
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immediate shifts). The examples shown for n > 2 use n = 3. Extending those examples to 
larger values of n or reducing them to the case n = 2 is straightforward when the shift 
amount restriction is met. This restriction is always met for shifts with immediate shift 
amounts.

The examples assume GPRs r2 and r3 (and r4 if n = 3) contain the quantity to be shifted and 
that the result is placed into the same registers. For non-immediate shifts, the shift amount 
is contained in bits 27:31 of GPR r6. For immediate shifts, the shift amount is assumed to be 
greater than zero. GPRs r0 and r31 are used as scratch registers. The variable sh represents 
the shift amount.

• Shift-left immediate, n = 3 (shift amount < 32)
rlwinm r2, r2, sh, 0, 31−sh
rlwimi r2, r3, sh, 32−sh, 31
rlwinm r3, r3, sh, 0, 31−sh
rlwimi r3, r4, sh, 32−sh, 31
rlwinm r4, r4, sh, 0, 31−sh

• Shift-left, n = 2 (shift amount < 64)
subfic r31, r6, 32
slw r2, r2, r6
srw r0, r3, r31
or r2, r2, r0
addi r31, r6, −32
slw r0, r3, r31
or r2, r2, r0
slw r3, r3, r6

• Shift-left, n = 3 (shift amount < 32)
subfic r31, r6, 32
slw r2, r2, r6
srw r0, r3, r31
or r2, r2, r0
slw r3, r3, r6
srw r0, r4, r31
or r3, r3, r0
slw r4, r4, r6

• Shift-right immediate, n = 3 (shift amount < 32)
rlwinm r4, r4, 32−sh, sh, 31
rlwimi r4, r3, 32−sh, 0, sh−1
rlwinm r3, r3, 32−sh, sh, 31
rlwimi r3, r2, 32−sh, 0, sh−1
rlwinm r2, r2, 32−sh, sh, 31

• Shift-right, n = 2 (shift amount < 64)
subfic r31, r6, 32
srw r3, r3, r6
slw r0, r2, r31
or r3, r3, r0
addi r31, r6, −32
srw r0, r2, r31
or r3, r3, r0
srw r2, r2, r6

• Shift-right, n = 3 (shift amount < 32)
subfic r31, r6, −32
srw r4, r4, r6
slw r0, r3, r31
or r4, r4, r0
srw r3, r3, r6
slw r0, r2, r31
or r3, r3, r0
srw r2, r2, r6

• Shift-right algebraic immediate, n = 3 (shift amount < 32)
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rlwinm r4, r4, 32−sh, sh, 31
rlwimi r4, r3, 32−sh, 0, sh−1
rlwinm r3, r3, 32−sh, sh, 31
rlwimi r3, r2, 32−sh, 0, sh−1
srawi r2, r2, sh

• Shift-right algebraic, n = 2 (shift amount < 64)
subfic r31, r6, 32
srw r3, r3, r6
slw r0, r2, r31
or r3, r3, r0
addic. r31, r6, −32
sraw r0, r2, r31
ble $+8
ori r3, r0, 0
sraw r2, r2, r6

• Shift-right algebraic, n = 3 (shift amount < 32)
subfic r31, r6, 32
srw r4, r4, r6
slw r0, r3, r31
or r4, r4, r0
srw r3, r3, r6
slw r0, r2, r31
or r3, r3, r0
sraw r2, r2, r6

Code Optimization Guidelines
The following guidelines can help reduce program execution time in the PPC405. 
Additional information on PowerPC code optimization can be found in The PowerPC 
Compiler Writer’s Guide.

Conditional Branches
Multi-way branches and compound branches can be implemented in several ways. The 
implementation choice depends on problem specifics, including the number and 
distribution of test conditions and the instruction timings and latencies. Usually, the 
implementation involves a combination of conditional branches and unconditional 
branches.

Conditional branches require the evaluation of conditional expressions. In evaluating 
these expressions, performance can be improved by using instructions that update the CR 
to reflect their results. These results are represented in the CR as boolean variables that can 
be operated on using the CR-logical instructions. This usually yields better performance 
than using other instructions to evaluate conditional expressions solely in the GPRs.

The following pseudocode provides a simple example of how the CR register and CR-
logical instructions can be used to improve the performance of conditional expressions by 
eliminating branches. In this example, Var28–Var31 are boolean variables maintained as 
bits in the CR[CR7] field (CR28:31). These variables represent a true condition by using the 
binary value 0b1 and a false condition by using the binary value 0b0.

if (Var28 || Var29 || Var30 || Var 31) branch to target

The above pseudocode can be implemented in assembler using branches as follows:

bt 28, target
bt 29, target
bt 30, target
bt 31, target
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The following assembler sequence is functionally equivalent but replaces three of the 
branches with CR-logical instructions. The processor can usually execute these 
instructions faster than branches.

cror 2, 28, 29
cror 2, 2, 30
cror 2, 2, 31
bt 2, target

Branch Prediction
If the outcome of a conditional branch is likely to contradict the default prediction used by 
the processor, software can override the default prediction by setting the y bit in the 
branch-instruction BO opcode field (see Branch Prediction, page 370 for more information 
on the y bit). Overriding this default prediction is useful in the following situations:

• If an unlikely call to an error handler lies in the fall-through path.
• If program profiling determines that the default branch prediction is likely to be 

incorrect.
• If a conditional subroutine return is likely to be taken. Subroutine returns are 

normally programmed using branch to link register instructions which are predicted 
not taken by default.

CR Dependencies
If an instruction updates the CR register and the result is used by a conditional branch, two 
instructions should be placed between the CR-update instruction and conditional branch. 
This gives the processor sufficient time to resolve the branch without stalling instruction 
execution due to a possibly incorrect branch prediction. The CR-update instructions that 
can benefit from this action are:

• Integer-arithmetic, compare, and logical instructions that have the Rc opcode field set.
• The addic., andi., and andis. instructions.
• CR-logical instructions.
• The mcrf, mcrxr, and mtcrf instructions.

Floating-Point Emulation
The PPC405 is an integer processor and does not support the execution of floating-point 
instructions in hardware. System software can provide floating-point emulation support 
using one of two methods.

The preferred method is to supply a call interface to subroutines within a floating-point 
run-time library. The individual subroutines can emulate the operation of floating-point 
instructions. This method requires the recompilation of floating-point software in order to 
add the call interface and link in the library routines

Alternatively, system software can use the program interrupt. Attempted execution of 
floating-point instructions on the PPC405 causes a program interrupt to occur due to an 
illegal instruction. The interrupt handler must be able to decode the illegal instruction and 
call the appropriate library routines to emulate the floating-point instruction using integer 
instructions. This method is not preferred due to the overhead associated with executing 
the interrupt handler. However, this method supports software containing PowerPC 
floating-point instructions without requiring recompilation. See Program Interrupt 
(0x0700), page 511, for more information.

Cache Usage
Code and data can be accessed much faster if it is located in the processor caches instead of 
external memory. Code and data can be organized to minimize cache misses, reducing the 
need for external memory accesses.
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Any two memory addresses are considered congruent if address bits 19:26 (the cache 
index) are the same but address bits 0:18 (the cache tag) are different. Address bits 27:31 
define the 32-byte cacheline, which is the smallest object that can be brought into the cache. 
Only two congruent cachelines can be in the cache simultaneously. Accessing a third 
congruent line causes one of the two lines already in the cache to be removed.

Software can minimize the number of congruent addresses by organizing used addresses 
such that they are uniformly distributed across address bits 19:26.

Alignment
Misaligned memory accesses are usually handled by the processor and do not cause an 
alignment exception. However, the fastest possible memory-access performance is 
obtained when operands are properly aligned. If an unaligned load or store operand 
crosses a word boundary, the processor accesses that operand using two memory 
references.

Branch targets should be aligned on a cache-line boundary if that target is unlikely to be 
accessed due to a default prediction or a prediction override. This helps minimize the 
number of unused instructions present in the instruction cache.

Instruction Performance
The following performance descriptions consider only the “first order” effects of cache 
misses. The performance penalty associated with a cache miss involves a number of 
second-order effects. This includes PLB contention between the instruction and data 
caches and the time associated with performing cache-line fills and flushes. Unless stated 
otherwise, the number of cycles described applies to systems having zero-wait-state 
memory access.

General Rules
The following rules apply to instruction execution in the PPC405:

• Instructions execute in order.
• Assuming cache hits, all instructions execute in one cycle except the following:

- Divide instructions execute in 35 clock cycles.
- Branches execute in one to three clock cycles as described in Branches below.
- Multiply-accumulate and multiply instructions execute in one to five cycles as 

described in Multiplies below.
- Aligned load/store instructions that hit in the data cache execute in one clock 

cycle. See Alignment above for information on the access penalty associated with 
unaligned load/stores.

• A data cache-control instruction requires two cycles to execute. However, subsequent 
data-cache accesses stall until the cache-control instruction finishes accessing the data 
cache. Those accesses do not remain stalled when transfers associated with previous 
data cache-control instructions continue on the PLB.

Branches
The performance of a branch instruction depends on how quickly it is resolved. A branch 
is resolved when all conditions it depends on are known and the branch target is known. 
Generally, the greater the separation (in instructions) between a branch and the last 
instruction it depends on, the earlier the branch is resolved. If the branch is resolved early, 
it can be executed in fewer cycles.

The execution time of branches on the PPC405 can be determined as follows:

• A known not taken branch does not have condition dependencies (they are resolved) or 
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address dependencies (the next instruction is executed). These instructions execute in 
one clock cycle.

• A known taken branch does not have condition dependencies (they are resolved) but 
can have address dependencies. These instructions execute as follows:
- When address dependencies are resolved, the instruction executes in one or two 

cycles depending on where the branch instruction is in the pipeline when the 
address is resolved. If the address is resolved early (at or before prefetch) it 
executes in one cycle. If the address is resolved during decode, it executes in two 
cycles.

- When address dependencies are not resolved, the instruction executes in two or 
three cycles. This depends on the separation between the branch and the address-
calculation instructions. If the separation is one instruction, the branch executes in 
two cycles. If there is no separation, the branch executes in three cycles.

• A predicted not taken branch has condition dependencies. These instructions execute as 
follows:

- If the prediction is correct, the branch executes in one cycle.
- If the prediction is incorrect, the instruction executes in two or three cycles. This 

depends on the separation between the branch and conditional instructions. If the 
separation is one instruction, the branch executes in two cycles. If there is no 
separation, the branch executes in three cycles.

• A predicted taken branch has condition dependencies. These instructions execute as 
follows:
- If the prediction is correct, the branch executes in one or two cycles, depending on 

where the branch instruction is in the pipeline when the prediction occurs. If the 
instruction is predicted early (at or before prefetch) it executes in one cycle. If the 
instruction is predicted during decode, it executes in two cycles.

- If the prediction is incorrect, the instruction executes in two or three cycles. This 
depends on the separation between the branch and the condition-setting 
instructions. If the separation is one instruction, the branch executes in two cycles. 
If there is no separation, the branch executes in three cycles.

Multiplies
The PPC405 supports word multiplication and halfword multiplication. Multiply-
accumulate (MAC) instructions are also supported. All of these instructions use the same 
multiplication hardware and are pipelined by the processor in the execution unit.

The time required by the processor to multiply two words depends on whether the first 
operand is larger than the second. The processor reduces the number of cycles required to 
perform a multiplication by automatically detecting which operand is smaller and 
internally ordering them appropriately. The operand size is determined by examining the 
number of bits involved in the sign-extension.

Issue-rate cycles and latency cycles are associated with the pipelining of multiply and 
MAC instructions, as shown in Table D-1. Issue-rate cycles describe the number of cycles 
required between operations before the multiplication hardware can accept a new 
operation. Latency cycles describe the total number of cycles for the multiplication 
hardware to perform the operation.

Under the conditions described below, a second multiply or MAC instruction can begin 
execution before the first multiply or MAC instruction completes. When these conditions 
are met, the issue-rate cycle numbers apply. Otherwise, the latency cycle numbers apply. A 
multiply or MAC instruction can follow another multiply or MAC and still meet the 
conditions that support the use of the issue-rate cycle numbers.

http://www.xilinx.com


846 www.xilinx.com March 2002 Release
1-800-255-7778 Virtex-II Pro™ Platform FPGA Documentation

Appendix D: Programming Considerations
R

Referring to Table D-1, issue-rate cycle numbers are used in the following cases:

• No operand dependency exists on a previous multiply or MAC instruction in the 
multiply hardware.

• The result of a MAC instruction is used as the accumulate operand of a subsequent 
MAC instruction in the multiply hardware. In this case, the processor is capable of 
forwarding the required result within the time imposed by the issue-rate.

Latency cycle numbers are used in the following cases:

• No multiply or MAC instruction is present in the multiply hardware when the current 
instruction is executed.

• An operand of a multiply or MAC instruction depends on the result of a previous 
multiply or MAC instruction in the multiply hardware. An exception to this rule is 
described in the issue-rate rules described above.

Scalar Load Instructions
Cacheable load instructions that hit in the data cache usually execute in one cycle. 
Cacheable and non-cacheable load instructions that hit in the data fill buffer also execute 
(usually) in one cycle. 

The pipelining of load instructions by the processor can cause loads that hit in the cache or 
fill buffer to take extra cycles. If a load instruction is followed by an instruction that uses 
the loaded data, a load-use dependency exists. When the loaded data is available, it is 
forwarded to the operand register of the dependent instruction. This prevents a processor 
stall from occurring due to missing operand data. This data forwarding adds an extra 
latency cycle when updating the appropriate GPR. In this case, the load appears to execute 
in two cycles.

Load Misses and Uncacheable Loads
Cacheable load misses and non-cacheable loads incur penalty cycles for accessing memory 
over the PLB. These penalty cycles depend on the speed of the PLB and when the address 
acknowledge is returned over the PLB. Assuming the PLB operates at the same frequency 
as the processor and that the address acknowledge is returned in the same cycle the data-
cache unit asserts the PLB request, the number of penalty cycles are as follows:

• Six cycles if operand forwarding is enabled.
• Seven cycles if operand forwarding is not enabled.

Additional cycles are required if the system performance does not match the above 
assumptions.

Table D-1: Multiply and MAC Instruction Timing

Operations
Issue-Rate

Cycles
Latency
Cycles

MAC and Negative MAC 1 2

Halfword × Halfword (32-bit result) 1 2

Halfword × Word (48-bit result) 2 3

Word × Word (64-bit result) 4 5

Notes: 
For the purposes of this table, words are treated as halfwords if the upper 16 bits of the operand 
contain a sign extension of the lower 16 bits. For example, if the upper 16 bits of a word operand 
are zero, the operand is considered a halfword when calculating execution time.
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The PPC405 can execute instructions following a load miss or non-cacheable load if those 
subsequent instructions do not have a load-use dependency on the load data. When 
possible, the instruction using the load data should be separated from the load instruction 
by as many non-use instructions as possible. This enables the processor to continue 
executing instructions with minimal delay while the load data is accessed.

Scalar Store Instructions
Cacheable store instructions that miss in the data cache are queued by the data-cache unit 
so that they appear to execute in a single cycle (if the store is aligned properly). Non-
cacheable store instructions are handled in the same way. Under certain conditions, the 
data-cache unit can queue up to three store instructions (see Pipeline Stalls, page 446 for 
more information.)

All aligned stwcx. instructions execute in two cycles.

String and Multiple Instructions
The access time for load/store string and load/store multiple instructions depends on the 
alignment of the data being accessed. 

String instructions are decomposed by the processor into multiple word-aligned accesses. 
The execution time for string instructions is calculated as follows (assuming data-cache 
hits):

• Access to leading bytes consume one cycle. Unused bytes are discarded if the leading 
bytes are not aligned on a word boundary.

• Access to intermediate bytes consume one cycle for each word accessed.
• Access to trailing bytes consume one cycle. Unused bytes are discarded if the trailing 

bytes are not aligned on a word boundary.

Figure D-1 shows an example of a 21-byte string with unaligned leading and trailing bytes. 
Shaded boxes represent bytes outside the string that are discarded by the processor.

In the above example, access to the string requires six cycles, assuming data-cache hits. 
This is calculated as follows:

• One cycle is required to access the bytes at addresses 1, 2, and 3. The byte at address 0 
is also accessed but discarded.

• Four cycles are required to access the four words at addresses 4, 8, 12, and 16 (one 
cycle for each word). 

• One cycle is required to access the bytes at addresses 20 and 21. The bytes at addresses 
22 and 23 are also accessed but discarded.

Load/store multiple instructions are also decomposed by the processor into multiple 
word-aligned accesses. Unaligned words are assembled (loads) or disassembled (stores) 
by the processor during the access. The execution time for these instructions is calculated 
as follows (assuming data-cache hits):

• Access to the leading word consumes one cycle. Unused bytes are discarded if the 
leading word is not aligned on a word boundary. 

• Access to intermediate words consume one cycle for each word accessed.
• Access to the trailing word consumes one cycle. Unused bytes are discarded if the 

trailing word is not aligned on a word boundary.

Address 0 4 8 12 16 20

Data 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure D-1: String Access Example
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Figure D-2 shows an example of a 5-word unaligned operand. Shaded boxes represent 
bytes outside the operand that are discarded by the processor.

In the above example, access to the multiple-word operand requires six cycles, assuming 
data-cache hits. This is calculated as follows:

• One cycle is required to access the first three bytes of word 0. The byte at address 0 is 
also accessed but discarded.

• Four cycles are required to access the remaining byte of word 0, all bytes in words 1, 2, 
and 3, and the first three bytes of word 4.

• One cycle is required to access the last byte in word 4. The bytes at addresses 21, 22, 
and 23 are also accessed but discarded.

Instruction Cache Misses
Cacheable instruction-fetch misses and non-cacheable instruction-fetches incur penalty 
cycles for accessing memory over the PLB. These penalty cycles depend on the speed of the 
PLB and when the address acknowledge is returned over the PLB. The number of penalty 
cycles are as follows:

• Three cycles if the access is a sequential instruction fetch.
• Four cycles if the access is due to a taken branch recognized by the instruction 

prefetch buffer.
• Five cycles if the access is due to a taken branch recognized by the instruction decode 

unit.

The above penalty cycle numbers assume the following:

• The PLB operates at the same frequency as the processor.
• The address acknowledge is returned in the same cycle the data-cache unit asserts the 

PLB request.
• The target instruction is returned in the cycle following the address acknowledge.

Additional cycles are required if the system performance does not match the above 
assumptions.

Address 0 4 8 12 16 20

Data 0 1 2 3 4

Figure D-2: Multiple-Word Access Example
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Appendix E

PowerPC® 6xx/7xx Compatibility

This appendix outlines the programming model differences between the 40x family and 
the 6xx/7xx family of PowerPC processors. The PowerPC 6xx/7xx family complies with 
the original PowerPC architecture designed for desktop applications. The PowerPC 40x 
family complies with the PowerPC embedded-environment architecture designed for 
embedded applications. The information contained in this appendix is useful to system 
programmers porting software from one family to another.

The two architectures are compatible at the user instruction-set architecture (UISA) level 
but differ at the level of the virtual-environment architecture (VEA) and operating-
environment architecture (OEA). The PowerPC embedded-environment architecture 
optimizes the VEA and OEA to meet the unique requirements of embedded applications. 
These optimizations include changes in memory management, cache management, 
exceptions, timer resources, and others. Many of these optimizations are reflected by the 
different special-purpose registers (SPRs) supported by the families.

Porting software between implementations is usually limited to the operating-system 
kernel and other privileged-mode software. Applications usually require no modification. 
Software porting can be simplified through the use of structured programming methods 
that localize program modules requiring modification. For example, if all access to the time 
base are performed using a single function, only that function needs to be modified when 
porting software to another PowerPC processor.

More information on the PowerPC architecture can be found in the PowerPC  
Microprocessor Family: The Programming Environments. Refer to implementation-specific 
documentation for more information on initialization and configuration, performance 
considerations, special-purpose registers, and other software-visible details that can vary 
from processor to processor.

Registers
Table E-1 summarizes the registers supported by the PowerPC 40x family that are not 
supported by the PowerPC 6xx/7xx family. Table E-2 summarizes the registers supported 
by the PowerPC 6xx/7xx family that are not supported by the PowerPC 40x family. Not all 
registers shown for a particular family are supported by all members within that family.

Table E-1:  40x Registers Not Supported by 6xx/7xx Processors

Name Description Purpose

SPRG4–7 SPR general-purpose registers 4–7 Software defined

USPRG0 User SPR general-purpose register 0

CCR0 Core-configuration register Processor configuration
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DCCR Data-cache cacheability register Storage control

DCWR Data-cache write-through register

ICCR Instruction-cache cacheability register

SGR Storage Guarded Register

SLER Storage Little-Endian Register

SU0R Storage User-Defined 0 Register

ZPR Zone-Protection Register

DCRs Device control registers External device control

DEAR Data-error address register Exception and interrupt processing

ESR Exception-syndrome register

EVPR Exception-vector prefix register

SRR2 Save/restore register 2

SRR3 Save/restore register 3

PIT Programmable-Interval Timer Timer resources

TCR Timer-Control Register

TSR Timer-Status Register

DACn Data address-compare registers Debugging

DBCRn Debug-control registers

DBSR Debug-status register

DVCn Data value-compare registers

IACn Instruction address-compare registers

ICDBDR Instruction-cache debug-data register

Table E-2:  6xx/7xx Registers Not Supported by 40x Processors

Name Description Purpose

HIDn Hardware implementation registers Processor configuration

DBATn Data BATs Memory management

IBATn Instruction BATs

SDR1 Page table base address

SRn Segment registers

EAR External address register External device control

DAR Data address register Exception and interrupt processing

DSISR Data storage interrupt status register

DEC Decrementer Timer resources

DABR Data-address breakpoint register Exception and interrupt processing

IABR Instruction-address breakpoint register

Table E-1:  40x Registers Not Supported by 6xx/7xx Processors

Name Description Purpose
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Machine-State Register
Several bits within the machine-state register are supported by either PowerPC 40x 
processors or PowerPC 6xx/7xx processors, but not both. Others have different meanings 
depending on the processor family. Table E-3 compares these differences.

MMCRn Monitor control registers Performance monitoring

PMCn Performance counters

SIA Sampled instruction address

UMMCRn Monitor control registers (user mode)

UPMCn Performance counters (user mode)

USIA Sampled instruction address (user mode)

ICTC Instruction cache throttling control register Cache control

L2CR L2 cache control register

THRMn Thermal assist unit registers Thermal management

Table E-2:  6xx/7xx Registers Not Supported by 40x Processors

Name Description Purpose

Table E-3: Comparison of MSR Bit Definitions

MSR Bit PowerPC 40x Family PowerPC 6xx/7xx Family

0:5 Reserved Reserved

6 AP—Auxiliary Processor Available

7:11 Reserved

12 APE—APU Exception Enable

13 WE—Wait State Enable POW—Power Management Enable

14 CE—Critical Interrupt Enable Reserved

15 Reserved ILE—Interrupt Little Endian

16 EE—External Interrupt Enable

17 PR—Privilege Level

18 FP—Floating-Point Available

19 ME—Machine-Check Enable

20 FE0—Floating-Point Exception-Mode 0

21 DWE—Debug Wait Enable SE—Single-Step Trace Enable

22 DE—Debug Interrupt Enable BE—Branch Trace Enable

23 FE1—Floating-Point Exception-Mode 1

24 Reserved

25 Reserved IP—Exception Prefix

26 IR—Instruction Relocate

27 DR—Data Relocate

28 Reserved

http://www.xilinx.com


852 www.xilinx.com March 2002 Release
1-800-255-7778 Virtex-II Pro™ Platform FPGA Documentation

Appendix E: PowerPC® 6xx/7xx Compatibility
R

Processor-Version Register
The contents of the processor-version register (PVR) are implementation dependent. 

Memory Management
The primary function of memory management is the translation of effective addresses to 
physical addresses for instruction memory and data memory accesses. The secondary 
function of memory management is to provide memory-access protection and memory-
attribute control. Memory management is handled by the memory-management unit 
(MMU) in the processor.

Memory Translation
The PowerPC 6xx/7xx family manages memory translation by dividing the address space 
into blocks, segments, and pages. The address-space divisions are characterized as follows:

• Blocks specify large, contiguous memory regions (from 128KB to 256MB) with 
common access protection and memory attributes. Blocks are defined using SPRs 
called block address-translation (BAT) registers. The BAT registers are used by the 
MMU to translate a 32-bit effective address within a BAT to a 32-bit physical address.

• Segments are contiguous 256MB memory regions. Segment registers are used by the 
MMU to translate a 32-bit effective address within a segment to a 52-bit virtual 
address. 16 segment registers are available and they are accessed using move-to and 
move-from segment register instructions.

• Pages are contiguous 4KB memory regions. The MMU uses page-translation tables to 
translate a 52-bit virtual address within a page to a 32-bit physical address. The page-
translation tables are created by software and stored in system memory. The processor 
uses a translation look-aside buffer (TLB) to cache the most frequently used 
translations. The processor manages many TLB functions in hardware, including 
page-table walking and TLB entry replacement. TLB instructions are provided for 
some software management, such as TLB invalidation.

If an effective address is not part of a memory region defined by a BAT, translation of that 
address to a physical address is handled by the combined segment and page translation 
mechanism. The effective address is translated first into a virtual address using the 
segment registers. The resulting virtual address is translated to a physical address using 
the page tables.

The PowerPC 40x family manages memory translation by dividing the address space into 
pages. BAT and segment translation are not supported. Page translation in the PowerPC 
40x family has the following characteristics:

• Pages are contiguous, variable-sized memory regions. Page sizes can vary from 1KB 
to 16MB.

• Page-translation tables are created by software and stored in system memory. The 
most frequently used translations are cached in the TLB. TLB management is the 
responsibility of software, not hardware.

• The MMU uses the page-translation tables to translate a 40-bit virtual address to a 32-
bit physical address. The 40-bit virtual address is the combination of the 32-bit 

29 Reserved PM—Performance Monitor Marked Mode

30 RI—Recoverable Exception

31 LE—Little-Endian Mode Enable

Table E-3: Comparison of MSR Bit Definitions

MSR Bit PowerPC 40x Family PowerPC 6xx/7xx Family
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effective address appended to the 8-bit PID.

Table E-4 summarizes the memory-translation differences between PowerPC 40x 
processors and PowerPC 6xx/7xx processors. Gray-shaded cells represent unsupported 
features.

Memory Protection
Both the PowerPC 6xx/7xx and PowerPC 40x processors support no-access, read-only, and 
read/write memory protection. However, the methods used to specify protection differ in 
the two processor families:

• PowerPC 6xx/7xx processors:
- Protection is specified during segment and page translation using a combination 

of protection keys stored in the segment registers and page-protection bits stored 
in the page-table entries.

- Protection is specified during BAT translation using protection bits stored in the 
BAT registers.

• PowerPC 40x processors:
- Protection is specified during page translation using page-protection bits stored 

in the TLB entries.
- Zone protection can be used to override the access protection specified in a TLB 

entry. Fields within the zone-protection register (ZPR) define the protection level 
of a page or set of pages.

Memory Attributes
Both the PowerPC 6xx/7xx and PowerPC 40x processors support the following memory 
attributes:

• Write through (W).
• Caching inhibited (I).

Table E-4: Summary of Memory Translation Differences

Memory-Translation Feature PowerPC 40x Family PowerPC 6xx/7xx Family

Block address translation (BAT) Supported using separate instruction and 
data BAT registers (SPRs)

Segment translation Supported using 16 segment registers and 
special instructions to access those registers

Page translation Supported Supported

Virtual-address width 40 bits (8-bit PID and 32-bit effective address) 52 bits

Page size 1KB, 4KB, 16KB, 64KB, 256KB, 1MB, 4MB, 
and 16MB

4KB

Page table entry Flexible - software defined Defined by PowerPC architecture

Page table organization Flexible - software defined Hashed

Page history recording (reference and 
change)

Software Hardware

TLB-entry replacement Software Hardware

TLB instructions tlbia
tlbre
tlbsx[.]
tlbsync
tlbwe

tlbia
tlbie
tlbsync

TLB-miss exceptions Supported
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• Memory coherence (M). This attribute is not supported by the PPC405 and is ignored.
• Guarded (G).

PowerPC 40x processors also support the following additional memory attributes:

• User-defined (U0).
• Endian (E).

All memory attributes supported by PowerPC 40x processors can be applied in real mode 
(address translation disabled) using storage-attribute control registers. These registers are 
not supported by PowerPC 6xx/7xx processors.

Cache Management
The PowerPC architecture does not define the type, organization, implementation, or 
existence of internal or external caches. To maximize portability, software that operates on 
multiple PowerPC implementations should always assume a Harvard cache model is 
implemented.

Table E-5 summarizes the PowerPC 40x cache-management instructions not supported by 
the PowerPC 6xx/7xx family. Implementations within the PowerPC 40x family can vary in 
the detailed operation of these instructions.

Some PowerPC processors also support cache locking. Cache locking prevents the 
replacement of a cacheline regardless of the frequency of its use. Cache locking is 
supported as follows:

• PowerPC 401 processors—cachelines can be individually locked.
• PowerPC 403 processors—not supported.
• PowerPC 405 processors—not supported.
• PowerPC 6xx/7xx processors—the instruction and data caches can be locked in their 

entirety.

Exceptions
The PowerPC 40x family implements several extensions to the exception and interrupt 
mechanism supported by PowerPC 6xx/7xx processors. The extensions supported by 
PowerPC 40x processors are:

• A dual-level interrupt structure defining critical and noncritical interrupts. PowerPC 
6xx/7xx processors implement a single-level interrupt structure that does not 
distinguish between critical and noncritical interrupts.

• New save/restore registers (SRR2/SRR3) that support critical interrupts. The 
PowerPC 40x family uses the SRR0/SRR1 save/restore registers for noncritical 
interrupts, which are used for all interrupts in the PowerPC 6xx/7xx family.

Table E-5: 40x Cache-Management Instructions

Instruction 405 401 and 403

dccci Invalidates individual data-cache congruence classes.

dcread Data-cache debug function controlled by CCR0 register. Data-cache debug function controlled by CDBCR register.

icbt Instruction-cache block touch, executable from user mode. Instruction-cache block touch, executable from privileged 
mode only.

iccci Invalidates the entire instruction cache. Invalidates individual instruction-cache congruence 
classes.

icread Function controlled by CCR0 register. Function controlled by CDBCR register.
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• Differences in exception-related bits in the machine-state register (MSR). See 
Table E-3, page 851 for a summary.

• A new interrupt-return instruction (rfci) that supports critical interrupts. The 
PowerPC 40x family uses the rfi instruction to return from noncritical interrupts, 
which is used to return from all interrupts in the PowerPC 6xx/7xx family.

• New special-purpose registers for recording exception information. The PowerPC 40x 
family defines two registers:
- The exception-syndrome register (ESR) used to identify the cause of an exception.
- The data exception-address register (DEAR) used to record the memory-operand 

effective address of a data-access instruction that causes certain exceptions. The 
data-address register (DAR) performs a similar function in PowerPC 6xx/7xx 
processors.

• Greater flexibility in relocating the interrupt-handler table. The exception-vector 
prefix register (EVPR) supports relocating the interrupt-handler table anywhere in 
physical-address space, with a base address that falls on a 64KB-aligned boundary. 
The PowerPC 6xx/7xx family supports two locations for the interrupt-handler table: 
0x000n_nnnn or 0xFFFn_nnnn, selected by using the MSR[IP] bit.

• New exceptions and interrupts are defined. Some exceptions and interrupts 
supported by the PowerPC 6xx/7xx family are not supported by PowerPC 40x 
processors. Table E-6 summarizes the differences between the exception and interrupt 
vectors defined by the two families. Gray-shaded cells represent unsupported 
interrupt vectors. Not all processors within a family support all of the exceptions and 
interrupts defined by the family.

Timer Resources
The PowerPC 40x family implements new timer features. These are:

• The programmable-interval timer (PIT) register. This register decrements at the same 
clock rate as the time base. Its function replaces that of the decrementer in the 
PowerPC 6xx/7xx family.

Table E-6: Summary of Exception and Interrupt Vector Differences

Vector Offset PowerPC 40x Family PowerPC 6xx/7xx Family

0x0100 Critical-Input System Reset

0x0900 Decrementer

0x0D00 Trace

0x0F00 Performance Monitor

0x0F20 APU Unavailable

0x1000 Programmable-Interval Timer Instruction-Translation Miss

0x1010 Fixed-Interval Timer

0x1020 Watchdog Timer

0x1100 Data-TLB Miss Data-Translation Miss (loads)

0x1200 Instruction-TLB Miss Data-Translation Miss (stores)

0x1300 Instruction-Address Breakpoint

0x1400 System Management

0x1700 Thermal Management

0x2000 Debug
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• The programmable-interval timer (PIT) interrupt. This interrupt is triggered by a 
time-out on the PIT registers. Its function replaces that of the decrementer interrupt in 
the PowerPC 6xx/7xx family.

• The fixed-interval timer (FIT) interrupt. This interrupt is triggered by a pre-
determined bit transition in the time base. This feature is not supported by the 
PowerPC 6xx/7xx family.

• The watchdog timer (WDT) interrupt. This critical interrupt is triggered by a pre-
determined bit transition in the time base. This feature is not supported by the 
PowerPC 6xx/7xx family.

• The timer-control register (TCR). This register controls the PowerPC 40x timer 
resources. It is not supported by the PowerPC 6xx/7xx family.

• The timer-status register (TSR). This register is used by the PowerPC 40x timer 
resources to report status. It is not supported by the PowerPC 6xx/7xx family.

Other Differences

Instructions
PowerPC 40x processors can support implementation-specific instructions that are not 
supported in PowerPC 6xx/7xx processors. For example, the multiply-accumulate (MAC) 
instructions are not supported by PowerPC 6xx/7xx processors. Refer to Table B-32, 
page 798, for a list of implementation dependent PPC405 instructions. This table also 
shows which PPC405 instructions are not supported by the PowerPC architecture.

Endian Support
The default memory-access order for all PowerPC processors is big-endian. The PowerPC 
embedded-environment architecture defines a true little-endian memory-access capability 
that is implemented using the endian storage attribute (E). The PPC405 supports this 
capability. The PowerPC architecture supports a little-endian mode that is implemented by 
PowerPC 6xx/7xx processors. This mode is not supported by the PPC405.

Debug Resources
Debug resources are implementation dependent. In general, all PowerPC 40x processors 
support debug events on both instruction addresses and data addresses. Debug events are 
controlled using the DBCR0 and DBCR1 registers. Debug status is reported by the DBSR 
register. PowerPC 6xx/7xx processors support debug resources to varying degrees, but the 
capabilities are often less comprehensive than those supported by PowerPC 40x 
processors.

Power Management
The PowerPC 40x family implements power management using the MSR[WE] bit. Setting 
this bit places the processor in the wait state. Power management is disabled when an 
interrupt occurs.

The PowerPC 6xx/7xx family similarly implements power management using the 
MSR[POW] bit. PowerPC 7xx processors support four different power states, programmed 
using the HID0 register. Power management is disabled when an interrupt occurs.
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Appendix F

PowerPC® Book-E Compatibility

This appendix outlines the programming model differences between the PowerPC 
embedded-environment architecture (40x family of processors) and the PowerPC Book-E 
architecture. In general, the PowerPC Book-E architecture extends the embedded-system 
features introduced by the PowerPC embedded-environment architecture. The PowerPC 
Book-E architecture also introduces 64-bit instructions and addressing, although the scope 
of this appendix is restricted to 32-bit operations. The information contained in this 
appendix is useful as a guide to system programmers porting 32-bit software from one 
family to another.

At the 32-bit user instruction-set architecture (UISA) level, the PowerPC Book-E 
architecture is compatible with the PowerPC embedded-environment architecture. 
However, there are differences between the architectures at the virtual-environment 
architecture (VEA) and operating-environment architecture (OEA) levels. These 
differences include changes in memory management, cache management, memory 
synchronization, exceptions, timer resources, and others. Many of the differences are 
reflected the deletion, modification, and introduction of special-purpose registers.

Porting software between implementations is usually limited to the operating-system 
kernel and other privileged-mode software. 32-bit applications typically require no 
modification. Software porting can be simplified through the use of structured 
programming methods that localize program modules requiring modification. For 
example, if all access to the time base are performed using a single function, only that 
function needs to be modified when porting software to another PowerPC processor.

More information on the PowerPC Book-E architecture can be found in the Book E: 
Enhanced PowerPC  Architecture. Refer to implementation-specific documentation for 
more information on initialization and configuration, performance considerations, special-
purpose registers, and other software-visible details that can vary from processor to 
processor.

Registers
Table F-1 summarizes the registers supported by PowerPC 40x family that are not defined 
by the PowerPC Book-E architecture. This table indicates whether or not a similar register 
with a different name and SPR number is defined by the PowerPC Book-E architecture.
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Table F-2 summarizes the registers supported by the PowerPC 40x processors that have a 
different SPR number or a different name defined by the PowerPC Book-E architecture.

Table F-3 summarizes the new registers defined by the PowerPC Book-E architecture or 
present in the PowerPC 440 processor.

Table F-1: Registers Not Defined in PowerPC Book-E Architecture

Name Description PowerPC Book-E Architecture Equivalent

DCCR Data-cache cacheability register None

DCWR Data-cache write-through register

ICCR Instruction-cache cacheability register

SGR Storage Guarded Register

SLER Storage Little-Endian Register

SU0R Storage User-Defined 0 Register

ZPR Zone-Protection Register

EVPR Exception-vector prefix register IVPR

SRR2 Save/restore register 2 CSRR0

SRR3 Save/restore register 3 CSRR1

PIT Programmable-Interval Timer DEC

Table F-2: Renumbered/Renamed Registers in the PowerPC Book-E Architecture

PowerPC 40x Family PowerPC Book-E Architecture

Name SPRN Name SPRN

DAC1 1014 DAC1 316

DAC2 1015 DAC2 317

DBCR0 1010 DBCR0 308

DBCR1 957 DBCR1 309

DBSR 1008 DBSR 304

DEAR 981 DEAR 61

DVC1 950 DVC1 318

DVC2 951 DVC2 319

ESR 980 ESR 62

IAC1 1012 IAC1 312

IAC2 1013 IAC2 313

IAC3 948 IAC3 314

IAC4 949 IAC4 315

PID 945 PID 48

TCR 986 TCR 340

TSR 984 TSR 336

USPRG0 256 SPRG8 256
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Machine-State Register
The PowerPC Book-E architecture redefines some of the bits in the machine-state register 
(MSR). Table F-4 compares the MSR bit definitions used by PowerPC 40x processors and 
PowerPC Book-E processors.

Table F-3: New Registers in the PowerPC Book-E Architecture

Name Description Purpose

MMUCR Memory-management unit control register Memory management

PIR Processor ID Register Multiprocessing

CSRR0 Critical save/restore register 0 Exception and interrupt processing

CSRR1 Critical save/restore register 1

IVOR0–
IVOR15

Interrupt-vector offset registers

IVPR Interrupt-vector prefix register

DEC Decrementer Timer resources

DECAR Decrementer Auto Reload

DNVn1 Data-cache normal victim register Cache control

DTVn1 Data-cache transient victim register

DVLIM1 Data-cache victim limit

INVn1 Instruction-cache normal victim register

ITVn1 Instruction-cache transient victim register

IVLIM1 Instruction-cache victim limit

DBCR2 Debug-control register 2 Debugging

DCDBTRH1

DCDBTRL1
Data-cache debug tag registers

ICDBTRH1

ICDBTRL1
Instruction-cache debug tag registers

Notes: 
1. Implemented in the 440 processor, but not defined by the PowerPC Book-E architecture.

Table F-4: Comparison of MSR Bit Definitions

MSR Bit PowerPC 40x Family PowerPC Book-E Architecture

0:5 Reserved

6 AP—Auxiliary Processor Available Implementation dependent

7:11 Reserved Reserved

12 APE—APU Exception Enable

13 WE—Wait State Enable

14 CE—Critical Interrupt Enable

15 Reserved Reserved: ILE—Interrupt Little Endian

16 EE—External Interrupt Enable

17 PR—Privilege Level

18 FP—Floating-Point Available
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Processor-Version Register
The contents of the processor-version register (PVR) are implementation dependent. 

Memory Management
The primary function of memory management is the translation of effective addresses to 
physical addresses for instruction memory and data memory accesses. The secondary 
function of memory management is to provide memory-access protection and memory-
attribute control. Memory management is handled by the memory-management unit 
(MMU) in the processor.

Memory Translation
The PowerPC Book-E architecture extends the page translation capabilities supported by 
PowerPC 40x processors. These extensions are summarized in Table F-5. Real mode is not 
supported by PowerPC Book-E implementations. Address translation is always enabled, 
and one or more TLB entries are initialized by the processor during reset so that 
instructions can be fetched and data accessed following reset.

The TLB invalidate all (tlbia) instruction is not supported by PowerPC Book-E processors 
because translation is always enabled. At least one valid TLB entry must exist—the entry 
that maps the TLB-miss interrupt handler.

19 ME—Machine-Check Enable

20 FE0—Floating-Point Exception-Mode 0

21 DWE—Debug Wait Enable Implementation dependent

22 DE—Debug Interrupt Enable

23 FE1—Floating-Point Exception-Mode 1

24 Reserved

25 Reserved Reserved: IP—Interrupt Prefix

26 IR—Instruction Relocate IS—Instruction Address Space

27 DR—Data Relocate DS—Data Address Space

28:29 Reserved

30 Reserved Reserved: RI—Recoverable Interrupt

31 Reserved: LE—Little-Endian Mode Enable

Table F-4: Comparison of MSR Bit Definitions

MSR Bit PowerPC 40x Family PowerPC Book-E Architecture
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Memory Protection
The TLB entries defined by the PowerPC Book-E architecture support the following access 
controls, which can be independently configured for privileged mode and user mode 
accesses:

• Execute
• Read
• Write

Software can use any combination of the access controls to manage memory protection. 
For example, read/write access is specified by enabling both the read and write access 
controls. No-access is specified by disabling both controls.

PowerPC 40x implementations control memory protection using a combination of fields in 
the TLB entry and the zone-protection register (ZPR). These controls support many of the 
same protection characteristics available in PowerPC Book-E processors, but not all of 
them. For example, write-only protection cannot be specified.

Zone protection is not supported by the PowerPC Book-E architecture.

Memory Attributes
The PowerPC 40x family and PowerPC Book-E processors support the following memory 
attributes:

• Write through (W).
• Caching inhibited (I).
• Memory coherence (M). This attribute is not supported by the PPC405 and is ignored.
• Guarded (G).
• Endian (E).
• User-defined. The PowerPC 40x family supports a single user-defined attribute (U0). 

The PowerPC Book-E architecture supports up to four user-defined attributes (U0, 
U1, U2, and U3).

All memory attributes supported by PowerPC 40x processors can be used in real mode 
(address translation disabled) using storage-attribute control registers. These registers are 
not supported by PowerPC Book-E processors.

Table F-5: Summary of Memory Translation Extensions

Memory-Translation Feature PowerPC 40x Family 6xx/7xx Family

Real mode Supported Unsupported

Virtual-address width 40 bits:

• 8-bit PID

• 32-bit effective address

97 bits:

• 1-bit instruction or data address-space 
(from the MSR)

• 32-bit PID

• 64-bit effective address

Page size 1KB to 16MB 1KB to 1TB (terabyte)

TLB instructions tlbia
tlbre
tlbsx[.]
tlbsync
tlbwe

tlbivax
tlbre
tlbsx[.]
tlbsync
tlbwe
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Caches
The PowerPC architecture does not define the type, organization, implementation, or 
existence of internal or external caches. To maximize portability, software that operates on 
multiple PowerPC implementations should always assume a Harvard cache model is 
implemented.

Table F-6 summarizes the cache-management instructions supported by PowerPC 40x 
processors that are changed in the PowerPC Book-E architecture.

Some PowerPC processors also support cache locking. Cache locking prevents the 
replacement of a cacheline regardless of the frequency of its use. Cache locking is 
supported as follows:

• PowerPC 401 processors—cachelines can be individually locked.
• PowerPC 403 processors—not supported.
• PowerPC 405 processors—not supported.
• PowerPC 440 processors—cachelines can be individually locked.

Memory Synchronization
The memory barrier (mbar) instruction replaces the eieio instruction, which uses the same 
opcode. An MO (memory order) operand can be specified with the mbar instruction. This 
operand is used to specify ordering across a subset of memory-access instructions (for 
example, order loads but not stores). If the MO operand is zero or not specified, the mbar 
instruction behaves like the eieio instruction (orders all memory accesses). This guarantees 
that existing software that uses eieio works properly in PowerPC Book-E 
implementations.

The memory synchronize (msync) instruction replaces the sync instruction, which uses the 
same opcode. The msync instruction behaves identically to the sync instruction. This 
guarantees that existing software that uses sync works properly in PowerPC Book-E 
implementations.

Exceptions
Within implementations of the PowerPC Book-E architecture, the effect of invalid 
instruction forms or other exception-causing events can differ from that of PowerPC 40x 
processors. In the PowerPC 440 for example, an stwcx. to an unaligned memory operand 
yields a boundedly undefined result. In the PPC405, this operation causes an alignment 
exception.

Table F-6: PowerPC 40x Cache-Management Instructions

Instruction PowerPC Book-E Architecture Change

dccci This instruction is implementation dependent. On some PowerPC Book-E processors, this 
instruction invalidates the entire data cache.

dcread This instruction is implementation dependent. On some PowerPC Book-E processors, the 
format of data returned by this instruction is different.

icbt The opcode differs from the opcode recognized by PowerPC 40x processors.

iccci This instruction is implementation dependent. On some PowerPC Book-E processors, this 
instruction invalidates the entire instruction cache.

icread This instruction is implementation dependent. On some PowerPC Book-E processors, the 
format of data returned by this instruction is different.

http://www.xilinx.com


March 2002 Release www.xilinx.com 863
Virtex-II Pro™ Platform FPGA Documentation 1-800-255-7778

Exceptions
R

The PowerPC Book-E architecture replaces the exception-vector prefix register (EVPR) 
with the interrupt-vector prefix register (IVPR). The IVPR contains the high-order 16 bits of 
the exception-vector effective address, which is the same function performed by the EVPR.

The PowerPC Book-E architecture also defines 16 interrupt-vector offset registers (IVOR0–
IVOR15) that replace the function of the predefined vector offsets assigned to each 
exception. Any arbitrary word-aligned vector offset can be loaded into these registers, 
which are assigned to a specific exception.

When an exception occurs, the processor calculates the interrupt-handler effective address 
by adding the contents of the IVPR to the contents of the appropriate IVORn. System 
software can emulate the operation of the PowerPC 40x interrupt mechanism by 
preloading the IVORn registers with the appropriate vector offsets, as shown in Table F-7.

Some bits in the exception-syndrome register (ESR) are redefined to support different 
exception conditions. These changes are shown in Table F-8.

Table F-7: Exceptions and Associated IVORn Registers

IVOR Exception PowerPC 40x Offset

IVOR0 Critical Input 0x0100

IVOR1 Machine Check 0x0200

IVOR2 Data Storage 0x0300

IVOR3 Instruction Storage 0x0400

IVOR4 External 0x0500

IVOR5 Alignment 0x0600

IVOR6 Program 0x0700

IVOR7 FPU Unavailable 0x0800

IVOR8 System Call 0x0C00

IVOR9 APU Unavailable 0x0F20

IVOR10 Decrementer (Programmable-Interval Timer) 0x1000

IVOR11 Fixed-Interval Timer 0x1010

IVOR12 Watchdog Timer 0x1020

IVOR13 Data TLB Miss 0x1100

IVOR14 Instruction TLB Miss 0x1200

IVOR15 Debug 0x2000

Table F-8: Comparison of ESR Bit Definitions

Bit PowerPC 40x Function PowerPC Book-E Function

0  MCI—Instruction Machine Check Implementation dependent

1:3 Reserved

4 PIL—Program, Illegal Instruction

5 PPR—Program, Privileged Instruction

6 PTR—Program, Trap Instruction

7 PEU—Program, Unimplemented 
Instruction

FP—Floating-Point Instruction

8 DST—Data Storage, Store Instruction ST—Store
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Timer Resources
The PowerPC Book-E architecture modifies some aspects of the timer resources, as follows:

• The architecture does not define a move-from time base (mftb) instruction. Software that 
reads the time base must use a move-from SPR (mfspr) instruction with an SPR 
number corresponding to the appropriate time-base register.

• The programmable-interval timer (PIT) register is replaced by the decrementer (DEC). 
These registers have different SPR addresses.

• A DEC auto-reload mechanism is provided. This mechanism is more flexible than the 
similar PIT auto-reload mechanism supported by the PowerPC 40x family.

• The programmable-interval timer (PIT) interrupt is replaced by the decrementer 
interrupt.

• The timer-control register (TCR) controls different FIT and watchdog time-out 
intervals, and it controls the decrementer instead of the PIT.

• The timer-status register (TSR) describes decrementer status instead of PIT status.

Other Differences

Instructions
PowerPC 40x processors and PowerPC Book-E processors can support implementation-
specific instructions. For example, the multiply-accumulate (MAC) instructions are 
considered implementation dependent and are not guaranteed to be supported by other 
processors. Also, the PowerPC 440 processor supports the implementation-specific 
determine left-most zero byte (dlmzb) instruction. Refer to Table B-32, page 798, for a list of 
implementation dependent PPC405 instructions. This table also shows which PPC405 
instructions are not supported by the PowerPC Book-E architecture.

Debug Resources
Debug resources are implementation dependent. In general, all PowerPC 40x processors 
and PowerPC Book-E processors support a common set of debug events on both 
instruction addresses and data addresses. Debug events are controlled using the DBCRn 
registers. Debug status is reported by the DBSR register.

9 DIZ—Data and Instruction Storage, Zone 
Protection

Reserved

10:11 Reserved Implementation dependent

12 Program—Floating-Point Instruction AP—Auxiliary-Processor Instruction

13 Program—Auxiliary-Processor Instruction PUO—Unimplemented Operation

14 Reserved BO—Byte Ordering

15 Reserved Reserved

16 Data Storage—U0 Protection

17:23 Reserved

24:31 Reserved Implementation dependent

Table F-8: Comparison of ESR Bit Definitions (Continued)

Bit PowerPC 40x Function PowerPC Book-E Function
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A
addition instructions 390 to 392
addressing

See also page translation.
effective address 344
register indirect 380
register-indirect immediate-index 378
register-indirect index 379

algebraic-compare instructions 399
algebraic-shift instructions 404
alignment

See operand alignment.
alignment exception 510

partial instruction execution 490
APU-unavailable exception 515
atomic memory access 427, 448

B
big endian 349
boundary-scan description 

language 559
boundedly undefined 355
branch instructions 367

See also conditional branch.
AA opcode field 372, 373, 374
BD opcode field 373, 374
branch to CTR 370, 375
branch to LR 369, 375
branch-conditional absolute 369, 374
branch-conditional relative 369, 373
branch-unconditional absolute 368, 

374
branch-unconditional relative 368, 

372
LI opcode field 372, 374
LK opcode field 372, 373, 374, 375
target address calculation 372

branch prediction 370 to 372
default prediction 371
link register stack 371
overriding default prediction 371
simplified mnemonics 827
y bit 371

branch taken (BT)
See debug events.

byte, definition 347
byte-reverse instructions

See load instructions.
See store instructions.

C
cache

access example 440 to 441

congruence class 438
debug control 461
debug instructions 468 to 469
dirty 439
flush 444, 466 to 467
hit 440, 441, 443
line 438
losing coherency 463 to 465
LRU 439
miss 440, 441, 444
physical index 439
physical tag 439
self-modifying code 467
software enforced coherency 465 to 

467
virtual index 439, 442

cache block
See cache, line.

cache-control instructions 456 to 
459

DAC debug events 552
effect of access protection 483 to 485

chip reset
See reset.

clear register instructions 829
compare instructions 398, 828
complement register 

instruction 834
condition register 361

CR mask (CRM) 423
CR0 361
CR1 362
CR-logical instructions 376, 828
effect of Rc opcode field 361
equal (EQ) 362
greater than (GT) 362
integer instruction update 389
less than (LT) 362
move instructions 423
negative (LT) 362
positive (GT) 362
summary overflow (SO) 362
zero (EQ) 362

conditional branch
BI opcode field 368
BO opcode field 367, 368
simplified mnemonics 821 to 827
specifying conditions 367
specifying CR bits 368

congruence class
See cache, congruence class.

context synchronization
See synchronization, context.

core-configuration register 459
programming guidelines 461

count leading-zeros 
instructions 398

count register 364
branching to 370, 375

CR
See condition register.

critical exception 492
critical-input exception 503
CTR

See count register.

D
DACn

See data address-compare registers.
data address-compare (DAC)

See debug events.
data address-compare registers 543
data cache

See also cache.
control instructions 457 to 459
fill buffer 444
hint instructions 447
line buffer 443
load without allocate 445, 460
load word as line 445, 460
operation 443 to 444
pipeline stall 446
PLB priority 446, 460, 461
store without allocate 445, 460

data exception-address register 502
data relocate

See virtual mode.
data TLB-miss exception 481, 519
data value-compare (DVC)

See debug events.
data value-compare registers 543
data-cache cacheability register 454
data-cache write-through 

register 453
data-storage exception 481, 506

partial instruction execution 490
U0 exception 460

DBCRn
See debug-control registers.

DBSR
See debug-status register.

DCR
See device control register.

DCU
See data cache.

DEAR
See data exception-address register.

debug
cache 468 to 469

debug events
branch taken (BT) 546
cache-control instructions 552
DAC address-range match 551
DAC exact-address match 550

Index
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DAC exact-match granularity 550
DAC inclusive/exclusive ranges 552
data address-compare (DAC) 549
data value-compare (DVC) 553
DVC compare modes 554
DVC read/write events 555
exception taken (EDE) 546
IAC address-range match 548
IAC exact-address match 547
IAC inclusive/exclusive ranges 548
IAC range toggling 549
imprecise (IDE) 556
instruction address-compare 

(IAC) 547
instruction complete (IC) 545
resources used by 544
trap instruction (TDE) 546
unconditional (UDE) 547

debug exception 521, 544
disabled (pending) 556
trap instruction 377

debug modes
debug-wait mode 537, 544
external-debug mode 536, 544
internal-debug mode 536, 544
real-time trace mode 537, 544

debug-control registers 538 to 541
debug-status register 541 to 542
debug-wait mode

See debug modes.
defined instruction class 355
device control register 434

move instructions 436
dirty

See cache, dirty.
divide instructions 395
DTLB

See TLB, data shadow TLB.
DVCn

See data value-compare registers.
dynamic branch prediction 370

E
effective address

See addressing, effective address.
effective page number 473
ESR

See exception-syndrome register.
EVPR

See exception-vector prefix register.
exception

See also interrupt.
alignment 510
APU unavailable 515
asynchronous 490
critical input 503
data storage 506
data TLB miss 519
debug 521
definition of 489
external 509
fixed-interval timer 517
FPU unavailable 513

identifying cause of 500 to 502
instruction storage 508
instruction TLB miss 520
machine check 504
partial instruction execution 490
persistent 496
program 511
programmable-interval timer 516
simultaneous 495
synchronous 490
system call 514
watchdog timer 518

exception taken (EDE)
See debug events.

exceptions
listing 491

exception-syndrome register 500 to 
502

data TLB-miss exception 519
data-storage exception 507
instruction-storage exception 508
machine-check exception 504
program exception 512

exception-vector prefix register 500
execution model

See also synchronization.
sequential 341
speculative execution 341
weakly consistent 341

execution synchronization
See synchronization, execution.

extended arithmetic
addition 390
subtraction 392

extended mnemonics 821
external exception 509
external-debug mode

See debug modes.
extract instructions 829

F
FIT exception 517
fixed-interval timer 517, 533

See also FIT exception.
disabling 533
enabling 533
FIT period 533

fixed-point exception register 363
carry (CA) 363
integer instruction update 389
overflow (OV) 363
summary overflow (SO) 363
transfer-byte count (TBC) 363, 388

floating-point emulation 422, 511
flow-control instructions 367
FPU-unavailable exception 513

G
G storage attribute

See storage attribute, guarded.

general-purpose register 360
GPR

See general-purpose register.
guarded storage 508

H
halfword, definition 347
Harvard cache model 437

I
I storage attribute

See storage attribute, caching 
inhibited.

IACn
See instruction address-compare 

registers.
ICU

See instruction cache.
illegal instructions 356, 511
imprecise (IDE)

See debug events.
initialization requirements 563
insert instructions 829
instruction address-compare (IAC)

See debug events.
instruction address-compare 

registers 542
instruction cache

See also cache.
cacheable prefetch 460
control instructions 456
fetch without allocate 461
fill buffer 442
hint instruction 442
line buffer 441
non-cacheable prefetch 460
non-cacheable request size 461
operation 441 to 442
PLB priority 460, 461
self-modifying code 467
synonym 442

instruction complete (IC)
See debug events.

instruction forms 570
instruction relocate

See virtual mode.
instruction TLB-miss 

exception 481, 520
instruction-cache cacheability 

register 454
instruction-cache debug-data 

register 468
instruction-storage exception 481, 

508
internal-debug mode

See debug modes.
interrupt

See also exception.
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definition of 489
imprecise 490
masking 496
precise 490
priority 495

interrupt handler 489
base address 500
returning from 494 to 495
transferring control to 492 to 494

invalid instruction form 355
ITLB

See TLB, instruction shadow TLB.

J
JTAG connector 557
JTAG debug port 557

L
link register 363

branch update 372, 373, 374, 375
branching to 369, 375
LK opcode field 372, 373, 374, 375
stack 371

little endian 349
See also storage attribute, endian
byte-reverse instructions 352
data access 352
instruction fetch 351
operand alignment 353
PPC405 support 350 to 352

load address instruction 834
load immediate instruction 834
load instructions 381

byte reverse 385
load and reserve 426
load byte and zero 381
load halfword algebraic 382
load halfword and zero 381
load multiple word 386, 490
load string 387, 490
load word and zero 382
partially executed 491

load multiple instructions
See load instructions.

load word and reserve 426
logical address

See addressing, effective address.
logical instructions 395 to 397
logical-comparison 

instructions 399
logical-shift instructions 403
LR

See link register.
LRU

See cache, LRU.

M
M storage attribute

See storage attribute, memory 
coherency.

MAC instructions 405
cross halfword to word 406 to 408
high halfword to word 408 to 410
low halfword to word 410 to 413
negative cross halfword to word 413 

to 415
negative high halfword to word 415 

to 417
negative low halfword to word 417 to 

419
machine-check exception 504
machine-state register 431

after an interrupt 497
APU-unavailable 515
critical-interrupt enable 503, 518
data relocate 472, 519
debug-interrupt enable 521
external-interrupt enable 509, 516, 

517
FPU-unavailable 513
instruction relocate 472, 520
instructions 435
machine-check enable 504
reset state 562
wait-state enable 436

masking interrupts 496
memory coherency 448
memory management 345
memory synchronization

See synchronization, storage.
memory-control instructions 427
modulo arithmetic 405
most-recent reset 561
move register instruction 834
move to CR instruction 835
MSR

See machine-state register.
multiply instructions

cross halfword to word 419
high halfword to word 420
low halfword to word 421
word to word 394

N
negation instructions 393
negative MAC instructions

See MAC instructions.
noncritical exception 492
no-operation instruction 834

O
OEA

See PowerPC.
operand alignment

alignment exception 354, 510
definition 353
performance effects 353

optional instructions 356

P
page translation

page number 473
page-translation table 474 to 475
process ID 473

paging
See also TLB.
and cache synonyms 443
executable pages 477, 482
no-access-allowed pages 482, 506, 

508
non-executable pages 482, 508
page locking 474
page replacement 474
page size 477, 478
process protection 482
read-only pages 482, 506
recording accesses 487
recording changes 487
table walking 474
writable pages 477, 482

persistent exceptions 496
physical memory 345
physical-page number 477
PID

See process ID register.
pipeline stall 446
PIT

See programmable-interval timer.
PIT exception 516
PLB-request priority 461
PowerPC

architecture components 323 to 324
Book-E architecture 329
embedded-environment 

architecture 326 to 328
features not in architecture 325
latitude within the architecture 325
OEA 324, 328
UISA 324
VEA 324, 327

PPC405 334 to 339
caches 337, 438 to 441
central-processing unit 335
debug resources 338
exception-handling logic 336
external interfaces 338
memory system 437 to 438
memory-management unit 336, 471
timers 337

preferred instruction form 355
privileged instructions 434, 511
privileged mode 343
privileged registers 429
problem state

See user mode.
process ID 473, 479
process ID register 474
process tag 477, 479
processor reset

See reset.
processor version register 433
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processor-control instructions 422
program exception 511

system trap 377
programmable-interval timer 516, 

532
See also PIT exception.
auto-reload mode 532
disabling 532
enabling 532
PIT register 527

PVR
See processor version register.

R
Rc opcode field

See record bit.
real mode 347, 471

storage attribute control 452 to 456
real-time trace mode

See debug modes.
record bit 361, 390
registers

privileged registers 429
supported by PPC405 332
user registers 359

reservation 426
reserved instructions 356
reset 561

due to debug control 538
due to watchdog time-out 530
first instruction executed 563
processor state 561 to 563

return from interrupt 494 to 495
right rotation 399
rotate instructions 399, 829

AND mask instructions 400
mask generation 400
mask insert instructions 401

RPN
See physical-page number.

S
saturating arithmetic 405
save/restore registers

SRR0 498
SRR1 498
SRR2 499
SRR3 499

sequential execution
See execution model.

shadow TLB
See TLB.

shift instructions 403, 829
sign-extension instructions 397
simplified mnemonics 821
single stepping

branches 546
exceptions 546
sequential 545

special-purpose register
CCR0 459
CTR 364
DACn 543
DBCR0 538
DBCR1 539
DCCR 454
DCWR 453
DEAR 502
DVCn 543
ESR 500 to 502
EVPR 500
IACn 542
ICCR 454
ICDBDR 468
LR 363
move instructions 424, 435
PID 474
PIT 527
privileged mode 431
PVR 433
SGR 455
SLER 455
SPRGn 365, 432
SRR0 498
SRR1 498
SRR2 499
SRR3 499
SU0R 455
TCR 528
TSR 529
user mode 360
USPRG0 364
XER 363
ZPR 483

speculative execution
See execution model.

split-field notation 571
SPR

See special-purpose register.
SPR general-purpose register

privileged mode 432
user mode 365

SPRGn
See SPR general-purpose register.

SRRn
See save/restore registers.

static branch prediction 370
storage attribute 451 to 452

caching inhibited 451, 478
endian 351, 452, 478
guarded 452, 478
in TLB entry 478
memory coherency 451, 478
real mode control 452 to 456
U0 exception 460, 506
user defined 452, 478
write through 451, 478

storage guarded register 455
storage little-endian register 455
storage synchronization

See synchronization, storage.
storage user-defined 0 register 455
store instructions 384

byte reverse 385

partially executed 491
store byte 384
store conditional 426
store halfword 384
store multiple word 386, 491
store string 387, 491
store word 385

store multiple instructions
See store instructions.

store word conditional 426
string instructions

See load instructions.
See store instructions.

subtraction instructions 392 to 393
supervisor state

See privileged mode.
synchronization

context 342, 425
effect of instructions 425
execution 342, 425
semaphore 426
storage 343, 425, 448

synchronization instructions 424
eieio and sync implementation 425

synonym
See instruction cache, synonym.

system linkage instructions 434
system reset

See reset.
system-call exception 376, 514
system-call instruction 376, 514
system-trap instruction 377, 511

See also debug events.
TO opcode field 377

T
tag

cache 439
TLB 477

TBH
See time base register.

TBL
See time base register.

TCR
See timer-control register.

TID
See process tag.

time base register 524 to 525
reading 525
user mode 365
writing 525

time-of-day computation 526
timer events 529
timer-control register 528

FIT-interrupt enable 517
PIT-interrupt enable 516
watchdog-interrupt enable 518

timer-status register 529
TLB 475 to 481

See also paging.
access 479 to 480
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access failure 480 to 481
data shadow TLB 476
hit 479
instruction shadow TLB 475
maintaining shadow TLBs 487
miss 480
TLB-miss exceptions 481
unified TLB 475

TLB entry 476 to 478
access control 477, 482 to 483
executable 477
page size 478
physical page number 477
physical-page identification 477
storage attributes 478
TLBHI 477
TLBLO 477
valid 477
virtual-page identification 477
writable 477
zone selection 477

TLB-management instructions 485 
to 486

trap instruction
causing debug event 546

trigger event 544
TSR

See timer-status register.

U
U0 storage attribute

See storage attribute, user defined.
UISA

See PowerPC.
unconditional (UDE)

See debug events.
user mode 344
user registers 359
user-SPR general-purpose 

register 364
USPRG0

See user-SPR general-purpose register.
UTLB

See TLB, unified TLB.

V
VEA

See PowerPC.
virtual memory 345
virtual mode 347, 471
virtual page number 473

W
W storage attribute

See storage attribute, write through.
wait state 436
watchdog timer 530 to 532

disabling 532
enable next watchdog 530
enabling 530
interrupt status 531
reset control 530
state machine 531
using 531
watchdog period 530

watchdog-timer exception 518
weakly consistent

See execution model.
word, definition 347

X
XER

See fixed-point exception register.

Y
y bit

See branch prediction.

Z
zone protection 482 to 483

data-storage exception 506
instruction-storage exception 508
TLB entry 477

zone-protection register 483
ZPR

See zone-protection register.
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Preface

About This Book

This document serves as a technical reference describing the hardware interface to the 
PowerPC™ PPC405x3 processor block. It contains information on input/output signals, 
timing relationships between signals, and the mechanisms software can use to control the 
interface operation. The document is intended for use by FPGA and system hardware 
designers and by system programmers who need to understand how certain operations 
affect hardware external to the processor.

Document Organization
• , provides an overview of the PowerPC embedded-environment architecture and the 

features supported by the PPC405x3.
• Chapter 2, Input/Output Interfaces, describes the interface signals into and out of the 

PPC405x3 processor block. Where appropriate, timing diagrams are provided to assist 
in understanding the functional relationship between multiple signals.

• Chapter 3, PowerPC® 405 OCM Controller, describes the features, interface signals, 
timing specifications, and programming model for the PPC405x3 on-chip memory 
(OCM) controller. The OCM controller serves as a dedicated interface between the 
block RAMs in the FPGA and OCM signals available on the embedded PPC405x3 
core.

• Appendix A, RISCWatch and RISCTrace Interfaces, describes the interface 
requirements between the PPC405x3 processor block and the RISCWatch and 
RISCTrace tools.

• Appendix B, Signal Summary, lists all PPC405x3 interface signals in alphabetical 
order.

Document Conventions

General Conventions
Table 2-1 lists the general notational conventions used throughout this document.

Table 2-1: General Notational Conventions

Convention Definition

mnemonic Instruction mnemonics are shown in lower-case bold.

variable Variable items are shown in italic.

ActiveLow An overbar indicates an active-low signal.
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Registers
Table 2-2 lists the PPC405x3 registers used in this document and their descriptive names. 

Terms

n A decimal number.

0xn A hexadecimal number.

0bn A binary number.

OBJECTb A single bit in any object (a register, an instruction, an 
address, or a field) is shown as a subscripted number or 
name.

OBJECTb:b A range of bits in any object (a register, an instruction, 
an address, or a field).

OBJECTb,b, . . . A list of bits in any object (a register, an instruction, an 
address, or a field).

REGISTER[FIELD] Fields within any register are shown in square brackets.

REGISTER[FIELD, FIELD . . .] A list of fields in any register.

REGISTER[FIELD:FIELD] A range of fields in any register.

Table 2-1: General Notational Conventions (Continued)

Convention Definition

Table 2-2: PPC405x3 Registers

Register Descriptive Name

CCR0 Core-configuration register 0

DBCRn Debug-control register n

DBSR Debug-status register

ESR Exception-syndrome register

MSR Machine-state register

PIT Programmable-interval timer

TBL Time-base lower 

TBU Time-base upper

TCR Timer-control register

TSR Timer-status register

active As applied to signals, this term indicates a signal is in a state 
that causes an action to occur in the receiving device, or 
indicates an action occurred in the sending device. An active-
high signal drives a logic 1 when active. An active-low signal 
drives a logic 0 when active. 
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assert As applied to signals, this term indicates a signal is driven to its 
active state.

atomic access A memory access that attempts to read from and write to the 
same address uninterrupted by other accesses to that address. 
The term refers to the fact that such transactions are indivisible.

big endian A memory byte ordering where the address of an item 
corresponds to the most-significant byte.

Book-E An version of the PowerPC architecture designed specifically 
for embedded applications.

cache block Synonym for cache line.

cache line A portion of a cache array that contains a copy of contiguous 
system-memory addresses. Cache lines are 32-bytes long and 
aligned on a 32-byte address.

cache set Synonym for congruence class.

clear To write a bit value of 0.

clock Unless otherwise specified, this term refers to the PPC405x3 
processor clock.

congruence class A collection of cache lines with the same index.

cycle The time between two successive rising edges of the associated 
clock.

dead cycle A cycle in which no useful activity occurs on the associated 
interface.

deassert As applied to signals, this term indicates a signal is driven to its 
inactive state.

dirty An indication that cache information is more recent than the 
copy in memory.

doubleword Eight bytes, or 64 bits.

effective address The untranslated memory address as seen by a program.

exception An abnormal event or condition that requires the processor’s 
attention. They can be caused by instruction execution or an 
external device. The processor records the occurrence of an 
exception and they often cause an interrupt to occur.

fill buffer A buffer that receives and sends data and instructions between 
the processor and PLB. It is used when cache misses occur and 
when access to non-cacheable memory occurs.

flush A cache operation that involves writing back a modified entry 
to memory, followed by an invalidation of the entry.

GB Gigabyte, or one-billion bytes.

halfword Two bytes, or 16 bits.

hit An indication that requested information exists in the accessed 
cache array, the associated fill buffer, or on the corresponding 
OCM interface.
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inactive As applied to signals, this term indicates a signal is in a state 
that does not cause an action to occur, nor does it indicate an 
action occurred. An active-high signal drives a logic 0 when 
inactive. An active-low signal drives a logic 1 when inactive. 

interrupt The process of stopping the currently executing program so that 
an exception can be handled.

invalidate A cache or TLB operation that causes an entry to be marked as 
invalid. An invalid entry can be subsequently replaced.

KB Kilobyte, or one-thousand bytes.

line buffer A buffer located in the cache array that can temporarily hold the 
contents of an entire cache line. It is loaded with the contents of 
a cache line when a cache hit occurs.

line fill A transfer of the contents of the instruction or data line buffer 
into the appropriate cache.

line transfer A transfer of an aligned, sequentially addressed 4-word or 8-
word quantity (instructions or data) across the PLB interface. 
The transfer can be from the PLB slave (read) or to the PLB slave 
(write).

little endian A memory byte ordering where the address of an item 
corresponds to the least-significant byte.

logical address Synonym for effective address.

MB Megabyte, or one-million bytes.

memory Collectively, cache memory and system memory.

miss An indication that requested information does not exist in the 
accessed cache array, the associated fill buffer, or on the 
corresponding OCM interface.

OEA The PowerPC operating-environment architecture, which 
defines the memory-management model, supervisor-level 
registers and instructions, synchronization requirements, the 
exception model, and the time-base resources as seen by 
supervisor programs.

on chip In system-on-chip implementations, this indicates on the same 
FPGA chip as the processor core, but external to the processor 
core.

pending As applied to interrupts, this indicates that an exception 
occurred, but the interrupt is disabled. The interrupt occurs 
when it is later enabled.

physical address The address used to access physically-implemented memory. 
This address can be translated from the effective address. When 
address translation is not used, this address is equal to the 
effective address.

PLB Processor local bus.

privileged mode The operating mode typically used by system software. 
Privileged operations are allowed and software can access all 
registers and memory.
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Additional Reading
The following documents contain additional information of potential interest to readers of 
this manual:

• XILINX PPC405 User Manual

problem state Synonym for user mode.

process A program (or portion of a program) and any data required for 
the program to run.

real address Synonym for physical address.

scalar Individual data objects and instructions. Scalars are of arbitrary 
size.

set To write a bit value of 1.

sleep A state in which the PPC405x3 processor clock is prevented 
from toggling. The execution state of the PPC405x3 does not 
change when in the sleep state.

sticky A bit that can be set by software, but cleared only by the 
processor. Alternatively, a bit that can be cleared by software, 
but set only by the processor.

string A sequence of consecutive bytes.

supervisor state Synonym for privileged mode.

system memory Physical memory installed in a computer system external to the 
processor core, such RAM, ROM, and flash.

tag As applied to caches, a set of address bits used to uniquely 
identify a specific cache line within a congruence class. As 
applied to TLBs, a set of address bits used to uniquely identify 
a specific entry within the TLB.

UISA The PowerPC user instruction-set architecture, which defines 
the base user-level instruction set, registers, data types, the 
memory model, the programming model, and the exception 
model as seen by user programs.

user mode The operating mode typically used by application software. 
Privileged operations are not allowed in user mode, and 
software can access a restricted set of registers and memory.

VEA The PowerPC virtual-environment architecture, which defines 
a multi-access memory model, the cache model, cache-control 
instructions, and the time-base resources as seen by user 
programs.

virtual address An intermediate address used to translate an effective address 
into a physical address. It consists of a process ID and the 
effective address. It is only used when address translation is 
enabled.

wake up The transition of the PPC405x3 out of the sleep state. The 
PPC405x3 processor clock begins toggling and the execution 
state of the PPC405x3 advances from that of the sleep state.

word Four bytes, or 32 bits.
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• XILINX Virtex-II Pro Platform FPGA Handbook
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Chapter 1

Introduction to the 
PowerPC® 405 Processor 

The PPC405x3 is a 32-bit implementation of the PowerPC™ embedded-environment 
architecture that is derived from the PowerPC architecture. Specifically, the PPC405x3 is an 
embedded PowerPC 405D5 processor core (PPC405D5). The term processor block is used 
throughout this document to refer to the combination of PPC405D5 core, on-chip memory 
logic (OCM), and the gasket logic and interface.

The PowerPC architecture provides a software model that ensures compatibility between 
implementations of the PowerPC family of microprocessors. The PowerPC architecture 
defines parameters that guarantee compatible processor implementations at the 
application-program level, allowing broad flexibility in the development of derivative 
PowerPC implementations that meet specific market requirements.

This chapter provides an overview of the PowerPC architecture and an introduction to the 
features of the PPC405x3 core.

PowerPC Architecture
The PowerPC architecture is a 64-bit architecture with a 32-bit subset. The various features 
of the PowerPC architecture are defined at three levels. This layering provides flexibility 
by allowing degrees of software compatibility across a wide range of implementations. For 
example, an implementation such as an embedded controller can support the user 
instruction set, but not the memory management, exception, and cache models where it 
might be impractical to do so.

The three levels of the PowerPC architecture are defined in Table 1-1.
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The PowerPC architecture requires that all PowerPC implementations adhere to the UISA, 
offering compatibility among all PowerPC application programs. However, different 
versions of the VEA and OEA are permitted.

Embedded applications written for the PPC405x3 are compatible with other PowerPC 
implementations. Privileged software generally is not compatible. The migration of 
privileged software from the PowerPC architecture to the PPC405x3 is in many cases 
straightforward because of the simplifications made by the PowerPC embedded-
environment architecture. Refer to PowerPC 405 User Manual (Vol. 2 (a) of the Virtex™-II Pro 
Developer’s Kit) for more information on programming the PPC405x3.

PowerPC Embedded-Environment Architecture
The PPC405x3 is an implementation of the PowerPC embedded-environment architecture. 
This architecture is optimized for embedded controllers and is a forerunner to the 
PowerPC Book-E architecture. The PowerPC embedded-environment architecture 
provides an alternative definition for certain features specified by the PowerPC VEA and 
OEA. Implementations that adhere to the PowerPC embedded-environment architecture 
also adhere to the PowerPC UISA. PowerPC embedded-environment processors are 32-bit 
only implementations and thus do not include the special 64-bit extensions to the PowerPC 
UISA. Also, floating-point support can be provided either in hardware or software by 
PowerPC embedded-environment processors.

The following are features of the PowerPC embedded-environment architecture:

• Memory management optimized for embedded software environments.
• Cache-management instructions for optimizing performance and memory control in 

complex applications that are graphically and numerically intensive.
• Storage attributes for controlling memory-system behavior.
• Special-purpose registers for controlling the use of debug resources, timer resources, 

interrupts, real-mode storage attributes, memory-management facilities, and other 
architected processor resources.

• A device-control-register address space for managing on-chip peripherals such as 
memory controllers.

Table 1-1: Three Levels of PowerPC Architecture

User Instruction-Set Architecture 
(UISA)

Virtual Environment Architecture 
(VEA)

Operating Environment 
Architecture (OEA)

• Defines the architecture level to 
which user-level (sometimes 
referred to as problem state) 
software should conform

• Defines the base user-level 
instruction set, user-level 
registers, data types, floating-
point memory conventions, 
exception model as seen by user 
programs, memory model, and 
the programming model

• Defines additional user-level 
functionality that falls outside 
typical user-level software 
requirements

• Describes the memory model for 
an environment in which 
multiple devices can access 
memory

• Defines aspects of the cache 
model and cache-control 
instructions

• Defines the time-base resources 
from a user-level perspective

• Defines supervisor-level 
resources typically required by 
an operating system

• Defines the memory-
management model, supervisor-
level registers, synchronization 
requirements, and the exception 
model

• Defines the time-base resources 
from a supervisor-level 
perspective

Note: All PowerPC implementations 
adhere to the UISA.

Note: Implementations that conform 
to the VEA level are guaranteed to 
conform to the UISA level.

Note: Implementations that conform 
to the OEA level are guaranteed to 
conform to the UISA and VEA levels.
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• A dual-level interrupt structure and interrupt-control instructions.
• Multiple timer resources.
• Debug resources that enable hardware-debug and software-debug functions such as 

instruction breakpoints, data breakpoints, and program single-stepping.

Virtual Environment
The virtual environment defines architectural features that enable application programs to 
create or modify code, to manage storage coherency, and to optimize memory-access 
performance. It defines the cache and memory models, the timekeeping resources from a 
user perspective, and resources that are accessible in user mode but are primarily used by 
system-library routines. The following summarizes the virtual-environment features of the 
PowerPC embedded-environment architecture:

• Storage model:
- Storage-control instructions as defined in the PowerPC virtual-environment 

architecture. These instructions are used to manage instruction caches and data 
caches, and for synchronizing and ordering instruction execution.

- Storage attributes for controlling memory-system behavior. These are: write-
through, cacheability, memory coherence (optional), guarded, and endian.

- Operand-placement requirements and their effect on performance.
• The time-base function as defined by the PowerPC virtual-environment architecture, 

for user-mode read access to the 64-bit time base.

Operating Environment
The operating environment describes features of the architecture that enable operating 
systems to allocate and manage storage, to handle errors encountered by application 
programs, to support I/O devices, and to provide operating-system services. It specifies 
the resources and mechanisms that require privileged access, including the memory-
protection and address-translation mechanisms, the exception-handling model, and 
privileged timer resources. Table 1-2 summarizes the operating-environment features of 
the PowerPC embedded-environment architecture.

Table 1-2: OEA Features of the PowerPC Embedded-Environment Architecture

Operating 
Environment

Features

Register model • Privileged special-purpose registers (SPRs) and instructions for accessing those 
registers

• Device control registers (DCRs) and instructions for accessing those registers

Storage model • Privileged cache-management instructions
• Storage-attribute controls
• Address translation and memory protection
• Privileged TLB-management instructions

Exception model • Dual-level interrupt structure supporting various exception types
• Specification of interrupt priorities and masking
• Privileged SPRs for controlling and handling exceptions
• Interrupt-control instructions
• Specification of how partially executed instructions are handled when an interrupt 

occurs
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PPC405x3 Software Features
The PPC405x3 processor core is an implementation of the PowerPC embedded-
environment architecture. The processor provides fixed-point embedded applications with 
high performance at low power consumption. It is compatible with the PowerPC UISA. 
Much of the PPC405x3 VEA and OEA support is also available in implementations of the 
PowerPC Book-E architecture. Key software features of the PPC405x3 include:

• A fixed-point execution unit fully compliant with the PowerPC UISA:
- 32-bit architecture, containing thirty-two 32-bit general purpose registers (GPRs).

• PowerPC embedded-environment architecture extensions providing additional 
support for embedded-systems applications:
- True little-endian operation
- Flexible memory management
- Multiply-accumulate instructions for computationally intensive applications
- Enhanced debug capabilities
- 64-bit time base
- 3 timers: programmable interval timer (PIT), fixed interval timer (FIT), and 

watchdog timer (all are synchronous with the time base)
• Performance-enhancing features, including:

- Static branch prediction
- Five-stage pipeline with single-cycle execution of most instructions, including 

loads and stores
- Multiply-accumulate instructions

Debug model • Privileged SPRs for controlling debug modes and debug events
• Specification for seven types of debug events
• Specification for allowing a debug event to cause a reset
• The ability of the debug mechanism to freeze the timer resources

Time-keeping model • 64-bit time base
• 32-bit decrementer (the programmable-interval timer)
• Three timer-event interrupts:

- Programmable-interval timer (PIT)
- Fixed-interval timer (FIT)
- Watchdog timer (WDT)

• Privileged SPRs for controlling the timer resources
• The ability to freeze the timer resources using the debug mechanism

Synchronization 
requirements

• Requirements for special registers and the TLB
• Requirements for instruction fetch and for data access
• Specifications for context synchronization and execution synchronization

Reset and initialization 
requirements

• Specification for two internal mechanisms that can cause a reset:
- Debug-control register (DBCR) 
- Timer-control register (TCR)

• Contents of processor resources after a reset
• The software-initialization requirements, including an initialization code example

Table 1-2: OEA Features of the PowerPC Embedded-Environment Architecture (Continued)

Operating 
Environment

Features
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- Hardware multiply/divide for faster integer arithmetic (4-cycle multiply, 35-cycle 
divide)

- Enhanced string and multiple-word handling
- Support for unaligned loads and unaligned stores to cache arrays, main memory, 

and on-chip memory (OCM)
- Minimized interrupt latency

• Integrated instruction-cache:
- 16 KB, 2-way set associative
- Eight words (32 bytes) per cache line
- Fetch line buffer
- Instruction-fetch hits are supplied from the fetch line buffer
- Programmable prefetch of next-sequential line into the fetch line buffer
- Programmable prefetch of non-cacheable instructions: full line (eight words) or 

half line (four words)
- Non-blocking during fetch line fills

• Integrated data-cache:
- 16 KB, 2-way set associative
- Eight words (32 bytes) per cache line
- Read and write line buffers
- Load and store hits are supplied from/to the line buffers
- Write-back and write-through support
- Programmable load and store cache line allocation
- Operand forwarding during cache line fills
- Non-blocking during cache line fills and flushes

• Support for on-chip memory (OCM) that can provide memory-access performance 
identical to a cache hit

• Flexible memory management:
- Translation of the 4 GB logical-address space into the physical-address space
- Independent control over instruction translation and protection, and data 

translation and protection
- Page-level access control using the translation mechanism
- Software control over the page-replacement strategy
- Write-through, cacheability, user-defined 0, guarded, and endian (WIU0GE) 

storage-attribute control for each virtual-memory region
- WIU0GE storage-attribute control for thirty-two 128 MB regions in real mode
- Additional protection control using zones

• Enhanced debug support with logical operators:
- Four instruction-address compares
- Two data-address compares
- Two data-value compares
- JTAG instruction for writing into the instruction cache
- Forward and backward instruction tracing

• Advanced power management support

The following sections describe the software resources available in the PPC405x3. Refer to 
the PowerPC 405 User Manual (Vol. 2 (a) of the Virtex™-II Pro Developer’s Kit) for more 
information on using these resources.
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Privilege Modes
Software running on the PPC405x3 can do so in one of two privilege modes: privileged and 
user.

Privileged Mode
Privileged mode allows programs to access all registers and execute all instructions 
supported by the processor. Normally, the operating system and low-level device drivers 
operate in this mode.

User Mode
User mode restricts access to some registers and instructions. Normally, application 
programs operate in this mode.

Address Translation Modes
The PPC405x3 also supports two modes of address translation: real and virtual.

Real Mode
In real mode, programs address physical memory directly.

Virtual Mode
In virtual mode, programs address virtual memory and virtual-memory addresses are 
translated by the processor into physical-memory addresses. This allows programs to 
access much larger address spaces than might be implemented in the system.

Addressing Modes
Whether the PPC405x3 is running in real mode or virtual mode, data addressing is 
supported by the load and store instructions using one of the following addressing modes:

• Register-indirect with immediate index—A base address is stored in a register, and a 
displacement from the base address is specified as an immediate value in the 
instruction.

• Register-indirect with index—A base address is stored in a register, and a 
displacement from the base address is stored in a second register.

• Register indirect—The data address is stored in a register.

Instructions that use the two indexed forms of addressing also allow for automatic updates 
to the base-address register. With these instruction forms, the new data address is 
calculated, used in the load or store data access, and stored in the base-address register.

With sequential-instruction execution, the next-instruction address is calculated by adding 
four bytes to the current-instruction address. In the case of branch instructions, however, 
the next-instruction address is determined using one of four branch-addressing modes:

• Branch to relative—The next-instruction address is at a location relative to the current-
instruction address.

• Branch to absolute—The next-instruction address is at an absolute location in 
memory.

• Branch to link register—The next-instruction address is stored in the link register.
• Branch to count register—The next-instruction address is stored in the count register.

Data Types
PPC405x3 instructions support byte, halfword, and word operands. Multiple-word 
operands are supported by the load/store multiple instructions and byte strings are 
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supported by the load/store string instructions. Integer data are either signed or unsigned, 
and signed data is represented using two’s-complement format.

The address of a multi-byte operand is determined using the lowest memory address 
occupied by that operand. For example, if the four bytes in a word operand occupy 
addresses 4, 5, 6, and 7, the word address is 4. The PPC405x3 supports both big-endian (an 
operand’s most significant byte is at the lowest memory address) and little-endian (an 
operand’s least significant byte is at the lowest memory address) addressing.

Register Set Summary
Figure 1-1 shows the registers contained in the PPC405x3. Descriptions of the registers are 
in the following sections.
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General-Purpose Registers
The processor contains thirty-two 32-bit general-purpose registers (GPRs), identified as r0 
through r31. The contents of the GPRs are read from memory using load instructions and 
written to memory using store instructions. Computational instructions often read 
operands from the GPRs and write their results in GPRs. Other instructions move data 
between the GPRs and other registers. GPRs can be accessed by all software.

Figure 1-1: PPC405x3 Registers
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Special-Purpose Registers
The processor contains a number of 32-bit special-purpose registers (SPRs). SPRs provide 
access to additional processor resources, such as the count register, the link register, debug 
resources, timers, interrupt registers, and others. Most SPRs are accessed only by 
privileged software, but a few, such as the count register and link register, are accessed by 
all software.

Machine-State Register
The 32-bit machine-state register (MSR) contains fields that control the operating state of the 
processor. This register can be accessed only by privileged software.

Condition Register
The 32-bit condition register (CR) contains eight 4-bit fields, CR0–CR7. The values in the CR 
fields can be used to control conditional branching. Arithmetic instructions can set CR0 
and compare instructions can set any CR field. Additional instructions are provided to 
perform logical operations and tests on CR fields and bits within the fields. The CR can be 
accessed by all software.

Device Control Registers
The 32-bit device control registers (not shown) are used to configure, control, and report 
status for various external devices that are not part of the PPC405x3 processor. The OCM 
controllers are examples of devices that contain DCRs. Although the DCRs are not part of 
the PPC405x3 implementation, they are accessed using the mtdcr and mfdcr instructions. 
The DCRs can be accessed only by privileged software.

PPC405x3 Hardware Organization
As shown in Figure 1-2, the PPC405x3 processor contains the following elements:

• A 5-stage pipeline consisting of fetch, decode, execute, write-back, and load write-
back stages

• A virtual-memory-management unit that supports multiple page sizes and a variety 
of storage-protection attributes and access-control options

• Separate instruction-cache and data-cache units
• Debug support, including a JTAG interface
• Three programmable timers

The following sections provide an overview of each element. Refer to the PowerPC 405 User 
Manual (Vol. 2 (a) of the Virtex™-II Pro Developer’s Kit) for more information on how 
software interacts with these elements.
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Central-Processing Unit
The PPC405x3 central-processing unit (CPU) implements a 5-stage instruction pipeline 
consisting of fetch, decode, execute, write-back, and load write-back stages. 

The fetch and decode logic sends a steady flow of instructions to the execute unit. All 
instructions are decoded before they are forwarded to the execute unit. Instructions are 
queued in the fetch queue if execution stalls. The fetch queue consists of three elements: 
two prefetch buffers and a decode buffer. If the prefetch buffers are empty instructions 
flow directly to the decode buffer.

Up to two branches are processed simultaneously by the fetch and decode logic. If a branch 
cannot be resolved prior to execution, the fetch and decode logic predicts how that branch 
is resolved, causing the processor to speculatively fetch instructions from the predicted 
path. Branches with negative-address displacements are predicted as taken, as are 
branches that do not test the condition register or count register. The default prediction can 
be overridden by software at assembly or compile time.

The PPC405x3 has a single-issue execute unit containing the general-purpose register file 
(GPR), arithmetic-logic unit (ALU), and the multiply-accumulate unit (MAC). The GPRs 
consist of thirty-two 32-bit registers that are accessed by the execute unit using three read 
ports and two write ports. During the decode stage, data is read out of the GPRs for use by 
the execute unit. During the write-back stage, results are written to the GPR. The use of five 
read/write ports on the GPRs allows the processor to execute load/store operations in 
parallel with ALU and MAC operations.

Figure 1-2: PPC405x3 Organization
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The execute unit supports all 32-bit PowerPC UISA integer instructions in hardware, and is 
compliant with the PowerPC embedded-environment architecture specification. Floating-
point operations are not supported.

The MAC unit supports implementation-specific multiply-accumulate instructions and 
multiply-halfword instructions. MAC instructions operate on either signed or unsigned 
16-bit operands, and they store their results in a 32-bit GPR. These instructions can 
produce results using either modulo arithmetic or saturating arithmetic. All MAC 
instructions have a single cycle throughput.

Exception Handling Logic
Exceptions are divided into two classes: critical and noncritical. The PPC405x3 CPU 
services exceptions caused by error conditions, the internal timers, debug events, and the 
external interrupt controller (EIC) interface. Across the two classes, a total of 19 possible 
exceptions are supported, including the two provided by the EIC interface. 

Each exception class has its own pair of save/restore registers. SRR0 and SRR1 are used for 
noncritical interrupts, and SRR2 and SRR3 are used for critical interrupts. The exception-
return address and the machine state are written to these registers when an exception 
occurs, and they are automatically restored when an interrupt handler exits using the 
return-from-interrupt (rfi) or return-from critical-interrupt (rfci) instruction. Use of 
separate save/restore registers allows the PPC405x3 to handle critical interrupts 
independently of noncritical interrupts.

Memory Management Unit
The PPC405x3 supports 4 GB of flat (non-segmented) address space. The memory-
management unit (MMU) provides address translation, protection functions, and storage-
attribute control for this address space. The MMU supports demand-paged virtual 
memory using multiple page sizes of 1 KB, 4 KB, 16 KB, 64 KB, 256 KB, 1 MB, 4 MB and 
16 MB. Multiple page sizes can improve memory efficiency and minimize the number of 
TLB misses. When supported by system software, the MMU provides the following 
functions:

• Translation of the 4 GB logical-address space into a physical-address space.
• Independent enabling of instruction translation and protection from that of data 

translation and protection.
• Page-level access control using the translation mechanism.
• Software control over the page-replacement strategy.
• Additional protection control using zones.
• Storage attributes for cache policy and speculative memory-access control.

The translation look-aside buffer (TLB) is used to control memory translation and 
protection. Each one of its 64 entries specifies a page translation. It is fully associative, and 
can simultaneously hold translations for any combination of page sizes. To prevent TLB 
contention between data and instruction accesses, a 4-entry instruction and an 8-entry data 
shadow-TLB are maintained by the processor transparently to software.

Software manages the initialization and replacement of TLB entries. The PPC405x3 
includes instructions for managing TLB entries by software running in privileged mode. 
This capability gives significant control to system software over the implementation of a 
page replacement strategy. For example, software can reduce the potential for TLB 
thrashing or delays associated with TLB-entry replacement by reserving a subset of TLB 
entries for globally accessible pages or critical pages.

Storage attributes are provided to control access of memory regions. When memory 
translation is enabled, storage attributes are maintained on a page basis and read from the 
TLB when a memory access occurs. When memory translation is disabled, storage 
attributes are maintained in storage-attribute control registers. A zone-protection register 
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(ZPR) is provided to allow system software to override the TLB access controls without 
requiring the manipulation of individual TLB entries. For example, the ZPR can provide a 
simple method for denying read access to certain application programs.

Instruction and Data Caches
The PPC405x3 accesses memory through the instruction-cache unit (ICU) and data-cache 
unit (DCU). Each cache unit includes a PLB-master interface, cache arrays, and a cache 
controller. Hits into the instruction cache and data cache appear to the CPU as single-cycle 
memory accesses. Cache misses are handled as requests over the PLB bus to another PLB 
device, such as an external-memory controller.

The PPC405x3 implements separate instruction-cache and data-cache arrays. Each is 16 KB 
in size, is two-way set-associative, and operates using 8-word (32 byte) cache lines. The 
caches are non-blocking, allowing the PPC405x3 to overlap instruction execution with 
reads over the PLB (when cache misses occur).

The cache controllers replace cache lines according to a least-recently used (LRU) 
replacement policy. When a cache line fill occurs, the most-recently accessed line in the 
cache set is retained and the other line is replaced. The cache controller updates the LRU 
during a cache line fill.

The ICU supplies up to two instructions every cycle to the fetch and decode unit. The ICU 
can also forward instructions to the fetch and decode unit during a cache line fill, 
minimizing execution stalls caused by instruction-cache misses. When the ICU is accessed, 
four instructions are read from the appropriate cache line and placed temporarily in a line 
buffer. Subsequent ICU accesses check this line buffer for the requested instruction prior to 
accessing the cache array. This allows the ICU cache array to be accessed as little as once 
every four instructions, significantly reducing ICU power consumption.

The DCU can independently process load/store operations and cache-control instructions. 
The DCU can also dynamically reprioritize PLB requests to reduce the length of an 
execution stall. For example, if the DCU is busy with a low-priority request and a 
subsequent storage operation requested by the CPU is stalled, the DCU automatically 
increases the priority of the current (low-priority) request. The current request is thus 
finished sooner, allowing the DCU to process the stalled request sooner. The DCU can 
forward data to the execute unit during a cache line fill, further minimizing execution stalls 
caused by data-cache misses.

Additional features allow programmers to tailor data-cache performance to a specific 
application. The DCU can function in write-back or write-through mode, as determined by 
the storage-control attributes. Loads and stores that do not allocate cache lines can also be 
specified. Inhibiting certain cache line fills can reduce potential pipeline stalls and 
unwanted external-bus traffic.

Timer Resources
The PPC405x3 contains a 64-bit time base and three timers. The time base is incremented 
synchronously using the CPU clock or an external clock source. The three timers are 
incremented synchronously with the time base. The three timers supported by the 
PPC405x3 are:

• Programmable Interval Timer
• Fixed Interval Timer
• Watchdog Timer

Programmable Interval Timer
The programmable interval timer (PIT) is a 32-bit register that is decremented at the time-base 
increment frequency. The PIT register is loaded with a delay value. When the PIT count 
reaches 0, a PIT interrupt occurs. Optionally, the PIT can be programmed to automatically 
reload the last delay value and begin decrementing again.
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Fixed Interval Timer
The fixed interval timer (FIT) causes an interrupt when a selected bit in the time-base register 
changes from 0 to 1. Programmers can select one of four predefined bits in the time-base 
for triggering a FIT interrupt.

Watchdog Timer
The watchdog timer causes a hardware reset when a selected bit in the time-base register 
changes from 0 to 1. Programmers can select one of four predefined bits in the time-base 
for triggering a reset, and the type of reset can be defined by the programmer.

Debug
The PPC405x3 debug resources include special debug modes that support the various 
types of debugging used during hardware and software development. These are:

• Internal-debug mode for use by ROM monitors and software debuggers
• External-debug mode for use by JTAG debuggers
• Debug-wait mode, which allows the servicing of interrupts while the processor appears 

to be stopped
• Real-time trace mode, which supports event triggering for real-time tracing

Debug events are supported that allow developers to manage the debug process. Debug 
modes and debug events are controlled using debug registers in the processor. The debug 
registers are accessed either through software running on the processor or through the 
JTAG port. The JTAG port can also be used for board tests.

The debug modes, events, controls, and interfaces provide a powerful combination of 
debug resources for hardware and software development tools.

PPC405x3 Interfaces
The PPC405x3 provides the following set of interfaces that support the attachment of cores 
and user logic:

• Processor local bus interface
• Device control register interface
• Clock and power management interface
• JTAG port interface
• On-chip interrupt controller interface
• On-chip memory controller interface

Processor Local Bus
The processor local bus (PLB) interface provides a 32-bit address and three 64-bit data buses 
attached to the instruction-cache and data-cache units. Two of the 64-bit buses are attached 
to the data-cache unit, one supporting read operations and the other supporting write 
operations. The third 64-bit bus is attached to the instruction-cache unit to support 
instruction fetching.

Device Control Register
The device control register (DCR) bus interface supports the attachment of on-chip registers 
for device control. Software can access these registers using the mfdcr and mtdcr 
instructions.

Clock and Power Management
The clock and power-management interface supports several methods of clock distribution 
and power management.

http://www.xilinx.com


892 www.xilinx.com March 2002 Release
1-800-255-7778 Virtex-II Pro™ Platform FPGA Documentation

Chapter 1: Introduction to the PowerPC® 405 Processor
R

JTAG Port
The JTAG port interface supports the attachment of external debug tools. Using the JTAG 
test-access port, a debug tool can single-step the processor and examine internal-processor 
state to facilitate software debugging. This capability complies with the IEEE 1149.1 
specification for vendor-specific extensions, and is therefore compatible with standard 
JTAG hardware for boundary-scan system testing.

On-Chip Interrupt Controller
The on-chip interrupt controller interface is an external interrupt controller that combines 
asynchronous interrupt inputs from on-chip and off-chip sources and presents them to the 
core using a pair of interrupt signals (critical and noncritical). Asynchronous interrupt 
sources can include external signals, the JTAG and debug units, and any other on-chip 
peripherals.

On-Chip Memory Controller
An on-chip memory (OCM) interface supports the attachment of additional memory to the 
instruction and data caches that can be accessed at performance levels matching the cache 
arrays.

PPC405x3 Performance
The PPC405x3 executes instructions at sustained speeds approaching one cycle per 
instruction. Table 1-3 lists the typical execution speed (in processor cycles) of the 
instruction classes supported by the PPC405x3. 

Instructions that access memory (loads and stores) consider only the “first order” effects of 
cache misses. The performance penalty associated with a cache miss involves a number of 
second-order effects. This includes PLB contention between the instruction and data 
caches and the time associated with performing cache-line fills and flushes. Unless stated 
otherwise, the number of cycles described applies to systems having zero-wait-state 
memory access.

Table 1-3: PPC405x3 Cycles per Instruction

Instruction Class Execution Cycles

Arithmetic 1

Trap 2

Logical 1

Shift and Rotate 1

Multiply (32-bit, 48-bit, 64-bit results, respectively) 1, 2, 4

Multiply Accumulate 1

Divide 35

Load 1

Load Multiple and Load String (cache hit) 1 per data transfer

Store 1

Store Multiple and Store String (cache hit or miss) 1 per data transfer

Move to/from device-control register 3

Move to/from special-purpose register 1
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Branch known taken 1 or 2

Branch known not taken 1

Predicted taken branch 1 or 2

Predicted not-taken branch 1

Mispredicted branch 2 or 3

Table 1-3: PPC405x3 Cycles per Instruction (Continued)

Instruction Class Execution Cycles
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Chapter 2

Input/Output Interfaces

The processor block (PPC405x3, OCM controllers, and gasket logic) provides input/output 
(I/O) signals that are grouped functionally into the following interfaces:

• Clock and Power Management Interface, page 897
• CPU Control Interface, page 901
• Reset Interface, page 903
• Instruction-Side Processor Local Bus Interface, page 907
• Data-Side Processor Local Bus Interface, page 929
• Device-Control Register Interface, page 958
• External Interrupt Controller Interface, page 968
• JTAG Interface, page 970
• Debug Interface, page 975
• Trace Interface, page 978

Each section within this chapter provides the following information:

• An overview summarizing the purpose of the interface.
• An I/O symbol providing a quick view of the signal names and the direction of 

information flow with respect to the processor block.
• A signal table that summarizes the function of each signal. The I/O column in these 

tables specifies the direction of information flow with respect to the processor block.
• Detailed descriptions for each signal. 

Detailed timing diagrams (where appropriate) that more clearly describe the operation of 
the interface. The diagrams typically illustrate best-case performance when the core is 
attached to the FPGA processor local bus (PLB) core, or to custom bus interface unit (BIU) 
designs.

The instruction-side and data-side OCM controller interfaces are described separately in 
Chapter 3, PowerPC® 405 OCM Controller.

Appendix B, Signal Summary, alphabetically lists the signals described in this chapter. 
The l/O designation and a description summary are included for each signal.
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Signal Naming Conventions
The following convention is used for signal names throughout this document:

PREFIX1PREFIX2SIGNAME1[SIGNAME1][NEG][(m:n)]

The components of a signal name are as follows:

• PREFIX1 is an uppercase prefix identifying the source of the signal. This prefix 
specifies either a unit (for example, CPU) or a type of interface (for example, DCR). If 
PREFIX1 specifies the processor block, the signal is considered an output signal. 
Otherwise, it is an input signal.

• PREFIX2 is an uppercase prefix identifying the destination of the signal. This prefix 
specifies either a unit (for example, CPU) or a type of interface (for example, DCR). If 
PREFIX2 specifies the processor block, the signal is considered an input signal. 
Otherwise, it is an output signal.

• SIGNAME1 is an uppercase name identifying the primary function of the signal.
• SIGNAME1 is an uppercase name identifying the primary function of the signal.
• [NEG] is an optional notation that indicates a signal is active low. If this notation is not 

use, the signal is active high.
• [m:n] is an optional notation that indicates a bussed signal. “m” designates the most-

significant bit of the bus and “n” designates the least-significant bit of the bus.

Table 2-1 defines the prefixes used in the signal names. The last column in the table 
identifies whether the functional unit resides inside the processor block or outside the 
processor block.

Table 2-1: Signal Name Prefix Definitions

Prefix1 or Prefix2 Definition Location

CPM Clock and power management Outside

C405 Processor block Inside

DBG Debug unit Inside

DCR Device control register Outside

DSOCM Data-side on-chip memory (DSOCM) Outside(1)

EIC External interrupt controller Outside

ISOCM Instruction-side on-chip memory (ISOCM) Outside(1)

JTG JTAG Inside

PLB Processor local bus Inside

RST Reset Inside

TIE TIE (signal tied statically to GND or VDD) Outside

TRC Trace Inside

XXX Unspecified FPGA unit Outside

Notes: 
1. OCM controllers are located in the Processor Block.

http://www.xilinx.com


March 2002 Release www.xilinx.com 897
Virtex-II Pro™ Platform FPGA Documentation 1-800-255-7778

Clock and Power Management Interface
R

Clock and Power Management Interface
The clock and power management (CPM) interface enables power-sensitive applications 
to control the processor clock using external logic. The OCM controllers are clocked 
separately from the processor. Two types of processor clock control are possible:

• Global local enables control a clock zone within the processor. These signals are used to 
disable the clock splitters within a zone so that the clock signal is prevented from 
propagating to the latches within the zone. The PPC405x3 is divided into three clock 
zones: core, timer, and JTAG. Control over a zone is exercised as follows:
- The core clock zone contains most of the logic comprising the PPC405x3. It does 

not contain logic that belongs to the timer or JTAG zones, or other logic within the 
processor block. The core zone is controlled by the CPMC405CPUCLKEN signal.

- The timer clock zone contains the PPC405x3 timer logic. It does not contain logic 
that belongs to the core or JTAG zones, or other logic within the processor block. 
This zone is separated from the core zone so that timer events can be used to 
“wake up” the core logic if a power management application has put it to sleep. 
The timer zone is controlled by the CPMC405TIMERCLKEN signal.

- The JTAG clock zone contains the PPC405x3 JTAG logic. It does not contain logic 
that belongs to the core or timer zones, or other logic within the processor block. 
The JTAG zone is controlled by the CPMC405JTAGCLKEN signal. Although an 
enable is provided for this zone, the JTAG standard does not allow local gating of 
the JTAG clock. This enables basic JTAG functions to be maintained when the rest 
of the chip (including the CPM FPGA macro) is not running.

• Global gating controls the toggling of the PPC405x3 clock, CPMC405CLOCK. Instead 
of using the global-local enables to prevent the clock signal from propagating through 
a zone, CPM logic can stop the PPC405x3 clock input from toggling. If this method of 
power management is employed, the clock signal should be held active (logic 1). The 
CPMC405CLOCK is used by the core and timer zones, but not the JTAG zone.

CPM logic should be designed to wake the PPC405x3 from sleep mode when any of the 
following occurs: 

- A timer interrupt or timer reset is asserted by the PPC405x3.
- A chip-reset or system-reset request is asserted (this request comes from a source 

other than the PPC405x3).
- An external interrupt or critical interrupt input is asserted and the corresponding 

interrupt is enabled by the appropriate machine-state register (MSR) bit. 
- The DBGC405DEBUGHALT chip-input signal (if provided) is asserted. Assertion 

of this signal indicates that an external debug tool wants to control the PPC405x3 
processor. See page 976 for more information.

CPM Interface I/O Signal Summary
Figure 2-1 shows the block symbol for the CPM interface. The signals are summarized in 
Table 2-2.

Figure 2-1: CPM Interface Block Symbol
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CPM Interface I/O Signal Descriptions
The following sections describe the operation of the CPM interface I/O signals.

CPMC405CLOCK (input)
This signal is the source clock for all PPC405x3 logic (including timers). It is not the source 
clock for the JTAG logic. External logic can implement a power management mode that 
stops toggling of this signal. If such a method is employed, the clock signal should be held 
active (logic 1).

CPMC405CPUCLKEN (input)
Enables the core clock zone when asserted and disables the zone when deasserted. If logic 
is not implemented to control this signal, it must be held active (tied to 1).

CPMC405TIMERCLKEN (input)
Enables the timer clock zone when asserted and disables the zone when deasserted. If logic 
is not implemented to control this signal, it must be held active (tied to 1).

CPMC405JTAGCLKEN (input)
Enables the JTAG clock zone when asserted and disables the zone when deasserted. CPM 
logic should not control this signal. The JTAG standard requires that it be held active (tied 
to 1).

CPMC405CORECLKINACTIVE (input)
This signal is a status indicator that is latched by an internal PPC405x3 register (JDSR). An 
external debug tool (such as RISCWatch) can read this register and determine that the 
PPC405x3 is in sleep mode. This signal should be asserted by the CPM when it places the 
PPC405x3 in sleep mode using either of the following methods:

• Deasserting CPMC405CPUCLKEN to disable the core clock zone.
• Stopping CPMC405CLOCK from toggling by holding it active (logic 1).

Table 2-2: CPM Interface I/O Signals

Signal
I/O

Type
If Unused Function

CPMC405CLOCK I Required PPC405x3 clock input (for all non-JTAG logic, including 
timers).

CPMC405CPUCLKEN I 1 Enables the core clock zone.

CPMC405TIMERCLKEN I 1 Enables the timer clock zone.

CPMC405JTAGCLKEN I 1 Enables the JTAG clock zone.

CPMC405CORECLKINACTIVE I 0 Indicates the CPM logic disabled the clocks to the core.

CPMC405TIMERTICK I 1 Increments or decrements the PPC405x3 timers every time 
it is active with the CPMC405CLOCK.

C405CPMMSREE O No Connect Indicates the value of MSR[EE].

C405CPMMSRCE O No Connect Indicates the value of MSR[CE].

C405CPMTIMERIRQ O No Connect Indicates a timer-interrupt request occurred.

C405CPMTIMERRESETREQ O No Connect Indicates a watchdog-timer reset request occurred.

C405CPMCORESLEEPREQ O No Connect Indicates the core is requesting to be put into sleep mode.
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CPMC405TIMERTICK (input)
This signal is used to control the update frequency of the PPC405x3 time base and PIT (the 
FIT and WDT are timer events triggered by the time base). The time base is incremented 
and the PIT is decremented every cycle that CPMC405TIMERTICK and CPMC405CLOCK 
are both active. CPMC405TIMERTICK should be synchronous with CPMC405CLOCK for 
the timers to operate predictably. The timers are updated at the PPC405x3 clock frequency 
if CPMC405TIMERTICK is held active.

C405CPMMSREE (output)
This signal indicates the state of the MSR[EE] (external-interrupt enable) bit. When 
asserted, external interrupts are enabled (MSR[EE]=1). When deasserted, external 
interrupts are disabled (MSR[EE]=0). The CPM can use this signal to wake the processor 
from sleep mode when an external noncritical interrupt occurs.

When the processor wakes up, it deasserts the C405CPMMSREE, C405CPMMSRCE, and 
C405CPMTIMERIRQ signals one processor clock cycle before it deasserts the 
C405CPMCORESLEEPREQ signal. For this reason, the CPM should latch the 
C405CPMMSREE, C405CPMMSRCE, and C405CPMTIMERIRQ signals before using them 
to control the processor clocks.

C405CPMMSRCE (output)
This signal indicates the state of the MSR[CE] (critical-interrupt enable) bit. When asserted, 
critical interrupts are enabled (MSR[CE]=1). When deasserted, critical interrupts are 
disabled (MSR[CE]=0). The CPM can use this signal to wake the processor from sleep 
mode when an external critical interrupt occurs.

When the processor wakes up, it deasserts the C405CPMMSREE, C405CPMMSRCE, and 
C405CPMTIMERIRQ signals one processor clock cycle before it deasserts the 
C405CPMCORESLEEPREQ signal. For this reason, the CPM should latch the 
C405CPMMSREE, C405CPMMSRCE, and C405CPMTIMERIRQ signals before using them 
to control the processor clocks.

C405CPMTIMERIRQ (output)
When asserted, this signal indicates a timer exception occurred within the PPC405x3 and 
an interrupt request is pending to handle the exception. When deasserted, no timer-
interrupt request is pending. This signal is the logical OR of interrupt requests from the 
programmable-interval timer (PIT), the fixed-interval timer (FIT), and the watchdog timer 
(WDT). The CPM can use this signal to wake the processor from sleep mode when an 
internal timer exception occurs.

When the processor wakes up, it deasserts the C405CPMMSREE, C405CPMMSRCE, and 
C405CPMTIMERIRQ signals one processor clock cycle before it deasserts the 
C405CPMCORESLEEPREQ signal. For this reason, the CPM should latch the 
C405CPMMSREE, C405CPMMSRCE, and C405CPMTIMERIRQ signals before using them 
to control the processor clocks.

C405CPMTIMERRESETREQ (output)
When asserted, this signal indicates a watchdog time-out occurred and a reset request is 
pending. When deasserted, no reset request is pending. This signal is the logical OR of the 
core, chip, and system reset modes that are programmed using the watchdog timer 
mechanism. The CPM can use this signal to wake the processor from sleep mode when a 
watchdog time-out occurs.

C405CPMCORESLEEPREQ (output)
When asserted, this signal indicates the PPC405x3 has requested to be put into sleep mode. 
When deasserted, no request exists. This signal is asserted after software enables the wait 
state by setting the MSR[WE] (wait-state enable) bit to 1. The processor completes 
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execution of all prior instructions and memory accesses before asserting this signal. The 
CPM can use this signal to place the processor in sleep mode at the request of software.

When the processor wakes up at a later time, it deasserts the C405CPMMSREE, 
C405CPMMSRCE, and C405CPMTIMERIRQ signals one processor clock cycle before it 
deasserts the C405CPMCORESLEEPREQ signal. For this reason, the CPM should latch the 
C405CPMMSREE, C405CPMMSRCE, and C405CPMTIMERIRQ signals before using them 
to control the processor clocks.
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CPU Control Interface
The CPU control interface is used primarily to provide CPU setup information to the 
PPC405x3. It is also used to report the detection of a machine check condition within the 
PPC405x3.

CPU Control Interface I/O Signal Summary
Figure 2-2 shows the block symbol for the CPU control interface. The signals are 
summarized in Table 2-3.

CPU Control Interface I/O Signal Descriptions
The following sections describe the operation of the CPU control-interface I/O signals.

TIEC405MMUEN (input)
When held active (tied to logic 1), this signal enables the PPC405x3 memory-management 
unit (MMU). When held inactive (tied to logic 0), this signal disables the MMU. The MMU 
is used for virtual to address translation and for memory protection. Its operation is 
described in the PowerPC 405 User Manual (Vol. 2 (a) of the Virtex™-II Pro Developer’s Kit). 
Disabling the MMU can improve the performance (clock frequency) of the PPC405x3.

TIEC405DETERMINISTICMULT (input)
When held active (tied to logic 1), this signal disables the hardware multiplier early-out 
capability. All multiply instructions have a 4-cycle reissue rate and a 5-cycle latency rate. 
When held inactive (tied to logic 0), this signal enables the hardware multiplier early-out 
capability. If early out is enabled, multiply instructions are executed in the number of 
cycles specified in Table 2-4. The performance of multiply instructions is described in the 
PowerPC 405 User Manual (Vol. 2 (a) of the Virtex™-II Pro Developer’s Kit).

Figure 2-2: CPU Control Interface Block Symbol

UG018_02_102001

PPC405
TIEC405MMUEN

TIEC405DETERMINISTICMULT

TIEC405DISOPERANDFWD

C405XXXMACHINECHECK

Table 2-3: CPU Control Interface I/O Signals

Signal
I/O

Type
If Unused Function

TIEC405MMUEN I Required Enables the memory-management unit (MMU)

TIEC405DETERMINISTICMULT I Required Specifies whether all multiply operations complete in a 
fixed number of cycles or have an early-out capability. 

TIEC405DISOPERANDFWD I Required Disables operand forwarding for load instructions.

C405XXXMACHINECHECK O No Connect Indicates a machine-check error has been detected by the 
PPC405x3.
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TIEC405DISOPERANDFWD (input)
When held active (tied to logic 1), this signal disables operand forwarding. When held 
inactive (tied to logic 0), this signal enables operand forwarding. The processor uses 
operand forwarding to send load-instruction data from the data cache to the execution 
units as soon as it is available. Operand forwarding often saves a clock cycle when 
instructions following the load require the loaded data. Disabling operand forwarding can 
improve the performance (clock frequency) of the PPC405x3.

C405XXXMACHINECHECK (output)
When asserted, this signal indicates the PPC405x3 detected an instruction machine-check 
error. When deasserted, no error exists. This signal is asserted when the processor attempts 
to execute an instruction that was transferred to the PPC405x3 with the PLBC405ICUERR 
signal asserted. This signal remains asserted until software clears the instruction machine-
check bit in the exception-syndrome register (ESR[MCI]).

Table 2-4: Multiply and MAC Instruction Timing

Operations
Issue-Rate

Cycles
Latency
Cycles

MAC and Negative MAC 1 2

Halfword × Halfword (32-bit result) 1 2

Halfword × Word (48-bit result) 2 3

Word × Word (64-bit result) 4 5

Notes: 
For the purposes of this table, words are treated as halfwords if the upper 16 bits of the operand 
contain a sign extension of the lower 16 bits. For example, if the upper 16 bits of a word operand 
are zero, the operand is considered a halfword when calculating execution time.
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Reset Interface
A reset causes the processor block to perform a hardware initialization. It always occurs 
when the processor block is powered-up and can occur at any time during normal 
operation. If it occurs during normal operation, instruction execution is immediately 
halted and all processor state is lost. 

The processor block recognizes three types of reset:

• A processor reset affects the processor block only, including PPC405x3 execution units, 
cache units, and the on-chip memory controller (OCM). External devices (on-chip and 
off-chip) are not affected. This type of reset is also referred to as a core reset.

• A chip reset affects the processor block and all other devices or peripherals located on 
the same chip as the processor.

• A system reset affects the processor chip and all other devices or peripherals external to 
the processor chip that are connected to the same system-reset network. The scope of 
a system reset depends on the system implementation. Power-on reset (POR) is a form 
of system reset.

Input signals are provided to the processor block for each reset type. The signals are used 
to reset the processor block and to record the reset type in the debug-status register 
(DBSR[MRR]). The processor block can produce reset-request output signals for each reset 
type. External reset logic can process these output signals and generate the appropriate 
reset input signals to the processor block. Reset activity does not occur when the processor 
block requests the reset. Reset activity only occurs when external logic asserts the 
appropriate reset input signal. 

Reset Requirements
FPGA logic (external to the processor block) is required to generate the reset input signals 
to the processor block. The reset input signals can be based on the reset-request output 
signals from the processor block, system-specific reset-request logic, or some combination 
of the two. Reset input signals must meet the following minimum requirements:

• The reset input signals must be synchronized with the PPC405x3 clock.
• The reset input signals must be asserted for at least eight clock cycles.
• Only the combinations of signals shown in Table 2-5 are used to cause a reset.

POR (power-on reset) is handled by logic within the processor block. This logic asserts the 
RSTC405RESETCORE, RSTC405RESETCHIP, RSTC405RESETSYS, and 
JTGC405TRSTNEG signals for at least eight clock cycles. FPGA designers cannot modify 
the processor block power-on reset mechanism.

The reset logic is not required to support all three types of reset. However, distinguishing 
resets by type can make it easier to isolate errors during system debug. For example, a 
system could reset the core to recover from an external error that affects software 
operation. Following the chip reset, a debugger could be used to locate the external error 
source which is preserved because neither a chip or system reset occurred.

Table 2-5 shows the valid combinations of reset signals and their effect on the DBSR[MRR] 
field following reset.
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Reset Interface I/O Signal Summary
Figure 2-3 shows the block symbol for the reset interface. The signals are summarized in 
Table 2-6.

Reset Interface I/O Signal Descriptions
The following sections describe the operation of the reset interface I/O signals.

C405RSTCORERESETREQ (output)
When asserted, this signal indicates the processor block is requesting a core reset. If this 
signal is asserted, it remains active until two clock cycles after external logic asserts the 

Table 2-5: Valid Reset Signal Combinations and Effect on DBSR(MRR)

Reset Input Signal
Reset Type

None Core Chip System Power-On1

RSTC405RESETCORE Deassert Assert Assert Assert Assert

RSTC405RESETCHIP Deassert Deassert Assert Assert Assert

RSTC405RESETSYS Deassert Deassert Deassert Assert Assert

JTGC405TRSTNEG Deassert Deassert Deassert Deassert Assert

Value of DBSR[MRR]
following reset

Previous
DBSR[MRR]

0b01 0b10 0b11 0b11

Notes: 
1. Handled automatically by logic within the processor block.

Figure 2-3: Reset Interface Block Symbol

UG018_03_102001

PPC405
RSTC405RESETCORE

RSTC405RESETCHIP

RSTC405RESETSYS

JTGC405TRSTNEG

C405RSTCORERESETREQ

C405RSTCHIPRESETREQ

C405RSTSYSRESETREQ

Table 2-6: Reset Interface I/O Signals

Signal
I/O

Type
If Unused Function

C405RSTCORERESETREQ O Required Indicates a core-reset request occurred.

C405RSTCHIPRESETREQ O Required Indicates a chip-reset request occurred.

C405RSTSYSRESETREQ O Required Indicates a system-reset request occurred.

RSTC405RESETCORE I Required Resets the processor block, including the PPC405x3 core 
logic, data cache, instruction cache, and the on-chip 
memory controller (OCM).

RSTC405RESETCHIP I Required Indicates a chip-reset occurred.

RSTC405RESETSYS I Required Indicates a system-reset occurred. Resets the logic in the 
PPC405x3 JTAG unit.

JTGC405TRSTNEG I Required Performs a JTAG test reset (TRST).
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RSTC405RESETCORE input to the processor block. When deasserted, no core-reset request 
exists. The processor asserts this signal when one of the following occurs:

• A JTAG debugger sets the reset field in the debug-control register 0 (DBCR0[RST]) to 
0b01.

• Software sets the reset field in the debug-control register 0 (DBCR0[RST]) to 0b01.
• The timer-control register watchdog-reset control field (TCR[WRC]) is set to 0b01 and 

a watchdog time-out causes the watchdog-event state machine to enter the reset state.

C405RSTCHIPRESETREQ (output)
When asserted, this signal indicates the processor block is requesting a chip reset. If this 
signal is asserted, it remains active until two clock cycles after external logic asserts the 
RSTC405RESETCHIP input to the processor block. When deasserted, no chip-reset request 
exists. The processor asserts this signal when one of the following occurs:

• A JTAG debugger sets the reset field in the debug-control register 0 (DBCR0[RST]) to 
0b10.

• Software sets the reset field in the debug-control register 0 (DBCR0[RST]) to 0b10.
• The timer-control register watchdog-reset control field (TCR[WRC]) is set to 0b10 and 

a watchdog time-out causes the watchdog-event state machine to enter the reset state.

C405RSTSYSRESETREQ (output)
When asserted, this signal indicates the processor block is requesting a system reset. If this 
signal is asserted, it remains active until two clock cycles after external logic asserts the 
RSTC405RESETSYS input to the processor block. When deasserted, no system-reset 
request exists. The processor asserts this signal when one of the following occurs:

• A JTAG debugger sets the reset field in the debug-control register 0 (DBCR0[RST]) to 
0b11.

• Software sets the reset field in the debug-control register 0 (DBCR0[RST]) to 0b11.
• The timer-control register watchdog-reset control field (TCR[WRC]) is set to 0b11 and 

a watchdog time-out causes the watchdog-event state machine to enter the reset state.

RSTC405RESETCORE (input)
External logic asserts this signal to reset the processor block (core). This includes the 
PPC405x3 core logic, data cache, instruction cache, and the on-chip memory controller 
(OCM). The PPC405x3 also uses this signal to record a core reset type in the DBSR[MRR] 
field. This signal should be asserted for at least eight clock cycles to guarantee that the 
processor block initiates its reset sequence. No reset occurs and none is recorded in 
DBSR[MRR] when this signal is deasserted.

Table 2-5, page 904 shows the valid combinations of the RSTC405RESETCORE, 
RSTC405RESETCHIP, and RSTC405RESETSYS signals and their effect on the DBSR[MRR] 
field following reset.

RSTC405RESETCHIP (input)
External logic asserts this signal to reset the chip. A chip reset involves the FPGA logic, on-
chip peripherals, and the processor block (the PPC405x3 core logic, data cache, instruction 
cache, and the OCM). The signal does not reset logic in the processor block. The PPC405x3 
uses this signal only to record a chip reset type in the DBSR[MRR] field. The 
RSTC405RESETCORE signal must be asserted with this signal to cause a core reset. Both 
signals must be asserted for at least eight clock cycles to guarantee that the processor block 
recognizes the reset type and initiates the core-reset sequence. The PPC405x3 does not 
record a chip reset type in DBSR[MRR] when this signal is deasserted.
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Table 2-5, page 904 shows the valid combinations of the RSTC405RESETCORE, 
RSTC405RESETCHIP, and RSTC405RESETSYS signals and their effect on the DBSR[MRR] 
field following reset.

RSTC405RESETSYS (input)
External logic asserts this signal to reset the system. A system reset involves logic external 
to the FPGA, the FPGA logic, on-chip peripherals, and the processor block (the PPC405x3 
core logic, data cache, instruction cache, and the OCM). This signal resets the logic in the 
PPC405x3 JTAG unit, but it does not reset any other processor block logic. The PPC405x3 
uses this signal to record a system reset type in the DBSR[MRR] field. The 
RSTC405RESETCORE signal must be asserted with this signal to cause a core reset. The 
RSTC405RESETCORE, RSTC405RESETCHIP, and RSTC405RESETSYS signals must be 
asserted for at least eight clock cycles to guarantee that the processor block recognizes the 
reset type and initiates the core-reset sequence. The PPC405x3 does not record a system 
reset type in DBSR[MRR] when this signal is deasserted.

This signal must be asserted during a power-on reset to properly initialize the JTAG unit.

Table 2-5, page 904 shows the valid combinations of the RSTC405RESETCORE, 
RSTC405RESETCHIP, and RSTC405RESETSYS signals and their effect on the DBSR[MRR] 
field following reset.

JTGC405TRSTNEG (input)
This input is the JTAG test reset (TRST) signal. It can be connected to the chip-level TRST 
signal. Although optional in IEEE Standard 1149.1, this signal is automatically used by the 
processor block during power-on reset to properly reset all processor block logic, including 
the JTAG and debug logic. When deasserted, no JTAG test reset exists.

This is a negative active signal.
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Instruction-Side Processor Local Bus Interface
The instruction-side processor local bus (ISPLB) interface enables the PPC405x3 instruction 
cache unit (ICU) to fetch (read) instructions from any memory device connected to the 
processor local bus (PLB). The ICU cannot write to memory. This interface has a dedicated 
30-bit address bus output and a dedicated 64-bit read-data bus input. The interface is 
designed to attach as a master to a 64-bit PLB, but it also supports attachment as a master 
to a 32-bit PLB. The interface is capable of one transfer (64 or 32 bits) every PLB cycle.

At the chip level, the ISPLB can be combined with the data-side read-data bus (also a PLB 
master) to create a shared read-data bus. This is done if a single PLB arbiter services both 
PLB masters and the PLB arbiter implementation only returns data to one PLB master at a 
time.

Refer to the PowerPC 405 User Manual (Vol. 2 (a) of the Virtex™-II Pro Developer’s Kit) for 
more information on the operation of the PPC405x3 ICU.

Instruction-Side PLB Operation
Fetch requests are produced by the ICU and communicated over the PLB interface. Fetch 
requests occur when an access misses the instruction cache or the memory location that is 
accessed is non-cacheable. A fetch request contains the following information:

• A fetch request is indicated by C405PLBICUREQUEST (page 911). 
• The target address of the instruction to be fetched is specified by the address bus, 

C405PLBICUABUS[0:29] (page 911). Bits 30:31 of the 32-bit instruction-fetch address 
are always zero and must be tied to zero at the PLB arbiter. The ICU always requests 
an aligned doubleword of data, so the byte enables are not used.

• The transfer size is specified as four words (quadword) or eight words (cache line) 
using C405PLBICUSIZE[2:3] (page 912). The remaining bits of the transfer size (0:1) 
must be tied to zero at the PLB arbiter.

• The cacheability storage attribute is indicated by C405PLBICUCACHEABLE 
(page 912). Cacheable transfers are always performed with an eight-word transfer 
size.

• The user-defined storage attribute is indicated by C405PLBICUU0ATTR (page 912).
• The request priority is indicated by C405PLBICUPRIORITY[0:1] (page 913). The PLB 

arbiter uses this information to prioritize simultaneous requests from multiple PLB 
masters.

The processor can abort a PLB fetch request using C405PLBICUABORT (page 913). This 
can occur when a branch instruction is executed or when an interrupt occurs.

Fetched instructions are returned to the ICU by a PLB slave device over the PLB interface. 
A fetch response contains the following information:

• The fetch-request address is acknowledged by the PLB slave using 
PLBC405ICUADDRACK (page 913). 

• Instructions sent from the PLB slave to the ICU during a line transfer are indicated as 
valid using PLBC405ICURDDACK (page 914). 

• The PLB-slave bus width, or size (32-bit or 64-bit), is specified by PLBC405ICUSSIZE1 
(page 914). The PLB slave is responsible for packing data bytes from non-word 
devices so that the information sent to the ICU is presented appropriately, as 
determined by the transfer size.

• The instructions returned to the ICU by the PLB slave are sent using four-word or 
eight-word line transfers, as specified by the transfer size in the fetch request. These 
instructions are returned over the ICU read-data bus, PLBC405ICURDDBUS[0:63] 
(page 915). Line transfers operate as follows:
- A four-word line transfer returns the quadword aligned on the address specified 

by C405PLBICUABUS[0:27]. This quadword contains the target instruction 
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requested by the ICU. The quadword is returned using two doubleword or four 
word transfer operations, depending on the PLB slave bus width (64-bit or 32-bit, 
respectively).

- An eight-word line transfer returns the eight-word cache line aligned on the 
address specified by C405PLBICUABUS[0:26]. This cache line contains the target 
instruction requested by the ICU. The cache line is returned using four 
doubleword or eight word transfer operations, depending on the PLB slave bus 
width (64-bit or 32-bit, respectively).

• The words returned during a line transfer can be sent from the PLB slave to the ICU in 
any order (target-word-first, sequential, other). This transfer order is specified by 
PLBC405ICURDWDADDR[1:3] (page 915).

Interaction with the ICU Fill Buffer
As mentioned above, the PLB slave can transfer instructions to the ICU in any order 
(target-word-first, sequential, other). When instructions are received by the ICU from the 
PLB slave, they are placed in the ICU fill buffer. When the ICU receives the target 
instruction, it forwards it immediately from the fill buffer to the instruction-fetch unit so 
that pipeline stalls due to instruction-fetch delays are minimized. This operation is referred 
to as a bypass. The remaining instructions are received from the PLB slave and placed in the 
fill buffer. Subsequent instruction fetches read from the fill buffer if the instruction is 
already present in the buffer. For the best possible software performance, the PLB slave 
should be designed to return the target word first.

Non-cacheable instructions are transferred using a four-word or eight-word line-transfer 
size. Software controls this transfer size using the non-cacheable request-size bit in the core-
configuration register (CCR0[NCRS]). This enables non-cacheable transfers to take 
advantage of the PLB line-transfer protocol to minimize PLB-arbitration delays and bus 
delays associated with multiple, single-word transfers. The transferred instructions are 
placed in the ICU fill buffer, but not in the instruction cache. Subsequent instruction fetches 
from the same non-cacheable line are read from the fill buffer instead of requiring a 
separate arbitration and transfer sequence across the PLB. Instructions in the fill buffer are 
fetched with the same performance as a cache hit. The non-cacheable line remains in the fill 
buffer until the fill buffer is needed by another line transfer.

Cacheable instructions are always transferred using an eight-word line-transfer size. The 
transferred instructions are placed in the ICU fill buffer as they are received from the PLB 
slave. Subsequent instruction fetches from the same cacheable line are read from the fill 
buffer during the time the line is transferred from the PLB slave. When the fill buffer is full, 
its contents are transferred to the instruction cache. Software can prevent this transfer by 
setting the fetch without allocate bit in the core-configuration register (CCR0[FWOA]). In 
this case, the cacheable line remains in the fill buffer until the fill buffer is needed by 
another line transfer. An exception is that the contents of the fill buffer are always 
transferred if the line was fetched because an icbt instruction was executed.

Prefetch and Address Pipelining
A prefetch is a request for the eight-word cache line that sequentially follows the current 
eight-word fetch request. Prefetched instructions are fetched before it is known that they 
are needed by the sequential execution of software.

The ICU can overlap a single prefetch request with the prior fetch request. This process, 
known as address pipelining, enables a second address to be presented to a PLB slave while 
the slave is returning data associated with the first address. Address pipelining can occur 
if a prefetch request is produced before all instructions from the previous fetch request are 
transferred by the slave. This capability maximizes PLB-transfer throughput by reducing 
dead cycles between instruction transfers associated with the two requests. The ICU can 
pipeline the prefetch with any combination of sequential, branch, and interrupt fetch 
requests. A prefetch request is communicated over the PLB two or more cycles after the 
prior fetch request is acknowledged by the PLB slave.
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Address pipelining of prefetch requests never occurs under any one of the following 
conditions:

• The PLB slave does not support address pipelining.
• The prefetch address falls outside the 1 KB physical page holding the current fetch 

address. This limitation avoids potential problems due to protection violations or 
storage-attribute mismatches.

• Non-cacheable transfers are programmed to use a four-word line-transfer size 
(CCR0[NCRS]=0).

• For non-cacheable transfers, prefetching is disabled (CCR0[PFNC]=0).
• For cacheable transfers, prefetching is disabled (CCR0[PFC]=0).

Address pipelining of non-cacheable prefetch requests can occur if all of the following 
conditions are met:

• Address pipelining is supported by the PLB slave.

• The ICU is not already involved in an address-pipelined PLB transfer.
• A branch or interrupt does not modify the sequential execution of the current (first) 

instruction-fetch request.
• Non-cacheable prefetching is enabled (CCR0[PFNC]=1).
• A non-cacheable instruction-prefetch is requested, and the instruction is not in the fill 

buffer or being returned over the ISOCM interface.
• The prefetch address does not fall outside the current 1 KB physical page.

Address pipelining of cacheable prefetch requests can occur if all of the following 
conditions are met:

• Address pipelining is supported by the PLB slave.
• The ICU is not already involved in an address-pipelined PLB transfer.
• A branch or interrupt does not modify the sequential execution of the current (first) 

instruction-fetch request.
• Cacheable prefetching is enabled (CCR0[PFC]=1).
• A cacheable instruction-prefetch is requested, and the instruction is not in the 

instruction cache, the fill buffer, or being returned over the ISOCM interface.
• The prefetch address does not fall outside the current 1 KB physical page.

Guarded Storage
Accesses to guarded storage are not indicated by the ISPLB interface. This is because the 
PowerPC Architecture allows instruction prefetching when:

• The processor is in real mode (instruction address translation is disabled). 
• The fetched instruction is located in the same physical page (1 KB) as an instruction 

that is required by the sequential execution model, or
• The fetched instruction is located in the next physical page (1 KB) as an instruction 

that is required by the sequential execution model.

Memory should be organized such that real-mode instruction prefetching from the same 
or next 1 KB page does not affect sensitive addresses, such as memory-mapped I/O 
devices.

If the processor is in virtual mode, an attempt to prefetch from guarded storage causes an 
instruction-storage interrupt. In this case, the prefetch never appears on the ISPLB.

Instruction-Side PLB I/O Signal Table
Figure 2-4 shows the block symbol for the instruction-side PLB interface. The signals are 
summarized in Table 2-7.
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Instruction-Side PLB Interface I/O Signal Descriptions
The following sections describe the operation of the instruction-side PLB interface I/O 
signals.

Throughout these descriptions and unless otherwise noted, the term clock refers to the PLB 
clock signal, PLBCLK (see page 982 for information on this clock signal). The term cycle 

Figure 2-4: Instruction-Side PLB Interface Block Symbol

UG018_04_020702

PPC405
PLBC405ICUADDRACK

PLBC405ICUSSIZE1

PLBC405ICURDDACK

PLBC405ICURDDBUS[0:63]

PLBC405ICURDWDADDR[1:3]

PLBC405ICUBUSY

PLBC405ICUERR

C405PLBICUREQUEST

C405PLBICUABUS[0:29]

C405PLBICUSIZE[2:3]

C405PLBICUCACHEABLE

C405PLBICUU0ATTR 

C405PLBICUPRIORITY[0:1]

C405PLBICUABORT

Table 2-7: Instruction-Side PLB Interface Signal Summary

Signal
I/O

Type
If Unused Function

C405PLBICUREQUEST O No Connect Indicates the ICU is making an instruction-fetch request.

C405PLBICUABUS[0:29] O No Connect Specifies the memory address of the instruction-fetch 
request. Bits 30:31 of the 32-bit address are assumed to be 
zero.

C405PLBICUSIZE[2:3] O No Connect Specifies a four word or eight word line-transfer size.

C405PLBICUCACHEABLE O No Connect Indicates the value of the cacheability storage attribute for 
the target address.

C405PLBICUU0ATTR O No Connect Indicates the value of the user-defined storage attribute for 
the target address.

C405PLBICUPRIORITY[0:1] O No Connect Indicates the priority of the ICU fetch request.

C405PLBICUABORT O No Connect Indicates the ICU is aborting an unacknowledged fetch 
request.

PLBC405ICUADDRACK I 0 Indicates a PLB slave acknowledges the current ICU fetch 
request.

PLBC405ICUSSIZE1 I 0 Specifies the bus width (size) of the PLB slave that accepted 
the request.

PLBC405ICURDDACK I 0 Indicates the ICU read-data bus contains valid instructions 
for transfer to the ICU.

PLBC405ICURDDBUS[0:63] I 0x0000_0000
_0000_0000

The ICU read-data bus used to transfer instructions from 
the PLB slave to the ICU.

PLBC405ICURDWDADDR[1:3] I 0b000 Indicates which word or doubleword of a four-word or 
eight-word line transfer is present on the ICU read-data bus.

PLBC405ICUBUSY I 0 Indicates the PLB slave is busy performing an operation 
requested by the ICU.

PLBC405ICUERR I 0 Indicates an error was detected by the PLB slave during the 
transfer of instructions to the ICU.

1
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refers to a PLB cycle. To simplify the signal descriptions, it is assumed that PLBCLK and 
the PPC405x3 clock (CPMC405CLOCK) operate at the same frequency.

C405PLBICUREQUEST (output)
When asserted, this signal indicates the ICU is requesting instructions from a PLB slave 
device. The PLB slave asserts PLBC405ICUADDRACK to acknowledge the request. The 
request can be acknowledged in the same cycle it is presented by the ICU. The request is 
deasserted in the cycle after it is acknowledged by the PLB slave. When deasserted, no 
unacknowledged instruction-fetch request exists.

The following output signals contain information for the PLB slave device and are valid 
when the request is asserted. The PLB slave must latch these signals by the end of the same 
cycle it acknowledges the request:

• C405PLBICUABUS[0:31] contains the word address of the instruction-fetch request.
• C405PLBICUSIZE[2:3] indicates the instruction-fetch line-transfer size.
• C405PLBICUCACHEABLE indicates whether the instruction-fetch address is 

cacheable.
• C405PLBICUU0ATTR indicates the value of the user-defined storage attribute for the 

instruction-fetch address.

C405PLBICUPRIORITY[0:1] is also valid when the request is asserted. This signal indicates 
the priority of the instruction-fetch request. It is used by the PLB arbiter to prioritize 
simultaneous requests from multiple PLB masters.

The ICU supports two outstanding fetch requests over the PLB. The ICU can make a 
second fetch request (a prefetch) after the current request is acknowledged. The ICU 
deasserts C405PLBICUREQUEST for at least one cycle after the current request is 
acknowledged and before the subsequent request is asserted.

If the PLB slave supports address pipelining, it must respond to the two fetch requests in 
the order they are presented by the ICU. All instructions associated with the first request 
must be returned before any instruction associated with the second request is returned. 
The ICU cannot present a third fetch request until the first request is completed by the PLB 
slave. This third request can be presented two cycles after the last read acknowledge 
(PLBC405ICURDDACK) is sent from the PLB slave to the ICU, completing the first 
request.

The ICU can abort a fetch request if it no longer requires the requested instruction. The ICU 
removes a request by asserting C405PLBICUABORT while the request is asserted. In the 
next cycle the request is deasserted and remains deasserted for at least one cycle.

C405PLBICUABUS[0:29] (output)
This bus specifies the memory address of the instruction-fetch request. Bits 30:31 of the 32-
bit address are assumed to be zero so that all fetch requests are aligned on a word 
boundary. The fetch address is valid during the time the fetch request signal 
(C405PLBICUREQUEST) is asserted. It remains valid until the cycle following 
acknowledgement of the request by the PLB slave (the PLB slave asserts 
PLBC405ICUADDRACK to acknowledge the request).

C405PLBICUSIZE[2:3] indicates the instruction-fetch line-transfer size. The PLB slave uses 
memory-address bits [0:27] to specify an aligned four-word address for a four-word 
transfer size. Memory-address bits [0:26] are used to specify an aligned eight-word address 
for an eight-word transfer size.

C405PLBICUSIZE[2:3] (output)
These signals are used to specify the line-transfer size of the instruction-fetch request. A 
four-word transfer size is specified when C405PLBICUSIZE[2:3]=0b01. An eight-word 
transfer size is specified when C405PLBICUSIZE[2:3]=0b10. The transfer size is valid 
during the cycles the fetch-request signal (C405PLBICUREQUEST) is asserted. It remains 
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valid until the cycle following acknowledgement of the request by the PLB slave (the PLB 
slave asserts PLBC405ICUADDRACK to acknowledge the request).

A four-word line transfer returns the quadword aligned on the address specified by 
C405PLBICUABUS[0:27]. This quadword contains the target instruction requested by the 
ICU. The quadword is returned using two doubleword or four word transfer operations, 
depending on the PLB slave bus width (64-bit or 32-bit, respectively).

An eight-word line transfer returns the eight-word cache line aligned on the address 
specified by C405PLBICUABUS[0:26]. This cache line contains the target instruction 
requested by the ICU. The cache line is returned using four doubleword or eight word 
transfer operations, depending on the PLB slave bus width (64-bit or 32-bit, respectively).

The words returned during a line transfer can be sent from the PLB slave to the ICU in any 
order (target-word-first, sequential, other). This transfer order is specified by 
PLBC405ICURDWDADDR[1:3].

C405PLBICUCACHEABLE (output)
This signal indicates whether the requested instructions are cacheable. It reflects the value 
of the cacheability storage attribute for the target address. The requested instructions are 
non-cacheable when the signal is deasserted (0). They are cacheable when the signal is 
asserted (1). This signal is valid during the time the fetch-request signal 
(C405PLBICUREQUEST) is asserted. It remains valid until the cycle following 
acknowledgement of the request by the PLB slave (the PLB slave asserts 
PLBC405ICUADDRACK to acknowledge the request).

Non-cacheable instructions are transferred using a four-word or eight-word line-transfer 
size. Software controls this transfer size using the non-cacheable request-size bit in the core-
configuration register (CCR0[NCRS]). This enables non-cacheable transfers to take 
advantage of the PLB line-transfer protocol to minimize PLB-arbitration delays and bus 
delays associated with multiple, single-word transfers. The transferred instructions are 
placed in the ICU fill buffer, but not in the instruction cache. Subsequent instruction fetches 
from the same non-cacheable line are read from the fill buffer instead of requiring a 
separate arbitration and transfer sequence across the PLB. Instructions in the fill buffer are 
fetched with the same performance as a cache hit. The non-cacheable line remains in the fill 
buffer until the fill buffer is needed by another line transfer.

Cacheable instructions are always transferred using an eight-word line-transfer size. The 
transferred instructions are placed in the ICU fill buffer as they are received from the PLB 
slave. Subsequent instruction fetches from the same cacheable line are read from the fill 
buffer during the time the line is transferred from the PLB slave. When the fill buffer is full, 
its contents are transferred to the instruction cache. Software can prevent this transfer by 
setting the fetch without allocate bit in the core-configuration register (CCR0[FWOA]). In 
this case, the cacheable line remains in the fill buffer until the fill buffer is needed by 
another line transfer. An exception is that the contents of the fill buffer are always 
transferred if the line was fetched because an icbt instruction was executed.

C405PLBICUU0ATTR (output)
This signal reflects the value of the user-defined (U0) storage attribute for the target 
address. The requested instructions are not in memory locations characterized by this 
attribute when the signal is deasserted (0). They are in memory locations characterized by 
this attribute when the signal is asserted (1). This signal is valid during the time the fetch-
request signal (C405PLBICUREQUEST) is asserted. It remains valid until the cycle 
following acknowledgement of the request by the PLB slave (the PLB slave asserts 
PLBC405ICUADDRACK to acknowledge the request).

The system designer can use this signal to assign special behavior to certain memory 
addresses. Its use is optional.
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C405PLBICUABORT (output)
When asserted, this signal indicates the ICU is aborting the current fetch request. It is used 
by the ICU to abort a request that has not been acknowledged, or is in the process of being 
acknowledged by the PLB slave. The fetch request continues normally if this signal is not 
asserted. This signal is only valid during the time the fetch-request signal 
(C405PLBICUREQUEST) is asserted. It must be ignored by the PLB slave if the fetch-
request signal is not asserted. In the cycle after the abort signal is asserted, the fetch-request 
signal is deasserted and remains deasserted for at least one cycle.

If the abort signal is asserted in the same cycle that the fetch request is acknowledged by 
the PLB slave (PLBC405ICUADDRACK is asserted), the PLB slave is responsible for 
ensuring that the transfer does not proceed further. The PLB slave cannot assert the ICU 
read-data bus acknowledgement signal (PLBC405ICURDDACK) for an aborted request.

The ICU can abort an address-pipelined fetch request while the PLB slave is responding to 
a previous fetch request. The PLB slave is responsible for completing the previous fetch 
request and aborting the new (pipelined) request.

C405PLBICUPRIORITY[0:1] (output)
These signals are used to specify the priority of the instruction-fetch request. Table 2-8 
shows the encoding of the 2-bit PLB-request priority signal. The priority is valid during the 
cycles the fetch-request signal (C405PLBICUREQUEST) is asserted. It remains valid until 
the cycle following acknowledgement of the request by the PLB slave (the PLB slave 
asserts PLBC405ICUADDRACK to acknowledge the request).

Software establishes the instruction-fetch request priority by writing the appropriate value 
into the ICU PLB-priority bits 0:1 of the core-configuration register (CCR0[IPP]). After a 
reset, the priority is set to the highest level (CCR0[IPP]=0b11).

PLBC405ICUADDRACK (input)
When asserted, this signal indicates the PLB slave acknowledges the ICU fetch request 
(indicated by the ICU assertion of C405PLBICUREQUEST). When deasserted, no such 
acknowledgement exists. A fetch request can be acknowledged by the PLB slave in the 
same cycle the request is asserted by the ICU. The PLB slave must latch the following fetch-
request information in the same cycle it asserts the fetch acknowledgement:

• C405PLBICUABUS[0:29], which contains the word address of the instruction-fetch 
request.

• C405PLBICUSIZE[2:3], which indicates the instruction-fetch line-transfer size.
• C405PLBICUCACHEABLE, which indicates whether the instruction-fetch address is 

cacheable.
• C405PLBICUU0ATTR, which indicates the value of the user-defined storage attribute 

for the instruction-fetch address (use of this signal is optional).

During the acknowledgement cycle, the PLB slave must return its bus width indicator (32 
bits or 64 bits) using the PLBC405ICUSSIZE1 signal.

Table 2-8: PLB-Request Priority Encoding

Bit 0 Bit 1 Definition

0 0 Lowest PLB-request priority.

0 1 Next-to-lowest PLB-request priority.

1 0 Next-to-highest PLB-request priority.

1 1 Highest PLB-request priority.
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The acknowledgement signal remains asserted for one cycle. In the next cycle, both the 
fetch request and acknowledgement are deasserted. Instructions can be returned to the 
ICU from the PLB slave beginning in the cycle following the acknowledgement. The PLB 
slave must abort an ICU fetch request (return no instructions) if the ICU asserts 
C405PLBICUABORT in the same cycle the PLB slave acknowledges the request.

The ICU supports two outstanding fetch requests over the PLB. The ICU can make a 
second fetch request after the current request is acknowledged. The ICU deasserts 
C405PLBICUREQUEST for at least one cycle after the current request is acknowledged and 
before the subsequent request is asserted.

If the PLB slave supports address pipelining, it must respond to the two fetch requests in 
the order they are presented by the ICU. All instructions associated with the first request 
must be returned before any instruction associated with the second request is returned. 
The ICU cannot present a third fetch request until the first request is completed by the PLB 
slave. This third request can be presented two cycles after the last read acknowledge 
(PLBC405ICURDDACK) is sent from the PLB slave to the ICU, completing the first 
request.

PLBC405ICUSSIZE1 (input)
This signal indicates the bus width (size) of the PLB slave device that acknowledged the 
ICU fetch request. A 32-bit PLB slave responded when the signal is deasserted (0). A 64-bit 
PLB slave responded when the signal is asserted (1). This signal is valid during the cycle 
the acknowledge signal (PLBC405ICUADDRACK) is asserted.

The size signal is used by the ICU to determine how instructions are read from the 64-bit 
PLB interface during a transfer cycle (a transfer occurs when the PLB slave asserts 
PLBC405ICURDDACK). The ICU uses the size signal as follows:

• When a 32-bit PLB slave responds, an aligned word is sent from the slave to the ICU 
during each transfer cycle. The 32-bit PLB slave bus should be connected to both the 
high and low 32 bits of the 64-bit ICU read-data bus (see Figure 2-5, page 915). This 
type of connection duplicates the word returned by the slave across the 64-bit bus. 
The ICU reads either the low 32 bits or the high 32 bits of the 64-bit interface, 
depending on the order of the transfer (PLBC405ICURDWDADDR[1:3]).

• When a 64-bit PLB slave responds, an aligned doubleword is sent from the slave to the 
ICU during each transfer cycle. Both words are read from the 64-bit interface by the 
ICU in this cycle.

Table 2-10, page 916 shows the location of instructions on the ICU read-data bus as a 
function of PLB-slave size, line-transfer size, and transfer order.

PLBC405ICURDDACK (input)
When asserted, this signal indicates the ICU read-data bus contains valid instructions sent 
by the PLB slave to the ICU (read data is acknowledged). The ICU latches the data from the 
bus at the end of the cycle this signal is asserted. The contents of the ICU read-data bus are 
not valid when this signal is deasserted.

Read-data acknowledgement is asserted for one cycle per transfer. There is no limit to the 
number of cycles between two transfers. The number of transfers (and the number of read-
data acknowledgements) depends on the following:

• The PLB slave size (bus width) specified by PLBC405ICUSSIZE1.
• The line-transfer size specified by C405PLBICUSIZE[2:3].
• The cacheability of the fetched instructions specified by C405PLBICUCACHEABLE.
• The value of the non-cacheable request-size bit (CCR0[NCRS]).

Table 2-9 summarizes the effect these parameters have on the number of transfers.
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PLBC405ICURDDBUS[0:63] (input)
This read-data bus contains the instructions transferred from a PLB slave to the ICU. The 
contents of the bus are valid when the read-data acknowledgement signal 
(PLBC405ICURDDACK) is asserted. This acknowledgment is asserted for one cycle per 
transfer. There is no limit to the number of cycles between two transfers. The bus contents 
are not valid when the read-data acknowledgement signal is deasserted.

The PLB slave returns either a single instruction (an aligned word) or two instructions (an 
aligned doubleword) per transfer. The number of instructions sent per transfer depends on 
the PLB slave size (bus width), as follows:

• When a 32-bit PLB slave responds, an aligned word is sent from the slave to the ICU 
during each transfer cycle. The 32-bit PLB slave bus should be connected to both the 
high and low 32 bits of the 64-bit read-data bus, as shown in Figure 2-5 below. This 
type of connection duplicates the word returned by the slave across the 64-bit bus. 
The ICU reads either the low 32 bits or the high 32 bits of the 64-bit interface, 
depending on the value of PLBC405ICURDWDADDR[1:3].

• When a 64-bit PLB slave responds, an aligned doubleword is sent from the slave to the 
ICU during each transfer cycle. Both words are read from the 64-bit interface by the 
ICU in this cycle.

Table 2-10 shows the location of instructions on the ICU read-data bus as a function of PLB-
slave size, line-transfer size, and transfer order.

PLBC405ICURDWDADDR[1:3] (input)
These signals are used to specify the transfer order. They identify which word or 
doubleword of a line transfer is present on the ICU read-data bus when the PLB slave 
returns instructions to the ICU. The words returned during a line transfer can be sent from 
the PLB slave to the ICU in any order (target-word-first, sequential, other). The transfer-
order signals are valid when the read-data acknowledgement signal 
(PLBC405ICURDDACK) is asserted. This acknowledgment is asserted for one cycle per 

Table 2-9: Number of Transfers Required for Instruction-Fetch Requests

PLB-Slave
Size

Line-Transfer 
Size

Instruction 
Cacheability

CCR0[NCRS]
Number of 
Transfers

32-Bit Four Words Non-Cacheable 0 4

Eight Words 1 8

Eight Words Cacheable — 8

64-Bit Four Words Non-Cacheable 0 2

Eight Words 1 4

Eight Words Cacheable — 4

Figure 2-5: Attachment of ISPLB Between 32-Bit Slave and 64-Bit Master

UG018_10_102001

C405PLBICUABUS[0:29]

PLBC405ICURDDBUS[0:31]

PLBC405ICURDDBUS[32:63]

C405PLBICUABUS[0:29]

PLBC405ICURDDBUS[0:31]

00

64-Bit PLB Master 32-Bit PLB Slave

C405PLBICUABUS[30:31]
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transfer. There is no limit to the number of cycles between two transfers. The transfer-order 
signals are not valid when the read-data acknowledgement signal is deasserted.

Table 2-10 shows the location of instructions on the ICU read-data bus as a function of PLB-
slave size, line-transfer size, and transfer order. In this table, the Transfer Order column 
contains the possible values of PLBC405ICURDWDADDR[1:3]. For 64-bit PLB slaves, 
PLBC405ICURDWDADDR[3] should always be 0 during a transfer. In this case, the 
transfer order is invalid if this signal asserted. The entries for a 32-bit PLB slave assume the 
connection to a 64-bit master shown in Figure 2-5, page 915.

PLBC405ICUBUSY (input)
When asserted, this signal indicates the PLB slave acknowledged and is responding to (is 
busy with) an ICU fetch request. When deasserted, the PLB slave is not responding to an 
ICU fetch request.

This signal should be asserted in the cycle after an ICU fetch request is acknowledged by 
the PLB slave and remain asserted until the request is completed by the PLB slave. It 
should be deasserted in the cycle after the last read-data acknowledgement signal is 
asserted by the PLB slave, completing the transfer. If multiple fetch requests are initiated 

Table 2-10: Contents of ICU Read-Data Bus During Line Transfer

PLB-Slave
Size

Line-Transfer 
Size

Transfer
Order1

ICU Read-Data Bus
[0:31]2

ICU Read-Data Bus
[32:63]2

32-Bit Four Words x00 Instruction 0 Instruction 0

x01 Instruction 1 Instruction 1

x10 Instruction 2 Instruction 2

x11 Instruction 3 Instruction 3

Eight Words 000 Instruction 0 Instruction 0

001 Instruction 1 Instruction 1

010 Instruction 2 Instruction 2

011 Instruction 3 Instruction 3

100 Instruction 4 Instruction 4

101 Instruction 5 Instruction 5

110 Instruction 6 Instruction 6

111 Instruction 7 Instruction 7

64-Bit Four Words x00 Instruction 0 Instruction 1

x10 Instruction 2 Instruction 3

xx1 Invalid

Eight Words 000 Instruction 0 Instruction 1

010 Instruction 2 Instruction 3

100 Instruction 4 Instruction 5

110 Instruction 6 Instruction 7

xx1 Invalid

Notes: 
1. “x” indicates a don’t-care value in PLBC405ICURDWDADDR[1:3].
2. An instruction shown in italics is ignored by the ICU during the transfer.
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and overlap, the busy signal should be asserted in the cycle after the first request is 
acknowledged and remain asserted until the cycle after the final read-data 
acknowledgement is completed for the last request.

Following reset, the processor block prevents the ICU from fetching instructions until the 
busy signal is deasserted for the first time. This is useful in situations where the processor 
block is reset by a core reset, but PLB devices are not reset. Waiting for the busy signal to be 
deasserted prevents fetch requests following reset from interfering with PLB activity that 
was initiated before reset.

PLBC405ICUERR (input)
When asserted, this signal indicates the PLB slave detected an error when attempting to 
access or transfer the instructions requested by the ICU. This signal should be asserted 
with the read-data acknowledgement signal that corresponds to the erroneous transfer. 
The error signal should be asserted for only one cycle. When deasserted, no error is 
detected.

If a cacheable instruction is transferred with an error indication, it is loaded into the ICU fill 
buffer. However, the cache line held in the fill buffer is not transferred to the instruction 
cache.

The PLB slave must not terminate instruction transfers when an error is detected. The 
processor block is responsible for responding to any error detected by the PLB slave. A 
machine-check exception occurs if the PPC405x3 attempts to execute an instruction that 
was transferred to the ICU with an error indication. If an instruction is transferred with an 
error indication but is never executed, no machine-check exception occurs.

The PLB slave should latch error information in DCRs so that software diagnostic routines 
can attempt to report and recover from the error. A bus-error address register (BEAR) 
should be implemented for storing the address of the access that caused the error. A bus-
error syndrome register (BESR) should be implemented for storing information about 
cause of the error.
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Instruction-Side PLB Interface Timing Diagrams
The following timing diagrams show typical transfers that can occur on the ISPLB interface 
between the ICU and a bus-interface unit (BIU). These timing diagrams represent the 
optimal timing relationships supported by the processor block. The BIU can be 
implemented using the FPGA processor local bus (PLB) or using customized hardware. 
Not all BIU implementations support these optimal timing relationships.

The ICU only performs reads (fetches) when accessing instructions across the ISPLB 
interface.

ISPLB Timing Diagram Assumptions
The following assumptions and simplifications were made in producing the optimal 
timing relationships shown in the timing diagrams:

• Fetch requests are acknowledged by the BIU in the same cycle they are presented by 
the ICU. This represents the earliest cycle a BIU can acknowledge a fetch request.

• The first read-data acknowledgement for a line transfer is asserted in the cycle 
immediately following the fetch-request acknowledgement. This represents the 
earliest cycle a BIU can begin transferring instructions to the ICU in response to a 
fetch request. However, the earliest the FPGA PLB begins transferring instructions is 
two cycles after the fetch request is acknowledged.

• Subsequent read-data acknowledgements for a line transfer are asserted in the cycle 
immediately following the prior read-data acknowledgement. This represents the 
fastest rate at which a BIU can transfer instructions to the ICU (there is no limit to the 
number of cycles between two transfers).

• All line transfers assume the target instruction (word) is returned first. Subsequent 
instructions in the line are returned sequentially by address, wrapping as necessary to 
the lower addresses in the same line.

• The rate at which the ICU makes instruction-fetch requests to the BIU is not limited by 
the rate instructions are executed.

• An ICU fetch request to the BIU occurs two cycles after a miss is determined by the 
ICU.

• The ICU latches instructions into the fill buffer in the cycle after the instructions are 
received from the BIU on the PLB.

• The transfer of instructions from the fill buffer to the instruction cache takes three 
cycles. This transfer takes place after all instructions are read into the fill buffer from 
the BIU.

• The BIU size (bus width) is 64 bits, so PLBC405ICUSSIZE1 is not shown.
• No instruction-access errors occur, so PLBC405ICUERR is not shown.
• The abort signal, C405PLBICUABORT is shown only in the last example.
• The storage attribute signals are not shown.
• The ICU activity is shown only as an aide in describing the examples. The occurrence 

and duration of this activity is not observable on the ISPLB.

The following abbreviations appear in the timing diagrams:
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Table 2-11: Key to ISPLB Timing Diagram Abbreviations

Abbreviation1 Description Where Used

rl# Fetch-request identifier Request
Request acknowledge 
Read-data acknowledge 

(C405PLBICUREQUEST)
(PLBC405ICUADDRACK)
(PLBC405ICURDDACK)

adr# Fetch-request address Request address (C405PLBICUABUS[0:29])

d## Doublewords (two instructions) transferred 
as a result of a fetch request

ICU read-data bus (PLBC405ICURDDBUS[0:63])

miss# The ICU detects a cache miss that causes a 
fetch request on the PLB

ICU

fill# The ICU is busy performing a fill operation ICU

byp# The ICU forwards instructions to the 
PPC405x3 instruction-fetch unit from the fill 
buffer as they become available (bypass)

ICU

prefetch# The ICU speculatively prefetches 
instructions from the BIU

ICU

Subscripts Used to identify the instruction words 
returned by a transfer

Read-data acknowledge 
ICU read-data bus
ICU forward (bypass)

(PLBC405ICURDDACK) 
(PLBC405ICURDDBUS[0:63])

# Used to identify the order doublewords are 
sent to the ICU

Transfer order (PLBC405ICURDWDADDR[1:3])

Notes: 
1. “#” indicates a number.
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ISPLB Non-Pipelined Cacheable Sequential Fetch (Case 1)
The timing diagram in Figure 2-6 shows two consecutive eight-word line fetches that are 
not address pipelined. The example assumes instructions are fetched sequentially from the 
beginning of the first line through the end of the second line.

The first line read (rl1) is requested by the ICU in cycle 3 in response to a cache miss 
(represented by the miss1 transaction in cycles 1 and 2). Instructions are sent from the BIU 
to the ICU fill buffer in cycles 4 through 7. Instructions in the fill buffer are bypassed to the 
instruction fetch unit to prevent a processor stall during sequential execution (represented 
by the byp1 transaction in cycles 5 through 8). After all instructions are received, they are 
transferred by the ICU from the fill buffer to the instruction cache. This is represented by 
the fill1 transaction in cycles 9 through 11.

After the last instruction in the line is fetched, a sequential fetch from the next cache line 
causes a miss in cycle 13 (miss2). The second line read (rl2) is requested by the ICU in cycle 
15 in response to the cache miss. Instructions are sent from the BIU to the ICU fill buffer in 
cycles 16 through 19. Instructions in the fill buffer are bypassed to the instruction fetch unit 
to prevent a processor stall during sequential execution (represented by the byp2 
transaction in cycles 17 through 20). After all instructions are received, they are transferred 
by the ICU from the fill buffer to the instruction cache (not shown).

Figure 2-6: ISPLB Non-Pipelined Cacheable Sequential Fetch (Case 1)

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

PLBCLK and CPMC405CLK

UG018_11_101701

PPC405 Outputs:

C405PLBICUREQUEST

C405PLBICUABUS[0:29] adr1 adr2

fill1byp1 byp2miss2miss1ICU

rl2rl1

rl2rl1

PLB/BIU Outputs:

PLBC405ICUADDRACK

PLBC405ICUBUSY

PLBC405ICURDDBUS[0:63]

PLBC405ICURDWDADDR[1:3]

PLBC405ICURDDACK rl101 rl123 rl145 rl167 rl201 rl223 rl245 rl267

d101 d123 d145 d167 d201 d223 d245 d267

0 2 4 6 0 2 4 6
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ISPLB Non-Pipelined Cacheable Sequential Fetch (Case 2)
The timing diagram in Figure 2-7 shows two consecutive eight-word line fetches that are 
not address pipelined. The example assumes instructions are fetched sequentially from the 
end of the first line through the end of the second line. It provides an illustration of a 
transfer where the target instruction returned first by the BIU is not located at the start of 
the cache line.

The first line read (rl1) is requested by the ICU in cycle 3 in response to a cache miss 
(represented by the miss1 transaction in cycles 1 and 2). Instructions are sent from the BIU 
to the ICU fill buffer in cycles 4 through 7. The target instruction is bypassed to the 
instruction fetch unit in cycle 5 (byp1). After all instructions are received, they are 
transferred by the ICU from the fill buffer to the instruction cache. This is represented by 
the fill1 transaction in cycles 8 through 10.

After the target instruction is bypassed, a sequential fetch from the next cache line causes a 
miss in cycle 6 (miss2). The second line read (rl2) is requested by the ICU in cycle 8 in 
response to the cache miss. After the first line is read from the BIU, instructions for the 
second line are sent from the BIU to the ICU fill buffer. This occurs in cycles 9 through 12. 
Instructions in the fill buffer are bypassed to the instruction fetch unit to prevent a 
processor stall during sequential execution (represented by the byp2 transaction in cycles 
11 through 13). After all instructions are received, they are transferred by the ICU from the 
fill buffer to the instruction cache (represented by the fill2 transaction in cycles 14 through 
16).

Figure 2-7: ISPLB Non-Pipelined Cacheable Sequential Fetch (Case 2)

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

PLBCLK and CPMC405CLK

UG018_12_101701

PPC405 Outputs:

C405PLBICUREQUEST

C405PLBICUABUS[0:29] adr1 adr2

fill1 fill2byp1 byp2miss2miss1ICU

rl2rl1

rl2rl1

PLB/BIU Outputs:

PLBC405ICUADDRACK

PLBC405ICURDDBUS[0:63]

PLBC405ICURDWDADDR[1:3]

PLBC405ICURDDACK rl167 rl101 rl123 rl145 rl201 rl223 rl245 rl267

d167 d101 d123 d145 d201 d223 d245 d267

6 0 2 4 0 2 4 6

PLBC405ICUBUSY
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ISPLB Pipelined Cacheable Sequential Fetch (Case 1)
The timing diagram in Figure 2-8 shows two consecutive eight-word line fetches that are 
address pipelined. The example assumes instructions are fetched sequentially from the 
beginning of the first line through the end of the second line. It shows the fastest speed at 
which the ICU can request and receive instructions over the PLB.

The first line read (rl1) is requested by the ICU in cycle 3 in response to a cache miss 
(represented by the miss1 transaction in cycles 1 and 2). Instructions are sent from the BIU 
to the ICU fill buffer in cycles 4 through 7. Instructions in the fill buffer are bypassed to the 
instruction fetch unit to prevent a processor stall during sequential execution (represented 
by the byp1 transaction in cycles 5 through 8). After all instructions are received, they are 
transferred by the ICU from the fill buffer to the instruction cache. This is represented by 
the fill1 transaction in cycles 9 through 11.

After the first miss is detected, the ICU performs a prefetch in anticipation of requiring 
instructions from the next cache line (represented by the prefetch2 transaction in cycles 3 
and 4). The second line read (rl2) is requested by the ICU in cycle 5 in response to the 
prefetch. After the first line is read from the BIU, instructions for the second line are sent 
from the BIU to the ICU fill buffer. This occurs in cycles 8 through 11. After all instructions 
are received, they are transferred by the ICU from the fill buffer to the instruction cache 
(represented by the fill2 transaction in cycles 13 through 15). Instructions from this second 
line are not bypassed because the fill buffer is transferred to the cache before the 
instructions are required.

Figure 2-8: ISPLB Pipelined Cacheable Sequential Fetch (Case 1)

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

PLBCLK and CPMC405CLK

UG018_13_101701

PPC405 Outputs:

C405PLBICUREQUEST

C405PLBICUABUS[0:29] adr1 adr2

fill1 fill2byp1prefetch2miss1ICU

rl2rl1

rl2rl1

PLB/BIU Outputs:

PLBC405ICUADDRACK

PLBC405ICURDDBUS[0:63]

PLBC405ICURDWDADDR[1:3]

PLBC405ICURDDACK rl101 rl123 rl145 rl167 rl201 rl223 rl245 rl267

d101 d123 d145 d167 d201 d223 d245 d267

0 2 4 60 2 4 6

PLBC405ICUBUSY
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ISPLB Pipelined Cacheable Sequential Fetch (Case 2)
The timing diagram in Figure 2-9 shows two consecutive eight-word line fetches that are 
address pipelined. The example assumes instructions are fetched sequentially from the 
end of the first line through the end of the second line. As with the previous example, it 
shows the fastest speed at which the ICU can request and receive instructions over the 
PLB. It also illustrates a transfer where the target instruction returned first by the BIU is not 
located at the start of the cache line.

The first line read (rl1) is requested by the ICU in cycle 3 in response to a cache miss 
(represented by the miss1 transaction in cycles 1 and 2). Instructions are sent from the BIU 
to the ICU fill buffer in cycles 4 through 7. The target instruction is bypassed to the 
instruction fetch unit in cycle 5 (byp1). After all instructions are received, they are 
transferred by the ICU from the fill buffer to the instruction cache. This is represented by 
the fill1 transaction in cycles 8 through 10.

After the first miss is detected, the ICU performs a prefetch in anticipation of requiring 
instructions from the next cache line (represented by the prefetch2 transaction in cycles 3 
and 4). The second line read (rl2) is requested by the ICU in cycle 5 in response to the 
prefetch. After the first line is read from the BIU, instructions for the second line are sent 
from the BIU to the ICU fill buffer. This occurs in cycles 8 through 11. Instructions in the fill 
buffer are bypassed to the instruction fetch unit to prevent a processor stall during 
sequential execution (represented by the byp2 transaction in cycles 11 through 12). After all 
instructions are received, they are transferred by the ICU from the fill buffer to the 
instruction cache (represented by the fill2 transaction in cycles 13 through 15).

Figure 2-9: ISPLB Pipelined Cacheable Sequential Fetch (Case 2)

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

PLBCLK and CPMC405CLK

UG018_14_101701

PPC405 Outputs:

C405PLBICUREQUEST

C405PLBICUABUS[0:29] adr1 adr2

fill1 fill2byp1 byp2prefetch2miss1ICU

rl2rl1

rl2rl1

PLB/BIU Outputs:

PLBC405ICUADDRACK

PLBC405ICURDDBUS[0:63]

PLBC405ICURDWDADDR[1:3]

PLBC405ICURDDACK rl167 rl101 rl123 rl145 rl201 rl223 rl245 rl267

d167 d101 d123 d145 d201 d223 d245 d267

0 2 4 66 0 2 4

PLBC405ICUBUSY
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ISPLB Non-Pipelined Non-Cacheable Sequential Fetch
The timing diagram in Figure 2-10 shows two consecutive eight-word line fetches that are 
not address pipelined. The example assumes the instructions are not cacheable. It also 
assumes the instructions are fetched sequentially from the end of the first line through the 
end of the second line. It provides an illustration of how all instructions in a line must be 
transferred even though some of the instructions are discarded.

The first line read (rl1) is requested by the ICU in cycle 3 in response to a cache miss 
(represented by the miss1 transaction in cycles 1 and 2). Instructions are sent from the BIU 
to the ICU fill buffer in cycles 4 through 7. The target instruction is bypassed to the 
instruction fetch unit in cycle 5 (byp1). Because the instructions are executing sequentially, 
the target instruction is the only instruction in the line that is executed. The line is not 
cacheable, so instructions are not transferred from the fill buffer to the instruction cache.

After the target instruction is bypassed, a sequential fetch from the next cache line causes a 
miss in cycle 6 (miss2). The second line read (rl2) is requested by the ICU in cycle 8 in 
response to the cache miss. After the first line is read from the BIU, instructions for the 
second line are sent from the BIU to the ICU fill buffer. This occurs in cycles 9 through 12. 
These instructions overwrite the instructions from the previous line. After loading into the 
fill buffer, instructions from the second line are bypassed to the instruction fetch unit to 
prevent a processor stall during sequential execution (represented by the byp2 transaction 
in cycles 10 through 15). The line is not cacheable, so instructions are not transferred from 
the fill buffer to the instruction cache.

Figure 2-10: ISPLB Non-Pipelined Non-Cacheable Sequential Fetch

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

PLBCLK and CPMC405CLK

UG018_15_101701

PPC405 Outputs:

C405PLBICUREQUEST

C405PLBICUABUS[0:29] adr1 adr2

byp1 byp2miss2miss1ICU

rl2rl1

rl2rl1

PLB/BIU Outputs:

PLBC405ICUADDRACK

PLBC405ICURDDBUS[0:63]

PLBC405ICURDWDADDR[1:3]

PLBC405ICURDDACK rl167 rl101 rl123 rl145 rl201 rl223 rl245 rl267

d167 d101 d123 d145 d201 d223 d245 d267

6 0 2 4 0 2 4 6

PLBC405ICUBUSY
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ISPLB Pipelined Non-Cacheable Sequential Fetch
The timing diagram in Figure 2-11 shows two consecutive eight-word line fetches that are 
address pipelined. The example assumes the instructions are not cacheable. It also assumes 
the instructions are fetched sequentially from the end of the first line through the end of the 
second line. As with the previous example, it provides an illustration of how all 
instructions in a line must be transferred even though some of the instructions are 
discarded.

The first line read (rl1) is requested by the ICU in cycle 3 in response to a cache miss 
(represented by the miss1 transaction in cycles 1 and 2). Instructions are sent from the BIU 
to the ICU fill buffer in cycles 4 through 7. The target instruction is bypassed to the 
instruction fetch unit in cycle 5 (byp1). Because the instructions are executing sequentially, 
the target instruction is the only instruction in the line that is executed. The line is not 
cacheable, so instructions are not transferred from the fill buffer to the instruction cache.

After the first miss is detected, the ICU performs a prefetch in anticipation of requiring 
instructions from the next cache line (represented by the prefetch2 transaction in cycles 3 
and 4). The second line read (rl2) is requested by the ICU in cycle 5 in response to the 
prefetch. After the first line is read from the BIU, instructions for the second line are sent 
from the BIU to the ICU fill buffer. This occurs in cycles 8 through 11. These instructions 
overwrite the instructions from the previous line. After loading into the fill buffer, 
instructions from the second line are bypassed to the instruction fetch unit to prevent a 
processor stall during sequential execution (represented by the byp2 transaction in cycles 9 
through 14). The line is not cacheable, so instructions are not transferred from the fill buffer 
to the instruction cache.

Figure 2-11: ISPLB Pipelined Non-Cacheable Sequential Fetch

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

PLBCLK and CPMC405CLK

UG018_16_101701

PPC405 Outputs:

C405PLBICUREQUEST

C405PLBICUABUS[0:29] adr1 adr2

byp2byp1prefetch2miss1ICU

rl2rl1

rl2rl1

PLB/BIU Outputs:

PLBC405ICUADDRACK

PLBC405ICURDDBUS[0:63]

PLBC405ICURDWDADDR[1:3]

PLBC405ICURDDACK rl167 rl101 rl123 rl145 rl201 rl223 rl245 rl267

d167 d101 d123 d145 d201 d223 d245 d267

0 2 4 66 0 2 4

PLBC405ICUBUSY
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ISPLB 2:1 Core-to-PLB Line Fetch
The timing diagram in Figure 2-12 shows an eight-word line fetch in a system with a PLB 
clock that runs at one half the frequency of the PPC405x3 clock.

The line read (rl1) is requested by the ICU in PLB cycle 2, which corresponds to PPC405x3 
cycle 3. The BIU responds in the same cycle. Instructions are sent from the BIU to the ICU 
fill buffer in PLB cycles 3 through 6 (PPC405x3 cycles 5 through 12). After all instructions 
associated with this line are read, the line is transferred by the ICU from the fill buffer to 
the instruction cache (not shown).

Figure 2-12: ISPLB 2:1 Core-to-PLB Line Fetch

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

CPMC405CLK

UG018_18_101701

PPC405 Outputs:

C405PLBICUREQUEST

C405PLBICUABUS[0:29] adr1

rl1

rl1

PLB/BIU Outputs:

PLBC405ICUADDRACK

PLBC405ICURDDBUS[0:63]

PLBC405ICURDWDADDR[1:3]

PLBC405ICURDDACK rl101 rl123 rl145 rl167

d101 d123 d145 d167

0 2 4 6

miss1ICU

PLBCLK

PLBC405ICUBUSY
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ISPLB 3:1 Core-to-PLB Line Fetch
The timing diagram in Figure 2-13 shows an eight-word line fetch in a system with a PLB 
clock that runs at one third the frequency of the PPC405x3 clock.

The line read (rl1) is requested by the ICU in PLB cycle 2, which corresponds to PPC405x3 
cycle 4. The BIU responds in the same cycle. Instructions are sent from the BIU to the ICU 
fill buffer in PLB cycles 3 through 6 (PPC405x3 cycles 7 through 18). After all instructions 
associated with this line are read, the line is transferred by the ICU from the fill buffer to 
the instruction cache (not shown).

Figure 2-13: ISPLB 3:1 Core-to-PLB Line Fetch

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

CPMC405CLK

UG018_19_101701

PPC405 Outputs:

C405PLBICUREQUEST

C405PLBICUABUS[0:29] adr1

rl1

rl1

PLB/BIU Outputs:

PLBC405ICUADDRACK

PLBC405ICURDDBUS[0:63]

PLBC405ICURDWDADDR[1:3]

PLBC405ICURDDACK rl101 rl123 rl145 rl167

d101 d123 d145 d167

0 2 4 6

miss1ICU

PLBCLK

PLBC405ICUBUSY
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ISPLB Aborted Fetch Request
The timing diagram in Figure 2-14 shows an aborted fetch request. The request is aborted 
because of an instruction-flow change, such as a taken branch or an interrupt. It shows the 
earliest-possible subsequent fetch-request that can be produced by the ICU.

The first line read (rl1) is requested by the ICU in cycle 3 in response to a cache miss 
(represented by the miss1 transaction in cycles 1 and 2). The BIU responds in the same 
cycle the request is made by the ICU. However, the processor also aborts the request in 
cycle 3, possibly because a branch was mispredicted or an interrupt occurred. Therefore, 
the BIU ignores the request and does not transfer instructions associated with the request.

The change in control flow causes the ICU to fetch instructions from a non-sequential 
address. The second line read (rl2) is requested by the ICU in cycle 7 in response to a cache 
miss of the new instructions. (represented by the miss2 transaction in cycles 5 and 6). 
Instructions are sent from the BIU to the ICU fill buffer in cycles 8 through 11.

Figure 2-14: ISPLB Aborted Fetch Request

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

PLBCLK and CPMC405CLK

UG018_17_101701

PPC405 Outputs:

miss2miss1ICU

C405PLBICUREQUEST

C405PLBICUABUS[0:29] adr1 adr2

rl2rl1

C405PLBICUABORT

rl2rl1

PLB/BIU Outputs:

PLBC405ICUADDRACK

PLBC405ICURDDBUS[0:63]

PLBC405ICURDWDADDR[1:3]

PLBC405ICURDDACK rl201 rl223 rl245 rl267

d201 d223 d245 d267

0 2 4 6

PLBC405ICUBUSY
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Data-Side Processor Local Bus Interface
The data-side processor local bus (DSPLB) interface enables the PPC405x3 data cache unit 
(DCU) to load (read) and store (write) data from any memory device connected to the 
processor local bus (PLB). This interface has a dedicated 32-bit address bus output, a 
dedicated 64-bit read-data bus input, and a dedicated 64-bit write-data bus output. The 
interface is designed to attach as a master to a 64-bit PLB, but it also supports attachment 
as a master to a 32-bit PLB. The interface is capable of one data transfer (64 or 32 bits) every 
PLB cycle.

At the chip level, the DSPLB can be combined with the instruction-side read-data bus (also 
a PLB master) to create a shared read-data bus. This is done if a single PLB arbiter services 
both PLB masters and the PLB arbiter implementation only returns data to one PLB master 
at a time.

Refer to PowerPC 405 User Manual (Vol. 2 (a) of the Virtex™-II Pro Developer’s Kit) for more 
information on the operation of the PPC405x3 DCU.

Data-Side PLB Operation
Data-access (read and write) requests are produced by the DCU and communicated over 
the PLB interface. A request occurs when an access misses the data cache or the memory 
location that is accessed is non-cacheable. A data-access request contains the following 
information:

• The request is indicated by C405PLBDCUREQUEST (page 933).
• The type of request (read or write) is indicated by C405PLBDCURNW (page 934).
• The target address of the data to be accessed is specified by the address bus, 

C405PLBDCUABUS[0:31] (page 934).
• The transfer size is specified as a single word or as eight words (cache line) using 

C405PLBDCUSIZE2 (page 934). The remaining bits of the transfer size (0, 1, and 3) 
must be tied to zero at the PLB arbiter.

• The byte enables for single-word accesses are specified using C405PLBDCUBE[0:7] 
(page 936). The byte enables specify one, two, three, or four contiguous bytes in either 
the upper or lower four byte word of the 64-bit data bus. The byte enables are not 
used by the processor during line transfers and must be ignored by the PLB slave.

• The cacheability storage attribute is indicated by C405PLBDCUCACHEABLE 
(page 934). Cacheable transfers are performed using word or line transfer sizes. 

• The write-through storage attribute is indicated by C405PLBDCUWRITETHRU 
(page 935).

• The guarded storage attribute is indicated by C405PLBDCUGUARDED (page 935).
• The user-defined storage attribute is indicated by C405PLBDCUU0ATTR (page 935).
• The request priority is indicated by C405PLBDCUPRIORITY[0:1] (page 937). The PLB 

arbiter uses this information to prioritize simultaneous requests from multiple PLB 
masters.

The processor can abort a PLB data-access request using C405PLBDCUABORT (page 937). 
This occurs only when the processor is reset. 

Data is returned to the DCU by a PLB slave device over the PLB interface. The response to 
a data-access request contains the following information:

• The address of the data-access request is acknowledged by the PLB slave using 
PLBC405DCUADDRACK (page 939). 

• Data sent during a read transfer from the PLB slave to the DCU over the read-data bus 
are indicated as valid using PLBC405DCURDDACK (page 941). Data sent during a 
write transfer from the DCU to the PLB slave over the write-data bus are indicated as 
valid using PLBC405DCUWRDACK (page 942). 
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• The PLB-slave bus width, or size (32-bit or 64-bit), is specified by 
PLBC405DCUSSIZE1 (page 940). The PLB slave is responsible for packing (during 
reads) or unpacking (during writes) data bytes from non-word devices so that the 
information sent to the DCU is presented appropriately, as determined by the transfer 
size.

• The data transferred between the DCU and the PLB slave is sent as a single word or as 
an eight-word line transfer, as specified by the transfer size in the data-access request. 
Data reads are transferred from the PLB slave to the DCU over the DCU read-data 
bus, PLBC405DCURDDBUS[0:63] (page 941). Data writes are transferred from the 
DCU to the PLB slave over the DCU write-data bus, PLBC405DCUWRDBUS[0:63] 
(page 938). Data transfers operate as follows:
- A word transfer moves the entire word specified by the address of the data-access 

request. The specific bytes being accessed are indicated by the byte enables, 
C405PLBDCUBE[0:7] (page 936). The word is transferred using one transfer 
operation.

- An eight-word line transfer moves the eight-word cache line aligned on the 
address specified by C405PLBDCUABUS[0:26]. This cache line contains the target 
data accessed by the DCU. The cache line is transferred using four doubleword or 
eight word transfer operations, depending on the PLB slave bus width (64-bit or 
32-bit, respectively). The byte enables are not used by the processor for this type 
of transfer and they must be ignored by the PLB slave.

• The words read during a data-read transfer can be sent from the PLB slave to the DCU 
in any order (target-word-first, sequential, other). This transfer order is specified by 
PLBC405DCURDWDADDR[1:3] (page 941). For data-write transfers, data is 
transferred from the DCU to the PLB slave in ascending-address order.

Interaction with the DCU Fill Buffer
As mentioned above, the PLB slave can transfer data to the DCU in any order (target-word-
first, sequential, other). When data is received by the DCU from the PLB slave, it is placed 
in the DCU fill buffer. When the DCU receives the target (requested) data, it forwards it 
immediately from the fill buffer to the load/store unit so that pipeline stalls due to load-
miss delays are minimized. This operation is referred to as a bypass. The remaining data is 
received from the PLB slave and placed in the fill buffer. Subsequent data is read from the 
fill buffer if the data is already present in the buffer. For the best possible software 
performance, the PLB slave should be designed to return the target word first.

Non-cacheable data is usually transferred as a single word. Software can indicate that non-
cacheable reads be loaded using an eight-word line transfer by setting the load-word-as-line 
bit in the core-configuration register (CCR0[LWL]) to 1. This enables non-cacheable reads 
to take advantage of the PLB line-transfer protocol to minimize PLB-arbitration delays and 
bus delays associated with multiple, single-word transfers. The transferred data is placed 
in the DCU fill buffer, but not in the data cache. Subsequent data reads from the same non-
cacheable line are read from the fill buffer instead of requiring a separate arbitration and 
transfer sequence across the PLB. Data in the fill buffer is read with the same performance 
as a cache hit. The non-cacheable line remains in the fill buffer until the fill buffer is needed 
by another line transfer.

Non-cacheable reads from guarded storage and all non-cacheable writes are transferred as 
a single word, regardless of the value of CCR0[LWL]. 

Cacheable data is transferred as a single word or as an eight-word line, depending on 
whether the transfer allocates a cache line. Transfers that allocate cache lines use eight-
word transfer sizes. Transfers that do not allocate cache lines use a single-word transfer 
size. Line allocation of cacheable data is controlled by the core-configuration register. The 
load without allocate bit CCR0[LWOA] controls line allocation for cacheable loads and the 
store without allocate bit CCR0[SWOA] controls line allocation for cacheable stores. Clearing 
the appropriate bit to 0 enables line allocation (this is the default) and setting the bit to 1 
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disables line allocation. The dcbt and dcbtst instructions always allocate a cache line and 
ignore the CCR0 bits.

Data read during an eight-word line transfer (one that allocates a cache line) is placed in 
the DCU fill buffer as it is received from the PLB slave. Cacheable writes that allocate a 
cache line also cause an eight-word read transfer from the PLB slave. The cacheable write 
replaces the appropriate bytes in the fill buffer after they are read from the PLB. 
Subsequent data accesses to and from the same cacheable line access the fill buffer during 
the time the remaining bytes are transferred from the PLB slave. When the fill buffer is full, 
its contents are transferred to the data cache.

An eight-word line-write transfer occurs when the fill buffer replaces an existing data-
cache line containing modified data. The existing cache line is written to memory before it 
is replaced with the fill-buffer contents. The write is performed using a separate PLB 
transaction than the previous transfer that caused the replacement. Execution of the dcbf 
and dcbst instructions also cause an eight-word line write.

Address Pipelining
The DCU can overlap a data-access request with a previous request. This process, known 
as address pipelining, enables a second address to be presented to a PLB slave while the 
slave is transferring data associated with the first address. Address pipelining can occur if 
a data-access request is produced before all data from a previous request are transferred by 
the slave. This capability maximizes PLB-transfer throughput by reducing dead cycles 
between multiple requests. The DCU can pipeline up to two read requests and one write 
request (multiple write requests cannot be pipelined). A pipelined request is 
communicated over the PLB two or more cycles after the prior request is acknowledged by 
the PLB slave.

Unaligned Accesses
If necessary, the processor automatically decomposes accesses to unaligned operands into 
two data-access requests that are presented separately to the PLB. This occurs if an 
operand crosses a word boundary (for a word transfer) or a cache line boundary (for an 
eight-word line transfer). For example, assume software reads the unaligned word at 
address 0x1F. This word crosses a cache line boundary: the byte at address 0x1F is in one 
cache line and the bytes at addresses 0x20:0x22 are in another cache line. If neither cache 
line is in the data cache, two consecutive read requests are presented by the DCU to the 
PLB slave. If one cache line is already in the data cache, only the missing portion is 
requested by the DCU.

Because write requests are not address pipelined by the DCU, writes to unaligned data that 
cross cache line boundaries can take significantly longer than aligned writes.

Guarded Storage
No bytes can be accessed speculatively from guarded storage. The PLB slave must return 
only the requested data when guarded storage is read and update only the specified 
memory locations when guarded storage is written. For single word transfers, only the 
bytes indicated by the byte enables are transferred. For line transfers, all eight words in the 
line are transferred.

Data-Side PLB Interface I/O Signal Table
Figure 2-15 shows the block symbol for the data-side PLB interface. The signals are 
summarized in Table 2-12.
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Figure 2-15: Data-Side PLB Interface Block Symbol

UG018_05_102001

PPC405
PLBC405DCUADDRACK

PLBC405DCUSSIZE1

PLBC405DCURDDACK

PLBC405DCURDDBUS[0:63]

PLBC405DCURDWDADDR[1:3]

PLBC405DCUWRDACK

PLBC405DCUBUSY

PLBC405DCUERR

C405PLBDCUREQUEST

C405PLBDCURNW

C405PLBDCUABUS[0:31]

C405PLBDCUSIZE2

C405PLBDCUCACHEABLE

C405PLBDCUWRITETHRU

C405PLBDCUU0ATTR

C405PLBDCUGUARDED

C405PLBDCUBE[0:7]

C405PLBDCUPRIORITY[0:1]

C405PLBDCUABORT

C405PLBDCUWRDBUS[0:63]

Table 2-12: Data-Side PLB Interface I/O Signal Summary

Signal
I/O 

Type
If Unused Function

C405PLBDCUREQUEST O No Connect Indicates the DCU is making a data-access request.

C405PLBDCURNW O No Connect Specifies whether the data-access request is a read or a 
write.

C405PLBDCUABUS[0:31] O No Connect Specifies the memory address of the data-access request.

C405PLBDCUSIZE2 O No Connect Specifies a single word or eight-word transfer size.

C405PLBDCUCACHEABLE O No Connect Indicates the value of the cacheability storage attribute for 
the target address.

C405PLBDCUWRITETHRU O No Connect Indicates the value of the write-through storage attribute for 
the target address.

C405PLBDCUU0ATTR O No Connect Indicates the value of the user-defined storage attribute for 
the target address.

C405PLBDCUGUARDED O No Connect Indicates the value of the guarded storage attribute for the 
target address.

C405PLBDCUBE[0:7] O No Connect Specifies which bytes are transferred during single-word 
transfers.

C405PLBDCUPRIORITY[0:1] O No Connect Indicates the priority of the data-access request.

C405PLBDCUABORT O No Connect Indicates the DCU is aborting an unacknowledged data-
access request.

C405PLBDCUWRDBUS[0:63] O No Connect The DCU write-data bus used to transfer data from the 
DCU to the PLB slave.

PLBC405DCUADDRACK I 0 Indicates a PLB slave acknowledges the current data-access 
request.

PLBC405DCUSSIZE1 I 0 Specifies the bus width (size) of the PLB slave that accepted 
the request.

PLBC405DCURDDACK I 0 Indicates the DCU read-data bus contains valid data for 
transfer to the DCU.

PLBC405DCURDDBUS[0:63] I 0x0000_0000
_0000_0000

The DCU read-data bus used to transfer data from the PLB 
slave to the DCU.
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Data-Side PLB Interface I/O Signal Descriptions
The following sections describe the operation of the data-side PLB interface I/O signals.

Throughout these descriptions and unless otherwise noted, the term clock refers to the PLB 
clock signal, PLBCLK (see page 982 for information on this clock signal). The term cycle 
refers to a PLB cycle. To simplify the signal descriptions, it is assumed that PLBCLK and 
the PPC405x3 clock (CPMC405CLOCK) operate at the same frequency.

C405PLBDCUREQUEST (output)
When asserted, this signal indicates the DCU is presenting a data-access request to a PLB 
slave device. The PLB slave asserts PLBC405DCUADDRACK to acknowledge the request. 
The request can be acknowledged in the same cycle it is presented by the DCU. The request 
is deasserted in the cycle after it is acknowledged by the PLB slave. When deasserted, no 
unacknowledged data-access request exists.

The following output signals contain information for the PLB slave device and are valid 
when the request is asserted. The PLB slave must latch these signals by the end of the same 
cycle it acknowledges the request:

• C405PLBDCURNW, which specifies whether the data-access request is a read or a 
write.

• C405PLBDCUABUS[0:31], which contains the address of the data-access request.
• C405PLBDCUSIZE2, which indicates the transfer size of the data-access request.
• C405PLBDCUCACHEABLE, which indicates whether the data address is cacheable.
• C405PLBDCUWRITETHRU, which specifies the caching policy of the data address.
• C405PLBDCUU0ATTR, which indicates the value of the user-defined storage 

attribute for the instruction-fetch address.
• C405PLBDCUGUARDED, which indicates whether the data address is in guarded 

storage.

If the transfer size is a single word, C405PLBDCUBE[0:7] is also valid when the request is 
asserted. These signals specify which bytes are transferred between the DCU and PLB 
slave. If the transfer size is an eight-word line, C405PLBDCUBE[0:7] is not used and must 
be ignored by the PLB slave.

C405PLBDCUPRIORITY[0:1] is valid when the request is asserted. This signal indicates 
the priority of the data-access request. It is used by the PLB arbiter to prioritize 
simultaneous requests from multiple PLB masters.

The DCU supports up to three outstanding requests over the PLB (two reads and one 
write). The DCU can make a subsequent request after the current request is acknowledged. 
The DCU deasserts C405PLBDCUREQUEST for at least one cycle after the current request 
is acknowledged and before the subsequent request is asserted.

PLBC405DCURDWDADDR[1:3] I 0b000 Indicates which word or doubleword of an eight-word line 
transfer is present on the DCU read-data bus.

PLBC405DCUWRDACK I 0 Indicates the data on the DCU write-data bus is being 
accepted by the PLB slave.

PLBC405DCUBUSY I 0 Indicates the PLB slave is busy performing an operation 
requested by the DCU.

PLBC405DCUERR I 0 Indicates an error was detected by the PLB slave during the 
transfer of data to or from the DCU.

Table 2-12: Data-Side PLB Interface I/O Signal Summary (Continued)

Signal
I/O 

Type
If Unused Function
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If the PLB slave supports address pipelining, it must respond to multiple requests in the 
order they are presented by the DCU. All data associated with a prior request must be 
transferred before any data associated with a subsequent request is transferred. Multiple 
write requests are not pipelined. The DCU does not present a second write request until at 
least two cycles after the last write acknowledge (PLBC405DCUWRDACK) is sent from the 
PLB slave to the DCU, completing the first request.

The DCU only aborts a data-access request if the processor is reset. The DCU removes a 
request by asserting C405PLBDCUABORT while the request is asserted. In the next cycle 
the request is deasserted and remains deasserted until after the processor is reset.

C405PLBDCURNW (output)
When asserted, this signal indicates the DCU is making a read request. When deasserted, 
this signal indicates the DCU is making a write request. This signal is valid when the DCU 
is presenting a data-access request to the PLB slave. The signal remains valid until the cycle 
following acknowledgement of the request by the PLB slave (the PLB slave asserts 
PLBC405DCUADDRACK to acknowledge the request).

C405PLBDCUABUS[0:31] (output)
This bus specifies the memory address of the data-access request. The address is valid 
during the time the data-access request signal (C405PLBDCUREQUEST) is asserted. It 
remains valid until the cycle following acknowledgement of the request by the PLB slave 
(the PLB slave asserts PLBC405DCUADDRACK to acknowledge the request).

C405PLBDCUSIZE2 indicates the data-access transfer size. If an eight-word transfer size is 
used, memory-address bits [0:26] specify the aligned eight-word cache line to be 
transferred. If a single word transfer size is used, the byte enables (C405PLBDCUBE[0:7]) 
specify which bytes on the data bus are involved in the transfer.

C405PLBDCUSIZE2 (output)
This signal specifies the transfer size of the data-access request. When asserted, an eight-
word transfer size is specified. When deasserted, a single word transfer size is specified. 
This signal is valid when the DCU is presenting a data-access request to the PLB slave. The 
signal remains valid until the cycle following acknowledgement of the request by the PLB 
slave (the PLB slave asserts PLBC405DCUADDRACK to acknowledge the request).

A single word transfer moves one to four consecutive data bytes beginning at the memory 
address of the data-access request. For this transfer size, C405PLBDCUBE[0:7] specify 
which bytes on the data bus are involved in the transfer.

An eight-word line transfer moves the cache line aligned on the address specified by 
C405PLBDCUABUS[0:26]. This cache line contains the target data accessed by the DCU. 
The cache line is transferred using four doubleword or eight word transfer operations, 
depending on the PLB slave bus width (64-bit or 32-bit, respectively).

The words moved during an eight-word line transfer can be sent from the PLB slave to the 
DCU in any order (target-word-first, sequential, other). This transfer order is specified by 
PLBC405DCURDWDADDR[1:3].

C405PLBDCUCACHEABLE (output)
This signal indicates whether the accessed data is cacheable. It reflects the value of the 
cacheability storage attribute for the target address. The data is non-cacheable when the 
signal is deasserted (0). The data is cacheable when the signal is asserted (1). This signal is 
valid when the DCU is presenting a data-access request to the PLB slave. The signal 
remains valid until the cycle following acknowledgement of the request by the PLB slave 
(the PLB slave asserts PLBC405DCUADDRACK to acknowledge the request).

Non-cacheable data is usually transferred as a single word. Software can indicate that non-
cacheable reads be loaded using an eight-word line transfer by setting the load-word-as-line 
bit in the core-configuration register (CCR0[LWL]) to 1. This enables non-cacheable reads 
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to take advantage of the PLB line-transfer protocol to minimize PLB-arbitration delays and 
bus delays associated with multiple, single-word transfers. The transferred data is placed 
in the DCU fill buffer, but not in the data cache. Subsequent data reads from the same non-
cacheable line are read from the fill buffer instead of requiring a separate arbitration and 
transfer sequence across the PLB. Data in the fill buffer are read with the same performance 
as a cache hit. The non-cacheable line remains in the fill buffer until the fill buffer is needed 
by another line transfer.

Cacheable data is transferred as a single word or as an eight-word line, depending on 
whether the transfer allocates a cache line. Transfers that allocate cache lines use an eight-
word transfer size. Transfers that do not allocate cache lines use a single-word transfer size. 
Line allocation of cacheable data is controlled by the core-configuration register. The load 
without allocate bit CCR0[LWOA] controls line allocation for cacheable loads and the store 
without allocate bit CCR0[SWOA] controls line allocation for cacheable stores. Clearing the 
appropriate bit to 0 enables line allocation (this is the default) and setting the bit to 1 
disables line allocation. The dcbt and dcbtst instructions always allocate a cache line and 
ignore the CCR0 bits.

C405PLBDCUWRITETHRU (output)
This signal indicates whether the accessed data is in write-through or write-back cacheable 
memory. It reflects the value of the write-through storage attribute which controls the 
caching policy of the target address. The data is in write-back memory when the signal is 
deasserted (0). The data is in write-through memory when the signal is asserted (1). This 
signal is valid when the DCU is presenting a data-access request to the PLB slave and when 
the data cacheability signal is asserted. The signal remains valid until the cycle following 
acknowledgement of the request by the PLB slave (the PLB slave asserts 
PLBC405DCUADDRACK to acknowledge the request).

The system designer can use this signal in systems that require shared memory coherency. 
Stores to write-through memory update both the data cache and system memory. Stores to 
write-back memory update the data cache but not system memory. Write-back memory 
locations are updated in system memory when a cache line is flushed due to a line 
replacement or by executing a dcbf or dcbst instruction. See the PowerPC 405 User Manual 
(Vol. 2 (a) of the Virtex™-II Pro Developer’s Kit) for more information on memory coherency 
and caching policy.

C405PLBDCUU0ATTR (output)
This signal reflects the value of the user-defined (U0) storage attribute for the target 
address. The accessed data is not in a memory location characterized by this attribute 
when the signal is deasserted (0). It is in a memory location characterized by this attribute 
when the signal is asserted (1). This signal is valid when the DCU is presenting a data-
access request to the PLB slave. The signal remains valid until the cycle following 
acknowledgement of the request by the PLB slave (the PLB slave asserts 
PLBC405DCUADDRACK to acknowledge the request).

The system designer can use this signal to assign special behavior to certain memory 
addresses. Its use is optional.

C405PLBDCUGUARDED (output)
This signal indicates whether the accessed data is in guarded storage. It reflects the value 
of the guarded storage attribute for the target address. The data is not in guarded storage 
when the signal is deasserted (0). The data is in guarded storage when the signal is asserted 
(1). This signal is valid when the DCU is presenting a data-access request to the PLB slave. 
The signal remains valid until the cycle following acknowledgement of the request by the 
PLB slave (the PLB slave asserts PLBC405DCUADDRACK to acknowledge the request).

No bytes are accessed speculatively from guarded storage. The PLB slave must return only 
the requested data when guarded storage is read and update only the specified memory 
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locations when guarded storage is written. For single word transfers, only the bytes 
indicated by the byte enables are transferred. For line transfers, all eight words in the line 
are transferred.

C405PLBDCUBE[0:7] (output)
These signals, referred to as byte enables, indicate which bytes on the DCU read-data bus 
or write-data bus are valid during a word transfer. The byte enables are not used by the 
DCU during line transfers and must be ignored by the PLB slave. The byte enables are 
valid when the DCU is presenting a data-access request to the PLB slave. They remain 
valid until the cycle following acknowledgement of the request by the PLB slave (the PLB 
slave asserts PLBC405DCUADDRACK to acknowledge the request).

Attachment of a 32-bit PLB slave to the DCU (a 64-bit PLB master) requires the connections 
shown in Figure 2-16. These connections enable the byte enables to be presented properly 
to the 32-bit slave. Address bit 29 is used to select between the upper byte enables [0:3] and 
the lower byte enables [4:7] when making a request to the 32-bit slave. Words are always 
transferred to the 32-bit PLB slave using write-data bus bits [0:31], so bits [32:63] are not 
connected. The 32-bit read-data bus from the PLB slave is attached to both the high and 
low words of the 64-bit read-data bus into the DCU.

Table 2-13 shows the possible values that can be presented by the byte enables and how 
they are interpreted by the PLB slave. All encodings of the byte enables not shown are 
invalid and are not generated by the DCU. The column headed “32-Bit PLB Slave Data 
Bus” assumes an attachment to a 64-bit PLB master as shown in Figure 2-16.

Figure 2-16: Attachment of DSPLB Between 32-Bit Slave and 64-Bit Master

Table 2-13: Interpretation of DCU Byte Enables During Word Transfers

Byte Enables [0:7]
32-Bit PLB Slave Data Bus 64-Bit PLB Slave Data Bus

Valid Bytes Bits Valid Bytes Bits

1000_0000 Byte 0 0:7 Byte 0 0:7

1100_0000 Bytes 0:1 (Halfword 0) 0:15 Bytes 0:1 (Halfword 0) 0:15

1110_0000 Bytes 0:2 0:23 Bytes 0:2 0:23

1111_0000 Bytes 0:3 (Word 0) 0:31 Bytes 0:3 (Word 0) 0:31

0100_0000 Byte 1 8:15 Byte 1 8:15

0110_0000 Bytes 1:2 8:23 Bytes 1:2 8:23

UG018_20_101501

C405PLBDCUABUS[0:31]

PLBC405DCURDDBUS[0:31]

PLBC405DCURDDBUS[32:63]

C405PLBDCUBE[4:7]

C405PLBDCUBE[0:3]

C405PLBDCUABUS[0:31]

PLBC405DCURDDBUS[0:31]

C405PLBDCUBE[0:3]

C405PLBDCUWRDBUS[32:63]

C405PLBDCUWRDBUS[0:31] C405PLBDCUWRDBUS[0:31]

[29]

64-Bit PLB Master 32-Bit PLB Slave

Unconnected
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C405PLBDCUPRIORITY[0:1] (output)
These signals are used to specify the priority of the data-access request. Table 2-8 shows the 
encoding of the 2-bit PLB-request priority signal. The priority is valid when the DCU is 
presenting a data-access request to the PLB slave. It remains valid until the cycle following 
acknowledgement of the request by the PLB slave (the PLB slave asserts 
PLBC405DCUADDRACK to acknowledge the request).

Bit 1 of the request priority is controlled by the DCU. It is asserted whenever a data-read 
request is presented on the PLB. The DCU can also assert this bit if the processor stalls due 
to an unacknowledged request. Software controls bit 0 of the request priority by writing 
the appropriate value into the DCU PLB-priority bit 1 of the core-configuration register 
(CCR0[DPP1]).

If the least significant bits of the DCU and ICU PLB priority signals are 1 and the most 
significant bits are equal, the PLB arbiter should let the DCU win the arbitration. This 
generally results in better processor performance.

C405PLBDCUABORT (output)
When asserted, this signal indicates the DCU is aborting the current data-access request. It 
is used by the DCU to abort a request that has not been acknowledged, or is in the process 

0111_0000 Bytes 1:3 8:31 Bytes 1:3 8:31

0010_0000 Byte 2 16:23 Byte 2 16:23

0011_0000 Bytes 2:3 (Halfword 1) 16:31 Bytes 2:3 (Halfword 1) 16:31

0001_0000 Byte 3 24:31 Byte 3 24:31

0000_1000 Byte 0 0:7 Byte 4 32:39

0000_1100 Bytes 0:1 (Halfword 0) 0:15 Bytes 4:5 (Halfword 2) 32:47

0000_1110 Bytes 0:2 0:23 Bytes 4:6 32:55

0000_1111 Bytes 0:3 (Word 0) 0:31 Bytes 4:7 (Word 1) 32:63

0000_0100 Byte 1 8:15 Byte 5 40:47

0000_0110 Bytes 1:2 8:23 Bytes 5:6 40:55

0000_0111 Bytes 1:3 8:31 Bytes 5:7 40:63

0000_0010 Byte 2 16:23 Byte 6 48:55

0000_0011 Bytes 2:3 (Halfword 1) 16:31 Bytes 6:7 (Halfword 3) 48:63

0000_0001 Byte 3 24:31 Byte 7 56:63

Table 2-13: Interpretation of DCU Byte Enables During Word Transfers (Continued)

Byte Enables [0:7]
32-Bit PLB Slave Data Bus 64-Bit PLB Slave Data Bus

Valid Bytes Bits Valid Bytes Bits

Table 2-14: PLB-Request Priority Encoding

Bit 0 Bit 1 Definition

0 0 Lowest PLB-request priority.

0 1 Next-to-lowest PLB-request priority.

1 0 Next-to-highest PLB-request priority.

1 1 Highest PLB-request priority.
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of being acknowledged by the PLB slave. The data-access request continues normally if 
this signal is not asserted. This signal is only valid during the time the data-access request 
signal is asserted. It must be ignored by the PLB slave if the data-access request signal is 
not asserted. In the cycle after the abort signal is asserted, the data-access request signal is 
deasserted and remains deasserted for at least one cycle.

If the abort signal is asserted in the same cycle that the data-access request is 
acknowledged by the PLB slave (PLBC405DCUADDRACK is asserted), the PLB slave is 
responsible for ensuring that the transfer does not proceed further. The PLB slave must not 
assert the DCU read-data bus acknowledgement signal for an aborted request. It is 
possible for a PLB slave to return the first write acknowledgement when acknowledging 
an aborted data-write request. In this case, memory must not be updated by the PLB slave 
and no further write acknowledgements can be presented by the PLB slave for the aborted 
request.

The DCU only aborts a data-access request when the processor is reset. Such an abort can 
occur during an address-pipelined data-access request while the PLB slave is responding 
to a previous data-access request. If the PLB is not also reset (as is the case during a core 
reset), the PLB slave is responsible for completing the previous request and aborting the 
new (pipelined) request.

PLBC405DCUWRDBUS[0:63] (output)
This write-data bus contains the data transferred from the DCU to a PLB slave during a 
write transfer. The operation of this bus depends on the transfer size, as follows:

• During a single word write, the write-data bus is valid when the write request is 
presented by the DCU. The data remains valid until the PLB slave accepts the data. 
The PLB slave asserts the write-data acknowledgement signal when it latches data 
transferred on the write-data bus, indicating that it accepts the data. This completes 
the word write.

The DCU replicates the data on the high and low words of the write data bus (bits 
[0:31] and [32:63], respectively) during a single word write. The byte enables indicate 
which bytes on the high word or low word are valid and should be latched by the PLB 
slave.

• During an eight-word line transfer, the write-data bus is valid when the write request 
is presented by the DCU. The data remains valid until the PLB slave accepts the data. 
The PLB slave asserts the write-data acknowledgement signal when it latches data 
transferred on the write-data bus, indicating that it accepts the data. In the cycle after 
the PLB slave accepts the data, the DCU presents the next word or doubleword of 
data (depending on the PLB slave size). Again, the PLB slave asserts the write-data 
acknowledgement signal when it latches data transferred on the write-data bus, 
indicating that it accepts the data. This continues until all eight words are transferred 
to the PLB slave.

Data is transferred from the DCU to the PLB slave in ascending address order. Word 0 
(lowest address of the cache line) is transferred first and word 7 (highest address) is 
transferred last. The byte enables are not used during a line transfer and must be 
ignored by the PLB slave.

The location of data on the write-data bus depends on the size of the PLB slave, as 
follows:

- If the slave has a 64-bit bus, the DCU transfers even words (words 0, 2, 4, and 6) 
on write-data bus bits [0:31] and odd words (words 1, 3, 5, and 7) on write-data 
bus bits [32:63]. Four doubleword writes are required to complete the eight-word 
line transfer. The first transfer writes words 0 and 1, the second transfer writes 
words 2 and 3, and so on.

- If the slave has a 32-bit bus, the DCU transfers all words on write-data bus bits 
[0:31]. Eight doubleword writes are required to complete the eight-word line 
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transfer. The first transfer writes word 0, the second transfer writes word 1, and so 
on.

Table 2-15 summarizes the location of words on the write-data bus during an eight-
word line transfer.

PLBC405DCUADDRACK (input)
When asserted, this signal indicates the PLB slave acknowledges the DCU data-access 
request (indicated by the DCU assertion of C405PLBDCUREQUEST). When deasserted, no 
such acknowledgement exists. A data-access request can be acknowledged by the PLB 
slave in the same cycle the request is asserted by the DCU. The PLB slave must latch the 
following data-access request information in the same cycle it asserts the request 
acknowledgement:

• C405PLBDCURNW, which specifies whether the data-access request is a read or a 
write.

• C405PLBDCUABUS[0:31], which contains the address of the data-access request.
• C405PLBDCUSIZE2, which indicates the transfer size of the data-access request.
• C405PLBDCUCACHEABLE, which indicates whether the data address is cacheable.
• C405PLBDCUWRITETHRU, which specifies the caching policy of the data address.
• C405PLBDCUU0ATTR, which indicates the value of the user-defined storage 

attribute for the instruction-fetch address.
• C405PLBDCUGUARDED, which indicates whether the data address is in guarded 

storage.

During the acknowledgement cycle, the PLB slave must return its bus width indicator (32 
bits or 64 bits) using the PLBC405DCUSSIZE1 signal.

The acknowledgement signal remains asserted for one cycle. In the next cycle, both the 
data-access request and acknowledgement are deasserted. The PLB slave can begin 
receiving data from the DCU in the same cycle the address is acknowledged. Data can be 
sent to the DCU beginning in the cycle after the address acknowledgement. The PLB slave 
must abort a DCU request (move no data) if the DCU asserts C405PLBDCUABORT in the 
same cycle the PLB slave acknowledges the request.

Table 2-15: Contents of DCU Write-Data Bus During Eight-Word Line Transfer

PLB-Slave
Size

Transfer
DCU Write-Data Bus

[0:31]
DCU Write-Data Bus

[32:63]

32-Bit First Word 0 Not Applicable

Second Word 1

Third Word 2

Fourth Word 3

Fifth Word 4

Sixth Word 5

Seventh Word 6

Eighth Word 7

64-Bit First Word 0 Word 1

Second Word 2 Word 3

Third Word 4 Word 5

Fourth Word 6 Word 7
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The DCU supports up to three outstanding requests over the PLB (two read and one write). 
The DCU can make a subsequent request after the current request is acknowledged. The 
DCU deasserts C405PLBDCUREQUEST for at least one cycle after the current request is 
acknowledged and before the subsequent request is asserted.

If the PLB slave supports address pipelining, it must respond to multiple requests in the 
order they are presented by the DCU. All data associated with a prior request must be 
moved before data associated with a subsequent request is accessed. The DCU cannot 
present a third read request until the first read request is completed by the PLB slave, or a 
second write request until the first write request is completed. Such a request (third read or 
second write) can be presented two cycles after the last acknowledge is sent from the PLB 
slave to the DCU, completing the first request (read or write, respectively).

PLBC405DCUSSIZE1 (input)
This signal indicates the bus width (size) of the PLB slave device that acknowledged the 
DCU request. A 32-bit PLB slave responded when the signal is deasserted (0). A 64-bit PLB 
slave responded when the signal is asserted (1). This signal is valid during the cycle the 
acknowledge signal (PLBC405DCUADDRACK) is asserted.

A 32-bit PLB slave must be attached to a 64-bit PLB master as shown in Figure 2-16, 
page 936. In this figure, the 32-bit read-data bus from the PLB slave is attached to both the 
high word and low word of the 64-bit read-data bus at the PLB master. The 32-bit write-
data bus into the PLB slave is attached to the high word of the 64-bit write-data bus at the 
PLB master. The low word of the 64-bit write-data bus is not connected. When a 64-bit PLB 
master recognizes a 32-bit PLB slave (the size signal is deasserted), data transfers operate 
as follows:

• During a single word read, data is received by the 64-bit master over the high word 
(bits 0:31) or the low word (bits 32:63) of the read-data bus as specified by the byte 
enable signals.

• During an eight-word line read, data is received by the 64-bit master over the high 
word (bits 0:31) or the low word (bits 32:63) of the read-data bus as specified by bit 3 
of the transfer order (PLBC405DCURDWDADDR[1:3]). Table 2-10, page 916, shows 
the location of data on the DCU read-data bus as a function of transfer order when an 
eight-word line read from a 32-bit PLB slave occurs.

• During a single word write or an eight-word line write, data is sent by the 64-bit 
master over the high word (bits 0:31) of the write-data bus. Table 2-15, page 939, 
shows the order data is transferred to a 32-bit PLB slave during an eight-word line 
write.

All bits of the read-data bus and write-data bus are directly connected between a 64-bit 
PLB slave and a 64-bit PLB master. When a 64-bit PLB master recognizes a 64-bit PLB slave 
(the size signal is asserted), data transfers operate as follows:

• During a single word read, data is received by the 64-bit master over the high word 
(bits 0:31) or the low word (bits 32:63) of the read-data bus as specified by the byte 
enable signals.

• During an eight-word line read, data is received by the 64-bit master over the entire 
read-data bus. Table 2-10, page 916, shows the location of data on the DCU read-data 
bus as a function of transfer order when an eight-word line read from a 64-bit PLB 
slave occurs.

• During a single word write, the DCU replicates the data on the high and low words of 
the write data bus. The byte enables indicate which bytes on the high word or low 
word are valid and should be latched by the PLB slave.

• During an eight-word line write, data is sent by the 64-bit master over the entire 
write-data bus. Table 2-15, page 939, shows the order data is transferred to a 64-bit 
PLB slave during an eight-word line write. Data is written in order of ascending 
address, so the transfer order signals are not used during a line write.
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PLBC405DCURDDACK (input)
When asserted, this signal indicates the DCU read-data bus contains valid data sent by the 
PLB slave to the DCU (read data is acknowledged). The DCU latches the data from the bus 
at the end of the cycle this signal is asserted. The contents of the DCU read-data bus are not 
valid when this signal is deasserted.

Read-data acknowledgement is asserted for one cycle per transfer. There is no limit to the 
number of cycles between two transfers. The number of transfers (and the number of read-
data acknowledgements) depends on the PLB slave size (specified by 
PLBC405DCUSSIZE1) and the line-transfer size (specified by C405PLBDCUSIZE2). The 
number of transfers are summarized as follows:

• Single word reads require one transfer, regardless of the PLB slave size.
• Eight-word line reads require eight transfers when sent from a 32-bit PLB slave.
• Eight-word line reads require four transfers when sent from a 64-bit PLB slave.

PLBC405DCURDDBUS[0:63] (input)
This read-data bus contains the data transferred from a PLB slave to the DCU. The contents 
of the bus are valid when the read-data acknowledgement signal is asserted. This 
acknowledgment is asserted for one cycle per transfer. There is no limit to the number of 
cycles between two transfers. The bus contents are not valid when the read-data 
acknowledgement signal is deasserted.

The PLB slave returns data as an aligned word or an aligned doubleword. This depends on 
the PLB slave size (bus width), as follows:

• When a 32-bit PLB slave responds, an aligned word is sent from the slave to the DCU 
during each transfer cycle. The 32-bit PLB slave bus should be connected to both the 
high and low 32 bits of the 64-bit read-data bus (see Figure 2-16, page 936). This type 
of connection duplicates the word returned by the slave across the 64-bit bus. The 
DCU reads either the low 32 bits or the high 32 bits of the 64-bit interface, depending 
on the value of PLBC405DCURDWDADDR[1:3].

• When a 64-bit PLB slave responds, an aligned doubleword is sent from the slave to the 
DCU during each transfer cycle. Both words are read from the 64-bit interface by the 
DCU in this cycle.

For a single word transfer, the bytes enables are used to select the valid data bytes from the 
aligned word or doubleword. Table 2-13, page 936 shows how the byte enables are 
interpreted by the processor when reading data during single word transfers from 32-bit 
and 64-bit PLB slaves. Table 2-10 shows the location of data on the DCU read-data bus as a 
function of PLB-slave size and transfer order when an eight-word line read occurs.

PLBC405DCURDWDADDR[1:3] (input)
These signals are used to specify the transfer order. They identify which word or 
doubleword of an eight-word line transfer is present on the DCU read-data bus when the 
PLB slave returns instructions to the DCU. The words returned during a line transfer can 
be sent from the PLB slave to the DCU in any order (target-word-first, sequential, other). 
The transfer-order signals are valid when the read-data acknowledgement signal 
(PLBC405DCURDDACK) is asserted. This acknowledgment is asserted for one cycle per 
transfer. There is no limit to the number of cycles between two transfers. The transfer-order 
signals are not valid when the read-data acknowledgement signal is deasserted.

These signals are ignored by the processor during single word transfers.

Table 2-10 shows the location of data on the DCU read-data bus as a function of PLB-slave 
size and transfer order when an eight-word line read occurs. In this table, the “Transfer 
Order” column contains the possible values of PLBC405DCURDWDADDR[1:3]. For 64-bit 
PLB slaves, PLBC405DCURDWDADDR[3] should always be 0 during a transfer. In this 
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case, the transfer order is invalid if this signal asserted. For 32-bit slaves, the connection to 
a 64-bit master shown in Figure 2-16, page 936 is assumed. 

PLBC405DCUWRDACK (input)
When asserted, this signal indicates the PLB slave latched the data on the write-data bus 
sent from the DCU (write data is acknowledged). The DCU holds this data valid until the 
end of the cycle this signal is asserted. In the following cycle, the DCU presents new data 
and holds it valid until acknowledged by the PLB slave. This continues until all write data 
is transferred from the DCU to the PLB slave. If this signal is deasserted, valid data on the 
write data bus has not been latched by the PLB slave.

Write-data acknowledgement is asserted for one cycle per transfer. There is no limit to the 
number of cycles between two transfers. The number of transfers (and the number of 
write-data acknowledgements) depends on the PLB slave size (specified by 
PLBC405DCUSSIZE1 and the line-transfer size (specified by C405PLBDCUSIZE2). The 
number of transfers are summarized as follows:

• Single word writes require one transfer, regardless of the PLB slave size.
• Eight-word line writes require eight transfers when sent to a 32-bit PLB slave.
• Eight-word line writes require four transfers when sent to a 64-bit PLB slave.

PLBC405DCUBUSY (input)
When asserted, this signal indicates the PLB slave acknowledged and is responding to (is 
busy with) a DCU data-access request. When deasserted, the PLB slave is not responding 
to a DCU data-access request.

This signal should be asserted in the cycle after a DCU request is acknowledged by the PLB 
slave and remain asserted until the request is completed by the PLB slave. For read 
requests, it should be deasserted in the cycle after the last read-data acknowledgement. For 

Table 2-16: Contents of DCU Read-Data Bus During Eight-Word Line Transfer

PLB-Slave
Size

Transfer
Order1

DCU Read-Data Bus
[0:31]2

DCU Read-Data Bus
[32:63]2

32-Bit 000 Word 0 Word 0

001 Word 1 Word 1

010 Word 2 Word 2

011 Word 3 Word 3

100 Word 4 Word 4

101 Word 5 Word 5

110 Word 6 Word 6

111 Word 7 Word 7

64-Bit 000 Word 0 Word 1

010 Word 2 Word 3

100 Word 4 Word 5

110 Word 6 Word 7

xx1 Invalid

Notes: 
1. “x” indicates a don’t-care value in PLBC405DCURDWDADDR[1:3].
2. A word shown in italics is ignored by the DCU during the transfer.
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write requests, it should be deasserted in the cycle after the target memory device is 
updated by the PLB slave. If multiple requests are initiated and overlap, the busy signal 
should be asserted in the cycle after the first request is acknowledged and remain asserted 
until the cycle after the last request is completed.

The processor monitors the busy signal when executing a sync instruction. The sync 
instruction requires that all storage operations initiated prior to the sync be completed 
before subsequent instructions are executed. Storage operations are considered complete 
when there are no pending DCU requests and the busy signal is deasserted.

Following reset, the processor block prevents the DCU from accessing data until the busy 
signal is deasserted for the first time. This is useful in situations where the processor block 
is reset by a core reset, but PLB devices are not reset. Waiting for the busy signal to be 
deasserted prevents data accesses following reset from interfering with PLB activity that 
was initiated before reset.

PLBC405DCUERR (input)
When asserted, this signal indicates the PLB slave detected an error when attempting to 
transfer data to or from the DCU. The error signal should be asserted for only one cycle. 
When deasserted, no error is detected.

For read operations, this signal should be asserted with the read-data acknowledgement 
signal that corresponds to the erroneous transfer. For write operations, it is possible for the 
error to not be detected until some time after the data is accepted by the PLB slave. Thus, 
the signal can be asserted independently of the write-data acknowledgement signal that 
corresponds to the erroneous transfer. However, it must be asserted while the busy signal 
is asserted.

The PLB slave must not terminate data transfers when an error is detected. The processor 
block is responsible for responding to any error detected by the PLB slave. A machine-
check exception occurs if the exception is enabled by software (MSR[ME]=1) and data is 
transferred between the processor block and a PLB slave while the error signal is asserted. 

The PLB slave should latch error information in DCRs so that software diagnostic routines 
can attempt to report and recover from the error. A bus-error address register (BEAR) 
should be implemented for storing the address of the access that caused the error. A bus-
error syndrome register (BESR) should be implemented for storing information about 
cause of the error.
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Data-Side PLB Interface Timing Diagrams
The following timing diagrams show typical transfers that can occur on the DSPLB 
interface between the DCU and a bus-interface unit (BIU). These timing diagrams 
represent the optimal timing relationships supported by the processor block. The BIU can 
be implemented using the FPGA processor local bus (PLB) or using customized hardware. 
Not all BIU implementations support these optimal timing relationships.

DSPLB Timing Diagram Assumptions
The following assumptions and simplifications were made in producing the optimal 
timing relationships shown in the timing diagrams:

• Requests are acknowledged by the BIU in the same cycle they are presented by the 
DCU if the BIU is not busy. This represents the earliest cycle a BIU can acknowledge a 
request. If the BIU is busy, the request is acknowledged in a later cycle.

• The first read-data acknowledgement for a data read is asserted in the cycle 
immediately following the read-request acknowledgement. This represents the 
earliest cycle a BIU can begin transferring data to the DCU in response to a read 
request. However, the earliest the FPGA PLB begins transferring data is two cycles 
after the read request is acknowledged.

• Subsequent read-data acknowledgements for eight-word line transfers are asserted in 
the cycle immediately following the prior read-data acknowledgement. This 
represents the fastest rate at which a BIU can transfer data to the DCU (there is no 
limit to the number of cycles between two transfers).

• The first write-data acknowledgement for a data write is asserted in the same cycle as 
the write-request acknowledgement. This represents the earliest cycle a BIU can begin 
accepting data from the DCU in response to a write request.

• Subsequent write-data acknowledgements for eight-word line transfers are asserted 
in the cycle immediately following the prior write-data acknowledgement. This 
represents the fastest rate at which the DCU can transfer data to the BIU (there is no 
limit to the number of cycles between two transfers).

• All eight-word line reads assume the target data (word) is returned first. Subsequent 
data in the line is returned sequentially by address, wrapping as necessary to the 
lower addresses in the same line.

• The transfer of read data from the fill buffer to the data cache (fill operation) takes 
three cycles. This transfer takes place after all data is read into the fill buffer from the 
BIU.

• The queuing of data flushed from the data cache (flush operation) takes two cycles. 
The PPC405x3 can queue up to two flush operations.

• The BIU size (bus width) is 64 bits, so PLBC405DCUSSIZE1 is not shown.
• No data-access errors occur, so PLBC405DCUERR is not shown.
• The abort signal, C405PLBDCUABORT is shown only in the last example.
• The storage attribute signals are not shown.
• The DCU activity is shown only as an aide in describing the examples. The occurrence 

and duration of this activity is not observable on the DSPLB.

The following abbreviations appear in the timing diagrams:
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Table 2-17: Key to DSPLB Timing Diagram Abbreviations

Abbreviation1 Description Where Used

rl#, wl# Eight-word line read-request or write-
request identifier, respectively

Request
Request acknowledge 
Read-data acknowledge
Write-data acknowledge

(C405PLBDCUREQUEST)
(PLBC405DCUADDRACK)
(PLBC405DCURDDACK)
(PLBC405DCUWRDACK)

rw#, ww# Single word read-request or write-request 
identifier, respectively

Request
Request acknowledge 
Read-data acknowledge
Write-data acknowledge

(C405PLBDCUREQUEST)
(PLBC405DCUADDRACK)
(PLBC405DCURDDACK)
(PLBC405DCUWRDACK)

adr# Data-access request address Request address (C405PLBDCUABUS[0:31])

d## A doubleword (eight data bytes) transferred 
as a result of an eight-word line transfer 
request

DCU read-data bus
DCU write-data bus

(PLBC405DCURDDBUS[0:63])
(PLBC405DCUWRDBUS[0:63])

d# A word (four data bytes) transferred as a 
result of a single word transfer request

DCU read-data bus
DCU write-data bus

(PLBC405DCURDDBUS[0:63])
(PLBC405DCUWRDBUS[0:63])

val Byte enables are valid Byte enables (C405PLBDCUBE[0:7])

flush# The DCU is busy performing a flush 
operation

DCU

fill# The DCU is busy performing a fill operation DCU

Subscripts Used to identify the data words transferred 
between the BIU and DCU

Read-data acknowledge 
DCU read-data bus
Write-data acknowledge 
DCU write-data bus

(PLBC405DCURDDACK)
(PLBC405DCURDDBUS[0:63])
(PLBC405DCUWRDACK)
(PLBC405DCUWRDBUS[0:63])

# Used to identify the order doublewords are 
sent to the DCU

Transfer order (PLBC405DCURDWDADDR[1:3])

Notes: 
1. “#” indicates a number.
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DSPLB Three Consecutive Line Reads
The timing diagram in Figure 2-17 shows three consecutive eight-word line reads that are 
address-pipelined between the DCU and BIU. It provides an example of the fastest speed 
at which the DCU can request and receive data over the PLB. All reads are cacheable.

The first line read (rl1) is requested by the DCU in cycle 2. Data is sent from the BIU to the 
DCU fill buffer in cycles 3 through 6. After all data associated with this line is read, it is 
transferred by the DCU from the fill buffer to the data cache. This is represented by the fill1 
transaction in cycles 7 through 9.

The second line read (rl2) is requested by the DCU in cycle 4. The BIU responds to this 
request after it has completed all transactions associated with the first request (rl1). Data is 
sent from the BIU to the DCU fill buffer in cycles 7 through 10. After all data associated 
with this line is read, it is transferred by the DCU from the fill buffer to the data cache. This 
is represented by the fill2 transaction in cycles 11 through 13.

The third line read (rl3) cannot be requested until the first request (rl1) is complete. The 
earliest this request can occur is in cycle 7. However, the request is delayed to cycle 10 
because the DCU is busy transferring the fill buffer to the data cache in cycles 7 through 9 
(fill1). The BIU responds to the rl3 request after it has completed all transactions associated 
with the second request (rl2). Data is sent from the BIU to the DCU fill buffer in cycles 11 
through 14. After all data associated with this line is read, it is transferred by the DCU from 
the fill buffer to the data cache. This is represented by the fill3 transaction in cycles 15 
through 17.

Figure 2-17: DSPLB Three Consecutive Line Reads

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

PLBCLK and CPMC405CLK

UG018_21_101701

PPC405 Outputs:

C405PLBDCUREQUEST

C405PLBDCURNW

C405PLBDCUABUS[0:31] adr1 adr2 adr3

fill1 fill2 fill3

C405PLBDCUBE[0:7]

C405PLBDCUWRDBUS[0:63]

C405PLBDCUSIZE2

DCU

rl2 rl3rl1

PLB/BIU Outputs:

PLBC405DCUADDRACK

PLBC405DCURDDBUS[0:63]

PLBC405DCURDWDADDR[1:3]

PLBC405DCURDDACK

PLBC405DCUWRDACK

PLBC405DCUBUSY

rl2 rl3rl1

rl101 rl123 rl145 rl167 rl201 rl223 rl245 rl267 rl301 rl323 rl345 rl367

d101 d123 d145 d167 d201 d223 d245 d267 d301 d323 d345 d367

0 2 4 6 0 2 4 6 0 2 4 6
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DSPLB Line Read/Word Read/Line Read
The timing diagram in Figure 2-18 shows a sequence involving an eight-word line read, a 
word read, and another an eight-word line read. These requests are address-pipelined 
between the DCU and BIU. The line reads are cacheable and the word read is not 
cacheable.

The first line read (rl1) is requested by the DCU in cycle 2 and the BIU responds in the same 
cycle. Data is sent from the BIU to the DCU fill buffer in cycles 3 through 6. After all data 
associated with this line is read, it is transferred by the DCU from the fill buffer to the data 
cache. This is represented by the fill1 transaction in cycles 7 through 9.

The word read (rw2) is requested by the DCU in cycle 4. The BIU responds to this request 
after it has completed all transactions associated with the first request (rl1). A single word 
is sent from the BIU to the DCU fill buffer in cycle 7. The DCU uses the byte enables to 
select the appropriate bytes from the read-data bus. The data is not cacheable, so the fill 
buffer is not transferred to the data cache after this transaction is completed.

The third line read (rl3) cannot be requested until the first request (rl1) is complete. The 
earliest this request can occur is in cycle 7. However, the request is delayed to cycle 10 
because the DCU is busy transferring the fill buffer to the data cache in cycles 7 through 9 
(fill1). The BIU can respond immediately to the rl3 request because all transactions 
associated with the second request (rw2) are complete. Data is sent from the BIU to the 
DCU fill buffer in cycles 11 through 14. After all data associated with this line is read, it is 
transferred by the DCU from the fill buffer to the data cache. This is represented by the fill3 
transaction in cycles 15 through 17.

Figure 2-18: DSPLB Line Read/Word Read/Line Read

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

PLBCLK and CPMC405CLK

UG018_22_101701

PPC405 Outputs:

C405PLBDCUREQUEST

C405PLBDCURNW

C405PLBDCUABUS[0:31] adr1 adr2

val

adr3

fill1 fill3

C405PLBDCUBE[0:7]

C405PLBDCUWRDBUS[0:63]

C405PLBDCUSIZE2

DCU

rw2 rl3rl1

PLB/BIU Outputs:

PLBC405DCUADDRACK

PLBC405DCURDDBUS[0:63]

PLBC405DCURDWDADDR[1:3]

PLBC405DCURDDACK

PLBC405DCUWRDACK

PLBC405DCUBUSY

rw2 rl3rl1

rl101 rl123 rl145 rl167 rw2 rl301 rl323 rl345 rl367

d101 d123 d145 d167 d2 d301 d323 d345 d367

0 2 4 6 0 2 4 6
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DSPLB Three Consecutive Word Reads
The timing diagram in Figure 2-19 shows three consecutive word reads. The word reads 
could be in response to non-cacheable loads or cacheable loads that do not allocate a cache 
line.

Figure 2-19 provides an example of the fastest speed at which the PPC405x3 DCU can 
request and receive single words over the PLB. The DCU is designed to wait for the current 
single-word read request to be satisfied before making a subsequent request. This 
requirement results in the delay between requests shown in the figure. It is possible for 
other PLB masters to request and receive single words at a faster rate than shown in this 
example.

The first word read (rw1) is requested by the DCU in cycle 2 and the BIU responds in the 
same cycle. A single word is sent from the BIU to the DCU in cycle 3. The DCU uses the 
byte enables to select the appropriate bytes from the read-data bus.

The second word read (rw2) is requested by the DCU in cycle 7 and the BIU responds in the 
same cycle. A single word is sent from the BIU to the DCU in cycle 8. The DCU uses the 
byte enables to select the appropriate bytes from the read-data bus.

The third word read (rw3) is requested by the DCU in cycle 12 and the BIU responds in the 
same cycle. A single word is sent from the BIU to the DCU in cycle 13. The DCU uses the 
byte enables to select the appropriate bytes from the read-data bus.

Figure 2-19: DSPLB Three Consecutive Word Reads

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

PLBCLK and CPMC405CLK

UG018_23_101701

PPC405 Outputs:

C405PLBDCUREQUEST

C405PLBDCURNW

C405PLBDCUABUS[0:31] adr1 adr2 adr3

d1 d2 d3

val valvalC405PLBDCUBE[0:7]

C405PLBDCUWRDBUS[0:63]

C405PLBDCUSIZE2

DCU

rw2 rw3rw1

rw2 rw3rw1

rw2 rw3rw1

PLB/BIU Outputs:

PLBC405DCUADDRACK

PLBC405DCURDDBUS[0:63]

PLBC405DCURDWDADDR[1:3]

PLBC405DCURDDACK

PLBC405DCUWRDACK

PLBC405DCUBUSY
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DSPLB Three Consecutive Line Writes
The timing diagram in Figure 2-20 shows three consecutive eight-word line writes. It 
provides an example of the fastest speed at which the DCU can request and send data over 
the PLB. All writes are cacheable. Consecutive writes cannot be address pipelined between 
the DCU and BIU.

The first line write (wl1) is requested by the DCU in cycle 3 in response to a cache flush 
(represented by the flush1 transaction in cycles 1 through 2). The BIU responds in the same 
cycle the request is made by the DCU. Data is sent from the DCU to the BIU in cycles 3 
through 6.

The second line write (wl2) cannot be started until the first request is complete. This 
request is made by the DCU in cycle 8 in response to the cache flush in cycles 3 through 4 
(flush2). The BIU responds in the same cycle the request is made by the DCU. Data is sent 
from the DCU to the BIU in cycles 8 through 11.

The DCU can queue two outstanding data-cache flush requests. In this example, a third 
flush request cannot be queued until the first is complete. The third flush request (flush3) 
is queued in cycles 8 and 9. 

The third line write (wl3) cannot be started until the second request (wl2) is complete. This 
request is made by the DCU in cycle 13 in response to the flush3 request. The BIU responds 
in the same cycle the request is made by the DCU. Data is sent from the DCU to the BIU in 
cycles 13 through 16.

Figure 2-20: DSPLB Three Consecutive Line Writes
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DSPLB Line Write/Word Write/Line Write
The timing diagram in Figure 2-21 shows a sequence involving an eight-word line write, a 
word write, and another an eight-word line write. Consecutive writes cannot be address 
pipelined between the DCU and BIU. The line writes are cacheable. The word writes could 
be in response to non-cacheable stores, cacheable stores to write-through memory, or 
cacheable stores that do not allocate a cache line.

The first line write (wl1) is requested by the DCU in cycle 3 in response to a cache flush 
(represented by the flush1 transaction in cycles 1 through 2). The BIU responds in the same 
cycle the request is made by the DCU. Data is sent from the DCU to the BIU in cycles 3 
through 6.

The word write (ww2) cannot be started until the first request is complete. This request is 
made by the DCU in cycle 8 and the BIU responds in the same cycle. A single word is sent 
from the DCU to the BIU in cycle 8. The BIU uses the byte enables to select the appropriate 
bytes from the write-data bus.

The DCU queues the second flush request, flush3. The second line write (wl3) cannot be 
started until the second request (ww2) is complete. This request is made by the DCU in 
cycle 10 in response to the flush3 request. The BIU responds in the same cycle the request 
is made by the DCU. Data is sent from the DCU to the BIU in cycles 10 through 13.

Figure 2-21: DSPLB Line Write/Word Write/Line Write

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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DSPLB Three Consecutive Word Writes
The timing diagram in Figure 2-22 shows three consecutive word writes. It provides an 
example of the fastest speed at which the DCU can request and send single words over the 
PLB. The word writes could be in response to non-cacheable stores, cacheable stores to 
write-through memory, or cacheable stores that do not allocate a cache line. Consecutive 
writes cannot be address pipelined between the DCU and BIU.

The first word write (ww1) is requested by the DCU in cycle 2. The BIU responds in the 
same cycle the request is made by the DCU. A single word is sent from the DCU to the BIU 
in cycle 2. The BIU uses the byte enables to select the appropriate bytes from the write-data 
bus.

The second word write (ww2) is requested after the first write is complete. The DCU 
makes the request in cycle 4 and the BIU responds in the same cycle. A single word is sent 
from the DCU to the BIU in cycle 4. The BIU uses the byte enables to select the appropriate 
bytes from the write-data bus.

The third word write (ww3) is requested after the second write is complete. The DCU 
makes the request in cycle 6 and the BIU responds in the same cycle. A single word is sent 
from the DCU to the BIU in cycle 6. The BIU uses the byte enables to select the appropriate 
bytes from the write-data bus.

Figure 2-22: DSPLB Three Consecutive Word Writes

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

PLBCLK and CPMC405CLK

UG018_26_101701
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DSPLB Line Write/Line Read/Word Write
The timing diagram in Figure 2-23 shows a sequence involving an eight-word line write, 
an eight-word line read, and a word write. It provides an example of address pipelining 
involving writes and reads. It also demonstrates how read and write operations can 
overlap due to the split read-data and write-data busses.

The first line write (wl1) is requested by the DCU in cycle 3 in response to a cache flush 
(represented by the flush1 transaction in cycles 1 through 2). The BIU responds in the same 
cycle the request is made by the DCU. Data is sent from the DCU to the BIU in cycles 3 
through 6.

The first line read (rl2) is address pipelined with the previous line write. The rl2 request is 
made by the DCU in cycle 5 and the BIU responds in the same cycle. Data is sent from the 
BIU to the DCU fill buffer in cycles 6 through 9. Because of the split data bus, a read 
operation overlaps with a previous write operation in cycle 6. After all data associated 
with this line is read, it is transferred by the DCU from the fill buffer to the data cache. This 
is represented by the fill2 transaction in cycles 10 through 12.

The word write (ww3) cannot be requested until the first write request (wl1) is complete 
because address pipelining of multiple write requests is not supported. However, this 
request is address pipelined with the previous line read request (rl2). The ww3 request is 
made by the DCU in cycle 8 and the BIU responds in the same cycle. A single word is sent 
from the DCU to the BIU in cycle 8. The BIU uses the byte enables to select the appropriate 
bytes from the write-data bus. Because of the split data bus, this write operation overlaps 
with a read operation from the previous read request (rl2).

Figure 2-23: DSPLB Line Write/Line Read/Word Write

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

PLBCLK and CPMC405CLK
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PLB/BIU Outputs:

PLBC405DCUADDRACK

PLBC405DCURDDBUS[0:63]
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DSPLB Word Write/Word Read/Word Write/Line Read
The timing diagram in Figure 2-24 shows a sequence involving a word write, a word read, 
another word write, and an eight-word line read.

The first word write (ww1) is requested by the DCU in cycle 2 and the BIU responds in the 
same cycle. A single word is sent from the DCU to the BIU in cycle 2. The BIU uses the byte 
enables to select the appropriate bytes from the write-data bus.

The first word read (rw2) is requested by the DCU in cycle 4. Even though the previous 
request is completed in cycle 2, this is the earliest an address pipelined request can be 
started by the DCU. The BIU responds in the same cycle the rw2 request is made by the 
DCU. A single word is sent from the BIU to the DCU in cycle 5. The DCU uses the byte 
enables to select the appropriate bytes from the write-data bus.

The second word write (ww3) is requested by the DCU in cycle 6. Again, this is the earliest 
an address pipelined request can be started by the DCU. The BIU responds in the same 
cycle the ww3 request is made by the DCU. A single word is sent from the DCU to the BIU 
in cycle 6. The BIU uses the byte enables to select the appropriate bytes from the write-data 
bus.

The line read (rl4) is address pipelined with the word write. The rl4 request is made by the 
DCU in cycle 8 and the BIU responds in the same cycle. Data is sent from the BIU to the 
DCU fill buffer in cycles 9 through 12. After all data associated with this line is read, it is 
transferred by the DCU from the fill buffer to the data cache. This is represented by the fill4 
transaction in cycles 13 through 15.

Figure 2-24: DSPLB Word Write/Word Read/Word Write/Line Read

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

PLBCLK and CPMC405CLK

UG018_28_101701
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DSPLB Word Write/Line Read/Line Write
The timing diagram in Figure 2-25 shows a sequence involving a word write, an eight-
word line read, and an eight-word line write. It demonstrates how read and write 
operations can overlap due to the split read-data and write-data busses.

The word write (ww1) is requested by the DCU in cycle 2 and the BIU responds in the same 
cycle. A single word is sent from the DCU to the BIU in cycle 2. The BIU uses the byte 
enables to select the appropriate bytes from the write-data bus.

The line read (rl2) is address pipelined with the previous word write. The rl2 request is 
made by the DCU in cycle 4 and the BIU responds in the same cycle. Data is sent from the 
BIU to the DCU fill buffer in cycles 5 through 8. After all data associated with this line is 
read, it is transferred by the DCU from the fill buffer to the data cache. This is represented 
by the fill2 transaction in cycles 9 through 11.

The line write (wl3) is address pipelined with the previous line read. The wl3 request is 
made by the DCU in cycle 6 in response to the cache flush in cycles 4 through 5 (flush3). 
The BIU responds to the wl3 request in the same cycle it is asserted by the DCU. Data is 
sent from the DCU to the BIU in cycles 6 through 9. Because of the split data bus, the write 
operations in cycles 6 through 8 overlap read operations from the previous read request 
(rl2).

Figure 2-25: DSPLB Word Write/Line Read/Line Write

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

PLBCLK and CPMC405CLK
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DSPLB 2:1 Core-to-PLB Line Read
The timing diagram in Figure 2-26 shows a line read in a system with a PLB clock that runs 
at one half the frequency of the PPC405x3 clock.

The line read (rl1) is requested by the DCU in PLB cycle 2, which corresponds to PPC405x3 
cycle 3. The BIU responds in the same cycle. Data is sent from the BIU to the DCU fill buffer 
in PLB cycles 3 through 6 (PPC405x3 cycles 5 through 12). After all data associated with 
this line is read, it is transferred by the DCU from the fill buffer to the data cache. This is 
represented by the fill1 transaction in PPC405x3 cycles 13 through 15.

Figure 2-26: DSPLB 2:1 Core-to-PLB Line Read

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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rl1

rl101 rl123 rl145 rl167

d101 d123 d145 d167

0 2 4 6

PLBCLK

http://www.xilinx.com


956 www.xilinx.com March 2002 Release
1-800-255-7778 Virtex-II Pro™ Platform FPGA Documentation

Chapter 2: Input/Output Interfaces
R

DSPLB 3:1 Core-to-PLB Line Write
The timing diagram in Figure 2-27 shows a line write in a system with a PLB clock that 
runs at one third the frequency of the PPC405x3 clock.

The line write (wl1) is requested by the DCU in PLB cycle 2, which corresponds to 
PPC405x3 cycle 4. The BIU responds in the same cycle. The request is made in response to 
a flush in PPC405x3 cycles 1 and 2 (flush1). Data is sent from the DCU to the BIU in PLB 
cycles 2 through 5 (PPC405x3 cycles 4 through 15).

Figure 2-27: DSPLB 3:1 Core-to-PLB Line Write

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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DSPLB Aborted Data-Access Request
The timing diagram in Figure 2-28 shows an aborted data-access request. The request is 
aborted because of a core reset. The BIU is not reset.

A line write (wl1) is requested by the DCU in cycle 3 in response to a cache flush 
(represented by the flush1 transaction in cycles 1 through 2). The BIU responds in the same 
cycle the request is made by the DCU. Data is sent from the DCU to the BIU in cycles 3 
through 6.

A line read (rl2) is address pipelined with the previous line write. The rl2 request is made 
by the DCU in cycle 5 and the BIU responds in the same cycle. However, the processor also 
aborts the request in cycle 5. Therefore, no data is transferred from the BIU to the DCU in 
response to this request.

Because the BIU is not reset, it must complete the first line write even though the processor 
asserts the PLB abort signal during the line write.

Figure 2-28: DSPLB Aborted Data-Access Request

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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Device-Control Register Interface
The device-control register (DCR) interface provides a mechanism for the processor block 
to initialize and control peripheral devices that reside on the same FPGA chip. For 
example, the memory-transfer characteristics and address assignments for a bus-interface 
unit (BIU) can be configured by software using DCRs. The DCRs are accessed using the 
PowerPC mfdcr and mtdcr instructions.

The DCR interface consists of the following:

• A 10-bit address bus.
• Separate 32-bit input data and output data busses. 
• Separate read and write control signals.
• A read/write acknowledgement signal. 

Because the processor block is the only bus master on the bus, the address bus is driven by 
the processor block and received by each peripheral containing DCRs. The read and write 
control signals are also distributed to each DCR peripheral.

The preferred implementation of the DCR data bus is as a distributed, multiplexed chain. 
Each peripheral in the chain has a DCR input-data bus connected to the DCR output-data 
bus of the previous peripheral in the chain (the first peripheral is attached to the processor 
block). Each peripheral multiplexes this bus with the outputs of its DCRs and passes the 
resulting DCR bus as an output to the next peripheral in the chain. The last peripheral in 
the chain has its DCR output-data bus attached to the processor block DCR input-data 
interface. This implementation enables future DCR expansion without requiring changes 
to I/O devices due to additional loading.

There are two options for connecting the acknowledge signals. The acknowledge signals 
from the DCRs can be latched and forwarded in the chain with the DCR data bus. 
Alternatively, combinatorial logic, such as OR gates, can be used to combine and forward 
the acknowledge signal to the processor block.
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Figure 2-29, page 959 shows an example DCR chain implementation in an FPGA chip. The 
acknowledge signal in this example is formed using combinatorial logic (OR gate).  

The acknowledge signal is interlocked with the read and write control signals. The 
interlock mechanism enables the DCR interface to communicate with peripheral devices 
that are clocked at different frequencies than the PPC405x3. A DCR access takes at least 
three PPC405x3 cycles. If a DCR access is not acknowledged in 64 processor cycles, the 
access times out. No error occurs when a DCR access times-out. Instead, the processor 
begins executing the next-sequential instruction.

The interlock mechanism requires that the rising edge of the slower clock (either the 
PPC405x3 clock or the peripheral clock) correspond to the rising edge of the faster clock. 
This means that the clocks for the DCR logic and the clocks for the PPC405x3 must be 
derived from a common source. The common source frequency is multiplied or divided 
before being sent to the PPC405x3 or DCR logic.

The DCR interface operates in two ways, referred to as mode 0 and mode 1 (these are hard 
wired modes, not programmable modes):

• In mode 0, the PPC405x3 and FPGA can be clocked at different frequencies without 
affecting the interface handshaking protocol. In this mode, an acknowledgement 
follows a read or write operation. The acknowledgement cannot be deasserted until 

Figure 2-29: DCR Chain Block Diagram
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the read or write signal is deasserted.
• In mode 1, the core and FPGA must run at the same frequency. In this mode, an 

acknowledgement follows a read or write operation. However, the acknowledgement 
can be deasserted one cycle after it is asserted. This enables the fastest back-to-back 
DCR access (three cycles).

Figure 2-30 illustrates a logical implementation of the DCR bus interface. This 
implementation enables a DCR slave to run at a different clock speed than the PPC405x3. 
The acknowledge signal is latched and forwarded with the DCR bus. The bypass 
multiplexor minimizes data-bus path delays when the DCR is not selected. To ensure 
reusability across multiple FPGA environments, all DCR slave logic should use the 
specified implementation. 

DCR Interface I/O Signal Summary
Figure 2-31 shows the block symbol for the DCR interface. The signals are summarized in 
Table 2-18.

Figure 2-30: DCR Bus Implementation
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DCR Interface I/O Signal Descriptions
The following sections describe the operation of the DCR interface I/O signals.

C405DCRREAD (output)
When asserted, this signal indicates the processor block is requesting the contents of a DCR 
(reading from the DCR) in response to the execution of a move-from DCR instruction 
(mfdcr). The contents of the DCR address bus are valid when this request is asserted (the 
request is asserted one processor cycle after the processor block begins driving the DCR 
address bus). This signal is deasserted two processor cycles after the DCR acknowledge 
signal is asserted. When deasserted, no DCR read request exists. DCRs must not drive the 
DCR bus if this signal is not asserted.

The processor block waits up to 64 cycles for a read request to be acknowledged. If a DCR 
does not acknowledge the request in this time, the read times out. No error occurs when a 
DCR read times-out. Instead, the processor begins executing the next-sequential 
instruction.

DCR read requests are not interrupted by the processor block. If this signal is asserted, only 
a DCR acknowledgement or read time-out cause the signal to be deasserted.

This signal is deasserted during reset.

C405DCRWRITE (output)
When asserted, this signal indicates the processor block is requesting that the contents of a 
DCR be updated (writing to the DCR) in response to the execution of a move-to DCR 
instruction (mtdcr). The contents of the DCR address bus are valid when this request is 
asserted (the request is asserted one processor cycle after the processor block begins 
driving the DCR address bus). This signal is deasserted two processor cycles after the DCR 
acknowledge signal is asserted. When deasserted, no DCR write request exists.

Figure 2-31: DCR Interface Block Symbol

UG018_06_020702

PPC405
DCRC405ACK

DCRC405DBUSIN[0:31]

C405DCRREAD

C405DCRWRITE

C405DCRABUS[0:9]

C405DCRDBUSOUT[0:31]

Table 2-18: DCR Interface I/O Signals

Signal
I/O

Type
If Unused Function

C405DCRREAD O No Connect Indicates a DCR read request occurred.

C405DCRWRITE O No Connect Indicates a DCR write request occurred.

C405DCRABUS[0:9] O No Connect Specifies the address of the DCR access request. 

C405DCRDBUSOUT[0:31] O No Connect
or attach to
input bus

The 32-bit DCR write-data bus.

DCRC405ACK I 0 Indicates a DCR access has been completed by a peripheral. 

DCRC405DBUSIN[0:31] I 0x0000_0000
or attach to
output bus

The 32-bit DCR read-data bus.
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The processor block waits up to 64 cycles for a write request to be acknowledged. If a DCR 
does not acknowledge the request in this time, the write times out. No error occurs when a 
DCR write times-out. Instead, the processor begins executing the next-sequential 
instruction.

DCR write requests are not interrupted by the processor block. If this signal is asserted, 
only a DCR acknowledgement or write time-out cause the signal to be deasserted.

This signal is deasserted during reset.

C405DCRABUS[0:9] (output)
This bus specifies the address of the DCR access request. This bus remains stable during 
the execution of a mfdcr or mtdcr instruction. However, the contents of this bus are valid 
only when either a DCR read request or DCR write request are asserted by the processor. 
The processor does not begin driving a new DCR address until the DCR acknowledge 
signal corresponding to the previous DCR access has been deasserted for at least one cycle.

The address driven by this bus corresponds to the DCR number (DCRN) and not the split 
DCR field (DCRF) encoded in the mfdcr or mtdcr instruction. For example, if the DCRN is 
0x2AA, the DCR address bus is driven with the value 0x2AA. However, the DCRF 
encoded by the DCR instruction is 0x155. See the PowerPC 405 User Manual (Vol. 2 (a) of the 
Virtex™-II Pro Developer’s Kit) for more information on these instructions.

C405DCRDBUSOUT[0:31] (output)
This write-data bus is driven by the processor block when a mtdcr or mfdcr instruction is 
executed. Its contents are valid only when a DCR write-request or DCR read-request is 
asserted. When a mtdcr instruction is executed, this bus contains the data to be written into 
a DCR. When a mfdcr instruction is executed, this bus contains the value 0x0000_0000. 

During reset, this bus is driven with the value 0x0000_0000. Peripherals can use this value 
to initialize the DCRs.

DCRC405ACK (input)
When asserted, this signal indicates a peripheral device acknowledges the processor block 
request for DCR access. For a read-access request, the peripheral device should assert this 
signal when the DCR read-data bus is driven with the appropriate DCR contents (the bus 
contains valid data). For a write-access request, the peripheral device should assert this 
signal when the DCR write-data bus is latched into the appropriate DCR. Peripheral 
devices should assert this signal only when all of the following are true:

• They contain the accessed DCR.
• A valid read-access or write-access DCR request exists.
• The peripheral device has driven the DCR bus (read access) or latched the DCR bus 

(write access).

Deasserting the acknowledge signal after it has been asserted depends on the DCR 
interface mode (these are hard wired modes, not programmable modes):

• In mode 0, the acknowledgement cannot be deasserted until the read or write signal is 
deasserted. This enables the PPC405x3 and FPGA to be clocked at different 
frequencies without affecting the interface handshaking protocol.

• In mode 1, the acknowledge signal should be deasserted in the cycle after it is asserted 
(the peripheral device and the PPC405x3 are clocked at the same frequency). It is not 
necessary to wait for the read-access or write-access signal to be deasserted. This 
enables the fastest back-to-back DCR access (three cycles).

DCRC405DBUSIN[0:31] (input)
This read-data bus is latched (read) by the processor block when a peripheral device 
asserts the DCR acknowledge signal in response to a DCR read-access request. A 
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peripheral device must drive this bus only when it contains the accessed DCR and the DCR 
read-access signal is asserted by the processor block. 

Peripheral devices should drive only the bits implemented by the specified DCR. A value 
of 0x0000_0000 is driven onto the DCR write-data bus by the processor block during a 
read-access request. This value is passed along the DCR chain until modified by the 
appropriate peripheral. The end of the DCR chain is attached to the DCR read-data bus 
input to the processor block. Thus, the processor reads the updated value of all 
implemented bits, and unimplemented (and unattached) bits retain a value of 0.

DCR Interface Timing Diagrams
The following timing diagrams show typical transfers that can occur on the DCR interface 
using the two interface modes. Unless otherwise noted, optimal timing relationships are 
used to improve the readability of the timing diagrams. The assertion of 
C405DCRREAD/C405DCRWRITE refers to a read or write operation, not both. The 
processor block cannot perform a simultaneous read and write of the DCR bus.

DCR Interface Mode 0, 1:1 Clocking, Latched Acknowledge
The example in Figure 2-32 assumes the following:

• The PPC405x3 and the peripheral containing the DCR are clocked at the same 
frequency.

• The acknowledge signal is latched and forwarded with the DCR bus as shown in 
Figure 2-30, page 960.

• After the acknowledge signal is asserted, it is not deasserted until the appropriate 
read-access or write-access request signal is deasserted (mode 0 interface operation).

Using these assumptions, the fastest back-to-back DCR access occurs every seven cycles. 
The implementation of the acknowledge signal causes it to be asserted two cycles after the 
access request. It is deasserted in the cycle after the access request is deasserted. 

Figure 2-32: DCR Interface Mode 0, 1:1 Clocking, Latched Acknowledge

Cycle

CPMC405CLK

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

DCR (FPGA) Clock

UG018_41_100101

C405DCRWRITE/C405DCRREAD

C405DCRABUS[0:9]

PPC405 Outputs:

C405DCRDBUSOUT[0:31]

DCRC405DBUSIN[0:31]

DCRC405ACK

DCR Outputs:

data0 data1

addr0 addr1

data0 data1
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DCR Interface Mode 0, 1:1 Clocking, Combinatorial Acknowledge
The example in Figure 2-33 assumes the following:

• The PPC405x3 and the peripheral containing the DCR are clocked at the same 
frequency.

• The acknowledge signal is generated by combinatorial logic using the acknowledge 
signal from each peripheral, as shown in Figure 2-29, page 959.

• After the acknowledge signal is asserted, it is not deasserted until the appropriate 
read-access or write-access request signal is deasserted (mode 0 interface operation).

Using these assumptions, the fastest back-to-back DCR access occurs every four cycles. 
The implementation of the acknowledge signal causes it to be asserted in the same cycle as 
the access request. It is assumed that the selected DCR can latch/drive the DCR bus in the 
same cycle. The combinatorial logic enables the acknowledge signal to be deasserted in the 
same cycle that the access request is deasserted.

Figure 2-33: DCR Interface Mode 0, 1:1 Clocking, Combinatorial Acknowledge

Cycle

CPMC405CLK

DCR (FPGA) Clock

UG018_42_100101

C405DCRWRITE/C405DCRREAD

C405DCRABUS[0:9]

PPC405 Outputs:

C405DCRDBUSOUT[0:31]

DCRC405DBUSIN[0:31]

DCRC405ACK

DCR Outputs:

data0 data1 data2

addr0 addr1 addr2

data0 data1 data2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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DCR Interface Mode 0, 2:1 Clocking, Latched Acknowledge
The example in Figure 2-34 assumes the following:

• The PPC405x3 is clocked at twice the frequency of the peripheral containing the DCR.
• The acknowledge signal is latched and forwarded with the DCR bus as shown in 

Figure 2-30, page 960.
• After the acknowledge signal is asserted, it is not deasserted until the appropriate 

read-access or write-access request signal is deasserted (mode 0 interface operation).

Using these assumptions, the fastest back-to-back DCR access occurs every ten PPC405x3 
cycles. The implementation of the acknowledge signal causes it to be asserted two DCR 
cycles (four PPC405x3 cycles) after the access request. It is deasserted in the DCR cycle 
after the access request is deasserted. 

Figure 2-34: DCR Interface Mode 0, 2:1 Clocking, Latched Acknowledge

Cycle

CPMC405CLK

DCR (FPGA) Clock

UG018_43_100101

C405DCRWRITE/C405DCRREAD

C405DCRABUS[0:9]

PPC405 Outputs:

C405DCRDBUSOUT[0:31]

DCRC405DBUSIN[0:31]

DCRC405ACK

DCR Outputs:

data0 data1

addr0 addr1

data0 data1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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DCR Interface Mode 0, 1:2 Clocking, Latched Acknowledge
The example in Figure 2-35 assumes the following:

• The PPC405x3 is clocked at half the frequency of the peripheral containing the DCR.
• The acknowledge signal is latched and forwarded with the DCR bus as shown in 

Figure 2-30, page 960.
• After the acknowledge signal is asserted, it is not deasserted until the appropriate 

read-access or write-access request signal is deasserted (mode 0 interface operation).

Using these assumptions, the fastest back-to-back DCR access occurs every six PPC405x3 
(twelve DCR) cycles. The implementation of the acknowledge signal causes it to be 
asserted two DCR cycles (one PPC405x3 cycles) after the access request. It is deasserted in 
the DCR cycle after the access request is deasserted. 

The processor block does not present a new DCR address until at least one cycle after the 
acknowledge is deasserted. In this example, the PPC405x3 and DCR clocks are not 
interlocked (the rising edges do not coincide) when the acknowledge is deasserted. The 
clocks interlock one-half a PPC405x3 cycle later, but the processor block must wait an 
entire additional cycle before it can present a new DCR address.

Figure 2-35: DCR Interface Mode 0, 1:2 Clocking, Latched Acknowledge

Cycle

CPMC405CLK

DCR (FPGA) Clock

UG018_44_100101

C405DCRWRITE/C405DCRREAD

C405DCRABUS[0:9]

PPC405 Outputs:

C405DCRDBUSOUT[0:31]

DCRC405DBUSIN[0:31]

DCRC405ACK

DCR Outputs:

data0 data1

addr0 addr1

data0 data1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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DCR Interface Mode 1, 1:1 Clocking, Combinatorial Acknowledge
The example in Figure 2-36 assumes the following:

• The PPC405x3 and the peripheral containing the DCR are clocked at the same 
frequency.

• The acknowledge signal is generated by combinatorial logic using the acknowledge 
signal from each peripheral, as shown in Figure 2-29, page 959.

• The acknowledge signal is deasserted in the cycle after it is asserted (mode 1 interface 
operation).

Using these assumptions, the fastest back-to-back DCR access occurs every three cycles. 
This represents the fastest speed at which the processor can present successive DCR 
requests on the DCR interface.

Figure 2-36: DCR Interface Mode 1, 1:1 Clocking, Combinatorial Acknowledge

Cycle

CPMC405CLK

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

DCR (FPGA) Clock

UG018_45_100101

C405DCRWRITE/C405DCRREAD

C405DCRABUS[0:9]

PPC405 Outputs:

C405DCRDBUSOUT[0:31]

DCRC405DBUSIN[0:31]

DCRC405ACK

DCR Outputs:

d 0 d 1 d 2

addr0 addr1 addr2

data0 data1 data2
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External Interrupt Controller Interface
The PowerPC embedded-environment architecture defines two classes of interrupts: 
critical and noncritical. The interrupt handler for an external critical interrupt is located at 
exception-vector offset 0x0100. The interrupt handler for an external noncritical interrupt 
is located at exception-vector offset 0x0200. Generally, the processor prioritizes critical 
interrupts ahead of noncritical interrupts when they occur simultaneously (certain debug 
exceptions are handled at a lower priority). Critical interrupts use a different save/restore 
register pair (SRR2 and SRR3) than is used by noncritical interrupts (SRR0 and SRR1). This 
enables a critical interrupt to interrupt a noncritical-interrupt handler. The state saved by 
the noncritical interrupt is not overwritten by the critical interrupt. See the PowerPC 405 
User Manual (Vol. 2 (a) of the Virtex™-II Pro Developer’s Kit) for more information on 
exception and interrupt processing.

Logic external to the processor block can be used to cause critical and noncritical 
interrupts. External interrupt sources are collected by the external interrupt controller 
(EIC) and presented to the processor block as either a critical or noncritical interrupt. Once 
an external interrupt request is asserted, the EIC must keep the signal asserted until 
software deasserts it. This is typically done by writing to a DCR in the EIC peripheral logic.

Software can enable and disable external interrupts using the following bits in the 
machine-state register MSR:

• Noncritical interrupts are controlled by MSR[EE]. When set to 1, noncritical interrupts 
are enabled. When cleared to 0, they are disabled.

• Critical interrupts are controlled by MSR[CE]. When set to 1, critical interrupts are 
enabled. When cleared to 0, they are disabled.

The states of the EE and CE bits are reflected by output signals on the processor block CPM 
interface. See Clock and Power Management Interface, page 897, for more information.

An external interrupt is considered pending if it occurs while the corresponding class is 
disabled. The EIC continues to assert the interrupt request. When software later enables 
the interrupt class, the interrupt occurs and the interrupt handler deasserts the request by 
writing to a DCR in the EIC.

EIC Interface I/O Signal Summary
Figure 2-37 shows the block symbol for the EIC interface. The signals are summarized in 
Table 2-19.

 

EIC Interface I/O Signal Descriptions
The following sections describe the operation of the EIC interface I/O signals.

Figure 2-37: EIC Interface Block Symbol

UG018_07_102001

PPC405
EICC405CRITINPUTIRQ

EICC405EXTINPUTIRQ

Table 2-19: EIC Interface I/O Signals

Signal
I/O

Type
If Unused Function

EICC405CRITINPUTIRQ I 0 Indicates an external critical interrupt occurred.

EICC405EXTINPUTIRQ I 0 Indicates an external noncritical interrupt occurred.
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EICC405CRITINPUTIRQ (input)
When asserted, this signal indicates the EIC is requesting that the processor block respond 
to an external critical interrupt. When deasserted, no request exists. The EIC is responsible 
for collecting critical interrupt requests from other peripherals and presenting them as a 
single request to the processor block. Once asserted, this signal remains asserted by the EIC 
until software deasserts the request (this is typically done by writing to a DCR in the EIC).

EICC405EXTINPUTIRQ (input)
When asserted, this signal indicates the EIC is requesting that the processor block respond 
to an external noncritical interrupt. When deasserted, no request exists. The EIC is 
responsible for collecting noncritical interrupt requests from other peripherals and 
presenting them as a single request to the processor block. Once asserted, this signal 
remains asserted by the EIC until software deasserts the request (this is typically done by 
writing to a DCR in the EIC).
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JTAG Interface
The JTAG (Joint Test Action Group) interface provides access to the processor block JTAG 
controller. This controller supports the JTAG test access port, boundary-scan capabilities, 
and user-specific instructions. The controller also provides the ability for an external debug 
tool (RISCWatch, for example) to control the processor for debugging purposes.

The JTAG controller contains the following logical structures:

• The JTAG test-access port (TAP) is used to load and unload JTAG instructions and data. 
The standard TAP has four signals that control the circuit blocks and their operation. 
The four TAP signals are:
- TCK—This is the JTAG test clock. It controls the sequencing of the TAP controller 

and when data is moved into and out of the JTAG registers. Only one JTAG 
register (instruction or data) is loaded from TDI and output to TDO for any JTAG 
operation.

- TMS—This is the JTAG test-mode select signal. It is determines the next state of the 
TAP controller. TMS causes a state transition in the TAP controller on the rising 
edge of TCK.

- TDI—This is the JTAG test-data in signal. It is a serial data input to all JTAG 
instruction and data registers. The current state of the TAP controller and the 
contents of the JTAG instruction register (IR) determine which JTAG register is 
loaded from the TDI. TDI is loaded into a JTAG register on the rising edge of TCK.

- TDO—This is the JTAG test-data out signal. It is a serial data output from all JTAG 
instruction and data registers. The current state of the TAP controller and the 
contents of the JTAG instruction register determine which JTAG register has its 
contents unloaded onto the TDO. The state of TDO changes on the falling edge of 
TCK.

• The TAP controller is a 16-state finite-state machine (FSM) that controls the loading of 
data from the TDI input signal into the various JTAG registers. It responds to control 
sequences supplied through the TAP. It also generates the clocks and control signals 
required by the other circuit blocks. There are two basic paths through the TAP state 
machine: one for shifting information to the instruction register and one for shifting 
data into the data register. The state of the TMS input signal at the rising edge of TCK 
determines the sequence of transitions through these paths in the state machine.

• The instruction register (IR) is loaded with JTAG instructions that perform certain 
operations. It is a shift register that is serially loaded from the TDI input. It is serially 
written out through the TDO output.

• The data registers (DR) are a collection of shift registers that are used in JTAG 
operations. Stimuli required by a JTAG operation are serially loaded from the TDI 
input. After an operation is performed, the results are serially written out through the 
TDO output.

With the exception of the JTAG test reset (TRST) signal, the processor block JTAG interface 
adheres to IEEE Standard 1149.1. This standard defines TRST as an optional signal. On the 
processor block, however, this input signal (JTGC405TRSTNEG) must be connected so that 
the JTAG and debug logic are reset during a power-on reset.

FPGA implementations that include a second TAP controller for IEEE compatibility should 
connect the instruction registers in series, with the processor block IR closest to the 
processor TDI input. The second IR is three bits and the processor block IR is four bits, so 
the resulting IR provides a 7-bit instruction code. This implementation is compatible with 
that of standard products based on the PPC405x3 and facilitates portability of debugging 
tools.

The 7-bit instruction code supported by PPC405x3 standard products is shown in 
Table 2-20. In this table, the “Code” column shows the instruction code in binary form. The 
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most significant four bits of this code are located in the PPC405x3 IR and the least 
significant three bits are in the second IR.

The DBGC405DEBUGHALT signal (page 976) is useful when connecting RISCWatch or 
another external debugger to the JTAG interface. This signal provides additional debug 
capabilities that are required if power management that disables clock zones is 
implemented. The signal is optional on the RISCWatch interface.

JTAG Interface I/O Signal Table
Figure 2-38 shows the block symbol for the JTAG interface. The signals are summarized in 
Table 2-21. See Appendix A, RISCWatch and RISCTrace Interfaces for information on 
attaching a RISCWatch to the JTAG interface signals.

Table 2-20: PPC405x3 Standard Product JTAG Instruction Codes

Instruction Code Description

EXTEST 1111_000 IEEE 1149.1 standard

1111_001 Reserved

SAMPLE/PRELOAD 1111_010 IEEE 1149.1 standard

IDCODE 1111_011 IEEE 1149.1 standard

PRIVATE 0101_100

0111_100

1001_100

1010_100

1011_100

1100_100

1101_100

1110_100

PPC405x3 hardware debug instructions

HIGHZ 1111_101 IEEE 1149.1a-1993 optional

CLAMP 1111_110 IEEE 1149.1a-1993 optional

BYPASS 1111_111 IEEE 1149.1 standard

Figure 2-38: JTAG Interface Block Symbol

UG018_08_102001

PPC405
JTGC405TCK

JTGC405TMS

JTGC405TDI

JTGC405TRSTNEG

JTGC405BNDSCANTDO

C405JTGTDO

C405JTGTDOEN

C405JTGEXTEST

C405JTGCAPTUREDR

C405JTGSHIFTDR

C405JTGUPDATEDR

C405JTGPGMOUT
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JTAG Interface I/O Signal Descriptions
The following sections describe the operation of the JTAG interface I/O signals.

JTGC405TCK (input)
This input is the JTAG TCK signal. This clock operates independently of the PPC405x3 
source clock (CPMC405CLOCK) so that test operations can be synchronized between 
various system components. Synchronization of JTAG interface signals occurs on both the 
rising and falling edges of this clock. The TMS and TDI signals are latched on the rising 
edge of TCK. TDO is valid on the falling edge of TCK. The maximum valid TCK frequency 
is one-half the PPC405x3 source clock frequency. 

JTGC405TMS (input)
This input is the JTAG TMS signal. It is latched by the processor on the rising edge of TCK. 
The value of the signal is typically changed by external logic on the falling edge of TCK.

The TAP state machine uses the sequence of values applied to the TMS input to generate 
clock and control signals required by other test logic. For example, the TAP state machine 
determines the destination of data received on the TDI signal. When the TMS signal is not 
driven (operated) by an external source it should be held to a value of 1. This is done by 
attaching a pull-up resistor to the signal.

JTGC405TDI (input)
This input is the JTAG TDI signal. It is latched by the processor on the rising edge of TCK. 
The value of the signal is typically changed by external logic on the falling edge of TCK.

Data received on this input signal is placed into the IR or the appropriate DR as specified 
by the TAP state machine. When the TDI signal is not driven (operated) by an external 
source it should be held to a value of 1. This is done by attaching a pull-up resistor to the 
signal.

Table 2-21: JTAG Interface I/O Signals

Signal
I/O

Type
If Unused Function

JTGC405TCK I See IEEE 
1149.1

 JTAG TCK (test clock).

JTGC405TMS I 1 JTAG TMS (test-mode select).

JTGC405TDI I 1 JTAG TDI (test-data in).

JTGC405TRSTNEG I Required JTAG TRST (test reset).

JTGC405BNDSCANTDO I 0 JTAG boundary scan input from the previous boundary 
scan element TDO output.

C405JTGTDO O No Connect JTAG TDO (test-data out).

C405JTGTDOEN O No Connect Indicates the JTAG TDO signal is enabled.

C405JTGEXTEST O No Connect Indicates the JTAG EXTEST instruction is selected.

C405JTGCAPTUREDR O No Connect Indicates the TAP controller is in the capture-DR state.

C405JTGSHIFTDR O No Connect Indicates the TAP controller is in the shift-DR state.

C405JTGUPDATEDR O No Connect Indicates the TAP controller is in the update-DR state.

C405JTGPGMOUT O No Connect Indicates the state of a general purpose program bit in the 
JTAG debug control register (JDCR).
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JTGC405TRSTNEG (input)
This input is the JTAG test reset (TRST) signal. It can be connected to the chip-level TRST 
signal. Although optional in IEEE Standard 1149.1, this signal is automatically used by the 
processor block during power-on reset to properly reset all processor block logic, including 
the JTAG and debug logic. When deasserted, no JTAG test reset exists.

This is a negative active signal.

JTGC405BNDSCANTDO (input)
This input enables the processor block to be included in the JTAG boundary scan ring. It is 
connected to a TDO output from another core or FPGA logic unit on the same chip, or it 
can be connected to the chip-level TDI input. Configuration of the TAP state machine 
enables data to be scanned into this input signal and out of the processor block TDO 
output signal. The processor block TDO output signal is connected to the boundary scan 
input of the next element in the ring (or the chip-level TDO output).

C405JTGTDO (output)
This output is the JTAG test-data out (TDO) signal. It is driven by the processor with a new 
value on the falling edge of the JTAG clock. When data is not being shifted through the 
chip by the processor, this output should be placed in the high-impedance state. An enable 
signal (below) is provided for controlling a three-state driver that sends this signal 
elsewhere in the chip.

Data transmitted on this output signal comes from either the IR, a DR, or the boundary 
scan TDO input signal (above). The source of the data is determined by the TAP state 
machine.

C405JTGTDOEN (output)
When asserted, this signal enables a three-state driver to send the TDO output signal 
(above) to other locations on the chip. When deasserted, the three-state driver should be 
placed in the high-impedance state. Such a driver is implemented on the FPGA chip 
external to the processor block.

C405JTGEXTEST (output)
When asserted, this signal indicates that the JTAG external test (EXTEST) instruction is 
selected. This instruction enables testing of off-chip circuitry and board-level 
interconnections using the TDO output signal. In an FPGA implementation of a system-
on-chip product, the instruction can be used to test on-chip circuitry and interconnections. 
When the signal is deasserted, the EXTEST instruction is not selected.

C405JTGCAPTUREDR (output)
When asserted, this signal indicates the TAP controller is in the capture-DR state (this is 
one of the 16 standard TAP controller states). In this state, data is loaded from parallel 
inputs into the currently selected DR on the rising edge of TCK. If the register does not 
have parallel inputs, this state is ignored and the register retains its current value. JTAG 
boundary scan logic can use this signal as an indication to perform a similar function 
elsewhere on the chip. When deasserted, the TAP controller is not in the capture-DR state.

C405JTGSHIFTDR (output)
When asserted, this signal indicates the TAP controller is in the shift-DR state (this is one of 
the 16 standard TAP controller states). In this state, data in the currently selected DR is 
shifted by one stage (bit) from TDI towards TDO on each rising edge of TCK. JTAG 
boundary scan logic can use this signal as an indication to shift scan data elsewhere on the 
chip. When deasserted, the TAP controller is not in the shift-DR state.

http://www.xilinx.com


974 www.xilinx.com March 2002 Release
1-800-255-7778 Virtex-II Pro™ Platform FPGA Documentation

Chapter 2: Input/Output Interfaces
R

C405JTGUPDATEDR (output)
When asserted, this signal indicates the TAP controller is in the update-DR state (this is one 
of the 16 standard TAP controller states). In this state, data in the currently selected DR is 
latched into the parallel outputs of the register on the falling edge of TCK (if the register 
has such outputs). The parallel outputs of registers with this capability do not change 
during the shift process. JTAG boundary scan logic can use this signal as an indication to 
perform a similar function elsewhere on the chip. When deasserted, the TAP controller is 
not in the update-DR state.

C405JTGPGMOUT (output)
This signal indicates the state of a general purpose program bit in the JTAG debug control 
register (JDCR). This register is set through the external JTAG interface. This bit is intended 
for use by external JTAG debuggers. Its function and operation is determined by the 
external application.
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Debug Interface
The debug interface enables an external debugging tool (such as RISCWatch) to operate the 
PPC405x3 debug resources in external-debug mode. External-debug mode can be used to 
alter normal program execution and it provides the ability to debug system hardware as 
well as software. The mode supports starting and stopping the processor, single-stepping 
instruction execution, setting breakpoints, and monitoring processor status. These 
capabilities are described in the PowerPC 405 User Manual (Vol. 2 (a) of the Virtex™-II Pro 
Developer’s Kit).

Debug Interface I/O Signal Summary
Figure 2-39 shows the block symbol for the debug interface. The signals are summarized in 
Table 2-22. See Appendix A, RISCWatch and RISCTrace Interfaces for information on 
attaching a RISCWatch to the debug interface signals.

 

Debug Interface I/O Signal Descriptions
The following sections describe the operation of the debug interface I/O signals.

DBGC405EXTBUSHOLDACK (input)
When asserted, this signal indicates that the bus controller (for example, a PLB arbiter) has 
given control of the bus to an external master. When deasserted, an external master does 
not have control of the bus. This signal is used by the PPC405x3 debug logic (and the 
external debugger) as an indication that the processor might not have control of the bus 

Figure 2-39: Debug Interface Block Symbol

UG018_09_020702

PPC405
DBGC405EXTBUSHOLDACK

DBGC405DEBUGHALT

DBGC405UNCONDDEBUGEVENT

C405DBGWBFULL

C405DBGWBIAR[0:29]

C405DBGWBCOMPLETE

C405DBGMSRWE

C405DBGSTOPACK

Table 2-22: Debug Interface I/O Signals

Signal
I/O

Type
If Unused Function

DBGC405EXTBUSHOLDACK I 0 Indicates the bus controller has given control of the bus to 
an external master.

DBGC405DEBUGHALT I 0 Indicates the external debug logic is placing the processor in 
debug halt mode.

DBGC405UNCONDDEBUGEVENT I 0 Indicates the external debug logic is causing an 
unconditional debug event.

C405DBGWBFULL O No Connect Indicates the PPC405x3 writeback pipeline stage is full.

C405DBGWBIAR[0:29] O No Connect The address of the current instruction in the PPC405x3 
writeback pipeline stage.

C405DBGWBCOMPLETE O No Connect Indicates the current instruction in the PPC405x3 writeback 
pipeline stage is completing.

C405DBGMSRWE O No Connect Indicates the value of MSR[WE].

C405DBGSTOPACK O No Connect Indicates the PPC405x3 is in debug halt mode.
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and therefore might not be able to respond immediately to certain debug operations. 
External FPGA logic generates this signal using output signals from the bus controller.

DBGC405DEBUGHALT (input)
When asserted, this signal stops the processor from fetching and executing instructions so 
that an external debug tool can operate the processor. From this state, known as debug halt 
mode, an external debugger controls the processor using the JTAG interface and the private 
JTAG hardware debug instructions. The clocks are not stopped. When this signal is 
deasserted, the processor operates normally. 

This signal enables an external debugger to stop the processor without using the JTAG 
interface. A stop command issued through the JTAG interface (using a private JTAG 
instruction) is discarded when the processor is reset. The debug halt signal can be asserted 
during a reset so that the processor is stopped at the first instruction to be executed when 
reset is exited.

In systems that deactivate the clocks to manage power, the debug halt signal should be 
used to restart the clocks (if stopped) to enable an external debugger to operate the 
processor. After the debugger finishes its operation and deasserts the debug halt signal, the 
clocks can be stopped to return the processor to sleep mode.

This is a positive active signal. However, the debug halt signal produced by the RISCWatch 
debugger is negative active. FPGA logic that attaches to a RISCWatch debugger must 
invert the signal before sending it to the PPC405x3.

DBGC405UNCONDDEBUGEVENT (input)
When asserted, this signal causes an unconditional debug event and sets the UDE bit in the 
debug-status register (DBSR) to 1. When this signal is deasserted, the processor operates 
normally. Software can initialize the PPC405x3 debug resources to perform any of the 
following operations when an unconditional debug event occurs:

• Cause a debug interrupt in internal debug mode.
• Stop the processor in external debug mode.
• Cause a trigger event on the processor block trace interface.

C405DBGWBFULL (output)
When asserted, this signal indicates that the PPC405x3 writeback-pipeline stage is full. It 
also indicates that writeback instruction-address bus (C405DBGWBIAR[0:29]) contains a 
valid instruction address. When deasserted, the writeback stage is not full and the contents 
of the writeback instruction-address bus are not valid.

C405DBGWBIAR[0:29] (output)
When the writeback-full signal (C405DBGWBFULL) is asserted, this bus contains the 
address of the instruction in the PPC405x3 writeback-pipeline stage. If the writeback-full 
signal is not asserted, the contents of this bus are invalid.

C405DBGWBCOMPLETE (output)
When asserted, this signal indicates that the instruction in the PPC405x3 writeback-
pipeline stage is completing. The address of the completing instruction is contained on the 
writeback instruction-address bus (C405DBGWBIAR[0:29]). If the writeback-complete 
signal is not asserted, the instruction on the writeback instruction-address bus is not 
completing. The writeback-complete signal is valid only when the writeback-full signal 
(C405DBGWBFULL) is asserted. The signal is not valid if the writeback-full signal is 
deasserted.
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C405DBGMSRWE (output)
This signal indicates the state of the MSR[WE] (wait-state enable) bit. When asserted, wait 
state is enabled (MSR[WE]=1). When deasserted, wait state is disabled (MSR[WE]=0). 
When in the wait state, the processor stops fetching and executing instructions, and no 
longer performs memory accesses. The processor continues to respond to interrupts, and 
can be restarted through the use of external interrupts or timer interrupts. Wait state can 
also be exited when an external debug tool clears WE or when a reset occurs.

C405DBGSTOPACK (output)
When asserted, this signal indicates that the PPC405x3 is in debug halt mode. When 
deasserted, the processor is not in debug halt mode.
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Trace Interface
The processor uses the trace interface when operating in real-time trace-debug mode. Real-
time trace-debug mode supports real-time tracing of the instruction stream executed by 
the processor. In this mode, debug events are used to cause external trigger events. An 
external trace tool (such as RISCTrace) uses the trigger events to control the collection of 
trace information. The broadcast of trace information on the trace interface occurs 
independently of external trigger events (trace information is always supplied by the 
processor). Real-time trace-debug does not affect processor performance.

Real-time trace-debug mode is always enabled. However, the trigger events occur only 
when both internal-debug mode and external debug mode are disabled (DBCR0[IDM]=0 
and DBCR0[EDM]=0). Most trigger events are blocked when either of those two debug 
modes are enabled. See the PowerPC 405 User Manual (Vol. 2 (a) of the Virtex™-II Pro 
Developer’s Kit) for more information on debug events.

Trace Interface Signal Summary
Figure 2-40 shows the block symbol for the trace interface. The signals are summarized in 
Table 2-23. See Appendix A, RISCWatch and RISCTrace Interfaces for information on 
attaching a RISCTrace to the trace interface signals.

 

Figure 2-40: Trace Interface Block Symbol
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Table 2-23: Trace Interface Signals

Signal
I/O

Type
If Unused Function

C405TRCTRIGGEREVENTOUT O Wrap to 
Trigger 

Event In

Indicates a trigger event occurred.

C405TRCTRIGGEREVENTTYPE[0:10] O No Connect Specifies which debug event caused the trigger event.

C405TRCCYCLE O No Connect Specifies the trace cycle.

C405TRCEVENEXECUTIONSTATUS[0:1] O No Connect Specifies the execution status collected during the first 
of two processor cycles.

C405TRCODDEXECUTIONSTATUS[0:1] O No Connect Specifies the execution status collected during the 
second of two processor cycles.

C405TRCTRACESTATUS[0:3] O No Connect Specifies the trace status.

TRCC405TRIGGEREVENTIN I Wrap to 
Trigger 

Event Out

Indicates a trigger event occurred and that trace status is 
to be generated.

TRCC405TRACEDISABLE I 0 Disables trace collection and broadcast.
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Trace Interface I/O Signal Descriptions
The following sections describe the operation of the trace interface I/O signals.

C405TRCTRIGGEREVENTOUT (output)
When asserted, this signal indicates that a trigger event occurred. The trigger event is 
caused by any debug event when both internal-debug mode and external debug mode are 
disabled (DBCR0[IDM]=0 and DBCR0[EDM]=0). If this signal is deasserted, no trigger 
event occurred.

FPGA logic can combine this signal with the trigger-event type signals to produce a 
qualified version of the trigger signal. The qualified signal is wrapped to the trigger-event 
input signal in the same trace cycle. The external trace tool also monitors the trigger-event 
input signal to synchronize its own trace collection. This capability can be used to 
implement various trace collection schemes. 

C405TRCTRIGGEREVENTTYPE[0:10] (output)
These signals are used to identify which debug event caused the trigger event. Table 2-24 
shows which debug event corresponds to each bit in the trigger event-type bus. The 
specified debug event occurred when its corresponding signal is asserted. The debug event 
did not occur if its corresponding signal is deasserted.

FPGA logic can combine these signals with the trigger-event output signal to produce a 
qualified version of the trigger signal. The qualified signal is wrapped to the trigger-event 
input signal in the same trace cycle. The external trace tool also monitors the trigger-event 
input signal to synchronize its own trace collection. This capability can be used to 
implement various trace collection schemes.

C405TRCCYCLE (output)
This signal defines the cycle that execution status and trace status are broadcast on the 
trace interface (this is referred to as the trace cycle). Although the PPC405x3 collects 
execution status and trace status every processor cycle, the information is made available 
to the trace interface once every two cycles. The information collected during those two 
cycles is broadcast over the trace interface in a single trace cycle. For this reason, the trace 
cycle is produced by the processor once every two processor clocks. Operating the trace 
interface in this manner helps reduce the amount of I/O switching during trace collection.

Table 2-24: Purpose of C405TRCTRIGGEREVENTTYPE[0:10] Signals

Bit Debug Event

0 Instruction Address Compare 1 (IAC1)

1 Instruction Address Compare 2 (IAC2)

2 Instruction Address Compare 3 (IAC3)

3 Instruction Address Compare 4 (IAC4)

4 Data Address Compare 1 (DAC1)—Read

5 Data Address Compare 1 (DAC1)—Write

6 Data Address Compare 2 (DAC2)—Read

7 Data Address Compare 2 (DAC2)—Write

8 Trap Instruction (TDE)

9 Exception Taken (EDE)

10 Unconditional (UDE)
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C405TRCEVENEXECUTIONSTATUS[0:1] (output)
These signals are used to specify the execution status collected during the first of two 
processor cycles. The PPC405x3 collects execution status and trace status every processor 
cycle, but the information is made available to the trace interface once every two cycles. 
The information collected during those two cycles is broadcast over the trace interface in a 
single trace cycle. 

C405TRCODDEXECUTIONSTATUS[0:1] (output)
These signals are used to specify the execution status collected during the second of two 
processor cycles. The PPC405x3 collects execution status and trace status every processor 
cycle, but the information is made available to the trace interface once every two cycles. 
The information collected during those two cycles is broadcast over the trace interface in a 
single trace cycle. 

C405TRCTRACESTATUS[0:3] (output)
These signals provide additional information required by a trace tool when reconstructing 
an instruction execution sequence. This information is collected every processor cycle, but 
it is made available to the trace interface once every two cycles. The information collected 
during those two cycles is broadcast over the trace interface in a single trace cycle.

TRCC405TRIGGEREVENTIN (input)
When asserted, this signal indicates that a trigger event occurred. The PPC405x3 uses this 
signal to generate additional information that is output on the trace-status bus. This 
information corresponds to the execution status produced on the even and odd execution-
status busses. When deasserted, the information is not generated.

This signal can be produced by FPGA logic using the trigger event output signal. The 
output signal can be combined with the trigger event-type signals before it is returned as 
the input signal. This capability can be used to implement various trace collection schemes. 
The external trace tool should monitor the trigger-event input signal to synchronize its 
own trace collection.

TRCC405TRACEDISABLE (input)
When asserted, this signal disables the collection and broadcast of trace information. Trace 
information already collected by the processor when this signal is asserted is broadcast on 
the trace interface before tracing is disabled. When deasserted, trace collection and 
broadcast proceed normally.
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Additional FPGA Specific Signals
Figure 2-41 shows the block symbol for the additional FPGA signals used by the processor 
block. The signals are summarized in Table 2-25.

 

Additional FPGA I/O Signal Descriptions
The following sections describe the operation of the FPGA I/O signals.

MCBCPUCLKEN (input)
When asserted, this signal indicates that the enable for the core clock zone 
(CPMC405CPUCLKEN) should follow (match the value of) the global write enable (GWE) 
during the FPGA startup sequence. When deasserted, the enable for the core clock zone 
ignores (is independent of) the value of GWE.

MCBJTAGEN (input)
When asserted, this signal indicates that the enable for the JTAG clock zone 
(CPMC405JTAGCLKEN) should follow (match the value of) the global write enable (GWE) 
during the FPGA startup sequence. When deasserted, the enable for the JTAG clock zone 
ignores (is independent of) the value of GWE.

MCBTIMEREN (input)
When asserted, this signal indicates that the enable for the timer clock zone 
(CPMC405TIMERCLKEN) should follow (match the value of) the global write enable 
(GWE) during the FPGA startup sequence. When deasserted, the enable for the timer clock 
zone ignores (is independent of) the value of GWE.

MCPPCRST (input)
When asserted, this signal indicates that the processor block should be reset (the core reset 
signal, RSTC405RESETCORE, is asserted) when the global set reset (GSR) signal is 

Figure 2-41: FPGA-Specific Interface Block Symbol
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Table 2-25: Additional FPGA I/O Signals

Signal
I/O

Type
If Unused Function

MCBCPUCLKEN I 1 Indicates the PPC405x3 clock enable should follow GWE 
during a partial reconfiguration.

MCBJTAGEN I 1 Indicates the JTAG clock enable should follow GWE during 
a partial reconfiguration.

MCBTIMEREN I 1 Indicates the timer clock enable should follow GWE during 
a partial reconfiguration.

MCPPCRST I 1 Indicates the processor block should be reset when GSR is 
asserted during a partial reconfiguration.

PLBCLK I Required PLB clock.
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deasserted during the FPGA startup sequence. When MPPCRST is deasserted, the core 
reset signal ignores (is independent of) the value of GSR.

PLBCLK (input)
This signal is the source clock for all PLB logic.
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Chapter 3

PowerPC® 405 OCM Controller

Introduction
The On-Chip Memory (OCM) controller serves as a dedicated interface between the block 
RAMs in the FPGA and OCM signals available on the embedded PPC405 core. The OCM 
signals on the processor block are designed to provide a quick access to a fixed amount of 
Instruction and Data memory space. The OCM controller, an integral component of the 
PPC405 core architecture, provides an interface to both the 64-bit Instruction-side Block 
RAM (ISBRAM) and the 32-bit Data-Side Block RAM (DSBRAM). The FPGA designer can 
choose to implement only ISBRAM, only DSBRAM, both ISBRAM and DSBRAM, or no 
ISBRAM and no DSBRAM. The maximum amount of memory addressable by the DSOCM 
and ISOCM controller ports, utilizing the fourteen least-significant addresses from the 
processor block, is 64KB and 128KB, respectively. The OCM controller is capable of 
addressing up to 16MB of DSBRAM and 16MB of ISBRAM at a reduced frequency of 
operation. The number of block RAMs in the device may limit the maximum amount of 
OCM supported.

Typical applications for Data-Side OCM (DSOCM) include scratch pad memory, as well as 
use of the dual-port feature of block RAM to enable a bidirectional data transfer between 
processor and FPGA. Typical applications for Instruction-Side OCM (ISOCM) include 
storage of interrupt service routines. One of the primary advantages of OCM comes from 
the fact that it guarantees a fixed latency of execution. Also, it reduces cache pollution and 
thrashing, since the cache remains available for caching code from other memory 
resources.

Functional Features

Common Features
• Separate Instruction and Data memory interface between the processor block and 

BRAMs in FPGA. Eliminates processor local bus (PLB) arbitration between instruction 
and data-side interfaces to external memory.

• Dedicated interface to Device Control Register (DCR) bus for ISOCM and DSOCM 
controllers. Dedicated DCR bus loop, inside the processor block, for the OCM 
controllers. External DCR bus output to the FPGA fabric.

• Multi-cycle mode option for I-side and D-side interfaces. Multi-cycle operation uses 
an N:1 processor-to-BRAM clock ratio.

• FPGA configurable DCR register addresses within DSOCM and ISOCM controllers.
• Independent 16MB logical memory space available within PPC405 memory map for 

each of the DSOCM and ISOCM controllers.
• Maximum of 64KB /128KB addressable from DSOCM and ISOCM interface using the 

fourteen least-significant bits of address outputs from processor block. Maximum of 
16MB using all addresses from processor block with increased access time for BRAM.
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Data-Side OCM (DSOCM)
• 32-bit Data Read bus and 32-bit Data Write bus
• Byte write access to DSBRAM support
• Second port of dual port DSBRAM is available to read/write from an FPGA interface
• 22-bit address to DSBRAM port 
• 8-bit DCR Registers: DSCNTL, DSARC
• Three alternatives to write into DSBRAM: BRAM initialization, CPU, FPGA hardware 

using second port. See the Application Example section on page 995.

Instruction-Side OCM (ISOCM)
The ISOCM interface contains a 64-bit read only port, for instruction fetches, and a 32-bit 
write only port, to initialize or test the ISBRAM. When implementing the read only port, 
the user must deassert the write port inputs. The preferred method of initializing the 
ISBRAM is through the configuration bitstream. 

• 64-bit Data Read Only bus (two instructions per cycle)
• 32-bit Data Write Only bus (through DCR)
• Separate 21-bit Read Only and Write Only addresses to ISBRAM 
• 8-bit DCR registers: ISCNTL, ISARC
• 32-bit DCR registers: ISINIT, ISFILL
• Two alternatives to write into ISBRAM: BRAM initialization, DCR

OCM Controller Operation
The OCM controller is of a distributed style in that it is split into two blocks, one for the 
ISOCM interface and the other for DSOCM interface. This arrangement provides the 
following advantages:

• The overall efficiency of the core is improved by eliminating the need for arbitration 
between two sets of operations on each side, i.e., Load/Store on D-side and Fetch on 
I-side.

• Controller performance is improved because there is no need to share a common 
address and data bus between the I-side and D-side interfaces to the block RAM.

• By keeping the two interfaces separate, it is relatively easy to pick and choose one or 
the other interface as needed by hardware/software designers.

• The programmer’s model is simplified, as there is no requirement to deal with a 
singular memory space between I-side and D-side interfaces.

Operational Summary

DSOCM Controller
The DSOCM controller accepts an address and associated control signals from the 
processor during a “load” instruction, and passes the valid address to the block RAM 
interface. For “store” instructions, a valid address from the processor is accompanied by 
store data in addition to associated control signals. It is important to note here that load 
instructions have a priority over store instructions at the DSOCM interface.

The DSOCM and ISOCM interfaces are designed to operate independently.

ISOCM Controller
The ISOCM controller accepts an address and associated control signals from the processor 
during an “instruction fetch” cycle, and passes the valid address to the block RAM 
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interface. The instructions in ISBRAM can be stored either by loading the block RAM 
during FPGA configuration or by using the processor DCR bus. 

The DSOCM and ISOCM interfaces are designed to operate independently.

OCM Registers
There are two registers (DSARC, DSCNTL) in DSOCM and four registers (ISARC, ISCNTL, 
ISINIT, ISFILL) in ISOCM, which can be utilized by system software to set various 
attributes on each controller. They are further described in the Programmer’s Model 
section, page 992.

DCR Interface
The DCR interface serves two purposes:

• Allows the processor to set various attributes on each controller by reading from and 
writing into DSARC, DSCNTL, ISARC, and ISCNTL

• Allows the processor to write instructions into the ISOCM memory array during 
system initialization, using ISINIT and ISFILL

A separate DCR chain is used for ISOCM and DSOCM, which is multiplexed inside the 
processor block with the DCR chain external to the block.

DSOCM Ports
Refer to Figure 3-1 for the block diagram of DSOCM. All signals are in big endian format. 
Figure 3-2, page 986, shows an example of a DSOCM-to-BRAM interface.  

Input Ports

BRAMDSOCMCLK

This signal clocks the DSOCM controller. When in multi-cycle mode, BRAMDSOCMCLK 
is a 1:N ratio of the processor clock. The Digital Clock Manager (DCM) should be used to 
generate the processor clock and the DSOCM clock. The BRAMDSOCMCLK must be an 
integer multiple of the processor block clock CPMC405CLOCK. 

BRAMDSOCMRDDBUS[0:31]

32-bit Read data from block RAMs to DSOCM.

Output Ports

DSOCMBRAMABUS[8:29]

Read or Write address from DSOCM to DSBRAM. A write address is accompanied by a 
write enable signal for each byte lane of data. Corresponds to CPU address bits [8:29].

Figure 3-1: DSOCM Block
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DSOCMBRAMWRDBUS[0:31]

32-bit Write data from DSOCM to block RAMs.

DSOCMBRAMBYTEWRITE[0:3]

There are four Write Enable signals to allow independent byte-wide data writes into block 
RAMs. DSOCMBRAMBYTEWRITE[0] qualifies writes to DSOCMBRAMWRDBUS[0:7], 
and DSOCMBRAMBYTEWRITE[3] qualifies writes to DSOCMBRAMWRDBUS[24:31].

DSOCMBRAMEN

The block RAM Enable signal is asserted for both read and writes to the DSBRAM.

DSOCMBUSY

This control signal reflects the value of the DSCNTL[2] bit out to the FPGA fabric. This 
signal can be used for applications that require a mechanism allowing system software to 
provide a particular control status to FPGA hardware. It is an optional signal and need not 
be used.  

DSOCM Attributes
Attributes are inputs to the OCM from the FPGA that must be connected to initialize 
registers at FPGA power up, or following a reset.

DSCNTLVALUE[0:7]

Default value that needs to be loaded into DSCNTL register at FPGA power up. See 
Figure 3-7, page 992, for register bit definitions.

DSARCVALUE[0:7]

Default value that needs to be loaded into DSARC register at FPGA power up. See 
Figure 3-7, page 992, for register bit definitions.

Figure 3-2: DSOCM to BRAM Interface: 8K Example
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TIEDSOCMDCRADDR[0:7]

Top 8 bits of DCR address space for DSOCM DCR registers. The DCR address space is 
10 bits wide. The two least significant bits are predefined in DSOCM controller.

For example, if TIEDSOCMDCRADDR = 00 0001 11

then, address of DSARC = 00 0001 1110 = 0x01E 
address of DSCNTL= 00 0001 1111 = 0x01F

ISOCM Ports
Refer to Figure 3-3 for the block diagram of ISOCM. All signals are in big endian format. 
Figure 3-4, page 988, shows an example of an ISOCM-to-BRAM interface.  

Input Ports

BRAMISOCMCLK

This signal clocks the ISOCM controller. When in multi-cycle mode, BRAMISOCMCLK is 
a 1:N ratio of the processor clock. The Digital Clock Manager (DCM) should be used to 
generate the processor clock and the ISOCM clock. The BRAMISOCMCLK must be an 
integer multiple of the processor block clock CPMC405CLOCK.

BRAMISOCMRDDBUS[0:63]

64-bit read data from block RAMs, two instructions per cycle, to ISOCM.

Output Ports

ISOCMBRAMRDABUS[8:28]

Read address from ISOCM to block RAM. Corresponds to CPU address bits [8:28].

ISOCMBRAMWRABUS[8:28]
NOTE: Optional. Used in dual-port BRAM interface designs only.

Write address from ISOCM to block RAMs. Initially set to value in ISINIT register.

ISOCMBRAMWRDBUS[0:31]
NOTE: Optional. Used in dual-port BRAM interface designs only.

32-bit Write data from ISOCM to block RAMs. Connect to both the even and odd write 
only ISBRAM data input ports. Initially set to value in ISFILL register.

ISOCMBRAMODDWRITEEN
NOTE: Optional. Used in dual-port BRAM interface designs only.

Figure 3-3: ISOCM Block

ISOCMBRAMEN

ISOCMBRAMODDWRITEEN

UG018_38_020102

RESET

ISOCMBRAMRDABUS[8:28]BRAMISOCMRDDBUS[0:63]

ISOCMBRAMWRABUS[8:28]

ISOCMBRAMWRDBUS[0:31]

BRAMISOCMCLK

CPMC405CLOCK

ISCNTLVALUE[0:7]

ISARCVALUE[0:7]

TIEISOCMDCRADDR[0:7] ISOCMBRAMEVENWRITEEN

Clock & Reset are 
same signals that go 
into CPU; therefore, 
no separate Clock & 
Reset are required.

Instruction-Side
On-Chip Memory 

(ISOCM) Controller
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Write enable to qualify a valid write into a block RAM. This signal enables a write into 
block RAMs that carry odd instruction words, BRAMISOCMRDDBUS[32:63]. Connect this 
signal to both the Enable (EN) and Write (WR) inputs of a dual-port ISBRAM port for 
power savings. For single-port ISBRAM implementations, this signal can be left 
unconnected.

ISOCMBRAMEVENWRITEEN
NOTE: Optional. Used in dual-port BRAM interface designs only.

Write enable to qualify a valid write into a block RAM. This signal enables a write into 
block RAMs that carry even instruction words, BRAMISOCMRDDBUS[0:31]. Connect this 
signal to both the Enable (EN) and Write (WR) inputs of a dual-port ISBRAM port for 
power savings. For single-port ISBRAM implementations, this signal can be left 
unconnected.

ISOCMBRAMEN

Block RAM read enable from ISOCM to block RAMs. This signal is asserted for valid 
ISBRAM read cycles. For highest performance, the BRAM enable input (EN) can be locally 
tied to a logic 1 level. Power consumption can be reduced by connecting the BRAM enable 
input (EN) to this signal. Timing analysis is required to verify the design meets frequency 
of operation requirements if the enable is not tied to a logic 1 level.  

Figure 3-4: ISOCM to BRAM Interface: 8K Example

BRAMISOCMCLK
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ISOCM Attributes
Attributes are inputs to the OCM, from the FPGA, that must be connected to initialize 
registers at FPGA power up, or following a reset.

ISCNTLVALUE[0:7]

Default value that needs to be loaded into ISCNTL register, at FPGA power up. See 
Figure 3-8, page 993, for register bit definitions.

ISARCVALUE[0:7]

Default value that needs to be loaded into ISARC register, at FPGA power up. See 
Figure 3-8, page 993, for register bit definitions.

TIEISOCMDCRADDR[0:7]

Top 8 bits of DCR address space for ISOCM DCR registers. The DCR address space is 10 
bits wide. The two least significant bits are predefined in ISOCM controller.

For example, if TIEISOCMDCRADDR = 00 0010 11

then, address of ISINIT = 00 0010 1100 = 0x02C 
address of ISFILL = 00 0010 1101 = 0x02D 
address of ISARC = 00 0010 1110 = 0x02E 
address of ISCNTL = 00 0010 1111 = 0x02F 
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Timing Specification
The single-cycle and multi-cycle operation modes are designed to guarantee a certain 
performance level by the OCM controller, assuming a certain processor clock frequency 
and size of BRAM. If more DSBRAM or ISBRAM is required, the designer may need to 
lower the clock frequency or add wait states to insure that the OCM operates correctly. The 
OCM clock cycle modes are selected through the DSOCMMCM and ISOCMMCM register 
bits in the DSCNTL and ISCNTL registers. 

Single-Cycle Mode
In single-cycle mode, the processor, OCM controller, and BRAM all run at the same clock 
speed. A D-side (Load/Store) or I-side (Fetch) operation completes in four CPU clock 
cycles. In the first cycle, the address is launched from the core to the controller. In second 
cycle, the core is presented with a “valid request” assertion and the controller makes the 
requested data available to the 405 core. In the third clock cycle, the DSBRAM accesses the 
memory location presented on the interface during the second clock cycle. In the fourth 
clock cycle, the core latches the data. See Figure 3-5 for a sample operation in single-cycle 
mode. 

Figure 3-5: Single-Cycle Static Performance Analysis of DSOCM (Load Operation)
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Multi-Cycle Mode
Multi-cycle mode allows the processor to run at a higher clock speed than the OCM 
controller. Wait states are inserted between each transaction. The Digital Clock Manager 
must be used to generate the clocks for the processor and the OCM controllers.

See Figure 3-6 for a comparative load operation transaction in multi-cycle mode.  

Figure 3-6: Multi-Cycle Static Performance Analysis of DSOCM (Load Operation)
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Programmer’s Model

DCR Registers
From a system software perspective, the programmer has visibility and access to DCR 
registers within each interface. Typically, mtdcr and mfdcr instructions can be used to 
write and read from these registers, respectively. All registers are read/write. 

Figure 3-7 lists all the DCR registers and the bit definitions of registers on the D-side OCM 
interface. Figure 3-8 lists all the DCR registers and the bit definitions of registers on the 
I-side OCM interface. 

Figure 3-7: DSOCM DCR Registers

0 1 2 3 4 5 6 7

DSARC (DSOCM Address Range Compare Register)
8 bits:  Address range compare for DSOCM memory space.
They are also configurable via FPGA, through the DSARCVALUE
inputs to the processor block.

   Note:  The top 8 bits of the CPU address are compared with 
   DSARC to provide a 16 MB logical address for space for DSOCM 
   block.

A0/P A1/P A2/P A3/P A4/P A5/P A6/P A7/P

8 bits: Control Register for DSOCM. They are also configurable via 
FPGA, through the DSCNTLVALUE inputs to the processor block.

External Registers
Allocated within DCR address space
(Programmer's Model)

UG018_46_020502

DSCNTL (DCR Control Register)

DSOCMMCM[0:2]
CPMC405CLOCK:
BRAMDSOCMCLK

Ratio

0 1 2 3 4 5 6
D0/P D1/P D2/P D3/P D4/P D5/P... D7/P

DSOCMBUSY(2)

000
001
010
011
100
101
110
111

Not supported
1:1

Not supported
2:1

Not supported
3:1

Not supported
4:1

Reserved(1)

DISABLEOPERANDFWD(3)

DSOCMEN(4)

7

Notes: 

1. Reserved bits must be configured to 0.

2. See section "DSOCM Ports" in the text.

3. DISABLEOPERANDFWD:

    When DISABLEOPERANDFWD is asserted, load data from the 
    DSOCM goes directly into a latch in the processor block. This 
    causes an additional cycle (a total of two cycles) of latency between 
    a load instruction which is followed by an instruction that requires 
    the load data as an operand.

    When DISABLEOPERANDFWD is not asserted, load data from the 
    DSOCM must pass through steering logic before arriving at a latch. 
    This causes a single cycle of latency between a load instruction which 
    is followed by an instruction that requires the load data as an operand.

4. DSOCMEN:

    Enables the DSOCM address decoder.

            2n – 1
where n = number of 
processor clocks in 
one OCM clock cycle. 
Must be an integer.
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The I-OCM and D-OCM interfaces provide DCRs (DSARC & ISARC) which set the top 8 
(base) address bits of the I-OCM and D-OCM (CPU address bits 0:7). These addresses can 
be used to independently place the I-OCM and D-OCM in any 16MB address range. The 
I-OCM and D-OCM hardware outputs a maximum of 22 address bits (data-side address 
bits [8:29] and instruction-side address bits [8:28]) to address block RAM.

The OCM clock cycle modes are selected through the MULTICYCLEMODE control bits 
(DSOCMMCM and ISOCMMCM) in the DSCNTL and ISCNTL registers. The OCM 

Figure 3-8: ISOCM DCR Registers

0 1 2 3 4 5 6 7

ISARC (ISOCM Address Range Compare Register)

A0/P A1/P A2/P A3/P A4/P A5/P A6/P A7/P

External Registers
Allocated within DCR address space
(Programmer's Model)
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ISCNTL (ISOCM Control Register)

0 1 2 3 4 5 6
D0/P D1/P... D4/P D7/PD5/P...

Reserved(1)

ISOCMEN(2)

7

0 1 2...

21 bits:  Initialization address to write into ISOCM memory space.
The address is incremented by 1 for every write into ISFILL register, which is described below.

A8 A9 A10...

20
A28

19
A27

30
D30

...18
...A26

...29
...D29

32 bits: Data register for ISOCM, used to send instructions via DCR into ISOCM memory space.

ISFILL (ISOCM Fill Data Register)

0 1 2...
D0 D1 D2... D31

31

ISINIT (ISOCM Initalization Address)

8 bits: Address range compare for ISOCM memory space.
They are also configurable via FPGA, through the ISARCVALUE 
inputs to the processor block. 

   Note:  The top 8 bits of the CPU address are compared
   with ISARC to provide a 16 MB logical address for space
   for ISOCM block

8 bits: Control Register for ISOCM. They are also configurable via 
FPGA, through the ISCNTLVALUE inputs to the processor block.

Notes: 

1. Reserved bits must be configured to 0.

2. ISOCMEN:

    Enables the DSOCM address decoder.   

            2n – 1
where n = number of 
processor clocks in 
one OCM clock cycle. 
Must be an integer.

ISOCMMCM[0:2]
CPMC405CLOCK:
BRAMISOCMCLK

Ratio

000
001
010
011
100
101
110
111

Not supported
1:1

Not supported
2:1

Not supported
3:1

Not supported
4:1
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memory space decoders are enabled when the DSOCMEN and ISOCMEN bits are asserted 
in the DSCNTL and ISCNTL registers.

References
1. Virtex-II Pro Platform FPGA Handbook 

2. PPC405 Processor Block Manual 

3. PPC405 User Manual 

Application Notes

Interfacing to Block RAM
Refer to the Virtex-II Pro Platform FPGA Handbook for a detailed description of the block 
RAM resources. The block RAMs are synchronous and provide a dual-port access to 16K 
bits of data, not including parity. A useful feature is the different configurations each block 
RAM can have. This is shown in Table 3-1.  

Block RAMs can be used as the source of data and instruction storage space for OCM. Since 
the block RAMs are not dedicated to the OCM, any size of block RAM desired can be used. 

The Application Example section shows a reference OCM design with both ISBRAM and 
DSBRAM. 

Size vs. Performance
For a given processor clock frequency, the larger the size of block RAM, the greater the 
associated performance penalty. Past a certain threshold of BRAM, the OCM may not 
function correctly if the block RAM access time is greater than the microprocessor clock 
period. For designs with large amounts of block RAM, the designer may need to use multi-
cycle mode and/or reduce the microprocessor clock frequency. 

There may be applications associated with OCM that necessitate a dual-port 
implementation of block RAMs rather than the default single-port implementation. 
Table 3-2 shows a sample block RAM implementation for the I-side and D-side OCM 
interfaces, illustrating the recommended method to connect ISBRAM and DSBRAM. The 
data and control signals will be routed differently depending upon the total amount of 
memory required for the application. 

The instruction-side and data-side clock mode control bits (ISOCMMCM and 
DSOCMMCM) will change depending upon processor clock frequency, BRAM access 
time, signal loading, and signal routing delays. As the total amount of OCM increases, the 
performance decreases. The minimum DSBRAM is 8KB and the minimum ISBRAM is 4KB. 

Table 3-1: Block RAM Configurations in a Virtex-II FPGA

Word Width Depth Address Data

1 16,384 A<13:0> D<0>

2 8192 A<13:1> D<1:0>

4 4096 A<13:2> D<3:0>

9 2048 A<13:3> D<7:0> + P<0>

18 1024 A<13:4> D<15:0> + P<1:0>

36 512 A<13:5> D<31:0> + P<3:0>
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Application Example
This section contains a Verilog reference design containing an OCM interface to a 4KB 
ISBRAM and a dual port 8KB DSBRAM.

//**************************************************************
// File: ocm_example.v
//
// PowerPC 405 On Chip Memory Controller Application Example
// Features:
//   1. Digital Clock Manager for PPC/OCM/BRAM clock generation.
//   2. REFCLK input generates 2X and 4X clocks.
//   3. On Chip Memory Controller will use CLK2X.
//   4. DSBRAM and ISBRAM also use CLK2X.
//   5. PowerPC 405 will use CLK4X.
//   6. 4KB ISBRAM dual ported design for DCR write access.
//   7. 8KB DSBRAM dual ported design for FPGA R/W access.
//
// Application Notes:
//   1. User connects this module up to the Processor Block.
//   2. Processor block inputs not shown in this example:
//      A. DSARCVALUE  = 8'hF4
//      B. DSCNTLVALUE = 8'h83 (2:1 PPC/OCM clock ratio)
//      C. ISARCVALUE  = 8'hFF
//      D. ISCNTLVALUE = 8'h83 (2:1 PPC/OCM clock ratio)
//   3. Processor Block OCM outputs not used: DSOCMBUSY
//**************************************************************

module OCM ( REFCLK, BRAMDSOCMCLK, BRAMISOCMCLK, CPMC405CLOCK, RST, 
          DSOCMBRAMABUS, DSOCMBRAMEN, DSOCMBRAMWRDBUS, BRAMDSOCMRDDBUS, 
          DSOCMBRAMBYTEWRITE, ADDRB, ENB, CLKB, DINB, DOUTB, WEB, 
          ISOCMBRAMRDABUS, ISOCMBRAMWRABUS, ISOCMBRAMEN, 
          ISOCMBRAMWRDBUS, ISOCMBRAMODDWRITEEN, ISOCMBRAMEVENWRITEEN,
          BRAMISOCMRDDBUS );
          

Table 3-2: ISBRAM and DSBRAM Configuration Range Using the 14 Least-Significant 
Processor Block Address Outputs

Total Memory 
Used

32-Bit Data OCM 64-Bit Instruction OCM

BRAM 
Quantity

BRAM Port 
Size

Clock Mode 
DSOCMMCM

BRAM 
Quantity

BRAM Port 
Size

Clock Mode 
ISOCMMCM

128KB No support TBD 64 16K x 1 TBD

64KB 32 16K x 1 TBD 32 8K x 2 TBD

32KB 16 8K x 2 TBD 16 4K x 4 TBD

16KB 8 4K x 4 TBD 8 2K x 9 TBD

 8KB 4 2K x 9 TBD 4 1K x 16 TBD

4KB Note (1) 1K x 16 2 512 x 36 TBD

2KB Note (1) 512 x 36 Note (2)

Notes: 
1. The processor byte write function is not supported for this configuration.
2. The ISBRAM must be 64 bits wide.
3. For larger ISBRAM and DSBRAM configurations, additional address outputs can be used with increased access times.
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// Digital Clock Manager I/O:          
 input           REFCLK;
 output          CPMC405CLOCK;  //PowerPC405 clock
 output          RST;

//****************************************************************
// Data Side On Chip Memory I/O:
// NOTE: OCM interface uses big endian bit format.
//****************************************************************

 input  [8:29] DSOCMBRAMABUS;      // A29 is LSB      
 input         DSOCMBRAMEN;        // BRAM enable       
 output        BRAMDSOCMCLK;       // DSOCM and DSBRAM clock
 input  [0:31] DSOCMBRAMWRDBUS;    // Bit 31 is the LSB!
 output [0:31] BRAMDSOCMRDDBUS;    // Bit 31 is the LSB!   
 input   [0:3] DSOCMBRAMBYTEWRITE; // Bit 0 controls the MSB byte

//****************************************************************
// FPGA logic interface to "B" side of Dual Port BRAM:
// NOTE: FPGA interface uses little endian bit format.
//****************************************************************

 input   [10:0]  ADDRB; // FPGA address, A0 is LSB
 input           ENB;   // FPGA enable
 input           CLKB;  // FPGA clock
 input   [31:0]  DINB;  // FPGA side data input
 output  [31:0]  DOUTB; // FPGA side data output
 input   [ 3:0]  WEB;   // FPGA write enables

//****************************************************************
// Instruction Side On Chip Memory I/O:          
// NOTE: OCM interface uses big endian bit format.
//****************************************************************

 input  [8:28]  ISOCMBRAMWRABUS;       // BRAM Write Address
 input  [8:28]  ISOCMBRAMRDABUS;       // BRAM Read Address
 input          ISOCMBRAMEN;           // BRAM enable
 output         BRAMISOCMCLK;          // ISOCM and ISBRAM clock
 input  [0:31]  ISOCMBRAMWRDBUS;       // Store data bus to BRAM
 input          ISOCMBRAMODDWRITEEN;   // Odd word write enable
 input          ISOCMBRAMEVENWRITEEN;  // Even word write enable
 output [0:63]  BRAMISOCMRDDBUS;       // Load data bus from BRAM         

// Instantiate OCM Application Example lower level modules here:

wire      OCMCLK;
wire      CPMC405CLOCK;

assign BRAMDSOCMCLK = OCMCLK;
assign BRAMISOCMCLK = OCMCLK;

ocmclk     OCM1  
     (
     .REFCLK            ( REFCLK ), 
     .CLK               ( ), 
     .CLK2X             ( OCMCLK ), 
     .CLKMULT           ( CPMC405CLOCK ), 
     .RST               ( RST ) 
     );

DS_bram_wrap  OCM2 
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     (
     .DSOCMBRAMABUS       ( DSOCMBRAMABUS[19:29] ),    
     .DSOCMBRAMEN         ( DSOCMBRAMEN ),       
     .BRAMDSOCMCLK        ( OCMCLK ),         
     .DSOCMBRAMWRDBUS     ( DSOCMBRAMWRDBUS ),
     .BRAMDSOCMRDDBUS     ( BRAMDSOCMRDDBUS ),
     .DSOCMBRAMBYTEWRITE  ( DSOCMBRAMBYTEWRITE ), 
     .ADDRB               ( ADDRB ),
     .ENB                 ( ENB ),
     .CLKB                ( CLKB ),
     .DINB                ( DINB ), 
     .DOUTB               ( DOUTB ),    
     .WEB                 ( WEB )   
     );

IS_bram_wrap  OCM3
     (
     .ISOCMBRAMRDABUS         ( ISOCMBRAMRDABUS[20:28] ),
     .ISOCMBRAMWRABUS         ( ISOCMBRAMWRABUS[20:28] ),
     .ISOCMBRAMEN             ( ISOCMBRAMEN ),
     .BRAMISOCMCLK            ( OCMCLK ),
     .ISOCMBRAMWRDBUS         ( ISOCMBRAMWRDBUS ),
     .ISOCMBRAMODDWRITEEN     ( ISOCMBRAMODDWRITEEN ),
     .ISOCMBRAMEVENWRITEEN    ( ISOCMBRAMEVENWRITEEN ),
     .BRAMISOCMRDDBUS         ( BRAMISOCMRDDBUS[0:63] )
     );

endmodule // OCM

module ocmclk (REFCLK, CLK, CLK2X, CLKMULT, RST );

   input      REFCLK;      // input clock
   output     CLK;         // buffered 1X clock
   output     CLK2X;       // buffered 2X clock
   output     CLKMULT;     // buffered 4X clock
   output     RST;         // logic RST

   wire          dcm_locked, refclk_in;
   wire          clk_i,     clk2x_i,     clkmult_i; 
   reg           RST;
   reg  [2:0]    startup_counter;

// Clock Generation, REFCLK = CLK, Multiply Clock Up to CPU Freq
   IBUFG  buf0 (.I(REFCLK), .O(refclk_in));

// Set to 4X REFCLK for CPU clock multiplier
   defparam dcm1.CLKFX_MULTIPLY = 12'h004;

DCM dcm1 (.CLKFB     ( CLK ), 
          .CLKIN     ( refclk_in ) , 
          .DSSEN     ( 1'b0 ),
          .PSCLK     ( 1'b0 ), 
          .PSEN      ( 1'b0 ), 
          .PSINCDEC  ( 1'b0 ), 
          .RST       ( 1'b0 ),
          .CLK0      ( clk_i ), 
          .CLK90     ( ), 
          .CLK180    ( ), 
          .CLK270    ( ),
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          .CLK2X     ( clk2x_i ), 
          .CLK2X180  ( ), 
          .CLKDV     ( ), 
          .CLKFX     ( clkmult_i ),
          .CLKFX180  ( ), 
          .LOCKED    ( dcm_locked ), 
          .PSDONE    ( ), 
          .STATUS    ( ) );

BUFG   buf1 (.I ( clk_i ),         .O ( CLK ));
BUFG   buf2 (.I ( clk2x_i ),       .O ( CLK2X ));
BUFG   buf3 (.I ( clkmult_i ),     .O ( CLKMULT ));

// Startup Reset Signal
always @ ( posedge CLK )
  if ( !dcm_locked )
       startup_counter <= 3'b0;
  else if ( startup_counter != 3'b111 )
       startup_counter <= startup_counter + 1;

always @ ( posedge CLK or negedge dcm_locked )
  if ( !dcm_locked )
       RST <= 1'b1;
  else
       RST <= ( startup_counter != 3'b111 );

endmodule  //ocmclk

//*****************************************************
//  Data Side BlockSelect RAM interface module.
//  DSBRAMS are enabled once DSOCMEN is asserted.
//
//*****************************************************

module DS_bram_wrap (DSOCMBRAMABUS,      
                     DSOCMBRAMEN,       
                     BRAMDSOCMCLK,       
                     DSOCMBRAMWRDBUS,    
                     BRAMDSOCMRDDBUS,       
                     DSOCMBRAMBYTEWRITE, 
                     ADDRB,
                     ENB,
                     CLKB,
                     DINB, 
                     DOUTB,    
                     WEB    
                    );

// DSOCM controller interface to "A" side of Dual Port BRAM.
// Processor side supports byte writes to data buffer.

input  [10:0] DSOCMBRAMABUS;       // A00 is the least significant      
input         DSOCMBRAMEN;         // BRAM chip select       
input         BRAMDSOCMCLK;        // DSOCM clock with 180 deg phase shift
input  [31:0] DSOCMBRAMWRDBUS;     // Din0 is the LSB
output [31:0] BRAMDSOCMRDDBUS;     // Dout0 is the LSB    
input   [3:0] DSOCMBRAMBYTEWRITE;  // Bit 3 controls the MSB byte

// FPGA logic interface to "B" side of Dual Port BRAM:
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input   [10:0]  ADDRB;     // FPGA address
input           ENB;       // FPGA enable
input           CLKB;      // FPGA clock
input   [31:0]  DINB;      // FPGA side data input
output  [31:0]  DOUTB;     // FPGA side data output
input   [ 3:0]  WEB;       // FPGA write enables

  RAMB16_S9_S9  u3 ( // PPC405 Byte 0 (MSB) 
                    .WEA     ( DSOCMBRAMBYTEWRITE[3] ), 
                    .ENA     ( DSOCMBRAMEN ), 
                    .SSRA    ( 1'b0 ),             
                    .CLKA    ( BRAMDSOCMCLK ),
                    .ADDRA   ( DSOCMBRAMABUS[10:0] ), 
                    .DIPA    ( 1'b0 ),
                    .DIA     ( DSOCMBRAMWRDBUS[31:24] ), 
                    .DOA     ( BRAMDSOCMRDDBUS[31:24] ),   
                    .DOPA    ( ), 
                    
                    // FPGA I/F Byte 3 (MSB) 
                    .WEB     ( WEB[3] ), 
                    .ENB     ( ENB ), 
                    .SSRB    ( 1'b0 ),                        
                    .CLKB    ( CLKB ),
                    .ADDRB   ( ADDRB[10:0] ), 
                    .DIPB    ( 1'b0 ),
                    .DIB     ( DINB[31:24] ), 
                    .DOB     ( DOUTB[31:24] ),   
                    .DOPB    ( ) 
                    );      

  RAMB16_S9_S9  u2 (// PPC405 Byte 1
                    .WEA     ( DSOCMBRAMBYTEWRITE[2] ), 
                    .ENA     ( DSOCMBRAMEN ), 
                    .SSRA    ( 1'b0 ),                         
                    .CLKA    ( BRAMDSOCMCLK ),
                    .ADDRA   ( DSOCMBRAMABUS[10:0] ), 
                    .DIPA    ( 1'b0 ), 
                    .DIA     ( DSOCMBRAMWRDBUS[23:16]), 
                    .DOA     ( BRAMDSOCMRDDBUS[23:16]), 
                    .DOPA    ( ), 
                    
                    // FPGA I/F Byte 2
                    .WEB     ( WEB[2] ), 
                    .ENB     ( ENB ), 
                    .SSRB    ( 1'b0 ),                        
                    .CLKB    ( CLKB ),
                    .ADDRB   ( ADDRB[10:0] ), 
                    .DIPB    ( 1'b0 ), 
                    .DIB     ( DINB[23:16] ), 
                    .DOB     ( DOUTB[23:16] ),   
                    .DOPB    ( ) 
                    );      

  RAMB16_S9_S9  u1 (// PPC405 Byte 2
                    .WEA     ( DSOCMBRAMBYTEWRITE[1] ), 
                    .ENA     ( DSOCMBRAMEN ), 
                    .SSRA    ( 1'b0 ), 
                    .CLKA    ( BRAMDSOCMCLK ),
                    .ADDRA   ( DSOCMBRAMABUS[10:0] ), 
                    .DIPA    ( 1'b0 ), 
                    .DIA     ( DSOCMBRAMWRDBUS[15:8] ), 
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                    .DOA     ( BRAMDSOCMRDDBUS[15:8] ),   
                    .DOPA    ( ),
                    
                    // FPGA I/F Byte 1 
                    .WEB     ( WEB[1] ), 
                    .ENB     ( ENB ), 
                    .SSRB    ( 1'b0 ),                        
                    .CLKB    ( CLKB ),
                    .ADDRB   ( ADDRB[10:0] ), 
                    .DIPB    ( 1'b0 ), 
                    .DIB     ( DINB[15:8] ), 
                    .DOB     ( DOUTB[15:8] ),   
                    .DOPB    ( ) 
                    );      

  RAMB16_S9_S9  u0 (// PPC405 Byte 3 (LSB)
                    .WEA     ( DSOCMBRAMBYTEWRITE[0] ), 
                    .ENA     ( DSOCMBRAMEN ), 
                    .SSRA    ( 1'b0 ), 
                    .CLKA    ( BRAMDSOCMCLK ),
                    .ADDRA   ( DSOCMBRAMABUS[10:0] ), 
                    .DIPA    ( 1'b0 ), 
                    .DIA     ( DSOCMBRAMWRDBUS[7:0] ), 
                    .DOA     ( BRAMDSOCMRDDBUS[7:0] ),   
                    .DOPA    ( ),
                     
                    // FPGA I/F Byte 0 (LSB)
                    .WEB     ( WEB[0] ), 
                    .ENB     ( ENB ), 
                    .SSRB    ( 1'b0 ),                        
                    .CLKB    ( CLKB ),
                    .ADDRB   ( ADDRB[10:0] ), 
                    .DIPB    ( 1'b0 ), 
                    .DIB     ( DINB[7:0] ), 
                    .DOB     ( DOUTB[7:0] ),     
                    .DOPB    ( ) 
                    );      

endmodule  //DS_bram_wrap

//*************************************************************
//  Instruction Side BRAM interface module.
//  ISBRAMS are enabled only when ISOCMBRAMEN is asserted.
//*************************************************************

module IS_bram_wrap 
     (
     ISOCMBRAMRDABUS,
     ISOCMBRAMWRABUS,
     ISOCMBRAMEN,
     BRAMISOCMCLK,
     ISOCMBRAMWRDBUS,
     ISOCMBRAMODDWRITEEN,
     ISOCMBRAMEVENWRITEEN,
     BRAMISOCMRDDBUS
     );

 input  [8:0]   ISOCMBRAMWRABUS;       // BRAM Write Address
 input  [8:0]   ISOCMBRAMRDABUS;       // BRAM Read Address
 input          ISOCMBRAMEN;           // BRAM enable
 input          BRAMISOCMCLK;          // BRAM clock
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 input  [31:0]  ISOCMBRAMWRDBUS;       // Store data bus to BRAM
 input          ISOCMBRAMODDWRITEEN;   // BRAM Odd word write enable
 input          ISOCMBRAMEVENWRITEEN;  // BRAM Even word write enable
 output [0:63]  BRAMISOCMRDDBUS;       // Load data bus from BRAM
 

  RAMB16_S36_S36  u2 (.DOA     ( BRAMISOCMRDDBUS[32:63] ),
                      .DOB     ( ),
                      .DOPA    ( ),
                      .DOPB    ( ),
                      .ADDRA   ( ISOCMBRAMRDABUS[8:0] ),
                      .CLKA    ( BRAMISOCMCLK ),
                      .DIA     ( ISOCMBRAMWRDBUS[31:0] ),
                      .DIPA    ( 4'b0000 ),
                      .ENA     ( ISOCMBRAMEN ),
                      .SSRA    ( 1'b0 ),
                      .WEA     ( 1'b0 ),
                      .ADDRB   ( ISOCMBRAMWRABUS[8:0] ),
                      .CLKB    ( BRAMISOCMCLK ),
                      .DIB     ( ISOCMBRAMWRDBUS[31:0] ),
                      .DIPB    ( 4'b0000 ),
                      .ENB     ( ISOCMBRAMEN ),
                      .SSRB    ( 1'b0 ), 
                      .WEB     ( ISOCMBRAMODDWRITEEN )
                     );
                
  RAMB16_S36_S36  u1 (.DOA     ( BRAMISOCMRDDBUS[0:31] ),
                      .DOB     ( ),
                      .DOPA    ( ),
                      .DOPB    ( ),
                      .ADDRA   ( ISOCMBRAMRDABUS[8:0] ),
                      .CLKA    ( BRAMISOCMCLK ),
                      .DIA     ( ISOCMBRAMWRDBUS[31:0] ),
                      .DIPA    ( 4'b0000 ),
                      .ENA     ( ISOCMBRAMEN ),
                      .SSRA    ( 1'b0 ),
                      .WEA     ( 1'b0 ),
                      .ADDRB   ( ISOCMBRAMWRABUS[8:0] ),
                      .CLKB    ( BRAMISOCMCLK ),
                      .DIB     ( ISOCMBRAMWRDBUS[31:0] ),
                      .DIPB    ( 4'b0000 ),
                      .ENB     ( ISOCMBRAMEN ),
                      .SSRB    ( 1'b0 ), 
                      .WEB     ( ISOCMBRAMEVENWRITEEN )
                     );

endmodule  //IS_bram_wrap
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Appendix A

RISCWatch and RISCTrace Interfaces

This appendix summarizes the interface requirements between the PPC405x3 and the 
RISCWatch and RISCTrace tools.

The requirement for separate JTAG and trace connectors is being replaced with a single 
Mictor connector to improve the electrical and mechanical characteristics of the interface. 
Pin assignments for the Mictor connector are included in the signal-mapping tables.

RISCWatch Interface
The RISCWatch tool communicates with the PPC405x3 using the JTAG and debug 
interfaces. It requires a 16-pin, male 2x8 header connector located on the target 
development board. The layout of the connector is shown in Figure A-1 and the signals are 
described in Table A-1. A mapping of PPC405x3 to RISCWatch signals is provided in 
Table A-2. At the board level, the connector should be placed as close as possible to the 
processor chip to ensure signal integrity. Position 14 is used as a connection key and does 
not contain a pin.

Figure A-1: JTAG-Connector Physical Layout
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Table A-1: JTAG Connector Signals for RISCWatch

Pin
RISCWatch

Description
I/O Signal Name

1 Input TDO JTAG test-data out.

2 No Connect Reserved

3 Output TDI1 JTAG test-data in.

4 Output TRST JTAG test reset.

5 No Connect Reserved

6 Output +Power2 Processor power OK

7 Output TCK3 JTAG test clock.

8 No Connect Reserved

9 Output TMS JTAG test-mode select.

10 No Connect Reserved

11 Output HALT Processor debug halt mode.

12 No Connect Reserved

13 No Connect Reserved

14 KEY No pin should be placed at this position.

15 No Connect Reserved

16 GND Ground

Notes: 
1. A 10KΩ pull-up resistor should be connected to this signal to reduce chip-power consumption. The pull-up 

resistor is not required.
2. The +POWER signal, is provided by the board, and indicates whether the processor is operating. This 

signal does not supply power to the debug tools or to the processor. A series resistor (1KΩ or less) should be 
used to provide short-circuit current-limiting protection.

3. A 10KΩ pull-up resistor must be connected to these signals to ensure proper chip operation when these 
inputs are not used.

Table A-2: PPC405x3 to RISCWatch Signal Mapping

PPC405x3 RISCWatch JTAG
Connector

Pin

Mictor
Connector

PinSignal I/O Signal I/O

C405JTGTDO1 Output TDO Input 1 11

JTGC405TDI Input TDI Output 3 19

JTGC405TRSTNEG Input TRST Output 4 21

JTGC405TCK Input TCK Output 7 15

JTGC405TMS Input TMS Output 9 17

DBGC405DEBUGHALT2 Input HALT Output 11 7

Notes: 
1. This signal must be driven by a tri-state device using C405JTGTDOEN as the enable signal.

1. This signal must be inverted between the PPC405x3 and the RISCWatch.
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RISCTrace Interface
The RISCTrace tool communicates with the PPC405x3 using the trace interface. It requires 
a 20-pin, male 2x10 header connector (3M 3592-6002 or equivalent) located on the target 
development board. The layout of the connector is shown in Figure A-2 and the signals are 
described in Table A-3. A mapping of PPC405x3 to RISCTrace signals is provided in 
Table A-4. At the board level, the connector should be placed as close as possible to the 
processor chip to ensure signal integrity. An index at pin one and a key notch on the same 
side of the connector as the index are required.

Figure A-2: Trace-Connector Physical Layout

Table A-3: Trace Connector Signals for RISCTrace

Pin
RISCTrace

Description
I/O Signal Name

1 No Connect Reserved

2 No Connect Reserved

3 Output TrcClk Trace cycle.

4 No Connect Reserved

5 No Connect Reserved

6 No Connect Reserved

7 No Connect Reserved

8 No Connect Reserved

9 No Connect Reserved

10 No Connect Reserved

11 No Connect Reserved

12 Output TS1O Execution status.

13 Output TS2O Execution status.

14 Output TS1E Execution status.
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15 Output TS2E Execution status.

16 Output TS3 Trace status.

17 Output TS4 Trace status.

18 Output TS5 Trace status.

19 Output TS6 Trace status.

20 GND Ground

Table A-4: PPC405x3 to RISCTrace Signal Mapping

PPC405x3 RISCTrace Trace
Connector

Pin

Mictor
Connector

PinSignal I/O Signal I/O

C405TRCCYCLE Output TrcClk Input 3 6

C405TRCODDEXECUTIONSTATUS[0] Output TS1O Input 12 24

C405TRCODDEXECUTIONSTATUS[1] Output TS2O Input 13 26

C405TRCEVENEXECUTIONSTATUS[0] Output TS1E Input 14 28

C405TRCEVENEXECUTIONSTATUS[1] Output TS2E Input 15 30

C405TRCTRACESTATUS[0] Output TS3 Input 16 32

C405TRCTRACESTATUS[1] Output TS4 Input 17 34

C405TRCTRACESTATUS[2] Output TS5 Input 18 36

C405TRCTRACESTATUS[3] Output TS6 Input 19 38

Table A-3: Trace Connector Signals for RISCTrace (Continued)

Pin
RISCTrace

Description
I/O Signal Name
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Appendix B

Signal Summary

Table B-1 lists the PPC405x3 interface signals in alphabetical order. A cross reference is 
provided to each signal description. The signal naming conventions used are described on 
page 896.
 

Table B-1: PPC405x3 Interface Signals in Alphabetical Order

Signal
I/O

Type
Interface If Unused Function

C405CPMCORESLEEPREQ O CPM, page 899 No Connect Indicates the core is requesting to be put into sleep 
mode.

C405CPMMSRCE O CPM, page 899 No Connect Indicates the value of MSR[CE].

C405CPMMSREE O CPM, page 899 No Connect Indicates the value of MSR[EE].

C405CPMTIMERIRQ O CPM, page 899 No Connect Indicates a timer-interrupt request occurred.

C405CPMTIMERRESETREQ O CPM, page 899 No Connect Indicates a watchdog-timer reset request occurred.

C405DBGMSRWE O Debug, page 977 No Connect Indicates the value of MSR[WE].

C405DBGSTOPACK O Debug, page 977 No Connect Indicates the PPC405x3 is in debug halt mode.

C405DBGWBCOMPLETE O Debug, page 976 No Connect Indicates the current instruction in the PPC405x3 
writeback pipeline stage is completing.

C405DBGWBFULL O Debug, page 976 No Connect Indicates the PPC405x3 writeback pipeline stage is 
full.

C405DBGWBIAR[0:29] O Debug, page 976 No Connect The address of the current instruction in the 
PPC405x3 writeback pipeline stage.

C405DCRABUS[0:9] O DCR, page 962 No Connect Specifies the address of the DCR access request. 

C405DCRDBUSOUT[0:31] O DCR, page 962 No Connect
or attach to
input bus

The 32-bit DCR write-data bus.

C405DCRREAD O DCR, page 961 No Connect Indicates a DCR read request occurred.

C405DCRWRITE O DCR, page 961 No Connect Indicates a DCR write request occurred.

C405JTGCAPTUREDR O JTAG, page 973 No Connect Indicates the TAP controller is in the capture-DR 
state.

C405JTGEXTEST O JTAG, page 973 No Connect Indicates the JTAG EXTEST instruction is selected.

C405JTGPGMOUT O JTAG, page 974 No Connect Indicates the state of a general purpose program bit in 
the JTAG debug control register (JDCR).

C405JTGSHIFTDR O JTAG, page 973 No Connect Indicates the TAP controller is in the shift-DR state.

C405JTGTDO O JTAG, page 973 No Connect JTAG TDO (test-data out).

C405JTGTDOEN O JTAG, page 973 No Connect Indicates the JTAG TDO signal is enabled.
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C405JTGUPDATEDR O JTAG, page 974 No Connect Indicates the TAP controller is in the update-DR state.

C405PLBDCUABORT O DSPLB, 
page 937

No Connect Indicates the DCU is aborting an unacknowledged 
data-access request.

C405PLBDCUABUS[0:31] O DSPLB, 
page 934

No Connect Specifies the memory address of the data-access 
request.

C405PLBDCUBE[0:7] O DSPLB, 
page 936

No Connect Specifies which bytes are transferred during single-
word transfers.

C405PLBDCUCACHEABLE O DSPLB, 
page 934

No Connect Indicates the value of the cacheability storage 
attribute for the target address.

C405PLBDCUGUARDED O DSPLB, 
page 935

No Connect Indicates the value of the guarded storage attribute 
for the target address.

C405PLBDCUPRIORITY[0:1] O DSPLB, 
page 937

No Connect Indicates the priority of the data-access request.

C405PLBDCUREQUEST O DSPLB, 
page 933

No Connect Indicates the DCU is making a data-access request.

C405PLBDCURNW O DSPLB, 
page 934

No Connect Specifies whether the data-access request is a read or 
a write.

C405PLBDCUSIZE2 O DSPLB, 
page 934

No Connect Specifies a single word or eight-word transfer size.

C405PLBDCUU0ATTR O DSPLB, 
page 935

No Connect Indicates the value of the user-defined storage 
attribute for the target address.

C405PLBDCUWRDBUS[0:63] O DSPLB, 
page 938

No Connect The DCU write-data bus used to transfer data from 
the DCU to the PLB slave.

C405PLBDCUWRITETHRU O DSPLB, 
page 935

No Connect Indicates the value of the write-through storage 
attribute for the target address.

C405PLBICUABORT O ISPLB, page 913 No Connect Indicates the ICU is aborting an unacknowledged 
fetch request.

C405PLBICUABUS[0:29] O ISPLB, page 911 No Connect Specifies the memory address of the instruction-fetch 
request. Bits 30:31 of the 32-bit address are assumed 
to be zero.

C405PLBICUCACHEABLE O ISPLB, page 912 No Connect Indicates the value of the cacheability storage 
attribute for the target address.

C405PLBICUPRIORITY[0:1] O ISPLB, page 913 No Connect Indicates the priority of the ICU fetch request.

C405PLBICUREQUEST O ISPLB, page 911 No Connect Indicates the ICU is making an instruction-fetch 
request.

C405PLBICUSIZE[2:3] O ISPLB, page 911 No Connect Specifies a four word or eight word line-transfer size.

C405PLBICUU0ATTR O ISPLB, page 912 No Connect Indicates the value of the user-defined storage 
attribute for the target address.

C405RSTCHIPRESETREQ O Reset, page 905 Required Indicates a chip-reset request occurred.

C405RSTCORERESETREQ O Reset, page 904 Required Indicates a core-reset request occurred.

Table B-1: PPC405x3 Interface Signals in Alphabetical Order (Continued)

Signal
I/O

Type
Interface If Unused Function
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C405RSTSYSRESETREQ O Reset, page 905 Required Indicates a system-reset request occurred.

C405TRCCYCLE O Trace, page 979 No Connect Specifies the trace cycle.

C405TRCEVENEXECUTIONSTATUS[0:1] O Trace, page 980 No Connect Specifies the execution status collected during the 
first of two processor cycles.

C405TRCODDEXECUTIONSTATUS[0:1] O Trace, page 980 No Connect Specifies the execution status collected during the 
second of two processor cycles.

C405TRCTRACESTATUS[0:3] O Trace, page 980 No Connect Specifies the trace status.

C405TRCTRIGGEREVENTOUT O Trace, page 979 Wrap to 
Trigger 

Event In

Indicates a trigger event occurred.

C405TRCTRIGGEREVENTTYPE[0:10] O Trace, page 979 No Connect Specifies which debug event caused the trigger event.

C405XXXMACHINECHECK O Control, 
page 902

No Connect Indicates a machine-check error has been detected by 
the PPC405x3.

CPMC405CLOCK I CPM, page 898 Required PPC405x3 clock input (for all non-JTAG logic, 
including timers).

CPMC405CORECLKINACTIVE I CPM, page 898 0 Indicates the CPM logic disabled the clocks to the 
core.

CPMC405CPUCLKEN I CPM, page 898 1 Enables the core clock zone.

CPMC405JTAGCLKEN I CPM, page 898 1 Enables the JTAG clock zone.

CPMC405TIMERCLKEN I CPM, page 898 1 Enables the timer clock zone.

CPMC405TIMERTICK I CPM, page 899 1 Increments or decrements the PPC405x3 timers every 
time it is active with the CPMC405CLOCK.

DBGC405DEBUGHALT I Debug, page 976 0 Indicates the external debug logic is placing the 
processor in debug halt mode.

DBGC405EXTBUSHOLDACK I Debug, page 975 0 Indicates the bus controller has given control of the 
bus to an external master.

DBGC405UNCONDDEBUGEVENT I Debug, page 976 0 Indicates the external debug logic is causing an 
unconditional debug event.

DCRC405ACK I DCR, page 962 0 Indicates a DCR access has been completed by a 
peripheral. 

DCRC405DBUSIN[0:31] I DCR, page 962 0x0000_0000
or attach to
output bus

The 32-bit DCR read-data bus.

EICC405CRITINPUTIRQ I EIC, page 969 0 Indicates an external critical interrupt occurred.

EICC405EXTINPUTIRQ I EIC, page 969 0 Indicates an external noncritical interrupt occurred.

JTGC405BNDSCANTDO I JTAG, page 973 0 JTAG boundary scan input from the previous 
boundary scan element TDO output.

JTGC405TCK I JTAG, page 972 See IEEE 
1149.1

 JTAG TCK (test clock).

JTGC405TDI I JTAG, page 972 1 JTAG TDI (test-data in).

JTGC405TMS I JTAG, page 972 1 JTAG TMS (test-mode select).

JTGC405TRSTNEG I Reset, page 906 Required Performs a JTAG test reset (TRST).

Table B-1: PPC405x3 Interface Signals in Alphabetical Order (Continued)

Signal
I/O

Type
Interface If Unused Function
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JTGC405TRSTNEG I JTAG, page 973 Required JTAG TRST (test reset).

MCBCPUCLKEN I FPGA, page 981 1 Indicates the PPC405x3 clock enable should follow 
GWE during a partial reconfiguration.

MCBJTAGEN I FPGA, page 981 1 Indicates the JTAG clock enable should follow GWE 
during a partial reconfiguration.

MCBTIMEREN I FPGA, page 981 1 Indicates the timer clock enable should follow GWE 
during a partial reconfiguration.

MCPPCRST I FPGA, page 981 1 Indicates the PPC405x3 should be reset when GSR is 
asserted during a partial reconfiguration.

PLBC405DCUADDRACK I DSPLB, 
page 939

0 Indicates a PLB slave acknowledges the current data-
access request.

PLBC405DCUBUSY I DSPLB, 
page 942

0 Indicates the PLB slave is busy performing an 
operation requested by the DCU.

PLBC405DCUERR I DSPLB, 
page 943

0 Indicates an error was detected by the PLB slave 
during the transfer of data to or from the DCU.

PLBC405DCURDDACK I DSPLB, 
page 941

0 Indicates the DCU read-data bus contains valid data 
for transfer to the DCU.

PLBC405DCURDDBUS[0:63] I DSPLB, 
page 941

0x0000_0000
_0000_0000

The DCU read-data bus used to transfer data from the 
PLB slave to the DCU.

PLBC405DCURDWDADDR[1:3] I DSPLB, 
page 941

0b000 Indicates which word or doubleword of an eight-
word line transfer is present on the DCU read-data 
bus.

PLBC405DCUSSIZE1 I DSPLB, 
page 940

0 Specifies the bus width (size) of the PLB slave that 
accepted the request.

PLBC405DCUWRDACK I DSPLB, 
page 942

0 Indicates the data on the DCU write-data bus is being 
accepted by the PLB slave.

PLBC405ICUADDRACK I ISPLB, page 913 0 Indicates a PLB slave acknowledges the current ICU 
fetch request.

PLBC405ICUBUSY I ISPLB, page 916 0 Indicates the PLB slave is busy performing an 
operation requested by the ICU.

PLBC405ICUERR I ISPLB, page 917 0 Indicates an error was detected by the PLB slave 
during the transfer of instructions to the ICU.

PLBC405ICURDDACK I ISPLB, page 914 0 Indicates the ICU read-data bus contains valid 
instructions for transfer to the ICU.

PLBC405ICURDDBUS[0:63] I ISPLB, page 915 0x0000_0000
_0000_0000

The ICU read-data bus used to transfer instructions 
from the PLB slave to the ICU.

PLBC405ICURDWDADDR[1:3] I ISPLB, page 915 0b000 Indicates which word or doubleword of a four-word 
or eight-word line transfer is present on the ICU read-
data bus.

PLBC405ICUSSIZE1 I ISPLB, page 914 0 Specifies the bus width (size) of the PLB slave that 
accepted the request.

PLBCLK I FPGA, page 982 Required PLB clock.

RSTC405RESETCHIP I Reset, page 905 Required Indicates a chip-reset occurred.

RSTC405RESETCORE I Reset, page 905 Required Resets the PPC405x3 core logic, data cache, 
instruction cache, and the on-chip memory controller 
(OCM).

Table B-1: PPC405x3 Interface Signals in Alphabetical Order (Continued)

Signal
I/O

Type
Interface If Unused Function
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RSTC405RESETSYS I Reset, page 906 Required Indicates a system-reset occurred. Resets the logic in 
the PPC405x3 JTAG unit.

TIEC405DETERMINISTICMULT I Control, 
page 901

Required Specifies whether all multiply operations complete in 
a fixed number of cycles or have an early-out 
capability. 

TIEC405DISOPERANDFWD I Control, 
page 902

Required Disables operand forwarding for load instructions.

TIEC405MMUEN I Control, 
page 901

Required Enables the memory-management unit (MMU)

TRCC405TRACEDISABLE I Trace, page 980 0 Disables trace collection and broadcast.

TRCC405TRIGGEREVENTIN I Trace, page 980 Wrap to 
Trigger 

Event Out

Indicates a trigger event occurred and that trace 
status is to be generated.

Table B-1: PPC405x3 Interface Signals in Alphabetical Order (Continued)

Signal
I/O

Type
Interface If Unused Function
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A
abort

data-side PLB 937, 957
instruction-side PLB 913, 928

address acknowledge
data-side PLB 939
instruction-side PLB 913

address bus
data-side PLB 934
DCR 962
instruction-side PLB 911

address pipelining
cacheable fetch 922, 923
cacheable reads 946
data 931
fetch requests 908
non-cacheable fetch 925
reads and writes 947, 952

addressing modes 884

B
big endian, definition of 885
boundary scan 973
bus-interface unit 918, 944
busy

data-side PLB 942
instruction-side PLB 916

bypass
data 930
instruction 908

byte enables 936

C
cacheability

data-side PLB 934
instruction-side PLB 912

CCR0
fetch without allocate 908, 912
load without allocate 930
load word as line 930
non-cacheable request size 908, 915
store without allocate 930

chip reset 903, 905
request 905

clock
PLB 982
PPC405 898

clock and power management
See CPM interface.

clock zone 897
condition register

See CR.

core clock zone 897, 898
core reset 903, 905

request 904
core-configuration register

See CCR0.
CPM interface 897

signals 897
CPU control

interface 901
CR 887
critical interrupt request 969

D
data registers, JTAG 970
data-cache unit

See DCU.
data-side PLB interface 929

See also read request.
See also write request.
abort 937
address acknowledge 939
address bus 934
busy 942
byte enables 936
cacheability 934
error 943
guarded storage 935
priority 937
read acknowledge 941
read not write 934
read-data bus 941
request 933
signals 931
slave size 940
timing diagrams 944
transfer order 941
transfer size 934
U0 attribute 935
write acknowledge 942
write-data bus 938
write-through 935

DCR interface 887, 958
address bus 962
chain implementation 958
description of 891
read request 961
read-data bus 962
request acknowledge 962
signals 960
write request 961
write-data bus 962

DCU
description of 890
fill buffer 930

debug halt mode 976
debug interface 975

bus hold acknowledge 975

debug halt 976
debug halt acknowledge 977
signals 975
unconditional debug event 976
wait-state enable 977
writeback complete 976
writeback full 976
writeback instruction address 976

debug modes 891
device-control register

See DCR interface.
DSPLB

See data-side PLB.

E
EIC interface 968

signals 968
error

data-side PLB 943
instruction-side PLB 917

exceptions
critical 889, 968
noncritical 889, 968

external interrupt controller
See EIC interface.

F
fetch request 907

address pipelining 908
cacheable 908
non-cacheable request size 908
prefetching 908
without allocate 908

FIT
description of 891
timer exception 899
update frequency 899

fixed-interval timer
See FIT.

G
general-purpose register

See GPR.
global clock gating 897
global local clock enables 897
global set reset 981
global write enable

effect on core clock zone 981
effect on JTAG clock zone 981
effect on timer clock zone 981

GPR 886, 888
guarded storage

Index
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data 931
data-side PLB 935
instruction 909

I
ICU

description of 890
fill buffer 908
line buffer 890

instruction register, JTAG 970
instruction-cache unit

See ICU.
instruction-side PLB interface 907

See also fetch request.
abort 913
address acknowledge 913
address bus 911
busy 916
cacheability 912
error 917
fetch request 907, 911
priority 913
read acknowledge 914
read-data bus 915
signals 909
slave size 914
timing diagrams 918
transfer order 915
transfer size 911
U0 attribute 912

interfaces
CPM 897
CPU control 901
data-side PLB 929
DCR 958
debug 975
EIC 968
instruction-side PLB 907
JTAG 970
trace 978

ISPLB
See instruction-side PLB.

J
JTAG

test clock 970
test-access port 970
test-data in 970
test-data out 970
test-mode select 970

JTAG clock zone 897, 898
JTAG interface 970

boundary scan 973
capture-DR state 973
debug control 974
external test instruction 973
shift-DR state 973
signals 971
test clock 972
test reset 906, 973
test-data in 972
test-data out 973

test-data out enable 973
test-mode select 972
update-DR state 974

L
little endian, definition of 885

M
MAC 889

early out 901
machine check 902, 917, 943
machine-state register

See MSR.
memory-management unit

See MMU.
MMU 889

enable and disable 901
most recent reset 903
MSR 887

critical-interrupt enable 899, 968
external-interrupt enable 899, 968
wait-state enable 899, 977

multiply accumulate
See MAC.

multiply, early out 901

N
noncritical interrupt request 969

O
OEA

See PowerPC.
operand forwarding, disabling 902

P
performance summary 892
PIT

description of 890
timer exception 899
update frequency 899

PLB
description of 891
priority, data-side 937
priority, instruction-side 913

PLB clock 982
PLB slave

aborting requests 913, 938
attaching to 32-bit slave 915, 936
busy 916, 942
detecting errors 917, 943

power-on reset 903
PowerPC

architecture 879

embedded-environment 
architecture 879

OEA 880, 881
UISA 880
VEA 880

PPC405 887 to 892
caches 890
central-processing unit 888
clock 898
debug resources 891
exception-handling logic 889
external interfaces 891
memory-management unit 889
performance 892
software features 882
timers 890

prefetch 908
privileged mode, definition of 884
processor block, definition of 879
processor local bus

See PLB.
processor reset

See core reset.
programmable-interval timer

See PIT.

R
read acknowledge

data-side PLB 941
instruction-side PLB 914

read not write 934
read request 929

address pipelining 931
cacheable 930
DCR 961
unaligned operands 931
without allocate 930

read-data bus
data-side PLB 941
DCR 962
instruction-side PLB 915

real mode, definition of 884
registers

supported by PPC405 885
request

chip reset 905
core reset 904
critical interrupt 969
data-side PLB 933
instruction-side PLB 911
noncritical interrupt 969
system reset 905

reset
chip 903, 905
core or processor 903, 904, 905
global set reset 981
interface requirements 903
system 903, 905, 906
watchdog time-out 899
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S
signal name prefixes 896
signal summary 1007
signals

CPM interface 897
CPU control interface 901
data-side PLB interface 931
DCR interface 960
debug interface 975
EIC interface 968
instruction-side PLB interface 909
JTAG interface 971
naming conventions 896
reset interface 904
summary 1007
trace interface 978

slave size
data-side PLB 940
instruction-side PLB 914

sleep mode 898
request 899
waking 897

special-purpose register
See SPR.

split data bus 929
overlapped operations 952, 954

SPR 887
storage attributes 889
system reset 903, 906

request 905

T
TAP controller, JTAG 970
timer clock zone 897, 898
timer exception 899
TLB 889
trace interface 978

disable 980
even execution status 980
odd execution status 980
signals 978
trace cycle 979
trace status 980
trigger event 979
trigger event in 980
trigger event type 979

transfer order
data-side PLB 941
instruction-side PLB 915

transfer size
data-side PLB 934
instruction-side PLB 911

translation look-aside buffer
See TLB.

trigger events 978

U
U0 attribute

data-side PLB 935
instruction-side PLB 912

UISA
See PowerPC.

unaligned operands 931
unconditional debug event 976
user mode, definition of 884

V
VEA 881

See PowerPC.
virtual mode, definition of 884

W
watchdog timer

See WDT.
WDT

description of 891
reset request 899
timer exception 899
update frequency 899

write acknowledge 942
write request 929

address pipelining 931
DCR 961
non-cacheable 930
unaligned operands 931
without allocate 930

write-data bus
data-side PLB 938
DCR 962

write-through cacheability 935
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Chapter 1

Introduction

Rocket I/O Features
The Rocket I/O™ transceiver’s flexible, programmable features allow a multi-gigabit 
serial transceiver to be easily integrated into any Virtex-II Pro design:

• Variable speed full-duplex transceiver, allowing 500 Mb/s to 3.125 Gb/s baud 
transfer rates 

• Monolithic clock synthesis and clock recovery system, eliminating the need for 
external components

• Automatic lock-to-reference function
• Serial output differential swing can be programmed at five levels from 800 mV to 

1600 mV (peak-peak), allowing compatibility with other serial system voltage levels.
• Four levels of programmable pre-emphasis
• AC and DC coupling
• Programmable on-chip termination of 50Ω or 75Ω (eliminating the need for external 

termination resistors)
• Serial and parallel TX to RX internal loopback modes for testing operability
• Programmable comma detection to allow for any protocol and detection of any 10-bit 

character.

In This User Guide
The Rocket I/O Transceiver User Guide contains these sections:

• Chapter 1, Introduction — This chapter.
• Chapter 2, Rocket I/O™ Transceiver Overview — An overview of the transceiver’s 

capabilities and how it works.

IMPORTANT NOTE:

This document assumes use of ISE v4.2.x. If running ISE v4.1.x, the following 
modifications must be made:

1. Remove the port ENMCOMMAALIGN and replace its function by adding the 
attribute MCOMMA_ALIGN.

2. Remove the port ENPCOMMAALIGN and replace its function by adding the 
attribute PCOMMA_ALIGN.

3. Where a High is indicated for a removed port, set the corresponding attribute 
to TRUE; where a Low is indicated, set the corresponding attribute to FALSE.

http://www.xilinx.com
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• Chapter 3, Digital Design Considerations — Ports and attributes for the six provided 
communications protocol primitives; VHDL/Verilog code examples for clocking and 
reset schemes; transceiver instantiation; 8B/10B encoding; CRC; channel bonding.

• Chapter 4, Analog Design Considerations — Rocket I/O serial overview; pre-
emphasis; jitter; clock/data recovery; PCB design requirements.

• Chapter 5, Simulation and Implementation — Simulation models; implementation 
tools; debugging and diagnostics.

• Appendix A, Rocket I/O™ Cell Models — Verilog module declarations associated 
with each of the sixteen Rocket I/O communication standard implementations.

Naming Conventions
Input and output ports of the Rocket I/O transceiver primitives are denoted in upper-case 
letters. Attributes of the Rocket I/O transceiver are denoted in upper-case letters with 
underscores. Trailing numbers in primitive names denote the byte width of the data path. 
These values are preset and not modifiable. When assumed to be the same frequency, 
RXUSRCLK and TXUSRCLK are referred to as USRCLK and can be used interchangeably. 
This also holds true for RXUSRCLK2, TXUSRCLK2, and USRCLK2.

Comma Definition

A comma is a “K” character used by the transceiver to align the serial data on a 
byte/half-word boundary (depending on the protocol used), so that the serial data is 
correctly decoded into parallel data.

For More Information
For a complete menu of online information resources available on the Xilinx website, visit 
http://www.xilinx.com/virtex2pro/.

For a comprehensive listing of available tutorials and resources on network technologies 
and communications protocols, visit http://www.iol.unh.edu/training/. 

Further Reading 
The Virtex-II Pro™ Developer's Kit contains a wealth of valuable information that will 
assist you in your design efforts.  The documentation contained within the eight volumes 
is organized to assist you in quickly finding relevant materials.  To obtain the most recent 
revision of this documentation, please see 
http://support.xilinx.com/xlnx/xil_tt_product.jsp?sProduct=Virtex-II+Pro. 

Documentation Provided by Xilinx
Virtex-II Pro™ Platform FPGA Handbook

Virtex-II Pro™ Platform FPGA Developer’s Kit Documentation:

Volume 1, Advance Product Specification 

Volume 2, PowerPC® 405 Processor 

Volume 3, Rocket I/O™ Transceiver User Guide 

Volume 4, Design Flow 

Volume 5, Software Development Tools 

Volume 6, Reference Systems 

Volume 7, Hardware IP Specifications 

Volume 8, Software IP and Applications 

http://www.xilinx.com/virtex2pro/
http://www.iol.unh.edu/training/
http://www.xilinx.com
http://support.xilinx.com/xlnx/xil_tt_product.jsp?sProduct=Virtex-II+Pro
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IBM® CoreConnect™ Documentation 
The Virtex-II Pro Developer's Kit integrates seamlessly with the IBM CoreConnect Toolkit. 
This toolkit is not included with the Developer ’s Kit, but is required if bus functional 
simulation is desired. The toolkit provides a number of features which enhance design 
productivity and allow you to get the most from the Developer's Kit.  To obtain the toolkit, 
you must be a licensee of the IBM CoreConnect Bus Architecture.  Licensing CoreConnect 
provides access to a wealth of documentation, Bus Functional Models, Hardware IP, and 
the toolkit. 

Xilinx provides a Web-based licensing mechanism that allows you to obtain the 
CoreConnect toolkit from our website.  To license CoreConnect, use an Internet browser to 
access http://www.xilinx.com/ipcenter/processor_central/register_coreconnect.htm.  
Once your request has been approved (typically within 24 hours), you will receive an 
e-mail granting access to a protected website.  You may then download the toolkit. 

If you prefer, you can also license CoreConnect directly from IBM. 

If you would like further information on CoreConnect Bus Architecture, please see IBM's 
CoreConnect website at http://www.ibm.com/chips/products/coreconnect. 

Once you have licensed the CoreConnect toolkit, and installed it with the Developer's Kit, 
the following documents will be available to you in the following locations: 

IBM CoreConnect Bus Architecture Specifications 
IBM CoreConnect Processor Local Bus (PLB) Architecture Specification 

see $CORECONNECT/published/corecon/64bitPlbBus.pdf 

IBM CoreConnect On-chip Peripheral Bus (OPB) Architecture Specification 
see $CORECONNECT/published/corecon/OpbBus.pdf 

IBM CoreConnect Device Control Register (DCR) Bus Architecture Specification 
see $CORECONNECT/published/corecon/DcrBus.pdf 

IBM CoreConnect Toolkit Documentation
PLB Bus Functional Model Toolkit - User's Manual 

see $CORECONNECT/published/corecon/PlbToolkit.pdf 

OPB Bus Functional Model Toolkit - User's Manual 
see $CORECONNECT/published/corecon/OpbToolkit.pdf 

DCR Bus Functional Model Toolkit - User's Manual 
see $CORECONNECT/published/corecon/DcrToolkit.pdf 

CoreConnect Test Generator - User's Manual 
see $CORECONNECT/published/corecon/ctg.pdf 

Note:  $CORECONNECT is an environment variable that is created when installing the 
Developer's Kit or CoreConnect Toolkit. 

Software Development Documentation 
There are many sources of documentation available for those who wish to learn more 
about Software Development.  It is recommended that a web search be conducted using a 
favorite search engine for keywords such a "PowerPC+Software+Devlopment".  
Alternatively, a technical bookstore should be able to provide many valuable resources. 
The books listed below are a very small fraction of those available. 

Books About Programming in C
There are many good books about the C and C++ programming languages. A few of these 
are listed below:

Books about C

Kernigham Brian, Ritchie Dennis. 1988. The C Programming Language. Prentice Hall

http://www.xilinx.com/ipcenter/processor_central/register_coreconnect.htm
http://www.ibm.com/chips/products/coreconnect
http://www.xilinx.com


1058 www.xilinx.com March 2002 Release
1-800-255-7778 Virtex-II Pro™ Platform FPGA Documentation

Chapter 1: Introduction
R

Wang Paul. 1992. An Introduction to ANSI C on Unix. Wadsworth.

Kumar Ram, Agrawal Rakesh. 1992. Programming in ANSI C. West Publishing 
Company. 

Books about C++

Stroustrup Bjarne. 1991. The C++ Programming Language. Addison-Wesley.

Lafore Robert. 1995. Object-Oriented Programming in C++. Waite Group Press.

Online Documents About Programming in C
The Internet offers plenty of documentation about how to program in C and C++. One of 
the best approaches to finding documentation online is to use a search engine (such as 
Google, http://www.google.com) and search on "introduction to programming in C."

http://www.xilinx.com
http://www.google.com
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Chapter 2

Rocket I/O™ Transceiver Overview

Basic Architecture and Capabilities
The Rocket I/O transceiver is based on Mindspeed’s SkyRail™ technology. Figure 2-1, 
page 1060, depicts an overall block diagram of the transceiver. Up to 16 transceiver 
modules are available on a single Virtex-II Pro FPGA, depending on the part being used. 
Table 2-1 shows the Rocket I/O cores available by device.  

The transceiver module is designed to operate at any serial bit rate in the range of 
500 Mb/s to 3.125 Gb/s per channel, including the specific bit rates used by the 
communications standards listed in Table 2-2. The serial bit rate need not be configured in 
the transceiver, as the operating frequency is implied by the received data, the reference 
clock applied, and the SERDES_10B attribute (Table 2-3, page 1060).  

Table 2-1: Rocket I/O Cores

Device Rocket I/O Cores

XC2VP2 4

XC2VP4 4

XC2VP7 8

XC2VP20 8

XC2VP50 16

Table 2-2: Communications Standards Supported by Rocket I/O Transceiver

Mode
Channels 
(Lanes)(1)

I/O Bit Rate 
(Gb/s)

Fibre Channel 1
1.06

2.12

Gbit Ethernet 1 1.25

XAUI (10-Gbit Ethernet) 4 3.125

Infiniband 1, 4, 12 2.5

Aurora (Xilinx protocol) 1, 2, 3, 4, ... 0.5 – 3.125

Custom Mode 1, 2, 3, 4, ... 0.5 – 3.125

Notes: 
1. One channel is considered to be one transceiver.

http://www.xilinx.com
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Table 2-3: Serial Baud Rates and the SERDES_10B Attribute

SERDES_10B Serial Baud Rate

False 800 Mb/s – 3.125 Gb/s

True 500 Mb/s – 1.0 Gb/s

Figure 2-1: Rocket I/O Transceiver Block Diagram
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Table 2-4 lists the 16 gigabit transceiver primitives provided. These primitives carry 
attributes set to default values for the communications protocols listed in Table 2-2. Data 
widths of one, two, and four bytes are selectable for each protocol.

There are two ways to modify the Rocket I/O transceiver: 

• Static properties can be set through attributes in the HDL code. Use of attributes are 
covered in detail in Primitive Attributes, page 1073. 

• Dynamic changes can be made by the ports of the primitives

The Rocket I/O transceiver consists of the Physical Media Attachment (PMA) and Physical 
Coding Sublayer (PCS). The PMA contains the serializer/deserializer (SERDES), TX and 
RX buffers, clock generator, and clock recovery circuitry. The PCS contains the 8B/10B 
encoder/decoder and the elastic buffer supporting channel bonding and clock correction. 
The PCS also handles Cyclic Redundancy Check (CRC). Refer again to Figure 2-1, showing 
the Rocket I/O transceiver top-level block diagram and FPGA interface signals. 

Clock Synthesizer
Synchronous serial data reception is facilitated by a clock/data recovery circuit. This 
circuit uses a fully monolithic Phase-Locked Loop (PLL), which does not require any 
external components. The clock/data recovery circuit extracts both phase and frequency 
from the incoming data stream. The recovered clock is presented on output RXRECCLK at 
1/20 of the serial received data rate.

The gigabit transceiver multiplies the reference frequency provided on the reference clock 
input (REFCLK) by 20.

No fixed phase relationship is assumed between REFCLK, RXRECCLK, and/or any other 
clock that is not tied to either of these clocks. When the 4-byte or 1-byte receiver data path 
is used, RXUSRCLK and RXUSRCLK2 have different frequencies (1:2), and each edge of 
the slower clock is aligned to a falling edge of the faster clock. The same relationships 
apply to TXUSRCLK and TXUSRCLK2. See the section entitled Clocking, page 1082, for 
details.

Table 2-4: Supported Rocket I/O Transceiver Primitives

Primitives Description Primitive Description

GT_CUSTOM Fully customizable 
by user

GT_XAUI_2 10-Gb Ethernet, 
2-byte data path

GT_FIBRE_CHAN_1 Fibre Channel, 
1-byte data path

GT_XAUI_4 10-Gb Ethernet, 
4-byte data path

GT_FIBRE_CHAN_2 Fibre Channel, 
2-byte data path

GT_INFINIBAND_1 Infiniband, 1-byte 
data path

GT_FIBRE_CHAN_4 Fibre Channel, 
4-byte data path

GT_INFINIBAND_2 Infiniband, 2-byte 
data path

GT_ETHERNET_1 Gigabit Ethernet, 
1-byte data path

GT_INFINIBAND_4 Infiniband, 4-byte 
data path

GT_ETHERNET_2 Gigabit Ethernet, 
2-byte data path

GT_AURORA_1 Xilinx protocol, 
1-byte data path

GT_ETHERNET_4 Gigabit Ethernet, 
4-byte data path

GT_AURORA_2 Xilinx protocol, 
2-byte data path

GT_XAUI_1 10-Gb Ethernet, 
1-byte data path

GT_AURORA_4 Xilinx protocol, 
4-byte data path 
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Clock and Data Recovery
The clock/data recovery (CDR) circuits lock to the reference clock automatically if the data 
is not present. For proper operation, frequency variations of REFCLK, TXUSRCLK, 
RXUSRCLK, and the incoming stream (RXRECCLK) must not exceed ±100 ppm.
It is critical to keep power supply noise low in order to minimize common and differential 
noise modes into the clock/data recovery circuitry. See PCB Design Requirements, 
page 1125, for more details.

Transmitter

FPGA Transmit Interface
The FPGA can send either one, two, or four characters of data to the transmitter. Each 
character can be either 8 bits or 10 bits wide. If 8-bit data is applied, the additional inputs 
become control signals for the 8B/10B encoder. When the 8B/10B encoder is bypassed, the 
10-bit character order is: 

TXCHARDISPMODE[0]
TXCHARDISPVAL[0]
TXDATA[7:0]

8B/10B Encoder
A bypassable 8B/10B encoder is included. The encoder uses the same 256 data characters 
and 12 control characters that are used for Gigabit Ethernet, XAUI, Fibre Channel, and 
InfiniBand. 

The encoder accepts 8 bits of data along with a K-character signal for a total of 9 bits per 
character applied. If the K-character signal is High, the data is encoded into one of the 12 
possible K-characters available in the 8B/10B code. If the K-character input is Low, the 8 
bits are encoded as standard data. If the K-character input is High, and a user applies other 
than one of the 12 possible combinations, TXKERR indicates the error.

Disparity Control
The 8B/10B encoder is initialized with a negative running disparity.

TXRUNDISP signals the transmitter’s current running disparity.

Bits TXCHARDISPMODE and TXCHARDISPVAL control the generation of running 
disparity before each byte, as shown in Table 2-5.  

For example, the transceiver can generate the sequence
K28.5+ K28.5+ K28.5– K28.5–

or 
K28.5– K28.5– K28.5+ K28.5+ 

by specifying inverted running disparity for the second and fourth bytes.

Table 2-5: Running Disparity Control

{txchardispmode, 
txchardispval}

Function

00 Maintain running disparity normally

01 Invert normally generated running disparity before 
encoding this byte

10 Set negative running disparity before encoding this byte

11 Set positive running disparity before encoding this byte

http://www.xilinx.com


March 2002 Release www.xilinx.com 1063
Virtex-II Pro™ Platform FPGA Documentation 1-800-255-7778

Receiver
R

Transmit FIFO
Proper operation of the circuit is only possible if the FPGA clock (TXUSRCLK) is 
frequency-locked to the reference clock (REFCLK). Phase variations up to one clock cycle 
are allowable. The FIFO has a depth of four. Overflow or underflow conditions are 
detected and signaled at the interface.

Serializer
The multi-gigabit transceiver multiplies the reference frequency provided on the reference 
clock input (REFCLK) by 20. Data is converted from parallel to serial format and 
transmitted on the TXP and TXN differential outputs. Bit 0 is transmitted first and bit 19 is 
transmitted last.

The electrical polarity of TXP and TXN can be interchanged through the TXPOLARITY 
port. This option can either be programmed or controlled by an input at the FPGA core TX 
interface. This facilitates recovery from situations where printed circuit board traces have 
been reversed.

Transmit Termination
On-chip termination is provided at the transmitter, eliminating the need for external 
termination. Programmable options exist for 50Ω (default) and 75Ω termination.

Pre-emphasis Circuit and Swing Control
Four selectable levels of pre-emphasis, including default pre-emphasis, are available. 
Optimizing this setting allows the transceiver to drive up to 20 inches of FR4 at the 
maximum baud rate.

The programmable output swing control can adjust the differential output level between 
400 mV and 800 mV (peak-to-peak) in four increments of 100 mV.

Receiver

Deserializer
The Rocket I/O transceiver core accepts serial differential data on its RXP and RXN inputs. 
The clock/data recovery circuit extracts clock phase and frequency from the incoming data 
stream and re-times incoming data to this clock. The recovered clock is presented on 
output RXRECCLK at 1/20 of the received serial data rate.

The receiver is capable of handling either transition-rich 8B/10B streams or scrambled 
streams, and can withstand a string of up to 75 non-transitioning bits without an error.

Word alignment is dependent on the state of comma detect bits. If comma detect is 
enabled, the transceiver recognizes up to two 10-bit preprogrammed characters. Upon 
detection of the character or characters, the comma detect output is driven High and the 
data is synchronously aligned. If a comma is detected and the data is aligned, no further 
alignment alteration takes place. If a comma is received and realignment is necessary, the 
data is realigned and an indication is given at the RX FPGA interface. The realignment 
indicator is a distinct output. The transceiver continuously monitors the data for the 
presence of the 10-bit character(s). Upon each occurrence of the 10-bit character, the data is 
checked for word alignment. If comma detect is disabled, the data is not aligned to any 
particular pattern. The programmable option allows a user to align data on comma+, 
comma–, both, or a unique user-defined and programmed sequence.

The electrical polarity of RXP and RXN can be interchanged through the RXPOLARITY 
port. This can be useful in the event that printed circuit board traces have been reversed.
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Receiver Termination
On-chip termination is provided at the receiver, eliminating the need for external 
termination. The receiver includes programmable on-chip termination circuitry for 50Ω 
(default) or 75Ω impedance.

8B/10B Decoder
An optional 8B/10B decoder is included. A programmable option allows the decoder to be 
bypassed. (See HDL Code Examples: Transceiver Bypassing of 8B/10B Encoding, 
page 1113.) When the 8B/10B decoder is bypassed, the 10-bit character order is:

RXCHARISK[0]
RXRUNDISP[0]
RXDATA[7:0]

The decoder uses the same table that is used for Gigabit Ethernet, Fibre Channel and 
InfiniBand. In addition to decoding all data and K-characters, the decoder has several extra 
features. The decoder separately detects both “disparity errors” and “out-of-band” errors. 
A disparity error occurs when a 10-bit character is received that exists within the 8B/10B 
table, but has an incorrect disparity. An out-of-band error occurs when a 10-bit character is 
recived that does not exist within the 8B/10B table. It is possible to obtain an out-of-band 
error without having a disparity error. The proper disparity is always computed for both 
legal and illegal characters. The current running disparity is available at the RXRUNDISP 
signal.

The 8B/10B decoder performs a unique operation if out-of-band data is detected. If out-of-
band data is detected, the decoder signals the error and passes the illegal 10-bits through 
and places them on the outputs. This can be used for debugging purposes if desired.

The decoder also signals reception of one of the 12 valid K-characters. In addition, a 
programmable comma detect is included. The comma detect signal registers a comma on the 
receipt of any comma+, comma–, or both. Since the comma is defined as a 7-bit character, this 
includes several out-of-band characters. Another option allows the decoder to detect only 
the three defined commas (K28.1, K28.5, and K28.7) as comma+, comma–, or both. In total, 
there are six possible options, three for valid commas and three for "any comma".

Note that all bytes (1, 2, or 4) at the RX FPGA interface each have their own individual 
8B/10B indicators (K-character, disparity error, out-of-band error, current running 
disparity, and comma detect).

Loopback
To facilitate testing without having the need to either apply patterns or measure data at 
GHz rates, two programmable  loopback features are available. 

One option, serial loopback, places the gigabit transceiver into a state where transmit data 
is directly fed back to the receiver. An important point to note is that the feedback path is 
at the output pads of the transmitter. This tests the entirety of the transmitter and receiver.

The second loopback path is a parallel path that checks the digital circuitry. When the 
parallel option is enabled, the serial loopback path is disabled. However, the transmitter 
outputs remain active and data is transmitted over a link. If TXINHIBIT is asserted, TXN is 
forced to 1 and TXP is forced to 0 until TXINHIBIT is de-asserted.

The two loopback options are shown in Table 2-6.  

Table 2-6: Loopback Options

LOOPBACK[1:0] Description

LOOPBACK[1] External serial loopback

LOOPBACK[0] Internal parallel loopback
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Elastic and Transmitter Buffers 
Both the transmitter and the receiver include buffers (FIFOs) in the data path. This section 
gives the reasons for including the buffers and outlines their operation. 

Receiver Buffer
The receiver buffer is required for two reasons: 

• To accommodate the slight difference in frequency between the recovered clock 
RXRECCLK and the internal FPGA core clock RXUSRCLK (clock correction) 

• To allow realignment of the input stream to ensure proper alignment of data being 
read through multiple transceivers (channel bonding)

The receiver uses an elastic buffer, where "elastic" refers to the ability to modify the read 
pointer for clock correction and channel bonding. 

Clock Correction 
Clock RXRECCLK (the recovered clock) reflects the data rate of the incoming data. Clock 
RXUSRCLK defines the rate at which the FPGA core consumes the data. Ideally, these rates 
are identical. However, since the clocks typically have different sources, one of the clocks is 
faster than the other. The receiver buffer accommodates this difference between the clock 
rates. See Figure 2-2.

Nominally, the buffer is always half full. This is shown in the top buffer, Figure 2-2, where 
the shaded area represents buffered data not yet read. Received data is inserted via the 
write pointer under control of RXRECCLK. The FPGA core reads data via the read pointer 
under control of RXUSRCLK. The half full/half empty condition of the buffer gives a 
cushion for the differing clock rates. This operation continues indefinitely, regardless of 
whether or not "meaningful" data is being received. When there is no meaningful data to 
be received, the incoming data consists of IDLE characters or other padding.  

If RXUSRCLK is faster than RXRECCLK, the buffer becomes more empty over time. The 
clock correction logic corrects for this by decrementing the read pointer to reread a 
repeatable byte sequence. This is shown in the middle buffer, Figure 2-2, where the solid 
read pointer decrements to the value represented by the dashed pointer. By decrementing 
the read pointer instead of incrementing it in the usual fashion, the buffer is partially 
refilled. The transceiver inserts a single repeatable byte sequence when necessary to refill a 
buffer. If the byte sequence length is greater than one, and if attribute 
CLK_COR_REPEAT_WAIT is 0, then the transceiver can repeat the same sequence 
multiple times until the buffer is refilled to the half-full condition. 

Figure 2-2: Clock Correction in Receiver
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Similarly, if RXUSRCLK is slower than RXRECCLK, the buffer fills up over time. The clock 
correction logic corrects for this by incrementing the read pointer to skip over a removable 
byte sequence that need not appear in the final FPGA core byte stream. This is shown in the 
bottom buffer, Figure 2-2, where the solid read pointer increments to the value represented 
by the dashed pointer. This accelerates the emptying of the buffer, preventing its overflow. 
The transceiver design skips a single byte sequence, when necessary, to partially empty a 
buffer. If attribute CLK_COR_REPEAT_WAIT is 0, the transceiver can also skip two 
consecutive removable byte sequences in one step, to further empty the buffer, when 
necessary. 

These operations require the clock correction logic to recognize a byte sequence that can be 
freely repeated or omitted in the incoming data stream. This sequence is generally an IDLE 
sequence, or other sequence comprised of special values that occur in the gaps separating 
packets of meaningful data. These gaps are required to occur sufficiently often to facilitate 
the timely execution of clock correction. 

Channel Bonding
Some gigabit I/O standards such as Infiniband specify the use of multiple transceivers in 
parallel for even higher data rates. Words of data are split into bytes, with each byte sent 
over a separate channel (transceiver). See Figure 2-3.  

The top half of the figure shows the transmission of words split across four transceivers 
(channels or lanes). PPPP, QQQQ, RRRR, SSSS, and TTTT represent words sent over the 
four channels. 

The bottom-left portion of the figure shows the initial situation in the FPGA’s receivers at 
the other end of the four channels. Due to variations in transmission delay—especially if 
the channels are routed through repeaters—the FPGA core might not correctly assemble 
the bytes into complete words. The bottom-left illustration shows the incorrect assembly of 
data words PQPP, QRQQ, RSRR, etc. 

To support correction of this misalignment, the data stream includes special byte 
sequences that define corresponding points in the several channels. In the bottom half of 
Figure 2-3, the shaded "P" bytes represent these special characters. Each receiver 

Figure 2-3: Channel Bonding (Alignment)
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recognizes the "P" channel bonding character, and remembers its location in the buffer. At 
some point, one transceiver designated as the master instructs all the transceivers to align 
to the channel bonding character "P" (or to some location relative to the channel bonding 
character). After this operation, the words transmitted to the FPGA core are properly 
aligned: RRRR, SSSS, TTTT, etc., as shown in the bottom-right portion of Figure 2-3. To 
ensure that the channels remain properly aligned following the channel bonding 
operation, the master transceiver must also control the clock correction operations 
described in the previous section for all channel-bonded transceivers. 

Transmitter Buffer
The transmitter buffer’s write pointer (TXUSRCLK) is frequency-locked to its read pointer 
(REFCLK). Therefore, clock correction and channel bonding are not required. The purpose 
of the transmitter's buffer is to accommodate a phase difference between TXUSRCLK and 
REFCLK. A simple FIFO suffices for this purpose. A FIFO depth of four permits reliable 
operation with simple detection of overflow or underflow, which might occur if the clocks 
are not frequency-locked. 

CRC
The Rocket I/O transceiver CRC logic supports the 32-bit invariant CRC calculation used 
by Infiniband, FibreChannel, and Gigabit Ethernet. 

On the transmitter side, the CRC logic recognizes where the CRC bytes should be inserted 
and replaces four placeholder bytes at the tail of a data packet with the computed CRC. For 
Gigabit Ethernet and FibreChannel, transmitter CRC can adjust certain trailing bytes to 
generate the required running disparity at the end of the packet. 

On the receiver side, the CRC logic verifies the received CRC value, supporting the same 
standards as above. 

The CRC logic also supports a user mode, with a simple data packet structure beginning 
and ending with user-defined SOP and EOP characters. 

There are limitations to the CRC support provided by the Rocket I/O transceiver core: 

• It is for single-channel use only. Computation and byte-striping of CRC across 
multiple bonded channels is not supported. For that usage, the CRC logic can be 
implemented in the FPGA fabric. 

• The Rocket I/O transceiver does not compute the 16-bit variant CRC used for 
Infiniband. Therefore, Rocket I/O CRC does not fulfill the Infiniband CRC 
requirement. Infiniband CRC can be computed in the FPGA fabric.

Reset/Power Down
The receiver and transmitter have their own synchronous reset inputs. The transmitter 
reset recenters the transmission FIFO and resets all transmitter registers and the 8B/10B 
encoder. The receiver reset recenters the receiver elastic buffer and resets all receiver 
registers and the 8B/10B decoder. Neither reset signal has any effect on the PLLs. 
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Additional reset and power control descriptions are given in Table 2-7 and Table 2-8.  

Table 2-7: Reset and Power Control Descriptions

Ports Description

RXRESET Synchronous receive system reset recenters the receiver elastic 
buffer, and resets the 8B/10B decoder, comma detect, channel 
bonding, clock correction logic, and other receiver registers. The 
PLL is unaffected.

TXRESET Synchronous transmit system reset recenters the transmission 
FIFO, and resets the 8B/10B encoder and other transmission 
registers. The PLL is unaffected.

POWERDOWN Shuts down the transceiver (both RX and TX sides) and sets TXP 
and TXN outputs to high-impedance state

Table 2-8: Power Control Descriptions

POWERDOWN Transceiver Status

0 Transceiver in operation

1 Transceiver temporarily powered down
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Chapter 3

Digital Design Considerations

List of Available Ports
The Rocket I/O transceiver primitives contain 50 ports, with the exception of the 46-port 
GT_ETHERNET and GT_FIBRE_CHAN primitives. The differential serial data ports 
(RXN, RXP, TXN, and TXP) are connected directly to external pads; the remaining 46 ports 
are all accessible from the FPGA logic (42 ports for GT_ETHERNET and 
GT_FIBRE_CHAN). 

Table 3-1 contains the port descriptions of all primitives. 

Table 3-1: GT_CUSTOM(1), GT_AURORA, GT_FIBRE_CHAN(2), GT_ETHERNET(2), 
GT_INFINIBAND, and GT_XAUI Primitive Ports

Port I/O
Port

Size(3) Definition

CHBONDDONE(2) O 1 Indicates a receiver has successfully completed channel bonding when 
asserted High.

CHBONDI(2) I 4 The channel bonding control that is used only by "slaves" which is driven by 
a transceiver's CHBONDO port.

CHBONDO(2) O 4 Channel bonding control that passes channel bonding and clock correction 
control to other transceivers.

CONFIGENABLE I 1 Reconfiguration enable input (unused)

CONFIGIN I 1 Data input for reconfiguring transceiver (unused)

CONFIGOUT O 1 Data output for configuration readback (unused)

ENCHANSYNC(2) I 1 Comes from the core to the transceiver and enables the transceiver to 
perform channel bonding

ENMCOMMAALIGN I 1 Selects realignment of incoming serial bitstream on minus-comma. High 
realigns serial bitstream byte boundary when minus-comma is detected.

ENPCOMMAALIGN I 1 Selects realignment of incoming serial bitstream on plus-comma. High 
realigns serial bitstream byte boundary when plus-comma is detected.

LOOPBACK I 2 Selects the two loopback test modes. Bit 1 is for serial loopback and bit 0 is 
for internal parallel loopback. 

POWERDOWN I 1 Shuts down both the receiver and transmitter sides of the transceiver when 
asserted High. This decreases the power consumption while the transceiver 
is shut down.
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REFCLK I 1 High-quality reference clock driving transmission (reading TX FIFO, and 
multiplied for parallel/serial conversion) and clock recovery. REFCLK 
frequency is accurate to ± 100 ppm. This clock originates off the device, is 
routed through fabric interconnect, and is selected by the REFCLKSEL.

REFCLK2 I 1 An alternative to REFCLK. Can be selected by the REFCLKSEL.

REFCLKSEL I 1 Selects the reference clock to use REFCLK or REFCLK2. Deasserted is 
REFCLK. Asserted is REFCLK2.

RXBUFSTATUS O 2 Receiver elastic buffer status. Bit 1 indicates if an overflow/underflow error 
has occurred when asserted High. Bit 0 indicates if the buffer is at least half-
full when asserted High.

RXCHARISCOMMA O 1, 2, 4 Similar to RXCHARISK except that the data is a comma.

RXCHARISK O 1, 2, 4 If 8B/10B decoding is enabled, it indicates that the received data is a "K" 
character when asserted High. Included in Byte-mapping. If 8B/10B 
decoding bypassed, it becomes the 10th bit of the 10-bit encoded data.

RXCHECKINGCRC O 1 CRC status for the receiver. Asserts High to indicate that the receiver has 
recognized the end of a data packet. Only meaningful if RX_CRC_USE = 
TRUE.

RXCLKCORCNT O 3 Status that denotes occurrence of clock correction or channel bonding. This 
status is synchronized on the incoming RXDATA. See Clock Correction 
Count, page 1099.

RXCOMMADET O 1 Signals that a comma has been detected in the data stream.

RXCRCERR O 1 Indicates if the CRC code is incorrect when asserted High. Only meaningful 
if RX_CRC_USE = TRUE.

RXDATA O 8,16,32 Up to four bytes of decoded (8B/10B encoding) or encoded (8B/10B 
bypassed) receive data.

RXDISPERR O 1, 2, 4 If 8B/10B encoding is enabled it indicates whether a disparity error has 
occurred on the serial line. Included in Byte-mapping scheme. 

RXLOSSOFSYNC O 2 Status related to byte-stream synchronization (RX_LOSS_OF_SYNC_FSM)

If RX_LOSS_OF_SYNC_FSM = TRUE, this outputs the state of the FSM. 
Bit 1 signals a loss of sync. 
Bit 0 indicates a resync state. 
If RX_LOSS_OF_SYNC_FSM = FALSE, this indicates if received data is 
invalid (Bit 1) and if the channel bonding sequence is recognized (Bit 0).

RXN(4) I 1 Serial differential port (FPGA external)

RXNOTINTABLE O 1, 2, 4 Status of encoded data when the data is not a valid character when asserted 
High. Applies to the byte-mapping scheme.

RXP(4) I 1 Serial differential port (FPGA external)

RXPOLARITY I 1 Similar to TXPOLARITY, but for RXN and RXP. When deasserted, assumes 
regular polarity. When asserted, reverses polarity.

Table 3-1: GT_CUSTOM(1), GT_AURORA, GT_FIBRE_CHAN(2), GT_ETHERNET(2), 
GT_INFINIBAND, and GT_XAUI Primitive Ports (Continued)

Port I/O
Port

Size(3) Definition
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RXREALIGN O 1 Signal from the PMA denoting that the byte alignment with the serial data 
stream changed due to a comma detection. Asserted High when alignment 
occurs.

RXRECCLK O 1 Recovered clock that is divided by 20.

RXRESET I 1 Synchronous RX system reset that "recenters" the receive elastic buffer. It also 
resets 8B/10B decoder, comma detect, channel bonding, clock correction 
logic, and other internal receive registers. It does not reset the receiver PLL.

RXRUNDISP O 1, 2, 4 Signals the running disparity (negative/positive) in the received serial data. 
If 8B/10B encoding bypassed, it becomes the 9th bit of the 10-bit encoded 
data. 

RXUSRCLK I 1 Clock from a DCM that is used for reading the RX elastic buffer. It also clocks 
CHBONDI and CHBONDO in and out of the transceiver. Typically, the same 
as TXUSRCLK.

RXUSRCLK2 I 1 Clock output from a DCM that clocks the receiver data and status between 
the transceiver and the FPGA core. Typically the same as TXUSRCLK2. The 
relationship between RXUSRCLK and RXUSRCLK2 depends on the width of 
the RXDATA.

TXBUFERR O 1 Provides status of the transmission FIFO. If asserted High, an 
overflow/underflow has occurred. When this bit becomes set, it can only be 
reset by asserting TXRESET.

TXBYPASS8B10B I 1, 2, 4 This control signal determines whether the 8B/10B encoding is enabled or 
bypassed. If the signal is asserted High, the encoding is bypassed. This 
creates a 10-bit interface to the FPGA core. See the 8B/10B section for more 
details.

TXCHARDISPMODE I 1, 2, 4 If 8B/10B encoding is enabled, this bus determines what mode of disparity 
is to be sent. When 8B/10B is bypassed, this becomes the 10th bit of the 10-
bit encoded TXDATA bus for each byte specified by the byte-mapping 
section.

TXCHARDISPVAL I 1, 2, 4 If 8B/10B encoding is enabled, this bus determines what type of disparity is 
to be sent. When 8B/10B is bypassed, this becomes the 9th bit of the 10-bit 
encoded TXDATA bus for each byte specified by the byte-mapping section.

TXCHARISK I 1, 2, 4 If 8B/10B encoding is enabled, this control bus determines if the transmitted 
data is a "K" character or a Data character. A logic High indicating a 
K-character.

TXDATA I 8,16,32 Transmit data that can be 1, 2, or 4 bytes wide, depending on the primitive 
used. TXDATA [7:0] is always the last byte transmitted. The position of the 
first byte depends on selected TX data path width.

TXFORCECRCERR I 1 Specifies whether to insert error in computed CRC. 
When TXFORCECRCERR = TRUE, the transmitter corrupts the correctly 
computed CRC value by XORing with the bits specified in attribute 
TX_CRC_FORCE_VALUE. This input can be used to test detection of CRC 
errors at the receiver.

TXINHIBIT I 1 If a logic High, the TX differential pairs are forced to be a constant 1/0. 
TXN = 1, TXP = 0

Table 3-1: GT_CUSTOM(1), GT_AURORA, GT_FIBRE_CHAN(2), GT_ETHERNET(2), 
GT_INFINIBAND, and GT_XAUI Primitive Ports (Continued)

Port I/O
Port

Size(3) Definition
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TXKERR O 1, 2, 4 If 8B/10B encoding is enabled, this signal indicates (asserted High) when the 
"K" character to be transmitted is not a valid "K" character. Bits correspond to 
the byte-mapping scheme.

TXN(4) O 1 Transmit differential port (FPGA external)

TXP(4) O 1 Transmit differential port (FPGA external)

TXPOLARITY I 1 Specifies whether or not to invert the final transmitter output. Able to reverse 
the polarity on the TXN and TXP lines. Deasserted sets regular polarity. 
Asserted reverses polarity.

TXRESET I 1 Synchronous TX system reset that “recenters” the transmit elastic buffer. It 
also resets 8B/10B encoder and other internal transmission registers. It does 
not reset the transmission PLL.

TXRUNDISP O 1, 2, 4 Signals the running disparity after this byte is encoded. Zero equals negative 
disparity and positive disparity for a one.

TXUSRCLK I 1 Clock output from a DCM that is clocked with the REFCLK (or other 
reference clock). This clock is used for writing the TX buffer and is frequency-
locked to the REFCLK.

TXUSRCLK2 I 1 Clock output from a DCM that clocks transmission data and status and 
reconfiguration data between the transceiver an the FPGA core. The ratio 
between the TXUSRCLK and TXUSRCLK2 depends on the width of the 
TXDATA.

Notes: 
1. The GT_CUSTOM ports are always the maximum port size.
2. GT_FIBRE_CHAN and GT_ETHERNET ports do not have the three CHBOND** or ENCHANSYNC ports.
3. The port sizes change with relation to the primitive selected and also correlate to the byte mapping.
4. External ports only accessible from package pins.

Table 3-1: GT_CUSTOM(1), GT_AURORA, GT_FIBRE_CHAN(2), GT_ETHERNET(2), 
GT_INFINIBAND, and GT_XAUI Primitive Ports (Continued)

Port I/O
Port

Size(3) Definition
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Primitive Attributes 
The primitives also contain attributes set by default to specific values controlling each 
specific primitive’s protocol parameters. Included are channel-bonding settings (for 
primitives supporting channel bonding), clock correction sequences, and CRC. Table 3-2 
shows a brief description of each attribute. Table 3-3 and Table 3-4 have the default values 
of each primitive. 

Table 3-2: Rocket I/O Transceiver Attributes

Attribute Description

ALIGN_COMMA_MSB True/False controls the alignment of detected commas within the 
transceivers 2-byte wide data path. 

False: Align commas within a 10-bit alignment range. As a result the 
comma is aligned to either RXDATA[15:8} byte or RXDATA [7:0] byte in 
the transceivers internal data path.

True: Aligns comma with 20-bit alignment range.

As a result aligns on the RXDATA[15:8] byte.

NOTE: If protocols (like Gigabit Ethernet) are oriented in byte pairs with 
commas always in even (first) byte formation, this can be set to True. Oth-
erwise, it should be set to False.

CHAN_BOND_LIMIT Integer 1-31 that defines maximum number of bytes a slave receiver can read 
following a channel bonding sequence and still successfully align to that 
sequence.

CHAN_BOND_MODE STRING
OFF, MASTER, SLAVE_1_HOP, SLAVE_2_HOPS 

OFF: No channel bonding involving this transceiver. 

MASTER: This transceiver is master for channel bonding. Its CHBONDO 
port directly drives CHBONDI ports on one or more SLAVE_1_HOP 
transceivers. 

SLAVE_1_HOP: This transceiver is a slave for channel bonding. 
SLAVE_1_HOP’s CHBONDI is directly driven by a MASTER transceiver 
CHBONDO port. SLAVE_1_HOP’s CHBONDO port can directly drive 
CHBONDI ports on one or more SLAVE_2_HOPS transceivers. 

SLAVE_2_HOPS: This transceiver is a slave for channel bonding. 
SLAVE_2_HOPS CHBONDI is directly driven by a SLAVE_1_HOP CH-
BONDO port.

CHAN_BOND_OFFSET Integer 0-15 that defines offset (in bytes) from channel bonding sequence for 
realignment. It specifies the first elastic buffer read address that all channel-
bonded transceivers have immediately after channel bonding. 
CHAN_BOND_WAIT specifies the number of bytes that the master 
transceiver passes to RXDATA, starting with the channel bonding sequence, 
before the transceiver executes channel bonding (alignment) across all 
channel-bonded transceivers. 

CHAN_BOND_OFFSET specifies the first elastic buffer read address that all 
channel-bonded transceivers have immediately after channel bonding 
(alignment), as a positive offset from the beginning of the matched channel 
bonding sequence in each transceiver.

For optimal performance of the elastic buffer, CHAN_BOND_WAIT and 
CHAN_BOND_OFFSET should be set to the same value (typically 8).
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CHAN_BOND_ONE_SHOT True/False that controls repeated execution of channel bonding.

False: Master transceiver initiates channel bonding whenever possible 
(whenever channel-bonding sequence is detected in the input) as long as 
input ENCHANSYNC is High and RXRESET is Low. 

True: Master transceiver initiates channel bonding only the first time it is 
possible (channel bonding sequence is detected in input) following negat-
ed RXRESET and asserted ENCHANSYNC. After channel-bonding align-
ment is done, it does not occur again until RXRESET is asserted and 
negated, or until ENCHANSYNC is negated and reasserted. 

Slave transceivers should always have CHAN_BOND_ONE_SHOT set to 
False.

CHAN_BOND_SEQ_*_* 11-bit vectors that define the channel bonding sequence. The usage of these 
vectors also depends on CHAN_BOND_SEQ_LEN and 
CHAN_BOND_SEQ_2_USE. See Receiving Vitesse Channel Bonding 
Sequence, page 1103, for format. 

CHAN_BOND_SEQ_2_USE Controls use of second channel bonding sequence. 

False: Channel bonding uses only one channel bonding sequence defined 
by CHAN_BOND_SEQ_1_1..4. 

True: Channel bonding uses two channel bonding sequences defined by:
CHAN_BOND_SEQ_1_1..4 and
CHAN_BOND_SEQ_2_1..4 

as further constrained by CHAN_BOND_SEQ_LEN.

CHAN_BOND_SEQ_LEN Integer 1-4 defines length in bytes of channel bonding sequence. This 
defines the length of the sequence the transceiver matches to detect 
opportunities for channel bonding.

CHAN_BOND_WAIT Integer 1-15 that defines the length of wait (in bytes) after seeing channel 
bonding sequence before executing channel bonding.

CLK_COR_INSERT_IDLE_FLAG True/False controls whether RXRUNDISP input status denotes running 
disparity or inserted-idle flag. 

False: RXRUNDISP denotes running disparity when RXDATA is decoded 
data. 

True: RXRUNDISP is raised for the first byte of each inserted (repeated) 
clock correction ("Idle") sequence (when RXDATA is decoded data).

CLK_COR_KEEP_IDLE True/False controls whether or not the final byte stream must retain at least 
one clock correction sequence. 

False: Transceiver can remove all clock correction sequences to further re-
center the elastic buffer during clock correction. 

True: In the final RXDATA stream, the transceiver must leave at least one 
clock correction sequence per continuous stream of clock correction 
sequences.

CLK_COR_REPEAT_WAIT Integer 0 - 31 controls frequency of repetition of clock correction operations. 

This attribute specifies the minimum number of RXUSRCLK cycles without 
clock correction that must occur between successive clock corrections. If this 
attribute is zero, no limit is placed on how frequently clock correction can 
occur.

Table 3-2: Rocket I/O Transceiver Attributes (Continued)

Attribute Description
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CLK_COR_SEQ_*_* 11-bit vectors that define the sequence for clock correction. The attribute 
used depends on the CLK_COR_SEQ_LEN and CLK_COR_SEQ_2_USE.

CLK_COR_SEQ_2_USE True/False Control use of second clock correction sequence. 

False: Clock correction uses only one clock correction sequence defined 
by CLK_COR_SEQ_1_1..4. 

True: Clock correction uses two clock correction sequences defined by:
CLK_COR_SEQ_1_1..4 and
CLK_COR_SEQ_2_1..4 

as further constrained by CLK_COR_SEQ_LEN.

CLK_COR_SEQ_LEN Integer that defines the length of the sequence the transceiver matches to 
detect opportunities for clock correction. It also defines the size of the 
correction, since the transceiver executes clock correction by repeating or 
skipping entire clock correction sequences.

CLK_CORRECT_USE True/False controls the use of clock correction logic. 

False: Permanently disable execution of clock correction (rate matching). 
Clock RXUSRCLK must be frequency-locked with RXRECCLK in this 
case. 

True: Enable clock correction (normal mode).

COMMA_10B_MASK This 10-bit vector defines the mask that is ANDed with the incoming 
serial-bit stream before comparison against PCOMMA_10B_VALUE and 
MCOMMA_10B_VALUE.

CRC_END_OF_PKT K28_0, K28_1, K28_2, K28_3, K28_4, K28_5, K28_6, K28_7, K23_7, K27_7, 
K29_7, K30_7 End-of-packet (EOP) K-character for USER_MODE CRC. 
Must be one of the 12 legal K-character values.

CRC_FORMAT ETHERNET, INFINIBAND, FIBRE_CHAN, USER_MODE CRC algorithm 
selection. Modifiable only for GT_AURORA_n, GT_XAUI_n, and 
GT_CUSTOM. USER_MODE allows user definition of start-of-packet and 
end-of-packet K-characters.

CRC_START_OF_PKT K28_0, K28_1, K28_2, K28_3, K28_4, K28_5, K28_6, K28_7, K23_7, K27_7, 
K29_7, K30_7 Start-of-packet (SOP) K-character for USER_MODE CRC. 
Must be one of the 12 legal K-character values.

DEC_MCOMMA_DETECT True/False controls the raising of per-byte flag RXCHARISCOMMA on 
minus-comma.

DEC_PCOMMA_DETECT True/False controls the raising of per-byte flag RXCHARISCOMMA on 
plus-comma.

Table 3-2: Rocket I/O Transceiver Attributes (Continued)

Attribute Description
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DEC_VALID_COMMA_ONLY True/False controls the raising of RXCHARISCOMMA on an invalid 
comma.

False: Raise RXCHARISCOMMA on:

0011111xxx 
(if DEC_PCOMMA_DETECT is TRUE)

and/or on:

1100000xxx 
(if DEC_MCOMMA_DETECT is TRUE) 

regardless of the settings of the xxx bits.

True: Raise RXCHARISCOMMA only on valid characters that are in the 
8B/10B translation.

MCOMMA_10B_VALUE This 10-bit vector defines minus-comma for the purpose of raising 
RXCOMMADET and realigning the serial bit stream byte boundary. This 
definition does not affect 8B/10B encoding or decoding. Also see 
COMMA_10B_MASK.

MCOMMA_DETECT True/False indicates whether to raise or not raise the RXCOMMADET when 
minus-comma is detected.

PCOMMA_10B_VALUE This 10-bit vector defines plus-comma for the purpose of raising 
RXCOMMADET and realigning the serial bit stream byte boundary. This 
definition does not affect 8B/10B encoding or decoding. Also see 
COMMA_10B_MASK.

PCOMMA_DETECT True/False indicates whether to raise or not raise the RXCOMMADET when 
plus-comma is detected.

RX_BUFFER_USE Always set to True.

RX_CRC_USE, 
TX_CRC_USE

True/False determines if CRC is used or not.

RX_DATA_WIDTH, 
TX_DATA_WIDTH 

Integer (1, 2, or 4). Relates to the data width of the FPGA fabric interface.

RX_DECODE_USE This determines if the 8B/10B decoding is bypassed. False denotes that it is 
bypassed.

RX_LOS_INVALID_INCR Power of two in a range of 1 to 128 that denotes the number of valid 
characters required to "cancel out" appearance of one invalid character for 
loss of sync determination.

RX_LOS_THRESHOLD Power of two in a range of 4 to 512. When divided by 
RX_LOS_INVALID_INCR, denotes the number of invalid characters 
required to cause FSM transition to "sync lost" state.

RX_LOSS_OF_SYNC_FSM True/False denotes the nature of RXLOSSOFSYNC output.

True: RXLOSSOFSYNC outputs the state of the FSM bit. 
See RXLOSSOFSYNC, page 1070, for details.

SERDES_10B Denotes whether the reference clock runs at 1/20 or 1/10 the serial bit rate. 
True denotes 1/10 and False denotes 1/20. False supports a serial bitstream 
range of 800 Mb/s to 3.125 Gb/s. True supports a range of 500 Mb/s to 
1.0 Gb/s.

Table 3-2: Rocket I/O Transceiver Attributes (Continued)

Attribute Description
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TERMINATION_IMP Integer (50 or 75). Termination impedance of either 50Ω or 75Ω. Refers to 
both the RX and TX.

TX_BUFFER_USE Always set to True.

TX_CRC_FORCE_VALUE 8-bit vector. Value to corrupt TX CRC computation when input 
TXFORCECRCERR is high. This value is XORed with the correctly 
computed CRC value, corrupting the CRC if TX_CRC_FORCE_VALUE is 
nonzero. This can be used to test CRC error detection in the receiver 
downstream. 

TX_DIFF_CTRL An integer value (400, 500, 600, 700, or 800) representing 400 mV, 500 mV, 
600 mV, 700 mV, or 800 mV of voltage difference between the differential 
lines. Twice this value is the peak-peak voltage.

TX_PREEMPHASIS An integer value (0-3) that sets the output driver pre-emphasis to improve 
output waveform shaping for various load conditions. Larger value denotes 
stronger pre-emphasis. See pre-emphasis values in Table 4-2, page 1120.

Table 3-2: Rocket I/O Transceiver Attributes (Continued)

Attribute Description
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Modifiable Primitives 
As shown in Table 3-3 and Table 3-4, only certain attributes are modifiable for any 
primitive. These attributes help to define the protocol used by the primitive. Only the 
GT_CUSTOM primitive allows the user to modify all of the attributes to a protocol not 
supported by another transceiver primitive. This allows for complete flexibility. The other 
primitives allow modification of the analog attributes of the serial data lines and several 
channel-bonding values.  

Table 3-3: Default Attribute Values: GT_AURORA, GT_CUSTOM, GT_ETHERNET

Attribute
Default

GT_AURORA
Default 

GT_CUSTOM(1)
Default 

GT_ETHERNET

ALIGN_COMMA_MSB False False False

CHAN_BOND_LIMIT 16 16 1

CHAN_BOND_MODE OFF(2) OFF OFF

CHAN_BOND_OFFSET 8 8 0

CHAN_BOND_ONE_SHOT Falso(2) False True

CHAN_BOND_SEQ_1_1 00101111100 00000000000 00000000000

CHAN_BOND_SEQ_1_2 00000000000 00000000000 00000000000

CHAN_BOND_SEQ_1_3 00000000000 00000000000 00000000000

CHAN_BOND_SEQ_1_4 00000000000 00000000000 00000000000

CHAN_BOND_SEQ_2_1 00000000000 00000000000 00000000000

CHAN_BOND_SEQ_2_2 00000000000 00000000000 00000000000

CHAN_BOND_SEQ_2_3 00000000000 00000000000 00000000000

CHAN_BOND_SEQ_2_4 00000000000 00000000000 00000000000

CHAN_BOND_SEQ_2_USE False False False

CHAN_BOND_SEQ_LEN 1 1 1

CHAN_BOND_WAIT 8 8 7

CLK_COR_INSERT_IDLE_FLAG False(2) False False(2)

CLK_COR_KEEP_IDLE False(2) False False(2)

CLK_COR_REPEAT_WAIT 1(2) 1 1(2)

CLK_COR_SEQ_1_1 00100011100 00000000000 00110111100

CLK_COR_SEQ_1_2 00100011100(4) 00000000000 00001010000

CLK_COR_SEQ_1_3 00100011100(5) 00000000000 00000000000

CLK_COR_SEQ_1_4 00100011100(5) 00000000000 00000000000

CLK_COR_SEQ_2_1 00000000000 00000000000 00000000000

CLK_COR_SEQ_2_2 00000000000 00000000000 00000000000

CLK_COR_SEQ_2_3 00000000000 00000000000 00000000000

CLK_COR_SEQ_2_4 00000000000 00000000000 00000000000

CLK_COR_SEQ_2_USE False False False
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CLK_COR_SEQ_LEN N(3) 1 2

CLK_CORRECT_USE True True True

COMMA_10B_MASK 1111111111 1111111000 1111111000

CRC_END_OF_PKT K29_7 K29_7 K29_7

CRC_FORMAT USER_MODE USER_MODE ETHERNET

CRC_START_OF_PKT K27_7 K27_7 K27_7

DEC_MCOMMA_DETECT True True True

DEC_PCOMMA_DETECT True True True

DEC_VALID_COMMA_ONLY True True True

MCOMMA_10B_VALUE 1100000101 1100000000 1100000000

MCOMMA_DETECT True True True

PCOMMA_10B_VALUE 0011111010 0011111000 0011111000

PCOMMA_DETECT True True True

RX_BUFFER_USE True True True

RX_CRC_USE False(2) False False(2)

RX_DATA_WIDTH N(3) 2 N(3)

RX_DECODE_USE True True True

RX_LOS_INVALID_INCR 1(2) 1 1(2)

RX_LOS_THRESHOLD 4(2) 4 4(2)

RX_LOSS_OF_SYNC_FSM True(2) True True(2)

SERDES_10B False(2) False False(2)

TERMINATION_IMP 50(2) 50 50(2)

TX_BUFFER_USE True True True

TX_CRC_FORCE_VALUE 11010110(2) 11010110 11010110(2)

TX_CRC_USE False(2) False False(2)

TX_DATA_WIDTH N(3) 2 N(3)

TX_DIFF_CTRL 500(2) 500 500(2)

TX_PREEMPHASIS 0(2) 0 0(2)

Notes: 
1. All GT_CUSTOM attributes are modifiable.
2. Modifiable attribute for specific primitives.
3. Depends on primitive used: either 1, 2, or 4.
4. Attribute value only when RX_DATA_WIDTH is 2 or 4. When RX_DATA_WIDTH is 1, attribute value is 0.
5. Attribute value only when RX_DATA_WIDTH is 4. When RX_DATA_WIDTH is 1 or 2, attribute value is 0.

Table 3-3: Default Attribute Values: GT_AURORA, GT_CUSTOM, GT_ETHERNET (Continued)

Attribute
Default

GT_AURORA
Default 

GT_CUSTOM(1)
Default 

GT_ETHERNET
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Table 3-4: Default Attribute Values: GT_FIBRE_CHAN, GT_INFINIBAND, and GT_XAUI

Attribute
Default

GT_FIBRE_CHAN
Default

GT_INFINIBAND
Default

GT_XAUI

ALIGN_COMMA_MSB False False False

CHAN_BOND_LIMIT 1 16 16

CHAN_BOND_MODE OFF OFF(1) OFF(1)

CHAN_BOND_OFFSET 0 8 8

CHAN_BOND_ONE_SHOT True False(1) False(1)

CHAN_BOND_SEQ_1_1 00000000000 00110111100 00101111100

CHAN_BOND_SEQ_1_2 00000000000 Lane ID (Modify with 
Lane ID)

00000000000

CHAN_BOND_SEQ_1_3 00000000000 00001001010 00000000000

CHAN_BOND_SEQ_1_4 00000000000 00001001010 00000000000

CHAN_BOND_SEQ_2_1 00000000000 00110111100 00000000000

CHAN_BOND_SEQ_2_2 00000000000 Lane ID (Modify with 
Lane ID)

00000000000

CHAN_BOND_SEQ_2_3 00000000000 00001000101 00000000000

CHAN_BOND_SEQ_2_4 00000000000 00001000101 00000000000

CHAN_BOND_SEQ_2_USE False True False

CHAN_BOND_SEQ_LEN 1 4 1

CHAN_BOND_WAIT 7 8 8

CLK_COR_INSERT_IDLE_FLAG False(1) False(1) False(1)

CLK_COR_KEEP_IDLE False(1) False(1) False(1)

CLK_COR_REPEAT_WAIT 2(1) 1(1) 1(1)

CLK_COR_SEQ_1_1 00110111100 00100011100 00100011100

CLK_COR_SEQ_1_2 00010010101 00000000000 00000000000

CLK_COR_SEQ_1_3 00010110101 00000000000 00000000000

CLK_COR_SEQ_1_4 00010110101 00000000000 00000000000

CLK_COR_SEQ_2_1 00000000000 00000000000 00000000000

CLK_COR_SEQ_2_2 00000000000 00000000000 00000000000

CLK_COR_SEQ_2_3 00000000000 00000000000 00000000000

CLK_COR_SEQ_2_4 00000000000 00000000000 00000000000

CLK_COR_SEQ_2_USE False False False

CLK_COR_SEQ_LEN 4 1 1

CLK_CORRECT_USE True True True

COMMA_10B_MASK 1111111000 1111111000 1111111000

CRC_END_OF_PKT K29_7 Note (3) K29_7(1)
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CRC_FORMAT FIBRE_CHAN INFINIBAND USER_MODE(1)

CRC_START_OF_PKT K27_7 Note (3) K27_7(1)

DEC_MCOMMA_DETECT True True True

DEC_PCOMMA_DETECT True True True

DEC_VALID_COMMA_ONLY True True True

Lane ID(INFINBAND ONLY) NA 00000000000(1) NA

MCOMMA_10B_VALUE 1100000000 1100000000 1100000000

MCOMMA_DETECT True True True

PCOMMA_10B_VALUE 0011111000 0011111000 0011111000

PCOMMA_DETECT True True True

RX_BUFFER_USE True True True

RX_CRC_USE False(1) False(1) False(1)

RX_DATA_WIDTH N(2) N(2) N(2)

RX_DECODE_USE True True True

RX_LOS_INVALID_INCR 1(1) 1(1) 1(1)

RX_LOS_THRESHOLD 4(1) 4(1) 4(1)

RX_LOSS_OF_SYNC_FSM True(1) True(1) True(1)

SERDES_10B False(1) False(1) False(1)

TERMINATION_IMP 50(1) 50(1) 50(1)

TX_BUFFER_USE True True True

TX_CRC_FORCE_VALUE 11010110(1) 11010110(1) 11010110(1)

TX_CRC_USE False(1) False(1) False(1)

TX_DATA_WIDTH N(2) N(2) N(2)

TX_DIFF_CTRL 500(1) 500(1) 500(1)

TX_PREEMPHASIS 0(1) 0(1) 0(1)

Notes: 
1. Modifiable attribute for specific primitives.
2. Depends on primitive used: either 1, 2, or 4.
3. CRC_EOP and CRC_SOP are not applicable for this primitive.

Table 3-4: Default Attribute Values: GT_FIBRE_CHAN, GT_INFINIBAND, and GT_XAUI (Continued)

Attribute
Default

GT_FIBRE_CHAN
Default

GT_INFINIBAND
Default

GT_XAUI
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Byte Mapping
Most of the 4-bit wide status and control buses correlate to a specific byte of the TXDATA 
or RXDATA. This scheme is shown in Table 3-5. This creates a way to tie all the signals 
together regardless of the data path width needed for the GT_CUSTOM. All other 
primitives with specific data width paths and all byte-mapped ports are affected by this 
situation. For example, a 1-byte wide data path has only 1-bit control and status bits 
(TXKERR[0]) correlating to the data bits TXDATA[7:0]. Note 3 in Table 3-1 shows the ports 
that use byte mapping.

Clocking
Clock Signals

There are five clock inputs into each Rocket I/O transceiver instantiation (Table 3-6). 
REFCLK is a clock generated from an external source. REFCLK is connected to the REFCLK 
of the Rocket I/O transceiver. It also clocks a Digital Clock Manager (DCM) to generate all 
of the other clocks for the gigabit transceiver. Typically, TXUSRCLK = RXUSRCLK and 
TXUSRCLK2 = RXUSRCLK2. The transceiver uses one or two clocks generated by the 
DCM. As an example, the USRCLK and USRCLK2 clocks run at the same speed if the 2-byte 
data path is used. The USRCLK must always be frequency-locked to the reference clock, 
REFCLK of the Rocket I/O transceiver.

NOTE: The REFCLK must be at least 40 MHz with a duty cycle between 45% and 55%, and 
should have a frequency stability of 100 ppm or better, with jitter as low as possible. Module 3 of 
the Virtex-II Pro data sheet gives further details.  

Table 3-5: Control/Status Bus Association to Data Bus Byte Paths

Control/Status Bit Data Bits

[0] [7:0]

[1] [15:8]

[2] [23:16]

[3] [31:24]

Table 3-6: Clock Ports

Clock I/Os Description

RXRECCLK Output Recovered clock (from serial data stream) divided by 20

REFCLK Input Reference clock used to read the TX FIFO and multiplied by 20 for parallel-to-serial 
conversion (20X)

REFCLK2 Input Reference clock used to read the TX FIFO and multiplied by 20 for parallel-to-serial 
conversion (20X)

REFCLKSEL Input Selects which reference clock is used. 0 selects REFCLK; 1 selects REFCLK2.

RXUSRCLK Input Clock from FPGA used for reading the RX Elastic Buffer. Clock signals CHBONDI and 
CHBONDO into and out of the transceiver. This clock is typically the same as 
TXUSRCLK.

TXUSRCLK Input Clock from FPGA used for writing the TX Buffer. This clock must be frequency locked 
to REFCLK for proper operation.

RXUSRCLK2 Input Clock from FPGA used to clock RX data and status between the transceiver and FPGA 
fabric. The relationship between RXUSRCLK2 and RXUSRCLK depends on the width 
of the receiver data path. RXUSRCLK2 is typically the same as TXUSRCLK2.

TXUSRCLK2 Input Clock from FPGA used to clock TX data and status between the transceiver and FPGA 
fabric. The relationship between TXUSRCLK2 and TXUSRCLK depends on the width 
of the transmission data path.
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Clock Ratio
USRCLK2 clocks the data buffers. The ability to send parallel data to the transceiver at 
three different widths requires the user to change the frequency of USRCLK2. This creates 
a frequency ratio between USRCLK and USRCLK2. The falling edges of the clocks must 
align. Finally, for a 4-byte data path, the 1-byte data path creates a clocking scheme where 
USRCLK2 is phase-shifted 180° and at twice the rate of USRCLK. 

Digital Clock Manager (DCM) Examples
With at least three different clocking schemes possible on the transceiver, a DCM is the best 
way to create these schemes.

Table 3-8 shows typical DCM connections for several transceiver clocks. REFCLK is the 
input reference clock for the DCM. The other clocks are generated by the DCM. The DCM 
establishes a desired phase relationship between RXUSRCLK, TXUSRCLK, etc. in the 
FPGA core and REFCLK at the pad.  

Table 3-7: Data Width Clock Ratios

Data Width Frequency Ratio of USRCLK\USRCLK2

1 byte 1:2(1)

2 byte 1:1

4 byte 2:1(1)

Notes: 
1. Each edge of slower clock must align with falling edge of faster clock

Table 3-8: DCM Outputs for Different DATA_WIDTHs 

SERDES_10B
TX_DATA_WIDTH
RX_DATA_WIDTH

REFCLK
TXUSRCLK
RXUSRCLK

TXUSRCLK2
RXUSRCLK2

False 1 CLKIN CLK0 CLK2X180

False 2 CLKIN CLK0 CLK0

False 4 CLKIN CLK180(1) CLKDV (divide by 2)

True 1 CLKIN CLKDV (divide by 2) CLK180(1)

True 2 CLKIN CLKDV (divide by 2) CLKDV (divide by 2)

True 4 CLKIN CLKFX180 (divide by 2) CLKDV (divide by 4)

Notes: 
1. Since CLK0 is needed for feedback, it can be used instead of CLK180 to clock USRCLK or USRCLK2 of the transceiver with 

the use of the transceiver’s local inverter, saving a global buffer (BUFG).
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Example 1: Two-Byte Clock
The following HDL codes are examples of a simple clock scheme using 2-byte data with 
both USRCLK and USRCLK2 at the same frequency. USRCLK_M is the input for both 
USRCLK and USRCLK2.  

VHDL Template
-- Module: TWO_BYTE_CLK
-- Description: VHDL submodule
-- DCM for 2-byte GT
--
-- Device: Virtex-II Pro Family
---------------------------------------------------------------------
library IEEE;
use IEEE.std_logic_1164.all;
--
-- pragma translate_off
library UNISIM;
use UNISIM.VCOMPONENTS.ALL;
-- pragma translate_on
--
entity TWO_BYTE_CLK is
port (

REFCLKIN : in std_logic;
RST : in std_logic;
USRCLK_M : out std_logic;
REFCLK : out std_logic;
LOCK : out std_logic
);

end TWO_BYTE_CLK;
--
architecture TWO_BYTE_CLK_arch of TWO_BYTE_CLK is
--
-- Components Declarations:
component BUFG
port (

I : in std_logic;
O : out std_logic
);

end component;
--
component IBUFG
port (

I : in std_logic;
O : out std_logic

Figure 3-1: Two-Byte Clock
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);
end component;
--
component DCM
port (

CLKIN : in std_logic;
CLKFB : in std_logic;
DSSEN : in std_logic;
PSINCDEC : in std_logic;
PSEN  : in std_logic;
PSCLK : in std_logic;
RST : in std_logic;
CLK0 : out std_logic;
CLK90 : out std_logic;
CLK180 : out std_logic;
CLK270 : out std_logic;
CLK2X : out std_logic;
CLK2X180 : out std_logic;
CLKDV : out std_logic;
CLKFX : out std_logic;
CLKFX180 : out std_logic;
LOCKED : out std_logic;
PSDONE : out std_logic;
STATUS : out std_logic_vector ( 7 downto 0 )
);

end component;
--
-- Signal Declarations:
--
signal GND : std_logic;
signal CLK0_W : std_logic;
signal CLK1X_W : std_logic;

begin

GND <= '0';
--
CLK1X <= CLK1X_W;
--
-- DCM Instantiation
U_DCM: DCM
port map (

CLKIN => REFCLK,
CLKFB => USRCLK_M,
DSSEN => GND,
PSINCDEC => GND,
PSEN => GND,
PSCLK => GND,
RST => RST,
CLK0 => CLK0_W,
LOCKED => LOCK
);

--
-- BUFG Instantiation
U_BUFG: IBUFG
port map (

I => REFCLKIN,
O => REFCLK
);
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U2_BUFG: BUFG
port map (

I => CLK0_W,
O => USRCLK_M
);

end TWO_BYTE_CLK_arch;

Verilog Template
//Module: TWO_BYTE_CLK
//Description: Verilog Submodule
// DCM for 2-byte GT
//
// Device: Virtex-II Pro Family

module TWO_BYTE_CLK (
REFCLKIN,
REFCLK,
USRCLK_M,
DCM_LOCKED
);

input  REFCLKIN;
output REFCLK;
output USRCLK_M;
output DCM_LOCKED;

wire  REFCLKIN;
wire REFCLK;
wire USRCLK_M;
wire DCM_LOCKED;
wire  REFCLKINBUF;
wire clk_i;

DCM dcm1 (
.CLKFB  ( USRCLK_M ), 
.CLKIN ( REFCLKINBUF ),.DSSEN( 1'b0 ),
.PSCLK ( 1'b0 ), 
.PSEN ( 1'b0 ), 
.PSINCDEC ( 1'b0 ), 
.RST ( 1'b0 ),
.CLK0 ( clk_i ), 
.CLK90 (  ), 
.CLK180 (  ), 
.CLK270 (  ),
.CLK2X (  ),
.CLK2X180 (  ), 
.CLKDV (  ), 
.CLKFX (  ),
.CLKFX180 (  ), 
.LOCKED ( DCM_LOCKED ), 
.PSDONE (  ), 
.STATUS (  ) 
);

BUFG buf1 (
.I ( clk_i ), 
.O ( USRCLK_M )
);

IBUFG buf2(
.I ( REFCLKIN ), 
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.O ( REFCLKINBUF ));

endmodule

Example 2: Four-Byte Clock
If a 4-byte or 1-byte data path is chosen, the ratio between USRCLK and USRCLK2 
changes. The time it take for the SERDES to serialize the parallel data requires the change 
in ratios. 

The DCM example (Figure 3-2) is detailed for a 4-byte data path. If 3.125 Gb/s is required, 
the REFCLK is 156 MHz and the USRCLK2_M only runs at 78 MHz including the clocking 
for any interface logic. Both USRCLK and USRCLK2 are aligned on the falling edge since 
the USRCLK_M is 180° out of phase when using local inverters with the transceiver.

VHDL Template
-- Module: FOUR_BYTE_CLK
-- Description: VHDL submodule
-- DCM for 4-byte GT
--
-- Device: Virtex-II Pro Family
---------------------------------------------------------------------
library IEEE;
use IEEE.std_logic_1164.all;
--
-- pragma translate_off
library UNISIM;
use UNISIM.VCOMPONENTS.ALL;
-- pragma translate_on
--
entity FOUR_BYTE_CLK is
port (

REFCLKIN : in std_logic;
RST : in std_logic;
USRCLK_M : out std_logic;
USRCLK2_M : out std_logic;
REFCLK : out std_logic;
LOCK  : out std_logic
);

end FOUR_BYTE_CLK;
--
architecture FOUR_BYTE_CLK_arch of FOUR_BYTE_CLK is
--
-- Components Declarations:
component BUFG
port (

I : in std_logic;

Figure 3-2: Four-Byte Clock
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O : out std_logic
);

end component;
--
component IBUFG
port (

I : in std_logic;
O : out std_logic
);

end component;
--
component DCM
port (

CLKIN : in std_logic;
CLKFB : in std_logic;
DSSEN : in std_logic;
PSINCDEC : in std_logic;
PSEN  : in std_logic;
PSCLK : in std_logic;
RST  : in std_logic;
CLK0 : out std_logic;
CLK90 : out std_logic;
CLK180 : out std_logic;
CLK270 : out std_logic;
CLK2X : out std_logic;
CLK2X180 : out std_logic;
CLKDV : out std_logic;
CLKFX : out std_logic;
CLKFX180 : out std_logic;
LOCKED : out std_logic;
PSDONE : out std_logic;
STATUS : out std_logic_vector ( 7 downto 0 )
);

end component;
--
-- Signal Declarations:
--
signal GND : std_logic;
signal CLK0_W : std_logic;
signal CLKDV_W : std_logic;

begin

GND <= '0';
-- DCM Instantiation
U_DCM: DCM
port map (

CLKIN => REFCLK, CLKFB => CLK0_W,
DSSEN => GND,
PSINCDEC => GND,
PSEN => GND,
PSCLK => GND,
RST => RST,
CLK0 => CLK0_W,
CLKDV => CLKDV_W,
LOCKED => LOCK
);

-- BUFG Instantiation
U_BUFG: IBUFG
port map (

I => REFCLKIN,
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O => REFCLK );

U2_BUFG: BUFG
port map (

I => CLK0_W,
O => USRCLK_M
);

U3_BUFG: BUFG
port map (

I => CLKDV_W,
O => USRCLK2_M
);

end FOUR_BYTE_CLK_arch;

Verilog Template
// Module: FOUR_BYTE_CLK
// Description: Verilog Submodule
// DCM for 4-byte GT
//
// Device: Virtex-II Pro Family

module FOUR_BYTE_CLK(
REFCLKIN,
REFCLK,
USRCLK_M,
USRCLK2_M,
DCM_LOCKED

         );

input REFCLKIN;
output REFCLK;
output USRCLK_M;
output USRCLK2_M;
output DCM_LOCKED;

wire REFCLKIN;
wire REFCLK;
wire USRCLK_M;
wire USRCLK2_M;
wire DCM_LOCKED;
wire REFCLKINBUF;
wire clkdv2;
wire clk_i;

DCM dcm1 (
.CLKFB ( USRCLK_M ), 
.CLKIN ( REFCLKINBUF ) , .DSSEN ( 

1'b0 ),
.PSCLK ( 1'b0 ), 
.PSEN ( 1'b0 ), 
.PSINCDEC ( 1'b0 ), 
.RST ( 1'b0 ),
.CLK0 ( clk_i ), 
.CLK90 (  ), 
.CLK180 ( ),
.CLK270 (  ),
.CLK2X (  ),  
.CLK2X180 (  ), 
.CLKDV ( clkdv2 ), 
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.CLKFX (  ),

.CLKFX180 (  ), 

.LOCKED ( DCM_LOCKED ), 

.PSDONE (  ), 

.STATUS (  )
);

BUFG buf1 (
.I ( clkdv2 ),      
.O ( USRCLK2_M )
);

BUFG buf2 (
.I ( clk_i ),     
.O ( USRCLK_M )
);

IBUFG buf3(
.I ( REFCLKIN ),   
.O ( REFCLKINBUF ) );

endmodule

Example 3: One-Byte Clock
This is the 1-byte wide data path clocking scheme example. USRCLK2_M is twice as fast as 
USRCLK_M. It is also phase-shifted 180° for falling edge alignment.

VHDL Template
-- Module: ONE_BYTE_CLK
-- Description: VHDL submodule
-- DCM for 1-byte GT
--
-- Device: Virtex-II Pro Family
---------------------------------------------------------------------
library IEEE;
use IEEE.std_logic_1164.all;
--
-- pragma translate_off
library UNISIM;
use UNISIM.VCOMPONENTS.ALL;
-- pragma translate_on
--
entity ONE_BYTE_CLK is
port (

REFCLKIN : in std_logic;

Figure 3-3: One-Byte Clock
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RST : in std_logic;
USRCLK_M : out std_logic;
USRCLK2_M : out std_logic;
REFCLK : out std_logic;
LOCK : out std_logic
);

end ONE_BYTE_CLK;
--
architecture ONE_BYTE_CLK_arch of ONE_BYTE_CLK is
--
-- Components Declarations:
component BUFG
port (

I : in std_logic;
O : out std_logic
);

end component;
--
component IBUFG
port (

I : in std_logic;
O : out std_logic
);

end component;
--
component DCM
port (

CLKIN  : in std_logic;
CLKFB : in std_logic;
DSSEN : in std_logic;
PSINCDEC : in std_logic;
PSEN : in std_logic;
PSCLK : in std_logic;
RST : in std_logic;
CLK0 : out std_logic;
CLK90  : out std_logic;
CLK180 : out std_logic;
CLK270  : out std_logic;
CLK2X : out std_logic;
CLK2X180 : out std_logic;
CLKDV  : out std_logic;
CLKFX : out std_logic;
CLKFX180 : out std_logic;
LOCKED : out std_logic;
PSDONE : out std_logic;
STATUS : out std_logic_vector ( 7 downto 0 )
);

end component;
--
-- Signal Declarations:
--
signal GND : std_logic;
signal CLK0_W : std_logic;
signal CLK1X_W : std_logic;
signal CLK2X180_W : std_logic;

begin

GND <= '0';
--
CLK1X <= CLK1X_W;
--
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-- DCM Instantiation
U_DCM: DCM
port map (

CLKIN => REFCLK,

CLKFB => USRCLK_M,
DSSEN => GND,
PSINCDEC => GND,
PSEN => GND,
PSCLK => GND,
RST => RST,
CLK0 => CLK0_W,
CLK2X180 => CLK2X180_W,
LOCKED => LOCK
);

-- BUFG Instantiation
U_BUFG: IBUFG
port map (

I => REFCLKIN,
O => REFCLK 

);

U2_BUFG: BUFG
port map (

I => CLK0_W,
O => USRCLK_M
);

U4_BUFG: BUFG
port map (

I => CLK2X180_W,
O => USRCLK2
);

end ONE_BYTE_CLK_arch;

Verilog Template
// Module: ONE_BYTE_CLK
// Description: Verilog Submodule
// DCM for 1-byte GT
//
// Device: Virtex-II Pro Family

module ONE_BYTE_CLK (
REFCLKIN,
REFCLK,
USRCLK_M,
USRCLK2_M,
DCM_LOCKED
);

input REFCLKIN;
output REFCLK;
output USRCLK_M;
output USRCLK2_M;
output DCM_LOCKED;

wire REFCLKIN;
wire REFCLK;
wire USRCLK_M;
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wire USRCLK2_M;
wire DCM_LOCKED;
wire REFCLKINBUF;
wire clk_i;
wire clk_2x_180;

DCM dcm1 (
.CLKFB ( USRCLK_M ), 
.CLKIN ( REFCLKINBUF),

 .DSSEN ( 1'b0 ),
      .PSCLK ( 1'b0 ), 
      .PSEN ( 1'b0 ), 
      .PSINCDEC ( 1'b0 ), 
       .RST ( 1'b0 ),
       .CLK0 ( clk_i ), 
       .CLK90 (  ), 
         .CLK180 (  ), 
       .CLK270 (  ),
          .CLK2X (  ),  
         .CLK2X180 ( clk2x_180 ), 
         .CLKDV (  ), 
       .CLKFX (  ),
       .CLKFX180 (  ), 
        .LOCKED ( DCM_LOCKED ), 
          .PSDONE (  ), 
          .STATUS (  )
 );

BUFG buf1 (
.I ( clk2x_180 ),  
.O ( USRCLK2_M )
);

BUFG buf2 (
.I ( clk_i ),     
.O ( USRCLK_M )
);

IBUFGbuf3 (
.I ( REFCLKIN ),     
.O ( REFCLKINBUF )

);

endmodule

Multiplexed Clocking Scheme
Following configuration of the FPGA, some applications might need to change the 
frequency of its REFCLK depending on the protocol used. Figure 3-4 shows how the 
design can use two different reference clocks connected to two different DCMs. The clocks 
are then multiplexed before input into the Rocket I/O transceiver.
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User logic can be designed to determine during autonegotiation if the reference clock used 
for the transceiver is incorrect. If so, the transceiver must then be reset and another 
reference clock selected. 

Clock Dependency
All signals used by the FPGA fabric to interact between user logic and the transceiver 
depend on an edge of USRCLK2. These signals all have setup and hold times with respect 
to this clock. For specific timing values, see Module 3 of the Virtex-II Pro data sheet.
The timing relationships are illustrated.
Table 3-9, Parameters Relative to the RX User Clock (RXUSRCLK), page 1094 
Table 3-10, Parameters Relative to the RX User Clock2 (RXUSRCLK2), page 1094 
Table 3-11, Parameters Relative to the TX User Clock2 (TXUSRCLK2), page 1095 
Table 3-12, Miscellaneous Clock Parameters, page 1096 
 

Figure 3-4: Multiplexed REFCLK
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Table 3-9: Parameters Relative to the RX User Clock (RXUSRCLK)

Parameter Function Signals

Setup/Hold: 

TGCCK_CHBI/TGCKC_CHBI Control inputs CHBONDI[3:0]

Clock to Out: 

TGCKCO_CHBO Control outputs CHBONDO[3:0]

Clock: 

TRXPWH Clock pulse width, High state RXUSRCLK 

TRXPWL Clock pulse width, Low state RXUSRCLK

Table 3-10: Parameters Relative to the RX User Clock2 (RXUSRCLK2)

Parameter Function Signals

Setup/Hold: 

TGCCK_RRST/TGCKC_RRST Control input RXRESET

TGCCK_RPOL/TGCKC_RPOL Control input RXPOLARITY

TGCCK_ECSY/TGCKC_ECSY Control input ENCHANSYNC

Clock to Out: 
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TGCKST_RNIT Status outputs RXNOTINTABLE[3:0]

TGCKST_RDERR Status outputs RXDISPERR[3:0]

TGCKST_RCMCH Status outputs RXCHARISCOMMA[3:0]

TGCKST_ALIGN Status output RXREALIGN

TGCKST_CMDT Status output RXCOMMADET

TGCKST_RLOS Status outputs RXLOSSOFSYNC[1:0]

TGCKST_RCCCNT Status outputs RXCLKCORCNT[2:0]

TGCKST_RBSTA Status outputs RXBUFSTATUS[1:0]

TGCKST_RCCRC Status output RXCHECKINGCRC

TGCKST_RCRCE Status output RXCRCERR

TGCKST_CHBD Status output CHBONDDONE

TGCKST_RKCH Status outputs RXCHARISK[3:0]

TGCKST_RRDIS Status outputs RXRUNDISP[3:0]

TGCKDO_RDAT Data outputs RXDATA[31:0]

Clock: 

TRX2PWH Clock pulse width, High state RXUSRCLK2

TRX2PWH Clock pulse width, Low state RXUSRCLK2

Table 3-10: Parameters Relative to the RX User Clock2 (RXUSRCLK2) (Continued)

Parameter Function Signals

Table 3-11: Parameters Relative to the TX User Clock2 (TXUSRCLK2)

Parameter Function Signals

Setup/Hold: 

TGCCK_CFGEN/TGCKC_CFGEN Control inputs CONFIGENABLE

TGCCK_TBYP/TGCKC_TBYP Control inputs TXBYPASS8B10B[3:0]

TGCCK_TCRCE/TGCKC_TCRCE Control inputs TXFORCECRCERR

TGCCK_TPOL/TGCKC_TPOL Control inputs TXPOLARITY

TGCCK_TINH/TGCKC_TINH Control inputs TXINHIBIT

TGCCK_LBK/TGCKC_LBK Control inputs LOOPBACK[1:0]

TGCCK_TRST/TGCKC_TRST Control inputs TXRESET

TGCCK_TKCH/TGCKC_TKCH Control inputs TXCHARISK[3:0]

TGCCK_TCDM/TGCKC_TCDM Control inputs TXCHARDISPMODE[3:0]

TGCCK_TCDV/TGCKC_TCDV Control inputs TXCHARDISPVAL[3:0]

TGDCK_CFGIN/TGCKD_CFGIN Data inputs CONFIGIN

TGDCK_TDAT/TGCKD_TDAT Data inputs TXDATA[31:0]

Clock to Out: 

TGCKST_TBERR Status outputs TXBUFERR

TGCKST_TKERR Status outputs TXKERR[3:0]
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TGCKDO_TRDIS Data outputs TXRUNDISP[3:0]

TGCKDO_CFGOUT Data outputs CONFIGOUT

Clock: 

TTX2PWH Clock pulse width, High state TXUSRCLK2

TTX2PWH Clock pulse width, Low state TXUSRCLK2

Table 3-11: Parameters Relative to the TX User Clock2 (TXUSRCLK2) (Continued)

Parameter Function Signals

Table 3-12: Miscellaneous Clock Parameters

Parameter Function Signals

Clock: 

TREFPWH Clock pulse width, High state REFCLK(1)

TREFPWL Clock pulse width, Low state REFCLK(1)

TTXPWH Clock pulse width, High state TXUSRCLK(2)

TTXPWL Clock pulse width, Low state TXUSRCLK(2)

Notes: 
1. REFCLK is not synchronous to any Rocket I/O signals.
2. TXUSRCLK is not synchronous to any Rocket I/O signals.

Figure 3-5: Rocket I/O Timing Relative to Clock Edge
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Resets
There are two reset signals, one each for the transmit and receive sections of each gigabit 
transceiver. After the DCM locked signal is asserted, the resets can be asserted. The resets 
must be asserted for two USRCLK2 cycles to ensure correct initialization of the FIFOs. 
Although both the transmit and receive resets can be attached to the same signal, separate 
signals are preferred. This allows the elastic buffer to be cleared in case of an 
over/underflow without affecting the ongoing TX transmission. The following example is 
an implementation to reset all three data-width transceivers.

VHDL Template
-- Module: gt_reset
-- Description: VHDL submodule
-- reset for GT
--
-- Device: Virtex-II Pro Family
---------------------------------------------------------------------
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.Numeric_STD.all;
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
--
-- pragma translate_off
library UNISIM;
use UNISIM.VCOMPONENTS.ALL;
-- pragma translate_on
--
entity gt_reset is
port (
USRCLK2_M : in std_logic;
LOCK : in std_logic;
REFCLK : out std_logic;
DCM_LOCKED: in std_logic;
RST : out std_logic);
end gt_reset;
--
architecture RTL of gt_reset is
--
  signal startup_count : std_logic_vector (7 downto 0);
begin
process (USRCLK2_M, DCM_LOCKED)

begin
if (USRCLK2_M' event and USRCLK2_M = '1') then
if(DCM_LOCKED = '0') then
startup_count <= "00000000";

elsif (DCM_LOCKED = '1') then
startup_count <= startup_count + "00000001";

end if;
end if; 

if (USRCLK2_M'  event and USRCLK2_M = '1') then
if(DCM_LOCKED = '0') then 
RST <= '1';

elsif (startup_count = "00000010") then
RST <= '0';

end if;
end if;

end process;
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end RTL;

Verilog Template
// Module: gt_reset
// Description: Verilog Submodule
// reset for4-byte GT
//
// Device: Virtex-II Pro Family

module gt_reset(
USRCLK2_M,
DCM_LOCKED,
RST

);

input USRCLK2_M;
input DCM_LOCKED;
input RST;

wire USRCLK2_M;
wire DCM_LOCKED;
reg RST;
reg [7:0] startup_counter;

always @ ( posedge USRCLK2_M )
if ( !DCM_LOCKED )

startup_counter <= 8'h0;
else if ( startup_counter != 8'h02 )

startup_counter <= startup_counter + 1;

always @ ( posedge USRCLK2_M or negedge DCM_LOCKED )
if ( !DCM_LOCKED )

RST <= 1'b1;
else

RST <= ( startup_counter != 8'h02 );

endmodule

Rocket I/O Transceiver Instantiations
For the different clocking schemes, several things must change, including the clock 
frequency for USRCLK and USRCLK2 discussed in the DCM section above. The data and 
control ports for GT_CUSTOM must also reflect this change in data width by 
concatenating zeros onto inputs and wires for outputs for Verilog designs, and by setting 
outputs to open and concatenating zeros on unused input bits for VHDL designs. 

HDL Code Examples
Availability of downloadable GT_CUSTOM code examples with 1-, 2-, and 4-byte data 
widths is planned for a later date.

PLL Operation and Clock Recovery
The clock correction sequence is a special sequence to accommodate frequency differences 
between the received data (as reflected in RXRECCLK) and RXUSRCLK. Most of the 
primitives have these defaulted to the respective protocols. Only the GT_CUSTOM allows 
this sequence to be set to any specific protocol. The sequence contains 11 bits including the 
10 bits of serial data. The 11th bit has two different formats. The typical usage is:
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0, disparity error required, char is K, 8-bit data value (after 
8B/10B decoding)

1, 10 bit data value (without 8B/10B decoding)

Table 3-13 is an example of data 11-bit attribute setting, the character value, CHARISK 
value, and the parallel data interface, and how each corresponds with the other.

The GT_CUSTOM transceiver examples use the previous sequence for clock correction. 

Clock Correction Count
The clock correction count signal (RXCLKCORCNT) is a three-bit signal. It signals if the 
clock correction has occurred and whether the elastic buffer realigned the data by skipping 
or repeating data in the buffer. It also signals if channel bonding has occurred (Table 3-14).

RX_LOSS_OF_SYNC_FSM
The transceivers FSM is driven by RXRECLK and uses status from the data stream prior to 
the elastic buffer. This is intended to give early warning of possible problems well before 
corrupt data appears on RXDATA. There are three states.

SYNC_ACQUIRED (RXLOSSOFSYNC = 00)
In this state, a counter is decremented by 1 (but not past 0) for a valid received symbol and 
incremented by RX_LOS_INVALID_INCR for an invalid symbol. If the count reaches or 
exceeds RX_LOS_THRESHOLD, the FSM moves to state LOSS_OF_SYNC. Otherwise, if a 

Table 3-13: Clock Correction Sequence / Data Correlation for 16-Bit Data Port

Attribute Setting Character CHARISK TXDATA (hex)

CLK_COR_SEQ_1_1 = 00110111100 K28.5 1 BC

CLK_COR_SEQ_1_2 = 00010010101 D21.4 0 95

CLK_COR_SEQ_1_3 = 00010110101 D21.5 0 B5

CLK_COR_SEQ_1_4 = 00010110101 D21.5 0 B5

Table 3-14: RXCLKCORCNT Definition

RXCLKCORCNT[2:0] Significance

000
No channel bonding or clock correction occurred for current 
RXDATA

001
Elastic buffer skipped one clock correction sequence for 
current RXDATA

010
Elastic buffer skipped two clock correction sequence for 
current RXDATA

011
Elastic buffer skipped three clock correction sequence for 
current RXDATA

100
Elastic buffer skipped four clock correction sequence for 
current RXDATA

101 Elastic buffer executed channel bonding for current RXDATA

110
Elastic buffer repeated two clock correction sequences for 
current RXDATA

111
Elastic buffer repeated one clock correction sequences for 
current RXDATA
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channel bonding (alignment) sequence has just been written into the elastic buffer, or if a 
comma realignment has just occurred, the FSM moves to state RESYNC. Otherwise, the 
FSM remains in state SYNC_ACQUIRED. 

RESYNC (RXLOSSOFSYNC = 01)
The FSM waits in this state for four RXRECCLK cycles and then goes to state 
SYNC_ACQUIRED, unless an invalid symbol is received, in which case the FSM goes to 
state LOSS_OF_SYNC. 

LOSS_OF_SYNC (RXLOSSOFSYNC = 10) 
The FSM remains in this state until a comma is received, at which time it goes to state 
RESYNC. The FSM state appears on RXLOSSOFSYNC if RX_LOSS_OF_SYNC_FSM is 
TRUE. Otherwise, RXLOSSOFSYNC[1] is high if an invalid byte (not in table, or with 
disparity error) is received, and RXLOSSOFSYNC[0] is High when a channel bonding 
(alignment) sequence has just been written into the elastic buffer.

8B/10B Operation
The Rocket I/O transceiver has the ability to encode eight bits into a 10-bit serial stream 
using standard 8B/10B encoding. This guarantees a DC-balanced, edge-rich serial stream, 
facilitating DC- or AC-coupling and clock recovery. If the 8B/10B encoding is disabled, the 
data is sent through in 10-bit blocks. The 8B/10B-bypass signal is set to 1111 and the 
RX_DECODE_USE attribute must be set to FALSE. If the 8B/10B encoding is needed, the 
bypass signal must be set to 0000 and the RX_DECODE_USE must be set to TRUE. If this 
pair is not matched, the data is not received correctly. Figure 3-6 shows the 
encoding/decoding blocks of the transceiver and how the data passes through these 
blocks. Table 3-15, page 1101, shows the significance of 8B/10B ports that change purpose 
depending on whether 8B/10B is bypassed or enabled.  

Figure 3-6: 8B/10B Data Flow
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While the 8B/10B is enabled, the disparity of the serial transmission can be controlled with 
TXCHARDISPMODE and TXCHARDISPVAL. This is explained in Table 3-16. During the 
bypassing of the 8B/10B encoding, these ports become part of the 10-bit encoded data that 
the transceiver must transmit. See Figure 3-7 and Figure 3-8 for TX and RX data maps 
during 8B/10B bypass.  

Table 3-15: 8B/10B Bypassed Signal Significance

8B/10B Enabled 8B/10B Bypassed

TXBYPASS8B10B
1 N/A Bypassed 8B/10B encoding

0 Enabled 8B/10B N/A

TXCHARISK

1
Transmitted byte is a 
K-character

Unused

0
Transmitted byte is a data 
character

Unused

TXCHARDISPMODE Disparity generation control Part of 10-bit encoded byte:

TXCHARDISPMODE[1],
TXCHARDISPVAL[1],
TXDATA[15:8], 
similar for other bytes

TXCHARDISPVAL Disparity generation control Part of 10-bit encoded byte:

TXCHARDISPMODE[1],
TXCHARDISPVAL[1],
TXDATA[15:8], 
similar for other bytes

RXCHARISK Indicates if character is a 
K-character

Part of 10-bit encoded byte:

RXCHARISK[1],
RXRUNDISP[1],
RXDATA[15:8], 
similar for other bytes

RXRUNDISP Indicates running disparity Part of 10-bit encoded byte:

RXCHARISK[1],
RXRUNDISP[1],
RXDATA[15:8], 
similar for other bytes

Table 3-16: Running Disparity Modes with 8B/10B Enabled

{TXCHARDISPMODE,
TXCHARDISPVAL}

Function

00 Maintain running disparity normally.

01
Invert the normally generated running disparity before 
encoding this byte.

10 Set negative running disparity before encoding this byte.

11 Set positive running disparity before encoding this byte.
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Vitesse Disparity Example
To support other protocols, the transceiver can affect the disparity mode of the serial data 
transmitted. For example, Vitesse channel-to-channel alignment protocol sends out: 

K28.5+ K28.5+ K28.5- K28.5- 

or
K28.5- K28.5- K28.5+ K28.5+ 

Instead of:

K28.5+ K28.5- K28.5+ K28.5- 

or
K28.5- K28.5+ K28.5- K28.5+ 

The logic must assert TXCHARDISPVAL to cause the serial data to send out two negative 
running disparity characters. 

Transmitting Vitesse Channel Bonding Sequence
TXBYPASS8B10B
| TXCHARISK
| | TXCHARDISPMODE
| | | TXCHARDISPVAL
| | | | TXDATA
| | | | |
0 1 0 0 10111100    K28.5+ (or K28.5-)
0 1 0 1 10111100    K28.5+ (or K28.5-)
0 1 0 0 10111100    K28.5- (or K28.5+)
0 1 0 1 10111100    K28.5- (or K28.5+)

The Rocket I/O core receives this data but must have the CHAN_BOND_SEQ set with the 
disp_err bit set High for the cases when TXCHARDISPVAL is set High during data 
transmission. 

Figure 3-7: 10-Bit TX Data Map with 8B/10B Bypassed

Figure 3-8: 10-Bit RX Data Map with 8B/10B Bypassed
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Receiving Vitesse Channel Bonding Sequence
On the RX side, the definition of the channel bonding sequence uses the disp_err bit to 
specify the flipped disparity.

10-bit literal value
| disp_err
| | char_is_k
| | | 8-bit_byte_value
| | | |

CHAN_BOND_SEQ_1_1 = 0 0 1 10111100    matches K28.5+ (or K28.5-)
CHAN_BOND_SEQ_1_2 = 0 1 1 10111100    matches K28.5+ (or K28.5-)
CHAN_BOND_SEQ_1_3 = 0 0 1 10111100    matches K28.5- (or K28.5+)
CHAN_BOND_SEQ_1_4 = 0 1 1 10111100    matches K28.5- (or K28.5+)
CHAN_BOND_SEQ_LEN = 4
CHAN_BOND_SEQ_2_USE = False

Status Signals
Whether the 8B/10B encoding is enabled or disabled, there are several status signals for 
error indication. If an invalid K-character is sent to the transceiver, the TXKERR transitions 
High. This can produce several receive errors. These receive errors are RXNOTINTABLE or 
RUNDISPERR. RUNDISPERR transitions High if the incorrect disparity is received. 
RXNOTINTABLE determines if the incoming character is a valid character. These signals 
are meant to detect errors in the transmission data from incorrect framing. The CRC 
Operation section covers transmission data error detection caused by noise.

8B/10B Encoding
8B/10B encoding includes a set of Data characters and K-characters. Eight-bit values are 
coded into 10-bit values keeping the serial line DC balanced. K-characters are special Data 
characters designated with a CHARISK. K-characters are used for specific informative 
designations. Table 3-17 and Table 3-18 show the Data and K tables of valid characters.

Table 3-17: Valid Data Characters

Data Byte 
Name

Bits 
HGF EDCBA

Current RD –
abcdei fghj

Current RD + 
abcdei fghj

D0.0 000 00000 100111 0100 011000 1011

D1.0 000 00001 011101 0100 100010 1011

D2.0 000 00010 101101 0100 010010 1011

D3.0 000 00011 110001 1011 110001 0100

D4.0 000 00100 110101 0100 001010 1011

D5.0 000 00101 101001 1011 101011 0100

D6.0 000 00110 011001 1011 011001 0100

D7.0 000 00111 111000 1011 000111 0100

D8.0 000 01000 111001 0100 000110 1011

D9.0 000 01001 100101 1011 011010 0100

D10.0 000 01010 010101 1011 010101 0100

D11.0 000 01011 110100 1011 110100 0100
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D12.0 000 01100 001101 1011 001101 0100

D13.0 000 01101 101100 1011 101100 0100

D14.0 000 01110 011100 1011 011100 0100

D15.0 000 01111 010111 0100 101000 1011

D16.0 000 10000 011011 0100 100100 1011

D17.0 000 10001 100011 1011 100011 0100

D18.0 000 10010 010011 1011 010011 0100

D19.0 000 10011 110010 1011 110010 0100

D20.0 000 10100 001011 1011 001011 0100

D21.0 000 10101 101010 1011 101010 0100

D22.0 000 10110 011010 1011 011010 0100

D23.0 000 10111 111010 0100 000101 1011

D24.0 000 11000 110011 0100 001100 1011

D25.0 000 11001 100110 1011 100110 0100

D26.0 000 11010 010110 1011 010110 0100

D27.0 000 11011 110110 0100 001001 1011

D28.0 000 11100 001110 1011 001110 0100

D29.0 000 11101 101110 0100 010001 1011

D30.0 000 11110 011110 0100 100001 1011

D31.0 000 11111 101011 0100 010100 1011

D0.1 001 00000 100111 1001 011000 1001

D1.1 001 00001 011101 1001 100010 1001

D2.1 001 00010 101101 1001 010010 1001

D3.1 001 00011 110001 1001 110001 1001

D4.1 001 00100 110101 1001 001010 1001

D5.1 001 00101 101001 1001 101011 1001

D6.1 001 00110 011001 1001 011001 1001

D7.1 001 00111 111000 1001 000111 1001

D8.1 001 01000 111001 1001 000110 1001

D9.1 001 01001 100101 1001 011010 1001

D10.1 001 01010 010101 1001 010101 1001

D11.1 001 01011 110100 1001 110100 1001

D12.1 001 01100 001101 1001 001101 1001

Table 3-17: Valid Data Characters (Continued)

Data Byte 
Name

Bits 
HGF EDCBA

Current RD –
abcdei fghj

Current RD + 
abcdei fghj
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D13.1 001 01101 101100 1001 101100 1001

D14.1 001 01110 011100 1001 011100 1001

D15.1 001 01111 010111 1001 101000 1001

D16.1 001 10000 011011 1001 100100 1001

D17.1 001 10001 100011 1001 100011 1001

D18.1 001 10010 010011 1001 010011 1001

D19.1 001 10011 110010 1001 110010 1001

D20.1 001 10100 001011 1001 001011 1001

D21.1 001 10101 101010 1001 101010 1001

D22.1 001 10110 011010 1001 011010 1001

D23.1 001 10111 111010 1001 000101 1001

D24.1 001 11000 110011 1001 001100 1001

D25.1 001 11001 100110 1001 100110 1001

D26.1 001 11010 010010 1001 010110 1001

D27.1 001 11011 110110 1001 001001 1001

D28.1 001 11100 001110 1001 001110 1001

D29.1 001 11101 101110 1001 010001 1001

D30.1 001 11110 011110 1001 100001 1001

D31.1 001 11111 101011 1001 010100 1001

D0.2 010 00000 100111 0101 011000 0101

D1.2 010 00001 011101 0101 100010 0101

D2.2 010 00010 101101 0101 010010 0101

D3.2 010 00011 110001 0101 110001 0101

D4.2 010 00100 110101 0101 001010 0101

D5.2 010 00101 101001 0101 101011 0101

D6.2 010 00110 011001 0101 011001 0101

D7.2 010 00111 111000 0101 000111 0101

D8.2 010 01000 111001 0101 000110 0101

D9.2 010 01001 100101 0101 011010 0101

D10.2 010 01010 010101 0101 010101 0101

D11.2 010 01011 110100 0101 110100 0101

D12.2 010 01100 001101 0101 001101 0101

D13.2 010 01101 101100 0101 101100 0101

Table 3-17: Valid Data Characters (Continued)

Data Byte 
Name

Bits 
HGF EDCBA

Current RD –
abcdei fghj

Current RD + 
abcdei fghj
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D14.2 010 01110 011100 0101 011100 0101

D15.2 010 01111 010111 0101 101000 0101

D16.2 010 10000 011011 0101 100100 0101

D17.2 010 10001 100011 0101 100011 0101

D18.2 010 01010 010011 0101 010011 0101

D19.2 010 10011 110010 0101 110010 0101

D20.2 010 10100 001011 0101 001011 0101

D21.2 010 10101 101010 0101 101010 0101

D22.2 010 10110 011010 0101 011010 0101

D23.2 010 10111 111010 0101 000101 0101

D24.2 010 11000 110011 0101 001100 0101

D25.2 010 11001 100110 0101 100110 0101

D26.2 010 11010 010010 0101 010110 0101

D27.2 010 11011 110110 0101 001001 0101

D28.2 010 11100 001110 0101 001110 0101

D29.2 010 11101 101110 0101 010001 0101

D30.2 010 11110 011110 0101 100001 0101

D31.2 010 11111 101011 0101 010100 0101

D0.3 000 00000 100111 0011 011000 1100

D1.3 011 00001 011101 0011 100010 1100

D2.3 011 00010 101101 0011 010010 1100

D3.3 011 00011 110001 1100 110001 0011

D4.3 011 00100 110101 0011 001010 1100

D5.3 011 00101 101001 1100 101011 0011

D6.3 011 00110 011001 1100 011001 0011

D7.3 011 00111 111000 1100 000111 0011

D8.3 011 01000 111001 0011 000110 1100

D9.3 011 01001 100101 1100 011010 0011

D10.3 011 01010 010101 1100 010101 0011

D11.3 011 01011 110100 1100 110100 0011

D12.3 011 01100 001101 1100 001101 0011

D13.3 011 01101 101100 1100 101100 0011

D14.3 011 01110 011100 1100 011100 0011

Table 3-17: Valid Data Characters (Continued)

Data Byte 
Name

Bits 
HGF EDCBA

Current RD –
abcdei fghj

Current RD + 
abcdei fghj
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D15.3 011 01111 010111 0011 101000 1100

D16.3 011 10000 011011 0011 100100 1100

D17.3 011 10001 100011 1100 100011 0011

D18.3 011 10010 010011 1100 010011 0011

D19.3 011 10011 110010 1100 110010 0011

D20.3 011 10100 001011 1100 001011 0011

D21.3 011 10101 101010 1100 101010 0011

D22.3 011 10110 011010 1100 011010 0011

D23.3 011 10111 111010 0011 000101 1100

D24.3 011 11000 110011 0011 001100 1100

D25.3 011 11001 100110 1100 100110 0011

D26.3 011 11010 010110 1100 010110 0011

D27.3 011 11011 110110 0011 001001 1100

D28.3 011 11100 001110 1100 001110 0011

D29.3 011 11101 101110 0011 010001 1100

D30.3 011 11110 011110 0011 100001 1100

D31.3 011 11111 101011 0011 010100 1100

D0.4 100 00000 100111 0010 011000 1101

D1.4 100 00001 011101 0010 100010 1101

D2.4 100 00010 101101 0010 010010 1101

D3.4 100 00011 110001 1101 110001 0010

D4.4 100 00100 110101 0010 001010 1101

D5.4 100 00101 101001 1101 101011 0010

D6.4 100 00110 011001 1101 011001 0010

D7.4 100 00111 111000 1101 000111 0010

D8.4 100 01000 111001 0010 000110 1101

D9.4 100 01001 100101 1101 011010 0010

D10.4 100 01010 010101 1101 010101 0010

D11.4 100 01011 110100 1101 110100 0010

D12.4 100 01100 001101 1101 001101 0010

D13.4 100 01101 101100 1101 101100 0010

D14.4 100 01110 011100 1101 011100 0010

D15.4 100 01111 010111 0010 101000 1101

Table 3-17: Valid Data Characters (Continued)

Data Byte 
Name

Bits 
HGF EDCBA

Current RD –
abcdei fghj

Current RD + 
abcdei fghj

http://www.xilinx.com


1108 www.xilinx.com March 2002 Release
1-800-255-7778 Virtex-II Pro™ Platform FPGA Documentation

Chapter 3: Digital Design Considerations
R

D16.4 100 10000 011011 0010 100100 1101

D17.4 100 10001 100011 1101 100011 0010

D18.4 100 10010 010011 1101 010011 0010

D19.4 100 10011 110010 1101 110010 0010

D20.4 100 10100 001011 1101 001011 0010

D21.4 100 10101 101010 1101 101010 0010

D22.4 100 10110 011010 1101 011010 0010

D23.4 100 10111 111010 0010 000101 1101

D24.4 100 11000 110011 0010 001100 1101

D25.4 100 11001 100110 1101 100110 0010

D26.4 100 11010 010010 1101 010110 0010

D27.4 100 11011 110110 0010 001001 1101

D28.4 100 11100 001110 1101 001110 0010

D29.4 100 11101 101110 0010 010001 1101

D30.4 100 11110 011110 0010 100001 1101

D31.4 100 11111 101011 0010 010100 1101

D0.5 101 00000 100111 1010 011000 1010

D1.5 101 00001 011101 1010 100010 1010

D2.5 101 00010 101101 1010 010010 1010

D3.5 101 00011 110001 1010 110001 1010

D4.5 101 00100 110101 101 001010 1010

D5.5 101 00101 101001 1010 101011 1010

D6.5 101 00110 011001 1010 011001 1010

D7.5 101 00111 111000 1010 000111 1010

D8.5 101 01000 111001 1010 000110 1010

D9.5 101 01001 100101 1010 011010 1010

D10.5 101 01010 010101 1010 010101 1010

D11.5 101 01011 110100 1010 110100 1010

D12.5 101 01100 001101 1010 001101 1010

D13.5 101 01101 101100 1010 101100 1010

D14.5 101 01110 011100 1010 011100 1010

D15.5 101 01111 010111 1010 101000 1010

D16.5 101 10000 011011 1010 100100 1010

Table 3-17: Valid Data Characters (Continued)

Data Byte 
Name

Bits 
HGF EDCBA

Current RD –
abcdei fghj

Current RD + 
abcdei fghj
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D17.5 101 10001 100011 1010 100011 1010

D18.5 101 01010 010011 1010 010011 1010

D19.5 101 10011 110010 1010 110010 1010

D20.5 101 10100 001011 1010 001011 1010

D21.5 101 10101 101010 1010 101010 1010

D22.5 101 10110 011010 1010 011010 1010

D23.5 101 10111 111010 1010 000101 1010

D24.5 101 11000 110011 1010 001100 1010

D25.5 101 11001 100110 1010 100110 1010

D26.5 101 11010 010010 1010 010110 1010

D27.5 101 11011 110110 1010 001001 1010

D28.5 101 11100 001110 1010 001110 1010

D29.5 101 11101 101110 1010 010001 1010

D30.5 101 11110 011110 1010 100001 1010

D31.5 101 11111 101011 1010 010100 1010

D0.6 110 00000 100111 0110 011000 0110

D1.6 110 00001 011101 0110 100010 0110

D2.6 110 00010 101101 0110 010010 0110

D3.6 110 00011 110001 0110 110001 0110

D4.6 110 00100 110101 0110 001010 0110

D5.6 110 00101 101001 0110 101011 0110

D6.6 110 00110 011001 0110 011001 0110

D7.6 110 00111 111000 0110 000111 0110

D8.6 110 01000 111001 0110 000110 0110

D9.6 110 01001 100101 0110 011010 0110

D10.6 110 01010 010101 0110 010101 0110

D11.6 110 01011 110100 0110 110100 0110

D12.6 110 01100 001101 0110 001101 0110

D13.6 110 01101 101100 0110 101100 0110

D14.6 110 01110 011100 0110 011100 0110

D15.6 110 01111 010111 0110 101000 0110

D16.6 110 10000 011011 0110 100100 0110

D17.6 110 10001 100011 0110 100011 0110

Table 3-17: Valid Data Characters (Continued)

Data Byte 
Name

Bits 
HGF EDCBA

Current RD –
abcdei fghj

Current RD + 
abcdei fghj
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D18.6 110 01010 010011 0110 010011 0110

D19.6 110 10011 110010 0110 110010 0110

D20.6 110 10100 001011 0110 001011 0110

D21.6 110 10101 101010 0110 101010 0110

D22.6 110 10110 011010 0110 011010 0110

D23.6 110 10111 111010 0110 000101 0110

D24.6 110 11000 110011 0110 001100 0110

D25.6 110 11001 100110 0110 100110 0110

D26.6 110 11010 010010 0110 010110 0110

D27.6 110 11011 110110 0110 001001 0110

D28.6 110 11100 001110 0110 001110 0110

D29.6 110 11101 101110 0110 010001 0110

D30.6 110 11110 011110 0110 100001 0110

D31.6 110 11111 101011 0110 010100 0110

D0.7 111 00000 100111 0001 011000 1110

D1.7 111 00001 011101 0001 100010 1110

D2.7 111 00010 101101 0001 010010 1110

D3.7 111 00011 110001 1110 110001 0001

D4.7 111 00100 110101 0001 001010 1110

D5.7 111 00101 101001 1110 101011 0001

D6.7 111 00110 011001 1110 011001 0001

D7.7 111 00111 111000 1110 000111 0001

D8.7 111 01000 111001 0001 000110 1110

D9.7 111 01001 100101 1110 011010 0001

D10.7 111 01010 010101 1110 010101 0001

D11.7 111 01011 110100 1110 110100 1000

D12.7 111 01100 001101 1110 001101 0001

D13.7 111 01101 101100 1110 101100 1000

D14.7 111 01110 011100 1110 011100 1000

D15.7 111 01111 010111 0001 101000 1110

D16.7 111 10000 011011 0001 100100 1110

D17.7 111 10001 100011 0111 100011 0001

D18.7 111 10010 010011 0111 010011 0001

Table 3-17: Valid Data Characters (Continued)

Data Byte 
Name

Bits 
HGF EDCBA

Current RD –
abcdei fghj

Current RD + 
abcdei fghj
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D19.7 111 10011 110010 1110 110010 0001

D20.7 111 10100 001011 0111 001011 0001

D21.7 111 10101 101010 1110 101010 0001

D22.7 111 10110 011010 1110 011010 0001

D23.7 111 10111 111010 0001 000101 1110

D24.7 111 11000 110011 0001 001100 1110

D25.7 111 11001 100110 1110 100110 0001

D26.7 111 11010 010110 1110 010110 0001

D27.7 111 11011 110110 0001 001001 1110

D28.7 111 11100 001110 1110 001110 0001

D29.7 111 11101 101110 0001 010001 1110

D30.7 111 11110 011110 0001 100001 1110

D31.7 111 11111 101011 0001 010100 1110

Table 3-17: Valid Data Characters (Continued)

Data Byte 
Name

Bits 
HGF EDCBA

Current RD –
abcdei fghj

Current RD + 
abcdei fghj
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8B/10B Serial Output Format
The 8B/10B encoding translates a 8-bit parallel data byte to be transmitted into a 10-bit 
serial data stream. This conversion and data alignment are shown in Figure 3-9. The serial 
port transmits the least significant bit of the 10-bit data “a” first and proceeds to “j”. This 
allows data to be read and matched to the form shown in Table 3-17.  

Table 3-18: Valid Control “K” Characters

Special 
Code Name

Bits 
HGF EDCBA

Current RD –
abcdei fghj

Current RD +
abcdei fghj

K28.0 000 11100 001111 0100 110000 1011

K28.1 001 11100 001111 1001 110000 0110

K28.2 010 11100 001111 0101 110000 1010

K28.3 011 11100 001111 0011 110000 1100

K28.4 100 11100 001111 0010 110000 1101

K28.5 101 11100 001111 1010 110000 0101

K28.6 110 11100 001111 0110 110000 1001

K28.7 111 11100 001111 1000 110000 0111

K23.7 111 10111 111010 1000 000101 0111

K27.7 111 11011 110110 1000 001001 0111

K29.7 111 11101 101110 1000 010001 0111

K30.7 111 11110 011110 1000 100001 0111

Figure 3-9: 8B/10B Parallel to Serial Conversion
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The serial data bit sequence is dependent on the width of the parallel data. The most 
significant byte is always sent first regardless of the whether 1-byte, 2-byte, or 4-byte paths 
are used. The least significant byte is always last. Figure 3-10 shows a case when the serial 
data corresponds to each byte of the parallel data. TXDATA [31:24] is serialized and sent 
out first followed by TXDATA [23:16], TXDATA [15:8], and finally TXDATA [7:0]. The 2-
byte path transmits TXDATA [15:8] and then TXDATA [7:0].  

HDL Code Examples: Transceiver Bypassing of 8B/10B Encoding
8B/10B encoding can be bypassed by the transceiver. The TX8B10BBYPASS is set to 1111; 
the RXDECODE attribute is set to “FALSE” to create the extra two bits needed for a 10-bit 
data bus; and TXCHARDISPMODE, TXCHARDISPVAL, RXCHARISK, and RXRUNDISP 
are added to the 8-bit data bus. 

Availability for download of code examples with 8B/10B bypassing is planned for a later 
date.

CRC Operation
Cyclic Redundancy Check (CRC) is a procedure to detect errors in the received data. There 
are four possible CRC modes, USER_MODE, ETHERNET, INFINIBAND, and 
FIBRE_CHAN. These are only modifiable for the GT_XAUI and GT_CUSTOM. Each mode 
has a start-of-packet (SOP) and end-of-packet (EOP) setting to determine where to start 
and end the CRC monitoring. USER_MODE allows the user to define the SOP and EOP by 
setting the CRC_START_OF_PKT and CRC_END_OF_PKT to one of the valid 
K-characters (Table 3-18). The CRC is controlled by RX_CRC_USE and TX_CRC_USE. 
Whenever these attributes are set to TRUE, CRC is used. A CRC error can be “forced” with 
the use of TXFORCECRCERR. This causes TX_CRC_FORCE_VALUE to be XORed with 
the computed CRC, to test the CRC error logic.

CRC Generation
Rocket I/O transceivers support a 32-bit invariant CRC (fixed 32-bit polynomial shown 
below) for Gigabit Ethernet, Fibre Channel, Infiniband, and user-defined modes.  

The CRC recognizes the SOP (Start of Packet), EOP (End of Packet), and other packet 
features to identify the beginning and end of data. These SOP and EOP are defined by the 

Figure 3-10: 4-Byte Serial Structure
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TXDATA  31:24 TXDATA  23:16 TXDATA 15:8 TXDATA 7:0

H3 − A3 H2 − A2 H1 − A1 H0 − A0

a3 − j3 a2 − j2 a1 − j1 a0 − j0

8B/10B

LSB3 LSB2 LSB1 LSB0

1st Sent
Encoded

2nd Sent
Encoded

3rd Sent
Encoded

4th Sent
Encoded

x32 x26 x23 x22 x16 x12 x11 x10 x8 x7 x5 x4 x2 x1 1+ + + + + + + + + + + + + +
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mode, except in the case where CRC_MODE is USER_DEFINED. The user-defined mode 
uses CRC_START_OF_PKT and CRC_END_OF_PKT to define SOP and EOP. 

The transmitter computes 4-byte CRC on the packet data between the SOP and EOP 
(excluding the CRC placeholder bytes). The transmitter inserts the computed CRC just 
before the EOP. The transmitter modifies trailing Idles or EOP if necessary to generate 
correct running disparity for Gigabit Ethernet and FibreChannel. The receiver recomputes 
CRC and verifies it against the inserted CRC. Figure 3-11 shows the packet format for CRC 
generation. The empty boxes are only used in certain protocols (Ethernet). The user logic 
must create a four-byte placeholder for the CRC; otherwise, data is overwritten.  

CRC Latency
Enabling CRC increases the transmission latency from TXDATA to TXP and TXN. The 
enabling of CRC does not affect the latency from RXP and RXN to RXDATA. The typical 
and maximum latencies, expressed in TXUSRCLK2/RXUSRCLK2 cycles, are shown in 
Table 3-19. For timing diagrams expressing these relationships, please see Module 3 of the 
Virtex-II Pro Data Sheet.  

CRC Limitations
There are several limitations to the Rocket I/O CRC. First, CRC is not supported in byte-
striped data. If byte-striped (channel bonding) is required, CRC must be computed in 
CLBs prior to the byte-striping. The CRC support of Infiniband is incomplete, because the 
16-bit variant CRC must be done in the CLBs making the transceiver core CRC function 
redundant. For this case, set TX_CRC_USE = FALSE.

CRC Modes
The Rocket I/O transceiver has four CRC modes: USER_MODE, FIBRECHANNEL, 
ETHERNET, and INFINIBAND. These CRC modes are briefly explained below. 

USER_MODE
USER_MODE is the simplest CRC methodology. The CRC checks for the SOP and EOF, 
calculates CRC on the data, and leaves the four remainders directly before the EOP. The 
CRC form for the user-defined mode is shown in Figure 3-12, along with the timing for 
asserting RXCHECKINGCRC and RXCRCERR High with respect to the incoming data. 

TXCRCFORCEERR and RXCRCERR are both useful during testing. When using CRC, 
testing the CRC logic can be done by setting CRCFORCEERR High to incorporate an error 
into the data that is transmitted. When the data is received in a testing mode, such as serial 
loopback, the data is "corrupted" and the receiver should signal an error with the use of 

Figure 3-11: CRC Packet Format

SOP … IdleEOPData CRC

4 Bytes

……

UG024_07_021102

Table 3-19: Effects of CRC on Transceiver Latency

TXDATA to TXP and TXN,
in TXUSRCLK2 Cycles

RXP and RXN to RXDATA,
in RXUSRCLK2 Cycles

Typical Maximum Typical Maximum

CRC Disabled 8 11 25 42

CRC Enabled 14 17 25 42
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RXCRCERR when the RXCHECKINGCRC is asserted High. User logic determines the 
procedure when a RXCRCERR occurs. 

FIBRECHANNEL
The Fibre Channel CRC is similar to the USER_MODE CRC (Figure 3-12) with one 
exception: In FibreChannel, SOP and EOP are the protocol delimiters, while USER_MODE 
uses the two attributes CRC_START_OF_PKT and CRC_END_OF_PKT to define SOP and 
EOP. Both USER_MODE and Fibre Channel, however, disregard the SOP and EOP in CRC 
computation.  

ETHERNET
The Ethernet CRC is more complex (Figure 3-13). The SOP, EOP, and Preamble are 
neglected by the CRC. The extension bytes are special “K” characters in special cases. The 
extension bytes are untouched by the CRC as are the Trail bits, which are added to 
maintain packet length.  

INFINIBAND
The Infiniband CRC is the most complex mode, and is not supported in the CRC generator. 
Infiniband CRC contains two computation types: an invariant 32-bit CRC, the same as in 
Ethernet protocol; and a variant 16-bit CRC, which is not supported in the hard core. 
Infiniband CRC must be implemented entirely in the FPGA fabric. 

There are also two Infiniband Architecture (IBA) packets, a local and a global. Both of these 
IBA packets are shown in Figure 3-14.  

Figure 3-12: USER_MODE / FIBRE_CHANNEL Mode
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SOP DATA R0 R1 R2 R3 EOP

RXCHECKINGCRC

RXCRCERR

Figure 3-13: Ethernet Mode
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Preamble

n Bytes

SOP SOF DATA R0 R1 R2 R3 Extn Bits EOP Trail Bits

2 to 3 Bytes

Figure 3-14: Infiniband Mode
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GRHLRHSOP

Global IBA

BTH
Packet

Payload
R0 R1 R2 R3 Variant CRC EOP

LRHSOP

Local IBA

BTH
Packet

Payload
R0 R1 R2 R3 Variant CRC EOP
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The CRC is calculated with certain bits masked in LRH and GRH, depending on whether 
the packet is local or global. The size of these headers is shown in Table 3-20.  

The CRC checks the LNH (Link Next Header) of the LRH. LRH is shown in Figure 3-15, 
along with the bits the CRC uses to evaluate the next packet.  

Because of the complexity of the CRC algorithms and implementations, especially with 
Infiniband, a more in-depth discussion is beyond the scope of this manual.

Channel Bonding (Channel-to-Channel Alignment)
Channel bonding is the technique of tying several serial channels together to create one 
aggregate channel. Several channels are fed on the transmit side by one parallel bus and 
reproduced on the receive side as the identical parallel bus. The maximum number of 
serial differential pairs that can be bonded is 16. For implementation guidelines, see 
Implementation Tools, page 1131.

Channel bonding allows those primitives that support it to send data over multiple 
"channels." Among these primitives are GT_CUSTOM, GT_INFINIBAND, GT_XAUI, and 
GT_AURORA. To "bond" channels together, there is always one "master." The other 
channels can either be a SLAVE_1_HOP or SLAVE_2_HOPs. SLAVE_1_HOP is a slave to a 
master that can also be daisy chained to a SLAVE_2_HOPs. A SLAVE_2_HOPs can only be 
a slave to a SLAVE_1_HOP and its CHBONDO does not connect to another transceiver. To 
designate a transceiver as a master or a slave, the attribute CHAN_BOND_MODE must be 
set to one of three designations: Master, SLAVE_1_HOP, or SLAVE_2_HOPs. To shut off 
channel bonding, set the transceiver attribute to "off." The possible values that can be used 
are shown in Table 3-21.

Table 3-20: Global and Local Headers

Packet Description Size

LRH Local Routing Header 8 Bytes

GRH Global Routing Header 40 Bytes

BTH IBA Transport Header 12 Bytes

Figure 3-15: Local Route Header

UG024_15_020802

B0 B17 − B10 B2

B11, B10

B3 B4 B5 B6 B7

1 1 IBA Global Packet
1 0 IBA Local Packet
0 1 Raw Packet (CRC does not insert remainder)
0 0 Raw Packet (CRC does not insert remainder)

Table 3-21: Bonded Channel Connections

Mode CHBONDI CHBONDO

OFF NA NA

MASTER NA slave 1 CHBONDI

SLAVE_1_HOP master CHBONDO slave 2 CHBONDI

SLAVE_2_HOPS slave 1 CHBONDO NA
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The channel bonding sequence is similar to the clock correction sequence. This sequence is 
set to the appropriate sequence for the primitives supporting channel bonding. The 
GT_CUSTOM is the only primitive allowing modification to the sequence. These 
sequences are comprised of one or two sequences of length up to 4 bytes each, as set by 
CHAN_BOND_SEQ_LEN and CHAN_BOND_SEQ_2_USE. Other control signals include 
the attributes:

• CHAN_BOND_WAIT
• CHAN_BOND_OFFSET
• CHAN_BOND_LIMIT
• CHAN_BOND_ONE_SHOT 

Typical values for these attributes are:

CHAN_BOND_WAIT = 8
CHAN_BOND_OFFSET = CHAN_BOND_WAIT
CHAN_BOND_LIMIT = 2 x CHAN_BOND_WAIT

Lower values are not recommended. Use higher values only if channel bonding sequences 
are farther apart than 17 bytes.

Table 3-22 shows different settings for CHAN_BONDONE_SHOT and ENCHANSYNC in 
Master and Slave applications.  

HDL Code Examples: Channel Bonding
Availability for download of code examples implementing channel bonding is planned for 
a later date.

Table 3-22: Master/Slave Channel Bonding Attribute Settings

Master Slave

CHAN_BOND_ONE_SHOT TRUE or FALSE as desired FALSE

ENCHANSYNC Dynamic control as desired Tie High
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Chapter 4

Analog Design Considerations

Serial I/O Description
The Rocket I/O transceiver transmits and receives serial differential signals. This feature 
operates at a nominal supply voltage of 2.5 VDC. A serial differential pair consists of a true 
(VP) and a complement (VN) set of signals. The voltage difference represents the 
transferred data. Thus: VP – VN = VDATA. Differential switching is performed at the 
crossing of the two complementary signals. Therefore, no separate reference level is 
needed. 

A graphical representation of this concept is shown in Figure 4-1.

The Rocket I/O transceiver is implemented in Current Mode Logic (CML). A CML output 
consists of transistors configured as shown in Figure 4-1. CML uses a positive supply and 
offers easy interface requirements. In this configuration, both legs of the driver, VP and VN, 
sink current, with one leg always sinking more current than its complement. The CML 
output consists of a differential pair with 50Ω (or, optionally, 75Ω) source resistors. The 
signal swing is created by switching the current in a common-drain differential pair. 

The differential transmitter specification is shown in Table 4-1, page 1120.

Figure 4-1: Differential Amplifier

CML Output Driver

DATA

U024_06_020802
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Pre-emphasis Techniques
In pre-emphasis, the initial differential voltage swing is boosted to create a stronger rising 
or falling waveform. This method compensates for high frequency loss in the transmission 
media that would otherwise limit the magnitude of this waveform. The effects of 
pre-emphasis are shown in four scope screen captures, Figure 4-2 through Figure 4-5 on 
the pages following. The STRONG notation in Figure 4-3 is used to show that the 
waveform is greater in voltage magnitude, at this point, than the LOGIC or normal level 
(i.e., no pre-emphasis). 

A second characteristic of Rocket I/O transceiver pre-emphasis is that the STRONG level 
is reduced after some time to the LOGIC level, thereby minimizing the voltage swing 
necessary to switch the differential pair into the opposite state.

Lossy transmission lines cause the dissipation of electrical energy. This pre-emphasis 
technique extends the distance that signals can be driven down lossy line media and 
increases the signal-to-noise ratio at the receiver. 

The four levels of pre-emphasis are shown in Table 4-2.  

Table 4-1: Differential Transmitter Parameters

Parameter Min Typ Max Units Conditions

VOUT Serial output differential 
peak to peak (TXP/TXN)

800 1600 mV Output differential 
voltage is program-
mable

VTTX Output termination 
voltage supply

1.8 2.8 V

VTCM Common mode output 
voltage range

1.5 2.5 V

VISKEW Differential output skew 15 ps

Table 4-2: Pre-emphasis Values

Attribute Values Emphasis (%)

0 10

1 20

2 25

3 33
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Figure 4-2: Alternating K28.5+ with No Pre-Emphasis

Figure 4-3: K28.5+ with Pre-Emphasis
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Figure 4-4: Eye Diagram: without Pre-Emphasis

Figure 4-5: Eye Diagram: with 30% Pre-Emphasis
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Differential Receiver
The differential receiver accepts the VP and VN signals, carrying out the difference 
calculation VP - VN electronically.

All input data must be differential and nominally biased to a common mode voltage of 
0.5 V – 2.5 V, or AC coupled. Internal terminations provide for simple 50Ω or 75Ω 
transmission line connection. 

The differential receiver parameters are shown in Table 4-3.  

Jitter
Jitter is defined as the short-term variations of significant instants of a signal from their 
ideal positions in time (ITU). Jitter is typically expressed in a decimal fraction of Unit 
Interval (UI), e.g. 0.3 UI. 

Total Jitter (DJ + RJ)

Deterministic Jitter (DJ) 
DJ is data pattern dependant jitter, attributed to a unique source (e.g., Inter Symbol 
Interference (ISI) due to loss effects of the media). DJ is linearly additive.

Random Jitter (RJ)
RJ is due to stochastic sources, such as substrate, power supply, etc. RJ is additive as the 
sum of squares, and follows a bell curve.

Clock and Data Recovery 
The serial transceiver input is locked to the input data stream through Clock and Data 
Recovery (CDR), a built-in feature of the Rocket I/O transceiver. CDR keys off the rising 
and falling edges of incoming data and derives a clock that is representative of the 
incoming data rate.

The derived clock, RXRECCLK, is presented to the FPGA fabric at 1/20th the incoming 
data rate. This clock is generated and locked to as long as it remains within the specified 
component range. This range is shown in Table 4-4.

Table 4-3: Differential Receiver Parameters

Parameter Min Typ Max Units Conditions

VIN Serial input differential peak 
to peak (RXP/RXN)

175 1,000 mV

VICM Common mode input voltage 
range

500 2500 mV

TISKEW Differential input skew 75 ps

TJTOL Receive data total jitter 
tolerance (peak to peak)

0.65 UI(1)

TDJTOL Receive data deterministic 
jitter tolerance (peak to peak)

0.41 UI

Notes: 
1. UI = Unit Interval
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A sufficient number of transitions must be present in the data stream for CDR to work 
properly. The CDR circuit is guaranteed to work with 8B/10B encoding. Further, CDR 
requires approximately 5,000 transitions upon power-up to guarantee locking to the 
incoming data rate. Once lock is achieved, up to 75 missing transitions can be tolerated 
before lock to the incoming data stream is lost.

Care must be taken if a custom serial data stream is engineered so that the transition 
frequency rate requirement of 8B/10B encoding is met. An additional feature of CDR is its 
ability to accept an external precision clock, REFCLK, as an optional input. REFCLK acts 
either to clock incoming data or to assist in synchronizing the derived RXRECCLK.

For further clarity, the TXUSRCLK is used to clock data from the FPGA core to the TX 
FIFO. The FIFO depth accounts for the slight phase difference between these two clocks. If 
the clocks are locked in frequency, then the FIFO acts much like a pass-through buffer.

Table 4-4: CDR Parameters

Parameter Min Typ Max Units Conditions

Frequency 
Range

Serial input 
differential 
(RXP/RXN)

175 1,000 MHz Peak-to-peak

Frequency 
Offset

ppm

TDCREF REFCLK duty cycle 45 50 55 %

TRCLK/TFCLK REFCLK rise and fall 
time (see Virtex-II Pro 
Data Sheet, Module 3)

75 ps Between 20% 
and 80% volt-
age levels

TGJTT REFCLK total jitter 40 ps Peak-to-peak

TLOCK Clock recovery 
frequency acquisition 
time

10 µs

TUNLOCK cycles
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PCB Design Requirements
In order to ensure reliable operation of the Rocket I/O transceivers, certain requirements 
must be met by the designer.  This section outlines these requirements governing power 
filtering networks, high-speed differential signal traces, and reference clocks.  Any designs 
that do not adhere to these requirements will not be supported by Xilinx, Inc.

Power Filtering
Each Rocket I/O transceiver has five power supply pins, all of which are sensitive to noise.  
Table 4-5 summarizes the power supply pins, their names, and associated voltages.  

To operate properly, the Rocket I/O transceiver requires a certain level of noise isolation 
from surrounding noise sources. For this reason, it is required that dedicated voltage 
regulators be used to power the Rocket I/O circuitry.  These power supply circuits must 
not be shared with any other supplies (including FPGA supplies VCCINT, VCCO, VCCAUX, 
and VREF). Voltage regulators may be shared among transceiver power supplies of the 
same voltage. 

The required voltage regulator is the Linear Technology LT1963-2.5 device.  This regulator 
must be used in the circuit specified by the manufacturer. Figure 4-6 shows the schematic 
with values for a 2.5V supply, as would be used for AVCCAUXRX and AVCCAUXTX.

Refer to the manufacturer’s Web page at http://www.linear-tech.com for further 
information about this device.  

To achieve the necessary isolation from power supply noise, filter networks are required 
on the power supply pins. The topology of these capacitor and ferrite bead circuits is given 
in Figure 4-7. 

Table 4-5: Transceiver Power Supplies

Supply 2.5V 1.5V- 2.8V Description

AVCCAUXRX X Analog RX supply

AVCCAUXTX X Analog TX supply

VTRX X RX termination supply

VTTX X TX termination supply

GNDA Analog ground for transmit and receive 
analog supplies

Figure 4-6: Power Supply Circuit Using LT1963 Regulator
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Each transceiver power pin requires one capacitor and one ferrite bead. The capacitors 
must be of value 0.22 µF in an 0603 SMT package of X7R dielectric material at 10% 
tolerance, rated to at least 5V. These capacitors must be placed within 1 cm of the pins they 
are bypassing. The ferrite bead is the Murata BLM18AG102SN1.

Figure 4-8 and Figure 4-9 show an example layout of the power filtering network for four 
transceivers.  The device is in an ff672 package, which has eight transceivers total—four on 
the top edge and four on the bottom edge. Figure 4-8 shows the top PCB layer, with lands 
for the capacitors and ferrite beads of the VTTX and VTRX supplies. The ferrite beads are 
L1, L2, L3, L4, L9, L11, L12, and L21; the capacitors are C85, C90, C94, C96, C98, C100, C119, 
and C124. Figure 4-9 shows the bottom PCB layer, with lands for the capacitors and ferrite 
beads of the AVCCAUXTX and AVCCAUXRX supplies.  The ferrite beads are L10, L13, 
L15, L16, L19, L33, and L34; the capacitors are C141, C144, C211, C221, C223, C225, C227, 
and C229.

Figure 4-7: Power Filtering Network for One Transceiver

Figure 4-8: Example Power Filtering PCB Layout for Four MGTs, Top Layer
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Differential impedance of traces on the finished PCB should be verified with Time Domain 
Reflectometry (TDR) measurements.

Power and ground paths in the PCB must be designed to have the lowest inductance 
possible. To this end, dedicated planes for ground must be used. When vias are a part of 
the power distribution path (as they are when connecting a bypass capacitor to its 
associated power and ground layers), multiple vias should be used to decrease the total 
inductance of the path. If power filtering capacitors are mounted on the same side of the 
board as the FPGA, designers can choose to place power layers closer to the surface of the 
board to shorten the path of power travel through vias.

High-Speed Serial Trace Design

Routing Serial Traces
All Rocket I/O transceiver I/Os are placed on the periphery of the BGA package to 
facilitate routing and inspection (since JTAG is not available on serial I/O pins). Two 
output/input impedance options are available in the Rocket I/O transceivers: 50Ω and 
75Ω. Controlled impedance traces with a corresponding impedance should be used to 
connect the Rocket I/O transceiver to other compatible transceivers. In chip-to-chip PCB 
applications, 50Ω termination and 100Ω differential transmission lines are recommended.

When routing a differential pair, the complementary traces must be matched in length to as 
close a tolerance as is feasible. Length mismatches produce common mode noise and 
radiation. Severe length mismatches produce jitter and unpredictable timing problems at 
the receiver. Matching the differential traces to within 50 mils (1.27 mm) produces a robust 
design. Since signals propagate in FR4 PCB traces at approximately 180 ps per inch, a 
difference of 50 mils produces a timing skew of roughly 9 ps. Use SI CAD tools to confirm 
these assumptions on specific board designs.

All signal traces must have an intact reference plane beneath them. Stripline and 
microstrip geometries may be used. The reference plane should extend no less than five 
trace widths to either side of the trace to ensure predictable transmission line behavior.

Routing of a differential pair is optimally done in a point-to-point fashion, ideally 
remaining on the same PCB routing layer. As vias represent an impedance discontinuity, 
layer-to-layer changes should be avoided wherever possible. It is acceptable to traverse the 

Figure 4-9: Example Power Filtering PCB Layout for Four MGTs, Bottom Layer
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PCB stackup to reach the transmitter and receiver package pins. If serial traces must 
change layers, care must be taken to ensure an intact current return path. For this reason, 
routing of high-speed serial traces should be on signal layers that share a reference plane. 
If the signal layers do not share a reference plane, a capacitor of value 0.01 µF should be 
connected across the two reference layers close to the vias where the signals change layers. 
If both of the reference layers are DC coupled (if they are both ground), they can be 
connected with vias close to where the signals change layers.

To control crosstalk, serial differential traces should be spaced at least five trace separation 
widths from all other PCB routes, including other serial pairs. A larger spacing is required 
if the other PCB routes carry especially noisy signals, such as TTL and similar.

The Rocket I/O transceiver is designed to function at 3.125 Gb/s through 20 inches of FR4 
with two high-bandwidth connectors. Longer trace lengths require either a low-loss 
dielectric or considerably wider serial traces.

Differential Trace Design
The characteristic impedance of a pair of differential traces depends not only on the 
individual trace dimensions, but also on the spacing between them. The Rocket I/O 
transceivers require either a 100Ω or 150Ω differential trace impedance (depending on 
whether the 50Ω or 75Ω termination option is selected). To achieve this differential 
impedance requirement, the characteristic impedance of each individual trace must be 
slightly higher than half of the target differential impedance. A field solver should be used 
to determine the exact trace geometry suited to the specific application (Figure 4-10). This 
task should not be left up to the PCB vendor.

Tight coupling of differential traces is recommended. Tightly coupled traces (as opposed to 
loosely coupled) maintain a very close proximity to one another along their full length. 
Since the differential impedance of tightly coupled traces depends heavily on their 
proximity to each other, it is imperative that they maintain constant spacing along their full 
length, without deviation. If it is necessary to separate the traces in order to route through 
a pin field or other PCB obstacle, it can be helpful to modify the trace geometry in the 
vicinity of the obstacle to correct for the impedance discontinuity (increase the individual 
trace width where trace separation occurs). 

Figure 4-11 and Figure 4-12 show examples of PCB geometries that result in 100Ω 
differential impedance. 

Figure 4-10: Single-Ended Trace Geometry
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AC and DC Coupling
AC coupling (use of DC blocking capacitors in the signal path) should be used in cases 
where transceiver differential voltages are compatible, but common mode voltages are not. 
Some designs require AC coupling to accommodate hot plug-in, and/or differing power 
supply voltages at different transceivers. This is illustrated in Figure 4-13.

DC coupling (direct connection) is preferable in cases where Rocket I/O transceivers are 
interfaced with other Rocket I/O transceivers or other Mindspeed transceivers that have 
compatible differential and common mode voltage specifications. Passive components are 
not required when DC coupling is used. This is illustrated in Figure 4-14.  

Figure 4-11: Microstrip Edge-Coupled Differential Pair

Figure 4-12: Stripline Edge-Coupled Differential Pair
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Figure 4-13: AC-Coupled Serial Link

Figure 4-14: DC-Coupled Serial Link
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Power Consumption
The maximum power consumption per port is 350 mW at 3.125 Gb/s operation. All 
unused serial I/O can be turned off to consume zero power.

POWERDOWN

POWERDOWN allows "shutting off" the transceiver in case it is not needed for the design, 
or will not be transmitting or receiving for a long period of time. When POWERDOWN is 
enabled, the transceiver does not use any power. The clocks are disabled and do not 
propagate through the core. The 3-state TXP and TXN pins are set to high-Z, while the 
outputs to the fabric are frozen but not set to high-Z. Unused transceivers are automatically 
powered down to save on power consumption.

Reference Clock
A high degree of accuracy is required from the reference clock.  For this reason, it is 
required that an EPSON EG-2121CA 2.5V oscillator be used.  The power supply circuit 
specified by the manufacturer must be used, and the circuit in Figure 4-15 must be used to 
interface the LVPECL outputs of the oscillator with the LVDS inputs of the transceiver 
reference clock.

Figure 4-15: Reference CLock Oscillator Interface
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Chapter 5

Simulation and Implementation

Simulation Models

Smart Model
Smart models are an encrypted version to the actual HDL code. These models allow the 
user to simulate with the actual functionality without having access to the code itself. A 
simulator with smart model capability is required to use the smart models.

HSPICE
HSPICE is an analog design model that allows simulation of the RX and TX high-speed 
transceiver. The following HSPICE deck is an example of how to set up such a simulation. 

Behavioral
Behavioral models allow for simulation without the need to upgrade the simulator to 
support smart models.

Implementation Tools

Synthesis
During synthesis, the transceiver is treated as a "black box." This requires that a wrapper be 
used that describes the modules port. 

Par
For place and route, the transceiver has one restriction. This is required when channel 
bonding is implemented. Because of the delay limitations on the CHBONDO to CHBONDI 
ports, linking of the Master to a Slave_1_hop must run either in the X or Y direction, but not 
both.

In Figure 5-1, the two Slave_1_hops are linked to the master in only one direction. To 
navigate to the other slave (a Slave_2_hops), both X and Y displacement is needed. This 
slave needs one level of daisy-chaining, which is the basis of the Slave_2_hops setting. 

Figure 5-2 shows the channel bonding mode and linking for a 2VP50, which contains more 
transceivers (16) per chip. To ensure the timing is met on the link between the CHBONDO 
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and CHBONDI ports, a constraint must be added to check the time delay. The UCF 
example below shows and describes this.  

UCF Example
NET "chbond_*" MAXDELAY = 4.2 ns ;

4.2 ns is estimated as the channel bonding delay. This is based upon an RXUSRCLK of 
156.25 MHz (6.4 ns period), less 0.2 ns for estimated clock skew, less 2.0 ns for estimated 
clock-to-out/setup-time adjustment:

6.4 ns – 0.2 ns – 2.0 ns = 4.2 ns

This design used four Rocket I/O multi-gigabit transceivers, consisting of one master, two 
Slave_1_hop, and one Slave_2_hops. The net chbond_m_s01[3:0] connects the master 
and two Slave_1_hop. The net chbond_s1_s2[3:0] connects one Slave_1_hop and one 
Slave_2_hops. NET "chbond_*" MAXDELAY = 4.2 ns ; constrains all these connections.

Implementing Clock Schemes 
Sometimes certain FPGA resources are needed for specific logic. With Rocket I/O clocking 
schemes, the user has several resource choices. If the transceivers implemented are only at 
the top or bottom of the device, the REFCLK of the transceivers is not required to run 
through a clock tree resource. This saves this resource for other user logic. However, it does 
require additional I/O pins to be used (one for the DCM and one for the transceiver). 
Figure 3-3, page 1090, shows this scenario, which is similar to Figure 3-1 minus the clock-
tree resource. If transceivers from both the top and bottom of the device are used or device 
I/Os are at a premium, the clock tree resource is used allowing one less I/O pin used.

Figure 5-1: 2VP2 Implementation
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Figure 5-2: 2VP50 Implementation
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Diagnostic Signals
Often a diagnostic check is needed upon power-up. Rocket I/O transceivers have several 
inputs and outputs to run these checks.

LOOPBACK
LOOPBACK allows the user to send the data that is being transmitted directly to the 
receiver of the transceiver. Table 5-1 shows the three modes for loopback.

Table 5-1: LOOPBACK Modes

Input 
Value

Mode Description

00 Normal Mode The normal mode is selected during normal operation. 
The transmitted data is sent out the differential 
transmit ports (TXN, TXP) and are sent to another 
transceiver without being sent to its own receiver logic. 
During normal operation, the LOOPBACK should be 
set to “00”.

01 External Serial Mode The external serial mode is used to check that the entire 
transceiver is working properly. This includes testing of 
the 8B/10B encoding/decoding. This emulates what 
another transceiver would receive as data from this 
specific transceiver design. 

10 Internal Parallel Mode For testing of interfacing logic, the Internal Parallel 
Mode allows the use of linking the transmit and receive 
interface logic without having to go to another 
transceiver in the cases of 8B/10B bypassed or to 
reduce data latency from TXDATA to RXDATA.

http://www.xilinx.com


1134 www.xilinx.com March 2002 Release
1-800-255-7778 Virtex-II Pro™ Platform FPGA Documentation

Chapter 5: Simulation and Implementation
R

http://www.xilinx.com


March 2002 Release www.xilinx.com 1135
Virtex-II Pro™ Platform FPGA Documentation 1-800-255-7778

R

Appendix A

Rocket I/O™ Cell Models

Summary
This appendix documents the Rocket I/O™ Multi-Gigabit Transceiver cell models. The 
following information lists the Verilog module declarations of the model and pins 
associated with each of the Rocket I/O communication standards available in the 
Virtex-II Pro family.

Verilog Module Declarations

GT_AURORA_1

module GT_AURORA_1 (
CHBONDDONE,
CHBONDO,
CONFIGOUT,
RXBUFSTATUS,
RXCHARISCOMMA,
RXCHARISK,
RXCHECKINGCRC,
RXCLKCORCNT,
RXCOMMADET,
RXCRCERR,
RXDATA,
RXDISPERR,
RXLOSSOFSYNC,
RXNOTINTABLE,
RXREALIGN,
RXRECCLK,
RXRUNDISP,
TXBUFERR,
TXKERR,
TXN,
TXP,
TXRUNDISP,
CHBONDI,
CONFIGENABLE,
CONFIGIN,
ENCHANSYNC,
LOOPBACK,
POWERDOWN,
REFCLK,
REFCLK2,
REFCLKSEL,
RXN,
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RXP,
RXPOLARITY,
RXRESET,
RXUSRCLK,
RXUSRCLK2,
TXBYPASS8B10B,
TXCHARDISPMODE,
TXCHARDISPVAL,
TXCHARISK,
TXDATA,
TXFORCECRCERR,
TXINHIBIT,
TXPOLARITY,
TXRESET,
TXUSRCLK,
TXUSRCLK2

);

GT_AURORA_2

module GT_AURORA_2 (
CHBONDDONE,
CHBONDO,
CONFIGOUT,
RXBUFSTATUS,
RXCHARISCOMMA,
RXCHARISK,
RXCHECKINGCRC,
RXCLKCORCNT,
RXCOMMADET,
RXCRCERR,
RXDATA,
RXDISPERR,
RXLOSSOFSYNC,
RXNOTINTABLE,
RXREALIGN,
RXRECCLK,
RXRUNDISP,
TXBUFERR,
TXKERR,
TXN,
TXP,
TXRUNDISP,
CHBONDI,
CONFIGENABLE,
CONFIGIN,
ENCHANSYNC,
LOOPBACK,
POWERDOWN,
REFCLK,
REFCLK2,
REFCLKSEL,
RXN,
RXP,
RXPOLARITY,
RXRESET,
RXUSRCLK,
RXUSRCLK2,
TXBYPASS8B10B,
TXCHARDISPMODE,
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TXCHARDISPVAL,
TXCHARISK,
TXDATA,
TXFORCECRCERR,
TXINHIBIT,
TXPOLARITY,
TXRESET,
TXUSRCLK,
TXUSRCLK2

);

GT_AURORA_4

module GT_AURORA_4 (
CHBONDDONE,
CHBONDO,
CONFIGOUT,
RXBUFSTATUS,
RXCHARISCOMMA,
RXCHARISK,
RXCHECKINGCRC,
RXCLKCORCNT,
RXCOMMADET,
RXCRCERR,
RXDATA,
RXDISPERR,
RXLOSSOFSYNC,
RXNOTINTABLE,
RXREALIGN,
RXRECCLK,
RXRUNDISP,
TXBUFERR,
TXKERR,
TXN,
TXP,
TXRUNDISP,
CHBONDI,
CONFIGENABLE,
CONFIGIN,
ENCHANSYNC,
LOOPBACK,
POWERDOWN,
REFCLK,
REFCLK2,
REFCLKSEL,
RXN,
RXP,
RXPOLARITY,
RXRESET,
RXUSRCLK,
RXUSRCLK2,
TXBYPASS8B10B,
TXCHARDISPMODE,
TXCHARDISPVAL,
TXCHARISK,
TXDATA,
TXFORCECRCERR,
TXINHIBIT,
TXPOLARITY,
TXRESET,
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TXUSRCLK,
TXUSRCLK2

);

GT_CUSTOM

module GT_CUSTOM (
CHBONDDONE,
CHBONDO,
CONFIGOUT,
RXBUFSTATUS,
RXCHARISCOMMA,
RXCHARISK,
RXCHECKINGCRC,
RXCLKCORCNT,
RXCOMMADET,
RXCRCERR,
RXDATA,
RXDISPERR,
RXLOSSOFSYNC,
RXNOTINTABLE,
RXREALIGN,
RXRECCLK,
RXRUNDISP,
TXBUFERR,
TXKERR,
TXN,
TXP,
TXRUNDISP,
CHBONDI,
CONFIGENABLE,
CONFIGIN,
ENCHANSYNC,
LOOPBACK,
POWERDOWN,
REFCLK,
REFCLK2,
REFCLKSEL,
RXN,
RXP,
RXPOLARITY,
RXRESET,
RXUSRCLK,
RXUSRCLK2,
TXBYPASS8B10B,
TXCHARDISPMODE,
TXCHARDISPVAL,
TXCHARISK,
TXDATA,
TXFORCECRCERR,
TXINHIBIT,
TXPOLARITY,
TXRESET,
TXUSRCLK,
TXUSRCLK2

);
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GT_ETHERNET_1

module GT_ETHERNET_1 (
CONFIGOUT,
RXBUFSTATUS,
RXCHARISCOMMA,
RXCHARISK,
RXCHECKINGCRC,
RXCLKCORCNT,
RXCOMMADET,
RXCRCERR,
RXDATA,
RXDISPERR,
RXLOSSOFSYNC,
RXNOTINTABLE,
RXREALIGN,
RXRECCLK,
RXRUNDISP,
TXBUFERR,
TXKERR,
TXN,
TXP,
TXRUNDISP,
CONFIGENABLE,
CONFIGIN,
LOOPBACK,
POWERDOWN,
REFCLK,
REFCLK2,
REFCLKSEL,
RXN,
RXP,
RXPOLARITY,
RXRESET,
RXUSRCLK,
RXUSRCLK2,
TXBYPASS8B10B,
TXCHARDISPMODE,
TXCHARDISPVAL,
TXCHARISK,
TXDATA,
TXFORCECRCERR,
TXINHIBIT,
TXPOLARITY,
TXRESET,
TXUSRCLK,
TXUSRCLK2

);

GT_ETHERNET_2

module GT_ETHERNET_2 (
CONFIGOUT,
RXBUFSTATUS,
RXCHARISCOMMA,
RXCHARISK,
RXCHECKINGCRC,
RXCLKCORCNT,
RXCOMMADET,
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RXCRCERR,
RXDATA,
RXDISPERR,
RXLOSSOFSYNC,
RXNOTINTABLE,
RXREALIGN,
RXRECCLK,
RXRUNDISP,
TXBUFERR,
TXKERR,
TXN,
TXP,
TXRUNDISP,
CONFIGENABLE,
CONFIGIN,
LOOPBACK,
POWERDOWN,
REFCLK,
REFCLK2,
REFCLKSEL,
RXN,
RXP,
RXPOLARITY,
RXRESET,
RXUSRCLK,
RXUSRCLK2,
TXBYPASS8B10B,
TXCHARDISPMODE,
TXCHARDISPVAL,
TXCHARISK,
TXDATA,
TXFORCECRCERR,
TXINHIBIT,
TXPOLARITY,
TXRESET,
TXUSRCLK,
TXUSRCLK2

);

GT_ETHERNET_4

module GT_ETHERNET_4 (
CONFIGOUT,
RXBUFSTATUS,
RXCHARISCOMMA,
RXCHARISK,
RXCHECKINGCRC,
RXCLKCORCNT,
RXCOMMADET,
RXCRCERR,
RXDATA,
RXDISPERR,
RXLOSSOFSYNC,
RXNOTINTABLE,
RXREALIGN,
RXRECCLK,
RXRUNDISP,
TXBUFERR,
TXKERR,
TXN,
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TXP,
TXRUNDISP,
CONFIGENABLE,
CONFIGIN,
LOOPBACK,
POWERDOWN,
REFCLK,
REFCLK2,
REFCLKSEL,
RXN,
RXP,
RXPOLARITY,
RXRESET,
RXUSRCLK,
RXUSRCLK2,
TXBYPASS8B10B,
TXCHARDISPMODE,
TXCHARDISPVAL,
TXCHARISK,
TXDATA,
TXFORCECRCERR,
TXINHIBIT,
TXPOLARITY,
TXRESET,
TXUSRCLK,
TXUSRCLK2

);

GT_FIBRE_CHAN_1

module GT_FIBRE_CHAN_1 (
CONFIGOUT,
RXBUFSTATUS,
RXCHARISCOMMA,
RXCHARISK,
RXCHECKINGCRC,
RXCLKCORCNT,
RXCOMMADET,
RXCRCERR,
RXDATA,
RXDISPERR,
RXLOSSOFSYNC,
RXNOTINTABLE,
RXREALIGN,
RXRECCLK,
RXRUNDISP,
TXBUFERR,
TXKERR,
TXN,
TXP,
TXRUNDISP,
CONFIGENABLE,
CONFIGIN,
LOOPBACK,
POWERDOWN,
REFCLK,
REFCLK2,
REFCLKSEL,
RXN,
RXP,

http://www.xilinx.com


1142 www.xilinx.com March 2002 Release
1-800-255-7778 Virtex-II Pro™ Platform FPGA Documentation

Appendix A: Rocket I/O™ Cell Models
R

RXPOLARITY,
RXRESET,
RXUSRCLK,
RXUSRCLK2,
TXBYPASS8B10B,
TXCHARDISPMODE,
TXCHARDISPVAL,
TXCHARISK,
TXDATA,
TXFORCECRCERR,
TXINHIBIT,
TXPOLARITY,
TXRESET,
TXUSRCLK,
TXUSRCLK2

);

GT_FIBRE_CHAN_2

module GT_FIBRE_CHAN_2 (
CONFIGOUT,
RXBUFSTATUS,
RXCHARISCOMMA,
RXCHARISK,
RXCHECKINGCRC,
RXCLKCORCNT,
RXCOMMADET,
RXCRCERR,
RXDATA,
RXDISPERR,
RXLOSSOFSYNC,
RXNOTINTABLE,
RXREALIGN,
RXRECCLK,
RXRUNDISP,
TXBUFERR,
TXKERR,
TXN,
TXP,
TXRUNDISP,
CONFIGENABLE,
CONFIGIN,
LOOPBACK,
POWERDOWN,
REFCLK,
REFCLK2,
REFCLKSEL,
RXN,
RXP,
RXPOLARITY,
RXRESET,
RXUSRCLK,
RXUSRCLK2,
TXBYPASS8B10B,
TXCHARDISPMODE,
TXCHARDISPVAL,
TXCHARISK,
TXDATA,
TXFORCECRCERR,
TXINHIBIT,
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TXPOLARITY,
TXRESET,
TXUSRCLK,
TXUSRCLK2

);

GT_FIBRE_CHAN_4

module GT_FIBRE_CHAN_4 (
CONFIGOUT,
RXBUFSTATUS,
RXCHARISCOMMA,
RXCHARISK,
RXCHECKINGCRC,
RXCLKCORCNT,
RXCOMMADET,
RXCRCERR,
RXDATA,
RXDISPERR,
RXLOSSOFSYNC,
RXNOTINTABLE,
RXREALIGN,
RXRECCLK,
RXRUNDISP,
TXBUFERR,
TXKERR,
TXN,
TXP,
TXRUNDISP,
CONFIGENABLE,
CONFIGIN,
LOOPBACK,
POWERDOWN,
REFCLK,
REFCLK2,
REFCLKSEL,
RXN,
RXP,
RXPOLARITY,
RXRESET,
RXUSRCLK,
RXUSRCLK2,
TXBYPASS8B10B,
TXCHARDISPMODE,
TXCHARDISPVAL,
TXCHARISK,
TXDATA,
TXFORCECRCERR,
TXINHIBIT,
TXPOLARITY,
TXRESET,
TXUSRCLK,
TXUSRCLK2

);

http://www.xilinx.com


1144 www.xilinx.com March 2002 Release
1-800-255-7778 Virtex-II Pro™ Platform FPGA Documentation

Appendix A: Rocket I/O™ Cell Models
R

GT_INFINIBAND_1

module GT_INFINIBAND_1 (
CHBONDDONE,
CHBONDO,
CONFIGOUT,
RXBUFSTATUS,
RXCHARISCOMMA,
RXCHARISK,
RXCHECKINGCRC,
RXCLKCORCNT,
RXCOMMADET,
RXCRCERR,
RXDATA,
RXDISPERR,
RXLOSSOFSYNC,
RXNOTINTABLE,
RXREALIGN,
RXRECCLK,
RXRUNDISP,
TXBUFERR,
TXKERR,
TXN,
TXP,
TXRUNDISP,
CHBONDI,
CONFIGENABLE,
CONFIGIN,
ENCHANSYNC,
LOOPBACK,
POWERDOWN,
REFCLK,
REFCLK2,
REFCLKSEL,
RXN,
RXP,
RXPOLARITY,
RXRESET,
RXUSRCLK,
RXUSRCLK2,
TXBYPASS8B10B,
TXCHARDISPMODE,
TXCHARDISPVAL,
TXCHARISK,
TXDATA,
TXFORCECRCERR,
TXINHIBIT,
TXPOLARITY,
TXRESET,
TXUSRCLK,
TXUSRCLK2

);

GT_INFINIBAND_2

module GT_INFINIBAND_2 (
CHBONDDONE,
CHBONDO,
CONFIGOUT,
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RXBUFSTATUS,
RXCHARISCOMMA,
RXCHARISK,
RXCHECKINGCRC,
RXCLKCORCNT,
RXCOMMADET,
RXCRCERR,
RXDATA,
RXDISPERR,
RXLOSSOFSYNC,
RXNOTINTABLE,
RXREALIGN,
RXRECCLK,
RXRUNDISP,
TXBUFERR,
TXKERR,
TXN,
TXP,
TXRUNDISP,
CHBONDI,
CONFIGENABLE,
CONFIGIN,
ENCHANSYNC,
LOOPBACK,
POWERDOWN,
REFCLK,
REFCLK2,
REFCLKSEL,
RXN,
RXP,
RXPOLARITY,
RXRESET,
RXUSRCLK,
RXUSRCLK2,
TXBYPASS8B10B,
TXCHARDISPMODE,
TXCHARDISPVAL,
TXCHARISK,
TXDATA,
TXFORCECRCERR,
TXINHIBIT,
TXPOLARITY,
TXRESET,
TXUSRCLK,
TXUSRCLK2

);

GT_INFINIBAND_4

module GT_INFINIBAND_4 (
CHBONDDONE,
CHBONDO,
CONFIGOUT,
RXBUFSTATUS,
RXCHARISCOMMA,
RXCHARISK,
RXCHECKINGCRC,
RXCLKCORCNT,
RXCOMMADET,
RXCRCERR,
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RXDATA,
RXDISPERR,
RXLOSSOFSYNC,
RXNOTINTABLE,
RXREALIGN,
RXRECCLK,
RXRUNDISP,
TXBUFERR,
TXKERR,
TXN,
TXP,
TXRUNDISP,
CHBONDI,
CONFIGENABLE,
CONFIGIN,
ENCHANSYNC,
LOOPBACK,
POWERDOWN,
REFCLK,
REFCLK2,
REFCLKSEL,
RXN,
RXP,
RXPOLARITY,
RXRESET,
RXUSRCLK,
RXUSRCLK2,
TXBYPASS8B10B,
TXCHARDISPMODE,
TXCHARDISPVAL,
TXCHARISK,
TXDATA,
TXFORCECRCERR,
TXINHIBIT,
TXPOLARITY,
TXRESET,
TXUSRCLK,
TXUSRCLK2

);

GT_XAUI_1

module GT_XAUI_1 (
CHBONDDONE,
CHBONDO,
CONFIGOUT,
RXBUFSTATUS,
RXCHARISCOMMA,
RXCHARISK,
RXCHECKINGCRC,
RXCLKCORCNT,
RXCOMMADET,
RXCRCERR,
RXDATA,
RXDISPERR,
RXLOSSOFSYNC,
RXNOTINTABLE,
RXREALIGN,
RXRECCLK,
RXRUNDISP,
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TXBUFERR,
TXKERR,
TXN,
TXP,
TXRUNDISP,
CHBONDI,
CONFIGENABLE,
CONFIGIN,
ENCHANSYNC,
LOOPBACK,
POWERDOWN,
REFCLK,
REFCLK2,
REFCLKSEL,
RXN,
RXP,
RXPOLARITY,
RXRESET,
RXUSRCLK,
RXUSRCLK2,
TXBYPASS8B10B,
TXCHARDISPMODE,
TXCHARDISPVAL,
TXCHARISK,
TXDATA,
TXFORCECRCERR,
TXINHIBIT,
TXPOLARITY,
TXRESET,
TXUSRCLK,
TXUSRCLK2

);

GT_XAUI_2

module GT_XAUI_2 (
CHBONDDONE,
CHBONDO,
CONFIGOUT,
RXBUFSTATUS,
RXCHARISCOMMA,
RXCHARISK,
RXCHECKINGCRC,
RXCLKCORCNT,
RXCOMMADET,
RXCRCERR,
RXDATA,
RXDISPERR,
RXLOSSOFSYNC,
RXNOTINTABLE,
RXREALIGN,
RXRECCLK,
RXRUNDISP,
TXBUFERR,
TXKERR,
TXN,
TXP,
TXRUNDISP,
CHBONDI,
CONFIGENABLE,
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CONFIGIN,
ENCHANSYNC,
LOOPBACK,
POWERDOWN,
REFCLK,
REFCLK2,
REFCLKSEL,
RXN,
RXP,
RXPOLARITY,
RXRESET,
RXUSRCLK,
RXUSRCLK2,
TXBYPASS8B10B,
TXCHARDISPMODE,
TXCHARDISPVAL,
TXCHARISK,
TXDATA,
TXFORCECRCERR,
TXINHIBIT,
TXPOLARITY,
TXRESET,
TXUSRCLK,
TXUSRCLK2

);

GT_XAUI_4

module GT_XAUI_4 (
CHBONDDONE,
CHBONDO,
CONFIGOUT,
RXBUFSTATUS,
RXCHARISCOMMA,
RXCHARISK,
RXCHECKINGCRC,
RXCLKCORCNT,
RXCOMMADET,
RXCRCERR,
RXDATA,
RXDISPERR,
RXLOSSOFSYNC,
RXNOTINTABLE,
RXREALIGN,
RXRECCLK,
RXRUNDISP,
TXBUFERR,
TXKERR,
TXN,
TXP,
TXRUNDISP,
CHBONDI,
CONFIGENABLE,
CONFIGIN,
ENCHANSYNC,
LOOPBACK,
POWERDOWN,
REFCLK,
REFCLK2,
REFCLKSEL,
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RXN,
RXP,
RXPOLARITY,
RXRESET,
RXUSRCLK,
RXUSRCLK2,
TXBYPASS8B10B,
TXCHARDISPMODE,
TXCHARDISPVAL,
TXCHARISK,
TXDATA,
TXFORCECRCERR,
TXINHIBIT,
TXPOLARITY,
TXRESET,
TXUSRCLK,
TXUSRCLK2

);
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