
Summary Relationally Placed Macros, RPMs, are used frequently in designs that have predefined
modules or specific elements need to be placed in such a way to get highly predictable timing.
Floorplanner is a GUI-based tool that allows one to view their design and make changes to the
placement. In Foundation™ ISE 5.1i, Xilinx has provided the option of using Floorplanner’s
MacroBuilder capability to create RPMs from smaller designs and use them as building blocks.
This application note explains the steps to create, instantiate, and implement a design with an
RPM that was created in Floorplanner.

Introduction The ability to group elements in a certain pattern is a powerful technique one can employ in
their designs in order to meet timing objectives. Xilinx has been using this approach in their
cores by creating RPMs. This application note takes you through two labs to introduce and
familiarize yourself with the new feature in Floorplanner. It also illustrates some current issues
with the process and presents workarounds. Currently, XST has limited support for this new
feature such that it can only support this flow with designs that instantiates an existing pre-
synthesized EDN or EDF module. The labs were created using Synplify to synthesize the
designs. The first lab is a basic scenario where you create an RPM from an existing design and
instantiate it one time in a larger design. The second lab is the same as the first except it will
instantiate the RPM more than once.

Lab One This lab describes the flow of creating an RPM of an 8-bit cascaded counter (CB8CE) and
instantiating the RPM in top.vhd. The lab1.zip (http://www.xilinx.com/xapp/lab1.zip) reference
design file can be used for this lab.

1. Creating RPM from an existing file using Floorplanner

a. NGDBUILD Flow: With Synplify as synthesis tool.

b. POST PAR Flow: Using just EDN as input source.

2. Instantiating the RPM in a project.

3. Verifying the RPM component has been placed correctly.

This lab requires the following tools.

1. ISE 5.1i .

2. Synplify 7.1 (Netlist files are included, if Synplify is not available).

3. Win2000/NT.

RPM Generation (NGDBUILD FLOW with Synthesis)
This section of the lab will go over creating an RPM from source code. To begin this lab, unzip
lab1.zip to a working directory. Since this part of the lab requires Synplify, simply go through the
flow and if it is not available then jump to the next section.

Application Note: Software

XAPP422 (v1.0) December 3, 2002

Using 5.1i Floorplanner to Create RPMs
R

XAPP422 (v1.0) December 3, 2002 www.xilinx.com 1
1-800-255-7778

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

http://www.xilinx.com/xapp/lab1.zip

Using 5.1i Floorplanner to Create RPMs
R

• Start Project Navigator 5.1i and open rpm_cb8ce.npl

• Make sure the design flow is Synplify VHDL.1 If not, change the design flow by right
clicking on the device line in the Source window and select properties. Change the design
flow to Synplify VHDL.

• Double click rpm_counter_top.vhd in the source window to see the design code structure.

• Right click on Synthesize and select properties

• Select the Device Options tab and Disable I/O insertion.

• Right click on Translate and select properties. Uncheck Create I/O Pads from Ports.

• Double click on Floorplan Design under Translate of the Implement Design in the Process
window.

• Expand counter in the hierarchy window. (See Figure 1)

• Start placing the DFF components via drag and drop to the editable window. (See

1. Using Synplify as synthesis tool is required because of a limitation with NGDBUILD which requires
EDN/EDF file in order for NCF file to be read in. XST produces NGC formatted netlists, not EDIF, which
will not be read in with NCF file by NGDBUILD. This limitation will be addressed in a future release of
ISE.

Figure 1: Expanded Counter Module in Hierarchy Window
2 www.xilinx.com XAPP422 (v1.0) December 3, 2002
1-800-255-7778

Using 5.1i Floorplanner to Create RPMs
R

Figure 2)

• Click on File -> Write RPM to NCF.

• Exit Floorplanner without saving.

• Browse to the NCF (rpm_counter_top.ncf) file in the project folder with Windows Explorer
and open it with Wordpad. It should contain the following constraints.

Start of RPM Constraints extracted by Floorplanner from the Design
INST "counter/I_Q7/I_36_35" RLOC = "X1Y15" ;
INST "counter/I_Q7/I_36_35" U_SET = "rpm_counter_top" ;
INST "counter/I_Q6/I_36_35" RLOC = "X1Y15" ;
INST "counter/I_Q6/I_36_35" U_SET = "rpm_counter_top" ;
INST "counter/I_Q5/I_36_35" RLOC = "X1Y14" ;
INST "counter/I_Q5/I_36_35" U_SET = "rpm_counter_top" ;
INST "counter/I_Q4/I_36_35" RLOC = "X1Y14" ;
INST "counter/I_Q4/I_36_35" U_SET = "rpm_counter_top" ;
INST "counter/I_Q3/I_36_35" RLOC = "X1Y13" ;
INST "counter/I_Q3/I_36_35" U_SET = "rpm_counter_top" ;
INST "counter/I_Q2/I_36_35" RLOC = "X1Y13" ;
INST "counter/I_Q2/I_36_35" U_SET = "rpm_counter_top" ;
INST "counter/I_Q1/I_36_35" RLOC = "X1Y12" ;
INST "counter/I_Q1/I_36_35" U_SET = "rpm_counter_top" ;
INST "counter/I_Q0/I_36_35" RLOC = "X1Y12" ;
INST "counter/I_Q0/I_36_35" U_SET = "rpm_counter_top" ;

• Move rpm_counter_top.edn and rpm_counter_top.ncf into the pre-made rpm_core folder
using Windows Explorer.

RPM Generation (POST PAR FLOW without Synthesis)
This section goes through creating the RPM with pre-synthesized netlist files1.

• Start Project Navigator 5.1i and open rpm_cb8ce.npl

• Remove test_counter.vhd from the source window and change the design flow to EDIF by
right clicking on the device line in the Source window and select properties. Change the
design flow to EDIF.

Figure 2: Placed Logic

1. To correctly use any netlist as a RPM core, the netlist must not have IO buffer inserted.
XAPP422 (v1.0) December 3, 2002 www.xilinx.com 3
1-800-255-7778

Using 5.1i Floorplanner to Create RPMs
R

• Add rpm_counter_top.edn from RPM_FILE folder to the project. (Project -> Add Copy of
Source)1

• Right click on Translate and select properties. Uncheck Create I/O Pads from Ports

• Right click on Map and select properties. Uncheck Trim Unconnected Signals.

• Select the source, rpm_counter_top.edn, in the source window and double click on
View/Edit Placed Design (Floorplanner) under Place & Route of the Implement Design in
the Process Window.

• Click on Floorplan -> Replace All with Placement to place logic in the editable window
(Figure 3).

1. Make sure add copy of source is used because if add source is selected rather than add copy of
source, project navigator will pick up undesired constraints file existing in the rpm_file folder.
4 www.xilinx.com XAPP422 (v1.0) December 3, 2002
1-800-255-7778

Using 5.1i Floorplanner to Create RPMs
R

• Click on File -> Write RPM to NCF and exit Floorplanner.

• Check the NCF (rpm_counter_top.ncf) file in the project folder with windows explorer and it
should contain the following constraints.

Start of RPM Constraints extracted by Floorplanner from the Design
INST "counter/I_Q7/I_36_35" RLOC = "X1Y1" ;
INST "counter/I_Q7/I_36_35" U_SET = "rpm_counter_top" ;
INST "counter/I_Q6/I_36_35" RLOC = "X1Y0" ;
INST "counter/I_Q6/I_36_35" U_SET = "rpm_counter_top" ;
INST "counter/I_Q5/I_36_35" RLOC = "X1Y0" ;
INST "counter/I_Q5/I_36_35" U_SET = "rpm_counter_top" ;
INST "counter/I_Q4/I_36_35" RLOC = "X0Y3" ;
INST "counter/I_Q4/I_36_35" U_SET = "rpm_counter_top" ;
INST "counter/I_Q3/I_36_35" RLOC = "X0Y2" ;
INST "counter/I_Q3/I_36_35" U_SET = "rpm_counter_top" ;
INST "counter/I_Q2/I_36_35" RLOC = "X0Y2" ;
INST "counter/I_Q2/I_36_35" U_SET = "rpm_counter_top" ;
INST "counter/I_Q1/I_36_35" RLOC = "X0Y0" ;
INST "counter/I_Q1/I_36_35" U_SET = "rpm_counter_top" ;
INST "counter/I_Q0/I_36_35" RLOC = "X0Y0" ;
INST "counter/I_Q0/I_36_35" U_SET = "rpm_counter_top" ;

• Move the netlist rpm_counter_top.edn, and the rpm_counter_top.ncf into the pre-made
rpm_core folder with Windows Explorer.

Instantiation of RPM
This section will go through instantiating the RPM files in the project.

• Continuing from the previous section remove the source file, rpm_counter_top.vhd
(NGDBUILD flow, Figure 4) or rpm_couter_top.edn (Post PAR flow, Figure 5), from the
project.

• Change the design flow to VHDL if continued from Post PAR flow by right clicking on the
device line in the Source window and select properties. Change the design flow to XST
VHDL.

• Add the VHDL source file, top.vhd.

• Make sure Add I/O Buffers of the Xilinx Specific Options in synthesis properties is
enabled if XST VHDL is used. If Synplify VHDL is still used, make sure Disable I/O
Insertion is unchecked under synthesis properties.

Figure 3: Implemented Logic Placement View After PAR
XAPP422 (v1.0) December 3, 2002 www.xilinx.com 5
1-800-255-7778

Using 5.1i Floorplanner to Create RPMs
R

• Set the Translate properties to search for the macro in the rpm_core folder and make sure
Create I/O Pads from Ports box is checked.

• Make sure Trim Unconnected Signals in Map properties is checked if continuing from Post
Par Flow.

• Double click on View/Edit Placed Design (FloorPlanner) under Place & Route to
implement the design and launch Floorplanner to verify the RPM has been correctly
implemented.

Lab One Conclusion
The result of the RPM creation flow is a user defined “core” that can then be instatiated into a
larger, top-level design. This core is comprised of the combination of the original synthesized
EDIF netlist and the Floorplanner-generated NCF file.

Figure 4: Placed RPM View in Floorplanner (NGDBUILD Flow)

Figure 5: Placed RPM View in Floorplanner (Post Par Flow)
6 www.xilinx.com XAPP422 (v1.0) December 3, 2002
1-800-255-7778

Using 5.1i Floorplanner to Create RPMs
R

For relatively small RPMs, user can directly enter the Floorplanner after the Translate process
(NGDBUILD) and manually place all of the design symbols.

For larger RPMs, it may be more efficient to implement the design through PAR and use the
post-PAR design (placed NCD file) as the basis for the RPM. In this case, you will need to
disable map trimming operations via either the “-u” command line switch or unchecking the
“Trim unconnected signals” item in the Map properties dialog box in ISE. Implement the design
through PAR, and then use the Floorplanner to read in both the NGD and placed NCD file. You
can then use the “Floorplan -> Replace All With Placement” menu item to impose the placed
design onto the Editable Floorplan view. The remainder of the RPM creation process is
identical to that described in the prior section of this lab.

Lab Two This lab will illustrate instantiating two instances of an RPM. In 5.1i, there are some limitations
for top-level designs that instantiate multiple copies of a Floorplanner generated RPM. These
limitations will be explained in this lab, and workarounds will be presented. The lab2.zip
(http://www.xilinx.com/xapp/lab2.zip) reference design file can be used for this lab.

1. Implementing the design with two instantiations of an RPM to discover the limitations of this
flow.

2. Modifying the RPM files to workaround the limitation.

a. Workaround for RPM with hierarchical structure via “uniquification”.

b. Workaround for RPM without hierarchical structure.

c. Workaround by modifying ucf file associated with top-level source code.

d. Workaround by augmenting the NCF constraints.

Implementation of a Top-Level Design Containing Two Instances of an
RPM
• Unzip lab2.zip into any working directory and open rpm_cb8ce.npl.

• Select top_hier from the source window.

• Right click on Translate and select properties. Make sure the Macro search path is
pointing to the RPM_CORE folder.

• Double click on Implement Design in the Process window; MAP should quit with the
following error. 1

Design Summary

Number of errors : 4
Number of warnings : 0

Section 1 - Errors

ERROR:Pack:679 - Unable to obey design constraints
(MACRONAME=rpm_counter_top,
 RLOC=X1Y12) which require the combination of the following symbols into a
 single SLICE component:
 FLOP symbol "hier_core1/counter/I_Q1/I_36_35" (Output Signal =
qout_1_obuf)
 FLOP symbol "hier_core2/counter/I_Q0/I_36_35" (Output Signal =
qout1_0_obuf)
 FLOP symbol "hier_core1/counter/I_Q0/I_36_35" (Output Signal =
qout_0_obuf)

1. The Map error is due to the duplicate U_SET name used for two different RPM instantiations.
XAPP422 (v1.0) December 3, 2002 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com/xapp/lab2.zip

Using 5.1i Floorplanner to Create RPMs
R

 FLOP symbol "hier_core2/counter/I_Q1/I_36_35" (Output Signal =
qout1_1_obuf)
 Symbols have different XGROUP parameters. Please correct the design
 constraints accordingly.

Modification of the Project

A. Workaround for RPMs with Hierarchical Structure via “Uniquification”

This section goes over working around the limitation of instantiating multiple RPMs. This
workaround effectively uniquifies each instance of the RPM. This involves making each RPM
have a different name and separate U_SET properties in the NCF file.

• Open top_hier.vhd and uncomment lines 38-45 and remove “- -“ in line 59.

• Browse to the folder rpm_core where there are two EDN and two NCF files.
(rpm_counter_top.edn/ncf , rpm_counter_top1.edn/ncf)

- The EDN files are identical except that they differ only by name.

- The NCF files are essentially the same, except rpm_counter_top1.ncf has modified
U_SET name.

• Save the file and re-implement the project.

• The project should now implement correctly. See Figure 6 for to view the final
implementation in Floorplanner.

• Note: Although removing the U_SET lines in a hierarchical RPM would help the design
pass MAP, the implemented result will not keep the RPM shape — each hierarchical level
in the “core” design gets split out into their own separate RPM. The U_SET keeps them all
part of the same RPM. If U_SET is modified to be HU_SET, the design would also “pass”
MAP but the RPM shape will not be kept either.

B. Workaround for RPMs with Flattened Structure

RPMs that do not have hierarchy, i.e., they are “flat”, can be instantiated multiple times without
uniquifying the netlist and NCF files. This section goes through how to work around the multiple
RPM instantiation problem with a flattened RPM netlist.

• With lab2 still opened in Project Navigator, select top_flat.vhd from the source window.

• top_flat.vhd has the same code as top_hier except top_flat.vhd instantiates a flattened

Figure 6: Implemented RPMs in FloorPlanner
8 www.xilinx.com XAPP422 (v1.0) December 3, 2002
1-800-255-7778

Using 5.1i Floorplanner to Create RPMs
R

version: rpm_counter_top_flat.edn1.

• Right click on Translate in the Process Window, select Properties and make sure the
macro search path is still pointing to the RPM_CORE folder.

• Browse to the RPM_CORE folder and open up rpm_counter_top_flat.ncf with Wordpad.

Comment out all the lines containing U_SET with # and save the file2.

Start of RPM Constraints extracted by Floorplanner from the Design
INST "counter_I_Q7_I_36_35" RLOC = "X1Y15" ;
#INST "counter_I_Q7_I_36_35" U_SET = "rpm_counter_top" ;
INST "counter_I_Q6_I_36_35" RLOC = "X1Y15" ;
#INST "counter_I_Q6_I_36_35" U_SET = "rpm_counter_top" ;
INST "counter_I_Q5_I_36_35" RLOC = "X1Y14" ;
#INST "counter_I_Q5_I_36_35" U_SET = "rpm_counter_top" ;
INST "counter_I_Q4_I_36_35" RLOC = "X1Y14" ;
#INST "counter_I_Q4_I_36_35" U_SET = "rpm_counter_top" ;
INST "counter_I_Q3_I_36_35" RLOC = "X1Y13" ;
#INST "counter_I_Q3_I_36_35" U_SET = "rpm_counter_top" ;
INST "counter_I_Q2_I_36_35" RLOC = "X1Y13" ;
#INST "counter_I_Q2_I_36_35" U_SET = "rpm_counter_top" ;
INST "counter_I_Q1_I_36_35" RLOC = "X1Y12" ;
#INST "counter_I_Q1_I_36_35" U_SET = "rpm_counter_top" ;
INST "counter_I_Q0_I_36_35" RLOC = "X1Y12" ;
#INST "counter_I_Q0_I_36_35" U_SET = "rpm_counter_top" ;

• Double click on View/Edit Placed Design (Floorplanner) under PAR in the process window
to verify the design has been implemented correctly. See Figure 6 for verification.

C. Workaround by Modifying Constraints File

This work around uses RLOC constraints in the top-level design’s UCF file. This method
effectively makes the two instances of the counter RPM into a single, larger instance. The
downside of this approach is that the two RPMs can no longer be placed independently by PAR.
Also, this approach gets much more complex as the number of instantiations increases.

• Unzip lab2.zip to a different folder to get the original files.

• Open rpm_cb8ce.npl.

• Right click in the source window and select Add Copy of Source. Browse to rpm_files
folder and add both top.ucf and top.vhd.

• Upon adding the UCF file, a pop up window will inquire about which file to associate
top.ucf with. Select top to be associated with top.ucf file.

With the top.vhd file selected in the Source Window, double click on Edit Constraints (Text)
under User Constraints in the Process Window to view the already modified constraint file3.

INST U1/flat_core1 RLOC = X0Y0;

INST U2/hier_core1 RLOC = X2Y0;

INST U1/flat_core2 RLOC = X1Y0;

INST U2/hier_core2 RLOC = X3Y0;

• Right click on Synthesize in the Process Window and select Properties. Check Keep

1. Most synthesis tool allows generation of flatten netlist file. Please consult the software manual of the
synthesis tool to see how this would be accomplished.

2. Since Project Navigator does not detect modifications to the NCF file, re-implementation steps after
Translate is necessary.

3. The hierarchy to the component path is set for XST. For Leonardo Spectrum or Synplify, use “/” to rep-
resent hierarchy.

Example: INST U1/flat_core1 RLOC = X0Y0; When running this lab with Synplify7.0 as synthesis tool,
remove the commented line on line 59 in top.hier.vhd. Synplify has a bug recognizing “- -1” as com-
ment.
XAPP422 (v1.0) December 3, 2002 www.xilinx.com 9
1-800-255-7778

Using 5.1i Floorplanner to Create RPMs
R

Hierarchy box under Synthesis Options.

• Right click on Translate in the Process Window. select Properties and make sure the
macro search path is pointing to the RPM_CORE folder.

• Implement Design and double click on View/Edit Placed Design (Floorplanner) under PAR
in the process window to verify the design has been implemented correctly (Figure 7).

D. Workaround by Augmenting the NCF Constraints

This workaround involves adding additional constraints to the Floorplanner generated NCF file.
The addition of “normalizing” RLOC constraints to the each intermediate level of hierarchy
results in the whole function being automatically unified into a single RPM structure. To come
up with the intermediate hierarchical names, a “shortcut” will be employed: map will
automatically report these names in its report file where they can then be “cut-and-pasted” into
the NCF file.

• Unzip lab2.zip to any working directory.

• Double click on top_level.vhd in the Source Window to see the design structure.

• Right click on Translate in the Process Window and select Properties. Make sure the
macro search path is pointing to rpm_files_1 folder.

• Browse to core_top.ncf file located in the rpm_file_1 folder with Windows Explorer and
comment out all the constraint lines containing U_SET with # and save the file.

Start of RPM Constraints extracted by Floorplanner from the Design
INST "ix147" RLOC = "X0Y0" ;
#INST "ix147" U_SET = "core_top" ;
INST "ix146" RLOC = "X0Y0" ;
#INST "ix146" U_SET = "core_top" ;
INST "core_mid1/shift_core2/reg_qout" RLOC = "X0Y3" ;
#INST "core_mid1/shift_core2/reg_qout" U_SET = "core_top" ;
INST "core_mid1/shift_core2/reg_din_int" RLOC = "X0Y3" ;
#INST "core_mid1/shift_core2/reg_din_int" U_SET = "core_top" ;
INST "core_mid1/shift_core1/reg_din_int" RLOC = "X0Y2" ;
#INST "core_mid1/shift_core1/reg_din_int" U_SET = "core_top" ;
INST "core_mid1/shift_core1/reg_qout" RLOC = "X0Y2" ;
#INST "core_mid1/shift_core1/reg_qout" U_SET = "core_top" ;

Figure 7: Implemented View of Multiple RPM Instantiation by Modifying UCF File
10 www.xilinx.com XAPP422 (v1.0) December 3, 2002
1-800-255-7778

Using 5.1i Floorplanner to Create RPMs
R

INST "core_mid2/shift_core2/reg_qout" RLOC = "X0Y1" ;
#INST "core_mid2/shift_core2/reg_qout" U_SET = "core_top" ;
INST "core_mid2/shift_core2/reg_din_int" RLOC = "X0Y1" ;
#INST "core_mid2/shift_core2/reg_din_int" U_SET = "core_top" ;
INST "core_mid2/shift_core1/reg_din_int" RLOC = "X0Y0" ;
#INST "core_mid2/shift_core1/reg_din_int" U_SET = "core_top" ;
INST "core_mid2/shift_core1/reg_qout" RLOC = "X0Y0" ;
#INST "core_mid2/shift_core1/reg_qout" U_SET = "core_top" ;

• Back in the project navigator window, double click on MAP in the Process Window to
implement design.

• Open Map report by double clicking on Map Report under Map and browse to section 7.
Section 7 - RPMs

u1/hset
u1/core_mid2/shift_core2/hset
u1/core_mid2/shift_core1/hset
u1/core_mid1/shift_core2/hset
u1/core_mid1/shift_core1/hset
u0/hset
u0/core_mid2/shift_core2/hset
u0/core_mid2/shift_core1/hset
u0/core_mid1/shift_core2/hset
u0/core_mid1/shift_core1/hset

• As the map report indicated, Map has generated H_SET from the design. Use this section
as a reference, modify core_top.ncf to normalize the each H_SET in order to keep the
RPM shape.

- Cut and paste the following four lines into your ncf.
INST core_mid1/shift_core1 RLOC = X0Y0;
INST core_mid1/shift_core2 RLOC = X0Y0;
INST core_mid2/shift_core1 RLOC = X0Y0;
INST core_mid2/shift_core2 RLOC = X0Y0;

• Right click on the map report, select re-run all, and check section 7 of the map report.
Section 7 - RPMs

u1/core_mid1/hset
u1/core_mid2/hset
u1/hset
u0/core_mid1/hset
u0/core_mid2/hset
u0/hset

• Again, add to the modified NCF file the following constraints to normalize the design. A
completed modified NCF file is included in the rpm_files_1 folder. (core_top_mod.ncf).
This step is required because we need to normalize the RPM at each level of hierarchy.

INST core_mid1 RLOC = X0Y0;
INST core_mid2 RLOC = X0Y0;

• Save the NCF file, right click on Implement Design in the Process Window and Rerun.

• Check the map report to make sure now only the top level instantiation has been treated
as default H_SET.

Section 7 - RPMs

u0/hset
u1/hset
XAPP422 (v1.0) December 3, 2002 www.xilinx.com 11
1-800-255-7778

Using 5.1i Floorplanner to Create RPMs
R

• Double click on View/Edit Placed Design (Floorplanner) to verify the correct design
implementation (Figure 8).

• Remember, adding RLOC=X0Y0 at each intermediate hierarchical node is needed at
each level of instantiation.

Lab Two Conclusion
Workaround A, uniquification, allows each RPM instantiation to be treated individually. It works
for RPMs with or without hierarchical structure. However, since it involves duplicating netlist and
ncf files, the project size and file management could be a concern.

Workaround B, flattened RPMs, also allow each RPM instantiation to be treated individually.
Since it does not require the duplication of any file, the project size and number of files to
manage could be much smaller. However, the RPMs are not always easily captured as flat
designs.

Although Workaround C would work on RPMs with or without hierarchical structure and doesn’t
require duplication of any files, it binds multiple instantiations of RPMs as one RPM. This
approach can be cumbersome and inflexible, especially as the number of instances increases.

Workaround D is, generally, the most flexible solution . It works best on RPMs with hierarchical
structure and does not require duplication of any files. It keeps each RPM instantiation as
separate entity. One minor side case does not work with this method: if the hierarchical node
contains only one element in which case MAP will not generate H_SET containing only one
element.

This method will be incorporated to a future version of ISE so manual workarounds are not
necessary.

Each workaround has its pros and cons. Use the appropriate workaround to better suit each
individual design.

Conclusion After reading this application note and running through the labs, you should have a good
understanding of how to use the Floorplanner’s “MacroBuilder” capability to generate and use
RPMs, work arounds for designs containing multiple RPMs, and the limitation of using XST for
the macro builder flow.

Figure 8: Implemented View of Workaround D
12 www.xilinx.com XAPP422 (v1.0) December 3, 2002
1-800-255-7778

Using 5.1i Floorplanner to Create RPMs
R

For RPMs containing block RAM or multipliers, the use of RPM_GRID should be used to keep
the relative placement between sliced logic and block RAM or multipliers. Xilinx Application
Note XAPP416 has more detailed description on implementation of RPM_GRID.

Revision
History

The following table shows the revision history for this document.

Date Version Revision

12/02/02 1.0 Initial Xilinx release.
XAPP422 (v1.0) December 3, 2002 www.xilinx.com 13
1-800-255-7778

http://www.xlinx.com/xapp/xapp416.pdf

	Summary
	Introduction
	Lab One
	RPM Generation (NGDBUILD FLOW with Synthesis)
	RPM Generation (POST PAR FLOW without Synthesis)
	Instantiation of RPM
	Lab One Conclusion

	Lab Two
	Implementation of a Top-Level Design Containing Two Instances of an RPM
	Modification of the Project
	A. Workaround for RPMs with Hierarchical Structure via “Uniquification”
	B. Workaround for RPMs with Flattened Structure
	C. Workaround by Modifying Constraints File
	D. Workaround by Augmenting the NCF Constraints

	Lab Two Conclusion

	Conclusion
	Revision History

