
by Chris Sullivan
Director of Strategic Alliances
Celoxica
chris.sullivan@celoxica.com

Virtex-II Pro™ FPGAs are powerful sys-
tem-level devices, replacing microprocessors
and ASICs in many new applications. This
shift in design strategies necessitates a corre-
sponding shift in the way programmable
logic designs are created and deployed in
electronic products. To efficiently manage
your software and hardware design in
these programmable systems, you must
now move away from legacy ASIC design
methods to a codesign methodology that
gives you greater choice in the level of
design abstraction.

Codesign

Codesign is a process in which you use
similar methods, and sets of connected
tools and languages, for both hardware and
software design. Codesign helps shorten
development time by enabling the concur-
rent development of hardware and soft-
ware, and by allowing software to be devel-
oped on “virtual hardware platforms”
before the final hardware is ready. In addi-
tion, a top-down approach enhances your
ability to analyze and tackle system parti-
tioning and verification by enabling you to
explore the design space fully. This enables
more informed consideration of hard-
ware/software trade-offs and leads to better
Quality of Design (QoD). Reducing the

risks that arise from incorrect or changing
specifications can help avoid the time-con-
suming and expensive optimization of an
incorrect partition (which leads inevitably
to a sub-optimal design) and increases your
chances of first-time success.

Programmable Systems Require
a Codesign Methodology

Historically, FPGA hardware was designed
using techniques and languages borrowed
from ASIC design methods – methods that
are very different from those used to devel-
op software or embedded systems. Up to
now, there was a huge difference between
these disciplines and their methodologies.

For example, current methods for embed-
ded systems design require that hardware
and software be specified and designed
separately. Typically, C/C++ or a block-
based methodology is used for the system
specification. Once behavior has been
fixed, the specification is then delegated
to the (separate) hardware and software
engineering teams, which code in differ-
ent languages: HDLs (Hardware
Description Languages) for the hardware,
C/C++ for the software. While the system
partition can be informed by profiling the
specification or legacy software code, the
partitioning is often decided in advance.
And, because changes to the partition can
necessitate extensive redesign elsewhere in
the system (interfaces between the hard-
ware and software, for example), that
decision is adhered to as much as possi-
ble. The deficiencies of this methodology
are clear:

• Lack of a unified hardware-software
representation can lead to difficulties in
verification of the entire system, and
hence to incompatibilities across the
hardware/software boundary.

• Defining a system partition in advance
can lead to sub-optimal designs; incor-
rect partitioning requires costly refine-
ment and is detrimental to QoD.

• Hardware partitions of the system speci-
fication or legacy software code require
time-consuming (and sometimes error-
prone) rewriting into HDL.

Perspective Codesign

Develop your hardware and software
in a single, integrated environment.

Codesign Comes
to Virtex-IIPro and
MicroBlaze Systems

36 Xcell Journal Winter 2002

Codesign Comes
to Virtex-IIPro and
MicroBlaze Systems
Develop your hardware and software
in a single, integrated environment.

Perspective Codesign

• Lack of a well-defined and flexible
codesign methodology makes specifica-
tion revision difficult and affects time
to market.

While it is not yet possible to synthesize
efficient hardware and software from a sin-
gle language description, a codesign
methodology that supports partitioning
and co-verification, multiple languages,
and tool interoperability is nevertheless
invaluable when designing high-perform-
ance systems using Virtex II Pro FPGAs
and MicroBlaze™ processors. Such a
methodology makes it possible to:

• Prototype the system more easily
and explore the design space better
to identify the optimal design
solution.

• Use generic hardware/software
interfaces for system co-simulation
and verification, using the software
code as a testbench throughout.

• Implement changes to partitioning
decisions – if required – much
later in the design cycle.

• Target different hardware plat-
forms more easily and even change
the target platform later in the
design cycle than would otherwise
be possible.

• Drive system implementation from
correct levels of abstraction.

The benefits of fusing separate
design approaches into an effective
and more “integrated software-
compiled system design” flow that
uses top-down design to tackle system par-
tition, verification, and implementation
are significant.

Working together, Celoxica and its strate-
gic partners such as Wind River and Xilinx
have developed a unique codesign flow and
methodology (Figure 1) for Virtex-II Pro
systems using MicroBlaze processors.

Software-Compiled System Design for
Programmable Systems

Fundamental principles of the codesign
methodology are:

(IDE). Block-based design and multiple
languages are supported for simulation
including C, C++, SystemC, HDLs, and
Handel-C.

The package includes the Nexus-PDK co-
verification environment, which also makes
it possible to drive the entire functional
verification process for the system with
higher-level code.

Nexus PDK

Nexus-PDK is a powerful co-verification
tool that allows you to simulate system
functionality in multiple higher-level lan-

guages, and to continue to use these
models through to design implemen-
tation by supporting co-simulation
of software and hardware. Nexus
communicates directly during simu-
lation with popular third-party hard-
ware RTL simulators and software
ISS environments.

Handel-C

Handel-C, which is based on ANSI-C,
has an added set of simple extensions
for hardware development. These
include:

• Flexible data widths

• Parallel processing

• Communication between
parallel threads.

In addition, Handel-C uses a simple
timing model that enables you to con-
trol pipelining without adding defini-
tions for specific hardware. Handel-C
also eliminates the need to code finite

state machines exhaustively by providing
the ability to describe serial and parallel
execution flows.

Its familiar language has formal semantics
for describing system functionality and
complex algorithms that produce sub-
stantially shorter and more readable code
than RTL-based representations. The
level of design abstraction is above RTL
(Register Transfer Level) but below the
behavioral level, and everything that can
be described in the language may be
translated to hardware.

• A top-down, idea-to-implementation flow

• A common higher-level language base
for hardware and software design

• The distinction of processing fabric at
correct levels of abstraction

• Interoperability with best-in-class hard-
ware and embedded software tools

• Codesign API standards (for example,
the DSM – Data Streaming Manager),
which enable easy interfacing between
software and hardware for partitioning,
verification, and implementation.

To make software-compiled system design
possible, you need an environment that
brings together the efficiencies of higher-
level languages and the capabilities of pow-
erful partition, verification, and design
implementation.

DK Design Suite

The DK Design Suite enables you to enter
system descriptions in higher-level pro-
gramming languages, and to simulate and
debug that code using a familiar, friendly
integrated development environment

Winter 2002 Xcell Journal 37

Executable
Specification

VHDL/
VERILOG

Handel-C

Simulator

Synthesis System
Model

Place and Route Virtex-II Pro

Software

Simulator Simulator

EDIF
EDIF

VHDL

Figure 1 - Codesign flow for programmable systems
with the flexibility for mixed language

description interoperability

Perspective Codesign

DSM

DSM (Figure 2) is a portable hardware-
software codesign API that offers a simple
and transparent interface for transferring
multiple independent streams of data
between hardware and software. DSM is
independent of both bus/interconnects and
operating systems. It consists of two parts: an
OS-independent API for the FPGA applica-
tion, and an API for ANSI-C or the software
environment. In operation, each side opens a
number of uni-directional ports; a “write to a
port” on one side is then matched by a “read”
on the other. In this way, multiple software
applications can independently access multi-
ple reconfigurable hardware resources using
very few API calls.

In Figure 3 you can see how these solutions
integrate with best-in-class embedded soft-
ware tools from Wind River and Xilinx
programmable systems to deliver a compre-
hensive software-compiled system design
methodology.

The key elements of the methodology are:

• A minimal tool chain – comprising the
Celoxica DK design suite, Wind River’s
XE (Xilinx Edition) embedded software
tools, and Place and Route from Xilinx.

• A common language base – C and
Handel-C, with the flexibility for inter-
operability with mixed language descrip-
tions, such as HDLs and SystemC.

• API standards for common interfacing
and platform abstraction – Celoxica PAL
for platform abstraction, and Celoxica
DSM for hardware/software integration.

Profiling and Partitioning

Profiling and partitioning are key to any
codesign methodology and help identify
optimal design methods early in the design
cycle. In the software world, the profiler is
mostly used as an analysis tool to examine
the runtime behavior of a program. Profiler
information helps you determine which
sections of code are working efficiently and
which are not. Profiling also gives you
information about where the program
spent its time, and which functions called
which other functions while it was execut-

ing. In this way, profiling shows which
pieces of the program are slower than
expected and thus might be can-
didates for off-loading into hard-
ware for coprocessor acceleration.
It can also highlight which func-
tions are being called more – or
less often – than expected.

But profiling tools were devel-
oped to fine-tune software –
making applications run better
and identifying candidates for
rewriting – not for system parti-
tioning. Although profiling code
is an extremely useful exercise for
informing partitioning decisions,
it should not be relied upon
exclusively. For example, due to
latency between the system
boundary and interfaces, it makes
sense to minimize dataflow
between the hardware and soft-
ware. And yet, software profiling
tools do not explore dataflow over
the hardware/software boundary.
You can, however, deduce this

dataflow through designer scrutiny of the
code and by hardware/software coverifica-
tion using API calls for run-time test.

To see how software-compiled system
design can best be deployed for Virtex-II
Pro FPGAs and MicroBlaze processors, let’s
use a simple design example within the
context of codesign.

Codesign Methodology
Design Example

In this example, we have a system that con-
tains a GUI, an image compression engine,
an encryption engine, and a control path
through which we issue commands to the
image compressor (Figure 4).

Tools

Language

APIs & Platform
Abstraction

Platforms

Prototyping

Production

Functional Description
C/C++

DK1

PAL

C/C++

RTOS

BSP

DSM

Xilinx Virtex-II Pro

MicroBlaze

EDIF

Handel-C

Tornado

Design

Develop

Implement

FPGA CPU

FPGA

Processor

Hardware DSM Library

Hardware Bus Controller

Handel-C
program

Handel-C
program

Software DSM Library

Software Bus Controller

Application Application

Figure 2 - DSM system overview

Figure 3 - Example HLL tool-chain

Image
compression

Encryption
engineGUI

Main

control path

da
ta

data data

ca
ll

ca
ll call

38 Xcell Journal Winter 2002

Figure 4 - Simple codesign example

Perspective Codesign

1. First, we examine the system function-
ality against the project requirements,
identify obvious system partitions, and
also identify functions that will require
further design investigation (such as
those functions for which the opti-
mum design partition is not immedi-
ately apparent).

The GUI is an obvious candidate for
software implementation; it is sequen-
tial and does not require processor-
intensive resources. Likewise, the
encryption engine is also a candidate
for hardware implementation; it is par-
allel and integer-based. The partition-
ing of the compression function, how-
ever, is less clear and is targeted for pro-
filing, iterative partition, and design
exploration.

2. We move the compression function into
software and obtain benchmarking
information to provide a baseline for
partition assessment. The software code
can be used as a test bench throughout
to support verification.

3. With the function still in software, we use
the DSM API to interface to the hardware
component (Figures 5 and 6). We then
begin to port blocks of the software to
Handel-C for hardware prototyping, test-
ing, and verifying at each stage. This
process is relatively simple, because there is
a common language base and, most
importantly, a common level of abstrac-
tion for the software and the hardware.
We also move the DSM port to enable
the new partition to continue testing and
verification at each stage (Figure 7).

4. Having completed the partition and
debugging, we cosimulate to verify the
effectiveness and efficiency of the parti-
tion, as measured against system con-
straints and design requirements.

5. We now enter what is effectively the parti-
tioning cycle, in which we begin to reiter-
ate and explore different partitions and
design scenarios through testing and verifi-
cation, using the simple procedure out-
lined in steps 3 and 4. This is an innovative
process-driven approach to partitioning.

6. The partitioning cycle produces a number
of partition alternatives. We now consider
these alternatives, map them to our design
requirements or system constraints
(such as device size, target platform, band-
width, and so on), and select the opti-
mum partition for QoD.

7. We simulate and verify the partitioned
system, using compiled C/C++ com-
bined with the Handel-C compiled for
the Nexus PDK simulator. For speed and
efficiency, the cosimulation uses DSM
Sim and PAL (Platform Abstraction
Layer) Sim as virtual interconnects and
virtual peripherals, respectively.

8. The system is cosimulated and verified at
a cycle-accurate level, using Nexus PDK,
combined either with an ISS (Instruction
Set Simulator) or ModelSim running a
Swift model of the target processor.

9. We recompile the system for the target
platform and implement the design. The
target platform is supported by DSM
and by a PAL layer that provides a
portable API for accessing on-board
peripherals, such as RAM, video, and
generic data I/O. Thus, the application
written using PAL and DSM APIs can
be ported to new platforms simply by
recompiling. This supports design reuse
and application portability, and helps
address the issue of design obsolescence.

Conclusion

According to Gary Smith, Dataquest’s chief
electronic design automation analyst,
“Today the biggest challenge in EDA is to
resolve the incompatibility of the hardware
design methodology and the software
design methodology.” Software-compiled
system design delivers an advanced
methodology that offers significant advan-
tages to hardware engineers, embedded
software engineers, firmware engineers,
and systems architects.

For more information see www.celoxica.com
or contact chris.sullivan@celoxica.com.
1 P. Garrault, Synthesis Tool Enhancements for Virtex

Architectures, Xilinx, 2002.

2 Hardware/Software Co-Design Group, Polis A Framework
for hardware-software co-design of embedded systems,
EECS, University of California, Berkeley.

Winter 2002 Xcell Journal 39

SW HW

DSM port
A B C D

SW HW

DSM port

1st pass partition

A B C D

// buffer to receive compressed data
ram DsmWord Buffer[256];

static unsigned DataCounter=0;

while(1) // loop forever
{
do
{
// get output from SW

compression
DsmRead (PortS2H, &Value);
par
{
Buffer[DataCounter] = Value;
DataCounter++;

}

}while(DataCounter!=0);

// now encrypt the block of
data....
EncryptData(Buffer);

}

// buffer storing raw image
unsigned Image[1600][1200];

// buffer for compressed data (FIFO)
DsmWord CompData [256];

unsigned DataCounter,Count,ImageDone

do
{
// compress part of image (256 bytes output)
CompressBlock(Image,CompData, ImageDone;

DsmWrite (PortS2H, CompData, 256, &Count);

if (Count!=256)
printf("\n Error writing to HW");

}while(ImageDone==0);
// loop till the end of the image

Hardware Software

Figure 5 - DSM API port for hardware interface

Figure 7 - DSM API port moved for new partition

Figure 6 - Sample code showing DSM calls

