
Summary This application note describes the implementation of an 8-bit microcontroller design using a
CoolRunner™-II CPLD. The PicoBlaze Microcontoller instructions can be customized to make
an application-specific microcontroller.

CoolRunner-II devices, the latest CPLD family from Xilinx, offers both low power and high-
speed performance. A complete VHDL code for PicoBlaze microcontroller design and C code
for its assembler are available with this application note in Source Code, page 14.

Introduction The PicoBlaze Microcontroller presented in this application note is a fully embedded macro
derived from PicoBlaze, the Constant (k) Coded Programmable State Machine for Virtex™ and
Spartan™. To simplify the generation of programs, a cross assembler written in C language is
also provided.

The VHDL and C code for PicoBlaze can be easily customized to adjust size or change
functionality. This makes the PicoBlaze an ideal application for content-sensitive
microcontroller designs.

The PicoBlaze microcontroller provides 49 different instructions, eight 8-bit registers, 256
directly and indirectly addressable ports, and a maskable interrupt currently targeted to an
XC2C256 device. Figure 2 is a block diagram of PicoBlaze architecture.

Application Note: CPLD

XAPP387(v1.1) January 9, 2003

PicoBlaze 8-Bit Microcontroller for CPLD
Devices

R

Figure 1: PicoBlaze implemented on Digilent XC2 Demoboard
XAPP387(v1.1) January 9, 2003 www.xilinx.com 1
1-800-255-7778

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this fea-
ture, application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you
may require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any war-
ranties or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

PicoBlaze 8-Bit Microcontroller for CPLD Devices
R

PicoBlaze
Feature Set

General Purpose Registers
The register bank includes eight general-purpose 8-bit registers, s0 to s7. The register
operations are completely general; no registers are reserved for special tasks or given priority
over other registers.

ALU
The Arithmetic Logic Unit (ALU) provides all the simple operations expected in an 8-bit
processing unit. All operations are performed using an operand provided by any register. The
result is returned to the same register. For operations requiring a second operand, a second
register is specified or a constant 8-bit value is embedded in the instruction. The ability to
specify any constant value with no penalty to the program size or to its performance enhances
the simple instruction set. To clarify, the ability to "ADD 1" is the equivalent to a dedicated
INCREMENT operation. For operations requiring more than eight bits, addition and subtraction
operations include an option to carry. Boolean operators (LOAD, AND, OR, XOR) provide the
ability to manipulate and test values. There is also a very comprehensive Shift and Rotate
group.

Flags/Program Flow Control
The ALU operation results affect the ZERO and CARRY flags. Using conditional and
nonconditional program flow control instructions, this information determines the execution
sequence of the program. JUMP commands specify absolute addresses within the program
space.

CALL and RETURN commands provide subroutine facilities for commonly used sections of
code. A CALL command is made to a specified absolute address, while a program counter

Figure 2: PicoBlaze Architecture

8

X387_01_120502

INSTRUCTION

RESET

CLK

16

8

IN_PORT 8

INTERRUPT

ADDRESS

PORT_ID

READ_STROBE

WRITE_STROBE

8

Operational
Control &
Instruction
Decoding

8
8

8 OUT_PORT

Port
Address
Control

8 Registers 8-bit

8

8 8
ALU

ZERO &
CARRY
Flags

CONSTANT DATA

8Program
Flow

Control

Interrupt
Flag
Store

8

8

Program
Counter

Interrupt
Control

Program
Counter
Stack
2 www.xilinx.com XAPP387(v1.1) January 9, 2003
1-800-255-7778

PicoBlaze 8-Bit Microcontroller for CPLD Devices
R

stack preserves the return address. The stack provides for a nested CALL with a depth of up to
four levels, adequate for the program size supported.

Input/Output
The PicoBlaze solution has 256 input ports and 256 output ports. An 8-bit address value
provided on the PORT bus together with a READ or WRITE strobe signal indicates the
accessed port. The port address is either supplied in the program as an absolute value, or
specified indirectly as the contents of any of the eight registers. Indirect addressing is ideal
when accessing a block of memory constructed from external RAM.

During an INPUT operation, the value provided at the input port is transferred into any of the
eight registers. An input operation is indicated by a READ_STROBE output pulse. Although
using this signal in the input interface logic is not vital, it indicates that data has been acquired
by PicoBlaze.

During an OUTPUT operation, the contents of any of the eight registers are transferred to the
output port. A WRITE_STROBE output pulse indicates an output operation. This strobe signal
is used in the design output interface logic, ensuring that only valid data is passed to external
systems.

Interrupt
The process provides a single interrupt input signal. Using simple logic, multiple signals can be
combined and applied to this one input signal. By default, the effect of the interrupt signal is
disabled (masked) and is under program control to be enabled and disabled as required.

An active interrupt forces the PicoBlaze solution to initiate a "CALL FF" (i.e., a subroutine call
to the last program memory location) for the designer to define a suitable course of action.

Automatically, the interrupt process preserves the contents of the current ZERO and CARRY
flags and disables any further interrupt. A special RETURNI command is used to ensure that
the end of an interrupt service routine restores the status of the flags and controls.

Constant (k)
Coded Values

The PicoBlaze solution is in many ways a machine based on constants. Constant values are
specified for use in the following aspects of a program:

• Constant data value for use in an ALU operation

• Constant port address to access a specific piece of information or control logic external to
the PicoBlaze solution

• Constant address values for controlling the execution sequence of the program

The PicoBlaze instruction set coding is designed to allow constants to be specified within any
instruction word. Hence, the use of a constant carries no additional overhead to the program
size or its execution. This effectively extends the simple instruction set with a whole range of
"virtual instructions."

Uniform Cycles
All instructions under all conditions execute over two clock cycles. When determining the
execution time of a program, particularly when embedded into a real time situation, a uniform
execution rate is of great value.

Program Length
The program length is 256 instructions. All address values are specified as 8-bits contained
within the instruction coding. The fixed memory size promotes a consistent level of
performance from the module; however, if necessary, the design can be expanded to support a
larger memory range.
XAPP387(v1.1) January 9, 2003 www.xilinx.com 3
1-800-255-7778

PicoBlaze 8-Bit Microcontroller for CPLD Devices
R

Complete
PicoBlaze
Instruction Set

This section lists a complete instruction set representing all op-codes in binary.

1. "X" and "Y" refer to the definition of the storage registers "s" in range 0 to 7.

2. "kk" represents a constant value in range 00 to FF.

3. "aa" represents an address in range 00 to FF.

4. "pp" represents a port address in range 00 to FF.

5. “C” and “D” represents the instruction decoding.

Program Control Group

JUMP - Under normal conditions, the program counter (PC) increments to point to the next
instruction. The address space is currently fixed to 256 locations (00 to FF hex), making the
program counter 8-bits wide. The top of the memory is FF hex and will increment to 00.

The JUMP instruction is used to modify the sequence by specifying a new address. However,
the JUMP instruction can be conditional. A conditional JUMP is only performed if a test
performed on either the ZERO flag or CARRY flag is valid. The JUMP instruction has no effect
on the status of the flags.

Each JUMP instruction must specify the 8-bit address as a two-digit hexadecimal value. The
assembler supports labels to simplify this process.

CALL - The CALL instruction is similar in operation to the JUMP instruction. It modifies the
normal program execution sequence by specifying a new address. The CALL instruction is
conditional. In addition to supplying a new address, the CALL instruction also causes the
current PC value to be pushed onto the program counter stack. The CALL instruction has no
effect on the status of the flags.

The program counter stack supports a depth of four address values, enabling a nested CALL

Figure 3: Program Control Instructions

X387_02_120502

C C C AIIIII A A A A A A A
10 9 8 71112131415 6 5 4 3 2 1 0

1

1

1 0 1

101

1 0 0 1

0

1

0

JUMP

CALL

RETURN
Address

JUMP aa

JUMP Z, aa

JUMP NZ, aa

JUMP C, aa

JUMP NC, aa

CALL aa

CALL Z, aa

CALL NZ, aa

CALL C, aa

CALL NC, aa

RETURN

RETURN Z

RETURN NZ

RETURN C

RETURN NC

Instruction syntax

0Unconditional

Conditional 0

0 0

11

1 0

1

if Zero

if NOT Zero

if Carry

if NOT Carry1
4 www.xilinx.com XAPP387(v1.1) January 9, 2003
1-800-255-7778

PicoBlaze 8-Bit Microcontroller for CPLD Devices
R

sequence to the depth of four levels to be performed. Since the stack is also used during an
interrupt operation, at least one of these levels should be reserved when interrupts are
enabled.

The stack is implemented as a separate buffer. When the stack is full, it overwrites the oldest
value. Each CALL instruction must specify the 8-bit address as a two-digit hexadecimal value.
To simplify this process, labels are supported in the assembler.

Hence, it is not necessary to reset the stack pointer when performing either a software or
hardware reset. Therefore, there are no instructions to control the stack and no program
memory is reserved for the stack.

RETURN - The RETURN instruction is the complement to the CALL instruction. The RETURN
instruction is also conditional. The new PC value is formed internally by incrementing the last
value on the program address stack, ensuring the program executes the instruction following
the CALL instruction that resulted in the subroutine. The RETURN instruction has no effect on
the status of the flags.

The programmer must ensure that a RETURN is only performed in response to a previous
CALL instruction, so that the program counter stack contains a valid address. The cyclic
implementation of the stack continues to provide values for RETURN instructions that cannot
be defined. Each RETURN only specifies the condition for flag tests.

Shift and Rotate Group

SR0, SR1, SRX, SRA, RR - The shift and rotate right group all modify the contents of a single
register to the right. All instructions in the group have an effect on the flags (see Figure 4).

SL0, SL1, SLX, SLA, RL - The shift and rotate left group all modify the contents of a single
register to the left. All instructions in the group have an effect on the flags.

SR0/SL0 - Shifts register sX right/left by one place injecting “0”

SR1/SL1 - Shifts register sX right/left by one place injecting “1”

SRX/SLX - Shifts register sX right/left by one place injecting MSB/LSB

SRA/SLA - Shifts register sX right/left by one place injecting Carry flag

RR/RL - Rotates register sX right/left by one place injecting LSB/MSB

Figure 4: Shift and Rotate Instructions

X387_03_121002

X X X 000101 0 0 0 C D D D
10 9

1 0 1 0 1 0 1 0

8 71112131415 6 5 4 3 2 1 0

1

1

1 0

11

0 1 0

SR0/SL0

SR1/SL1

SRX/SLX

SRA/SLA

RR/RL
Instruction

sX

Carry

Carry

0 0 0

1 0 0

SR0 sX

SR1 sX

SRX sX

SRA sX

RR sX

SL0 sX

SL1 sX

SLX sX

SLA sX

RL sX

Instruction syntax

0

1

L - Left

R - Right

1 0 1 0 1 0 1 0
XAPP387(v1.1) January 9, 2003 www.xilinx.com 5
1-800-255-7778

PicoBlaze 8-Bit Microcontroller for CPLD Devices
R

Logical Group

LOAD - The LOAD instruction specifies the contents of any register. The new value is either a
constant or the contents of any other register. The LOAD instruction has no effect on the status
of the flags.

Since the LOAD instruction does not affect the flags, it is used to reorder and assign register
contents at any stage of the program execution. Because the load instruction is able to assign
a constant with no impact to the program size or performance, the load instruction is the most
obvious way to assign a value or clear a register.

Some implied "virtual" instructions are listed.

LOAD s0, s0 Load any register with its own contents achieves nothing and hence is a NO
OPERATION consuming two clock cycles. This is used to form a delay in the program.

LOAD sX, 00 Load zero is the equivalent of a CLEAR register command.

AND - The AND instruction performs a bit-wise logical AND operation between two operands.
For example, 00001111 AND 00110011 produces the result 00000011. The first operand is any
register, and it is the register assigned the result of the operation. A second operand is also any
register, or an 8-bit constant value. Flags are affected by this operation.

OR - The OR instruction performs a bit-wise logical OR operation between two operands. For
example, 00001111 OR 00110011 produces the result 00111111. The first operand is any
register. This register is assigned as the result of this operation. A second operand is also any
register, or an 8-bit constant value. Flags are affected by the OR operation.

Useful in forming control signals, the OR instruction provides a way to force setting any bit of
the specified register. The use of OR sX, 00 will set the zero flag if the contents of a register are
zero without changing the contents of the register.

The following is a useful virtual instruction:

OR sX, 00 Clear CARRY flag and test register for ZERO.

XOR - The XOR instruction performs a bit-wise logical XOR operation between two operands.
For example, 00001111 XOR 00110011 produces the result 00111100. The first operand is any
register, and this register is assigned the result of the operation. A second operand is also any
register, or an 8-bit constant value. The zero flag is affected by this operation and the carry flag
will be cleared.

Figure 5: Logical Instructions

X387_04_120502

X X X YIIIII Y Y K K K K K
10 9 8 71112131415 6 5 4 3 2 1 0

0

C

C 0 0

000

0 C 0 1

0

1

0

LOAD sX, C

AND sX, C

OR sX, C

XOR sX, C
Constant

sX

0 C 0 1 1

LOAD sX, KK

AND sX, KK

OR sX, KK

XOR sX, KK

LOAD sX, sY

AND sX, sY

OR sX, sY

XOR sX, sY

Instruction syntax

sY0

1

K

sY
6 www.xilinx.com XAPP387(v1.1) January 9, 2003
1-800-255-7778

PicoBlaze 8-Bit Microcontroller for CPLD Devices
R

Arithmetic Group

ADD - The ADD instruction performs an 8-bit unsigned addition of two operands. The first
operand is any register, and it is this register that is assigned the result of the operation. A
second operand is also any register, or an 8-bit constant value. Flags are affected by this
operation.

ADDCY - The ADDCY instruction performs an unsigned addition of two 8-bit operands together
with the contents of the CARRY flag. The first operand is any register, and this register is
assigned the result of the operation. A second operand is also any register, or an 8-bit constant
value. Flags are affected by this operation.

SUB - The SUB instruction performs an 8-bit unsigned subtraction of two operands. The first
operand is any register, and this register is assigned the result of the operation. The second
operand is also any register, or an 8-bit constant value. Flags are affected by this operation.

SUBCY - The SUBCY instruction performs an 8-bit unsigned subtraction of two operands
together with the contents of the CARRY flag. The first operand is any register, and this register
is assigned the result of the operation. The second operand is also any register, or an 8-bit
constant value. Flags are affected by this operation.

Input/Output Group

INPUT - The INPUT instruction enables data values external to the PicoBlaze solution to be
transferred into any one of the internal registers. The port address (in the range 00 to FF) is
defined by a constant value, or indirectly as the contents of any other register. Flags are not
affected by this operation.

Figure 6: Arithmetic Instructions

Figure 7: Input/Output Instructions

X387_05_120502

X X X YIIIII Y Y K K K K K
10 9 8 71112131415 6 5 4 3 2 1 0

0

C

C 1 0

010

0 C 1 1

0

1

0

ADD sX, C

ADDCY sX, C

SUB sX, C

SUBCY sX, C
Constant

sX

0 C 1 1 1

ADD sX, KK

ADDCY sX, KK

SUB sX, KK

SUBCY sX, KK

ADD sX, sY

ADDCY sX, sY

SUB sX, sY

SUBCY sX, sY

Instruction syntax

sY0

1

K

sY

X387_06_120502

X X X YIIIII Y Y P P P P P
10 9 8 71112131415 6 5 4 3 2 1 0

1 C 0 0 0 Input

Output
Constant PORT_ID

sX

1 C 0 0 1

INPUT sX, PP

INPUT sX, sY

OUTPUT sX, PP

OUTPUT sX, sY

Instruction syntax

sY0

1

P

sY
XAPP387(v1.1) January 9, 2003 www.xilinx.com 7
1-800-255-7778

PicoBlaze 8-Bit Microcontroller for CPLD Devices
R

The user interface logic is required to decode the port address value and supply the correct
data. The signal waveforms are shown in Figure 8. Note that the READ_STROBE provides an
indicator that a port has been read, but it is not vital to qualify a valid address.

OUTPUT - The OUTPUT instruction enables the contents of any register to transfer to logic
external to the PicoBlaze solution. The port address (in the range 00 to FF) is defined by a
constant value, or indirectly as the contents of any other register. Flags are not affected by this
operation.

The user interface logic is required to decode the port address value and enable the correct
logic to capture the data value. The WRITE_STROBE is used in this case to ensure the transfer
of valid data only. The signal waveforms are shown in Figure 9.

Interrupt Group

RETURNI - The RETURNI instruction is a special variation of the RETURN instruction. It
concludes an interrupt service routine. The RETURNI is unconditional and always loads the
program counter (PC) with the last address on the program counter stack. The address does

Figure 8: Input Signal Waveform

Figure 9: Output Signal Waveform

Figure 10: Interrupt Instructions

X387_07_120502

Valid Valid

Input data captured

Clock

Port (addr)

Read_strobe

X387_08_120502

Valid

Clock

Port (addr)

Valid

External Circuit
Captures Data

Output Data

Write_strobe

X387_09_120502

0 0 0 0IIIII 0 0 0 0 0 0 C
10 9 8 71112131415 6 5 4 3 2 1 0

1 1 1 1 0 INTERRUPT

RETURNI
Don't Care

1 0 1 1 0

INTERRUPT ENABLE

INTERRUPT DISABLE

ENABLE INTERRUPT

DISABLE INTERRUPT

Instruction syntax

0

1

Enable

Disable
8 www.xilinx.com XAPP387(v1.1) January 9, 2003
1-800-255-7778

PicoBlaze 8-Bit Microcontroller for CPLD Devices
R

not increment in this case, because the instruction at the stored address needs to be executed.
The RETURNI instruction restores the flags to the point of interrupt condition. It also
determines the future ability of interrupts using ENABLE or DISABLE as an operand.

A RETURNI is only performed in response to an interrupt. Each RETURNI must specify if a
further interrupt is enabled or disabled.

ENABLE INTERRUPT and DISABLE INTERRUPT - These instructions are used to set and
reset the INTERRUPT ENABLE flag. Before using ENABLE INTERRUPT, a suitable interrupt
routine must be associated with the interrupt address vector (FF). Never enable interrupts while
performing an interrupt service.

PicoBlaze
Assembler

Running the Assembler

An assembler ASM.EXE is provided to simplify the generation of programs. This assembler is
written in C and compiled with Microsoft Visual Studio 6.0. It is a simple DOS program that can
be run under a DOS window. Figure 11 illustrates the process for using the assembler.

Programs are best written with Notepad type tools. The file is saved with a .asm file extension.
Place the ASM.EXE file in the same directory as the program file or set the ASM.EXE directory
in the PATH. Open a DOS box and navigate to the directory. Then run the assembler asm
<filename>.asm. The assembler executes very quickly and the display often appears immedi-
ately.

Assembler Errors

Assembler error messages are displayed to help determine the reason for an error. The
assembler also displays the line it was analyzing when it detected a problem. Figure 11 shows
an example: the error messages are self-explanatory.

Assembler Files

The assembler reads the assembly program file and generates five output files, as shown in
Figure 12. Note that all output files are overwritten each time the assembler is executed.

Figure 11: PicoBlaze Assembler
XAPP387(v1.1) January 9, 2003 www.xilinx.com 9
1-800-255-7778

PicoBlaze 8-Bit Microcontroller for CPLD Devices
R

Filename.vhd – This file is a VHDL module for program memory generated by the assembler
and suitable for synthesis and simulation.
Filename.bin – This file is the binary code for the program memory in hex format and it is suit-
able for program debugging.
Filename.fmt – This file is the original program reformatted for easier reading. Looking at this
file is also a good way to see that everything has been interpreted as intended.
Filename.log – This log file shows the assembler process performed and any error messages
generated during the process.
Filename.mcs – This file is the binary code for the program memory in Intel’s MCS-86 format.
This file can be used to program an external memory if needed.

Program Syntax

The best way to understand the difference between valid and invalid syntax is to look at the
examples and try the assembler. However, there are some simple rules which can be of initail
assistance:

No blank lines – Use a semicolon for blank lines

Comments – Any item on a line following a semicolon (;)

Constant – Must be specified in the form of a two-digit hexadecimal value (00 – FF)

Line Labels – Identify program lines for JUMP or CALL instructions; should be followed by a
colon (:)

Instructions – The instructions should be of the formatted like those described in the section
Complete PicoBlaze Instruction Set, page 4 of this document. Instructions and the first
operand must be separated by at least one space.

The assembler supports three assembler directives. These are commands included in the pro-
gram which are used purely by the assembly process and do not correspond to instructions
executed by the assembler.

CONSTANT Directive – Assigns an 8-bit constant value to a label

NAMEREG Directive – Assigns a new name to any of the eight registers

ADDRESS Directive – Forces the instructions that follow it to commence at a new address
value.

The assembler will accept any mixture of upper and lower case characters for the instruction
and automatically convert them to upper case. A simple example of some acceptable instruc-

Figure 12: Assembler Files

X387_11_120502

ASM.EXE

Filename.mcs Filename.vhd

Filename.bin

Filename.fmt

<Binary code for ROM>

Filename.log

<VHDL for simulation>

<Binary code in hex format>

<Formatted assembly file>

<Assembler report>

Filename.asm <User input file>
10 www.xilinx.com XAPP387(v1.1) January 9, 2003
1-800-255-7778

PicoBlaze 8-Bit Microcontroller for CPLD Devices
R

tions is shown in Figure 13.
Note: This example is not coded in an efficient manner; it is only intended to show some of the
program syntax.

The compiled code and the memory addresses are also shown in Figure 14.

Using the
PicoBlaze
Macro

It is typical in a microcontroller environment to store the program code in an external memory
for the microcontroller. The designer writes assembly code and the PicoBlaze assembler can
compile the assembly code into binary, generating Intel MCS format files to be used to program
the external memory. The PicoBlaze operation with the external program memory block
diagram is shown in Figure 15.

Figure 13: A Simple Example

Figure 14: Compiled Code and Addresses

X387_12_120502

Loop1:

Loop2:

Constant shifter_port, 04

Namereg s7, shifter_reg

Load shifter_reg, 01

Output shifter_reg, shifter_port

SL0 shifter_reg

Jump NZ, loop2

Jump loop1

;declare port

;declare register

;init shifter reg

;shift left with 0

;goto loop2 when s7<>0

;goto loop1

X387_13_120502

Address BinaryHex

00 0701 0000011100000001 Load s7, 01

Output s7, 04

SL0 s7

Jump NZ, 01

Jump 00

01 8F04 1000111100000100

02 A706 1010011100000110

03 D501 1101010100000001

04 D000 1101000000000000
XAPP387(v1.1) January 9, 2003 www.xilinx.com 11
1-800-255-7778

PicoBlaze 8-Bit Microcontroller for CPLD Devices
R

The PicoBlaze assembler can also generate a VHDL code to model the program memory. User
can use this VHDL module and the PicoBlaze module for board level functional simulation.

How to Customize the PicoBlaze Microcontroller
For some content-sensitive microcontroller applications it is ideal to have a customized
microcontroller and its own assembler. In a standard microcontroller application the program
code in the memory can be extracted, making reverse engineering very easy. With a
customized microcontroller and assembler it is almost impossible to know the microcontroller
behavior by just studying the program code.

The PicoBlaze microcontroller VHDL code and its associated assembler C code are made very
easy to customize. The VHDL and C code shown in Figure 16 are the instruction ID
declarations. Each instruction ID is defined in both VHDL and C code in PicoBlaze.vhd and
asm.cpp. Users can make their own instruction ID decoding by changing the ID in these two
files.

Adding an instruction

Here are the steps to add a new instruction to the PicoBlaze microcontroller:

• Modify PicoBlaze.vhd

• Add a constant with the instruction code:

Figure 15: PicoBlaze Operation Block Diagram

Figure 16: Instruction ID Code

X387_14_120502

IN_PORT[7:0]

PicoBlaze

OUT_PORT[7:0]

INTERRUPT PORT_ID[7:0]

RESET READ_STROBE

INSTRUCTION[15:0] WRITE_STROBE

CLK ADDRESS[7:0]

INSTRUCTION[15:0]

Program ROM

ADDRESS[7:0]

CLK

X387_16_120502

C code for Assembler

/* program control group */
char *jump_id = "11010";
char *call_id = "11011";
char *return_id = "10010";

/* logical group */
char *load_k_to_x_id = "00000";
char *load_y_to_x_id = "01000";
char *and_k_to_x_id = "00001";
char *and_y_to_x_id = "01001";
char *or_k_to_x_id = "00010";

VHDL for C PicoBlaze Microcontroller
--
-- program control group
constant jump_id : std_logic_vector(4 downto 0) := "11010";
constant call_id : std_logic_vector(4 downto 0) := "11011";
constant return_id : std_logic_vector(4 downto 0) := "10010";
--
-- logical group
constant load_k_to_x_id : std_logic_vector(4 downto 0) .= "00000";
constant load_y_to_x_id : std_logic_vector(4 downto 0) .= "01000";
constant and_k_to_x_id : std_logic_vector(4 downto 0) := "00001";
constant and_y_to_x_id : std_logic_vector(4 downto 0) := "01001";
constant or_k_to_x_id : std_logic_vector(4 downto 0) := "00010";
12 www.xilinx.com XAPP387(v1.1) January 9, 2003
1-800-255-7778

PicoBlaze 8-Bit Microcontroller for CPLD Devices
R

 constant new_instruction_id : std_logic_vector(4 downto 0) := “10101";

• Add instruction to the decoding signal

 i_new_instruction <= '1' when instruction(15 downto 11) = new_instruction_id else '0';

• Define the VHDL component with the functionality of the new instruction

• Add the new component to PicoBlaze.vhd

• Add the new instruction to register_and_flag_enable.vhd for register decoding enable

The assembler will also need to be modified by the following steps

• Add the new instruction to asm.cpp

 char *new_instruction_id = “10101“;

• Add the new instruction to the instruction_set

• Add the case to test_instructions function of asm.cpp

• Add the case to write_program_word function of asm.cpp

• Recompile asm.cpp to create asm.exe

Subtracting an instruction

Subtracting an instruction is the reverse of adding an instruction for PicoBlaze.vhd. There is no
need to modify the assembler since the instruction is never used in the program.

A simple example of this addition/subtraction is included in the PicoBlaze source code. A new
instruction called “FLIP” has been added. All this instruction does is reverse the order of bits in
a register from MSB to LSB, MSB –1 to LSB + 1 and so on. The following VHDL code explains
its functionality:

bus_width_loop: for i in 0 to 7 generate
begin
 FF:
 process (clk)
 begin
 if (clk'event and clk = '1') then
 Y(i) <= operand(7-i);
 end if;
 end process FF;
 end generate bus_width_loop;

Without this new instruction it would need several instructions to do the same function. This
newly added instruction can be found in the source code and commented with “added new
instruction here”.

Design Example Some microcontroller design examples can be found in Xilinx application note XAPP213.
These design examples are modified to accommodate the PicoBlaze microcontroller resources
and used to verify the PicoBlaze microcontroller functionality.

Design
Implementation

The PicoBlaze design described in this application note is targeted to a XC2C256-5TQ144
CoolRunner-II device. The device utilization data is shown in the following table.
XAPP387(v1.1) January 9, 2003 www.xilinx.com 13
1-800-255-7778

http://www.support.xilinx.com/xapp/xapp213.pdf

PicoBlaze 8-Bit Microcontroller for CPLD Devices
R

Source Code THIRD PARTIES MAY HAVE PATENTS ON THE CODE PROVIDED. BY PROVIDING THIS
CODE AS ONE POSSIBLE IMPLEMENTATION OF THIS DESIGN, XILINX IS MAKING NO
REPRESENTATION THAT THE PROVIDED IMPLEMENTATION OF THIS DESIGN IS FREE
FROM ANY CLAIMS OF INFRINGEMENT BY ANY THIRD PARTY. XILINX EXPRESSLY
DISCLAIMS ANY WARRANTY OR CONDITIONS, EXPRESS, IMPLIED, STATUTORY OR
OTHERWISE, AND XILINX SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR A PARTICULAR
PURPOSE, THE ADEQUACY OF THE IMPLEMENTATION, INCLUDING BUT NOT LIMITED
TO ANY WARRANTY OR REPRESENTATION THAT THE IMPLEMENTATION IS FREE
FROM CLAIMS OF ANY THIRD PARTY. FURTHERMORE, XILINX IS PROVIDING THIS
REFERENCE DESIGN "AS IS" AS A COURTESY TO YOU.

XAPP387 - http://www.xilinx.com/products/xaw/coolvhdlq.htm

Conclusion PicoBlaze microcontroller for CoolRunner-II devices is a derivative of the Virtex PicoBlaze. It is
designed to allow easy customization, and is most effectively implemented in content-sensitive
applications. This design is targeted for a 256-macrocell XC2C256-5TQ144 CoolRunner-II
device.

The CoolRunner-II device family features very low power consumption and high performance.
Its flexible architecture is the best choice for PicoBlaze microcontroller type System On a Chip
designs.

References 1. Ken Chapman. Xilinx Application Note XAPP213 PicoBlaze 8-Bit Microcontroller for Virtex
Devices.

Revision
History

The following table shows the revision history for this document.

Table 1: PicoBlaze XC2C256 Device Utilization

Device Resource Available Used % Utilization

Macrocells 256 212 83%

I/O Pins 118 53 45%

Product Terms 896 642 72%

Registers 256 155 61%

Function Block Inputs 640 451 70%

Date Version Revision

12/17/02 1.0 Initial Xilinx release.

01/09/03 1.1 Minor revisions.
14 www.xilinx.com XAPP387(v1.1) January 9, 2003
1-800-255-7778

http://www.xilinx.com/products/xaw/coolvhdlq.htm

	Summary
	Introduction
	PicoBlaze Feature Set
	General Purpose Registers
	ALU
	Flags/Program Flow Control
	Input/Output
	Interrupt

	Constant (k) Coded Values
	Uniform Cycles
	Program Length

	Complete PicoBlaze Instruction Set
	Program Control Group
	Shift and Rotate Group
	Logical Group
	Arithmetic Group
	Input/Output Group
	Interrupt Group

	PicoBlaze Assembler
	Running the Assembler
	Assembler Errors
	Assembler Files
	Program Syntax

	Using the PicoBlaze Macro
	How to Customize the PicoBlaze Microcontroller
	Adding an instruction
	Subtracting an instruction

	Design Example
	Design Implementation
	Source Code
	Conclusion
	References
	Revision History

