
Summary The SMPTE 259M Serial Digital Interface (SDI) Standard describes how to transmit standard-
definition digital video serially over coax cable. SDI is commonly used to transport digital video
in broadcast studios and video production centers.

This application note describes implementations of an ancillary data packet processor and an
error detection and handling processor for the SDI interface.

Introduction This is one in a series of application notes describing SDI implementation in Xilinx FPGAs.
Figure 1 is a block diagram showing correlation between the various application notes and the
elements of the SDI link.

Before transmission over an SDI link, a digital video stream is usually processed to insert error
detection packets. These packets contain checkwords allowing the receiver to detect
transmission errors. Ancillary data packets can also be inserted into the inactive (blanked)
portions of the video to carry non-video data such as digital audio. At the receiving end of the
SDI link, the digital video stream is again processed to detect transmission errors, extract
ancillary data, and possibly insert additional types of ancillary data.

The functions described in this application note, combined with the video decoder described in
XAPP625, form a processor capable of implementing the SDI standard error detection protocol
and ancillary data packet processing. Figure 2 shows a block diagram of the complete
processor.

Application Note: Virtex-II Series

XAPP299 (v1.0) May 16, 2002

Serial Digital Interface (SDI)
Ancillary Data and EDH Processors
Author: John Snow

R

Figure 1: SDI Block Diagram and Related Application Notes

ANC & EDH
Processors

XAPP299

Ancillary
DataDigital

Video

SDI Video
Encoder

XAPP298

Test Pattern
Generator

XAPP248

SDI
Driver

XAPP247

SDI
Equalization

& CDR

XAPP247

SDI Video
Decoder

XAPP288

Ancillary
Data

Digital
Video

Data

Clock

SDI
Bitstream

Standard
Detect &
Flywheel

Standard
Detect &
Flywheel

XAPP625

ANC & EDH
Processors

XAPP299

x299_01_050702

XAPP625
XAPP299 (v1.0) May 16, 2002 www.xilinx.com 1
1-800-255-7778

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

www.xilinx.com/xapp/xapp625.pdf
http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Serial Digital Interface (SDI) Ancillary Data and EDH Processors
R

ANC Packets Ancillary data (ANC) packets carry non-video information in the inactive portion of the digital
video stream. ANC packets can carry any type of digital information. One of the most common
uses of ANC packets is to carry the digital audio portion of the program. A number of commonly
used ANC packet types have been standardized. User defined ANC packet types are also
allowed.

The general format of ANC packets is defined in the SMPTE 291M[1] and the ITU-R BT.1364[2]
standards. These standards also describe the spaces where ANC packets are permitted in the
video frame. These standards do not define the contents of any particular ANC packet type.
Standard ANC packet types are typically defined in separate documents. For example, the
ANC packet type for digital audio is defined in SMPTE 272M[3].

ANC Packet Format
Figure 3 shows the general format of an ANC packet. There are two nearly identical formats
permitted, Type 1 and Type 2. In Type 1 packets, an 8-bit identification word identifies the
contents of the packet. In Type 2 packets, the identification value is a 16-bit value sent in two
separate words in the packet.

Figure 2: EDH and ANC Processor Block Diagram

Video
Decoder

Video

EDH & ANC
Checker

ANC
DEMUX

ANC
MUX

EDH
Generate

Video
Video

Video Timing

Error Flags

DEMUXED
ANC Data

ANC Data
to be

Inserted

Video Timing

From
XAPP625

x299_02_041702

Figure 3: ANC Packet Format

Word Contents b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

Ancillary Data Flag, Word 1 (000HEX) 0 0 0 0 0 0 0 0 0 0

Ancillary Data Flag, Word 2 (3FFHEX) 1 1 1 1 1 1 1 1 1 1

Ancillary Data Flag, Word 3 (3FFHEX) 1 1 1 1 1 1 1 1 1 1

Data ID did7 did6 did5 did4 did3 did2 did1 did0

Secondary DID/Data Block Number
sdid7
dbn7

Data Count dc7 dc6 dc5 dc4 dc3 dc2 dc1 dc0

User Data Words (0 to 255 Words)

Note: P is an even parity bit for bits b7 through b0 and is located in b8.
 Words containing a P bit in b8, also have the inverse of b8 located in b9.

P P

P P
sdid6
dbn6

sdid5
dbn5

sdid4
dbn4

sdid3
dbn3

sdid2
dbn2

sdid1
dbn1

sdid0
dbn0

P P

b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

Checksum cs8 cs8 cs7 cs6 cs5 cs4 cs3 cs2 cs1 cs0

ADF D
ID

D
B

N

D
C

User Data
Words

(max 255)

C
S ADF D
ID

S
D

ID

D
C

User Data
Words

(max 255)

C
S

Type 1 ANC Packet Type 2 ANC Packet

x299_03_041802
2 www.xilinx.com XAPP299 (v1.0) May 16, 2002
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Ancillary Data and EDH Processors
R

Every ANC packet begins with a three-word ancillary data flag (ADF). The first word of the ADF
is all zeros (000HEX). The second and third words of the ADF are all ones (3FFHEX). This three-
word sequence is unique in the bitstream and only occurs at the beginning of an ANC packet.

The ADF is followed by three words that indicate the type and length of the packet. All three of
these words contain eight-bit values located in the least significant eight bits (bits 7 to 0). In all
three of these words, bit 8 contains an even parity bit calculated from bits 7 through 0. Bit 9 is
the complement of bit 8. Requiring bit 9 to be the complement of bit 8 prevents these words
from ever having the values of all ones or all zeros — values restricted from occurring anywhere
in the video stream except in the timing-reference signal (TRS) symbols and in the ADF of an
ANC packet.

The word immediately after the ADF contains the Data ID (DID) value identifying the type of
ANC packet. Usually, bit 7 of the DID value indicates whether the packet is a Type 1 packet
(b7 = 1) or a Type 2 packet (b7 = 0). However, if the 8-bit DID value is 00HEX, this indicates an
undefined packet type.

For Type 2 packets, the word after the DID contains the Secondary Data ID (SDID) value. The
SDID value is combined with the DID to provide a 15-bit packet identification code. The
identification code is effectively only 15 bits, because bit 7 of the DID word is always 0 for Type
2 packets).

For Type 1 packets, the word after the DID contains the Data Block Number (DBN) value. Use
of the DBN is optional. The DBN is used to provide a block sequence number when a group of
related Type 1 packets requires a continuity numbering system. Valid DBN values range from
one through 255. When the DBN is unused, then the DBN value must be 00HEX.

The word following the SDID/DBN contains the Data Count (DC). The DC indicates the number
of words in the payload portion of the packet. The DC can range from zero (indicating that the
payload is empty) to 255. ANC packets are restricted to a maximum of 255 payload words.

The payload section begins immediately after the DC word. The words in the payload section
are called User Data Words (UDW). The definition of the UDW data is completely dependent
upon the packet format. User data words are not restricted to 8-bit values. All ten bits of each
UDW can be used.

The checksum word (CS) is immediately after the last UDW. The CS provides some error
detection capabilities for the ANC packet. The CS is a 9-bit checksum value computed by
adding the 9-bit values (bits 8 through 0) of all words in the ANC packet from the DID word
through the last UDW, and discarding any carries that result from the additions. Bit 9 of the CS
word is the complement of bit 8.

The checksum only provides limited error detection capabilities. The checksum calculation
does not include the MSB of any of the words in the packet, so an error in the MSB of a word
might go undetected. Many ANC packet formats simply follow the general format of the ANC
packet and only carry 8-bit data in the UDW words, using bit 8 as a parity bit and bit 9 as the
complement of the parity bit. Some ANC packet formats include error detection or even error
correction information in the payload section itself.

Non-conforming ANC Packets
The ITU-R BT.1364 standard describes a third type of ANC packet called a non-conforming
packet. Use of non-conforming ANC packets is not recommended by the standard, but is
tolerated. The main advantage of a non-conforming ANC packet is that it allows for a
contiguous payload of more than 255 words.

A non-conforming ANC packet is preceded by an ANC packet called a start marker packet. The
start marker packet is a standard Type 1 ANC packet with a DID value of 88HEX. The DC word
of the start marker packet must be zero, indicating that the start marker packet contains no user
data words. The length of the start marker packet is exactly seven words long including the
ADF.
XAPP299 (v1.0) May 16, 2002 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Ancillary Data and EDH Processors
R

Immediately after the start marker packet, the non-conforming ANC data is inserted. This data
has no ADF and no predefined format. However, the non-conforming data must not include
words with values in the reserved ranges 000HEX to 003HEX and 3FCHEX to 3FFHEX.

The non-conforming ANC packet ends with the ADF of a conforming ANC packet. Normally,
this is an end marker packet. The end marker packet has a DID value of 84HEX. The end marker
packet is similar to the start marker packet. It has a DC value of zero, no user data words, and
a total packet length of seven words including the ADF. It serves simply to denote the end of a
non-conforming ANC packet.

When a processor inserts a new non-conforming ANC packet, it must always insert an
end marker packet following the non-conforming data. However, downstream equipment that
inserts a new conforming ANC packet can replace the end marker packet with the new
conforming ANC packet, since any conforming ANC packet, end marker or otherwise, serves to
mark the end of the non-conforming packet.

When two non-conforming ANC packets appear back-to-back in an ANC space, a start marker
packet separates them. However, an end marker packet does not occur between them.

There are a number of disadvantages to non-conforming data packets. First, there is no
standard method for identifying the contents of the non-conforming packet. It is just raw data
and does not contain any identification words in standard fixed locations. Second, there is no
easy procedure for marking the non-conforming packet for deletion. To delete a non-conforming
packet, the entire space occupied by the non-conforming packet must be filled with one or more
conforming packets marked for deletion. If, for some reason, the non-conforming space is
smaller than the minimum length of a conforming ANC packet (seven words) then the non-
conforming packet would have to be merged with the preceding start marker packet and the
combination marked for deletion.

Figure 4 shows a non-conforming ANC packet.

Figure 4: Non-conforming ANC Packets

D
ID UDWD
C

C
SADF

D
B

N

D
ID

D
C

C
SADF

D
B

N

D
ID

D
C

C
SADF

D
B

N
User Data

Conforming ANC
Packet

Start Marker
Packet

Non-conforming ANC
Packet

End Marker
Packet

DID value = 88HEX DID value = 84HEX

Remaining ANC
Space

Non-conforming ANC Packet as Inserted into ANC Space

D
ID UDWD
C

C
SADF

D
B

N

D
ID

D
C

C
SADF

D
B

N

User Data

Conforming ANC
Packet

Start Marker
Packet

Non-conforming ANC
Packet

DID value = 88HEX

Remaining
ANC Space

End Marker Packet Replaced by Insertion of Additional Conforming ANC Packet

D
ID UDWD
C

C
SADF

D
B

N

Conforming ANC
Packet

x299_04_041702
4 www.xilinx.com XAPP299 (v1.0) May 16, 2002
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Ancillary Data and EDH Processors
R

Another Start and End Marker Protocol
The SMPTE 291M standard optionally allows the start marker packet and end marker packet to
be used to identify the starting and ending locations of an ancillary data space. In this usage,
the start marker packet, if used, always occurs immediately after the TRS symbol that begins
the ANC space. The end marker packet is placed after the last ANC packet (conforming or non-
conforming) in the data space. The use of the start marker packet at the beginning of the ANC
space is optional, even if the end marker packet is used. If there is insufficient space for an
end marker packet at the end of the ANC space, the end marker packet is not inserted.

The implication of this optional protocol is that any piece of equipment can consider the rest of
the ANC space empty if it finds an end marker packet. A piece of equipment designed to insert
new ANC packets should, therefore, always overwrite an end marker packet when inserting a
new packet, regardless of whether the equipment supports the start marker/end marker
protocol allowed by SMPTE 291M. Inserting a new packet after an end marker packet, rather
than overwriting the end marker packet, can result in other equipment not recognizing or
overwriting the packet.

8-bit Considerations
ANC packets are primarily designed to work with 10-bit equipment, but there are provisions in
the standards for dealing with ANC packets generated by 8-bit equipment.

When 8-bit equipment inserts an ANC packet, the 8-bit information is inserted into the eight
MSBs of the video stream and the two least significant bits (bits 1 and 0) are invalid. This limits
the DID value to 6-bits. Certain DID values have been reserved to identify 8-bit packets. DID
values in the range of 04HEX to 0FHEX are reserved for 8-bit packets. Because the two LSBs
have to be ignored and a DID value of zero is reserved, there are only three valid 8-bit DID
values (04HEX, 08HEX, and 0CHEX).

The SDID value in 8-bit packets is also limited to 6 bits. An SDID value of zero is reserved for
an undefined format type, so only 63 valid 8-bit SDID values are allowed.

The DC value is also limited to 6 bits. In order to allow up to 255 user data words in 8-bit ANC
packets, the DC value in an 8-bit packet indicates the number of blocks of four user data words
in the payload. The 8-bit equipment that generates the packet must pad the payload to an even
multiple of four words, if necessary, to make the payload section end on a four-word block
boundary.

ANC Packet Positioning
There are two types of spaces in the video stream where ANC packets are allowed. The first is
the horizontal blanking interval of the video line. This is called the horizontal ANC space
(HANC). The second space is the active portion of those video lines in the vertical blanking
interval. This is called the vertical ANC space (VANC). Some ANC packet formats are always
placed in the HANC area, others always in the VANC area, while some can be placed in either
area. Figure 5 shows available ANC spaces in NTSC frames.
XAPP299 (v1.0) May 16, 2002 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Ancillary Data and EDH Processors
R

In a particular ANC space, ANC packets must be contiguous with each other. For example, the
HANC space of a line begins with an end-of-active-video (EAV) symbol and ends with a start-
of-active-video (SAV) symbol. If there are any ANC packets in a line’s HANC space, the first
ANC packet must begin immediately after the last word of the EAV symbol. The next ANC
packet must begin immediately after the last word (CS) of the first ANC packet, and so on. If an
ADF does not occur at the beginning of the HANC space, the receiver can consider the HANC
space to be empty. If an ADF does not occur immediately after the last word of an ANC packet,
the receiver can consider the rest of the space to be empty. An ANC packet must fit entirely
within the space. It cannot overwrite the TRS symbol that marks the end of the space.

There are some exceptions to the rule requiring all ANC packets to be contiguous. For
example, the EDH packet is a Type 1 ANC packet, but it always occurs immediately before the
SAV (at the end of the HANC space) on a specified line in each field. The HANC space

Figure 5: Available ANC Spaces in NTSC Frame

EAV

Horizontal
Blanking SAV

Active Portion of Line

Line 1

2-7

8

9

10

12

11

13

14-19

20

21

22-261

262

263

264-270

271

272

273

274

275

276-282

283

284

285-524

525

Vertical
Blanking
Interval

Active
Portion of
Odd Field

14
40

14
44

17
11

17
15

0 14
39

Vertical
Blanking
Interval

Active
Portion of
Even Field

Words 1689-1711
on line 9 contain
the EDH packet for
the even field.

Words 1689-1711
on line 272 contain
the EDH packet for
the odd field.

14
43

17
12Horizontal

word position

EDH

EDH

Areas not
recommended for
ANC packet due to
possible
interference during
synchronous
switching events.

Areas where
vertical ANC
packets (VANC)
are allowed.

Areas where
horizontal ANC
packets (HANC)
are allowed.

Areas not
recommended for
ANC packet due to
possible
interference during
synchronous
switching events.

x299_05_040902
6 www.xilinx.com XAPP299 (v1.0) May 16, 2002
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Ancillary Data and EDH Processors
R

preceding the EDH packet can be empty or it can contain normal contiguous ANC packets.
However, the space reserved for the EDH packet must be respected and cannot be overwritten
when inserting a new ANC packet.

Some older equipment designed prior to the formalization of the ANC packet standards might
not always generate contiguous ANC packets. For example, a video stream containing ANC
packets inserted by older equipment can contain a few samples of blank video at the beginning
of the ANC space preceding the first ANC packet. While generally not a problem when
detecting and extracting packets, this is a problem for equipment designed to insert new ANC
packets. ANC packets that do not start at the locations defined by the ANC standards are
subject to being overwritten by equipment that inserts new ANC packets according to the rules
defined by the standards.

ANC Packet Insertion Rules
The following procedure is used to locate free ANC space for insertion of a new packet.

1. Locate the beginning of an appropriate ANC space by finding a TRS symbol (EAV for
HANC or SAV for VANC). For VANC space, the video line must also be in the vertical
blanking interval.

2. If an ADF does not occur immediately (beginning the word after the TRS or the CS of a
preceding ANC packet), then the entire remaining space is available. Any new ANC packet
inserted in this space must begin immediately after the TRS symbol or the end of a
preceding ANC packet.

3. If an ADF is found immediately, the DID value of the ANC packet is checked to determine
if the ANC packet is an end marker, start marker, or deletion marker.

a. If a start marker for non-conforming ANC data is found, test each word after the start
marker until another ADF is found, then repeat step 3. If the end of the ANC space is
reached before another ADF is found, repeat step 1.

b. If an end marker is found, the area occupied by the end marker plus the remaining area
in the ANC space is available.

c. If a packet marked for deletion is found, then the area occupied by the packet marked
for deletion is available. However, the ANC packet deletion rules must be obeyed.

4. If an ADF is found that is not a start marker, end marker, or deletion marker, then use the
DC word to locate the end of the ANC packet. At the end of the packet, repeat step 2.

After free space is found, the following rules must be used to determine if a new ANC packet
can be inserted.

1. The space available must be sufficient to hold the entire ANC packet. The new packet
cannot overwrite the TRS symbol that ends the space. If the line is the one line per field
where an EDH packet should occur, the space reserved for the EDH packet cannot be
overwritten, even if there is no EDH packet present.

2. An end marker ANC packet can be replaced by a newly inserted conforming ANC packet or
by a start marker packet for non-conforming ANC data.

3. If a non-conforming ANC packet is to be inserted, it must always be preceded by a
start marker ANC packet and followed by an end marker ANC packet. Prior to insertion, it
must be determined that there is sufficient space for the start marker packet, end marker
packet, and the non-conforming ANC data.

4. If a new ANC packet replaces a packet marked for deletion, then the rules for ANC packet
deletion, described in the next section, must be followed.
XAPP299 (v1.0) May 16, 2002 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Ancillary Data and EDH Processors
R

ANC Packet Deletion Rules
To delete an ANC packet, the DID word is simply changed to a value of 80HEX and the
checksum word of the packet is updated (Figure 6). The deleted ANC packet still has a valid DC
value and occupies the same amount of space, maintaining the contiguity of packets in the
ANC space.

It is possible to insert a new ANC packet in the space occupied by an ANC packet that has been
marked for deletion. In doing so, the contiguity of the packets in the ANC space must be
maintained. The newly inserted packet must not be larger than the deleted packet — unless
that packet is the last one in the ANC space. If the inserted packet is smaller than the deleted
packet, then a dummy packet must fill the remainder of the space not filled by the newly
inserted packet in order to maintain contiguity. The dummy packet has a DID value of 80HEX,
the same as a packet marked for deletion. The minimum size of a dummy packet is seven
words. Therefore, in order to replace a packet marked for deletion with a new ANC packet that
is smaller, the new packet must be at least seven words smaller than the deleted packet in order
to leave room for the dummy packet.

Synchronous Switching Considerations
The standards recommend against inserting ANC packets into those areas of the field that can
be affected by synchronous video switching. SMPTE RP-168[4] identifies a particular line in
each video field where video-switching equipment should switch between synchronous video
sources. Obviously, if a video stream is switched in the middle of an ANC packet, the packet will
be lost. Therefore, the standards recommend certain "keep-out" areas where ANC packets are
not recommended. Table 1 shows those keep-out areas for various common video standards.
These areas are also noted on the NTSC ANC space diagram in Figure 5.

Figure 6: Overwriting an ANC Packet Marked for Deletion

D
ID UDWD
C

C
SADF

D
B

N

ANC Packet ANC Packet Marked for Deletion

DID value = 80HEX

D
ID UDWD
C

C
SADF

D
B

N

D
ID UDWD
C

C
SADF

D
B

N

ANC Packet

D
ID UDWD
C

C
SADF

D
B

N

ANC Packet

DID value = 80HEX

D
ID UDWD
C

C
SADF

D
B

N

ANC Packet

D
ID UDWD
C

C
SADF

D
B

N

Inserted ANC Packet

D
ID UDWD
C

C
SADF

D
B

N
Dummy ANC Packet

ANC Space with Deleted ANC Packet

After Insertion of New Packet Overwriting Part of Deleted Packet

x299_06_041702
8 www.xilinx.com XAPP299 (v1.0) May 16, 2002
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Ancillary Data and EDH Processors
R

Error Detection
and Handling
(EDH)

The SMPTE Recommended Practice RP 165-1994[5] and the equivalent ITU standard
ITU-R BT.1304[6] define an error detection protocol which is primarily designed for use with
SDI, but can also be used with parallel digital video interfaces. The purpose of the error
detection protocol is to allow detection of defective equipment and noisy connections, not to
prevent loss of data due to errors. There is no retransmission protocol that allows the fields
containing errors to be retransmitted.

The error detection protocol standards define a special type of ANC packet called the error
detection and handling (EDH) packet. An EDH packet is generated and inserted into the video
stream once per field at a specific position defined by the standards. The packet contains two
cyclic redundancy code (CRC) checkwords calculated from the previous field. The EDH packet
also contains three sets of error flags used to forward error detection information to help identify
faulty equipment and noisy connections.

Two different CRC checkwords are calculated on a field of digital video. One CRC checkword is
calculated on only the active samples of the field and the other is calculated on the full field
(actually most of the field). Both checkwords are provided to allow error detection to remain
intact on the active portion of the field, even when a piece of equipment inserts new data (such
as ANC packets) into the inactive portion of the field without updating the full-field CRC
checkword in the EDH packet. Generally, video equipment that modifies the video stream in
any way should calculate new CRC checkwords and update the EDH packet. However,
equipment not supporting the EDH protocol could modify the inactive portion of the video
without updating the EDH packet.

Three sets of error flags are provided in the EDH packet to forward error detection information.
One set is related to the active-picture CRC checkword. Another set is related to the full-field
CRC checkword. The third set of error flags is used to provide error detection information based
on evaluating all the ANC packet checksums in the field. This third set of flags is optional when
implementing EDH packets.

CRC Checkword Calculations
Each of the CRC checkwords is calculated over a certain set of samples in a field. The starting
and ending locations of these sample sets are specifically defined in the standards. These
locations vary depending upon the video standard.

The standards also define the location of the EDH packet. The EDH packet location is
immediately before the SAV on a specific line in each field.

Figure 8 through Figure 13 show the starting and ending locations for the samples sets of each
CRC checkword and the EDH packet position for various video standards.

Table 1: ANC Keep-Out Areas for Synchronous Switching

Video Standard ANC Keep-Out Areas

Lines Sample Frequency Line Numbers Words (from-to)

Standard NTSC 10 and 273 0 to 1439

525 13.5 MHz 11 and 274 1444 to 1711

Wide-screen NTSC 10 and 273 0 to 1919

525 18 MHz 11 and 274 1924 to 2283

Standard PAL 6 and 319 0 to 1439

625 13.5 MHz 7 and 320 1444 to 1723

Wide-screen PAL 6 and 319 0 to 1919

625 18 MHz 7 and 320 1924 to 2299
XAPP299 (v1.0) May 16, 2002 www.xilinx.com 9
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Ancillary Data and EDH Processors
R

Each CRC checkword is a 16-bit value calculated using the CRC-CCITT polynomial generation
method. Figure 7 shows the equation for the CRC calculation and a conceptual logic diagram
of how the CRC value is calculated.

The standards require that any the values between 3FCHEX and 3FEHEX must be regarded as
equaling 3FFHEX for the purposes of the CRC calculation. This only affects the CRC generator
and the actual value in the video stream does not need to be modified. This is done for
compatibility between 8-bit and 10-bit video equipment.

The active-picture CRC only includes those samples in the active portion of the lines indicated
in the drawings. The samples in the horizontal blanking interval of each line are not included in
the active-picture CRC calculation.

In the NTSC video standards, lines 20 and 283 are not included in the active-picture CRC
calculation. These lines are technically in the active portion of the field; the "V" bit in the TRS
symbols on those lines is zero, indicating active video lines. Some video equipment
manufacturers consider these two lines to be the last lines of the vertical blanking interval.
Probably due to this ambiguity, the active-picture CRC calculations do not include these two
lines. See XAPP248 for a more detailed discussion of the active/inactive status of these two
lines.

The full-field CRC calculation includes all samples, both active and inactive, from the starting
point to the ending point shown in Figure 7. The full-field CRC includes those active samples
that are also included in the active picture CRC calculation. The full-field CRC calculation does
not include the line in each field defined by SMPTE RP 168 as the synchronous switching line
nor the line immediately following. This is to prevent synchronous switching events from
corrupting the CRC calculation. The line immediately before the synchronous switching line
contains the EDH packet for the previous field. This line is also not included in the full-field CRC
calculation. The following figures are included in this application note:

Figure 7: CRC Calculations

Figure 8: NTSC 13.5 MHz 4:2:2 CRC Calculations and EDH Packet Positions

Figure 9: NTSC 18 MHz 4:2:2 CRC Calculations and EDH Packet Position

Figure 10: NTSC 4:4:4:4 CRC Calculations and EDH Packet Positions

Figure 11: PAL 13.5 MHz 4:2:2 CRC Calculations and EDH Packet Positions

Figure 12: PAL 18 MHz 4:2:2 CRC Calculations and EDH Packet Positions

Figure 13: PAL 4:4:4:4 CRC Calculations and EDH Packet Positions

Figure 7: CRC Calculations

0123456789101112131415

Serial Input Data

x299_13_040902

CRC = x16 + x12 + x5 + 1

+++
10 www.xilinx.com XAPP299 (v1.0) May 16, 2002
1-800-255-7778

http://www.xilinx.com
www.xilinx.com/xapp/xapp248.pdf

Serial Digital Interface (SDI) Ancillary Data and EDH Processors
R

Figure 8: NTSC 13.5 MHz 4:2:2 CRC Calculations and EDH Packet Positions

Line 1

2-7

8

9

10

12

11

13

20

21

22-261

262

263

264-270

271

274

275

276-282

283

284

285-524

525

Vertical
Blanking
Interval

Active
Portion of
Odd Field

Vertical
Blanking
Interval

Active
Portion of
Even Field

1439

0

1439

EDH pkt

1439

1444

0

1439

Synchronous switching line

Line 12 not included in full-field CRC

Synchronous switching line

Line 274 not included in full-field CRC

1444

Words 1689-1711 on
line 9 contain the
EDH packet for the
even field.

Words 1689-
1711 on line
272 contain
the EDH
packet for the
odd field.

The odd field full-
field CRC includes
all samples, both
active and inactive,
from word 1444 on
line 12 to word
1439 on line 271.

The odd field
active picture
CRC
includes only
active
samples
from word 0
on line 21 to
word 1439
on line 262.

The even field
full-field CRC
includes all
samples, both
active and
inactive, from
word 1444 on line
275 to word 1439
on line 8.

The even field
active picture
CRC includes
only active
samples from
word 0 on line
284 to word
1439 on line
525.

EDH pkt

EAV

Horizontal
Blanking SAV

Active Portion of Line

14
40

14
44

17
11

17
15

0 14
39

14
43

17
12Horizontal

word position

272

273

14-19

x299_07_040902
XAPP299 (v1.0) May 16, 2002 www.xilinx.com 11
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Ancillary Data and EDH Processors
R

Figure 9: NTSC 18 MHz 4:2:2 CRC Calculations and EDH Packet Position

Line 1

2-7

8

9

10

12

11

13

14-19

20

21

22-261

262

263

264-270

271

274

275

276-282

283

284

285-524

525

Vertical
Blanking
Interval

Active
Portion of
Odd Field

Vertical
Blanking
Interval

Active
Portion of
Even Field

1919

0

1919

1919

1924

0

1919

Synchronous switching line

Line 12 not included in full-field CRC

Synchronous switching line

Line 274 not included in full-field CRC

1924

Words 2261-2283 on
line 9 contain the
EDH packet for the
even field.

Words 2261-
2283 on line
272 contain
the EDH
packet for the
odd field.

The odd field full-
field CRC includes
all samples, both
active and inactive,
from word 1924 on
line 12 to word
1919 on line 271.

The odd field
active picture
CRC includes
only active
samples from
word 0 on line
21 to word
1919 on line
262.

The even field
full-field CRC
includes all
samples, both
active and
inactive, from
word 1924 on line
275 to word 1919
on line 8.

The even field
active picture
CRC includes
only active
samples from
word 0 on line
284 to word
1919 on line
525.

EDH pkt

EDH pkt

EAV

Horizontal
Blanking

SAV

Active Portion of Line

19
20

19
24

22
83

22
87

0 19
19

19
23

22
84Horizontal word position

272

273

x299_08_040902
12 www.xilinx.com XAPP299 (v1.0) May 16, 2002
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Ancillary Data and EDH Processors
R

Figure 10: NTSC 4:4:4:4 CRC Calculations and EDH Packet Positions

Line 1

2-7

8

9

10

12

11

13

14-19

20

21

22-261

262

263

264-270

271

274

275

276-282

283

284

285-524

525

Vertical
Blanking
Interval

Active
Portion of
Odd Field

Vertical
Blanking
Interval

Active
Portion of
Even Field

2879

0

2879

2879

2884

0

2879

Synchronous switching line

Line 12 not included in full-field CRC

Synchronous switching line

Line 274 not included in full-field CRC

2884

Words 3405-3427 on
line 9 contain the
EDH packet for the
even field.

Words 3405-
3427 on line
272 contain
the EDH
packet for the
odd field.

The odd field full-
field CRC includes
all samples, both
active and inactive,
from word 2884 on
line 12 to word
2879 on line 271.

The odd field
active picture
CRC includes
only active
samples from
word 0 on line
21 to sample
2879 on line
262.

The even field
full-field CRC
includes all
samples, both
active and
inactive, from
word 2884 on line
275 to word 2879
on line 8.

The even field
active picture
CRC includes
only active
samples from
word 0 on line
284 to word
2879 on line
525.

EDH pkt

EDH pkt

EAV

Horizontal
Blanking

SAV

Active Portion of Line

28
80

28
84

34
27

34
31

0 28
79

28
83

34
28Horizontal word position

x299_09_041702

272

273
XAPP299 (v1.0) May 16, 2002 www.xilinx.com 13
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Ancillary Data and EDH Processors
R

Figure 11: PAL 13.5 MHz 4:2:2 CRC Calculations and EDH Packet Positions

Line 623

625

4

5

6

8

9

12-21

22

23

25-309

310

311

318

319

320

321

322-334

335

Vertical
Blanking
Interval

Active
Portion of
Odd Field

Vertical
Blanking
Interval

Active
Portion of
Even Field

1439

1439

EDH pkt

1439

1444

0

Synchronous switching line

Synchronous switching line

Line 320 not included in full-field CRC

1444

Words 1701-1723 on
line 5 contain the
EDH packet for the
even field.

Words 1701-
1723 on line
318 contain
the EDH
packet for the
odd field.

The odd field full-
field CRC includes
all samples, both
active and inactive,
from word 1444 on
line 8 to word 1439
on line 317.

The odd field
active picture
CRC includes
only active
samples from
word 0 on line
24 to word
1439 on line
310.

The even field
full-field CRC
includes all
samples, both
active and
inactive, from
word 1444 on line
321 to word 1439
on line 4.

The even field
active picture
CRC includes
only active
samples from
word 0 on line
336 to word
1439 on line
622.

EDH pkt

1

2-3

10

11

24

624

0

336

337-621

622 1439

EAV

Horizontal
Blanking

SAV

Active Portion of Line

14
40

14
44

17
23

17
27

0 14
39

14
43

17
24Horizontal word position

7 Line 7 not included in full-field CRC

x299_10_041702

312-316

317
14 www.xilinx.com XAPP299 (v1.0) May 16, 2002
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Ancillary Data and EDH Processors
R

Figure 12: PAL 18 MHz 4:2:2 CRC Calculations and EDH Packet Positions

Line 623

625

4

5

6

8

7

9

12-21

22

23

25-309

310

311

318

319

320

321

322-334

335

Vertical
Blanking
Interval

Active
Portion of
Odd Field

Vertical
Blanking
Interval

Active
Portion of
Even Field

1919

1919

EDH pkt

1919

1924

0

1919

Synchronous switching line

Line 7 not included in full-field CRC

Synchronous switching line

Line 320 not included in full-field CRC

1924

Words 2277-2299 on
line 5 contain the
EDH packet for the
even field.

Words 2277-
2299 on line
318 contain
the EDH
packet for the
odd field.

The odd field full-
field CRC includes
all samples, both
active and inactive,
from word 1924 on
line 8 to word 1919
on line 317. The odd field

active picture
CRC includes
only active
samples from
word 0 on line
24 to word
1919 on line
310.

The even field
full-field CRC
includes all
samples, both
active and
inactive, from
word 1924 on line
321 to word 1919
on line 4.

The even field
active picture
CRC includes
only active
samples from
word 0 on line
336 to word
1919 on line
622.

EDH pkt

1

2-3

10

11

24

624

0

336

337-621

622

Horizontal
Blanking

SAV

Active Portion of Line

19
20

19
24

22
99

23
03

0 19
19

19
23

22
30Horizontal word position

x299_11_041702

312-316

317
XAPP299 (v1.0) May 16, 2002 www.xilinx.com 15
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Ancillary Data and EDH Processors
R

Figure 13: PAL 4:4:4:4 CRC Calculations and EDH Packet Positions

Line 623

625

4

5

6

8

7

9

12-21

22

23

25-309

310

311

318

319

320

321

322-334

335

Vertical
Blanking
Interval

Active
Portion of
Odd Field

Vertical
Blanking
Interval

Active
Portion of
Even Field

2879

2879

EDH pkt

2879

2884

0

2879

Synchronous switching line

Line 7 not included in full-field CRC

Synchronous switching line

Line 320 not included in full-field CRC

2884

Words 3429-3451 on
line 5 contain the
EDH packet for the
even field.

Words 3429-
3451 on line
318 contain
the EDH
packet for the
odd field.

The odd field full-
field CRC includes
all samples, both
active and inactive,
from word 2884 on
line 8 to word 2879
on line 317. The odd field

active picture
CRC includes
only active
samples from
word 0 on line
24 to word
2879 on line
310.

The even field
full-field CRC
includes all
samples, both
active and
inactive, from
word 2884 on line
321 to word 2879
on line 4.

The even field
active picture
CRC includes
only active
samples from
word 0 on line
336 to word
2879 on line
622.

EDH pkt

1

2-3

10

11

24

624

0

336

337-621

622

EAV

Horizontal
Blanking

SAV

Active Portion of Line

28
80

28
84

34
51

34
55

0 28
79

28
83

34
52Horizontal word position

x299_12_041702

312-316

317
16 www.xilinx.com XAPP299 (v1.0) May 16, 2002
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Ancillary Data and EDH Processors
R

Error Flags
An EDH packet contains three sets of error flags. One set is associated with the active picture
(AP) CRC, one set is associated with the full field (FF) CRC, and one is associated with ANC
packet errors. Each set of error flags contains five flags as described below.

edh — Error Detected Here

Any piece of equipment detecting a difference between the CRC value it calculates for the
previous field and the CRC checkword located in the EDH packet sets (flag = 1) the edh flag.
The ancillary data edh flag is set if a checksum error is detected in at least one ANC packet in
the previous field.

eda — Error Detected Already

This flag indicates that some upstream piece of equipment detected an error. A video device
processing an EDH packet having the edh flag set by the upstream device must set the eda flag
in the packet and clear the edh flag unless it, too, detects an error. (See Figure 14.)

idh — Internal Error Detected Here

Any piece of equipment can assert the idh flag to indicate that some internal processing error,
unrelated to the serial video transmission, has occurred. The idh flag is provided as a signaling
mechanism to allow video equipment to indicate the occurrence of internal errors. These
internal errors can be anything unrelated to the actual video stream, the detection of an over-
heating condition, for example.

ida — Internal Error Detected Already

This flag indicates that some upstream piece of equipment detected an internal error. A video
device processing an EDH packet having the idh flag set by the upstream device must set the
ida flag and clear the idh flag unless it, too, detects an internal error.

ues — Unknown Error Status

This flag indicates that the video stream was received from equipment not supporting the EDH
standard. For example, a device that receives a video stream without any EDH packets can
generate and insert EDH packets into the video stream. It should, however, set the ues flag in
the packets it creates to signify that the video stream was not previously protected by the EDH
error detection protocol.

The flag pairs, edh/eda and idh/ida, can be used to track down faulty video equipment in the
serial transmission chain. For example, if the eda flag is set at any location, then it is known that
some upstream piece of equipment detected an error. If the errors are occurring repeatedly,
each piece of video equipment can be checked, starting with the downstream device and
moving upstream to see where the eda flag changes to an edh flag. The connection or piece of
equipment prior to the device asserting the edh flag is suspect.

The EDH standards allow video equipment to implement only some or all of the defined error
flags. If a piece of equipment does not support a particular flag, it must clear the flag to zero.

Figure 14: Error Flag Forwarding

Device A Device B Device C Device D

Good video stream
 edh = 0
 eda = 0

Faulty Device

Bad video stream
 edh = 0
 eda = 0

Device C corrects
EDH CRC value
 edh = 1
 eda = 0

Device D propagates
edh flag as eda
 edh = 0
 eda = 1

Device E

Device E propagates
eda flag
 edh = 0
 eda = 1

x299_14_040902
XAPP299 (v1.0) May 16, 2002 www.xilinx.com 17
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Ancillary Data and EDH Processors
R

EDH Packet Format
The EDH packet has the same format as a standard Type 1 ANC packet. The format of an EDH
packet is shown in Figure 15.

Each CRC value has an associated valid bit. The standards allow implementations of the EDH
protocol where only one of the two CRC values is calculated. A CRC value that is not calculated
is considered to be invalid and must have its "V" bit cleared to a zero.

Reference
Design

The reference design for this application note is available in both VHDL and Verilog code on the
Xilinx FTP site at ftp://ftp.xilinx.com/pub/applications/xapp/xapp299.zip.

ANC and EDH Processor
Figure 16 shows a block diagram of a complete ANC and EDH processor. The video decoder
block is described in XAPP625. This video decoder processes the incoming video stream to
determine the video standard and to provide timing information about the video stream such as
the current horizontal and vertical positions and locations of TRS symbols, ANC packets, and
EDH packets.

Figure 15: EDH Packet Format

Word Contents b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

Ancillary Data Flag, Word 1 (000HEX) 0 0 0 0 0 0 0 0 0 0

Ancillary Data Flag, Word 2 (3FFHEX) 1 1 1 1 1 1 1 1 1 1

Ancillary Data Flag, Word 3 (3FFHEX) 1 1 1 1 1 1 1 1 1 1

Data ID (1F4HEX) 0 1 1 1 1 1 0 1 0 0

Block Number
1 0 0 0 0 0 0 0 0 0

Data Count (16 Words of User Data)
0 1 0 0 0 1 0 0 0 0

Active-picture CRC bits [5:0]
P P ap5 ap4 ap3 ap2 ap1 ap0 0 0

Active-picture CRC bits [11:6] P P ap11 ap10 ap9 ap8 ap7 ap6 0 0

Active-picture CRC bits [15:12] P P V 0 ap15 ap14 ap13 ap12 0 0

Full-field CRC bits [5:0] P P ff5 ff4 ff3 ff2 ff1 ff0 0 0

Full-field CRC bits [11:6] P P ff11 ff10 ff9 ff8 ff7 ff6 0 0

Full-field CRC bits [15:12] P P V 0 ff15 ff14 ff13 ff12 0 0

Ancillary Data Error Flags P P 0 ues ida idh eda edh 0 0

Active-picture Error Flags P P 0 ues ida idh eda edh 0 0

Full-field Error Flags P P 0 ues ida idh eda edh 0 0

Reserved Words (7 total) 1 0 0 0 0 0 0 0 0 0

Checksum S8 S8 S7 S6 S5 S4 S3 S2 S1 S0

Notes:
1) P is an even parity bit for bits b7 through b0 and is located in b8.
 Words containing a P bit in b8, also have the inverse of b8 located in b9.
2) Each CRC value has an associated valid bit (V). If the CRC value is valid, V is set to 1. x299_15_041802
18 www.xilinx.com XAPP299 (v1.0) May 16, 2002
1-800-255-7778

http://www.xilinx.com
www.xilinx.com/xapp/xapp625.pdf
ftp://ftp.xilinx.com/pub/applications/xapp/xapp299.zip

Serial Digital Interface (SDI) Ancillary Data and EDH Processors
R

The anc_edh_processor design implements the complete ANC and EDH processor, including
the video decoder. The various blocks that make up this processor are described below.

edh_check Module

This section calculates CRC values for the field, finds the EDH packets in the video stream, and
compares the CRC values in the EDH packets with the calculated values. It also verifies the
checksum values of every ANC packet in the video stream. Based on these checks, error flags
are generated and provided to the edh_gen module for transmission to downstream equipment
in the next EDH packet. The module maintains a running count of the number of fields with
errors.

If the input video stream is known not to contain EDH packets, the receive_mode input of this
module can be negated. This prevents the module from generating errors for each missing
EDH packet.

The module has error flag inputs for any EDH flags not internally generated (idh flag). These
inputs can be asserted by another module to send error information in the EDH packets.

The module has an error counter flag enable input for each of the various error condition flags.
This allows selection of which error conditions will increment the counter.

The edh_check section captures and outputs the flags from each EDH packet. These outputs
can be used to determine what error conditions are being received in the EDH packets. The
module also generates and outputs error signals related to the reception of the EDH packet
itself. The parity, format, and checksum of the EDH packet are checked and separate error flags
provided to indicate each of these error conditions. Another error flag is asserted when the
EDH packet is missing from the video stream.

anc_demux Module

This module de-multiplexes ANC packets from the video stream. The module searches for and
de-multiplex up to four different ANC packet types. The module has four sets of DID/SDID
inputs used to specify which ANC packet types are to be de-multiplexed. The four sets of
DID/SDID inputs are compared against the DID and SDID words in the ANC packets and
matching packets are de-multiplexed. The module decodes the input DID values to determine
whether to also use the SDID value in the matching process. The SDID value is only used for
Type 2 ANC packets.

Each DID/SDID input set has an enable input. If the enable is Low, the DID/SDID pair is not
compared with the incoming ANC packets.

Also associated with each DID/SDID input pair is a del_pkt input. If this input is asserted and
the corresponding enable input is asserted, packets matching the DID/SDID pair will be

Figure 16: ANC and EDH Processor Block Diagram

Video
Decoder

Video

EDH Check

ANC
DEMUX

ANC
MUX

EDH
Gen

Video
Video

Video Timing

Error Flags

DEMUXED
ANC
Data

ANC Data
to be

Inserted

Video Timing

Determine video
standard and
decode video
timing
information

Compute CRCs
for received field,
compare them
with CRCs in
received EDH
packet, check
ANC checksums

Insert and extract
ANC packets from
video stream

Generate new
CRCs, insert
CRCs and error
flags into outgoing
EDH packets

x299_16_041702
XAPP299 (v1.0) May 16, 2002 www.xilinx.com 19
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Ancillary Data and EDH Processors
R

demultiplexed and marked for deletion in the video stream. The module will change the DID
value of the packet in the video stream to mark it for deletion and will calculate a new checksum
value for the packet. The modified packet replaces the original packet in the video stream. The
modified video stream is sent out on the module’s vid_out port. The de-multiplexed packet is
sent out on the data_out port with its original DID and checksum values.

The module has a data_out_valid signal indicating when a de-multiplexed ANC packet is being
sent out the data_out port. This signal becomes asserted when the DID word is available on the
data_out port and stays asserted through the checksum word. This signal is not asserted
during the three words of the ADF.

In addition to the data_out_valid signal, the module also provides a number of output signals
indicating what is present on the data_out port. A 2-bit match_code value indicates which one
of the four input DID/SDID pairs matched the de-multiplexed packet. A set of output signals
(did, sdid, dbn, dc, udw, and cs) indicate which word of the packet is currently available on the
data_out port.

anc_mux Module

This module multiplexes new ANC packets into the video stream.

When the module is ready to accept new packet data, it asserts the pkt_in_empty output. A
new packet is formed by writing the DID, SDID/DBN, and DC words into the module’s internal
registers. These values are 8-bit values and must be placed on the eight least significant bits of
the module’s data_in port. Each word is loaded into the module by asserting the associated
load signal (ld_did, ld_dbn, and ld_dc). The ld_dbn signal is used to load either the SDID word
or the DBN word, depending on the type of packet.

The UDW words of the packet are written by placing the 10-bit words on the data_in port,
placing the word number (0 for the first word, 1 for the second word, etc.) on the udw_wr_adr
port, and asserting the ld_udw input. If the packet uses eight-bit UDW words with an even parity
bit in bit 8 and the complement of the parity bit in bit 9, the module can automatically calculate
and insert bits 8 and 9. This is done if the calc_udw_parity signal is asserted as the words are
written to the module.

After the entire packet has been written to the module, the pkt_rdy_in signal must be asserted.
At the same time, the hanc_pkt and vanc_pkt inputs must also be set appropriately to indicate
whether the packet is to be inserted in HANC space, VANC space, or either. The module will
respond immediately by negating the pkt_in_empty signal. No new information can be written
to the module until the pkt_in_empty signal is reasserted.

After pkt_rdy_in is asserted, the module will look for room in the specified ANC data spaces
large enough to accommodate the packet. When an appropriate space is found, the packet is
inserted. The module creates the ADF and calculates and inserts a checksum word for the
packet.

This module is not designed to overwrite a packet marked for deletion. The module will,
however, overwrite an end marker packet.

edh_gen Module

The edh_check module calculates CRC values on the incoming video stream and compares
them with the CRC values in the incoming EDH packets. However, the ANC MUX and DEMUX
modules can modify the video stream, invalidating the CRC values in the EDH packets.

The edh_gen module calculates new CRC values and uses them, along with the error flags
generated by the edh_check module, to update the contents of the EDH packets in the video
stream. If no EDH packets are present in the video stream, the module generates new EDH
packets and inserts them at the appropriate places in the video stream.

edh_processor Module

If the ANC MUX and DEMUX functions are not used, the edh_processor module is an efficient
EDH-only processor. It is more efficient than simply combining the edh_check and edh_gen
modules. This design uses the same submodules that make up the edh_check and edh_gen
20 www.xilinx.com XAPP299 (v1.0) May 16, 2002
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Ancillary Data and EDH Processors
R

modules. However, only one CRC calculation is done since the video stream is not subject to
modification by the ANC MUX and DEMUX processes. The CRC calculation done on the input
video stream is valid for the output video stream.

The edh_processor module has the same inputs as the edh_check module.

Results
Table 2 shows the results after place and route of the reference design. The
anc_edh_processor results include the video_decode module from XAPP625 and both the
anc_mux and anc_demux function. The sizes of the anc_mux and anc_demux modules are
shown separately so that an estimate can be made of how much smaller the
anc_edh_processor would be with either of them removed. The edh_processor results include
the size of the video_decode module from XAPP625.

The anc_mux module contains a RAM to store the user data words of the ANC packet. The
module contains code to allow the RAM to be implemented as either distributed RAM or block
RAM. Results for the anc_edh_processor and the anc_mux are given with both block RAM and
distributed RAM. The module’s UDW RAM fits in one block RAM.

The Virtex-II results were achieved when the design was constrained to run at 54 MHz,
allowing it to support the fastest SDI bit-rate. The Spartan-II results were achieved when the
design was constrained to run at 27 MHz, allowing support for the most commonly used
270 Mb/s SDI bit-rate.

All results were obtained using the Verilog versions of the designs with Xilinx ISE version 4.1i
using XST as the synthesis tool. Results using the VHDL files are not shown but are essentially
identical. Virtex-II results are for a -5 speed grade device. Spartan-II design results are for a -6
speed grade device.

Table 2: Reference Design Results

Virtex-II (-5 Speed Grade) Spartan-II (-6 Speed Grade)

Design Name
Size
LUTs Size FFs Speed

Size
LUTs Size FFs Speed

anc_edh_processor.v
(distributed RAM)

1496 856 55 MHz 1549 856 30 MHz

anc_edh_processor.v
(block RAM)

1326 846 60 MHz 1326 846 30 MHz

anc_demux.v 136 179 70 MHz 136 179 50 MHz

anc_mux.v
(distributed RAM)

448 105 80 MHz 492 105 45 MHz

anc_mux.v
(block RAM)

260 95 90 MHz 268 95 50 MHz

edh_processor.v 810 537 85 MHz 810 537 55 MHz
XAPP299 (v1.0) May 16, 2002 www.xilinx.com 21
1-800-255-7778

http://www.xilinx.com
www.xilinx.com/xapp/xapp625.pdf
www.xilinx.com/xapp/xapp625.pdf

Serial Digital Interface (SDI) Ancillary Data and EDH Processors
R

Conclusion In an SDI transmission link, digital video is normally preprocessed prior to transmission to
insert error detection checkwords and ancillary data. At the receiving end of the SDI link, the
data is again processed to check for transmission errors and possibly to extract the ancillary
data.

The application note demonstrates how to implement the EDH and ANC packet processors for
an SDI link using Xilinx FPGAs.

References 1. SMPTE 291M-1998, SMPTE Standard for Television - Ancillary Data Packet and Space
Formatting (The Society of Motion Picture and Television Engineers). The SMPTE
standards referenced in this application note can purchased at the SMPTE web site:
http://www.smpte.org.

2. ITU-R BT.1364, Format of Ancillary Data Signals Carried in Digital Component Studio
Interfaces (International Telecommunication Union). The ITU-R BT.1364 standard can be
purchased from the International Telecommunication Union at:
http://www.itu.int/itudoc/itu-r/rec/bt/.

3. SMPTE 272M-1994, SMPTE Standard for Television - Formatting AES/EBU Audio and
Auxiliary Data into Digital Video Ancillary Data Space (The Society of Motion Picture and
Television Engineers).

4. RP 168-1993, SMPTE Recommended Practice - Definition of Vertical Interval Switching
Point for Synchronous Video Switching (The Society of Motion Picture and Television
Engineers).

5. RP 165-1994, SMPTE Recommended Practice - Error Detection Checkwords and Status
Flags for Use in Bit-Serial Digital Interfaces for Television (The Society of Motion Picture
and Television Engineers).

6. ITU-R BT.1304, Checksum for Error Detection and Status Information in Interfaces
Conforming with Recommendations ITU-R BT.656 and ITU-R BT.799 (International
Telecommunication Union).
22 www.xilinx.com XAPP299 (v1.0) May 16, 2002
1-800-255-7778

http://www.xilinx.com
http://www.smpte.org
http://www.itu.int/itudoc/itu-r/rec/bt/

Serial Digital Interface (SDI) Ancillary Data and EDH Processors
R

Appendix A Additional Reference Design Information

edh_processor Module

The edh_processor contains the video_decode module from XAPP625 plus the modules to do
CRC checking on the input video stream, ANC packet checksum checking, and outgoing EDH
packet generation (Figure 17).

Figure 17: EDH Processor Block Diagram

edh_crc

locked

edh_loc

edh_rx

edh_tx

edh_flags

edh_missing

ap_crc

ap_crc_valid

ff_crc

ff_crc_valid

fla
g_

bu
s

ap
_f

la
g_

w
or

d

ff_
fla

g_
w

or
d

an
c_

fla
g_

w
or

d

edh_packet

video_out

ap_flags

ff_flags

anc_flags

rx_ap_crc_valid

rx_ap_crc

rx_ff_crc_valid

rx_ff_crc

edh_parity_err

edh_chksum_err

edh_format_err

edh_errcnt

error_flags

clr_errcnt

errcnt_flg_en errcnt

edh_loc

Video
Decoder

video
in

video
video timing

video std

anc_rx
anc_edh_local

local error inputs
ap_idh_local

ff_idh_local
anc_idh_local

anc_ues_local

Video
Timing
Delay

video timing

received flags

x299_17_050702
XAPP299 (v1.0) May 16, 2002 www.xilinx.com 23
1-800-255-7778

http://www.xilinx.com
www.xilinx.com/xapp/xapp625.pdf

Serial Digital Interface (SDI) Ancillary Data and EDH Processors
R

edh_rx Module

The edh_rx module (Figure 18) is included in both the edh_processor and anc_edh_processor
modules. It monitors the input video stream until an EDH packet is found, then it captures the
various CRC checkwords and flags from the EDH packet. It also performs various checks on
the received EDH packet. It asserts the edh_missing signal if an EDH packet is not found where
one is expected. It asserts the edh_parity_err signal if a parity error is detected in any parity
protected word of the EDH packet. It asserts the edh_chksum_err signal if the checksum in the
received EDH packet does not match the checksum calculated by the edh_rx module. It asserts
the edh_format_err signal if the DBN or DC words do not match the proper values for an EDH
packet.

The edh_rx module has an input signal called reg_flags. This signal affects the timing of the
received flag output ports. When the module is used with the edh_processor, reg_flags is
strapped Low. When the module is used with the anc_edh_processor, reg_flags is strapped
High. Figure 19 is the state diagram for the finite state machine in the edh_rx module.

Figure 18: edh_rx Block Diagram

FSM

ap_crc
ap_crc_validvideo

parity
check

+ checksum =

edh_next

rx_edh_next

ap_crc
reg

ff_crc
ff_crc_valid

ff_crc
reg

ap_flags
reg

rx_ap_flags

ff_flags
reg

rx_ff_flags

anc_flags
reg

rx_anc_flags

reg_flags

anc_flags
reg

edh_missing
edh_format_err
edh_parity_err
edh_checksum_err

x299_18_041702
24 www.xilinx.com XAPP299 (v1.0) May 16, 2002
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Ancillary Data and EDH Processors
R

Figure 19: edh_rx State Diagram

WAIT

ADF1

~edh_next

ADF2

ADF3

edh_next

clear packet error flags

clear checksum

DBN

DC

AP1
load ap1 reg

AP2

DID

AP3

rx_edh

DBN OK

DC OK

load ap2 reg

load ap3 reg

FF1
load ff1 reg

FF2

FF3

load ff2 reg

load ff3 reg

ANC
FLG

load anc flags

AP
FLG

FF
FLG

load ap flags

load ff flags

RSV1

RSV2

RSV3

RSV4

RSV5

RSV6

RSV7

CHK

ERRF

DBN error

DC error

set
packet
format
error flag

ERRM

set
packet
missing
error flag

ERRC

checksum error

set packet
checksum
error flag

checksum OK

x299_19_041702
XAPP299 (v1.0) May 16, 2002 www.xilinx.com 25
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Ancillary Data and EDH Processors
R

anc_rx Module

The anc_rx module (Figure 20) is included in both the edh_processor and anc_edh_processor
modules. It calculates the checksum for every received ANC packet and compares this
calculated checksum with the CS word of the ANC packet. If they do not match, an error signal
is sent to the edh_gen module allowing the error to be reported in the next outgoing EDH
packet.

The finite state machine (shown in the state diagram Figure 21) in the anc_rx module waits until
an ANC packet starts. It checks the parity on the parity-protected words. It calculates the
checksum and compares it to the CS word. If either a parity error or a checksum error is
detected the anc_edh_local output is asserted. This signal remains asserted until the next EDH
packet has been sent — as signaled by the edh_packet signal from the edh_gen module going
High then Low.

Figure 20: anc_rx Block Diagram

FSM

video
parity
check

+ checksum =

rx_anc_next

rx_edh_next

udw_cntr−1

= 0

ld_udw_cntr

udwcntr_eq_0

anc_edh_local

edh_packet

x299_20_041802
26 www.xilinx.com XAPP299 (v1.0) May 16, 2002
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Ancillary Data and EDH Processors
R

Figure 21: anc_rx State Diagram

WAIT

ADF1

otherwise

ADF2

ADF3

rx_anc_next &
~rx_edh_next

clear checksum

DBN

DC

UDW

CHK

DC != 0

DC = 0

DC != 0

DC = 0

DID
parity error

parity OK

parity OK

parity error

parity error

EDH1

EDH2

EDH3

edh_packet

~edh_packet

edh_packet
edh_packet

~edh_packet

clear
anc_edh_local
flag

load UDW counter

check for checksum error

x299_21_050102
XAPP299 (v1.0) May 16, 2002 www.xilinx.com 27
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Ancillary Data and EDH Processors
R

edh_loc Module

The edh_loc module (Figure 22) locates the position in each field where the EDH packet should
occur. The edh_rx module uses this signal to determine if the EDH packet is present or missing
in the input video stream. The edh_gen module uses this signal to determine when it is time to
send an EDH packet.

edh_crc Module

The edh_crc module (Figure 23) calculates the active picture and full-field CRC checkwords for
each field of the video stream. In the anc_edh_processor design, this module is instanced
twice. One instance calculates the CRC checkwords for the input video stream for comparison
against the checkwords in the EDH packet. The second instance calculates the CRC
checkwords for the output video stream for the edh_gen module to insert into the EDH packet.
In the edh_processor design, only one instance of edh_crc is required because there is no ANC
processing to modify the video stream. So, the CRC values calculated on the input video
stream are valid for the output video stream as well.

The ITU and SMPTE standards require that any video word with 1s in all eight MSBs must also
have 1s in the two LSBs for the purposes of CRC calculation. This makes the CRC calculation
generate the same checkword regardless of whether the video stream was generated by eight-
bit or ten-bit equipment. This requirement only applies to the input of the CRC generator and
does not affect the actual words in the video stream.

The Valid Flag Logic section generates signals indicating whether the CRC checkwords are
valid. The checkwords are considered valid as long as the video decoder’s locked signal does
not rise during the time when checkword is being calculated. A rising edge of the locked signal
indicates a change in synchronization between the video decoder and the input video stream.
In this case, any CRC checkword being calculated at the time of the rising edge of the locked
signal was probably not calculated over the correct number of samples and should be
considered invalid.

The actual CRC calculations are done in the edh_crc16 modules instanced in the edh_crc
module. Each edh_crc16 module computes a 16-bit CRC value by combining the 10-bit video
input word with the current 16-bit CRC value stored in the associated CRC register. At the
beginning of a CRC region, the CRC register is cleared to zero to start a fresh CRC calculation.
Load enable signals from the CRC Region Logic block control each CRC register to include into
the CRC calculation only the appropriate video words.

The equations in the edh_crc16 module have been optimized for the four-input LUT structure of
Xilinx FPGAs.

Figure 22: edh_loc Block Diagram

Video Standard

=

hcnt

Field

EDH
Line

Lookup

EDH
Sample
Lookup

vcnt

clk

edh_next

=

x299_22_041702
28 www.xilinx.com XAPP299 (v1.0) May 16, 2002
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Ancillary Data and EDH Processors
R

anc_mux Module

The anc_mux module (Figure 24) multiplexes new ANC packets into the video stream. The
module contains two submodules, anc_pkt_gen and anc_insert. The anc_pkt_gen module
accepts externally supplied raw ANC data, generates a properly formatted ANC packet from
the raw data, and provides the formatted ANC packet to the anc_insert module. The anc_insert
module searches the video stream for an appropriate ANC space large enough to hold the
packet generated by anc_pkt_gen. When an appropriate space is found, the packet is
transferred from anc_pkt_gen and inserted into the video stream.

The anc_insert module overwrites an end-marker ANC packet if one exists in the ANC space.
However, it is not designed to overwrite an ANC packet marked for deletion.

Because the anc_insert module overwrites end-marker packets, it must tell the anc_pkt_gen
module to begin sending the packet (by asserting send_pkt) before it can determine whether
the new packet can overwrite the current packet. This determination is not made until
anc_insert examines the DID word of the packet being overwritten to determine if it is an end-
marker packet. If the packet cannot be overwritten, the anc_insert module asserts the
abort_pkt signal, causing anc_pkt_gen to abort the packet and resend the same packet the
next time send_pkt is asserted.

All the video timing signals from the video decoder pass through the anc_mux module, but are
not registered. The current implementation of the anc_mux module does not add any cycles of
latency to the video signal so there is no need to delay the video timing signals. However, future
versions of the anc_mux module can add cycles of latency to the video signal. Passing the
video timing signals through the anc_mux module allows them to be delayed appropriately in
the future to match the video without having to change any upper-level signal connections.

Figure 23: edh_crc Block Diagram

Video
Standard

CRC
Start/End

Line
Lookup

=

Field

vcnt

ap_start

ap_end

ff_start

ff_end

TRS
Decode

xyz_word

video[6]
(H bit)

eav

sav

8-bit
Compatibility

Logic
Video

edh
crc16

AP
CRC
reg

ap_region

ap_crc_clr

ap_crc

en clr

clk

edh
crc16

FF
CRC
reg

ff_region

ff_crc_clr

ff_crc

en clr

clk

valid flag
logicLocked

ff_crc_valid

ap_crc_valid

10 10

x299_23_041202

=

=

=

CRC
Region
Logic
XAPP299 (v1.0) May 16, 2002 www.xilinx.com 29
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Ancillary Data and EDH Processors
R

anc_insert Module

The anc_insert module (Figure 25) multiplexes ANC packets generated by the anc_pkt_gen
module into the video stream.

A state machine (shown in the state diagram Figure 26) searches for EAV and SAV symbols in
the video stream. An EAV symbol marks the beginning of HANC space and an SAV symbol
marks the beginning of VANC space if the line is in the vertical blanking interval. If the
anc_pkt_gen module asserts the pkt_rdy_in signal, the state machine determines if the packet
can be inserted immediately after the EAV or SAV symbol. The packet can be inserted if there
is no ANC packet already in the video stream immediately after the EAV or SAV. If the
pkt_rdy_in signal becomes asserted after the state machine finds free ANC space, but before
the end of the space, the ANC packet cannot be inserted. Doing so would violate the
requirement for contiguity of the ANC packets.

If an ANC packet is found in the video stream, it will be overwritten if it is an end-marker packet.
Otherwise, the state machine examines the DC word of the packet to determine the length of
the packet and waits until the end of the packet. If another ANC packet immediately follows, this
procedure is repeated. If not, the state machine inserts the new packet if there is enough space
remaining in the ANC space.

The state machine tells the anc_pkt_gen module to begin sending the new packet if there is
chance that it can be inserted. If the state machine determines that the packet cannot be
inserted, then the module asserts the abort_pkt signal to cancel the packet. The packet is
aborted if the state machine finds an existing ANC packet in the video stream that is not an end-
marker packet. The state machine also cancels the packet if the ANC space is part of the
synchronous switching interval. The switching signal cannot be generated soon enough to
determine start of the synchronous switching interval until the clock cycle after send_pkt signal
must be asserted to the anc_pkt_gen module. The abort mechanism is used to cancel the
packet if the switching signal is asserted.

Figure 24: anc_mux Block Diagram

PKT Type
Reg

pkt_rdy_in

anc_pkt_gen

10data_in

udw_wr_adr

ld_did

ld_dbn

ld_dc

ld_udw

calc_udw_parity

pkt_in_empty

8

Load

hanc_pkt

vanc_pkt

anc_insert

pkt_rdy

pkt_size

pkt_end

anc_data

send_pkt

abort_pkt

video_in

Video Standard

Video Timing In

video_out

Video Timing Out

x299_24_041102
30 www.xilinx.com XAPP299 (v1.0) May 16, 2002
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Ancillary Data and EDH Processors
R

Figure 25: anc_insert Block Diagram

Switching
Signal Logic

Video Standard Space
Available

Logic
pkt_size

Video Timing

FSM

hanc

mod_space_avail

space_avail

pkt_rdy

Switching

vanc_pkt

hanc_pkt

pkt_end

DID
Decoder Overwrite

start_marker

udw_cntr−1
video_in

ld_udw_cntr

anc_in video_out

=0
udw_cntr_eq_0

Video
MUX Logic

send_pkt

abort_pkt

x299_25_041802
XAPP299 (v1.0) May 16, 2002 www.xilinx.com 31
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Ancillary Data and EDH Processors
R

Figure 26: anc_insert State Diagram

WAIT

SAV1

~eav_next & ~sav_next

anc_next?

WAIT

sav_next

EAV1

eav_next

set hanc clear hanc

EAV2

EAV3

SAV2

SAV3

WHAT

hanc_pkt &
pkt_rdy

vanc_pkt &
pkt_rdy

WAITWAIT

~vanc_pkt | switching |
~pkt_rdy

~hanc_pkt | switching |
~pkt_rdy

Y N

space_avail?
YN

WAIT
SND1

SND2 ~pkt_end ABRT

~switching switching

abort_pkt

pkt_end

WAITWAIT

assert send_pkt

ADF1

ADF2

ADF3

DBN

DC

UDW udw_cntr != 0

udw_cntr ≤ DC – 1

decrement udw_cntr

WAIT

dc != 0

udw_cntr = 0

pkt_rdy?
Y N

dc = 0

EAV SAV

NC

~eav_next & ~sav_next & ~anc_next

EAV SAV

eav_next sav_next

anc_next

start_marker

otherwise

ADF

ADF

end_marker & space_avail

abort_pkt unless
end_marker &
space_avail

x299_26_041202

DID
32 www.xilinx.com XAPP299 (v1.0) May 16, 2002
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Ancillary Data and EDH Processors
R

anc_pkt_gen Module

The anc_pkt_gen module (Figure 27) generates an ANC packet from raw ANC data.

An external processor or another module writes the raw ANC data into the anc_pkt_gen
module. The external processor can begin loading the ANC data as soon as the anc_pkt_gen
module asserts the pkt_in_empty signal. The external processor must provide 8-bit DID,
DBN/SDID, and DC values. These values must be placed onto the LS eight bits of the data_in
port and the appropriate load signal (ld_did, ld_dbn, or ld_dc) must be asserted at the same
time until the rising edge of the clock. The ld_dbn signal is used to load either the DBN or the
SDID value. The user data words, if any, are written into the module one at a time. To write the
UDWs, each 10-bit UDW is placed on the data_in port, the word number of the UDW is placed
on the udw_wr_adr port (0 for the first word, 1 for the second word, etc.), and the ld_udw signal
is asserted until the rising edge of the clock. The DID, DBN/SDID, DC, and UDW words can be
written to the module in any order.

If the ANC packet format requires bit 8 of every UDW to be an even parity bit and bit 9 to be the
complement of bit 8, the anc_pkt_gen module can calculate bits 8 and 9. The eight LSBs of
each UDW are placed on the eight LSBs of the data_in port, and the calc_udw_parity signal is
asserted by the external processor.

When all the data for the packet has been written to the module, the external processor must
assert the pkt_rdy_in signal for one clock cycle. During the same cycle, the processor must
also indicate whether the packet is to be inserted into HANC space by asserting the hanc_pkt
input or VANC space by asserting the vanc_pkt input. If both hanc_pkt and vanc_pkt are
asserted, the packet is inserted into the first ANC space that has sufficient room for the packet.
The hanc_pkt and vanc_pkt signals are captured in a register in the anc_mux module when
pkt_rdy_in is asserted and sent to the anc_insert module. The anc_pkt_gen module does not
use these signals.

The anc_pkt_gen module stores the UDW values in a RAM. This RAM can be implemented in
either distributed RAM or block RAM. The source files for this module contain code to allow
either distributed RAM or block RAM to be inferred by the synthesizer. In the Verilog code, the
following statement:

‘define UDW_BLOCK_RAM

causes block RAM to be inferred if present. If this statement is commented out or deleted,
distributed RAM will be inferred. In the VHDL file, the two sections of code exist in the file with
one of them commented out.

Figure 27: anc_pkt_gen Block Diagram

UDW RAM

DID reg

DBN reg

DC reg

data_in

ld_udw

udw_wr_adr

ld_did

ld_dbn

ld_dc

8

Parity Gen

udw_rd_cntr

Checksum

+

3FF

000

FSM

=0
clr_checksum

clr_udw_rd_cntr

pmux_sel dmux_sel

omux_selpkt_rdy_in

10

calc_udw_parity

anc_out10

pkt_rdy_out
pkt_end

+7
pkt_size

send_pkt
abort_pkt

x299_27_041202
XAPP299 (v1.0) May 16, 2002 www.xilinx.com 33
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Ancillary Data and EDH Processors
R

Different code is used to infer the two types of RAM rather then using synthesis options,
because a common code base would infer a dual-port distributed RAM. Only a single-port
distributed RAM is required and this is half the size of a dual-port distributed RAM.

The UDW RAM uses 2560 bits, 256 words times 10-bits each, to support the maximum number
of UDW words allowed in an ANC packet. If an application always creates ANC packets with
less than the maximum number of UDW words, the size of the UDW RAM could be made
smaller, saving space if distributed RAM is used. Parameters or generics at the beginning of the
module control the size of the UDW RAM and the width of the address bus or busses supplied
to the RAM and to the module.

Only one 2560-bit UDW RAM will fit in the 4096-bit block RAMs of the Virtex and Spartan-II
families. However, the larger block RAM in Virtex-II family devices could hold multiple UDW
RAMs. The current design does not allow multiple ANC packets to be written to the
anc_pkt_gen module. Consequently, only one ANC packet can be inserted into any ANC
space. However, the module could be modified to allow multiple ANC packets to be stored
using a FIFO technique. Some modifications to the state machine would be required to allow
the module to insert multiple consecutive ANC packets into the same ANC space.

There is another way to insert multiple ANC packets in an ANC space that requires no
modification to the existing anc_mux design. Two or more anc_mux modules can be cascaded.
The first anc_mux module will insert its ANC packet into the first available ANC space. The
second anc_mux module will insert its ANC packet immediately after the ANC packet inserted
by the first module, and so on.

Cascaded anc_mux modules inherently provide priority to the first anc_mux module. Consider
what happens if the first anc_mux inserts its ANC packet, but there is no room in the same ANC
space for the second anc_mux to insert its ANC packet. If a new ANC packet is written into the
first anc_mux before the next ANC space occurs, then the first anc_mux inserts its new ANC
packet into the video stream before the second anc_mux has a chance to insert its ANC packet.
If such behavior is not desired, the pkt_rdy_in signals of the various anc_mux modules need to
be carefully controlled to prevent the first anc_mux from always taking priority.

The current anc_mux module design provides a purely combinatorial path for the video signal.
There is no input or output register on the video path. Cascading anc_mux modules will
increase the number of logic levels on the video path, making it more difficult to meet timing. A
pipeline register can be required between cascaded anc_mux modules in order to meet timing.
Be sure to delay all video timing signals as well, if a pipeline register is inserted into the video
path to keep them synchronized.

Figure 28 shows the state diagram for the finite state machine in the anc_pkt_gen module.
34 www.xilinx.com XAPP299 (v1.0) May 16, 2002
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Ancillary Data and EDH Processors
R

Figure 28: anc_pkt_gen State Diagram

WAIT

ADF1

~pkt_rdy_in

send_pkt

ADF2

DID

assert pkt_in_empty
out_reg ≤ 000HEX

out_reg ≤ 3FFHEX
clr_checksum

pkt_rdy_in
~send_pkt

assert pkt_rdy_out
if send_pkt, out_reg ≤ 3FFHEX

~abort_pkt

abort_pkt

ABRT

out_reg ≤ 000HEX
out_reg ≤ DID reg

DBN out_reg ≤ DBN reg
clear udw_rd_cntr

DC out_reg ≤ DC reg
dec DC reg
inc udw_rd_cntr

UDW out_reg ≤ UDW RAM
dec DC reg
inc udw_rd_cntr

CHK

out_reg ≤ CS reg

END

assert pkt_end

DONE

DC != 0

DC = 0

DC != 0

DC = 0

pkt_rdy_in

~pkt_rdy_in

Reset

abort_pkt

~abort_pkt

~abort_pkt

abort_pkt

x299_28_041202
XAPP299 (v1.0) May 16, 2002 www.xilinx.com 35
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Ancillary Data and EDH Processors
R

anc_demux and anc_extract Modules

The anc_demux module searches for certain types of ANC packets and demultiplexes them
from the video stream. When a matching ANC packet is found, the module provides the ANC
packet data to a separate output port, data_out. The module also provides a number of signals
indicating when the ANC packet information is available on the data_out port and which word of
the ANC packet is currently available. These signals can be used by another module or external
processor to store or process the demultiplexed ANC packet. The demultiplexed ANC packet
can either be left intact in the video stream or it can be marked for deletion.

The anc_demux module is actually a wrapper around the anc_extract module. The anc_extract
module (Figure 29) does all the work of searching for and demultiplexing ANC packets. The
anc_extract module introduces three clock cycles of latency to the video stream. The
anc_demux module delays all the video timing signals by three clock cycles to match the delay
added to the video stream by anc_extract.

The anc_demux module can search for and demultiplex up to four different ANC packet types.
There are four sets of inputs allowing the ANC packet types to be specified. Each set contains
a DID value, a SDID value, an enable signal, and a del_pkt signal. If the DID value indicates a
Type 1 ANC packet, the SDID value is ignored. If the DID value indicates a Type 2 ANC packet,
the SDID value is also used to find matching packets. If the enable signal for the set is Low, the
DID and SDID input set are not used by the module when searching for matching ANC packets.
If the del_pkt input is asserted High, any matching packets are marked for deletion as they are
demultiplexed.

The anc_demux module provides the demultiplexed data on the data_out port. The
data_out_valid signal is asserted when the data_out port contains valid ANC data. This signal
is asserted starting with the DID word and stays asserted through the CS word of the packet. It
is not asserted for the three words of the ADF that marks the beginning of the packet. The did,
sdid, dbn, dc, udw, and cs outputs of the module are asserted when the corresponding parts of
the demultiplexed ANC packet are present on the data_out port. The module also places a

Figure 29: anc_extract Block Diagram

FSM

udw_cntr−1

vid_in

vid_out

=0

anc_next

match_code

vid_in_reg vid_dly_1 vid_dly_2

DEL_DID

data_out

=
did_x

sdid_x

checksum

+ld_udw_cntr

clr_checksum

do_delete

output_checksum

match logic

match

anc_next
delay

del_pkt_x

data_out_valid
did
sdid
dbn
dc
udw
dc

match code

pkt_delete

register
Duplicated for
each DID/SDID
pair to be tested.

en_x

cs

x299_20_041202
36 www.xilinx.com XAPP299 (v1.0) May 16, 2002
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Ancillary Data and EDH Processors
R

value on the match_code output port to indicate which of the four input DID/SDID sets matched
the packet: "00" for the A set, "01" for the B set, "10" for the C set, and "11" for the D set.

The anc_extract module calculates a new checksum for the ANC packet and inserts it into the
ANC packet in the video stream. This is required because the module might modify the ANC
packet if the packet is marked for deletion. The newly calculated checksum always replaces the
CS word in every ANC packet, regardless of whether the packet is marked for deletion or not.
If this behavior is not desired, the module must be modified to only replace the CS word in
packets it marks for deletion.

If an application requires the anc_demux module to search for and demultiplex less than four
different ANC packet types, the unused DID/SDID input sets must be disabled using the enable
signal associated with each pair. However, the decoders and logic associated with the unused
sets will still be synthesized. Unused input sets can be removed from the anc_demux module
code to save space.

If an application requires demultiplexing of more than four different ANC packet types, the
anc_demux module can be modified to provide more DID/SDID input sets. Or, multiple
anc_demux modules can be cascaded. Unlike the anc_mux module, the anc_demux has
pipeline registers, so cascading anc_demux modules should not present any timing problems.

Figure 30 shows the state diagram for the finite state machine for the anc_extract module.
XAPP299 (v1.0) May 16, 2002 www.xilinx.com 37
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Ancillary Data and EDH Processors
R

anc_edh_processor Module

The anc_edh_processor implements a complete ANC and EDH processor design. It
implements XAPP625 video decoding, input EDH packet processing, ANC multiplexing, ANC
demultiplexing, and output EDH packet generation. The design can be easily modified to
remove either the anc_mux or anc_demux modules or to cascade multiple anc_mux or
anc_demux modules.

Figure 30: anc_extract State Diagram

WAIT

ADF1

~anc_next_dly[2]

ADF2

ADF3

anc_next_dly[2]

ld_did_match
check_did

match

set data_out_valid
clr_checksum
ld_match_code

SDID if (type 1) dbn = 1, else sdid = 1

DC
dc = 1
load udw_cntr

UDW udw = 1

CS
cs = 1
clear data_out_valid
output checksum

DC != 0

DC = 0

DC != 0

DC = 0

Reset

DID

~match

did = 1
if (pkt_delete) do_delete

anc_next?
YN

x299_30_041202
38 www.xilinx.com XAPP299 (v1.0) May 16, 2002
1-800-255-7778

http://www.xilinx.com
www.xilinx.com/xapp/xapp625.pdf

Serial Digital Interface (SDI) Ancillary Data and EDH Processors
R

edh_gen Module

The edh_gen module (Figure 31) is used by the anc_edh_processor module. It calculates the
CRC checkwords and generates a new EDH packet that is inserted into the outgoing video
stream.

The edh_gen module instances the edh_crc module to calculate the CRC checkwords and the
edh_tx module to generate the EDH packets. It also provides an output register for the video
path and the various video timing signals.

edh_tx Module

The edh_tx module (Figure 32) generates new EDH packets and inserts them into the outgoing
video stream. This module is used directly by the edh_processor design. The
anc_edh_processor instances an edh_gen module. The edh_gen module instances the edh_tx
module.

The edh_tx module’s finite state machine (state diagram shown in Figure 33) waits for the
edh_next signal to be asserted. This signal is usually generated by an edh_loc module and
signals the edh_tx module to output the first word of the EDH packet during the next clock cycle.
The FSM contains a state for each word of the EDH packet and controls a big MUX to output
the words of the EDH packet in the correct sequence.

Figure 31: edh_gen Block Diagram

Figure 32: edh_tx Block Diagram

edh_txap_crc

ap_crc_valid

ff_crc

ff_crc_valid

edh_packet

Video

edh_crc

Video

Video Standard

Locked

Video Timing

edh_missing

edh_loc

flag_bus

output
reg

clk

Video

edh_packet

Video timing

ap_flag_word

ff_flag_word

anc_flag_word

Flag Bus Selects

x299_31_041602

FSMedh_next

Video In
ADF1
ADF2
ADF3

EDH_DID
EDH_DBN

EDH_DC

AP CRC
Format

ap_crc
ap_crc_valid

FF CRC
Format

ff_crc
ff_crc_valid

AP CRC
Format

flag_bus

Checksum
Calculation

Parity
Calculation

video out

edh_packet
ap_flag_word
ff_flag_word
anc_flag_word

cl
r_

ch
ec

ks
um

EDH_RSVD

x299_32_041602
XAPP299 (v1.0) May 16, 2002 www.xilinx.com 39
1-800-255-7778

http://www.xilinx.com

Serial Digital Interface (SDI) Ancillary Data and EDH Processors
R

Revision
History

The following table shows the revision history for this document.

Figure 33: edh_tx State Diagram

FSMedh_next

Video In
ADF1
ADF2
ADF3

EDH_DID
EDH_DBN

EDH_DC

AP CRC
Format

ap_crc
ap_crc_valid

FF CRC
Format

ff_crc
ff_crc_valid

AP CRC
Format

flag_bus

Checksum
Calculation

Parity
Calculation

video out

edh_packet
ap_flag_word
ff_flag_word
anc_flag_word

cl
r_

ch
ec

ks
um

EDH_RSVD

x299_32_041602

Date Version Revision

05/16/02 1.0 Initial Xilinx release.
40 www.xilinx.com XAPP299 (v1.0) May 16, 2002
1-800-255-7778

http://www.xilinx.com

	Summary
	Introduction
	ANC Packets
	ANC Packet Format
	Non-conforming ANC Packets
	Another Start and End Marker Protocol
	8-bit Considerations
	ANC Packet Positioning
	ANC Packet Insertion Rules
	ANC Packet Deletion Rules
	Synchronous Switching Considerations

	Error Detection and Handling (EDH)
	CRC Checkword Calculations
	Error Flags
	edh — Error Detected Here
	eda — Error Detected Already
	idh — Internal Error Detected Here
	ida — Internal Error Detected Already
	ues — Unknown Error Status

	EDH Packet Format

	Reference Design
	ANC and EDH Processor
	edh_check Module
	anc_demux Module
	anc_mux Module
	edh_gen Module
	edh_processor Module

	Results

	Conclusion
	References
	Appendix A
	Additional Reference Design Information
	edh_processor Module
	edh_rx Module
	anc_rx Module
	edh_loc Module
	edh_crc Module
	anc_mux Module
	anc_insert Module
	anc_pkt_gen Module
	anc_demux and anc_extract Modules
	anc_edh_processor Module
	edh_gen Module
	edh_tx Module

	Revision History

