
by Anthony Marsala
IBM

The PowerPC™ Architecture is a Reduced
Instruction Set Computer (RISC) architec-
ture, with over two hundred defined instruc-
tions. PowerPC is RISC in that most instruc-
tions execute in a single-cycle and typically
perform a single operation (such as loading
storage to a register, or storing a register to
memory). This article will focus solely on 32-
bit implementations, which are the most
widely available today.

The PowerPC architecture employs a layered
approach, in that it is broken up into three
levels or “books”. By segmenting the architec-
ture in this way, code compatibility can be
maintained across implementations while
leaving room for implementations to choose
levels of complexity for price/performances
tradeoffs. The three levels are broken up from
the most general and common across imple-
mentations to the most operating system spe-
cific. The levels are:

• Book 1. User Instruction Set Architecture –
This level defines the base set of instructions
and registers that should be common to all
PowerPC implementations.

• Book 2. Virtual Environment Architecture –
This level defines additional user-level func-
tionality that is outside the normal applica-
tion software requirements. Areas include
cache management, atomic operations, and
user-level timer support.

• Book 3. Operating Environment Architecture
– This level defines privileged operations typi-
cally required by an operating system. Areas
include memory management, exception vector
processing, privileged register access, and privi-
leged timer access.

Perspective PowerPC

An introduction to the PowerPC programming model.

The PowerPC
Architecture:
A Programmer’s View

00 Xcell Journal Spring 2002

Editor’s note: This article is reprinted with
permission from IBM. It was originally a

two-part series that ran in the April, 2001,
IBM PowerPC Processor News. You can view

the original articles, and find other useful
information at: www-3.ibm.com/chips/products/

powerpc/newsletter/apr2001/design-h-t.html.

The PowerPC
Architecture:
A Programmer’s View

Perspective PowerPC

Deviations from the original PowerPC
Architecture offer flexibility to allow for
enhancements that may come over time. In
addition, IBM has defined its own Virtual
Environment and Operating Environment
levels for its PowerPC 400 family of
embedded controllers.

Book E – A New Definition

A new PowerPC architecture update has
been developed. Called “Book E”, it com-
bines the original three architecture levels
into one new specification. This new spec-
ification also streamlines the definition of
64-bit implementations and eliminates
non-substantive differences between IBM
and Motorola implementations. The new
standard maintains 100% code compatibil-
ity with Book 1 instructions and registers,
while formally defining software-based
memory management, a two-level inter-
rupt hierarchy, and user-extendible instruc-
tion space for auxiliary processors. All of
these enhancements address the needs of
embedded systems.

To distinguish between the original architec-
ture, the IBM embedded definitions, and
Book E, the original architecture will be
referred to as the “classic” architecture for the
remainder of this article.

Storage Model

The 32-bit PowerPC architecture has native
support for byte, halfword (16-bits), and
word (32-bit) data types. Also, PowerPC
implementations can handle string opera-
tions for multi-byte strings up to 128 bytes
in length. The 32-bit PowerPC implementa-
tions support a 4 GB address space (232). All
storage is byte addressable. For misaligned
data accesses, alignment support varies by
product family, with some taking exceptions
and others handling the access through mul-
tiple operations in hardware.

Endianness

Classic PowerPC and the IBM PowerPC
400 family are primarily big-endian
machines, meaning that for halfword and
word accesses, the most-significant byte
(MSB) is at the lowest address. Support for
little endian varies by implementation.
Classic PowerPC had minimal support,

certain privileged registers and instructions
by placing itself in user (also called prob-
lem-state) mode. This protection limits
application code from being able to modify
global and sensitive resources, such as the
caches, memory management system, and
timers. Mode switching is controlled via the
Machine State Register.

• The Instruction Address Register (IAR) is
known to programmers as the program
counter or instruction pointer. It is the
address of the current instruction. This is
really a pseudo-register, as it is not directly
available to the user. The IAR is primarily
used by debuggers to show the next
instruction to be executed.

• The Processor Version Register (PVR) is
useful for code common across multiple
processors that must make decisions based
on a specific processor.

User-Mode SPRs

There are four SPRs available in user-mode
that are important to understand:

• The Link Register (LR) is a 32-bit register
that contains the address to return to at the
end of a function call. Certain branch
instructions can automatically load the LR
to the instruction following the branch.

while the 400 family provides more robust
support for little endian storage.

Book E is endian-neutral, as the Book E
architecture fully supports both accessing
method.

Registers

Classic PowerPC registers are broken into
two classes: special-purpose registers (SPRs)
and general-purpose registers (GPRs). IBM’s
PowerPC 400 family and Book E also define
a third class of registers, called device control
registers (DCRs), to address peripheral regis-
ters outside of the processor core in an
embedded controller implementation. The
three classes are explained below.

SPRs

SPRs give status and control of resources
within the processor core. Table 1 shows dif-
ferent types of SPRs and their purpose.
Where a single register exists, the SPR name
is listed in parenthesis.

Supervisor vs User-Mode SPRs

When the processor is first initialized, it is
in supervisor (also called privileged) mode.
In this mode, all processor resources,
including registers and instructions, are
accessible. The processor can limit access to

Spring 2002 Xcell Journal 00

SPR Register Type Access Mode Purpose

Count (CTR) User Branching and Loop Control

Link (LR) User Subroutine Branching

Save/Restore Supervisor Interrupt Context Save

Debug Supervisor On-chip Debug Capabilities

Timers User (read) Timing Facilities
Supervisor (write)

Interrupt Vector Prefix Supervisor Locates Interrupt Addresses

Exception Supervisor State information where exceptions occur

Storage Attribute Control Supervisor Controls Storage Attributes (W,I,G,LE)

Processor Version (PVR) Supervisor Identifies PowerPC Implementation

General Purpose (SPRGn) Supervisor Used by Operating Systems

Integer Exception (XER) User Carry Bit, Overflow, String Lengths

MMU Supervisor Instruction/Data Translation Control

Table 1: SPR registers

Perspective PowerPC

The blr instruction moves the program
counter to the address in the LR.

• The Fixed Point Exception Register
(XER) contains overflow information
from fixed point arithmetic operations. It
also contains carry input to arithmetic
operations and the number of bytes to
transfer during load and store string
instructions lswx and stswx.

• The Count Register (CTR) contains a loop
counter that is decremented on certain
branch operations. Also, the conditional
branch instruction bcctrx branches to the
value in the CTR.

• The Condition Register (CR) is grouped
into eight fields, where each field is 4 bits
that signify the result of an instruction’s
operation: Equal (EQ), Greater Than
(GT), Less Than (LT), and Summary
Overflow (SO).

Machine State Register (MSR)

MSRs represent the state of the machine. It
is accessed only in supervisor mode, and
contains the settings for things such as
memory translation, cache settings, inter-
rupt enables, user/privileged state, and
floating point availability. Exact control
bits vary by implementation.

The MSR does not readily fit into the
SPR/DCR/GPR classification, as it con-
tains its own pair of instructions (mfmsr /
mtmsr) to read and write the contents of
the MSR into a GPR.

DCRs

DCRs are similar to SPRs in that they give
status and control information, but DCRs
are for resources outside the processor core.
DCRs allow for memory-mapped I/O con-
trol without using up portions of the 32-bit
memory address space.

GPRs

The User Instruction Set Architecture
(Level 1) specifies that all implementations
have 32 GPRs (GPR0 - GPR31). GPRs are
the source and destination of all fixed-point
operations and load/store operations. They
also provide access to SPRs and DCRs.
They are all available for use in every

instruction with one exception: In certain
instructions, GPR0 simply means “0” and
no lookup is done for GPR0’s contents.

Instructions

Table 2 lists different instruction cate-
gories, and the types of instructions that
exist in that category.

Deciphering an Instruction

For 32-bit implementations, all instruc-
tions are 32 bits (4 bytes) in length. Bit
numberings for PowerPC are opposite of
most other definitions; bit 0 is the most
significant bit, and bit 31 is the least sig-
nificant bit. Instructions are first decoded

by the upper 6 bits, in a
field called the primary
opcode. The remaining
26 bits contain operands
and/or reserved fields.
Operands can be registers
or immediate values.

Arithmetic Instructions

Many instructions exist
for performing arith-
metic operations, includ-
ing add, subtract, nega-
tion, compare, multiply
and divide. Many forms
exist for immediate val-
ues, overflow detection,
and carry in and out.
Multiply and divide

00 Xcell Journal Spring 2002

AND OR Exclusive OR Rotate and Mask Shift Misc.

and or xor rlwimi slw cntlzw

and. or. xor. rlwimi. slw. cntlzw.

andi. ori xori rlwinm sraw

andis. oris xoris rlwinm. sraw. extsb

rlwnm srawi extsb.

nand nor egv rlwnm srawi.

nand. nor. egv. srw extsh

srw. extsh.

andc orc

andc. orc.

Instruction Category Base Instructions

Data Movement load, store

Arithmetic add, subtract, negate, multiply, divide

Logical and, or, xor, nand, nor, xnor, sign extension, count leading zeros, andc, orc

Comparison compare algebraic, compare logical, compare immediate

Branch branch, branch conditional, branch to LR, branch to CTR

Condition rand, crnor, crxnor, crxor, crandc, crorc, crnand, cror, cr move

Rotate/Shift rotate, rotate and mask, shift left, shift right

Cache Control invalidate, touch, zero, flush, store, dcread, icread

Interrupt Control write to external interrupt enable bit, move to/from machine state register,
return from interrupt, return from critical interrupt

Processor Management system call, synchronize, eieio, move to/from device control registers,
move to/from special purpose registers, mtcrf, mfcr, mtmsr, mfmsr

MMU Control TLB search, TLB read, TLB write, TLB invalidate all, TLB synchronize

MAC Unit multiply low/high halfword and accumulate/subtract

Table 2 - Instruction categories

Table 3 - Power PC logical instructions

Perspective PowerPC

instruction performance varies among
implementations, as these are typically
multi-cycle instructions.

Logical Instructions

Table 3 lists PowerPC logical instructions.
Looking at the AND instruction, The “i”
form means that a 16-bit immediate is used
for the AND, the “is” form means that a
16-bit immediate is used in the upper 16-
bits of the AND. For all “.” forms, the
CR[CR0] is updated as previously
described. PowerPC has the ability to per-
form a 32-bit rotate-and-
combine with a mask in a
single cycle. In the miscella-
neous column are instruc-
tions to count the leading
zeros in a register, and sign
extension instructions.

Load/Store Instructions

All loads/stores are per-
formed using the GPRs.
Instructions exist for byte,
halfword, and word sizes.
Special instructions include:

• Multiple-word load/stores
(lmw / stmw), which can
operate on up to 31, 32-
bit words

• String instructions, which
can operate on up to 128-
byte strings

• Memory Synchronization
instructions lwarx (Load
Word and Reserve
Indexed) and stwcx.
(Store Word Conditional Index) are used
to implement memory synchronization.
lwarx performs a load and sets a reserva-
tion bit internal to the processor and hid-
den from the programming model. The
associated store instruction stwcx. per-
forms a conditional store only if the reser-
vation bit is set and thereafter clears the
reservation bit. CR[CR0]EQ is set to the
state of the reservation bit at the start of
the instruction so that software can deter-
mine if the write was successful.

Synchronization Instructions

Commonly misunderstood PowerPC
instructions are those that perform synchro-
nization. These instructions include:

• Enforce In/Order Execution of I/O (eieio)
– This instruction is for data accesses to
guarantee that loads and stores complete
with respect to one another. Since
PowerPC defines a weakly ordered storage
model in which loads and stores can com-
plete out of order, this instruction exists to
guarantee ordering where necessary.

• Synchronize (sync) – This instruction guar-
antees that the preceding instructions com-
plete before the sync completes. This
instruction is useful for guaranteeing
load/store access completion. For example,
a sync may be used when writing memory
mapped I/O registers to a slow device
before making further access to the device.

• Instruction Synchronize (isync) – This
instruction provides ordering for all effects
of all instructions executed by the proces-
sor. It is used to synchronize the instruction

context, such as memory translation, endi-
anness, cache coherency, etc. Instruction
pipelines are flushed when an isync is per-
formed, and the next instruction is fetched
in the new context. This instruction is use-
ful for self-modifying code.

Memory Management

Memory management is used to translate
logical (effective) addresses to physical (real)
addresses. Memory management units
(MMUs) are also used to control storage
attributes, such as cacheability, cache write-
though/write-back mode, memory coheren-

cy, and guardedness. There are
two primary approaches; one
defined by PowerPC classic in
the 600/700 family of proces-
sors and another used by the
400 family and Book E specifi-
cation. In both cases, the archi-
tecture defines a unified
MMU, which has traditionally
been implemented as inde-
pendent instruction and data
MMUs, enabled via the MSR
[IR,DR] bits, respectively.
Below is an overview of the
two approaches.

PowerPC Classic MMU

The PowerPC Classic MMU
was designed primarily for
demand page operating sys-
tems such as UNIX or
MacOS. There are two transla-
tion mechanisms, one for
block address translation, and
another for page tables. Block
address translation is per-

formed using eight pairs (upper and lower)
of address translation registers, four for
instruction addresses (IBATU/L 0-3), and
four for data accesses (DBATU/L 0-3). The
BAT registers define page sizes ranging from
128KB to 16MB.

For systems requiring more translations than
are found in the allocated BAT registers, page
table translation is provided. A 32-bit effec-
tive address is translated to a 52-bit virtual
address, and is then translated into a physical
address. One of 16 segment registers (SR0-

Spring 2002 Xcell Journal 00

Perspective PowerPC

00 Xcell Journal Spring 2002

SR15) provide virtual address and protection
information. Page Table Entries (PTEs) pro-
vided physical address and page protection
information. The architecture allows for
implementations to provide translation-
lookaside buffers (TLBs) to speed the trans-
lation process, but does not define them. The
page-tables are typically programmed by the
operating system and their discussion is
beyond the scope of this article.

400 Family/Book E MMU

The Book E carries on the idea of a flexible
MMU structure for embedded systems.
Page sizes are programmable; a page can be
large (up to a terabyte in the Book E archi-
tecture) to simplify software and minimize
the number of entries, or as small as 1KB,
to avoid wasting memory space. In addi-
tion to normal protection and translation
mechanisms, endianness is defined by a
page attribute. TLB misses result in an
exception; it is under software control to
handle the page miss algorithm. A TLB
search instruction, tlbsx, assists in search-
ing the entire TLB array in a single cycle.

Interrupts

The PowerPC architecture provides a
minimal hardware scheme for saving state
on interrupts. The only registers that are
saved are the IAR and MSR. Interrupt
enable bits are disabled for the interrupt
type that occurred in order to prevent a
second interrupt from occurring before
saving the context. Software must save all
necessary registers – these typically
include all user-mode registers and possi-
bly certain supervisor mode SPRs.
Exception-state saving is typically per-
formed by an operating system, but note
that for small exception vectors, time can
be saved by only saving registers that
would otherwise be corrupted. Operating
systems must take a more universal
approach and save all registers that may be
necessary, even if some wind up not being
touched by a particular exception handler.

PowerPC Classic Exception
Vector Processing

A single interrupt hierarchy is defined.
When an interrupt occurs, Save/Restore

Register 0 (SRR0) is loaded with the
address of where processing should resume
after the exception, and the machine state
register is saved to SRR1. SRR0 may be
loaded with the current IAR or in some
cases the next instruction. Interrupt vec-
tors are located at either a high address
(0xFFFn_nnnn if MSR[IP=1] or low
address (0x000n_nnnn if MSR[IP=0]),
depending on the instruction prefix bit in
the MSR. The interrupt type determines
the lower 5 bits of the vector. When pro-
cessing is completed, an rfi instruction is
executed to restore the IAR and MSR to
the saved values in SRR0 and SRR1.

400 Family and Book E Exception
Vector Processing

Both the IBM 400 family and Book E
define a two-level interrupt hierarchy: a
non-critical interrupt class, and a critical
interrupt class. The non-critical class reg-
isters work as previously described for
PowerPC classic. For critical interrupts,
the IAR and MSR are saved to separate
registers (SRR2 & SRR3, respectively for
the 400 family, and CSSR0 & CSSR1 for
Book E). When a critical exception is
completed, an rfci instruction is executed
to properly restore the machine. By hav-
ing a dual-level interrupt scheme,
non-critical interrupts can be more
easily debugged. More than two sets of

interrupt vectors are possible – for the
400 family, the upper 16 bits of the
exception vector is contained in the
Exception Vector Prefix Register (EVPR).
For Book E, all 16 exceptions can have
the upper half of the exception vector
mapped to a different location through
the use of 16 Interrupt Vector Prefix
Registers (IVPR0-15).

Stack

The PowerPC architecture has no notion of
a stack for local storage. There are no push
or pop instructions and no dedicated stack
pointer register defined by the architecture.
However, there is a software standard used
for C/C++ programs called the Embedded
Application Binary Interface (EABI) which
defines register and memory conventions
for a stack. The EABI reserves GPR1 for a
stack pointer, GPR3-GPR7 for function
argument passing and GPR3 for function
return values. Assembly language programs
wishing to interface to C/C++ code must
follow the same standards to preserve the
conventions.

Caches

The PowerPC architecture contains cache
management instructions for both user-
level and supervisor-level cache accesses.
Cache management instructions are found
in Table 4 below.

Instruction Mode Implementation Function

dcbf User All Flush Data Cache Line

dcbi Supervisor All Invalidate Data Cache Line

dcbst User All Store Data Cache Line

dcbt User All Touch Data Cache Line (for load)

dcbtst User All Touch Data Cache Line (for store)

dcbz User All Zero Data Cache Line

dccci Supervisor IBM 4xx Data Cache Congruence Class Invalidate

icbi User All Invalidate Instruction Cache Line

icbt User 4xx / Book E Touch Instruction Cache Line

iccci Supervisor IBM 4xx Instruction Cache Congruence Class Invalidate

Table 4 - Cache management instructions

Perspective PowerPC

Spring 2002 Xcell Journal 00

Care should be taken when porting cache
manipulation code to a different
PowerPC implementation. Although
cache instructions may be common across
different implementations, cache organi-
zation and size may likely change. For
example, code that makes assumptions
about the cache size to perform a flush
may need to be modified for other cache
sizes. Also, cache initialization may vary
between implementations. Some provide
hardware to automatically clear cache
tags, while others require software loop-
ing to invalidate cache tags.

Self-Modifying Code

While it is not a recommended practice to
write self-modifying code, sometimes it is
absolutely necessary. The following
sequence shows the instructions used to
perform a code modification:

1. Store modified instruction.

2. Issue dcbst instruction to force new
instruction to main store.

3. Issue sync instruction to ensure DCBST
is completed.

4. Issue icbi instruction to invalidate
instruction cache line.

5. Issue isync instruction to clear instruc-
tion pipeline.

6. It is now OK to execute the modified
instruction.

Timers

Most implementations have provided a 64-
bit timebase that is readable via two 32-bit
registers. The amount the timer increments
varies across families, as well as the SPR
numbers and instructions to access the
timebase. Therefore, care should be taken
when porting timer code across implemen-
tations. Additional timers may also vary,
but most provide at least one kind of decre-
menting programmable timer.

Book E Timers

Both the IBM 400 family and Book E
define the following timers in addition to
the timebase: a 32-bit programmable
decrementer (DEC in Book E, PIT for

the 400 family) with an auto-reload
capability, a fixed-interval timer (FIT),
and a watchdog timer (WDT) for system
hang conditions.

Debug Facilities

Debug facilities vary greatly between
implementations. Original PowerPC 600
family parts had only one instruction
address breakpoint. PowerPC 700 family
parts have added a single data address
breakpoint. PowerPC 400 family parts
have much more robust debug capabilities,
including multiple
instruction address
breakpoints, data
address breakpoints,
and data value com-
pares. Other features
may include break-
point sequencing,
counters, ranges, and
trace capabilities.

Maintaining Code
Compatibility

PowerPC users who
expect to program for
more than one imple-
mentation typically
ask for tips on main-
taining code compat-
ibility. The following
are some suggestions
to help minimize
porting problems:

• Use C code when-
ever possible.
Today’s C compil-
ers can produce
code that is compa-
rable in perform-
ance to hand-
assembly coding in
many cases. C code, being Book I code,
will guarantee code portability.

• Also, try not to embed processor-specif-
ic assembly instructions in C, as they’ll
be harder to find. Separate processor-
specific code that is known to contain
device dependent registers or instruc-
tions. These are typically things like

boot up sequences and device drivers,
but also may include floating point
code (including long long types). Keep
them well documented as to assump-
tions and dependencies.

• Use the PVR, but only when appropri-
ate. Common code across minor varia-
tions of implementations is good, and
the PVR can be used for decision mak-
ing. But in the case where major modifi-
cations are necessary (for example, 7xx
versus 4xx MMU code), separate code
bases are recommended.

Summary

This completes an introduction to the
PowerPC programming model. IBM hopes
you have found this of value, and that it
adds to the success of your development
programs. For more information, go to:
www-3.ibm.com/chips/products/powerpc/
newsletter/

