
Summary This application note describes in-circuit partial reconfiguration of RocketIO™ transceiver
attributes using the Virtex-II Pro™ internal configuration access port (ICAP). The solution uses
a Virtex-II Pro device with an IBM PowerPC™ 405 (PPC405) processor to perform a partial
reconfiguration of the RocketIO multi-gigabit transceivers (MGTs) pre-emphasis and differential
swing control attributes. These attributes must be modified to optimize the MGT signal
transmission prior to and after a system has been deployed in the field. This solution is also
ideal for characterization, calibration, and system testing.

The hardware and software elements of this solution can be easily integrated into any
Virtex-II Pro design already utilizing the PLB or OPB bus structures. The reference design uses
a Xilinx intellectual property interface (IPIF) connecting to either the PLB or OPB buses. This
design also provides for a terminal interface using a serial port connection, allowing MGT
attribute settings to be changed through command line entries. Design modules are also
included to facilitate bit-error rate tests (BERT) and pseudo-random binary sequence (PRBS)
diagnostics.

Application note XAPP661 provides a reference design to facilitate BERT along with PRBS
pattern generators. The ICAP module is instantiated and controlled via software and the
PPC405 processor.

Application note XAPP660 documents the partial reconfiguration of MGT attributes using the
device control register (DCR) bus. This black box approach provides a thin IP software based
solution for designers not originally intending to use the PPC405 processor in their design. This
can be a preferred solution for updating the MGT attributes once a slot ID has been sampled,
after power has been applied to a board. The application developer can later expand the
capabilities of the PPC405 in the design through the IBM CoreConnect™ (PLB, OPB) modular
features described in XAPP662.

Introduction Virtex-II Pro devices contain between four and 20 RocketIO MGTs for the creation of high-
speed serial links between devices (up to 3.125 Gb/s per channel). The MGTs have four levels
of pre-emphasis and five levels of differential swing control selectable by RocketIO primitive
attributes. These attributes are initially set in the bitstream by BitGen but can be modified by the
use of ICAP after the device is initially configured. These attributes can be modified to optimize
the transmission of the high-speed serial signals. For more details on these attributes or the
MGTs in general, please refer to the RocketIO User Guide.

Variations in the system environment can impact the transmission characteristics of the high-
speed serial signals. In these situations it can be beneficial to modify the pre-emphasis or
swing control levels for one or all of the MGTs on a Virtex-II Pro device while leaving the rest of
the FPGA design unchanged. For example, when using the MGTs to create high-speed serial
links across a backplane, the distance the signals must travel can change significantly
depending on the slot position of the board. Adjusting the pre-emphasis level to compensate for
the change in distance allows for the highest quality signal transmission at the intended baud
rate.

Application Note: Virtex-II Pro Family

XAPP662 (v1.0) January 13, 2003

In-Circuit Partial Reconfiguration of
RocketIO Attributes
Author: Vince Eck, Punit Kalra, Rick LeBlanc, and Jim McManus

R

XAPP662 (v1.0) January 13, 2003 www.xilinx.com 1
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

http://www.xilinx.com/products/virtex2pro/rocketio.htm
http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/xapp/xapp660.pdf
http://www.xilinx.com/xapp/xapp661.pdf

In-Circuit Partial Reconfiguration of RocketIO Attributes
R

This application note demonstrates a partial reconfiguration controller using software coded in
C running on the PPC405 processor to modify the MGT pre-emphasis (TX_PREEMPHASIS)
and differential swing control (TX_DIFF_CTRL) attributes. The attributes are user selectable.
After power-up and initial configuration with a base FPGA design, the user commands the
PPC405 processor to modify the MGT pre-emphasis and swing control attributes. The PPC405
modifies the MGT attributes by first reading the contents of the specified MGT configuration
frame through ICAP. The desired MGT attribute change is then performed on the recently read
and stored frame. Lastly, the modified frame (held in block RAM or external RAM) is written out
to the MGT configuration memory through the ICAP. The configuration frame data is modified
and written to the ICAP. This flow is described as the Read-Modify-Write (RMW) of a
configuration frame. No partial bitstreams or external devices are required to implement this
solution. This application note describes the ICAP IPIF and the software flow necessary to
perform the in-circuit update of the MGT frame.
2 www.xilinx.com XAPP662 (v1.0) January 13, 2003
1-800-255-7778

http://www.xilinx.com

In-Circuit Partial Reconfiguration of RocketIO Attributes
R

Hardware
Implementation

Overview
Flexible system upgrade solutions can be added to a Virtex-II Pro design by augmenting a base
system consisting of the PPC405, block RAM or external RAM, and the CoreConnect bus
structure with the ICAP module. The Virtex-II Pro RocketIO MGTs support multiple serial I/O
standards where each standard is implemented by a variety of custom hardware modules
driving the RocketIO transceivers. Tailoring the MGT attributes to the desired standard is a
common requirement across the hardware IP modules. Through a small incremental increase
in FPGA Resource Utilization, the ICAP module provides a common solution for modifying
MGT attributes as well as a pathway for system upgrades.

As a specific example of creating a system with an ICAP module and a custom hardware
module, the RocketIO transceiver BERT reference design is the basis for this application note.
A high-level view of the hardware design used to develop this application note is shown in
Figure 1. A common reference design is provided to cover XAPP661 (the RocketIO transceiver
BERT reference design) and XAPP662. This presents an adaptive software based PPC/ICAP
upgradable solution for the MGT BERT.

The PPC405 processor uses the ICAP to perform in-circuit updates of configuration frames.
The design in XAPP661 demonstrates a system using PLB and DCR devices. A PLB
implementation for the ICAP IPIF is integrated for convenience purposes since all other devices
in the design use the PLB bus. The XAPP661 design consists of four PLB slave devices. A
block RAM (BRAM) controller connects 32 KBytes of BRAM to the bus serving as the data and
instruction memory of the processor as well as scratch pad storage for configuration frame
data. A UART module, a two-channel XBERT module, and an ICAP module, each bonded with
an IPIF provide standardized connections to the PLB bus. The processor has two PLB master
connections, one for instruction cache and one for data cache. The bus error address and
status register of the PLB arbiter is the only DCR device in the reference design. XAPP661
contains a more detailed description of the BERT design. Many embedded solutions are
integrated in a modular fashion on boards and in a backplanes. This same embedded
development approach, using the IBM CoreConnect and IPIF, is now available internal to the
FPGA.

Figure 1: High-Level Hardware View of the RocketIO Transceiver BERT
Reference Design with ICAP Module Instantiation

DSOCM

DSPLB

ISPLB

DCR

ISOCM

PPC405

DCM

RstGen

50 MHz
Reference

Clock

PLB

BRAM
CTRL

BRAM

IP
IF UART TERM

IP
IF

Two
Channel
XBERT

MGT0

PLB
Arbiter

40 - 156.25 MHz
Reference

Clock

TX

RX

DIP Switches,
LEDs,

Push Buttons

MGT1
TX

RX

ICAP

IP
IF ICAP

CTRL

x662_01_010203
XAPP662 (v1.0) January 13, 2003 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

In-Circuit Partial Reconfiguration of RocketIO Attributes
R

ICAP Module
The ICAP module, also known as ICAP_VIRTEX2 in the Libraries Guide, is the fundamental
module to make in-circuit reconfiguration in the Virtex-II and Virtex-II Pro devices. The ICAP
block is located in the lower right hand corner of the FPGA. It is used to access the device
configuration registers as well as to transfer configuration data using the SelectMAP™
protocol.

The ICAP primitive provides access to device configuration data when connected to user logic
in the FPGA fabric. It is only available in the Virtex-II series of devices. The protocol used to
communicate with ICAP is a subset of the SelectMAP protocol. ICAP, as indicated by its name,
is an internally accessed resource and not intended for full device configuration. The
PROGRAM, INIT, and DONE signals of SelectMAP are dedicated to initial or full device
configuration and do not exist in the ICAP module (Figure 2). The ICAP module supports
readback and partial re-configuration of its own FPGA. This self-reconfiguration capability
enables adaptive systems based on the PPC405 and the ICAP module. Due to the similarities
of the ICAP and SelectMAP interface, any PPC405 designs based on ICAP can readily extend
their reach to control MGTs within other Virtex-II Pro devices on the same board.

Consistent with the SelectMAP interface, the ICAP module provides Read and Write access to
all configuration data. In the reference design, the ICAP module is a slave IPIF on the PLB bus
controlled by the PPC405 processor. More detailed information about the ICAP module can be
found in the Libraries Guide.

Figure 2: ICAP and SelectMAP Interfaces

ICAP
Module

I[0:7]

CE

BUSY

WRITE

CCLK

O[0:7]

x662_02_120902

Virtex-II Pro
FPGA

D[0:7]

DONE
INIT

CS

BUSY

WRITE

PROGRAM
CCLK

M2 M1 M0
NC NC
4 www.xilinx.com XAPP662 (v1.0) January 13, 2003
1-800-255-7778

http://www.xilinx.com

In-Circuit Partial Reconfiguration of RocketIO Attributes
R

ICAP IPIF and the IBM CoreConnect Bus
The ICAP IPIF supports two variants of the CoreConnect bus, OPB and PLB. This application
note covers the use of the PLB bus IPIF to the ICAP module. The PLB version is used since it
is convenient to integrate with the existing PLB-based BERT reference design described in
XAPP661. Since the PLB structure exists in the BERT design, only a small amount of additional
FPGA resources are required to incorporate the IPIF/ICAP module
(Resource Utilization).

The PLB ICAP IPIF is implemented by connecting the ICAP module to a Xilinx PLB IPIF slave
SRAM module (Figure 3). The PLB IPIF provides standardized PLB bus connections on one
side and SRAM-like connections on the other side. The PLB IPIF makes it very easy to attach
the ICAP module and associated control logic to the PLB CoreConnect bus while using very
little glue logic. For more information regarding the Xilinx PLB IPIF slave SRAM module, see
Virtex-II Pro Platform FPGA Developer’s Kit, Volume 7- hardware IP specifications. The PLB
IPIF used in the PLB ICAP module provides a slave SRAM protocol as described in the IPIF
specification. The version of the PLB IPIF used by the PLB ICAP only supports PLB non-burst
memory transactions (PLB_size[0:3] = 0000, PLB_type[0:2] = 000) of one to four bytes. It
ignores all other PLB transaction sizes and types.

ICAP IPIF

The ICAP IPIF, shown in Figure 4, generates the appropriate ICAP module timing and control
signals for the PLB BERT design implementation.

Figure 3: ICAP IPIF Interface to PLB Bus

ICAP

IPIF Slave SRAM Module

Bus2IP_Clk

Bus2IP_Addr[27:29]

Bus2IP_Data[0:31]

IP2Bus_Data[0:31]

Bus2IP_BE[0:3]

Bus2IP_WrReq

IP2Bus_WrAck

Bus2IP_RdReq

IP2Bus_RdAck

IP2Bus_Retry
IP2Bus_Error
IP2Bus_ToutSup

Bus2IP_Reset

ICAP_IPIF Module

RESET

Bus2IP_CE

CCLK

CE

WRITE

I O D

State
Machine

x662_03_010703

Sync

Async
XAPP662 (v1.0) January 13, 2003 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

In-Circuit Partial Reconfiguration of RocketIO Attributes
R

Consistent with the SelectMap interface and the clocking schemes described in XAPP138,
both the synchronous and asynchronous options of clocking are provided in this application
note. The user may choose one of two clocking options when compiling the design, free-
running CCLK (synchronous) or controlled CCLK (asynchronous) ICAP clocking.

To create a free-running CCLK design, define the constant "SYNCRONOUS_ICAP" using the
Verilog "define SYNCRONOUS_ICAP" statement. To create an asynchronous controlled CCLK
design simply leave out the constant definition statement. The free-running CCLK version wires
the Bus2IP_Clk net to the ICAP CCLK clock port. The nets in and out if the ICAP module must
be properly constrained in order to properly align the Data In, Data Out, and ICAP control
signals with the ICAP CCLK clock.

Please refer to XAPP138, "Virtex FPGA Series Configuration and Readback" for more details
about the SelectMAP mode. The two clocking schemes, free-running CCLK and controlled
CCLK, are also described in XAPP138.

Figure 4: ICAP IPIF Control Logic Block Diagram

ICAP

ICAP_IPIF Module

CCLK

CE

WRITE

I O D

State
Machine

Sync

Async

Bus2IP_Clk
Bus2IP_Data[0:31]

IP2Bus_Data[0:31]

Bus2IP_WrReq

IP2Bus_WrAck

Bus2IP_RdReq

IP2Bus_RdAck

IP2Bus_Retry
IP2Bus_Error
IP2Bus_ToutSup

Bus2IP_Reset

icap_we_o

icap_ce_o

icap_cclk_o

rd_ack

wr_ack

x662_04_010703
6 www.xilinx.com XAPP662 (v1.0) January 13, 2003
1-800-255-7778

http://www.xilinx.com/xapp/xapp138.pdf
http://www.xilinx.com
http://www.xilinx.com/xapp/xapp138.pdf

In-Circuit Partial Reconfiguration of RocketIO Attributes
R

Free-Running CCLK ICAP IPIF

When compiling the design for free-running CCLK ICAP clocking, the logic will be directed to
use the Bus2IP_Clk as the ICAP module clock. The following state machine illustrated in
Figure 5 will be used to generate the proper ICAP control signals. The Bus2IP_Clock for this
reference design is actually an alias of the PLB_Clock.

Figure 5: ICAP IPIF Control Logic with Free-Running ICAP Clocking

S0

S1

S2

S3

S4

Bus2IP_RdReq
OR

Bus2IP_WrReq

!Bus2IP_RdReq
OR

!Bus2IP_WrReq icap_ce_o <= 1
icap_we_o <= 1
rd_ack <= 0
wr_ack <= 0

icap_ce_o <= 1
icap_we_o <= 1

icap_ce_o <= 0
icap_we_o <= write_flag

icap_ce_o <= 1
icap_we_o <= 1
rd_ack <= 0
wr_ack <= 0

icap_ce_o <= 1
icap_we_o <= 1
rd_ack <= !write_flag
wr_ack <= write_flag

Q

Q
S

R

write_flag
Bus2IP_WrReq

S0

Bus2IP_Reset

S4

SET

CLR

x662_05_120902
XAPP662 (v1.0) January 13, 2003 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com

In-Circuit Partial Reconfiguration of RocketIO Attributes
R

Controlled CCLK ICAP IPIF

When compiling the design for controlled CCLK ICAP clocking, direct the logic to use a state
machine generated clock as the ICAP module clock. The following state machine illustrated in
Figure 6 is used to generate the proper ICAP control signals. The ICAP module control pins are
wired directly to the state machine outputs. Please refer to the reference code XAPP661.zip file
for more detail.

Figure 6: ICAP IPIF Control Logic with Controlled ICAP Clocking

S0

S1

S2

S3

S6

Bus2IP_RdReq
OR

Bus2IP_WrReq

!Bus2IP_RdReq
OR

!Bus2IP_WrReq
icap_cclk_o <= 1
icap_ce_o <= 1
icap_we_o <= 1
rd_ack <= 0
wr_ack <= 0

Bus2IP_WrReq

S0

Bus2IP_Reset

S6

S4

S5

icap_cclk_o <= 0
icap_ce_o <= 1
icap_we_o <= 1
rd_ack <= 0
wr_ack <= 0

icap_cclk_o <= 1
icap_ce_o <= 1
icap_we_o <= 1
rd_ack <= 0
wr_ack <= 0

icap_cclk_o <= 0
icap_ce_o <= 0
icap_we_o <= !write_flag
rd_ack <= 0
wr_ack <= 0

icap_cclk_o <= 1
icap_ce_o <= 0
icap_we_o <= !write_flag
rd_ack <= 0
wr_ack <= 0

icap_cclk_o <= 0
icap_ce_o <= 1
icap_we_o <= 1
rd_ack <= 0
wr_ack <= 0

icap_cclk_o <= 1
icap_ce_o <= 1
icap_we_o <= 1
rd_ack <= 1 & !write_flag
wr_ack <= 1 & write_flag

Q

Q
S

R

write_flagSET

CLR

x662_06_120902
8 www.xilinx.com XAPP662 (v1.0) January 13, 2003
1-800-255-7778

http://www.xilinx.com
ftp://ftp.xilinx.com/pub/applications/xapp/xapp661.zip

In-Circuit Partial Reconfiguration of RocketIO Attributes
R

Read Operation

The IPIF module compares the read address with the base address of the PLB ICAP module
before it issues the read request to the ICAP module. The data output of the ICAP module
consists of a single 8-bit word. Only the lower 8 bits [24:31] are wired to the output of the ICAP
module, while bits [0:23] are not used and passed back to the IPIF as zeros.

Read-cycle timing for controlled CCLK operation is illustrated in Figure 7, while free-running
CCLK timing is illustrated in Figure 8. These figures represent the previously described output
of the state machines in the ICAP IPIF control logic. Please refer to Controlled CCLK and Free
Running CCLK sections of XAPP138 for compatible SelectMAP modes of operation.

Figure 7: Read Cycle with Controlled ICAP Clocking

Figure 8: Read Cycle with Free-Running ICAP Clocking

BUS2IP_CLK

Read_Req

ICAP_CE

ICAP_WE

ICAP_CLK

ICAP_DOUT

Read_Ack
x662_07_010903

BUS2IP_CLK

Read_Req

ICAP_CE

ICAP_WE

ICAP_CLK

ICAP_DOUT

Read_Req
x662_08_010903
XAPP662 (v1.0) January 13, 2003 www.xilinx.com 9
1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com/xapp/xapp138.pdf

In-Circuit Partial Reconfiguration of RocketIO Attributes
R

Write Operation

The IPIF module compares the write address with the base address of the ICAP module before
it issues the write request to the ICAP module. Since there is only a single 32-bit word to write
to the ICAP, it is not necessary to multiplex on the Bus2IP_Addr in each write transaction. Only
the lower 8 bits [24:31] are wired to the output of the ICAP module, while bits [0:23] are not
used.

Write cycle timing for controlled CCLK operation is illustrated in Figure 9 while free-running
CCLK timing is illustrated in Figure 10. The timing diagrams represent the output of the state
machines in the previously described ICAP IPIF control logic. Please refer to Controlled CCLK
and Free Running CCLK sections of XAPP138 for compatible SelectMAP modes of operation.

Read/Write Acknowledgment
The OPB and PLB IPIF modules support read and write transactions on their respective
CoreConnect buses. Bus masters on either OPB or PLB require proper read and write
acknowledgement from the attached device to complete a transaction. The PLB ICAP IPIF
uses a simple technique to generate the acknowledgement response once a request has been
received. The ICAP IPIF module acknowledgement is generated after the corresponding read
or write transaction completes at the ICAP module interface. Each slave device attached to the
PLB is assigned a unique base address, distinguishing its read or write requests and
acknowledgements from other slave devices.

Figure 9: Write Cycle with Controlled ICAP Clocking

Figure 10: Write Cycle with Free-Running ICAP Clocking

BUS2IP_CLK

Write_Req

ICAP_CE

ICAP_WE

ICAP_CLK

ICAP_DIN

Write_Ack
x662_09_010903

BUS2IP_CLK

Write_Req

ICAP_CE

ICAP_WE

ICAP_CLK

ICAP_DIN

Write_Ack
x662_10_010903
10 www.xilinx.com XAPP662 (v1.0) January 13, 2003
1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com/xapp/xapp138.pdf

In-Circuit Partial Reconfiguration of RocketIO Attributes
R

Clock Domain
The ICAP IPIF is always synchronized to the Bus2IP_Clk. In this design, the Bus2IP_Clk is
actually the PLB_Clock. The reference design also includes an ICAP interface for use with the
OPB bus, for flexibility in system design.

There are two ways to implement the ICAP module clocking, free-running and controlled CCLK.
The free-running CCLK version wires the Bus2IP_Clk net to the ICAP clock port. The controlled
CCLK version uses a state machine to generate the ICAP CCLK clock. The nets in and out of
the ICAP module must be properly constrained in order to properly align the data in, data out,
and ICAP control signals with the ICAP CCLK clock.

Other Devices on PLB
The PLB arbiter, PLB UART, and PLB BRAM controller are described in XAPP661, RocketIO
transceiver BERT reference design. Please refer to XAPP661 for more detailed information.

Resource Utilization
The ICAP IPIF provides a simple interface to the ICAP module for any design using the
PPC405 and CoreConnect bus. The reference designs software code provides a powerful
mechanism for updating MGT attributes. Initially, the reference design was developed for use
with the Xilinx MGT characterization board suite, however, it is scalable to any Virtex-II Pro
design using MGTs. An existing PLB or OPB based design with the ICAP IPIF is augmented by
using relatively few FPGA fabric (logic and memory) resources because the bulk of the decision
making control logic and the configuration data manipulation is performed by the PPC405
processor. Only the resources required to implement the ICAP IPIF and software memory
storage are represented in Table 1.

Table 1: FPGA Resource Utilization

ICAP IPIF Resources

Utilization by Device

XC2VP4 XC2VP7 XC2VP20 XC2VP50

Slices Used 47 1.6% 1.0% 0.5% 0.2%

BRAMs Used 2(1) 7.0% 4.6% 2.3% 0.9%

Notes:
1. For core RMW software functionality
XAPP662 (v1.0) January 13, 2003 www.xilinx.com 11
1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com/xapp/xapp661.pdf

In-Circuit Partial Reconfiguration of RocketIO Attributes
R

Software
Implementation

Overview
In designing a high-speed serial interconnect, getting data from point A to point B
encompasses many engineering disciplines including semiconductor physics, device
fabrication and packaging, board layout, material science, electromagnetics, and
communication theory. Reliable communications requires the flexibility inherent in the Virtex-II
Pro RocketIO transceivers. In particular, the ability to dynamically set the amount of pre-
emphasis and the differential voltage swing allows a fielded system to compensate for the
frequency characteristics of the path between two points. This compensation can be initiated by
a user sitting in front of a terminal window through a human oriented user interface in the
laboratory or it can be managed by the PPC405 hard core embedded in the Virtex-II Pro FPGA
as a closed loop adaptive system. Whatever the form of the input stimulus, the underlying agent
implementing the desired action is the read-modify-write (RMW) method of update. The core
RMW functionality uses approximately two BRAMs (see Table 1), or the equivalent amount of
storage in external RAM.

An adaptive system adjusts itself to its operating environment. There are two examples of
operational awareness in the RocketIO RMW software. In the first example, the PPC405 uses
ICAP to interrogate the FPGA for its IDCODE and for all enabled MGTs. This hardware scan
allows the software to dynamically create user input menus where the MGT choices available
for setting the RocketIO attributes reflects the currently instantiated MGTs.

The second example is the added capability provided by the user interface to select and update
the MGT attributes and invoke the BERT in a lab setting. However, this process could be
performed as an automated adaptive loop by the PPC405, for a fielded system (Figure 11). The
same benefits of updating the MGT attributes can be applied in an adaptive fashion to any
serial interface protocol.

Figure 11: Typical Use Scenario

Select
Package Type

(User Input)

Select
Clock Source

(User Input)

Discover Enabled
RocketIO MGTs

(ICAP)

Discover Device
IDCODE

(ICAP)

Set RocketIO
Attributes

(User Input + ICAP)

Run RocketIO
BERT Test

(User Input + MGTs)

Main Menu
(User Input)

x662_105_010603
12 www.xilinx.com XAPP662 (v1.0) January 13, 2003
1-800-255-7778

http://www.xilinx.com

In-Circuit Partial Reconfiguration of RocketIO Attributes
R

The RMW method of updating a RocketIO MGT frame involves reading a frame associated with
an MGT, modifying the desired bits within the retrieved frame while leaving all the other frame
bits unaltered, and writing back the updated MGT frame. This RMW flow uses the Virtex-II Pro
ICAP block to configure the FPGA fabric. The software logic and data structures used to
successfully update the RocketIO pre-emphasis, TX_PREEMPHASIS, and differential swing,
TX_DIFF_CTRL, attributes of an MGT frame will be presented in this section. For further
information on the bit-level details of the configuration bitstream please see the configuration
section of the Virtex-II Pro Platform FPGA user guide.

The system discussed in this application note consists of a RocketIO characterization board
(target) and a PC (host) connected to the target’s serial port (9600, 8-N-1, No flow control). A
simple command-line based user interface is provided through a host terminal window. A
typical user flow through the terminal window menu screens is highlighted in the User
Interface section. A detailed look at the RMW software implementation is provided in the RMW
Software Implementation to Set RocketIO Attributes section.

User Interface
On power-up or after a full re-configuration of the FPGA, a variety of setup operations are
performed before the first menu is displayed on the terminal window. The software adapts to its
environment by determining the IDCODE, saving the COR register state for later restoration,
and scanning the underlying Virtex-II Pro FPGA for all enabled RocketIO transceivers. After
these initial steps, the ML32x start-up screen is presented to the user. The start-up screen
requires the user to consider the Virtex-II Pro package type and RocketIO transceiver clock
source before entering the ML32x main menu. The device packages supported are FG456,
FF672, and FF1152. The default setting is the FF672 package. The source clock for the
RocketIO transceiver can be provided from an onboard crystal oscillator (BOARD OSC, default
setting) or from an external signal generator connected to the board’s SMA inputs (SMA
setting). These two settings along with the automatic determination of the top or bottom
location of the enabled MGTs provides the default clock setting passed on to the BERT
characterization software when it is launched from the ML32x main menu.

Figure 12 shows the menu selections available through both the start-up screen and the main
menu. Figures 13 through 22 are meant to take the user through a typical scenario from the
initial Start-Up screen to setting the RocketIO attributes, running the BERT test, and querying
some of the Virtex-II Pro registers. The sequence of screen shots and their captions is offered
as a quick means to familiarize the reader with the software’s user interface and capabilities
before running any code.

Navigating from the start-up screen (Figure 13) to the RocketIO BERT test (Figure 17) is
accomplished by first picking selection #3 on the start-up screen and then selecting #2 from the
main menu (Figure 14). Within a few seconds, the RocketIO transceiver status screen
(Figure 18) becomes visible. If the RocketIO characterization board is physically connected for
loopback operations, a line rate will be displayed. Please see XAPP 661 for details on the
RocketIO BERT test.

Modifying the TX_PREEMPHASIS or the TX_DIFF_CTRL attributes of the RocketIO
transceivers is done through selection #1. A user can switch back and forth, as desired,
between selection #1, to calibrate the MGTs, and selection #2, to characterize the MGTs.
Although selecting between calibration and characterization modes is offered to a user as a
menu choice, this decision could be written as a PPC405 software control loop to adaptively
optimize the RocketIO attributes.

Figure 15 shows the MGT attribute update screen. The menu of available MGTs is dynamically
created each time the update screen is entered. The names of the enabled MGTs and their
physical locations on the Virtex-II Pro device is reflected by the row and column location of the
MGT name in the menu. MGTs not enabled in the configured FPGA are denoted by asterisks.

Figure 19 and Figure 20 show the results of scanning the Virtex-II Pro device for all enabled
RocketIO transceivers. The X,Y coordinates displayed are consistent with the coordinate
system used by the Xilinx FPGA_EDITOR. For instance, a RocketIO MGT at X0,Y0 indicates
XAPP662 (v1.0) January 13, 2003 www.xilinx.com 13
1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com/xapp/xapp661.pdf

In-Circuit Partial Reconfiguration of RocketIO Attributes
R

the MGT on the bottom, left-hand side of the device, whereas an MGT at X0,Y1 is the top, left-
hand side MGT. The three enabled MGTs shown in Figure 19, Figure 20, and Figure 21 are on
the bottom of the device.

In addition to the RocketIO calibration and characterization functionality, the main menu offers
selections to read several of the configuration registers as shown in Figure 21 and Figure 22.
Bit level details of these registers are described in the Virtex-II Pro Platform FPGA user guide.

Figure 12: Menu Selection Flow

Set
RocketIO Attributes

(Fig. 15)

Main Menu
(Fig. 14)

Run
RocketIO BERT Test

(Fig. 17)

Get
RocketIO Attributes

(Fig. 19)

Read Virtex-II Pro
IDCODE Register

Read Virtex-II Pro
STAT Register

Read Virtex-II Pro
COR Register

Start-Up Screen
(Fig. 13)

Select
Package Type

(Fig. 13)

Select
Clock Source

(Fig. 13)

(Fig. 22)

(Fig. 22)

(Fig. 22)

x662_11_010603
14 www.xilinx.com XAPP662 (v1.0) January 13, 2003
1-800-255-7778

http://www.xilinx.com

In-Circuit Partial Reconfiguration of RocketIO Attributes
R

Figure 13: Start-up Screen. After Verifying the Package Type and Clock Source, Select #3 to Enter Main Menu

Figure 14: Main Menu: Select #2 to Run RocketIO BERT Test. Select #1 to Modify RocketIO Attributes
XAPP662 (v1.0) January 13, 2003 www.xilinx.com 15
1-800-255-7778

http://www.xilinx.com

In-Circuit Partial Reconfiguration of RocketIO Attributes
R

Figure 15: RocketIO MGT Selection During Attribute Update

Figure 16: RocketIO TX_PREEMPHASIS, TX_DIFF_CTRL Attribute Update
16 www.xilinx.com XAPP662 (v1.0) January 13, 2003
1-800-255-7778

http://www.xilinx.com

In-Circuit Partial Reconfiguration of RocketIO Attributes
R

Figure 17: RocketIO BERT Test Launched

Figure 18: RocketIO BERT Test Results: Updated Every Four Seconds. Press ESC to Return to Main Menu
XAPP662 (v1.0) January 13, 2003 www.xilinx.com 17
1-800-255-7778

http://www.xilinx.com

In-Circuit Partial Reconfiguration of RocketIO Attributes
R

Figure 19: Scan for Enabled RocketIO MGTs. No Enabled MGTs Found on Top Portion (Y = 1) of XC2VP7.

Figure 20: Scan for Enabled RocketIO MGTs (cont’d).
Several MGTs Found with COMP Bit Enabled on Bottom Portion (Y = 0) of XC2VP7.
18 www.xilinx.com XAPP662 (v1.0) January 13, 2003
1-800-255-7778

http://www.xilinx.com

In-Circuit Partial Reconfiguration of RocketIO Attributes
R

Figure 21: Scan for Enabled RocketIO MGTs (cont’d).
Total of Three Enabled MGTs Found in Current FPGA Configuration.

Figure 22: Results of Reading Virtex-II Pro IDCODE, STAT, and COR Registers
XAPP662 (v1.0) January 13, 2003 www.xilinx.com 19
1-800-255-7778

http://www.xilinx.com

In-Circuit Partial Reconfiguration of RocketIO Attributes
R

RMW Software Implementation to Set RocketIO Attributes
Virtex-II Pro devices are configured or queried by writing and reading a set of internal
configuration registers. The internal configuration memory is partitioned into segments called
"Frames".Though the number and size of the frames varies with the device size, access to
configuration data is quantized at the frame level. Each RocketIO transceiver is associated with
its own configuration frame. There are many RocketIO transceiver attributes that can be set
through the configuration bitstream loaded at power-up. The configuration bitstream, a
sequence of configuration commands and data frames, sets the initial value of the RocketIO
attributes. By using the RMW software, changes to the transceiver attributes can be made after
the initial configuration operation, without re-configuring the entire FPGA. A generalized view of
the process of assembling the header commands, the data frame, and trailer commands to
affect a RocketIO attribute change is shown in Figure 23.

The differential voltage swing, TX_DIFF_CTRL, of a RocketIO transceiver can take on five
settings. The transceiver pre-emphasis, TX_PREEMPHASIS, can be set from 10% to 33%
through four available presets. Table 2 and Table 3 lists the RocketIO attributes modifiable by
the reference design software.

Figure 23: RMW Flow to Update MGT Frames

Input Stimulus
(Get Input)

Process Request
(MGT Update)

Output Results
(Store Output)

Modify Header with Frame
Location

Write Readback Header
Commands

(Memory to ICAP)

Processor Modifies MGT
Attribute Bits Based on Input

Stimulus

Write Header Commands
(Memory to ICAP)

Write MGT Configuration
Frame

(Memory to ICAP)

Read MGT Configuration
Frame

(ICAP to Memory)

Write Trailer Commands
(Memory to ICAP)

Main Process

Result Analysis
(Decision on Next Action)

x662_22_121102
20 www.xilinx.com XAPP662 (v1.0) January 13, 2003
1-800-255-7778

http://www.xilinx.com

In-Circuit Partial Reconfiguration of RocketIO Attributes
R

Header
When writing, reading a configuration frame, or accessing the Virtex-II Pro internal
configuration registers, the RMW software uses a set of pre-defined static C-code arrays to
initiate the conversation with the Virtex-II Pro processor’s configuration circuitry and send the
appropriate command sequence. Each header section begins with a dummy word
(0xFFFFFFFF) followed by the sync word (0xAA995566). The FPGA configuration circuitry
uses the sync word to establish 32-bit alignment of the incoming byte stream. Table 4 shows
the types of pre-defined headers that are currently used by the RMW software.

Operations that read configuration registers consist of a header section followed by a trailer
section without the need for an ID code or frame address information. Each configuration
register’s address is embedded within the command. However, when writing a configuration
register the device IDCODE is required to be included in the command sequence. Similarly,
reading or writing frame data requires the device IDCODE, and additionally the address of the
targeted frame. For example, the write configuration frame and read configuration frame
headers contain a device specific product ID code (Table 5). This code is automatically set by
the software to reflect the FPGA the software is executed on. The byte offset into the Write
(WCFG) and Read (RCFG) frame command header is also listed in Table 5. An X, Y coordinate
system consistent with the view FPGA_EDITOR provides is used to address frames within
Virtex-II Pro devices (Table 6 and Table 7). The hexadecimal values corresponding to the X and

Table 2: Differential Voltage Swing Settings

Setting Number
FPGA_EDITOR

Setting
TX_DIFF_CTRL

Attribute
C-Code Attribute

Byte Value

1 400 400 mV 0x20

2 500 500 mV 0x00

3 600 600 mV 0x40

4 700 700 mV 0x60

5 800 800 mV 0x22

Table 3: Transceiver Pre-emphasis Settings

Setting Number
FPGA_EDITOR

Setting
TX_PREEMPHASIS

Attribute
C-Code Attribute

Byte Value

1 0 10% 0x00

2 1 20% 0x10

3 2 25% 0x08

4 3 33% 0x18

Table 4: Pre-defined Command Headers

Read STAT Register

Read IDCODE Register

Write Configuration Frame

Read Configuration Frame

Read COR Register

Write COR Register
XAPP662 (v1.0) January 13, 2003 www.xilinx.com 21
1-800-255-7778

http://www.xilinx.com

In-Circuit Partial Reconfiguration of RocketIO Attributes
R

Y frame addresses for each MGT are also listed. Within this document, the static header arrays
shown are for an XC2VP7 device.

Read Status Register

The header sequence of 20 bytes is written byte by byte to the ICAP port beginning with array
index 0 to array index 19. Once the header is written, a dummy byte read is performed followed
by a read of the expected four status bytes. Communication with the ICAP port terminates with
the sending of the trailer sequence.

static char read_status[20] = {
0xFF, 0xFF, 0xFF, 0xFF, /* Dummy Word */
0xAA, 0x99, 0x55, 0x66, /* Sync Word */
0x28, 0x00, 0xE0, 0x01, /* Read Status Register */
0x00, 0x00, 0x00, 0x00, /* Pad */
0x00, 0x00, 0x00, 0x00, /* Pad */
};

Table 5: Command Header IDCODE and Offset

FPGA IDCODE (HEX)

Address Byte Offset Address Byte Offset

(RCFG) (WCFG)

X Y X Y

XC2VP4 v1 23 E0 93 29 30 37 38

XC2VP7 v1 24 A0 93 29 30 37 38

Notes:
1. The letter "v" indicates a device revision code in HEX

Table 6: Bottom MGT Addressing and Naming

X Y XC2VP4 XC2VP7 X Address Byte Value Y Address Byte Value

0 0 MGT19 MGT21 0x02 0x06

1 0 MG18 MGT19 0x04 0x06

2 0 MGT18 0x06 0x06

3 0 MGT16 0x08 0x06

Table 7: Top MGT Addressing and Naming

X Y XC2VP4 XC2VP7 X Address Byte Value Y Address Byte Value

0 1 MGT6 MGT4 0x02 0x00

1 1 MG17 MGT6 0x04 0x00

2 1 MGT7 0x06 0x00

3 1 MGT9 0x08 0x00
22 www.xilinx.com XAPP662 (v1.0) January 13, 2003
1-800-255-7778

http://www.xilinx.com

In-Circuit Partial Reconfiguration of RocketIO Attributes
R

Read ID Code Register

The header sequence of 20 bytes is written byte by byte to the ICAP port beginning with array
index 0 to array index 19. Once the header is written, a dummy byte read is performed, followed
by a 4-byte read of the product ID code. Communication with the ICAP port terminates with the
sending of the trailer sequence.

static char read_id[20] = {
0xFF, 0xFF, 0xFF, 0xFF, /* Dummy Word */
0xAA, 0x99, 0x55, 0x66, /* Sync Word */
0x28, 0x01, 0xC0, 0x01, /* Read Product ID Code Register */
0x00, 0x00, 0x00, 0x00, /* Pad */
0x00, 0x00, 0x00, 0x00 /* Pad */
};

Write Configuration Frame

The header sequence of 44 bytes is written byte by byte to the ICAP port beginning with array
index 0 to array index 43. Once the header is written, the actual frame data is written, followed
by a pad frame. Communication with the ICAP port terminates with the sending of the trailer
sequence.

static char cmd_writeframe[44] = {
0xFF, 0xFF, 0xFF, 0xFF, /* Dummy Word */
0xAA, 0x99, 0x55, 0x66, /* Sync Word */
0x30, 0x00, 0x80, 0x01, /* Write to CMD Register */
0x00, 0x00, 0x00, 0x07, /* Command RCRC - Reset CRC Register */
0x30, 0x01, 0xC0, 0x01, /* Write ID Code Register with next word */
0x01, 0x24, 0xA0, 0x93, /* XC2VP7 Product Code written to ID Register */
0x30, 0x00, 0x80, 0x01, /* Write to CMD Register */
0x00, 0x00, 0x00, 0x01, /* Command WCFG - Write Configuration Data */
0x30, 0x00, 0x20, 0x01, /* Write to Frame Address Register(FAR) */
0x04, 0x02, 0x00, 0x00, /* MGT Frame Address of Interest */
0x30, 0x00, 0x40, 0xD4, /* Write 212 words to Frame Data Input

Register(FDRI) */
};

Read Configuration Frame

The header sequence of 44 bytes is written byte by byte to the ICAP port beginning with array
index 0 to array index 43. Once the header is written, a dummy byte read is performed, followed
by a pad frame read and then the read back of the actual frame data. Communication with the
ICAP port terminates with the sending of the trailer sequence.

static char cmd_readframe[44] = {
0xFF, 0xFF, 0xFF, 0xFF, /* Dummy Word */
0xAA, 0x99, 0x55, 0x66, /* Sync Word */
0x30, 0x01, 0xC0, 0x01, /* Write ID Code Register with next word */
0x01, 0x24, 0xA0, 0x93, /* XC2VP7 Product Code written to ID Register */
0x30, 0x00, 0x80, 0x01, /* Write to CMD Register */
0x00, 0x00, 0x00, 0x04, /* Command RCFG - Read Configuration Data */
0x30, 0x00, 0x20, 0x01, /* Write to Frame Address Register(FAR)*/
0x04, 0x02, 0x00, 0x00, /* MGT Frame Address of Interest */
0x28, 0x00, 0x60, 0x00, /* Read from Frame Data Output Register(FDRO) */
0x48, 0x00, 0x00, 0xD4, /* Read 212 words in command given above */
0x00, 0x00, 0x00, 0x00 /* Pad */
};
XAPP662 (v1.0) January 13, 2003 www.xilinx.com 23
1-800-255-7778

http://www.xilinx.com

In-Circuit Partial Reconfiguration of RocketIO Attributes
R

Read/Write Configuration Options Register

The configuration options register (COR) is used in the RMW flow to disable CRC checking
during the RocketIO MGT frame update. Upon entry to the RMW software the CRC_BYPASS
bit in the COR is set to force all CRC checks to match against the predetermined value of
0x0000DEFC. The COR stores many bitgen created user options so a RMW of the COR
register is done when altering CRC_BYPASS. Before exiting the RMW software, the COR is
restored to its original contents. The header section of the command used to read the COR,
and the header section for the COR write operation follow. The contents written to the COR are
the values present in the write_cor[] command array at byte offset 20 to byte offset 23. The
values shown are example values.

Read Configuration Options Register

static char read_cor[20] =
{0xFF, 0xFF, 0xFF, 0xFF, /* Dummy Word */
0xAA, 0x99, 0x55, 0x66, /* Sync Word */
0x28, 0x01, 0x20, 0x01, /* Read Configuration Options Register */
0x00, 0x00, 0x00, 0x00, /* Pad */
0x00, 0x00, 0x00, 0x00 /* Pad */
};

Write Configuration Options Register

static char write_cor[24] = {
0xFF, 0xFF, 0xFF, 0xFF, /* Dummy Word */
0xAA, 0x99, 0x55, 0x66, /* Sync Word */
0x30, 0x01, 0xC0, 0x01, /* Write ID Code Register with next word */
0x01, 0x24, 0xA0, 0x93, /* XC2VP7 Product Code written to ID Register */
0x30, 0x01, 0x20, 0x01, /* Write COR with next word */
0x01, 0x05, 0x3F, 0xE5 /* Used to set/reset CRC Bypass in COR */
};

Configuration Frame
Once the desired RocketIO attribute settings are entered by the user through the terminal
interface, the addressed MGT frame is read via the ICAP port and placed in a frame memory
buffer. A device dependent sized frame buffer holds a single MGT frame. The RMW software
allocates 424 bytes for the frame buffer, covering both the XC2VP4 and XC2VP7 devices. Once
read into the frame buffer, only the MGT frame TX_PREEMPHASIS and TX_DIFF_CTRL
attributes are updated and then the frame is written back out the ICAP port to dynamically re-
configure the addressed MGT. There are a variety of C-code constants defined for the four
possible pre-emphasis settings and the five possible differential swing settings. Table 2 and
Table 3 show the byte values associated with the TX_PREEMPHASIS and TX_DIFF_CTRL
attributes. An attribute offset from the beginning of the frame is also defined for both top and
bottom MGTs. The attribute location in the frame differs depending on the top or bottom
location of the RocketIO transceiver (Table 8 and Figure 24) .

Table 8: Attribute Byte Offset and Frame Sizes

Device
Number of

Frames
Frame Length

(Bytes)
Attribute Byte Offset

(Top MGT)
Attribute Byte Offset

(Bottom MGT)

XC2VP4 884 424 2 412

XC2VP7 1,320 424 2 412
24 www.xilinx.com XAPP662 (v1.0) January 13, 2003
1-800-255-7778

http://www.xilinx.com

In-Circuit Partial Reconfiguration of RocketIO Attributes
R

Trailer
Terminating each command sequence, a DESYNCH command (Table 9) is written to the
Virtex-II Pro device forcing a subsequent re-synchronization with a SYNC word to re-establish
32-bit boundaries. This allows code (independent of the state of the 32-bit alignment) to be
written. Alignment is not guaranteed and each command sequence is independently
responsible for establishing 32-bit alignment.

RMW Frame Logic
The RMW software contains two key routines to combine the header, configuration frame, and
trailer functions; readframe() and writeframe(). The logic flow in the readframe() routine is listed
in Table 10, while the logic for writeframe() is listed in Table 11. Once an MGT frame is retrieved
and stored in memory, its attributes can be modified and written back to the addressed MGT.

Figure 24: Attribute Location Based on Table 8 Offset Values

Table 9: Command Trailer

0x30, 0x00, 0x80, 0x01 /* Write CMD Register */

0x00, 0x00, 0x00, 0x0D /* Command – DESYNCH */

Table 10: Steps to Read a Frame

Step Number Description

1 Write cmd_readframe[] array with desired MGT address

2 Perform a dummy byte read

3 Read a pad frame (424 Bytes for XC2VP7)

4 Read and store actual MGT data frame (424 Bytes for XC2VP7)

5 Write DESYNCH command

OFFSET

FRAME START MGT FRAME

ATTRIBUTE

x662_23_010602
XAPP662 (v1.0) January 13, 2003 www.xilinx.com 25
1-800-255-7778

http://www.xilinx.com

In-Circuit Partial Reconfiguration of RocketIO Attributes
R

RocketIO BERT Test Software Interface
The main menu interface to the RocketIO BERT test is through a call to the bert_main()
function. Once the BERT test is completed, the user can press the ESCAPE key to return to the
main menu. The global variable BREFCLK_SEL is set in the start-up screen software before
bert_main() can be called from the main menu. The value BREFCLK_SEL takes depends on
three factors, the package type, the clock source, and the location (either top or bottom) of the
RocketIO transceivers instantiated in BERT hardware IP. Table 12 and Table 13 show how the
value BREFCLK_SEL is assigned to either BREFCLK (0) or BREFCLK 2 (1).

Table 11: Steps to Write a Frame

Step Number Description

1 Write cmd_writeframe[] array with desired MGT address

2 Write stored and modified frame buffer (424 Bytes for XC2VP7)

3 Write a pad frame (424 Bytes for XC2VP7)

4 Write CRC (0x0000DEFC) when CRC disabled option selected

5 Write DESYNCH command

6 Write four dummy no-OP words (0x20000000)

Table 12: BREFCLK_SEL Setting for Top MGTs

Package Type Onboard Oscillator SMA Connector

FG456 BREFCLK BREFCLK 2

FF672 BREFCLK 2 BREFCLK

FF1152 BREFCLK 2 BREFCLK

Table 13: BREFCLK_SEL Setting for Bottom MGTs

Package Type Onboard Oscillator SMA Connector

FG456 BREFCLK 2 BREFCLK

FF672 BREFCLK BREFCLK 2

FF1152 BREFCLK BREFCLK 2
26 www.xilinx.com XAPP662 (v1.0) January 13, 2003
1-800-255-7778

http://www.xilinx.com

In-Circuit Partial Reconfiguration of RocketIO Attributes
R

Additional Utility Functions
There are times when reading the Virtex-II Pro configuration registers and MGT frames can aid
in debugging. In keeping with this spirit, there are several menu selections allowing a query of
some of the configuration registers. Figure 22 shows the results of querying the IDCODE,
STAT, and COR registers within the Virtex-II Pro device. These utilities are accessed from main
menu selections #4 through #6, and invoke the get_idcode(), get_status(), and set_cor()
functions respectively. The command sequences used to implement these register operations
are shown in the Read Status Register, Read ID Code Register, Read Configuration
Options Register, and Write Configuration Options Register sections.

Discovering the location of enabled MGTs and their TX_PREEMPHASIS and TX_DIFF_CTRL
attribute settings is also a helpful function. Selection #3 from the Main Menu, "3 - Scan for MGT
Instances," uses the RMW flow to search the device for all enabled RocketIO transceivers and
display their location and controllable attribute settings. Figure 19 and Figure 20 show the
output resulting from scanning for MGTs. The MGT search sequentially looks for MGT frames
with their COMP attribute bit set and notes this in a two row by ten column static array named
mgt_enabled[2][10]. The rows of this array correspond to the top or bottom location of the
MGTs (Y coordinate), while the columns represent the X coordinate. Each enabled RocketIO
transceiver is also added to an array of MGT_ENTRY structures (enabled_mgts[20]). This is
used to dynamically create the names and identify the location of all enabled MGTs whenever
the RocketIO attribute update menu is displayed.

Conclusion This application note describes the in-circuit partial reconfiguration of RocketIO transceiver
attributes using the Virtex-II Pro internal configuration access port (ICAP). This solution uses a
Virtex-II Pro device with an IBM PowerPC 405 (PPC405) processor to perform a partial
reconfiguration of the RocketIO multi-gigabit transceiver’s (MGTs) pre-emphasis and
differential swing control attributes. As a specific example of creating a system with an ICAP
module and a custom hardware module, the RocketIO transceiver BERT reference design is
used as a basis for this application note. A common reference design is provided to cover
XAPP661 and XAPP662. The C language design presents an adaptive software solution,
applicable to any serial interface protocol, for upgrading MGTs using the PPC405 and ICAP.
The XAPP662 design is bundled with the XAPP661 reference design and can be downloaded
from the Xilinx web site at:

ftp://ftp.xilinx.com/pub/applications/xapp/xapp661.zip

Reference 1. Xilinx, Inc., "RocketIO Transceiver User Guide".

2. Xilinx, Inc., "Virtex-II Pro Platform FPGA Developer’s Kit", v1.0, March 2002.

3. Xilinx, Inc., "XAPP138: Virtex Configuration and Readback v2.1", July 2002.

4. Xilinx, Inc., "Virtex-II Pro™ Platform FPGA User Guide".

5. Xilinx, Inc., XAPP660 "Partial Reconfiguration of RocketIO Pre-emphasis and Differential
Swing Control Attributes" by Derek R. Curd, January 2003.

6. Xilinx, Inc., XAPP661 "RocketIO Transceiver Bit-Error Rate Tester" by Dai Huang and Mike
Matera, January 2003

Revision
History

The following table shows the revision history for this document.

Date Version Revision

01/13/03 1.0 Initial Xilinx release.
XAPP662 (v1.0) January 13, 2003 www.xilinx.com 27
1-800-255-7778

ftp://ftp.xilinx.com/pub/applications/xapp/xapp661.zip
http://www.xilinx.com
http://www.xilinx.com/xapp/xapp661.pdf
http://www.xilinx.com/xapp/xapp660.pdf
http://www.xilinx.com/products/virtex2pro/rocketio.htm
http://www.xilinx.com/ise/vii_pro/kit.htm
http://www.xilinx.com/publications/products/v2pro/handbook/index.htm
http://www.xilinx.com/xapp/xapp138.pdf

	Summary
	Introduction
	Hardware Implementation
	Overview
	ICAP Module
	ICAP IPIF and the IBM CoreConnect Bus
	ICAP IPIF
	Free-Running CCLK ICAP IPIF
	Controlled CCLK ICAP IPIF

	Read Operation
	Write Operation

	Read/Write Acknowledgment
	Clock Domain
	Other Devices on PLB
	Resource Utilization

	Software Implementation
	Overview
	User Interface
	RMW Software Implementation to Set RocketIO Attributes
	Header
	Read Status Register
	Read ID Code Register
	Write Configuration Frame
	Read Configuration Frame
	Read/Write Configuration Options Register
	Read Configuration Options Register
	Write Configuration Options Register

	Configuration Frame
	Trailer
	RMW Frame Logic
	RocketIO BERT Test Software Interface
	Additional Utility Functions

	Conclusion
	Reference
	Revision History

