
Summary The Constant (k) Coded Programmable State Machine (KCPSM) solution presented in this
application note is a fully embedded 8-bit microcontroller macro for the Virtex™, Virtex-E,
Spartan™-II and Spartan-IIE devices (see XAPP627 for Virtex-II designs). Although it could be
used for processing of data, the PicoBlaze macro is most likely to be employed in applications
requiring a complex, but non-time-critical state machine.

This revised version (for ISE compatibility) of the popular KCPSM macro (PicoBlaze) has still
been developed with one dominant factor being held above all others–its size. The result is a
microcontroller that occupies just 76 Spartan-IIE slices, which is 9% of the smallest XC2S50E
device and 2.5% of the XC2S300E device. Together with this small amount of logic, a single
block RAM is used to form a ROM store for a program of up to 256 instructions. Even with such
size constraints, the performance is respectable at approximately 40 MIPS, depending on
device speed grade.

The PicoBlaze module is totally embedded into the device and requires no external support.
Any logic can be connected to the module inside the Virtex or Spartan device meaning that any
additional features can be added to provide ultimate flexibility. It is not so much what is inside
the PicoBlaze module that makes it useful, but the environment in which it lives.

Introduction Figure 1 is a block diagram of a PicoBlaze module. The Spartan PicoBlaze modules require no
external support and provide a flexible environment for other logic connections into the
PicoBlaze module.

The PicoBlaze module is supplied as VHDL and as a precompiled soft macro that is handled by
the place and route tools to merge with the logic of a design. This plot (Figure 2) from the FPGA
Editor viewer shows the macro in isolation within the smallest Spartan-IIE device.

Application Note: Virtex-E and Spartan-II/IIE Devices

XAPP213 (v2.1) February 4, 2003

PicoBlaze 8-Bit Microcontroller for
Virtex-E and Spartan-II/IIE Devices
Author: Ken Chapman

R

Figure 1: PicoBlaze Module Block Diagram

IN_PORT[7:0]

PORT_ID[7:0]INTERRUPT

INSTRUCTION[15:0]

OUT_PORT[7:0]

ADDRESS[7:0]

CLK

READ_STROBE

WRITE_STROBE

Interface to logic
Interface to logic

ADDRESS[7:0]
INSTRUCTION[15:0]

CLK

Block Memory
(Program)

RESET

x213_01_121302

PicoBlaze Module (KCPSM)
XAPP213 (v2.1) February 4, 2003 www.xilinx.com 1
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/xapp/xapp627.pdf

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

.

In the larger devices, the PicoBlaze module is virtually free (Figure 3). The potential to place
multiple PicoBlaze modules within a single design is obvious. Whenever a non-time-critical
complex state machine is required, this macro is easy to insert and greatly simplifies the
design.

Figure 2: FPGA Editor View of a PicoBlaze Macro in an XC2S50E Spartan-IIE Device

Figure 3: FPGA Editor View of a PicoBlaze Macro in an XC2S300E Spartan-IIE Device
2 www.xilinx.com XAPP213 (v2.1) February 4, 2003
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

PicoBlaze Resource Information
The following device resource information is taken from the ISE reports for the PicoBlaze macro
in an XC2S50E device. The reports reveal the features that are utilized and the efficiency of the
macro. The 76 “slices” reported by the map process in this case can reduce to the minimum of
66 “slices” when greater packing is used to fit a complete design into a device.

Figure 4: Device Resource Information

XST Report

LUT1 : 1
LUT2 : 8
LUT3 : 71
LUT4 : 28

muxcy : 37
muxf5 : 9
xorcy : 28

FD : 41
FDE : 2
FDR : 5
FDRE : 7
FDRSE : 8
FDS : 2

RAM16X1D : 8
RAM16X1S : 8

Number of Slices : 76 out of 768 (9%)
Number of Block RAMs : 1 out of 8 (12%)
Total equivalent gate count for design: 19,816

MAP Report

 Device,speed: xc2s50e,-7 (ADVANCED 1.10 2001-12-19)
 Minimum period: 12.301 ns
 (Maximum frequency: 81.294 MHz)

TRACE Report

108 LUTs
(54 slices)

Carry and MUX logic
(Free with LUTs)

65 Flip_flops
(Free with LUTs)

Register bank (8 slices)
Call/Return Stack (4 slices)

40.6 MIPS

Total = 66 Slices

x213_4_121302
XAPP213 (v2.1) February 4, 2003 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

PicoBlaze
Architecture

Figure 5 shows the PicoBlaze architecture.

PicoBlaze
Feature Set

General-Purpose Registers
The feature set includes 16 general-purpose 8-bit registers, specified as s0 to sF (can be
renamed in the assembler). All register operations are completely flexible, with no registers
reserved for special tasks or given any priority over any other register. No accumulator exists as
any register can be adopted for use as an accumulator.

Arithmetic Logic Unit
The Arithmetic Logic Unit (ALU) provides all the simple operations expected in an 8-bit
processing unit.

Figure 5: PicoBlaze Architecture
X213_05_012703

IN_PORT[7:0]

16 8-bit
Registers

sF s7

s6

s5

s4

s3

s2

s1

 s0

sE

sD

sC

sB

sA

s9

s8

Port
Address
Control

PORT_ID7:0]

READ_STROBE

WRITE_STROBE

OUT_PORT[7:0]

ALU

Add/Sub
Logical

Shift
Rotate

ZERO &
CARRY
Flags

Interrupt
Flag Store

Constant
Data

INTERRUPT
Interrupt
Control

Program
Flow

Control

Program
Counter

Program
Counter
Stack

ADDRESS[7:0]

Program
ROM/RAM

256 words

INSTRUCTION[15:0]

Operational
Control &
Instruction
Decoding

16 bit instruction word

8 bit data path

8 bit port address

8 bit program address

8 bit Constant(k) information

RESET

CLK
4 www.xilinx.com XAPP213 (v2.1) February 4, 2003
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

All operations are performed using an operand provided by any register. The result is returned
to the same register. For operations requiring a second operand, a second register can be
specified or a constant 8-bit value can be supplied. The ability to specify any constant value
with no penalty to the program size or performance enhances the simple instruction set. To
clarify, the ability to “ADD 1" is the equivalent of a dedicated INCREMENT operation. For
operations requiring more than eight bits, addition and subtraction operations have an option to
include CARRY. Bit-wise operators (LOAD, AND, OR, XOR) provide the ability to manipulate
and test values. There is also a comprehensive Shift and Rotate group.

Flags Program Flow Control
The ALU operation results affect the ZERO and CARRY flags. This information determines the
execution sequence of the program using conditional and non-conditional program flow control
instructions. JUMP commands specify absolute addresses within the program space.

CALL and RETURN commands provide subroutine facilities for commonly used sections of
code. A CALL command is made to a specified absolute address, while a program counter
stack preserves the return address. The stack provides for a nested CALL with a depth of up to
15 levels, more than adequate for the program size supported.

Reset
The RESET input forces the processor back into the initial state. The program executes from
address 00 and interrupts are disabled. The status flags and CALL/RETURN stack are also
reset. Note that the register contents are not affected.

Input/Output
The PicoBlaze module has 256 input ports and 256 output ports. An 8-bit address value
provided on the PORT_ID bus together with READ_STROBE or WRITE_STROBE signals
indicates the accessed port. The port address can be either supplied in the program as an
absolute value, or specified indirectly as the contents of any of the 16 registers. Indirect
addressing is ideal when accessing a block of memory either constructed from block or
distributed RAM within or external to the Virtex-II device.

During an INPUT operation, the value provided at the input port is transferred into any of the 16
registers. An input operation is indicated by a READ_STROBE output pulse. Although using
this signal in the design input interface logic is not always vital, it indicates that data has been
acquired by the PicoBlaze module.

During an OUTPUT operation, the contents of any of the 16 registers are transferred to the
output port. A WRITE_STROBE output pulse indicates an output operation. This strobe signal
is used in the design output interface logic to ensure that only valid data is passed to external
systems. Typically, WRITE_STROBE is used as a clock enable or write enable signal.

Interrupt
The processor provides a single interrupt input signal. Using simple logic, multiple signals can
be combined and applied to this one input signal. By default, the effect of the interrupt signal is
disabled and is then under program control to be enabled and disabled as required.

An active interrupt forces the PicoBlaze macro to initiate a “CALL FF” (i.e., a subroutine call to
the last program memory location) for the user to define a suitable course of action.
Automatically, the interrupt process preserves the current ZERO and CARRY flag contents and
disables any further interrupts. A special RETURNI command ensures that the end of an
interrupt service routine restores the status of the flags and controls the enable of future
interrupts.
XAPP213 (v2.1) February 4, 2003 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

Constant (k)
Coded Values

The PicoBlaze module is in many ways a state machine based on constants. Constant values
are specified for use in the following aspects of a program:

• Constant data value for use in an ALU operation

• Constant port address to access a specific piece of information or control logic external to
the PicoBlaze module

• Constant address values for controlling the execution sequence of the program

The PicoBlaze instruction set coding is designed to allow constants to be specified within any
instruction word. Hence, the use of a constant carries no additional overhead to the program
size or its execution. This effectively extends the simple instruction set with a whole range of
“virtual instructions.”

Constant Cycles
All instructions under all conditions execute over two clock cycles. When determining the
execution time of a program, particularly when embedded into a real time situation, a constant
execution rate is of great value.

Constant Program Length
The program length is 256 instructions, conforming to the 256 x 16 format of a single Virtex-E
or Spartan-IIE block RAM. All address values are specified as 8-bits contained within the
instruction coding. The fixed memory size promotes a consistent level of performance from the
module. See the Hints and Tips section for help with larger programs. Virtex-II devices enable
programs up to 1024 instructions (see XAPP627).

Using the
PicoBlaze
Macro

The PicoBlaze macro is used principally in a VHDL design flow. It is provided as source VHDL
(kcpsm.vhd), which has been written for optimum and predictable implementation in a
Virtex-E or Spartan-II device. The code is suitable for implementation and simulation of the
macro and has been developed and tested using XST for implementation and ModelSim™ for
simulation. The code should not be modified in any way.

Figure 6: VHDL Component Declaration of KCPSM

component kcpsm
 Port (address : out std_logic_vector(7 downto 0);
 instruction : in std_logic_vector(15 downto 0);
 port_id : out std_logic_vector(7 downto 0);
 write_strobe : out std_logic;
 out_port : out std_logic_vector(7 downto 0);
 read_strobe : out std_logic;
 in_port : in std_logic_vector(7 downto 0);
 interrupt : in std_logic;
reset : std_logic;reset : in std_logic;
 clk : in std_logic);
 end component;
6 www.xilinx.com XAPP213 (v2.1) February 4, 2003
1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com/xapp/xapp627.pdf
http://www.xilinx.com/xapp/xapp627.pdf

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

Figure 7: VHDL Component Instantiation of the KCPSM

Connecting the
Program ROM

The principal method by which the PicoBlaze program ROM is used is in a VHDL design flow.
The PicoBlaze assembler generates a VHDL file in which a block RAM and its initial contents
are defined (see Assembler Directives for more detail). This VHDL file can be used for
implementation and simulation of the processor. It has been developed and tested using XST
for implementation and ModelSim for simulation.

Figure 8: VHDL Component Declaration of Program ROM

Figure 9: VHDL Component Instantiation of Program ROM

To aid with development, a VHDL file called “embedded_kcpsm.vhd” is also supplied in which
the PicoBlaze macro is connected to its associated block RAM program ROM. This entire
module can be embedded in the design application, or simply used to cut and paste the
component declaration and instantiation information into the user’s own code.

Notes:
1. The name of the program ROM (shown as "prog_rom" in the above examples) depends on the

name of the user’s program. For example, if the user’s program file was called “phone.psm,” then the
assembler generates a program ROM definition file called “phone.vhd.”

processor: kcpsm
 port map(address => address_signal,
 instruction => instruction_signal,
 port_id => port_id_signal,
 write_strobe => write_strobe_signal,
 out_port => out_port_signal,
 read_strobe => read_strobe_signal,
 in_port => in_port_signal,
 interrupt => interrupt_signal,
 reset => reset_signal,
 clk => clk_signal);

component prog_rom
 Port (address : in std_logic_vector(7 downto 0);
 instruction : out std_logic_vector(15 downto 0);
 clk : in std_logic);
 end component;

program: prog_rom
 port map(address => address_signal,
 instruction => instruction_signal,
 clk => clk_signal);
XAPP213 (v2.1) February 4, 2003 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

Alternative
Design Flows

Although the primary design flow is VHDL, the PicoBlaze module can be used in any design
flow supported by Xilinx using the following files:

kcpsm.ngc

The NGC file provided was made by synthesizing the kcpsm.vhd file with XST (without
inserting I/O buffers).

This file can be used as a “black box” in a design, and it will be merged with the rest of the user’s
design during the translate phase (ngdbuild).

Note that buses are defined in the style IN_PORT<7:0> with individual signals in_port_0
through in_port_7.

prog_rom.coe

The COE file generated by the assembler is suitable for use with the Xilinx Core Generator.

The file defines the initial contents of a block ROM. The files generated by Core Generator can
then be used as normal in the chosen design flow and connected to the PicoBlaze “black box”
in the user’s design.

Notes:
1. It is recommended that “embedded_kcpsm.vhd” be used for the generation of an ECS schematic

symbol.

Simulation
If the NGC file is used in the design flow, then some form of back annotated net list needs to be
used for simulation of the design in order to fill in the “black box” details required by the user’s
simulator.

PicoBlaze
Instruction Set

This section lists a complete instruction set representing all op-codes.

1. “X” and “Y” refer to the definition of the storage registers “s” in range 0 to F.

2. “kk” represents a constant value in range 00 to FF.

3. “aa” represents an address in range 00 to FF.

4. “pp” represents a port address in range 00 to FF.

Program Control Group
JUMP aa
JUMP Z,aa
JUMP NZ,aa
JUMP C,aa
JUMP NC,aa

CALL aa
CALL Z,aa
CALL NZ,aa
CALL C,aa
CALL NC,aa

RETURN
RETURN Z
RETURN NZ
RETURN C
RETURN NC

Notes:
1. Call and Return supports a stack depth of up to 15.
8 www.xilinx.com XAPP213 (v2.1) February 4, 2003
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

Logical Group
LOAD sX,kk
AND sX,kk
OR sX,kk
XOR sX,kk

LOAD sX,sY
AND sX,sY
OR sX,sY
XOR sX,sY

Arithmetic Group
ADD sX,kk
ADDCY sX,kk
SUB sX,kk
SUBCY sX,kk

ADD sX,sY
ADDCY sX,sY
SUB sX,sY
SUBCY sX,sY

Shift and Rotate Group
SR0 sX
SR1 sX
SRX sX
SRA sX
RR sX

SL0 sX
SL1 sX
SLX sX
SLA sX
RL sX

Input/Output Group
INPUT sX,pp
INPUT sX,(sY)

OUTPUT sX,pp
OUTPUT sX,(sY)

Interrupt Group
RETURNI ENABLE
RETURNI DISABLE

ENABLE INTERRUPT
DISABLE INTERRUPT
XAPP213 (v2.1) February 4, 2003 www.xilinx.com 9
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

Program
Control Group

JUMP
Under normal conditions, the program counter (PC) increments to point to the next instruction
(Figure 10). The address space is fixed to 256 locations (00 to FF hex), making the program
counter 8-bits wide. The top of the memory is FF hex and increments to 00.

The JUMP instruction can be used to modify this sequence by specifying a new address.
However, the JUMP instruction can be conditional. A conditional JUMP is only performed if a
test performed on either the ZERO flag or CARRY flag is valid. The JUMP instruction has no
effect on the status of the flags (Figure 11).

Each JUMP instruction must specify the 8-bit address as a two-digit hexadecimal value. The
assembler supports labels to simplify this process (Figure 12).

Figure 10: Program Counter

Figure 11: JUMP Instruction

Figure 12: JUMP Instruction Specification

x213_08_062100

Normal Instruction+1

PC PC

x213_09_062100

a a a a a a a a
Unconditional or
condition valid

Condition
not valid

New Address

PC

+1

PC

x213_12_120302

1 0 0 0 1 a a a a a a a a

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bit 12 0 - UNCONDITIONAL
 1 - CONDITIONAL

Bit 11
0
0
1
1

Bit 10
0
1
0
1

Condition
if Zero
if NOT Zero
if Carry
if Not Carry
10 www.xilinx.com XAPP213 (v2.1) February 4, 2003
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

CALL
The CALL instruction is similar in operation to the JUMP instruction. It modifies the normal
program execution sequence by specifying a new address. The CALL instruction can also be
conditional. In addition to supplying a new address, the CALL instruction also causes the
current program counter (PC) value to be pushed onto the program counter stack. The CALL
instruction has no effect on the status of the flags (Figure 13).

The program counter stack supports a depth of 15 address values, enabling nested CALL
sequences to a depth of 15 levels to be performed. Since the stack is also used during an
interrupt operation, at least one of these levels should be reserved when interrupts are enabled.

The stack is implemented as a separate cyclic buffer. When the stack is full, it overwrites the
oldest value. Hence, it is not necessary to reset the stack pointer when performing a software
reset. This also explains why there are no instructions to control the stack and why no program
memory needs to be reserved for the stack.

Each CALL instruction must specify the 8-bit address as a two-digit hexadecimal value. To
simplify this process, labels are supported in the assembler. (Figure 14).

Figure 13: CALL Instruction

Figure 14: CALL Instruction Specification

x213_13_120302

Stack

a a a a a a a a

Unconditional or
condition valid

Unconditional or
condition valid

Condition
not valid

New Address

PC

PC
+1

x213_14_020203

1 0 0 1 1 a a a a a a a a

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bit 12 0 - UNCONDITIONAL
 1 - CONDITIONAL

Bit 11
0
0
1
1

Bit 10
0
1
0
1

Condition
if Zero
if NOT Zero
if Carry
if Not Carry
XAPP213 (v2.1) February 4, 2003 www.xilinx.com 11
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

RETURN
The RETURN instruction is the complement to the CALL instruction. The RETURN instruction
is also conditional. In Figure 15, the new program counter (PC) value is formed internally by
incrementing the last value on the program address stack, ensuring that the program executes
the instruction following the CALL instruction which resulted in the subroutine. The RETURN
instruction has no effect on the status of the flags.

The programmer must ensure that a RETURN is only performed in response to a previous
CALL instruction, so that the program counter stack contains a valid address (Figure 16). The
cyclic implementation of the stack continues to provide values for RETURN instructions which
cannot be defined. Each RETURN only specifies the condition for flag tests.

Figure 15: RETURN Instruction

Figure 16: RETURN Instruction Specification

x213_11_120302

Stack

Unconditional or
condition valid

Condition
not valid

PC

PC

+1

+1

x213_15_120302

1 0 0 0 0 1 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bit 12 0 - UNCONDITIONAL
 1 - CONDITIONAL

Bit 11
0
0
1
1

Bit 10
0
1
0
1

Condition
if Zero
if NOT Zero
if Carry
if Not Carry
12 www.xilinx.com XAPP213 (v2.1) February 4, 2003
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

Interrupt Group RETURNI
The RETURNI instruction (Figure 17) is a special variation of the RETURN instruction. It
concludes an interrupt service routine. The RETURNI is unconditional and always loads the
program counter (PC) with the last address on the program counter stack. The address does
not increment in this case, because the instruction at the address stored needs to be executed.
The RETURNI instruction restores the flags to the point of interrupt condition. It also
determines the future ability of interrupts using ENABLE and DISABLE as an operand.

The programmer must ensure that a RETURNI (Figure 18) is only performed in response to an
interrupt. Each RETURNI must specify if a further interrupt is enabled or disabled.

ENABLE INTERRUPT and DISABLE INTERRUPT
These instructions are used to set and reset the INTERRUPT ENABLE flag (Figure 19). Before
using ENABLE INTERRUPT (Figure 20), a suitable interrupt routine must be associated with
the interrupt address vector (FF). Never enable interrupts while performing an interrupt service
routine.

Figure 17: RETURNI Instruction

Figure 18: RETURNI Instruction Specification

DIS

Figure 19: ENABLE/DISABLE INTERRUPT Instruction

Figure 20: ENABLE/DISABLE INTERRUPT Instruction Specification

x213_12_120302

Stack

PC

CARRY

ZERO

Preserved
CARRY

Interrupt
Enable

Preserved
ZERO

"1"

"0"

ENABLE

DISABLE

x213_13x_120302

1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0

RETURNI ENABLE

RETURNI DISABLE

x213_18_120302

Interrupt
Enable

"1"

"0"

ENABLE

DISABLE

x213_13y_120302

1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

ENABLE INTERRUPT

DISABLE INTERRUPT
XAPP213 (v2.1) February 4, 2003 www.xilinx.com 13
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

Logical Group LOAD
The LOAD instruction specifies the contents of any register. The new value is either a constant
or the contents of any other register. The LOAD instruction has no effect on the status of the
flags (Figure 21).

Since the LOAD instruction does not affect the flags, it is used to reorder and assign register
contents at any stage of the program execution. Because the load instruction is able to assign
a constant with no impact to the program size or performance, the load instruction is the most
obvious way to assign a value or clear a register.

Some implied “virtual” instructions are listed.

LOAD s0,s0 Loading any register with its own contents achieves nothing and hence is
a NO OPERATION consuming two clock cycles. This may be used to form
a delay in the program.

LOAD sX,00 Loading zero is the equivalent of a CLEAR register command.

Each LOAD instruction (Figure 22) must specify the first operand register as “s” followed by a
single hexadecimal digit. The second operand must then specify a second register value in a
similar way or specify an 8-bit constant using two hexadecimal digits. The assembler supports
register naming and constant labels to simplify programming.

Figure 21: LOAD Instruction

Figure 22: LOAD Instruction Specification

x213_14_062100

ConstantsX

sYsX

k k k k k k k k

x213_22x_120302

0 0 0 0 x x x x k k k k k k k k

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 x x x x y y y y 0 0 0 0

LOAD sX,kk

LOAD sX,sY

sX Constant

sX sY
14 www.xilinx.com XAPP213 (v2.1) February 4, 2003
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

AND
The AND instruction performs a bit-wise logical AND operation between two operands. For
example, 00001111 AND 00110011 produces the result 00000011. The first operand is any
register, and it is the register assigned the result of the operation. A second operand is also any
register, or an 8-bit constant value (Figure 23). Flags are affected by this operation. The AND
operation can be used to perform tests on the contents of a register. The status of the ZERO
flag then controls the flow of the program

Each AND instruction (Figure 24) must specify the first operand register as “s” followed by a
single hexadecimal digit. This register also forms the destination for the result. The second
operand specifies a second register value in a similar way, or specifies an 8-bit constant using
two hexadecimal digits. The assembler supports register naming and constant labels to
simplify programming.

Figure 23: AND Instruction

Figure 24: AND Instruction Specification

x213_15_062100

ConstantsX

sYsX

sX

sX

k k k k k k k k

0CARRY ?ZERO

AND

AND

Set if all bits of result are zero.
Reset in all other cases.

x213_23x_120302

0 0 0 1 x x x x k k k k k k k k

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 x x x x y y y y 0 0 0 1

AND sX,kk

 AND sX,sY

sX Constant

sX sY
XAPP213 (v2.1) February 4, 2003 www.xilinx.com 15
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

OR
The OR instruction performs a bit-wise logical OR operation between two operands. For
example, 00001111 OR 00110011 produces the result 00111111. The first operand is any
register. This register is assigned the result of this operation. A second operand is also any
register, or an 8-bit constant value (Figure 25). Flags are affected by the OR operation. The OR
instruction provides a way to force setting any bit of the specified register, which can be used to
form control signals.

Each OR instruction (Figure 26) must specify the first operand register as “s” followed by a
single hexadecimal digit. This register also forms the destination for the result. The second
operand must then specify a second register value in a similar way, or specify an 8-bit constant
using two hexadecimal digits. The assembler supports register naming and constant labels to
simplify programming.

Figure 25: OR Instruction

Figure 26: OR Instruction Specification

x213_16_062300

ConstantsX

sYsX

sX

sX

k k k k k k k k

0CARRY ?ZERO

OR

OR

Set if all bits of result are zero.
Reset in all other cases.

x213_24x_120302

0 0 1 0 x x x x k k k k k k k k

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 x x x x y y y y 0 0 1 0

 OR sX,kk

 OR sX,sY

sX Constant

sX sY
16 www.xilinx.com XAPP213 (v2.1) February 4, 2003
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

XOR
The XOR instruction performs a bit-wise logical XOR operation between two operands. For
example, 00001111 XOR 00110011 produces the result 00111100. The first operand is any
register, and this register is assigned the result of the operation. A second operand is also any
register, or an 8-bit constant value. Flags are affected by this operation (Figure 27). The XOR
operation can be used to invert bits contained in a register, which is used in forming control
signals.

Each XOR instruction (Figure 28) must specify the first operand register as “s” followed by a
single hexadecimal digit. This register also forms the destination for the result. The second
operand must then specify a second register value in a similar way, or specify an 8-bit constant
using two hexadecimal digits. The assembler supports register naming and constant labels to
simplify programming.

Figure 27: XOR Instruction

Figure 28: XOR Instruction Specification

x213_17_062300

ConstantsX

sYsX

sX

sX

k k k k k k k k

0CARRY ?ZERO

XOR

XOR

Set if all bits of result are zero.
Reset in all other cases.

x213_25x_120302

0 0 1 1 x x x x k k k k k k k k

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 x x x x y y y y 0 0 1 1

 XOR sX,kk

 XOR sX,sY

sX Constant

sX sY
XAPP213 (v2.1) February 4, 2003 www.xilinx.com 17
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

Arithmetic
Group

ADD
The ADD instruction performs an 8-bit addition of two operands. The first operand is any
register, and it is this register that is assigned the result of the operation. A second operand is
also any register, or an 8-bit constant value (Figure 29). Flags are affected by this operation.
Note that this instruction does not use the CARRY as an input, and hence, there is no need to
condition the flags before use. The ability to specify any constant is useful in forming control
sequences or counters.

Each ADD instruction (Figure 30) must specify the first operand register as “s” followed by a
single hexadecimal digit. This register forms the destination for the result. The second operand
must then specify a second register value in a similar way, or specify an 8-bit constant using two
hexadecimal digits. The assembler supports register naming and constant labels to simplify
programming.

Figure 29: ADD Instruction

Figure 30: ADD Instruction Specification

x215_18_062300

ConstantsX

sYsX

sX

sX

k k k k k k k k

?CARRY Set if result of addition exceeds FF.
Reset in all other cases. ?ZERO Set if all bits of result are zero.

Reset in all other cases.

+

+

x213_26x_120302

0 1 0 0 x x x x k k k k k k k k

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 x x x x y y y y 0 1 0 0

 ADD sX,kk

 ADD sX,sY

sX Constant

sX sY
18 www.xilinx.com XAPP213 (v2.1) February 4, 2003
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

ADDCY
The ADDCY instruction performs an addition of two 8-bit operands together with the contents
of the CARRY flag. The first operand is any register, and this register is assigned the result of
the operation. A second operand is also any register, or an 8-bit constant value (Figure 31).
Flags are affected by this operation. The ADDCY operation is used in the formation of adder
and counter processes exceeding eight bits.

Each ADDCY instruction (Figure 32) must specify the first operand register as “s” followed by a
single hexadecimal digit. This register also forms the destination for the result. The second
operand must then specify a second register value in a similar way, or specify an 8-bit constant
using two hexadecimal digits. The assembler supports register naming and constant labels to
simplify programming.

Figure 31: ADDCY Instruction

Figure 32: ADDCY Instruction Specification

x213_19_0623

ConstantsX

sYsX

sX

sX

k k k k k k k k

CARRY

CARRY

?CARRY Set if result of addition exceeds FF.
Reset in all other cases. ?ZERO Set if all bits of result are zero.

Reset in all other cases.

+

+

+

+

x213_27x_120302

0 1 0 1 x x x x k k k k k k k k

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 x x x x y y y y 0 1 0 1

 ADDCY sX,kk

 ADDCY sX,sY

sX Constant

sX sY
XAPP213 (v2.1) February 4, 2003 www.xilinx.com 19
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

SUB
The SUB instruction performs an 8-bit subtraction of two operands. The first operand is any
register, and this register is assigned the result of the operation. The second operand is also
any register, or an 8-bit constant value (Figure 33). Flags are affected by this operation. Note
that this instruction does not use the CARRY as an input and, hence, there is no need to
condition the flags before use. The CARRY flag indicates when an underflow has occurred. For
example, if “s5” contains 27 hex and the instruction SUB s5,35 is performed, then the stored
result is F2 hex and the CARRY flag is set.

Each SUB instruction (Figure 34) must specify the first operand register as “s” followed by a
single hexadecimal digit. This register also forms the destination for the result. The second
operand must then specify a second register value in a similar way, or specify an 8-bit constant
using two hexadecimal digits. The assembler supports register naming and constant labels to
simplify programming.

Figure 33: SUB Instruction

Figure 34: SUB Instruction Specification

x213_20_062300

ConstantsX

sYsX

sX

sX

k k k k k k k k

?CARRY Set if result is negative.
Reset in all other cases. ?ZERO Set if all bits of result are zero.

Reset in all other cases.

x213_28x_120302

0 1 1 0 x x x x k k k k k k k k

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 x x x x y y y y 0 1 1 0

 SUB sX,kk

 SUB sX,sY

sX Constant

sX sY
20 www.xilinx.com XAPP213 (v2.1) February 4, 2003
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

SUBCY
The SUBCY instruction performs an 8-bit subtraction of two operands together with the
contents of the CARRY flag. The first operand is any register, and this register is assigned the
result of the operation. The second operand is also any register, or an 8-bit constant value
(Figure 35). Flags are affected by this operation. The SUBCY operation is used in the formation
of subtract and down-counter processes exceeding 8 bits.

Each SUBCY instruction (Figure 36) must specify the first operand register as “s” followed by a
single hexadecimal digit. This register also forms the destination for the result. The second
operand must then specify a second register value in a similar way, or specify an 8-bit constant
using two hexadecimal digits. The assembler supports register naming and constant labels to
simplify programming.

Figure 35: SUBCY Instruction

Figure 36: SUBCY Instruction Specification

x213_21_120302

ConstantsX

sYsX

sX

sX

k k k k k k k k

CARRY

CARRY

?CARRY Set if result is negative.
Reset in all other cases. ?ZERO Set if all bits of result are zero.

Reset in all other cases.

x213_29x_120302

0 1 1 1 x x x x k k k k k k k k

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 x x x x y y y y 0 1 1 1

 SUBCY sX,kk

 SUBCY sX,sY

sX Constant

sX sY
XAPP213 (v2.1) February 4, 2003 www.xilinx.com 21
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

Shift and Rotate
Group

SR0, SR1, SRX, SRA, RR
The shift and rotate right group all modify the contents of a single register (Figure 37). All
instructions in the group have an effect on the flags.

Each instruction must specify the register as “s” followed by a single hexadecimal digit
(Figure 38). The assembler supports register naming to simplify programming.

Figure 37: Right Shift Register Instructions

Figure 38: Right Shift Register Instruction Specification

x213_22_090100

sX CARRY

?ZERO Set if all bits of result are zero.
Reset in all other cases.

"0"

sX CARRY

sX CARRY

"1"

SR0 sX

0ZEROSR1 sX

?ZERO Set if all bits of result are zero.
Reset in all other cases.

SRX sX

?ZERO Set if all bits of result are zero.
Reset in all other cases.

SRA sX

?ZERO Set if all bits of result are zero.
Reset in all other cases.

RR sX

sX CARRY

sX CARRY

x213_30x_11080

1 1 0 1 x x x x 0 0 0 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 sX

Bit 2 Bit 1 Bit0 Instruction1
1
1
0
0
1

1
1
1
0
0

0
1
0
0
0

SR0 sX
SR1 sX
SRX sX
SRA sX
RR sX
22 www.xilinx.com XAPP213 (v2.1) February 4, 2003
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

SL0, SL1, SLX, SLA, RL
The shift and rotate left group all modify the contents of a single register (Figure 39). All
instructions in the group have an effect on the flags.

Each instruction must specify the register as “s” followed by a single hexadecimal digit
(Figure 40). The assembler supports register naming to simplify programming.

Figure 39: Left SHIFT Register Instructions

Figure 40: Left SHIFT Register Instruction Specification

x213_23_062300

sXCARRY

?ZERO Set if all bits of result are zero.
Reset in all other cases.

"0"SL0 sX

sXCARRY

0ZERO"1"SL1 sX

sXCARRY

?ZERO Set if all bits of result are zero.
Reset in all other cases.

SLX sX

sXCARRY

?ZERO Set if all bits of result are zero.
Reset in all other cases.

SLA sX

sXCARRY

?ZERO Set if all bits of result are zero.
Reset in all other cases.

RL sX

x213_31x_012703

1 1 0 1 x x x x 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 sX

Bit 2 Bit 1 Bit0 Instruction1
1
1
1
0
0

1
1
0
0
1

0
1
0
0
0

SL0 sX
SL1 sX
SLX sX
SLA sX
RL sX
XAPP213 (v2.1) February 4, 2003 www.xilinx.com 23
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

Input and
Output Group

INPUT
The INPUT instruction enables data values external to the PicoBlaze module to be transferred
into any one of the internal registers (Figure 41). The port address (in the range 00 to FF) is
defined by a constant value, or indirectly as the contents of the any other register. The flags are
not affected by this operation.

The user interface logic is required to decode the PORT_ID port address value and supply the
correct data to the IN_PORT. The READ_STROBE is set during an input operation (see READ
and WRITE STROBES), but is not vital for the interface logic to decode this strobe in most
applications. However, it can be useful for determining when data has been read, such as when
reading a FIFO buffer.

Each INPUT instruction (Figure 42) must specify the destination register as “s” followed by a
single hexadecimal digit. It must then specify the input port address using a register value in a
similar way, or specify an 8-bit constant using two hexadecimal digits. The assembler supports
register naming and constant labels to simplify programming.

Figure 41: INPUT Instruction
x213 24 110502

ConstantsX Port Value PORT_ID Address

p p p p p p p p

sYsX Port Value PORT_ID Address

Figure 42: INPUT Instruction Specification

x213_32x_120302

1 0 1 0 x x x x p p p p p p p p

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 x x x x y y y y 0 0 0 0

INPUT sX,PP

INPUT sX,(sY)

sX Constant PORT_ID

sX sY
24 www.xilinx.com XAPP213 (v2.1) February 4, 2003
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

OUTPUT
The OUTPUT instruction enables the contents of any register to be transferred to logic external
to the PicoBlaze module. The port address (in the range 00 to FF) is defined by a constant
value, or indirectly as the contents of the any other register (Figure 43). The flags are not
affected by this operation.

The user interface logic is required to decode the PORT_ID port address value and capture the
data provided or the OUT_PORT. The WRITE_STROBE is set during an output operation (see
READ and WRITE STROBES) and should be used to clock enable the capture register (or
write enable a RAM).

Each OUTPUT instruction (Figure 44) must specify the source register as “s” followed by a
single hexadecimal digit. It must then specify the output port address using a register value in
a similar way, or specify an 8-bit constant using two hexadecimal digits. The assembler
supports register naming and constant labels to simplify programming.

Figure 43: OUTPUT Instruction

X213_26_110502

ConstantsXPort Value PORT_ID Address

p p p p p p p p

sYsXPort Value PORT_ID Address

Figure 44: OUTPUT Instruction Specification

x213_33x_012703

1 1 1 0 x x x x p p p p p p p p

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 x x x x y y y y 0 0 0 0

OUTPUT sX,PP

OUTPUT sX,(sY)

sX Constant PORT_ID

sX sY
XAPP213 (v2.1) February 4, 2003 www.xilinx.com 25
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

READ and WRITE STROBES
These pulses are used by external circuits to confirm input and output operations. In the
waveforms (Figure 45), it is assumed that the content of register sE is 47, and the content of
register sA is 42.

PORT_ID[7:0] is provided with the full two clock cycles to be decoded by external logic. The
WRITE_STROBE is provided on the second clock cycle to confirm an active write by the
PicoBlaze module. In most cases, the READ_STROBE is not utilized by the external decoding
logic, but again occurs in the second cycle and indicates the actual clock edge on which data is
read into the specified register.

Notes:
1. For timing critical designs, timing specifications can allow two clock cycles for PORT_ID and data

paths, and only the strobes need to be constrained to a single clock cycle.

Figure 45: READ and WRITE Strobes

CLK

ADDRESS[7:0] 8B 8C 8D 8E 8F

inst instOUTPUT sA,65inst

8A

INPUT s2,(sE)

PORT_ID[7:0] 6547

OUT_PORT[7:0] 42

WRITE_STROBE

READ_STROBE

Use WRITE_STROBE to clock
enable external circuit and capture
data on this clock edge

PicoBlaze module captures data
 into s2 register on this clock edge

x213_34_111002

INSTRUCTION[15:0]
26 www.xilinx.com XAPP213 (v2.1) February 4, 2003
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

RESET
The PicoBlaze module contains an internal reset control circuit to ensure the correct start up of
PicoBlaze following device configuration or global reset. This reset can also be activated within
the user’s design.

The PicoBlaze reset is sampled synchronous to the clock and used to form a controlled internal
reset signal which is distributed locally as required. A small ‘filter’ circuit (see Figure 46)
ensures that the release of the internal reset is clean and controlled. The reset input can be tied
to logic 0 if not required, and the filter is still used to ensure correct power-up sequence
(Figure 47 and Figure 48).

PicoBlaze
Assembler

The PicoBlaze Assembler (Figure 49) is provided as a simple DOS executable file together with
two template files. The files KCPSM.EXE, ROM_form.vhd, and ROM_form.coe should be
copied into the user’s working directory.

Programs are best written with either the standard Notepad or Wordpad tools. The file is saved
with a .psm file extension (8-character name limit).

Figure 46: PicoBlaze Filter Circuit

reset

internal_reset
FDS FDS

x213_34_110802

Figure 47: Release of Reset after Configuration

ADDRESS[7:0]

INSTRUCTION[15:0]

internal_reset

00 01 02 03 04

inst0 inst1 inst2 inst3

CLK

x213_35_120302

GSR=1

Figure 48: Application of User Reset Input

CLK

RESET

24 00 01 02

inst23 inst0 inst1

23

inst24

ADDRESS[7:0]

internal_reset

X213_36_110802

INSTRUCTION[15:0]
XAPP213 (v2.1) February 4, 2003 www.xilinx.com 27
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

Open a DOS box and navigate to the working directory. Then run the assembler
kcpsm <filename>[.psm] to assemble the program. It all happens very fast.

Assembler Errors
The assembler stops as soon as an error is detected (Figure 50). A short message is displayed
to help determine the reason for the error. The assembler also displays the line it was analyzing
when the problem was detected. The user should fix each reported problem in turn and re-
execute the assembler.

Since the execution of the assembler is very fast, the display appears to be immediate. The
user can review everything that the assembler has written to the screen, by redirecting the DOS
output to a text file using: kcpsm <filename>[.psm] > screen_dump.txt

Figure 49: PicoBlaze Assembler

<filename>.vhd <filename>.coe

Virtex-E/Spartan-II Block RAM program ROM definition files

x213_38_11002

Figure 50: Assembler Error Display

Line being processed

Error message

Previous Progress

x213_37_110802
28 www.xilinx.com XAPP213 (v2.1) February 4, 2003
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

Assembler Files
The PicoBlaze Assembler actually reads three input files and generates thirteen output files.
See Figure 51 for a diagram of these files.

The hex and dec files provide the program ROM contents in unformatted hexadecimal and
decimal for conversion to other formats not supported directly by the assembler. There is no
further description in this application note.

ROM_form.vhd File

This file provides the template for the VHDL file generated by the assembler and suitable for
synthesis and simulation. This file is provided with the assembler and must be placed in the
working directory.

The supplied ROM_form.vhd template file defines a single-port block RAM for Virtex-E or
Spartan-II devices configured as a ROM. The user can adjust this template to define the type
of memory desired. The template supplied includes additional notes on how the template
works.

The assembler reads the ROM_form.vhd template and simply copies the information into the
output file <filename>.vhd. There is no checking of syntax, so any alterations are the
responsibility of the user. See Figure 52.

Figure 51: Files Associated with Assembler

<filename>.vhd

<filename>.coe

KCPSM.EXE

<filename>.psm

ROM_form.vhd

ROM_form. coe

<filename>.log
constant.txt

labels.txt

 <filename>.fmt

pass1.dat
pass2.dat
pass3.dat
pass4.dat
pass5.dat

ROM definition
files for design Assembler

report files

Formatted version of
user input file

Assembler
intermediate
processing files
(may be useful
for debugging)

Program file

<filename>.hex

<filename>.dec

ROM definition files
for other utilities

x213_49_120302
XAPP213 (v2.1) February 4, 2003 www.xilinx.com 29
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

Figure 52: ROM_form.vhd

The template contains some special text strings surrounded by {} brackets. These are {begin
template}, {name}, and a whole family of initialization identifiers, such as {INIT_01}. The
assembler uses {begin template} to identify where the VHDL definition begins. It then intercepts
and replaces all other special strings with the appropriate information. {name} is replaced with
the name of the input program .psm file.

ROM_form.coe File

This file provides the template for the coefficient file generated by the assembler and suitable
for the Core Generator. This file is provided with the assembler and must be placed in the
working directory.

The supplied ROM_form.coe template file defines a Dual Port Block RAM for Virtex-E or
Spartan-II devices in which the A-port is read only and the B-port is read/write. The user can
adjust this template to define the type of memory for the Core Generator to implement.

The assembler reads the ROM_form.coe template and simply copies the information into the
output file <filename>.coe. There is no checking of syntax, so any alterations are the
responsibility of the user.

The template can contain the special text string {name} which the assembler intercepts and
replaces with the name of the program file. In Figure 53, {name} has been replaced with
“simple.”

entity {name} is
 Port (address : in std_logic_vector(7 downto 0);
 instruction : out std_logic_vector(15 downto 0);
 clk : in std_logic);
 end {name};
--
architecture low_level_definition of {name} is
.
.
attribute INIT_00 of ram_256_x_16 : label is "{INIT_00}";
attribute INIT_01 of ram_256_x_16 : label is "{INIT_01}";
attribute INIT_02 of ram_256_x_16 : label is "{INIT_02}";
30 www.xilinx.com XAPP213 (v2.1) February 4, 2003
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

It is vital that the last line of the template contains the key words:

 memory_initialization_vector=

These words are used by the Core Generator to identify the data values that follow. The
assembler appends the 256 values required. Indeed, the template could simply contain this one
line provided the Core Generator GUI is used to set up all other parameters.

<filename>.fmt File

When a program passes through the assembler, additional files to the .vhd and .coe files are
produced to assist the programmer. One of these files is called <filename>.fmt, which is
the original program but in a formatted state. Looking at this file is an easy way for the
programmer to see that everything has been interpreted correctly. The <filename>.fmt file:

• Formats labels and comments

• Puts all commands in upper case

• Correctly spaces operands

• Gives registers an ‘sX’ format

• Converts hex constants to upper case

See Figure 54.

The <filename>.fmt file will typically be renamed <filename>.psm by the user so that this
nicely formatted version can be adopted as the program file.

Figure 53: ROM_form.coe

component_name={name};
width_a=16;
depth_a=256;
.
.
memory_initialization_radix=16;
global_init_value=0000;
memory_initialization_vector=

component_name=simple;
width_a=16;
depth_a=256;
.
.
memory_initialization_radix=16;
global_init_value=0000;
memory_initialization_vector=
039F, 0342, 059F, 0542, C370, C3A0, C570, C5A0, ...

ROM_form.coe

<filename>.coe

x213_50_110402

KCPSM Assembler
XAPP213 (v2.1) February 4, 2003 www.xilinx.com 31
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

<filename>.log File

The .log file (Figure 55) provides the user with the most detail about the assembly process
which has been performed. This is where the user can observe how each instruction and
directive has been used. Address and opcode values are associated with each line of the
program and the actual values of addresses, registers, and constants defined by labels are
specified.

Figure 54: <filename>.fmt File

constant max_count, 18;count to 24 hours

namereg s4,counter_reg;define register for counter

constant count_port, 12

start: load counter_reg,00;initialise counter

loop:output counter_reg,count_port

add counter_reg,01;increment

load s0,counter_reg

sub s0,max_count;test for max value

jump nz,loop;next count

jump start;reset counter

CONSTANT max_count, 18 ;count to 24 hours

NAMEREG s4, counter_reg ;define register for counter

CONSTANT count_port, 12

start: LOAD counter_reg, 00 ;initialise counter

loop: OUTPUT counter_reg, count_port

ADD counter_reg, 01 ;increment

LOAD s0, counter_reg

SUB s0, max_count ;test for max value

JUMP NZ, loop ;next count

JUMP start ;reset counter

<filename>.psm

<filename>.fmt

x213_52_120302

KCPSM Assembler
32 www.xilinx.com XAPP213 (v2.1) February 4, 2003
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

constant.txt and labels.txt Files

These two files (Figure 56) provide a list of the line labels and their associated addresses, and
a list of constants and their values as defined by constant directives in the program file. These
are useful during the development of larger programs.

pass.dat Files

The pass.dat files (Figure 57) are internal files to the assembler and represent intermediate
stages of the assembly process. These files are typically ignored, but can help in identifying
how the assembler has interpreted the program file syntax. The files are automatically deleted

Figure 55: <filename>.log File

Figure 56: constant.txt and labels.txt Files

KCPSM Assembler log file for program "simple.psm"

Generated by KCPSM version 1.10

Ken Chapman (Xilinx Ltd) 2002.

Addr Code

00 CONSTANT max_count, 18 ;count to 24 hours

00 NAMEREG s4, counter_reg ;define register for counter

00 CONSTANT count_port, 12

00 0400 start: LOAD counter_reg [s4], 00 ;initialise counter

01 E412 loop: OUTPUT counter_reg [s4], count_port[12]

02 4401 ADD counter_reg [s4], 01 ;increment

03 C040 LOAD s0, counter_reg [s4]

04 4018 ADD s0, max_count[18] ;test f or max value

05 9501 JUMP NZ, loop[01] ;next c ount

06 8100 JUMP start[00] ;reset counter

<filename>.log

Address

Op-Code

Label

Instruction Comment

Values contained in [] brackets indicates
the value associated with the label
i.e., ‘loop’ is resolved to be address ‘01’.

x213_53_120302

Table of constant values and their specified

constant labels.

18 max_count

12 count_port

constant.txt

Value

Constant

Label

Table of addresses and their specified labels.

00 start

01 loop

labels.txt

Address

Line

Label

x213_54_120302
XAPP213 (v2.1) February 4, 2003 www.xilinx.com 33
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

at the start of the assembly process. If there is an error detected by the assembler, the .dat
files are only complete until the point of the last successful processing.

The .dat. files segment the information from each line into the different fields. Each pass
resolves more information. The example shown here is related to the line:

ADD counter_reg, 01 ;increment

It can be seen that pass1.dat has purely segmented the fields of the line. In the final
pass5.dat, the assembler has resolved all the relevant information.

Program Syntax Probably the best way to understand what is and what is not valid syntax is to look at the
examples and try the assembler. However, some simple rules are of assistance from the
beginning. To ensure that the correct program syntax is used, the following suggestions are
recommended:

No blank lines. A blank line is ignored by the assembler and removed from any formatted files.
To keep a line, use a blank comment (a semicolon).

Comments. Any item on a line following a semi-colon (;) is ignored by the assembler. Concise
comments should be used to keep the program manageable and make it easy to print out
programs and log files.

Registers. All registers must be defined as the letter “s” immediately followed by a single
hexadecimal character in the range of 0 to F. The assembler accepts any mixture of upper and
lower case characters and automatically converts them to the “sX” format, where “X” is one of
the following: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.

Constants. A constant is specified in the form of a two-digit hexadecimal value (range 00 to
FF). The assembler accepts any mixture of upper and lower case characters and automatically
converts them to upper case.

Labels. Labels are any user-defined text string and are case sensitive for additional flexibility.
No spaces are allowed, but the underscore character is supported. Valid characters are 0 to 9,
a to z, and A to Z. Labels should be reasonably concise to keep the program formatting clean.
Labels which could be confused with hexadecimal addresses and constants or register
specifications are rejected by the assembler.

Figure 57: pass.dat Files

ADDRESS-02

LABEL-

FORMATTED-ADD counter_reg, 01

LOGFORMAT-ADD counter_reg[s4], 01

INSTRUCTION-ADD

OPERAND1-counter_reg

OP1 VALUE-s4

OPERAND2-01

OP2 VALUE-01

COMMENT-;increment

Part of pass5..dat

LABEL-

INSTRUCTION-add

OPERAND1-counter_reg

OPERAND2-01

COMMENT-;increment

Part of pass1..dat

x2113_55_012703
34 www.xilinx.com XAPP213 (v2.1) February 4, 2003
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

Line Labels. A label used to identify a program line for reference in a JUMP or CALL instruction
should be followed by a colon (:). Figure 58 shows the use of a label to identify a program line
and its use later in a JUMP instruction.

Program
Instructions

The instructions should be as shown in PicoBlaze Instruction Set. The assembler is very
forgiving over the use of spaces and <TAB> characters, but instructions and the first operand
must be separated by at least one space. Instructions with two operands must ensure that a
comma (,) separator is used.

The assembler accepts any mixture of upper and lower case characters for the instruction and
automatically converts them to upper case. The following examples show acceptable
instruction specifications, but the formatted output shows how it was expected.

Most other syntax problems are solved by reading the error messages provided by the
assembler.

Assembler
Directives

The assembler supports three assembler directives. These commands are used purely by the
assembly process and do not correspond to instructions executed by PicoBlaze module.

CONSTANT Directive
This directive provides a way to assign an 8-bit constant value to a label. In this way, the
program can declare constants such as port addresses and particular data values needed in
the program. By defining constant values in this way, it is often easier to understand their
meaning in the program rather than as actual hexadecimal constant values in the program
lines. Figure 59 illustrates the directive syntax and its uses.

Figure 58: Line Label Example

loop: OUTPUT counter_reg, count_port
 ADD counter_reg, 01 ;increment
 LOAD s0, counter_reg
 SUB s0, max_count ;test for max value
 JUMP NZ, loop ;next count

load s5,7E

Assembler

LOAD s5, 7E

AddCY s8,SE ADDCY s8, sE

ENABLE interrupt ENABLE INTERRUPT

Output S2, (S8) OUTPUT s2, (s8)

jump Nz, 67 JUMP NZ, 67

ADD sF, step_value ADD sF, step_value

INPUT S9,28 INPUT s9, 28

sl1 se SL1 sE

RR S8 RR s8
XAPP213 (v2.1) February 4, 2003 www.xilinx.com 35
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

Figure 59: CONSTANT Directive

Notes:
1. A constant is global. Even if a constant is defined as the end of the program file, it can be used in

instructions anywhere in the program.
2. Constant names must not contain any spaces although the underscore character is supported. Valid

characters are 0 to 9, a to z, and A to Z.

In Figure 59, “max_count” is being used to specify a data constant of 18 hex. In the program,
this is used to test the value of a counter. By using a constant directive, the code is more
readable. It would also be possible to change the constant value and its effect would be applied
to multiple places in the program.

“count_port” is being used to specify a port address. In the program, the OUTPUT instruction
refers to the port by name rather than absolute value. By using a constant directive, the code is
more readable. It would also be possible to change the constant value once in the directive and
its effect would be applied to multiple places in the program. This is particularly useful when
defining the hardware interface. Indeed, the program can be developed before the I/O
addresses are defined.

NAMEREG Directive
This directive provides a way to assign a new name to any of the 16 registers. In this way, the
program refers to “variables” by name rather than as absolute register specifications. By
naming registers in this way, it is easier to understand the meaning in the program without so
many comments. It also helps to prevent inadvertent reuse of a register with associated data
corruption. See Figure 60.

Figure 60: NAMEREG Directive

Notes:
1. Register names must not contain any spaces although the underscore character is supported. Valid

characters are 0 to 9, a to z, and A to Z.

In Figure 60, the register s4 has been renamed to be “counter_reg” and is then used in multiple
instructions, making it clear what the meaning of the register contents actually are.

CONSTANT max_count, 18 ;count to 24 hours
 NAMEREG s4, counter_reg ;define register for counter
 CONSTANT count_port, 12
start: LOAD counter_reg, 00 ;initialize counter
 loop: OUTPUT counter_reg, count_port
 ADD counter_reg, 01 ;increment
 LOAD s0, counter_reg
 SUB s0, max_count ;test for max value
 JUMP NZ, loop ;next count
 JUMP start ;reset counter

CONSTANT max_count, 18 ;count to 24 hours
 NAMEREG s4, counter_reg ;define register for counter
 CONSTANT count_port, 12
start: LOAD counter_reg, 00 ;initialize counter
 loop: OUTPUT counter_reg, count_port
 ADD counter_reg, 01 ;increment
 LOAD s0, counter_reg
 SUB s0, max_count ;test for max value
 JUMP NZ, loop ;next count
 JUMP start ;reset counter
36 www.xilinx.com XAPP213 (v2.1) February 4, 2003
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

Important The NAMEREG directive is applied in-line with the code by the assembler. Before
the NAMEREG directive, the register is named in the ‘sX’ style. Following the directive, only the
new name applies.

It is also possible to rename a register again (i.e., NAMEREG counter_reg, hours) and only the
new name applies in the subsequent program lines. This can be useful in making portable code
and subroutines.

ADDRESS Directive
ADDRESS directive (Figure 61) provides a way to force the assembly of the following
instructions commencing at a new address value. This is useful for separating subroutines into
specific locations and vital for handling interrupts. The address must be specified as a two-digit
hexadecimal value in the range 00 to FF.

Figure 61: ADDRESS Directive

In Figure 62, the log file shows that the ADDRESS directive is used to force the last instruction
into the highest memory location in the program RAM. This is the address to which the program
counter is forced during an active interrupt.

Figure 62: ADDRESS Directive Example

KCPSM2 Code
Compatibility

KCPSM and KCPSM2 have many similarities. However, each has been tuned to specific device
architecture so there are differences. Since KCPSM2 has more program space and more
registers, it is more likely that a KCPSM design is migrated to a KCPSM2 rather than the other
way round.

Registers
The key difference from a user perspective is that KCPSM has 16 registers with names “sX”
rather than 32 registers with names “sXX.” If KCPSM2 code is to be used with KCPSM code,
the NAMEREG directive can make the code compatible.

JUMP NZ, inner_long
 RETURN
 ;Interrupt Service Routine
ISR: LOAD wait_light, 01 ;register press of switch
 OUTPUT wait_light, wait_light_port ;turn on light
 RETURNI DISABLE ;continue light sequence but no more interrupts
 ADDRESS FF ;Interrupt vector
 JUMP ISR
 ;end of program

E3 95E1 JUMP NZ, inner_long[E1]
E4 8080 RETURN
E5 ;Interrupt Service Routine
E5 0A01 ISR: LOAD wait_light[sA], 01 ;register press of switch
E6 EA10 OUTPUT wait_light[sA], wait_light_port[10] ;turn on light
E7 80D0 RETURNI DISABLE
FF ADDRESS FF ;Interrupt vector
FF 81E5 JUMP ISR[E5]
FF ;end of program
XAPP213 (v2.1) February 4, 2003 www.xilinx.com 37
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

Simply add the following lines before any active instructions:

• namereg s0,s00

• namereg s1,s01

• .

• .

• namereg sF,s0F

Now the 16 registers have the same identifiers as that for the lower 16 registers of
KCPSM2. Of course, more than 16 registers cannot be supported.

However, the input code must use the “sXX” format correctly and not a an upper case “S” or
lower case hexadecimal digit. Therefore, the “<name>.fmt” output from KCPSM2 should be
used where possible.

Address Range
Since the KCPSM module supports 256 program instructions and KCPSM2 module supports
1024, it is possible that the program simply will not fit. However, for programs less than 256
instructions, the different address range does make a difference to ADDRESS directives.

Any address directives used in the program code will need to be adjusted to specify the desired
assembly address as two hexadecimal digits rather than three.

Interrupt Vector
During an active interrupt, the program counter of KCPSM2 is forced to the last memory
location “3FF.” In a similar way, the program counter of KCPSM is also forced to the last
memory location, but this is now “FF” due to the smaller program space. Therefore, it is vital
that programs using interrupts adjust the location of the interrupt vector. This typically involves
adjusting the associated ADDRESS directive from address 3FF to FF.

Label Validity
The assembler has slightly different rules concerning which labels for lines, constants, and
registers are acceptable. For example, a constant label cannot be “se” because this can be
confused with a default register name of the KCPSM macro. Therefore, it may be necessary to
adjust some of the user names in the program code. Typically, labels are descriptive and this
issue is not encountered.

Interrupt
Handling

Effective interrupt handling and how and when an interrupt is used are not covered in this
document. The information supplied should be adequate to assess the capability of the
PicoBlaze module and to create interrupt-based systems.

Default State
By default, the interrupt input is disabled. This means that the entire 256 words of program
space are used without any regard to interrupt handling or use of the interrupt instructions.

Enabling Interrupts
For an interrupt to take place, the ENABLE INTERRUPT command must be used. At critical
stages of program execution where an interrupt is unacceptable, a DISABLE INTERRUPT is
used. Since an active interrupt automatically disables the interrupt input, the interrupt service
routine ends with a RETURNI instruction, which also includes the option to ENABLE or
DISABLE the interrupt input as it returns to the main program.

During an interrupt (Figure 63), the program counter is pushed onto the stack and the values of
the CARRY and ZERO flags are preserved (for restoration by the RETURNI instruction). The
38 www.xilinx.com XAPP213 (v2.1) February 4, 2003
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

interrupt input is automatically disabled. Finally, the program counter is forced to address FF
(last program memory location) from which the next instruction is executed.

Basics of
interrupt
Handling

Since the interrupt forces the program counter to address FF, it will generally be necessary to
ensure that a jump vector to a suitable interrupt service routine is located at this address.
Without a JUMP instruction, the program rolls over to address zero.

In typical cases, an interrupt service routine is provided. The routine can be located at any
position in the program and jumped to by the interrupt vector located at the FF address. The
service routine performs the required tasks and then ends in RETURNI with ENABLE or
DISABLE.

Figure 64 illustrates a very simple interrupt handling routine. The PicoBlaze module generates
waveforms to an output by writing the values 55 and AA to the waveform_port (port address
02). It does this at regular intervals by decrementing a register (s0) based counter seven times
in a loop.

When an interrupt is asserted, the PicoBlaze module stops generating waveforms and simply
increments a separate counter register (sA) and writes the counter value to the counter_port
(port address 04).

Design VHDL Example
The following VHDL example (Figure 65) shows the addition of the data capture registers to the
processor. Note the simplified port decoding logic through careful selection of port addresses.
The complete VHDL file is supplied as kcpsm_int_test.vhd.

Figure 63: Effects of an Active Interrupt
x213_39_120302

Stack

PC New Address ZERO

CARRY
Preserved

CARRY

Interrupt
Enable

Preserved
ZERO

"0"

1 1 1 1 1 1 1 1

Figure 64: Interrupt Handling Example

Interrupt_event

CE

D Q

PORT_ID[7:0]

PORT_ID1

PORT_ID2

Waveforms

Counter

INPORT[7:0]

PORT_ID[7:0]INTERRUPT

INSTRUCTION[15:0]

OUT_PORT[7:0]

ADDRESS[7:0]

CLK

READ_STROBE

WRITE_STROBE

PicoBlaze Module

RESET

CE

D Q

x213_57_110602
XAPP213 (v2.1) February 4, 2003 www.xilinx.com 39
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

Figure 65: Design VHDL Example

Interrupt Service Routine
In the assembler log file for the example (Figure 66), it can be seen that the interrupt service
routine has been forced to compile at address B0, and that the waveform generation is based
in the normal lower addresses. This makes it easier to observe the interrupt in action in the
operation waveforms. This program is supplied as int_test.psm for the user to compile.

-- adding the output registers to the processor

 IO_registers: process(clk)
 begin

 -- waveform register at address 02

 if clk'event and clk='1' then
 if port_id(1)='1' and write_strobe='1' then
 waveforms <= out_port;
 end if;
 end if;

 -- Interrupt Counter register at address 04

 if clk'event and clk='1' then
 if port_id(2)='1' and write_strobe='1' then
 counter <= out_port;
 end if;
 end if;

 end process IO_registers;

Figure 66: Interrupt Example

Main program delay
loop where most
time is spent

Interrupt service routine (here
located at address B0 onwards)

Interrupt vector set at address FF
and causing JUMP to service routine

x627_58_012703

00 ;Interrupt example

00 ;

00 CONSTANT waveform_port, 02 ;bit0 will be data

00 CONSTANT counter_port, 04

00 CONSTANT pattern_10101010, AA

00 NAMEREG sA, interrupt_counter

00 ;

00 0A00 start: LOAD interrupt_counter[sA], 00 ;reset int count

01 02AA LOAD s2, pattern_10101010[AA] ;start pattern

02 8030 ENABLE INTERRUPT

03 ;

03 E202 drive_wave: OUTPUT s2, waveform_port[02]

04 0007 LOAD s0, 07 ;delay size

05 6001 loop: SUB s0, 01 ;delay loop

06 9505 JUMP NZ, loop[05]

07 32FF XOR s2, FF ;toggle waveform

08 8103 JUMP drive_wave[03]

09 ;

B0 ADDRESS B0

B0 ADD interrupt_counter[sA], 01 ;increment cou nter

B1 EA04 OUTPUT interrupt_counter[sA], counter _port[04]

B2 80F0 RETURNI ENABLE

B3 ;

FF ADDRESS FF ;set interrupt vector

FF 81B0 JUMP int_routine[]B0

int_routine :4A01
40 www.xilinx.com XAPP213 (v2.1) February 4, 2003
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

Interrupt
Operation

The waveforms in Figure 67 taken from an actual ModelSim-XE simulation show the operation
of PicoBlaze module when executing the example program at the time of an interrupt. The
VHDL test bench used to generate these waveforms is supplied as testbench.vhd.

By observing the address bus, it is possible to see that the program is busy with generating the
waveforms and even shows the port 02 being written the AA pattern value. Then while in the
delay loop which repeats addresses 05 and 06, it receives an interrupt pulse.

It can be seen that PicoBlaze module took a few cycles to respond to this particular pulse (see
timing of interrupt pulses) before forcing the address bus to FF. From FF, the obvious JUMP to
the service routine located at B0 can be seen to follow and a resulting counter value (in this
case 03) is written to the port 04.

The operation of an interrupt in PicoBlaze module is also visible. It can be seen that the last
address active before the interrupt is 06. The JUMP NZ instruction obtained at this address
(op-code 9505) is not executed. The flags preserved are those which were set at the end of the
instruction at the previous address (SUB s0,01). The RETURNI has restored the flags and
returned the program to address ‘06’ in order that the JUMP NZ instruction can at last be
executed.

Timing Of Interrupt Pulses
It is clear from the previous simulation waveforms that the constant two cycles per instruction is
maintained at all times. Since this includes an interrupt, the use of single cycle pulses for
interrupt can be risky. However, the waveform in Figure 68 can be used to determine the exact
cycle on which the interrupt is observed and the true reaction rate of KCPSM.

Figure 67: Interrupt Operation

07

05

02

55 AA

03

03 02 07 01 05 01 05 01 05 B0 01 04 F0 05 01 05FF

08

32FF 8103 E202 0007 6001 9505 6001 9505 6001 9505 81B0 4A01 EA04 80F0 9505 6001 9505

03 04 05 06 05 06 05 06 FF B0 B1 B2 06 0605

Point of interrupt

Delay loop

Write to ‘waveforms’ port
Write to ‘counter’ port

Interrupt
vector

Service routine

clk
address

instruction
port_id

write_strobe
counter

waveforms
Interrupt_event

x213_65_013003

Figure 68: Interrupt Timing

CLK

ADDRRESS[7:0]

INSTRUCTION[15:0]

06 05 06 FF B0

6001 6001 9505 81B0

05

9505

INTERRUPT

2 cycles

Interrupt sampled on clock edge associated
with change of address

X213_60_110402
XAPP213 (v2.1) February 4, 2003 www.xilinx.com 41
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

Therefore, it is advisable that an interrupt signal should be active for a minimum of two KCPSM
rising clock cycle edges. An improvement would be for the interrupt service routine to
acknowledge the interrupt to the external logic. There are three ways to achieve this:

• Service routine writes to a specific port to acknowledge interrupt and reset driving pulse
(wasteful).

• Read a specific port to determine the reason for interrupt and use READ_STROBE as a
register reset pulse.

• Decode the address bus to identify when the address FF has been forced by the active
interrupt.

CALL/RETURN
Stack

The PicoBlaze module contains an automatic embedded stack (Figure 69) which is used to
store the program counter value during a CALL instruction (or interrupt) and restore the
program counter value during a RETURN (or RETURNI) instruction. The stack does not need
to be initialized or require any control by the user. However, the stack can only support nested
subroutine calls to a depth of 15.

This simple program can calculate the sum of all integers up to a certain value, i.e.
‘sum_of_value’ when value = 5 is 1+2+3+4+5 = 15. In this case, the sum of integers up to the
value 15 (0F hex) is calculated to be 120 (78 hex). This is achieved by using a recursive call of
a subroutine and results in the full depth of the call/return stack being utilized. Obviously, this is
not an efficient implementation of this algorithm, but it does fully test the stack.

Figure 69: CALL/RETURN Stack

 NAMEREG s1, total
NAMEREG s8, value
;

start: LOAD value, 0F ;find sum of all values to 15
LOAD total, 00
CALL sum_to_value ;calculate sum of all numbers up to value
OUTPUT total, 01 ;Result should be 120 (78 hex)
JUMP start
;
;Subroutine called recursively to calculate the
;sum of all integers up to, and including, the
;value contained in ’value’ register
;

sum_to_value: ADD total, value ;perform 8 -bit addition
SUB value, 01 ;reduce value by 1
RETURN Z ;finished if down to zero
CALL sum_to_value ;recursive call of subroutine
RETURN

Increasing value to 10 (16 decimal) will result in incorrect
operation of the PicoBlaze Module. The stack is a cyclic buffer,
so the bottom of the stack becomes overwritten by the top of
the stack caused by the 16th nested CALL instruction.

x213_51x_121302
42 www.xilinx.com XAPP213 (v2.1) February 4, 2003
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

Hints and Tips Compare Operations

COMPARE Instruction

The PicoBlaze module does not directly support a compare instruction, so a combination of
instructions based on a subtraction should be used. Here are three ideas:

Case 1 - A subtract instruction is destructive, so if the value in the register to be tested is
valuable, then copy it to a temporary register before performing the test. In this example, the
operation jumps to a routine if the value in sF is 27.

LOAD s0, sF
SUB s0, 27
JUMP Z, my_routine

Case 2 - The use of a temporary register may not be ideal, and the additional instructions to
perform the compare can seem wasteful. Sometimes, the compare operation can be usefully
combined with the operation being performed. In this example, a counter is being formed in the
sF register and the next step is to jump to routine when the counter reaches the value 27.

Count_up: ADD sF, 01 ; Increment the counter
 SUB sF, 27 ; test if counter is 27
 JUMP Z, my_routine ; Counter was value 27
 ADD sF, 27 ; Count value was not 27 so restore the value.
 JUMP count_up

Note that the act of testing the counter value in sF does destroy the value, and when the
compare value is not 27, it needed to be restored using addition. However, when the count
value was 27, the effect was also to reset the counter value which is probably what would have
been required anyway.

Case 3 - It is possible to test if a register is zero without destroying the contents and only using
a single instruction. In this example, sF reads the status of an input port and a test is made to
see if any switches have been pressed (indicated by a 1).

INPUT sF, switch_port
AND sF,sF ; test for zero
JUMP NZ, switch_routine

Increasing Program Space
The PicoBlaze module is designed to work with a single block RAM which provides 256
locations in the Spartan-II and Virtex-E devices. If the user requires more program memory,
then here are some potential solutions to be considered:

Solution A - Consider the Virtex-II architecture. The block RAM of these devices provides 1024
locations. There is a KCPSM2 module specifically designed for this architecture (see
XAPP627). The KCPSM2 module also provides 32 registers which is useful for the larger
program.

Solution B - PSM stands for Programmable State Machine. If the user’s program is bigger than
256 instructions, then it may simply be that the user is trying to do too much with a single
PicoBlaze module. The user should consider dividing the whole process into several small
processes, each under the control of a separate PicoBlaze module (and each with its own block
RAM)(Figure 70). At 76 slices per processor, additional processors do not necessarily take up
that much space. Several users have found this an excellent solution because it simplifies the
software and the hardware interface logic making operations work independently (even when
interrupts occur), which is easier to test. It also simplifies the data input and output to the
processor (less peripheral logic). Currently, the record is eight PicoBlaze modules in one
device.
XAPP213 (v2.1) February 4, 2003 www.xilinx.com 43
1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com/xapp/xapp627.pdf

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

In some cases, one PicoBlaze module can be the master device, with one or more PicoBlaze
modules acting as coprocessors. Dual-port distributed memory is a good way to exchange data
between processors.

Solution C - Divide the program between two or more block RAMs and use a soft switch to
page between memories containing different routines (Figure 71). A block switching routine is
located at the same memory location in each memory block (using the ADDRESS directive).
The processor at some stage executes this routine (possibly because of an interrupt). The
routine writes to an output port to execute the switch of block RAMs. Since the new block RAM
contents are the same in this location of RAM, the processor does not see anything change
until it performs a JUMP back into the main program area. Obviously, this technique requires
that the program can be suitably divided.

The most obvious way to switch between block RAMs is to use a multiplexer with the select line
controlled by a single flip-flop register mapped as an output port to the PicoBlaze module
(Figure 72). This means that the assembler can be used to generate the two program ROM
files as normal VHDL files and insert them into the design.

Figure 70: Increasing Program Space

Program
ROM1

in out
portinputs1 outputs1

write

Program
ROM2

in out
portinputs2 outputs2

write
int int

x213_52x_110802

Figure 71: Block RAM Code Examples

Block RAM 1 code example:

 ADDRESS F0 ;locate switch routine

switch : LOAD S1,01 ;LSB controls MUX switch

OUTPUT S1,switch_port ; cause mux to switch to upper page

AND S1,S1; NO-OP instruction while switching

JUMP start_after_switch

Block RAM 2 code example:

 ADDRESS F0 ;locate switch routine

switch : LOAD S1,00 ;LSB controls MUX switch

OUTPUT S1,switch_port ; cause mux to switch to lower page

AND S1,S1; NO-OP instruction while switching

JUMP start_after_switch

LSB control MUX selecting
block RAMs.

Note the different polarity.

Identical
non-operation
instruction

start_after_switch does not need
to be at the same address in
each block RAM.

x213_53x_121302
44 www.xilinx.com XAPP213 (v2.1) February 4, 2003
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

The disadvantages of this method is that the multiplexer requires eight slices to implement, and
the effective increase in the clock-to-output delay of the program memory results in a lower
maximum clock rate.

A more elegant solution (Figure 73) is to absorb the multiplexer back into the block RAMs by
configuring each in 512 × 8 aspect ratio, and then using the select bit to address the MSB (9th)
address bit. However, the instructions are then split across the RAM blocks, making
programming the ROMs more challenging. See Figure 74 for details of a utility to automatically
generate this structure

Figure 72: Switching Between Block RAMs (Method 1)

Figure 73: Switching Between Block RAMs (Method 2)

KCPSM

in out
port

write

R
O

M
1

R
O

M
2

address

switch

x213_61_110902

Block

ROM

512×8

Block

ROM

512×8

8
9

9
16

Address

Instruction

Switch

8

x213_62_120302

9 8
XAPP213 (v2.1) February 4, 2003 www.xilinx.com 45
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

PSMSPLIT

PSMSPLIT Example Design
An example design (Figure 75) using PSMSPLIT is supplied and can be compiled as follows.

Figure 74: PSMSPLIT

KCPSM.EXE
ROM_form.vhd

ROM_form. coe

<prog2>.psm

<prog2>.hex

<prog1>.psm

<prog1>.hex

PSMSPLIT.EXE <split> <prog1> <prog2>psmsplit.vhd

<split>.vhd

‘switch’ = 0 selects <prog1>
‘switch’ = 1 selects <prog2>

KCPSM.EXE
ROM_form.vhd

ROM_form. coe

(template file)

Use assembler to
generate separate
HEX files

Use PSMSPLIT to
generate a single VHDL
file which combines
both programs with
‘switch’ control

Component <split>

Port (address : in std_logic_vector(7 downto 0);

instruction : out std_logic_vector(15 downto 0);

switch : in std_logic

clk : in std_logic);

end component; x213_63_110902

Figure 75: PSMSPLIT Example Design

two_ rom .vhd

address instruction

switch

clk

kcpsm..vhd

in_port out_port

port_id

write_strobe

switch_control

dip_switch

address

instruction

clk

reset D
ec

od
e

switch_s2

left_digits

right_digits

00

01

03

di
gi

t
se

le
ct

io
n

se
ve

n_
se

gm
en

t_
di

sp
la

y.
vh

d

Reset selects lower program

NOTE

x213_64_013103

kcpsm_split_rom.vhd
46 www.xilinx.com XAPP213 (v2.1) February 4, 2003
1-800-255-7778

http://www.xilinx.com

PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE Devices
R

The example design is based on a small demo board. The concept is to control the four
7-segment displays so that the left two digits form a decimal 0 to 99 counter and the right two
digits form a second decimal 0 to 99 counter. Each counter increments at approximately 1-
second intervals based on a software delay loop. However, only one counter is incrementing,
depending on the setting of the least significant DIP switch input. In this simple case, there are
two programs with each responsible for a different counter. The DIP switch setting is actually
used to swap programs being executed.

• lo_prog.psm - This is the start program which clears counters and then controls the left
digits only. Run kcpsm lo_prog.

• hi_prog.psm - This program controls the right digits only. Run kcpsm hi_prog.

• To form the VHDL file used in the design, run psmsplit two_rom lo_prog
hi_prog.

Reference
Design Files

All files described in this application note (plus some additional files) are available on the Xilinx
Xilinx PicoBlaze Lounge site at:

http://www.xilinx.com/ipcenter/processor_central/picoblaze/index.htm

Conclusion A microprocessor module does not have to be large or expensive when implemented in a Virtex
or Spartan-II device. The Virtex architectural features (block memory, distributed memory,
dedicated multiplexers, and carry logic) are ideal for the construction of fully embedded
microprocessor modules.

The PicoBlaze module is a simple 8-bit processor with an instruction set for basic control
functions and data manipulation. This is achieved with just 76 slices and one block RAM. Even
with a silicon utilization over performance objective, over 40 MIPs of processing power shows
the very high performance provided by Xilinx devices. Most typical applications do not exploit
this performance, but simply benefit from the small size and the design methodology.

When a processor is completely embedded within an FPGA, no I/O resources are required to
communicate with other modules in the same FPGA. Additionally, system design flexibility is
included along with savings on PCB requirements, power consumption, and EMI. Whenever a
special type of instruction is required, it can be created in hardware (other CLBs) and
connected to the PicoBlaze solution as a kind of coprocessor. Indeed, there is nothing to
prevent a coprocessor from being another PicoBlaze module. In this way, even the 256-
instruction program length is not a limitation.

PicoBlaze has been used successfully by thousands of Xilinx customers. Many references to its
use and alternative software development tools can be found when searching the web (search
for KCPSM and PicoBlaze). The author welcomes any feedback from PicoBlaze users.

Revision
History

The following table shows the revision history for this document.

Date Version Revision

09/25/00 1.0 Initial Xilinx release.

10/04/00 1.1 Minor text edits to make the copy more readable.

04/30/02 1.2 Replaced KCPSM with PicoBlaze globally.

12/17/02 2.0 Major revision for compatibility with ISE tools.

02/04/03 2.1 Minor edits done.
XAPP213 (v2.1) February 4, 2003 www.xilinx.com 47
1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com/ipcenter/processor_central/picoblaze/index.htm

	Summary
	Introduction
	PicoBlaze Resource Information

	PicoBlaze Architecture
	PicoBlaze Feature Set
	General-Purpose Registers
	Arithmetic Logic Unit
	Flags Program Flow Control
	Reset
	Input/Output
	Interrupt

	Constant (k) Coded Values
	Constant Cycles
	Constant Program Length

	Using the PicoBlaze Macro
	Connecting the Program ROM
	Alternative Design Flows
	kcpsm.ngc
	prog_rom.coe
	Simulation

	PicoBlaze Instruction Set
	Program Control Group
	Logical Group
	Arithmetic Group
	Shift and Rotate Group
	Input/Output Group
	Interrupt Group

	Program Control Group
	JUMP
	CALL
	RETURN

	Interrupt Group
	RETURNI
	ENABLE INTERRUPT and DISABLE INTERRUPT

	Logical Group
	LOAD
	AND
	OR
	XOR

	Arithmetic Group
	ADD
	ADDCY
	SUB
	SUBCY

	Shift and Rotate Group
	SR0, SR1, SRX, SRA, RR
	SL0, SL1, SLX, SLA, RL

	Input and Output Group
	INPUT
	OUTPUT
	READ and WRITE STROBES
	RESET

	PicoBlaze Assembler
	Assembler Errors
	Assembler Files
	ROM_form.vhd File
	ROM_form.coe File
	<filename>.fmt File
	<filename>.log File
	constant.txt and labels.txt Files
	pass.dat Files

	Program Syntax
	Program Instructions
	Assembler Directives
	CONSTANT Directive
	NAMEREG Directive
	ADDRESS Directive

	KCPSM2 Code Compatibility
	Registers
	Address Range
	Interrupt Vector
	Label Validity

	Interrupt Handling
	Default State
	Enabling Interrupts

	Basics of interrupt Handling
	Design VHDL Example
	Interrupt Service Routine

	Interrupt Operation
	Timing Of Interrupt Pulses

	CALL/RETURN Stack
	Hints and Tips
	Compare Operations
	COMPARE Instruction

	Increasing Program Space

	PSMSPLIT
	PSMSPLIT Example Design

	Reference Design Files
	Conclusion
	Revision History

