
by Jim Hwang¸ Senior Manager
DSP Software and Design Methodologies
Xilinx, Inc.
jim.hwang@xilinx.com

Platform FPGAs have become key compo-
nents for implementing high-performance
digital signal processing (DSP) systems,
especially in digital communications,
video, and image processing applications.
FPGAs have memory bandwidth that far
exceeds that of microprocessors and DSP
processors running at clock rates two to ten
times faster, and unlike processors,
Platform FPGAs possess the ability to
implement highly parallel custom signal
processing architectures.

One of the main impediments to wider
adoption of FPGAs for signal processing
has been the relative unfamiliarity with
FPGA technology within the DSP com-
munity. What is needed are tools that speak
the language of signal processing engineers
– for example, MATLAB™ language and
Simulink™ design tools from The
MathWorks, Inc. – while also supporting
FPGA designers who already know how to
achieve the highest performance circuit
using the least number of FPGA resources.

The new Xilinx System Generator 2.2 soft-
ware meets the needs of both DSP engineers
and FPGA designers. System Generator
enables high-level modeling and implemen-
tation of DSP systems in the Virtex-II
Pro™, Virtex™-II, Virtex, and Spartan™-
II families of FPGAs. New in the 2.2 release
is an increased capability to generate hard-
ware that approaches the efficiency of hand-
crafted modules, both in terms of perform-
ance and resource usage. In this article, we
describe how System Generator can be used
to create a custom FIR (finite impulse
response) filter, an operation that lies at the
heart of most signal processing systems. We
demonstrate that in addition to accessing
high-level Xilinx LogiCORE™ modules,
you can use your own FPGA knowledge to
advantage in customizing a filter data path to
minimize resources while achieving high per-
formance. You will see how System
Generator provides a wide range of options
for implementing signal processing systems.

Technology Focus Digital Signal Processing

Xilinx System Generator 2.2 software enables high-level modeling
and implementation of DSP systems in Xilinx Platform FPGAs to
outperform traditional DSP processors.

How to Build
an Efficient
FIR Filter Using
System Generator

00 Xcell Journal Summer 2002

How to Build
an Efficient
FIR Filter Using
System Generator
Xilinx System Generator 2.2 software enables high-level modeling
and implementation of DSP systems in Xilinx Platform FPGAs to
outperform traditional DSP processors.

Technology Focus Digital Signal Processing

Xilinx System Generator

The Xilinx System Generator is a state-of-
the-art “on-ramp’’ that allows you to move
a DSP algorithm into a Xilinx FPGA
quickly and easily. System Generator
extends the capabilities of the Simulink sys-
tem-level simulation environment with bit
and cycle-true modeling of an FPGA cir-
cuit. System Generator simultaneously
provides access to key features in the FPGA
fabric, including SRL16E shift register
logic, distributed and block memory, and
embedded multipliers.

System Generator includes a
Simulink library of functional
blocks for building DSP, arith-
metic, and digital logic cir-
cuits. These polymorphic
blocks compute their output
types based on their inputs,
although alternatively, you can
specify their quantized output
types explicitly. You can com-
bine Xilinx blocks with MAT-
LAB and Simulink blocks to
create a realistic test bench and
to analyze data computed by
your model. The high level of
abstraction provided by
System Generator greatly sim-
plifies algorithm development
and verification.

In addition to a system-level modeling
library, System Generator includes a code
generator that automatically generates a
synthesizable VHDL netlist from your
Simulink model. This netlist includes IP
(intellectual property) blocks that have
been carefully designed for high perform-
ance and density in Xilinx FPGAs. System
Generator also creates project and con-
straint files to assist implementation using
the Xilinx Foundation™ ISE 4.2i and
soon-to-be-released ISE 5.1i tools, as well
as the major synthesis tools.

Building an FIR Filter

As a simple but instructive example, let’s
consider how System Generator can be
used to create a parametric finite impulse
response (FIR) filter. An N-tap FIR filter

Mapping the Algorithm onto an FPGA

You can implement an FIR filter in an
FPGA in many ways. A versatile approach
that maps well onto an FPGA employs a
multiply-accumulate (MAC) engine to
compute the sum of products. As shown
in Figure 1, a MAC unit is easily con-
structed in System Generator using the
multiplier and accumulator blocks. The
multiplier can be implemented either in
the logic fabric or, for Virtex-II family
FPGAs, using dedicated 18-bit x18-bit
embedded multipliers. System Generator
ensures the underlying IP core provides

an efficient implementation. Note
that upon reset, the accumulator
reinitializes to its current input
value rather than zero, to avoid a
one-clock cycle stall.

Customizing the Data Path

Although Simulink provides a
graphical block editor, System
Generator should not be mistaken
for a “schematic capture’’ tool.
System Generator models are fully
customizable and executable in
Simulink without recompilation.
(In fact, some blocks can be recon-
figured during simulation.) Xilinx
blocks support Simulink’s data type
propagation capability, and provide
extensive error checking on their

parameters and usage. Because System
Generator is seamlessly integrated with the
Simulink tool suite, you can customize
Xilinx blocks in ways that are impossible in
schematic and other visual tools.

For example, in our System Generator
model we can specify the arithmetic pre-
cision of the blocks in the data path using
MATLAB expressions, making it possible
to minimize the hardware used, and still
avoid the possibility of overflow. For a fil-
ter with k-bit coefficients and m-bit
input, we know that the output

is defined by its impulse response, a length
N sequence of filter coefficients:
h0, h1,..., hN-1. If x0, x1, x2,..., is a sequence
of input values, where by convention, we
define xi =0 for i < 0, the filter output
sequence y0, y1, y2,... is defined by the
convolution sum

That is, the filter output at time n is com-
puted by accumulating a sum of products
of the filter coefficients with the N most
recent input samples.

In practice, all numbers must be repre-
sented with a finite number of bits. With
a traditional processor, numeric data are
typically represented as 8, 16, or 32-bit
integers, or in a floating-point representa-
tion. In contrast, in an FPGA, we have no
such word length limitations. We can cre-
ate a custom data path processor having
an arithmetic precision tailored to the
application. System Generator supports
this capability by providing an arbitrary
precision fixed-point data type. Each
block allows us to specify its output pre-
cision and the policy for handling quanti-
zation and overflow. We can model the
system in the Simulink environment
under a number of scenarios, and analyze
the data to ensure exactly the right preci-
sion for the application.

Summer 2002 Xcell Journal 00

yn =
i = 0

N –1

hi xn–iΣ

 | yn | = |

 | = 2m

 | <

 <

i = 0

N –1

hi xn – iΣ
i = 0

N –1

 | hi xn – i|

 | hi |

Σ

i = 0

N –1

 | hi 2
mΣ

i = 0

N –1

Σ

Figure 1 - Multiply-accumulate engine

Technology Focus Digital Signal Processing

so the accumulator requires no more than
m + log2 ∑ |hi | bits. This is in
practice considerably fewer than the
m + k + log2N bits implied by the input
and coefficient precision. The desired
accumulator width is, of course, readily
expressed in the MATLAB language. (In
Figure 1, the binary point in the fixed-
point data is also taken into account.)
When you know the input values have
limited dynamic range, it may be possible
to further tighten the bond. The accumu-
lator width we just derived is a function of
the input precision and the
MATLAB array that stores the
filter coefficients, so if you
want to change the input pre-
cision or change the filter
itself, the same model will
“right-size” the data path
without any modification.
The implications of this abili-
ty to use the MATLAB inter-
preter to customize your
System Generator model
should not be underestimated
– it is unrivaled by any other
design flow.

Completing the FIR Filter
Data Path

As shown in Figure 2, the input data buffer
is implemented as an SRL16E-based
addressable shift register, and the filter
coefficient buffer is implemented as a block
memory. (Both are supplied as handcrafted
Xilinx LogiCORE™ algorithms.) By stor-
ing the filter coefficients in reverse order in
memory, the same address counter can be
used to drive both buffers.

Because there are N multiply-accumulate
operations per input sample, the filter must
run internally at N times the data rate to
supply a continuous data stream. The cap-
ture register on the output of the MAC is
used to latch the accumulated sum of prod-
ucts, and its output is down-sampled by N
to match the input data rate. This simple
filter architecture is quite compact and effi-
cient. A 64-tap non-symmetric filter with




12-bit coefficients and data requires only
110 slices in a Virtex-II XC2V250-6
FPGA, and it runs at 195 MHz, or 3 Msps
(ISE 4.2i, production speeds files 1.96).

System Generator provides many ways to
tailor the implementation of a design, and
changes are tracked automatically and
transparently. In the FIR filter, you might
choose to use dedicated embedded multi-
pliers for the MAC engine, coupled with a
block memory (BRAM) for the coefficient
data. (It is natural to do so, because these
resources are juxtaposed in the FPGA –

although both can also be implemented
efficiently in the logic fabric.) Filter
throughput can be increased significantly
by employing additional MAC engines.
System Generator makes this a straight-
forward extension of our example. When
you switch the implementation strategy,
latencies are automatically adjusted as
necessary in the System Generator model
to match the hardware behavior.

Other Implementation Options

Of course, you do not have to build filters
from scratch. There is an FIR filter block
in the System Generator library that
employs distributed arithmetic (DA) to
map the computation into the FPGA.
This is often the best way to implement a
filter, because the underlying IP core sup-

ports many efficient architectures, includ-
ing fully parallel DA, fully serial DA, half
band, polyphase interpolators and deci-
mators, and more.

At the same time, there are occasions when
you will want to design a custom filter, for
example, to exploit symmetries, take
advantage of the embedded Virtex-II mul-
tipliers, or to build adaptive filters. While
providing a high-level simulation and
modeling capability, System Generator
also allows you to apply your knowledge of
the FPGA to map your algorithm onto

specific resources. As we saw in
our example, you can often para-
meterize the design using MAT-
LAB functions, so that changing
parameters automatically gives
you an appropriately customized
implementation.

Conclusion

With Virtex/Virtex-II family
FPGAs, handcrafted IP
LogiCORE algorithms, and
System Generator software,
Xilinx is rapidly changing the
way people think about DSP.
Designing a custom DSP data
path processor in an FPGA has
never been easier.

This article barely scratches the surface of the
capabilities of the Xilinx System Generator.
The System Generator 2.2 release includes a
number of useful annotated demonstration
designs, including a QAM demodulator,
concatenated codec for digital video broad-
cast, discrete wavelet transform, and several
extensions of the FIR filter discussed in this
article, to name but a few. These demonstra-
tion designs can be used as-is, or provide a
starting point for you to create your own
applications. A full-featured, free, 90-day
evaluation version of System Generator 2.2 is
available for download from the Xilinx web-
site at www.xilinx.com/systemgenerator_dsp.

For more information on MATLAB
and Simulink software, visit
www.mathworks.com.

00 Xcell Journal Summer 2002

Figure 2 - A multiply-accumulate (MAC)-based FIR filter

