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Preface

About This Manual
This manual describes Xilinx’s Unified Libraries and the attributes/constraints that
can be used with the components.

Before using this manual, you should be familiar with the operations that are common
to all Xilinx software tools: how to bring up the system, select a tool for use, specify
operations, and manage design data. These topics are covered in the Quick Start Guide.

You must consult The Programmable Logic Data Book for device-specific information on
Xilinx device characteristics, including readback, boundary scan, configuration,
length count, and debugging. The Programmable Logic Data Book is available in hard
copy and on the Xilinx web site (http://www.xilinx.com). See http://
www.xilinx.com/partinfo/databook.htm for the current version of this book.

For specific design issues or problems, use the Answers Search function on the Web
(http://www.xilinx.com/support/searchtd.htm) to access the following.

• Answers Database: current listing of solution records for the Xilinx software tools

• Applications Notes: descriptions of device-specific design techniques and
approaches

• Data Sheets: pages from The Programmable Logic Data Book

• XCELL Journal: quarterly journals for Xilinx programmable logic users

• Expert Journals: the latest news, design tips, and patch information on the Xilinx
design environment

If you cannot access the Web, you can install and access the Answers book with the
DynaText online browser in the same manner as the Xilinx book collection. The
Answers book includes information in the Answers Database at the time of this
release.

Manual Contents

Online Manual
If you are viewing this manual online, it is divided into twelve chapters.

• Chapter 1, “Xilinx Unified Libraries”

• Chapter 2, “Selection Guide”

• Chapter 3, “Design Elements (ACC1 to BYPOSC)”

• Chapter 4, “Design Elements (CAPTURE_VIRTEX to DECODE64)”
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• Chapter 5, “Design Elements (F5MAP to FTSRLE)”

• Chapter 6, “Design Elements (GCLK to KEEPER)”

• Chapter 7, “Design Elements (LD to NOR16)”

• Chapter 8, “Design Elements (OAND2 to OXOR2)”

• Chapter 9, “Design Elements (PULLDOWN to ROM32X1)”

• Chapter 10, “Design Elements (SOP3 to XORCY_L)”

• Chapter 11, “Design Elements (X74_42 to X74_521)”

• Chapter 12, “Attributes, Constraints, and Carry Logic”

Chapter 1, ”Xilinx Unified Libraries,” discusses the unified libraries, applicable device
architectures for each library, contents of the other chapters, general naming conven-
tions, and performance issues.

Chapter 2, “Selection Guide,” describes then lists design elements by function that are
explained in detail in the “Design Elements” chapters.

Chapters 3 through 11, “Design Elements,” provide a graphic symbol, functional
description, primitive versus macro table, truth table (when applicable), topology
(when applicable), and schematics for macros of the design elements.

Chapter 12, “Attributes, Constraints, and Carry Logic,” provides information on all
attributes, logical constraints, placement and timing constraints, relationally placed
macros (RPMs), and carry logic.
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Conventions

Typographical
This manual uses the following conventions. An example illustrates each convention.

• Courier font  indicates messages, prompts, and program files that the system
displays.

speed grade: -100

• Courier bold  indicates literal commands that you enter in a syntactical state-
ment.

rpt_del_net=

Courier bold  also indicates commands that you select from a menu.

File → Open

• Italic font denotes the following items.

• Variables in a syntax statement for which you must supply values

edif2ngd design_name

• References to other manuals

See the Development System Reference Guide for more information.

• Emphasis in text

If a wire is drawn so that it overlaps the pin of a symbol, the two nets are not
connected.

• Square brackets “[ ]” indicate an optional entry or parameter. However, in bus
specifications, such as bus [7:0], they are required.

edif2ngd  [option_name] design_name

• Braces “{ }” enclose a list of items from which you choose one or more.

lowpwr = {on | off}

• A vertical bar “|” separates items in a list of choices.

symbol editor_name [bus|pins]

• A vertical ellipsis indicates repetitive material that has been omitted.

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.
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• A horizontal ellipsis “. . .” indicates that an item can be repeated one or more
times.

allow block block_name loc1 loc2 ... locn;

Online Document
Xilinx has created several conventions for use within the DynaText online docu-
ments.

• Red-underlined text indicates an interbook link, which is a cross-reference to
another book. Click on the red-underlined text to open the specified cross-refer-
ence.

• Blue-underlined text indicates an intrabook link, which is a cross-reference within
a book. Click on the blue-underlined text to open the specified cross-reference.

• There are several types of icons.

Iconized figures are identified by the figure icon.

Iconized tables are identified by the table icon.

The Copyright icon displays in the upper-left hand corner on the first page of
every Xilinx online document.

The DynaText footnote icon displays next to the footnoted text.

Double-click on these icons to display figures, tables, copyright information, or
footnotes in a separate window.

• Inline figures display within the text of a document. You can display these figures
in a separate window by clicking on the figure.
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Chapter 1

Xilinx Unified Libraries

This chapter describes the Unified Libraries and the applicable device architectures
for each library. It also briefly discusses the contents of the other chapters, the general
naming conventions, and performance issues.

This chapter consists of the following major sections.

• “Overview”

• “Applicable Architectures”

• “Selection Guide”

• “Design Elements”

• “Schematic Examples”

• “Naming Conventions”

• “Attributes, Constraints, and Carry Logic”

• “Flip-Flop, Counter, and Register Performance”

Overview
Xilinx maintains software libraries with thousands of functional design elements
(primitives and macros) for different device architectures. New functional elements
are assembled with each release of development system software. The catalog of
design elements is known as the “Unified Libraries.” Elements in these libraries are
common to all Xilinx device architectures. This “unified” approach means that you
can use your circuit design created with “unified” library elements across all current
Xilinx device architectures that recognize the element you are using.

Elements that exist in multiple architectures look and function the same, but their
implementations might differ to make them more efficient for a particular architec-
ture. A separate library still exists for each architecture (or architectural group) and
common symbols are duplicated in each one, which is necessary for simulation (espe-
cially board level) where timing depends on a particular architecture.

If you have active designs that were created with former Xilinx library primitives or
macros, you may need to change references to the design elements that you were
using to reflect the Unified Libraries’ elements.

The Libraries Guide describes the primitive and macro logic elements available in the
Unified Libraries for XC3000A, XC3000L, XC3100A, XC3100L, XC4000E, XC4000L,
XC4000EX, XC4000XL, XC4000XV, XC400XLA, XC5200, XC9500, XC9500XL, Spartan,
SpartanXL, and Virtex architectures. Common logic functions can be implemented
with these elements and more complex functions can be built by combining macros
and primitives. Several hundred design elements (primitives and macros) are avail-
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able across multiple device architectures, providing a common base for program-
mable logic designs.

This libraries guide provides a functional selection guide, describes the design
elements, and addresses attributes, constraints, and carry logic.

Applicable Architectures
Design elements for the XC3000, XC4000E, XC4000X, XC5200, XC9000, Spartan, Spar-
tanXL, and Virtex libraries are included in the Xilinx Unified Libraries. Each library
supports specific device architectures. For detailed information on the architectural
families referenced below and the devices in each, refer to the current Programmable
Logic Data Book. (For Virtex device information, refer to the Xilinx web site, http://
www.xilinx.com.)

XC3000 Library
Information appearing under the title of XC3000 pertains to the XC3000A, XC3100A,
XC3000L, and XC3100L families. The XC3000L and XC3100L are identical in architec-
ture and features to the XC3000A and XC3100A, respectively, but operate at a nominal
supply voltage of 3.3 V.

XC4000E Library
Information appearing under the title XC4000E pertains to the XC4000E and XC4000L
families. The XC4000L is identical in architecture and features to the XC4000E but
operates at a nominal supply voltage of 3.3 V.

XC4000X Library
Information appearing under the title XC4000X pertains to the XC4000EX, XC4000XL,
XC4000XV, and XC4000XLA families. The XC4000XL is identical in architecture and
features to the XC4000EX but operates at a nominal supply voltage of 3.3 V. The
XC4000XV has identical library symbols to the XC4000EX and XC4000XL but operates
at a nominal supply voltage of 2.5 V and includes additional features.

XC4000 References
Wherever XC4000 is mentioned, the information applies to all architectures supported
by the XC4000E and XC4000X libraries.

XC5200 Library
The information appearing under the title XC5200 pertains to the XC5200 family.

XC9000 Library
The information appearing under the title XC9000 pertains to the XC9500 and
XC9500XL CPLD families.

Spartan Library
The information appearing under the title Spartan pertains to the Spartan family XCS*
devices.
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SpartanXL Library
The information appearing under the title SpartanXL pertains to the SpartanXL
family XCS*XL devices.

Spartans and Spartan Series References
Wherever Spartans and Spartan series is mentioned, the information applies to all
architectures supported by the Spartan and SpartanXL libraries.

Virtex Library
The information appearing under the title Virtex pertains to the Virtex family XCV*
devices.

Selection Guide
The  “Selection Guide” chapter briefly describes, then tabularly lists the logic
elements that are explained in detail in the “Design Elements” sections. The tables
included in this section are organized into functional categories. They list the avail-
able elements in each category along with a brief description of each element and an
applicability table identifying which libraries (XC3000, XC4000E, XC4000X, XC5200,
XC9000, Spartan, SpartanXL, Virtex) contain the element.

Design Elements
Design elements are organized in alphanumeric order, with all numeric suffixes in
ascending order. For example, FDR precedes FDRS, and ADD4 precedes ADD8,
which precedes ADD16.

The following information is provided for each library element.

• Graphic symbol

• Applicability table (with primitive versus macro identification)

• Functional description

• Truth table (when applicable)

• Topology (when applicable)

• Schematic for macros

Schematic Examples
Schematics are included for each library if the implementation differs.

Design elements with bused or multiple I/O pins (2-, 4-, 8-, 16-bit versions) typically
include just one schematic — generally the 8-bit version. When only one schematic is
included, implementation of the smaller and larger elements differs only in the
number of sections. In cases where an 8-bit version is very large, an appropriate
smaller element serves as the schematic example.
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Naming Conventions
Examples of the general naming conventions for the unified library elements are
shown in the following figures.

Figure 1-1 Naming Conventions

Figure 1-2 Combinatorial Naming Conventions

Refer to the  “Selection Guide” chapter for examples of functional component naming
conventions.

Attributes, Constraints, and Carry Logic
Attributes are instructions placed on symbols or nets in a schematic to indicate their
placement, implementation, naming, directionality, and so forth. Constraints are a
type of attribute used only to limit where an element should be placed. The
“Attributes, Constraints, and Carry Logic” chapter provides information on all
attributes and constraints.

X7764

Clear (Asynchronous)
4-BitCounter, Binary

Load

Clock Enable

Bi-Directional

C B 4 C L E D

CONTROL PINSSIZEFUNCTION

Example 1

Example 2

16-BitFlip-Flop, D-type

Precedence of Control Pins

Precedence of Control Pins

Reset (Synchronous)

Clock Enable

F D 1 6 R E

CONTROL PINSSIZEFUNCTION

X4316

AND3B2

Logic Function

Number of Inputs

Inverting (Bubble) Inputs

Number of Inverting Inputs



Xilinx Unified Libraries

Libraries Guide, Release M1.5 1-5

Flip-Flop, Counter, and Register Performance
All counter, register, and storage functions are derived from the flip-flops (and latches
in XC4000X and SpartanXL) available in the Configurable Logic Blocks (CLBs).

The D flip-flop is the basic building block for all architectures. Differences occur from
the availability of asynchronous Clear (CLR) and Preset (PRE) inputs, and the source
of the synchronous control signals, such as, Clock Enable (CE), Clock (C), Load enable
(L), synchronous Reset (R), and synchronous Set (S). The basic flip-flop configuration
for each architecture follows.

The XC3000 and XC5200 have a direct-connect Clock Enable input and a Clear input.

The XC4000, XC9500XL, and Spartans have a direct-connect Clock Enable input and a
choice of either the Clear or the Preset inputs, but not both.

The basic XC9000 flip-flops have both Clear and Preset inputs.
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Virtex has two basic flip-flop types. One has both Clear and Preset inputs and one has
both asynchronous and synchronous control functions.

The asynchronous and synchronous control functions, when used, have a priority that
is consistent across all devices and architectures. These inputs can be either active-
High or active-Low as defined by the macro. The priority, from highest to lowest is as
follows.

• Asynchronous Clear (CLR)

• Asynchronous Preset (PRE)

• Synchronous Set (S)

• Synchronous Reset (R)

• Clock Enable (CE)

Note: The asynchronous CLR and PRE inputs, by definition, have priority over all the
synchronous control and clock inputs.

For FPGA families, the Clock Enable (CE) function is implemented using two
different methods in the Xilinx Unified Libraries; both are shown in the  “Clock
Enable Implementation Methods” figure.

• In method 1, CE is implemented by connecting the CE pin of the macro directly to
the dedicated Enable Clock (EC) pin of the internal Configurable Logic Block
(CLB) flip-flop. This allows one CE per CLB. CE takes precedence over the L, S,
and R inputs. All flip-flops with asynchronous clear or preset use this method.

• In method 2, CE is implemented using function generator logic. This allows two
CEs per CLB. CE has the same priority as the L, S, and R inputs. All flip-flops with
synchronous set or reset use this method.

The method used in a particular macro is indicated by the inclusion of asynchronous
clear, asynchronous preset, synchronous set, or synchronous reset in the macro’s
description.
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Figure 1-3 Clock Enable Implementation Methods
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Chapter 2

Selection Guide

This chapter provides a CLB count for the design elements in each library plus a list of
the Relationally Placed Modules (RPMs) by family. It also categorizes, by function, the
logic elements that are described in detail in the “Design Elements” sections.

The chapter contains three major sections.

• “CLB Count”

• “Relationally Placed Macros”

• “Functional Categories”

CLB Count
Configurable Logic Blocks (CLBs) implement most of the logic in an FPGA. The
following CLB Count table lists FPGA design elements in alphanumeric order with
the number of CLBs needed for their implementation in each applicable library. Refer
to the  “Applicable Architectures” section of the “Xilinx Unified Libraries” chapter for
information on the specific device architectures supported in each library.

Each XC5200 CLB contains four independent Logic Cells™ (LCs). In the following
table, the numbers in the XC5200 column are the LC4 count.

Each Virtex CLB contains two slices. In the following table, the numbers in the Virtex
column are the combined count for the two slices.

Note: This information is for reference only. The actual count could vary, depending
upon the switch settings of the implementation tools; for example, the effort level in
PAR (Place and Route).

Name XC3000 XC4000E XC4000X XC5200* Spartan SpartanXL Virtex**

ACC4 9 7 7 15 7 7 5

ACC8 17 11 11 27 11 11 9

ACC16 33 19 19 51 19 19 17

ACLK 1 - - - - - -

ADD4 5 4 4 10 4 4 3

ADD8 9 6 6 18 6 6 5

ADD16 17 10 10 34 10 10 9

ADSU4 5 4 4 10 4 4 3

ADSU8 9 6 6 18 6 6 5

ADSU16 17 10 10 34 10 10 9
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AND2 1 - - 1 - - 1

AND3 1 - - 1 - - 1

AND4 1 - - 1 - - 1

AND5 1 1 1 2 1 1 1

AND6 2 1 1 2 1 1 1

AND7 2 1 1 3 1 1 1

AND8 2 1 1 3 1 1 2

AND9 2 1 1 4 1 1 2

AND12 - - - 4 - - 2

AND16 - - - 5 - - 2

BRLSHFT4 4 4 4 4 4 4 8

BRLSHFT8 12 12 12 12 12 12 12

BSCAN - - - 3 - - -

BUFE 1 - - - - - -

BUFE4 1 - - - - - -

BUFE8 1 - - - - - -

BUFE16 1 - - - - - -

BUFG 1 - - 1 - - -

BUFGP - - - 1 - - -

BUFGS - - - 1 - - -

CB2CE 3 2 2 4 2 2 2

CB2CLE 4 3 3 5 3 3 3

CB2CLED 4 3 3 6 3 3 3

CB2RE 3 2 2 4 2 2 2

CB4CE 4 3 3 6 3 3 3

CB4CLE 7 5 5 9 5 5 5

CB4CLED 8 7 7 10 7 7 6

CB4RE 4 4 4 8 4 4 3

CB8CE 8 6 6 13 6 6 6

CB8CLE 13 10 10 18 10 10 9

CB8CLED 14 12 13 22 12 13 12

CB8RE 9 8 8 17 8 8 6

CB16CE 16 12 12 27 12 12 13

CB16CLE 26 18 18 36 18 18 18

CB16CLED 28 25 25 46 25 25 24

CB16RE 18 18 18 35 18 18 13

CC8CE - 5 5 18 5 5 8

CC8CLE - 6 6 19 6 6 9

CC8CLED - 11 11 19 11 11 9

Name XC3000 XC4000E XC4000X XC5200* Spartan SpartanXL Virtex**
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CC8RE - 5 5 18 5 5 9

CC16CE - 9 9 34 9 9 16

CC16CLE - 10 10 35 10 10 17

CC16CLED - 19 19 35 19 19 17

CC16RE - 9 9 34 9 9 17

CD4CE 4 3 3 6 3 3 3

CD4CLE 7 5 5 10 5 5 5

CD4RE 5 6 5 9 6 5 3

CD4RLE 10 9 9 17 9 9 7

CJ4CE 2 2 2 4 2 2 2

CJ4RE 2 4 4 4 4 4 2

CJ5CE 3 3 3 5 3 3 3

CJ5RE 3 5 5 5 5 5 3

CJ8CE 4 4 4 8 4 4 4

CJ8RE 4 8 8 8 8 8 4

COMP2 1 1 1 1 1 1 1

COMP4 4 1 1 3 1 1 2

COMP8 9 4 4 5 4 4 3

COMP16 17 9 9 11 9 9 6

COMPM2 3 1 1 5 1 1 1

COMPM4 8 2 2 13 2 2 5

COMPM8 19 8 8 27 8 8 11

COMPM16 39 21 21 64 21 21 24

COMPMC8 - 7 7 18 7 7 8

COMPMC16 - 11 11 34 11 11 16

CR8CE 8 8 8 8 8 8 8

CR16CE 16 16 16 16 16 16 16

CY_INIT - - - 1 - - -

CY_MUX - - - 2 - - -

D2_4E 2 2 2 4 2 2 2

D3_8E 4 4 4 8 4 4 4

D4_16E 16 16 16 32 16 16 16

DEC_CC4 - - - 2 - - 1

DEC_CC8 - - - 3 - - 1

DEC_CC16 - - - 5 - - 2

DECODE4 - - - 2 - - 1

DECODE8 - - - 3 - - 2

DECODE16 - - - 5 - - 2

DECODE32 - - - 9 - - 4

Name XC3000 XC4000E XC4000X XC5200* Spartan SpartanXL Virtex**
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DECODE64 - - - 18 - - 8

F5_MUX - - - 1 - - -

F5MAP - - - 1 - - -

FD 1 - - 1 - - -

FD_1 1 - - 1 - - -

FD4CE 4 2 2 4 2 2 2

FD4RE 2 4 4 4 4 4 2

FD8CE 4 4 4 8 4 4 4

FD8RE 4 8 8 8 8 8 4

FD16CE 8 8 8 16 8 8 8

FD16RE 8 16 16 16 16 16 8

FDC 1 1 1 1 1 1 -

FDC_1 1 1 1 1 1 1 -

FDCE 1 1 1 1 1 1 -

FDCE_1 1 1 1 1 1 1 -

FDP - 1 1 1 1 1 -

FDP_1 - 1 1 1 1 1 -

FDPE - - - 1 - - -

FDPE_1 - 1 1 1 1 1 -

FDR 1 1 1 1 1 1 -

FDRE 1 1 1 1 1 1 -

FDRS 1 1 1 1 1 1 -

FDRSE 1 2 2 3 2 2 -

FDS 1 1 1 1 1 1 -

FDSE 1 1 1 1 1 1 -

FDSR 1 1 1 1 1 1 -

FDSRE 1 2 2 3 2 2 -

FJKC 1 1 1 1 1 1 1

FJKCE 1 1 1 1 1 1 1

FJKP - 1 1 1 1 1 1

FJKPE - 1 1 1 1 1 1

FJKRSE 2 2 2 3 2 2 1

FJKSRE 2 2 2 3 2 2 1

FTC 1 1 1 1 1 1 1

FTCE 1 1 1 1 1 1 1

FTCLE 1 1 1 2 1 1 1

FTCLEX - - - - - - 1

FTP - 1 1 1 1 1 1

FTPE - 1 1 1 1 1 1

Name XC3000 XC4000E XC4000X XC5200* Spartan SpartanXL Virtex**
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FTPLE - 1 1 2 1 1 1

FTRSE 1 2 2 3 2 2 1

FTRSLE 3 2 2 4 2 2 2

FTSRE 1 2 2 3 2 2 1

FTSRLE 3 2 2 4 2 2 2

GCLK 1 - - - - - -

IFD - - - 1 - - -

IFD_1 - - - 1 - - -

IFD4 - - - 4 - - -

IFD8 - - - 8 - - -

IFD16 - - - 16 - - -

ILD - - - 1 - - 1

ILD_1 - - - 1 - - 1

ILD4 - - - 4 - - 2

ILD8 - - - 8 - - 4

ILD16 - - - 16 - - 8

IOPAD - - - 1 - - -

LD - - 1 1 - 1 -

LD4 - - 4 - - 4 2

LD8 - - 8 - - 8 4

LD16 - - 16 - - 16 8

LD4CE - - 4 4 - 4 2

LD8CE - - 8 8 - 8 4

LD16CE - - 16 16 - 16 8

LD_1 - - 1 1 - 1 -

LDC - - 1 1 - 1 -

LDC_1 - - 1 1 - 1 -

LDCE - - 1 1 - 1 -

LDCE_1 - - - 1 - - -

LDPE - - 1 - - 1 -

LDPE_1 - - 1 - - 1 -

M2_1 1 1 1 1 1 1 1

M2_1B1 1 1 1 1 1 1 1

M2_1B2 1 1 1 1 1 1 1

M2_1E 1 1 1 1 1 1 1

M4_1E 3 1 1 1 1 1 1

M8_1E 6 3 3 7 3 3 2

M16_1E 11 7 7 14 7 7 5

NAND2 1 - - 1 - - 1

Name XC3000 XC4000E XC4000X XC5200* Spartan SpartanXL Virtex**
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NAND3 1 - - 1 - - 1

NAND4 1 - - 1 - - 1

NAND5 1 1 1 2 1 1 1

NAND6 2 1 1 2 1 1 1

NAND7 2 1 1 3 1 1 1

NAND8 2 1 1 3 1 1 2

NAND9 2 1 1 4 1 1 2

NAND12 - - - 4 - - 2

NAND16 - - - 5 - - 2

NOR2 1 - - 1 - - 1

NOR3 1 - - 1 - - 1

NOR4 1 - - 1 - - 1

NOR5 1 1 1 2 1 1 1

NOR6 2 1 1 2 1 1 1

NOR7 2 1 1 3 1 1 1

NOR8 2 1 1 3 1 1 2

NOR9 2 1 1 4 1 1 2

NOR12 - - - 4 - - 2

NOR16 - - - 5 - - 2

OFD - - - 1 - - -

OFD_1 - - - 1 - - -

OFD4 - - - 4 - - -

OFD8 - - - 8 - - -

OFD16 - - - 16 - - -

OFDE - - - 1 - - -

OFDE_1 - - - 1 - - -

OFDE4 - - - 4 - - -

OFDE8 - - - 8 - - -

OFDE16 - - - 16 - - -

OFDT - - - 1 - - -

OFDT_1 - - - 1 - - -

OFDT4 - - - 4 - - -

OFDT8 - - - 8 - - -

OFDT16 - - - 16 - - -

OR2 1 - - 1 - - 1

OR3 1 - - 1 - - 1

OR4 1 - - 1 - - 1

OR5 1 1 1 2 1 1 1

OR6 2 1 1 2 1 1 1

Name XC3000 XC4000E XC4000X XC5200* Spartan SpartanXL Virtex**
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OR7 2 1 1 3 1 1 1

OR8 2 1 1 3 1 1 2

OR9 2 1 1 3 1 1 2

OR12 - - - 4 - - 2

OR16 - - - 5 - - 2

RAM16X2 - 1 1 - 1 1 -

RAM16X2D - 2 2 - 2 2 2

RAM16X2S - 1 1 - 1 1 2

RAM16X4 - 2 2 - 2 2 -

RAM16X4D - 4 4 - 4 4 4

RAM16X4S - 2 2 - 2 2 4

RAM16X8 - 4 4 - 4 4 -

RAM16X8D - 8 8 - 8 8 8

RAM16X8S - 4 4 - 4 4 8

RAM32X2 - 2 2 - 2 2 -

RAM32X2S - 2 - - 2 - 2

RAM32X4 - 4 4 - 4 4 4

RAM32X4S - 4 4 - 4 4 8

RAM32X8 - 8 8 - 8 8 -

RAM32X8S - 8 8 - 8 8 -

SOP3 1 1 1 1 1 1 1

SOP4 1 1 1 1 1 1 1

SR4CE 2 2 2 4 2 2 2

SR4CLE 4 3 3 5 3 3 3

SR4CLED 5 5 5 10 5 5 5

SR4RE 2 4 4 4 4 4 2

SR4RLE 6 5 5 9 5 5 3

SR4RLED 7 8 8 14 8 8 5

SR8CE 4 4 4 8 4 4 4

SR8CLE 5 5 5 9 5 5 5

SR8CLED 9 9 9 18 9 9 9

SR8RE 4 8 8 8 8 8 4

SR8RLE 12 9 9 17 9 9 5

SR8RLED 13 9 9 26 9 9 9

SR16CE 8 8 8 16 8 8 8

SR16CLE 9 9 9 17 9 9 9

SR16CLED 17 17 17 34 17 17 17

SR16RE 8 16 16 16 16 16 8

SR16RLE 24 20 20 33 20 20 9

Name XC3000 XC4000E XC4000X XC5200* Spartan SpartanXL Virtex**
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SR16RLED 25 19 19 50 19 19 17

UPAD - - - 1 - - -

XNOR2 1 - - 1 - - 1

XNOR3 1 - - 1 - - 1

XNOR4 1 - - 1 - - 1

XNOR5 1 1 1 2 1 1 1

XNOR6 2 1 1 2 1 1 1

XNOR7 2 1 1 3 1 1 1

XNOR8 2 1 1 3 1 1 2

XNOR9 2 1 1 3 1 1 2

XOR2 1 - - 1 - - 1

XOR3 1 - - 1 - - 1

XOR4 1 - - 1 - - 1

XOR5 1 1 1 2 1 1 1

XOR6 2 1 1 2 1 1 1

XOR7 2 1 1 3 1 1 1

XOR8 2 1 1 3 1 1 2

XOR9 2 1 1 3 1 1 2

X74_42 5 5 5 10 5 5 -

X74_L85 14 9 9 20 9 9 -

X74_138 5 5 5 9 5 5 -

X74_139 2 2 2 4 2 2 -

X74_147 8 6 6 12 6 6 -

X74_148 10 6 6 14 6 6 -

X74_150 11 6 6 13 6 6 -

X74_151 6 3 3 7 3 3 -

X74_152 5 3 3 6 3 3 -

X74_153 6 3 3 6 3 3 -

X74_154 17 16 16 33 16 16 -

X74_157 4 2 2 4 2 2 -

X74_158 4 2 2 4 2 2 -

X74_160 8 6 6 11 6 6 -

X74_161 9 5 5 9 5 5 -

X74_162 8 6 6 13 6 6 -

X74_163 10 9 9 17 9 9 -

X74_164 5 4 4 8 4 4 -

X74_165S 8 5 5 9 5 5 -

X74_168 9 7 7 11 7 7 -

X74_174 7 4 4 6 4 4 -

Name XC3000 XC4000E XC4000X XC5200* Spartan SpartanXL Virtex**
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X74_194 7 5 5 12 5 5 -

X74_195 5 3 3 5 3 3 -

X74_273 9 5 5 8 5 5 -

X74_280 3 2 2 5 2 2 -

X74_283 4 6 6 8 6 6 -

X74_298 4 2 2 4 2 2 -

X74_352 6 3 3 6 3 3 -

X74_377 9 4 4 8 4 4 -

X74_390 3 3 3 4 3 3 -

X74_518 9 4 4 6 4 4 -

X74_521 9 4 4 6 4 4 -
*LC4 count
**Combined count for the two Virtex slices
- = zero (0) or the component is not applicable for that architecture

Name XC3000 XC4000E XC4000X XC5200* Spartan SpartanXL Virtex**
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Relationally Placed Macros
This section lists the Relationally Placed Macros (RPMs) by family. RPMs are “soft”
macros that contain relative location constraint (RLOC) information. For more details,
see the  “Relationally Placed Macros (RPMs)” section of the “Attributes, Constraints,
and Carry Logic” chapter.

The following table lists RPMs (except for CY4_* carry mode symbols) by library for
easy identification. Refer to the  “Applicable Architectures” section of the “Xilinx
Unified Libraries” chapter for information on the specific device architectures
supported in each library.

Note: The CY4_* RPMs are not listed here. To see a list of predefined carry mode
names and their corresponding symbols (CY4_*), refer to the  “Carry Logic Primitives
and Symbols” section of the “Attributes, Constraints, and Carry Logic” chapter.

Element Name XC4000E XC4000X XC5200 Spartan SpartanXL Virtex

ACC4 √ √ √ √ √ √
ACC8 √ √ √ √ √ √
ACC16 √ √ √ √ √ √
ADD4 √ √ √ √ √ √
ADD8 √ √ √ √ √ √
ADD16 √ √ √ √ √ √
ADSU4 √ √ √ √ √ √
ADSU8 √ √ √ √ √ √
ADSU16 √ √ √ √ √ √
AND6 √
AND7 √
AND8 √ √ √ √ √ √
AND9 √ √ √ √ √ √
AND12 √ √
AND16 √ √
CC8CE √ √ √ √ √ √
CC8CLE √ √ √ √ √ √
CC8CLED √ √ √ √ √ √
CC8RE √ √ √ √ √ √
CC16CE √ √ √ √ √ √
CC16CLE √ √ √ √ √ √
CC16CLED √ √ √ √ √ √
CC16RE √ √ √ √ √ √
COMPMC8 √ √ √ √ √ √
COMPMC16 √ √ √ √ √ √
CY_INIT √
CY_MUX √
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DECODE4 √ √ √ √ √ √
DECODE8 √ √ √ √ √ √
DECODE16 √ √ √ √ √ √
DECODE32 √ √
DECODE64 √ √
DEC_CC4 √
DEC_CC8 √
DEC_CC16 √
NAND6 √
NAND7 √
NAND8 √ √ √ √ √ √
NAND9 √ √ √ √ √ √
NAND12 √ √
NAND16 √ √
NOR6 √
NOR7 √
NOR8 √ √ √ √ √ √
NOR9 √ √ √ √ √ √
NOR12 √ √
NOR16 √ √
OR6 √
OR7 √
OR8 √
OR9 √
OR12 √ √
OR16 √ √
XNOR6 √
XNOR7 √
XNOR8 √
XNOR9 √
XOR6 √
XOR7 √
XOR8 √
XOR9 √

Element Name XC4000E XC4000X XC5200 Spartan SpartanXL Virtex



Libraries Guide, Release M1.5

2-12 Xilinx Development System

Functional Categories
This section categorizes, by function, the logic elements that are described in detail in
the “Design Elements” sections. Each category is briefly described. Tables under each
category identify all the available elements for the function and indicate which
libraries include the element.

Elements are listed in alphanumeric order under each category. There are a number of
standard TTL 7400-type functions in the different libraries. All 7400-type functions
start with a “X74” prefix and are listed after all other elements. The numeric sequence
following the “X74” prefix uses ascending numbers, for example, X74_42 precedes
X74_138.

A check mark (√) in the column under the library name means that the element
applies to the devices that use that library. (Refer to the  “Applicable Architectures”
section of the “Xilinx Unified Libraries” chapter for information on the specific device
families that use each library.) A blank column means that the element does not apply.

The categories are as follows.

• Arithmetic Functions

• Buffers

• Comparators

• Counters

• Data Registers

• Decoders

• Edge Decoders

• Encoders

• Flip-Flops

• General

• Input/Output Flip-Flops

• Input/Output Functions

• Input Latches

• Latches

• Logic Primitives

• Map Elements

• Memory Elements

• Multiplexers

• Shift Registers

• Shifters

Note: When converting your design between FPGA families, use elements that have
equivalent functions in each of the architectural families (libraries) to minimize re-
designing.
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Arithmetic Functions
There are three types of arithmetic functions: accumulators (ACC), adders (ADD), and
adder/subtracters (ADSU). With an ADSU, either unsigned binary or twos-comple-
ment operations cause an overflow. If the result crosses the overflow boundary, an
overflow is generated. Similarly, when the result crosses the carry-out boundary, a
carry-out is generated. The following figure shows the ADSU carry-out and overflow
boundaries.

Figure 2-1 ADSU Carry-Out and Overflow Boundaries

ACC1 1-Bit Loadable Cascadable Accumulator with Carry-In, Carry-Out, and Synchronous
Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

ACC4, 8, 16 4-, 8-, 16-Bit Loadable Cascadable Accumulators with Carry-In, Carry-Out, and
Synchronous Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

ADD1 1-Bit Full Adder with Carry-In and Carry-Out

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

ADD4, 8, 16 4-, 8-, 16-Bit Cascadable Full Adders with Carry-In, Carry-Out, and Overflow

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √
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Buffers
The buffers in this section route high fan-out signals, 3-state signals, and clocks inside
a PLD device. The  “Input/Output Functions” section later in this chapter covers off-
chip interface buffers.

ADSU1 1-Bit Cascadable Adder/Subtracter with Carry-In, Carry-Out

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

ADSU4, 8, 16 4-, 8-, 16-Bit Cascadable Adders/Subtracters with Carry-In, Carry-Out and Over-
flow

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

X74_280 9-Bit Odd/Even Parity Generator/Checker

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

X74_283 4-Bit Full Adder with Carry-In and Carry-Out

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

ACLK Alternate Clock Buffer

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

BUF General-Purpose Buffer

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

BUF4, 8, 16 General-Purpose Buffers

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√
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BUFCF Fast Connect Buffer

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

BUFE, 4, 8, 16 Internal 3-State Buffers with Active High Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √∗ √ √ √
* not supported for XC9500XL devices

 BUFFCLK Global Fast Clock Buffer

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

BUFG Global Clock Buffer

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

BUFGDLL Clock Delay Locked Loop Buffer

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

 BUFGE Global Low Early Clock Buffer

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

BUFGLS Global Low Skew Clock Buffer

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √

BUFGP Primary Global Buffer for Driving Clocks or Longlines (Four per PLD Device)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √
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Comparators
There are two types of comparators, identity (COMP) and magnitude (COMPM).

BUFGS Secondary Global Buffer for Driving Clocks or Longlines (Four per PLD Device)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √

 BUFGSR Global Set/Reset Input Buffer

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

BUFGTS Global Three-State Input Buffer

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

BUFOD Open-Drain Buffer

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √

BUFT, 4, 8, 16 Internal 3-State Buffers with Active-Low Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √∗ √ √ √
* not supported for XC9500XL devices

GCLK Global Clock Buffer

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

 COMP2, 4, 8, 16 2-, 4-, 8-, 16-Bit Identity Comparators

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

COMPM2, 4, 8, 16 2-, 4-, 8-, 16-Bit Magnitude Comparators

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √
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Counters
There are six types of counters with various synchronous and asynchronous inputs.
The name of the counter defines the modulo or bit size, the counter type, and which
control functions are included. The counter naming convention is shown in the
following figure.

Figure 2-2 Counter Naming Convention

COMPMC8, 16 8-, 16-Bit Magnitude Comparators

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √

X74_L85 4-Bit Expandable Magnitude Comparator

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

X74_518 8-Bit Identity Comparator with Active-Low Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

X74_521 8-Bit Identity Comparator with Active-Low Enable and Output

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

X4577

Binary (B)
BCD (D)
Binary, Carry Logic (C)
Johnson (J)
Ripple (R)

Counter

Asynchronous Clear (C)
Synchronous Reset (R)

Modulo (Bit Size)

Loadable

C B 1 6 C L E D

Clock Enable

Directional
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A carry-lookahead design accommodates large counters without extra gating. On TTL
7400-type counters with trickle clock enable (ENT), parallel clock enable (ENP), and
ripple carry-out (RCO), both the ENT and ENP inputs must be High to count. ENT is
propagated forward to enable RCO, which produces a High output with the approxi-
mate duration of the QA output. The following figure illustrates a carry-lookahead
design.

Figure 2-3 Carry-Lookahead Design

The RCO output of the first stage of the ripple carry is connected to the ENP input of
the second stage and all subsequent stages. The RCO output of the second stage and
all subsequent stages is connected to the ENT input of the next stage. The ENT of the
second stage is always enabled/tied to VCC. CE is always connected to the ENT input
of the first stage. This cascading method allows the first stage of the ripple carry to be
built as a prescaler. In other words, the first stage is built to count very fast.

CB2CE, CB4CE, CB8CE,
CB16CE

2-, 4-, 8-, 16-Bit Cascadable Binary Counters with Clock Enable and Asynchronous
Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

CB2CLE, CB4CLE,
CB8CLE, CB16CLE

2-, 4-, 8-, 16-Bit Loadable Cascadable Binary Counters with Clock Enable and Asyn-
chronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

X4719

ENT

ENP

RCO

ENT

ENP

RCO

ENT

ENP

RCOVcc

Vcc

ENTCE

ENP

RCO
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CB2CLED, CB4CLED,
CB8CLED, CB16CLED

2-, 4-, 8-, 16-Bit Loadable Cascadable Bidirectional Binary Counters with Clock
Enable and Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

CB2RE, CB4RE, CB8RE,
CB16RE

2-, 4-, 8-, 16-Bit Cascadable Binary Counters with Clock Enable and Synchronous
Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

CB2RLE, CB4RLE,
CB8RLE, CB16RLE

2-, 4-, 8-, 16-Bit Loadable Cascadable Binary Counters with Clock Enable and
Synchronous Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

CB2X1, CB4X1, CB8X1,
CB16X1

2-, 4-, 8-, 16-Bit Loadable Cascadable Bidirectional Binary Counters with Clock
Enable and Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

CB2X2, CB4X2, CB8X2,
CB16X2

2-, 4-, 8-, 16-Bit Loadable Cascadable Bidirectional Binary Counters with Clock
Enable and Synchronous Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

CC8CE, CC16CE 8-, 16-Bit Cascadable Binary Counters with Clock Enable and Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √

CC8CLE, CC16CLE 8-, 16-Bit Loadable Cascadable Binary Counters with Clock Enable and Asynchro-
nous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √
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CC8CLED, CC16CLED 8-, 16-Bit Loadable Cascadable Bidirectional Binary Counters with Clock Enable and
Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √

CC8RE, CC16RE 8-, 16-Bit Cascadable Binary Counters with Clock Enable and Synchronous Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √

CD4CE 4-Bit Cascadable BCD Counter with Clock Enable and Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

CD4CLE 4-Bit Loadable Cascadable BCD Counter with Clock Enable and Asynchronous
Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

CD4RE 4-Bit Cascadable BCD Counter with Clock Enable and Synchronous Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

CD4RLE 4-Bit Loadable Cascadable BCD Counter with Clock Enable and Synchronous Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

CJ4CE, CJ5CE, CJ8CE 4-, 5-, 8-Bit Johnson Counters with Clock Enable and Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

CJ4RE, CJ5RE, CJ8RE 4-, 5-, 8-Bit Johnson Counters with Clock Enable and Synchronous Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √
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CR8CE, CR16CE 8-, 16-Bit Negative-Edge Binary Ripple Counters with Clock Enable and Asynchro-
nous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

X74_160 4-Bit BCD Counter with Parallel and Trickle Enables, Active-Low Load Enable, and
Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

X74_161 4-Bit Binary Counter with Parallel and Trickle Enables, Active-Low Load Enable,
and Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

X74_162 4-Bit BCD Counter with Parallel and Trickle Enables, Active-Low Load Enable, and
Synchronous Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

X74_163 4-Bit Binary Counter with Parallel and Trickle Enables, Active-Low Load Enable,
and Synchronous Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

X74_168 4-Bit BCD Bidirectional Counter with Parallel and Trickle Clock Enables and Active-
Low Load Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

X74_390 4-Bit BCD/Bi-Quinary Ripple Counter with Negative-Edge Clocks and Asynchro-
nous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √
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Data Registers
There are three TTL 7400-type data registers designed to function exactly as the TTL
elements for which they are named.

Decoders
Decoder names, shown in the following figure, indicate the number of inputs and
outputs and if an enable is available. Decoders with an enable can be used as multi-
plexers. This group includes some standard TTL 7400-type decoders whose names
have an “X74” prefix.

Figure 2-4 Decoder Naming Convention

X74_174 6-Bit Data Register with Active-Low Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

X74_273 8-Bit Data Register with Active-Low Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

X74_377 8-Bit Data Register with Active-Low Clock Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

D2_4E 2- to 4-Line Decoder/Demultiplexer with Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

D3_8E 3- to 8-Line Decoder/Demultiplexer with Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

X4619

D 2 _ 4 E
Decoder

Number of Inputs

Number of Outputs

Output Enable
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Edge Decoders
Edge decoders are open-drain wired-AND gates that are available in different bit
sizes.

D4_16E 4- to 16-Line Decoder/Demultiplexer with Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

DEC_CC4, 8, 16 4-, 8-, 16-Bit Active Low Decoders

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √

X74_42 4- to 10-Line BCD-to-Decimal Decoder with Active-Low Outputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

X74_138 3- to 8-Line Decoder/Demultiplexer with Active-Low Outputs and Three Enables

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

X74_139 2- to 4-Line Decoder/Demultiplexer with Active-Low Outputs and Active-Low
Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

X74_154 4- to 16-Line Decoder/Demultiplexer with Two Enables and Active-Low Outputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

DECODE4, 8, 16 4-, 8-, 16-Bit Active-Low Decoders

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √

DECODE32, 64 32- and 64-Bit Active-Low Decoders

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √
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Encoders
There are two priority encoders (ENCPR) that function like the TTL 7400-type
elements they are named after. There is a 10- to 4-line BCD encoder and an 8- to 3-line
binary encoder.

Flip-Flops
There are three types of flip-flops (D, J-K, toggle) with various synchronous and asyn-
chronous inputs. Some are available with inverted clock inputs and/or the ability to
set in response to global set/reset rather than reset. The naming convention shown in
the following figure provides a description for each flip-flop. D-type flip-flops are
available in multiples of up to 16 in one macro.

Figure 2-5 Flip-Flop Naming Convention

X74_147 10- to 4-Line Priority Encoder with Active-Low Inputs and Outputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

X74_148 8- to 3-Line Cascadable Priority Encoder with Active-Low Inputs and Outputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

FD D Flip-Flop

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

FD_1 D Flip-Flop with Negative-Edge Clock

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

X4579

D-Type (D)

Flip-Flop

JK-Type (JK)
Toggle-Type (T)

Asynchronous Preset (P)
Asynchronous Clear (C)
Synchronous Set (S)
Synchronous Reset (R)

Inverted Clock

Clock Enable

F D P E _ 1
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FD4, 8, 16  Multiple D Flip-Flops

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

FD4CE, FD8CE, FD16CE 4-, 8-, 16-Bit Data Registers with Clock Enable and Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

FD4RE, FD8RE, FD16RE 4-, 8-, 16-Bit Data Registers with Clock Enable and Synchronous Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

FDC D Flip-Flop with Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

FDC_1 D Flip-Flop with Negative-Edge Clock and Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

FDCE D Flip-Flop with Clock Enable and Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

FDCE_1 D Flip-Flop with Negative-Edge Clock, Clock Enable, and Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

FDCP D Flip-Flop with Asynchronous Preset and Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √

FDCP_1 D Flip-Flop with Negative-Edge Clock and Asynchronous Preset and Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√
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FDCPE D Flip-Flop with Clock Enable and Asynchronous Preset and Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √

FDCPE_1 D Flip-Flop with Negative-Edge Clock, Clock Enable, and Asynchronous Preset and
Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

FDE D Flip-Flop with Clock Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

FDE_1 D Flip-Flop with Negative-Edge Clock and Clock Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

FDP D Flip-Flop with Asynchronous Preset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

FDP_1 D Flip-Flop with Negative-Edge Clock and Asynchronous Preset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √

FDPE D Flip-Flop with Clock Enable and Asynchronous Preset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

FDPE_1 D Flip-Flop with Negative-Edge Clock, Clock Enable, and Asynchronous Preset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √
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FDR D Flip-Flop with Synchronous Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

FDR_1 D Flip-Flop with Negative-Edge Clock and Synchronous Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

FDRE D Flip-Flop with Clock Enable and Synchronous Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

FDRE_1 D Flip-Flop with Negative-Clock Edge, Clock Enable, and Synchronous Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

FDRS D Flip-Flop with Synchronous Reset and Synchronous Set

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

FDRS_1 D Flip-Flop with Negative-Clock Edge and Synchronous Reset and Set

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

FDRSE D Flip-Flop with Synchronous Reset and Set and Clock Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

FDRSE_1 D Flip-Flop with Negative-Clock Edge, Synchronous Reset and Set, and Clock
Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√



Libraries Guide, Release M1.5

2-28 Xilinx Development System

FDS D Flip-Flop with Synchronous Set

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

FDS_1 D Flip-Flop with Negative-Edge Clock and Synchronous Set

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

FDSE D Flip-Flop with Clock Enable and Synchronous Set

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

FDSE_1 D Flip-Flop with Negative-Edge Clock, Clock Enable, and Synchronous Set

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

FDSR D Flip-Flop with Synchronous Set and Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

FDSRE D Flip-Flop with Synchronous Set and Reset and Clock Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

FJKC J-K Flip-Flop with Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

FJKCE J-K Flip-Flop with Clock Enable and Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

FJKCP J-K Flip-Flop with Asynchronous Clear and Preset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√
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FJKCPE J-K Flip-Flop with Asynchronous Clear and Preset and Clock Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

FJKP J-K Flip-Flop with Asynchronous Preset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

FJKPE J-K Flip-Flop with Clock Enable and Asynchronous Preset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

FJKRSE J-K Flip-Flop with Clock Enable and Synchronous Reset and Set

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

FJKSRE J-K Flip-Flop with Clock Enable and Synchronous Set and Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

FTC Toggle Flip-Flop with Toggle Enable and Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

FTCE Toggle Flip-Flop with Toggle and Clock Enable and Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

FTCLE Toggle/Loadable Flip-Flop with Toggle and Clock Enable and Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

FTCLEX Toggle/Loadable Flip-Flop with Toggle and Clock Enable and Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √
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FTCP Toggle Flip-Flop with Toggle Enable and Asynchronous Clear and Preset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

FTCPE Toggle Flip-Flop with Toggle and Clock Enable and Asynchronous Clear and Preset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

FTCPLE Loadable Toggle Flip-Flop with Toggle and Clock Enable and Asynchronous Clear
and Preset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

FTP Toggle Flip-Flop with Toggle Enable and Asynchronous Preset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

FTPE Toggle Flip-Flop with Toggle and Clock Enable and Asynchronous Preset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

FTPLE Toggle/Loadable Flip-Flop with Toggle and Clock Enable and Asynchronous Preset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

FTRSE Toggle Flip-Flop with Toggle and Clock Enable and Synchronous Reset and Set

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

FTRSLE Toggle/Loadable Flip-Flop with Toggle and Clock Enable and Synchronous Reset
and Set

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √



Selection Guide

Libraries Guide, Release M1.5 2-31

General
General elements include FPGA configuration functions, oscillators, boundary scan
logic, and other functions not classified in other sections.

FTSRE Toggle Flip-Flop with Toggle and Clock Enable and Synchronous Set and Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

FTSRLE Toggle/Loadable Flip-Flop with Toggle and Clock Enable and Synchronous Set and
Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

BSCAN Boundary Scan Logic Control Circuit

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √

BSCAN_VIRTEX Virtex Boundary Scan Logic Control Circuit

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

BYPOSC Bypass Oscillator

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

CAPTURE_VIRTEX Virtex Register State Capture for Bitstream Readback

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

CK_DIV Internal Multiple-Frequency Clock Divider

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

CLB CLB Configuration Symbol

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√
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CLKDLL Clock Delay Locked Loop

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

CLKDLLHF High Frequency Clock Delay Locked Loop

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

CONFIG Repository for Schematic-Level (Global) Attributes

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

CY_INIT Initialization Stage for Carry Chain

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

GND Ground-Connection Signal Tag

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

GXTL Crystal Oscillator with ACLK Buffer

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

IOB IOB Configuration Symbol

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

KEEPER KEEPER Symbol

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

LUT1, 2, 3, 4 1-, 2-, 3-, 4-Bit Look-Up-Table with General Output

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√
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LUT1_D, LUT2_D,
LUT3_D, LUT4_D

1-, 2-, 3-, 4-Bit Look-Up-Table with Dual Output

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

LUT1_L, LUT2_L,
LUT3_L, LUT4_L

1-, 2-, 3-, 4-Bit Look-Up-Table with Local Output

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

MD0 Mode 0, Input Pad Used for Readback Trigger Input

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √

MD1 Mode 1, Output Pad Used for Readback Data Output

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √

MD2 Mode 2, Input Pad

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √

OSC Crystal Oscillator Amplifier

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

OSC4 Internal 5-Frequency Clock-Signal Generator

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √

OSC5 Internal Multiple-Frequency Clock-Signal Generator

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√
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OSC52 Internal Multiple-Frequency Clock-Signal Generator

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

PULLDOWN Resistor to GND for Input Pads

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √

PULLUP Resistor to VCC for Input PADs, Open-Drain, and 3-State Outputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

READBACK FPGA Bitstream Readback Controller

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √

STARTUP User Interface to Global Clock, Reset, and 3-State Controls

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √

STARTUP_VIRTEX Virtex User Interface to Global Clock, Reset, and 3-State Controls

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

TCK Boundary Scan Test Clock Input Pad

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √

TDI Boundary Scan Test Data Input Pad

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √

TDO Boundary Scan Data Output Pad

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √
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Input/Output Flip-Flops
Input/Output flip-flops are configured in IOBs. They include flip-flops whose
outputs are enabled by 3-state buffers, flip-flops that can be set upon global set/reset
rather than reset, and flip-flops with inverted clock inputs. The naming convention
specifies each flip-flop function and is illustrated in the following figure.

Figure 2-6 Input/Output Flip-Flop Naming Convention

TIMEGRP Schematic-Level Table of Basic Timing Specification Groups

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

TIMESPEC Schematic-Level Timing Requirement Table

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

TMS Boundary Scan Test Mode Select Input Pad

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √

VCC VCC-Connection Signal Tag

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

IFD, 4, 8, 16 Single- and Multiple-Input D Flip-Flops

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

IFD_1 Input D Flip-Flop with Inverted Clock

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

X4580

Output (O), Input (I)

Flip-Flop

D-Type

Active High Enable (E)
Active Low Enable (T)

Inverse of Normal Initial State

Inverted Clock

O F D E I _ 1
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 IFDI Input D Flip-Flop (Asynchronous Preset)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √

IFDI_1 Input D Flip-Flop with Inverted Clock (Asynchronous Preset)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √

IFDX, 4, 8, 16 Single- and Multiple-Input D Flip-Flops with Clock Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √

IFDX_1 Input D Flip-Flop with Inverted Clock and Clock Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √

IFDXI Input D Flip-Flop with Clock Enable (Asynchronous Preset)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √

IFDXI_1 Input D Flip-Flop with Inverted Clock and Clock Enable (Asynchronous Preset)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √

OFD, 4, 8, 16 Single- and Multiple-Output D Flip-Flops

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

OFD_1 Output D Flip-Flop with Inverted Clock

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

OFDE, 4, 8, 16 D Flip-Flops with Active-High Enable Output Buffers

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √
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OFDE_1 D Flip-Flop with Active-High Enable Output Buffer and Inverted Clock

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

OFDEI D Flip-Flop with Active-High Enable Output Buffer (Asynchronous Preset)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √

OFDEI_1 D Flip-Flop with Active-High Enable Output Buffer and Inverted Clock (Asynchro-
nous Preset)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √

OFDEX, 4, 8, 16 D Flip-Flops with Active-High Enable Output Buffers and Clock Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √

OFDEX_1 D Flip-Flop with Active-High Enable Output Buffer, Inverted Clock, and Clock
Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √

OFDEXI D Flip-Flop with Active-High Enable Output Buffer and Clock Enable (Asynchro-
nous Preset)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √

OFDEXI_1 D Flip-Flop with Active-High Enable Output Buffer, Inverted Clock, and Clock
Enable (Asynchronous Preset)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √

OFDI Output D Flip-Flop (Asynchronous Preset)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √



Libraries Guide, Release M1.5

2-38 Xilinx Development System

OFDI_1 Output D Flip-Flop with Inverted Clock (Asynchronous Preset)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √

OFDT, 4, 8, 16 Single and Multiple D Flip-Flops with Active-Low 3-State Output Buffers

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

OFDT_1 D Flip-Flop with Active-Low 3-State Output Buffer and Inverted Clock

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

OFDTI D Flip-Flop with Active-Low 3-State Output Buffer (Asynchronous Preset)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √

OFDTI_1 D Flip-Flop with Active-Low 3-State Output Buffer and Inverted Clock (Asynchro-
nous Preset)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √

OFDTX, 4, 8, 16 Single and Multiple D Flip-Flops with Active-Low 3-State Output Buffers and Clock
Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √

OFDTX_1 D Flip-Flop with Active-Low 3-State Output Buffer, Inverted Clock, and Clock
Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √

OFDTXI D Flip-Flop with Active-Low 3-State Output Buffer and Clock Enable (Asynchro-
nous Preset)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √
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Input/Output Functions
Input/Output Block (IOB) resources are configured into various I/O primitives and
macros for convenience, such as, output buffers (OBUFs) and output buffers with an
enable (OBUFEs). Pads used to connect the circuit to PLD device pins are also
included.

Virtex has multiple variants (primitives) to choose from for each selectI/O buffer. The
I/O interface for each variant corresponds to a specific I/O standard.

OFDTXI_1 D Flip-Flop with Active-Low 3-State Output Buffer, Inverted Clock, and Clock
Enable (Asynchronous Preset)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √

OFDX, 4, 8, 16 Single- and Multiple-Output D Flip-Flops with Clock Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √

OFDX_1 Output D Flip-Flop with Inverted Clock and Clock Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √

OFDXI Output D Flip-Flop with Clock Enable (Asynchronous Preset)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √

OFDXI_1 Output D Flip-Flop with Inverted Clock and Clock Enable (Asynchronous Preset)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √

IBUF, 4, 8, 16 Single- and Multiple-Input Buffers

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

IBUF_selectIO Single Input Buffer with Selectable I/O Interface (16 primitives)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√
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IBUFG_selectIO Dedicated Input Buffer with Selectable I/O Interface (16 primitives)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

IOBUF_selectIO Bi-Directional Buffer with Selectable I/0 Interface (30 primitives)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

IOPAD, 4, 8, 16 Single- and Multiple-Input/Output Pads

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

IPAD, 4, 8, 16 Single- and Multiple-Input Pads

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

OBUF, 4, 8, 16 Single- and Multiple-Output Buffers

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

OBUF_selectIO Single Output Buffer with Selectable I/O Interface (30 primitives)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

OBUFE, 4, 8, 16 3-State Output Buffers with Active-High Output Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

OBUFT, 4, 8, 16 Single and Multiple 3-State Output Buffers with Active Low Output Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √
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Input Latches
Single and multiple input latches can hold transient data entering a chip. Input
latches use the same naming convention as I/O flip-flops.

OBUFT_selectIO Single 3-State Output Buffer with Active-Low Output Enable and Selectable I/O
Interface (30 primitives)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

OPAD, 4, 8, 16 Single- and Multiple-Output Pads

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

UPAD Connects the I/O Node of an IOB to the Internal PLD Circuit

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

ILD, 4, 8, 16 Transparent Input Data Latches

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

ILD_1 Transparent Input Data Latch with Inverted Gate

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

ILDI Transparent Input Data Latch (Asynchronous Preset)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √

ILDI_1 Transparent Input Data Latch with Inverted Gate (Asynchronous Preset)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √

ILDX, 4, 8, 16 Transparent Input Data Latches

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √
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ILDX_1 Transparent Input Data Latch with Inverted Gate

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √

ILDXI Transparent Input Data Latch (Asynchronous Preset)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √

ILDXI_1 Transparent Input Data Latch with Inverted Gate (Asynchronous Preset)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √

ILFFX Fast Capture Input Latch

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √

ILFFXI Fast Capture Input Latch (Asynchronous Preset)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √

ILFLX Fast Capture Transparent Input Latch

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √

ILFLX_1 Fast Capture Input Latch with Inverted Gate

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √

ILFLXI_1 Fast Capture Input Latch with Inverted Gate (Asynchronous Preset)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √
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Latches
Latches (LD) are only available in the XC4000X, XC5200, XC9000, SpartanXL, and
Virtex architectures. XC3000 and XC4000E latches that existed in previous macro
libraries are not recommended for new designs.

LD Transparent Data Latch

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √

LD_1 Transparent Data Latch with Inverted Gate

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √

LD4, 8, 16  Multiple Transparent Data Latches

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √

LDC Transparent Data Latch with Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √

LDC_1 Transparent Data Latch with Asynchronous Clear and Inverted Gate

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √

LDCE Transparent Data Latch with Asynchronous Clear and Gate Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √

LDCE_1 Transparent Data Latch with Asynchronous Clear, Gate Enable, and Inverted Gate

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √

LD4CE, LD8CE, LD16CE Transparent Data Latches with Asynchronous Clear and Gate Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √
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LDCP Transparent Data Latch with Asynchronous Clear and Preset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

LDCP_1 Transparent Data Latch with Asynchronous Clear and Preset and Inverted Gate

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

LDCPE Transparent Data Latch with Asynchronous Clear and Preset and Gate Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

LDCPE_1 Transparent Data Latch with Asynchronous Clear and Preset, Gate Enable, and
Inverted Gate

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

LDE Transparent Data Latch with Gate Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

LDE_1 Transparent Data Latch with Gate Enable and Inverted Gate

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

LDP Transparent Data Latch with Asynchronous Preset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

LDP_1 Transparent Data Latch with Asynchronous Preset and Inverted Gate

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√
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Logic Primitives
Combinatorial logic gates that implement the basic Boolean functions are available in
all architectures with up to five inputs in all combinations of inverted and non-
inverted inputs, and with six to nine inputs non-inverted.

LDPE Transparent Data Latch with Asynchronous Preset and Gate Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √

LDPE_1 Transparent Data Latch with Asynchronous Preset, Gate Enable, and Inverted Gate

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √

AND2-9 2- to 9-Input AND Gates with Inverted and Non-Inverted Inputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

AND12, 16 12- and 16-Input AND Gates with Non-Inverted Inputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √

INV, 4, 8, 16 Single and Multiple Inverters

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

MULT_AND Fast Multiplier AND

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

NAND2-9 2- to 9-Input NAND Gates with Inverted and Non-Inverted Inputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

NAND12, 16 12- and 16-Input NAND Gates with Non-Inverted Inputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √
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NOR2-9 2- to 9-Input NOR Gates with Inverted and Non-Inverted Inputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

NOR12, 16 12 and 16-Input NOR Gates with Non-Inverted Inputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √

OAND2 2-Input AND Gate with Invertible Inputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √

ONAND2 2-Input NAND Gate with Invertible Inputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √

ONOR2 2-Input NOR Gate with Invertible Inputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √

OOR2 2-Input OR Gate with Invertible Inputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √

OR2-9 2- to 9-Input OR Gates with Inverted and Non-Inverted Inputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

OR12, 16 12- and 16-Input OR Gates with Non-Inverted Inputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √

 OXNOR2 2-Input Exclusive-NOR Gate with Invertible Inputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √
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 OXOR2 2-Input Exclusive-OR Gate with Invertible Inputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √

SOP3-4 Sum of Products

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

WAND1, 4, 8, 16 Open-Drain Buffers

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √

WOR2AND 2-Input OR Gate with Wired-AND Open-Drain Buffer Output

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √

XNOR2-9 2- to 9-Input XNOR Gates with Non-Inverted Inputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

XOR2-9 2- to 9-Input XOR Gates with Non-Inverted Inputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

XORCY XOR for Carry Logic with General Output

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

XORCY_D XOR for Carry Logic with Dual Output

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

XORCY_L XOR for Carry Logic with Local Output

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√
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Map Elements
Map elements are used in conjunction with logic symbols to constrain the logic to
particular CLBs or particular F or H function generators.

Memory Elements
The XC4000 and Spartan series architectures have a number of static RAM configura-
tions defined as macros. In the Virtex architecture, they are defined as primitives.
These 16- or 32-word RAMs are 1, 2, 4, and 8 bits wide. There are two ROMs in the
XC4000 and Spartan series architectures, 16X1 and 32X1.

The Virtex series has dedicated blocks of on-chip 4096-bit single-port and dual-port
synchronous RAM. Each port is configured to a specific data width. There are five
single-port block RAM primitives and 30 dual-port block RAM primitives.

CLBMAP Logic-Partitioning Control Symbol

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

F5MAP 5-Input Function Partitioning Control Symbol

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

FMAP F Function Generator Partitioning Control Symbol

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √

HMAP H Function Generator Partitioning Control Symbol

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √

RAM16X1 16-Deep by 1-Wide Static RAM

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √

RAM16X1D 16-Deep by 1-Wide Static Dual Port Synchronous RAM

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √
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RAM16X1D_1 16-Deep by 1-Wide Static Dual Port Synchronous RAM with Negative-Edge Clock

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

RAM16X1S 16-Deep by 1-Wide Static Synchronous RAM

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √

RAM16X1S_1 16-Deep by 1-Wide Static Synchronous RAM with Negative-Edge Clock

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

RAM16X2 16-Deep by 2-Wide Static RAM

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √

RAM16X2D 16-Deep by 2-Wide Static Dual Port Synchronous RAM

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √

 RAM16X2S 16-Deep by 2-Wide Static Synchronous RAM

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √

RAM16X4 16-Deep by 4-Wide Static RAM

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √

RAM16X4D 16-Deep by 4-Wide Static Dual Port Synchronous RAM

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √

RAM16X4S 16-Deep by 4-Wide Static Synchronous RAM

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √
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RAM16X8 16-Deep by 8-Wide Static RAM

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √

RAM16X8D 16-Deep by 8-Wide Static Dual Port Synchronous RAM

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √

RAM16X8S 16-Deep by 8-Wide Static Synchronous RAM

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √

RAM32X1 32-Deep by 1-Wide Static RAM

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √

RAM32X1S 32-Deep by 1-Wide Static Synchronous RAM

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √

RAM32X1S_1 32-Deep by 1-Wide Static Synchronous RAM with Negative-Edge Clock

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

RAM32X2 32-Deep by 2-Wide Static RAM

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √

RAM32X2S 32-Deep by 2-Wide Static Synchronous RAM

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √

RAM32X4 32-Deep by 4-Wide Static RAM

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √
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RAM32X4S 32-Deep by 4-Wide Static Synchronous RAM

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √

RAM32X8 32-Deep by 8-Wide Static RAM

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √

RAM32X8S 32-Deep by 8-Wide Static Synchronous RAM

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √

RAMB4_Sn 4096-Bit Single-Port Synchronous Block RAM with Port Width (n) Configured to 1, 2,
4, 8, or 16 Bits (5 primitives)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

RAMB4_Sn_Sn 4096-Bit Dual-Port Synchronous Block RAM with Port Width (n) Configured to 1, 2,
4, 8, or 16 Bits (30 primitives)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

ROM16X1 16-Deep by 1-Wide ROM

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √

ROM32X1 32-Deep by 1-Wide ROM

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √
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Multiplexers
The multiplexer naming convention shown in the following figure indicates the
number of inputs and outputs and if an enable is available. There are a number of TTL
7400-type multiplexers that have active-Low or inverted outputs.

Figure 2-7 Multiplexer Naming Convention

CY_MUX 2-to-1 Multiplexer for Carry Logic

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

F5_MUX 2-to-1 Lookup Table Multiplexer

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

M2_1 2-to-1 Multiplexer

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

M2_1B1 2-to-1 Multiplexer with D0 Inverted

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

 M2_1B2 2-to-1 Multiplexer with D0 and D1 Inverted

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

M2_1E 2-to-1 Multiplexer with Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

X4620

M 8 _ 1 E
Multiplexer

Number of Inputs

Number of Outputs

Output Enable
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M4_1E 4-to-1 Multiplexer with Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

M8_1E 8-to-1 Multiplexer with Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

M16_1E 16-to-1 Multiplexer with Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

MUXCY 2-to-1 Multiplexer for Carry Logic with General Output

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

MUXCY_D 2-to-1 Multiplexer for Carry Logic with Dual Output

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

MUXCY_L 2-to-1 Multiplexer for Carry Logic with Local Output

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

MUXF5 2-to-1 Lookup Table Multiplexer with General Output

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

MUXF5_D 2-to-1 Lookup Table Multiplexer with Dual Output

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

MUXF5_L 2-to-1 Lookup Table Multiplexer with Local Output

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√
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MUXF6 2-to-1 Lookup Table Multiplexer with General Output

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

MUXF6_D 2-to-1 Lookup Table Multiplexer with Dual Output

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

MUXF6_L 2-to-1 Lookup Table Multiplexer with Local Output

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

OMUX2 2-to-1 Multiplexer

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √

X74_150 16-to-1 Multiplexer with Active-Low Enable and Output

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

X74_151 8-to-1 Multiplexer with Active-Low Enable and Complementary Outputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

X74_152 8-to-1 Multiplexer with Active-Low Output

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

X74_153 Dual 4-to-1 Multiplexer with Active-Low Enables and Common Select Input

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

X74_157 Quadruple 2-to-1 Multiplexer with Common Select and Active-Low Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √
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Shift Registers
Shift registers are available in a variety of sizes and capabilities. The naming conven-
tion shown in the following figure illustrates available features.

Figure 2-8 Shift Register Naming Convention

X74_158 Quadruple 2-to-1 Multiplexer with Common Select, Active-Low Enable, and Active-
Low Outputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

X74_298 Quadruple 2-Input Multiplexer with Storage and Negative-Edge Clock

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

X74_352 Dual 4-to-1 Multiplexer with Active-Low Enables and Outputs

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

SR4CE, SR8CE, SR16CE 4-, 8-, 16-Bit Serial-In Parallel-Out Shift Registers with Clock Enable and Asynchro-
nous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

SR4CLE, SR8CLE,
SR16CLE

4-, 8-, 16-Bit Loadable Serial/Parallel-In Parallel-Out Shift Registers with Clock
Enable and Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

X4578

Bit Size

Shift Register

Asynchronous Clear (C)
Synchronous Reset (R)

Clock Enable

Loadable

S R 8 R L E D

Directional



Libraries Guide, Release M1.5

2-56 Xilinx Development System

SR4CLED, SR8CLED,
SR16CLED

4-, 8-, 16-Bit Shift Registers with Clock Enable and Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

SR4RE, SR8RE, SR16RE 4-, 8-, 16-Bit Serial-In Parallel-Out Shift Registers with Clock Enable and Synchro-
nous Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

SR4RLE, SR8RLE,
SR16RLE

4-, 8-, 16-Bit Loadable Serial/Parallel-In Parallel-Out Shift Registers with Clock
Enable and Synchronous Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

SR4RLED, SR8RLED,
SR16RLED

4-, 8-, 16-Bit Shift Registers with Clock Enable and Synchronous Reset

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

SRL16 16-Bit Shift Register Look-Up-Table (LUT)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

SRL16_1 16-Bit Shift Register Look-Up-Table (LUT) with Negative-Clock Edge

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

SRL16E 16-Bit Shift Register Look-Up-Table (LUT) with Clock Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

SRL16E_1 16-Bit Shift Register Look-Up-Table (LUT) with Negative-Edge Clock and Clock
Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√
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Shifters
Shifters are barrel shifters (BRLSHFT) of four and eight bits.

X74_164 8-Bit Serial-In Parallel-Out Shift Register with Active-Low Asynchronous Clear

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

X74_165S 8-Bit Loadable Serial/Parallel-In Parallel-Out Shift Register with Clock Enable

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

X74_194 4-Bit Loadable Bidirectional Serial/Parallel-In Parallel-Out Shift Register

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

X74_195 4-Bit Loadable Serial/Parallel-In Parallel-Out Shift Register

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

BRLSHFT4, 8 4-, 8-Bit Barrel Shifters

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √
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Chapter 3

Design Elements (ACC1 to BYPOSC)

This chapter describes design elements included in the Unified Libraries. The
elements are organized in alphanumeric order with all numeric suffixes in ascending
order.

Information on the specific architectures supported by each of the following libraries
is contained under the Applicable Architectures section of the Unified Libraries
Chapter.

• XC3000 Library

• XC4000E Library

• XC4000X Library

• XC5200 Library

• XC9000 Library

• Spartan Library

• SpartanXL Library

• Virtex Library

Note: Wherever XC4000 is mentioned, the information applies to all architectures
supported by the XC4000E and XC4000X libraries.

Note: Wherever Spartans or Spartan series is mentioned, the information applies to all
architectures supported by the Spartan and SpartanXL libraries.

Schematics are included for each library if the implementation differs. Design
elements with bused or multiple I/O pins (2-, 4-, 8-, 16-bit versions) typically include
just one schematic — generally the 8-bit version. When only one schematic is
included, implementation of the smaller and larger elements differs only in the
number of sections. In cases where an 8-bit version is very large, an appropriate
smaller element serves as the schematic example.
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ACC1

1-Bit Loadable Cascadable Accumulator with Carry-In, Carry-Out,
and Synchronous Reset

ACC1 can add or subtract a 1-bit unsigned-binary word to or from the contents of a 1-
bit data register and store the results in the register. The register can be loaded with a
1-bit word. The synchronous reset (R) has priority over all other inputs and, when
High, causes the output to go to logic level zero during the Low-to-High clock (C)
transition. Clock (C) transitions are ignored when clock enable (CE) is Low.

The accumulator is asynchronously cleared, outputs Low, when power is applied. For
CPLDs the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net.

Load

When the load input (L) is High, CE is ignored and the data on the input D0 is loaded
into the 1-bit register during the Low-to-High clock (C) transition.

Add

When control inputs ADD and CE are both High, the accumulator adds a 1-bit word
(B0) and carry-in (CI) to the contents of the 1-bit register. The result is stored in the
register and appears on output Q0 during the Low-to-High clock transition. The
carry-out (CO) is not registered synchronously with the data output. CO always
reflects the accumulation of input B0 and the contents of the register, which allows
cascading of ACC1s by connecting CO of one stage to CI of the next stage. In add
mode, CO acts as a carry-out, and CO and CI are active-High.

Subtract

When ADD is Low and CE is High, the 1-bit word B0 and CI are subtracted from the
contents of the register. The result is stored in the register and appears on output Q0
during the Low-to-High clock transition. The carry-out (CO) is not registered
synchronously with the data output. CO always reflects the accumulation of input B0
and the contents of the register, which allows cascading of ACC1s by connecting CO
of one stage to CI of the next stage. In subtract mode, CO acts as a borrow, and CO
and CI are active-Low.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A N/A Macro N/A N/A N/A

X3862

ACC1

C

D0

B0

CI Q0

CO

L

CE

ADD

R
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Figure 3-1 ACC1 Implementation XC9000
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ACC4, 8, 16

4-, 8-, 16-Bit Loadable Cascadable Accumulators with Carry-In,
Carry-Out, and Synchronous Reset

ACC4, ACC8, ACC16 can add or subtract a 4-, 8-, 16-bit unsigned-binary, respectively
or twos-complement word to or from the contents of a 4-, 8-, 16-bit data register and
store the results in the register. The register can be loaded with the 4-, 8-, 16-bit word.

In the XC4000 and Spartans, these accumulators are implemented using carry logic
and relative location constraints, which assure most efficient logic placement.

The synchronous reset (R) has priority over all other inputs, and when High, causes
all outputs to go to logic level zero during the Low-to-High clock (C) transition. Clock
(C) transitions are ignored when clock enable (CE) is Low.

The accumulator is asynchronously cleared, outputs Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000,
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in
front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.

Load

When the load input (L) is High, CE is ignored and the data on the D inputs is loaded
into the register during the Low-to-High clock (C) transition. ACC4 loads the data on
inputs D3 – D0 into the 4-bit register. ACC8 loads the data on D7 – D0 into the 8-bit
register. ACC16 loads the data on inputs D15 – D0 into the 16-bit register.

Unsigned Binary Versus Twos Complement

ACC4, ACC8, ACC16 can operate, respectively, on either 4-, 8-, 16-bit unsigned binary
numbers or 4-, 8-, 16-bit twos-complement numbers. If the inputs are interpreted as
unsigned binary, the result can be interpreted as unsigned binary. If the inputs are
interpreted as twos complement, the output can be interpreted as twos complement.
The only functional difference between an unsigned binary operation and a twos-
complement operation is how they determine when “overflow” occurs. Unsigned
binary uses CO, while twos complement uses OFL to determine when “overflow”
occurs.

Unsigned Binary Operation

For unsigned binary operation, ACC4 can represent numbers between 0 and 15, inclu-
sive; ACC8 between 0 and 255, inclusive; and ACC16 between 0 and 65535, inclusive.
In add mode, CO is active (High) when the sum exceeds the bounds of the adder/
subtracter. In subtract mode, CO is an active-Low borrow-out and goes Low when the
difference exceeds the bounds. The carry-out (CO) is not registered synchronously

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Macro Macro Macro Macro Macro Macro Macro Macro

X3863
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with the data outputs. CO always reflects the accumulation of the B inputs (B3 – B0
for ACC4, B7 – B0 for ACC8, B15 – B0 for ACC16) and the contents of the register,
which allows cascading of ACC4s, ACC8s, or ACC16s by connecting CO of one stage
to CI of the next stage. An unsigned binary “overflow” that is always active-High can
be generated by gating the ADD signal and CO as follows.

unsigned overflow = CO XOR ADD

OFL should be ignored in unsigned binary operation.

Twos-Complement Operation

For twos-complement operation, ACC4 can represent numbers between -8 and +7,
inclusive; ACC8 between -128 and +127, inclusive; ACC16 between -32768 and
+32767, inclusive. If an addition or subtraction operation result exceeds this range, the
OFL output goes High. The overflow (OFL) is not registered synchronously with the
data outputs. OFL always reflects the accumulation of the B inputs (B3 – B0 for ACC4,
B7 – B0 for ACC8, B15 – B0 for ACC16) and the contents of the register, which allows
cascading of ACC4s, ACC8s, or ACC16s by connecting OFL of one stage to CI of the
next stage.

CO should be ignored in twos-complement operation.

Topology for XC4000 and Spartans

This is the ACC4 (4-bit), ACC8 (8-bit), and ACC16 (16-bit) topology for XC4000 and
Spartan series devices.
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Topology for XC5200

This is the ACC8 (8-bit) and ACC16 (16-bit) topology for XC5200 devices.
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Figure 3-2 ACC8 Implementation XC3000
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Figure 3-3 ACC8 Implementation XC4000, Spartans
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Figure 3-4 ACC8 Implementation XC5200
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Figure 3-5 ACC8 Implementation Virtex
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Figure 3-6 ACC4 Implementation XC9000
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Figure 3-7 ACC8 Implementation XC9000
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ACLK

Alternate Clock Buffer

ACLK, the alternate clock buffer, is used to distribute high fan-out clock signals
throughout a PLD device. One ACLK buffer on each device provides direct access to
every Configurable Logic Block (CLB) and Input Output Block (IOB) clock pin. The
ACLK buffer is slightly slower than the global clock buffer (GCLK) but otherwise
similar. Unlike GCLK, the routing resources used for the ACLK network can be used
to route other signals if it is not used. For this reason, if only one of the GCLK and
ACLK buffers is used, GCLK is preferred. The ACLK input (I) can come from one of
the following sources.

• A CMOS-level signal on the dedicated BCLKIN pin. BCLKIN is a direct CMOS-
only input to the ACLK buffer. To use the BCLKIN pin, connect the input of the
ACLK element to IBUF and IPAD elements.

• A CMOS- or TTL-level external signal. To connect an external input to the ACLK
buffer, connect the input of the ACLK element to the output of the IBUF for that
signal. Unless the corresponding IPAD element is constrained otherwise, PAR
typically places that IOB directly adjacent to the ACLK buffer.

• The on-chip crystal oscillator. The output of the XTAL oscillator on XC3000
devices is directly adjacent to the ACLK buffer input. If the GXTL element is used,
the output of the XTAL oscillator is automatically connected to the ACLK buffer;
do not use the ACLK element for anything else.

• An internal signal. To drive the ACLK buffer with an internal signal, connect that
signal directly to the input of the ACLK element.

For a negative-edge clock, insert an INV (inverter) element between the ACLK output
and the clock input. Inversion is performed inside the CLB, or in the case of IOB clock
pins, on the IOB clock line (that controls the clock sense for the IOBs on an entire edge
of the chip).

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Primitive N/A N/A N/A N/A N/A N/A N/A

X3883
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ADD1

1-Bit Full Adder with Carry-In and Carry-Out

ADD1, a cascadable 1-bit full adder with carry-in and carry-out, adds two 1-bit words
(A and B) and a carry-in (CI), producing a binary sum (S0) output and a carry-out
(CO).

Figure 3-8 ADD1 Implementation XC9000

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A N/A Macro N/A N/A N/A

Inputs Outputs

A0 B0 CI S0 CO

0 0 0 0 0

1 0 0 1 0

0 1 0 1 0

1 1 0 0 1

0 0 1 1 0

1 0 1 0 1

0 1 1 0 1

1 1 1 1 1

A0
S0

CO

CI

X4034

B0

AND2B1

OR3

XOR2

AND2

AND2

AND2

AND2B1

OR2

A0

B0
CI

S0

CO

X7689



Design Elements (ADD4, 8, 16)

Libraries Guide, Release M1.5 3-15

ADD4, 8, 16

4-, 8-, 16-Bit Cascadable Full Adders with Carry-In, Carry-Out, and
Overflow

ADD4, ADD8, and ADD16 add two words and a carry-in (CI), producing a sum
output and carry-out (CO) or overflow (OFL). ADD4 adds A3 – A0, B3 – B0, and CI
producing the sum output S3 – S0 and CO (or OFL). ADD8 adds A7 – A0, B7 – B0, and
CI, producing the sum output S7 – S0 and CO (or OFL). ADD16 adds A15 – A0, B15 –
B0 and CI, producing the sum output S15 – S0 and CO (or OFL).

ADD4, ADD8, and ADD16 are implemented in the XC4000 and Spartans using carry
logic and relative location constraints, which assure most efficient logic placement.

Unsigned Binary Versus Twos Complement

ADD4, ADD8, ADD16 can operate on either 4-, 8-, 16-bit unsigned binary numbers or
4-, 8-, 16-bit twos-complement numbers, respectively. If the inputs are interpreted as
unsigned binary, the result can be interpreted as unsigned binary. If the inputs are
interpreted as twos complement, the output can be interpreted as twos complement.
The only functional difference between an unsigned binary operation and a twos-
complement operation is how they determine when “overflow” occurs. Unsigned
binary uses CO, while twos-complement uses OFL to determine when “overflow”
occurs.

Unsigned Binary Operation

For unsigned binary operation, ADD4 can represent numbers between 0 and 15,
inclusive; ADD8 between 0 and 255, inclusive; ADD16 between 0 and 65535, inclu-
sive. CO is active (High) when the sum exceeds the bounds of the adder.

OFL is ignored in unsigned binary operation.

Twos-Complement Operation

For twos-complement operation, ADD4 can represent numbers between -8 and +7,
inclusive; ADD8 between -128 and +127, inclusive; ADD16 between -32768 and
+32767, inclusive. OFL is active (High) when the sum exceeds the bounds of the
adder.

CO is ignored in twos-complement operation.
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Topology for XC4000 and Spartans

This is the ADD4 (4-bit), ADD8 (8-bit), and ADD16 (16-bit) topology for XC4000 and
Spartan series devices.
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Topology for XC5200

This is the ADD8 (8-bit) and ADD16 (16-bit) topology for XC5200 devices.
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Figure 3-9 ADD8 Implementation XC3000
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Figure 3-10 ADD8 Implementation XC4000, Spartans
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Figure 3-11 ADD8 Implementation XC5200
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Figure 3-12 ADD8 Implementation Virtex
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Figure 3-13 ADD4 Implementation XC9000
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Figure 3-14 ADD8 Implementation XC9000
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ADSU1

1-Bit Cascadable Adder/Subtracter with Carry-In and Carry-Out

When the ADD input is High, two 1-bit words (A0 and B0) are added with a carry-in
(CI), producing a 1-bit output (S0) and a carry-out (CO). When the ADD input is Low,
B0 is subtracted from A0, producing a result (S0) and borrow (CO). In add mode, CO
represents a carry-out, and CO and CI are active-High. In subtract mode, CO repre-
sents a borrow, and CO and CI are active-Low.

Add Function, ADD=1

Subtract Function, ADD=0
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Figure 3-15 ADSU1 Implementation XC9000
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ADSU4, 8, 16

4-, 8-, 16-Bit Cascadable Adders/Subtracters with Carry-In, Carry-
Out, and Overflow

When the ADD input is High, ADSU4, ADSU8, and ADSU16 add two words and a
carry-in (CI), producing a sum output and carry-out (CO) or overflow (OFL). ADSU4
adds two 4-bit words (A3 – A0 and B3 – B0) and a CI, producing a 4-bit sum output
(S3 – S0) and CO or OFL. ADSU8 adds two 8-bit words (A7 – A0 and B7 – B0) and a CI
producing, an 8-bit sum output (S7 – S0) and CO or OFL. ADSU16 adds two 16-bit
words (A15 – A0 and B15 – B0) and a CI, producing a 16-bit sum output (S15 – S0) and
CO or OFL.

When the ADD input is Low, ADSU4, ADSU8, and ADSU16 subtract Bz – B0 from
Az– A0, producing a difference output and CO or OFL. ADSU4 subtracts B3 – B0 from
A3 – A0, producing a 4-bit difference (S3 – S0) and CO or OFL. ADSU8 subtracts B7 –
B0 from A7 – A0, producing an 8-bit difference (S7 – S0) and CO or OFL. ADSU16
subtracts B15 – B0 from A15 – A0, producing a 16-bit difference (S15 – S0) and CO or
OFL.

In add mode, CO and CI are active-High. In subtract mode, CO and CI are active-Low.
OFL is active-High in add and subtract modes.

ADSU4, ADSU8, and ADU16 are implemented in the XC4000 and Spartans using
carry logic and relative location constraints, which assure most efficient logic place-
ment.

ADSU4, ADSU8, and ADSU16 CI and CO pins do not use the CPLD carry chain.

Unsigned Binary Versus Twos Complement

ADSU4, ADSU8, ADSU16 can operate, respectively, on either 4-, 8-, 16-bit unsigned
binary numbers or 4-, 8-, 16-bit twos-complement numbers. If the inputs are inter-
preted as unsigned binary, the result can be interpreted as unsigned binary. If the
inputs are interpreted as twos complement, the output can be interpreted as twos
complement. The only functional difference between an unsigned binary operation
and a twos-complement operation is how they determine when “overflow” occurs.
Unsigned binary uses CO, while twos complement uses OFL to determine when
“overflow” occurs.

With adder/subtracters, either unsigned binary or twos-complement operations
cause an overflow. If the result crosses the overflow boundary, an overflow is gener-
ated. Similarly, when the result crosses the carry-out boundary, a carry-out is gener-
ated. The following figure shows the ADSU carry-out and overflow boundaries.
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Figure 3-16 ADSU Carry-Out and Overflow Boundaries

Unsigned Binary Operation

For unsigned binary operation, ADSU4 can represent numbers between 0 and 15,
inclusive; ADSU8 between 0 and 255, inclusive; ADSU16 between 0 and 65535, inclu-
sive. In add mode, CO is active (High) when the sum exceeds the bounds of the
adder/subtracter. In subtract mode, CO is an active-Low borrow-out and goes Low
when the difference exceeds the bounds.

An unsigned binary “overflow” that is always active-High can be generated by gating
the ADD signal and CO as follows.

unsigned overflow = CO XNOR ADD

OFL is ignored in unsigned binary operation.

Twos-Complement Operation

For twos-complement operation, ADSU4 can represent numbers between -8 and +7,
inclusive; ADSU8 between -128 and +127, inclusive; ADSU16 between -32768 and
+32767, inclusive. If an addition or subtraction operation result exceeds this range, the
OFL output goes High.

CO is ignored in twos-complement operation.
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Topology for XC4000 and Spartans

This is the ADSU4 (4-bit), ADSU8 (8-bit), and ADSU16 (16-bit) topology for XC4000
and Spartan series devices.
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XC5200 Topology

This is the ADSU8 (8-bit) and ADSU16 (16-bit) topology for XC5200 devices.

A
LC3

LC2

LC1

LC0

15 S15

S14

S13

S12

S11

S10

S9

S8

S7

S6

S5

S4

S3

S2

S1

S0

B15

A14

B14
A13

B13

A12

B12

A
LC3

LC2

LC1

LC0

11

B11

A10

B10
A9

B9

A8

B8

A
LC3

LC2

LC1

LC0

7

B7

A6

B6
A5

B5

A4

B4

A
LC3

LC2

LC1

LC0

3

B3

A2

B2
A1

B1

A0

B0

CY_INIT
LC3

OFL*

CO

LC0

LC3

LC2

LC1

LC0

LC3

LC2

LC1

LC0

LC3

LC2

LC1

LC0

LC3

LC2

LC1

LC0

S7

S6

S5

S4

S3

S2

S1

S0

A
LC3

LC2

LC1

LC0

7

B 7

A 6

B 6
A 5

B 5

A 4

B 4

A
LC3

LC2

LC1

LC0

3

B 3

A 2

B 2
A 1

B 1

A 0

B 0

CY_INIT
LC3

OFL*
LC0

LC3

LC2

LC1

LC0

LC3

LC2

LC1

LC0

16-Bit

8-Bit

X8210



Libraries Guide, Release M1.5

3-30 Xilinx Development System

Figure 3-17 ADSU8 Implementation XC3000
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Figure 3-18 ADSU8 Implementation XC4000, Spartans
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Figure 3-19 ADSU8 Implementation XC5200
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Figure 3-20 ADSU8 Implementation Virtex
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Figure 3-21 ADSU4 Implementation XC9000

Figure 3-22 ADSU8 Implementation XC9000

X7615

A0

B0
CO

S0

ADSU1

S0

A0

B0

A0

B0
CO

S0

ADSU1

S1

A1

B1

CI

A0

B0
CO

S0

ADSU1

S2

A2

B2

CI

A0

B0
CO

S0

ADSU1

S3

A3

B3

CI

S0

S1

S2

S3

CO

AND4B2

AND4B1

AND4B2

OR4

AND4B3

ADD

OFL_NEG_ADD

OFL_POS_SUB

OFL_OUT

OFL

OFL_NEG_SUB

OFL_POS_ADD

CI

ADD

ADD

ADD

ADD

CI

CI

A0

A1

A2

A3

B0

B1

B2

B3

S0

S1

S2

S3

ADD
CO

A0
A1
A2
A3

B0
B1
B2
B3

ADSU4X2

S0
S1
S2
S3

C3

CI

A0

A1

A2

A3

B0

B1

B2

B3

S0

S1

S2

S3

ADD
CO

A4
A5
A6
A7

B4
B5
B6
B7

ADSU4

S4
S5
S6
S7

OFL
OFL
CO

CI

S[7:0]

B[7:0]

A[7:0]

ADD

S3_0

X7774

S7_4



Design Elements (AND2-9)

Libraries Guide, Release M1.5 3-35

AND2-9

2- to 9-Input AND Gates with Inverted and Non-Inverted Inputs
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Figure 3-23 AND Gate Representations

The AND function is performed in the Configurable Logic Block (CLB) function
generators for XC3000, XC4000, XC5200, and Spartans.

AND functions of up to five inputs are available in any combination of inverting and
non-inverting inputs. AND functions of six to nine inputs are available with only non-
inverting inputs. To make some or all inputs inverting, use external inverters. Because
each input uses a CLB resource in FPGAs, replace functions with unused inputs with
functions having the appropriate number of inputs.

Refer to “AND12, 16” for information on additional AND functions for the XC5200
and Virtex.
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Figure 3-24 AND5 Implementation XC5200

Figure 3-25 AND8 Implementation XC3000

Figure 3-26 AND8 Implementation XC4000, Spartans

Figure 3-27 AND8 Implementation XC5200
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Figure 3-28 AND8 Implementation Virtex
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AND12, 16

12- and 16-Input AND Gates with Non-Inverted Inputs

AND12 and AND16 functions are performed in the Configurable Logic Block (CLB)
function generator.

The 12- and 16-input AND functions are available only with non-inverting inputs. To
invert all of some inputs, use external inverters.

Refer to “AND2-9” for information on more AND functions.

Figure 3-29 AND12 Implementation XC5200
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Figure 3-30 AND12 Implementation Virtex
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Figure 3-31 AND16 Implementation XC5200
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Figure 3-32 AND16 Implementation Virtex
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BRLSHFT4, 8

4-, 8-Bit Barrel Shifters

BRLSHFT4, a 4-bit barrel shifter, can rotate four inputs (I3 – I0) up to four places. The
control inputs (S1 and S0) determine the number of positions, from one to four, that
the data is rotated. The four outputs (O3 – O0) reflect the shifted data inputs.

BRLSHFT8, an 8-bit barrel shifter, can rotate the eight inputs (I7 – I0) up to eight
places. The control inputs (S2 – S0) determine the number of positions, from one to
eight, that the data is rotated. The eight outputs (O7 – O0) reflect the shifted data
inputs.

BRLSHFT4 Truth Table

BRLSHFT8 Truth Table

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Macro Macro Macro Macro Macro Macro Macro Macro

Inputs Outputs

S1 S0 I0 I1 I2 I3 O0 O1 O2 O3

0 0 a b c d a b c d

0 1 a b c d b c d a

1 0 a b c d c d a b

1 1 a b c d d a b c

Inputs Output

S2 S1 S0 I0 I1 I2 I3 I4 I5 I6 I7 O0 O1 O2 O3 O4 O5 O6 O7

0 0 0 a b c d e f g h a b c d e f g h

0 0 1 a b c d e f g h b c d e f g h a

0 1 0 a b c d e f g h c d e f g h a b

0 1 1 a b c d e f g h d e f g h a b c

1 0 0 a b c d e f g h e f g h a b c d

1 0 1 a b c d e f g h f g h a b c d e

1 1 0 a b c d e f g h g h a b c d e f

1 1 1 a b c d e f g h h a b c d e f g
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Figure 3-33 BRLSHFT8 Implementation XC3000, XC4000, XC5200, XC9000,
Spartans, Virtex
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BSCAN

Boundary Scan Logic Control Circuit

The BSCAN symbol indicates that boundary scan logic should be enabled after the
programmable logic device (PLD) configuration is complete. It also provides optional
access to some special features of the XC5200 boundary scan logic.

Note: For specific information on boundary scan for each architecture, refer to The
Programmable Logic Data Book.

To indicate that boundary scan remains enabled after configuration, connect the
BSCAN symbol to the TDI, TMS, TCK, and TDO pads. The other pins on BSCAN do
not need to be connected, unless those special functions are needed. A signal on the
TDO1 input is passed to the external TDO output when the USER1 instruction is
executed; the SEL1 output goes High to indicate that the USER1 instruction is active.
The TDO2 and SEL2 pins perform a similar function for the USER2 instruction. The
DRCK output provides access to the data register clock (generated by the TAP
controller). The IDLE output provides access to a version of the TCK input, which is
only active while the TAP controller is in the Run-Test-Idle state. The RESET,
UPDATE, and SHIFT pins of the XC5200 BSCAN symbol represent the decoding of
the corresponding state of the boundary scan internal state machine. These functions
are not available in the XC4000 and Spartans.

If boundary scan is used only before configuration is complete, do not include the
BSCAN symbol in the design. The TDI, TMS, TCK, and TDO pins can be reserved for
user functions.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A Primitive Primitive Primitive N/A Primitive Primitive N/A
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BSCAN_VIRTEX

Virtex Boundary Scan Logic Control Circuit

The BSCAN_VIRTEX symbol indicates that boundary scan logic should be enabled
after the programmable logic device (PLD) configuration is complete. The 4-pin JTAG
interface (TDI, TDO, TCK, and TMS) are dedicated pins in Virtex. To use normal JTAG
for boundary scan purposes, just hook up the JTAG pins to the port and go. The pins
on the BSCAN_VIRTEX symbol do not need to be connected, unless those special
functions are needed to drive an internal scan chain.

A signal on the TDO1 input is passed to the external TDO output when the USER1
instruction is executed; the SEL1 output goes High to indicate that the USER1 instruc-
tion is active.The DRCK1 output provides USER1 access to the data register clock
(generated by the TAP controller). The TDO2 and SEL2 pins perform a similar func-
tion for the USER2 instruction and the DRCK2 output provides USER2 access to the
data register clock (generated by the TAP controller). The RESET, UPDATE, and
SHIFT pins represent the decoding of the corresponding state of the boundary scan
internal state machine. The TDI pin provides access to the TDI signal of the JTAG port
in order to shift data into an internal scan chain.

Note: For detailed information on boundary scan for Virtex, refer to the Xilinx web
site, http://www.xilinx.com.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive
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BUF

 General-Purpose Buffer

BUF is a general purpose, non-inverting buffer.

In FPGA architectures, BUF is usually not necessary and is removed by the parti-
tioning software (MAP). The BUF element can be preserved for reducing the delay on
a high fan-out net, for example, by splitting the net and reducing capacitive loading.
In this case, the buffer is preserved by attaching an X (explicit) attribute to both the
input and output nets of the BUF.

In CPLD architecture, BUF is usually removed, unless you inhibit optimization by
applying the OPT=OFF attribute to the BUF symbol or by using the
LOGIC_OPT=OFF global attribute.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Primitive Primitive Primitive Primitive Primitive Primitive Primitive Primitive

X3830



Libraries Guide, Release M1.5

3-48 Xilinx Development System

BUF4, 8, 16

 General-Purpose Buffers

BUF4, 8, 16 are general purpose, non-inverting buffers.

In CPLD architecture, BUF4, BUF8, and BUF16 are usually removed, unless you
inhibit optimization by applying the OPT=OFF attribute to the BUF4, BUF8, or BUF16
symbol or by using the LOGIC_OPT=OFF global attribute.

Figure 3-34 BUF8 Implementation XC9000
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BUFCF

Fast Connect Buffer

BUFCF is a single fast connect buffer used to connect the outputs of the LUTs and
some dedicated logic directly to the input of another LUT. Using this buffer implies
CLB packing. No more than four LUTs may be connected together as a group.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive
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BUFE, 4, 8, 16

Internal 3-State Buffers with Active High Enable

BUFE, BUFE4, BUFE8, and BUFE16 are single or multiple tristate buffers with inputs
I, I3 – I0, I7 – I0, and I15 – I0, respectively; outputs O, O3 – O0, O7 – O0, and O15 – O0,
respectively; and active-High output enable (E). When E is High, data on the inputs of
the buffers is transferred to the corresponding outputs. When E is Low, the output is
high impedance (Z state or Off). The outputs of the buffers are connected to horizontal
longlines in FPGA architectures.

The outputs of separate BUFE symbols can be tied together to form a bus or a multi-
plexer. Make sure that only one E is High at any one time. If none of the E inputs is
active-High, a “weak-keeper” circuit (FPGAs) keeps the output bus from floating but
does not guarantee that the bus remains at the last value driven onto it.

In XC3000, XC4000, and Spartans, the E signal in BUFE macros is implemented by
using a BUFT with an inverter on the active-Low enable (T) pin. This inverter can add
an extra level of logic to the data path. Pull-up resistors can be used to establish a
High logic level if all BUFE elements are Off.

In the XC5200 architecture, pull-ups cannot be used in conjunction with BUFT or
BUFE macros because there are no pull-ups available at the ends of the horizontal
longlines.

For XC9500 devices, BUFE output nets assume the High logic level when all
connected BUFE/BUFT buffers are disabled. On-chip 3-state multiplexing is not avail-
able in XC9500XL devices.

For Virtex, BUFE elements need a PULLUP element connected to their output.
NGDBuild inserts a PULLUP element if one is not connected.

Element XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

BUFE Macro Macro Macro Macro Primitive* Macro Macro Primitive

BUFE4,
BUFE8,
BUFE16

Macro Macro Macro Macro Macro* Macro Macro Macro

* not supported for XC9500XL devices

Inputs Outputs

E I O

0 X Z

1 1 1

1 0 0

BUFE

X3790

E

X3797

BUFE4

E

BUFE8

X3809

E

BUFE16

X3821

E
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Figure 3-35 BUFE Implementation XC3000, XC4000, XC5200, Spartans

Figure 3-36 BUFE8 Implementation XC3000, XC4000, XC5200, Spartans

Figure 3-37 BUFE8 Implementation XC9000, Virtex
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BUFFCLK

Global Fast Clock Buffer

BUFFCLK (FastCLK buffer) provides the fastest way to bring a clock into the
XC4000X device. Four of these buffers are present on those devices — two on the left
edge of the die and two on the right edge.

Using BUFFCLK, you can create a very fast pin-to-pin path by driving the F input of
the CLB function generator with BUFFCLK output.

You can use BUFFCLK to minimize the setup time of input devices if positive hold
time is acceptable. Use BUFFCLK to clock the Fast Capture latch and a slower clock
buffer to capture the standard IOB flip-flop or latch. Either the Global Early buffer
(BUFGE) or the Global Low-Skew buffer (BUFGLS) can be used for the second storage
element (the one used should be the same clock as the internal related logic).

You can also use BUFFCLK to provide a fast Clock-to-Out on device output pins.

These buffers can access IOBs on one half of the die edge only. They can each drive
two of the four vertical lines accessing the IOBs on the left edge of the device or two of
the eight vertical lines accessing the IOBs on the right edge of the device. They can
only access the CLB array through single and double-length lines.

BUFFCLKs must be driven by the semi-dedicated IOBs. They are not accessible from
internal nets.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A Primitive N/A N/A N/A N/A N/A
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BUFG

Global Clock Buffer

BUFG, an architecture-independent global buffer, distributes high fan-out clock
signals throughout a PLD device. The Xilinx implementation software converts each
BUFG to an appropriate type of global buffer for the target PLD device.

For XC9000 designs, consult the device data sheet for the number of available global
pins.

For an XC3000 design, you can use a maximum of two BUFG symbols (assuming that
no specific GCLK or ACLK buffer is specified). For an XC4000 or Spartan series
design, you can use a maximum of eight BUFG symbols (assuming that no specific
BUFGP or BUFGS buffers are specified). For XC3000 designs, MAP always selects an
ACLK, then a GCLK. For XC4000 or Spartan series designs, it always selects a BUFGS
before a BUFGP. If you want to use a specific type of buffer, instantiate it manually.

To use a BUFG in a schematic, connect the input of the BUFG symbol to the clock
source. Depending on the target PLD family, the clock source can be an external PAD
symbol, an IBUF symbol, or internal logic. In Virtex, the BUFG cannot be driven
directly from a pad; it can be driven from an IBUFG instead. For a negative-edge clock
input, insert an INV (inverter) symbol between the BUFG output and the clock input.
The inversion is implemented at the Configurable Logic Block (CLB) or Input Output
Block (IOB) clock pin.

For XC9000 designs, BUFG is always implemented using an IOB. Connect the input of
BUFG to an IPAD or an IOPAD that represents an external signal source. Each BUFG
can drive any number of register clocks in a designs.

For XC9000 designs, the output of a BUFG may also be used as an ordinary input
signal to other logic elsewhere in the design.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Primitive Primitive Primitive Primitive Primitive Primitive Primitive Primitive
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BUFGDLL

Clock Delay Locked Loop Buffer

BUFGDLL is a special purpose clock delay locked loop buffer for clock skew manage-
ment. It is provided as a user convenience for the most frequently used configuration
of elements for clock skew management. It consists of an IBUFG followed by a
CLKDLL followed by a BUFG.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive
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BUFGE

Global Low Early Clock Buffer

Eight Global Early buffers (BUFGE), two on each corner of the device, provide an
earlier clock access than the potentially heavily loaded Global Low-Skew buffers
(BUFGLS).

BUFGE can facilitate the fast capture of device inputs using the Fast Capture latches
ILFFX and ILFLX. For fast capture, take a single clock signal and route it through both
a BUFGE and a BUFGLS. Use the BUFGE to clock the fast capture latch and the
BUFGLS to clock the normal input flip-flop or latch.

You can also use BUFGE to provide a fast Clock-to-Out on device output pins.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A Primitive N/A N/A N/A N/A N/A
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BUFGLS

Global Low Skew Clock Buffer

Each corner of the XC4000X or SpartanXL device has two Global Low-Skew buffers
(BUFGLS). Any of the eight buffers can drive any of the eight vertical global lines in a
column of CLBs. In addition, any of the buffers can drive any of the four vertical lines
accessing the IOBs on the left edge of the device and any of the eight vertical lines
accessing the IOBs on the right edge of the device.

IOBs at the top and bottom edges of the device are accessed through the vertical
global lines in the CLB array. Any global low-skew buffer can, therefore, access every
IOB and CLB in the device.

The global low-skew buffers can be driven by either semi-dedicated pads or internal
logic.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex
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BUFGP

Primary Global Buffer for Driving Clocks or Longlines (Four per
PLD Device)

BUFGP, a primary global buffer, is used to distribute high fan-out clock or control
signals throughout PLD devices. In Virtex, BUFGP is equivalent to an IBUFG driving
a BUFG. In CPLD designs, BUFGP is treated like BUFG. A BUFGP provides direct
access to Configurable Logic Block (CLB) and Input Output Block (IOB) clock pins
and limited access to other CLB inputs. Four BUFGPs are available on each XC4000E
and Spartan device, one in each corner. The input to a BUFGP comes only from a
dedicated IOB.

Alongside each column of CLBs in an XC4000E or Spartan device are four global
vertical lines, which are in addition to the standard vertical longlines. Each one of the
four global vertical lines can drive the CLB clock (K) pin directly. In addition, one of
the four lines can drive the F3 pin, a second line can drive the G1 pin, a third can drive
the C3 pin, and a fourth can drive the C1 pin. Each of the four BUFGPs drives one of
these global vertical lines. These same vertical lines are also used for the secondary
global buffers (refer to the “BUFGS” section for more information).

Because of its structure, a BUFGP can always access a clock pin directly. However, it
can access only one of the F3, G1, C3, or C1 pins, depending on the corner in which
the BUFGP is placed. When the required pin cannot be accessed directly from the
vertical line, PAR feeds the signal through another CLB and uses general purpose
routing to access the load pin.

To use a BUFGP in a schematic, connect the input of the BUFGP element directly to
the PAD symbol. Do not use any IBUFs, because the signal comes directly from a
dedicated IOB. The output of the BUFGP is then used throughout the schematic. For a
negative-edge clock, insert an INV (inverter) element between the output of the
BUFGP and the clock input. This inversion is performed inside each CLB or IOB.

A Virtex BUFGP must be sourced by an external signal. Other BUFGPs can be sourced
by an internal signal, but PAR must use the dedicated IOB to drive the BUFGP, which
means that the IOB is not available for use by other signals. If possible, use a BUFGS
instead, because they can be sourced internally without using an IOB.

The dedicated inputs for BUFGPs are identified by the names PGCK1 through PGCK4
in pinouts in XC4000E and Spartan. The package pin that drives the BUFGP depends
on which corner the BUFGP is placed by PAR.

Figure 3-38 BUFGP Implementation XC5200
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BUFGS

Secondary Global Buffer for Driving Clocks or Longlines (Four per
PLD Device)

BUFGS, a secondary global buffer, distributes high fan-out clock or control signals
throughout a PLD device. In CPLD designs, BUFGS is treated like BUFG. BUFGS
provides direct access to Configurable Logic Block (CLB) clock pins and limited access
to other CLB inputs. Four BUFGSs are available on each XC4000E and Spartan device,
one in each corner. The input to a BUFGS comes either from a dedicated Input Output
Block (IOB) or from an internal signal.

Alongside each column of CLBs in an XC4000E or Spartan device are four global
vertical lines, which are in addition to the standard vertical longlines. Each one of the
four global vertical lines can drive the CLB clock (K) pin directly. In addition, one of
the four lines can drive the F3 pin, a second line can drive the G1 pin, a third can drive
the C3 pin, and a fourth can drive the C1 pin. Each of the four BUFGSs can drive any
of these global vertical lines and are also used as the primary global buffers (refer also
to the “BUFGP” section for more information).

Because of its structure, a BUFGS can always access a clock pin directly. Because the
BUFGS is more flexible than the BUFGP, it can use additional global vertical lines to
access the F3, G1, C3, and C1 pins but requires multiple vertical lines in the same
column. If the vertical lines in a given column are already used for BUFGPs or another
BUFGS, PAR might have to feed signals through other CLBs to reach the load pins.

To use a BUFGS in a schematic, connect the input of the BUFGS element either
directly to the PAD symbol (for an external input) or to an internally sourced net. For
an external signal, do not use any IBUFs, because the signal comes directly from the
dedicated IOB. The output of the BUFGS is then used throughout the schematic. For a
negative-edge clock, insert an INV (inverter) element between the output of the
BUFGS and the clock input. This inversion is performed inside each CLB or IOB.

The dedicated inputs for BUFGSs are identified by the names SGCK1 through SGCK4
in pinouts in XC4000E and Spartan. The package pin that drives the BUFGS depends
on which corner the BUFGS is placed by PAR.

Figure 3-39 BUFGS Implementation XC5200

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A Primitive N/A Macro N/A Primitive N/A N/A
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BUFGSR

Global Set/Reset Input Buffer

BUFGSR, an XC9000-specific global buffer, distributes global set/reset signals
throughout selected flip-flops of an XC9000 device. Global Set/Reset (GSR) control
pins are available on XC9000 devices; consult device data sheets for availability.

BUFGSR always acts as an input buffer. To use it in a schematic, connect the input of
the BUFGSR symbol to an IPAD or an IOPAD representing the GSR signal source.
GSR signals generated on-chip must be passed through an OBUF-type buffer before
they are connected to BUFGSR.

For global set/reset control, the output of BUFGSR normally connects to the CLR or
PRE input of a flip-flop symbol, like FDCP, or any registered symbol with asynchro-
nous clear or preset. The global set/reset control signal may pass through an inverter
to perform an active-low set/reset. The output of BUFGSR may also be used as an
ordinary input signal to other logic elsewhere in the design. Each BUFGSR can control
any number of flip-flops in a design.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A N/A Primitive N/A N/A N/A

X3831
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BUFGTS

Global Three-State Input Buffer

BUFGTS, an XC9000-specific global buffer, distributes global output-enable signals
throughout the output pad drivers of an XC9000 device. Global Three-State (GTS)
control pins are available on XC9000 devices; consult device data sheets for avail-
ability.

BUFGTS always acts as an input buffer. To use it in a schematic, connect the input of
the BUFGTS symbol to an IPAD or an IOPAD representing the GTS signal source. GTS
signals generated on-chip must be passed through an OBUF-type buffer before they
are connected to BUFGTS.

For global 3-state control, the output of BUFGTS normally connects to the E input of a
3-state output buffer symbol, OBUFE. The global 3-state control signal may pass
through an inverter or control an OBUFT symbol to perform an active-low output-
enable. The same 3-state control signal may even be used both inverted and non-
inverted to enable alternate groups of device outputs. The output of BUFGTS may
also be used as an ordinary input signal to other logic elsewhere in the design. Each
BUFGTS can control any number of output buffers in a design.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A N/A Primitive N/A N/A N/A

X3831
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BUFOD

Open-Drain Buffer

BUFOD is a buffer with input (I) and open-drain output (O). When the input is Low,
the output is Low. When the input is High, the output is off. To establish an output
High level, a pull-up resistor is tied to output O. One pull-up resistor uses the least
power; two pull-up resistors achieve the fastest Low-to-High speed.

To indicate two pull-up resistors, append a DOUBLE parameter to the pull-up symbol
attached to the output (O) node. Refer to the appropriate CAE tool interface user
guide for details.

Figure 3-40 BUFOD Implementation XC4000

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex
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BUFT, 4, 8, 16

Internal 3-State Buffers with Active-Low Enable

BUFT, BUFT4, BUFT8, and BUFT16 are single or multiple 3-state buffers with inputs I,
I3 – I0, I7 – I0, and I15 – 10, respectively; outputs O, O3 – O0, O7 – O0, and O15 – O0,
respectively; and active-Low output enable (T). When T is Low, data on the inputs of
the buffers is transferred to the corresponding outputs. When T is High, the output is
high impedance (Z state or off). The outputs of the buffers are connected to horizontal
longlines in FPGA architectures.

The outputs of separate BUFT symbols can be tied together to form a bus or a multi-
plexer. Make sure that only one T is Low at one time. If none of the T inputs is active
(Low), a “weak-keeper” circuit (FPGAs) prevents the output bus from floating but
does not guarantee that the bus remains at the last value driven onto it.

Pull-up resistors can be used to establish a High logic level if all BUFT elements are off
in XC3000, XC4000, and Spartans.

In the XC5200 architecture, pull-ups cannot be used in conjunction with BUFT or
BUFE macros because there are no pull-ups available at the ends of the horizontal
longlines.

For XC9500 devices, BUFT output nets assume the High logic level when all
connected BUFE/BUFT buffers are disabled. On-chip 3-state multiplexing is not avail-
able in XC9500XL devices.

For Virtex, when all BUFTs on a net are disabled, the net is High. For correct simula-
tion of this effect, a PULLUP element must be connected to the net. NGDBuild inserts
a PULLUP element if one is not connected so that back-annotation simulation reflects
the true state of the Virtex chip.

Element XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

BUFT Primitive Primitive Primitive Primitive Primitive* Primitive Primitive Primitive

BUFT4,
BUFT8,
BUFT16

Macro Macro Macro Macro Macro* Macro Macro Macro

* not supported for XC9500XL devices

Inputs Outputs

T I O

1 X Z

0 1 1

0 0 0

BUFT

X3789

T

X3796

BUFT4

T

BUFT8

X3808

T

BUFT16

X3820

T
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Figure 3-41 BUFT8 Implementation XC3000, XC4000, XC5200, XC9000,
Spartans, Virtex
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BYPOSC

Bypass Oscillator

BYPOSC provides for definition of a user clock for the charge pump via its I pin.
When the BYPOSC symbol is not used or its I pin is not connected, the charge pump
uses an internal clock.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A Primitive N/A N/A N/A N/A

BYPOSC

I

X8236
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Chapter 4

Design Elements (CAPTURE_VIRTEX to DECODE64)

This chapter describes design elements included in the Unified Libraries. The
elements are organized in alphanumeric order with all numeric suffixes in ascending
order.

Information on the specific architectures supported by each of the following libraries
is contained under the Applicable Architectures section of the Unified Libraries
Chapter.

• XC3000 Library

• XC4000E Library

• XC4000X Library

• XC5200 Library

• XC9000 Library

• Spartan Library

• SpartanXL Library

• Virtex Library

Note: Wherever XC4000 is mentioned, the information applies to all architectures
supported by the XC4000E and XC4000X libraries.

Note: Wherever Spartans or Spartan series is mentioned, the information applies to all
architectures supported by the Spartan and SpartanXL libraries.

Schematics are included for each library if the implementation differs. Design
elements with bused or multiple I/O pins (2-, 4-, 8-, 16-bit versions) typically include
just one schematic — generally the 8-bit version. When only one schematic is
included, implementation of the smaller and larger elements differs only in the
number of sections. In cases where an 8-bit version is very large, an appropriate
smaller element serves as the schematic example.
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CAPTURE_VIRTEX

Virtex Register State Capture for Bitstream Readback

CAPTURE_VIRTEX provides user control over when to capture register (flip-flop and
latch) information for readback. Virtex provides the readback function through dedi-
cated configuration port instructions, instead of with a READBACK component as in
other FPGA architectures. The CAPTURE_VIRTEX symbol is optional. Without it
readback is still performed, but the asynchronous capture function it provides for
register states is not available.

Note: Virtex only allows for capturing register (flip-flop and latch) states. Although
LUT RAM, SRL, and block RAM states are read back, they cannot be captured.

An asserted High CAP signal indicates that the registers in the device are to be
captured at the next Low-to-High clock transition. The Low-to-High clock transition
triggers the capture clock (CLK) which clocks out the readback data.

Two BitGen options control when capture can occur.

• When ONESHOT mode is set, only a single capture of registers for readback is
allowed. After a trigger (transition on CLK while CAP is asserted), all register
information is captured and no additional captures can occur until the readback
operation is completed.

• When CONTINUOUS mode is set, data is captured after every trigger (transition
on CLK while CAP is asserted).

For details on the Virtex readback function, refer to the Xilinx web site, http://
www.xilinx.com.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive

X8681

CAPTURE_VIRTEX

CAP

CLK
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CB2CE, CB4CE, CB8CE, CB16CE

2-, 4-, 8-,16-Bit Cascadable Binary Counters with Clock Enable and
Asynchronous Clear

CB2CE, CB4CE, CB8CE, and CB16CE are, respectively, 2-, 4-, 8-, and 16-bit (stage),
asynchronous, clearable, cascadable binary counters. The asynchronous clear (CLR) is
the highest priority input. When CLR is High, all other inputs are ignored; the Q
outputs, terminal count (TC), and clock enable out (CEO) go to logic level zero, inde-
pendent of clock transitions. The Q outputs increment when the clock enable input
(CE) is High during the Low-to-High clock (C) transition. The counter ignores clock
transitions when CE is Low. The TC output is High when all Q outputs are High.

Larger counters are created by connecting the CEO output of the first stage to the CE
input of the next stage and connecting the C and CLR inputs in parallel. CEO is active
(High) when TC and CE are High. The maximum length of the counter is determined
by the accumulated CE-to-TC propagation delays versus the clock period. The clock
period must be greater than n(tCE-TC), where n is the number of stages and the time
tCE-TC is the CE-to-TC propagation delay of each stage. When cascading counters, use
the CEO output if the counter uses the CE input; use the TC output if it does not.

The counter is asynchronously cleared, outputs Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000,
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in
front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Macro Macro Macro Macro Macro Macro Macro Macro

Inputs Outputs

CLR CE C Qz – Q0 TC CEO

1 X X 0 0 0

0 0 X No Chg  No Chg 0

0 1 ↑ Inc TC CEO
z= 1 for CB2CE; z = 3 for CB4CE; z = 7 for CB8CE; z = 15 for CB16CE
TC = Qz•Q(z-1)•Q(z-2)•...•Q0
CEO = TC•CE

Q1
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CE CEO
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Q2
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Q3

Q[7:0]


X4361

CB8CE

C

CLR

CE CEO

TC

Q[15:0]

X4365

CB16CE

C

CLR

CEOCE

TC
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Figure 4-1 CB8CE Implementation XC3000, XC4000, XC5200, Spartans, Virtex
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Figure 4-2 CB2CE Implementation XC9000

Figure 4-3 CB8CE Implementation XC9000
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CB2CLE, CB4CLE, CB8CLE, CB16CLE

2-, 4-, 8-, 16-Bit Loadable Cascadable Binary Counters with Clock
Enable and Asynchronous Clear

CB2CLE, CB4CLE, CB8CLE, and CB16CLE are, respectively, 2-, 4-, 8-, and 16-bit
(stage) synchronously loadable, asynchronously clearable, cascadable binary
counters. The asynchronous clear (CLR) is the highest priority input. When CLR is
High, all other inputs are ignored; the Q outputs, terminal count (TC), and clock
enable out (CEO) go to logic level zero, independent of clock transitions. The data on
the D inputs is loaded into the counter when the load enable input (L) is High during
the Low-to-High clock transition, independent of the state of clock enable (CE). The Q
outputs increment when CE is High during the Low-to-High clock transition. The
counter ignores clock transitions when CE is Low. The TC output is High when all Q
outputs are High.

Larger counters are created by connecting the CEO output of the first stage to the CE
input of the next stage and connecting the C, L, and CLR inputs in parallel. CEO is
active (High) when TC and CE are High. The maximum length of the counter is deter-
mined by the accumulated CE-to-TC propagation delays versus the clock period. The
clock period must be greater than n(tCE-TC), where n is the number of stages and the
time tCE-TC is the CE-to-TC propagation delay of each stage. When cascading
counters, use the CEO output if the counter uses the CE input; use the TC output if it
does not.

The counter is asynchronously cleared, output Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000,
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in
front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Macro Macro Macro Macro Macro Macro Macro Macro

Inputs Outputs

CLR L CE C Dz – D0 Qz – Q0 TC CEO

1 X X X X 0 0 0

0 1 X ↑ Dn dn TC CEO

0 0 0 X X No Chg No Chg 0

0 0 1 ↑ X Inc TC CEO
z= 1 for CB2CLE; z = 3 for CB4CLE; z = 7 for CB8CLE; z = 15 for CB16CLE
dn = state of referenced input (Dn) one setup time prior to active clock transition.
TC = Qz•Q(z-1)•Q(z-2)•...•Q0
CEO = TC•CE
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Figure 4-4 CB8CLE Implementation XC3000
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Figure 4-5 CB8CLE Implementation XC4000, XC5200, Spartans, Virtex
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Figure 4-6 CB2CLE Implementation XC9000

Figure 4-7 CB8CLE Implementation XC9000
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CB2CLED, CB4CLED, CB8CLED, CB16CLED

2-, 4-, 8-, 16-Bit Loadable Cascadable Bidirectional Binary
Counters with Clock Enable and Asynchronous Clear

CB2CLED, CB4CLED, CB8CLED, and CB16CLED are, respectively, 2-, 4-, 8- and 16-bit
(stage), synchronously loadable, asynchronously clearable, cascadable, bidirectional
binary counters. The asynchronous clear (CLR) is the highest priority input. When
CLR is High, all other inputs are ignored; the Q outputs, terminal count (TC), and
clock enable out (CEO) go to logic level zero, independent of clock transitions. The
data on the D inputs is loaded into the counter when the load enable input (L) is High
during the Low-to-High clock (C) transition, independent of the state of clock enable
(CE). The Q outputs decrement when CE is High and UP is Low during the Low-to-
High clock transition. The Q outputs increment when CE and UP are High. The
counter ignores clock transitions when CE is Low.

For counting up, the TC output is High when all Q outputs and UP are High. For
counting down, the TC output is High when all Q outputs and UP are Low. To
cascade counters, the CEO output of each counter is connected to the CE pin of the
next stage. The clock, UP, L, and CLR inputs are connected in parallel. CEO is active
(High) when TC and CE are High. The maximum length of the counter is determined
by the accumulated CE-to-TC propagation delays versus the clock period. The clock
period must be greater than n(tCE-TC), where n is the number of stages and the time
tCE-TC is the CE-to-TC propagation delay of each stage.

When cascading counters, use the CEO output if the counter uses the CE input; use
the TC output if it does not. For CPLD designs, refer to the “CB2X1, CB4X1, CB8X1,
CB16X1” section for high-performance cascadable, bidirectional counters.

The counter is asynchronously cleared, output Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000,
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in
front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Macro Macro Macro Macro Macro Macro Macro Macro

Inputs Outputs

CLR L CE C UP Dz – D0 Qz – Q0 TC CEO

1 X X X X X 0 0 0

0 1 X ↑ X Dn dn TC CEO

0 0 0 X X X No Chg No Chg 0

0 0 1 ↑ 1 X Inc TC CEO

0 0 1 ↑ 0 X Dec TC CEO
z = 1 for CB2CLED; z = 3 for CB4CLED; z = 7 for CB8CLED; z = 15 for CB16CLED
dn = state of referenced input (Dn), one setup time prior to active clock transition
TC = (Qz•Q(z-1)•Q(z-2)•...•Q0•UP) + (Qz•Q(z-1)•Q(z-2)•...•Q0•UP)
CEO = TC•CE
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Figure 4-8 CB8CLED Implementation XC3000
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Figure 4-9 CB8CLED Implementation XC4000, XC5200, Spartans, Virtex
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Figure 4-10 CB4CLED Implementation XC9000
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CB2RE, CB4RE, CB8RE, CB16RE

2-, 4-, 8-, 16-Bit Cascadable Binary Counters with Clock Enable
and Synchronous Reset

CB2RE, CB4RE, CB8RE, and CB16RE are, respectively, 2-, 4-, 8-, and 16-bit (stage),
synchronous, resettable, cascadable binary counters. The synchronous reset (R) is the
highest priority input. When R is High, all other inputs are ignored; the Q outputs,
terminal count (TC), and clock enable out (CEO) go to logic level zero during the
Low-to-High clock transition. The Q outputs increment when the clock enable input
(CE) is High during the Low-to-High clock (C) transition. The counter ignores clock
transitions when CE is Low. The TC output is High when both Q outputs are High.

Larger counters are created by connecting the CEO output of the first stage to the CE
input of the next stage and connecting the C and R inputs in parallel. CEO is active
(High) when TC and CE are High. The maximum length of the counter is determined
by the accumulated CE-to-TC propagation delays versus the clock period. The clock
period must be greater than n(tCE-TC), where n is the number of stages and the time
tCE-TC is the CE-to-TC propagation delay of each stage. When cascading counters, use
the CEO output if the counter uses the CE input; use the TC output if it does not.

The counter is asynchronously cleared, output Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000,
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in
front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Macro Macro Macro Macro Macro Macro Macro Macro

Inputs Outputs

R CE C Qz – Q0 TC CEO

1 X ↑ 0 0 0

0 0 X No Chg No Chg 0

0 1 ↑ Inc TC CEO
z = 1 for CB2RE; z = 3 for CB4RE; z = 7 for CB8RE; z = 15 for CB16RE
TC = Qz•Q(z-1)•Q(z-2)•...•Q0)
CEO = TC•CE
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Figure 4-11 CB8RE Implementation XC3000, XC4000, XC5200, Spartans, Virtex
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Figure 4-12 CB2RE Implementation XC9000

Figure 4-13 CB8RE Implementation XC9000
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CB2RLE, CB4RLE, CB8RLE, CB16RLE

2-, 4-, 8-, 16-Bit Loadable Cascadable Binary Counters with Clock
Enable and Synchronous Reset

CB2RLE, CB4RLE, CB8RLE, and CB16RLE are, respectively, 2-, 4-, 8-, and 16-bit
(stage), synchronous, loadable, resettable, cascadable binary counter. The synchro-
nous reset (R) is the highest priority input. The synchronous R, when High, overrides
all other inputs and resets the Q outputs, terminal count (TC), and clock enable out
(CEO) outputs to Low on the Low-to-High clock (C) transition.

The data on the D inputs is loaded into the counter when the load enable input (L) is
High during the Low-to-High clock (C) transition, independent of the state of CE. The
Q outputs increment when CE is High during the Low-to-High clock transition. The
counter ignores clock transitions when CE is Low. The TC output is High when all Q
outputs are High. The CEO output is High when all Q outputs and CE are High to
allow direct cascading of counters.

Larger counters are created by connecting the CEO output of the first stage to the CE
input of the next stage and by connecting the C, L, and R inputs in parallel. The
maximum length of the counter is determined by the accumulated CE-to-CEO propa-
gation delays versus the clock period. When cascading counters, use the CEO output
if the counter uses the CE input; use the TC output if it does not.

The counter is asynchronously cleared, output Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex
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Figure 4-14 CB2RLE Implementation XC9000

Figure 4-15 CB8RLE Implementation XC9000
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CB2X1, CB4X1, CB8X1, CB16X1

2-, 4-, 8-, 16-Bit Loadable Cascadable Bidirectional Binary
Counters with Clock Enable and Asynchronous Clear

CB2X1, CB4X1, CB8X1, and CB16X1 are, respectively, 2-, 4-, 8-, and 16-bit (stage),
synchronously loadable, asynchronously clearable, bidirectional binary counters.
These counters have separate count-enable inputs and synchronous terminal-count
outputs for up and down directions to support high-speed cascading in the CPLD
architecture.

The asynchronous clear (CLR) is the highest priority input. When CLR is High, all
other inputs are ignored; data outputs (Q) go to logic level zero, terminal count
outputs TCU and TCD go to zero and one, respectively, clock enable outputs CEOU
and CEOD go to Low and High, respectively, independent of clock transitions. The
data on the D inputs loads into the counter on the Low-to-High clock (C) transition
when the load enable input (L) is High, independent of the CE inputs.

The Q outputs increment when CEU is High, provided CLR and L are Low, during
the Low-to-High clock transition. The Q outputs decrement when CED is High,
provided CLR and L are Low. The counter ignores clock transitions when CEU and
CED are Low. Both CEU and CED should not be High during the same clock transi-
tion; the CEOU and CEOD outputs might not function properly for cascading when
CEU and CED are both High.

For counting up, the CEOU output is High when all Q outputs and CEU are High. For
counting down, the CEOD output is High when all Q outputs are Low and CED is
High. To cascade counters, the CEOU and CEOD outputs of each counter are
connected directly to the CEU and CED inputs, respectively, of the next stage. The
clock, L, and CLR inputs are connected in parallel.

In Xilinx CPLD devices, the maximum clocking frequency of these counter compo-
nents is unaffected by the number of cascaded stages for all counting and loading
functions. The TCU terminal count output is High when all Q outputs are High,
regardless of CEU. The TCD output is High when all Q outputs are Low, regardless of
CED.

When cascading counters, the final terminal count signals can be produced by AND
wiring all the TCU outputs (for the up direction) and all the TCD outputs (for the
down direction). The TCU, CEOU, and CEOD outputs are produced by optimizable
AND gates within the component, resulting in zero propagation from the CEU and
CED inputs and from the Q outputs, provided all connections from each such output
remain on-chip. Otherwise, a macrocell buffer delay is introduced.

The counter is initialized to zero (TCU Low and TCD High) when power is applied.
For CPLDs, the power-on condition can be simulated by applying a High-level pulse
on the PRLD global net.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A N/A Macro N/A N/A N/A
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Inputs Outputs

CLR L CEU CED C Dz–D0 Qz–Q0 TCU TCD CEOU CEOD

1 X X X X X 0 0 1 0 CEOD

0 1 X X ↑ Dn dn TCU TCD CEOU CEOD

0 0 0 0 X X No Chg No Chg No Chg 0 0

0 0 1 0 ↑ X Inc TCU TCD CEOU 0

0 0 0 1 ↑ X Dec TCU TCD 0 CEOD

0 0 1 1 ↑ X Inc TCU TCD Invalid Invalid
z = 1 for CB2X1; z = 3 for CB4X1; z = 7 for CB8X1; z = 15 for CB16X1
dn = state of referenced input (Dn) one setup time prior to active clock transition
TCU = Qz•Q(z-1)•Q(z-2)•...•Q0
TCD = Qz•Q(z-1)•Q(z-2)•...•Q0
CEOU = TCU•CEU
CEOD = TCD•CED
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Figure 4-16 CB4X1 Implementation XC9000
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CB2X2, CB4X2, CB8X2, CB16X2

2-, 4-, 8-, and 16-Bit Loadable Cascadable Bidirectional Binary
Counters with Clock Enable and Synchronous Reset

CB2X2, CB4X2, CB8X2, and CB16X2 are, respectively, 2-, 4-, 8-, and 16-bit (stage),
synchronous, loadable, resettable, bidirectional binary counters. These counters have
separate count-enable inputs and synchronous terminal-count outputs for up and
down directions to support high-speed cascading in the CPLD architecture.

The synchronous reset (R) is the highest priority input. When R is High, all other
inputs are ignored; the data outputs (Q) go to logic level zero, terminal count outputs
TCU and TCD go to zero and one, respectively, and clock enable outputs CEOU and
CEOD go to Low and High, respectively, on the Low-to-High clock (C) transition. The
data on the D inputs loads into the counter on the Low-to-High clock (C) transition
when the load enable input (L) is High, independent of the CE inputs.

All Q outputs increment when CEU is High, provided R and L are Low during the
Low-to-High clock transition. All Q outputs decrement when CED is High, provided
R and L are Low. The counter ignores clock transitions when CEU and CED are Low.
Both CEU and CED should not be High during the same clock transition; the CEOU
and CEOD outputs might not function properly for cascading when CEU and CED
are both High.

For counting up, the CEOU output is High when all Q outputs and CEU are High. For
counting down, the CEOD output is High when all Q outputs are Low and CED is
High. To cascade counters, the CEOU and CEOD outputs of each counter are, respec-
tively, connected directly to the CEU and CED inputs of the next stage. The C, L, and
R inputs are connected in parallel.

In Xilinx CPLD devices, the maximum clocking frequency of these counter compo-
nents is unaffected by the number of cascaded stages for all counting and loading
functions. The TCU terminal count output is High when all Q outputs are High,
regardless of CEU. The TCD output is High when all Q outputs are Low, regardless of
CED.

When cascading counters, the final terminal count signals can be produced by AND
wiring all the TCU outputs (for the up direction) and all the TCD outputs (for the
down direction). The TCU, CEOU, and CEOD outputs are produced by optimizable
AND gates within the component, resulting in zero propagation from the CEU and
CED inputs and from the Q outputs, provided all connections from each such output
remain on-chip. Otherwise, a macrocell buffer delay is introduced.

The counter is initialized to zero (TCU Low and TCD High) when power is applied.
For CPLDs, the power-on condition can be simulated by applying a High-level pulse
on the PRLD global net.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A N/A Macro N/A N/A N/A
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Inputs Outputs

R L CEU CED C Dz – D0 Qz – Q0 TCU TCD CEOU CEOD

1 X X X ↑ X 0 0 1 0 CEOD

0 1 X X ↑ Dn dn TCU TCD CEOU CEOD

0 0 0 0 X X No Chg No Chg No Chg 0 0

0 0 1 0 ↑ X Inc TCU TCD CEOU 0

0 0 0 1 ↑ X Dec TCU TCD 0 CEOD

0 0 1 1 ↑ X Inc TCU TCD Invalid Invalid
z = 1 for CB2X2; z = 3 for CB4X2; z = 7 for CB8X2; z = 15 for CB16X2
d = state of referenced input (Dn) one setup time prior to active clock transition
TCU = Qz•Q(z-1)•Q(z-2)•...•Q0
TCD = Qz•Q(z-1)•Q(z-2)•...•Q0
CEOU = TCU•CEU
CEOD = TCD•CED



Libraries Guide, Release M1.5

4-24 Xilinx Development System

Figure 4-17 CB4X2 Implementation XC9000
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CC8CE, CC16CE

8-, 16-Bit Cascadable Binary Counters with Clock Enable and
Asynchronous Clear

CC8CE and CC16CE are, respectively, 8- and 16-bit (stage), asynchronous, clearable,
cascadable binary counters. These counters are implemented using carry logic with
relative location constraints to ensure efficient placement of logic. The asynchronous
clear (CLR) is the highest priority input. When CLR is High, all other inputs are
ignored; the Q outputs, terminal count (TC), and clock enable out (CEO) go to logic
level zero, independent of clock transitions. The Q outputs increment when the clock
enable input (CE) is High during the Low-to-High clock (C) transition. The counter
ignores clock transitions when CE is Low. The TC output is High when all Q outputs
are High.

Larger counters are created by connecting the count enable out (CEO) output of the
first stage to the CE input of the next stage and connecting the C and CLR inputs in
parallel. CEO is active (High) when TC and CE are High. The maximum length of the
counter is determined by the accumulated CE-to-TC propagation delays versus the
clock period. The clock period must be greater than n(tCE-TC), where n is the number
of stages and the time tCE-TC is the CE-to-TC propagation delay of each stage. When
cascading counters, use the CEO output if the counter uses the CE input; use the TC
output if it does not.

The counter is asynchronously cleared, with Low outputs, when power is applied.
FPGAs simulate power-on when global reset (GR) or global set/reset (GSR) is active.
GR for XC5200 and GSR (XC4000, Spartans, Virtex) default to active-High but can be
inverted by adding an inverter in front of the GR/GSR input of the STARTUP or
STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A Macro Macro Macro N/A Macro Macro Macro

Inputs Outputs

CLR CE C Qz – Q0 TC CEO

1 X X 0 0 0

0 0 X No Chg No Chg 0

0 1 ↑ Inc TC CEO
z = 7 for CC8CE; z = 15 for CC16CE
TC = Qz•Q(z-1)•Q(z-2)•...•Q0
CEO = TC•CE

Q[7:0]

X4290

CC8CE

C

CLR

CE CEO

TC

Q[15:0]

X4286

CC16CE

C

CLR

CE CEO

TC
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Topology for XC4000 and Spartans

This is the CC8CE (8-bit) and CC16CE (16-bit) topology for XC4000 and Spartan series
devices.
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Topology for XC5200

This is the CC8CE (8-bit) and CC16CE (16-bit) topology for XC5200 devices.
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Figure 4-18 CC8CE Implementation XC4000, Spartans
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Figure 4-19 CC8CE Implementation XC5200
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Figure 4-20 CC8CE Implementation Virtex
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CC8CLE, CC16CLE

8-, 16-Bit Loadable Cascadable Binary Counters with Clock Enable
and Asynchronous Clear

CC8CLE and CC16CLE are, respectively, 8- and 16-bit (stage), synchronously load-
able, asynchronously clearable, cascadable binary counter. These counters are imple-
mented using carry logic with relative location constraints to ensure efficient
placement of logic.

The asynchronous clear (CLR) is the highest priority input. When CLR is High, all
other inputs are ignored; the Q outputs, terminal count (TC), and clock enable out
(CEO) go to logic level zero, independent of clock transitions. The data on the D
inputs is loaded into the counter when the load enable input (L) is High during the
Low-to-High clock (C) transition, independent of the state of clock enable (CE). The Q
outputs increment when CE is High during the Low-to-High clock transition. The
counter ignores clock transitions when CE is Low. The TC output is High when all Q
outputs are High.

Larger counters are created by connecting the count enable out (CEO) output of the
first stage to the CE input of the next stage and connecting the C, L, and CLR inputs in
parallel. CEO is active (High) when TC and CE are High. The maximum length of the
counter is determined by the accumulated CE-to-TC propagation delays versus the
clock period. The clock period must be greater than n(tCE-TC), where n is the number
of stages and the time tCE-TC is the CE-to-TC propagation delay of each stage. When
cascading counters, use the CEO output if the counter uses the CE input; use the TC
output if it does not.

The counter is asynchronously cleared, with Low output, when power is applied.
FPGAs simulate power-on when global reset (GR) or global set/reset (GSR) is active.
GR for XC5200 and GSR (XC4000, Spartans, Virtex) default to active-High but can be
inverted by adding an inverter in front of the GR/GSR input of the STARTUP or
STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A Macro Macro Macro N/A Macro Macro Macro

Inputs Outputs

CLR L CE C Dz – D0 Qz – Q0 TC CEO

1 X X X X 0 0 0

0 1 X ↑ Dn dn TC CEO

0 0 0 X X No Chg No Chg 0

0 0 1 ↑ X Inc TC CEO
z = 7 for CC8CLE; z = 15 for CC16CLE
dn = state of referenced input (Dn) one setup time prior to active clock transition
TC = Qz•Q(z-1)•Q(z-2)•...•Q0
CEO = TC•CE

Q[7:0]

X4289
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CE

D[7:0]

L
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Q[15:0]

X4284
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Topology for XC4000 and Spartans

This is the CC8CLE (8-bit) and CC16CLE (16-bit) topology for XC4000 and Spartan
series devices.

In the process of combining the logic that loads CEO and TC, the place and route soft-
ware might map the logic that generates CEO and TC to different function generators.
If this mapping occurs, the CEO and TC logic cannot be placed in the uppermost CLB
as indicated in the illustration.
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Topology for XC5200

This is the CC8CLE (8-bit) and CC16CLE (16-bit) topology for XC5200 devices.

D
LC3

LC2

LC1

LC0

15 Q15

TC
Q14

Q13

Q12

Q11

Q10

Q9

Q8

Q7

Q6

Q5

Q4

Q3

Q2

Q1

Q0

D14

D13

D12

D
LC3

LC2

LC1

LC0

11

D10

D9

D8

D
LC3

LC2

LC1

LC0

7

D6

D5

D4

D
LC3

LC2

LC1

LC0

3

D2

D1

D0

CY_INIT
LC3

CEO*
LC0

LC3

LC2

LC1

LC0

LC3

LC2

LC1

LC0

LC3

LC2

LC1

LC0

LC3

LC2

LC1

LC0

Q 7

Q 6

Q 5

Q 4

Q 3

Q 2

Q 1

Q 0

D
LC3

LC2

LC1

LC0

7

B 7

D 6

B 6
D 5

B 5

D 4

B 4

D
LC3

LC2

LC1

LC0

3

B 3

D 2

B 2
D 1

B 1

D 0

B 0

CY_INIT
LC3

CEO*
LC0

LC3

LC2

LC1

LC0

LC3

LC2

LC1

LC0

8-Bit

16-Bitx8209



Libraries Guide, Release M1.5

4-34 Xilinx Development System

Figure 4-21 CC8CLE Implementation XC4000, Spartans
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Figure 4-22 CC8CLE Implementation XC5200
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Figure 4-23 CC8CLE Implementation Virtex
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CC8CLED, CC16CLED

8-, 16-Bit Loadable Cascadable Bidirectional Binary Counters with
Clock Enable and Asynchronous Clear

CC8CLED and CC16CLED are, respectively, 8- and 16-bit (stage), synchronously load-
able, asynchronously clearable, cascadable, bidirectional binary counters. These
counters are implemented using carry logic with relative location constraints, which
assures most efficient logic placement.

The asynchronous clear (CLR) is the highest priority input. When CLR is High, all
other inputs are ignored; the Q outputs, terminal count (TC), and clock enable out
(CEO) go to logic level zero, independent of clock transitions. The data on the D
inputs is loaded into the counter when the load enable input (L) is High during the
Low-to-High clock (C) transition, independent of the state of clock enable (CE). The Q
outputs decrement when CE is High and UP is Low during the Low-to-High clock
transition. The Q outputs increment when CE and UP are High. The counter ignores
clock transitions when CE is Low.

For counting up, the TC output is High when all Q outputs and UP are High. For
counting down, the TC output is High when all Q outputs and UP are Low. To
cascade counters, the count enable out (CEO) output of each counter is connected to
the CE pin of the next stage. The clock, UP, L, and CLR inputs are connected in
parallel. CEO is active (High) when TC and CE are High. The maximum length of the
counter is determined by the accumulated CE-to-TC propagation delays versus the
clock period. The clock period must be greater than n(tCE-TC), where n is the number
of stages and the time tCE-TC is the CE-to-TC propagation delay of each stage. When
cascading counters, use the CEO output if the counter uses the CE input; use the TC
output if it does not.

The counter is asynchronously cleared, outputs Low, when power is applied. FPGAs
simulate power-on when global reset (GR) or global set/reset (GSR) is active. GR
(XC5200) and GSR (XC4000, Spartans, Virtex) default to active-High but can be
inverted by adding an inverter in front of the GR/GSR input of the STARTUP or
STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A Macro Macro Macro N/A Macro Macro Macro

Inputs Outputs

CLR L CE C UP Dz – D0 Qz – Q0 TC CEO

1 X X X X X 0 0 0

0 1 X ↑ X Dn dn TC CEO

0 0 0 X X X No Chg No Chg 0

0 0 1 ↑ 1 X Inc TC CEO

0 0 1 ↑ 0 X Dec TC CEO
z = 7 for CC8CLED; z = 15 for CC16CLED
dn = state of referenced input (Dn) one setup time prior to active clock transition
TC = (Qz•Q(z-1)•Q(z-2)•...•Q0•UP) + (Qz•Q(z-1)•Q(z-2)•...•Q0•UP)
CEO = TC•CE
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Topology for XC4000 and Spartans

This is the CC8CLED (8-bit) and CC16CLED (16-bit) topology for XC4000 and Spartan
series devices.

In the process of combining the logic that loads CEO and TC, the place and route soft-
ware might map the logic that generates CEO and TC to different function generators.
If this mapping occurs, the CEO and TC logic cannot be placed in the uppermost CLB
as indicated in the illustration.
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Topology for XC5200

This is the CC8CLED (8-bit) and CC16CLED (16-bit) topology for XC5200 devices.
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Figure 4-24 CC8CLED Implementation XC4000, Spartans
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Figure 4-25 CC8CLED Implementation XC5200
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Figure 4-26 CC8CLED Implementation Virtex
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CC8RE, CC16RE

8-, 16-Bit Cascadable Binary Counters with Clock Enable and
Synchronous Reset

CC8RE and CC16RE are, respectively, 8- and 16-bit (stage), synchronous, resettable,
cascadable binary counters. These counters are implemented using carry logic with
relative location constraints to ensure efficient placement of logic. The synchronous
reset (R) is the highest priority input. When R is High, all other inputs are ignored; the
Q outputs, terminal count (TC), and clock enable out (CEO) go to logic level zero on
the Low-to-High clock (C) transition. The Q outputs increment when the clock enable
input (CE) is High during the Low-to-High clock transition. The counter ignores clock
transitions when CE is Low. The TC output is High when all Q outputs and CE are
High.

Larger counters are created by connecting the CEO output of the first stage to the CE
input of the next stage and connecting the C and R inputs in parallel. CEO is active
(High) when TC and CE are High. The maximum length of the counter is determined
by the accumulated CE-to-TC propagation delays versus the clock period. The clock
period must be greater than n(tCE-TC), where n is the number of stages and the time
tCE-TC is the CE-to-TC propagation delay of each stage. When cascading counters, use
the CEO output if the counter uses the CE input; use the TC output if it does not.

The counter is asynchronously cleared, with Low outputs, when power is applied.
FPGAs simulate power-on when global reset (GR) or global set/reset (GSR) is active.
GR (XC5200) and GSR (XC4000, Spartans, Virtex) default to active-High but can be
inverted by adding an inverter in front of the GR/GSR input of the STARTUP or
STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A Macro Macro Macro N/A Macro Macro Macro

Inputs Outputs

R CE C Qz – Q0 TC CEO

1 X ↑ 0 0 0

0 0 X No Chg No Chg 0

0 1 ↑ Inc TC CEO
z = 7 for CC8RE; z = 15 for CC16RE
TC = Qz•Q(z-1)•Q(z-2)•...•Q0•CE
CEO = TC•CE

Q[7:0]

X4288

CC8RE

C

R

CE CEO

TC

Q[15:0]

X4283

CC16RE

C

R

CE CEO

TC
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Topology for XC4000 and Spartans

This is the CC8RE (8-bit) and CC16RE (16-bit) topology for XC4000 and Spartan series
devices.

In the process of combining the logic that loads CEO and TC, the place and route soft-
ware might map the logic that generates CEO and TC to different function generators.
If this mapping occurs, the CEO and TC logic cannot be placed in the uppermost CLB
as indicated in the illustration.
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Topology for XC5200

This is the CC8RE (8-bit) and CC16RE (16-bit) topology for XC5200 devices.
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Figure 4-27 CC8RE Implementation XC4000, Spartans
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Figure 4-28 CC8RE Implementation XC5200
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Figure 4-29 CC8RE Implementation Virtex
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CD4CE

4-Bit Cascadable BCD Counter with Clock Enable and
Asynchronous Clear

CD4CE is a 4-bit (stage), asynchronous, clearable, cascadable binary-coded-decimal
(BCD) counter. The asynchronous clear input (CLR) is the highest priority input.
When CLR is High, all other inputs are ignored; the Q outputs, terminal count (TC),
and clock enable out (CEO) go to logic level zero, independent of clock transitions.
The Q outputs increment when clock enable (CE) is High during the Low-to-High
clock (C) transition. The counter ignores clock transitions when CE is Low. The TC
output is High when Q3 and Q0 are High and Q2 and Q1 are Low.

The counter recovers from any of six possible illegal states and returns to a normal
count sequence within two clock cycles for FPGA architectures, as shown in the
following state diagram. For XC9000, the counter resets to zero or recovers within the
first clock cycle.

Larger counters are created by connecting the count enable out (CEO) output of the
first stage to the CE input of the next stage and connecting the CLR and clock inputs
in parallel. CEO is active (High) when TC and CE are High. The maximum length of
the counter is determined by the accumulated CE-to-TC propagation delays versus
the clock period. The clock period must be greater than n(tCE-TC), where n is the
number of stages and the time tCE-TC is the CE-to-TC propagation delay of each stage.
When cascading counters, use the CEO output if the counter uses the CE input; use
the TC output if it does not.

The counter is asynchronously cleared, output Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse to
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000,
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in
front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.
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Figure 4-30 CD4CE Implementation XC3000, XC4000, XC5200, Spartans, Virtex
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Figure 4-31 CD4CE Implementation XC9000
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CD4CLE

4-Bit Loadable Cascadable BCD Counter with Clock Enable and
Asynchronous Clear

CD4CLE is a 4-bit (stage), synchronously loadable, asynchronously clearable, binary-
coded-decimal (BCD) counter. The asynchronous clear input (CLR) is the highest
priority input. When CLR is High, all other inputs are ignored; the Q outputs,
terminal count (TC), and clock enable out (CEO) go to logic level zero, independent of
clock transitions. The data on the D inputs is loaded into the counter when the load
enable input (L) is High during the Low-to-High clock (C) transition. The Q outputs
increment when clock enable input (CE) is High during the Low- to-High clock transi-
tion. The counter ignores clock transitions when CE is Low. The TC output is High
when Q3 and Q0 are High and Q2 and Q1 are Low.

The counter recovers from any of six possible illegal states and returns to a normal
count sequence within two clock cycles for FPGAs, as shown in the following state
diagram. For XC9000, the counter resets to zero or recovers within the first clock cycle.

Larger counters are created by connecting the count enable out (CEO) output of the
first stage to the CE input of the next stage and connecting the CLR, L, and C inputs in
parallel. CEO is active (High) when TC and CE are High. The maximum length of the
counter is determined by the accumulated CE-to-TC propagation delays versus the
clock period. The clock period must be greater than n(tCE-TC), where n is the number
of stages and the time tCE-TC is the CE-to-TC propagation delay of each stage. When
cascading counters, use the CEO output if the counter uses the CE input; use the TC
output if it does not.

The counter is asynchronously cleared, output Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000,
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in
front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.
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Figure 4-32 CD4CLE Implementation XC3000
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Figure 4-33 CD4CLE Implementation XC4000, XC5200, Spartans, Virtex

Figure 4-34 CD4CLE Implementation XC9000
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CD4RE

4-Bit Cascadable BCD Counter with Clock Enable and
Synchronous Reset

CD4RE is a 4-bit (stage), synchronous, resettable, cascadable binary-coded-decimal
(BCD) counter. The synchronous reset input (R) is the highest priority input. When R
is High, all other inputs are ignored; the Q outputs, terminal count (TC), and clock
enable out (CEO) go to logic level zero on the Low-to-High clock (C) transition. The Q
outputs increment when the clock enable input (CE) is High during the Low-to-High
clock transition. The counter ignores clock transitions when CE is Low. The TC output
is High when Q3 and Q0 are High and Q2 and Q1 are Low.

The counter recovers from any of six possible illegal states and returns to a normal
count sequence within two clock cycles for FPGAs, as shown in the following state
diagram. For XC9000, the counter resets to zero or recovers within the first clock cycle.

Larger counters are created by connecting the count enable out (CEO) output of the
first stage to the CE input of the next stage and connecting the R and clock inputs in
parallel. CEO is active (High) when TC and CE are High. The maximum length of the
counter is determined by the accumulated CE-to-TC propagation delays versus the
clock period. The clock period must be greater than n(tCE-TC), where n is the number
of stages and the time tCE-TC is the CE-to-TC propagation delay of each stage. When
cascading counters, use the CEO output if the counter uses the CE input; use the TC
output if it does not.

The counter is asynchronously cleared, output Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000,
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in
front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex
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Figure 4-35 CD4RE Implementation XC3000, XC4000, XC5200, Spartans, Virtex
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Figure 4-36 CD4RE Implementation XC9000
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CD4RLE

4-Bit Loadable Cascadable BCD Counter with Clock Enable and
Synchronous Reset

CD4RLE is a 4-bit (stage), synchronous, loadable, resettable, binary-coded-decimal
(BCD) counter. The synchronous reset input (R) is the highest priority input. When R
is High, all other inputs are ignored; the Q outputs, terminal count (TC), and clock
enable out (CEO) go to logic level zero on the Low-to-High clock transitions. The data
on the D inputs is loaded into the counter when the load enable input (L) is High
during the Low-to-High clock (C) transition. The Q outputs increment when the clock
enable input (CE) is High during the Low-to-High clock transition. The counter
ignores clock transitions when CE is Low. The TC output is High when Q3 and Q0 are
High and Q2 and Q1 are Low.

The counter recovers from any of six possible illegal states and returns to a normal
count sequence within two clock cycles for FPGAs, as shown in the following state
diagram. For XC9000, the counter resets to zero or recovers within the first clock cycle.

Larger counters are created by connecting the count enable out (CEO) output of the
first stage to the CE input of the next stage and connecting the R, L, and C inputs in
parallel. CEO is active (High) when TC and CE are High. The maximum length of the
counter is determined by the accumulated CE-to-TC propagation delays versus the
clock period. The clock period must be greater than n(tCE-TC), where n is the number
of stages and the time tCE-TC is the CE-to-TC propagation delay of each stage. When
cascading counters, use the CEO output if the counter uses the CE input; use the TC
output if it does not.

The counter is asynchronously cleared, output Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000,
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in
front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex
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Figure 4-37 CD4RLE Implementation XC3000, XC4000, XC5200, Spartans,
Virtex

Inputs Outputs
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Figure 4-38 CD4RLE Implementation XC9000
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CJ4CE, CJ5CE, CJ8CE

4-, 5-, 8-Bit Johnson Counters with Clock Enable and
Asynchronous Clear

CJ4CE, CJ5CE, and CJ8CE are clearable Johnson/shift counters. The asynchronous
clear (CLR) input, when High, overrides all other inputs and causes the data (Q)
outputs to go to logic level zero, independent of clock (C) transitions. The counter
increments (shifts Q0 to Q1, Q1 to Q2,and so forth) when the clock enable input (CE)
is High during the Low-to-High clock transition. Clock transitions are ignored when
CE is Low.

For CJ4CE, the Q3 output is inverted and fed back to input Q0 to provide continuous
counting operation. For CJ5CE, the Q4 output is inverted and fed back to input Q0.
For CJ8CE, the Q7 output is inverted and fed back to input Q0.

The counter is asynchronously cleared, output Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000,
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in
front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.

CJ4CE Truth Table

CJ5CE Truth Table

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Macro Macro Macro Macro Macro Macro Macro Macro

Inputs Outputs

CLR CE C Q0 Q1 Q2 Q3

1 X X 0 0 0 0

0 0 X No Chg No Chg No Chg No Chg

0 1 ↑ q3 q0 q1 q2
q = state of referenced output one setup time prior to active clock transition

Inputs Outputs

CLR CE C Q0 Q1 Q2 Q3 Q4

1 X X 0 0 0 0 0

0 0 X No Chg No Chg No Chg No Chg No Chg

0 1 ↑ q4 q0 q1 q2 q3
q = state of referenced output one setup time prior to active clock transition
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CJ8CE Truth Table

Figure 4-39 CJ8CE Implementation XC3000, XC4000, XC5200, XC9000,
Spartans, Virtex
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CJ4RE, CJ5RE, CJ8RE

4-, 5-, 8-Bit Johnson Counters with Clock Enable and
Synchronous Reset

CJ4RE, CJ5RE, and CJ8RE are resettable Johnson/shift counters. The synchronous
reset (R) input, when High, overrides all other inputs and causes the data (Q) outputs
to go to logic level zero during the Low-to-High clock (C) transition. The counter
increments (shifts Q0 to Q1, Q1 to Q2, and so forth) when the clock enable input (CE)
is High during the Low-to-High clock transition. Clock transitions are ignored when
CE is Low.

For CJ4RE, the Q3 output is inverted and fed back to input Q0 to provide continuous
counting operation. For CJ5RE, the Q4 output is inverted and fed back to input Q0.
For CJ8RE, the Q7 output is inverted and fed back to input Q0.

The counter is asynchronously cleared, output Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000,
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in
front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.

CJ4RE Truth Table

CJ5RE Truth Table

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Macro Macro Macro Macro Macro Macro Macro Macro

Inputs Outputs

R CE C Q0 Q1 Q2 Q3

1 X ↑ 0 0 0 0

0 0 X No Chg No Chg No Chg No Chg

0 1 ↑ q3 q0 q1 q2
q = state of referenced output one setup time prior to active clock transition

Inputs Outputs

R CE C Q0 Q1 Q2 Q3 Q4

1 X ↑ 0 0 0 0 0

0 0 X No Chg No Chg No Chg No Chg No Chg

0 1 ↑ q4 q0 q1 q2 q3
q = state of referenced output one setup time prior to active clock transition
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CJ8RE Truth Table

Figure 4-40 CJ8RE Implementation XC3000, XC4000, XC5200, XC9000,
Spartans, Virtex
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q = state of referenced output one setup time prior to active clock transition
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CK_DIV

Internal Multiple-Frequency Clock Divider

CK_DIV divides a user-provided external clock signal with different divide factors on
either or both of the outputs. Only one CK_DIV may be used per design. The CK_DIV
is not available if the OSC5 element is used.

The clock frequencies of the OSC1 and OSC2 outputs are determined by specifying
the DIVIDE1_BY=n1 attribute for the OSC1 output and the DIVIDE2_BY=n2 attribute
for the OSC2 output. n1 and n2 are integer numbers by which the clock input (C) is
divided to produce the desired output clock frequency. The available values of n1 and
n2 are shown in the following table.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A Primitive N/A N/A N/A N/A

n1 n2

4 2
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64 32

256 128
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16,384

65,536
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CLB

CLB Configuration Symbol

The CLB symbol enables you to manually specify a CLB configuration. It allows you
to enter portions of a logic design directly in terms of the physical CLB, rather than
schematically. Using the CLB symbol provides precise partitioning control and
requires knowledge of the CLB architecture. Use it in place of the equivalent captured
logic and not in conjunction with it.

A blank XC3000 CLB primitive symbol and its corresponding configured CLB primi-
tive and circuit are shown in the following figure.

Figure 4-41 XC3000 CLB Primitive Example and Equivalent Circuit

CLB symbol pins correspond to actual CLB pins. Signals connected to these pins in a
schematic are connected to the corresponding CLB pins in the design. You must
specify the BASE, CONFIG, and EQUATE commands for the CLB. It is not necessary
for the translator program to parse the commands specifying the CLB configuration.
The mapping program from the LCA Xilinx netlist to the LCA design checks these
commands for errors.
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The configuration commands must be consistent with the connections. For example, if
you use the A input in an equation, connect a signal to the A pin. Refer to the appli-
cable CAE tool interface user guide for more information on specifying the CLB
configuration commands in the schematic.

You can specify the location of a CLB on the device using the LOC attribute. When
specifying the LOC attribute, a valid CLB name (AA, AB, and so forth) must be used.
Refer to the  “LOC” section of the “Attributes, Constraints, and Carry Logic” chapter
for more information.
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CLBMAP

Logic-Partitioning Control Symbol

The CLBMAP symbol is used to control logic partitioning into XC3000 family CLBs.
The CLBMAP symbol is not a substitute for logic. It is used in addition to combina-
tional gates, latches, and flip-flops for mapping control.

At the schematic level, you can implement a portion of logic using gates, latches, and
flip-flops and specify that the logic be grouped into a single CLB by using the
CLBMAP symbol. You must name the signals that are the inputs and outputs of the
CLB, then draw the signals to appropriate pins of the CLBMAP symbol, or name the
CLBMAP signals and logic signals correspondingly. The symbol can have uncon-
nected pins, but all signals on the logic group to be mapped must be specified on a
symbol pin.

CLBMAP primitives and equivalent circuits are shown for XC3000 families in the
following figure.

Figure 4-42 XC3000 CLBMAP Primitive Example and Equivalent

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex
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Use the MAP=type parameter with the CLBMAP symbol to further define how much
latitude you want to give the mapping program. The following table shows MAP
option characters and their meanings.

Possible types of MAP parameters for FMAP are: MAP=PUC, MAP=PLC, MAP=PLO,
and MAP=PUO. The default parameter is PUO. If one of the “open” parameters is
used (PLO or PUO), only the output signals must be specified.

Note: Currently, only PUC and PUO are observed. PLC and PLO are translated into
PUC and PUO, respectively.

You can lock individual pins using the “P” (Pin lock) parameter on the CLBMAP pin
in conjunction with the PUC parameter. Refer to the appropriate CAE tool interface
user guide for information on changing symbol parameters for your schematic editor.

MAP Option
Character

Function

P Pins.

C Closed — Adding logic to or removing logic from the CLB
is not allowed.

L Locked — Locking CLB pins.

O Open — Adding logic to or removing logic from the CLB is
allowed.

U Unlocked — No locking on CLB pins.
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CLKDLL

Clock Delay Locked Loop

CLKDLL is a clock delay locked loop used to minimize clock skew. CLKDLL synchro-
nizes the clock signal at the feed back clock input (CLKFB) to the clock signal at the
input clock (CLKIN). The locked output (LOCKED) is high when the two signals are
in phase. The signals are considered to be in phase when their rising edges are within
250 ps of each other.

The frequency of the clock signal at the CLKIN input must be in the range 30 - 120
MHz.

On-chip synchronization is achieved by connecting the CLKFB input to a point on the
global clock network driven by a BUFG, a global clock buffer. The BUFG input can
only be connected to the CLK0 or CLK2X output of CLKDLL. The BUFG connected to
the CLKFB input of the CLKDLL must be sourced from either the CLK0 or CLK2X
outputs of the same CLKDLL. The CLKIN input should be connected to the output of
an IBUFG, with the IBUFG input connected to a pad driven by the system clock.

Off-chip synchronization is achieved by connecting the CLKFB input to the output of
an IBUFG, with the IBUFG input connected to a pad. Only the CLK0 or CLK2X output
can be used. The CLK0 or CLK2X must be connected to the input of OBUF, an output
buffer.

The duty cycle of the CLK0 output is 50-50 unless the DUTY_CYCLE_CORRECTION
attribute is set to FALSE, in which case the duty cycle is the same as that of the CLKIN
input. The duty cycle of the phase shifted outputs (CLK90, CLK180, and CLK270) is
the same as that of the CLK0 output. The duty cycle of the CLK2X and CLKDV
outputs is always 50-50. The frequency of the CLKDV output is determined by the
value assigned to the CLKDV_DIVIDE attribute.

The master reset input (RST) resets CLKDLL to its initial (power-on) state. The signal
at the RST input is synchronized to the clock signal at the CLKIN input. The reset
becomes effective at the second Low-to-High transition of the clock signal at the
CLKIN input after assertion of the RST signal.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive

Table 4-1 CLKDLL Outputs

Output Description

CLK0 Clock at 1x CLKIN frequency

CLK90 Clock at 1x CLKIN frequency, shifted 90o with regards to CLK0

CLK180 Clock at 1x CLKIN frequency, shifted 180o with regards to CLK0

CLK270 Clock at 1x CLKIN frequency, shifted 270o with regards to CLK0

CLK2X Clock at 2x CLKIN frequency

CLKDV Clock at (1/n)x CLKIN frequency, n=CLKDV_DIVIDE value

LOCKED CLKDLL locked

X8678

CLKDLL

LOCKED

CLKDV

CLK2X

CLKFB

CLK270

CLKIN CLK0

CLK180

RST

CLK90
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CLKDLLHF

High Frequency Clock Delay Locked Loop

CLKDLLHF is a high frequency clock delay locked loop used to minimize clock skew.
CLKDLLHF synchronizes the clock signal at the feed back clock input (CLKFB) to the
clock signal at the input clock (CLKIN). The locked output (LOCKED) is high when
the two signals are in phase. The signals are considered to be in phase when their
rising edges are within 250 ps of each other.

The frequency of the clock signal at the CLKIN input must be in the range 60 - 180
MHz.

On-chip synchronization is achieved by connecting the CLKFB input to a point on the
global clock network driven by a BUFG, a global clock buffer. The BUFG input can
only be connected to the CLK0 output of CLKDLLHF. The BUFG connected to the
CLKFB input of the CLKDLLHF must be sourced from the CLK0 output of the same
CLKDLLHF. The CLKIN input should be connected to the output of an IBUFG, with
the IBUFG input connected to a pad driven by the system clock.

Off-chip synchronization is achieved by connecting the CLKFB input to the output of
an IBUFG, with the IBUFG input connected to a pad. Only the CLK0 output can be
used. CLK0 must be connected to the input of OBUF, an output buffer.

The duty cycle of the CLK0 output is 50-50 unless the DUTY_CYCLE_CORRECTION
attribute is set to FALSE, in which case the duty cycle is the same as that of the CLKIN
input. The duty cycle of the phase shifted output (CLK180) is the same as that of the
CLK0 output. The frequency of the CLKDV output is determined by the value
assigned to the CLKDV_DIVIDE attribute.

The master reset input (RST) resets CLKDLL to its initial (power-on) state. The signal
at the RST input is synchronized to the clock signal at the CLKIN input. The reset
becomes effective at the second Low-to-High transition of the clock signal at the
CLKIN input after assertion of the RST signal.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive

Table 4-2 CLKDLLHF Outputs

Output Description

CLK0 Clock at 1x CLKIN frequency

CLK180 Clock at 1x CLKIN frequency, shifted 180o with regards to CLK0

CLKDV Clock at (1/n)x CLKIN frequency, n=CLKDV_DIVIDE value

LOCKED CLKDLL locked

X8680

CLKDLLHF

LOCKED

CLKDV

CLKFB

CLKIN CLK0

CLK180

RST
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COMP2, 4, 8, 16

2-, 4-, 8-, 16-Bit Identity Comparators

COMP2, COMP4, COMP8, and COMP16 are, respectively, 2-, 4-, 8-, and 16-bit identity
comparators. The equal output (EQ) of the COMP2 2-bit, identity comparator is High
when the two words A1 – A0 and B1 – B0 are equal. EQ is high for COMP4 when A3 –
A0 and B3 – B0 are equal; for COMP8, when A7 – A0 and B7 – B0 are equal; and for
COMP16, when A15 – A0 and B15 – B0 are equal.

Equality is determined by a bit comparison of the two words. When any two of the
corresponding bits from each word are not the same, the EQ output is Low.

Figure 4-43 COMP8 Implementation XC3000, XC4000, XC5200, XC9000,
Spartans, Virtex
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COMPM2, 4, 8, 16

2-, 4-, 8-, 16-Bit Magnitude Comparators

COMPM2, COMPM4, COMPM8, and COMPM16 are, respectively, 2-, 4-, 8-, and 16-
bit magnitude comparators that compare two positive binary-weighted words.

COMPM2 compares A1 – A0 and B1 – B0, where A1 and B1 are the most significant
bits. COMPM4 compares A3 – A0 and B3 – B0, where A3 and B3 are the most signifi-
cant bits. COMPM8 compares A7 – A0 and B7 – B0, where A7 and B7 are the most
significant bits. COMPM16 compares A15 – A0 and B15 – B0, where A15 and B15 are
the most significant bits.

The greater-than output (GT) is High when A>B, and the less-than output (LT) is
High when A<B. When the two words are equal, both GT and LT are Low. Equality
can be measured with this macro by comparing both outputs with a NOR gate.

COMPM2 Truth Table

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Macro Macro Macro Macro Macro Macro Macro Macro

Inputs Outputs

A1 B1 A0 B0 GT LT

0 0 0 0 0 0

0 0 1 0 1 0

0 0 0 1 0 1

0 0 1 1 0 0

1 1 0 0 0 0

1 1 1 0 1 0

1 1 0 1 0 1

1 1 1 1 0 0

1 0 X X 1 0

0 1 X X 0 1

X4123

COMPM2
A0


A1

B0

B1



GT

LT

X4127

COMPM4

B1

B2

B3

B0

A3

A2

A1

A0

LT

GT

A[7:0] COMPM8

B[7:0]
LT

GT

X4132

A[15:0] COMPM16

B[15:0]
LT

GT

X4134
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COMPM4 Truth Table

COMPM8 Truth Table (also representative of COMPM16)

Inputs Outputs

A3, B3 A2, B2 A1, B1 A0, B0 GT LT

A3>B3 X X X 1 0

A3<B3 X X X 0 1

A3=B3 A2>B2 X X 1 0

A3=B3 A2<B2 X X 0 1

A3=B3 A2=B2 A1>B1 X 1 0

A3=B3 A2=B2 A1<B1 X 0 1

A3=B3 A2=A2 A1=B1 A0>B0 1 0

A3=B3 A2=B2 A1=B1 A0<B0 0 1

A3=B3 A2=B2 A1=B1 A0=B0 0 0

Inputs Outputs

A7, B7 A6, B6 A5, B5 A4, B4 A3, B3 A2, B2 A1, B1 A0, B0 GT LT

A7>B7 X X X X X X X 1 0

A7<B7 X X X X X X X 0 1

A7=B7 A6>B6 X X X X X X 1 0

A7=B7 A6<B6 X X X X X X 0 1

A7=B7 A6=B6 A5>B5 X X X X X 1 0

A7=B7 A6=B6 A5<B5 X X X X X 0 1

A7=B7 A6=B6 A5=B5 A4>B4 X X X X 1 0

A7=B7 A6=B6 A5=B5 A4<B4 X X X X 0 1

A7=B7 A6=B6 A5=B5 A4=B4 A3>B3 X X X 1 0

A7=B7 A6=B6 A5=B5 A4=B4 A3<B3 X X X 0 1

A7=B7 A6=B6 A5=B5 A4=B4 A3=B3 A2>B2 X X 1 0

A7=B7 A6=B6 A5=B5 A4=B4 A3=B3 A2<B2 X X 0 1

A7=B7 A6=B6 A5=B5 A4=B4 A3=B3 A2=B2 A1>B1 X 1 0

A7=B7 A6=B6 A5=B5 A4=B4 A3=B3 A2=B2 A1<B1 X 0 1

A7=B7 A6=B6 A5=B5 A4=B4 A3=B3 A2=B2 A1=B1 A0>B0 1 0

A7=B7 A6=B6 A5=B5 A4=B4 A3=B3 A2=B2 A1=B1 A0<B0 0 1

A7=B7 A6=B6 A5=B5 A4=B4 A3=B3 A2=B2 A1=B1 A0=B0 0 0
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Figure 4-44 COMPM8 Implementation XC3000, XC4000, XC5200, Spartans,
Virtex
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Figure 4-45 COMPM8 Implementation XC9000
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COMPMC8, 16

8-, 16-Bit Magnitude Comparators

COMPMC8 is an 8-bit, magnitude comparator that compares two positive binary-
weighted words A7 – A0 and B7 – B0, where A7 and B7 are the most significant bits.
COMPMC16 is a 16-bit, magnitude comparator that compares two positive binary-
weighted words A15 – A0 and B15 – B0, where A15 and B15 are the most significant
bits.

These comparators are implemented using carry logic with relative location
constraints to ensure efficient logic placement.

The greater-than output (GT) is High when A>B, and the less-than output (LT) is
High when A<B. When the two words are equal, both GT and LT are Low. Equality
can be flagged with this macro by connecting both outputs to a NOR gate.

COMPMC8 Truth Table (also representative of COMPMC16)

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A Macro Macro Macro N/A Macro Macro Macro

Inputs Outputs

A7, B7 A6, B6 A5, B5 A4, B4 A3, B3 A2, B2 A1, B1 A0, B0 GT LT

A7>B7 X X X X X X X 1 0

A7<B7 X X X X X X X 0 1

A7=B7 A6>B6 X X X X X X 1 0

A7=B7 A6<B6 X X X X X X 0 1

A7=B7 A6=B6 A5>B5 X X X X X 1 0

A7=B7 A6=B6 A5<B5 X X X X X 0 1

A7=B7 A6=B6 A5=B5 A4>B4 X X X X 1 0

A7=B7 A6=B6 A5=B5 A4<B4 X X X X 0 1

A7=B7 A6=B6 A5=B5 A4=B4 A3>B3 X X X 1 0

A7=B7 A6=B6 A5=B5 A4=B4 A3<B3 X X X 0 1

A7=B7 A6=B6 A5=B5 A4=B4 A3=B3 A2>B2 X X 1 0

A7=B7 A6=B6 A5=B5 A4=B4 A3=B3 A2<B2 X X 0 1

A7=B7 A6=B6 A5=B5 A4=B4 A3=B3 A2=B2 A1>B1 X 1 0

A7=B7 A6=B6 A5=B5 A4=B4 A3=B3 A2=B2 A1<B1 X 0 1

A7=B7 A6=B6 A5=B5 A4=B4 A3=B3 A2=B2 A1=B1 A0>B0 1 0

A7=B7 A6=B6 A5=B5 A4=B4 A3=B3 A2=B2 A1=B1 A0<B0 0 1

A7=B7 A6=B6 A5=B5 A4=B4 A3=B3 A2=B2 A1=B1 A0=B0 0 0

A[7:0] COMPMC8

B[7:0]

GT

X4264

LT

A[15:0] COMPMC16

B[15:0]
LT

GT

X4265
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Topology for XC4000 and Spartans

This is the COMPMC8 (8-bit) and COMPMC16 (16-bit) topology for XC4000 and
Spartan series devices.

In the process of combining the logic that loads GT and LT, the place and route soft-
ware might map the logic that generates GT and LT to different function generators. If
this mapping occurs, the GT and LT logic cannot be placed in the uppermost CLB, as
indicated in the illustration.
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Figure 4-46 COMPMC8 Implementation XC4000, Spartans
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Figure 4-47 COMPMC8 Implementation XC5200
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Figure 4-48 COMPMC8 Implementation Virtex

B7
A7

B6
A6

B5

B4

A5

A4

B3
A3

B2
A2

B1
A1

B0
A0

I7

I6

I5

I4

I3

I2

I1

I0 S

S

S

S

S

S

S

S

DI

DI

DI

DI

0 1

0 1

C0

C1

CI

CI

CI

DI CI

CIDI

CIDI

DI

CI

C2

C4

C5

C6

C7

CI

C8

MUXCY_L

MUXCY_L

MUXCY_L

MUXCY_L

MUXCY_L

MUXCY_L

MUXCY_L

MUXCY

LO

LO

LO

LO

LO

LO

LO

LO

RLOC=R3C0.S1

RLOC=R3C0.S1

RLOC=R2C0.S1

RLOC=R2C0.S1

RLOC=R1C0.S1

RLOC=R1C0.S1

RLOC=R0C0.S1

RLOC=R0C0.S1

0 1

0 1

0 1

0 1

0 1

0 1

LT

A[7:0]

B[7:0]

B7

B6

A6

B5

A5

B4

A4

B3

A3

B2

A2

B1

A1

B0

A0

XNOR2

XNOR2

XNOR2

XNOR2

XNOR2

XNOR2

XNOR2

XNOR2

I7G

I6G

I5G

I4G

I3G

I2G

I1G

I0G

S

S

S

S

S

S

S

S

DI CI

DI CI

DI CI

DI CI

DI CI

DI CI

DI CI

DI CI

0 1

0 1

0 1

0 1

LO

LO

LO

LO

LO

LO

LO

LO

MUXCY

MUXCY_L

MUXCY_L

MUXCY_L

0 1

MUXCY_L

0 1

0 1

MUXCY_L

MUXCY_L

0 1

MUXCY_L

RLOC=R0C0.S0

RLOC=R0C0.S0

RLOC=R1C0.S0

RLOC=R1C0.S0

RLOC=R2C0.S0

RLOC=R2C0.S0

RLOC=R3C0.S0

RLOC=R3C0.S0

C8G

C7G

C6G

C5G

C4G

C2G

C1G

C0G

GT

X8713

A7

GND
GND

XNOR2

XNOR2

XNOR2

XNOR2

XNOR2

XNOR2

XNOR2

XNOR2



Libraries Guide, Release M1.5

4-82 Xilinx Development System

CONFIG

Repository for Schematic-Level (Global) Attributes

The CONFIG primitive is a table that you can use to specify up to eight attributes that
affect the entire design (global attributes such as PART or PROHIBIT).

When using certain CAE software packages, global properties cannot be attached to
the “Schematic” or “Sheet.” Instead, they must be attached to the CONFIG symbol.
Enter attributes using the same syntax that you would use in a UCF file. The global
attributes can be any length, but only 30 characters are displayed in the CONFIG
window. The CONFIG table is shown in the following figure.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Primitive Primitive Primitive Primitive Primitive Primitive Primitive Primitive

CONFIG
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CR8CE, CR16CE

8-, 16-Bit Negative-Edge Binary Ripple Counters with Clock Enable
and Asynchronous Clear

CR8CE and CR16CE are 8-bit and 16-bit, cascadable, clearable, binary, ripple counters.
The asynchronous clear (CLR), when High, overrides all other inputs and causes the
Q outputs to go to logic level zero. The counter increments when the clock enable
input (CE) is High during the High-to-Low clock (C) transition. The counter ignores
clock transitions when CE is Low.

Larger counters can be created by connecting the last Q output (Q7 for CR8CE, Q15
for CR16CE) of the first stage to the clock input of the next stage. CLR and CE inputs
are connected in parallel. The clock period is not affected by the overall length of a
ripple counter. The overall clock-to-output propagation is n(tC - Q), where n is the
number of stages and the time tC - Q is the C-to-Qz propagation delay of each stage.

The counter is asynchronously cleared, output Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000,
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in
front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Macro Macro Macro Macro Macro Macro Macro Macro
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Figure 4-49 CR8CE Implementation XC3000

Figure 4-50 CR8CE Implementation XC4000, XC5200, Spartans, Virtex
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Figure 4-51 CR8CE Implementation XC9000
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CY_INIT

Initialization Stage for Carry Chain

CY_INIT is used to initialize the carry chain in the XC5200 architecture. It is used in
conjunction with multiple CY_MUX elements to implement high speed carry-propa-
gate or high speed cascade logic. CY_INIT must be placed in the logic cell (LC) imme-
diately below the least-significant carry element (CY_MUX) in the carry/cascade
chain. The INIT input is driven from the direct input (DI) to LC. The CY_INIT carry-
out (COUT) drives the C in input of the first LC in the carry chain. The COUT output
reflects the state of the DI input. This figure represents the schematic implementation
of CY_INIT.

Figure 4-52 CY _INIT 4-Bit Adder Implementation XC5200

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex
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CY_MUX

2-to-1 Multiplexer for Carry Logic

CY_MUX is used to implement a 1-bit high-speed carry propagate function. One such
function can be implemented per logic cell (LC), for a total of 4-bits per configurable
logic block (CLB). The direct input (DI) of an LC is connected to the DI input of the
CY_MUX. The carry in (CI) input of an LC is connected to the CI input of the
CY_MUX. The select input (S) of the CY_MUX is driven by the output of the lookup
table (LUT) and configured as an XOR function. The carry out (CO) of the CY_MUX
reflects the state of the selected input and implements the carry out function of each
LC. When Low, S selects DI; when High, S selects CI.

The following figure depicts the application of the CY_MUX for a 4-bit adder. Also
shown are the associated FMAP symbols and the CY_INIT function.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex
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Figure 4-53 CY_MUX 4-Bit Adder Schematic XC5200
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D2_4E

2- to 4-Line Decoder/Demultiplexer with Enable

When the enable (EN) input of the D2_4E decoder/demultiplexer is High, one of four
active-High outputs (D3 – D0) is selected with a 2-bit binary address (A1 – A0) input.
The non-selected outputs are Low. Also, when the EN input is Low, all outputs are
Low. In demultiplexer applications, the EN input is the data input.

Figure 4-54 D2_4E Implementation XC3000, XC4000, XC5200, XC9000,
Spartans, Virtex
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D3_8E

3- to 8-Line Decoder/Demultiplexer with Enable

When the enable (EN) input of the D3_8E decoder/demultiplexer is High, one of
eight active-High outputs (D7 – D0) is selected with a 3-bit binary address (A2 – A0)
input. The non-selected outputs are Low. Also, when the EN input is Low, all outputs
are Low. In demultiplexer applications, the EN input is the data input.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex
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Figure 4-55 D3_8E Implementation XC3000, XC4000, XC5200, XC9000,
Spartans, Virtex
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D4_16E

4- to 16-Line Decoder/Demultiplexer with Enable

When the enable (EN) input of the D4_16E decoder/demultiplexer is High, one of 16
active-High outputs (D15 – D0) is selected with a 4-bit binary address (A3 – A0) input.
The non-selected outputs are Low. Also, when the EN input is Low, all outputs are
Low. In demultiplexer applications, the EN input is the data input.

Refer to the “D3_8E” section for a representative truth table derivation.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex
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Figure 4-56 D4_16E Implementation XC3000, XC4000, XC5200, XC9000,
Spartans, Virtex
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DEC_CC4, 8, 16

4-, 8-, 16-Bit Active Low Decoders

These decoders are used to build wide-decoder functions. They are implemented by
cascading CY_MUX elements driven by lookup tables (LUTs). The C_IN pin can only
be driven by a CY_INIT or by the output (O) of a previous decode stage. When one or
more of the inputs (A) are Low, the output is Low. When all the inputs are High and
the C_IN input is High, the output is High. You can decode patterns by adding
inverters to inputs.

Figure 4-57 DEC_CC4 Implementation XC5200

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A Macro N/A N/A N/A Macro

Inputs Outputs

A0 A1 … Az C_IN O

1 1 1 1 1 1

X X X X 0 0

0 X X X X 0

X 0 X X X 0

X X X 0 X 0
z = 3 for DEC_CC4; z = 7 for DECC_CC8; z = 15 for DECC_CC16

X4927

DEC_CC4

C_IN

O
A2

A1

A0

A3

X4928

DEC_CC8

C_IN

O

A2

A1

A0

A3

A5

A4

A6
A7

X4929

DEC_CC16

A15

C_IN

O

A2

A1

A0

A3

A5

A4

A6

A8

A7

A9

A11

A10

A12

A13

A14

A3 CY_MUX
A2

A1

GND

AND4

A0

S0 S

CI

C0

O

1

DI

0

C_IN

The C_IN pin can only be initialized
by a CY_INIT or by the output of a
previous decode stage. X6537



Design Elements (DEC_CC4, 8, 16)

Libraries Guide, Release M1.5 4-95

Figure 4-58 DEC_CC4 Implementation Virtex

Figure 4-59 DEC_CC8 Implementation XC5200, Virtex
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DECODE4, 8, 16

4-, 8-, 16-Bit Active-Low Decoders

Figure 4-60 DECODE Representations

In the XC4000 architectures, decoders are open-drain, wired-AND gates. When one or
more of the inputs (A) are Low, output (O) is Low. When all the inputs are High, the
output is High or Off. A pull-up resistor must be connected to the output node to
achieve a true logic High. A double pull-up resistor can be used to achieve faster
performance; however, it uses more power. The software implements these macros
using the open-drain AND gates around the periphery of the devices. (Diamonds in
library symbols indicate an open-drain output.)

In XC5200, decoders are implemented by cascading CY_MUX elements driven by
lookup tables (LUTs). When one or more of the inputs are Low, the output is Low.
When all the inputs are High, the output is High. You can decode patterns by adding
inverters to inputs. Pull-ups cannot be used on XC5200 longlines.

In Virtex, decoders are implemented using combinations of LUTs and MUXCYs.
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Figure 4-61 DECODE8 Implementation XC4000

Figure 4-62 DECODE8 Implementation XC5200
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Figure 4-63 DECODE8 Implementation Virtex
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DECODE32, 64

32- and 64-Bit Active-Low Decoders

DECODE32 and DECODE64 are 32- and 64-bit active-low decoders. In XC5200,
decoders are implemented by cascading CY_MUX elements driven by lookup tables
(LUTs). When one or more of the inputs are Low, the output is Low. When all the
inputs are High, the output is High. You can decode patterns by adding inverters to
inputs. Pull-ups cannot be used on XC5200 longlines.

In Virtex, decoders are implemented using combinations of LUTs and MUXCYs.

Refer to the “DECODE4, 8, 16” section for a representative schematic.
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Chapter 5

Design Elements (F5MAP to FTSRLE)

This chapter describes design elements included in the Unified Libraries. The
elements are organized in alphanumeric order with all numeric suffixes in ascending
order.

Information on the specific architectures supported by each of the following libraries
is contained under the Applicable Architectures section of the Unified Libraries
Chapter.

• XC3000 Library

• XC4000E Library

• XC4000X Library

• XC5200 Library

• XC9000 Library

• Spartan Library

• SpartanXL Library

• Virtex Library

Note: Wherever XC4000 is mentioned, the information applies to all architectures
supported by the XC4000E and XC4000X libraries.

Note: Wherever Spartans or Spartan series is mentioned, the information applies to all
architectures supported by the Spartan and SpartanXL libraries.

Schematics are included for each library if the implementation differs. Design
elements with bused or multiple I/O pins (2-, 4-, 8-, 16-bit versions) typically include
just one schematic — generally the 8-bit version. When only one schematic is
included, implementation of the smaller and larger elements differs only in the
number of sections. In cases where an 8-bit version is very large, an appropriate
smaller element serves as the schematic example.
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F5MAP

5-Input Function Partitioning Control Symbol

The F5MAP symbol is used to control the logic partitioning of 5-input functions into
the top or bottom half of a CLB. The F5MAP symbol is not a substitute for logic. It is
used in addition to combinatorial gates for mapping control.

At the schematic level, any 5-input logic function can be implemented using gates and
mapped into half of a single CLB by using the F5MAP symbol. The signals that are the
inputs and outputs of the 5-input function must be labelled and connected to appro-
priate pins of the F5MAP symbol, or the F5MAP signals and logic signals must have
identical labels. The symbol can have unconnected pins, but all signals on the logic
group to be mapped must be specified on a symbol pin.

Using F5MAP forces any 5-input function to be implemented by two lookup tables
(LUTs), the direct input (DI), and the F5_MUX primitive, which are contained within
adjacent CLB logic cells LC0 and LC1 or LC2 and LC3.

 The connections within a CLB are shown in the  “Two LUTs in Parallel Combined to
Create a 5-Input Function” figure. An F5MAP primitive example is shown in the
“F5MAP Primitive Example” figure.

Figure 5-1 Two LUTs in Parallel Combined to Create a 5-Input Function

Figure 5-2 F5MAP Primitive Example

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A Primitive N/A N/A N/A N/A

X4925

F5MAP

I1

O
I3

I4

I5

I2

I1
O

DI

O

I2

X6428

LUT

in

LC1

LUT

in

LC0

F5_MUX

I1

I5

I2
I3
I4 F1

F2
F3
F4

DI

F4

F3
F2
F1

O

A0

A0
B0

A1

B1

C0

I5

I4

I3

I2

I1

B0

C0

A1

B1

OAND3

AND2

XOR2

F5MAP

X6443



Design Elements (F5_MUX)

Libraries Guide, Release M1.5 5-3

F5_MUX

2-to-1 Lookup Table Multiplexer

F5_MUX provides a multiplexer function in one half of a CLB. The output from the
lookup table (LUT) in LC1 is connected to the I1 input of the F5_MUX. The output
from the LUT in LC0 is connected to the I2 input. The direct input (DI) of LC0 is
connected to the DI input of the F5_MUX. The output (O) reflects the state of the
selected input. When Low, DI selects I1; when High, DI selects I2. Similarly, the
F5_MUX can connect to the LUTs in LC2 and LC3. The F5_MUX can also implement
any 5-input function in the top or bottom half of a CLB when the mapping of the func-
tion is controlled by F5MAP.

Figure 5-3 F5_MUX Representation
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FD

D Flip-Flop

FD is a single D-type flip-flop with data input (D) and data output (Q). The data on
the D inputs is loaded into the flip-flop during the Low-to-High clock (C) transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000,
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in
front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.

Refer to the “FD4, 8, 16” section for information on multiple D flip-flops for the
XC9000.

Figure 5-4 FD Implementation XC3000, XC4000, XC5200, Spartans

Figure 5-5 FD Implementation XC9000
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FD_1

D Flip-Flop with Negative-Edge Clock

FD_1 is a single D-type flip-flop with data input (D) and data output (Q). The data on
the D input is loaded into the flip-flop during the High-to-Low clock (C) transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. FPGAs
simulate power-on when global reset (GR) or global set/reset (GSR) is active. GR for
XC3000 is active-Low. GR for XC5200 and GSR (XC4000, Spartans, Virtex) default to
active-High but can be inverted by adding an inverter in front of the GR/GSR input of
the STARTUP or STARTUP_VIRTEX symbol.

Figure 5-6 FD_1 Implementation XC3000, XC4000, XC5200, Spartans
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FD4, 8, 16

Multiple D Flip-Flops

FD4, FD8, FD16 are multiple D-type flip-flops with data inputs (D) and data outputs
(Q). FD4, FD8, and FD16 are, respectively, 4-bit, 8-bit, and 16-bit registers, each with a
common clock (C). The data on the D inputs is loaded into the flip-flop during the
Low-to-High clock (C) transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net.

Figure 5-7 FD8 Implementation XC9000
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FD4CE, FD8CE, FD16CE

4-, 8-, 16-Bit Data Registers with Clock Enable and Asynchronous
Clear

FD4CE, FD8CE, and FD16CE are, respectively, 4-, 8-, and 16-bit data registers with
clock enable and asynchronous clear. When clock enable (CE) is High and asynchro-
nous clear (CLR) is Low, the data on the data inputs (D) is transferred to the corre-
sponding data outputs (Q) during the Low-to-High clock (C) transition. When CLR is
High, it overrides all other inputs and resets the data outputs (Q) Low. When CE is
Low, clock transitions are ignored.

The flip-flops are asynchronously cleared, output Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000,
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in
front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.
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Figure 5-8 FD8CE Implementation XC3000, XC4000, XC5200, XC9000,
Spartans, Virtex
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FD4RE, FD8RE, FD16RE

4-, 8-, 16-Bit Data Registers with Clock Enable and Synchronous
Reset

FD4RE, FD8RE, and FD16RE are, respectively, 4-, 8-, and 16-bit data registers. When
the clock enable (CE) input is High, and the synchronous reset (R) input is Low, the
data on the data inputs (D) is transferred to the corresponding data outputs (Q0)
during the Low-to-High clock (C) transition. When R is High, it overrides all other
inputs and resets the data outputs (Q) Low on the Low-to-High clock transition.
When CE is Low, clock transitions are ignored.

The flip-flops are asynchronously cleared, output Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000,
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in
front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.
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Figure 5-9 FD8RE Implementation XC3000, XC4000, XC5200, XC9000,
Spartans, Virtex
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FDC

D Flip-Flop with Asynchronous Clear

FDC is a single D-type flip-flop with data (D) and asynchronous clear (CLR) inputs
and data output (Q). The asynchronous CLR, when High, overrides all other inputs
and sets the Q output Low. The data on the D input is loaded into the flip-flop when
CLR is Low on the Low-to-High clock transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000,
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in
front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.

Figure 5-10 FDC Implementation XC3000, XC4000, XC5200, Spartans

Figure 5-11 FDC Implementation XC9000
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FDC_1

D Flip-Flop with Negative-Edge Clock and Asynchronous Clear

FDC_1 is a single D-type flip-flop with data input (D), asynchronous clear input
(CLR), and data output (Q). The asynchronous CLR, when active, overrides all other
inputs and sets the Q output Low. The data on the D input is loaded into the flip-flop
during the High-to-Low clock (C) transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000,
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in
front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.

Figure 5-12 FDC_1 Implementation XC3000, XC4000, XC5200, Spartans
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FDCE

D Flip-Flop with Clock Enable and Asynchronous Clear

FDCE is a single D-type flip-flop with clock enable and asynchronous clear. When
clock enable (CE) is High and asynchronous clear (CLR) is Low, the data on the data
input (D) of FDCE is transferred to the corresponding data output (Q) during the
Low-to-High clock (C) transition. When CLR is High, it overrides all other inputs and
resets the data output (Q) Low. When CE is Low, clock transitions are ignored.

The flip-flop is asynchronously cleared, output Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000,
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in
front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.

For XC9500XL devices, logic connected to the clock enable (CE) input is uncondition-
ally implemented using the clock enable product-term of the XC9500XL macrocell.
Only FDCE and FDPE flip-flops use the XC9500XL clock enable product-term.
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FDCE_1

D Flip-Flop with Negative-Edge Clock, Clock Enable, and
Asynchronous Clear

FDCE_1 is a single D-type flip-flop with data (D), clock enable (CE), asynchronous
clear (CLR) inputs, and data output (Q). The asynchronous CLR input, when High,
overrides all other inputs and sets the Q output Low. The data on the D input is
loaded into the flip-flop when CLR is Low and CE is High on the High-to-Low clock
(C) transition. When CE is Low, the clock transitions are ignored.

The flip-flop is asynchronously cleared, output Low, when power is applied. FPGAs
simulate power-on when global reset (GR) or global set/reset (GSR) is active. GR for
XC3000 is active-Low. GR for XC5200 and GSR (XC4000, Spartans, Virtex) default to
active-High but can be inverted by adding an inverter in front of the GR/GSR input of
the STARTUP or STARTUP_VIRTEX symbol.

Figure 5-13 FDCE_1 Implementation XC3000, XC4000, XC5200, Spartans
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FDCP

D Flip-Flop Asynchronous Preset and Clear

FDCP is a single D-type flip-flop with data (D), asynchronous preset (PRE) and clear
(CLR) inputs, and data output (Q). The asynchronous PRE, when High, sets the Q
output High; CLR, when High, resets the output Low. Data on the D input is loaded
into the flip-flop when PRE and CLR are Low on the Low-to-High clock (C) transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net. Virtex simulates power-on when global set/reset (GSR) is active.
GSR defaults to active-High but can be inverted by adding an inverter in front of the
GSR input of the STARTUP_VIRTEX symbol.
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FDCP_1

D Flip-Flop with Negative-Edge Clock and Asynchronous Preset
and Clear

FDCP_1 is a single D-type flip-flop with data (D), asynchronous preset (PRE) and
clear (CLR) inputs, and data output (Q). The asynchronous PRE, when High, sets the
Q output High; CLR, when High, resets the output Low. Data on the D input is loaded
into the flip-flop when PRE and CLR are Low on the High-to-Low clock (C) transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. Virtex
simulates power-on when global set/reset (GSR) is active. GSR defaults to active-
High but can be inverted by adding an inverter in front of the GSR input of the
STARTUP_VIRTEX symbol.
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FDCPE

D Flip-Flop with Clock Enable and Asynchronous Preset and Clear

FDCPE is a single D-type flip-flop with data (D), clock enable (CE), asynchronous
preset (PRE), and asynchronous clear (CLR) inputs and data output (Q). The asyn-
chronous PRE, when High, sets the Q output High; CLR, when High, resets the
output Low. Data on the D input is loaded into the flip-flop when PRE and CLR are
Low and CE is High on the Low-to-High clock (C) transition. When CE is Low, the
clock transitions are ignored.

The flip-flop is asynchronously cleared, output Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net. Virtex simulates power-on when global set/reset (GSR) is active.
GSR defaults to active-High but can be inverted by adding an inverter in front of the
GSR input of the STARTUP_VIRTEX symbol.

Figure 5-14 FDCPE Implementation XC9000
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FDCPE_1

D Flip-Flop with Negative-Edge Clock, Clock Enable, and
Asynchronous Preset and Clear

FDCPE_1 is a single D-type flip-flop with data (D), clock enable (CE), asynchronous
preset (PRE), and asynchronous clear (CLR) inputs and data output (Q). The asyn-
chronous PRE, when High, sets the Q output High; CLR, when High, resets the
output Low. Data on the D input is loaded into the flip-flop when PRE and CLR are
Low and CE is High on the High-to-Low clock (C) transition. When CE is Low, the
clock transitions are ignored.

The flip-flop is asynchronously cleared, output Low, when power is applied. Virtex
simulates power-on when global set/reset (GSR) is active. GSR defaults to active-
High but can be inverted by adding an inverter in front of the GSR input of the
STARTUP_VIRTEX symbol.
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FDE

D Flip-Flop with Clock Enable

FDE is a single D-type flip-flop with data input (D), clock enable (CE), and data
output (Q). When clock enable is High, the data on the D input is loaded into the flip-
flop during the Low-to-High clock (C) transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. Virtex
simulates power-on when global set/reset (GSR) is active. GSR defaults to active-
High but can be inverted by adding an inverter in front of the GSR input of the
STARTUP_VIRTEX symbol.
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FDE_1

D Flip-Flop with Negative-Edge Clock and Clock Enable

FDE_1 is a single D-type flip-flop with data input (D), clock enable (CE), and data
output (Q). When clock enable is High, the data on the D input is loaded into the flip-
flop during the High-to-Low clock (C) transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. Virtex
simulates power-on when global set/reset (GSR) is active. GSR defaults to active-
High but can be inverted by adding an inverter in front of the GSR input of the
STARTUP_VIRTEX symbol.
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FDP

D Flip-Flop with Asynchronous Preset

FDP is a single D-type flip-flop with data (D) and asynchronous preset (PRE) inputs
and data output (Q). The asynchronous PRE, when High, overrides all other inputs
and presets the Q output High. The data on the D input is loaded into the flip-flop
when PRE is Low on the Low-to-High clock (C) transition.

For FPGAs, the flip-flop is asynchronously preset, output High, when global reset (GR
for XC5200) or global set/reset (GSR for XC4000, Spartans, Virtex) is active. The active
level of the GR/GSR defaults to active-High but can be inverted by adding an inverter
in front of the GR/GSR input of the STARTUP or the STARTUP_VIRTEX symbol.

For CPLDs, the flip-flop is asynchronously cleared, output Low, when power is
applied. The power-on condition can be simulated by applying a High-level pulse on
the PRLD global net.

Figure 5-15 FDP Implementation XC4000, XC5200, Spartans

Figure 5-16 FDP Implementation XC9000
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FDP_1

D Flip-Flop with Negative-Edge Clock and Asynchronous Preset

FDP_1 is a single D-type flip-flop with data (D) and asynchronous preset (PRE) inputs
and data output (Q). The asynchronous PRE, when High, overrides all other inputs
and presets the Q output High. The data on the D input is loaded into the flip-flop
when PRE is Low on the High-to-Low clock (C) transition.

The flip-flop is asynchronously preset, output High, when global reset (GR for
XC5200) or global set/reset (GSR for XC4000, Spartans, Virtex) is active. The active
level of the GR/GSR defaults to active-High but can be inverted by adding an inverter
in front of the GR/GSR input of the STARTUP or the STARTUP_VIRTEX symbol.

Figure 5-17 FDP_1 Implementation XC4000, XC5200, Spartans
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FDPE

D Flip-Flop with Clock Enable and Asynchronous Preset

FDPE is a single D-type flip-flop with data (D), clock enable (CE), and asynchronous
preset (PRE) inputs and data output (Q). The asynchronous PRE, when High, over-
rides all other inputs and sets the Q output High. Data on the D input is loaded into
the flip-flop when PRE is Low and CE is High on the Low-to-High clock (C) transi-
tion. When CE is Low, the clock transitions are ignored.

For FPGAs, the flip-flop is asynchronously preset, output High, when global reset (GR
for XC5200) or global set/reset (GSR for XC4000, Spartans, Virtex) is active. The active
level of the GR/GSR defaults to active-High but can be inverted by adding an inverter
in front of the GR/GSR input of the STARTUP or the STARTUP_VIRTEX symbol.

For CPLDs, the flip-flop is asynchronously cleared, output Low, when power is
applied. The power-on condition can be simulated by applying a High-level pulse on
the PRLD global net.

For XC9500XL devices, logic connected to the clock enable (CE) input is uncondition-
ally implemented using the clock enable product-term of the XC9500XL macrocell.
Only FDCE and FDPE flip-flops use the XC9500XL clock enable product-term.

Figure 5-18 FDPE Implementation XC5200
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FDPE_1

D Flip-Flop with Negative-Edge Clock, Clock Enable, and
Asynchronous Preset

FDPE_1 is a single D-type flip-flop with data (D), clock enable (CE), and asynchro-
nous preset (PRE) inputs and data output (Q). The asynchronous PRE, when High,
overrides all other inputs and sets the Q output High. Data on the D input is loaded
into the flip-flop when PRE is Low and CE is High on the High-to-Low clock (C) tran-
sition. When CE is Low, the clock transitions are ignored.

The flip-flop is asynchronously preset, output High, when global reset (GR for
XC5200) or global set/reset (GSR for XC4000, Spartans, Virtex) is active. The active
level of the GR/GSR defaults to active-High but can be inverted by adding an inverter
in front of the GR/GSR input of the STARTUP or the STARTUP_VIRTEX symbol.

Figure 5-19 FDPE_1 Implementation XC4000, XC5200, Spartans
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FDR

D Flip-Flop with Synchronous Reset

FDR is a single D-type flip-flop with data (D) and synchronous reset (R) inputs and
data output (Q). The synchronous reset (R) input, when High, overrides all other
inputs and resets the Q output Low on the Low-to-High clock (C) transition. The data
on the D input is loaded into the flip-flop when R is Low during the Low-to-High
clock transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000,
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in
front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.

Figure 5-20 FDR Implementation XC3000, XC4000, XC5200, XC9000, Spartans
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FDR_1

D Flip-Flop with Negative-Edge Clock and Synchronous Reset

FDR_1 is a single D-type flip-flop with data (D) and synchronous reset (R) inputs and
data output (Q). The synchronous reset (R) input, when High, overrides all other
inputs and resets the Q output Low on the Low-to-High clock (C) transition. The data
on the D input is loaded into the flip-flop when R is Low during the High-to-Low
clock transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. Virtex
simulates power-on when global set/reset (GSR) is active. GSR defaults to active-
High but can be inverted by adding an inverter in front of the GSR input of the
STARTUP_VIRTEX symbol.
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FDRE

D Flip-Flop with Clock Enable and Synchronous Reset

FDRE is a single D-type flip-flop with data (D), clock enable (CE), and synchronous
reset (R) inputs and data output (Q). The synchronous reset (R) input, when High,
overrides all other inputs and resets the Q output Low on the Low-to-High clock (C)
transition. The data on the D input is loaded into the flip-flop when R is Low and CE
is High during the Low-to-High clock transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000,
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in
front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.

Figure 5-21 FDRE Implementation XC3000, XC4000, XC5200, Spartans
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Figure 5-22 FDRE Implementation XC9000
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FDRE_1

D Flip-Flop with Negative-Clock Edge, Clock Enable, and
Synchronous Reset

FDRE_1 is a single D-type flip-flop with data (D), clock enable (CE), and synchronous
reset (R) inputs and data output (Q). The synchronous reset (R) input, when High,
overrides all other inputs and resets the Q output Low on the Low-to-High clock (C)
transition. The data on the D input is loaded into the flip-flop when R is Low and CE
is High during the High-to-Low clock transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. Virtex
simulates power-on when global set/reset (GSR) is active. GSR defaults to active-
High but can be inverted by adding an inverter in front of the GSR input of the
STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive

Inputs Outputs

R CE D C Q

1 X X ↓ 0

0 0 X X No Chg

0 1 1 ↓ 1

0 1 0 ↓ 0

Q

C

FDRE_1

R

X8364

D

CE



Libraries Guide, Release M1.5

5-30 Xilinx Development System

FDRS

D Flip-Flop with Synchronous Reset and Set

FDRS is a single D-type flip-flop with data (D), synchronous set (S), and synchronous
reset (R) inputs and data output (Q). The synchronous reset (R) input, when High,
overrides all other inputs and resets the Q output Low during the Low-to-High clock
(C) transition. (Reset has precedence over Set.) When S is High and R is Low, the flip-
flop is set, output High, during the Low-to-High clock transition. When R and S are
Low, data on the (D) input is loaded into the flip-flop during the Low-to-High clock
transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000,
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in
front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.

Figure 5-23 FDRS Implementation XC3000, XC4000, XC5200, Spartans

Figure 5-24 FDRS Implementation XC9000
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FDRS_1

D Flip-Flop with Negative-Clock Edge and Synchronous Reset and
Set

FDRS_1 is a single D-type flip-flop with data (D), synchronous set (S), and synchro-
nous reset (R) inputs and data output (Q). The synchronous reset (R) input, when
High, overrides all other inputs and resets the Q output Low during the High-to-Low
clock (C) transition. (Reset has precedence over Set.) When S is High and R is Low, the
flip-flop is set, output High, during the High-to-Low clock transition. When R and S
are Low, data on the (D) input is loaded into the flip-flop during the High-to-Low
clock transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. Virtex
simulates power-on when global set/reset (GSR) is active. GSR defaults to active-
High but can be inverted by adding an inverter in front of the GSR input of the
STARTUP_VIRTEX symbol.
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FDRSE

D Flip-Flop with Synchronous Reset and Set and Clock Enable

FDRSE is a single D-type flip-flop with synchronous reset (R), synchronous set (S),
and clock enable (CE) inputs and data output (Q). The reset (R) input, when High,
overrides all other inputs and resets the Q output Low during the Low-to-High clock
transition. (Reset has precedence over Set.) When the set (S) input is High and R is
Low, the flip-flop is set, output High, during the Low-to-High clock (C) transition.
Data on the D input is loaded into the flip-flop when R and S are Low and CE is High
during the Low-to-High clock transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000,
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in
front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.

Figure 5-25 FDRSE Implementation XC3000, XC4000, XC5200, Spartans
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Figure 5-26 FDRSE Implementation XC9000
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FDRSE_1

D Flip-Flop with Negative-Clock Edge, Synchronous Reset and
Set, and Clock Enable

FDRSE_1 is a single D-type flip-flop with synchronous reset (R), synchronous set (S),
and clock enable (CE) inputs and data output (Q). The reset (R) input, when High,
overrides all other inputs and resets the Q output Low during the High-to-Low clock
transition. (Reset has precedence over Set.) When the set (S) input is High and R is
Low, the flip-flop is set, output High, during the Low-to-High clock (C) transition.
Data on the D input is loaded into the flip-flop when R and S are Low and CE is High
during the High-to-Low clock transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. Virtex
simulates power-on when global set/reset (GSR) is active. GSR defaults to active-
High but can be inverted by adding an inverter in front of the GSR input of the
STARTUP_VIRTEX symbol.
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FDS

D Flip-Flop with Synchronous Set

FDS is a single D-type flip-flop with data (D) and synchronous set (S) inputs and data
output (Q). The synchronous set input, when High, sets the Q output High on the
Low-to-High clock (C) transition. The data on the D input is loaded into the flip-flop
when S is Low during the Low-to-High clock (C) transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000,
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in
front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.

Figure 5-27 FDS Implementation XC3000, XC4000, XC5200, XC9000, Spartans
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FDS_1

D Flip-Flop with Negative-Edge Clock and Synchronous Set

FDS_1 is a single D-type flip-flop with data (D) and synchronous set (S) inputs and
data output (Q). The synchronous set input, when High, sets the Q output High on
the High-to-Low clock (C) transition. The data on the D input is loaded into the flip-
flop when S is Low during the High-to-Low clock (C) transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. Virtex
simulates power-on when global set/reset (GSR) is active. GSR defaults to active-
High but can be inverted by adding an inverter in front of the GSR input of the
STARTUP_VIRTEX symbol.
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FDSE

D Flip-Flop with Clock Enable and Synchronous Set

FDSE is a single D-type flip-flop with data (D), clock enable (CE), and synchronous set
(S) inputs and data output (Q). The synchronous set (S) input, when High, overrides
the clock enable (CE) input and sets the Q output High during the Low-to-High clock
(C) transition. The data on the D input is loaded into the flip-flop when S is Low and
CE is High during the Low-to-High clock (C) transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000,
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in
front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.

Figure 5-28 FDSE Implementation XC3000, XC4000, XC5200, Spartans
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Figure 5-29 FDSE Implementation XC9000

QD

C

FD

C

AND2 Q

X7815

D

OR3

AND2B1

S

AND2

VCC
+5

CE

Q

Q



Design Elements (FDSE_1)

Libraries Guide, Release M1.5 5-39

FDSE_1

D Flip-Flop with Negative-Edge Clock, Clock Enable, and
Synchronous Set

FDSE_1 is a single D-type flip-flop with data (D), clock enable (CE), and synchronous
set (S) inputs and data output (Q). The synchronous set (S) input, when High, over-
rides the clock enable (CE) input and sets the Q output High during the High-to-Low
clock (C) transition. The data on the D input is loaded into the flip-flop when S is Low
and CE is High during the High-to-Low clock (C) transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. Virtex
simulates power-on when global set/reset (GSR) is active. GSR defaults to active-
High but can be inverted by adding an inverter in front of the GSR input of the
STARTUP_VIRTEX symbol.
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FDSR

D Flip-Flop with Synchronous Set and Reset

FDSR is a single D-type flip-flop with data (D), synchronous reset (R) and synchro-
nous set (S) inputs and data output (Q). When the set (S) input is High, it overrides all
other inputs and sets the Q output High during the Low-to-High clock transition. (Set
has precedence over Reset.) When reset (R) is High and S is Low, the flip-flop is reset,
output Low, on the Low-to-High clock transition. Data on the D input is loaded into
the flip-flop when S and R are Low on the Low-to-High clock transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000,
Spartans) default to active-High but can be inverted by adding an inverter in front of
the GR/GSR input of the STARTUP symbol.

Figure 5-30 FDSR Implementation XC3000, XC4000, XC5200, Spartans

Figure 5-31 FDSR Implementation XC9000
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FDSRE

D Flip-Flop with Synchronous Set and Reset and Clock Enable

FDSRE is a single D-type flip-flop with synchronous set (S), synchronous reset (R),
and clock enable (CE) inputs and data output (Q). When synchronous set (S) is High,
it overrides all other inputs and sets the Q output High during the Low-to-High clock
transition. (Set has precedence over Reset.) When synchronous reset (R) is High and S
is Low, output Q is reset Low during the Low-to-High clock transition. Data is loaded
into the flip-flop when S and R are Low and CE is High during the Low-to-high clock
transition. When CE is Low, clock transitions are ignored.

The flip-flop is asynchronously cleared, output Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000,
Spartans) default to active-High but can be inverted by adding an inverter in front of
the GR/GSR input of the STARTUP symbol.

Figure 5-32 FDSRE Implementation XC3000, XC4000, XC5200, Spartans
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Figure 5-33 FDSRE Implementation XC9000
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FJKC

J-K Flip-Flop with Asynchronous Clear

FJKC is a single J-K-type flip-flop with J, K, and asynchronous clear (CLR) inputs and
data output (Q). The asynchronous clear (CLR) input, when High, overrides all other
inputs and resets the Q output Low. When CLR is Low, the output responds to the
state of the J and K inputs, as shown in the following truth table, during the Low-to-
High clock (C) transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000,
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in
front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.

Figure 5-34 FJKC Implementation XC3000, XC4000, XC5200, Spartans, Virtex
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Figure 5-35 FJKC Implementation XC9000
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FJKCE

J-K Flip-Flop with Clock Enable and Asynchronous Clear

FJKCE is a single J-K-type flip-flop with J, K, clock enable (CE), and asynchronous
clear (CLR) inputs and data output (Q). The asynchronous clear (CLR), when High,
overrides all other inputs and resets the Q output Low. When CLR is Low and CE is
High, Q responds to the state of the J and K inputs, as shown in the following truth
table, during the Low-to-High clock transition. When CE is Low, the clock transitions
are ignored.

The flip-flop is asynchronously cleared, output Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000,
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in
front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.

Figure 5-36 FJKCE Implementation XC3000, XC4000, XC5200, Spartans, Virtex
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Figure 5-37 FJKCE Implementation XC9000
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FJKCP

J-K Flip-Flop with Asynchronous Clear and Preset

FJKCP is a single J-K-type flip-flop with J, K, asynchronous clear (CLR), and asynchro-
nous preset (PRE) inputs and data output (Q). The asynchronous clear input (CLR),
when High, overrides all other inputs and resets the Q output Low. The asynchronous
preset (PRE) input, when High, overrides all other inputs and sets the Q output High.
When CLR and PRE are Low, Q responds to the state of the J and K inputs during the
Low-to-High clock transition, as shown in the following truth table.

The flip-flop is asynchronously cleared, output Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net.

Figure 5-38 FJKCP Implementation XC9000

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A N/A Macro N/A N/A N/A

Inputs Outputs

CLR PRE J K C Q

1 0 X X X 0

0 1 X X X 1

0 0 0 0 X No Chg

0 0 0 1 ↑ 0

0 0 1 0 ↑ 1

0 0 1 1 ↑ Toggle

Q

J

C

FJKCP

 K

PRE

CLR
X4390

Q

X8124

C

AND2B1

FDCP

D

C

Q
PRE

OR2
K

AND2B1

PRE

CLR

Q

J

CLR



Libraries Guide, Release M1.5

5-48 Xilinx Development System

FJKCPE

J-K Flip-Flop with Asynchronous Clear and Preset and Clock
Enable

FJKCPE is a single J-K-type flip-flop with J, K, asynchronous clear (CLR), asynchro-
nous preset (PRE), and clock enable (CE) inputs and data output (Q). The asynchro-
nous clear input (CLR), when High, overrides all other inputs and resets the Q output
Low. The asynchronous preset (PRE) input, when High, overrides all other inputs and
sets the Q output High. When CLR and PRE are Low and CE is High, Q responds to
the state of the J and K inputs, as shown in the following truth table, during the Low-
to-High clock transition. Clock transitions are ignored when CE is Low.

The flip-flop is asynchronously cleared, output Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net.

Figure 5-39 FJKCPE Implementation XC9000
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FJKP

J-K Flip-Flop with Asynchronous Preset

FJKP is a single J-K-type flip-flop with J, K, and asynchronous preset (PRE) inputs and
data output (Q). The asynchronous preset (PRE) input, when High, overrides all other
inputs and sets the Q output High. When PRE is Low, the Q output responds to the
state of the J and K inputs, as shown in the following truth table, during the Low-to-
High clock transition.

For FPGAs, the flip-flop is asynchronously preset, output High, when global reset (GR
for XC5200) or global set/reset (GSR for XC4000, Spartans, Virtex) is active. The GR/
GSR active level defaults to active-High but can be inverted by adding an inverter in
front of the GR/GSR input of the STARTUP or the STARTUP_VIRTEX symbol.

For CPLDs, the flip-flop is asynchronously cleared, output Low, when power is
applied. The power-on condition can be simulated by applying a High-level pulse on
the PRLD global net.
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Figure 5-40 FJKP Implementation XC4000, XC5200, Spartans, Virtex

Figure 5-41 FJKP Implementation XC9000

FDP

D

C

Q
Q

X7824

RLOC=R0C0

K

AND2B1

OR3

C

J

AND3B2

AND3B1

AD

A0

A2

A1

PRE

PRE

Q

X8125

C

AND2B1

FDP

D

C

Q
PRE

OR2
K

AND2B1

PRE

Q

J



Design Elements (FJKPE)

Libraries Guide, Release M1.5 5-51

FJKPE

J-K Flip-Flop with Clock Enable and Asynchronous Preset

FJKPE is a single J-K-type flip-flop with J, K, clock enable (CE), and asynchronous
preset (PRE) inputs and data output (Q). The asynchronous preset (PRE), when High,
overrides all other inputs and sets the Q output High. When PRE is Low and CE is
High, the Q output responds to the state of the J and K inputs, as shown in the truth
table, during the Low-to-High clock (C) transition. When CE is Low, clock transitions
are ignored.

For FPGAs, the flip-flop is asynchronously preset, output High, when global reset (GR
for XC5200) or global set/reset (GSR for XC4000, Spartans, Virtex) is active. The GR/
GSR active level defaults to active-High but can be inverted by adding an inverter in
front of the GR/GSR input of the STARTUP or the STARTUP_VIRTEX symbol.

For CPLDs, the flip-flop is asynchronously cleared, output Low, when power is
applied. The power-on condition can be simulated by applying a High-level pulse on
the PRLD global net.
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Figure 5-42 FJKPE Implementation XC4000, XC5200, Spartans, Virtex

Figure 5-43 FJKPE Implementation XC9000

FDPE

D

C

Q
Q

X7825

RLOC=R0C0

K

AND2B1

OR3

C

J

AND3B2

AND3B1

AD

A0

A2

A1

PRE

PRE

CE
CE

AND2B1

FDP

D

C

Q
Q

X7826
PRE

AND2B1

Q

CE

K
PRE

AND2

VCC
+5

AND3B1

OR3

C

J



Design Elements (FJKRSE)

Libraries Guide, Release M1.5 5-53

FJKRSE

J-K Flip-Flop with Clock Enable and Synchronous Reset and Set

FJKRSE is a single J-K-type flip-flop with J, K, synchronous reset (R), synchronous set
(S), and clock enable (CE) inputs and data output (Q). When synchronous reset (R) is
High, all other inputs are ignored and output Q is reset Low. (Reset has precedence
over Set.) When synchronous set (S) is High and R is Low, output Q is set High. When
R and S are Low and CE is High, output Q responds to the state of the J and K inputs,
according to the following truth table, during the Low-to-High clock (C) transition.
When CE is Low, clock transitions are ignored.

The flip-flop is asynchronously cleared, output Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000,
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in
front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.

Figure 5-44 FJKRSE Implementation XC3000, XC4000, XC5200, Spartans,
Virtex
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Figure 5-45 FJKRSE Implementation XC9000
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FJKSRE

J-K Flip-Flop with Clock Enable and Synchronous Set and Reset

FJKSRE is a single J-K-type flip-flop with J, K, synchronous set (S), synchronous reset
(R), and clock enable (CE) inputs and data output (Q). When synchronous set (S) is
High, all other inputs are ignored and output Q is set High. (Set has precedence over
Reset.) When synchronous reset (R) is High and S is Low, output Q is reset Low. When
S and R are Low and CE is High, output Q responds to the state of the J and K inputs,
as shown in the following truth table, during the Low-to-High clock (C) transition.
When CE is Low, clock transitions are ignored.

The flip-flop is asynchronously cleared, output Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000,
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in
front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.
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Figure 5-46 FJKSRE Implementation XC3000, XC4000, XC5200, Spartans,
Virtex

Figure 5-47 FJKSRE Implementation XC9000
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FMAP

F Function Generator Partitioning Control Symbol

The FMAP symbol is used to control logic partitioning into XC4000 4-input function
generators. For XC4000 and Spartans, the place and route software chooses an F or a
G function generator as a default, unless you specify an F or G. The FMAP symbol is
used in an XC5200 or a Virtex device to map logic to the function generator of a slice.
Refer to the appropriate CAE tool interface user guide for information about speci-
fying this attribute in your schematic design editor.

The FMAP symbol is usually used with the HMAP symbol, which partitions logic
into the 3-input generator of the Configurable Logic Block (CLB). You can implement
a portion of logic using gates, latches, and flip-flops and specify the logic to be
grouped into F, G, and H function generators by naming logic signals and FMAP/
HMAP signals correspondingly. These symbols are used for mapping control in addi-
tion to the actual gates, latches, and flip-flops, not as a substitute for them.

The following figure gives an example of how logic can be placed using FMAP and
HMAP symbols.

Figure 5-48 Partitioning Logic Using FMAP and HMAP Symbols
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The MAP=type parameter can be used with the FMAP symbol to further define how
much latitude you want to give the mapping program. The following table shows
MAP option characters and their meanings.

Possible types of MAP parameters for FMAP are MAP=PUC, MAP=PLC, MAP=PLO,
and MAP=PUO. The default parameter is PUO. If one of the “open” parameters is
used (PLO or PUO), only the output signals must be specified.

Note: Currently, only PUC and PUO are observed. PLC and PLO are translated into
PUC and PUO, respectively.

The FMAP symbol can be assigned to specific CLB locations using LOC attributes.
Refer to the  “Mapping Constraint Examples” section of the “Attributes, Constraints,
and Carry Logic” chapter and to the appropriate CAE tool interface user guide for
more information on assigning LOC attributes.

MAP Option
Character

Function

P Pins.

C Closed — Adding logic to or removing logic from the CLB
is not allowed.

L Locked — Locking CLB pins.

O Open — Adding logic to or removing logic from the CLB is
allowed.

U Unlocked — No locking on CLB pins.
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FTC

Toggle Flip-Flop with Toggle Enable and Asynchronous Clear

FTC is a synchronous, resettable toggle flip-flop. The asynchronous clear (CLR) input,
when High, overrides all other inputs and resets the data output (Q) Low. The Q
output toggles, or changes state, when the toggle enable (T) input is High and CLR is
Low during the Low-to-High clock transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000,
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in
front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.

Figure 5-49 FTC Implementation XC3000, XC4000, XC5200, Spartans, Virtex

Figure 5-50 FTC Implementation XC9000
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FTCE

Toggle Flip-Flop with Toggle and Clock Enable and Asynchronous
Clear

FTCE is a toggle flip-flop with toggle and clock enable and asynchronous clear. When
the asynchronous clear (CLR) input is High, all other inputs are ignored and the data
output (Q) is reset Low. When CLR is Low and toggle enable (T) and clock enable (CE)
are High, Q output toggles, or changes state, during the Low-to-High clock (C) transi-
tion. When CE is Low, clock transitions are ignored.

The flip-flop is asynchronously cleared, output Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000,
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in
front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.

Figure 5-51 FTCE Implementation XC3000, XC4000, XC5200, Spartans, Virtex

Figure 5-52 FTCE Implementation XC9000
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FTCLE

Toggle/Loadable Flip-Flop with Toggle and Clock Enable and
Asynchronous Clear

FTCLE is a toggle/loadable flip-flop with toggle and clock enable and asynchronous
clear. When the asynchronous clear input (CLR) is High, all other inputs are ignored
and output Q is reset Low. When load enable input (L) is High and CLR is Low, clock
enable (CE) is overridden and the data on data input (D) is loaded into the flip-flop
during the Low-to-High clock (C) transition. When toggle enable (T) and CE are High
and L and CLR are Low, output Q toggles, or changes state, during the Low- to-High
clock transition. When CE is Low, clock transitions are ignored.

The flip-flop is asynchronously cleared, output Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000,
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in
front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.

Figure 5-53 FTCLE Implementation XC3000
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Figure 5-54 FTCLE Implementation XC4000, XC5200, Spartans, Virtex

Figure 5-55 FTCLE Implementation XC9000
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FTCLEX

Toggle/Loadable Flip-Flop with Toggle and Clock Enable and
Asynchronous Clear

FTCLEX is a toggle/loadable flip-flop with toggle and clock enable and asynchronous
clear. When the asynchronous clear input (CLR) is High, all other inputs are ignored
and output Q is reset Low. When load enable input (L) is High, CLR is Low, and CE is
High, the data on data input (D) is loaded into the flip-flop during the Low-to-High
clock (C) transition. When toggle enable (T) and CE are High and L and CLR are Low,
output Q toggles, or changes state, during the Low- to-High clock transition. When
CE is Low, clock transitions are ignored.

The flip-flop is asynchronously cleared, output Low, when power is applied. FPGAs
simulate power-on when global reset (GR) or global set/reset (GSR) is active. GR for
XC5200 and GSR (XC4000, Spartans, Virtex) default to active-High but can be inverted
by adding an inverter in front of the GR/GSR input of the STARTUP or
STARTUP_VIRTEX symbol.

Figure 5-56 FTCLEX Implementation XC4000, XC5200, Spartans, Virtex
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FTCP

Toggle Flip-Flop with Toggle Enable and Asynchronous Clear and
Preset

FTCP is a toggle flip-flop with toggle enable and asynchronous clear and preset.
When the asynchronous clear (CLR) input is High, all other inputs are ignored and
the output (Q) is reset Low. When the asynchronous preset (PRE) input is High, all
other inputs are ignored and Q is set High. When the toggle enable input (T) is High
and CLR and PRE are Low, output Q toggles, or changes state, during the Low-to-
High clock (C) transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net.
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FTCPE

Toggle Flip-Flop with Toggle and Clock Enable and Asynchronous
Clear and Preset

FTCPE is a toggle flip-flop with toggle and clock enable and asynchronous clear and
preset. When the asynchronous clear (CLR) input is High, all other inputs are ignored
and the output (Q) is reset Low. When the asynchronous preset (PRE) input is High,
all other inputs are ignored and Q is set High. When the toggle enable input (T) and
the clock enable input (CE) are High and CLR and PRE are Low, output Q toggles, or
changes state, during the Low-to-High clock (C) transition. Clock transitions are
ignored when CE is Low.

The flip-flop is asynchronously cleared, output Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net.

Figure 5-57 FTCPE Implementation XC9000
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FTCPLE

Loadable Toggle Flip-Flop with Toggle and Clock Enable and
Asynchronous Clear and Preset

FTCPLE is a loadable toggle flip-flop with toggle and clock enable and asynchronous
clear and preset. When the asynchronous clear (CLR) input is High, all other inputs
are ignored and the output (Q) is reset Low. When the asynchronous preset (PRE)
input is High, all other inputs are ignored and Q is set High. The load input (L) loads
the data on input D into the flip-flop on the Low-to-High clock transition, regardless
of the state of the clock enable (CE). When the toggle enable input (T) and the clock
enable input (CE) are High and CLR, PRE, and L are Low, output Q toggles, or
changes state, during the Low-to-High clock (C) transition. Clock transitions are
ignored when CE is Low.

The flip-flop is asynchronously cleared, output Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net.
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Figure 5-58 FTCPLE Implementation XC9000

FDCP

D

C

Q
Q

X7845

D

AND2
OR4

T

AND3B2

AND3B2

PRE
CLR

CE

AND2

VCC
+5

OR2

L

GND

AND4B2

CLR

C

PRE



Libraries Guide, Release M1.5

5-68 Xilinx Development System

FTP

Toggle Flip-Flop with Toggle Enable and Asynchronous Preset

FTP is a toggle flip-flop with toggle enable and asynchronous preset. When the asyn-
chronous preset (PRE) input is High, all other inputs are ignored and output Q is set
High. When toggle-enable input (T) is High and PRE is Low, output Q toggles, or
changes state, during the Low-to-High clock (C) transition.

For FPGAs, the flip-flop is asynchronously preset to output High, when global reset
(GR for XC5200) or global set/reset (GSR for XC4000, Spartans, Virtex) is active. The
GR/GSR active level defaults to active-High but can be inverted by adding an
inverter in front of the GR/GSR input of the STARTUP or the STARTUP_VIRTEX
symbol.

For CPLDs, the flip-flop is asynchronously cleared, output Low, when power is
applied. The power-on condition can be simulated by applying a High-level pulse on
the PRLD global net.

Figure 5-59 FTP Implementation XC4000, XC5200, Spartans, Virtex

Figure 5-60 FTP Implementation XC9000
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FTPE

Toggle Flip-Flop with Toggle and Clock Enable and Asynchronous
Preset

FTPE is a toggle flip-flop with toggle and clock enable and asynchronous preset.
When the asynchronous preset (PRE) input is High, all other inputs are ignored and
output Q is set High. When the toggle enable input (T) is High, clock enable (CE) is
High, and PRE is Low, output Q toggles, or changes state, during the Low-to-High
clock transition. When CE is Low, clock transitions are ignored.

For FPGAs, the flip-flop is asynchronously preset to output High, when global reset
(GR for XC5200) or global set/reset (GSR for XC4000, Spartans, Virtex) is active. The
GR/GSR active level defaults to active-High but can be inverted by adding an
inverter in front of the GR/GSR input of the STARTUP or the STARTUP_VIRTEX
symbol.

For CPLDs, the flip-flop is asynchronously cleared, output Low, when power is
applied. The power-on condition can be simulated by applying a High-level pulse on
the PRLD global net.

Figure 5-61 FTPE Implementation XC4000, XC5200, Spartans, Virtex

Figure 5-62 FTPE Implementation XC9000
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FTPLE

Toggle/Loadable Flip-Flop with Toggle and Clock Enable and
Asynchronous Preset

FTPLE is a toggle/loadable flip-flop with toggle and clock enable and asynchronous
preset. When the asynchronous preset input (PRE) is High, all other inputs are
ignored and output Q is set High. When the load enable input (L) is High and PRE is
Low, the clock enable (CE) is overridden and the data (D) is loaded into the flip-flop
during the Low-to-High clock transition. When L and PRE are Low and toggle-enable
input (T) and CE are High, output Q toggles, or changes state, during the Low-to-
High clock transition. When CE is Low, clock transitions are ignored.

For FPGAs, the flip-flop is asynchronously preset to output High, when global reset
(GR for XC5200) or global set/reset (GSR for XC4000, Spartans, Virtex) is active. The
GR/GSR active level defaults to active-High but can be inverted by adding an
inverter in front of the GR/GSR input of the STARTUP or the STARTUP_VIRTEX
symbol.

For CPLDs, the flip-flop is asynchronously cleared, output Low, when power is
applied. The power-on condition can be simulated by applying a High-level pulse on
the PRLD global net.
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Figure 5-63 FTPLE Implementation XC4000, XC5200, Spartans, Virtex

Figure 5-64 FTPLE Implementation XC9000
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FTRSE

Toggle Flip-Flop with Toggle and Clock Enable and Synchronous
Reset and Set

FTRSE is a toggle flip-flop with toggle and clock enable and synchronous reset and
set. When the synchronous reset input (R) is High, it overrides all other inputs and the
data output (Q) is reset Low. When the synchronous set input (S) is High and R is
Low, clock enable input (CE) is overridden and output Q is set High. (Reset has prece-
dence over Set.) When toggle enable input (T) and CE are High and R and S are Low,
output Q toggles, or changes state, during the Low-to-High clock transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000,
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in
front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.

Figure 5-65 FTRSE Implementation XC3000, XC4000, XC5200, Spartans, Virtex
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Figure 5-66 FTRSE Implementation XC9000
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FTRSLE

Toggle/Loadable Flip-Flop with Toggle and Clock Enable and
Synchronous Reset and Set

FTRSLE is a toggle/loadable flip-flop with toggle and clock enable and synchronous
reset and set. The synchronous reset input (R), when High, overrides all other inputs
and resets the data output (Q) Low. (Reset has precedence over Set.) When R is Low
and synchronous set input (S) is High, the clock enable input (CE) is overridden and
output Q is set High. When R and S are Low and load enable input (L) is High, CE is
overridden and data on data input (D) is loaded into the flip-flop during the Low-to-
High clock transition. When R, S, and L are Low and CE is High, output Q toggles, or
changes state, during the Low-to-High clock transition. When CE is Low, clock transi-
tions are ignored.

The flip-flop is asynchronously cleared, output Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000,
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in
front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Macro Macro Macro Macro Macro Macro Macro Macro

Inputs Outputs

R S L CE T D C Q

1 0 X X X X ↑ 0

0 1 X X X X ↑ 1

0 0 1 X X 1 ↑ 1

0 0 1 X X 0 ↑ 0

0 0 0 0 X X X No Chg

0 0 0 1 0 X X No Chg

0 0 0 1 1 X ↑ Toggle

X3773

FTRSLE

C

CE

T

L

D

R

Q

S



Design Elements (FTRSLE)

Libraries Guide, Release M1.5 5-75

Figure 5-67 FTRSLE Implementation XC3000, XC4000, XC5200, Spartans,
Virtex

Figure 5-68 FTRSLE Implementation XC9000
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FTSRE

Toggle Flip-Flop with Toggle and Clock Enable and Synchronous
Set and Reset

FTSRE is a toggle flip-flop with toggle and clock enable and synchronous set and
reset. The synchronous set input, when High, overrides all other inputs and sets data
output (Q) High. (Set has precedence over Reset.) When synchronous reset input (R)
is High and S is Low, clock enable input (CE) is overridden and output Q is reset Low.
When toggle enable input (T) and CE are High and S and R are Low, output Q toggles,
or changes state, during the Low-to-High clock transition.

The flip-flop is asynchronously cleared, output Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000,
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in
front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.

Figure 5-69 FTSRE Implementation XC3000, XC4000, XC5200, Spartans, Virtex
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Figure 5-70 FTSRE Implementation XC9000
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FTSRLE

Toggle/Loadable Flip-Flop with Toggle and Clock Enable and
Synchronous Set and Reset

FTSRLE is a toggle/loadable flip-flop with toggle and clock enable and synchronous
set and reset. The synchronous set input (S), when High, overrides all other inputs
and sets data output (Q) High. (Set has precedence over Reset.) When synchronous
reset (R) is High and S is Low, clock enable input (CE) is overridden and output Q is
reset Low. When load enable input (L) is High and S and R are Low, CE is overridden
and data on data input (D) is loaded into the flip-flop during the Low-to-High clock
transition. When the toggle enable input (T) and CE are High and S, R, and L are Low,
output Q toggles, or changes state, during the Low-to- High clock transition. When
CE is Low, clock transitions are ignored.

For FPGAs, the flip-flop is asynchronously cleared, output Low, when global reset
(GR for XC5200) or global set/reset (GSR for XC4000, Spartans, Virtex) is active. The
GR/GSR active level defaults to active-High but can be inverted by adding an
inverter in front of the GR/GSR input of the STARTUP or the STARTUP_VIRTEX
symbol. For CPLDs, the flip-flop is asynchronously preset when a High-level pulse is
applied on the PRLD global net.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Macro Macro Macro Macro Macro Macro Macro Macro

Inputs Outputs

S R L CE T D C Q

1 0 X X X X ↑ 1

0 1 X X X X ↑ 0

0 0 1 X X 1 ↑ 1

0 0 1 X X 0 ↑ 0

0 0 0 0 X X X No Chg

0 0 0 1 0 X X No Chg

0 0 0 1 1 X ↑ Toggle

X3772

FTSRLE

C

CE

T

L

D

R

Q

S



Design Elements (FTSRLE)

Libraries Guide, Release M1.5 5-79

Figure 5-71 FTSRLE Implementation XC3000, XC4000, XC5200, Spartans,
Virtex

Figure 5-72 FTSRLE Implementation XC9000
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Chapter 6

Design Elements (GCLK to KEEPER)

This chapter describes design elements included in the Unified Libraries. The
elements are organized in alphanumeric order with all numeric suffixes in ascending
order.

Information on the specific architectures supported by each of the following libraries
is contained under the Applicable Architectures section of the Unified Libraries
Chapter.

• XC3000 Library

• XC4000E Library

• XC4000X Library

• XC5200 Library

• XC9000 Library

• Spartan Library

• SpartanXL Library

• Virtex Library

Note: Wherever XC4000 is mentioned, the information applies to all architectures
supported by the XC4000E and XC4000X libraries.

Note: Wherever Spartans or Spartan series is mentioned, the information applies to all
architectures supported by the Spartan and SpartanXL libraries.

Schematics are included for each library if the implementation differs. Design
elements with bused or multiple I/O pins (2-, 4-, 8-, 16-bit versions) typically include
just one schematic — generally the 8-bit version. When only one schematic is
included, implementation of the smaller and larger elements differs only in the
number of sections. In cases where an 8-bit version is very large, an appropriate
smaller element serves as the schematic example.
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GCLK

Global Clock Buffer

GCLK, the global clock buffer, distributes high fan-out clock signals. One GCLK
buffer on each device provides direct access to every Configurable Logic Block (CLB)
and Input Output Block (IOB) clock pin. If it is not used in a design, its routing
resources are not used for any signals. Therefore, the GCLK should always be used for
the highest fan-out clock net in the design. The GCLK input (I) can come from one of
the following sources.

• From a CMOS-level signal on the dedicated TCLKIN pin (XC3000 only). TCLKIN
is a direct CMOS-only input to the GCLK buffer. To use the TCLKIN pin, connect
the input of the GCLK element to the IBUF and IPAD elements.

• From a CMOS or TTL-level external signal. To connect an external input to the
GCLK buffer, connect the input of the GCLK element to the output of the IBUF for
that signal. Unless the corresponding IPAD element is constrained otherwise,
PAR typically places the IOB directly adjacent to the GCLK buffer.

• From an internal signal. To drive the GCLK buffer with an internal signal, connect
that signal directly to the input of the GCLK element.

The output of the GCLK buffer can drive all the clock inputs on the chip, but it cannot
drive non-clock inputs. For a negative-edge clock, insert an INV (inverter) element
between the GCLK output and the clock input. This inversion is performed inside the
CLB, or in the case of IOB clock pins, on the IOB clock line (which controls the clock
sense for the IOBs on an entire edge of the chip).

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Primitive N/A N/A N/A N/A N/A N/A N/A

X3884
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GND

Ground-Connection Signal Tag

The GND signal tag, or parameter, forces a net or input function to a Low logic level.
A net tied to GND cannot have any other source.

When the logic-trimming software or fitter encounters a net or input function tied to
GND, it removes any logic that is disabled by the GND signal. The GND signal is only
implemented when the disabled logic cannot be removed.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Primitive Primitive Primitive Primitive Primitive Primitive Primitive Primitive

X3858
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GXTL

Crystal Oscillator with ACLK Buffer

The GXTL element drives an internal ACLK buffer with a frequency derived from an
external crystal-controlled oscillator. The GXTL (or ACLK) output is connected to an
internal clock net.

There are two dedicated input pins (XTAL 1 and XTAL 2) on each FPGA device that
are internally connected to pads and input/output blocks that are in turn connected
to the GXTL amplifier. The external components are connected as shown in the
following figure.

Refer to The Programmable Logic Data Book for details on component selection and
tolerances.

Figure 6-1 GXTL Implementation XC3000

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Macro N/A N/A N/A N/A N/A N/A N/A
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HMAP

H Function Generator Partitioning Control Symbol

The HMAP symbol is used to control logic partitioning into XC4000 and Spartan
series 3-input H function generators. It is usually used with FMAP, which partitions
logic into F and G function generators. You can implement a portion of logic using
gates, latches, and flip-flops and specify the logic to be grouped into F, G, and H func-
tion generators by naming logic signals and HMAP/FMAP signals correspondingly.
These symbols are used for mapping control in addition to the actual gates, latches,
and flip-flops and not as a substitute for them. The following figure gives an example
of how logic can be placed using HMAP and FMAP symbols.

Figure 6-2 Partitioning Logic Using FMAP and HMAP Symbols

The MAP=type parameter can only be set to the default value, PUC, for the HMAP
symbol. PUC means pins are not locked to the signals but the CLB is closed to addi-
tion or removal of logic.

The HMAP symbol can be assigned to specific CLB locations using LOC attributes.
Refer to the  “LOC” section of the “Attributes, Constraints, and Carry Logic” chapter
for more information on assigning LOC attributes.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A Primitive Primitive N/A N/A Primitive Primitive N/A
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IBUF, 4, 8, 16

Single- and Multiple-Input Buffers

IBUF, IBUF4, IBUF8, and IBUF16 are single- and multiple-input buffers. An IBUF
isolates the internal circuit from the signals coming into a chip. IBUFs are contained in
input/output blocks (IOBs). IBUF inputs (I) are connected to an IPAD or an IOPAD.
IBUF outputs (O) are connected to the internal circuit.

For Virtex, refer to the “IBUF_selectIO” section for information on IBUF variants with
selectable I/O interfaces. IBUF, 4, 8, and 16 use the LVTTL standard.

Figure 6-3 IBUF8 Implementation XC3000, XC4000, XC5200, XC9000, Spartans,
Virtex

Element XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex
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IBUF_selectIO

Single Input Buffer with Selectable I/O Interface

For Virtex, IBUF and its variants (listed below) are single input buffers whose I/O
interface corresponds to a specific I/O standard. The name extensions (LVCMOS2,
PCI33_3, PCI33_5, etc.) specify the standard. For example, IBUF_SSTL3_II is a single
input buffer that uses the SSTL3_II I/O-signaling standard.

An IBUF isolates the internal circuit from the signals coming into a chip. IBUFs are
contained in input/output blocks (IOBs). IBUF inputs (I) are connected to an IPAD or
an IOPAD. IBUF outputs (O) are connected to the internal circuit.

The hardware implementation of the I/O standards requires that you follow a set of
usage rules for the SelectI/O buffer components. Refer to the “SelectI/O Usage
Rules” section below for information on using these components.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive

Component I/O Standard VREF

IBUF LVTTL N/A

IBUF_LVCMOS2 LVCMOS2 N/A

IBUF_PCI33_3 PCI33_3 N/A

IBUF_PCI33_5 PCI33_5 N/A

IBUF_PCI66_3 PCI66_3 N/A

IBUF_GTL GTL 0.80

IBUF_GTLP GTL+ 1.00

IBUF_HSTL_I HSTL_I 0.75

IBUF_HSTL_III HSTL_III 0.90

IBUF_HSTL_IV HSTL_IV 0.75

IBUF_SSTL2_I SSTL2_I 1.10

IBUF_SSTL2_II SSTL2_II 1.10

IBUF_SSTL3_I SSTL3_I 0.90

IBUF_SSTL3_II SSTL3_II 1.50

IBUF_CTT CTT 1.50

IBUF_AGP AGP 1.32

X3830
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SelectI/O Usage Rules

The Virtex architecture includes a versatile SelectI/O interface to multiple voltage and
drive standards. To select an I/O standard, you must choose the appropriate compo-
nent from the Virtex library. Each standard has a full set of I/O buffer components
(input, in/out, output, 3-state output). For example, for an input buffer of the GTL
standard, you would choose IBUF_GTL. Refer to the “IBUF_selectIO”,
“IBUFG_selectIO”, “IOBUF_selectIO”, “OBUF_selectIO”, and “OBUFT_selectIO”
sections for information on the various input/output buffer components available to
implement the desired standard.

The hardware implementation of the various I/O standards requires that certain
usage rules be followed. As shown in the following table, each I/O standard has
voltage source requirements for input reference (VREF), output drive (VCCO), or
both. Each Virtex device has eight banks (two on each edge). Each bank has voltage
sources shared by all I/O in the bank. Therefore, in a particular bank, the voltage
source (for either input or output) must be of the same type. The Input Banking
(VREF) Rules section and the Output Banking (VCCO) Rules section below summa-
rize the SelectI/O component usage rules based on the hardware implementation.

Input Banking (VREF) Rules

The low-voltage I/O standards that have a differential amplifier input require a
voltage reference input (VREF). The VREF voltage source is provided as an external
signal to the chip that is banked internal to the chip.

• Any input buffer component that does not require a VREF source (LVTTL,
LVCMOS2, PCI*) can be placed in any bank.

• All input buffer components that require a VREF source (GTL*, HSTL*, SSTL*,
CTT, AGP) must be of the same I/O standard in a particular bank. For example,

I/O Standard VCCO VREF

LVTTL 3.3 N/A

LVCMOS2 2.5 N/A

PCI33_3 (PCI 33MHz 3.3V) 3.3 N/A

PCI33_5 (PCI 33MHZ 5.0V) 3.3 N/A

PCI66_3 (PCI 66MHz 3.3V) 3.3 N/A

GTL N/A 0.80

GTL+ N/A 1.00

HSTL_I 1.5 0.75

HSTL_III 1.5 0.90

HSTL_IV 1.5 0.75

SSTL2_I 2.5 1.10

SSTL2_II 2.5 1.10

SSTL3_I 3.3 0.90

SSTL3_II 3.3 1.50

CTT 3.3 1.50

AGP 3.3 1.32
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IBUF_SSTL2_I and IBUFG_SSTL2_I are compatible since they are the same I/O
standard (SSTL2_I).

• If the bank contains any input buffer component that requires a VREF source:

• One or more VREF sources must be connected to the bank via an IOB.

• The number of VREF sources is dependent on the device and package.

• The locations of the VREF sources are fixed for each device/package.

• All VREF sources must be used in that bank.

• If the bank contains no input buffer component that requires a VREF source:

• The IOBs for VREF sources can be used for general I/O.

• Output buffer components of any type can be placed in the bank.

Output Banking (VCCO) Rules

Because Virtex has multiple low-voltage standards and also needs to be 5V tolerant,
some control is required over the distribution of VCCO, the drive source voltage for
output pins. To provide for maximum flexibility, the output pins are banked. In
comparison to the VREF sources described above, the VCCO voltage sources are dedi-
cated pins on the device and do not consume valuable IOBs.

• Any output buffer component that does not require a VCCO source (GTL, GTL+)
can be placed in any bank.

• To be placed in a particular bank, all output buffer components that require
VCCO must have the same supply voltage (VCCO). For example, OBUF_SSTL3_I
and OBUF_PCI33_3 are compatible in the same output bank since VCCO=3.3 for
both.

• Input buffer components of any type can be placed in the bank.

• The configuration pins on a Virtex device are on the right side of the chip. When
configuring the device through a serial prom, the user is required to use a VREF of
3.3V in the two banks on the right hand side of the chip. If the user is not config-
uring the device through a serial prom, the VREF requirement is dependent upon
the configuration source.

Banking Rules for OBUFT_selectIO with KEEPER

If a KEEPER symbol is attached to an OBUFT_selectIO component (3-state output
buffer) for an I/O standard that requires a VREF (for example, OBUFT_GTL,
OBUFT_SSTL3_I), then the OBUFT_selectIO component follows the same rules as an
IOBUF_selectIO component for the same standard. It must follow both the input
banking and output banking rules. The KEEPER element requires that the VREF be
properly driven.
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IBUFG_selectIO

Dedicated Input Buffer with Selectable I/O Interface

IBUFG and its variants (listed below) are dedicated input buffers for connecting to the
clock buffer (BUFG) or CLKDLL. The name extensions (LVCMOS2, PCI33_3, PCI33_5,
etc.) specify the I/O interface standard used by the component. For example,
IBUFG_CTT is an input buffer that uses the CTT I/O- signaling standard.

The Xilinx implementation software converts each BUFG to an appropriate type of
global buffer for the target PLD device. The IBUFG output can only be connected to
the CLKIN input of a CLKDLL or to the input of a BUFG.

The hardware implementation of the I/O standards requires that you follow a set of
usage rules for the SelectI/O buffer components. Refer to the  “SelectI/O Usage
Rules” section under the IBUF_selectIO section for information on using these compo-
nents.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive

Component I/O Standard VREF

IBUFG LVTTL N/A

IBUFG_LVCMOS2 LVCMOS2 N/A

IBUFG_PCI33_3 PCI33_3 N/A

IBUFG_PCI33_5 PCI33_5 N/A

IBUFG_PCI66_3 PCI66_3 N/A

IBUFG_GTL GTL 0.80

IBUFG_GTLP GTL+ 1.00

IBUFG_HSTL_I HSTL_I 0.75

IBUFG_HSTL_III HSTL_III 0.90

IBUFG_HSTL_IV HSTL_IV 0.75

IBUFG_SSTL2_I SSTL2_I 1.10

IBUFG_SSTL2_II SSTL2_II 1.10

IBUFG_SSTL3_I SSTL3_I 0.90

IBUFG_SSTL3_II SSTL3_II 1.50

IBUFG_CTT CTT 1.50

IBUFG_AGP AGP 1.32

X3830
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IFD, 4, 8, 16

Single- and Multiple-Input D Flip-Flops

The IFD D-type flip-flop is contained in an input/output block (IOB), except for
XC5200 and XC9000. The input (D) of the flip-flop is connected to an IPAD or an
IOPAD (without using an IBUF). The D input provides data input for the flip-flop,
which synchronizes data entering the chip. The data on input D is loaded into the flip-
flop during the Low-to-High clock (C) transition and appears at the output (Q). The
clock input can be driven by internal logic or through another external pin.

The flip-flops are asynchronously cleared with Low outputs when power is applied.
For CPLDs, the power-on condition can be simulated by applying a High-level pulse
on the PRLD global net. FPGAs simulate power-on when global reset (GR) or global
set/reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR
(XC4000, Spartans, Virtex) default to active-High but can be inverted by adding an
inverter in front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.

For information on legal IFD, IFD_1, ILD, and ILD_1 combinations, refer to the “ILD,
4, 8, 16” section.

Figure 6-4 IFD Implementation XC4000, Spartans

Figure 6-5 IFD Implementation XC5200, Virtex
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Figure 6-6 IFD Implementation XC9000

Figure 6-7 IFD8 Implementation XC3000, XC4000, XC5200, XC9000, Spartans,
Virtex
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IFD_1

Input D Flip-Flop with Inverted Clock

The IFD_1 D-type flip-flop is contained in an input/output block (IOB) except for
XC5200. The input (D) of the flip-flop is connected to an IPAD or an IOPAD. The D
input also provides data input for the flip-flop, which synchronizes data entering the
chip. The D input data is loaded into the flip-flop during the High-to-Low clock (C)
transition and appears at the output (Q). The clock input can be driven by internal
logic or through another external pin.

The flip-flop is asynchronously cleared with Low output when power is applied.
FPGAs simulate power-on when global reset (GR) or global set/reset (GSR) is active.
GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, Spartans, Virtex)
default to active-High but can be inverted by adding an inverter in front of the GR/
GSR input of the STARTUP or STARTUP_VIRTEX symbol.

For information on legal IFD, IFD_1, ILD, and ILD_1 combinations, refer to the “ILD,
4, 8, 16” section.

Figure 6-8 IFD_1 Implementation XC3000, XC4000, Spartans

Figure 6-9 IFD_1 Implementation XC5200, Virtex
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IFDI

Input D Flip-Flop (Asynchronous Preset)

The IFDI D-type flip-flop is contained in an input/output block (IOB). The input (D)
of the flip-flop is connected to an IPAD or an IOPAD. The D input provides data input
for the flip-flop, which synchronizes data entering the chip. The data on input D is
loaded into the flip-flop during the Low-to-High clock (C) transition and appears at
the output (Q). The clock input can be driven by internal logic or through another
external pin.

The flip-flop is asynchronously preset, output High, when power is applied. FPGAs
simulate power-on when global set/reset (GSR) is active. GSR (XC4000, Spartans)
default to active-High but can be inverted by adding an inverter in front of the GSR
input of the STARTUP symbol.

For information on legal IFDI, IFDI_1, ILDI, and ILDI_1 combinations, refer to the
“ILDI” section.

Figure 6-10 IFDI Implementation XC4000, Spartans

Figure 6-11 IFDI Implementation Virtex
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IFDI_1

Input D Flip-Flop with Inverted Clock (Asynchronous Preset)

The IFDI_1 D-type flip-flop is contained in an input/output block (IOB). The input
(D) of the flip-flop is connected to an IPAD or an IOPAD. The D input provides data
input for the flip-flop, which synchronizes data entering the chip. The data on input D
is loaded into the flip-flop during the High-to-Low clock (C) transition and appears at
the output (Q). The clock input can be driven by internal logic or through another
external pin.

The flip-flop is asynchronously preset, output High, when power is applied. FPGAs
simulate power-on when global set/reset (GSR) is active. GSR (XC4000, Spartans)
default to active-High but can be inverted by adding an inverter in front of the GSR
input of the STARTUP symbol.

For information on legal IFDI, IFDI_1, ILDI, and ILDI_1 combinations, refer to the
“ILDI” section.

Figure 6-12 IFDI_1 Implementation XC4000, Spartans

Figure 6-13 IFDI_1 Implementation Virtex
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IFDX, 4, 8, 16

Single- and Multiple-Input D Flip-Flops with Clock Enable

The IFDX D-type flip-flop is contained in an input/output block (IOB). The input (D)
of the flip-flop is connected to an IPAD or an IOPAD (without using an IBUF). The D
input provides data input for the flip-flop, which synchronizes data entering the chip.
The data on input D is loaded into the flip-flop during the Low-to-High clock (C) tran-
sition and appears at the output (Q). The clock input can be driven by internal logic or
through another external pin. When CE is Low, flip-flop outputs do not change.

The flip-flops are asynchronously cleared with Low outputs when power is applied.
FPGAs simulate power-on when global set/reset (GSR) is active. GSR (XC4000, Spar-
tans) default to active-High but can be inverted by adding an inverter in front of the
GSR input of the STARTUP symbol.

For information on legal IFDX, IFDX_1, ILDX, and ILDX_1 combinations, refer to the
“ILDX, 4, 8, 16” section.

Figure 6-14 IFDX Implementation Virtex
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Figure 6-15 IFDX8 Implementation XC4000, Spartans, Virtex

C

QD

IFDX

Q0

CE

C

QD

IFDX

Q1

CE

C

QD

IFDX

Q2

CE

C

QD

IFDX

Q3

CE

C

QD

IFDX

Q4

CE

C

QD

IFDX

Q5

CE

C

QD

IFDX

Q6

CE

C

QD

IFDX

Q7

CE

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

D[7:0]

X7635

D0

D1

D2

D3

D4

D5

D6

D7

CE

C

Q[7:0]



Libraries Guide, Release M1.5

6-18 Xilinx Development System

IFDX_1

Input D Flip-Flop with Inverted Clock and Clock Enable

The IFDX_1 D-type flip-flop is contained in an input/output block (IOB). The input
(D) of the flip-flop is connected to an IPAD or an IOPAD. The D input also provides
data input for the flip-flop, which synchronizes data entering the chip. The data on
input D is loaded into the flip-flop during the High-to-Low clock (C) transition and
appears at the output (Q). The clock input can be driven by internal logic or through
another external pin. When the CE pin is Low, the output (Q) does not change.

The flip-flop is asynchronously cleared with Low output, when power is applied.
FPGAs simulate power-on when global set/reset (GSR) is active. GSR (XC4000, Spar-
tans) default to active-High but can be inverted by adding an inverter in front of the
GSR input of the STARTUP symbol.

For information on legal IFDX, IFDX_1, ILDX, and ILDX_1 combinations, refer to the
“ILDX, 4, 8, 16” section.

Figure 6-16 IFDX_1 Implementation XC4000, Spartans

Figure 6-17 IFDX_1 Implementation Virtex
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IFDXI

Input D Flip-Flop with Clock Enable (Asynchronous Preset)

The IFDXI D-type flip-flop is contained in an input/output block (IOB). The input (D)
of the flip-flop is connected to an IPAD or an IOPAD. The D input provides data input
for the flip-flop, which synchronizes data entering the chip. The data on input D is
loaded into the flip-flop during the Low-to-High clock (C) transition and appears at
the output (Q). The clock input can be driven by internal logic or through another
external pin. When the CE pin is Low, the output (Q) does not change.

The flip-flop is asynchronously preset with High output, when power is applied.
FPGAs simulate power-on when global set/reset (GSR) is active. GSR (XC4000, Spar-
tans) default to active-High but can be inverted by adding an inverter in front of the
GSR input of the STARTUP symbol.

For information on legal IFDXI, IFDXI_1, ILDXI, and ILDXI_1 combinations, refer to
the “ILDXI” section.

Figure 6-18 IFDXI Implementation Virtex
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IFDXI_1

Input D Flip-Flop with Inverted Clock and Clock Enable
(Asynchronous Preset)

The IFDXI_1 D-type flip-flop is contained in an input/output block (IOB). The input
(D) of the flip-flop is connected to an IPAD or an IOPAD. The D input provides data
input for the flip-flop, which synchronizes data entering the chip. The data on input D
is loaded into the flip-flop during the High-to-Low clock (C) transition and appears at
the output (Q). The clock input can be driven by internal logic or through another
external pin. When the CE pin is Low, the output (Q) does not change.

The flip-flop is asynchronously preset with High output when power is applied.
FPGAs simulate power-on when global set/reset (GSR) is active. GSR (XC4000, Spar-
tans) default to active-High but can be inverted by adding an inverter in front of the
GSR input of the STARTUP symbol.

For information on legal IFDXI, IFDXI_1, ILDXI, and ILDXI_1 combinations, refer to
the “ILDXI” section.

Figure 6-19 IFDXI_1 Implementation XC4000, Spartans

Figure 6-20 IFDXI_1 Implementation Virtex
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ILD, 4, 8, 16

Transparent Input Data Latches

ILD, ILD4, ILD8, and ILD16 are single or multiple transparent data latches, which can
be used to hold transient data entering a chip. The ILD latch is contained in an input/
output block (IOB), except for XC5200 and XC9000. The latch input (D) is connected to
an IPAD or an IOPAD (without using an IBUF). When the gate input (G) is High, data
on the inputs (D) appears on the outputs (Q). Data on the D inputs during the High-
to-Low G transition is stored in the latch.

The latch is asynchronously cleared with Low output when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000,
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in
front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.

ILDs and IFDs for XC3000

The XC3000 ILD is actually the input flip-flop master latch. If both ILD and IFD
elements are controlled by the same clock signal, the relationship between the trans-
parent sense of the latch and the active edge of the flip-flop is fixed as follows: a trans-
parent High latch (ILD) corresponds to a falling edge-triggered flip-flop (IFD_1), and
a transparent Low latch (ILD_1) corresponds to a rising edge-triggered flip-flop (IFD).
Because the place and route software does not support using both phases of a clock
for IOBs on a single edge of the device, certain combinations of ILD and IFD elements
are not allowed.

Refer to the following figure for legal IFD, IFD_1, ILD, and ILD_1 combinations for
the XC3000.
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Figure 6-21 Legal Combinations of IFD and ILD for a Single Device Edge of an
XC3000 IOB

ILDs and IFDs for XC4000 and Spartans

In XC4000 and Spartans, the ILD is actually the input flip-flop master latch. It is
possible to access two different outputs from the input flip-flop: one that responds to
the level of the clock signal and another that responds to an edge of the clock signal.
When using both outputs from the same input flip-flop, a transparent High latch
(ILD) corresponds to a falling edge-triggered flip-flop (IFD_1). Similarly, a transparent
Low latch (ILD_1) corresponds to a rising edge-triggered flip-flop (IFD).

Refer to the following figure for legal IFD, IFD_1, ILD, and ILD_1 combinations for
the XC4000 and Spartans.

Figure 6-22 Legal Combinations of IFD and ILD for a Single IOB in XC4000 or
Spartans
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Figure 6-23 ILD Implementation XC4000, Spartans

Figure 6-24 ILD Implementation XC5200, Virtex

Figure 6-25 ILD Implementation XC9000
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Figure 6-26 ILD8 Implementation XC3000, XC4000, XC5200, XC9000, Spartans,
Virtex
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ILD_1

Transparent Input Data Latch with Inverted Gate

ILD_1 is a transparent data latch, which can be used to hold transient data entering a
chip. When the gate input (G) is Low, data on the data input (D) appears on the data
output (Q). Data on D during the Low-to-High G transition is stored in the latch.

The latch is asynchronously cleared with Low output when power is applied. FPGAs
simulate power-on when global reset (GR) or global set/reset (GSR) is active. GR for
XC3000 is active-Low. GR for XC5200 and GSR (XC4000, Spartans, Virtex) default to
active-High but can be inverted by adding an inverter in front of the GR/GSR input of
the STARTUP or STARTUP_VIRTEX symbol.

For information on legal IFD, IFD_1, ILD, and ILD_1 combinations, refer to the “ILD,
4, 8, 16” section.

Figure 6-27 ILD_1 Implementation XC3000

Figure 6-28 ILD_1 Implementation XC4000, Spartans

Figure 6-29 ILD_1 Implementation XC5200, Virtex
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ILDI

Transparent Input Data Latch (Asynchronous Preset)

ILDI is a transparent data latch, which can hold transient data entering a chip. When
the gate input (G) is High, data on the input (D) appears on the output (Q). Data on
the D input during the High-to-Low G transition is stored in the latch.

The latch is asynchronously preset, output High, when power is applied. FPGAs
simulate power-on when global set/reset (GSR) is active. GSR (XC4000, Spartans)
default to active-High but can be inverted by adding an inverter in front of the GSR
input of the STARTUP symbol.

ILDIs and IFDIs

The ILDI is actually the input flip-flop master latch. It is possible to access two
different outputs from the input flip-flop: one that responds to the level of the clock
signal and another that responds to an edge of the clock signal. When using both
outputs from the same input flip-flop, a transparent High latch (ILDI) corresponds to
a falling edge-triggered flip-flop (IFDI_1). Similarly, a transparent Low latch (ILDI_1)
corresponds to a rising edge-triggered flip-flop (IFDI).

Refer to the following figure for legal IFDI, IFDI_1, ILDI, and ILDI_1 combinations.

Figure 6-30 Legal Combinations of IFDI and ILDI for a Single IOB in XC4000
and Spartans
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Figure 6-31 ILDI Implementation XC4000, Spartans

Figure 6-32 ILDI Implementation Virtex
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ILDI_1

Transparent Input Data Latch with Inverted Gate (Asynchronous
Preset)

ILDI_1 is a transparent data latch, which can hold transient data entering a chip.
When the gate input (G) is Low, data on the data input (D) appears on the data output
(Q). Data on D during the Low-to-High G transition is stored in the latch.

The latch is asynchronously preset, output High, when power is applied. FPGAs
simulate power-on when global set/reset (GSR) is active. GSR (XC4000, Spartans)
default to active-High but can be inverted by adding an inverter in front of the GSR
input of the STARTUP symbol.

For information on legal IFDI, IFDI_1, ILDI, and ILDI_1 combinations, refer to the
“ILDI” section.

Figure 6-33 ILDI_1 Implementation XC4000, Spartans

Figure 6-34 ILDI_1 Implementation Virtex
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ILDX, 4, 8, 16

Transparent Input Data Latches

ILDX, ILDX4, ILDX8, and ILDX16 are single or multiple transparent data latches,
which can be used to hold transient data entering a chip. The latch input (D) is
connected to an IPAD or an IOPAD (without using an IBUF). When the gate input (G)
is High, data on the inputs (D) appears on the outputs (Q). Data on the D inputs
during the High-to-Low G transition is stored in the latch.

The latch is asynchronously cleared, output Low, when power is applied. FPGAs
simulate power-on when global set/reset (GSR) is active. GSR (XC4000, Spartans)
default to active-High but can be inverted by adding an inverter in front of the GSR
input of the STARTUP symbol.

ILDXs and IFDXs

The ILDX is actually the input flip-flop master latch. Two different outputs can be
accessed from the input flip-flop: one that responds to the level of the clock signal and
another that responds to an edge of the clock signal. When using both outputs from
the same input flip-flop, a transparent High latch (ILDX) corresponds to a falling
edge-triggered flip-flop (IFDX_1). Similarly, a transparent Low latch (ILDX_1) corre-
sponds to a rising edge-triggered flip-flop (IFDX).

Refer to the following figure for legal IFDX, IFDX_1, ILDX, and ILDX_1 combinations.

Figure 6-35 Legal Combinations of IFDX and ILDX for a Single IOB in XC4000
and Spartans
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Figure 6-36 ILDX Implementation XC4000, Spartans

Figure 6-37 ILDX Implementation Virtex
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Figure 6-38 ILDX8 Implementation XC4000, Spartans, Virtex
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ILDX_1

Transparent Input Data Latch with Inverted Gate

ILDX_1 is a transparent data latch, which can be used to hold transient data entering a
chip. When the gate input (G) is Low, data on the data input (D) appears on the data
output (Q). Data on D during the Low-to-High G transition is stored in the latch.

The latch is asynchronously cleared with Low output, when power is applied. FPGAs
simulate power-on when global set/reset (GSR) is active. GSR (XC4000, Spartans)
default to active-High but can be inverted by adding an inverter in front of the GSR
input of the STARTUP symbol.

For information on legal IFDX, IFDX_1, ILDX, and ILDX_1 combinations, refer to the
“ILDX, 4, 8, 16” section.

Figure 6-39 ILDX_1 Implementation Virtex
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ILDXI

Transparent Input Data Latch (Asynchronous Preset)

ILDXI is a transparent data latch, which can hold transient data entering a chip. When
the gate input (G) is High, data on the input (D) appears on the output (Q). Data on
the D input during the High-to-Low G transition is stored in the latch.

The latch is asynchronously preset, output High, when power is applied. FPGAs
simulate power-on when global set/reset (GSR) is active. GSR (XC4000, Spartans)
default to active-High but can be inverted by adding an inverter in front of the GSR
input of the STARTUP symbol.

ILDXIs and IFDXIs

The ILDXI is actually the input flip-flop master latch. Two different outputs can be
accessed from the input flip-flop: one that responds to the level of the clock signal and
another that responds to an edge of the clock signal. When using both outputs from
the same input flip-flop, a transparent High latch (ILDXI) corresponds to a falling
edge-triggered flip-flop (IFDXI_1). Similarly, a transparent Low latch (ILDXI_1) corre-
sponds to a rising edge-triggered flip-flop (IFDXI). Refer to the following figure for
legal IFDXI, IFDXI_1, ILDXI, and ILDXI_1 combinations.

Figure 6-40 Legal Combinations of IFDXI and ILDXI for a Single IOB
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Figure 6-41 ILDXI Implementation XC4000, Spartans

Figure 6-42 ILDXI Implementation Virtex
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ILDXI_1

Transparent Input Data Latch with Inverted Gate (Asynchronous
Preset)

ILDXI_1 is a transparent data latch, which can hold transient data entering a chip.
When the gate input (G) is Low, data on the data input (D) appears on the data output
(Q). Data on D during the Low-to-High G transition is stored in the latch.

The latch is asynchronously preset, output High, when power is applied. FPGAs
simulate power-on when global set/reset (GSR) is active. GSR (XC4000, Spartans)
default to active-High but can be inverted by adding an inverter in front of the GSR
input of the STARTUP symbol.

For information on legal IFDXI, IFDXI_1, ILDXI, and ILDXI_1 combinations, refer to
the “ILDXI” section.

Figure 6-43 ILDXI_1 Implementation Virtex
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ILFFX

Fast Capture Input Latch

ILFFX, an optional latch that drives the input flip-flop, allows the very fast capture of
input data. Located on the input side of an IOB, the latch is latched by the output
clock — the clock used for the output flip-flop — rather than the input clock. Thus,
two different clocks can be used to clock the two input storage elements. The
following figure shows an example IOB block diagram of the XC4000X IOB. After the
data is captured, it is then synchronized to the internal clock (C) by the IOB flip-flop.

Figure 6-44 Block Diagram of XC4000X IOB

The latch input (D) is connected to an IPAD or an IOPAD (without using an IBUF).
When the gate input (GF) is Low, the data at the input (D) appears at INODE and is
stored during the Low-to-High GF transition. The captured INODE data appears at
output (Q) during a Low-to-High clock (C) transition.

The fast latch is asynchronously cleared when power is applied. FPGAs simulate
power-on when global set/reset (GSR) is active. GSR (XC4000X, SpartanXL) default to
active-High but can be inverted by adding an inverter in front of the GSR input of the
STARTUP symbol.
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Inputs Outputs
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ILFFXI

Fast Capture Input Latch (Asynchronous Preset)

ILFFXI, an optional latch that drives the input flip-flop, allows the very fast capture of
input data. Located on the input side of an IOB, the latch is latched by the output
clock — the clock used for the output flip-flop — rather than the input clock. Thus,
two different clocks can be used to clock the two input storage elements. See the
“Block Diagram of XC4000X IOB” figure in the ILFFX section. After the data is
captured, it is then synchronized to the internal clock by the IOB flip-flop.

The latch input (D) is connected to an IPAD or an IOPAD (without using an IBUF).
When the gate input (GF) is Low, the data at the input (D) appears at INODE and is
stored during the Low-to-High GF transition. The captured INODE data appears at
output (Q) during a Low-to-High clock (C) transition.

This component is identical to ILFFX except that on active GSR it is preset instead of
cleared. The latch is asynchronously preset, output High, when power is applied.
FPGAs simulate power-on when global set/reset (GSR) is active. GSR (XC4000X,
SpartanXL) default to active-High but can be inverted by adding an inverter in front
of the GSR input of the STARTUP symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A Primitive N/A N/A N/A Primitive N/A
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ILFLX

Fast Capture Transparent Input Latch

ILFLX, an optional latch that drives the input latch, allows the very fast capture of
input data. Located on the input side of an IOB, the latch is latched by the output
clock — the clock used for the output flip-flop — rather than the input clock. Thus,
two different clocks can be used to clock the two input storage elements. See the
“Block Diagram of XC4000X IOB” figure in the ILFFX section. After the data is
captured, it is then synchronized to the internal clock by the IOB latch.

The latch input (D) is connected to an IPAD or an IOPAD (without using an IBUF).
When the gate input (GF) is Low, the data at the input (D) appears at INODE and is
stored during the Low-to-High GF transition. The captured INODE data appears at
output (Q) when gate (G) is high.

Figure 6-45 ILFLX Implementation XC4000X, SpartanXL
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ILFLX_1

Fast Capture Input Latch with Inverted Gate

ILFLX_1, an optional latch that drives the input latch, allows the very fast capture of
input data. Located on the input side of an IOB, the latch is latched by the output
clock — the clock used for the output flip-flop — rather than the input clock. Thus,
two different clocks can be used to clock the two input storage elements. See the
“Block Diagram of XC4000X IOB” figure in the ILFFX section. After the data is
captured, it is then synchronized to the internal clock by the IOB latch.

The latch input (D) is connected to an IPAD or an IOPAD (without using an IBUF).
When the gate input (GF) is Low, the data at the input (D) appears at INODE and is
stored during the Low-to-High GF transition. The captured INODE data appears on
the output (Q) when the gate (G) is Low.

The fast latch is asynchronously cleared when power is applied. FPGAs simulate
power-on when global set/reset (GSR) is active. GSR (XC4000X, SpartanXL) default to
active-High but can be inverted by adding an inverter in front of the GSR input of the
STARTUP symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex
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ILFLXI_1

Fast Capture Input Latch with Inverted Gate (Asynchronous
Preset)

ILFLXI_1, an optional latch that drives the input latch, allows the very fast capture of
input data. Located on the input side of an IOB, the latch is latched by the output
clock — the clock used for the output flip-flop — rather than the input clock. Thus,
two different clocks can be used to clock the two input storage elements. See the
“Block Diagram of XC4000X IOB” figure in the ILFFX section. After the data is
captured, it is then synchronized to the internal clock by the IOB latch.

The latch input (D) is connected to an IPAD or an IOPAD (without using an IBUF).
When the gate input (GF) is Low, the data at the input (D) appears at INODE and is
stored during the Low-to-High GF transition. The captured INODE data appears on
the output (Q) when the gate (G) is Low.

The fast latch is asynchronously preset when power is applied. FPGAs simulate
power-on when global set/reset (GSR) is active. GSR (XC4000X, SpartanXL) default to
active-High but can be inverted by adding an inverter in front of the GSR input of the
STARTUP symbol.
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INV, 4, 8, 16

Single and Multiple Inverters

INV, INV4, INV8, and INV16 are single and multiple inverters that identify signal
inversions in a schematic.

Figure 6-46 INV8 Implementation XC3000, XC4000, XC5200, XC9000, Spartans,
Virtex
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IOB

IOB Configuration Symbol

The IOB symbol is used to manually specify an IOB configuration. Use it in place of,
not in conjunction with, other I/O primitives. The configuration of the IOB is speci-
fied using the BASE and CONFIG commands. Enter these commands on the sche-
matic; the translator puts them into the CFG records in the LCA Xilinx netlist file. It is
not necessary for the translator program to parse the commands specifying the IOB
configuration. The mapping program from the LCA Xilinx netlist to the FPGA design
checks these commands for errors.

Refer to the appropriate CAE tool interface user guide for more information on speci-
fying the IOB configuration commands in a schematic.

The XC3000 blank IOB primitive symbol and its corresponding configured IOB primi-
tive and circuit are shown in the “XC3000 IOB Primitive Example and Equivalent
Circuit” figure.

The configuration commands must be consistent with the connections to the pins on
the symbol. For example, if the configuration commands specify the IOB as a 3-state
buffer, the T and O pins must be connected to signals.

You can specify the location of the IOB on the device. When specifying the LOC
attribute, a valid IOB location name must be used. Refer to the  “LOC” section of the
“Attributes, Constraints, and Carry Logic” chapter for more information on the LOC
attribute.

Figure 6-47 XC3000 IOB Primitive Example and Equivalent Circuit
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IOBUF_selectIO

Bi-Directional Buffer with Selectable I/0 Interface

IOBUF and its variants (listed below) are bi-directional buffers whose I/O interface
corresponds to a specific I/O standard.The name extensions (LVCMOS2, PCI33_3,
PCI33_5, etc.) specify the standard. The S, F, and 2, 4, 6, 8, 12, 16, 24 extensions specify
the slew rate (SLOW or FAST) and the drive power (2, 4, 6, 8, 12, 16, 24 mA) for the
LVTTL standard variants. For example, IOBUF_F_2 is a bi-directional buffer that uses
the LVTTL I/O-signaling standard with a FAST slew and 2mA of drive power.

IOBUF (LVTTL) has selectable drive and slew rates using the DRIVE and FAST or
SLOW constraints. The defaults are DRIVE=12 mA and SLOW slew.

IOBUFs are composites of IBUF and OBUFT elements. The O output is X (unknown)
when IO (input/output) is Z. IOBUFs can be implemented as interconnections of their
component elements.

The hardware implementation of the I/O standards requires that you follow a set of
usage rules for the SelectI/O buffer components. Refer to the “SelectI/O Usage
Rules” section under the IBUF_selectIO section for information on using these compo-
nents.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive

Component I/O Standard VCCO VREF

IOBUF LVTTL 3.3 N/A

IOBUF_S_2 LVTTL 3.3 N/A

IOBUF_S_4 LVTTL 3.3 N/A

IOBUF_S_6 LVTTL 3.3 N/A

IOBUF_S_8 LVTTL 3.3 N/A

IOBUF_S_12 LVTTL 3.3 N/A

IOBUF_S_16 LVTTL 3.3 N/A

IOBUF_S_24 LVTTL 3.3 N/A

IOBUF_F_2 LVTTL 3.3 N/A

IOBUF_F_4 LVTTL 3.3 N/A

IOBUF_F_6 LVTTL 3.3 N/A

IOBUF_F_8 LVTTL 3.3 N/A

IOBUF_F_12 LVTTL 3.3 N/A

IOBUF_F_16 LVTTL 3.3 N/A

IOBUF_F_24 LVTTL 3.3 N/A

IOBUF_LVCMOS2 LVCMOS2 2.5 N/A

IOBUF_PCI33_3 PCI33_3 3.3 N/A

IOBUF_PCI33_5 PCI33_5 3.3 N/A

T

I IO

O

X8406
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IOBUF_PCI66_3 PCI66_3 3.3 N/A

IOBUF_GTL GTL N/A 0.80

IOBUF_GTLP GTL+ N/A 1.00

IOBUF_HSTL_I HSTL_I 1.5 0.75

IOBUF_HSTL_III HSTL_III 1.5 0.90

IOBUF_HSTL_IV HSTL_IV 1.5 0.75

IOBUF_SSTL2_I SSTL2_I 2.5 1.10

IOBUF_SSTL2_II SSTL2_II 2.5 1.10

IOBUF_SSTL3_I SSTL3_I 3.3 0.90

IOBUF_SSTL3_II SSTL3_II 3.3 1.50

IOBUF_CTT CTT 3.3 1.50

IOBUF_AGP AGP 3.3 1.32

Component I/O Standard VCCO VREF
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IOPAD, 4, 8, 16

Single- and Multiple-Input/Output Pads

IOPAD, IOPAD4, IOPAD8, and IOPAD16 are single and multiple input/output pads.
The IOPAD is a connection point from a device pin, used as a bidirectional signal, to a
PLD device. The IOPAD is connected internally to an input/output block (IOB),
which is configured by the software as a bidirectional block. Bidirectional blocks can
consist of any combinations of a 3-state output buffer (such as OBUFT or OFDE) and
any available input buffer (such as IBUF or IFD). Refer to the appropriate CAE tool
interface user guide for details on assigning pin location and identification.

Note: The LOC attribute cannot be used on IOPAD multiples.

Figure 6-48 IOPAD8 Implementation XC3000, XC4000, XC5200, XC9000,
Spartans, Virtex
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IPAD, 4, 8, 16

Single- and Multiple-Input Pads

IPAD, IPAD4, IPAD8, and IPAD16 are single and multiple input pads. The IPAD is a
connection point from a device pin used for an input signal to the PLD device. It is
connected internally to an input/output block (IOB), which is configured by the soft-
ware as an IBUF, IFD, or ILD. Refer to the appropriate CAE tool interface user guide
for details on assigning pin location and identification.

Note: The LOC attribute cannot be used on IPAD multiples.

Figure 6-49 IPAD8 Implementation XC3000, XC4000, XC5200, XC9000,
Spartans, Virtex
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KEEPER

KEEPER Symbol

KEEPER is a weak keeper element used to retain the value of the net connected to its
bidirectional O pin. For example, if a logic 1 is being driven onto the net, KEEPER
drives a weak/resistive 1 onto the net. If the net driver is then tri-stated, KEEPER
continues to drive a week/resistive 1 onto the net.

For additional information on using a KEEPER element with SelectI/O components,
refer to the “SelectI/O Usage Rules” in the "IBUF_selectIO" section.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive

O
X8718
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Chapter 7

Design Elements (LD to NOR16)

This chapter describes design elements included in the Unified Libraries. The
elements are organized in alphanumeric order with all numeric suffixes in ascending
order.

Information on the specific architectures supported by each of the following libraries
is contained under the Applicable Architectures section of the Unified Libraries
Chapter.

• XC3000 Library

• XC4000E Library

• XC4000X Library

• XC5200 Library

• XC9000 Library

• Spartan Library

• SpartanXL Library

• Virtex Library

Note: Wherever XC4000 is mentioned, the information applies to all architectures
supported by the XC4000E and XC4000X libraries.

Note: Wherever Spartans or Spartan series is mentioned, the information applies to all
architectures supported by the Spartan and SpartanXL libraries.

Schematics are included for each library if the implementation differs. Design
elements with bused or multiple I/O pins (2-, 4-, 8-, 16-bit versions) typically include
just one schematic — generally the 8-bit version. When only one schematic is
included, implementation of the smaller and larger elements differs only in the
number of sections. In cases where an 8-bit version is very large, an appropriate
smaller element serves as the schematic example.
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LD

Transparent Data Latch

LD is a transparent data latch. The data output (Q) of the latch reflects the data (D)
input while the gate enable (G) input is High. The data on the D input during the
High-to-Low gate transition is stored in the latch. The data on the Q output remains
unchanged as long as G remains Low.

The latch is asynchronously cleared, output Low, when power is applied. For CPLDs,
the power-on condition can be simulated by applying a High-level pulse on the PRLD
global net. FPGAs simulate power-on when global reset (GR) or global set/reset
(GSR) is active. GR (XC5200) and GSR (XC4000X, SpartanXL, Virtex) default to active-
High but can be inverted by adding an inverter in front of the GR/GSR input of the
STARTUP or STARTUP_VIRTEX symbol.

Refer to the “LD4, 8, 16” section for information on multiple transparent data latches
for the XC4000X, XC9000, and SpartanXL.

Figure 7-1 LD Implementation XC4000X, SpartanXL
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Figure 7-2 LD Implementation XC5200

Figure 7-3 LD Implementation XC9000
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LD_1

Transparent Data Latch with Inverted Gate

LD_1 is a transparent data latch with an inverted gate. The data output (Q) of the
latch reflects the data (D) input while the gate enable (G) input is Low. The data on the
D input during the Low-to-High gate transition is stored in the latch. The data on the
Q output remains unchanged as long as G remains High.

The latch is asynchronously cleared with Low output when power is applied. FPGAs
simulate power-on when global reset (GR) or global set/reset (GSR) is active. GR
(XC5200) and GSR (XC4000X, SpartanXL, Virtex) default to active-High but can be
inverted by adding an inverter in front of the GR/GSR input of the STARTUP or
STARTUP_VIRTEX symbol.

Figure 7-4 LD_1 Implementation XC4000X, SpartanXL

Figure 7-5 LD_1 Implementation XC5200
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LD4, 8, 16

Multiple Transparent Data Latches

LD4, LD8, and LD16 have, respectively, 4, 8, and 16 transparent data latches with a
common gate enable (G). The data output (Q) of the latch reflects the data (D) input
while the gate enable (G) input is High. The data on the D input during the High-to-
Low gate transition is stored in the latch. The data on the Q output remains
unchanged as long as G remains Low.

The latch is asynchronously cleared, output Low, when power is applied. For CPLDs,
the power-on condition can be simulated by applying a High-level pulse on the PRLD
global net. FPGAs simulate power-on when global set/reset (GSR) is active. GSR
(XC4000X, SpartanXL, Virtex) default to active-High but can be inverted by adding an
inverter in front of the GSR input of the STARTUP or the STARTUP_VIRTEX symbol.

Refer to the “LD” section for information on single transparent data latches.

Element XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex
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Figure 7-6 LD8 Implementation XC4000X, XC9000, SpartanXL, Virtex
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LDC

Transparent Data Latch with Asynchronous Clear

LDC is a transparent data latch with asynchronous clear. When the asynchronous
clear input (CLR) is High, it overrides the other inputs and resets the data (Q) output
Low. Q reflects the data (D) input while the gate enable (G) input is High and CLR is
Low. The data on the D input during the High-to-Low gate transition is stored in the
latch. The data on the Q output remains unchanged as long as G remains low.

The latch is asynchronously cleared with Low output when power is applied. FPGAs
simulate power-on when global reset (GR) or global set/reset (GSR) is active. GR
(XC5200) and GSR (XC4000X, SpartanXL, Virtex) default to active-High but can be
inverted by adding an inverter in front of the GR/GSR input of the STARTUP or the
STARTUP_VIRTEX symbol.

Figure 7-7 LDC Implementation XC4000X, SpartanXL

Figure 7-8 LDC Implementation XC5200
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LDC_1

Transparent Data Latch with Asynchronous Clear and Inverted
Gate

LDC_1 is a transparent data latch with asynchronous clear and inverted gate. When
the asynchronous clear input (CLR) is High, it overrides the other inputs (D and G)
and resets the data (Q) output Low. Q reflects the data (D) input while the gate enable
(G) input and CLR are Low. The data on the D input during the Low-to-High gate
transition is stored in the latch. The data on the Q output remains unchanged as long
as G remains High.

The latch is asynchronously cleared with Low output when power is applied. FPGAs
simulate power-on when global reset (GR) or global set/reset (GSR) is active. GR
(XC5200) and GSR (XC4000X, SpartanXL, Virtex) default to active-High but can be
inverted by adding an inverter in front of the GR/GSR input of the STARTUP or the
STARTUP_VIRTEX symbol.

Figure 7-9 LDC_1 Implementation XC4000X, SpartanXL

Figure 7-10 LDC_1 Implementation XC5200
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LDCE

Transparent Data Latch with Asynchronous Clear and Gate Enable

LDCE is a transparent data latch with asynchronous clear and gate enable. When the
asynchronous clear input (CLR) is High, it overrides the other inputs and resets the
data (Q) output Low. Q reflects the data (D) input while the gate (G) input and gate
enable (GE) are High and CLR is Low. If GE is Low, data on D cannot be latched. The
data on the D input during the High-to-Low gate transition is stored in the latch. The
data on the Q output remains unchanged as long as G or GE remains low.

The latch is asynchronously cleared with Low output when power is applied. FPGAs
simulate power-on when global reset (GR) or global set/reset (GSR) is active. GR
(XC5200) and GSR (XC4000X, SpartanXL, Virtex) default to active-High but can be
inverted by adding an inverter in front of the GR/GSR input of the STARTUP or the
STARTUP_VIRTEX symbol.

Figure 7-11 LDCE Implementation XC4000X, SpartanXL

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex
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LDCE_1

Transparent Data Latch with Asynchronous Clear, Gate Enable,
and Inverted Gate

LDCE_1 is a transparent data latch with asynchronous clear, gate enable, and inverted
gate. When the asynchronous clear input (CLR) is High, it overrides the other inputs
and resets the data (Q) output Low. Q reflects the data (D) input while the gate (G)
input and CLR are Low and gate enable (GE) is High. If GE is Low, the data on D
cannot be latched. The data on the D input during the Low-to-High gate transition is
stored in the latch. The data on the Q output remains unchanged as long as G remains
High or GE remains Low.

The latch is asynchronously cleared with Low output when power is applied. FPGAs
simulate power-on when global reset (GR) or global set/reset (GSR) is active. GR
(XC5200) and GSR (XC4000X, SpartanXL, Virtex) default to active-High but can be
inverted by adding an inverter in front of the GR/GSR input of the STARTUP or the
STARTUP_VIRTEX symbol.

Figure 7-12 LDCE_1 Implementation XC5200
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LD4CE, LD8CE, LD16CE

Transparent Data Latches with Asynchronous Clear and Gate
Enable

LD4CE, LD8CE, and LD16CE have, respectively, 4, 8, and 16 transparent data latches
with asynchronous clear and gate enable. When the asynchronous clear input (CLR) is
High, it overrides the other inputs and resets the data (Q) outputs Low. Q reflects the
data (D) inputs while the gate (G) input is High, gate enable (GE) is High, and CLR is
Low. If GE for is Low, data on D cannot be latched. The data on the D input during the
High-to-Low gate transition is stored in the latch. The data on the Q output remains
unchanged as long as GE remains Low.

The latch is asynchronously cleared with Low output when power is applied. FPGAs
simulate power-on when global reset (GR) or global set/reset (GSR) is active. GR
(XC5200) and GSR (XC4000X, SpartanXL, Virtex) default to active-High but can be
inverted by adding an inverter in front of the GR/GSR input of the STARTUP or the
STARTUP_VIRTEX symbol.

Element XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

LD4CE,
LD8CE,
LD16CE

N/A N/A Macro Macro N/A N/A Macro Macro

Inputs Outputs

CLR GE G Dn Qn

1 X X X 0

0 0 X X No Chg

0 1 1 1 1

0 1 1 0 0

0 1 0 X No Chg

0 1 ↓ Dn dn
Dn = referenced input, for example, D0, D1, D2
Qn = referenced output, for example, Q0, Q1, Q2
dn = referenced input state, one setup time prior to High-to-Low gate transition
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Figure 7-13 LD4CE Implementation XC4000X, XC5200, SpartanXL, Virtex

Figure 7-14 LD8CE Implementation XC4000X, XC5200, SpartanXL, Virtex
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LDCP

Transparent Data Latch with Asynchronous Clear and Preset

LDCP is a transparent data latch with data (D), asynchronous clear (CLR) and preset
(PRE) inputs. When CLR is High, it overrides the other inputs and resets the data (Q)
output Low. When PRE is High and CLR is low, it presets the data (Q) output High. Q
reflects the data (D) input while the gate (G) input is High and CLR and PRE are Low.
The data on the D input during the High-to-Low gate transition is stored in the latch.
The data on the Q output remains unchanged as long as G remains Low.

The latch is asynchronously cleared, output Low, when power is applied. Virtex simu-
lates power-on when global set/reset (GSR) is active. GSR defaults to active-High but
can be inverted by adding an inverter in front of the GSR input of the
STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive

Inputs Outputs

CLR PRE G D Q

1 X X X 0

0 1 X X 1

0 0 1 1 1

0 0 1 0 0

0 0 0 X No Chg

0 0 ↓ D d
d = state of input one setup time prior to High-to-Low gate transition

Q

G

LDCP

PRE

CLR

X8369

D
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LDCP_1

Transparent Data Latch with Asynchronous Clear and Preset and
Inverted Gate

LDCP_1 is a transparent data latch with data (D), asynchronous clear (CLR) and
preset (PRE) inputs. When CLR is High, it overrides the other inputs and resets the
data (Q) output Low. When PRE is High and CLR is low, it presets the data (Q) output
High. Q reflects the data (D) input while gate (G) input, CLR, and PRE are Low. The
data on the D input during the Low-to-High gate transition is stored in the latch. The
data on the Q output remains unchanged as long as G remains High.

The latch is asynchronously cleared, output Low, when power is applied. Virtex simu-
lates power-on when global set/reset (GSR) is active. GSR defaults to active-High but
can be inverted by adding an inverter in front of the GSR input of the
STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive

Inputs Outputs

CLR PRE G D Q

1 X X X 0

0 1 X X 1

0 0 0 1 1

0 0 0 0 0

0 0 1 X No Chg

0 0 ↑ D d
d = state of input one setup time prior to Low-to-High gate transition
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LDCPE

Transparent Data Latch with Asynchronous Clear and Preset and
Gate Enable

LDCPE is a transparent data latch with data (D), asynchronous clear (CLR), asynchro-
nous preset (PRE), and gate enable (GE). When CLR is High, it overrides the other
inputs and resets the data (Q) output Low. When PRE is High and CLR is low, it
presets the data (Q) output High. Q reflects the data (D) input while the gate (G) input
and gate enable (GE) are High and CLR and PRE are Low. The data on the D input
during the High-to-Low gate transition is stored in the latch. The data on the Q output
remains unchanged as long as G or GE remain Low.

The latch is asynchronously cleared, output Low, when power is applied. Virtex simu-
lates power-on when global set/reset (GSR) is active. GSR defaults to active-High but
can be inverted by adding an inverter in front of the GSR input of the
STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive

Inputs Outputs

CLR PRE GE G D Q

1 X X X X 0

0 1 X X X 1

0 0 0 X X No Chg

0 0 1 1 0 0

0 0 1 1 1 1

0 0 1 0 X No Chg

0 0 1 ↓ D d
d = state of input one setup time prior to High-to-Low gate transition
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LDCPE_1

Transparent Data Latch with Asynchronous Clear and Preset, Gate
Enable, and Inverted Gate

LDCPE_1 is a transparent data latch with data (D), asynchronous clear (CLR), asyn-
chronous preset (PRE), and gate enable (GE). When CLR is High, it overrides the
other inputs and resets the data (Q) output Low. When PRE is High and CLR is low, it
presets the data (Q) output High. Q reflects the data (D) input while gate enable (GE)
is High and gate (G), CLR, and PRE are Low. The data on the D input during the Low-
to-High gate transition is stored in the latch. The data on the Q output remains
unchanged as long as G is High or GE is Low.

The latch is asynchronously cleared, output Low, when power is applied. Virtex simu-
lates power-on when global set/reset (GSR) is active. GSR defaults to active-High but
can be inverted by adding an inverter in front of the GSR input of the
STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive

Inputs Outputs

CLR PRE GE G D Q

1 X X X X 0

0 1 X X X 1

0 0 0 X X No Chg

0 0 1 0 0 0

0 0 1 0 1 1

0 0 1 1 X No Chg

0 0 1 ↑ D d
d = state of input one setup time prior to Low-to-High gate transition
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LDE

Transparent Data Latch with Gate Enable

LDE is a transparent data latch with data (D) and gate enable (GE) inputs. Output Q
reflects the data (D) while the gate (G) input and gate enable (GE) are High. The data
on the D input during the High-to-Low gate transition is stored in the latch. The data
on the Q output remains unchanged as long as G or GE remain Low.

The latch is asynchronously cleared, output Low, when power is applied. Virtex simu-
lates power-on when global set/reset (GSR) is active. GSR defaults to active-High but
can be inverted by adding an inverter in front of the GSR input of the
STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive

Inputs Outputs

GE G D Q

0 X X No Chg

1 1 0 0

1 1 1 1

1 0 X No Chg

1 ↓ D d
d = state of input one setup time prior to High-to-Low gate transition
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G
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LDE_1

Transparent Data Latch with Gate Enable and Inverted Gate

LDE_1 is a transparent data latch with data (D) and gate enable (GE) inputs. Output Q
reflects the data (D) while the gate (G) input is Low and gate enable (GE) is High. The
data on the D input during the Low-to-High gate transition is stored in the latch. The
data on the Q output remains unchanged as long as G is High or GE is Low.

The latch is asynchronously cleared, output Low, when power is applied. Virtex simu-
lates power-on when global set/reset (GSR) is active. GSR defaults to active-High but
can be inverted by adding an inverter in front of the GSR input of the
STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive

Inputs Outputs

GE G D Q

0 X X No Chg

1 0 0 0

1 0 1 1

1 1 X No Chg

1 ↑ D d
d = state of input one setup time prior to Low-to-High gate transition
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LDP

Transparent Data Latch with Asynchronous Preset

LDP is a transparent data latch with asynchronous preset (PRE). When the PRE input
is High, it overrides the other inputs and resets the data (Q) output High. Q reflects
the data (D) input while gate (G) input is High and PRE is Low. The data on the D
input during the High-to-Low gate transition is stored in the latch. The data on the Q
output remains unchanged as long as G remains Low.

The latch is asynchronously preset, output High, when power is applied. Virtex simu-
lates power-on when global set/reset (GSR) is active. GSR defaults to active-High but
can be inverted by adding an inverter in front of the GSR input of the
STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive

Inputs Outputs

PRE G D Q

1 X X 1

0 1 0 0

0 1 1 1

0 0 X No Chg

0 ↓ D d
d = state of input one setup time prior to High-to-Low gate transition

Q

G

LDP

PRE

X8375

D
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LDP_1

Transparent Data Latch with Asynchronous Preset and Inverted
Gate

LDP_1 is a transparent data latch with asynchronous preset (PRE). When the PRE
input is High, it overrides the other inputs and resets the data (Q) output High. Q
reflects the data (D) input while gate (G) input and PRE are Low. The data on the D
input during the Low-to-High gate transition is stored in the latch. The data on the Q
output remains unchanged as long as G remains High.

The latch is asynchronously preset, output High, when power is applied. Virtex simu-
lates power-on when global set/reset (GSR) is active. GSR defaults to active-High but
can be inverted by adding an inverter in front of the GSR input of the
STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive

Inputs Outputs

PRE G D Q

1 X X 1

0 0 0 0

0 0 1 1

0 1 X No Chg

0 ↑ D d
d = state of input one setup time prior to Low-to-High gate transition

Q

G

LDP_1

PRE

X8376
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LDPE

Transparent Data Latch with Asynchronous Preset and Gate
Enable

LDPE is a transparent data latch with asynchronous preset and gate enable. When the
asynchronous preset (PRE) is High, it overrides the other input and presets the data
(Q) output High. Q reflects the data (D) input while the gate (G) input and gate enable
(GE) are High. If GE is low, data on D cannot be latched. The data on the D input
during the High-to-Low gate transition is stored in the latch. The data on the Q output
remains unchanged as long as G or GE remains Low.

The latch is asynchronously preset, output High, when power is applied. FPGAs
simulate power-on when global set/reset (GSR) is active. GSR (XC4000X, SpartanXL,
Virtex) default to active-High but can be inverted by adding an inverter in front of the
GR/GSR input of the STARTUP or the STARTUP_VIRTEX symbol.

Figure 7-15 LDPE Implementation XC4000X, SpartanXL

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A Macro N/A N/A N/A Macro Primitive
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1 X X X 1

0 0 X X No Chg
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0 1 ↓ D d
d = state of input one setup time prior to High-to-Low gate transition
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LDPE_1

Transparent Data Latch with Asynchronous Preset, Gate Enable,
and Inverted Gate

LDPE_1 is a transparent data latch with asynchronous preset, gate enable, and
inverted gated. When the asynchronous preset (PRE) is High, it overrides the other
input and presets the data (Q) output High. Q reflects the data (D) input while the
gate (G) input is low and gate enable (GE) is High.

If GE is low, data on D cannot be latched. The data on the D input during the Low-to-
High gate transition is stored in the latch. The data on the Q output remains
unchanged as long as G remains High or GE remains Low.

The latch is asynchronously preset, output High, when power is applied. FPGAs
simulate power-on when global set/reset (GSR) is active. GSR (XC4000X, SpartanXL,
Virtex) default to active-High but can be inverted by adding an inverter in front of the
GR/GSR input of the STARTUP or the STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A Primitive N/A N/A N/A Primitive Primitive

Inputs Outputs

PRE GE G D Q

1 X X X 1

0 0 X X No Chg

0 1 0 0 0

0 1 0 1 1

0 1 1 X No Chg

0 1 ↑ D d
d = state of input one setup time prior to Low-to-High gate transition
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LUT1, 2, 3, 4

1-, 2-, 3-, 4-Bit Look-Up-Table with General Output

LUT1, LUT2, LUT3, and LUT4 are, respectively, 1-, 2-, 3-, and 4-bit look-up-tables
(LUTs) with general output (O).

A mandatory INIT attribute, with an appropriate number of hexadecimal digits for
the number of inputs, must be attached to the LUT to specify its function.

LUT1 provides a look-up-table version of a buffer or inverter.

LUTs are the basic Virtex building blocks. Two LUTs are available in each CLB slice;
four LUTs are available in each CLB. The variants, “LUT1_D, LUT2_D, LUT3_D,
LUT4_D” and “LUT1_L, LUT2_L, LUT3_L, LUT4_L”, provide additional types of
outputs that can be used by different timing models for more accurate pre-layout
timing estimation.

LUT3 Function Table

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive

Inputs Outputs

I2 I1 I0 O

0 0 0 INIT[0]

0 0 1 INIT[1]

0 1 0 INIT[2]

0 1 1 INIT[3]

1 0 0 INIT[4]

1 0 1 INIT[5]

1 1 0 INIT[6]

1 1 1 INIT[7]
INIT = binary equivalent of the hexadecimal number assigned to the INIT attribute

O

IO

LUT1

X8358

LUT2

X8379

I0

O

I1

LUT3

X8382

I0 O

I2

I1

LUT4

X8385

I0

I3

I1
O

I2



Libraries Guide, Release M1.5

7-24 Xilinx Development System

LUT1_D, LUT2_D, LUT3_D, LUT4_D

1-, 2-, 3-, 4-Bit Look-Up-Table with Dual Output

LUT1_D, LUT2_D, LUT3_D, and LUT4_D are, respectively, 1-, 2-, 3-, and 4-bit look-
up-tables (LUTs) with two functionally identical outputs, O and LO. The O output is a
general interconnect. The LO output is used to connect to another output within the
same CLB slice and to the fast connect buffer.

A mandatory INIT attribute, with an appropriate number of hexadecimal digits for
the number of inputs, must be attached to the LUT to specify its function.

LUT1_D provides a look-up-table version of a buffer or inverter.

See also “LUT1, 2, 3, 4” and “LUT1_L, LUT2_L, LUT3_L, LUT4_L”.

LUT3_D Function Table

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive

Inputs Outputs

I2 I1 I0 O LO

0 0 0 INIT[0] INIT[0]

0 0 1 INIT[1] INIT[1]

0 1 0 INIT[2] INIT[2]

0 1 1 INIT[3] INIT[3]

1 0 0 INIT[4] INIT[4]

1 0 1 INIT[5] INIT[5]

1 1 0 INIT[6] INIT[6]

1 1 1 INIT[7] INIT[7]
INIT = binary equivalent of the hexadecimal number assigned to the INIT attribute
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LUT1_L, LUT2_L, LUT3_L, LUT4_L

1-, 2-, 3-, 4-Bit Look-Up-Table with Local Output

LUT1_L, LUT2_L, LUT3_L, and LUT4_L are, respectively, 1-, 2-, 3-, and 4- bit look-up-
tables (LUTs) with a local output (LO) that is used to connect to another output within
the same CLB slice and to the fast connect buffer.

A mandatory INIT attribute, with an appropriate number of hexadecimal digits for
the number of inputs, must be attached to the LUT to specify its function.

LUT1_L provides a look-up-table version of a buffer or inverter.

See also “LUT1, 2, 3, 4” and “LUT1_D, LUT2_D, LUT3_D, LUT4_D”.

LUT3_L Function Table

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive

Inputs Outputs

I2 I1 I0 LO

0 0 0 INIT[0]

0 0 1 INIT[1]

0 1 0 INIT[2]

0 1 1 INIT[3]

1 0 0 INIT[4]

1 0 1 INIT[5]

1 1 0 INIT[6]

1 1 1 INIT[7]
INIT = binary equivalent of the hexadecimal number assigned to the INIT attribute
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MD0

Mode 0, Input Pad Used for Readback Trigger Input

The MD0 input pad is connected to the Mode 0 (M0) input pin, which is used to deter-
mine the configuration mode on XC4000 and XC5200 devices. Following configura-
tion, MD0 can be used as an input pad, but it must be connected through an IBUF to
the user circuit. However, the user input signal must not interfere with the device
configuration. XC5200 devices allow an MD0 pad to be used as an output pad;
XC4000 devices do not. The IOB associated with the MD0 pad has no flip-flop or latch.
This pad is usually connected (automatically) to the RTRIG input of the READBACK
function.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A Primitive Primitive Primitive N/A N/A N/A N/A

X3896

MD0
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MD1

Mode 1, Output Pad Used for Readback Data Output

The MD1 output pad is connected to the Mode 1 (M1) output pin, which is used to
determine the configuration mode on XC4000 and XC5200 devices. Following config-
uration, MD1 can be used as a 3-state or simple output pad, but it must be connected
through an OBUF or an OBUFT to the user circuit. However, the user output signal
must not interfere with the device configuration. XC5200 devices allow an MD1 pad
to be used as an input pad; XC4000 devices do not. The IOB associated with an MD1
pad has no flip-flop or latch. This pad is usually connected to the DATA output of the
READBACK function, and the output-enable input of the 3-state OBUFT is connected
to the RIP output of the READBACK function.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A Primitive Primitive Primitive N/A N/A N/A N/A

X3898

MD1
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MD2

Mode 2, Input Pad

The MD2 input pad is connected to the Mode 2 (M2) input pin, which is used to deter-
mine the configuration mode on XC4000 and XC5200 devices. Following configura-
tion, MD2 can be used as an input pad, but it must be connected through an IBUF to
the user circuit. However, the user input signal must not interfere with the device
configuration. XC5200 devices allow an MD2 pad to be used as an output pad;
XC4000 devices do not. The IOB associated with it has no flip-flop or latch.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A Primitive Primitive Primitive N/A N/A N/A N/A

X3900

MD2
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M2_1

2-to-1 Multiplexer

The M2_1 multiplexer chooses one data bit from two sources (D1 or D0) under the
control of the select input (S0). The output (O) reflects the state of the selected data
input. When Low, S0 selects D0 and when High, S0 selects D1.

Figure 7-16 M2_1 Implementation XC3000, XC4000, XC5200, XC9000,
Spartans, Virtex

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex
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Inputs Outputs

S0 D1 D0 O
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O
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OAND2B1
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M2_1B1

2-to-1 Multiplexer with D0 Inverted

The M2_1B1 multiplexer chooses one data bit from two sources (D1 or D0) under the
control of select input (S0). When S0 is Low, the output (O) reflects the state of D0.
When S0 is High, O reflects the state of D1.

Figure 7-17 M2_1B1 Implementation XC3000, XC4000, XC5200, XC9000,
Spartans, Virtex
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M2_1B2

2-to-1 Multiplexer with D0 and D1 Inverted

The M2_1B2 multiplexer chooses one data bit from two sources (D1 or D0) under the
control of select input (S0). When S0 is Low, the output (O) reflects the state of D0.
When S0 is High, O reflects the state of D1.

Figure 7-18 M2_1B2 Implementation XC3000, XC4000, XC5200, XC9000,
Spartans, Virtex
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M2_1E

2-to-1 Multiplexer with Enable

M2_1E is a 2-to-1 multiplexer with enable. When the enable input (E) is High, the
M2_1E chooses one data bit from two sources (D1 or D0) under the control of select
input (S0). When E is High, the output (O) reflects the state of the selected input.
When Low, S0 selects D0 and when High, S0 selects D1. When E is Low, the output is
Low.

Figure 7-19 M2_1E Implementation XC3000, XC4000, XC5200, XC9000,
Spartans, Virtex

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex
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M4_1E

4-to-1 Multiplexer with Enable

M4_1E is an 4-to-1 multiplexer with enable. When the enable input (E) is High, the
M4_1E multiplexer chooses one data bit from four sources (D3, D2, D1, or D0) under
the control of the select inputs (S1 – S0). The output (O) reflects the state of the
selected input as shown in the truth table. When E is Low, the output is Low.

Figure 7-20 M4_1E Implementation XC3000, XC4000, XC5200, XC9000,
Spartans

Figure 7-21 M4_1E Implementation Virtex
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M8_1E

8-to-1 Multiplexer with Enable

M8_1E is an 8-to-1 multiplexer with enable. When the enable input (E) is High, the
M8_1E multiplexer chooses one data bit from eight sources (D7 – D0) under the
control of the select inputs (S2 – S0). The output (O) reflects the state of the selected
input as shown in the truth table. When E is Low, the output is Low.

Figure 7-22 M8_1E Implementation XC3000, XC4000, XC5200, XC9000,
Spartans

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex
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1 1 1 1 D7 D7
Dn represents signal on the Dn input; all other data inputs are don’t-cares (X).
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Figure 7-23 M8_1E Implementation Virtex
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M16_1E

16-to-1 Multiplexer with Enable

M16_1E is a 16-to-1 multiplexer with enable. When the enable input (E) is High, the
M16_1E multiplexer chooses one data bit from 16 sources (D15 – D0) under the
control of the select inputs (S3 – S0). The output (O) reflects the state of the selected
input as shown in the truth table. When E is Low, the output is Low.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Macro Macro Macro Macro Macro Macro Macro Macro

Inputs Outputs
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MULT_AND

Fast Multiplier AND

MULT_AND is an AND component used exclusively for building fast and smaller
multipliers. The I1 and I0 inputs must be connected to the I1 and I0 inputs of the asso-
ciated LUT. The LO output must be connected to the DI input of the associated
MUXCY, MUXCY_D, or MUXCY_L. See the  “Example Multiplier Using
MULT_AND” figure.

Figure 7-24 Example Multiplier Using MULT_AND
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MUXCY

2-to-1 Multiplexer for Carry Logic with General Output

MUXCY is used to implement a 1-bit high-speed carry propagate function. One such
function can be implemented per logic cell (LC), for a total of 4-bits per configurable
logic block (CLB). The direct input (DI) of an LC is connected to the DI input of the
MUXCY. The carry in (CI) input of an LC is connected to the CI input of the MUXCY.
The select input (S) of the MUX is driven by the output of the lookup table (LUT) and
configured as an XOR function. The carry out (O) of the MUXCY reflects the state of
the selected input and implements the carry out function of each LC. When Low, S
selects DI; when High, S selects CI.

The variants, “MUXCY_D” and “MUXCY_L”, provide additional types of outputs
that can be used by different timing models for more accurate pre-layout timing esti-
mation.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex
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MUXCY_D

2-to-1 Multiplexer for Carry Logic with Dual Output

MUXCY_D is used to implement a 1-bit high-speed carry propagate function. One
such function can be implemented per logic cell (LC), for a total of 4-bits per config-
urable logic block (CLB). The direct input (DI) of an LC is connected to the DI input of
the MUXCY_D. The carry in (CI) input of an LC is connected to the CI input of the
MUXCY_D. The select input (S) of the MUX is driven by the output of the lookup
table (LUT) and configured as an XOR function. The carry out (O and LO) of the
MUXCY_D reflects the state of the selected input and implements the carry out func-
tion of each LC. When Low, S selects DI; when High, S selects CI.

Outputs O and LO are functionally identical. The O output is a general interconnect.
The LO output is used to connect to other inputs within the same CLB slice.

See also “MUXCY” and “MUXCY_L”.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex
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MUXCY_L

2-to-1 Multiplexer for Carry Logic with Local Output

MUXCY_L is used to implement a 1-bit high-speed carry propagate function. One
such function can be implemented per logic cell (LC), for a total of 4-bits per config-
urable logic block (CLB). The direct input (DI) of an LC is connected to the DI input of
the MUXCY_L. The carry in (CI) input of an LC is connected to the CI input of the
MUXCY_L. The select input (S) of the MUX is driven by the output of the lookup table
(LUT) and configured as an XOR function. The carry out (LO) of the MUXCY_L
reflects the state of the selected input and implements the carry out function of each
LC. When Low, S selects DI; when High, S selects CI.

The LO output can only connect to other inputs within the same CLB slice.

See also “MUXCY” and “MUXCY_D”.
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MUXF5

2-to-1 Lookup Table Multiplexer with General Output

MUXF5 provides a multiplexer function in one half of a Virtex CLB for creating a
function-of-5 lookup table or a 4-to-1 multiplexer in combination with the associated
lookup tables. The local outputs (LO) from the two lookup tables are connected to the
I0 and I1 inputs of the MUXF5. The S input is driven from any internal net. When
Low, S selects I0. When High, S selects I1.

The variants, “MUXF5_D” and “MUXF5_L”, provide additional types of outputs that
can be used by different timing models for more accurate pre-layout timing estima-
tion.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex
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MUXF5_D

2-to-1 Lookup Table Multiplexer with Dual Output

MUXF5_D provides a multiplexer function in one half of a Virtex CLB for creating a
function-of-5 lookup table or a 4-to-1 multiplexer in combination with the associated
lookup tables. The local outputs (LO) from the two lookup tables are connected to the
I0 and I1 inputs of the MUXF5. The S input is driven from any internal net. When
Low, S selects I0. When High, S selects I1.

Outputs O and LO are functionally identical. The O output is a general interconnect.
The LO output is used to connect to other inputs within the same CLB slice.

See also “MUXF5” and “MUXF5_L”.
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MUXF5_L

2-to-1 Lookup Table Multiplexer with Local Output

MUXF5_L provides a multiplexer function in one half of a Virtex CLB for creating a
function-of-5 lookup table or a 4-to-1 multiplexer in combination with the associated
lookup tables. The local outputs (LO) from the two lookup tables are connected to the
I0 and I1 inputs of the MUXF5. The S input is driven from any internal net. When
Low, S selects I0. When High, S selects I1.

The LO output is used to connect to other inputs within the same CLB slice.

See also “MUXF5” and “MUXF5_L”.
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MUXF6

2-to-1 Lookup Table Multiplexer with General Output

MUXF6 provides a multiplexer function in a full Virtex CLB for creating a function-of-
6 lookup table or an 8-to-1 multiplexer in combination with the associated four
lookup tables and two MUXF5s. The local outputs (LO) from the two MUXF5s in the
CLB are connected to the I0 and I1 inputs of the MUXF5. The S input is driven from
any internal net. When Low, S selects I0. When High, S selects I1.

The variants, “MUXF6_D” and “MUXF6_L”, provide additional types of outputs that
can be used by different timing models for more accurate pre-layout timing estima-
tion.
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MUXF6_D

2-to-1 Lookup Table Multiplexer with Dual Output

MUXF6_D provides a multiplexer function in a full Virtex CLB for creating a function-
of-6 lookup table or an 8-to-1 multiplexer in combination with the associated four
lookup tables and two MUXF5s. The local outputs (LO) from the two MUXF5s in the
CLB are connected to the I0 and I1 inputs of the MUXF5. The S input is driven from
any internal net. When Low, S selects I0. When High, S selects I1.

Outputs O and LO are functionally identical. The O output is a general interconnect.
The LO output is used to connect to other inputs within the same CLB slice.

See also “MUXF6” and “MUXF6_L”.
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MUXF6_L

2-to-1 Lookup Table Multiplexer with Local Output

MUXF6_L provides a multiplexer function in a full Virtex CLB for creating a function-
of-6 lookup table or an 8-to-1 multiplexer in combination with the associated four
lookup tables and two MUXF5s. The local outputs (LO) from the two MUXF5s in the
CLB are connected to the I0 and I1 inputs of the MUXF5. The S input is driven from
any internal net. When Low, S selects I0. When High, S selects I1.

The LO output is used to connect to other inputs within the same CLB slice.

See also “MUXF6” and “MUXF6_D”.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive

Inputs Output

S I0 I1 LO

0 1 X 1

0 0 X 0

1 X 1 1

1 X 0 0

I0

I1

S

LO

X8436
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NAND2-9

2- to 9-Input NAND Gates with Inverted and Non-Inverted Inputs

Element XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

NAND2,
NAND2B1,
NAND2B2,
NAND3,
NAND3B1,
NAND3B2,
NAND3B3,
NAND4,
NAND4B1,
NAND4B2,
NAND4B3,
NAND4B4

Primitive Primitive Primitive Primitive Primitive Primitive Primitive Primitive

NAND5,
NAND5B1,
NAND5B2,
NAND5B3,
NAND5B4,
NAND5B5

Primitive Primitive Primitive Macro Primitive Primitive Primitive Primitive

NAND6,
NAND7,
NAND8,
NAND9

Macro Macro Macro Macro Primitive Macro Macro Macro
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Figure 7-25 NAND Gate Representations

The NAND function is performed in the Configurable Logic Block (CLB) function
generators for XC3000, XC4000, XC5200, and Spartans. NAND gates of up to five
inputs are available in any combination of inverting and non-inverting inputs. NAND
gates of six to nine inputs are available with only non-inverting inputs. To invert
inputs, use external inverters. Since each input uses a CLB resource, replace gates
with unused inputs with gates having the necessary number of inputs.

Refer to the “NAND12, 16” section for information on additional NAND functions for
the XC5200 and Virtex.

X8031

NAND4B4 NAND5B4

NAND5B5

NAND2 NAND3 NAND4 NAND5 NAND6

NAND2B1 NAND3B1 NAND4B1 NAND5B1 NAND7

NAND8NAND2B2 NAND3B2 NAND4B2 NAND5B2

NAND5B3NAND3B3 NAND4B3 NAND9
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Figure 7-26 NAND5 Implementation XC5200

Figure 7-27 NAND8 Implementation XC3000

Figure 7-28 NAND8 Implementation XC4000, Spartans

Figure 7-29 NAND8 Implementation XC5200
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Figure 7-30 NAND8 Implementation Virtex
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NAND12, 16

12- and 16-Input NAND Gates with Non-Inverted Inputs

The NAND function is performed in the Configurable Logic Block (CLB) function
generators for XC5200 and Virtex. The 12- and 16-input NAND functions are available
only with non-inverting inputs. To invert some or all inputs, use external inverters.

Refer to the “NAND2-9” section for more information on NAND functions.

Figure 7-31 NAND12 Implementation XC5200
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Figure 7-32 NAND12 Implementation Virtex
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Figure 7-33 NAND16 Implementation XC5200
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Figure 7-34 NAND16 Implementation Virtex
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NOR2-9

2- to 9-Input NOR Gates with Inverted and Non-Inverted Inputs

Element XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

NOR2,
NOR2B1,
NOR2B2,
NOR3,
NOR3B1,
NOR3B2,
NOR3B3,
NOR4,
NOR4B1,
NOR4B2,
NOR4B3,
NOR4B4

Primitive Primitive Primitive Primitive Primitive Primitive Primitive Primitive

NOR5,
NOR5B1,
NOR5B2,
NOR5B3,
NOR5B4,
NOR5B5

Primitive Primitive Primitive Macro Primitive Primitive Primitive Primitive

NOR6,
NOR7,
NOR8,
NOR9

Macro Macro Macro Macro Primitive Macro Macro Macro
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Figure 7-35 NOR Gate Representations

The NOR function is performed in the Configurable Logic Block (CLB) function
generators for XC3000, XC4000, XC5200, and Spartans. NOR gates of up to five inputs
are available in any combination of inverting and non-inverting inputs. NOR gates of
six to nine inputs are available with only non-inverting inputs. To invert some or all
inputs, use external inverters. Since each input uses a CLB resource, replace gates
with unused inputs with gates having the necessary number of inputs.

Refer to the “NOR12, 16” section for information on additional NOR functions for the
XC5200 and Virtex.

X8033
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Figure 7-36 NOR5 Implementation XC5200

Figure 7-37 NOR8 Implementation XC3000

Figure 7-38 NOR8 Implementation XC4000, Spartans

Figure 7-39 NOR8 Implementation XC5200
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Figure 7-40 NOR8 Implementation Virtex
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NOR12, 16

12- and 16-Input NOR Gates with Non-Inverted Inputs

The 12- and 16-input NOR functions are available only with non-inverting inputs. To
invert some or all inputs, use external inverters.

Refer to the “NOR2-9” section for more information on NOR functions.

Figure 7-41 NOR16 Implementation XC5200
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Figure 7-42 NOR16 Implementation Virtex
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Chapter 8

Design Elements (OAND2 to OXOR2)

This chapter describes design elements included in the Unified Libraries. The
elements are organized in alphanumeric order with all numeric suffixes in ascending
order.

Information on the specific architectures supported by each of the following libraries
is contained under the Applicable Architectures section of the Unified Libraries
Chapter.

• XC3000 Library

• XC4000E Library

• XC4000X Library

• XC5200 Library

• XC9000 Library

• Spartan Library

• SpartanXL Library

• Virtex Library

Note: Wherever XC4000 is mentioned, the information applies to all architectures
supported by the XC4000E and XC4000X libraries.

Note: Wherever Spartans or Spartan series is mentioned, the information applies to all
architectures supported by the Spartan and SpartanXL libraries.

Schematics are included for each library if the implementation differs. Design
elements with bused or multiple I/O pins (2-, 4-, 8-, 16-bit versions) typically include
just one schematic — generally the 8-bit version. When only one schematic is
included, implementation of the smaller and larger elements differs only in the
number of sections. In cases where an 8-bit version is very large, an appropriate
smaller element serves as the schematic example.
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OAND2

2-Input AND Gate with Invertible Inputs

OAND2 is a 2-input AND gate that is implemented in the output multiplexer of the
XC4000X IOB. The F pin is faster than I0. Input pins can be inverted even though there
is no library component showing inverted inputs. The mapper will automatically
bring any inverted input pins into the IOB.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A Primitive N/A N/A N/A Primitive N/A

F
O

I0

X6955
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OBUF, 4, 8, 16

Single- and Multiple-Output Buffers

OBUF, OBUF4, OBUF8, and OBUF16 are single and multiple output buffers. An
OBUF isolates the internal circuit and provides drive current for signals leaving a
chip. OBUFs exist in input/output blocks (IOB). The output (O) of an OBUF is
connected to an OPAD or an IOPAD.

For XC9000 CPLDs, if a high impedance (Z) signal from an on-chip 3-state buffer (like
BUFE) is applied to the input of an OBUF, it is propagated to the CPLD device output
pin.

For Virtex, refer to the “OBUF_selectIO” section for information on OBUF variants
with selectable I/O interfaces. The I/O interface standard used by OBUF, 4, 8, and 16
is LVTTL. Also, Virtex OBUF, 4, 8, and 16 have selectable drive and slew rates using
the DRIVE and SLOW or FAST constraints. The defaults are DRIVE=12 mA and
SLOW slew.

Figure 8-1 OBUF8 Implementation XC3000, XC4000, XC5200, XC9000,
Spartans, Virtex

Element XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex
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OBUF_selectIO

Single Output Buffer with Selectable I/O Interface

OBUF and its variants (listed below) are single output buffers whose I/O interface
corresponds to a specific I/O standard. The name extensions (LVCMOS2, PCI33_3,
PCI33_5, etc.) specify the standard. The S, F, and 2, 4, 6, 8, 12, 16, 24 extensions specify
the slew rate (SLOW or FAST) and the drive power (2, 4, 6, 8, 12, 16, 24 mA) for the
LVTTL standard variants. For example, OBUF_F_12 is a single output buffer that uses
the LVTTL I/O-signaling standard with a FAST slew and 12mA of drive power.

OBUF has selectable drive and slew rates using the DRIVE and SLOW or FAST
constraints. The defaults are DRIVE=12 mA and SLOW slew.

An OBUF isolates the internal circuit and provides drive current for signals leaving a
chip. OBUFs exist in input/output blocks (IOB). The output (O) of an OBUF is
connected to an OPAD or an IOPAD.

The hardware implementation of the I/O standard requires that you follow a set of
usage rules for the SelectI/O buffer components. Refer to the “SelectI/O Usage
Rules” section under the IBUF_selectIO section for information on using these compo-
nents.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive

Component I/O Standard VCCO

OBUF LVTTL 3.3

OBUF_S_2 LVTTL 3.3

OBUF_S_4 LVTTL 3.3

OBUF_S_6 LVTTL 3.3

OBUF_S_8 LVTTL 3.3

OBUF_S_12 LVTTL 3.3

OBUF_S_16 LVTTL 3.3

OBUF_S_24 LVTTL 3.3

OBUF_F_2 LVTTL 3.3

OBUF_F_4 LVTTL 3.3

OBUF_F_6 LVTTL 3.3

OBUF_F_8 LVTTL 3.3

OBUF_F_12 LVTTL 3.3

OBUF_F_16 LVTTL 3.3

OBUF_F_24 LVTTL 3.3

OBUF_LVCMOS2 LVCMOS2 2.5

OBUF_PCI33_3 PCI33_3 3.3

OBUF_PCI33_5 PCI33_5 3.3

X3830
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OBUF_PCI66_3 PCI66_3 3.3

OBUF_GTL GTL N/A

OBUF_GTLP GTL+ N/A

OBUF_HSTL_I HSTL_I 1.5

OBUF_HSTL_III HSTL_III 1.5

OBUF_HSTL_IV HSTL_IV 1.5

OBUF_SSTL2_I SSTL2_I 2.5

OBUF_SSTL2_II SSTL2_II 2.5

OBUF_SSTL3_I SSTL3_I 3.3

OBUF_SSTL3_II SSTL3_II 3.3

OBUF_CTT CTT 3.3

OBUF_AGP AGP 3.3

Component I/O Standard VCCO
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OBUFE, 4, 8, 16

3-State Output Buffers with Active-High Output Enable

OBUFE, OBUFE4, OBUFE8, and OBUFE16 are 3-state buffers with inputs I, I3 – I0, I7 –
I0, and I15-I0, respectively; outputs O, O3 – O0, O7 – O0, and O15-O0, respectively;
and active-High output enable (E). When E is High, data on the inputs of the buffers is
transferred to the corresponding outputs. When E is Low, the output is High imped-
ance (off or Z state). An OBUFE isolates the internal circuit and provides drive current
for signals leaving a chip. An OBUFE output is connected to an OPAD or an IOPAD.
An OBUFE input is connected to the internal circuit.

Figure 8-2 OBUFE Implementation XC3000, XC4000, XC5200, Spartans, Virtex

Figure 8-3 OBUFE8 Implementation XC3000, XC4000, XC5200, XC9000,
Spartans, Virtex
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OBUFT, 4, 8, 16

Single and Multiple 3-State Output Buffers with Active-Low Output
Enable

OBUFT, OBUFT4, OBUFT8, and OBUFT16 are single and multiple 3-state output
buffers with inputs I, I3 – I0, I7 – I0, I15 – I0, outputs O, O3 – O0, O7 – O0, O15 – O0,
and active-Low output enables (T). When T is Low, data on the inputs of the buffers is
transferred to the corresponding outputs. When T is High, the output is high imped-
ance (off or Z state). OBUFTs isolate the internal circuit and provide extra drive
current for signals leaving a chip. An OBUFT output is connected to an OPAD or an
IOPAD.

For Virtex, refer to the “OBUFT_selectIO” section for information on OBUFT variants
with selectable I/O interfaces. OBUFT, 4, 8, and 16 use the LVTTL standard. Also,
Virtex OBUFT, 4, 8, and 16 have selectable drive and slew rates using the DRIVE and
SLOW or FAST constraints. The defaults are DRIVE=12 mA and SLOW slew.

Figure 8-4 OBUFT8 Implementation XC3000, XC4000, XC5200, XC9000,
Spartans, Virtex
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OBUFT_selectIO

Single 3-State Output Buffer with Active-Low Output Enable and
Selectable I/O Interface

OBUFT and its variants (listed below) are single 3-state output buffers with active-
Low output Enable whose I/O interface corresponds to a specific I/O standard. The
name extensions (LVCMOS2, PCI33_3, PCI33_5, etc.) specify the standard. The S, F,
and 2, 4, 6, 8, 12, 16, 24 extensions specify the slew rate (SLOW or FAST) and the drive
power (2, 4, 6, 8, 12, 16, 24 mA) for the LVTTL standard. For example, OBUFT_S_4 is a
3-state output buffer with active-low output enable that uses the LVTTL I/O signaling
standard with a SLOW slew and 4mA of drive power.

OBUFT has selectable drive and slew rates using the DRIVE and FAST or SLOW
constraints. The defaults are DRIVE=12 mA and SLOW slew.

When T is Low, data on the input of the buffer is transferred to the output. When T is
High, the output is high impedance (off or Z state). OBUFTs isolate the internal circuit
and provide extra drive current for signals leaving a chip. An OBUFT output is
connected to an OPAD or an IOPAD.

The hardware implementation of the I/O standards requires that you follow a set of
usage rules for the SelectI/O buffer components. Refer to the “SelectI/O Usage
Rules” section under the IBUF_selectIO section for information on using these compo-
nents.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive

Inputs Outputs

T I O

1 X Z

0 1 1

0 0 0

Component I/O Standard VCCO

OBUFT LVTTL 3.3

OBUFT_S_2 LVTTL 3.3

OBUFT_S_4 LVTTL 3.3

OBUFT_S_6 LVTTL 3.3

OBUFT_S_8 LVTTL 3.3

OBUFT_S_12 LVTTL 3.3

OBUFT_S_16 LVTTL 3.3

OBUFT_S_24 LVTTL 3.3

T

X8720
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OBUFT_F_2 LVTTL 3.3

OBUFT_F_4 LVTTL 3.3

OBUFT_F_6 LVTTL 3.3

OBUFT_F_8 LVTTL 3.3

OBUFT_F_12 LVTTL 3.3

OBUFT_F_16 LVTTL 3.3

OBUFT_F_24 LVTTL 3.3

OBUFT_LVCMOS2 LVCMOS2 2.5

OBUFT_PCI33_3 PCI33_3 3.3

OBUFT_PCI33_5 PCI33_5 3.3

OBUFT_PCI66_3 PCI66_3 3.3

OBUFT_GTL GTL N/A

OBUFT_GTLP GTL+ N/A

OBUFT_HSTL_I HSTL_I 1.5

OBUFT_HSTL_III HSTL_III 1.5

OBUF_HSTL_IV HSTL_IV 1.5

OBUFT_SSTL2_I SSTL2_I 2.5

OBUFT_SSTL2_II SSTL2_II 2.5

OBUFT_SSTL3_I SSTL3_I 3.3

OBUFT_SSTL3_II SSTL3_II 3.3

OBUFT_CTT CTT 3.3

OBUFT_AGP AGP 3.3

Component I/O Standard VCCO
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OFD, 4, 8, 16

Single- and Multiple-Output D Flip-Flops

OFD, OFD4, OFD8, and OFD16 are single and multiple output D flip-flops except for
XC5200 and XC9000. The flip-flops exist in an input/output block (IOB) for XC3000,
XC4000, and Spartans. The outputs (for example, Q3 – Q0) are connected to OPADs or
IOPADs. The data on the D inputs is loaded into the flip-flops during the Low-to-
High clock (C) transition and appears on the Q outputs.

The flip-flops are asynchronously cleared with Low outputs when power is applied.
For CPLDs, the power-on condition can be simulated by applying a High-level pulse
on the PRLD global net. FPGAs simulate power-on when global reset (GR) or global
set/reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR
(XC4000, Spartans, Virtex) default to active-High but can be inverted by adding an
inverter in front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.

Figure 8-5 OFD Implementation XC4000, Spartans

Figure 8-6 OFD Implementation XC5200, Virtex
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Figure 8-7 OFD Implementation XC9000

Figure 8-8 OFD8 Implementation XC3000, XC4000, XC5200, Spartans, Virtex
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Figure 8-9 OFD8 Implementation XC9000
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OFD_1

Output D Flip-Flop with Inverted Clock

OFD_1 is located in an input/output block (IOB) except for XC5200. The output (Q) of
the D flip-flop is connected to an OPAD or an IOPAD. The data on the D input is
loaded into the flip-flop during the High-to-Low clock (C) transition and appears on
the Q output.

The flip-flop is asynchronously cleared, output Low, when power is applied. FPGAs
simulate power-on when global reset (GR) or global set/reset (GSR) is active. GR for
XC3000 is active-Low. GR for XC5200 and GSR (XC4000, Spartans, Virtex) default to
active-High but can be inverted by adding an inverter in front of the GR/GSR input of
the STARTUP or STARTUP_VIRTEX symbol.

Figure 8-10 OFD_1 Implementation XC3000, XC4000, Spartans

Figure 8-11 OFD_1 Implementation XC5200, Virtex
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OFDE, 4, 8, 16

D Flip-Flops with Active-High Enable Output Buffers

OFDE, OFDE4, OFDE8, and OFDE16 are single or multiple D flip-flops whose
outputs are enabled by tristate buffers. The flip-flop data outputs (Q) are connected to
the inputs of output buffers (OBUFE). The OBUFE outputs (O) are connected to
OPADs or IOPADs. These flip-flops and buffers are contained in input/output blocks
(IOB) for XC3000 and XC4000. The data on the data inputs (D) is loaded into the flip-
flops during the Low-to-High clock (C) transition. When the active-High enable
inputs (E) are High, the data on the flip-flop outputs (Q) appears on the O outputs.
When E is Low, outputs are high impedance (Z state or Off).

The flip-flops are asynchronously cleared with Low outputs when power is applied.
For CPLDs, the power-on condition can be simulated by applying a High-level pulse
on the PRLD global net. FPGAs simulate power-on when global reset (GR) or global
set/reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR
(XC4000, Spartans, Virtex) default to active-High but can be inverted by adding an
inverter in front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.

Figure 8-12 OFDE Implementation XC3000, XC4000, Spartans
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Figure 8-13 OFDE Implementation XC5200, Virtex

Figure 8-14 OFDE Implementation XC9000

Figure 8-15 OFDE8 Implementation XC3000, XC4000, XC5200, XC9000,
Spartans, Virtex
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OFDE_1

D Flip-Flop with Active-High Enable Output Buffer and
Inverted Clock

OFDE_1 and its output buffer are located in an input/output block (IOB) except for
XC5200. The data output of the flip-flop (Q) is connected to the input of an output
buffer or OBUFE. The output of the OBUFE is connected to an OPAD or an IOPAD.
The data on the data input (D) is loaded into the flip-flop on the High-to-Low clock
(C) transition. When the active-High enable input (E) is High, the data on the flip-flop
output (Q) appears on the O output. When E is Low, the output is high impedance (Z
state or Off).

The flip-flop is asynchronously cleared with Low output when power is applied.
FPGAs simulate power-on when global reset (GR) or global set/reset (GSR) is active.
GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, Spartans, Virtex)
default to active-High but can be inverted by adding an inverter in front of the GR/
GSR input of the STARTUP or STARTUP_VIRTEX symbol.

Figure 8-16 OFDE_1 Implementation XC3000, XC4000, Spartans

Figure 8-17 OFDE_1 Implementation XC5200, Virtex
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OFDEI

D Flip-Flop with Active-High Enable Output Buffer (Asynchronous
Preset)

OFDEI is a D flip-flop whose output is enabled by a 3-state buffer. The data output (Q)
of the flip-flop is connected to the input of an output 3-state buffer or OBUFE. The
output of the OBUFE (O) is connected to an OPAD or an IOPAD. These flip-flops and
buffers are contained in input/output blocks (IOB). The data on the data input (D) is
loaded into the flip-flop during the Low-to-High clock (C) transition. When the
active-High enable input (E) is High, the data on the flip-flop output (Q) appears on
the O output. When E is Low, the output is high impedance (Z state or off).

The flip-flop is asynchronously preset, output High, when power is applied. FPGAs
simulate power-on when global set/reset (GSR) is active. GSR (XC4000, Spartans)
default to active-High but can be inverted by adding an inverter in front of the GSR
input of the STARTUP symbol.

Figure 8-18 OFDEI Implementation XC4000, Spartans
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OFDEI_1

D Flip-Flop with Active-High Enable Output Buffer and Inverted
Clock (Asynchronous Preset)

OFDEI_1 and its output buffer exist in an input/output block (IOB). The data output
of the flip-flop (Q) is connected to the input of an output buffer or OBUFE. The output
of the OBUFE is connected to an OPAD or an IOPAD. The data on the data input (D) is
loaded into the flip-flop on the High-to-Low clock (C) transition. When the active-
High enable input (E) is High, the data on the flip-flop output (Q) appears on the O
output. When E is Low, the output is high impedance (Z state or off).

The flip-flop is asynchronously preset, output High, when power is applied. FPGAs
simulate power-on when global set/reset (GSR) is active. GSR (XC4000, Spartans)
default to active-High but can be inverted by adding an inverter in front of the GSR
input of the STARTUP symbol.

Figure 8-19 OFDEI_1 Implementation XC4000, Spartans
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OFDEX, 4, 8, 16

D Flip-Flops with Active-High Enable Output Buffers and Clock
Enable

OFDEX, OFDEX4, OFDEX8, and OFDEX16 are single or multiple D flip-flops whose
outputs are enabled by tristate buffers. The flip-flop data outputs (Q) are connected to
the inputs of output buffers (OBUFE). The OBUFE outputs (O) are connected to
OPADs or IOPADs. These flip-flops and buffers are contained in input/output blocks
(IOB). The data on the data inputs (D) is loaded into the flip-flops during the Low-to-
High clock (C) transition. When the active-High enable inputs (E) are High, the data
on the flip-flop outputs (Q) appears on the O outputs. When E is Low, outputs are
high impedance (Z state or Off). When CE is Low and E is High, the outputs do not
change.

The flip-flops are asynchronously cleared with Low outputs when power is applied.
FPGAs simulate power-on when global set/reset (GSR) is active. GSR (XC4000, Spar-
tans) default to active-High but can be inverted by adding an inverter in front of the
GSR input of the STARTUP symbol.

Figure 8-20 OFDEX Implementation XC4000, Spartans
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Figure 8-21 OFDEX8 Implementation XC4000, Spartans
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OFDEX_1

D Flip-Flop with Active-High Enable Output Buffer, Inverted Clock,
and Clock Enable

OFDEX_1 and its output buffer are located in an input/output block (IOB). The data
output of the flip-flop (Q) is connected to the input of an output buffer or OBUFE. The
output of the OBUFE is connected to an OPAD or an IOPAD. The data on the data
input (D) is loaded into the flip-flop on the High-to-Low clock (C) transition. When
the active-High enable input (E) is High, the data on the flip-flop output (Q) appears
on the O output. When E is Low, the output is high impedance (Z state or Off). When
CE is Low and E is High, the output does not change.

The flip-flop is asynchronously cleared with Low output when power is applied.
FPGAs simulate power-on when global set/reset (GSR) is active. GSR (XC4000, Spar-
tans) default to active-High but can be inverted by adding an inverter in front of the
GSR input of the STARTUP symbol.

Figure 8-22 OFDEX_1 Implementation XC4000, Spartans
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OFDEXI

D Flip-Flop with Active-High Enable Output Buffer and Clock
Enable (Asynchronous Preset)

OFDEXI is a D flip-flop whose output is enabled by a tristate buffer. The data output
(Q) of the flip-flop is connected to the input of an output buffer or OBUFE. The output
of the OBUFE (O) is connected to an OPAD or an IOPAD. These flip-flops and buffers
are contained in input/output blocks (IOB). The data on the data input (D) is loaded
into the flip-flop during the Low-to-High clock (C) transition. When the active-High
enable input (E) is High, the data on the flip-flop output (Q) appears on the O output.
When E is Low, the output is high impedance (Z state or Off). When CE is Low and E
is High, the output does not change.

The flip-flop is asynchronously preset, output High, when power is applied. FPGAs
simulate power-on when global set/reset (GSR) is active. GSR (XC4000, Spartans)
default to active-High but can be inverted by adding an inverter in front of the GSR
input of the STARTUP symbol.

Figure 8-23 OFDEXI Implementation XC4000, Spartans
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OFDEXI_1

D Flip-Flop with Active-High Enable Output Buffer, Inverted Clock,
and Clock Enable (Asynchronous Preset)

OFDEXI_1 and its output buffer are located in an input/output block (IOB). The data
output of the flip-flop (Q) is connected to the input of an output buffer or OBUFE. The
output of the OBUFE is connected to an OPAD or an IOPAD. The data on the data
input (D) is loaded into the flip-flop on the High-to-Low clock (C) transition. When
the active-High enable input (E) is High, the data on the flip-flop output (Q) appears
on the O output. When E is Low, the output is high impedance (Z state or Off). When
CE is Low and E is High, the output does not change.

The flip-flop is asynchronously preset, output High, when power is applied. FPGAs
simulate power-on when global set/reset (GSR) is active. GSR (XC4000, Spartans)
default to active-High but can be inverted by adding an inverter in front of the GSR
input of the STARTUP symbol.

Figure 8-24 OFDEXI_1 Implementation XC4000, Spartans
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OFDI

Output D Flip-Flop (Asynchronous Preset)

OFDI is contained in an input/output block (IOB). The output (Q) of the D flip-flop is
connected to an OPAD or an IOPAD. The data on the D input is loaded into the flip-
flop during the Low-to-High clock (C) transition and appears at the output (Q).

The flip-flop is asynchronously preset, output High, when power is applied. FPGAs
simulate power-on when global set/reset (GSR) is active. GSR (XC4000, Spartans)
default to active-High but can be inverted by adding an inverter in front of the GSR
input of the STARTUP symbol.

Figure 8-25 OFDI Implementation XC4000, Spartans

Figure 8-26 OFDI Implementation Virtex
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OFDI_1

Output D Flip-Flop with Inverted Clock (Asynchronous Preset)

OFDI_1 exists in an input/output block (IOB). The D flip-flop output (Q) is connected
to an OPAD or an IOPAD. The data on the D input is loaded into the flip-flop during
the High-to-Low clock (C) transition and appears on the Q output.

The flip-flop is asynchronously preset, output High, when power is applied. FPGAs
simulate power-on when global set/reset (GSR) is active. GSR (XC4000, Spartans)
default to active-High but can be inverted by adding an inverter in front of the GSR
input of the STARTUP symbol.

Figure 8-27 OFDI_1 Implementation XC4000, Spartans

Figure 8-28 OFDI_1 Implementation Virtex
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OFDT, 4, 8, 16

Single and Multiple D Flip-Flops with Active-Low 3-State Output
Enable Buffers

OFDT, OFDT4, OFDT8, and OFDT16 are single or multiple D flip-flops whose outputs
are enabled by a tristate buffers. The data outputs (Q) of the flip-flops are connected to
the inputs of output buffers (OBUFT). The outputs of the OBUFTs (O) are connected
to OPADs or IOPADs. These flip-flops and buffers are located in input/output blocks
(IOB) for XC3000 and XC4000. The data on the data inputs (D) is loaded into the flip-
flops during the Low-to-High clock (C) transition. When the active-Low enable inputs
(T) are Low, the data on the flip-flop outputs (Q) appears on the O outputs. When T is
High, outputs are high impedance (Off).

The flip-flops are asynchronously cleared with Low outputs, when power is applied.
For CPLDs, the power-on condition can be simulated by applying a High-level pulse
on the PRLD global net. FPGAs simulate power-on when global reset (GR) or global
set/reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR
(XC4000, Spartans, Virtex) default to active-High but can be inverted by adding an
inverter in front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.

Figure 8-29 OFDT Implementation XC4000, Spartans
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Figure 8-30 OFDT Implementation XC5200, Virtex

Figure 8-31 OFDT Implementation XC9000

Figure 8-32 OFDT8 Implementation XC3000, XC4000, XC5200, XC9000,
Spartans, Virtex
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OFDT_1

D Flip-Flop with Active-Low 3-State Output Buffer and Inverted
Clock

OFDT_1 and its output buffer are located in an input/output block (IOB). The flip-
flop data output (Q) is connected to the input of an output buffer (OBUFT). The
OBUFT output is connected to an OPAD or an IOPAD. The data on the data input (D)
is loaded into the flip-flop on the High-to-Low clock (C) transition. When the active-
Low enable input (T) is Low, the data on the flip-flop output (Q) appears on the O
output. When T is High, the output is high impedance (Off).

The flip-flop is asynchronously cleared with Low output when power is applied.
FPGAs simulate power-on when global reset (GR) or global set/reset (GSR) is active.
GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000, Spartans, Virtex)
default to active-High but can be inverted by adding an inverter in front of the GR/
GSR input of the STARTUP or STARTUP_VIRTEX symbol.

Figure 8-33 OFDT_1 Implementation XC3000, XC4000, Spartans

Figure 8-34 OFDT_1 Implementation XC5200, Virtex
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OFDTI

D Flip-Flop with Active-Low 3-State Output Buffer (Asynchronous
Preset)

OFDTI and its output buffer are contained in an input/output block (IOB). The data
output of the flip-flop (Q) is connected to the input of an output buffer (OBUFT). The
output of the OBUFT is connected to an OPAD or an IOPAD. The data on the data
input (D) is loaded into the flip-flop on the Low-to-High clock (C) transition. When
the active-Low enable input (T) is Low, the data on the flip-flop output (Q) appears on
the output (O). When T is High, the output is high impedance (off).

The flip-flop is asynchronously preset, output High, when power is applied. FPGAs
simulate power-on when global set/reset (GSR) is active. GSR (XC4000, Spartans)
default to active-High but can be inverted by adding an inverter in front of the GSR
input of the STARTUP symbol.

Figure 8-35 OFDTI Implementation XC4000, Spartans
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OFDTI_1

D Flip-Flop with Active-Low 3-State Output Buffer and Inverted
Clock (Asynchronous Preset)

OFDTI_1 and its output buffer are contained in an input/output block (IOB). The data
output of the flip-flop (Q) is connected to the input of an output buffer (OBUFT). The
OBUFT output is connected to an OPAD or an IOPAD. The data on the data input (D)
is loaded into the flip-flop on the High-to-Low clock (C) transition. When the active-
Low enable input (T) is Low, the data on the flip-flop output (Q) appears on the O
output. When T is High, the output is high impedance (off).

The flip-flop is asynchronously preset, output High, when power is applied. FPGAs
simulate power-on when global set/reset (GSR) is active. GSR (XC4000, Spartans)
default to active-High but can be inverted by adding an inverter in front of the GSR
input of the STARTUP symbol.

Figure 8-36 OFDTI_1 Implementation XC4000, Spartans
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OFDTX, 4, 8, 16

Single and Multiple D Flip-Flops with Active-Low 3-State Output
Buffers and Clock Enable

OFDTX, OFDTX4, OFDTX8, and OFDTX16 are single or multiple D flip-flops whose
outputs are enabled by a tristate buffers. The data outputs (Q) of the flip-flops are
connected to the inputs of output buffers (OBUFT). The outputs of the OBUFTs (O)
are connected to OPADs or IOPADs. These flip-flops and buffers are located in input/
output blocks (IOB) for XC4000E. The data on the data inputs (D) is loaded into the
flip-flops during the Low-to-High clock (C) transition. When the active-Low enable
inputs (T) are Low, the data on the flip-flop outputs (Q) appears on the O outputs.
When T is High, outputs are high impedance (Off). When CE is Low and T is Low, the
outputs do not change.

The flip-flops are asynchronously cleared with Low output when power is applied.
FPGAs simulate power-on when global set/reset (GSR) is active. GSR (XC4000, Spar-
tans) default to active-High but can be inverted by adding an inverter in front of the
GSR input of the STARTUP symbol.
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Figure 8-37 OFDTX8 Implementation XC4000, Spartans
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OFDTX_1

D Flip-Flop with Active-Low 3-State Output Buffer, Inverted Clock,
and Clock Enable

OFDTX_1 and its output buffer are located in an input/output block (IOB). The flip-
flop data output (Q) is connected to the input of an output buffer (OBUFT). The
OBUFT output is connected to an OPAD or an IOPAD. The data on the data input (D)
is loaded into the flip-flop on the High-to-Low clock (C) transition. When the active-
Low enable input (T) is Low, the data on the flip-flop output (Q) appears on the O
output. When T is High, the output is high impedance (Off). When CE is High and T
is Low, the outputs do not change.

The flip-flop is asynchronously cleared with Low output when power is applied.
FPGAs simulate power-on when global set/reset (GSR) is active. GSR (XC4000, Spar-
tans) default to active-High but can be inverted by adding an inverter in front of the
GSR input of the STARTUP symbol.

Figure 8-38 OFDTX_1 Implementation XC4000, Spartans
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OFDTXI

D Flip-Flop with Active-Low 3-State Output Buffer and Clock
Enable (Asynchronous Preset)

OFDTXI and its output buffer are contained in an input/output block (IOB). The data
output of the flip-flop (Q) is connected to the input of an output buffer (OBUFT). The
output of the OBUFT is connected to an OPAD or an IOPAD. The data on the data
input (D) is loaded into the flip-flop on the Low-to-High clock (C) transition. When
the active-Low enable input (T) is Low, the data on the flip-flop output (Q) appears on
the output (O). When T is High, the output is high impedance (Off). When CE is Low
and T is Low, the output does not change.

The flip-flop is asynchronously preset with High output when power is applied.
FPGAs simulate power-on when global set/reset (GSR) is active. GSR (XC4000, Spar-
tans) default to active-High but can be inverted by adding an inverter in front of the
GSR input of the STARTUP symbol.
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OFDTXI_1

D Flip-Flop with Active-Low 3-State Output Buffer, Inverted Clock,
and Clock Enable (Asynchronous Preset)

OFDTXI_1 and its output buffer are contained in an input/output block (IOB). The
data output of the flip-flop (Q) is connected to the input of an output buffer (OBUFT).
The OBUFT output is connected to an OPAD or an IOPAD. The data on the data input
(D) is loaded into the flip-flop on the High-to-Low clock (C) transition. When the
active-Low enable input (T) is Low, the data on the flip-flop output (Q) appears on the
O output. When T is High, the output is high impedance (Off). When CE is Low and T
is Low, the output does not change.

The flip-flop is asynchronously preset with High output when power is applied.
FPGAs simulate power-on when global set/reset (GSR) is active. GSR (XC4000, Spar-
tans) default to active-High but can be inverted by adding an inverter in front of the
GSR input of the STARTUP symbol.

Figure 8-39 OFDTXI_1 Implementation XC4000, Spartans
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OFDX, 4, 8, 16

Single- and Multiple-Output D Flip-Flops with Clock Enable

OFDX, OFDX4, OFDX8, and OFDX16 are single and multiple output D flip-flops. The
flip-flops are located in an input/output block (IOB) for XC4000E. The Q outputs are
connected to OPADs or IOPADs. The data on the D inputs is loaded into the flip-flops
during the Low-to-High clock (C) transition and appears on the Q outputs. When CE
is Low, flip-flop outputs do not change.

The flip-flops are asynchronously cleared with Low outputs, when power is applied.
FPGAs simulate power-on when global set/reset (GSR) is active. GSR (XC4000, Spar-
tans) default to active-High but can be inverted by adding an inverter in front of the
GSR input of the STARTUP symbol.

Figure 8-40 OFDX Implementation Virtex
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Figure 8-41 OFDX8 Implementation XC4000, Spartans, Virtex
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OFDX_1

Output D Flip-Flop with Inverted Clock and Clock Enable

OFDX_1 is located in an input/output block (IOB). The output (Q) of the D flip-flop is
connected to an OPAD or an IOPAD. The data on the D input is loaded into the flip-
flop during the High-to-Low clock (C) transition and appears on the Q output. When
the CE pin is Low, the output (Q) does not change.

The flip-flop is asynchronously cleared with Low output when power is applied.
FPGAs simulate power-on when global set/reset (GSR) is active. GSR (XC4000, Spar-
tans) default to active-High but can be inverted by adding an inverter in front of the
GSR input of the STARTUP symbol.

Figure 8-42 OFDX_1 Implementation XC4000, Spartans

Figure 8-43 OFDX_1 Implementation Virtex
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OFDXI

Output D Flip-Flop with Clock Enable (Asynchronous Preset)

OFDXI is contained in an input/output block (IOB). The output (Q) of the D flip-flop
is connected to an OPAD or an IOPAD. The data on the D input is loaded into the flip-
flop during the Low-to-High clock (C) transition and appears at the output (Q). When
CE is Low, the output does not change.

The flip-flop is asynchronously preset with High output when power is applied.
FPGAs simulate power-on when global set/reset (GSR) is active. GSR (XC4000, Spar-
tans) default to active-High but can be inverted by adding an inverter in front of the
GSR input of the STARTUP symbol.

Figure 8-44 OFDXI Implementation Virtex

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A Primitive Primitive N/A N/A Primitive Primitive Macro
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OFDXI_1

Output D Flip-Flop with Inverted Clock and Clock Enable
(Asynchronous Preset)

OFDXI_1 is located in an input/output block (IOB). The D flip-flop output (Q) is
connected to an OPAD or an IOPAD. The data on the D input is loaded into the flip-
flop during the High-to-Low clock (C) transition and appears on the Q output. When
CE is Low, the output (Q) does not change.

The flip-flop is asynchronously preset with High output when power is applied.
FPGAs simulate power-on when global set/reset (GSR) is active. GSR (XC4000, Spar-
tans) default to active-High but can be inverted by adding an inverter in front of the
GSR input of the STARTUP symbol.

Figure 8-45 OFDXI_1 Implementation XC4000, Spartans

Figure 8-46 OFDXI_1 Implementation Virtex

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A Macro Macro N/A N/A Macro Macro Macro

Inputs Outputs

CE D C Q

1 D ↓ d

0 X X No Chg
d = state of referenced input one setup time prior to active clock transition

Q

X6001

D OFDXI_1

C

CE

INV

CB

D

CE

C

Q
D

CE

C

Q

OFDXI

X6407

X8757

FDPE

PRE QD

CE
C

IOB=TRUE

D
CE

C

Q

GND

OBUF

INV

CB

Q_OUT



Design Elements (OMUX2)

Libraries Guide, Release M1.5 8-41

OMUX2

2-to-1 Multiplexer

The OMUX2 multiplexer chooses one data bit from two sources (D1 or D0) under the
control of the select input (S0). The output (O) reflects the state of the selected data
input. When Low, S0 selects D0 and when High, S0 selects D1.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A Primitive N/A N/A N/A Primitive N/A

Inputs Outputs

S0 D1 D0 O

1 1 X 1

1 0 X 0

0 X 1 1

0 X 0 0

D0
D1
S0

O

X4026
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ONAND2

2-Input NAND Gate with Invertible Inputs

ONAND2 is a 2-input NAND gate that is implemented in the output multiplexer of
the XC4000X IOB. The F pin is faster than I0. Input pins can be inverted even though
there is no library component showing inverted inputs. The mapper will automati-
cally bring any inverted input pins into the IOB.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A Primitive N/A N/A N/A Primitive N/A

X6963

F

I0
O
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ONOR2

2-Input NOR Gate with Invertible Inputs

ONOR2 is a 2-input NOR gate that is implemented in the output multiplexer of the
XC4000X IOB. The F pin is faster than I0. Input pins can be inverted even though there
is no library component showing inverted inputs. The mapper will automatically
bring any inverted input pins into the IOB.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A Primitive N/A N/A N/A Primitive N/A

X6956

O
F
I0
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OOR2

2-Input OR Gate with Invertible Inputs

OOR2 is a 2-input OR gate that is implemented in the output multiplexer of the
XC4000X IOB. The F pin is faster than I0. Input pins can be inverted even though there
is no library component showing inverted inputs. The mapper will automatically
bring any inverted input pins into the IOB.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A Primitive N/A N/A N/A Primitive N/A

X8191

F

OOR2
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OPAD, 4, 8, 16

Single- and Multiple-Output Pads

OPAD, OPAD4, OPAD8, and OPAD16 are single and multiple output pads. An OPAD
connects a device pin to an output signal of a PLD. It is internally connected to an
input/output block (IOB), which is configured by the software as an OBUF, an
OBUFT, an OBUFE, an OFD, or an OFDT.

Refer to the appropriate CAE tool interface user guide for details on assigning pin
location and identification.

Figure 8-47 OPAD8 Implementation XC3000, XC4000, XC5200, XC9000,
Spartans, Virtex

Element XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

OPAD Primitive Primitive Primitive Primitive Primitive Primitive Primitive Primitive

OPAD4,
OPAD8,
OPAD16

Macro Macro Macro Macro Macro Macro Macro Macro

X3829

OPAD
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X3839
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X3842

OPAD8

O[7:0]

X3846

OPAD16
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X7656

O0
OPAD

O1
OPAD

O2
OPAD

O3
OPAD

O4
OPAD

O5
OPAD

O6
OPAD

O7
OPAD

O[7:0]
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OR2-9

2- to 9-Input OR Gates with Inverted and Non-Inverted Inputs

Element XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

OR2,
OR2B1,
OR2B2,
OR3,
OR3B1,
OR3B2,
OR3B3,
OR4,
OR4B1,
OR4B2,
OR4B3,
OR4B4

Primitive Primitive Primitive Primitive Primitive Primitive Primitive Primitive

OR5,
OR5B1,
OR5B2,
OR5B3,
OR5B4,
OR5B5

Primitive Primitive Primitive Macro Primitive Primitive Primitive Primitive

OR6,
OR7,
OR8,
OR9

Macro Macro Macro Macro Primitive Macro Macro Macro
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Figure 8-48 OR Gate Representations

The OR function is performed in the Configurable Logic Block (CLB) function genera-
tors for FPGAs. OR functions of up to five inputs are available in any combination of
inverting and non-inverting inputs. OR functions of six to nine inputs are available
with only non-inverting inputs. To invert some or all inputs, use external inverters.
Since each input uses a CLB resource, replace functions with unused inputs with func-
tions having the necessary number of inputs.

Refer to the “OR12, 16” section for information on additional OR functions for the
XC5200 and Virtex.

X7863
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OR7
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Figure 8-49 OR5 Implementation XC5200

Figure 8-50 OR8 Implementation XC3000

Figure 8-51 OR8 Implementation XC4000, XC5200, Spartans

Figure 8-52 OR8 Implementation Virtex

I4

I3

I2

I1

I0

I35

X8110

OR3 O	

OR3

O	

I7

OR4

I47

OR5

I6
I5

I4
I3

I2

I1

I0

X7864

I7

I6

I5
I47

OR4

OR3

OR3

O

X6535

I4

I3

I2 I13

I1

I0

X8698

I2

I3
O

I4

RLOC=R0C0.S0

FMAP

S1
S2

I1

O

O

OR4

I2

I1

I0

I3

OR4

I6

I5

I4

I7

OR2

S0

S1

I2

I3
O

I4

RLOC=R0C0.S1

FMAP

I6

I5
I4

I7

I1

S1

I2

I3
O

I4

RLOC=R0C0.S1

FMAP

I2

I1
I0

I3

I1

S0



Design Elements (OR12, 16)

Libraries Guide, Release M1.5 8-49

OR12, 16

12- and 16-Input OR Gates with Non-Inverted Inputs

Refer to the “OR2-9” section for information on OR functions.

Figure 8-53 OR16 Implementation XC5200

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A Macro N/A N/A N/A Macro
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Figure 8-54 OR16 Implementation Virtex
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OSC

Crystal Oscillator Amplifier

The OSC element’s clock signal frequency is derived from an external crystal-
controlled oscillator. The OSC output can be connected to an ACLK buffer, which is
connected to an internal clock net.

Two dedicated input pins (XTAL 1 and XTAL 2) on each FPGA device are internally
connected to pads and input/output blocks that are connected to the OSC amplifier.
The external components are connected as shown in the following example. Refer to
The Programmable Logic Data Book for details on component selection and tolerances.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Primitive N/A N/A N/A N/A N/A N/A N/A

X3885

OSC

X8266

IPAD OPAD

OSC ACLK
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OSC4

Internal 5-Frequency Clock-Signal Generator

OSC4 provides internal clock signals in applications where timing is not critical. The
available frequencies are determined by FPGA device components, which are process
dependent. Therefore, the available frequencies vary from device to device. Nominal
frequencies are 8 MHz, 500 kHz, 16 kHz, 490 Hz, and 15 Hz. Although there are five
outputs, only three can be used at a time, with 8 MHz on one output and one
frequency each on any two of the remaining four outputs. An error occurs if more
than three outputs are used simultaneously.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A Primitive Primitive N/A N/A Primitive Primitive N/A

X3912

F15

OSC4

F490

F16K
F500K

F8M
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OSC5

Internal Multiple-Frequency Clock-Signal Generator

OSC5 provides internal clock signals in applications where timing is not critical. The
available frequencies are determined by FPGA device components that are process
dependent. Therefore, the available frequencies vary from device to device. Use only
one OSC5 per design. The OSC5 is not available if the CK_DIV element is used.

The clock frequencies of the OSC1 and OSC2 outputs are determined by specifying
the DIVIDE1_BY=n1 attribute for the OSC1 output and the DIVIDE2_BY=n2 attribute
for the OSC2 output. n1 and n2 are integer numbers by which the internal 16-MHz
clock is divided to produce the desired clock frequency. The available frequency
options are shown in the table.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A Primitive N/A N/A N/A N/A

n1 OSC1 Frequency n 2 OSC2 Frequency

4 4 MHz 2 8 MHz

16 1 MHz 8 2 MHz

64 250 kHz 32 500 kHz

256 63 kHz 128 125 kHz

1,024 16 kHz

4,096 4 kHz

16,384 1 kHz

65,536 244 Hz

X4971

OSC5

OSC2

@DIVIDE1_BY=
@DIVIDE2_BY=

OSC1
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OSC52

Internal Multiple-Frequency Clock-Signal Generator

OSC52 provides internal clock signals in applications where timing is not critical. The
available frequencies are determined by FPGA device components, which are process
independent. Therefore, the available frequencies vary from device to device. Only
one OSC52 may be used per design.

The oscillator frequencies of the OSC1 and OSC2 outputs are determined by speci-
fying theDIVIDE1_BY=n1 attribute for the OSC1 output and DIVIDE2_BY=n2
attribute for the OSC2 output. n1 and n2 are integer numbers by which internal 16-
MHz clock is divided to produce the desired clock frequency. The available frequency
options appear in the table that follows.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A Primitive N/A N/A N/A N/A

n1 OSC1 Frequency n 2 OSC2 Frequency

4 4 MHz 2 8 MHz

16 1 MHz 8 2 MHz

64 250 kHz 32 500 kHz

256 63 kHz 128 125 kHz

1,024 16 kHz

4,096 4 kHz

16,384 1 kHz

65,536 244 Hz

OSC1

OSC2C

OSC52

X8051
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OXNOR2

2-Input Exclusive-NOR Gate with Invertible Inputs

OXNOR2 is a 2-input exclusive NOR gate that is implemented in the output multi-
plexer of the XC4000X and SpartanXL IOB. The F pin is faster than I0. Input pins can
be inverted even though there is no library component showing inverted inputs. The
mapper will automatically bring any inverted input pins into the IOB.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A Primitive N/A N/A N/A Primitive N/A

X6965

F

I0
O
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OXOR2

2-Input Exclusive-OR Gate with Invertible Inputs

OXOR2 is a 2-input exclusive OR gate that is implemented in the output multiplexer
of the XC4000X IOB. The F pin is faster than I0. Input pins can be inverted even
though there is no library component showing inverted inputs. The mapper will auto-
matically bring any inverted input pins into the IOB.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A Primitive N/A N/A N/A Primitive N/A

X6964

F

I0
O
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Chapter 9

Design Elements (PULLDOWN to ROM32X1)

This chapter describes design elements included in the Unified Libraries. The
elements are organized in alphanumeric order with all numeric suffixes in ascending
order.

Information on the specific architectures supported by each of the following libraries
is contained under the Applicable Architectures section of the Unified Libraries
Chapter.

• XC3000 Library

• XC4000E Library

• XC4000X Library

• XC5200 Library

• XC9000 Library

• Spartan Library

• SpartanXL Library

• Virtex Library

Note: Wherever XC4000 is mentioned, the information applies to all architectures
supported by the XC4000E and XC4000X libraries.

Note: Wherever Spartans or Spartan series is mentioned, the information applies to all
architectures supported by the Spartan and SpartanXL libraries.

Schematics are included for each library if the implementation differs. Design
elements with bused or multiple I/O pins (2-, 4-, 8-, 16-bit versions) typically include
just one schematic — generally the 8-bit version. When only one schematic is
included, implementation of the smaller and larger elements differs only in the
number of sections. In cases where an 8-bit version is very large, an appropriate
smaller element serves as the schematic example.
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PULLDOWN

Resistor to GND for Input Pads

PULLDOWN resistor elements are available in each XC4000 or Spartan series Input/
Output Block (IOB). They are connected to input, output, or bidirectional pads to
guarantee a logic Low level for nodes that might float.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A Primitive Primitive Primitive N/A Primitive Primitive Primitive

X3860
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PULLUP

Resistor to VCC for Input PADs, Open-Drain, and 3-State Outputs

PULLUP resistor elements are available in each XC3000, XC4000, and Spartan series
Input/Output Block (IOB). XC3000 IOBs only use PULLUP resistors on input pads.
XC4000 and Spartan series IOBs connect PULLUP resistors to input, output, or bidi-
rectional pads to guarantee a logic High level for nodes that might float.

The pull-up elements also establish a High logic level for open-drain elements and
macros (DECODE, WAND, WORAND) or 3-state nodes (TBUF) when all the drivers
are off.

The buffer outputs are connected together as a wired-AND to form the output (O).
When all the inputs are High, the output is off. To establish an output High level, a
PULLUP resistor(s) is tied to output (O). One PULLUP resistor uses the least power,
two pull-up resistors achieve the fastest Low-to-High speed.

To indicate two PULLUP resistors, append a DOUBLE parameter to the pull-up
symbol attached to the output (O) node. Refer to the appropriate CAE tool interface
user guide for details.

The PULLUP element is ignored in XC9000 designs. Internal 3-state nodes (from
BUFE or BUFT) in CPLD designs are always pulled up when not driven.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Primitive Primitive Primitive Primitive N/A Primitive Primitive Primitive

X3861
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RAM16X1

16-Deep by 1-Wide Static RAM

RAM16X1 is a 16-word by 1-bit static read-write random access memory. When the
write enable (WE) is High, the data on the data input (D) is loaded into the word
selected by the 4-bit address (A3 – A0). The data output (O) reflects the selected
(addressed) word, whether WE is High or Low. When WE is Low, the RAM content is
unaffected by address or input data transitions. Address inputs must be stable before
the High-to-Low WE transition for predictable performance.

You can initialize RAM16X1 during configuration. See “Specifying Initial Contents of
a RAM” in this section.

Mode selection is shown in the following truth table.

Specifying Initial Contents of a RAM

You can use the INIT attribute to specify an initial value directly on the symbol only if
the RAM is 1 bit wide and 16 or 32 bits deep. The value must be a hexadecimal
number, for example, INIT=ABAC.

If the INIT attribute is not specified, the RAM is initialized with zero.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A Primitive Primitive N/A N/A N/A N/A N/A

Inputs Outputs

WE(mode) D O

0(read) X Data

1(write) D Data
Data = word addressed by bits A3 – A0

X4124

RAM16X1

A3
A2

A1
A0
WE

D O
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RAM16X1D

16-Deep by 1-Wide Static Dual Port Synchronous RAM

RAM16X1D is a 16-word by 1-bit static dual port random access memory with
synchronous write capability. The device has two separate address ports: the read
address (DPRA3 – DPRA0) and the write address (A3 – A0). These two address ports
are completely asynchronous. The read address controls the location of the data
driven out of the output pin (DPO), and the write address controls the destination of a
valid write transaction.

When the write enable (WE) is Low, transitions on the write clock (WCLK) are
ignored and data stored in the RAM is not affected. When WE is High, any positive
transition on WCLK loads the data on the data input (D) into the word selected by the
4-bit write address. For predictable performance, write address and data inputs must
be stable before a Low-to-High WCLK transition. This RAM block assumes an active-
High WCLK. WCLK can be active-High or active-Low. Any inverter placed on the
WCLK input net is absorbed into the block.

You can initialize RAM16X1D during configuration. See “Specifying Initial Contents
of a RAM” in the “RAM16X1” section.

Mode selection is shown in the following truth table.

The SPO output reflects the data in the memory cell addressed by A3 – A0. The DPO
output reflects the data in the memory cell addressed by DPRA3 – DPRA0.

Note: The write process is not affected by the address on the read address port.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A Primitive Primitive N/A N/A Primitive Primitive Primitive

Inputs Outputs

WE (mode) WCLK D SPO DPO

0 (read) X X data_a data_d

1 (read) 0 X data_a data_d

1 (read) 1 X data_a data_d

1 (write) ↑ D D data_d

1 (read) ↓ X data_a data_d
data_a = word addressed by bits A3-A0
data_d = word addressed by bits DPRA3-DPRA0

X4950

RAM16X1D

A2

DPRA3

DPRA2

DPRA1

DPRA0

A3

A1

A0

WCLK

WE

D

SPO

DPO
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RAM16X1D_1

16-Deep by 1-Wide Static Dual Port Synchronous RAM with
Negative-Edge Clock

RAM16X1D_1 is a 16-word by 1-bit static dual port random access memory with
synchronous write capability and negative-edge clock. The device has two separate
address ports: the read address (DPRA3 – DPRA0) and the write address (A3 – A0).
These two address ports are completely asynchronous. The read address controls the
location of the data driven out of the output pin (DPO), and the write address controls
the destination of a valid write transaction.

When the write enable (WE) is Low, transitions on the write clock (WCLK) are
ignored and data stored in the RAM is not affected. When WE is High, any negative
transition on WCLK loads the data on the data input (D) into the word selected by the
4-bit write address. For predictable performance, write address and data inputs must
be stable before a High-to-Low WCLK transition. This RAM block assumes an active-
High WCLK. WCLK can be active-High or active-Low. Any inverter placed on the
WCLK input net is absorbed into the block.

You can initialize RAM16X1D_1 during configuration. See “Specifying Initial
Contents of a RAM” in the “RAM16X1” section.

Mode selection is shown in the following truth table.

The SPO output reflects the data in the memory cell addressed by A3 – A0. The DPO
output reflects the data in the memory cell addressed by DPRA3 – DPRA0.

Note: The write process is not affected by the address on the read address port.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive

Inputs Outputs

WE (mode) WCLK D SPO DPO

0 (read) X X data_a data_d

1 (read) 0 X data_a data_d

1 (read) 1 X data_a data_d

1 (write) ↓ D D data_d

1 (read) ↑ X data_a data_d
data_a = word addressed by bits A3-A0
data_d = word addressed by bits DPRA3-DPRA0

X8419

RAM16X1D_1

A2
A3

A1

A0
WCLK

D

WE SPO

DPRA2
DPRA3

DPRA1

DPRA0

DPO
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RAM16X1S

16-Deep by 1-Wide Static Synchronous RAM

RAM16X1S is a 16-word by 1-bit static random access memory with synchronous
write capability. When the write enable (WE) is Low, transitions on the write clock
(WCLK) are ignored and data stored in the RAM is not affected. When WE is High,
any positive transition on WCLK loads the data on the data input (D) into the word
selected by the 4-bit address (A3 – A0). For predictable performance, address and data
inputs must be stable before a Low-to-High WCLK transition. This RAM block
assumes an active-High WCLK. However, WCLK can be active-High or active-Low.
Any inverter placed on the WCLK input net is absorbed into the block.

The signal output on the data output pin (O) is the data that is stored in the RAM at
the location defined by the values on the address pins.

You can initialize RAM16X1S during configuration. See “Specifying Initial Contents
of a RAM” in the “RAM16X1” section.

Mode selection is shown in the following truth table.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A Primitive Primitive N/A N/A Primitive Primitive Primitive

Inputs Outputs

WE(mode) WCLK D O

0 (read) X X Data

1 (read) 0 X Data

1 (read) 1 X Data

1 (write) ↑ 0 D

1 (read) ↓ X Data
Data = word addressed by bits A3 – A0

X4942

RAM16X1S

A2

A3

A1

A0

WCLK

WE

D

O
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RAM16X1S_1

16-Deep by 1-Wide Static Synchronous RAM with Negative-Edge
Clock

RAM16X1S_1 is a 16-word by 1-bit static random access memory with synchronous
write capability and negative-edge clock. When the write enable (WE) is Low, transi-
tions on the write clock (WCLK) are ignored and data stored in the RAM is not
affected. When WE is High, any negative transition on WCLK loads the data on the
data input (D) into the word selected by the 4-bit address (A3 – A0). For predictable
performance, address and data inputs must be stable before a High-to-Low WCLK
transition. This RAM block assumes an active-High WCLK. However, WCLK can be
active-High or active-Low. Any inverter placed on the WCLK input net is absorbed
into the block.

The signal output on the data output pin (O) is the data that is stored in the RAM at
the location defined by the values on the address pins.

You can initialize RAM16X1S_1 during configuration. See “Specifying Initial Contents
of a RAM” in the “RAM16X1” section.

Mode selection is shown in the following truth table.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive

Inputs Outputs

WE(mode) WCLK D O

0 (read) X X Data

1 (read) 0 X Data

1 (read) 1 X Data

1 (write) ↓ 0 D

1 (read) ↑ X Data
Data = word addressed by bits A3 – A0

X8418

RAM16X1S_1

A2
A3

A1

A0
WCLK

D

WE Q
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RAM16X2

16-Deep by 2-Wide Static RAM

RAM16X2 is a 16-word by 2-bit static read-write random access memory. When the
write enable (WE) is High, the data on data inputs (D1 – D0) is loaded into the word
selected by the 4-bit address (A3 – A0). The data outputs (O1 – O0) reflect the selected
(addressed) word, whether WE is High or Low. When WE is Low, the RAM content is
unaffected by address or data input transitions. Address inputs must be stable before
the High-to-Low WE transition for predictable performance.

The initial contents of RAM16X2 cannot be specified directly. Initial contents may be
specified only for RAMs that are 1-bit wide and 16 or 32 bits deep. See “Specifying
Initial Contents of a RAM” in the “RAM16X1” section.

Mode selection is shown in the following truth table.

Figure 9-1 RAM16X2 Implementation XC4000

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A Macro Macro N/A N/A N/A N/A N/A

Inputs Outputs

WE (mode) D1 – D0 O1 – O0

0 (read) X Data

1 (write) D1 – D0 Data
Data = word addressed by bits A3 – A0

X4128

RAM16X2 O0

A1

A2

A3

A0

WE

D1

D0

O1

D
WE

A0

A1

A2

A3

O

RAM16X1

D
WE

A0

A1

A2

A3

O

RAM16X1

D1
WE

A0

A1

A2
A3

D0 O0

O1

X7745

O1

O2
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RAM16X2D

16-Deep by 2-Wide Static Dual Port Synchronous RAM

RAM16X2D is a 16-word by 2-bit static dual port random access memory with
synchronous write capability. The device has two separate address ports: the read
address (DPRA3 – DPRA0) and the write address (A3 – A0). These two address ports
are completely asynchronous. The read address controls the location of data driven
out of the output pin (DPO1 – DPO0), and the write address controls the destination
of a valid write transaction.

When the write enable (WE) is Low, transitions on the write clock (WCLK) are
ignored and data stored in the RAM is not affected. When WE is High, any positive
transition on WCLK loads the data on the data input (D1 – D0) into the word selected
by the 4-bit write address. For predictable performance, write address and data inputs
must be stable before a Low-to-High WCLK transition. This RAM block assumes an
active-High WCLK. However, WCLK can be active-High or active-Low. Any inverter
placed on the WCLK input net is absorbed into the block.

The initial contents of RAM16X2D cannot be specified directly. Initial contents may be
specified only for RAMs that are 1-bit wide and 16 or 32 bits deep. See “Specifying
Initial Contents of a RAM” in the “RAM16X1” section.

Mode selection is shown in the following truth table.

The SPO output reflects the data in the memory cell addressed by A3 – A0. The DPO
output reflects the data in the memory cell addressed by DPRA3 – DPRA0.

Note: The write process is not affected by the address on the read address port.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A Macro Macro N/A N/A Macro Macro Macro

Inputs Outputs

WE (mode) WCLK D1-D0 SPO1-SPO0 DPO1-DPO0

0 (read) X X data_a data_d

1 (read) 0 X data_a data_d

1 (read) 1 X data_a data_d

1 (write) ↑ D1-D0 D1-D0 data_d

1 (read) ↓ X data_a data_d
data_a = word addressed by bits A3-A0
data_d = word addressed by bits DPRA3-DPRA0

X4951

RAM16X2D

A2

DPRA3

DPRA2

DPRA1

DPRA0

A3

A1

A0

WCLK

WE

D1

D0

SPO0

SPO1

DPO0

DPO1
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RAM16X2S

16-Deep by 2-Wide Static Synchronous RAM

RAM16X2S is a 16-word by 2-bit static random access memory with synchronous
write capability. When the write enable (WE) is Low, transitions on the write clock
(WCLK) are ignored and data stored in the RAM is not affected. When WE is High,
any positive transition on WCLK loads the data on the data input (D1 – D0) into the
word selected by the 4-bit address (A3 – A0). For predictable performance, address
and data inputs must be stable before a Low-to-High WCLK transition. This RAM
block assumes an active-High WCLK. However, WCLK can be active-High or active-
Low. Any inverter placed on the WCLK input net is absorbed into the block.

The signal output on the data output pin (O1 – O0) is the data that is stored in the
RAM at the location defined by the values on the address pins.

The initial contents of RAM16X2S cannot be specified directly. Initial contents may be
specified only for RAMs that are 1-bit wide and 16 or 32 bits deep. See “Specifying
Initial Contents of a RAM” in the “RAM16X1” section.

Mode selection is shown in the following truth table.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A Macro Macro N/A N/A Macro Macro Macro

Inputs Outputs

WE (mode) WCLK D1-D0 O1-O0

0 (read) X X Data

1(read) 0 X Data

1(read) 1 X Data

1(write) ↑ D1-D0 D1-D0

1 (read) ↓ X Data
Data = word addressed by bits A3 – A0

X4944

RAM16X2S

A1

A3

A2

A0

WCLK

D1
D0

WE O0

O1
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RAM16X4

16-Deep by 4-Wide Static RAM

RAM16X4 is a 16-word by 4-bit static read-write random access memory. When the
write enable (WE) is High, the data on data inputs (D3 – D0) is loaded into the word
selected by the 4-bit address (A3 – A0). The data outputs (O3 – O0) reflect the selected
(addressed) word, whether WE is High or Low. When WE is Low, the RAM content is
unaffected by address or data input transitions. Address inputs must be stable before
the High-to-Low WE transition for predictable performance.

The initial contents of RAM16X4 cannot be specified directly. Initial contents may be
specified only for RAMs that are 1-bit wide and 16 or 32 bits deep. See “Specifying
Initial Contents of a RAM” in the “RAM16X1” section.

Mode selection is shown in the following truth table.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A Macro Macro N/A N/A N/A N/A N/A

Inputs Outputs

WE(mode) D3 – D0 O3 – O0

0(read) X data

1(write) D3 – D0 Data
Data = word addressed by bits A3 – A0

X4135

RAM16X4 O0

A1

A2

A3

A0

WE

D3

D2

O1

O2

O3

D1

D0
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Figure 9-2 RAM16X4 Implementation XC4000
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RAM16X4D

16-Deep by 4-Wide Static Dual Port Synchronous RAM

RAM16X4D is a 16-word by 4-bit static dual port random access memory with
synchronous write capability. The device has two separate address ports: the read
address (DPRA3 – DPRA0) and the write address (A3 – A0). These two address ports
are completely asynchronous. The read address controls the location of data driven
out of the output pin (DPO3 – DPO0), and the write address controls the destination
of a valid write transaction.

When the write enable (WE) is Low, transitions on the write clock (WCLK) are
ignored and data stored in the RAM is not affected. When WE is High, any positive
transition on WCLK loads the data on the data input (D3 – D0) into the word selected
by the 4-bit write address. For predictable performance, write address and data inputs
must be stable before a Low-to-High WCLK transition. This RAM block assumes an
active-High WCLK. However, WCLK can be active-High or active-Low. Any inverter
placed on the WCLK input net is absorbed into the block.

The initial contents of RAM16X4D cannot be specified directly. Initial contents may be
specified only for RAMs that are 1-bit wide and 16 or 32 bits deep. See “Specifying
Initial Contents of a RAM” in the “RAM16X1” section.

Mode selection is shown in the following truth table.

The SPO output reflects the data in the memory cell addressed by A3 – A0. The DPO
output reflects the data in the memory cell addressed by DPRA3 – DPRA0.

Note: The write process is not affected by the address on the read address port.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A Macro Macro N/A N/A Macro Macro Macro

Inputs Outputs

WE (mode) WCLK D3-D0 SPO3-SPO0 DPO3-DPO0

0 (read) X X data_a data_d

1 (read) 0 X data_a data_d

1 (read) 1 X data_a data_d

1 (write) ↑ D3-D0 D3-D0 data_d

1 (read) ↓ X data_a data_d
data_a = word addressed by bits A3-A0
data_d = word addressed by bits DPRA3-DPRA0

X4952

RAM16X4D
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DPRA3

DPRA2

DPRA1

DPRA0
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WCLK

D3

D2

D1
D0

WE SPO0

DPO0

DPO1
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RAM16X4S

16-Deep by 4-Wide Static Synchronous RAM

RAM16X4S is a 16-word by 4-bit static random access memory with synchronous
write capability. When the write enable (WE) is Low, transitions on the write clock
(WCLK) are ignored and data stored in the RAM is not affected. When WE is High,
any positive transition on WCLK loads the data on the data input (D3 – D0) into the
word selected by the 4-bit address (A3 – A0). For predictable performance, address
and data inputs must be stable before a Low-to-High WCLK transition. This RAM
block assumes an active-High WCLK. However, WCLK can be active-High or active-
Low. Any inverter placed on the WCLK input net is absorbed into the block.

The signal output on the data output pin (O3 – O0) is the data that is stored in the
RAM at the location defined by the values on the address pins.

The initial contents of RAM16X4S cannot be specified directly. Initial contents may be
specified only for RAMs that are 1-bit wide and 16 or 32 bits deep. See “Specifying
Initial Contents of a RAM” in the “RAM16X1” section.

Mode selection is shown in the following truth table.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A Macro Macro N/A N/A Macro Macro Macro

Inputs Outputs

WE (mode) WCLK D3 – D0 O3 – O0

0 (read) X X Data

1 (read) 0 X Data

1 (read) 1 X Data

1 (write) ↑ D3-D0 D3-D0

1 (read) ↓ X Data
Data = word addressed by bits A3 – A0

X4945

RAM16X4S

WCLK

A1

A0

D3

A3

A2

D2

D1

D0

WE O0

O1
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O3
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RAM16X8

16-Deep by 8-Wide Static RAM

RAM16X8 is a 16-word by 8-bit static read-write random access memory. When the
write enable (WE) is High, the data on data inputs (D7 – D0) is loaded into the word
selected by the 4-bit address (A3 – A0). The data outputs (O7 – O0) reflect the selected
(addressed) word, whether WE is High or Low. When WE is Low, the RAM content is
unaffected by address or data input transitions. Address inputs must be stable before
the High-to-Low WE transition for predictable performance.

The initial contents of RAM16X8 cannot be specified directly. Initial contents may be
specified only for RAMs that are 1-bit wide and 16 or 32 bits deep. See “Specifying
Initial Contents of a RAM” in the “RAM16X1” section.

Mode selection is shown in the following truth table.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A Macro Macro N/A N/A N/A N/A N/A

Inputs Outputs

WE(mode) D7 – D0 O7 – O0

0(read) X Data

1(write) D7 – D0 Data
Data = word addressed by bits A3 – A0

X4142

RAM16X8

A0
WE

D[7:0] O[7:0]

A1
A2
A3
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Figure 9-3 RAM16X8 Implementation XC4000

O0

A0
A1
A2
A3

D O
WE

RAM16X1

O7

O6

O0

O5

O4

O1

O2

O3

O[7:0]

A2

D[7:0]

D4

D5

D6

D7

D0

D1

D2

D3

A3

A1
A0
WE

O1

A0
A1
A2
A3

D O
WE

RAM16X1

O2

A0
A1
A2
A3

D O

WE

RAM16X1

O3

A0
A1
A2
A3

D O
WE

RAM16X1

O4

A0
A1
A2
A3

D O
WE

RAM16X1

O5

A0
A1
A2
A3

D O
WE

RAM16X1

O6

A0
A1
A2
A3

D O
WE

RAM16X1

O7

A0
A1
A2
A3

D O
WE

RAM16X1

X7600



Libraries Guide, Release M1.5

9-18 Xilinx Development System

RAM16X8D

16-Deep by 8-Wide Static Dual Port Synchronous RAM

RAM16X8D is a 16-word by 8-bit static dual port random access memory with
synchronous write capability. The device has two separate address ports: the read
address (DPRA3 – DPRA0) and the write address (A3 – A0). These two address ports
are completely asynchronous. The read address controls the location of data driven
out of the output pin (DPO7 – DPO0), and the write address controls the destination
of a valid write transaction.

When the write enable (WE) is Low, transitions on the write clock (WCLK) are
ignored and data stored in the RAM is not affected. When WE is High, any positive
transition on WCLK loads the data on the data input (D7 – D0) into the word selected
by the 4-bit write address (A3 – A0). For predictable performance, write address and
data inputs must be stable before a Low-to-High WCLK transition. This RAM block
assumes an active-High WCLK. However, WCLK can be active-High or active-Low.
Any inverter placed on the WCLK input net is absorbed into the block.

The initial contents of RAM16X8D cannot be specified directly. Initial contents may be
specified only for RAMs that are 1-bit wide and 16 or 32 bits deep. See “Specifying
Initial Contents of a RAM” in the “RAM16X1” section.

Mode selection is shown in the following truth table.

The SPO output reflects the data in the memory cell addressed by A3 – A0. The DPO
output reflects the data in the memory cell addressed by DPRA3 – DPRA0.

Note: The write process is not affected by the address on the read address port.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A Macro Macro N/A N/A Macro Macro Macro

Inputs Outputs

WE (mode) WCLK D7-D0 SP7-SPO0 DPO7-DPO0

0 (read) X X data_a data_d

1 (read) 0 X data_a data_d

1 (read) 1 X data_a data_d

1 (write) ↑ D7-D0 D7-D0 data_d

1 (read) ↓ X data_a data_d
data_a = word addressed by bits A3-A0
data_d = word addressed by bits DPRA3-DPRA0

X4953
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Figure 9-4 RAM16X8D Implementation XC4000, Spartans
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RAM16X8S

16-Deep by 8-Wide Static Synchronous RAM

RAM16X8S is a 16-word by 8-bit static random access memory with synchronous
write capability. When the write enable (WE) is Low, transitions on the write clock
(WCLK) are ignored and data stored in the RAM is not affected. When WE is High,
any positive transition on WCLK loads the data on data inputs (D7 – D0) into the
word selected by the 4-bit address (A3 – A0). For predictable performance, address
and data inputs must be stable before a Low-to-High WCLK transition. This RAM
block assumes an active-High WCLK. However, WCLK can be active-High or active-
Low. Any inverter placed on the WCLK input net is absorbed into the block.

The signal output on the data output pin (O7 – O0) is the data that is stored in the
RAM at the location defined by the values on the address pins.

The initial contents of RAM16X8S cannot be specified directly. Initial contents may be
specified only for RAMs that are 1-bit wide and 16 or 32 bits deep. See “Specifying
Initial Contents of a RAM” in the “RAM16X1” section.

Mode selection is shown in the following truth table.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A Macro Macro N/A N/A Macro Macro Macro

Inputs Outputs

WE (mode) WCLK D7-D0 O7-O0

0 (read) X X Data

1 (read) 0 X Data

1 (read) 1 X Data

1 (write) ↑ D7-D0 D7-D0

1 (read) ↓ X Data
Data = word addressed by bits A3 – A0

X4946
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Figure 9-5 RAM16X8S Implementation XC4000, Spartans
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RAM32X1

32-Deep by 1-Wide Static RAM

RAM32X1 is a 32-word by 1-bit static read-write random access memory. When the
write enable (WE) is High, the data on the data input (D) is loaded into the word
selected by the 5-bit address (A4 – A0). The data output (O) reflects the selected
(addressed) word, whether WE is High or Low. When WE is Low, the RAM content is
unaffected by address or input data transitions. Address inputs must be stable before
the High-to-Low WE transition for predictable performance.

You can initialize RAM32X1 during configuration. See “Specifying Initial Contents of
a RAM” in the “RAM16X1” section.

Mode selection is shown in the following truth table.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A Primitive Primitive N/A N/A N/A N/A N/A

Inputs Outputs

WE(mode) D O

0(read) X Data

1(write) D Data
Data = word addressed by bits A4 – A0
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RAM32X1S

32-Deep by 1-Wide Static Synchronous RAM

RAM32X1S is a 32-word by 1-bit static random access memory with synchronous
write capability. When the write enable is Low, transitions on the write clock (WCLK)
are ignored and data stored in the RAM is not affected. When WE is High, any posi-
tive transition on WCLK loads the data on the data input (D) into the word selected
by the 5-bit address (A4 – A0). For predictable performance, address and data inputs
must be stable before a Low-to-High WCLK transition. This RAM block assumes an
active-High WCLK. However, WCLK can be active-High or active-Low. Any inverter
placed on the WCLK input net is absorbed into the block.

The signal output on the data output pin (O) is the data that is stored in the RAM at
the location defined by the values on the address pins.

You can initialize RAM32X1S during configuration. See “Specifying Initial Contents
of a RAM” in the “RAM16X1” section.

Mode selection is shown in the following truth table.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A Primitive Primitive N/A N/A Primitive Primitive Primitive

Inputs Outputs

WE (mode) WCLK D O

0 (read) X X Data

1 (read) 0 X Data

1 (read) 1 X Data

1 (write) ↑ D D

1 (read) ↓ X Data
Data = word addressed by bits A4 – A0
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RAM32X1S_1

32-Deep by 1-Wide Static Synchronous RAM with Negative-Edge
Clock

RAM32X1S_1 is a 32-word by 1-bit static random access memory with synchronous
write capability. When the write enable is Low, transitions on the write clock (WCLK)
are ignored and data stored in the RAM is not affected. When WE is High, any nega-
tive transition on WCLK loads the data on the data input (D) into the word selected
by the 5-bit address (A4 – A0). For predictable performance, address and data inputs
must be stable before a High-to-Low WCLK transition. This RAM block assumes an
active-High WCLK. However, WCLK can be active-High or active-Low. Any inverter
placed on the WCLK input net is absorbed into the block.

The signal output on the data output pin (O) is the data that is stored in the RAM at
the location defined by the values on the address pins.

You can initialize RAM32X1S_1 during configuration. See “Specifying Initial Contents
of a RAM” in the “RAM16X1” section.

Mode selection is shown in the following truth table.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive

Inputs Outputs

WE (mode) WCLK D O

0 (read) X X Data

1 (read) 0 X Data

1 (read) 1 X Data

1 (write) ↓ D D

1 (read) ↑ X Data
Data = word addressed by bits A4 – A0

X8417

RAM32X1S_1

A3
A4

A1

A0
WCLK

D

WE Q

A2



Design Elements (RAM32X2)

Libraries Guide, Release M1.5 9-25

RAM32X2

32-Deep by 2-Wide Static RAM

RAM32X2 is a 32-word by 2-bit static read-write random access memory. When the
write enable (WE) is High, the data on the data inputs (D1 – D0) is loaded into the
word selected by the address bits (A4 – A0). The data outputs (O1 – O0) reflect the
selected (addressed) word, whether WE is High or Low. When WE is Low, the RAM
content is unaffected by address or input data transitions. Address inputs must be
stable before the High-to- Low WE transition for predictable performance.

The initial contents of RAM32X2 cannot be specified directly. Initial contents may be
specified only for RAMs that are 1-bit wide and 16 or 32 bits deep. See “Specifying
Initial Contents of a RAM” in the “RAM16X1” section.

Mode selection is shown in the following truth table.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A Macro Macro N/A N/A N/A N/A N/A

Inputs Outputs

WE(mode) D1 – D0 O1 – O0

0(read) X Data

1(write) D1 – D0 Data
Data = word addressed by bits A4 – A0
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RAM32X2S

32-Deep by 2-Wide Static Synchronous RAM

RAM32X2S is a 32-word by 2-bit static random access memory with synchronous
write capability. When the write enable (WE) is Low, transitions on the write clock
(WCLK) are ignored and data stored in the RAM is not affected. When WE is High,
any positive transition on WCLK loads the data on the data input (D1 – D0) into the
word selected by the 5-bit address (A4 – A0). For predictable performance, address
and data inputs must be stable before a Low-to-High WCLK transition. This RAM
block assumes an active-High WCLK. However, WCLK can be active-High or active-
Low. Any inverter placed on the WCLK input net is absorbed into the block.

The signal output on the data output pin (O1 – O0) is the data that is stored in the
RAM at the location defined by the values on the address pins.

The initial contents of RAM32X2S cannot be specified directly. Initial contents may be
specified only for RAMs that are 1-bit wide and 16 or 32 bits deep. See “Specifying
Initial Contents of a RAM” in the “RAM16X1” section.

Mode selection is shown in the following truth table.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A Macro Macro N/A N/A Macro Macro Macro

Inputs Outputs

WE (mode) WCLK D0-D1 O0-O1

0 (read) X X Data

1 (read) 0 X Data

1 (read) 1 X Data

1 (write) ↑ D1-D0 D1-D0

1 (read) ↓ X Data
Data = word addressed by bits A4 – A0
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RAM32X4

32-Deep by 4-Wide Static RAM

RAM32X4 is a 32-word by 4-bit static read-write random access memory. When the
write enable (WE) is High, the data on the data inputs (D3 – D0) is loaded into the
word selected by the address bits (A4 – A0). The data outputs (O3 – O0) reflect the
selected (addressed) word, whether WE is High or Low. When WE is Low, the RAM
content is unaffected by address or input data transitions. Address inputs must be
stable before the High-to- Low WE transition for predictable performance.

The initial contents of RAM32X4 cannot be specified directly. Initial contents may be
specified only for RAMs that are 1-bit wide and 16 or 32 bits deep. See “Specifying
Initial Contents of a RAM” in the “RAM16X1” section.

Mode selection is shown in the following truth table.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A Macro Macro N/A N/A N/A N/A N/A

Inputs Outputs

WE(mode) D3 – D0 O3 – O0

0(read) X Data

1(write) D3 – D0 Data
Data = word addressed by bits A4 – A0
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RAM32X4S

32-Deep by 4-Wide Static Synchronous RAM

RAM32X4S is a 32-word by 4-bit static random access memory with synchronous
write capability. When the write enable (WE) is Low, transitions on the write clock
(WCLK) are ignored and data stored in the RAM is not affected. When WE is High,
any positive transition on WCLK loads the data on the data inputs (D3 – D0) into the
word selected by the 5-bit address (A4 – A0). For predictable performance, address
and data inputs must be stable before a Low-to-High WCLK transition. This RAM
block assumes an active-High WCLK. However, WCLK can be active-High or active-
Low. Any inverter placed on the WCLK input net is absorbed into the block.

The signal output on the data output pin (O3 – O0) is the data that is stored in the
RAM at the location defined by the values on the address pins.

The initial contents of RAM32X4S cannot be specified directly. Initial contents may be
specified only for RAMs that are 1-bit wide and 16 or 32 bits deep. See “Specifying
Initial Contents of a RAM” in the “RAM16X1” section.

Mode selection is shown in the following truth table.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A Macro Macro N/A N/A Macro Macro Macro

Inputs Outputs

WE WCLK D3-D0 O3-O0

0 (read) X X Data

1 (read) 0 X Data

1 (read) 1 X Data

1 (write) ↑ D3-D0 D3-D0

1 (read) ↓ X Data
Data = word addressed by bits A4 – A0
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RAM32X8

32-Deep by 8-Wide Static RAM

RAM32X8 is a 32-word by 8-bit static read-write random access memory. When the
write enable (WE) is High, the data on the data inputs (D7 – D0) is loaded into the
word selected by the address bits (A4 – A0). The data outputs (O7 – O0) reflect the
selected (addressed) word, whether WE is High or Low. When WE is Low, the RAM
content is unaffected by address or input data transitions. The address inputs must be
stable before the High-to- Low WE transition for predictable performance.

The initial contents of RAM32X8 cannot be specified directly. Initial contents may be
specified only for RAMs that are 1-bit wide and 16 or 32 bits deep. See “Specifying
Initial Contents of a RAM” in the “RAM16X1” section.

Mode selection is shown in the following truth table.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A Macro Macro N/A N/A N/A N/A N/A

Inputs Outputs

WE(mode) D7 – D0 O7 – O0

0(read) X Data

1(write) D7 – D0 Data
Data = word addressed by bits A4 – A0
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Figure 9-6 RAM32X8 Implementation XC4000
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RAM32X8S

32-Deep by 8-Wide Static Synchronous RAM

RAM32X8S is a 32-word by 8-bit static random access memory with synchronous
write capability. When the write enable (WE) is Low, transitions on the write clock
(WCLK) are ignored and data stored in the RAM is not affected. When WE is High,
any positive transition on WCLK loads the data on the data inputs (D7 – D0) into the
word selected by the 5-bit address (A4 – A0). For predictable performance, address
and data inputs must be stable before a Low-to-High WCLK transition. This RAM
block assumes an active-High WCLK. However, WCLK can be active-High or active-
Low. Any inverter placed on the WCLK input net is absorbed into the block.

The signal output on the data output pin (O7 – O0) is the data that is stored in the
RAM at the location defined by the values on the address pins.

The initial contents of RAM32X8S cannot be specified directly. Initial contents may be
specified only for RAMs that are 1-bit wide and 16 or 32 bits deep. See “Specifying
Initial Contents of a RAM” in the “RAM16X1” section.

Mode selection is shown in the following truth table.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A Macro Macro N/A N/A Macro Macro Macro

Inputs Outputs

WE (mode) WCLK D7-D0 O7-O0

0 (read) X X Data

1 (read) 0 X Data

1 (read) 1 X Data

1 (write) ↑ D7-D0 D7-D0

1 (read) ↓ X Data
Data = word addressed by bits A4 – A0
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Figure 9-7 RAM32X8S Implementation XC4000, Spartans, Virtex
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RAMB4_Sn

4096-Bit Single-Port Synchronous Block RAM with Port Width ( n)
Configured to 1, 2, 4, 8, or 16 Bits

RAMB4_S1, RAMB4_S2, RAMB4_S4, RAMB4_S8, and RAMB4_S16 are dedicated
random access memory blocks with synchronous write capability. They provide the
capability for fast, discrete, large blocks of RAM in each Virtex device.The RAMB4_Sn
cell configurations are listed in the following table.

The enable (EN) pin controls read, write, and reset. When EN is Low, no data is
written and the output (DO) retains the last state. When EN is High and reset (RST) is
High, DO is cleared during the Low-to-High clock (CLK) transition; if write enable
(WE) is High, the memory contents reflect the data at DI. When EN is High and WE is
Low, the data stored in the RAM address (ADDR) is read during the Low-to-High
clock transition. When EN and WE are High, the data on the data input (DI) is loaded
into the word selected by the write address (ADDR) during the Low-to-High clock
transition and the data output (DO) reflects the selected (addressed) word.

The above description assumes an active High EN, WE, RST, and CLK. However, the
active level can be changed by placing an inverter on the port. Any inverter placed on
a RAMB4 port is absorbed into the block and does not use a CLB resource.

RAMB4_Sn’s may be initialized during configuration. See the  “Specifying Initial
Contents of a Block RAM” section below.

Block RAM output registers are asynchronously cleared, output Low, when power is
applied. The initial contents of the block RAM are not altered. Virtex simulates power-
on when global set/reset (GSR) is active. GSR defaults to active-High but can be
inverted by adding an inverter in front of the GSR input of the STARTUP_VIRTEX
symbol.

Mode selection is shown in the following truth table.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive

Component Depth Width Address Bus Data Bus

RAMB4_S1 4096 1 (11:0) (0:0)

RAMB4_S2 2048 2 (10:0) (1:0)

RAMB4_S4 1024 4 (9:0) (3:0)

RAMB4_S8 512 8 (8:0) (7:0)

RAMB4_S16 256 16 (7:0) (15:0)
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Specifying Initial Contents of a Block RAM

You can use the INIT_0x attributes to specify an initial value during device configura-
tion. The initialization of each RAMB4_Sn is set by 16 initialization attributes
(INIT_00 through INIT_0F) of 64 hex values for a total of 4096 bits. See the  “INIT_0x”
section of the “Attributes, Constraints, and Carry Logic” chapter for more information
on these attributes.

If any INIT_0x attribute is not specified, it is configured as zeros. Partial initialization
strings are padded with zeros to the left.

Inputs Outputs

EN RST WE CLK ADDR DI DO RAM Contents

0 X X X X X No Chg No Chg

1 1 0 ↑ X X 0 No Chg

1 1 1 ↑ addr data 0 RAM(addr) <=data

1 0 0 ↑ addr X RAM(addr) No Chg

1 0 1 ↑ addr data data RAM(addr) <=data
addr=RAM address
RAM(addr)=RAM contents at address ADDR
data=RAM input data
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RAMB4_Sn_Sn

4096-Bit Dual-Port Synchronous Block RAM with Port Width ( n)
Configured to 1, 2, 4, 8, or 16 Bits

Figure 9-8 RAMB4_Sn_Sn Representations

The RAMB4_Sn_Sn components listed below are 4096-bit dual-ported dedicated
random access memory blocks with synchronous write capability. Each port is inde-
pendent of the other while accessing the same set of 4096 memory cells. Each port is
independently configured to a specific data width.
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X8727
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Each port is fully synchronous with independent clock pins. All port A input pins
have setup time referenced to the CLKA pin and its data output bus DIA has a clock-
to-out time referenced to the CLKA. All port B input pins have setup time referenced
to the CLKB pin and its data output bus DIB has a clock-to-out time referenced to the
CLKB.

The enable ENA pin controls read, write, and reset for port A. When ENA is Low, no
data is written and the output (DOA) retains the last state. When ENA is High and
reset (RSTA) is High, DOA is cleared during the Low-to-High clock (CLKA) transi-
tion; if write enable (WEA) is High, the memory contents reflect the data at DIA.
When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is
read during the Low-to-High clock transition. When ENA and WEA are High, the
data on the data input (DIA) is loaded into the word selected by the write address
(ADDRA) during the Low-to-High clock transition and the data output (DOA)
reflects the selected (addressed) word.

The enable ENB pin controls read, write, and reset for port B. When ENB is Low, no
data is written and the output (DOB) retains the last state. When ENB is High and
reset (RSTB) is High, DOB is cleared during the Low-to-High clock (CLKB) transition;
if write enable (WEB) is High, the memory contents reflect the data at DIB. When ENB
is High and WEB is Low, the data stored in the RAM address (ADDRB) is read during
the Low-to-High clock transition. When ENB and WEB are High, the data on the data
input (DIB) is loaded into the word selected by the write address (ADDRB) during the
Low-to-High clock transition and the data output (DOB) reflects the selected
(addressed) word.

Component
Port A
Depth

Port A
Width

Port A
ADDR

Port A
DI

Port B
Depth

Port B
Width

Port B
ADDR

Port B
DI

RAMB4_S1_S1 4096 1 (11:0) (0:0) 4096 1 (11:0) (0:0)

RAMB4_S1_S2 4096 1 (11:0) (0:0) 2048 2 (10:0) (1:0)

RAMB4_S1_S4 4096 1 (11:0) (0:0) 1024 4 (9:0) (3:0)

RAMB4_S1_S8 4096 1 (11:0) (0:0) 512 8 (8:0) (7:0)

RAMB4_S1_S16 4096 1 (11:0) (0:0) 256 16 (7:0) (15:0)

RAMB4_S2_S2 2048 2 (10:0) (1:0) 2048 2 (10:0) (1:0)

RAMB4_S2_S4 2048 2 (10:0) (1:0) 1024 4 (9:0) (3:0)

RAMB4_S2_S8 2048 2 (10:0) (1:0) 512 8 (8:0) (7:0)

RAMB4_S2_S16 2048 2 (10:0) (1:0) 256 16 (7:0) (15:0)

RAMB4_S4_S4 1024 4 (9:0) (3:0) 1024 4 (9:0) (3:0)

RAMB4_S4_S8 1024 4 (9:0) (3:0) 512 8 (8:0) (7:0)

RAMB4_S4_S16 1024 4 (9:0) (3:0) 256 16 (7:0) (15:0)

RAMB4_S8_S8 512 8 (8:0) (7:0) 512 8 (8:0) (7:0)

RAMB4_S8_S16 512 8 (8:0) (7:0) 256 16 (7:0) (15:0)

RAMB4_S16_S16 256 16 (7:0) (15:0) 256 16 (7:0) (15:0)
ADDR=address bus for the port
DI=data input bus for the port
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The above descriptions assume active High control pins (ENA, WEA, RSTA, CLKA,
ENB, WEB, RSTB, and CLKB). However, the active level can be changed by placing an
inverter on the port. Any inverter placed on a RAMB4 port is absorbed into the block
and does not use a CLB resource.

RAMB_Sn_Sn’s may be initialized during configuration. See  “Specifying Initial
Contents of a Block RAM” section below.

Block RAM output registers are asynchronously cleared, output Low, when power is
applied. The initial contents of the block RAM are not altered.Virtex simulates power-
on when global set/reset (GSR) is active. GSR defaults to active-High but can be
inverted by adding an inverter in front of the GSR input of the STARTUP_VIRTEX
symbol.

Mode selection is shown in the following truth table.

Address Mapping

Each port accesses the same set of 4096 memory cells using an addressing scheme that
is dependent on the width of the port. The physical RAM location that is addressed
for a particular width is determined from the following formula.

Start=((ADDR port+1)*(Widthport)) -1

End=(ADDRport)*(Widthport)

The following table shows address mapping for each port width.

Inputs Outputs

EN(A/B) RST(A/B) WE(A/B) CLK(A/B) ADDR(A/B) DI(A/B) DO(A/B) RAM Contents

0 X X X X X No Chg No Chg

1 1 0 ↑ X X 0 No Chg

1 1 1 ↑ addr data 0 RAM(addr) <=data

1 0 0 ↑ addr X RAM(addr) No Chg

1 0 1 ↑ addr data data RAM(addr) <=data
addr=RAM address of port A/B
RAM(addr)=RAM contents at address ADDRA/ADDRB
data=RAM input data at pins DIA/DIB

Table 9-1 Port Address Mapping

Port Width Port Addresses

1 4096 <----- 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

2 2048 <----- 07 06 05 04 03 02 01 00

4 1024 <----- 03 02 01 00

8 512 <----- 01 00

16 256 <----- 00
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Port A and Port B Conflict Resolution

A RAMB4_Sn_Sn component is a true dual-ported RAM in that it allows simulta-
neous reads of the same memory cell. When one port is performing a write to a given
memory cell, the other port should not address that memory cell (for a write or a read)
within the clock-to-clock setup window.

• If both ports write to the same memory cell simultaneously, violating the clock-to-
setup requirement, the data stored will be invalid.

• If one port attempts to read from the same memory cell that the other is simulta-
neously writing to, violating the clock setup requirement, the write will be
successful but the data read will be invalid.

Specifying Initial Contents of a Block RAM

You can use the INIT_0x attributes to specify an initial value during device configura-
tion. The initialization of each RAMB4_Sn_Sn is set by 16 initialization attributes
(INIT_00 through INIT_0F) of 64 hex values for a total of 4096 bits. See the  “INIT_0x”
section of the “Attributes, Constraints, and Carry Logic” chapter for more information
on these attributes.

If any INIT_0x attribute is not specified, it is configured as zeros. Partial initialization
strings are padded with zeros to the left.
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READBACK

FPGA Bitstream Readback Controller

The READBACK macro accesses the bitstream readback function. A Low-to-High
transition on the TRIG input initiates the readback process. The readback data
appears on the DATA output. The RIP (readback-in-progress) output remains High
during the readback process. If you use the ReadAbort:Enable option in BitGen, a
High-to-Low transition on the TRIG input aborts the process. The signal on the CLK
input clocks out the readback data; if no signal is connected to the CLK input, the
internal CCLK is used. Set the ReadClk option in BitGen to indicate the readback
clock source.

Typically, READBACK inputs are sourced by device-external input pins and outputs
drive device-external output pins. If you want external input and output pins,
connect READBACK pins through IBUFs or OBUFs to pads, as with any I/O device.
However, you can connect READBACK pins to device-internal logic instead. For
details on the READBACK process for each architecture, refer to The Programmable
Logic Data Book.

Note: Virtex provides the readback function through dedicated configuration port
instructions, instead of with a READBACK component as in other FPGA architec-
tures. Refer to the “CAPTURE_VIRTEX” section for information on capturing register
(flip-flop and latch) information for the Virtex readback function.

Figure 9-9 READBACK Implementation XC4000, XC5200, Spartans

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A Macro Macro Macro N/A Macro Macro N/A

READBACK

CLK

TRIG

DATA

RIP

X7756

RDBK

RDCLK

I

TRIG DATA

RIP

DATA	

RIP

CLK	

TRIG	

X7866



Libraries Guide, Release M1.5

9-40 Xilinx Development System

ROM16X1

16-Deep by 1-Wide ROM

ROM16X1 is a 16-word by 1-bit read-only memory. The data output (O) reflects the
word selected by the 4-bit address (A3 – A0). The ROM is initialized to a known value
during configuration with the INIT=value parameter. The value consists of four hexa-
decimal digits that are written into the ROM from the most-significant digit A=FH to
the least-significant digit A=0H. For example, the INIT=10A7 parameter produces the
data stream

0001 0000 1010 0111

An error occurs if the INIT=value is not specified. Refer to the appropriate CAE tool
interface user guide for details.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A Primitive Primitive N/A N/A Primitive Primitive N/A

X4137

ROM16X1A0

A1

A2

A3



O
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ROM32X1

32-Deep by 1-Wide ROM

ROM32X1 is a 32-word by 1-bit read-only memory. The data output (O) reflects the
word selected by the 5-bit address (A4 – A0). The ROM is initialized to a known value
during configuration with the INIT=value parameter. The value consists of eight hexa-
decimal digits that are written into the ROM from the most-significant digit A=1FH to
the least-significant digit A=00H. For example, the INIT=10A78F39 parameter
produces the data stream

0001  0000  1010  0111  1000  1111  0011  1001

An error occurs if the INIT=value is not specified. Refer to the appropriate CAE tool
interface user guide for details.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A Primitive Primitive N/A N/A Primitive Primitive N/A

X4130

ROM32X1
O

A2

A3

A4

A1

A0
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Chapter 10

Design Elements (SOP3 to XORCY_L)

This chapter describes design elements included in the Unified Libraries. The
elements are organized in alphanumeric order with all numeric suffixes in ascending
order.

Information on the specific architectures supported by each of the following libraries
is contained under the Applicable Architectures section of the Unified Libraries
Chapter.

• XC3000 Library

• XC4000E Library

• XC4000X Library

• XC5200 Library

• XC9000 Library

• Spartan Library

• SpartanXL Library

• Virtex Library

Note: Wherever XC4000 is mentioned, the information applies to all architectures
supported by the XC4000E and XC4000X libraries.

Note: Wherever Spartans or Spartan series is mentioned, the information applies to all
architectures supported by the Spartan and SpartanXL libraries.

Schematics are included for each library if the implementation differs. Design
elements with bused or multiple I/O pins (2-, 4-, 8-, 16-bit versions) typically include
just one schematic — generally the 8-bit version. When only one schematic is
included, implementation of the smaller and larger elements differs only in the
number of sections. In cases where an 8-bit version is very large, an appropriate
smaller element serves as the schematic example.
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SOP3-4

Sum of Products

Figure 10-1 SOP Gate Representations

Sum Of Products macros and primitives provide common logic functions by OR
gating the outputs of two AND functions or the output of one AND function with one
direct input. Variations of inverting and non-inverting inputs are available.

Figure 10-2 SOP3 Implementation XC3000, XC4000, XC5200, XC9000,
Spartans, Virtex

Element XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

SOP3,
SOP3B1A,
SOP3B1B,
SOP3B2A,
SOP3B2B,
SOP3B3
SOP4,
SOP4B1,
SOP4B2A,
SOP4B2B,
SOP4B3,
SOP4B4

Macro Macro Macro Macro Macro Macro Macro Macro

SOP4B4

SOP4B3

SOP4B2B

SOP4B2A

SOP4B1

SOP4

SOP3B3

SOP3B2B

SOP3B2A

SOP3B1B

SOP3B1A

SOP3

X7867

I1

I0

X8111

I2

O	

OR2AND2

I01
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Figure 10-3 SOP4 Implementation XC3000, XC4000, XC5200, XC9000,
Spartans, Virtex
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SR4CE, SR8CE, SR16CE

4-, 8-, 16-Bit Serial-In Parallel-Out Shift Registers with Clock
Enable and Asynchronous Clear

SR4CE, SR8CE, and SR16CE are 4-, 8-, and 16-bit shift registers, respectively, with a
shift-left serial input (SLI), parallel outputs (Q), and clock enable (CE) and asynchro-
nous clear (CLR) inputs. The CLR input, when High, overrides all other inputs and
resets the data outputs (Q) Low. When CE is High and CLR is Low, the data on the SLI
input is loaded into the first bit of the shift register during the Low-to-High clock (C)
transition and appears on the Q0 output. During subsequent Low-to-High clock tran-
sitions, when CE is High and CLR is Low, data is shifted to the next highest bit posi-
tion as new data is loaded into Q0 (SLI→Q0, Q0→Q1, Q1→Q2, and so forth). The
register ignores clock transitions when CE is Low.

Registers can be cascaded by connecting the last Q output (Q3 for SR4CE, Q7 for
SR8CE, or Q15 for SR16CE) of one stage to the SLI input of the next stage and
connecting clock, CE, and CLR in parallel.

The register is asynchronously cleared, outputs Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000,
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in
front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Macro Macro Macro Macro Macro Macro Macro Macro

Inputs Outputs

CLR CE SLI C Q0 Qz – Q1

1 X X X 0 0

0 0 X X No Chg No Chg

0 1 1 ↑ 1 qn-1

0 1 0 ↑ 0 qn-1
z = 3 for SR4CE; z = 7for SR8CE; z = 15 for SR16CE
qn-1 = state of referenced output one setup time prior to active clock transition

X4145

SR4CE

C

CE

SLI

Q3

Q2

Q1

Q0

CLR

X4151

SR8CE

C

CE

SLI
Q[7:0]

CLR

X4157

SR16CE

C

CE

SLI
Q[15:0]

CLR
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Figure 10-4 SR8CE Implementation XC3000, XC4000, XC5200, XC9000,
Spartans, Virtex
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SR4CLE, SR8CLE, SR16CLE

4-, 8-, 16-Bit Loadable Serial/Parallel-In Parallel-Out Shift Registers
with Clock Enable and Asynchronous Clear

SR4CLE, SR8CLE, and SR16CLE are 4-, 8-, and 16-bit shift registers, respectively, with
a shift-left serial input (SLI), parallel inputs (D), parallel outputs (Q), and three control
inputs: clock enable (CE), load enable (L), and asynchronous clear (CLR).The register
ignores clock transitions when L and CE are Low. The asynchronous CLR, when
High, overrides all other inputs and resets the data outputs (Q) Low. When L is High
and CLR is Low, data on the Dn – D0 inputs is loaded into the corresponding Qn – Q0
bits of the register. When CE is High and L and CLR are Low, data on the SLI input is
loaded into the first bit of the shift register during the Low-to-High clock (C) transi-
tion and appears on the Q0 output. During subsequent clock transitions, when CE is
High and L and CLR are Low, the data is shifted to the next highest bit position as
new data is loaded into Q0 (SLI→Q0, Q0→Q1, Q1→Q2, and so forth).

Registers can be cascaded by connecting the last Q output (Q3 for SR4CLE, Q7 for
SR8CLE, or Q15 for SR16CLE) of one stage to the SLI input of the next stage and
connecting clock, CE, L, and CLR inputs in parallel.

The register is asynchronously cleared, outputs Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000,
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in
front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Macro Macro Macro Macro Macro Macro Macro Macro

Inputs Outputs

CLR L CE SLI Dn – D0 C Q0 Qz – Q1

1 X X X X X 0 0

0 1 X X Dn – D0 ↑ d0 dn

0 0 1 SLI X ↑ SLI qn-1

0 0 0 X X X No Chg No Chg
z = 3 for SR4CLE; z = 7 for SR8CLE; z = 15 for SR16CLE
dn = state of referenced input one setup time prior to active clock transition
qn-1 = state of referenced output one setup time prior to active clock transition

X4147
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L
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X4153
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CLR
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Q[15:0]
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Figure 10-5 SR8CLE Implementation XC3000, XC4000, XC5200, XC9000,
Spartans, Virtex
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SR4CLED, SR8CLED, SR16CLED

4-, 8-, 16-Bit Shift Registers with Clock Enable and Asynchronous
Clear

SR4CLED, SR8CLED, and SR16CLED are 4-, 8-, and 16-bit shift registers, respectively,
with shift-left (SLI) and shift-right (SRI) serial inputs, parallel inputs (D), and four
control inputs: clock enable (CE), load enable (L), shift left/right (LEFT), and asyn-
chronous clear (CLR). The register ignores clock transitions when CE and L are Low.
The asynchronous clear, when High, overrides all other inputs and resets the data
outputs (Qn) Low. When L is High and CLR is Low, the data on the D inputs is loaded
into the corresponding Q bits of the register. When CE is High and L and CLR are
Low, data is shifted right or left, depending on the state of the LEFT input. If LEFT is
High, data on the SLI is loaded into Q0 during the Low-to-High clock transition and
shifted left (to Q1, Q2, and so forth) during subsequent clock transitions. If LEFT is
Low, data on the SRI is loaded into the last Q output (Q3 for SR4CLED, Q7 for
SR8CLED, or Q15 for SR16CLED) during the Low-to-High clock transition and
shifted right (to Q2, Q1,... for SR4CLED; to Q6, Q5,... for SR8CLED; and to Q14, Q13,...
for SR16CLED) during subsequent clock transitions. The truth tables for SR4CLED,
SR8CLED, and SR16CLED indicate the state of the Q outputs under all input condi-
tions for SR4CLED, SR8CLED, and SR16CLED.

The register is asynchronously cleared, outputs Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000,
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in
front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.

SR4CLED Truth Table

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Macro Macro Macro Macro Macro Macro Macro Macro

Inputs Outputs

CLR L CE LEFT SLI SRI D3 – D0 C Q0 Q3 Q2 – Q1

1 X X X X X X X 0 0 0

0 1 X X X X D3– D0 ↑ d0 d3 dn

0 0 0 X X X X X No Chg No Chg No Chg

0 0 1 1 SLI X X ↑ SLI q2 qn-1

0 0 1 0 X SRI X ↑ q1 SRI qn+1
dn = state of referenced input one setup time prior to active clock transition
qn-1 and qn+1 = state of referenced output one setup time prior to active clock transition
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SR8CLED Truth Table

SR16CLED Truth Table

Inputs Outputs

CLR L CE LEFT SLI SRI D7 – D0 C Q0 Q7 Q6 – Q1

1 X X X X X X X 0 0 0

0 1 X X X X D7 – D0 ↑ d0 d7 dn

0 0 0 X X X X X No Chg No Chg No Chg

0 0 1 1 SLI X X ↑ SLI q6 qn-1

0 0 1 0 X SRI X ↑ q1 SRI qn+1
dn = state of referenced input one setup time prior to active clock transition
qn-1 or qn+1 = state of referenced output one setup time prior to active clock transition

Inputs Outputs

CLR L CE LEFT SLI SRI D15 – D0 C Q0 Q15 Q14 – Q1

1 X X X X X X X 0 0 0

0 1 X X X X D15 – D0 ↑ d0 d15 dn

0 0 0 X X X X X No Chg No Chg No Chg

0 0 1 1 SLI X X ↑ SLI q14 qn-1

0 0 1 0 X SRI X ↑ q1 SRI qn+1
dn = state of referenced input one setup time prior to active clock transition
qn-1 or qn+1 = state of referenced output one setup time prior to active clock transition
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Figure 10-6 SR8CLED Implementation XC3000, XC4000, XC5200, Spartans,
Virtex
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Figure 10-7 SR8CLED Implementation XC9000
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SR4RE, SR8RE, SR16RE

4-, 8-, 16-Bit Serial-In Parallel-Out Shift Registers with Clock
Enable and Synchronous Reset

SR4RE, SR8RE, and SR16RE are 4-, 8-, and 16-bit shift registers, respectively, with
shift-left serial input (SLI), parallel outputs (Qn), clock enable (CE), and synchronous
reset (R) inputs. The R input, when High, overrides all other inputs during the Low-
to-High clock (C) transition and resets the data outputs (Q) Low. When CE is High
and R is Low, the data on the SLI is loaded into the first bit of the shift register during
the Low-to-High clock (C) transition and appears on the Q0 output. During subse-
quent Low-to-High clock transitions, when CE is High and R is Low, data is shifted to
the next highest bit position as new data is loaded into Q0 (SLI→Q0, Q0→Q1,
Q1→Q2, and so forth). The register ignores clock transitions when CE is Low.

Registers can be cascaded by connecting the last Q output (Q3 for SR4RE, Q7 for
SR8RE, or Q15 for SR16RE) of one stage to the SLI input of the next stage and
connecting clock, CE, and R in parallel.

The register is asynchronously cleared, outputs Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000,
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in
front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Macro Macro Macro Macro Macro Macro Macro Macro

Inputs Outputs

R CE SLI C Q0 Qz – Q1

1 X X ↑ 0 0

0 0 X X No Chg No Chg

0 1 1 ↑ 1 qn-1

0 1 0 ↑ 0 qn-1
z = 3 for SR4RE; z = 7 for SR8RE; z = 15 for SR16RE
qn-1 = state of referenced output one setup time prior to active clock transition

X4144

SR4RE

C

CE

SLI

Q3

Q2

Q1
Q0

R

X4150

SR8RE

C

CE

SLI
Q[7:0]

R

X4156

SR16RE

C

CE

SLI
Q[15:0]

R
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Figure 10-8 SR8RE Implementation XC3000, XC4000, XC5200, XC9000,
Spartans, Virtex
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SR4RLE, SR8RLE, SR16RLE

4-, 8-, 16-Bit Loadable Serial/Parallel-In Parallel-Out Shift Registers
with Clock Enable and Synchronous Reset

SR4RLE, SR8RLE, and SR16RLE are 4-, 8-, and 16-bit shift registers, respectively, with
shift-left serial input (SLI), parallel inputs (D), parallel outputs (Q), and three control
inputs — clock enable (CE), load enable (L), and synchronous reset (R). The register
ignores clock transitions when L and CE are Low. The synchronous R, when High,
overrides all other inputs during the Low-to-High clock (C) transition and resets the
data outputs (Q) Low. When L is High and R is Low, data on the D inputs is loaded
into the corresponding Q bits of the register. When CE is High and L and R are Low,
data on the SLI input is loaded into the first bit of the shift register during the Low-to-
High clock (C) transition and appears on the Q0 output. During subsequent clock
transitions, when CE is High and L and R are Low, the data is shifted to the next
highest bit position as new data is loaded into Q0 (SLI→Q0, Q0→Q1, Q1→Q2, and so
forth).

Registers can be cascaded by connecting the last Q output (Q3 for SR4RLE, Q7 for
SR8RLE, or 15 for SR16RLE) of one stage to the SLI input of the next stage and
connecting clock, CE, L, and R inputs in parallel.

The register is asynchronously cleared, outputs Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000,
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in
front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Macro Macro Macro Macro Macro Macro Macro Macro

Inputs Outputs

R L CE SLI Dz – D0 C Q0 Qz – Q1

1 X X X X ↑ 0 0

0 1 X X Dz – D0 ↑ d0 dn

0 0 1 SLI X ↑ SLI qn-1

0 0 0 X X X No Chg No Chg
z = 3 for SR4RLE; z = 7 for SR8RLE; z = 15 for SR16RLE
dn = state of referenced input one setup time prior to active clock transition
qn-1 = state of referenced output one setup time prior to active clock transition
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Figure 10-9 SR8RLE Implementation XC3000, XC4000, XC5200, XC9000,
Spartans, Virtex
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SR4RLED, SR8RLED, SR16RLED

4-, 8-, 16-Bit Shift Registers with Clock Enable and Synchronous
Reset

SR4RLED, SR8RLED, and SR16RLED are 4-, 8-, and 16-bit shift registers, respectively,
with shift-left (SLI) and shift-right (SRI) serial inputs, parallel inputs (D), and four
control inputs — clock enable (CE), load enable (L), shift left/right (LEFT), and
synchronous reset (R). The register ignores clock transitions when CE and L are Low.
The synchronous R, when High, overrides all other inputs during the Low-to-High
clock (C) transition and resets the data outputs (Q) Low. When L is High and R is Low,
the data on the D inputs is loaded into the corresponding Q bits of the register. When
CE is High and L and R are Low, data is shifted right or left, depending on the state of
the LEFT input. If LEFT is High, data on SLI is loaded into Q0 during the Low-to-
High clock transition and shifted left (to Q1, Q2, and so forth) during subsequent
clock transitions. If LEFT is Low, data on the SRI is loaded into the last Q output (Q3
for SR4RLED, Q7 for SR8RLED, or Q15 for SR16RLED) during the Low-to-High clock
transition and shifted right (to Q2, Q1,... for SR4RLED; to Q6, Q5,... for SR8RLED; or
to Q14, Q13,... for SR16RLED) during subsequent clock transitions. The truth table
indicates the state of the Q outputs under all input conditions.

The register is asynchronously cleared, outputs Low, when power is applied. For
CPLDs, the power-on condition can be simulated by applying a High-level pulse on
the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/
reset (GSR) is active. GR for XC3000 is active-Low. GR for XC5200 and GSR (XC4000,
Spartans, Virtex) default to active-High but can be inverted by adding an inverter in
front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.

SR4RLED Truth Table

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Macro Macro Macro Macro Macro Macro Macro Macro

Inputs Outputs

R L CE LEFT SLI SRI D3 – D0 C Q0 Q3 Q2 – Q1

1 X X X X X X ↑ 0 0 0

0 1 X X X X D3 – D0 ↑ d0 d3 dn

0 0 0 X X X X X No Chg No Chg No Chg

0 0 1 1 SLI X X ↑ SLI q2 qn-1

0 0 1 0 X SRI X ↑ q1 SRI qn+1
dn = state of referenced input one setup time prior to active clock transition
qn-1 or qn+1 = state of referenced output one setup time prior to active clock transition
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SR8RLED Truth Table

SR16RLED Truth Table

Inputs Outputs

R L CE LEFT SLI SRI D7– D0 C Q0 Q7 Q6 – Q1

1 X X X X X X ↑ 0 0 0

0 1 X X X X D7 – D0 ↑ d0 d7 dn

0 0 0 X X X X X No Chg No Chg No Chg

0 0 1 1 SLI X X ↑ SLI q6 qn-1

0 0 1 0 X SRI X ↑ q1 SRI qn+1
dn = state of referenced input one setup time prior to active clock transition
qn-1 or qn+1 = state of referenced output one setup time prior to active clock transition

Inputs Outputs

R L CE LEFT SLI SRI D15 – D0 C Q0 Q15 Q14 – Q1

1 X X X X X X ↑ 0 0 0

0 1 X X X X D15 – D0 ↑ d0 d15 dn

0 0 0 X X X X X No Chg No Chg No Chg

0 0 1 1 SLI X X ↑ SLI q14 qn-1

0 0 1 0 X SRI X ↑ q1 SRI qn+1
dn = state of referenced input one setup time prior to active clock transition
qn-1 or qn+1 = state of referenced output one setup time prior to active clock transition
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Figure 10-10 SR8RLED Implementation XC3000, XC4000, XC5200, XC9000,
Spartans, Virtex

O
D1

D0

S0

M2_1

MDR0

Q0

C

QD

FDRE

R

O
D1

D0

S0

M2_1
MDL0

MDLO

O
D1

D0

S0

M2_1

MDR1

Q1

C

QD

FDRE

R

O
D1

D0

S0

M2_1
MDL1

MDL1

O
D1

D0

S0

M2_1

MDR2

Q2

C

QD

FDRE

R

O
D1

D0

S0

M2_1
MDL2

MDL2

O
D1

D0

S0

M2_1

MDR3

Q3

C

QD

FDRE

R

O
D1

D0

S0

M2_1
MDL3

MDL3

O
D1

D0

S0

M2_1

MDR4

Q4

C

QD

FDRE

R

O
D1

D0

S0

M2_1
MDL4

MDL4

O
D1

D0

S0

M2_1

MDR5

Q5

C

QD

FDRE

R

O
D1

D0

S0

M2_1
MDL5

MDL5

O
D1

D0

S0

M2_1

MDR6

Q6

C

QD

FDRE

R

O
D1

D0

S0

M2_1
MDL6

MDL6

O
D1

D0

S0

M2_1

MDR7

Q7

C

QD

FDRE

R

O
D1

D0

S0

M2_1
MDL7

MDL7

OR2

OR2

CE

CE

CE

CE

CE

CE

CE

CE

L_LEFT

MDR0

MDR1

MDR2

MDR3

MDR4

MDR5

MDR6

MDR7

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q[7:0]

D0

D1

D2

D3

D4

D5

D6

D7D[7:0]

L

LEFT

R

SRI

C X8688

L_OR_CE
CE

SLI



Design Elements (SRL16)

Libraries Guide, Release M1.5 10-19

SRL16

16-Bit Shift Register Look-Up-Table (LUT)

SRL16 is a shift register look up table (LUT). The inputs A3, A2, A1, and A0 select the
output length of the shift register. The shift register may be of a fixed, static length or
dynamically adjusted.

The shift register LUT contents are initialized by assigning a four-digit hexadecimal
number to an INIT attribute. The first, or the left-most, hexadecimal digit is the most
significant bit. If an INIT value is not specified, it defaults to a value of four zeros
(0000) so that the shift register LUT is cleared during configuration.

The data (D) is loaded into the first bit of the shift register during the Low-to-High
clock (CLK) transition and appears on the Q output. During subsequent Low-to-High
clock transitions data is shifted to the next highest bit position as new data is loaded
into Q.

Static Length Mode

To get a fixed length shift register, drive the A3 through A0 inputs with static values.
The length of the shift register can vary from 1 bit to 16 bits as determined from the
following formula:

Length = (8*A3) +(4*A2) + (2*A1) + A0 +1

If A3, A2, A1, and A0 are all zeros (0000), the shift register is one bit long. If they are
all ones (1111), it is 16 bits long.

Dynamic Length Mode

The length of the shift register can be changed dynamically by changing the values
driving the A3 through A0 inputs. For example, if A2, A1, and A0 are all ones (111)
and A3 toggles between a one (1) and a zero (0), the length of the shift register
changes from 16 bits to 8 bits.

Internally, the length of the shift register is always 16 bits and the input lines A3
through A0 select which of the 16 bits reach the output.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive

Inputs Output

CLK D <SR(1)> <SR(i)> Q

1 X No Chg No Chg No Chg

0 X No Chg No Chg No Chg

↑ D D SR(i-1) SR(L)
SR(1) = contents of first shift register
SR(i) = contents of the i’th shift register stage (2<= n <= L)
L = shift register length (1 through 16 determined by (8*A3) +(4*A2) + (2*A1) + A0 +1)

X8420

SRL16

A2
A3

A1

A0
CLK

D Q
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SRL16_1

16-Bit Shift Register Look-Up-Table (LUT) with Negative-Clock
Edge

SRL16_1 is a shift register look up table (LUT). The inputs A3, A2, A1, and A0 select
the output length of the shift register. The shift register may be of a fixed, static length
or dynamically adjusted. Refer to “Static Length Mode” and “Dynamic Length Mode”
in the SRL16 section.

The shift register LUT contents are initialized by assigning a four-digit hexadecimal
number to an INIT attribute. The first, or the left-most, hexadecimal digit is the most
significant bit. If an INIT value is not specified, it defaults to a value of four zeros
(0000) so that the shift register LUT is cleared during configuration.

The data (D) is loaded into the first bit of the shift register during the High-to-Low
clock (CLK) transition and appears on the Q output. During subsequent High-to-Low
clock transitions data is shifted to the next highest bit position as new data is loaded
into Q.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive

Inputs Output

CLK D <SR(1)> <SR(i)> Q

1 X No Chg No Chg No Chg

0 X No Chg No Chg No Chg

↓ D D SR(i-1) SR(L)
SR(1) = contents of first shift register
SR(i) = contents of the i’th shift register stage (2<= n <= L)
L = shift register length (1 through 16 determined by (8*A3) +(4*A2) + (2*A1) + A0 +1)

X8422

SRL16_1
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D Q
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SRL16E

16-Bit Shift Register Look-Up-Table (LUT) with Clock Enable

SRL16E is a shift register look up table (LUT). The inputs A3, A2, A1, and A0 select
the output length of the shift register. The shift register may be of a fixed, static length
or dynamically adjusted. Refer to “Static Length Mode” and “Dynamic Length Mode”
in the SRL16 section.

The shift register LUT contents are initialized by assigning a four-digit hexadecimal
number to an INIT attribute. The first, or the left-most, hexadecimal digit is the most
significant bit. If an INIT value is not specified, it defaults to a value of four zeros
(0000) so that the shift register LUT is cleared during configuration.

When CE is High, the data (D) is loaded into the first bit of the shift register during the
Low-to-High clock (CLK) transition and appears on the Q output. During subsequent
Low-to-High clock transitions, when CE is High, data is shifted to the next highest bit
position as new data is loaded into Q. When CE is Low, the register ignores clock tran-
sitions.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive
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SRL16E_1

16-Bit Shift Register Look-Up-Table (LUT) with Negative-Edge
Clock and Clock Enable

SRL16E_1 is a shift register look up table (LUT) with clock enable (CE). The inputs A3,
A2, A1, and A0 select the output length of the shift register. The shift register may be
of a fixed, static length or dynamically adjusted. Refer to “Static Length Mode” and
“Dynamic Length Mode” in the SRL16 section.

The shift register LUT contents are initialized by assigning a four-digit hexadecimal
number to an INIT attribute. The first, or the left-most, hexadecimal digit is the most
significant bit. If an INIT value is not specified, it defaults to a value of four zeros
(0000) so that the shift register LUT is cleared during configuration.

When CE is High, the data (D) is loaded into the first bit of the shift register during the
High-to-Low clock (CLK) transition and appears on the Q output. During subsequent
High-to-Low clock transitions, when CE is High, data is shifted to the next highest bit
position as new data is loaded into Q. When CE is Low, the register ignores clock tran-
sitions.
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STARTUP

User Interface to Global Clock, Reset, and 3-State Controls

The STARTUP primitive is used for Global Set/Reset, global 3-state control, and the
user configuration clock. The Global Set/Reset (GSR) input, when High, sets or resets
every flip-flop in the device, depending on the initialization state (S or R) of the flip-
flop. Following configuration, the global 3-state control (GTS), when High, forces all
the IOB outputs into high impedance mode, which isolates the device outputs from
the circuit but leaves the inputs active.

Including the STARTUP symbol in a design is optional. You must include the symbol
under the following conditions.

• If you intend to exert external control over global set/reset, you must connect the
GSR pin to an IPAD and an IBUF, as shown here. (For the XC5200, connect the GR
pin to an IPAD and an IBUF.)

• If you intend to exert external control over global tristate, you must connect the
GTS pin to an IPAD and IBUF, as shown here.

• If you wish to synchronize startup to a user clock, you must connect the user
clock signal to the CLK input, as shown here. Furthermore, “user clock” must be
selected in the BitGen program.

You can use location constraints to specify the pin from which GSR or GTS (or both) is
accessed.

The STARTUP outputs (Q2, Q3, Q1Q4, and DONEIN) display the progress/status of
the start-up process following the configuration. Refer to The Programmable Logic Data
Book for additional details.
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STARTUP_VIRTEX

Virtex User Interface to Global Clock, Reset, and 3-State Controls

The STARTUP_VIRTEX primitive is used for Global Set/Reset, global 3-state control,
and the user configuration clock. The Global Set/Reset (GSR) input, when High, sets
or resets all flip-flops, all latches, and every block RAM (RAMB4) output register in
the device, depending on the initialization state (S or R) of the component.

Note: Block RAMB4 content, LUT RAMs, delay locked loop elements (CLKDLL,
CLKDLLHF, BUFGDLL), and shift register LUTs (SRL16, SRL16_1, SRL16E,
SRL16E_1) are not set/reset.

Following configuration, the global 3-state control (GTS), when High—and BSCAN is
not enabled and executing an EXTEST instruction—forces all the IOB outputs into
high impedance mode, which isolates the device outputs from the circuit but leaves
the inputs active.

Including the STARTUP symbol in a design is optional. You must include the symbol
under the following conditions.

• If you intend to exert external control over global set/reset, you must connect the
GSR pin to a top level port and an IBUF, as shown here.

• If you intend to exert external control over global tristate, you must connect the
GTS pin to a top level port and IBUF, as shown here.

• If you wish to synchronize startup to a user clock, you must connect the user
clock signal to the CLK input, as shown here. Furthermore, “user clock” must be
selected in the BitGen program.

You can use location constraints to specify the pin from which GSR or GTS (or both) is
accessed.
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TCK

Boundary Scan Test Clock Input Pad

The TCK input pad is connected to the boundary scan test clock, which shifts the
serial data and instructions into and out of the boundary scan data registers. The func-
tion of the TCK pad is device configuration dependent and can be used as follows.

• During configuration TCK is connected to the boundary scan logic.

• After configuration, if boundary scan is not used, the TCK pad is unrestricted and
can be used by the routing tool as an input/output pad.

• After configuration, if boundary scan is used, the TCK pad can be used for user-
logic input by connecting it directly to the user logic.
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TDI

Boundary Scan Test Data Input Pad

The TDI input pad is connected to the boundary scan TDI input. It loads instructions
and data on the Low-to-High TCK transition. The function of the TDI pad is device
configuration dependent and can be used as follows.

• During configuration, TDI is connected to the boundary scan logic.

• After configuration, if boundary scan is not used, the TDI pad is unrestricted and
can be used by the routing tools as an input/output pad.

• After configuration, if boundary scan is used, the TDI pad can be used for user-
logic input by connecting the TDI pad directly to the user logic.
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TDO

Boundary Scan Data Output Pad

The TDO data output pad is connected to the boundary scan TDO output. It is
connected to the external circuit to provide the boundary scan data for each Low-to-
High TCK transition. The function of the TDO pad is device configuration dependent
and can be used as follows.

• During configuration, TDO is connected to the boundary scan logic.

• After configuration, if boundary scan is not used, the TDO pad can be used as a
bidirectional 3-state I/O pad by the routing tool.

• After configuration, if boundary scan is used, the TDO pad is still used as an
output from the boundary scan logic.
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TIMEGRP

Schematic-Level Table of Basic Timing Specification Groups

The TIMEGRP primitive table defines timing groups used in “from-to” TIMESPEC
statements in terms of other groups. The TIMEGRP table is shown in the following
figure.

These groups can include predefined groups, such as “ffs,” groups created by using
TNM attributes, such as TNM-reg on schematics, and other groups defined by a state-
ment in the TIMEGRP symbol.

The following sample statement defines groups in a TIMEGRP symbol.

TIMEGRP=all_but_regs=ffs:except:regs

The table can contain up to 8 statements of any character length, but only 30 charac-
ters are displayed in the symbol.

Note: When entering timegroup properties into a TIMEGRP symbol, some property
names should not be used because they cause a conflict with the predefined (reserved)
property names of the TIMEGRP primitive.

The standard procedure for adding a property to a symbol is to use the following
command.

PROPERTY = property_name VALUE=value

For property_name you must not use any of the system reserved names LIBVER, INST,
COMP, MODEL, or any other names reserved by your schematic capture program.
Please consult your schematic capture documentation to familiarize yourself with
reserved property names.

For more on time group attributes, see the  “Time Group Attributes” section of the
“Attributes, Constraints, and Carry Logic” chapter.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex
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TIMESPEC

Schematic-Level Timing Requirement Table

The TIMESPEC primitive is a table that you can use to specify up to eight timing
attributes (TS). TS attributes can be any length, but only 30 characters are displayed in
the TIMESPEC window. The TIMESPEC table is displayed in the following figure.

For more information on "TS" timing attributes refer to the  “TSidentifier” section of
the “Attributes, Constraints, and Carry Logic” chapter.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex
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TMS

Boundary Scan Test Mode Select Input Pad

The TMS input pad is connected to the boundary scan TMS input. It determines
which boundary scan operation is performed. The function of the TMS pad is device
configuration dependent and can be used as follows.

• During configuration, TMS is connected to the boundary scan logic.

• After configuration, if boundary scan is not used, the TMS pad is unrestricted and
can be used by the routing tools as an input/output pad.

• After configuration, if boundary scan is used, the TMS pad can be used for user-
logic input by connecting the TMS pad directly to the user logic.
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UPAD

Connects the I/O Node of an IOB to the Internal PLD Circuit

A UPAD allows the use of any unbonded IOBs in a device. It is used the same way as
a IOPAD except that the signal output is not visible on any external device pins.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex
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VCC

VCC-Connection Signal Tag

The VCC signal tag or parameter forces a net or input function to a logic High level. A
net tied to VCC cannot have any other source.

When the placement and routing software encounters a net or input function tied to
VCC, it removes any logic that is disabled by the VCC signal. The VCC signal is only
implemented when the disabled logic cannot be removed.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex
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WAND1, 4, 8, 16

Open-Drain Buffers

WAND1, WAND4, WAND8, and WAND16 are single and multiple open-drain
buffers. Each buffer has an input (I) and an open-drain output (O). When any of the
inputs is Low, the output is Low. When all the inputs are High, the output is off. To
obtain a High output, add pull-up resistors to the output (O). One pull-up resistor
uses the least power, and two pull-up resistors achieve the fastest Low-to-High transi-
tion.

To indicate two pull-up resistors, add a DOUBLE parameter to the pull-up symbol
attached to the output (O) node. Refer to the appropriate CAE tool interface user
guide for details.

Figure 10-11 WAND8 Implementation XC4000
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WOR2AND

2-Input OR Gate with Wired-AND Open-Drain Buffer Output

WOR2AND is a 2-input (I1 and I2) OR gate/buffer with an open-drain output (O). It
is used in bus applications by tying multiple open-drain outputs together. When both
inputs (I1 and I2) are Low, the output (O) is Low. When either input is High, the
output is off; wor2and cannot source or sink current. To establish an output High
level, tie a pull-up resistor(s) to the output (O). One pull-up resistor uses the least
power, two pull-up resistors achieve the fastest Low-to-High speed.

To indicate two pull-up resistors, append a DOUBLE parameter to the pull-up symbol
attached to the output (O) node. Refer to the appropriate CAE tool interface user
guide for details.
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XNOR2-9

2- to 9-Input XNOR Gates with Non-Inverted Inputs

Figure 10-12 XNOR Gate Representations

The XNOR function is performed in the Configurable Logic Block (CLB) function
generators in XC3000, XC4000, and Spartans. XNOR functions of up to nine inputs are
available. All inputs are non-inverting. Because each input uses a CLB resource,
replace functions with unused inputs with functions having the necessary number of
inputs.
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Figure 10-13 XNOR5 Implementation XC5200

Figure 10-14 XNOR5 Implementation XC9000

Figure 10-15 XNOR6 Implementation XC9000

Figure 10-16 XNOR7 Implementation XC3000

Figure 10-17 XNOR7 Implementation XC4000, XC5200, Spartans

Figure 10-18 XNOR7 Implementation XC9000
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Figure 10-19 XNOR7 Implementation Virtex

Figure 10-20 XNOR8 Implementation XC3000

Figure 10-21 XNOR8 Implementation XC4000, XC5200, Spartans

Figure 10-22 XNOR8 Implementation XC9000
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Figure 10-23 XNOR8 Implementation Virtex

Figure 10-24 XNOR9 Implementation XC3000

Figure 10-25 XNOR9 Implementation XC4000, XC5200, Spartans

Figure 10-26 XNOR9 Implementation XC9000
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Figure 10-27 XNOR9 Implementation Virtex
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XOR2-9

2- to 9-Input XOR Gates with Non-Inverted Inputs

Figure 10-28 XOR Gate Representations

The XOR function is performed in the Configurable Logic Block (CLB) function gener-
ators in XC3000, XC4000, and Spartans. XOR functions of up to nine inputs are avail-
able. All inputs are non-inverting. Because each input uses a CLB resource, replace
functions with unused inputs with functions having the necessary number of inputs.

Figure 10-29 XOR5 Implementation XC5200
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Figure 10-30 XOR5 Implementation XC9000

Figure 10-31 XOR6 Implementation XC9000

Figure 10-32 XOR7 Implementation XC9000

Figure 10-33 XOR8 Implementation XC3000

Figure 10-34 XOR8 Implementation XC4000, XC5200, Spartans
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Figure 10-35 XOR8 Implementation XC9000

Figure 10-36 XOR8 Implementation Virtex

Figure 10-37 XOR9 Implementation XC9000

I0

O	

I1
I2

I3

I4

I6

X7885

XOR4

I7

I5 XOR2

XOR4

X8695

I2

I3
O

I4

RLOC=R0C0.S0

FMAP

S1
S2

I1

O

O

XOR4

I2

I1

I0

I3

XOR4

I6

I5

I4

I7

XOR2

S0

S1

I2

I3
O

I4

RLOC=R0C0.S1

FMAP

I6

I5
I4

I7

I1

S1

I2

I3
O

I4

RLOC=R0C0.S1

FMAP

I2

I1
I0

I3

I1

S2

I0

I1

I2

I3

I4

X7886

XOR2

XOR3

XOR3
O	

I6

I7

XOR2

XOR3
I8

I5



Design Elements (XORCY)

Libraries Guide, Release M1.5 10-43

XORCY

XOR for Carry Logic with General Output

XORCY is a special XOR with general O output used for generating faster and smaller
arithmetic functions.

Its O output is a general interconnect. See also“XORCY_D” and “XORCY_L”.
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XORCY_D

XOR for Carry Logic with Dual Output

XORCY_D is a special XOR used for generating faster and smaller arithmetic func-
tions.

XORCY_D has two functionally identical outputs, O and LO. The O output is a
general interconnect. The LO output is used to connect to another output within the
same CLB slice.

See also “XORCY” and “XORCY_L”.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive



X8409

LI

CI

LO

O



Design Elements (XORCY_L)

Libraries Guide, Release M1.5 10-45

XORCY_L

XOR for Carry Logic with Local Output

XORCY_L is a special XOR with local LO output used for generating faster and
smaller arithmetic functions. The LO output is used to connect to another output
within the same CLB slice.

See also “XORCY” an d “XORCY_D”.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

N/A N/A N/A N/A N/A N/A N/A Primitive

X8404

LI

CI

LO
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Chapter 11

Design Elements (X74_42 to X74_521)

This chapter describes design elements included in the Unified Libraries. The
elements are organized in alphanumeric order with all numeric suffixes in ascending
order.

Information on the specific architectures supported by each of the following libraries
is contained under the Applicable Architectures section of the Unified Libraries
Chapter.

• XC3000 Library

• XC4000E Library

• XC4000X Library

• XC5200 Library

• XC9000 Library

• Spartan Library

• SpartanXL Library

• Virtex Library

Note: Wherever XC4000 is mentioned, the information applies to all architectures
supported by the XC4000E and XC4000X libraries.

Note: Wherever Spartans or Spartan series is mentioned, the information applies to all
architectures supported by the Spartan and SpartanXL libraries.

Schematics are included for each library if the implementation differs. Design
elements with bused or multiple I/O pins (2-, 4-, 8-, 16-bit versions) typically include
just one schematic — generally the 8-bit version. When only one schematic is
included, implementation of the smaller and larger elements differs only in the
number of sections. In cases where an 8-bit version is very large, an appropriate
smaller element serves as the schematic example.
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X74_42

4- to 10-Line BCD-to-Decimal Decoder with Active-Low Outputs

X74_42 decodes the 4-bit BCD number on the data inputs (A – D). Only one of the ten
outputs (Y9 – Y0) is active (Low) at a time, which reflects the decimal equivalent of the
BCD number on inputs A – D. All outputs are inactive (High) during any one of six
illegal states, as shown in the truth table.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Macro Macro Macro Macro Macro Macro Macro N/A

Inputs Outputs

D C B A Selected (Low) Output

0 0 0 0 Y0

0 0 0 1 Y1

0 0 1 0 Y2

0 0 1 1 Y3

0 1 0 0 Y4

0 1 0 1 Y5

0 1 1 0 Y6

0 1 1 1 Y7

1 0 0 0 Y8

1 0 0 1 Y9

1 0 1 0 All Outputs High

1 0 1 1 All Outputs High

1 1 0 0 All Outputs High

1 1 0 1 All Outputs High

1 1 1 0 All Outputs High

1 1 1 1 All Outputs High
Selected output is Low (0) and all others are High

X4162
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Figure 11-1 X74_42 Implementation XC3000, XC4000, XC5200, XC9000,
Spartans
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X74_L85

4-Bit Expandable Magnitude Comparator

X74_L85 is a 4-bit magnitude comparator that compares two 4-bit binary-weighted
words A3 – A0 and B3 – B0, where A3 and B3 are the most significant bits. The
greater-than output, AGBO, is High when A>B. The less-than output, ALBO, is High
when A<B, and the equal output, AEBO, is High when A=B. The expansion inputs,
AGBI, ALBI, and AEBI, are the least significant bits. Words of greater length can be
compared by cascading the comparators. The AGBO, ALBO, and AEBO outputs of
the stage handling less-significant bits are connected to the corresponding AGBI,
ALBI, and AEBI inputs of the next stage handling more-significant bits. For proper
operation, the stage handling the least significant bits must have AGBI and ALBI tied
Low and AEBI tied High.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Macro Macro Macro Macro Macro Macro Macro N/A

Inputs Outputs

A3, B3 A2, B2 A1, B1 A0, B0 AGBI ALBI AEBI AGBO ALBO AEBO

A3>B3 X X X X X X 1 0 0

A3<B3 X X X X X X 0 1 0

A3=B3 A2>B2 X X X X X 1 0 0

A3=B3 A2<B2 X X X X X 0 1 0

A3=B3 A2=B2 A1>B1 X X X X 1 0 0

A3=B3 A2=B2 A1<B1 X X X X 0 1 0

A3=B3 A2=B2 A1=B1 A0>B0 X X X 1 0 0

A3=B3 A2=B2 A1=B1 A0<B0 X X X 0 1 0

A3=B3 A2=B2 A1=B1 A0=B0 1 0 0 1 0 0

A3=B3 A2=B2 A1=B1 A0=B0 0 1 0 0 1 0

A3=B3 A2=B2 A1=B1 A0=B0 0 0 1 0 0 1

A3=B3 A2=B2 A1=B1 A0=B0 0 1 1 0 1 1

A3=B3 A2=B2 A1=B1 A0=B0 1 0 1 1 0 1

A3=B3 A2=B2 A1=B1 A0=B0 1 1 1 1 1 1

A3=B3 A2=B2 A1=B1 A0=B0 1 1 0 1 1 0

A3=B3 A2=B2 A1=B1 A0=B0 0 0 0 0 0 0

X4163

X74_L85
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Figure 11-2 X74_L85 Implementation XC3000, XC4000, XC5200, Spartans
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Figure 11-3 X74_L85 Implementation XC9000
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X74_138

3- to 8-Line Decoder/Demultiplexer with Active-Low Outputs and
Three Enables

X74_138 is an expandable decoder/demultiplexer with one active-High enable input
(G1), two active-Low enable inputs (G2A and G2B), and eight active-Low outputs (Y7
– Y0). When G1 is High and G2A and G2B are Low, one of the eight active-Low
outputs is selected with a 3-bit binary address on address inputs A, B, and C. The non-
selected outputs are High. When G1 is Low or when G2A or G2B is High, all outputs
are High.

X74_138 can be used as an 8-output active-Low demultiplexer by tying the data input
to one of the enable inputs.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Macro Macro Macro Macro Macro Macro Macro N/A

Inputs Outputs

C B A G1 G2A G2B Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

0 0 0 1 0 0 1 1 1 1 1 1 1 0

0 0 1 1 0 0 1 1 1 1 1 1 0 1

0 1 0 1 0 0 1 1 1 1 1 0 1 1

0 1 1 1 0 0 1 1 1 1 0 1 1 1

1 0 0 1 0 0 1 1 1 0 1 1 1 1

1 0 1 1 0 0 1 1 0 1 1 1 1 1

1 1 0 1 0 0 1 0 1 1 1 1 1 1

1 1 1 1 0 0 0 1 1 1 1 1 1 1

X X X 0 X X 1 1 1 1 1 1 1 1

X X X X 1 X 1 1 1 1 1 1 1 1

X X X X X 1 1 1 1 1 1 1 1 1

X4164

X74_138
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Figure 11-4 X74_138 Implementation XC3000, XC4000, XC5200, XC9000,
Spartans
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X74_139

2- to 4-Line Decoder/Demultiplexer with Active-Low Outputs and
Active-Low Enable

X74_139 implements one half of a standard 74139 dual 2- to 4-line decoder/demulti-
plexer. When the active-Low enable input (G) is Low, one of the four active-Low
outputs (Y3 – Y0) is selected with the 2-bit binary address on the A and B address
input lines. B is the High-order address bit. The non-selected outputs are High. Also,
when G is High all outputs are High.

X74_139 can be used as a 4-output active-Low demultiplexer by tying the data input
to G.

Figure 11-5 X74_139 Implementation XC3000, XC4000, XC5200, XC9000,
Spartans

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Macro Macro Macro Macro Macro Macro Macro N/A

Inputs Outputs

G B A Y3 Y2 Y1 Y0

0 0 0 1 1 1 0

0 0 1 1 1 0 1

0 1 0 1 0 1 1

0 1 1 0 1 1 1

1 X X 1 1 1 1

X4165
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X74_147

10- to 4-Line Priority Encoder with Active-Low Inputs and Outputs

X74_147 is a 10-line-to-BCD-priority encoder that accepts data from nine active-Low
inputs (I9 – I1) and produces a binary-coded decimal (BCD) representation on the four
active-Low outputs A, B, C, and D. The data inputs are weighted, so when more than
one input is active, only the one with the highest priority is encoded, with I9 having
the highest priority. Only nine inputs are provided, because the implied “zero” condi-
tion requires no data input. “Zero” is encoded when all data inputs are High.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Macro Macro Macro Macro Macro Macro Macro N/A

Inputs Outputs

I9 I8 I7 I6 I5 I4 I3 I2 I1 D C B A

1 1 1 1 1 1 1 1 0 1 1 1 0

1 1 1 1 1 1 1 0 X 1 1 0 1

1 1 1 1 1 1 0 X X 1 1 0 0

1 1 1 1 1 0 X X X 1 0 1 1

1 1 1 1 0 X X X X 1 0 1 0

1 1 1 0 X X X X X 1 0 0 1

1 1 0 X X X X X X 1 0 0 0

1 0 X X X X X X X 0 1 1 1

0 X X X X X X X X 0 1 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1

X4166

X74_147
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Figure 11-6 X74_147 Implementation XC3000, XC4000, XC5200, XC9000,
Spartans
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X74_148

8- to 3-Line Cascadable Priority Encoder with Active-Low Inputs
and Outputs

X74_148 8-input priority encoder accepts data from eight active-Low inputs (I7 – I0)
and produces a binary representation on the three active-Low outputs (A2 – A0). The
data inputs are weighted, so when more than one of the inputs is active, only the
input with the highest priority is encoded, I7 having the highest priority. The active-
Low group signal (GS) is Low whenever one of the data inputs is Low and the active-
Low enable input (EI) is Low.

The active-Low enable input (EI) and active-Low enable output (EO) are used to
cascade devices and retain priority control. The EO of the highest priority stage is
connected to the EI of the next-highest priority stage. When EI is High, the data
outputs and EO are High. When EI is Low, the encoder output represents the highest-
priority Low data input, and the EO is High. When EI is Low and all the data inputs
are High, the EO output is Low to enable the next-lower priority stage.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Macro Macro Macro Macro Macro Macro Macro N/A

Inputs Outputs

EI I7 I6 I5 I4 I3 I2 I1 I0 A2 A1 A0 GS EO

1 X X X X X X X X 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 0 1 1 1 0 1

0 1 1 1 1 1 1 0 X 1 1 0 0 1

0 1 1 1 1 1 0 X X 1 0 1 0 1

0 1 1 1 1 0 X X X 1 0 0 0 1

0 1 1 1 0 X X X X 0 1 1 0 1

0 1 1 0 X X X X X 0 1 0 0 1

0 1 0 X X X X X X 0 0 1 0 1

0 0 X X X X X X X 0 0 0 0 1

X4167

X74_148
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Figure 11-7 X74_148 Implementation XC3000, XC4000, XC5200, XC9000,
Spartans
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X74_150

16-to-1 Multiplexer with Active-Low Enable and Output

When the active-Low enable input (G) is Low, the X74_150 multiplexer chooses one
data bit from 16 sources (E15 – E0) under the control of select inputs A, B, C, and D.
The active-Low output (W) reflects the inverse of the selected input, as shown in the
truth table. When the enable input (G) is High, the output (W) is High.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Macro Macro Macro Macro Macro Macro Macro N/A

Inputs Outputs

G D C B A
Selected Input Appears

(Inverted) on W

1 X X X X 1

0 0 0 0 0 E0

0 0 0 0 1 E1

0 0 0 1 0 E2

0 0 0 1 1 E3

0 0 1 0 0 E4

0 0 1 0 1 E5

0 0 1 1 0 E6

0 0 1 1 1 E7

0 1 0 0 0 E8

0 1 0 0 1 E9

0 1 0 1 0 E10

0 1 0 1 1 E11

0 1 1 0 0 E12

0 1 1 0 1 E13

0 1 1 1 0 E14

0 1 1 1 1 E15

X4168
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Figure 11-8 X74_150 Implementation XC3000, XC4000, XC5200, XC9000,
Spartans
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X74_151

8-to-1 Multiplexer with Active-Low Enable and Complementary
Outputs

When the active-Low enable (G) is Low, the X74_151 multiplexer chooses one data bit
from eight sources (D7 – D0) under control of the select inputs A, B, and C. The output
(Y) reflects the state of the selected input, and the active-Low output (W) reflects the
inverse of the selected input as shown in the truth table. When G is High, the Y output
is Low, and the W output is High.

Figure 11-9 X74_151 Implementation XC3000, XC4000, XC5200, XC9000,
Spartans

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Macro Macro Macro Macro Macro Macro Macro N/A
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X74_152

8-to-1 Multiplexer with Active-Low Output

X74_152 multiplexer chooses one data bit from eight sources (D7 – D0) under control
of the select inputs A, B, and C. The active-Low output (W) reflects the inverse of the
selected data input, as shown in the truth table.

Figure 11-10 X74_152 Implementation XC3000, XC4000, XC5200, XC9000,
Spartans

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex
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X74_153

Dual 4-to-1 Multiplexer with Active-Low Enables and Common
Select Input

When the active-Low enable inputs G1 and G2 are Low, the data output Y1, reflects
the data input chosen by select inputs A and B from data inputs I1C3 – I1C0. The data
output Y2 reflects the data input chosen by select inputs A and B from data inputs
I2C3 – I2C0. When G1 or G2 is High, the corresponding output, Y1 or Y2 respectively,
is Low.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Macro Macro Macro Macro Macro Macro Macro N/A

Inputs Outputs

G1 G2 B A Y1 Y2

1 1 X X 0 0

1 0 0 0 0 I2C0

1 0 0 1 0 I2C1

1 0 1 0 0 I2C2

1 0 1 1 0 I2C3

0 1 0 0 I1C0 0

0 1 0 1 I1C1 0

0 1 1 0 I1C2 0

0 1 1 1 I1C3 0

0 0 0 0 I1C0 I2C0

0 0 0 1 I1C1 I2C1

0 0 1 0 I1C2 I2C2
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Figure 11-11 X74_153 Implementation XC3000, XC4000, XC5200, XC9000,
Spartans
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X74_154

4- to 16-Line Decoder/Demultiplexer with Two Enables and Active-
Low Outputs

When the active-Low enable inputs G1 and G2 of the X74_154 decoder/demultiplexer
are Low, one of 16 active-Low outputs, Y15 – Y0, is selected under the control of four
binary address inputs A, B, C, and D. The non-selected inputs are High. Also, when
either input G1 or G2 is High, all outputs are High.

The X74_154 can be used as a 16-to-1 demultiplexer by tying the data input to one of
the G inputs and tying the other G input Low.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Macro Macro Macro Macro Macro Macro Macro N/A

Inputs Outputs
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0 0 1 1 1 0 1 0 1 1 1 1 1 ... 1

0 0 1 1 0 1 1 1 0 1 1 1 1 ... 1

- - - - - - - - - - - - - ... -
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- - - - - - - - - - - - - ... -

0 0 0 0 0 0 1 1 1 1 1 1 1 ... 0
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Figure 11-12 X74_154 Implementation XC3000, XC4000, XC5200, XC9000,
Spartans
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X74_157

Quadruple 2-to-1 Multiplexer with Common Select and Active-Low
Enable

When the active-Low enable input (G) of the X74_157 multiplexer is Low, a 4-bit word
is selected from one of two sources (A3 – A0 or B3 – B0) under the control of the select
input (S) and is reflected on the four outputs (Y4 – Y1). When S is Low, the outputs
reflect A3 – A0; when S is High, the outputs reflect B3 – B0. When G is High, the
outputs are Low.

Figure 11-13 X74_157 Implementation XC3000, XC4000, XC5200, XC9000,
Spartans
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X74_158

Quadruple 2-to-1 Multiplexer with Common Select, Active-Low
Enable, and Active-Low Outputs

When the active-Low enable (G) of the X74_158 multiplexer is Low, a 4-bit word is
selected from one of two sources (A3 – A0 or B3 – B0) under the control of the
common select input (S). The inverse of the selected word is reflected on the active-
Low outputs (Y4 – Y1). When S is Low, A3 – A0 appear on the outputs; when S is
High, B3 – B0 appear on the outputs. When G is High, the outputs are High.

Figure 11-14 X74_158 Implementation XC3000, XC4000, XC5200, XC9000,
Spartans
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X74_160

4-Bit BCD Counter with Parallel and Trickle Enables, Active-Low
Load Enable, and Asynchronous Clear

X74_160 is a 4-stage, 4-bit, synchronous, loadable, resettable, cascadable, binary-
coded decimal (BCD) counter. The active-Low asynchronous clear (CLR), when Low,
overrides all other inputs and resets the data (QD, QC, QB, QA) and ripple carry-out
(RCO) outputs Low. When the active-Low load enable input (LOAD) is Low and CLR
is High, parallel clock enable (ENP), and trickle clock enable (ENT) are overridden
and data on inputs A, B, C, and D are loaded into the counter during the Low-to-High
clock transition. The data outputs (QD, QC, QB, QA) increment when ENP, ENT
LOAD, and CLR are High during the Low-to-High clock transition. The counter
ignores clock transitions when ENP or ENT are Low and LOAD is High. RCO is High
when QD, QA, and ENT are High and QC and QB are Low.

Carry-Lookahead Design

The carry-lookahead design allows cascading of large counters without extra gating.
Both ENT and ENP must be High to count. ENT is fed forward to enable RCO, which
produces a High output pulse with the approximate duration of the QA output. The
following figure illustrates a carry-lookahead design.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Macro Macro Macro Macro Macro Macro Macro N/A

Inputs Outputs

CLR LOAD ENP ENT D – A CK QD – QA RCO

0 X X X X X 0 0

1 0 X X D – A ↑ d – a RCO

1 1 0 X X X No Chg RCO

1 1 X 0 X X No Chg 0

1 1 1 1 X ↑ Inc RCO
RCO = (QD•QC•QB•QA•ENT)
d – a = state of referenced input one set-up time prior to active clock transition
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Figure 11-15 Carry-Lookahead Design

The RCO output of the first stage of the ripple carry is connected to the ENP input of
the second stage and all subsequent stages. The RCO output of the second stage and
all subsequent stages is connected to the ENT input of the next stage. The ENT of the
second stage is always enabled/tied to VCC. CE is always connected to the ENT input
of the first stage. This cascading method allows the first stage of the ripple carry to be
built as a prescaler. In other words, the first stage is built to count very fast.

The counter recovers from any of six possible illegal states and returns to a normal
count sequence within two clock cycles.
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Figure 11-16 X74_160 Implementation XC3000

Figure 11-17 X74_160 Implementation XC4000, XC5200, Spartans
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Figure 11-18 X74_160 Implementation XC9000
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X74_161

4-Bit Binary Counter with Parallel and Trickle Enables, Active-Low
Load Enable, and Asynchronous Clear

X74_161 is a 4-stage, 4-bit, synchronous, loadable, resettable, cascadable binary
counter. The active-Low asynchronous clear (CLR), when Low, overrides all other
inputs and resets the data outputs (QD, QC, QB, QA) and the ripple carry-out output
(RCO) Low. When the active-Low load enable (LOAD) is Low and CLR is High,
parallel clock enable (ENP) and trickle clock enable (ENT) are overridden and the
data on inputs A, B, C, and D is loaded into the counter during the Low-to-High clock
(CK) transition. The data outputs (QD, QC, QB, QA) increment when LOAD, ENP,
ENT, and CLR are High during the Low-to-High clock transition. The counter ignores
clock transitions when LOAD is High and ENP or ENT are Low. RCO is High when
QD – QA and ENT are High.

The carry-lookahead design accommodates large counters without extra gating. Refer
to “Carry-Lookahead Design” in the “X74_160” section for more information.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Macro Macro Macro Macro Macro Macro Macro N/A

Inputs Outputs

CLR LOAD ENP ENT D – A CK QD – QA RCO

0 X X X X X 0 0

1 0 X X D – A ↑ d – a RCO

1 1 0 X X X No Chg RCO

1 1 X 0 X X No Chg 0

1 1 1 1 X ↑ Inc RCO
RCO = (QD•QC•QB•QA•ENT)
d – a = state of referenced input one setup time prior to active clock transition
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Figure 11-19 X74_161 Implementation XC3000, XC4000, XC5200, Spartans
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Figure 11-20 X74_161 Implementation XC9000
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X74_162

4-Bit BCD Counter with Parallel and Trickle Enables, Active-Low
Load Enable, and Synchronous Reset

X74_162 is a 4-stage, 4-bit, synchronous, loadable, resettable, cascadable binary-coded
decimal (BCD) counter. The active-Low synchronous reset (R), when Low, overrides
all other inputs and resets the data (QD, QC, QB, QA) and ripple carry-out (RCO)
outputs Low during the Low-to-High clock (CK) transition. When the active-Low
load enable input (LOAD) is Low and R is High, parallel clock enable (ENP) and
trickle clock enable (ENT) are overridden and data on inputs A, B, C, and D is loaded
into the counter during the Low-to-High clock transition. The data outputs (QD, QC,
QB, QA) increment when ENP, ENT, LOAD, and R are High during the Low-to-High
clock transition. The counter ignores clock transitions when ENP or ENT are Low and
LOAD is High. RCO is High when QD, QA, and ENT are High and QC and QB are
Low.

The carry-lookahead design accommodates cascading large counters without extra
gating. Refer to “Carry-Lookahead Design” in the “X74_160” section for more infor-
mation.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Macro Macro Macro Macro Macro Macro Macro N/A

Inputs Outputs

R LOAD ENP ENT D – A CK QD – QA RCO

0 X X X X ↑ 0 0

1 0 X X D – A ↑ d – a RCO

1 1 0 X X X No Chg RCO

1 1 X 0 X X No Chg 0

1 1 1 1 X ↑ Inc RCO
RCO = (QD•QC•QB•QA•ENT)
d – a = state of referenced input one setup time prior to active clock transition
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Figure 11-21 X74_162 Implementation XC3000, XC4000, XC5200, Spartans
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Figure 11-22 X74_162 Implementation XC9000
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X74_163

4-Bit Binary Counter with Parallel and Trickle Enables, Active-Low
Load Enable, and Synchronous Reset

X74_163 is a 4-stage, 4-bit, synchronous, loadable, resettable, cascadable binary
counter. The active-Low synchronous reset (R), when Low, overrides all other inputs
and resets the data outputs (QD, QC, QB, QA) and the ripple carry-out output (RCO)
Low during the Low-to-High clock (CK) transition. When the active-Low load enable
(LOAD) is Low and R is High, parallel clock enable (ENP) and trickle clock enable
(ENT) are overridden and the data on inputs (A, B, C, D) is loaded into the counter
during the Low-to-High clock (CK) transition. The outputs (QD, QC, QB, QA) incre-
ment when LOAD, ENP, ENT, and R are High during the Low-to-High clock transi-
tion. The counter ignores clock transitions when LOAD is High and ENP or ENT are
Low; RCO is High when QD – QA and ENT are High.

The carry-lookahead design accommodates large counters without extra gating. Refer
to “Carry-Lookahead Design” in the “X74_160” section for more information.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Macro Macro Macro Macro Macro Macro Macro N/A

Inputs Outputs

R LOAD ENP ENT D – A CK QD – QA RCO

0 X X X X ↑ 0 0

1 0 X X D – A ↑ d – a RCO

1 1 0 X X X No Chg RCO

1 1 X 0 X X No Chg 0

1 1 1 1 X ↑ Inc RCO
RCO = (QD•QC•QB•QA•ENT)
d – a = state of referenced input one setup time prior to active clock transition

X4178

X74_163


QD

QC

QB

QA

CK

ENT

ENP

LOAD

D

C

B

A

RCO

R



Design Elements (X74_163)

Libraries Guide, Release M1.5 11-35

Figure 11-23 X74_163 Implementation XC3000, XC4000, XC5200, Spartans
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Figure 11-24 X74_163 Implementation XC9000
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X74_164

8-Bit Serial-In Parallel-Out Shift Register with Active-Low
Asynchronous Clear

X74_164 is an 8-bit, serial input (A and B), parallel output (QH – QA) shift register
with an active-Low asynchronous clear (CLR) input. The asynchronous CLR, when
Low, overrides the clock input and sets the data outputs (QH – QA) Low. When CLR
is High, the AND function of the two data inputs (A and B) is loaded into the first bit
of the shift register during the Low-to-High clock (CK) transition and appears on the
QA output. During subsequent Low-to-High clock transitions, with CLR High, the
data is shifted to the next-highest bit position as new data is loaded into QA (A and
B→QA, QA→QB, QB→QC, and so forth).

Registers can be cascaded by connecting the QH output of one stage to the A input of
the next stage, by tying B High, and by connecting the clock and CLR inputs in
parallel.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Macro Macro Macro Macro Macro Macro Macro N/A

Inputs Outputs

CLR A B CK QA QB – QH

0 X X X 0 0

1 1 1 ↑ 1 qA – qG

1 0 X ↑ 0 qA – qG

1 X 0 ↑ 0 qA – qG
qA – qG = state of referenced output one setup time prior to active clock transition
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Figure 11-25 X74_164 Implementation XC3000, XC4000, XC5200, XC9000,
Spartans
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X74_165S

8-Bit Loadable Serial/Parallel-In Parallel-Out Shift Register with
Clock Enable

X74_165S is an 8-bit shift register with serial-input (SI), parallel- inputs (H – A),
parallel-outputs (QH – QA), and two control inputs – clock enable (CE) and active-
Low shift/load enable (S_L). When S_L is Low, data on the H – A inputs is loaded into
the corresponding QH – QA bits of the register on the Low-to-High clock (CK) transi-
tion. When CE and S_L are High, data on the SI input is loaded into the first bit of the
register during the Low-to-High clock transition. During subsequent Low-to-High
clock transitions, with CE and S_L High, the data is shifted to the next-highest bit
position (shift right) as new data is loaded into QA (SI→ QA, QA→QB, QB→QC, and
so forth). The register ignores clock transitions when CE is Low and S_L is High.

Registers can be cascaded by connecting the QH output of one stage to the SI input of
the next stage and connecting clock, CE, and S_L inputs in parallel.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Macro Macro Macro Macro Macro Macro Macro N/A

Inputs Outputs

S_L CE SI A – H CK QA QB – QH

0 X X A – H ↑ qa qb – qh

1 0 X X X No Chg No Chg

1 1 SI X ↑ si qA – qG
si = state of referenced input one setup time prior to active clock transition
qn = state of referenced output one setup time prior to active clock transition
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Figure 11-26 X74_165S Implementation XC3000, XC4000, XC5200, XC9000,
Spartans
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X74_168

4-Bit BCD Bidirectional Counter with Parallel and Trickle Clock
Enables and Active-Low Load Enable

X74_168 is a 4-stage, 4-bit, synchronous, loadable, cascadable, bidirectional binary-
coded-decimal (BCD) counter. The data on the D – A inputs is loaded into the counter
when the active-Low load enable (LOAD) is Low during the Low-to-High clock (CK)
transition. The LOAD input, when Low, has priority over parallel clock enable (ENP),
trickle clock enable (ENT), and the bidirectional (U_D) control. The outputs (QD –
QA) increment when U_D and LOAD are High and ENP and ENT are Low during the
Low-to-High clock transition. The outputs decrement when LOAD is High and ENP,
ENT, and U_D are Low during the Low-to-High clock transition. The counter ignores
clock transitions when LOAD and either ENP or ENT are High.

The active-Low ripple carry-out output (RCO) is Low when QD, QA, and U_D are
High and QC, QB, and ENT are Low. RCO is also Low when all outputs, ENT and
U_D are Low. The following figure illustrates a carry-lookahead design.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Macro Macro Macro Macro Macro Macro Macro N/A

Inputs Outputs

LOAD ENP ENT U_D A – D CK QA – QD RCO

0 X X X A – D ↑ qa – qd RCO

1 0 0 1 X ↑ Inc RCO

1 0 0 0 X ↑ Dec RCO

1 1 0 X X X No Chg RCO

1 X 1 X X X No Chg 1
RCO = (Q3•Q2•Q1•Q0•U_D•ENT) + (Q3•Q2•Q1•Q0•U_D•ENT)
qa – qd = state of referenced input one setup time prior to active clock transition
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Figure 11-27 Carry-Lookahead Design

The RCO output of the first stage of the ripple carry is connected to the ENP input of
the second stage and all subsequent stages. The RCO output of second stage and all
subsequent stages is connected to the ENT input of the next stage. The ENT of the
second stage is always enabled/tied to VCC. CE is always connected to the ENT input
of the first stage. This cascading method allows the first stage of the ripple carry to be
built as a prescaler. In other words, the first stage is built to count very fast.
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Figure 11-28 X74_168 Implementation XC3000, XC4000, XC5200, Spartans
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Figure 11-29 X74_168 Implementation XC9000
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X74_174

6-Bit Data Register with Active-Low Asynchronous Clear

The active-Low asynchronous clear input (CLR), when Low, overrides the clock and
resets the six data outputs (Q6 – Q1) Low. When CLR is High, the data on the six data
inputs (D6 – D1) is transferred to the corresponding data outputs on the Low-to-High
clock (CK) transition.

Figure 11-30 X74_174 Implementation XC3000, XC4000, XC5200, XC9000,
Spartans

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Macro Macro Macro Macro Macro Macro Macro N/A

Inputs Outputs

CLR D6 – D1 CK Q6 – Q1

0 X X 0

1 D6 – D1 ↑ d6 – d1
dn = state of referenced input one setup time prior to active clock transition
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X74_194

4-Bit Loadable Bidirectional Serial/Parallel-In Parallel-Out Shift
Register

X74_194 is a 4-bit shift register with shift-right serial input (SRI), shift-left serial input
(SLI), parallel inputs (D – A), parallel outputs (QD – QA), two control inputs (S1, S0),
and active-Low asynchronous clear (CLR). The shift register performs the following
functions.

Registers can be cascaded by connecting the QD output of one stage to the SRI input
of the next stage, the QA output of one stage to the SLI input of the next stage, and
connecting clock, S1, S0, and CLR inputs in parallel.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Macro Macro Macro Macro Macro Macro Macro N/A

Clear When CLR is Low, all other inputs are ignore and outputs QD –
QA go to logic state zero.

Load When S1 and S0 are High, the data on inputs D –A is loaded
into the corresponding output bits QD –QA during the Low-to-
High clock (CK) transition.

Shift Right When S1 is Low and S0 is High, the data is to the next-highest
bit position (right) as new data is loaded into
QA(SRI→QA,QA→QB, QB→QC, and so forth).

Shift Left When S1 is High and S0 is Low, the data is shifted to the next-
lowest bit position (left) as new data is loaded into QD
(SLI→QD,QD→QC,QC→QB, and so forth).

Inputs Outputs

CLR S1 S0 SRI SLI A – D CK QA QB QC QD

0 X X X X X X 0 0 0 0

1 0 0 X X X X No Chg No Chg No Chg No Chg

1 1 1 X X A – D ↑ a b c d

1 0 1 SRI X X ↑ sri qa qb qc

1 1 0 X SLI X ↑ qb qc qd sli
Lowercase letters represent state of referenced input or output one setup time prior to
active clock transition
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Figure 11-31 X74_194 Implementation XC3000, XC4000, XC5200, XC9000,
Spartans
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X74_195

4-Bit Loadable Serial/Parallel-In Parallel-Out Shift Register

X74_195 is a 4-bit shift register with shift-right serial inputs (J, active High, and K,
active Low), parallel inputs (D – A), parallel outputs (QD – QA) and QDB, shift/load
control input (S_L), and active-Low asynchronous clear (CLR). Asynchronous CLR,
when Low, overrides all other inputs and resets data outputs QD – QA Low and QDB
High. When S_L is Low and CLR is High, data on the D – A inputs is loaded into the
corresponding QD – QA bits of the register during the Low-to-High clock (CK) transi-
tion. When S_L and CLR are High, the first bit of the register (QA) responds to the J
and K inputs during the Low-to-High clock transition, as shown in the truth table.
During subsequent Low-to-High clock transitions, with S_L and CLR High, the data
is shifted to the next-highest bit position (shift right) as new data is loaded into QA (J,
K→QA, QA→QB, QB→QC, and so forth).

Registers can be cascaded by connecting the QD and QDB outputs of one stage to the
J and K inputs, respectively, of the next stage and connecting clock, S_L and CLR
inputs in parallel.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Macro Macro Macro Macro Macro Macro Macro N/A

Inputs Outputs

CLR S_L J K A – D CK QA QB QC QD QDB

0 X X X X X 0 0 0 0 1

1 0 X X A – D ↑ a b c d d

1 1 0 0 X ↑ 0 qa qb qc qc

1 1 1 1 X ↑ 1 qa qb qc qc

1 1 0 1 X ↑ qa qa qb qc qc

1 1 1 0 X ↑ qa qa qb qc qc
Lowercase letters represent state of referenced input or output one setup time prior to active
clock transition
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Figure 11-32 X74_195 Implementation XC3000, XC4000, XC5200, XC9000,
Spartans
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X74_273

8-Bit Data Register with Active-Low Asynchronous Clear

X74_273 is an 8-bit data register with active-low asynchronous clear. The active-Low
asynchronous clear (CLR), when Low, overrides all other inputs and resets the data
outputs (Q8 – Q1) Low. When CLR is High, the data on the data inputs (D8 – D1) is
transferred to the corresponding data outputs (Q8 – Q1) during the Low-to-High
clock transition (CK).

Figure 11-33 X74_273 Implementation XC3000, XC4000, XC5200, XC9000,
Spartans

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Macro Macro Macro Macro Macro Macro Macro N/A

Inputs Outputs

CLR D8 – D1 CK Q8 – Q1

0 X X 0

1 D8 – D1 ↑ d8 – d1
dn = state of referenced input one setup time prior to active clock transition
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X74_280

9-Bit Odd/Even Parity Generator/Checker

X74_280 parity generator/checker compares up to nine data inputs (I – A) and
provides both even (EVEN) and odd parity (ODD) outputs. The EVEN output is High
when an even number of inputs is High. The ODD output is High when an odd
number of inputs is High.

Expansion to larger word sizes is accomplished by tying the ODD outputs of up to
nine parallel components to the data inputs of one more X74_280; all other inputs are
tied to ground.

Figure 11-34 X74_280 Implementation XC3000, XC4000, XC5200, Spartans

Figure 11-35 X74_280 Implementation XC9000

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Macro Macro Macro Macro Macro Macro Macro N/A

Inputs Outputs

Number of Ones on A – I EVEN ODD

0, 2, 4, 6, or 8 1 0

1, 3, 5, 7, or 9 0 1
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X74_283

4-Bit Full Adder with Carry-In and Carry-Out

X74_283, a 4-bit full adder with carry-in and carry-out, adds two 4-bit words (A4 – A1
and B4 – B1) and a carry-in (C0) and produces a binary sum output (S4 – S1) and a
carry-out (C4).

16(C4)+8(S4)+4(S3)+2(S2)+S1=8(A4+B4)+4(A3+B3)+2(A2+B2)+(A1+B1)+CO
(where “+” = addition)

Figure 11-36 X74_283 Implementation XC3000, XC4000, XC5200, Spartans

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Macro Macro Macro Macro Macro Macro Macro N/A
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Figure 11-37 X74_283 Implementation XC9000
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X74_298

Quadruple 2-Input Multiplexer with Storage and Negative-Edge
Clock

X74_298 selects 4-bits of data from two sources (D1 – A1 or D2 – A2) under the control
of a common word select input (WS). When WS is Low, D1 – A1 is chosen, and when
WS is High, D2 – A2 is chosen. The selected data is transferred into the output register
(QD – QA) during the High-to-Low transition of the negative-edge triggered clock
(CK).

Figure 11-38 X74_298 Implementation XC3000, XC4000, XC5200, Spartans

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

Macro Macro Macro Macro Macro Macro Macro N/A

Inputs Outputs

WS A1 – D1 A2 – D2 CK QA – QD

0 A1 – D1 X ↓ a1 – d1

1 X A2 – D2 ↓ a2 – d2
an – dn = state of referenced input one setup time prior to active clock transition
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Figure 11-39 X74_298 Implementation XC9000
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X74_352

Dual 4-to-1 Multiplexer with Active-Low Enables and Outputs

X74_352 comprises two 4-to-1 multiplexers with separate enables (G1 and G2) but
with common select inputs (A and B). When an active-Low enable (G1 or G2) is Low,
the multiplexer chooses one data bit from the four sources associated with the partic-
ular enable (I1C3 – I1C0 for G1 and I2C3 – I2C0 for G2) under the control of the
common select inputs (A and B). The active-Low outputs (Y1 and Y2) reflect the
inverse of the selected data as shown in truth table. Y1 is associated with G1 and Y2 is
associated with G2. When an active-Low enable is High, the associated output is
High.

Figure 11-40 X74_352 Implementation XC3000, XC4000, XC5200, XC9000,
Spartans
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X74_377

8-Bit Data Register with Active-Low Clock Enable

When the active-Low clock enable (G) is Low, the data on the eight data inputs (D8 –
D1) is transferred to the corresponding data outputs (Q8 – Q1) during the Low-to-
High clock (CK) transition. The register ignores clock transitions when G is High.

Figure 11-41 X74_377 Implementation XC3000, XC4000, XC5200, XC9000,
Spartans

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan Spartan Virtex
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X74_390

4-Bit BCD/Bi-Quinary Ripple Counter with Negative-Edge Clocks
and Asynchronous Clear

X74_390 is a cascadable, resettable binary-coded decimal (BCD) or bi-quinary counter
that can be used to implement cycle lengths equal to whole and/or cumulative multi-
ples of 2 and/or 5. In BCD mode, the output QA is connected to negative-edge clock
input (CKB), and data outputs (QD – QA) increment during the High-to-Low clock
transition as shown in the truth table, provided asynchronous clear (CLR) is Low. In
bi-quinary mode, output QD is connected to the negative-edge clock input (CKA). As
shown in the truth table, in bi-quinary mode, QA supplies a divide-by-five output
and QB supplies a divide-by-two output, provided asynchronous CLR is Low. When
asynchronous CLR is High, the other inputs are overridden, and data outputs (QD –
QA) are reset Low.

Larger ripple counters are created by connecting the QD output (BCD mode) or QA
output (bi-quinary mode) of the first stage to the appropriate clock input of the next
stage and connecting the CLR inputs in parallel.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex
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Figure 11-42 X74_390 Implementation XC3000, XC4000, XC5200, Spartans

Figure 11-43 X74_390 Implementation XC9000
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X74_518

8-Bit Identity Comparator with Active-Low Enable

X74_518 is an 8-bit identity comparator with 16 data inputs for two 8-bit words (P7 –
P0 and Q7 – Q0), data output (PEQ), and active-Low enable (G). When G is High, the
PEQ output is Low. When G is Low and the two input words are equal, PEQ is High.
Equality is determined by a bit comparison of the two words. When any of the two
equivalent bits from the two words are not equal, PEQ is Low.

Figure 11-44 X74_518 Implementation XC3000, XC4000, XC5200, XC9000,
Spartans
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X74_521

8-Bit Identity Comparator with Active-Low Enable and Output

X74_521 is an 8-bit identity comparator with 16 data inputs for two 8-bit words (P7 –
P0 and Q7 – Q0), active-Low data output (PEQ), and active-Low enable (G). When G
is High, the PEQ output is High. When G is Low and the two input words are equal,
PEQ is Low. X74_521 does a bit comparison of the two words to determine equality.
When any of the two equivalent bits from the two words are not equal, PEQ is High.
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Figure 11-45 X74_521 Implementation XC3000, XC4000, XC5200, XC9000,
Spartans
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Chapter 12

Attributes, Constraints, and Carry Logic

This chapter lists and describes all the attributes that you can use with your design
entry software and the constraints that are contained in machine- and user-generated
files.

This chapter contains the following major sections.

• “Overview”

• “Information for Mentor Customers”

• “Schematic Syntax”

• “UCF/NCF File Syntax”

• “Attributes/Logical Constraints”

This section contains alphabetical listings of the attributes and constraints as well
as descriptions, syntax, and examples of each constraint.

• “Placement Constraints”

• “Relative Location (RLOC) Constraints”

• “Timing Constraints”

• “Physical Constraints”

• “Relationally Placed Macros (RPMs)”

• “Carry Logic in XC4000 and Spartans”

• “Carry Logic in XC5200”

• “Carry Logic in Virtex”

Overview
This section gives an overview of attributes, constraints, and carry logic.

Attributes
Attributes are instructions placed on symbols or nets in an FPGA or CPLD schematic
to indicate their placement, implementation, naming, directionality, and so forth. This
information is used by the design implementation software during placement and
routing of a design. All the attributes listed in this chapter are available in the sche-
matic entry tools directly supported by Xilinx unless otherwise noted, but some may
not be available in textual entry methods such as VHDL.

Attributes applicable only to a certain schematic entry tool are described in the docu-
mentation for that tool. For third-party interfaces, consult the interface user guides for
information on which attributes are available and how they are used.
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Refer to the “Schematic Syntax” section in this chapter for guidelines on placing
attributes on symbols on a schematic.

Constraints
Constraints, which are a type, or subset, of attributes, indicate where an element
should be placed.

Logical Constraints

Constraints that are attached to elements in the design prior to mapping are referred
to as logical constraints. Applying logical constraints helps you to adapt your design’s
performance to expected worst-case conditions. Later, when you choose a specific
Xilinx architecture and place and route your design, the logical constraints are
converted into physical constraints.

You can attach logical constraints using attributes in the input design, which are
written into the Netlist Constraints File (NCF), or with a User Constraints File (UCF).
Refer to the  “UCF/NCF File Syntax” section for the rules for entering constraints in a
UCF or NCF file.

Three categories of logical constraints are described in detail in the  “Attributes/
Logical Constraints” section: placement constraints, relative location constraints, and
timing constraints.

The  “Placement Constraints” section gives examples showing how to place
constraints on the various types of logic elements in FPGA designs.

For FPGAs, relative location constraints (RLOCs) group logic elements into discrete
sets and allow you to define the location of any element within the set relative to other
elements in the set, regardless of eventual placement in the overall design. Refer to the
 “Relative Location (RLOC) Constraints” section for detailed information on RLOCs.

Timing constraints allow you to specify the maximum allowable delay or skew on any
given set of paths or nets in your design. Refer to the  “Timing Constraints” section for
detailed information on using timing constraints in a UCF file.

Physical Constraints

Constraints can also be attached to the elements in the physical design, that is, the
design after mapping has been performed. These constraints are referred to as phys-
ical constraints and are defined in the Physical Constraints File (PCF), which is
created during mapping. See the  “Physical Constraints” section.

Note: It is preferable to place any user-generated constraint in the UCF file — not in
an NCF or PCF file.

Carry Logic
Dedicated fast carry logic increases the efficiency and performance of adders,
subtracters, accumulators, comparators, and counters. See the  “Carry Logic in
XC4000 and Spartans” section,  “Carry Logic in XC5200” section, and  “Carry Logic in
Virtex” section at the end of this chapter.
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Information for Mentor Customers
In some software programs, particularly Mentor Graphics, attributes are called prop-
erties, but their functionality is the same as that of attributes. In this document, they
are referred to as attributes.

There are two types of Mentor Graphics properties. In one, a property is equal to a
value, for example, LOC=AA. In the other, the property name and the value are the
same, for example, DECODE. In the first type, “attribute” refers to the property. In the
second, “attribute” refers to the property and the value.

The Mentor netlist writer program (ENWRITE) converts all property names to lower-
case letters, and the Xilinx netlist reader EDIF2NGD then converts the property
names to uppercase letters. Because property names are processed in this way, you
must enter the variable text of certain constraints in uppercase letters only. The most
salient examples are the following.

• A TSidentifier name should contain only uppercase letters on a Mentor Schematic
(TSMAIN, for example, but not TSmain or TSMain). Also, if a TSidentifier name is
referenced in a property value, it must be entered in uppercase letters. For
example, the TSID1 in the second constraint below must be entered in uppercase
letters to match the TSID1 name in the first constraint.

TSID1 = FROM: gr1: TO: gr2: 50;
TSMAIN = FROM: here: TO: there: TSID1: /2;

• Group names should contain only uppercase letters on a Mentor schematic
(MY_FLOPS, for example, but not my_flops or My_flops).

• If a group name appears in a property value, it must also be expressed in upper-
case letters. For example, the GROUP3 in the first constraint below must be
entered in uppercase letters to match the GROUP3 in the second constraint.

TIMEGRP GROUP1 = gr2: GROUP3;
TIMEGRP GROUP3 = FFS: except: grp5;

Schematic Syntax
This section describes how to place attributes on symbols on a schematic. The
following guidelines are for specifying locations.

• To specify a single location, use the following syntax.

attribute=location

• To specify multiple locations, use the following syntax.

attribute=location,location,location

A comma separates locations in a list of locations. (Spaces are ignored if entered.)

When you specify a list of locations, PAR (Place and Route) chooses any one of the
listed locations.

• To define a range by specifying the two corners of a bounding box, use the
following syntax.

attribute=location: location [SOFT]

A colon is only used to separate the corners of a bounding box. The logic repre-
sented by the symbol is placed somewhere inside the bounding box. If SOFT is
specified, PAR may place the attribute elsewhere to obtain better results.
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Following are some examples of location attributes.

A name can be composed of any ASCII character except for control characters and
characters that have special meanings.

Control characters are : (colon) ; (semi-colon) , (comma) and “(double quotes).

Characters with special meaning are / (forward slash) used as the hierarchy separator
and . (period) used as the pin separator and for extensions.

For additional propagation rules for each constraint and attribute, refer to the  “Macro
and Net Propagation Rules” table in the "Attributes/Logical Constraints" section.

UCF/NCF File Syntax
Logical constraints are found in a Netlist Constraint File (NCF), an ASCII file gener-
ated by synthesis programs, and in a User Constraint File (UCF), an ASCII file gener-
ated by the user. This section describes the rules for entering constraints in a UCF or
NCF file.

Note: It is preferable to place any user-generated constraint in the UCF file — not in
an NCF or PCF file.

The UCF and NCF files are case sensitive. Identifier names (names of objects in the
design, such as net names) must exactly match the case of the name as it exists in the
source design netlist. However, any Xilinx constraint keyword (for example, LOC,
PERIOD, HIGH, LOW) may be entered in either all upper-case or all lower-case
letters; mixed case is not allowed.

Each statement is terminated by a semicolon (;).

LOC=CLB_R1C2 Locates the element in the CLB in the first row,
second column.

LOC=CLB_R1C2.LC3 Locates the element in the top-most slice of the
four slices of the XC5200 CLB located in the first
row, second column.

LOC=CLB_R1C2.S1 Locates the element in the right-most slice of the
two slices of the Virtex CLB located in the first
row, second column.

LOC=P12 Assigns the signal to the pin P12 (for CPLDs).

RLOC=R4C4 Assigns the location relative to other elements in
the set to row 4, column 4.

RLOC=R0Cl.FFX Assigns the location relative to other elements in
the set to the X flip-flop in row 0, column 1.

RLOC=R2C3.LC0 Assigns the location of the element to be one slice
below another element in the set that has an
RLOC=R2C3.LC1 attribute. (XC5200)

RLOC=R2C3.S0 Assigns the location of the element to be the left-
most slice of another element in the set that has
an RLOC=R2C3.S1 attribute. (Virtex)

RLOC_ORIGIN=R4C4 Fixes the reference CLB of a designated set at row
4, column 4.

RLOC_RANGE=R4C4 : R10C10 Limits the members of a designated set to a range
between row 4, column 4 and row 10, column 10.
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No continuation characters are necessary if a statement exceeds one line, since a semi-
colon marks the end of the statement.

You can add comments to the UCF/NCF file by beginning each comment line with a
pound (#) sign. Following is an example of part of a UCF/NCF file containing
comments.

# file TEST.UCF
# net constraints for TEST design

NET $SIG_0 MAXDELAY 10 ;
NET $SIG_1 MAXDELAY 12 ns ;

Statements do not have to be placed in any particular order in the UCF/NCF file.

The constraints in the UCF/NCF files and the constraints in the schematic or
synthesis file are applied equally; it does not matter whether a constraint is entered in
the schematic or synthesis file or in the UCF/NCF files. If the constraints overlap,
however, UCF/NCF constraints override the schematic constraint. Refer to the
“Constraints Priority” section of the “Using Timing Constraints” chapter of the Devel-
opment System Reference Guide for additional details on constraint priorities.

If by mistake two or more elements are locked onto a single location, the mapper
detects the conflict, issues a detailed error message, and stops processing so that you
can correct the mistake.

The syntax for constraints in the UCF/NCF files is as follows.

{ NET | INST  | PIN } full_name constraint ;

or

SET set_name set_constraint ;

where

full_name is a full hierarchically qualified name of the object being referred to. When
the name refers to a pin, the instance name of the element is also required.

constraint is a constraint in the same form as it would be used if it were attached as an
attribute on a schematic object. For example, LOC=P38 or FAST, and so forth.

set_name is the name of an RLOC set. Refer to the  “RLOC Sets” section for more infor-
mation.

set_constraint is an RLOC_ORIGIN or RLOC_RANGE constraint.

Note: To specify attributes for the CONFIG or TIMEGRP primitives (tables), the
keywords CONFIG or TIMEGRP precede the attribute definitions in the constraints
files.

CONFIG PROHIBIT=CLB_R6C8 ;

TIMEGRP input_pads=pads EXCEPT output_pads ;

For the TIMESPEC primitive (table), the use of the keyword TIMESPEC in the
constraints files is optional.

Note: In all of the constraints files (NCF, UCF, and PCF), instance or variable names
that match internal reserved words will be rejected unless the names are enclosed in
double quotes. It is good practice to enclose all names in double quotes.

For example, the following entry would not be accepted because the word net is a
reserved word.

NET net OFFSET=IN 20 BEFORE CLOCK;
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Following is the recommended way to enter the constraint.

NET “net” OFFSET=IN 20 BEFORE CLOCK;

or

NET “$SIG_0” OFFSET=IN 20 BEFORE CLOCK;

Inverted signal names, for example ~OUTSIG1, must always be enclosed in double
quotes as shown in the following example.

NET “~OUTSIG1” OFFSET=IN 20 BEFORE CLOCK;

Wildcards
You can use the wildcard characters, * and ?, in constraint statements as follows. The
asterisk (*) represents any string of zero or more characters. The question mark (?)
indicates a single character.

In net names, the wildcard characters enable you to select a group of symbols whose
output net names match a specific string or pattern. For example, the following
constraint increases the output speed of the pads to which nets with names that begin
with any series of characters followed by "AT" and end with one single characters are
connected.

NET *AT? FAST ;

In an instance name, a wildcard character by itself represents every symbol of the
appropriate type. For example, the following constraint initializes an entire set of
ROMs to a particular hexadecimal value, 5555.

INST $1I3*/ROM2 INIT=5555 ;

If the wildcard character is used as part of a longer instance name, the wildcard repre-
sents one or more characters at that position.

In a location, you can use a wildcard character for either the row number or the
column number. For example, the following constraint specifies placement of any
instance under the hierarchy of loads_of_logic in any CLB in column 8.

INST /loads_of_logic/* LOC=CLB_r*c8 ;

Wildcard characters can be used in dot extensions.

CLB_R1C3.*

Wildcard characters cannot be used for both the row number and the column number
in a single constraint, since such a constraint is meaningless.

Traversing Hierarchies
Note: Top-level block names (design names) are ignored when searching for instance
name matches.

You can use the asterisk wildcard character (*) to traverse the hierarchy of a design
within a UCF or NCF file. The following syntax applies (where level1 is an example
hierarchy level name).

* Traverses all levels of the hierarchy

level1/* Traverses all blocks in level1 and below

level1/*/ Traverses all blocks in the level1 hierarchy level but no further
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Consider the following design hierarchy.

With the example design hierarchy, the following specifications illustrate the scope of
the wildcard.

INST * => <everything>

INST /* => <everything>

INST /*/ => <$A1,$B1,$C1>

INST $A1/* => <$A21,$A22,$A3,$A4>

INST $A1/*/ => <$A21,$A22>

INST $A1/*/* => <$A3,$A4>

INST $A1/*/*/ => <$A3>

INST $A1/*/*/* => <$A4>

INST $A1/*/*/*/ => <$A4>

INST /*/*22/ => <$A22,$B22,$C22>

INST /*/*22 => <$A22,$A3,$A4,$B22,$B3,$C22,$C3>

File Name
By default, NGDBuild reads the constraints file that carries the same name as the
input design with a .ucf extension; however, you can specify a different constraints
file name with the -uc option when running NGDBuild. NGDBuild automatically
reads in the NCF file if it has the same base name as the input XNF or EDIF file and is
in the same directory as the XNF or EDIF file.

Note: The implementation tools (NGDBuild, MAP, PAR, etc.) require file name exten-
sions in all lowercase (.ucf, for example) in command lines.

Instances and Blocks
Because the statements in the constraints file concern instances and blocks, these enti-
ties are defined here.

An instance is a symbol on the schematic. An instance name is the symbol name as it
appears in the EDIF or XNF netlist. A block is a CLB, an IOB, or a TBUF. You can
specify the block name by using the BLKNM, HBLKNM, or the XBLKNM attribute; by
default, the software assigns a block name on the basis of a signal name associated
with the block.

$A21 $A22

$A3

$A4

$A1

$B21 $B22

$B3

$B1

$C21 $C22

$C3

$C1

X8571
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Attributes/Logical Constraints

Syntax Summary
This section summarizes attribute and logical constraints syntax. This syntax
conforms to the conventions given in the “Conventions” section. A checkmark (√)
appearing in a column means that the attribute/constraint is supported for architec-
tures that use the indicated library. (Refer to the  “Applicable Architectures” section of
the “Xilinx Unified Libraries” chapter for information on the specific device architec-
tures supported in each library.) A blank column means that the attribute/constraint
is not supported for architectures using that library.

BASE BASE = {F | FG | FGM | IO}

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

BLKNM BLKNM = block_name

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √

BUFG BUFG = {CLK | OE | SR}

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

CLKDV_DIVIDE CLKDV_DIVIDE={ 1.5 | 2 | 2.5 | 3 | 4 | 5 | 8 | 16}

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

COLLAPSE COLLAPSE

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

CONFIG* CONFIG = tag value [tag value]

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√
*The CONFIG attribute configures internal options of an XC3000 CLB or IOB. Do not confuse this attribute with the CONFIG
primitive, which is a table containing PROHIBIT and PART attributes.

DECODE DECODE

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √
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DIVIDE1_BY and
DIVIDE2_BY

DIVIDE1_BY = {4 | 16 | 64 | 256}
DIVIDE2_BY = {2 | 8 | 32 | 128 | 1024 | 4096 | 16384 | 65536}

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

DOUBLE DOUBLE

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √

DRIVE XC4000X, SpartanXL:
DRIVE = {12 |24}
Virtex:
DRIVE = {2 | 4 | 6 | 8 | 12 | 16 | 24}

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√∗ √ √
* supported for XC4000XV and XC4000XLA designs only

DROP_SPEC TSidentifier=DROP_SPEC

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

DUTY_CYCLE_
CORRECTION

DUTY_CYCLE_CORRECTION={TRUE | FALSE}

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

EQUATE_F and
EQUATE_G

EQUATE_F = equation
EQUATE_G = equation

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

FAST FAST

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √
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FILE FILE = file_name [.extension]

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

HBLKNM HBLKNM = block_name

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √

HU_SET HU_SET = set_name

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √

INIT INIT ={S | R | value}

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √

INIT_0x INIT_0x = value

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

INREG INREG

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

IOB IOB={TRUE | FALSE}

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

KEEP KEEP

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √∗
*Only at BEL level
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LOC FPGAs:
LOC=location1[,location2,... , locationn]
or:
LOC=location : location [SOFT ]
CPLDs:
LOC = {pin_name | FBnn | FBnn_mm}

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

MAP MAP = [PUC | PUO | PLC | PLO ]*

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √
*Only PUC and PUO are observed. PLC and PLO are translated to PUC and PUO, respectively. The default is PUO.

MAXDELAY MAXDELAY = allowable_delay [units]

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

MAXSKEW MAXSKEW = allowable_skew [units]

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

MEDDELAY MEDDELAY

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √

NODELAY NODELAY

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √

NOREDUCE NOREDUCE

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √
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OFFSET OFFSET={IN | OUT} offset_time [units] {BEFORE | AFTER} "clk_net" [TIMEGRP
"reggroup"]
or:
NET "name" OFFSET={IN | OUT} offset_time [units] {BEFORE | AFTER} "clk_net"
[TIMEGRP "reggroup"]
or:
TIMEGRP "group" OFFSET={IN | OUT} offset_time [units] {BEFORE | AFTER}
"clk_net" [TIMEGRP "reggroup"]
or:
TSidentifier= [TIMEGRP name] OFFSET = {IN|OUT} offset_time [units]
{BEFORE|AFTER} "clk_net" [TIMEGRP "reggroup"]

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

OPT_EFFORT OPT_EFFORT= {NORMAL | HIGH}

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √

OPTIMIZE OPTIMIZE ={AREA | SPEED | BALANCE | OFF}

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √

OUTREG OUTREG

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

PART PART = part_type

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

PERIOD PERIOD = period[units] [{HIGH | LOW} [high_or_low_time [hi_lo_units]]]
or:
TSidentifier=PERIOD TNM_reference period[units] [{HIGH | LOW} [high_or_low_time
[ hi_lo_units]]]

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √
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PROHIBIT PROHIBIT = location1[, location2, ... , locationn]
or:
PROHIBIT = location : location

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

PWR_MODE PWR_MODE ={LOW | STD}

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

RLOC XC4000:
RLOC = RmCn[.extension]
XC5200, Virtex:
RLOC = RmCn.extension

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √

RLOC_ORIGIN RLOC_ORIGIN = RmCn

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √

RLOC_RANGE RLOC_RANGE = Rm1Cn1:Rm2Cn2

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √

S(ave) - Net Flag Attribute S

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

SLOW SLOW

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

STARTUP_WAIT STARUP_WAIT={TRUE | FALSE}

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√
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TEMPERATURE TEMPERATURE=value[C | F | K ]

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√∗ √∗ √∗ √∗ √∗ √∗ √∗
*Availability depends on the release of characterization data

TIG TIG
or:
TIG= TSidentifier1 [, TSidentifier2, ... ,TSidentifiern]

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

Time Group Attributes new_group_name=[RISING | FALLING] group_name1 [EXCEPT group_name2...
group_namen]
or:
new_group_name=[TRANSHI | TRANSLO] group_name1 [EXCEPT group_name2...
group_namen]

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

TNM TNM = [predefined_group:] identifier

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

TNM_NET TNM_NET = [predefined_group:] identifier

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

TPSYNC TPSYNC = identifier

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

TPTHRU TPTHRU = identifier

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √
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TSidentifier TSidentifier=[MAXDELAY] FROM source_group TO dest_group allowable_delay [units]
or:
TSidentifier=FROM source_group TO dest_group allowable_delay [units]
or:
TSidentifier=FROM source_group THRU thru_point [THRU thru_point1... thru_pointn]
TO dest_group allowable_delay [units]
or:
TSidentifier=FROM source_group TO dest_group another_TSid[/  | * ] number
or:
TSidentifier=PERIOD TNM_reference period[units] [{HIGH | LOW} [high_or_low_time
[hi_lo_units]]]
or:
TSidentifier=PERIOD TNM_reference another_PERIOD_identifier [/ | *] number
[{HIGH | LOW} [high_or_low_time [hi_lo_units]]]
or:
TSidentifier=FROM source_group TO dest_group TIG
or:
TSidentifier=FROM source_group THRU thru_point [THRU thru_point1... thru_pointn]
TO dest_group TIG
NOTE:
The use of a colon (:) instead of a space as a separator is optional.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

U_SET U_SET = name

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √

USE_RLOC USE_RLOC = {TRUE | FALSE}

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √

VOLTAGE VOLTAGE=value[V]

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√∗ √∗ √∗ √∗ √∗ √∗ √∗
*Availability depends on the release of characterization data

WIREAND WIREAND

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√∗
* not supported for XC9500XL designs only
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XBLKNM XBLKNM = block_name

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √
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Attributes/Constraints Applicability
Certain constraints can only be defined at the design level, whereas other constraints
can be defined in the various configuration files. The following table lists the
constraints and their applicability to the design, and the NCF, UCF, and PCF files. A
check mark (√) indicates that the constraint applies to the item for that column.

Table 12-1 Constraint Applicability Table

Attribute/Constraint Design NCF UCF PCF

BASE √
BLKNM √ √ √
BUFG √ √ √
CLKDV_DIVIDE √ √ √
COLLAPSE √ √ √
COMPGRP √
CONFIG** √
DECODE √ √ √
DIVIDE1_BY √ √
DIVIDE2_BY √ √
DOUBLE √
DRIVE √ √ √
DROP_SPEC √ √ √∗
DUTY_CYCLE_CORRECTION √ √ √
EQUATE_F √
EQUATE_G √
FAST √ √ √
FILE √
FREQUENCY √
HBLKNM √ √ √
HU_SET √ √ √
INIT √ √
INIT_0x √ √ √
INREG √ √ √ √
IOB √ √ √
KEEP √ √ √
LOC √ √ √ √*

LOCATE √
LOCK √
MAP √ √ √
MAXDELAY √ √ √ √*

MAXSKEW √ √ √ √*

MEDDELAY √ √ √
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NODELAY √ √ √
NOREDUCE √ √ √
OFFSET √ √ √*

OPT_EFFORT √ √ √
OPTIMIZE √ √ √
OUTREG √ √ √ √
PATH √
PART √ √ √
PENALIZE TILDE √
PERIOD √ √ √ √*

PIN √
PRIORITIZE √
PROHIBIT √ √ √ √*

PWR_MODE √ √ √
RLOC √ √ √
RLOC_ORIGIN √ √ √ √
RLOC_RANGE √ √ √ √
S(ave) - Net Flag attribute √ √ √
SITEGRP √
SLOW √ √ √
STARTUP_WAIT √ √ √
TEMPERATURE √ √ √ √
TIG √ √ √ √*

Time group attributes √ √ √ √
TNM √ √ √
TNM_NET √ √ √
TPSYNC √ √ √
TPTHRU √ √ √
TSidentifier √ √ √ √*

U_SET √ √ √
USE_RLOC √ √ √
VOLTAGE √ √ √ √
WIREAND √ √ √
XBLKNM √ √ √
 *Use cautiously — while constraint is available, there are differences between the UCF/
NCF and PCF syntax.

**The CONFIG attribute configures internal options of an XC3000 CLB or IOB. Do not
confuse this attribute with the CONFIG primitive, which is a table containing PROHIBIT
and PART attributes.

Table 12-1 Constraint Applicability Table

Attribute/Constraint Design NCF UCF PCF
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Macro and Net Propagation Rules
Not all constraints can be attached to nets and macros. The following table lists the
constraints and stipulates whether they can be attached to a net, a macro, or neither.

Table 12-2 Macro and Net Propagation Rules

Constraint/Attribute
Action when

attached to a net
Action when attached

to a macro

BASE illegal illegal

BLKNM illegal Note 4

BUFG Note 3 illegal

CLKDV_DIVIDE illegal illegal

COLLAPSE Note 3 illegal

CONFIG* illegal illegal

DECODE Note 1 Note 4

DIVIDE1_BY and DIVIDE2_BY Note 1 Note 4

DOUBLE Note 1 Note 4

DRIVE Note 6 Note4

DROP_SPEC illegal illegal

DUTY_CYCLE_CORRECTION illegal Note 4

EQUATE_F and EQUATE_G illegal illegal

FAST Note 6 Note 4

FILE illegal Note 5

HBLKNM illegal Note 4

HU_SET illegal Note 4

INIT FPGA: illegal
CPLD: Note 1

Note 4

INIT_0x illegal illegal

INREG illegal illegal

IOB illegal Note 4

KEEP Note 3 illegal

LOC FPGA: Note 6
CPLD: Note 1

Note 4

MAP illegal illegal

MAXDELAY Note 3 illegal

MAXSKEW Note 3 illegal

MEDDELAY Note 6 Note 4

NODELAY Note 6 Note 4

NOREDUCE Note 3 illegal

OFFSET Note 3 illegal

OPTIMIZE illegal Note 5
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OPT_EFFORT illegal Note 5

OUTREG illegal illegal

PART illegal illegal

PERIOD Note 3 illegal

PROHIBIT illegal illegal

PWR_MODE Note 2 Note 4

RLOC illegal Note 4

RLOC_ORIGIN illegal Note 4

RLOC_RANGE illegal Note 4

S(ave) - Net Flag Attribute Note 3 illegal

SLOW Note 6 Note 4

STARTUP_WAIT illegal Note 4

TEMPERATURE illegal illegal

TIG Note 2 Note 4

Time Group Attributes illegal illegal

TNM Note 2 Note 4

TNM_NET Note 2 illegal

TPSYNC Note 3 illegal

TPTHRU Note 3 illegal

TSidentifier illegal illegal

U_SET illegal Note 4

USE_RLOC illegal Note 4

VOLTAGE illegal illegal

WIREAND Note 3 illegal

XBLKNM illegal Note 4
Note 1: Attaches to all applicable elements that drive the net.

Note 2: The attribute has a net form and so no special propagation is required.

Note 3: Attribute is a net attribute and any attachment to a macro is illegal.

Note 4: Propagated to all applicable elements in the hierarchy below the module.

Note 5: Attribute is a macro attribute and any attachment to a net is illegal.

Note 6: Attribute is illegal when attached to a net except when the net is connected to a pad.
In this case, the attribute is treated as attached to the pad instance.

*The CONFIG attribute configures internal options of an XC3000 CLB or IOB. Do not
confuse this attribute with the CONFIG primitive, which is a table containing PROHIBIT
and PART attributes.

Table 12-2 Macro and Net Propagation Rules

Constraint/Attribute
Action when

attached to a net
Action when attached

to a macro
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Syntax Descriptions
The information that follows describes in alphabetical order the attributes and
constraints. A checkmark (√) appearing in a column means that the attribute/
constraint is supported for architectures that use the indicated library. (Refer to the
“Applicable Architectures” section of the “Xilinx Unified Libraries” chapter for infor-
mation on the specific device architectures supported in each library.) A blank column
means that the attribute/constraint is not supported for architectures that use that
library.

The description for each attribute contains a subsection entitled “Applicable
Elements.” This section describes the base primitives and circuit elements to which
the constraint or attribute can be attached. In many cases, constraints or attributes can
be attached to macro elements, in which case some resolution of the user’s intent is
required. Refer to the  “Macro and Net Propagation Rules” section for a table
describing the additional propagation rules for each constraint and attribute.

BASE

Applicable Elements

CLB or IOB primitives

Description

The BASE attribute defines the base configuration of a CLB or an IOB. For an IOB
primitive, it should always be set to IO. For a CLB primitive, it can be one of three
modes in which the CLB function generator operates.

• F mode allows the CLB to implement any one function of up to five variables.

• FG mode gives the CLB any two functions of up to four variables. Of the two sets
of four variables, one input (A) must be common, two (B and C) can be either
independent inputs or feedback from the Qx and Qy outputs of the flip-flops
within the CLB, and the fourth can be either of the two other inputs to the CLB (D
and E).

• FGM mode is similar to FG, but the fourth input must be the D input. The E input
is then used to control a multiplexer between the two four-input functions,
allowing some six- and seven-input functions to be implemented.

CLB and IOB base configurations of the XC3000 family are illustrated in the  “IOB and
CLB Primitives for Base Configurations XC3000” figure. In this drawing, BASE F, FG,
and FGM are for CLBs; BASE IO is for IOBs.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√
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Figure 12-1 IOB and CLB Primitives for Base Configurations XC3000

In a schematic, BASE can be attached to any valid instance. Not supported for UCF,
NCF, or PCF files.

Syntax

BASE=mode

where mode can be F, FG, or FGM for a CLB and IO for an IOB.

Example

Schematic

Attached to a valid instance.

UCF/NCF file

N/A

BLKNM

Applicable Elements

1. IOB, CLB and CLBMAP (See the Note at the end of this list)

2. Flip-flop and latch primitives

3. Any I/O element or pad

4. FMAP

5. HMAP

6. F5MAP

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√
1, 2, 3, 7, 8

√
2, 3, 4, 5, 7, 8,

9, 10, 11

√
2, 3, 4, 5, 7, 8,

9, 10, 11

√
2, 3, 4, 6, 7,

11

√
2, 3, 4, 5, 7, 8,

9, 10, 11

√
2, 3, 4, 5, 7, 8,

9, 10, 11

X4708 

QX

QY

F

CLB: BASE F

QX

QY

CLB: BASE FG

F

G

QX

QY

F

CLB: BASE FGM IOB: BASE IO

G

PAD

M

E
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7. BUFT

8. ROM primitive

9. RAM primitives

10. RAMS and RAMD primitives

11. Carry logic primitives

Note: You can also attach the BLKNM constraint to the net connected to the pad
component in a UCF file. NGDBuild transfers the constraint from the net to the pad
instance in the NGD file so that it can be processed by the mapper. Use the following
syntax.

NET net_name BLKNM=property_value

Description

Assigns block names to qualifying primitives and logic elements. If the same BLKNM
attribute is assigned to more than one instance, the software attempts to map them
into the same block. Conversely, two symbols with different BLKNM names are not
mapped into the same block. Placing similar BLKNMs on instances that do not fit
within one block creates an error.

Specifying identical BLKNM attributes on FMAP and/or HMAP symbols tells the
software to group the associated function generators into a single CLB. Using
BLKNM, you can partition a complete CLB without constraining the CLB to a phys-
ical location on the device.

BLKNM attributes, like LOC constraints, are specified from the schematic. Hierar-
chical paths are not prefixed to BLKNM attributes, so BLKNM attributes for different
CLBs must be unique throughout the entire design. See the section on the
“HBLKNM” attribute for information on attaching hierarchy to block names.

The BLKNM attribute allows any elements except those with a different BLKNM to be
mapped into the same physical component. Elements without a BLKNM can be
packed with those that have a BLKNM. See the section on the “XBLKNM” attribute
for information on allowing only elements with the same XBLKNM to be mapped
into the same physical component.

For XC5200, a given BLKNM string can only be used to group a logic cell (LC), which
contains one register, one LUT (FMAP), and one F5_MUX element. An error will
occur if two or more registers, two or more FMAPs, or two or more F5_MUX elements
have the same BLKNM attribute.

Syntax

BLKNM=block_name

where block_name is a valid LCA block name for that type of symbol. For a list of
prohibited block names, see the “Naming Conventions” section of each user interface
manual.

For information on assigning hierarchical block names, see the  “HBLKNM” section
elsewhere in this chapter.
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Example

Schematic

Attached to a valid instance.

UCF/NCF file

This statement assigns an instantiation of an element named block1 to a block named
U1358.

INST $1I87/block1 BLKNM=U1358;

BUFG

Applicable Elements

Any input buffer (IBUF) that drives a CLK, OE, or SR pin or the pad net connected to
the IBUF input

Description

Maps the tagged signal to a global net.

Syntax

BUFG={ CLK | OE | SR}

where CLK, OE, and SR indicate clock, output enable, or set/reset, respectively.

Example

Schematic

Attached to a valid instance.

UCF/NCF file

This statement maps the signal named “fastclk” to a global net.

INST clkgen/fastclk BUFG;

CLKDV_DIVIDE

Applicable Elements

Any CLKDLL or CLKDLLHF instance

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√
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Description

Specifies the extent to which the CLKDLL or CLKDLLHF clock divider (CLKDV
output) is to be frequency divided.

Syntax

CLKDV_DIVIDE={ 1.5  | 2 | 2.5  | 3 | 4 | 5 | 8 | 16}

The default is 2 if no CLKDV_DIVIDE attribute is specified.

Example

Schematic

Attached to a CLKDLL or CLKDLLHF instance.

UCF/NCF file

This statement specifies a frequency division factor of 8 for the clock divider foo/bar.

INST foo/bar CLKDV_DIVIDE=8;

COLLAPSE

Applicable Elements

Any internal net

Description

Forces a combinatorial node to be collapsed into all of its fanouts.

Syntax

COLLAPSE

Example

Schematic

Attached to a net.

UCF/NCF file

This statement forces net $1N6745 to collapse into all its fanouts.

NET $1I87/$1N6745 COLLAPSE;

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√
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CONFIG

Applicable Elements

IOB and CLB primitives

Description

Defines the configuration of the internal options of a CLB or IOB.

Note: Do not confuse this attribute with the CONFIG primitive, which is a table
containing PROHIBIT and PART attributes. Refer to the “PROHIBIT” section for
information on disallowing the use of a site and to the “PART” section for information
on defining the part type for the design.

Syntax

CONFIG=tag value [ tag value]

where tag and value are derived from the following tables.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

Table 12-3 XC3000 CLB Configuration Options

Tag BASE F BASE FG BASE FGM*

X F, QX F, QX M, QX

Y F, QY G, QY M, QY

DX DI, F DI, F, G DI, M

DY DI, F DI, F, G DI, M

CLK K, NOT K, NOT K, NOT

RSTDIR RD RD RD

ENCLK EC EC EC

F A,B,C,D,E,QX, QY A,B,C,D,E,QX, QY A,B,C,D,QX, QY

G None A,B,C,D,E,QX, QY A,B,C,D,QX, QY
*For BASE FGM, M=F if E=0, and M=G if E=1

Table 12-4 XC3000 IOB Configuration Options

Tag BASE IO

IN I, IQ, IKNOT, FF, LATCH, PULLUP

OUT O, OQ, NOT, OKNOT, FAST

TRI T, NOT
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Example

Schematic

Attached to a valid instance.

Following is an example of a valid XC3000 CLB CONFIG attribute value.

X:QX Y:QY DX:F DY:G CLK:K ENCLK:EC

UCF/NCF file

N/A

DECODE

Applicable Elements

WAND1

Description

Defines how a wired-AND (WAND) instance is created, either using a BUFT or an
edge decoder. If the DECODE attribute is placed on a single-input WAND1 gate, the
gate is implemented as an input to a wide-edge decoder in XC4000 designs.

Syntax

DECODE

DECODE attributes can only be attached to a WAND1 symbol.

Example

Schematic

Attached to a WAND1 symbol.

UCF/NCF file

This statement implements an instantiation of a wired AND using the edge decoder
$COMP_1

INST address_decode/$COMP_1 DECODE;

DIVIDE1_BY and DIVIDE2_BY

Applicable Elements

OSC5, CK_DIV

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√
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Description

Defines the division factor for the on-chip clock dividers.

Syntax

DIVIDE1_BY= { 4 | 16  | 64  | 256 }

DIVIDE2_BY= { 2 | 8 | 32  | 128  | 1024  | 4096  | 16384  | 65536 }

Examples

Schematic

Attached to a valid instance.

NCF file

This statement defines the division factor of 8 for the clock divider $1I45678.

INST clk_gen/$1I45678 divide2_by=8;

Note: DIVDE1_BY and DIVIDE2_BY are not supported in the UCF file.

DOUBLE

Applicable Elements

PULLUPs

Description

Specifies double pull-up resistors on the horizontal longline. On XC3000 parts, there
are internal nets that can be set as 3-state with two programmable pull-up resistors
available per line. If the DOUBLE attribute is placed on a PULLUP symbol, both pull-
ups are used, enabling a fast, high-power line. If the DOUBLE attribute is not placed
on a pull-up, only one pull-up is used, resulting in a slower, lower-power line.

When the DOUBLE attribute is present, the speed of the distributed logic is increased,
as is the power consumption of the part. When only half of the longline is used, there
is only one pull-up at each end of the longline.

While the DOUBLE attribute can be used for the XC4000 and Spartans, it is not recom-
mended. The mapper activates both pull-up resistors if the entire longline (not a half-
longline) is used. When DOUBLE is used, PAR will not add an additional pull-up to
achieve your timing constraints while routing XC4000 or Spartan series designs (refer
to the  “PAR—Place and Route” chapter of the Development System Reference Guide for
information on PAR and timing optimization).

Syntax

DOUBLE

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √
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Example

Schematic

Attached to a PULLUP only.

UCF/NCF file

N/A

DRIVE

Applicable Elements

1. IOB output components (OBUF, OFD, etc.)

2. OBUF, OBUFT, IOBUF instances (with implied LVTTL standards)

Description

For the XC4000XV, XC4000XLA, and SpartanXL, programs the output drive current
from High (24 mA) to Low (12 mA).

For Virtex, selects output drive strength (mA) for the components that use the LVTTL
interface standard.

Syntax

XC4000XV, XC4000XLA, and SpartanXL

DRIVE={ 12  | 24}

Virtex

DRIVE={ 2 | 4 | 6 | 8 | 12  | 16  | 24}

where 12 mA is the default.

Example

Schematic

Attached to a valid IOB output component.

UCF/NCF file

This statement specifies a High drive.

INST /top/my_design/obuf DRIVE=24 ;

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√∗
1

√
1

√
2

* supported for XC4000XV and XC4000XLA designs only
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DROP_SPEC

Applicable Elements

All timing specifications. Should be used only in UCF or PCF files.

Description

Allows you to specify that a timing constraint defined in the input design should be
dropped from the analysis. This constraint can be used when new specifications
defined in a constraints file do not directly override all specifications defined in the
input design, and some of these input design specifications need to be dropped.

While this timing command is not expected to be used much in an input netlist (or
NCF file), it is not illegal. If defined in an input design this attribute must be attached
to a TIMESPEC primitive.

Syntax

TSidentifier=DROP_SPEC

where TSidentifier is the identifier name used for the timing specification that is to be
removed.

Example

Schematic

N/A

UCF/NCF file

This statement cancels the input design specification TS67.

TIMESPEC TSidentifier TS67=DROP_SPEC;

DUTY_CYCLE_CORRECTION

Applicable Elements

Any CLKDLL, CLKDLLHF, or BUFGDLL instance

Description

Corrects the duty cycle of the CLK0 output.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√
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Syntax

DUTY_CYCLE_CORRECTION={ TRUE | FALSE}

where TRUE corrects the duty cycle to be a 50_50 duty cycle and FALSE does not
change the duty cycle. The default is FALSE.

Example

Schematic

Attached to a CLKDLL, CLKDLLHF, or BUFGDLL instance.

UCF/NCF file

This statement specifies a 50_50 duty cycle for foo/bar.

INST foo/bar DUTY_CYCLE_CORRECTION=TRUE;

EQUATE_F and EQUATE_G

Applicable Elements

CLB primitive

Description

These attributes set the logic equations describing the F and G function generators of a
CLB, respectively.

Syntax

EQUATE_F=equation

EQUATE_G=equation

where equation is a logical equation of the function generator inputs (A, B, C, D, E, QX,
QY) using the boolean operators listed in the following table.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

Table 12-5 Valid XC3000 Boolean Operators

Symbol Boolean Equivalent

~ NOT

* AND

@ XOR

+ OR

( ) Group expression
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Example

Schematic

Attached to a valid instance.

Here are two examples illustrating the use of the EQUATE_F attribute.

EQUATE_F=F=((~A*B)+D))@Q
F=A@B+(C*~D)

UCF/NCF file

N/A

FAST

Applicable Elements

Output primitives, output pads, bidirectional pads

Note: You can also attach the FAST attribute to the net connected to the pad compo-
nent in a UCF file. NGDBuild transfers the attribute from the net to the pad instance
in the NGD file so that it can be processed by the mapper. Use the following syntax.

NET net_name FAST

Description

Increases the speed of an IOB output.

Note:  The FAST attribute produces a faster output but may increase noise and power
consumption.

Syntax

FAST

Example

Schematic

Attached to a valid instance.

UCF/NCF file

This statement increases the output speed of the element y2.

INST $1I87/y2 FAST;

This statement increases the output speed of the pad to which net1 is connected.

NET net1 FAST;

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √
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FILE

Applicable Elements

Macros that refer to underlying non-schematic designs

Description

FILE is attached to a macro that does not have an underlying schematic. It identifies
the file to be looked at for a logic definition. The type of file to be searched for is
defined by the search order of the program compiling the design.

Syntax

FILE= file_name[. extension]

where file_name is the name of a file that represents the underlying logic for the
element carrying the attribute. Example file types include EDIF, XTF, NMC.

Schematic

Attached to a valid instance.

UCF/NCF file

N/A

HBLKNM

Applicable Elements

1. IOB, CLB and CLBMAP (See Note below)

2. Registers

3. I/O elements and pads

4. FMAP

5. HMAP

6. F5MAP

7. BUFT

8. PULLUP

9. ACLK, GCLK

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√
1, 2, 3, 7, 8, 9,

10,12

√
2, 3, 4, 5, 7, 8,
10, 11, 12, 13,

14, 15

√
2, 3, 4, 5, 7, 8,
10, 12, 13, 14,

15

√
2, 3, 4, 6, 7,

10, 15

√
2, 3, 4, 5, 7, 8,
10, 11, 12, 13,

14, 15

√
2, 3, 4, 5, 7, 8,
10, 12, 13, 14,

15
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10. BUFG

11. BUFGS, BUFGP

12. ROM

13. RAM

14. RAMS and RAMD

15. Carry logic primitives

Note: You can also attach the HBLKNM constraint to the net connected to the pad
component in a UCF file. NGDBuild transfers the constraint from the net to the pad
instance in the NGD file so that it can be processed by the mapper. Use the following
syntax.

NET net_name HBLKNM=property_value

Description

Assigns hierarchical block names to logic elements and controls grouping in a flat-
tened hierarchical design. When elements on different levels of a hierarchical design
carry the same block name and the design is flattened, NGDBuild prefixes a hierar-
chical path name to the HBLKNM value.

Like BLKNM, the HBLKNM attribute forces function generators and flip-flops into
the same CLB. Symbols with the same HBLKNM attribute map into the same CLB, if
possible. However, using HBLKNM instead of BLKNM has the advantage of adding
hierarchy path names during translation, and therefore the same HBLKNM attribute
and value can be used on elements within different instances of the same macro.

For XC5200, a given HBLKNM string can only be used to group a logic cell (LC),
which contains one register, one LUT (FMAP), and one F5_MUX element. An error
will occur if two or more registers, two or more FMAPs, or two or more F5_MUX
elements have the same HBLKNM attribute.

Syntax

HBLKNM=block_name

where block_name is a valid LCA block name for that type of symbol.

Example

Schematic

Attached to a valid instance.

UCF/NCF file

This statement specifies that the element this_hmap will be put into the block named
group1.

INST $I13245/this_hmap HBLKNM=group1;

This statement attaches the HBLKNM constraint to the pad connected to net1.

NET net1 HBLKNM=$COMP_0;

Note: Elements with the same HBLKNM are placed in the same logic block if
possible. Otherwise an error occurs. Conversely, elements with different block names
will not be put into the same block.
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HU_SET

Applicable Elements

1. Registers

2. FMAP

3. HMAP

4. F5MAP

5. CY4

6. CY_MUX

7. Macro Instance

8. EQN

9. ROM

10. RAM

11. RAMS, RAMD

12. BUFT

Description

The HU_SET constraint is defined by the design hierarchy. However, it also allows
you to specify a set name. It is possible to have only one H_SET constraint within a
given hierarchical element (macro) but by specifying set names, you can specify
several HU_SET sets.

NGDBuild hierarchically qualifies the name of the HU_SET as it flattens the design
and attaches the hierarchical names as prefixes. The difference between an HU_SET
constraint and an H_SET constraint is that an HU_SET has an explicit user-defined
and hierarchically qualified name for the set, but an H_SET constraint has only an
implicit hierarchically qualified name generated by the design-flattening program. An
HU_SET set “starts” with the symbols that are assigned the HU_SET constraint, but
an H_SET set “starts” with the instantiating macro one level above the symbols with
the RLOC constraints.

For background information about using the various set attributes, refer to the “RLOC
Sets” section.

Syntax

HU_SET=set_name

where set_name is the identifier for the set; it must be unique among all the sets in the
design.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√
1, 2, 3, 5, 7, 8,

9, 10, 12

√
1, 2, 3, 5, 7, 8,

9, 10, 12

√
1, 2, 4, 6, 7, 8,

12

√
1, 2, 3, 5, 7, 8,

9, 10, 12

√
1, 2, 3, 5, 7, 8,

9, 10, 12

√
1,2, 7, 11, 12



Libraries Guide, Release M1.5

12-36 Xilinx Development System

Example

Schematic

Attached to a valid instance.

UCF/NCF file

This statement assigns an instance of the register FF_1 to a set named heavy_set.

INST $1I3245/FF_1 HU_SET=heavy_set;

INIT

Applicable Elements

1. ROM

2. RAM

3. Registers

4. LUTs, SRLs

Description

Initializes ROMs, RAMs, registers, and look-up tables. The least significant bit of the
value corresponds to the value loaded into the lowest address of the memory element.
For register initialization, S indicates Set and R indicates Reset. The INIT attribute can
be used to specify the initial value directly on the symbol with the following limita-
tion. INIT may only be used on a RAM or ROM that is 1 bit wide and not more than 32
bits deep.

Syntax

INIT= { value | S | R}

where value is a 4-digit or 8-digit hexadecimal number that defines the initialization
string for the memory element, depending on whether the element is 16-bit or 32-bit.
For example, INIT=ABAC1234.

S indicates Set and R indicates Reset for registers.

Note: For XC4000 and Spartans, INIT cannot specify a register as Set if the reset pin is
being used or as Reset if the set pin is being used.

Example

Schematic

Attached to a net, pin, or instance.

UCF/NCF file

INIT={S | R} is supported in both the NCF and UCF files. It is allowed in the UCF to
control the startup state of registers (primarily for CPLDs).

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√
1, 2, 3

√
1, 2, 3

√
3

√
1, 2, 3

√
1, 2, 3

√
2, 3, 4
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INIT=value is supported in the NCF file only. This statement defines the initialization
string for an instantiation of the memory element ROM2 to be the 16-bit hexadecimal
string 5555.

INST $1I3245/ROM2 INIT = 5555;

Note: INIT=value is not supported in the UCF file.

INIT_0x

Applicable Elements

Block RAMs

Description

Specifies initialization strings for block RAM components.

Syntax

INIT_0 x=value

where

x is any hexadecimal value 0 through F that specifies which 256 bits (see the following
table) of the 4096-bit block RAM to initialize to the specified value.

value is a string of hexadecimal characters up to 64 digits wide. If the INIT_0x
attribute has a value less than the required 64 hex digits, the value will be padded
with zeros from the most significant bit (MSB) side. This fills the 256 bits in the initial-
ization string (4 bits per hexadecimal character * 64 characters).

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

INIT_0x Addresses

4096 x 1 2048 x 2 1024 x 4 512 x 8 256 x 16

INIT_00 255 — 0 127 — 0 63 — 0 31 — 0 15 — 0

INIT_01 511 — 256 255 — 128 127— 64 63 — 32 31 — 16

INIT_02 767 — 512 383 — 256 191 — 128 95 — 64 47 — 32

INIT_03 1023 — 768 511 — 384 255 — 192 127 — 96 63 — 48

INIT_04 1279 — 1024 639 — 512 319 — 256 159 — 128 79 — 64

INIT_05 1535 — 1280 767 — 640 383 — 320 191 — 160 95 — 80

INIT_06 1791 — 1536 895 — 768 447 — 384 223 — 192 111 — 96

INIT_07 2047 — 1792 1023 — 896 511 — 448 255 — 224 127 — 112

INIT_08 2303 — 2048 1151 — 1024 575 — 512 287 — 256 143 — 128

INIT_09 2559 — 2304 1279 — 1152 639 — 576 319 — 288 159 — 144

INIT_0A 2815 — 2560 1407 — 1280 703 — 640 351 — 320 175 — 160

INIT_0B 3071 — 2816 1535 — 1408 767 — 704 383 — 352 191 — 176
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INIT_0x usage rules

A summary of the rules for the INIT_0x attribute follows.

• If no INIT_0x attribute is attached to a block RAM, the contents of the RAM
defaults to zero.

• Each initialization string defines 256 bits of the 4096-bit block RAM. For example,
for a 4096-bit deep x 1-bit wide block RAM, INIT_00 assigns the 256 bits to
addresses 0 through 255 and INIT_01 assigns the 256 bits to addresses 256
through 511. For a 2048-bit deep x 2-bit wide block RAMs, INIT_00 assigns the 256
bits to addresses 0 through 127 (a 2-bit value at each address) and INIT_01 assigns
the 256 bits to addresses 128 through 255.

• If a subset of the INIT_00 through INIT_0F properties are specified for a block
RAM, the remaining properties default to zero.

• In an initialization string, the least significant bit (LSB) is the right-most value.

• The least significant word of the block RAM is composed of the least significant
bits of the block RAM.

INIT_0x on block RAMs of various widths

The initialization string "fills" the block RAM beginning from the LSB of the 256 bits
for the specified INIT_0x addresses. The size of the word filling each address depends
on the width of the block RAM being initialized— 1, 2, 4, 8, or 16 bits.

For example, if INIT_0C=bcde7, the corresponding binary sequence is as follows:

The appropriate addresses in the RAM are initialized with the binary string content
depending on the width of the RAM as shown in the following table.

INIT_0C 3327 — 3072 1663 — 1536 831 — 768 415 — 384 207 — 192

INIT_0D 3583 — 3328 1791 — 1664 895 — 832 447 — 416 223 — 208

INIT_0E 3839 — 3584 1919 — 1792 959 — 896 479 — 448 239 — 224

INIT_0F 4095 — 3840 2047 — 1920 1023 — 960 511 — 480 255 — 240

1011 1100 1101 1110 0111 ←LSB

b c d e 7

Block RAM
(depth x width)

Address
(INIT_0C)

Contents

4096 x 1 3072
3073
3074
3075
.
3327

1
1
1
0
.
0

INIT_0x Addresses

4096 x 1 2048 x 2 1024 x 4 512 x 8 256 x 16
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Example

Schematic

Attached to a block RAM instance.

UCF/NCF file

The following statement specifies that the INIT_03 addresses in instance foo/bar be
initialized, starting from the LSB, to the hex value aaaaaaaaaaaaaaaaaaaa (padded
with 44 zeros from the MSB side).

INST foo/bar INIT_03=aaaaaaaaaaaaaaaaaaaa;

INREG

Applicable Elements

Flip-flops, latches

2048 x 2 1536
1537
1538
1539
.
1663

11
01
10
11
.
00

1024 x 4 768
769
770
771
.
831

0111
1110
1101
1100
.
0000

512 x 8 384
385
386
387
.
415

11100111
11001101
00001011
00000000
.
00000000

256 x 16 192
193
194
195
.
207

1100110111101111
0000000000001011
0000000000000000
0000000000000000
.
0000000000000000

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√

Block RAM
(depth x width)

Address
(INIT_0C)

Contents
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Description

Because XC5200 IOBs do not have flip-flops or latches, you can apply this attribute to
meet fast setup timing requirements. If a flip-flop or latch is driven by an IOB, you can
specify INREG to enable PAR (Place and Route) to place the flip-flop/latch close to
the IOB so that the two elements can be connected using fast routes. See also the
“OUTREG” section.

Syntax

INREG

Example

Schematic

Attached to a latch or flip-flop instance.

UCF/NCF file

This statement directs PAR to place the flip-flop $I1 near the IOB driving it.

INST $I1 INREG;

IOB

Applicable Elements

Non-INFF/OUTFF flip-flop and latch primitives, registers

Description

Indicates which flip-flops and latches can be moved into the IOB. The mapper
supports a command line option (-pr i | o | b) that allows flip-flop/latch primitives to
be pushed into the input IOB (i), output IOB (o), or input/output IOB (b) on a global
scale. The IOB constraint, when associated with a flip-flop or latch, tells the mapper to
pack that instance into an IOB type component if possible. The IOB constraint has
precedence over the mapper "-pr" command line option.

Syntax

IOB={ TRUE | FALSE}

where TRUE allows the flip-flop/latch to be pulled into an IOB and FALSE indicates
not to pull it into an IOB.

Example

Schematic

Attached to a flip-flop or latch instance or to a register.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√
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UCF/NCF file

This statement prevents the mapper from placing the foo/bar instance into an IOB
component.

INST foo/bar IOB=TRUEE;

KEEP

Applicable Elements

Nets

Description

When a design is mapped, some nets may be absorbed into logic blocks. When a net is
absorbed into a block, it can no longer be seen in the physical design database. This
may happen, for example, if the components connected to each side of a net are
mapped into the same logic block. The net may then be absorbed into the block
containing the components. The KEEP constraint prevents this from happening.

In Virtex, KEEP makes the signal visible at the BEL level, not the CLB level as in other
architectures.

Note: The KEEP property is translated into an internal constraint known as
NOMERGE when targeting an FPGA. Messaging from the implementation tools will
therefore refer to the system property NOMERGE—not KEEP.

Syntax

KEEP

Example

Schematic

Attached to a net.

UCF/NCF file

This statement ensures that the net $SIG_0 will remain visible.

NET $1I3245/$SIG_0 KEEP;

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √
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LOC

Applicable Elements

1. Registers

2. FMAP

3. HMAP

4. F5MAP

5. IO elements

6. CLB and IOB primitives, CLBMAP

7. CY4

8. CY_MUX

9. ROM

10. RAM

11. RAMS, RAMD

12. BUFT

13. WAND

14. Clock buffers

15. Edge decoders

16. Any instance

17. RAMB4s

Description for FPGAs

Defines where a symbol can be placed within an FPGA. It specifies the absolute place-
ment of a design element on the FPGA die. It can be a single location, a range of loca-
tions, or a list of locations. The LOC constraint can be specified from the schematic
and statements in a constraints file can also be used to direct placement.

You can specify multiple locations for the same symbol by using a comma (,) to sepa-
rate each location within the field. It specifies that the symbols be placed in any of the
locations specified. Also, you can specify an area in which to place a symbol or group
of symbols.

The legal names are a function of the target part type. However, to find the correct
syntax for specifying a target location, you can load an empty part into EPIC (the
design editor). Place the cursor on any block and click to display its location in the
EPIC history area. Do not include the pin name such as .I, .O, or .T as part of the loca-
tion.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√
1, 5, 6, 12

√
1, 2, 3, 5, 7, 9,
10, 11, 12, 13,

14, 15

√
1, 2, 3, 5, 7, 9,
10, 11, 12, 13,

14, 15

√
1, 2, 4, 5, 8,

12, 14

√
1, 5, 16

√
1, 2, 3, 5, 7, 9,
10, 11, 12, 13,

14, 15

√
1, 2, 3, 5, 7, 9,
10, 11, 12, 13,

14, 15

√
1, 2, 5, 6, 10,
11, 12, 13, 14,

15, 16, 17
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You can use the LOC constraint for logic that uses multiple CLBs, IOBs, soft macros,
or other symbols. To do this, use the LOC attribute on a soft macro symbol, which
passes the location information down to the logic on the lower level. The location
restrictions are applied to all blocks on the lower level for which LOCs are legal.

XC5200

The XC5200 CLB is divided into four physical site locations that each contain one flip-
flop, one function generator, and one carry logic element. Therefore, for the XC5200,
each LOC attribute can be used for only one register, one FMAP, one F5_MUX
element, or one CY_MUX element. An error will occur if two or more registers, two or
more FMAPs, two or more F5_MUX elements, or two or more CY_MUX elements
have the same LOC attribute.

Virtex

The physical site specified in the location value is defined by the row and column
numbers for the array, with an optional extension to define the slice for a given row/
column location. The Virtex slice is composed of two LUTs (that can be configured as
RAM or shift registers), two flip-flops (that can also be configured as latches), two
XORCYs, two MULT_ANDs, one F5MUX, one F6MUX, and one MUXCY. Only one
F6MUX can be used between the two adjacent slices in a specific row/column loca-
tion. The two slices at a specific row/column location are adjacent to one another.

The block RAMs (RAMB4s) have a different row/column grid specification than the
CLB and TBUFs. A block RAM located at RAMB4_R3C1 is not located at the same site
as a flip-flop located at CLB_R3C1. Therefore, the location value must start with
"CLB," "TBUF," or "RAMB4." The location cannot be shortened to reference only the
row, column, and extension.The optional extension specifies the left-most or right-
most slice for the row/column. While the XC4000 and Spartans allow extensions such
as .FFX, .FFY, .F and .G to identify specific flip-flops and LUTs within the CLB, these
extensions are not required or allowed for Virtex.

The location value for global buffers and DLL elements is the specific physical site
names for available locations.

Description for CPLDs

 For CPLDs, use the LOC=pin_name attribute on a PAD symbol or pad net to assign
the signal to a specific pin. The PAD symbols are IPAD, OPAD, and IOPAD. You can
use the LOC=FBnn attribute on any instance or its output net to assign the logic or
register to a specific function block or macrocell, provided the instance is not
collapsed.

Pin assignments and function block assignments are unconditional; that is, the soft-
ware does not attempt to relocate a pin if it cannot achieve the specified assignment.
You can apply the LOC constraint to as many symbols in your design as you like.
However, each assignment further constrains the software as it automatically allo-
cates logic and I/O resources to internal nodes and I/O pins with no LOC constraints.

The LOC=FBnn_mm attribute on any internal instance or output pad assigns the
corresponding logic to a specific function block or macrocell within the CPLD. If a
LOC is placed on a symbol that does not get mapped to a macrocell or is otherwise
removed through optimization, the LOC will be ignored.

Note: Pin assignment using the LOC attribute is not supported for bus pad symbols
such as OPAD8.
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Location Types

Use the following location types to define the physical location of an element.

The wildcard character (*) can be used to replace a single location with a range as
shown in the following examples.

Note: The wildcard character is not supported for Virtex global buffer or DLL loca-
tions.

The following are not supported.

• Dot extensions on ranges. For example, LOC=CLB_R0C0:CLB_R5C5.G. However,
for the XC5200, range locations will be expanded to include extensions,
CLB_R0C0.*:CLB_R5C5.*, for example, when the mapper passes a range
constraint to the PCF file.

• B, L, R, T used to indicate IO edge locations (bottom, left, top, right)

P12 IOB location (chip carrier)

A12 IOB location (pin grid)

B, L, T, R Indicates edge locations (bottom, left, top, right) —
applies to edge decoders only

LB, RB, LT, RT, BR, TR, BL, TL Indicates half edges (left bottom, right bottom, and
so forth) — applies to edge decoders only

TL, TR, BL, BR Indicates a corner for global buffer placement

AA CLB location for XC3000

CLB_R4C3 CLB location for XC4000, XC5200, or Spartans

CLB_R4C3 (or .S0 or .S1) CLB location for Virtex

CLB_R6C8.F (or .G) Function generator, RAM, ROM, or RAMS location
for XC4000 or Spartans

CLB_R6C8.LC0 (or .LC1, .LC2,
.LC3)

Function generator or register location for XC5200

CLB_R6C8.S0 (or .S1) Function generator or register slice for Virtex

CLB_R6C8.LC0 (or .LC2) F5_MUX location for XC5200

CLB_R6C8.FFX (or.FFY) Flip-flop location for XC4000 or Spartans

TBUF_R6C7.1 (or.2) TBUF location for XC4000 or Spartans

TBUF_R6C7.0 (or .1, .2, or .3) TBUF location for XC5200

TBUF_R6C7 (or .0 or .1) TBUF location for Virtex

RAMB4_R3C1 Block RAM location for Virtex

GCLKBUG0 (or 1, 2, or 3) Global clock buffer location for Virtex

GCLKPAD0 (or 1, 2, or 3) Global clock pad location for Virtex

DLL0 (or 1, 2, or 3) Delay Locked Loop element location for Virtex

C* Any CLB in row C of an XC3000 device

*D Any CLB in column D of an XC3000 device

CLB_R*C5 Any CLB in column 5 of an XC4000, XC5200, or
Spartan series device

CLB_R*C5 Any CLB in either slice in column 5 of a Virtex
device
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• LB, RB, LT, RT, BR, TR, BL, TL used to indicate IO half edges (left bottom, right
bottom, etc.)

• Wildcard character for Virtex global buffer, global pad, or DLL locations.

Syntax for FPGAs

Single location

LOC=location

where location is a legal LCA location for the LCA part type. Examples of the syntax
for single LOC constraints are given in the  “Single LOC Constraint Examples” table.

Table 12-6 Single LOC Constraint Examples

Attribute Description

LOC=P12 Place I/O at location P12.

LOC=B Place decode logic on the bottom edge.

LOC=TL Place decode logic on the top left edge, or global
buffer in the top left corner.

LOC=AA
(XC3000)

Place logic in CLB AA.

LOC=TBUF.AC.2
(XC3000)

Place BUFT in TBUF above and one column to the
right of CLB AC.

LOC=CLB_R3C5
(XC4000 or Spartans)

Place logic in the CLB in row 3, column 5.

LOC=CLB_R3C5
(Virtex)

Place logic in either slice of the CLB in row3,
column 5.

LOC=CLB_R4C4.LC0
(XC5200)

Place logic in the lowest slice of the CLB in row 4,
column 4.

LOC=CLB_R3C5.S0
(Virtex)

Place logic in the left slice of the CLB in row 1,
column 1.

LOC=CLB_R4C5.ffx
(XC4000 or Spartans)

Place CLB flip-flop in the X flip-flop of the CLB in
row 4, column 5.

LOC=CLB_R4C5.F
(XC4000 or Spartans)

Place CLB function generator in the F generator of
row 4, column 5.

LOC=TBUF_R2C1.1
(XC4000 or Spartans)

Place BUFT in row 2, column 1, along the top.

LOC=TBUF_R4C4.3
(XC5200)

Place BUFT in the top buffer in row 4, column 4.

LOC=TBUF_R*C0
(XC4000, XC5200, Spartans)

Place BUFT in any row in column 0.

LOC=TBUF_R1C2.*
(Virtex)

Place both TBUFs in row 1, column 2.

RAMB4_R*C1
(Virtex)

Specifies any block RAM in column 1 of the block
RAM array
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Multiple locations

LOC=location1, location2,..., locationn

Repeating the LOC constraint and separating each such constraint by a comma speci-
fies multiple locations for an element. When you specify multiple locations, PAR can
use any of the specified locations. Examples of multiple LOC constraints are provided
in the  “Multiple LOC Constraint Examples” table.

Range of locations

LOC=location: location [ SOFT]

You can define a range by specifying the two corners of a bounding box. Specify the
upper left and lower right corners of an area in which logic is to be placed. Use a colon
(:) to separate the two boundaries. The logic represented by the symbol is placed
somewhere inside the bounding box. The default is to interpret the constraint as a
“hard” requirement and to place it within the box. If SOFT is specified, PAR may place
the constraint elsewhere if better results can be obtained at a location outside the
bounding box. Examples of LOC constraints used to specify an area (range) are given
in the  “Area LOC Constraint Examples” table.

Table 12-7 Multiple LOC Constraint Examples

Attribute Description

LOC=T,B
(XC4000 or Spartans)

Place decoder (XC4000) on the top or bottom edge.

LOC=clb_r2c4, clb_r7c9
(XC4000 or Spartans)

Place the flip-flop in either CLB R2C4 or CLB R7C9.

LOC=clb_r4c5.s1,
clb_r4c6.*
(Virtex)

Place the flip-flop in the right-most slice of CLB
R4C5 or in either slice of CLB R4C6

Table 12-8 Area LOC Constraint Examples

Attribute Description

LOC=AA:FF
(XC3000)

Place CLB logic anywhere in the top left
corner of the LCA bounded by row F and
column F.

LOC=CLB_R1C1:CLB_R5C5
(XC4000, Spartans)

Place logic in the top left corner of the LCA
in a 5 x 5 area bounded by row 5 and
column 5.

LOC=CLB_R1C1:CLB_R5C5
PROHIBIT=CLB_R5C5
(must be specified in one continuous
line)
(XC4000, Spartans)

Place CLB logic in the top left corner of the
LCA in a 5 x 5 area, but not in the CLB in
row 5, column 5.
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Note: For area constraints, LOC ranges can be supplemented by the user with the
keyword SOFT.

Syntax for CPLDs

LOC=pin_name

or

LOC=FBnn

or

LOC=FBnn_mm

where

pin_name is Pnn for PC packages; nn is a pin number. The pin name is nn (row number
and column number) for PG packages. See the appropriate data book for the pin
package names, for example, p12. Examples are LOC=P24 and LOC=G2. This form is
valid only on pad instances.

nn is a function block number and mm is a macrocell within a function block number.
This form is valid on any instances.

Examples

Refer to the  “Placement Constraints” section for multiple examples of legal place-
ment constraints for each type of logic element (flip-flops, ROMs and RAMs, block
RAMS, FMAPs and HMAPs, CLBMAPs, BUFTs, CLBs, IOBs, I/Os, edge decoders,
global buffers) in FPGA designs.

Schematic

Attached to an instance.

UCF/NCF file

This specifies that an instance of the element BUF1 be placed above the CLB in row 6,
column 9. For XC4000 or Spartan series devices, you can place the TBUF above or
below the CLB. For XC5200 devices, you can place the TBUF in one of four locations
(.0-.3).

INST /DESIGN1/GROUPS/BUF1 LOC=TBUF_R6C9.1 ;

This specifies that each instance found under “FLIP_FLOPS” is to be placed in any
CLB in column 8.

INST /FLIP_FLOPS/* LOC=CLB_R*C8;

LOC=CLB_R1C1.LC3:CLB_R4C4.LC0
(XC5200)

Place logic in any slice in the top left corner
of the LCA bounded by row 4, column 4.

LOC=CLB_R1C1:CLB_R4C4
(Virtex)

Place logic in either slice in the top left
corner of the LCA bounded by row 4,
column 4.

LOC=TBUF_R1C1:TBUF_R2C8
(XC4000, XC5200, Spartans)

Place BUFT anywhere in the area bounded
by row 1, column 1 and row 2, column 8.

Table 12-8 Area LOC Constraint Examples

Attribute Description
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This specifies that an instantiation of MUXBUF_D0_OUT be placed in IOB location
P110.

INST MUXBUF_D0_OUT LOC=P110 ;

This specifies that the net DATA<1> be connected to the pad from IOB location P111.

NET DATA<1> LOC=P111 ;

MAP

Applicable Elements

1. FMAP

2. HMAP

3. F5MAP

4. CLBMAP

Description

Placed on an FMAP, F5MAP, HMAP, or CLBMAP to specify whether pin swapping
and the merging of other functions with the logic in the map are allowed. If merging
with other functions is allowed, other logic can also be placed within the CLB, if space
allows.

Syntax

MAP=[ PUC | PUO | PLC | PLO]

where

PUC means that the CLB pins are unlocked, ad the CLB is closed.

PUO means that the CLB pins are unlocked, and the CLB is open.

PLC means that the CLB pins are locked, and the CLB is closed.

PLO means that the CLB pins are locked, and the CLB is open.

“Unlocked” in these definitions means that the software can swap signals among the
pins on the CLB; “locked” means that it cannot. “Open” means that the software can
add or remove logic from the CLB; conversely, “closed” indicates that the software
cannot add or remove logic from the function specified by the MAP symbol.

The default is PUO.

Note: Currently, only PUC and PUO are observed. PLC and PLO are translated into
PUC and PUO, respectively.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√
4

√
1, 2

√
1, 2

√
1, 3

√
1, 2

√
1, 2

√
1
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Example

Schematic

Attached to a map symbol instance.

UCF/NCF file

This statement allows pin swapping and ensures that no logic other than that defined
by the original map will be mapped into the function generators.

INST $1I3245/map_of_the_world map=puc;

MAXDELAY

Applicable Elements

Nets

Description

The MAXDELAY attribute defines the maximum allowable delay on a net.

Syntax

MAXDELAY=allowable_delay[ units]

where units may be ps, ns, us, ms, GHz, MHz, or kHz. The default is ns.

Example

Schematic

Attached to a net.

UCF/NCF file

This statement assigns a maximum delay of 1 us to the net $SIG_4.

NET $1I3245/$SIG_4 MAXDELAY=1us;

MAXSKEW

Applicable Elements

Nets

Description

Defines the allowable skew on a net.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √
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Syntax

MAXSKEW=allowable_skew [ units]

where units may be ps, ns, us, ms, GHz, MHz, or kHz. The default is ns.

Example

Schematic

Attached to a net.

UCF/NCF file

This statement specifies a maximum skew of 3 ns on net $SIG_6.

NET $1I3245/$SIG_6 MAXSKEW=3;

MEDDELAY

Applicable Elements

Input register

Note: You can also attach the MEDDELAY constraint to a net that is connected to a
pad component in a UCF file. NGDBuild transfers the constraint from the net to the
pad instance in the NGD file so that it can be processed by the mapper. Use the
following syntax.

NET net_name MEDDELAY

Description

Specifies a medium sized delay for the IOB register.

Syntax

MEDDELAY

Example

Schematic

Attached to a valid instance.

UCF/NCF file

This statement specifies that the register in the IOB $COMP_6 will have a medium
sized delay.

INST $1I87/$COMP_6 MEDDELAY;

This statement assigns a medium sized delay to the pad to which net1 is connected.

NET Net1 MEDDELAY ;

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √
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NODELAY

Applicable Elements

Input register

Note: You can also attach the NODELAY constraint to a net connected to a pad
component in a UCF file. NGDBuild transfers the constraint from the net to the pad
instance in the NGD file so that it can be processed by the mapper. Use the following
syntax.

NET net_name NODELAY

Description

The default configuration of IOB flip-flops in XC4000 and Spartan series designs
includes an input delay that results in no external hold time on the input data path.
However, this delay can be removed by placing the NODELAY attribute on input flip-
flops or latches, resulting in a smaller setup time but a positive hold time.

The NODELAY attribute can be attached to the I/O symbols and the special function
access symbols TDI, TMS, and TCK.

Syntax

NODELAY

Example

Schematic

Attached to a valid instance.

UCF/NCF file

This statement specifies that IOB register inreg67 not have an input delay.

INST $1I87/inreg67 NODELAY;

This statement specifies that there be no input delay to the pad that is attached to net1.

NET net1 NODELAY ;

NOREDUCE

Applicable Elements

Any net

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√
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Description

NOREDUCE prevents minimization of redundant logic terms that are typically
included in a design to avoid logic hazards or race conditions. NOREDUCE also iden-
tifies the output node of a combinatorial feedback loop to ensure correct mapping.
When constructing combinatorial feedback latches in a design, always apply NORE-
DUCE to the latch’s output net and include redundant logic terms when necessary to
avoid race conditions.

Syntax

NOREDUCE

Example

Schematic

Attached to a net.

UCF/NCF file

This statement specifies that there be no Boolean logic reduction or logic collapse from
the net named $SIG_12 forward.

NET $SIG_12 NOREDUCE;

OFFSET

Applicable Elements

Global, nets, time groups

Description

Specifies the timing relationship between an external clock and its associated data-in
or data-out pin. Used only for pad-related signals and cannot be used to extend the
arrival time specification method to the internal signals in a design.

OFFSET constraints allow you to do the following.

• Calculate whether a setup time is being violated at a flip-flop whose data and
clock inputs are derived from external nets.

• Specify the delay of an external output net derived from the Q output of an
internal flip-flop being clocked from an external device pin.

For CPLD designs, clock inputs referenced by OFFSET constraints must be explicitly
assigned to a global clock pin (using either the BUFG symbol or applying the
BUFG=CLK attribute to an ordinary input). Otherwise, the OFFSET constraint will
not be used during timing-driven optimization of the design.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √
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Syntax

Global method

The OFFSET constraint can be a "global" constraint that applies to all data pad nets in
the design for the specified clock.

OFFSET={ IN  | OUT} offset_time [ units] { BEFORE | AFTER} " clk_net"  [ TIMEGRP
" reggroup" ]

Net-Specific method

When the NET "name" specifier is used, the constraint is associated with a specific net.

NET " name" OFFSET={ IN  | OUT} offset_time [ units] { BEFORE | AFTER} " clk_net"
[ TIMEGRP "reggroup" ]

Group method

When the TIMEGRP "group" specifier is used, the constraint is associated with a
group of data pad nets.

TIMEGRP "group" OFFSET={ IN  | OUT} offset_time [ units] { BEFORE | AFTER}
" clk_net"  [ TIMEGRP "reggroup" ]

Alternate method

Because the global and group OFFSET constraints are not associated with a single
data net or component, these two types can also be entered on a TIMESPEC symbol in
the design netlist with TSidentifier.

TSidentifier=[ TIMEGRP name]  OFFSET =  { IN | OUT} offset_time [ units]
{ BEFORE| AFTER} "clk_net" [ TIMEGRP "reggroup"]

where

group is the name of a time group containing IOB components or pad BELs.

offset_time is the external offset.

units is an optional field to indicate the units for the offset time. The default is nano-
seconds, but the timing number can be followed by ps, ns, us, ms, GHz, MHz, or kHz
to indicate the intended units.

clk_net is the fully hierarchical netname of the clock net between the pad and its input
buffer.

reggroup is a previously defined time group of register bels. Only registers in the time
group clocked by the specified IOB component is checked against the specified offset
time. The optional time group qualifier, TIMEGRP "reggroup," can be added to any
OFFSET constraint to indicate that the offset applies only to registers specified in the
qualifying group. When used with the "Group method," the "register time" group lists
the synchronous elements that qualify which register elements clocked by "clk_net"
get analyzed.

Note: CPLD designs do not support the "Group Method" or the TIMEGRP options in
the other methods described above.

Example

Schematic

N/A
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UCF/NCF file

This statement specifies that the data will be present on input43 at least 20 ns before
the triggering edge of the clock signal CLOCK.

NET input43 OFFSET=IN 20 BEFORE CLOCK;

For a detailed description of OFFSET, please see the “OFFSET Timing Specifications”
section of the “Using Timing Constraints” chapter in the Development System Reference
Guide.

OPT_EFFORT

Applicable Elements

Any macro or hierarchy level

Description

Defines an effort level to be used by the optimizer.

Syntax

OPT_EFFORT={ NORMAL | HIGH}

Example

Schematic

Attached to a macro.

UCF/NCF file

This statement attaches a High effort of optimization to all of the logic contained
within the module defined by instance $1I678/adder.

INST $1I678/adder OPT_EFFORT=HIGH;

OPTIMIZE

Applicable Elements

Any macro or hierarchy level

Description

Defines whether optimization is performed on the flagged hierarchical tree. The
OPTIMIZE attribute has no effect on any symbol that contains no combinational logic,
such as an input/output buffer.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √
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Syntax

OPTIMIZE={ AREA | SPEED | BALANCE | OFF}

Example

Schematic

Attached to a macro.

UCF/NCF file

This statement specifies that no optimization be performed on an instantiation of the
macro CTR_MACRO.

INST /$1I678/CTR_MACRO OPTIMIZE=OFF;

OUTREG

Applicable Elements

Flip-flops, latches

Description

Because XC5200 IOBs do not have flip-flops or latches, you can apply this attribute to
meet fast setup requirements. If a flip-flop or latch is driving an IOB, you can specify
OUTREG to enable PAR (Place and Route) to place the flip-flop/latch close to the IOB
so that the two elements can be connected using fast routes. See also the  “INREG”
section.

Syntax

OUTREG

Example

Schematic

Attached to a latch or flip-flop instance.

UCF/NCF file

This statement directs PAR to place the flip-flop $I1 near the IOB that it is driving.

INST $I1 OUTREG;

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√



Libraries Guide, Release M1.5

12-56 Xilinx Development System

PART

Applicable Elements

1. Global

2. Attached to CONFIG symbol in schematics

Description

Defines the part type used for the design.

Syntax

PART=part_type

where part_type can be device-speed-package or device-package-speed. For example,
4028EX-PG299-3 or 4028EX-3-PG299

The package string must always begin with an alphabetic character — never with a
number.

The speed string must always begin with an numeric character —never with an alpha-
betic character.

The text XC is an optional prefix to the whole part_type string.

In a constraints file, the PART specification must be preceded by the keyword
CONFIG.

Example

Schematic

Global or attached to the CONFIG symbol.

UCF/NCF file

This statement specifies a 4005E device, a PQ160C package, with a speed of 5.

CONFIG PART=4005E-PQ160C-5;

PERIOD

Applicable Elements

Nets that feed forward to drive flip-flop clock pins

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √
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Description

Provides a convenient way of defining a clock period for registers attached to a partic-
ular clock net.

PERIOD controls pad-to-setup and clock-to-setup paths but not clock-to-pad paths.
Refer to the  “Using Timing Constraints” chapter in the Development System Reference
Guide for more information on clock period specifications.

Syntax

Simple method

PERIOD=period[ units] [{ HIGH | LOW} [ high_or_low_time[ hi_lo_units]]]

where

period is the required clock period.

units is an optional field to indicate the units for a clock period. The default is nano-
seconds (ns), but the timing number can be followed by ps, ns, or us to indicate the
intended units.

HIGH or LOW can be optionally specified to indicate whether the first pulse is to be
High or Low.

high_or_low_time is the optional High or Low time, depending on the preceding
keyword. If an actual time is specified, it must be less than the period. If no High or
Low time is specified, the default duty cycle is 50 percent.

hi_lo_units is an optional field to indicate the units for the duty cycle. The default is
nanoseconds (ns), but the High or Low time number can be followed by ps, us, ms, or
% if the High or Low time is an actual time measurement.

Alternate method

TSidentifier=PERIOD TNM_reference period [ units] [{ HIGH | LOW} [ high_or_low_time
[ hi_lo_units]]]

where

identifier is a reference identifier that has a unique name.

TNM_reference is the identifier name that is attached to a clock net (or a net in the clock
path) using the TNM attribute.

period is the required clock period.

units is an optional field to indicate the units for a clock period. The default is nano-
seconds (ns), but the timing number can be followed by ps, ms, us, or % to indicate
the intended units.

HIGH or LOW indicates whether the first pulse is to be High or Low.

high_or_low_time is the optional High or Low time, depending on the preceding
keyword. If an actual time is specified, it must be less than the period. If no High or
Low time is specified, the default duty cycle is 50 percent.

hi_lo_units is an optional field to indicate the units for the duty cycle. The default is
nanoseconds (ns), but the High or Low time number can be followed by ps, us, ms, or
% if the High or Low time is an actual time measurement.
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Example

The following examples are for the “simple method.”

Schematic

Attached to a net.

PERIOD=40 HIGH 25;

UCF/NCF file

This statement assigns a clock period of 40 ns to the net named $SIG_24, with the first
pulse being High and having a duration of 25 nanoseconds.

NET $SIG_24 PERIOD=40 HIGH 25;

PROHIBIT

Applicable Elements

Attached to CONFIG symbol

Description

Disallows the use of a site within PAR, EPIC, and the CPLD fitter.

Location Types

Use the following location types to define the physical location of an element.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √

P12 IOB location (chip carrier)

A12 IOB location (pin grid)

B, L, R, T Indicates edge locations (bottom, left, top, right) —
applies to edge decoders only

LB, RB, LT, RT, BR, TR, BL, TL Indicates half edges (left bottom, right bottom, and
so forth) — applies to edge decoders only

TL, TR, BL, BR Indicates a corner for global buffer placement

AA CLB location for XC3000

CLB_R4C3 CLB location for XC4000 or XC5200

CLB_R4C3 (or .S0 or .S1) CLB location for Virtex

CLB_R6C8.LC0 (or 1, 2, 3) Function generator or register location for XC5200

CLB_R6C8.S0 (or .S1) Function generator or register location for Virtex

CLB_R6C8.LC0 (or 2) F5_MUX location for XC5200

TBUF_R6C7.1 (or.2) TBUF location for XC4000

TBUF_R6C7.0 (or.1,.2, or.3) TBUF location for XC5200

TBUF_R6C7 (or .0 or .1) TBUF location for Virtex

RAMB4_R3C1 Block RAM location for Virtex
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The wildcard character (*) can be used to replace a single location with a range as
shown in the following examples.

Note: The wildcard character is not supported for Virtex global buffer or DLL loca-
tions.

The following are not supported.

• Dot extensions on ranges. For example, LOC=CLB_R0C0:CLB_R5C5.G. However,
for the XC5200, range locations will be expanded to include extensions,
CLB_R0C0.*:CLB_R5C5.*, for example, when the mapper passes a range
constraint to the PCF file.

• B, L, R, T used to indicate IO edge locations (bottom, left, top, right)

• LB, RB, LT, RT, BR, TR, BL, TL used to indicate IO half edges (left bottom, right
bottom, etc.)

• .F or .G extension for function generator, RAM, ROM, or RAMS location for
XC4000

• .FFX or .FFY extension for flip-flop location for XC4000

• Wildcard character for Virtex global buffer, global pad, or DLL locations.

Syntax

Single location

PROHIBIT= location

Multiple single locations

PROHIBIT= location1, location2, ... ,  locationn ;

Range of locations

PROHIBIT= location: location

In a constraints file, the PROHIBIT specification must be preceded by the keyword
CONFIG.

Note: CPLDs do not support the "Range of locations" form of PROHIBIT.

Example

Schematic

Unattached attribute or attached to a CONFIG symbol.

GCLKBUG0 (or 1, 2, or 3) Global clock buffer location for Virtex

GCLKPAD0 (or 1, 2, or 3) Global clock pad location for Virtex

DLL0 (or 1, 2, or 3) Delay Locked Loop element location for Virtex

C* Any CLB in row C of an XC3000 device

*D Any CLB in column D of an XC3000 device

CLB_R*C5 Any CLB in column 5 of an XC4000 or XC5200
device

CLB_R*C5 Any CLB in either slice in column 5 of a Virtex
device
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UCF/NCF file

This statement prohibits use of the site P45.

CONFIG PROHIBIT=P45;

This statement prohibits use of the CLB located in Row 6, Column 8.

CONFIG PROHIBIT=CLB_R6C8 ;

This statement prohibits use of the site TBUF_R5C2.2.

CONFIG PROHIBIT=TBUF_R5C2.2 ;

PWR_MODE

Applicable Elements

1. Nets

2. Any instance

Description

Defines the mode, Low power or High performance (standard power) of the macro-
cell that implements the tagged element.

Note: If the tagged function is collapsed forward into its fanouts, the attribute is not
applied.

Syntax

PWR_MODE={ LOW | STD}

Example

Schematic

Attached to a net or an instance.

UCF/NCF file

This statement specifies that the macrocell that implements the net $SIG_0 will be in
Low power mode.

NET $1187/$SIG_0 PWR_MODE=LOW;

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√
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RLOC

Applicable Elements

1. Registers

2. FMAP

3. HMAP

4. F5MAP

5. CY4

6. CY_MUX

7. ROM

8. RAM

9. RAMS, RAMD

10. BUFT. (Can only be used if the associated RPM has an RLOC_ORIGIN that causes
the RLOC values in the RPM to be changed to LOC values.)

11. WAND primitives that do not have a DECODE attribute attached

12. LUTs, F5MUX, F6MUX, MUXCY, XORCY, MULT_AND, SRL16, SRL16E

Description

Relative location (RLOC) constraints group logic elements into discrete sets and allow
you to define the location of any element within the set relative to other elements in
the set, regardless of eventual placement in the overall design. See the  “Physical
Constraints” section for detailed information about this type of constraint.

For XC5200, the RLOC attribute must include the extension that defines in which of
the four slices of a CLB the element will be placed (.LC0, .LC1, .LC2, .LC3). This
defines the relationship of the elements in the set and also specifies in which of the
four slices the element will eventually be placed.

For Virtex, the RLOC attribute must include the extension that defines in which of the
two slices of a CLB the element will be placed (.S0, .S1).

Syntax

XC4000 or Spartans

RLOC=RmCn[. extension]

XC5200 or Virtex

RLOC=RmCn. extension

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√
1, 2, 3, 5, 7, 8,

9, 10, 11

√
1, 2, 3, 5, 7, 8,

9, 10, 11

√
1, 2, 4, 6, 10

√
1, 2, 3, 5, 7, 8,

9, 10

√
1, 2, 3, 5, 7, 8,

9, 10

√
1, 2, 8, 9, 10,

12
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where

m and n are integers (positive, negative, or zero) representing relative row numbers
and column numbers, respectively.

extension uses the LOC extension syntax as appropriate; it can take all the values that
are available with the current absolute LOC syntax.

For the XC4000 and Spartans, the available extensions are FFX, FFY, F, G, H, 1, and 2.
The 1 and 2 values are available for BUFT primitives, and the rest are available for
primitives associated with CLBs. See the  “LOC” section for more details.

For the XC5200, extension is required to define in which of the four slices of a CLB the
element will be placed (.LC0, .LC1, .LC2, .LC3).

For Virtex, extension is required to define the spatial relationships (.S0 is the left-most
slice; .S1 is the right-most slice) of the objects in the RPM.

The RLOC value cannot specify a range or a list of several locations; it must specify a
single location. See the  “Guidelines for Specifying Relative Locations” section for
more information.

Example

Schematic

Attached to an instance.

UCF/NCF file

This statement specifies that an instantiation of FF1 be placed in the CLB at row 4,
column 4.

INST /4K/design/FF1 RLOC=R4C4;

This statement specifies that an instantiation of elemA be placed in the X flip-flop in
the CLB at row 0, column 1.

INST /$1I87/elemA RLOC=r0cl.FFX;

RLOC_ORIGIN

Applicable Elements

Instances or macros that are members of sets

Description

An RLOC_ORIGIN constraint fixes the members of a set at exact die locations. This
constraint must specify a single location, not a range or a list of several locations. For
more information about this constraint, refer to the  “Fixing Members of a Set at Exact
Die Locations” section.

The RLOC_ORIGIN constraint is required for a set that includes BUFT symbols. The
RLOC_ORIGIN constraint cannot be attached to a BUFT instance.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √
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Syntax

RLOC_ORIGIN=RmCn

where m and n are positive integers (including zero) representing relative row and
column numbers, respectively.

Example

Schematic

Attached to an instance that is a member of a set.

UCF/NCF file

This statement specifies that an instantiation of FF1, which is a member of a set, be
placed in the CLB at R4C4 relative to FF1. For example, if RLOC=R0C2 for FF1, then
the instantiation of FF1 is placed in the CLB that occupies row 4 (R0 + R4) , column 6
(C2 + C4).

INST /archive/designs/FF1 RLOC_ORIGIN=R4C4;

RLOC_RANGE

Applicable Elements

Instances or macros that are members of sets

Description

The RLOC_RANGE constraint is similar to the RLOC_ORIGIN constraint except that
it limits the members of a set to a certain range on the die. The range or list of loca-
tions is meant to apply to all applicable elements with RLOCs, not just to the origin of
the set.

Syntax

RLOC_RANGE=Rm1Cn1: Rm2Cn2

where the relative row numbers (m1 and m2) and column numbers (n1 and n2) can be
positive integers (including zero) or the wildcard (*) character. This syntax allows
three kinds of range specifications, which are defined in the  “Fixing Members of a Set
at Exact Die Locations” section.

Example

Schematic

Attached to an instance that is a member of a set.

UCF/NCF file

This statement specifies that an instantiation of the macro MACRO4 be placed within
a region that is enclosed by the rows R4-R10 and the columns C4-C10.

INST /archive/designs/MACRO4 RLOC_RANGE=R4C4:R10C10;

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √
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S(ave) - Net Flag Attribute

Applicable Elements

Nets

Description

Attaching the net flag attribute to nets affects the mapping, placement, and routing of
the design.

Syntax

S

The S (save) net flag attribute prevents the removal of unconnected signals. If you do
not have the S attribute on a net, any signal not connected to logic and/or an I/O
primitive is removed.

Example

Schematic

Attached to a net.

UCF/NCF file

This statement specifies that the net named $SIG_9 will not be removed.

NET $SIG_9 S;

SLOW

Applicable Elements

Output primitives, output pads, bidirectional pads

Note: You can also attach the SLOW constraint to the net connected to the pad
component in a UCF file. NGDBuild transfers the constraint from the net to the pad
instance in the NGD file so that it can be processed by the mapper. Use the following
syntax.

NET net_name SLOW

Description

Stipulates that the slew rate limited control should be enabled. This is the default.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√
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Syntax

SLOW

Example

Schematic

Attached to a valid instance.

UCF/NCF file

This statement establishes a slow slew rate for an instantiation of the element y2.

INST $1I87/y2 SLOW;

This statement establishes a slow slew rate for the pad to which net1 is connected.

NET net1 SLOW;

STARTUP_WAIT

Applicable Elements

Any CLKDLL, CLKDLLHF, or BUGDGLL instance

Description

Controls whether the DONE signal (device configuration) can go HIGH (indicating
that the device is fully configured).

Syntax

START_WAIT={ TRUE | FALSE}

where

TRUE specifies that the DONE signal cannot go High until the instance assigned this
property locks.

FALSE, the default, specifies that the locking of the instance has no impact on the
DONE signal.

Example

Schematic

Attached to a valid instance.

UCF/NCF file

This statement specifies that the DONE signal cannot go High until the foo/bar
instance locks.

INST foo/bar STARTUP_WAIT=TRUE;

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√
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TEMPERATURE

Applicable Elements

Global

Description

Allows the specification of the operating junction temperature. This provides a means
of prorating device delay characteristics based on the specified temperature. Prorating
is a scaling operation on existing speed file delays and is applied globally to all delays.

Note: Each architecture has its own specific range of valid operating temperatures. If
the entered temperature does not fall within the supported range, the constraint is
ignored and an architecture-specific default value is used instead. Also note that the
error message for this condition does not appear until PCF processing.

Syntax

TEMPERATURE=value[ C |F| K ]

where

value is real number specifying the temperature.

C, K, and F are the temperature units. F is degrees Fahrenheit, K is degrees Kelvin,
and C is degrees Celsius, the default.

Example

Schematic

Unattached attribute.

UCF/NCF file

This statement specifies that the analysis for everything relating to speed file delays
assumes a junction temperature of 25 degrees Celsius.

TEMPERATURE=25C;

TIG

Applicable Elements

Nets, pins

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√∗ √∗ √∗ √∗ √∗ √∗ √∗
*Availability depends on the release of characterization data

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √



Attributes, Constraints, and Carry Logic

Libraries Guide, Release M1.5 12-67

Description

Paths that fan forward from the point of application are treated as if they do not exist
(for the purposes of the timing model) during implementation.

A TIG may be applied relative to a specific timing specification.

Syntax

TIG

or

TIG=TSidentifier1,..., TSidentifiern

where identifier refers to a timing specification that should be ignored.

Example

Schematic

Attached to a net or pin.

UCF/NCF file

This statement specifies that the timing specifications TS_fast and TS_even_faster will
be ignored on all paths fanning forward from the net $Sig_5.

 NET $1I567/$Sig_5 TIG=TS_fast, TS_even_faster;

For more on TIG, see the  “Ignoring Selected Paths” section of the “Using Timing
Constraints” chapter in the Development System Reference Guide.

Time Group Attributes

Applicable Elements

1. Global in constraints file (preceded by the keyword TIMEGRP)

2. Time group primitive

Description

Time group properties (attributes) are a set of grouping mechanisms that use existing
TNMs (Timing Names) to create new groups or to define new groups based on the
output net that the group sources. The timing group primitive (TIMEGRP) exists for
the purpose of hosting these properties. In a constraints file, the specification of these
properties must be preceded with the keyword TIMEGRP.

Note: When entering time group properties into a TIMEGRP symbol, some property
names may conflict with the predefined property names of the TIMEGRP primitive.

The standard procedure for adding a property to a symbol is to use the following
format.

PROPERTY=property_name VALUE=value

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √
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However, some property names are reserved, and should not be used because they
cause a conflict. Hence, for property_name you must not use any of the system reserved
names LIBVER, INST, COMP, MODEL, or any other names reserved by your sche-
matic capture program. Please consult your schematic capture documentation to
become familiar with reserved property names.

Note: For more on the TIMEGRP symbol, see the “TIMEGRP” section in the Design
Elements chapter.

Syntax

new_group_name=[ RISING  | FALLING] group_name1 [ EXCEPT group_name2...
group_namen]

or

new_group_name=[ TRANSHI | TRANSLO] group_name1 [ EXCEPT group_name2...
group_namen]

where

group_names can be

• the name assigned to a previously defined group.

• all of the members of a predefined group using the keywords FFS, RAMS, PADS
or LATCHES. FFS refers to all flip-flops. RAMS refers to all RAMs. PADS refers to
all I/O pads. LATCHES refers to all latches.

• a subset of elements in a group predefined by name matching using the following
syntax.

predefined_group name qualifier1... name_qualifiern

RISING or FALLING applies to the rising or falling edge sensitive elements of a group
of flip-flops to be referred to as a subset.

TRANSHI or TRANSLO is the form of the constraint applied to latches.

EXCEPT excludes the object group.

Example 1

Schematic

The following attribute would be attached to a TIMEGRP primitive to combine the
elements in two groups to form a new group.

big_group=little_group other_group

UCF/NCF file

The same constraint could appear in a User Constraints File (UCF) as follows.

TIMEGRP big_group=little_group other_group;

Example 2

Schematic

The following constraints would be attached to a TIMEGRP primitive to define new
groups by exclusion.

input_pads=pads except output_pads
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UCF/NCF file

The same constraint could appear in a UCF as follows.

TIMEGRP input_pads=pads EXCEPT output_pads;

For more on Time Group Attributes, see the  “Timing Specifications” section of the
“Using Timing Constraints” chapter in the Development System Reference Guide. See
also the  “Syntax Summary” section in the same chapter.

TNM

Applicable Elements

Nets, instances, macros

Note:  You can attach the TNM constraint to the net connected to the pad component
in a UCF file. NGDBuild transfers the constraint from the net to the pad instance in
the NGD file so that it can be processed by the mapper. Use the following syntax.

NET net_name TNM=property_value

Description

Tags specific flip-flops, RAMs, pads, and latches as members of a group to simplify
the application of timing specifications to the group.

TNMs (Timing Names) applied to pad nets do not propagate forward through the
IBUF/ OBUF. The TNM is applied to the external pad. This case includes the net
attached to the D input of an IFD. See the “TNM_NET” section if you want the TNM
to trace forward from an input pad net.

TNMs applied to the input pin of an IBUF/ OBUF will propagate the TNM to the next
appropriate element.

TNMs applied to the output pin of an IBUF/OBUF will propagate the TNM to the
next appropriate element.

TNMs applied to an IBUF or OBUF element stay attached to that element.

TNMs applied to a clock-pad-net will not propagate forward through the clock buffer.

When TNM is applied to a macro, all the elements in the macro will have that timing
name.

See the  “Entering Timing Specifications” section of the “Using Timing Constraints”
chapter in the Development System Reference Guide for detailed information about this
attribute.

Syntax

TNM=[ predefined_group: ] identifier;

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √
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where

predefined_group can be

• the name assigned to a previously defined group.

• all of the members of a predefined group using the keywords FFS, RAMS, PADS
or LATCHES. FFS refers to all flip-flops. RAMS refers to all RAMs. PADS refers to
all I/O pads. LATCHES refers to all latches.

• a subset of elements in a group predefined by name matching using the following
syntax.

predefined_group name_qualifier1... name_qualifiern

identifier can be any combination of letters, numbers, or underscores. Do not use
reserved words, such as FFS, LATCHES, RAMS, or PADS for TNM identifiers.

Example

Schematic

Attached to a net or a macro.

UCF/NCF file

This statement identifies the element register_ce as a member of the timing group
the_register.

NET $1I87/register_ce TNM=the_register;

TNM_NET

Applicable Elements

Nets

Description

Tags specific flip-flops, RAMs, pads, and latches as members of a group to simplify
the application of timing specifications to the group. NGDBuild never transfers a
TNM_NET constraint from the attached net to a pad, as it does with the TNM
constraint.

TNM_NETs applied to pad nets propagate forward through the IBUF/ OBUF.

TNM_NETs applied to a clock-pad-net propagate forward through the clock buffer.

When TNM_NET is applied to a macro, all the elements in the macro will have that
timing name.

See the  “Timing Specifications” section of the “Using Timing Constraints” chapter in
the Development System Reference Guide for detailed information about this attribute.

Syntax

TNM_NET=[ predefined_group:] identifier

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √
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where

predefined_group can be

• the name assigned to a previously defined group.

• all of the members of a predefined group using the keywords FFS, RAMS, PADS
or LATCHES. FFS refers to all flip-flops. RAMS refers to all RAMs. PADS refers to
all I/O pads. LATCHES refers to all latches.

• a subset of elements in a group predefined by name matching using the following
syntax.

predefined_group name_qualifier1... name_qualifiern

identifier can be any combination of letters, numbers, or underscores. Do not use
reserved words, such as FFS, LATCHES, RAMS, or PADS for TNM identifiers.

Example

Schematic

Attached to a net.

UCF/NCF file

This statement identifies all flip-flops fanning out from the PADCLK net as a member
of the timing group FFGRP.

NET PADCLK TNM_NET=FFS(*):FFGRP;

TPSYNC

Applicable Elements

Nets, instances, pins

Description

Flags a particular point or a set of points with an identifier for reference in subsequent
timing specifications. You can use the same identifier on several points, in which case
timing analysis treats the points as a group. See the  “Time Group Attributes” section.

Defining synchronous points

When the timing of a design must be designed from or to a point that is not a flip-flop,
latch, RAM, or I/O pad, the following rules apply if a TPSYNC timing point is
attached to a net, macro pin, output or input pin of a primitive, or an instance.

• A net — the source of the net is identified as a potential source or destination for
timing specifications.

• A macro pin — all of the sources inside the macro that drive the pin to which the
attribute is attached are identified as potential sources or destinations for timing
specifications. If the macro pin is an input pin (that is, if there are no sources for

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √
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the pin in the macro), then all of the load pins in the macro are flagged as synchro-
nous points.

• The output pin of a primitive — the primitive’s output is flagged as a potential
source or destination for timing specifications.

• The input pin of a primitive — the primitive’s input is flagged as a potential
source or destination for timing specifications.

• An instance — the output of that element is identified as a potential source or
destination for timing specifications.

Syntax

TPSYNC=identifier

where identifier is a name that is used in timing specifications in the same way that
groups are used.

All flagged points are used as a source or destination or both for the specification
where the TPSYNC identifier is used.

Note: The name for the identifier must be different from any identifier used for a
TNM attribute.

Example

Schematic

Attached to a net, instance, or pin.

UCF/NCF file

This statement identifies latch as a potential source or destination for timing specifica-
tions for the net logic_latch.

NET $1I87/logic_latch TPSYNC=latch;

TPTHRU

Applicable Elements

Nets, pins, instances

Description

Flags a particular point or a set of points with an identifier for reference in subsequent
timing specifications. You can use the same identifier on several points, in which case
timing analysis treats the points as a group. See the  “Time Group Attributes” section.

Defining through points

The TPTHRU attribute is used when it is necessary to define intermediate points on a
path to which a specification applies. See the  “TSidentifier” section.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √
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Syntax

TPTHRU=identifier

where identifier is a name used in timing specifications for further qualifying timing
paths within a design.

Note: The name for the identifier must be different from any identifier used for a
TNM attribute.

Example

Schematic

Attached to a net, instance, or pin.

UCF/NCF file

This statement identifies the net on_the_way as an intermediate point on a path to
which the timing specification named “here” applies.

NET $1I87/on_the_way TPTHRU=here;

TSidentifier

Applicable Elements

1. Global in constraints file

2. TIMESPEC primitive

Description

TSidentifier properties beginning with the letters “TS” are placed on the TIMESPEC
symbol. In a constraints file, the specification of these properties can be preceded with
the optional keyword TIMESPEC. The value of the TSidentifier attribute corresponds
to a specific timing specification that can then be applied to paths in the design.

Syntax

Note: All the following syntax definitions use a space as a separator. The use of a
colon (:) as a separator is optional.

Defining a maximum allowable delay

TSidentifier=[ MAXDELAY] FROMsource_group TO dest_group allowable_delay [ units]

or

TSidentifier=FROMsource_group TO dest_group allowable_delay [ units]

Defining intermediate points

Note: This form is not supported for CPLDs.

TSidentifier=FROMsource_group THRU thru_point [ THRU thru_point1... thru_pointn] TO
dest_group allowable_delay [ units]

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √ √ √
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where

identifier is an ASCII string made up of the characters A-Z, a-z, 0-9, and _.

source_group and dest_group are user-defined or predefined groups.

thru_point is an intermediate point used to qualify the path, defined using a TPTHRU
attribute.

allowable_delay is the timing requirement.

units is an optional field to indicate the units for the allowable delay. The default units
are nanoseconds (ns), but the timing number can be followed by ps, ns, us, ms, GHz,
MHz, or kHz to indicate the intended units.

Defining a linked specification

This allows you to link the timing number used in one specification to another specifi-
cation.

TSidentifier=FROMsource_group TO dest_group another_TSid[ /  | * ] number

where

identifier is an ASCII string made up of the characters A-Z, a-z, 0-9, and _.

source_group and dest_group are user-defined or predefined groups.

another_Tsid is the name of another timespec.

number is a floating point number.

Defining a clock period

This allows more complex derivative relationships to be defined as well as a simple
clock period.

TSidentifier=PERIOD TNM_reference period[ units] [{ HIGH | LOW} [ high_or_low_time
[ hi_lo_units]]]

where

identifier is a reference identifier with a unique name.

TNM_reference is the identifier name attached to a clock net (or a net in the clock path)
using a TNM attribute.

period is the required clock period.

units is an optional field to indicate the units for the allowable delay. The default units
are nanoseconds (ns), but the timing number can be followed by ps, ns, us, ms, GHz,
MHz, or kHz to indicate the intended units.

HIGH or LOW can be optionally specified to indicate whether the first pulse is to be
High or Low.

high_or_low_time is the optional High or Low time, depending on the preceding
keyword. If an actual time is specified, it must be less than the period. If no High or
Low time is specified, the default duty cycle is 50 percent.

hi_lo_units is an optional field to indicate the units for the duty cycle. The default is
nanoseconds (ns), but the High or Low time number can be followed by ps, us, ms, or
% if the High or Low time is an actual time measurement.
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Specifying derived clocks

TSidentifier=PERIOD TNM_reference another_PERIOD_identifier [/ | *] number
[{ HIGH | LOW} [ high_or_low_time [ hi_lo_units]]]

where

TNM_reference is the identifier name attached to a clock net (or a net in the clock path)
using a TNM attribute.

another_PERIOD_identifier is the name of the identifier used on another period specifi-
cation.

number is a floating point number.

HIGH or LOW can be optionally specified to indicate whether the first pulse is to be
High or Low.

high_or_low_time is the optional High or Low time, depending on the preceding
keyword. If an actual time is specified, it must be less than the period. If no High or
Low time is specified, the default duty cycle is 50 percent.

hi_lo_units is an optional field to indicate the units for the duty cycle. The default is
nanoseconds (ns), but the High or Low time number can be followed by ps, us, ms, or
% if the High or Low time is an actual time measurement.

Ignoring paths

Note: This form is not supported for CPLDs.

There are situations in which a path that exercises a certain net should be ignored
because all paths through the net, instance, or instance pin are not important from a
timing specification point of view.

TSidentifier=FROMsource_group TO dest_group TIG

or

TSidentifier=FROMsource_group THRU thru_point [ THRU thru_point1... thru_pointn] TO
dest_group TIG

where

identifier is an ASCII string made up of the characters A-Z, a-z 0-9, and _.

source_group and dest_group are user-defined or predefined groups.

thru_point is an intermediate point used to qualify the path, defined using a TPTHRU
attribute.

Example

Schematic

Attached to a TIMESPEC primitive.

UCF/NCF file

This statement says that the timing specification TS_35 calls for a maximum allowable
delay of 50 ns between the groups “here” and “there”.

TIMESPEC TS_35=FROM here TO there 50;
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This statement says that the timing specification TS_70 calls for a 25 ns clock period
for clock_a, with the first pulse being High for a duration of 15 ns.

TIMESPEC TS_70=PERIOD “clock_a” 25 high 15;

For more information, see the  “Timing Constraints” section.

Note: In either example above, a colon can be used instead of a space as the separator.
(Additional spaces entered before or after the colon are ignored.) The statements then
become as follows.

TIMESPEC TS_35=FROM:here:TO:there:50;

TIMESPEC TS_70=PERIOD:”clock_a”:25:high:15;

U_SET

Applicable Elements

1. Registers

2. FMAP

3. HMAP

4. F5MAP

5. CY4

6. CY_MUX

7. Macro instance

8. EQN

9. ROM

10. RAM

11. RAMS, RAMD

12. BUFT (Can only be used for Virtex if the associated RPM has an RLOC_ORIGIN
that causes the RLOC values in the RPM to be changed to LOC values.)

13. LUTs, F5MUX, F6MUX, MUXCY, XORCY, MULT_AND, SRL16, SRL16E

Description

The U_SET constraint groups design elements with attached RLOC constraints that
are distributed throughout the design hierarchy into a single set. The elements that
are members of a U_SET can cross the design hierarchy; that is, you can arbitrarily
select objects without regard to the design hierarchy and tag them as members of a
U_SET. For detailed information about this attribute, refer to the  “RLOC Sets”
section.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√
1, 2, 3, 5, 7, 8,
9, 10, 11, 12

√
1, 2, 3, 5, 7, 8,
9, 10, 11, 12

√
1, 2, 4, 6, 7, 8,

12

√
1, 2, 3, 5, 7, 8,
9, 10, 11, 12

√
1, 2, 3, 5, 7, 8,
9, 10, 11, 12

√
1, 2, 7, 8, 10,

11, 12, 13
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Syntax

U_SET=name

where name is the identifier of the set. This name is absolute. It is not prefixed by a
hierarchical qualifier.

Example

Schematic

Attached to a valid instance.

UCF/NCF file

This statement specifies that the design element ELEM_1 be in a set called JET_SET.

INST $1I3245/ELEM_1 U_SET=JET_SET;

USE_RLOC

Applicable Elements

Instances or macros that are members of sets

Description

Turns on or off the RLOC constraint for a specific element or section of a set. For
detailed information about this constraint, refer to the  “Toggling the Status of RLOC
Constraints” section.

Syntax

USE_RLOC={ TRUE | FALSE}

where TRUE turns on the RLOC attribute for a specific element, and FALSE turns it
off. Default is TRUE.

Example

Schematic

Attached to a member of a set.

UCF/NCF file

INST $1I87/big_macro USE_RLOC=FALSE;

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√ √ √ √ √ √
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VOLTAGE

Applicable Elements

Global

Description

Allows the specification of the operating voltage. This provides a means of prorating
delay characteristics based on the specified voltage. Prorating is a scaling operation
on existing speed file delays and is applied globally to all delays.

Note: Each architecture has its own specific range of supported voltages. If the
entered voltage does not fall within the supported range, the constraint is ignored and
an architecture-specific default value is used instead. Also note that the error message
for this condition appears during PCF processing.

Syntax

VOLTAGE=value[ V]

where

value is a real number specifying the voltage.

V indicates volts, the default voltage unit.

Example

Schematic

Unattached attribute.

UCF/NCF file

This statement specifies that the analysis for everything relating to speed file delays
assumes an operating power of 5 volts.

VOLTAGE=5;

WIREAND

Applicable Elements

Any net

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√∗ √∗ √∗ √∗ √∗ √∗ √∗
*Availability depends on the release of characterization data

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√∗
* not supported for XC9500XL designs
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Description

Forces a tagged node to be implemented as a wired AND function in the interconnect
(UIM and Fastconnect).

Syntax

WIREAND

Example

Schematic

Attached to a net.

UCF/NCF file

This statement specifies that the net named SIG_11 be implemented as a wired AND
when optimized.

NET $I16789/SIG_11 WIREAND;

XBLKNM

Applicable Elements

1. IOB, CLB, and CLBMAP

2. Flip-flop and latch primitives

3. Any I/O element or pad

4. FMAP

5. HMAP

6. F5MAP

7. BUFT

8. ROM primitive

9. RAM primitives

10. RAMS and RAMD primitives

11. Carry logic primitives

Description

Assigns LCA block names to qualifying primitives and logic elements. If the same
XBLKNM attribute is assigned to more than one instance, the software attempts to
map them into the same LCA block. Conversely, two symbols with different
XBLKNM names are not mapped into the same block. Placing similar XBLKNMs on
instances that do not fit within one LCA block creates an error.

XC3000 XC4000E XC4000X XC5200 XC9000 Spartan SpartanXL Virtex

√
1,2, 3, 7, 8

√
2, 3, 4, 5, 7, 8,

9, 10, 11

√
2, 3, 4, 5, 7, 8,

9, 10, 11

√
2, 3, 4, 6, 7,

11

√
2, 3, 4, 5, 7, 8,

9, 10, 11

√
2, 3, 4, 5, 7, 8,

9, 10, 11



Libraries Guide, Release M1.5

12-80 Xilinx Development System

Specifying identical XBLKNM attributes on FMAP and/or HMAP symbols tells the
software to group the associated function generators into a single CLB. Using
XBLKNM, you can partition a complete CLB without constraining the CLB to a phys-
ical location on the device.

XBLKNM attributes, like LOC constraints, are specified from the schematic. Hierar-
chical paths are not prefixed to XBLKNM attributes, so XBLKNM attributes for
different CLBs must be unique throughout the entire design.

The BLKNM attribute allows any elements except those with a different BLKNM to be
mapped into the same physical component. XBLKNM, however, allows only elements
with the same XBLKNM to be mapped into the same physical component. Elements
without an XBLKNM cannot be not mapped into the same physical component as
those with an XBLKNM.

For XC5200, a given XBLKNM string can only be used to group a logic cell (LC),
which contains one register, one LUT (FMAP), and one F5_MUX element. An error
will occur if two or more registers, two or more FMAPs, or two or more F5_MUX
elements have the same XBLKNM attribute.

Syntax

XBLKNM=block_name

where block_name is a valid LCA block name for that type of symbol. For a list of
prohibited block names, see the “Naming Conventions” section of each user interface
manual.

Example

Schematic

Attached to a valid instance.

UCF/NCF file

This statement assigns an instantiation of an element named flip_flop2 to a block
named U1358.

INST $1I87/flip_flop2 XBLKNM=U1358;
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Placement Constraints
This section describes the legal placement constraints for each type of logic element,
such as flip-flops, ROMs and RAMs, FMAPs, F5MAPs, and HMAPs, CLBMAPs,
BUFTs, CLBs, IOBs, I/Os, edge decoders, and global buffers in FPGA designs. Indi-
vidual logic gates, such as AND or OR gates, are mapped into CLB function genera-
tors before the constraints are read and therefore cannot be constrained. However, if
gates are represented by an FMAP, F5MAP, HMAP, or CLBMAP symbol, you can put
a placement constraint on that symbol.

You can use the following constraints (described earlier in the  “Attributes/Logical
Constraints” section) to control mapping and placement of symbols in a netlist.

• BLKNM

• HBLKNM

• XBLKNM

• LOC

• PROHIBIT

• RLOC

• RLOC_ORIGIN

• RLOC_RANGE

Most constraints can be specified either in the schematic or in the UCF file.

In a constraints file, each placement constraint acts upon one or more symbols. Every
symbol in a design carries a unique name, which is defined in the input file. Use this
name in a constraint statement to identify the symbol.

Note: The UCF and NCF files are case sensitive. Identifier names (names of objects in
the design, such as net names) must exactly match the case of the name as it exists in
the source design netlist. However, any Xilinx constraint keyword (for example, LOC,
PROHIBIT, RLOC, BLKNM) can be entered in either all upper-case or all lower-case
letters; mixed case is not allowed.

The following sections describe various types of placement constraints, explains the
method of determining the symbol name for each, and provides examples.

BUFT Constraint Examples
You can constrain internal 3-state buffers (BUFTs) to an individual BUFT location, a
list of BUFT locations, or a rectangular block of BUFT locations. BUFT constraints all
refer to locations with a prefix of TBUF, which is the name of the physical element on
the device.

BUFT constraints can be assigned from the schematic or through the UCF file. From
the schematic, LOC constraints are attached to the target BUFT. The constraints are
then passed into the EDIF netlist file and after mapping are read by PAR. Alterna-
tively, in a constraints file a BUFT is identified by a unique instance name.

In the XC3000, BUFT locations are not straightforward. View the device in EPIC to
determine the exact BUFT names.
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In XC4000 or Spartans, BUFT locations are identified by the adjacent CLB. Thus,
TBUF_R1C1.1 is just above CLB_R1C1, and TBUF_R1C1.2 is just below it. For XC4000
or Spartans, use the following syntax to denote fixed locations.

TBUF_RrowCcol [ .1  | .2 ]

where row is the row location and col is the column location; they can be any number
between 0 and 99, inclusive. They must be less than or equal to the number of CLB
rows or columns in the target device. The suffixes have the following meanings.

• 1 indicates that the instance should be placed above the CLB.

• 2 indicates that the instance should be placed below the CLB.

In the XC5200, BUFT locations are identified by the adjacent slice. From bottom to top,
they are number 0, 1, 2, and 3. Thus, TBUF_R1C1.0 is located toward the bottom of the
row. TBUF_R1C1.3 is located toward the top of the row. For an XC5200, Use the
following syntax to denote fixed locations.

TBUF_RrowCcol [ .0  | .1  | .2  | .3 ]

where row is the row location and col is the column location; they can be any number
between 0 and 99, inclusive. They must be less than or equal to the number of CLB
rows or columns in the target device. The suffixes have the following meanings.

• 0 indicates that the instance should be placed in the bottom buffer.

• 1 indicates that the instance should be placed in the buffer that is second from
bottom.

• 2 indicates that the instance should be placed in the buffer that is second from top.

• 3 indicates that the instance should be placed in the top buffer.

For Virtex, use the following syntax to denote fixed locations.

TBUF_RrowCcol [ .0  | .1 ]

where row is the row location and col is the column location; they can be any number
between 0 and 99, inclusive. They must be less than or equal to the number of CLB
rows or columns in the target device. The suffixes have the following meanings.

• 0 indicates one TBUF at the specific row/column.

• 1 indicates the second TBUF at the specific row/column.

For the XC4000, Spartans, XC5200, or Virtex, use the following syntax to denote a
range of locations from the lowest to the highest.

TBUF_RrowCcol TBUF_RrowCcol

The following examples illustrate the format of BUFT LOC constraints. Specify LOC=
and the BUFT location.

The following statements place the BUFT in the designated location.

LOC=TBUF.AA.1 (XC3000)

LOC=TBUF_R1C1.1 (or .2) (XC4000, Spartans)

LOC=TBUF_R1C1.3 (or .0, .1, .2) (XC5200)

LOC=TBUF_R1C1.0 (or .1) (Virtex)
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The next statements place BUFTs at any location in the first column of BUFTs. The
asterisk (*) is a wildcard character.

The following statements place BUFTs within the rectangular block defined by the
first specified BUFT in the upper left corner and the second specified BUFT in the
lower right corner.

In the following examples, the instance names of two BUFTs are /top-72/rd0 and/
top-79/ed7.

Example 1

This example specifies a BUFT adjacent to a specific CLB.

Place the BUFT adjacent to CLB R1C5. In XC4000 or Spartans, PAR uses either the
longline above the row of CLBs or the longline below. In an XC5200, PAR places the
BUFT in one of the four slices of the CLB at row 1, column 5. In Virtex, PAR places the
BUFT in one of two slices of the CLB at row 1, column 5.

Example 2

The following example places a BUFT in a specific location.

Place the BUFT adjacent to CLB R1C5. In an XC4000 or Spartan series device, .1 tag
specifies the longline above the row of CLBs; the .2 tag specifies the longline below it.
In an XC5200 device, the .1 tag specifies the longline associated with the slice above
the bottom-most slice in the CLB at the location; the .1, .2, .3 tags specify slices above
the .0 slice for the specified row and column. In Virtex, the .1 tag specifies the second
TBUF in CLB R1C5.

BUFTs that drive the same signal must carry consistent constraints. If you specify .1 or
.2 for one of the BUFTs that drives a given signal, you must also specify .1 or .2 on the
other BUFTs on that signal; otherwise, do not specify any constraints at all.

Example 3

The next example specifies a column of BUFTs.

Place BUFTs in column 3 on any row. This constraint might be used to align BUFTs
with a common enable signal. You can use the wildcard (*) character in place of either
the row or column number to specify an entire row or column of BUFTs.

LOC=TBUF.*A (XC3000)

LOC=TBUF_R*C0 (XC4000, XC5200, Spartans,
Virtex)

LOC=TBUF.AA:TBUF.BH (XC3000)

LOC=TBUF_R1C1:TBUF_R2C8 (XC4000, XC5200, Spartans,
Virtex)

Schematic LOC=TBUF_r1c5

UCF INST /top-72/rd0 LOC=TBUF_r1c5 ;

Schematic LOC=TBUF_r1c5.1

UCF INST /top-72/rd0 LOC=TBUF_r1c5.1 ;

Schematic LOC=TBUF_r*c3

UCF INST /top-72/rd0 /top-79/ed7 LOC=TBUF_r*c3 ;
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Example 4

This example specifies a row of BUFTs .

Place the BUFT on one of the longlines in row 7 for any column. You can use the wild-
card (*) character in place of either the row or column number to specify an entire row
or column of BUFTs.

CLB Constraint Examples
You can assign soft macros and flip-flops to a single CLB location, a list of CLB loca-
tions, or a rectangular block of CLB locations. You can also specify the exact function
generator or flip-flop within a CLB. CLB locations are identified as CLB_RrowCcol for
XC4000, XC5200, Spartans, and Virtex or aa for XC3000, where aa is a two-letter desig-
nator. The upper left CLB is CLB_R1C1 (for XC4000, XC5200, Spartans, and Virtex) or
AA (for XC3000).

CLB locations can be a fixed location or a range of locations. Use the following syntax
to denote fixed locations.

For XC4000 or Spartans:

CLB_R rowCcol { .F  | .G  | .FFX  | .FFY  }

For XC5200:

CLB_R rowCcol { .LC0  | .LC1  | .LC2  | .LC3  }

For Virtex:

CLB_R rowCcol { .S0  | .S1 }

where

row is the row location and col is the column location; they can be any number
between 0 and 99, inclusive, or *. They must be less than or equal to the number of
CLB rows or columns in the target device. The suffixes have the following meanings.

.F means the CLB is mapped into the F function generator.

.G means the CLB is mapped into the G function generator.

.FFX indicates the X flip-flop in the CLB.

.FFY indicates the Y flip-flop in the CLB.

.LC0 means the bottom-most slice in the XC5200 CLB.

.LC1 means the slice above the .LC0 slice in the XC5200 CLB.

.LC2 means the slice above the .LC1 slice in the XC5200 CLB.

.LC3 means top-most slice in the XC5200 CLB.

.S0 means the left-most slice in the Virtex CLB.

.S1 means the right-most slice in the Virtex CLB.

Use the following syntax to denote a range of locations from the highest to the lowest.

CLB_Rrow1Ccol:CLB_Rrow2Ccol2

Schematic LOC=TBUF_r7c*

UCF INST /top-79/ed7 LOC=TBUF_r7c* ;
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The following examples illustrate the format of CLB constraints. Enter LOC= and the
pin or CLB location. If the target symbol represents a soft macro, the LOC constraint is
applied to all appropriate symbols (flip-flops, maps) contained in that macro. If the
indicated logic does not fit into the specified blocks, an error is generated.

The following statements place logic in the designated CLB.

The following statements place logic within the first column of CLBs. The asterisk (*)
is a wildcard character.

The next two statements place logic in any of the three designated CLBs. There is no
significance to the order of the LOC statements.

The following statements place logic within the rectangular block defined by the first
specified CLB in the upper left corner and the second specified CLB towards the
lower right corner.

The next statement places logic in the X flip-flop of CLB_R2C2. For the Y flip-flop, use
the FFY tag.

You can prohibit PAR from using a specific CLB, a range of CLBs, or a row or column
of CLBs. Such prohibit constraints can be assigned only through the User Constraints
File (UCF). CLBs are prohibited by specifying a PROHIBIT constraint at the design
level, as shown in the following examples.

Example 1

Do not place any logic in the CLB in row 1, column 5. CLB R1C1 is in the upper left
corner of the device.

LOC=AA (XC3000)

LOC=CLB_R1C1 (XC4000, Spartans)

LOC=CLB_R1C1.LC0 (XC5200)

LOC=CLB_R1C1.S0 (Virtex)

LOC=*A (XC3000)

LOC=CLB_R*C1 (XC4000, Spartans)

LOC=CLB_R*C1.LC0 (XC5200)

LOC=CLB_R*C1.S0 (Virtex)

LOC=AA,AB,AC (XC3000)

LOC=CLB_R1C1,CLB_R1C2,CLB_R1C3 (XC4000, Spartans, XC5200,
Virtex)

LOC=AA:HE (XC3000)

LOC=CLB_R1C1:CLB_R8C5 (XC4000, XC5200, Spartans,
Virtex)

LOC=CLB_R2C2.FFX (XC4000, Spartans)

Schematic None

UCF CONFIG PROHIBIT=clb_r1c5 ;
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Example 2

Do not place any logic in the rectangular area bounded by the CLB R1C1 in the upper
left corner and CLB R5C7 in the lower right.

Example 3

Do not place any logic in any row of column 3. You can use the wildcard (*) character
in place of either the row or column number to specify an entire row or column of
CLBs.

Example 4

Do not place any logic in either CLB R2C4 or CLB R7C9.

Delay Locked Loop (DLL) Constraint Examples (Virtex Only)
You can constrain Virtex DLL elements—CLKDLL and CLKDLLHF—to a specific
physical site name. Specify LOC=DLL and a numeric value (0 through 3) to identify
the location.

Following is an example.

Edge Decoder Constraint Examples (XC4000 Only)
In an XC4000 design, you can assign the decode logic to a specified die edge or half-
edge. All elements of a single decode function must lie along the same edge; they
cannot be split across two edges of the die. If you use decoder constraints, you must
assign all decode inputs for a given function to the same edge. From the schematic,
attach LOC constraints to the decode logic — either a DECODE macro or a WAND
gate with the DECODE attribute. The constraints are then passed into the EDIF netlist
and after mapping is read by PAR.

The format of decode constraints is LOC= and the decode logic symbol location. If the
target symbol represents a soft macro containing only decode logic, for example,
DECODE8, the LOC constraint is applied to all decode logic contained in that macro.
If the indicated decode logic does not fit into the specified decoders, an error is gener-
ated.

To constrain decoders to precise positions within a side, constrain the associated pads.
However, because PAR determines decoder edges before processing pad constraints,
it is not enough to constrain the pads alone. To constrain decoders to a specific die

Schematic None

UCF CONFIG PROHIBIT=clb_r1c1:clb_r5c7 ;

Schematic None

UCF CONFIG PROHIBIT=clb_r*c3 ;

Schematic None

UCF CONFIG PROHIBIT=clb_r2c4, clb_r7c9 ;

Schematic LOC=DLL1

UCF INST buf1 LOC=DLL1;
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side, use the following rule. For every output net that you want to constrain, specify
the side for at least one of its input decoders (WAND gates), using one of the
following.

The  “Legal Edge Designations for Edge Decoders” table shows the legal edge desig-
nations.

Example 1

Place the decoder along the top edge of the die.

Example 2

Place the decoder logic along the left edge of the die.

Example 3

Place decoders along the top half of the left edge of the die. The first letter in this code
represents the die edge, and the second letter represents the desired half of that edge.

Note: The edges referred to in these constraints are die edges, which do not neces-
sarily correspond to package edges. View the device in EPIC to determine which pins
are on which die edge.

LOC=L LOC=T

LOC=R LOC=B

Schematic LOC=T

UCF INST dec1/$1I1 LOC=T ;

Schematic LOC=L

UCF INST dec1/$1I1 LOC=L ;

Schematic LOC=LT

UCF INST dec1/$1I1 LOC=LT ;

Table 12-9 Legal Edge Designations for Edge Decoders

Edge Code Edge Location

T Top edge

B Bottom edge

L Left edge

R Right edge

TL Left half of top edge

TR Right half of top edge

BL Left half of bottom edge

BR Right half of bottom edge

LT Top half of left edge

LB Bottom half of left edge

RT Top half of right edge

RB Bottom half of right edge
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Flip-Flop Constraint Examples
Flip-flops can be constrained to a specific CLB, a range of CLBs, a row or column of
CLBs, a specific half-CLB, or one of four specific slices of the XC5200 CLB. Flip-flop
constraints can be assigned from the schematic or through the UCF file.

From the schematic, attach LOC constraints to the target flip-flop. The constraints are
then passed into the EDIF netlist and are read by PAR after the design is mapped.

The following examples show how the LOC constraint is applied to a schematic and
to a UCF (User Constraints File). The instance names of two flip-flops, /top-12/fdrd
and /top-54/fdsd, are used to show how you would enter the constraints in the UCF.

Example 1

Place the flip-flop in the CLB in row 1, column 5. CLB R1C1 is in the upper left corner
of the device.

Example 2

Place the flip-flop in the rectangular area bounded by the CLB R1C1 in the upper left
corner and CLB R5C7 in the lower right corner.

Example 3

Place the flip-flops in any row of column 3. You can use the wildcard (*) character in
place of either the row or column number to specify an entire row or column of CLBs.

In the following example, repeating the LOC constraint and separating each such
constraint by a comma specifies multiple locations for an element. When you specify
multiple locations, PAR can use any of the specified locations.

Example 4

Place the flip-flop in either CLB R2C4 or CLB R7C9.

Example 5

Place the flip-flop in CLB R3C5 and assign the flip-flop output to the XQ pin. (Note:
Use the FFY tag to indicate the YQ pin of the CLB.) If either the FFX or FFY tags are
specified, the wildcard (*) character cannot be used for the row or column numbers.

Schematic LOC=clb_rlc5

UCF INST /top-12/fdrd LOC=clb_r1c5 ;

Schematic LOC=clb_r1c1:clb_r5c7

UCF INST /top-12/fdrd LOC=clb_r1c1:clb_r5c7 ;

Schematic LOC=clb_r*c3

UCF INST /top-12/fdrd/top-54/fdsd LOC=clb_r*c3 ;

Schematic LOC=clb_r2c4,clb_r7c9

UCF INST /top-54/fdsd LOC=clb_r2c4,clb_r7c9 ;

Schematic LOC=clb_r3c5.ffx

UCF INST /top-12/fdrd LOC=clb_r3c5.ffx ;
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Example 6

Do not place the flip-flop in any column of row 5. You can use the wildcard (*) char-
acter in place of either the row or column number to specify an entire row or column
of CLBs.

The XC5200 CLB is divided into four specific slices for every row and column location
on the array. In order to place a flip-flop in a specific slice, use the .LC0, .LC1, .LC2, or
.LC3 extension on the location constraint as shown in the following example.

Example 7

Place the flip-flop in the top slice of the XC5200 CLB in row 1, column 5.

Global Buffer Constraint Examples

XC3000

You cannot assign placement to the GCLK or ACLK buffers in the XC3000 family,
since there is only one each, and their placements are fixed on the die.

XC4000, XC5200, Spartans

For the XC4000, XC5200, and Spartans, you can constrain a global buffer — BUFG,
BUFGP, BUFGS, BUFGLS, BUFGE, or BUFFCLK— to a corner of the die. From the
schematic, attach LOC constraints to the global buffer symbols; specify LOC= and the
global clock buffer location. The constraints are then passed into the EDIF netlist and
after mapping are read by PAR.

Following is an example.

Place the global buffer in the top left corner of the die. The following table shows the
legal corner designations.

If a global buffer is sourced by an external signal, the dedicated IOB for that buffer
must not be used by any other signal. For example, if a BUFGP is constrained to TL,
the PGCK1 pin must be used to source it, and no other I/O can be assigned to that
pin.

Schematic PROHIBIT=clb_r5c*

UCF CONFIG PROHIBIT=clb_r5c* ;

Schematic LOC=clb_r1c5.LC3

UCF INST /top-12/fdrd LOC=clb_r1c5.LC3 ;

Schematic LOC=TL

UCF INST buf1 LOC=TL ;

Table 12-10 Legal Corner Designations for Global Buffers

Corner Code Corner Location

TL Top left corner

TR Top right corner

BL Bottom left corner

BR Bottom right corner
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Virtex

You can constrain a Virtex global buffer—BUFGP, and IBUFG_selectIO variants—to a
specific buffer site name or dedicated global clock pad in the device model. From the
schematic, attach LOC constraints to the global buffer symbols. Specify LOC= and
GCLKBUF plus a number (0 through 3) to create a specific buffer site name in the
device model. Or, specify LOC= and GCLKPAD plus a number (0 through 3) to create
a specific dedicated global clock pad in the device model.The constraints are then
passed into the EDIF netlist and after mapping are read by PAR.

Following is an example.

I/O Constraint Examples
You can constrain I/Os to a specific IOB. You can assign I/O constraints from the
schematic or through the UCF file.

From the schematic, attach LOC constraints to the target PAD symbol. The constraints
are then passed into the netlist file and read by PAR after mapping.

Alternatively, in the UCF file a pad is identified by a unique instance name. The
following example shows how the LOC constraint is applied to a schematic and to a
UCF (User Constraints File). In the examples, the instance names of the I/Os are /top-
102/data0_pad and /top-117/q13_pad. The example uses a pin number to lock to one
pin.

Place the I/O in the IOB at pin 17. For pin grid arrays, a pin name such as B3 or T1 is
used.

IOB Constraint Examples
You can assign I/O pads, buffers, and registers to an individual IOB location. IOB
locations are identified by the corresponding package pin designation.

The following examples illustrate the format of IOB constraints. Specify LOC= and
the pin location. If the target symbol represents a soft macro containing only I/O
elements, for example, INFF8, the LOC constraint is applied to all I/O elements
contained in that macro. If the indicated I/O elements do not fit into the specified
locations, an error is generated.

The following statement places the I/O element in location P13. For PGA packages,
the letter-number designation is used, for example, B3.

LOC=P13

You can prohibit the mapper from using a specific IOB. You might take this step to
keep user I/O signals away from semi-dedicated configuration pins. Such prohibit
constraints can be assigned only through the UCF file.

Schematic LOC=GCLKBUF1

UCF INST buf1 LOC=GCLKBUF1;

Schematic LOC=GCLKPAD1

UCF INST buf1 LOC=GCLKPAD1;

Schematic LOC=p17

UCF INST /top-102/data0_pad LOC=p17 ;
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IOBs are prohibited by specifying a PROHIBIT constraint preceded by the CONFIG
keyword, as shown in the following example.

Do not place user I/Os in the IOBs at pins 36, 37, or 41. For pin grid arrays, pin names
such as D14, C16, or H15 are used.

Mapping Constraint Examples
Mapping constraints control the mapping of logic into CLBs. They have two parts.
The first part is a FMAP, HMAP, or CLBMAP component placed on the schematic.
The second is a LOC constraint that can be placed on the schematic or in the
constraints file.

CLBMAP (XC3000 Only)

With the CLBMAP symbol, you can specify logic mapping at the schematic level for
all XC3000 designs. It is used in conjunction with standard logic elements, such as
gates and flip-flops. It implicitly specifies the configuration of a CLB by defining the
signals on its pins. Use the CLBMAP symbol to control mapping when the default
mapping is not acceptable.

Enter the CLBMAP symbol on the schematic and assign signals to its pins. MAP
processes this symbol and maps the appropriate logic, as defined by the input and
output signals, into one CLB. The easiest way to define a CLBMAP is to connect a
labeled wire segment to each pin, which connects that pin to the net carrying the same
label.

If a CLBMAP specifies an illegal CLB configuration, MAP issues an error explaining
why the CLBMAP is illegal.

A CLBMAP can be either closed or open. A closed CLBMAP must specify both the
input and output signals for that CLB. MAP maps a closed CLBMAP exactly as speci-
fied, unless the indicated configuration is illegal. MAP does not add any logic to a
CLB specified with a closed CLBMAP.

An open CLBMAP specifies the minimum amount of logic to place within a CLB.
MAP attempts to place more logic within the CLB as long as the CLB remains valid.
MAP only adds logic on the inputs to the CLB. It does not add logic on the output
signals. MAP assigns those signals to the CLB output pins and maps the source logic
into the CLB as appropriate. Use an open CLBMAP to specify the minimum function
of a CLB.

Specify whether a CLBMAP is open or closed by attaching the appropriate MAP
attribute to the symbol. See the  “Map Attributes for CLBMAP Symbols” table for the
exact conventions.

The default configuration for a CLBMAP is unlocked and open.

Schematic None

UCF CONFIG PROHIBIT=p36, p37, p41 ;
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Note: Currently, pin locking is not supported. PLC and PLO are translated into PUC
and PUO, respectively.

Example 1

Place the CLBMAP in CLB CLB_R1C1.

Example 2

Place the CLBMAP in the area bounded by CLB AA in the upper left corner and CLB
EE in the lower right.

FMAP and HMAP

The FMAP and HMAP symbols control mapping in an XC4000 or Spartan series
design. They are similar to the XC3000 CLBMAP symbol. The FMAP may also be
used to control mapping XC5200 or Virtex designs.

FMAP and HMAP control the mapping of logic into function generators. These
symbols do not define logic on the schematic; instead, they specify how portions of
logic shown elsewhere on the schematic should be mapped into a function generator.

The FMAP symbol defines mapping into a four-input (F) function generator. The
mapper assigns this function to an F or G function generator for XC4000 and Spartans,
so you are not required to specify whether it belongs in F or G. For the XC5200, the
four-input function generator defined by the FMAP will be assigned to one of the four
slices of the CLB. For Virtex, the four-input function generator defined by the FMAP
will be assigned to one of the two slices of the CLB.

The HMAP symbol defines mapping into a three-input (H) function generator for
XC4000 and Spartans. If the HMAP has two FMAP outputs and, optionally, one
normal (non-FMAP) signal as its inputs, The mapper places all the logic related to
these symbols into one CLB.

An example of how to use these symbols in your schematic appears in the  “FMAP
and HMAP Schematics” figure and the  “Implementation of FMAP and HMAP”
figure.

For the FMAP symbol as with the CLBMAP primitive, MAP=PUC or PUO is
supported, as well as the LOC constraint. (Currently, pin locking is not supported.
MAP=PLC or PLO is translated into PUC and PUO, respectively.)

For the HMAP symbol, only MAP=PUC is supported.

Table 12-11 Map Attributes for CLBMAP Symbols

Closed CLB Open CLB

Pins locked MAP=PLC MAP=PLO

Pins unlocked MAP=PUC MAP=PUO (default)

Schematic LOC=CLB_R1C1

UCF INST top/cntq7 LOC=CLB_R1C1 ;

Schematic LOC=AA:EE

UCF INST reg/bit7 LOC=AA:EE ;
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Example 1

Place the FMAP or HMAP symbol in the CLB at row 7, column 3.

Example 2

Place the FMAP or HMAP symbol in either the CLB at row 2, column 4 or the CLB at
row 3, column 4.

Example 3

Place the FMAP or HMAP symbol in the area bounded by CLB R5C5 in the upper left
corner and CLB R10C8 in the lower right.

Example 4 (XC4000, Spartans)

Place the FMAP in the F function generator of CLB R10C11. The .G extension specifies
the G function generator. An HMAP can only go into the H function generator, so
there is no need to specify this placement explicitly.

The XC5200 CLB is divided into four specific slices for every row and column location
in the array. In order to place a function generator in a specific slice, use the .LC0,
.LC1, .LC2., or LC3 extension on the location constraint on the FMAP as shown in the
following example.

Example 5 (XC5200)

Place the FMAP in the top slice of the XC5200 CLB in row 10, column 11.

The Virtex CLB is divided into two specific slices for every row and column location
in the array. In order to place a function generator in a specific slice, use the .S0 (left-
most slice) or .S1 (right-most slice) extension on the location constraint on the FMAP
as shown in the following example.

Example 6 (Virtex)

Place the FMAP in the left-most slice of the Virtex CLB in row 10, column 11.

Schematic LOC=clb_r7c3

UCF INST $1I323 LOC=clb_r7c3;

Schematic LOC=clb_r2c4,clb_r3c4

UCF INST top/dec0011 LOC=clb_r2c4,clb_r3c4;

Schematic LOC=clb_r5c5:clb_r10c8

UCF INST $3I27 LOC=clb_r5c5:clb_r10c8;

Schematic LOC=clb_r10c11.f

UCF INST top/done LOC=clb_r1011.f ;

Schematic LOC=clb_r10c11.LC3

UCF INST /top/done LOC=clb_r10c11.LC3 ;

Schematic LOC=clb_r10c11.S0

UCF INST /top/done LOC=clb_r10c11.S0 ;
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Figure 12-2 FMAP and HMAP Schematics

Figure 12-3 Implementation of FMAP and HMAP

RAM and ROM Constraint Examples
You can constrain a ROM or RAM to a specific CLB, a range of CLBs, or a row or
column of CLBs. Memory constraints can be assigned from the schematic or through
the UCF file.

From the schematic, attach the LOC constraints to the memory symbol. The
constraints are then passed into the netlist file and after mapping they are read by
PAR. For more information on attaching LOC constraints, see the appropriate inter-
face user guide.

Alternatively, in the constraints file a memory is identified by a unique instance name.
One or more memory instances of type ROM or RAM can be found in the input file.
All memory macros larger than 16 x 1 or 32 x 1 are broken down into these basic
elements in the netlist file.
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In the following examples, the instance name of the ROM primitive is /top-7/rq. The
instance name of the RAM primitive, which is a piece of a RAM64X8 macro, is /top-
11-ram64x8/ram-3.

Example 1

Place the memory in the CLB in row 1, column 5. CLB R1C1 is in the upper left corner
of the device. You can only apply a single-CLB constraint such as this to a 16 x 1 or 32
x 1 memory.

Example 2

Place the memory in either CLB R2C4 or CLB R7C9.

Example 3

Place the LogiBlox module in the rectangular area bounded by the CLB R1C1 in the
upper left corner and CLB R5C7 in the lower right.

From the schematic, attach the LOC constraint to the LogiBlox symbol for the bigram
block.

In the UCF file, the /* is appended to the end of the LogiBlox symbol instance. The
wildcard (*) character here specifies all instances that begin with the /top-17/bigram/
prefix, that is, all RAM elements within the LogiBlox block.

Example 4

Do not place the memory in any column of row 5. You can use the wildcard (*) char-
acter in place of either the row or column number in the CLB name to specify an entire
row or column of CLBs.

RAMB4 (Block RAM) Constraint Examples (Virtex Only)
You can constrain a Virtex block RAM to a specific CLB, a range of CLBs, or a row or
column of CLBs. Memory constraints can be assigned from the schematic or through
the UCF file. From the schematic, attach the LOC constraints to the memory symbol.
The constraints are then passed into the netlist file and after mapping they are read by
PAR. For more information on attaching LOC constraints, see the appropriate inter-
face user guide. Alternatively, in the constraints file a memory is identified by a
unique instance name.

A Virtex block RAM has a different row/column grid specification than CLBs and
TBUFs. It is specified using RAMB4_RnCn where the numeric row and column
numbers refer to the block RAM grid array. A block RAM located at RAMB4_R3C1 is
not located at the same site as a flip-flop located at CLB_R3C1.

Schematic LOC=clb_r1c5

UCF INST /top-7/rq LOC=clb_r1c5 ;

Schematic LOC=clb_r2c4, clb_r7c9

UCF INST /top-7/rq LOC=clb_r2c4, clb_r7c9 ;

Schematic LOC=clb_r1c1:clb_r5c7

UCF INST /top-17/bigram/*
LOC=clb_r1c1:clb_r5c7 ;

Schematic PROHIBIT clb_r5c*

UCF CONFIG PROHIBIT=clb_r5c* ;
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For example, assume you have a device with two columns of block RAM, each
column containing four blocks, where one column is on the right side of the chip and
the other is on the left. The block RAM located in the upper left corner is
RAMB4_R0C0. Because there are only two columns of block RAM, the block located
in the upper right corner is RAMB4_R0C1.

Schematic LOC=RAMB4_R0C0

UCF INST /top-7/rq LOC=RAMB4_R0C0 ;
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Relative Location (RLOC) Constraints
Note: This section applies all FPGA families except XC3000.

The RLOC constraint groups logic elements into discrete sets. You can define the loca-
tion of any element within the set relative to other elements in the set, regardless of
eventual placement in the overall design. For example, if RLOC constraints are
applied to a group of eight flip-flops organized in a column, the mapper maintains the
columnar order and moves the entire group of flip-flops as a single unit. In contrast,
absolute location (LOC) constraints constrain design elements to specific locations on
the FPGA die with no relation to other design elements.

Benefits and Limitations of RLOC Constraints
RLOC constraints allow you to place logic blocks relative to each other to increase
speed and use die resources efficiently. They provide an order and structure to related
design elements without requiring you to specify their absolute placement on the
FPGA die. They allow you to replace any existing hard macro with an equivalent that
can be directly simulated.

In the Unified Libraries, you can use RLOC constraints with BUFT- and CLB-related
primitives, that is, DFF, HMAP, FMAP, and CY4 primitives. You can also use them on
non-primitive macro symbols. There are some restrictions on the use of RLOC
constraints on BUFT symbols; for details, see the  “Fixing Members of a Set at Exact
Die Locations” section. You cannot use RLOC constraints with decoders, clocks, or I/
O primitives. LOC constraints, on the other hand, can be used on all primitives:
BUFTs, CLBs, IOBs, decoders, and clocks.

The following symbols (primitives) accept RLOCs.

1. Registers

2. FMAP

3. HMAP

4. F5MAP

5. CY4

6. CY_MUX

7. ROM

8. RAM

9. RAMS, RAMD

10. BUFT

11. WAND primitives that do not have a DECODE attribute attached

12. LUTs, F5MUX, F6MUX, MUXCY, XORCY, MULT_AND, SRL16, SRL16E

Guidelines for Specifying Relative Locations
General syntax for assigning elements to relative locations is

RLOC=RmCn [. extension]

where m and n are relative row numbers and column numbers, respectively.
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The extension uses the LOC extension syntax as appropriate; for example .1 and .2 for
TBUF location.

The extension is required for XC5200 designs in order to fully specify the order of the
elements (.LC0, .LC1, .LC2, .LC3). It is required for Virtex designs to specify the
spatial relationship of the objects in the RPM (.S0, .S1).

The row and column numbers can be any positive or negative integer including zero.
Absolute die locations, in contrast, cannot have zero as a row or column number.
Because row and column numbers in RLOC constraints define only the order and
relationship between design elements and not their absolute die locations, their
numbering can include zero or negative numbers. Even though you can use any
integer in numbering rows and columns for RLOC constraints, it is recommended
that you use small integers for clarity and ease of use.

It is not the absolute values of the row and column numbers that is important in
RLOC specifications but their relative values or differences. For example, if design
element A has an RLOC=R3C4 constraint and design element B has an RLOC=R6C7
constraint, the absolute values of the row numbers (3 and 6) are not important in
themselves. However, the difference between them is important; in this case, 3 (6 -3)
specifies that the location of design element B is three rows away from the location of
design element A. To capture this information, a normalization process is used at
some point in the design implementation. In the example just given, normalization
would reduce the RLOC on design element A to R0C0, and the RLOC on design
element B to R3C3.

In Xilinx programs, rows are numbered in increasing order from top to bottom, and
columns are numbered in increasing order from left to right. RLOC constraints follow
this numbering convention.

The  “Different RLOC Specifications for Four Flip-flop Primitives for an XC4000 or
Spartan Series Design” figure demonstrates the use of RLOC constraints. Four flip-
flop primitives named A, B, C, and D are assigned RLOC constraints as shown. These
RLOC constraints require each flip-flop to be placed in a different CLB in the same
column and stacked in the order shown — A above B, C, and D. Within a CLB,
however, they can be placed either in the FFX or FFY position.

If you wish to place more than one of these flip-flop primitives per CLB, you can
specify the RLOCs as shown in the  “Different RLOC Specifications for Four Flip-flop
Primitives for an XC4000 or Spartan Series Design” figure. The arrangement in the
figure requires that A and B be placed in a single CLB and that C and D be placed in
another CLB immediately below the AB CLB. However, within a CLB, the flip-flops
can be placed in either of the two flip-flop positions, FFX or FFY.

To control the ordering of these flip-flop primitives specifically, you can use the exten-
sion field, as shown in the  “Different RLOC Specifications for Four Flip-flop Primi-
tives for an XC4000 or Spartan Series Design” figure. In this figure, the same four flip-
flops are constrained to use specific resources in the CLBs. This specification always
ensures that these elements are arranged exactly as shown— A must be placed in the
FFX spot, B in the same CLB at the FFY spot, and so on.
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Figure 12-4 Different RLOC Specifications for Four Flip-flop Primitives for an
XC4000 or Spartan Series Design

RLOC Sets
 RLOC constraints give order and structure to related design elements. This section
describes RLOC sets, which are groups of related design elements to which RLOC
constraints have been applied. For example, the four flip-flops in the  “Different
RLOC Specifications for Four Flip-flop Primitives for an XC4000 or Spartan Series
Design” figure are related by RLOC constraints and form a set. Elements in a set are
related by RLOC constraints to other elements in the same set. Each member of a set
must have an RLOC constraint, which relates it to other elements in the same set. You
can create multiple sets, but a design element can belong to one set only.

Sets can be defined explicitly through the use of a set parameter or implicitly through
the structure of the design hierarchy.

Four distinct types of rules are associated with each set.

• Definition rules define the requirements for membership in a set.

• Linkage rules specify how elements can be linked to other elements to form a
single set.

• Modification rules dictate how to specify parameters that modify RLOC values of
all the members of the set.

• Naming rules specify the nomenclature of sets.

These rules are discussed in the sections that follow.

The following sections discuss three different set constraints— U_SET, H_SET, and
HU_SET. Elements must be tagged with both the RLOC constraint and one of these
set constraints to belong to a set.

U_SET

U_SET constraints enable you to group into a single set design elements with attached
RLOC constraints that are distributed throughout the design hierarchy. The letter U in
the name U_SET indicates that the set is user-defined. U_SET constraints allow you to
group elements, even though they are not directly related by the design hierarchy. By
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attaching a U_SET constraint to design elements, you can explicitly define the
members of a set. The design elements tagged with a U_SET constraint can exist
anywhere in the design hierarchy; they can be primitive or non-primitive symbols.
When attached to non-primitive symbols, the U_SET constraint propagates to all the
primitive symbols with RLOC constraints that are below it in the hierarchy.

The syntax of the U_SET constraint is the following.

U_SET=set_name

where set_name is the user-specified identifier of the set. All design elements with
RLOC constraints tagged with the same U_SET constraint name belong to the same
set. Names therefore must be unique among all the sets in the design.

H_SET

In contrast to the U_SET constraint, which you explicitly define by tagging design
elements, the H_SET (hierarchy set) is defined implicitly through the design hier-
archy. The combination of the design hierarchy and the presence of RLOC constraints
on elements defines a hierarchical set, or H_SET set. You do not use an HSET
constraint to tag the design elements to indicate their set membership. The set is
defined automatically by the design hierarchy.

All design elements with RLOC constraints at a single node of the design hierarchy
are considered to be in the same H_SET set unless they are tagged with another type
of set constraint such as RLOC_ORIGIN or RLOC_RANGE. If you explicitly tag any
element with an RLOC_ORIGIN, RLOC_RANGE, U_SET, or HU_SET constraint, it is
removed from an H_SET set. Most designs contain only H_SET constraints, since they
are the underlying mechanism for relationally placed macros. The RLOC_ORIGIN or
RLOC_RANGE constraints are discussed further in the  “Fixing Members of a Set at
Exact Die Locations” section.

NGDBuild recognizes the implicit H_SET set, derives its name, or identifier, attaches
the H_SET constraint to the correct members of the set, and writes them to the output
file.

The syntax of the H_SET constraint as generated by NGDBuild follows.

H_SET=set_name

set_name is the identifier of the set and is unique among all the sets in the design. The
base name for any H_SET is “hset,” to which NGDBuild adds a hierarchy path prefix
to obtain unique names for different H_SET sets in the NGDBuild output file.

HU_SET

The HU_SET constraint is a variation of the implicit H_SET (hierarchy set). Like
H_SET, HU_SET is defined by the design hierarchy. However, you can use the
HU_SET constraint to assign a user-defined name to the HU_SET.

The syntax of the HU_SET constraint is the following.

HU_SET=set_name

where set_name is the identifier of the set; it must be unique among all the sets in the
design. You must define the base names to ensure unique hierarchically qualified
names for the sets after the mapper resolves the design and attaches the hierarchical
names as prefixes.
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This user-defined name is the base name of the HU_SET set. Like the H_SET set, in
which the base name of “hset” is prefixed by the hierarchical name of the lowest
common ancestor of the set elements, the user-defined base name of an HU_SET set is
prefixed by the hierarchical name of the lowest common ancestor of the set elements.

The HU_SET constraint defines the start of a new set. All design elements at the same
node that have the same user-defined value for the HU_SET constraint are members
of the same HU_SET set. Along with the HU_SET constraint, elements can also have
an RLOC constraint. The presence of an RLOC constraint in an H_SET constraint links
the element to all elements tagged with RLOCs above and below in the hierarchy.
However, in the case of an HU_SET constraint, the presence of an RLOC constraint
along with the HU_SET constraint on a design element does not automatically link
the element to other elements with RLOC constraints at the same hierarchy level or
above.

Figure 12-5 Macro A Instantiated Twice

Note: In the  “Macro A Instantiated Twice” figure and the other related figures shown
in the subsequent sections, the italicized text prefixed by => is added by NGDBuild
during the design flattening process. You add all other text.

The  “Macro A Instantiated Twice” figure demonstrates a typical use of the implicit
H_SET (hierarchy set). The figure shows only the first “RLOC” portion of the
constraint. In a real design, the RLOC constraint must be specified completely with
RLOC=RmCn. In this example, macro A is originally designed with RLOC constraints
on four flip-flops — A, B, C, and D. The macro is then instantiated twice in the design
— Inst1 and Inst2. When the design is flattened, two different H_SET sets are recog-
nized because two distinct levels of hierarchy contain elements with RLOC
constraints. NGDBuild creates and attaches the appropriate H_SET constraint to the
set members: H_SET=Inst1/hset for the macro instantiated in Inst1, and
H_SET=Inst2/hset for the macro instantiated in Inst2. The design implementation
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programs place each of the two sets individually as a unit with relative ordering
within each set specified by the RLOC constraints. However, the two sets are regarded
to be completely independent of each other.

The name of the H_SET set is derived from the symbol or node in the hierarchy that
includes all the RLOC elements. In the  “Macro A Instantiated Twice” figure, Inst1 is
the node (instantiating macro) that includes the four flip-flop elements with RLOCs
shown on the left of the figure. Therefore, the name of this H_SET set is the hierarchi-
cally qualified name of “Inst1” followed by “hset.” The Inst1 symbol is considered the
“start” of the H_SET, which gives a convenient handle to the entire H_SET and
attaches constraints that modify the entire H_SET. Constraints that modify sets are
discussed in the  “Set Modifiers” section.

The  “Macro A Instantiated Twice” figure demonstrates the simplest use of a set that is
defined and confined to a single level of hierarchy. Through linkage and modification,
you can also create an H_SET set that is linked through two or more levels of hier-
archy. Linkage allows you to link elements through the hierarchy into a single set. On
the other hand, modification allows you to modify RLOC values of the members of a
set through the hierarchy.

RLOC Set Summary

The following table summarizes the RLOC set types and the constraints that identify
members of these sets.

Table 12-12 Summary of Set Types

Type Definition Naming Linkage Modification

Set A set is a collec-
tion of elements
to which rela-
tive location
constraints are
applied.

U_SET= name All elements
with the same
user-tagged
U_SET
constraint
value are
members of the
same U_SET
set.

The name of
the set is the
same as the
user-defined
name without
any hierarchical
qualification.

U_SET links
elements to all
other elements
with the same
value for the
U_SET
constraint.

U_SET is modi-
fied by
applying
RLOC_ORIGIN
 or
RLOC_RANGE
 constraints on,
at most, one of
the U_SET
constraint-
tagged
elements.
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Set Linkage
The example in the  “Three H_SET Sets” figure explains and illustrates the process of
linking together elements through the design hierarchy. Again, the complete RLOC
specification, RLOC=RmCn, is required for a real design.

Note: In this and other illustrations in this section, the sets are shaded differently to
distinguish one set from another.

H_SET
(implicit
through hier-
archy) is not
available as a
constraint that
you can attach
to symbols.

RLOC on the
node. Any
other
constraint
removes a
node from the
H_SET set.

The lowest
common
ancestor of the
members
defines the start
of the set. The
name is the
hierarchically
qualified name
of the start
followed by
the base name,
“hset.”

H_SET links
elements to
other elements
at the same
node that do
not have other
constraints. It
links down to
all elements
that have
RLOC
constraints and
no other
constraints.
Similarly, it
links to other
elements up the
hierarchy that
have RLOC
constraints but
no other
constraints.

H_SET is modi-
fied by
applying
RLOC_ORIGIN
 and
RLOC_RANGE
 at the start of
the set: the
lowest common
ancestor of all
the elements of
the set.

HU_SET=
name

All elements
with the same
hierarchically
qualified name
are members of
the same set.

The lowest
common
ancestor of the
members is
prefixed to the
user-defined
name to obtain
the name of the
set.

HU_SET links
to other
elements at the
same node with
the same
HU_SET
constraint
value. It links to
elements with
RLOC
constraints
below.

The start of the
set is made up
of the elements
on the same
node that are
tagged with
the same
HU_SET
constraint
value. An
RLOC_ORIGIN
 or an
RLOC_RANGE
 can be applied
to, at most, one
of these start
elements of an
HU_SET set.

Table 12-12 Summary of Set Types

Type Definition Naming Linkage Modification
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Figure 12-6 Three H_SET Sets

As noted previously, all design elements with RLOC constraints at a single node of
the design hierarchy are considered to be in the same H_SET set unless they are
assigned another type of set constraint, an RLOC_ORIGIN constraint, or an
RLOC_RANGE constraint. In the  “Three H_SET Sets” figure, RLOC constraints have
been added on primitives and non-primitives C, D, F, G, H, I, J, K, M, N, O, P, Q, and
R. No RLOC constraints were placed on B, E, L, or S. Macros C and D have an RLOC
constraint at node A, so all the primitives below C and D that have RLOCs are
members of a single H_SET set. Furthermore, the name of this H_SET set is “A/hset”
because it is at node A that the set starts. The start of an H_SET set is the lowest
common ancestor of all the RLOC-tagged constraints that constitute the elements of
that H_SET set. Because element E does not have an RLOC constraint, it is not linked
to the A/hset set. The RLOC-tagged elements M and N, which lie below element E,
are therefore in their own H_SET set. The start of that H_SET set is A/E, giving it the
name “A/E/hset.”

Similarly, the Q and R primitives are in their own H_SET set because they are not
linked through element L to any other design elements. The lowest common ancestor
for their H_SET set is L, which gives it the name “A/D/L/hset.” After the flattening,
NGDBuild attaches H_SET=A/hset to the F, G, H, O, P, J, and K primitives;
H_SET=A/D/L/hset to the Q and R primitives; and H_SET=A/E/hset to the M and
N primitives.
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Consider a situation in which a set is created at the top of the design. In the  “Three
H_SET Sets” figure, there would be no lowest common ancestor if macro A also had
an RLOC constraint, since A is at the top of the design and has no ancestor. In this
case, the base name “hset” would have no hierarchically qualified prefix, and the
name of the H_SET set would simply be “hset.”

Set Modification
The RLOC constraint assigns a primitive an RLOC value (the row and column
numbers with the optional extensions), specifies its membership in a set, and links
together elements at different levels of the hierarchy. In the  “Three H_SET Sets”
figure, the RLOC constraint on macros C and D links together all the objects with
RLOC constraints below them. An RLOC constraint is also used to modify the RLOC
values of constraints below it in the hierarchy. In other words, RLOC values of
elements affect the RLOC values of all other member elements of the same H_SET set
that lie below the given element in the design hierarchy.

The Effect of the Hierarchy on Set Modification

When the design is flattened, the row and column numbers of an RLOC constraint on
an element are added to the row and column numbers of the RLOC constraints of the
set members below it in the hierarchy. This feature gives you the ability to modify
existing RLOC values in submodules and macros without changing the previously
assigned RLOC values on the primitive symbols. This modification process also
applies to the optional extension field. However, when using extensions for modifica-
tions, you must ensure that inconsistent extensions are not attached to the RLOC
value of a design element that may conflict with RLOC extensions placed on under-
lying elements. For example, if an element has an RLOC constraint with the FFX
extension, all the underlying elements with RLOC constraints must either have the
same extension, in this case FFX, or no extension at all; any underlying element with
an RLOC constraint and an extension different from FFX, such as FFY or F, is flagged
as an error.

After resolving all the RLOC constraints, extensions that are not valid on primitives
are removed from those primitives. For example, if NGDBuild generates an FFX
extension to be applied on a primitive after propagating the RLOC constraints, it
applies the extension if and only if the primitive is a flip-flop. If the primitive is an
element other than a flip-flop, the extension is ignored. Only the extension is ignored
in this case, not the entire RLOC constraint.

The  “Adding RLOC Values Down the Hierarchy” figure illustrates the process of
adding RLOC values down the hierarchy. The row and column values between the
parentheses show the addition function performed by the mapper. The italicized text
prefixed by => is added by MAP during the design resolution process and replaces
the original RLOC constraint that you added.
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Figure 12-7 Adding RLOC Values Down the Hierarchy

The ability to modify RLOC values down the hierarchy is particularly valuable when
instantiating the same macro more than once. Typically, macros are designed with
RLOC constraints that are modified when the macro is instantiated. The  “Modifying
RLOC Values of Same Macro and Linking Together as One Set” figure is a variation of
the sample design in the  “Macro A Instantiated Twice” figure. The RLOC constraint
on Inst1 and Inst2 now link all the objects in one H_SET set. Because the RLOC=R0C0
modifier on the Inst1 macro does not affect the objects below it, the mapper only adds
the H_SET tag to the objects and leaves the RLOC values as they are. However, the
RLOC=R0C1 modifier on the Inst2 macro causes MAP to change the RLOC values on
objects below it, as well as to add the H_SET tag, as shown in the italicized text.
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Figure 12-8 Modifying RLOC Values of Same Macro and Linking Together as
One Set

Separating Elements from H_SET Sets

The HU_SET constraint is a variation of the implicit H_SET (hierarchy set). The
HU_SET constraint defines the start of a new set. Like H_SET, HU_SET is defined by
the design hierarchy. However, you can use the HU_SET constraint to assign a user-
defined name to the HU_SET.

The  “HU_SET Constraint Linking and Separating Elements from H_SET Sets” figure
demonstrates how HU_SET constraints designate elements as set members, break
links between elements tagged with RLOC constraints in the hierarchy to separate
them from H_SET sets, and generate names as identifiers of these sets.

Design-top

RLOC = R0C1

RLOC = R0C0 (+R0C1)
= >H_SET = hsetA

X4297

B

C

add R0C1 to shift
the set 1 column
to the right

D

RLOC = R0C0

Inst1 Inst2

= >RLOC = R0C1

RLOC = R1C0 (+R0C1)
= >H_SET = hset
= >RLOC = R1C1

RLOC = R2C0 (+R0C1)
= >H_SET = hset
= >RLOC = R2C1

RLOC = R3C0 (+R0C1)
= >H_SET = hset
= >RLOC = R3C1

M
ac

ro
 A

RLOC = R0C0
= >H_SET = hsetA

B

C

D

M
ac

ro
 A

RLOC = R1C0
= >H_SET = hset

RLOC = R2C0
= >H_SET = hset

RLOC = R3C0
= >H_SET = hset

add R0C0—no
change



Libraries Guide, Release M1.5

12-108 Xilinx Development System

Figure 12-9 HU_SET Constraint Linking and Separating Elements from H_SET
Sets

The user-defined HU_SET constraint on E separates its underlying design elements,
namely H, I, J, K, L, and M from the implicit H_SET=A/hset that contains primitive
members B, C, F, and G. The HU_SET set that is defined at E includes H, I, and L
(through the element J). The mapper hierarchically qualifies the name value “bar” on
element E to be A/bar, since A is the lowest common ancestor for all the elements of
the HU_SET set, and attaches it to the set member primitives H, I, and L. An HU_SET
constraint on K starts another set that includes M, which receives the HU_SET=A/E/
bar constraint after processing by the mapper. In the  “HU_SET Constraint Linking
and Separating Elements from H_SET Sets” figure, the same name field is used for the
two HU_SET constraints, but because they are attached to symbols at different levels
of the hierarchy, they define two different sets.
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Figure 12-10 Linking Two HU_SET Sets

The  “Linking Two HU_SET Sets” figure shows how HU_SET constraints link
elements in the same node together by naming them with the same identifier. Because
of the same name, “bar,” on two elements, D and E, the elements tagged with RLOC
constraints below D and E become part of the same HU_SET.

Set Modifiers
A modifier, as its name suggests, modifies the RLOC constraints associated with
design elements. Since it modifies the RLOC constraints of all the members of a set, it
must be applied in a way that propagates it to all the members of the set easily and
intuitively. For this reason, the RLOC modifiers of a set are placed at the start of that
set. The following set modifiers apply to RLOC constraints.

• RLOC

The RLOC constraint associated with a design element modifies the values of
other RLOC constraints below the element in the hierarchy of the set. Regardless
of the set type, RLOC row, column, and extension values on an element always
propagate down the hierarchy and are added at lower levels of the hierarchy to
RLOC constraints on elements in the same set.

• RLOC_ORIGIN (see the  “RLOC_ORIGIN” section)

• RLOC_RANGE (see the  “RLOC_RANGE” section)
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Using RLOCs with Xilinx Macros

Xilinx-supplied flip-flop macros include an RLOC=R0C0 constraint on the underlying
primitive, which allows you to attach an RLOC to the macro symbol. This symbol
links the underlying primitive to the set that contains the macro symbol. Simply
attach an appropriate RLOC constraint to the instantiation of the actual Xilinx flip-
flop macro. The mapper adds the RLOC value that you specified to the underlying
primitive so that it has the desired value.

Figure 12-11 Typical Use of a Xilinx Macro

For example, in the  “Typical Use of a Xilinx Macro” figure, the RLOC = R1C1
constraint is attached to the instantiation (Inst1) of the FDRE macro. It is added to the
R0C0 value of the RLOC constraint on the flip-flop within the macro to obtain the new
RLOC values.

If you do not put an RLOC constraint on the flip-flop macro symbol, the underlying
primitive symbol is the lone member of a set. the mapper removes RLOC constraints
from a primitive that is the only member of a set or from a macro that has no RLOC
objects below it.

LOC and RLOC Propagation through Design Flattening

NGDBuild continues to propagate LOC constraints down the design hierarchy. It
adds this constraint to appropriate objects that are not members of a set. While RLOC
constraint propagation is limited to sets, the LOC constraint is applied from its start
point all the way down the hierarchy.

When the design is flattened, the row and column numbers of an RLOC constraint on
an element are added to the row and column numbers of the RLOC constraints of the
set members below it in the hierarchy. This feature gives you the ability to modify
existing RLOC values in submodules and macros without changing the previously
assigned RLOC values on the primitive symbols.
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Specifying RLOC constraints to describe the spatial relationship of the set members to
themselves allows the members of the set to float anywhere on the die as a unit. You
can, however, fix the exact die location of the set members. The RLOC_ORIGIN
constraint allows you to change the RLOC values into absolute LOC constraints that
respect the structure of the set.

The design resolution program, NGDBuild, translates the RLOC_ORIGIN constraint
into LOC constraints. The row and column values of the RLOC_ORIGIN are added
individually to the members of the set after all RLOC modifications have been made
to their row and column values by addition through the hierarchy. The final values are
then turned into LOC constraints on individual primitives.

Fixing Members of a Set at Exact Die Locations

As noted in the previous section, you can fix the members of a set at exact die loca-
tions with the RLOC_ORIGIN constraint. You must use the RLOC_ORIGIN constraint
with sets that include BUFT symbols. However, for sets that do not include BUFT
symbols, you can limit the members of a set to a certain range on the die. In this case,
the set could “float” as a unit within the range until a final placement. Since every
member of the set must fit within the range, it is important that you specify a range
that defines an area large enough to respect the spatial structure of the set.

The syntax of this constraint is the following.

RLOC_RANGE=Rm1Cn1:R m2Cn2

where the relative row numbers (m1, m2) and column numbers (n1, n2) can be non-
zero positive numbers, or the wildcard (*) character. This syntax allows for three kinds
of range specifications as follows.

• Rr1Cc1:Rr2Cc2 — A rectangular region enclosed by rows r1, r2, and columns c1,
c2

• R*Cc1:R*Cc2 — A region enclosed by the columns c1 and c2 (any row number)

• Rr1C*:Rr2C* — A region enclosed by the rows r1 and r2 (any column number)

For the second and third kinds of specifications with wildcards, applying the wild-
card character (*) differently on either side of the separator colon creates an error. For
example, specifying R*C1:R2C* is an error since the wildcard asterisk is applied to
rows on one side and to columns on the other side of the separator colon.

Specifying a Range or Area

To specify a range or area, use the following syntax, which is equivalent to placing an
RLOC_RANGE constraint on the schematic.

set_name RLOC_RANGE=Rm1Cn1:R m2Cn2

The range identifies a rectangular area. You can substitute a wildcard (*) character for
either the row number or the column number of both corners of the range.

Note: The bounding rectangle applies to all elements in a relationally placed macro,
not just to the origin of the set. See the  “Relationally Placed Macros (RPMs)” section
for more information.

The values of the RLOC_RANGE constraint are not simply added to the RLOC values
of the elements. In fact, the RLOC_RANGE constraint does not change the values of
the RLOC constraints on underlying elements. It is an additional constraint that is
attached automatically by the mapper to every member of a set. The RLOC_RANGE
constraint is attached to design elements in exactly the same way as the
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RLOC_ORIGIN constraint. The values of the RLOC_RANGE constraint, like
RLOC_ORIGIN values, must be non-zero positive numbers since they directly corre-
spond to die locations.

If a particular RLOC set is constrained by an RLOC_ORIGIN or an RLOC_RANGE
constraint in the design netlist and is also constrained in the UCF file, the UCF file
constraint overrides the netlist constraint.

Toggling the Status of RLOC Constraints

Another important set modifier is the USE_RLOC constraint. It turns the RLOC
constraints on and off for a specific element or section of a set. RLOC can be either
TRUE or FALSE.

The application of the USE_RLOC constraint is strictly based on hierarchy. A
USE_RLOC constraint attached to an element applies to all its underlying elements
that are members of the same set. If it is attached to a symbol that defines the start of a
set, the constraint is applied to all the underlying member elements, which represent
the entire set. However, if it is applied to an element below the start of the set (for
example, E in the  “Using the USE_RLOC Constraint to Control RLOC Application on
H_SET and HU_SET Sets” figure), only the members of the set (H and I) below the
specified element are affected.You can also attach the USE_RLOC constraint directly
to a primitive symbol so that it affects only that symbol.

Figure 12-12 Using the USE_RLOC Constraint to Control RLOC Application on
H_SET and HU_SET Sets

When the USE_RLOC=FALSE constraint is applied, the RLOC and set constraints are
removed from the affected symbols in the NCD file. This process is different than that
followed for the RLOC_ORIGIN constraint. For RLOC_ORIGIN, the mapper gener-
ates and outputs a LOC constraint in addition to all the set and RLOC constraints in
the PCF file. The mapper does not retain the original constraints in the presence of a
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USE_RLOC=FALSE constraint because these cannot be turned on again in later
programs.

The  “Using the USE_RLOC Constraint to Control RLOC Application on H_SET and
HU_SET Sets” figure illustrates the use of the USE_RLOC constraint to mask an entire
set as well as portions of a set.

Applying the USE_RLOC constraint on U_SET sets is a special case because of the
lack of hierarchy in the U_SET set. Because the USE_RLOC constraint propagates
strictly in a hierarchical manner, the members of a U_SET set that are in different parts
of the design hierarchy must be tagged separately with USE_RLOC constraints; no
single USE_RLOC constraint is propagated to all the members of the set that lie in
different parts of the hierarchy. If you create a U_SET set through an instantiating
macro, you can attach the USE_RLOC constraint to the instantiating macro to allow it
to propagate hierarchically to all the members of the set. You can create this instanti-
ating macro by placing a U_SET constraint on a macro and letting the mapper propa-
gate that constraint to every symbol with an RLOC constraint below it in the
hierarchy.

The  “Using the USE_RLOC Constraint to Control RLOC Application on U_SET Sets”
figure illustrates an example of the use of the USE_RLOC=FALSE constraint. The
USE_RLOC=FALSE on primitive E removes it from the U_SET set, and
USE_RLOC=FALSE on element F propagates to primitive G and removes it from the
U_SET set.

Figure 12-13 Using the USE_RLOC Constraint to Control RLOC Application on
U_SET Sets

While propagating the USE_RLOC constraint, the mapper ignores underlying
USE_RLOC constraints if it encounters elements higher in the hierarchy that already
have USE_RLOC constraints. For example, if the mapper encounters an underlying
element with a USE_RLOC=TRUE constraint during the propagation of a
USE_RLOC=FALSE constraint, it ignores the newly encountered TRUE constraint.
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Choosing an RLOC Origin when Using Hierarchy Sets

To specify a single origin for an RLOC set, use the following syntax, which is equiva-
lent to placing an RLOC_ORIGIN attribute on the schematic.

set_name RLOC_ORIGIN=RmCn

The set_name can be the name of any type of RLOC set — a U_SET, an HU_SET, or a
system-generated H_SET.

The origin itself is expressed as a row number and a column number representing the
location of the elements at RLOC=R0C0.

When the RLOC_ORIGIN constraint is used in conjunction with an implicit H_SET
(hierarchy set), it must be placed on the element that is the start of the H_SET set, that
is, on the lowest common ancestor of all the members of the set.

If you apply an RLOC_ORIGIN constraint to an HU_SET constraint, place it on the
element at the start of the HU_SET set, that is, on an element with the HU_SET
constraint. However, since there could be several elements linked together with the
HU_SET constraint at the same node, the RLOC_ORIGIN constraint can be applied to
only one of these elements to prevent more than one RLOC_ORIGIN constraint from
being applied to the HU_SET set.

Similarly, when used with a U_SET constraint, the RLOC_ORIGIN constraint can be
placed on only one element with the U_SET constraint. If you attach the
RLOC_ORIGIN constraint to an element that has only an RLOC constraint, the
membership of that element in any set is removed, and the element is considered the
start of a new H_SET set with the specified RLOC_ORIGIN constraint attached to the
newly created set.
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Figure 12-14 Using an RLOC_ORIGIN Constraint to Modify an H_SET Set

In the  “Using an RLOC_ORIGIN Constraint to Modify an H_SET Set” figure, the
elements B, C, D, F, and G are members of an H_SET set with the name A/hset. This
figure is the same as the  “Adding RLOC Values Down the Hierarchy” figure except
for the presence of an RLOC_ORIGIN constraint at the start of the H_SET set (at A).
The RLOC_ORIGIN values are added to the resultant RLOC values at each of the
member elements to obtain the values that are then converted by the mapper to LOC
constraints. For example, the RLOC value of F, given by adding the RLOC value at E
(R0C1) and that at F (R0C0), is added to the RLOC_ORIGIN value (R2C3) to obtain
the value of (R2C4), which is then converted to a LOC constraint, LOC = CLB_R2C4.
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Figure 12-15 Using an RLOC_ORIGIN to Modify H_SET and HU_SET Sets

The  “Using an RLOC_ORIGIN to Modify H_SET and HU_SET Sets” figure shows an
example of an RLOC_ORIGIN constraint modifying an HU_SET constraint. The start
of the HU_SET A/bar is given by element D or E. The RLOC_ORIGIN attached to E,
therefore, applies to this HU_SET set. On the other hand, the RLOC_ORIGIN at A,
which is the start of the H_SET set A/hset, applies to elements B and C, which are
members of the H_SET set.
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Timing Constraints
This section describes the syntax for using timing constraints in a UCF file. Timing
constraints allow you to specify the maximum allowable delay or skew on any given
set of paths or nets in your design.

There are three steps for applying timing specifications to a design.

1. Add TNM attributes to symbols on your schematic to group them into sets. This
step is not necessary if you are using only predefined sets. This step can be
performed in the schematic or in a constraints file. See the “Timing Specifications”
section of the “Using Timing Constraints” chapter in the Development Systems
Reference Guide for instructions.

2. Add a TIMEGRP symbol and add attributes to the symbol. These attributes can
combine the sets defined in step 1 or by pattern matching into additional, more
complex, sets, or they can match patterns. This step is optional. You can define
these groups on the schematic or in the constraints file.

3. Add a TIMESPEC symbol and add attributes to the symbol, defining the timing
requirements for the sets defined in steps 1 and 2. You can define the timing
requirements on the schematic or in the constraints file.

TNM Attributes
Timing name (TNM) attributes can be used to identify the elements that make up a
group and give them a name that can later be used in an actual timing specification.
The value of the attribute can take several forms and there are several attachment
mechanisms by which the attribute can identify the elements that make up a group.

TNM attributes can be attached to a net, an element pin, a primitive, or a macro.

TNMs on Nets

The TNM attribute can be placed on any net in the design. It is used to indicate that
the TNM value should be attached to all valid elements fed by all paths that fan
forward from the tagged net. Forward tracing stops at any flip-flop, latch, RAM or
pad. TNMs do not propagate across IBUFs if they are attached to the input pad net.
(Use TNM_NET if you want to trace forward from an input pad net.)

TNMs on Macro or Primitive Pins

The TNM attribute can be placed on any macro or component pin in the design if the
design entry package allows placement of attributes on macro or primitive pins. It is
used to indicate that the TNM value should be attached to all valid elements fed by all
paths that fan forward from the tagged pin. Forward tracing stops at any flip-flop,
latch, RAM or pad.

TNMs on Primitives

Attaching a TNM attribute directly to a primitive defines that primitive as part of the
named group.

TNMs on Macro Symbols

A TNM attribute attached to a macro indicates that all elements inside the macro (at
all levels of hierarchy below the tagged macro) are part of the named group.



Libraries Guide, Release M1.5

12-118 Xilinx Development System

TIMEGRP Constraints
It is sometimes convenient to use existing TNMs to create new groups or to define a
group based on the output nets that the group sources. A set of grouping mechanisms
has been created to do this. The Timing Group primitive (TIMEGRP) serves as the
host for these attributes. Because they contain no keyword, the attributes make no
sense when used alone.

You can either attach a TIMEGRP constraint to the TIMEGRP schematic symbol or
specify it with the TIMEGRP keyword in the UCF file. In the UCF file, the statement
syntax is as follows.

TIMEGRP timegrp_name=timegrp_parameter

where timegrp_parameter is identical to the text you would attach to the TIMEGRP
schematic symbol.

You can create groups using the following four methods.

1. Combine multiple groups into one; use the following syntax.

new_group=group1: group2:...  groupn

where new_group is the group being defined; group1, group2, and so forth can be a
valid TNM-defined group, predefined group (FFS, PADS, RAMS, LATCHES), or
group defined with another TIMEGRP attribute. You can create a time group
attribute that references another TIMEGRP attribute that appears after the initial
definition. Do not use reserved words such as FFS, PADS, RISING, FALLING, or
EXCEPT as group names.

Example

2. Create groups by exclusion; use the following syntax.

new_group=group1:EXCEPT group2

where new_group is the group being defined; group1 and group2 can be a valid
TNM-defined group, predefined group (FFS, PADS, RAMS, LATCHES), or group
defined with another TIMEGRP attribute. Do not use reserved words such as FFS,
PADS, RISING, FALLING, or EXCEPT as group names.

Example

You can also specify multiple groups to include or exclude when creating the new
group.

new_group=group1: group2:EXCEPT group3:... groupn

where group1, group2, group3, and groupn can be a valid TNM-defined group,
predefined group (FFS, PADS, RAMS, LATCHES), or group defined with another
TIMEGRP attribute. Do not use reserved words such as FFS, PADS, RISING,
FALLING, or EXCEPT as group names.

Schematic NEWGRP=OLD1:OLD2

UCF TIMEGRP NEWGRP=OLD1:OLD2 ;

Schematic FFGRP2=FFS:EXCEPT FFGRP1

UCF TIMEGRP FFGRP2=FFS:EXCEPT FFGRP1 ;
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3. Define groups of flip-flops triggered by rising and falling clock edges; use the
following syntax.

new_group={ RISING  | FALLING group | ffs }

where group must be a group that includes only flip-flops. FFS is a predefined
group.

Example

Defining a group of flip-flops that switch on the falling edge of the clock.

4. Use wildcard characters to define groups of symbols whose associated signal
names match a specific pattern; use this syntax.

group=predefined_group pattern

where predefined_group can be one of the following predefined groups: FFS, PADS,
RAMS, LATCHES.

pattern is the string characterizing the output net names of the blocks that you
want to include in the new group. It can be any string of characters used with one
or more wildcard characters, which can be either of the following.

An asterisk (*) matches any string of zero or more characters.

A question mark (?) matches one character.

Example

Group created by pattern matching.

TIMESPEC Constraints
After you have defined appropriate groups by attaching TNM attributes to symbols
and, optionally, by combining these groups using the TIMEGRP symbol, the next step
is to add the timing specifications to the constraints file with the TSidentifier
constraint. You can define these timing requirements by the following means.

The actual timing specifications take the form of attributes that are attached to a
timing specification (TIMESPEC) primitive. The TIMESPEC primitive acts as a place
to attach attributes and keeps the attributes together. More than one TIMESPEC prim-
itive can be used in a design at any level of the hierarchy.

The sources and destinations can be any synchronous point in the design. The timing
allowance specified is used explicitly by the timing analysis tools. There is no hidden
accounting for any clock inversions between registers clocked by the same clock, etc.

If paths are not specified, they are ignored for the purposes of timing analysis. The
forms described here require the definition of a source and a destination for a specifi-
cation.

Schematic newfall=FALLING ffs

UCF TIMEGRP newfall=FALLING ffs ;

Schematic newfall=FALLING ffs(A*)

UCF TIMEGRP newfall=FALLING ffs(A*) ;
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Basic Form

Syntax for defining a maximum allowable delay is as follows.

TSidentifier=FROM:source_group:TO: dest_group allowable_delay[ units]

where

identifier is an ASCII string made up of the characters A...Z, a...z, 0...9.

source_group and dest_group are user-defined or predefined groups.

allowable_delay is the timing requirement.

units is an optional field to indicate the units for the allowable delay. Default units are
nanoseconds, but the timing number can be followed by ps, ns, us, ms, GHz, MHz, or
kHz to indicate the intended units.

In a schematic the timespec attribute is attached to the TIMESPEC symbol.

Defining Intermediate Points on a Path

It is sometimes convenient to define intermediate points on a path to which a specifi-
cation applies. This defines the maximum allowable delay and has the following
syntax.

TSidentifier=FROM:source_group THRU thru_point[ THRU thru_point1...
thru_pointn] :TO: dest_group allowable_delay[ units]

where

identifier is an ASCII string made up of the characters A...Z, a...z, 0...9.

source_group and dest_group are user-defined or predefined groups.

thru_point is an intermediate point used to qualify the path, defined using a TPTHRU
attribute.

allowable_delay is the timing requirement.

units is an optional field to indicate the units for the allowable delay. Default units are
nanoseconds, but the timing number can be followed by ps, ns, us, ms, GHz, MHz, or
kHz to indicate the intended units.

Worst Case Allowable Delay (MAXDELAY)

Syntax for maximum delay is as follows.

TSidentifier=MAXDELAY FROM:source_group:TO: dest_group allowable_delay[ units]

Syntax for maximum delay using a through point is as follows.

TSidentifier=MAXDELAY FROM:source_group THRU thru_point [ THRU thru_point1...
thru_pointn] :TO: dest_group allowable_delay[ units]

where

identifier is an ASCII string made up of the characters A...Z, a...z, 0...9.

source_group and dest_group are user-defined or predefined groups.

thru_point is an intermediate point used to qualify the path, defined using a TPTHRU
attribute.

allowable_delay is the timing requirement.

units is an optional field to indicate the units for the allowable delay.
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Linked Specifications

This allows you to link the timing number used in one specification to another specifi-
cation in terms of fractions or multiples.

Note: Circular links are not allowed.

 Syntax is as follows.

TSidentifier=FROM:source_group:TO: dest_group another_Tsid [ / | * ] number

where

identifier is an ASCII string made up of the characters A...Z, a...z, 0...9.

source_group and dest_group are user-defined or predefined groups.

another_Tsid is a the name of another timespec.

number is a floating point number.

Defining Priority for Equivalent Level Specifications

A conflict between two specifications at the same level of priority can be resolved by
defining their priority. You can do this by adding the following text to each of the
conflicting specifications.

normal_timespec_syntax PRIORITY integer

where

normal_timespec_syntax is the timing specification.

integer represents the priority. The smaller the number, the higher the priority.

Ignoring Paths

Paths exercising a certain net can be ignored because from a timing specification point
of view, all paths through a net, instance, or instance pin may not be important.

Syntax is as follows.

TIG=TSidentifier

where identifier is the timing specification name of the specific timespec for which any
paths through the tagged object should be ignored. The attribute can be attached to a
net, macro pin or primitive pin. Paths that fan forward from the attribute’s point of
application are treated as if they don’t exist from the viewpoint of timing analysis
against the timing specification.

Examples

The following attribute would be attached to a net to inform the timing analysis tools
that it should ignore paths through the net for specification TS43.

 TIG=TS43

The following attribute would be created in a UCF file to inform the timing analysis
tools that it should ignore paths through the net $1I567/sometimes_slow for specifica-
tion TS_fast and TS_really_fast.

NET $1I567/sometimes_slow TIG=TS_fast , TS_really_fast;
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Ignoring Paths Through Primitives

The tracing rules for how PAR’s timing analysis handles the traversal of primitives are
the same as those used for user driven timing analysis. If a user wishes to override the
default behavior for an element, the element can be tagged with an override attribute
in the PCF file. For more information, see the  “Ignoring Selected Paths (TIG)” section
of the “Using Timing Constraints” chapter in the Development System Reference Guide.

Defining a Clock Period

A clock period specification is used to define to the timing analysis tools the allowable
time for paths between elements clocked by the flagged clock signal.

Note: The definition of a clock period is different from a FROM:TO style specification,
because the timing analysis tools will automatically take into account any inversions
of the clock signal at register clock pins.

There are two methods for specifying clock periods.

1. The quick, convenient way to define the clock period for registers attached to a
particular clock net is to attach the following parameter directly to a net in the
path that drives the register clock pin(s).

PERIOD=period[ units] [{ HIGH | LOW} [ high_or_low_time [ hi_lo_units]]]

where

period is the required clock period.

units is an optional field to indicate the units for the clock period. The default
units are nanoseconds, but the timing number can be followed by ps, ns, us, or ms
to indicate the intended units.

HIGH or LOW can be optionally specified to indicate whether the first pulse is to
be High or Low.

high_or_low_time is the optional High or Low time depending on the preceding
keyword. If an actual time is specified it must be less than the period. If no High
or Low time is specified the default duty cycle is 50%.

hi_lo_units is an optional field to indicate the units for the duty cycle. The default
is nanoseconds (ns), but the High or Low time number can be followed by ps, us,
ms, or % if the High or Low time is an actual time measurement.

The PERIOD constraint is forward-traced in exactly the same fashion as a TNM
would be and attaches itself to all of the flip-flops that the forward tracing
reaches. There are no rules about not tracing through certain elements. If you
need a more complex form of tracing behavior, for example, where gated clocks
are used in the design, you must place the PERIOD on a particular net, or use the
preferred method as described in the following paragraphs.

2. The preferred method for defining a clock period allows more complex derivative
relationships to be defined as well as a simple clock period. The following
attribute is attached to a TIMESPEC symbol in conjunction with a TNM attribute
attached to the relevant clock net.

TSidentifier=PERIOD TNM_reference period[ units][{ HIGH | LOW} [ high_or_low_time
[ hi_lo_units]]]

where

identifier is a reference identifier that has a unique name.
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TNM_reference is the identifier name that is attached to a clock net (or a net in the
clock path) using a TNM attribute.

period is the required clock period.

units is an optional field to indicate the units for the clock period. Default units are
nanoseconds, but the timing number can be followed by ps, ns, us, or ms to indi-
cate the intended units.

HIGH or LOW can be optionally specified to indicate whether the first pulse is to
be High or Low.

high_or_low_time is the optional High or Low time depending on the preceding
keyword. If an actual time is specified it must be less than the period. If no High
or Low time is specified, the default duty cycle is 50 percent.

hi_lo_units is an optional field to indicate the units for the duty cycle. The default
is ns, but the High or Low time number can be followed by ps, ns, us, ms, or % if
the High or Low time is an actual time measurement.

Example

Clock net sys_clk has the attribute tnm=master_clk attached to it and the
following attribute is attached to a TIMESPEC primitive.

 TS_master=PERIOD master_clk 50 HIGH 30

Specifying Derived Clocks

The preferred method of defining a clock period uses an identifier, allowing another
clock period specification to reference it. To define the relationship in the case of a
derived clock, use the following syntax.

TSidentifier=PERIOD TNM_reference another_PERIOD_identifier [/ | *] number
[{ HIGH | LOW} [ high_or_low_time [ hi_lo_units]]]

where

identifier is a reference identifier that has a unique name.

TNM_reference is the identifier name that is attached to a clock net or a net in the clock
path using a TNM attribute.

another_PERIOD_identifier is a the name of the identifier used on another period spec-
ification.

number is a floating point number.

HIGH or LOW can be optionally specified to indicate whether the first pulse is to be
High or Low.

high_or_low_time is the optional High or Low time. This must be less than the period,
depending on the preceding keyword. The default duty cycle is 50 percent.

hi_lo_units is an optional field to indicate the units for the duty cycle. The default is
nanoseconds (ns), but the High or Low time number can be followed by ps, us, ms, or
% if the High or Low time is an actual time measurement.

Example

Clock net sub_clk has the attribute tnm=slave_clk attached to it and the following
attribute is attached to a TIMESPEC primitive.

 ts_slave1=PERIOD slave_clk master_clk * 4
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Controlling Net Skew

You can control the maximum allowable skew on a net by attaching the MAXSKEW
attribute directly to the net. Syntax is as follows.

MAXSKEW=allowable_skew [ units]

where

allowable_skew is the timing requirement.

units is an optional field to indicate the units for the allowable delay. Default units are
nanoseconds, but the timing number can be followed by ps, ns, us, ms, GHz, MHz, or
kHz to indicate the intended units.

Controlling Net Delay

You can control the maximum allowable delay on a net by attaching the MAXDELAY
attribute directly to the net. Syntax is as follows.

MAXDELAY=allowable_delay [ units]

where

allowable_delay is the timing requirement.

units is an optional field to indicate the units for the allowable delay. Default units are
nanoseconds, but the timing number can be followed by ps, ns, us, ms, GHz, MHz, or
kHz to indicate the intended units.
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Physical Constraints
Note: The information in this section applies only to FPGA families.

When a design is mapped, the logical constraints found in the netlist and the UCF file
are translated into physical constraints; that is, constraints that apply to a specific
architecture. These constraints are found in a mapper-generated file called the Phys-
ical Constraints File (PCF). The file contains two sections, the schematic section and
the user section. The schematic section contains the physical constraints based on the
logical constraints found in the netlist and the UCF file. The user section can be used
to add any physical constraints.

PCF File Syntax
The structure of the PCF file is as follows.

schematic start;

translated schematic and UCF or NCF constraints in PCF format

schematic end;

user-entered physical constraints

You should put all user-entered physical constraints after the “schematic end” state-
ment.

Note: Do not edit the schematic constraints. They are overwritten every time the
mapper generates a new PCF file.

Global constraints need not be attached to any object but should be entered in a
constraints file.

The end of each constraint statement must be indicated with a semi-colon.

Note: In all of the constraints files (NCF, UCF, and PCF), instance or variable names
that match internal reserved words will be rejected unless the names are enclosed in
double quotes. It is good practice to enclose all names in double quotes. For example,
the following entry would not be accepted because the word net is a reserved word.

NET net FAST;

Following is the recommended way to enter the constraint.

NET “net” FAST;

or

NET “$SIG_0” FAST ;

Syntax Descriptions
A description of each legal physical constraint follows.

Note: Although this section describes the constraint’s syntax for the PCF file, it is
preferable to place any user-generated constraint in the UCF file — not in an NCF or
PCF file.
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COMPGRP

Description

Identifies a group of components.

Syntax

COMPGRP “ group_name”= comp_item1... comp_itemn [ EXCEPT comp_group] ;

where

comp_item is one of the following,

• COMPONENT “comp_name”

• COMPGRP “group_name”

FREQUENCY

Description

Identifies the minimum operating frequency for all input pads and sequential output
to sequential input pins clocked by the specified net. If no net name is given, the
constraint applies to all clock nets in the design that do not have a specific clock
frequency constraint.

Syntax

TSidentifier=FREQUENCYfrequency_item frequency_value ;

frequency_item FREQUENCY=frequency_value;

where

frequency_item is one of the following,

• NET “net_name”

• TIMEGRP “group_name”

• ALLCLOCKNETS

frequency_value is one of the following,

• frequency_number units

• units can be GHz, MHz, or kHz (gigahertz, megahertz, or kilohertz)

• TSidentifier [{/ |*} real_number]

INREG

Description

Forces the placement of a flip-flop or latch close to the IOB so that the two elements
can be connected using fast routes. Because XC5200 IOBs do not have flip-flops or
latches, you can apply this attribute to meet fast setup timing requirements if a flip-
flop or latch is driven by an IOB.
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Syntax

NET “net_name” INREG ;

where net_name is the name of the net that connects the IOB to the INREG instance.

LOCATE

Description

Specifies a single location, multiple single locations, or a location range.

Syntax

Single or multiple single locations

COMP “comp_name” LOCATE=[ SOFT] site_item1... site_itemn [ LEVEL n] ;

COMPGRP “group_name” LOCATE=[ SOFT] site_item1... site_itemn [ LEVEL n] ;

MACRO “name” LOCATE=[ SOFT] site_item1... site_itemn [ LEVEL n] ;

Range of locations

COMP “comp_name” LOCATE=[ SOFT] SITE  “ site_name” : SITE “ site_name”  [ LEVEL
n];

COMPGRP “group_name” LOCATE=[ SOFT] SITE “ site_name” : SITE “ site_name”
[ LEVEL n];

MACRO “macro_name” LOCATE=[ SOFT] SITE “ site_name” : SITE “ site_name”
[ LEVEL n];

where

site_name is a component site (that is, a CLB or IOB location).

site_item is one of the following,

• SITE “site_name”

• SITEGRP “site_group_name”

n is 0, 1, 2, 3, or 4.

LOCK

Description

Locks a net that has been previously placed or routed (that is, cannot be unplaced,
unrouted, moved, swapped, or deleted). Can also be used to lock all nets.

Syntax

A specific net

“net_name” LOCK;

All nets

ROUTING LOCK;
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MAXDELAY

Description

Identifies a maximum total delay for a net or path in the design. If a net is specified,
the maximum delay constraint applies to all driver-to-load connections on the net. If a
path is specified, the delay value is the constraint for the path including net and
component delays.

Syntax

TSidentifier=MAXDELAY path path_value [ PRIORITY integer] ;

path MAXDELAY=path_value [ PRIORITY integer] ;

net_delay_item MAXDELAY=delay_time [ units] [ PRIORITY integer] ;

where

path is one of the following,

• PATH “path_name”

• ALLPATHS

• FROM group_item THRU group_item1... group_itemn

• FROM group_item THRU group_item1... group_itemn TO group_item

• THRU group_item1... group_itemn TO group_item.

path_value is one of the following:

• delay_time [units]

• units defaults to nanoseconds, but the delay time number can be followed by
ps, ns, us, or ms (picoseconds, nanoseconds, microseconds, or milliseconds)
to specify the units

• frequency units

• units can be specified as GHz, MHz, or kHz (gigahertz, megahertz, or kilo-
hertz)

• TSidentifier [{/ |*} real_number]

net_delay_item is one of the following:

• NET “net_name”

• TIMEGRP “group_name”

• ALLCLOCKNETS

MAXSKEW

Description

Specifies a maximum signal skew between a driver and loads on a specified clock
signal. Skew is the difference between minimum and maximum load delays on a
clock net. If no signal is specified, this constraint applies to all signals which have
clock pins as loads and do not have a specified skew constraint.
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Syntax

skew_item MAXSKEW=time [ units] ;

where

skew_item is one of the following,

• NET “net_name”

• TIMEGRP “group_name”

• ALLCLOCKNETS

units defaults to nanoseconds, but the timing number can be followed by ps, ns, us, or
ms (picoseconds, nanoseconds, microseconds, or milliseconds) to indicate the
intended units.

OFFSET

Description

Specifies the timing relationship between an external clock and its associated data-in-
or data-out-pin.

Can be used on a group of one or more data components or pads.

The OFFSET constraint can be a "global" constraint that applies to all data pad nets in
the design for the specified clock. When the NET "name" specifier is used, the
constraint is associated with a single net. When the TIMEGRP "group" specifier is
used, the constraint is associated with a group of data pad nets.

Optionally, except for CPLDs, a time group qualifier, TIMEGRP "reggroup," can be
added to any OFFSET constraint to indicate that the offset applies only to registers
specified in the qualifying group. When used with the "Group method," the "register
time" group indicates to which design registers clocked by the clock IOB the offset
applies.

Syntax

Global method

OFFSET={ IN  | OUT} offset_time [ units] { BEFORE | AFTER} NET [ " clk_net" ]
[ TIMEGRP "reggroup" ];

Single net method

NET " name" OFFSET={ IN  | OUT} offset_time [ units] { BEFORE | AFTER} NET
[ " clk_net" ] [ TIMEGRP "reggroup" ] ;

Group method

TIMEGRP "group" OFFSET={ IN  | OUT} offset_time [ units] { BEFORE | AFTER}
NET [ " clk_net" ] [ TIMEGRP "reggroup" ] ;

where

group is the name of a time group containing IOB components or PAD bels.

offset_time is the external offset.

units defaults to nanoseconds, but the timing number can be followed by ps, ns, us, or
ms (picoseconds, nanoseconds, microseconds, or milliseconds) to indicate the
intended units.
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clk_iob_name is the block name of the clock IOB.

reggroup is a previously defined time group of register BELs. Only registers in the time
group clocked by the specified IOB component is checked against the specified offset
time.

OUTREG

Description

Forces the placement of a flip-flop or latch close to the IOB so that the two elements
can be connected using fast routes. Because XC5200 IOBs do not have flip-flops or
latches, you can apply this attribute to meet fast setup timing requirements if a flip-
flop or latch is driving an IOB.

Syntax

NET “ net_name” OUTREG;

where net_name is the name of the net that connects the IOB to the OUTREG instance.

PATH

Description

Assigns a path specification to a path.

Syntax

PATH “path_name”= path_spec;

where

path_spec is one of the following,

• FROM group_item THRU group_item1... group_itemn

• FROM group_item THRU group_item1... group_itemn TO group_item

• THRU group_item1... group_itemn TO group_item.

group_item is one of the following,

• PIN “pin_name”

• NET “net_name”

• COMP “comp_name”

• MACRO “macro_name”

• TIMEGRP “group_name”

• BEL “instance_name”

BEL instance_name is the instance name of a basic element. Basic elements are the
building blocks that make up a CLB— function generators, flip-flops, carry logic,
and RAMs.
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PENALIZE TILDE

Description

Penalizes those delays that are reported as only approximate (signified with a tilde (~)
in delay reports) by a user-specified percentage. When the penalize tilde constraint is
applied to an approximate delay, the delay will be penalized by the designated
percentage in subsequent timing checks. Default for percent value is zero.

Syntax

PENALIZE TILDE= percent

PERIOD

Description

Assigns a timing period to a timing specification.

Syntax

TSidentifer=PERIOD period_item period_value [{ LOW| HIGH}{ time [ units]|  percent}] ;

period_item PERIOD=period_value [{ LOW| HIGH}{ time [ units]|  percent}] ;

where

period_item is one of the following,

• NET “net_name”

• TIMEGRP “group_name”

• ALLCLOCKNETS

period_value is one of the following,

• time [units]

• units defaults to nanoseconds, but the timing number can be followed by ps,
ns, us, or ms (picoseconds, nanoseconds, microseconds, or milliseconds) to
indicate the intended units.

• TS identifier [{/ | *} real_number]

HIGH or LOW can be optionally specified to indicate whether the first pulse is to be
High or Low.

high_or_low_time is the optional High or Low time, depending on the preceding
keyword. If an actual time is specified, it must be less than the period. If no High or
Low time is specified, the default duty cycle is 50 percent.

hi_lo_units is an optional field to indicate the units for the duty cycle. The default is
nanoseconds (ns), but the High or Low time number can be followed by ps, us, ms, or
% if the High or Low time is an actual time measurement.
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PIN

Description

Identifies a specific pin.

Syntax

PIN  “ pin_name”=pin_spec;

where

pin_spec is one of the following,

• NET "net_name" BEL "instance_name"

• NET "net_name" COMP "comp_name"

• COMP "comp_name" NET "net_name"

• NET "net_name" MACRO "macro_name"

• MACRO "macro_name" NET "net_name"

• BEL "instance_name" NET "net_name"

BEL instance_name is the instance name of a basic element. Basic elements are the
building blocks that make up a CLB— function generators, flip-flops, carry logic, and
RAMs.

PRIORITIZE

Description

Assigns a weighted importance to a net or bus. Values range from 0 through 100, with
100 being the highest priority and 0 the lowest. The default is 3. Any net with a
priority of 3 is not considered critical; no constraint will be generated. The prioritize
constraint is used by PAR, which assigns longlines by net priority and routes higher-
priority nets before routing lower-priority nets. The prioritize constraint is also used
by BITGEN to determine which nets not to use for tiedown. A net with a priority
greater than 3 will only be used for tiedown as a last resort.

Syntax

NET "net_name" PRIORITIZE= integer;

PROHIBIT

Description

Disallows the use of a site or multiple sites within PAR, EPIC, and the CPLD fitter.

Syntax

Single or multiple single locations

PROHIBIT= site_group;

PROHIBIT= site_group1...  , site_groupn;
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Range of locations

PROHIBIT= site_group : site_group;

where

site_group is one of the following,

• SITE "site_name"

• SITEGRP "site_group_name"

site_name must be a valid site for the targeted device. (For example, CLB_R1C1.FFX is
not a valid site for the XC4000X or SpartanXL.)

Note: CPLDs do not support the "Range of locations" form of PROHIBIT.

SITEGRP

Description

Identifies a group of sites.

Syntax

SITEGRP site_group_name=site_group1... site_groupn ;  [ EXCEPT site_group] ;

where

site_group is one of the following,

• SITE "site_name"

• SITEGRP "site_group_name"

site_name must be a valid site for the targeted device. (For example, CLB_R1C1.FFX is
not a valid site for the XC4000X or SpartanXL.)

TEMPERATURE

Description

Allows the specification of the operating temperature.

Note: Each architecture has its own specific range of valid operating temperatures. If
the entered temperature does not fall within the supported range, the constraint is
ignored and an architecture-specific default value is used instead.

Syntax

TEMPERATURE=value[ C | F| K]

where

value is an integer or a real number specifying the temperature.

C, K, and F are the temperature units. F is degrees Fahrenheit, K is degrees Kelvin,
and C is degrees Celsius, the default.
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TIMEGRP (Timing Group)

Description

Defines objects that are to be treated as a group for timing considerations.You can
refer to a group of flip-flops, input latches, pads, or RAMs by using the corresponding
keywords.

Syntax

TIMEGRP "group_name"=[ qualifier1] group_spec1... [ qualifiern] group_specn [ EXCEPT
group_spec1...  group_specn] ;

where

qualifier is RISING or FALLING.

group_spec is one of the following,

• PIN "pin_name"

• NET "net_name"

• BEL "instance_name"

• COMP "comp_name"

• MACRO "macro_name"

• TIMEGRP "group_name"

• FFS ["pattern"]

• LATCHES ["pattern"]

• RAMS [“pattern”]

• PADS [“pattern”]

BEL instance_name is the instance name of a basic element. Basic elements are the
building blocks that make up a CLB— function generators, flip-flops, carry logic, and
RAMs.

This example shows you one way to use the TIMEGRP attribute. If you have some
outputs that can be slower than others, you can create timespecs similar to those
shown below for output signals obc_data(7:0) and ingr_irq_n.

First create the Timegroups.

TIMEGRP slow_outs=PADS(obc_data* : ingr_irq_n) ;

TIMEGRP fast_outs=PADS : EXCEPT : slow_outs ;

Keyword Description

FFS CLB or IOB flip-flops only; not flip-flops built from function genera-
tors

LATCHES CLB or IOB latches only; not latches built from function generators

PADS Input/output pads

RAMS For architectures with RAMS
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Then apply a timing spec to the Timegroups.

TIMESPEC TS08=FROM : FFS : TO : fast_outs : 22 ;

TIMESPEC TS09=FROM : FFS : TO : slow_outs : 75 ;

TIG (Timing Ignore)

Description

Identifies paths that can be ignored for timing purposes.

Syntax

ignore_item TIG [ =TSidentifier1... TSidentifiern] ;

where

ignore_item is one of the following,

• PIN “pin_name”

• NET “net_name”

• COMP “comp_name”

• MACRO “macro_name”

• PATH “path_name”

• BEL “instance_name”

• FROM group_item THRU group_item1... group_itemn

• FROM group_item THRU group_item1... group_itemnTO group_item

• THRU group_item... group_itemn TO group_item }

BEL instance_name is the instance name of a basic element. Basic elements are the
building blocks that make up a CLB— function generators, flip-flops, carry logic, and
RAMs.

For a detailed description of TIG, see the  “Timing Specifications” section of the
“Using Timing Constraints” chapter in the Development System Reference Guide.

TSidentifier

Description

Assigns a timing period or frequency to a timing specification.

Syntax

Period

TSidentifer=PERIOD period_item period_value [{ LOW| HIGH}{ time [ units]|  percent}] ;

period_item PERIOD=period_value [{ LOW| HIGH}{ time [ units]|  percent}] ;
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where

period_item is one of the following,

• NET “net_name”

• TIMEGRP “group_name”

• ALLCLOCKNETS

period_value is one of the following,

• time [units]

• units defaults to nanoseconds, but the timing number can be followed by ps,
ns, us, or ms (picoseconds, nanoseconds, microseconds, or milliseconds) to
indicate the intended units.

• TS identifier [{/ | *} real_number]

HIGH or LOW can be optionally specified to indicate whether the first pulse is to be
High or Low.

high_or_low_time is the optional High or Low time, depending on the preceding
keyword. If an actual time is specified, it must be less than the period. If no High or
Low time is specified, the default duty cycle is 50 percent.

hi_lo_units is an optional field to indicate the units for the duty cycle. The default is
nanoseconds (ns), but the High or Low time number can be followed by ps, us, ms, or
% if the High or Low time is an actual time measurement.

Frequency

TSidentifier=FREQUENCYfrequency_item frequency_value ;

frequency_item FREQUENCY=frequency_value;

where

frequency_item is one of the following,

• NET “net_name”

• TIMEGRP “group_name”

• ALLCLOCKNETS

frequency_value is one of the following,

• frequency_number units

• units can be GHz, MHz, or kHz (gigahertz, megahertz, or kilohertz)

• TSidentifier [{/ |*} real_number]

VOLTAGE

Description

Allows the specification of the operating voltage. This provides a means of prorating
delay characteristics based on the specified voltage.

Note: Each architecture has its own specific range of supported voltages. If the
entered voltage does not fall within the supported range, the constraint is ignored and
an architecture-specific default value is used instead.
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Syntax

VOLTAGE=value[ V]

where

value is an integer or real number specifying the voltage.

V specifies volts, the default voltage unit.
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Relationally Placed Macros (RPMs)
The Xilinx libraries contain three types of elements.

• Primitives are basic logical elements such as AND2 and OR2 gates

• Soft macros are schematics made by combining primitives and sometimes other
soft macros

• Relationally placed macros (RPMs) are soft macros that contain relative location
constraint (RLOC) information, carry logic symbols, and FMAP/HMAP symbols,
where appropriate

The last item mentioned above, RPMs, applies only to FPGA families.

The relationally placed macro (RPM) library uses RLOC constraints to define the
order and structure of the underlying design primitives. Because these macros are
built upon standard schematic parts, they do not have to be translated before simula-
tion. The components that are implemented as RPMs are listed in the  “Relationally
Placed Macros” section of the “Selection Guide” chapter.

Designs created with RPMs can be functionally simulated. RPMs can, but need not,
include all the following elements.

• FMAPs, HMAPs, and CLB-grouping attributes to control mapping. FMAPs and
HMAPs have pin-lock attributes, which allow better control over routing. FMAPs
and HMAPs are described in the  “Mapping Constraint Examples” section.

• Relative location (RLOC) constraints to provide placement structure. They allow
positioning of elements relative to each other. They are discussed in the  “Benefits
and Limitations of RLOC Constraints” section.

• Carry logic primitive symbols. Carry logic is discussed in the  “Carry Logic in
XC4000 and Spartans” section.

The RPM library offers the functionality and precision of the hard macro library with
added flexibility. You can optimize RPMs and merge other logic within them. The
elements in the RPM library allow you to access carry logic easily and to control
mapping and block placement. Because RPMs are a superset of ordinary macros, you
can design them in the normal design entry environment. They can include any prim-
itive logic. The macro logic is fully visible to you and can be easily back-annotated
with timing information.



Attributes, Constraints, and Carry Logic

Libraries Guide, Release M1.5 12-139

Carry Logic in XC4000 and Spartans
In the XC4000 and Spartans, the CLB contains a feature called dedicated carry logic.
This carry logic is independent of the function generators, although it shares some of
the same input pins. Dedicated interconnect propagates carry signals through a
column of CLBs.

This section describes the use of carry logic in XC4000 and Spartan series CLBs and
lists all the carry logic configuration mnemonics available.

Carry Logic Overview
The carry chain in XC4000E devices can run either up or down. At the top and bottom
of columns where there are no CLBs above and below, the carry is propagated to the
right as shown in the figure below.

Figure 12-16 Available XC4000E Carry Propagation Paths

In XC4000X, Spartan, and SpartanXL devices the carry chain travels upward only.
Standard interconnect can be used to route a signal in the downward direction. See
the figure below.

Figure 12-17 Available XC4000X, Spartan, and SpartanXL Carry Propagation
Paths (dotted lines use general interconnect)
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The CY4_43 carry mode component (Force-G4) forces the signal on the G4 pin to pass
through to the COUT pin. This component is available only for XC4000X and Spar-
tanXL devices.

Carry logic in each CLB can implement approximately 40 different functions, which
you can use to build faster and more efficient adders, subtracters, counters, compara-
tors, and so forth. The  “XC4000 and Spartans Carry Logic” figure shows the carry
logic in an XC4000 or Spartan series CLB.

Figure 12-18 XC4000 and Spartans Carry Logic

Carry Logic Primitives and Symbols
The schematic capture libraries that Xilinx supports contain one generic carry logic
primitive and several specific carry mode primitive symbols. The generic carry logic
primitive represents the complete carry logic in a single CLB and is shown in the
“Representative Carry Logic Symbol” figure.

Figure 12-19 Representative Carry Logic Symbol

The carry mode primitive symbols represent unique carry modes, such as ADD-FG-
CI. The  “Carry Modes” table lists the carry mode names and symbols.

To specify the particular mode that you wish, connect a carry mode symbol to the C0-
C7 mode pins of the carry logic symbol. It is the pair of symbols that defines the
specific kind of carry logic desired.
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A carry logic symbol requires you to place either a LOC or an RLOC constraint on it. If
a LOC constraint is used, it must be a single LOC= constraint; it cannot be an area or
prohibit LOC constraint or use wildcards in its syntax.

Table 12-13 Carry Modes

Carry Mode Name Symbol

ADD-F-CI cy4_01

ADD-FG-CI cy4_02

ADD-G-F1 cy4_03

ADD-G-CI cy4_04

ADD-G-F3- cy4_05

ADDSUB-F-CI cy4_12

ADDSUB-FG-CI cy4_13

ADDSUB-G-CI cy4_15

ADDSUB-G-F1 cy4_14

ADDSUB-G-F3- cy4_16

FORCE-0 cy4_37

FORCE-1 cy4_38

FORCE-CI cy4_40

FORCE-F1 cy4_39

FORCE-F3- cy4_41

FORCE-G4 cy4_43*

EXAMINE-CI cy4_42

DEC-F-CI cy4_24

DEC-FG-0 cy4_26

DEC-FG-CI cy4_25

DEC-G-0 cy4_27

DEC-G-CI cy4_29

DEC-G-F1 cy4_28

DEC-G-F3- cy4_30

INC-F-CI cy4_17

INC-FG-1 cy4_19

INC-FG-CI cy4_18

INC-G-1 cy4_20

INC-G-CI cy4_22

INC-G-F1 cy4_21

INC-G-F3- cy4_23

SUB-F-CI cy4_06

SUB-FG-CI cy4_07

SUB-G-1 cy4_08
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Carry Logic Handling
The mapper checks for legal connections between carry logic symbols and also
performs simple trimming on some carry modes. CY4 symbols might be trimmed as
follows.

• If neither the COUT0 pin nor the COUT pin is used, the CY4 symbol is removed
from the design. However, if the signal on the CIN pin connects to other logic, the
mapper converts the CY4 to the EXAMINE-CI mode. An EXAMINE-CI mode
CY4 is trimmed only if there is no other load on the signal on the CIN pin.

• If the specified mode does not require any of the A0, B0, A1, B1, and/or ADD CY4
inputs, signals are removed from these pins, which may save routing resources.

Carry Mode Configuration Mnemonics
The first step in configuring a CLB for carry logic is to choose the appropriate carry
mode configuration mnemonic. Each of the 43 possible configurations of the carry
logic has been assigned a three-part mnemonic code, for example:

ADD-FG-CI

• The first field (ADD) describes the operation performed in the CLB function
generators, in this case, a binary addition. By implication, the carry logic in this
CLB calculates the carry for this addition.

• The second field (FG) indicates which of the two function generators is used in
the specified operation, in this case, both F and G.

• The last field (CI) specifies the source of the carry-in signal to the CLB, in this case,
the CIN pin itself.

Consider another example:

INCDEC-G-F1

This mnemonic describes a CLB in which the G function generator performs an incre-
ment/decrement function. The carry-in to this CLB is sourced by the F1 pin.

All available carry mode configuration mnemonics are listed in the next section, the
“Carry Logic Configurations” section.

SUB-G-CI cy4_09

SUB-G-F1 cy4_10

SUB-G-F3- cy4_11

INCDEC-F-CI cy4_31

INCDEC-FG-1 cy4_33

INCDEC-FG-CI cy4_32

INCDEC-G-0 cy4_34

INCDEC-G-CI cy4_36

INCDEC-G-F1 cy4_35
*Available only for XC4000X and SpartanXL devices

Table 12-13 Carry Modes

Carry Mode Name Symbol
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To determine which carry mode primitive corresponds to which mnemonic, see the
“Carry Modes” table.

Carry Logic Configurations
This section lists and describes all the available carry mode configuration mnemonics.
The following information is given for each mnemonic.

• The name of the mode mnemonic.

• A brief description of the CLB function.

• The COUT0 and COUT equations performed by the carry logic.

• Default equations for the F and G function generators.

• Default assignments for the F4, G2, and G3 inputs.

The default F and G functions and default F4, G2, and G3 inputs are based on the
generic CLB function described. You can change these defaults as required, allowing
for features such as parallel enable or synchronous reset. However, if these defaults
are changed, the CLB may no longer function as the mnemonic describes.

The COUT0 and COUT equations are absolutely determined by the carry mode
configuration mnemonic. The only way to change these carry logic outputs is by
selecting a different mnemonic.

ADD-F-CI

The ADD-F-CI configuration performs a 1-bit addition of A+B in the F function gener-
ator, with the A and B inputs on the F1 and F2 pins. The carry signal enters on the CIN
pin, propagates through the F carry logic, and exits on the COUT pin. This configura-
tion can be used as the MSB of an adder, with the G function generator accessing the
carry-out signal or calculating a twos-complement overflow.

F=(F1@F2)@F4

COUT0=(F1*F2) + CIN*(F1+F2)

G=

COUT=COUT0

F4=CIN

G2=G2I (COUT0 for overflow, OFL=G2@G3, or for carry-out, CO=G2)

G3=G3I (CIN for overflow, OFL=G2@G3)

ADD-FG-CI

The ADD-FG-CI configuration performs a 2-bit addition of A+B in both the F and G
function generators, with the lower-order A and B inputs on the F1 and F2 pins, and
the higher-order A and B inputs on the G1 and G4 pins. The carry signal enters on the
CIN pin, propagates through the F and G carry logic, and exits on the COUT pin. This
configuration comprises the middle bits of an adder.

F=(F1@F2)@F4

COUT0=(F1*F2) + CIN*(F1+F2)

G=(G4@G1)@G2

COUT=(G4*G1) + COUT0*(G4+G1)
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F4=CIN

G2=COUT0

G3=G3I

ADD-G-F1

The ADD-G-F1 configuration performs a 1-bit addition of A+B in the G function
generator, with the A and B inputs on the G1 and G4 pins. The carry signal enters on
the F1 pin, propagates through the G carry logic, and exits on the COUT pin. This
configuration comprises the LSB of an adder, where the carry-in signal is routed to F1.
The F function generator is not used.

F=

COUT0=F1

G=(G4@G1)@G2

COUT=(G4*G1) + COUT0*(G4+G1)

F4=F4I

G2=COUT0

G3=G3I

ADD-G-CI

The ADD-G-CI configuration performs a 1-bit addition of A+B in the G function
generator, with the A and B inputs on the G1 and G4 pins. The carry signal enters on
the CIN pin, propagates through the G carry logic, and exits on the COUT pin. This
configuration is for the middle bit of an adder, where the F function generator is
reserved for another purpose.

F=

COUT0=CIN

G=(G4@G1)@G2

COUT=(G4*G1) + COUT0*(G4+G1)

F4=F4I

G2=COUT0

G3=G3I

ADD-G-F3-

The ADD-G-F3- configuration performs a 1-bit addition of A+B in the G function
generator, with the A and B inputs on the G1 and G4 pins. The carry signal enters on
the F3 pin, is inverted by the F carry logic, propagates through the G carry logic, and
exits on the COUT pin. This configuration comprises the LSB of an adder, where the
inverted carry-in signal is routed to F3. The F function generator is not used.

F=

COUT0=~F3

G=(G4@G1)@G2

COUT=(G4*G1) + COUT0*(G4+G1)
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F4=F4I

G2=COUT0

G3=G3I

SUB-F-CI

The SUB-F-CI configuration performs a 1-bit twos-complement subtraction of A-B in
the F function generator, with the A input on F1 and the B input on F2. The carry
signal enters on the CIN pin, propagates through the F carry logic, and exits on the
COUT pin. This configuration can be used as the MSB of a subtracter, with the G func-
tion generator accessing the carry-out signal or calculating a twos-complement over-
flow.

F=(F1@F2)@~F4=~(F1@F2@F4)

COUT0=(F1*~F2) + CIN*(F1+~F2)

G=

COUT=COUT0

F4=CIN

G2=G2I (COUT0 for overflow, OFL=G2@G3, or for carry-out, CO=G2)

G3=G3I (CIN for overflow, OFL=G2@G3)

SUB-FG-CI

The SUB-FG-CI configuration performs a 2-bit twos-complement subtraction of A-B
in both the F and G function generators. For the lower bit, the A input is on F1 and the
B input is on F2. For the upper bit, the A input is on G4 and the B input is on G1. The
carry signal enters on the CIN pin, propagates through the F and G carry logic, and
exits on the COUT pin. This configuration comprises the middle bits of a subtracter.

F=(F1@F2)@~F4=~(F1@F2@F4)

COUT0=(F1*~F2) + CIN*(F1+~F2)

G=(G4@G1)@~G2=~(G4@G1@G2)

COUT=(G4*~G1) +COUT0*(G4+~G1)

F4=CIN

G2=COUT0

G3=G3I

SUB-G-1

The SUB-G-1 configuration performs a 1-bit twos-complement subtraction of A-B in
the G function generator, with the A input on G4 and the B input on G1. The carry-in
is tied High (no borrow). The carry signal propagates through the G carry logic and
exits on the COUT pin. This configuration comprises the LSB of a subtracter with no
carry-in. The F function generator is not used.

F=

COUT0=1

G=(G4@G1)
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COUT=(G4+~G1)

F4=F4I

G2=G2I

G3=G3I

SUB-G-CI

The SUB-G-CI configuration performs a 1-bit twos-complement subtraction of A-B in
the G function generator, with the A input on G4 and the B input on G1. The carry
signal enters on the CIN pin, propagates through the G carry logic, and exits on the
COUT pin. This configuration is for the middle bit of a subtracter, where the F func-
tion generator is reserved for another purpose.

F=

COUT0=CIN

G=(G4@G1)@~G2=~(G4@G1@G2)

COUT=(G4*~G1) + COUT0*(G4+~G1)

F4=F4I

G2=COUT0

G3=G3I

SUB-G-F1

The SUB-G-F1 configuration performs a 1-bit twos-complement subtraction of A-B in
the G function generator, with the A input on G4 and the B input on G1. The carry
signal enters on the F1 pin, propagates through the G carry logic, and exits on the
COUT pin. This configuration comprises the LSB of a subtracter, where the carry-in
signal is routed to F1. The F function generator is not used.

F=

COUT0=F1

G=(G4@G1)@~G2=~(G4@G1@G2)

COUT=(G4*~G1) + COUT0*(G4+~G1)

F4=F4I

G2=COUT0

G3=G3I

SUB-G-F3-

The SUB-G-F3- configuration performs a 1-bit twos-complement subtraction of A-B in
the G function generator, with the A input on G4 and the B input on G1. The carry
signal enters on the F3 pin, is inverted by the F carry logic, propagates through the G
carry logic, and exits on the COUT pin. This configuration comprises the LSB of a
subtracter, where the inverted carry-in signal is routed to F3. The F function generator
is not used.

F=

COUT0=~F3
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G=(G4@G1)@~G2=~(G4@G1@G2)

COUT=(G4*~G1) + COUT0*(G4+~G1)

F4=F4I

G2=COUT0

G3=G3I

ADDSUB-F-CI

The ADDSUB-F-CI configuration performs a 1-bit twos-complement add/subtract of
A+B in the F function generator, with the A input on F1 and the B input on F2. The
carry signal enters on the CIN pin, propagates through the F carry logic, and exits on
the COUT pin. The F3 input indicates add (F3=1) or subtract (F3=0). This configura-
tion can be used as the MSB of an adder/subtracter, with the G function generator
accessing the carry-out signal or calculating a twos-complement overflow.

F=(F1@F2)@F4@~F3=~(F1@F2@F4@F3)

COUT0=F3*((F1*F2) + CIN*(F1+F2)) + ~F3*((F1*~F2) + CIN*(F1+~F2))

G=

COUT=COUT0

F4=CIN

G2=G2I (COUT0 for overflow, OFL=G2@G3, or for carry-out, CO=G2)

G3=G3I (CIN for overflow, OFL=G2@G3)

ADDSUB-FG-CI

The ADDSUB-FG-CI configuration performs a 2-bit twos- complement add/subtract
of A+B in both the F and G function generators. For the lower bit, the A input is on F1
and the B input is on F2. For the upper bit, the A input is on G4 and the B input is on
G1. The carry signal enters on the CIN pin, propagates through the F and G carry
logic, and exits on the COUT pin. The F3 and G3 inputs indicate add (F3=G3=1) or
subtract (F3=G3=0): the add/subtract control signal must be routed to both the F3 and
G3 pins. This configuration comprises the middle bits of an adder/subtracter.

F=(F1@F2)@F4@~F3=~(F1@F2@F4@F3)

COUT0=F3*((F1*F2) + CIN*(F1+F2)) + ~F3*((F1*~F2) + CIN*(F1+~F2))

G=(G4@G1)@G2@~G3=~(G4@G1@G2@G3)

COUT=F3*((G4*G1)+COUT0*(G4+G1))+~F3*((G4*~G1)+COUT0*(G4+~G1))

F4=CIN

G2=COUT0

G3=G3I

ADDSUB-G-CI

The ADDSUB-G-CI configuration performs a 1-bit twos-complement add/subtract of
A+B in the G function generator, with the A input on G4 and the B input on G1. The
carry signal enters on the CIN pin, propagates through the G carry logic, and exits on
the COUT pin. The F3 and G3 inputs indicate add (F3=G3=1) or subtract (F3=G3=0):
the add/subtract control signal must be routed to both the F3 and G3 pins. This
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configuration is for the middle bit of an adder/subtracter, where the F function gener-
ator is reserved for another purpose.

F=

COUT0=CIN

G=(G4@G1)@G2@~G3=~(G4@G1@G2@G3)

COUT=F3*((G4*G1)+COUT0*(G4+G1))+~F3*((G4*~G1)+COUT0*(G4+~G1))

F4=F4I

G2=COUT0

G3=G3I

ADDSUB-G-F1

The ADDSUB-G-F1 configuration performs a 1-bit twos-complement add/subtract of
A+B in the G function generator, with the A input on G4 and the B input on G1. The
carry signal enters on the F1 pin, propagates through the G carry logic, and exits on
the COUT pin. The F3 and G3 inputs indicate add (F3=G3=1) or subtract (F3=G3=0):
the add/subtract control signal must be routed to both the F3 and G3 pins. This
configuration comprises the LSB of an adder/subtracter, where the carry-in signal is
routed to F1. The F function generator is not used.

F=

COUT0=F1

G=(G4@G1)@G2@~G3=~(G4@G1@G2@G3)

COUT=F3*((G4*G1)+COUT0*(G4+G1))+~F3*((G4*~G1)+COUT0*(G4+~G1))

F4=F4I

G2=COUT0

G3=G3I

ADDSUB-G-F3-

The ADDSUB-G-F3- configuration performs a 1-bit twos-complement add/subtract
of A+B in the G function generator, with the A input on G4 and the B input on G1. The
carry signal enters on the F3 pin, is inverted by the F carry logic, propagates through
the G carry logic, and exits on the COUT pin. Because the F3 input also indicates add
(F3=1) or subtract (F3=0), the carry-in is always null (0 for add, 1 for subtract). This
configuration comprises the LSB of an adder/subtracter with no carry-in. The F func-
tion generator is not used.

F=

COUT0=~F3

G=(G4@G1)

COUT=F3*G4*G1 + ~F3(G4+~G1)

F4=F4I

G2=COUT0

G3=G3I



Attributes, Constraints, and Carry Logic

Libraries Guide, Release M1.5 12-149

INC-F-CI

The INC-F-CI configuration performs a 1-bit increment in the F function generator,
with the input on the F1 pin. The carry signal enters on the CIN pin, propagates
through the F carry logic, and exits on the COUT pin. The G function generator can be
used to output the terminal count of a counter.

F=(F1@F4)

COUT0=CIN*F1

G=

COUT=COUT0

F4=CIN

G2=G2I (COUT0 for terminal count, TC=G2)

G3=G31

INC-FG-1

The INC-FG-1 configuration performs a 2-bit increment in both the F and G function
generator, with the lower-order A input on the F1 pin and the higher-order A input on
the G4 pin. The carry-in is tied High. The carry signal propagates through the F and G
carry logic and exits on the COUT pin. This configuration comprises the two least
significant bits of an incrementer that is always enabled.

F=~(F1)

COUT0=F1

G=G2@G4

COUT=COUT0*G4

F4=F4I or CIN

G2=COUT0

G3=G3I or CIN

INC-FG-CI

The INC-FG-CI configuration performs a 2-bit increment in both the F and G function
generators, with the lower-order input on the F1 pin and the higher-order input on
the G4 pin. The carry signal enters on the CIN pin, propagates through the F and G
carry logic, and exits on the COUT pin. This configuration comprises the middle bits
of an incrementer.

F=(F1@F4)

COUT0=CIN*F1

G=(G4@G2)

COUT=COUT0*G4

F4=CIN

G2=COUT0

G3=G3I
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INC-G-1

The INC-G-1 configuration performs a 1-bit increment in the G function generator,
with the input on the G4 pin. The carry-in is tied High. The carry signal propagates
through the G carry logic and exits on the COUT pin. This configuration comprises
the LSB of an incrementer that is always enabled. The F function generator is not
used. This configuration is identical to DEC-G-0, since the LSB of an incrementer is
identical to the LSB of a decrementer.

F=

COUT0=0

G=~(G4)

COUT=G4

F4=F4I

G2=G2I

G3=G3I

INC-G-F1

The INC-G-F1 configuration performs a 1-bit increment in the G function generator,
with the input on the G4 pin. The carry signal enters on the F1 pin, propagates
through the G carry logic, and exits on the COUT pin. This configuration comprises
the LSB of an incrementer where F1 is an active-High enable. The F function generator
is not used.

F=

COUT0=F1

G=(G4@G2)

COUT=COUT0*G4

F4=F4I

G2=COUT0

G3=G3I

INC-G-CI

The INC-G-CI configuration does a 1-bit increment in the G function generator, with
the input on the G4 pin. The carry signal enters on the CIN pin, propagates through
the G carry logic, and exits on the COUT pin. This configuration is for the middle bit
of an incrementer where the F function generator is reserved for another purpose.

F=

COUT0=CIN

G=(G4@G2)

COUT=COUT0*G4

F4=F4I

G2=COUT0

G3=G3I
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INC-G-F3-

The INC-G-F3- configuration performs a 1-bit increment in the G function generator,
with the input on the G4 pin. The carry signal enters on the F3 pin, is inverted in the F
carry logic, propagates through the G carry logic, and exits on the COUT pin. This
configuration comprises the LSB of an incrementer where F3 is an active-Low enable.
The F function generator is not used.

F=

COUT0=~F3

G=(G4@G2)

COUT=COUT0*G4=~F3*G4

F4=F4I

G2=COUT0

G3=G3I

DEC-F-CI

The DEC-F-CI configuration performs a 1-bit decrement in the F function generator,
with the input on the F1 pin. The carry signal enters on the CIN pin, propagates
through the F carry logic, and exits on the COUT pin. The G function generator can be
used to output the terminal count of a counter.

F=~(F1@F4)

COUT0=F1+CIN*~F1

G=

COUT=COUT0

F4=CIN

G2=G2I (COUT0 for terminal count, TC=G2)

G3=G3I

DEC-FG-0

The DEC-FG-0 configuration performs a 2-bit decrement in both the F and G function
generator, with the lower-order input on the F1 pin and the higher order input on the
G4 pin. The carry-in is tied Low. The carry signal propagates through the F and G
carry logic and exits on the COUT pin. This configuration comprises the two least
significant bits of a decrementer that is always enabled.

F=~(F1)

COUT0=F1

G=~(G4@G2)

COUT=COUT=(COUT0*~G4) + G4

F4=F4I

G2=COUT0

G3=G3I
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DEC-FG-CI

The DEC-FG-CI configuration performs a 2-bit decrement in both the F and G func-
tion generators, with the lower-order input on the F1 pin and the higher-order input
on the G4 pin. The carry signal enters on the CIN pin, propagates through the F and G
carry logic, and exits on the COUT pin. This configuration comprises the middle bits
of a decrementer.

F=~(F1@F4)

COUT0=F1+CIN*~F1

G=~(G4@G2)

COUT=G4+COUT0*~G4

F4=CIN

G2=COUT0

G3=G3I

DEC-G-0

The DEC-G-0 configuration performs a 1-bit decrement in the G function generator,
with the input on the G4 pin. The carry-in is tied High (no borrow). The carry signal
propagates through the G carry logic and exits on the COUT pin. This configuration
comprises the LSB of a decrementer that is always enabled. The F function generator
is not used. This configuration is identical to INC-G-1, since the LSB of an incrementer
is identical to the LSB of a decrementer.

F=

COUT0=0

G=~(G4)

COUT=G4

F4=F4I

G2=G2I

G3=G3I

DEC-G-CI

The DEC-G-CI configuration does a 1-bit decrement in the G function generator, with
the input on the G4 pin. The carry signal enters on the CIN pin, propagates through
the G carry logic, and exits on the COUT pin. This configuration is for the middle bit
of a decrementer, where the F function generator is reserved for another purpose.

F=

COUT0=CIN

G=~(G4@G2)

COUT=G4+COUT0*~G4

F4=F4I

G2=COUT0

G3=G3I
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DEC-G-F1

The DEC-G-F1 configuration performs a 1-bit decrement in the G function generator,
with the input on the G4 pin. The carry signal enters on the F1 pin, propagates
through the G carry logic, and exits on the COUT pin. This configuration comprises
the LSB of a decrementer where F1 is an active-Low enable. The F function generator
is not used.

F=

COUT0=F1

G=~(G4@G2)

COUT=COUT0 + G4

F4=F4I

G2=COUT0

G3=G3I

DEC-G-F3-

The DEC-G-F3- configuration performs a 1-bit decrement in the G function generator,
with the input on the G4 pin. The carry signal enters on the F3 pin, is inverted in the F
carry logic, propagates through the G carry logic, and exits on the COUT pin. This
configuration comprises the LSB of a decrementer, where F3 is an active-High enable.
The F function generator is not used.

F=

COUT0=~F3

G=~(G4@G2)

COUT=COUT0 + G4

F4=F4I

G2=COUT0

G3=G3I

INCDEC-F-CI

The INCDEC-F-CI configuration performs a 1-bit increment/decrement in the F func-
tion generator, with the input on the F1 pin. The carry signal enters on the CIN pin,
propagates through the F carry logic, and exits on the COUT pin. The F3 input indi-
cates increment (F3=1) or decrement (F3=0). The G function generator can be used to
output the terminal count of a counter.

F=(F1@F4)@~F3

COUT0=~F3*(F1+ CIN) + F3*F1*CIN

G=

COUT=COUT0

F4=CIN

G2=G2I (COUT0 for terminal count, TC=G2)

G3=G31
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INCDEC-FG-1

The INCDEC-FG-1 configuration performs a 2-bit increment/decrement in both the F
and G function generator, with the lower- order input on the F1 pin and the higher-
order input on the G4 pin. The F3 and G3 inputs indicate increment (F3=G3=1) or
decrement (F3=G3=0): the increment/decrement control signal must be routed to both
the F3 and G3 pins. The carry-in is always active (High in increment mode and Low in
decrement mode). The carry signal propagates through the F and G carry logic and
exits on the COUT pin. This configuration comprises the two least significant bits of
an incrementer/decrementer that is always enabled.

F=~(F1)

COUT0=F1

G=(G2@G4)@~G3

COUT=COUT=~F3*((COUT0*~G4)+G4) + F3*(G4*COUT0)

F4=F4I

G2=COUT0

G3=G3I

INCDEC-FG-CI

The INCDEC-FG-CI configuration performs a 2-bit increment/decrement in both the
F and G function generators, with the lower-order input on the F1 pin and the higher-
order input on the G4 pin. The carry signal enters on the CIN pin, propagates through
the F and G carry logic, and exits on the COUT pin. The F3 and G3 inputs indicate
increment (F3=G3=1) or decrement (F3=G3=0): the increment/decrement control
signal must be routed to both the F3 and G3 pins. This configuration comprises the
middle bits of an incrementer/decrementer.

F=(F1@F4)@~F3

COUT0=~F3*(F1+ CIN) + F3*F1*CIN

G=(G4@G2)@~G3

COUT=~F3*(G4+ COUT0) + F3*G4*COUT0

F4=CIN

G2=COUT0

G3=G3I

INCDEC-G-0

The INCDEC-G-0 configuration performs a 1-bit increment/decrement in the G func-
tion generator, with the input on the G4 pin. The carry-in is tied High. The carry
signal propagates through the G carry logic and exits on the COUT pin. This configu-
ration comprises the LSB of an incrementer/decrementer that is always enabled. The
F function generator is not used. F3 is not required for increment/decrement control,
since the LSB of an incrementer is identical to the LSB of a decrementer; this configu-
ration is identical to INC-G-1 and DEC-G-0.

F=

COUT0=0
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G=~(G4)

COUT=G4

F4=F4I

G2=G2I

G3=G3I

INCDEC-G-CI

The INCDEC-G-CI configuration performs a 1-bit increment/decrement in the G
function generator, with the input on the G4 pin. The carry signal enters on the CIN
pin, propagates through the G carry logic, and exits on the COUT pin. The F3 and G3
inputs indicate increment (F3=G3=1) or decrement (F3=G3=0): the increment/decre-
ment control signal must be routed to both the F3 and G3 pins. This configuration is
for the middle bit of an incrementer/decrementer, where the F function generator is
reserved for another purpose, although the F3 pin is used by the carry logic.

F=

COUT0=CIN

G=(G4@G2)@~G3

COUT=~F3*(G4+ COUT0) + F3*G4*COUT0

F4=F4I

G2=COUT0

G3=G3I

INCDEC-G-F1

The INCDEC-G-F1 configuration performs a 1-bit increment/decrement in the G
function generator, with the input on the G4 pin. The carry signal enters on the F1 pin,
propagates through the G carry logic, and exits on the COUT pin. This configuration
comprises the LSB of an incrementer/decrementer where the carry-in signal is routed
to F1. The carry-in is active-High for an increment operation and active-Low for a
decrement operation. The F function generator is not used. The F3 and G3 inputs indi-
cate increment (F3=G3=1) or decrement (F3=G3=0): the increment/decrement control
signal must be routed to both the F3 and G3 pins.

F=

COUT0=F1

G=(G4@G2)@~G3

COUT=F3*(G4*COUT0) + ~F3*(G4+COUT0)

F4=F4I

G2=COUT0

G3=G3I
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FORCE-0

The FORCE-0 configuration forces the carry-out signal on the COUT pin to be 0.

COUT0=0

COUT=0

FORCE-1

The FORCE-1 configuration forces the carry-out signal on the COUT pin to be 1.

COUT0=1

COUT=1

FORCE-CI

The FORCE-CI configuration forces the signal on the CIN pin to pass through to the
COUT pin.

COUT0=CIN

COUT=COUT0=CIN

FORCE-F1

The FORCE-F1 configuration forces the signal on the F1 pin to pass through to the
COUT pin.

COUT0=F1

COUT=COUT0=F1

FORCE-F3-

The FORCE-F3- configuration forces the signal on the F3 pin to pass inverted to the
COUT pin.

COUT0=~F3

COUT=COUT0=~F3

FORCE-G4

The FORCE-G4 configuration forces the signal on the G4 pin to pass through to the
COUT pin (XC4000X and SpartanXL only).

COUT0=0

COUT=G4

EXAMINE-CI

The EXAMINE-CI configuration allows the carry signal on the CIN pin to be used in
the F or G function generators. This configuration forces the signal on the CIN pin to
pass through to the COUT pin and is equivalent to the FORCE-CI configuration.
EXAMINE-CI is provided for CLBs in which the carry logic is unused but the CIN
signal is required.

COUT0=CIN

COUT=COUT0=CIN
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Carry Logic in XC5200
The XC5200 CLB contains a dedicated carry logic feature. This enhances the perfor-
mance of arithmetic functions such as adders, subtracters, counters, comparators, and
so forth. A carry multiplexer (CY_MUX) represents the dedicated 2:1 multiplexer in
each logic cell. The multiplexer performs a 1-bit high speed carry propagate per logic
cell (four bits per CLB).

In addition to providing a high speed carry propagate function, each CY_MUX can be
connected to the CY_MUX in the adjacent logic cell to provide cascadable decode
logic. The  “XC5200 Carry Logic” figure illustrates how the four-input function gener-
ators can be configured to take advantage of the four cascaded CY_MUXes.

Note: AND and OR cascading are specific cases of a generic decode.

Figure 12-20 XC5200 Carry Logic

XC5200 Carry Logic Library Support
The design entry library contains one carry logic primitive and one carry logic macro.
The carry multiplexer primitive (CY_MUX) represents the dedicated 2:1 multiplexer
that performs the high speed carry propagate function. The carry initialize (CY_INIT)
macro is used to initialize the carry chain for all arithmetic functions. The CY_INIT is
implemented by forcing a zero onto the select line of the CY_MUX such that the DI
pin of the CY_MUX is selected to drive the CO pin. See the  “Carry Initialize Function
XC5200” figure.
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Figure 12-21 Carry Initialize Function XC5200

Note: The XC5200 library contains a set of RPMs designed to take advantage of the
logic. Using the macros as they are or modifying them makes it much easier to take
advantage of this feature.

Cascade Function
Each CY_MUX can be connected to the CY_MUX in the adjacent logic cell to provide
cascadable decode logic. The  “CY_MUX Used for Decoder Cascade Logic XC5200”
figure illustrates how the 4-input function generators can be configured to take
advantage of these four cascaded CY_MUXes.

Note: AND and OR cascading are specific cases of a general decode. In AND
cascading, all bits are decoded equal to logic one. In OR cascading, all bits are
decoded equal to logic zero. The flexibility of the LUT achieves this result.
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Figure 12-22 CY_MUX Used for Decoder Cascade Logic XC5200
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Carry Logic in Virtex
The Virtex CLB contains a dedicated carry logic feature. This enhances the perfor-
mance of arithmetic functions such as adders, subtracters, counters, comparators, and
so forth. For detailed information on Carry Logic in Virtex, refer to the Xilinx web site,
http://www.xilinx.com.
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Index

A
ADD-F-CI, 12-141, 12-143
ADD-FG-CI, 12-141, 12-142, 12-143
ADD-G-CI, 12-141, 12-144
ADD-G-F1, 12-141, 12-144
ADD-G-F3-, 12-141, 12-144
ADDSUB-F-C1, 12-147
ADDSUB-F-CI, 12-141
ADDSUB-FG-CI, 12-141, 12-147
ADDSUB-G-CI, 12-141, 12-147
ADDSUB-G-F1, 12-141, 12-148
ADDSUB-G-F3, 12-148
ADDSUB-G-F3-, 12-141
ALLCLOCKNETS keyword in PCF

used with FREQUENCY, 12-126, 12-136
used with MAXDELAY, 12-128
used with MAXSKEW, 12-129
used with PERIOD, 12-131, 12-136

ALLPATHS keyword in PCF
used with MAXDELAY, 12-128

attributes, 12-1

B
BASE attribute, 12-8, 12-17, 12-19, 12-21, 12-26
BEL, 12-130, 12-132, 12-134, 12-135
BLKNM constraint, 12-7, 12-8, 12-17, 12-23
block, 12-7
block name, 12-7, 12-23, 12-34, 12-80

in PCF, 12-130
Block RAMs, 12-37, 12-42
Boolean operators

XC3000, 12-31
BUFFCLK, 12-89
BUFG component, 12-34, 12-89
BUFG constraint, 12-8, 12-17, 12-19, 12-24
BUFGDLL, 12-30
BUFGE, 12-89
BUFGLS, 12-89
BUFGP, 12-34, 12-89
BUFGS, 12-34, 12-89

BUFT, 12-23, 12-33, 12-35, 12-42, 12-61, 12-76, 12-79
constraint examples, 12-45, 12-81
creating wired-AND instance, 12-27
identification of BUFT locations

Virtex, 12-82
XC3000, 12-81
XC4000, 12-82
XC5200, 12-82

with RLOC constraint, 12-62, 12-97
with RLOC_ORIGIN constraint, 12-62, 12-111

BUGDGLL, 12-65
bus pad symbols, 12-43

C
carry logic, 12-2, 12-138, 12-139

carry mode, 12-140, 12-142
handling in NDGDBUILD and the mapper, 12-142
in XC5200 CLB, 12-43
LOC and RLOC constraints, 12-141
primitives, 12-23, 12-34, 12-79, 12-130, 12-140
symbols in relationally placed macros, 12-138

carry mode
configuration mnemonics, 12-142
names and symbols, 12-141
primitive symbols, 12-140

case sensitivity
in Mentor, 12-3
in UCF and NCF, 12-4, 12-81

CIN pin, 12-142
see also individual carry mode configuration
mnemonics

CLBMAP
attaching mapping constraints to, 12-48
mapping constraint examples, 12-91

CLBs
base configuration modes, 12-21
block definition, 12-7
dedicated carry logic, 12-139, 12-142
flip-flop constraint examples, 12-88
mapping gates into function generators, 12-81
mapping with BLKNM attribute, 12-23, 12-80
placement constraint examples, 12-4, 12-84
ROM and RAM constraints, 12-94, 12-95



Libraries Guide, Release M1.5

4-162 Xilinx Development System

setting logic equations for function generators, 12-
31
Virtex slice extensions, 12-43
with EQUATE_F and EQUATE_G constraint, 12-31
with RLOC constraint, 12-98
XC3000 configuration options, 12-26
XC5200 physical site locations, 12-43
XC5200 slice extensions, 12-61

CLK, 12-24, 12-26
CLKDLL, 12-24, 12-30, 12-65
CLKDLLHF, 12-24, 12-30, 12-65
CLKDV_DIVIDE constraint, 12-8, 12-17, 12-25
COLLAPSE constraint, 12-8, 12-17, 12-19, 12-25
colon

in location attributes, 12-3, 12-46
in TSidentifier syntax, 12-15, 12-73, 12-76
with wildcards on RLOCs, 12-111

COMPGRP physical constraint, 12-17, 12-126, 12-127
COMPONENT keyword, 12-126
CONFIG constraint (XC3000), 12-8, 12-17, 12-19, 12-26
CONFIG primitive

attaching PART to, 12-56
attaching PROHIBIT to, 12-58
examples

prohibiting CLBs, 12-85
prohibiting flip-flops, 12-89
prohibiting IOBs, 12-91
prohibiting memory placement, 12-95

configuration files see Netlist Constraints File (NCF),
12-User Constraints File (UCF), 12-or Physical
Constraints File (PCF) file
constraints

applicable files, 12-17
applied to macros and nets, 12-19
file name used by NGDBUILD, 12-7
logical, 12-2, 12-4

syntax list, 12-8
UCF/NCF file syntax, 12-5

physical, 12-2
PCF syntax, 12-125

used by Mentor Graphics, 12-3
user generated, 12-4

COUT pin, 12-142, 12-143
see also individual carry mode configuration
mnemonics

COUT0 pin, 12-142, 12-143
CY_MUX symbol, 12-35, 12-42, 12-43, 12-61, 12-76, 12-
97, 12-157
CY4 symbols, 12-35, 12-42, 12-61, 12-76, 12-97, 12-141,
12-142

D
DEC-F-CI, 12-141, 12-151
DEC-FG-0, 12-141, 12-151

DEC-FG-CI, 12-141, 12-152
DEC-G-0, 12-141, 12-152
DEC-G-CI, 12-141, 12-152
DEC-G-F1, 12-141, 12-153
DEC-G-F3-, 12-141, 12-153
DECODE constraint, 12-8, 12-17, 12-19, 12-27, 12-61, 12-
97

on WAND gate, 12-86
decode logic, 12-86
DECODE macro, 12-86
decoders

cannot use with RLOC constraint, 12-97
dedicated carry logic, 12-139, 12-157, 12-160
delay locked loop (DLL),constraint examples, 12-86
design hierarchy, 12-34, 12-35, 12-76, 12-99, 12-100, 12-
103, 12-104, 12-105, 12-107, 12-110, 12-113
DFF, 12-97
DIVIDE1_BY constraint, 12-9, 12-17, 12-19, 12-28
DIVIDE2_BY constraint, 12-9, 12-17, 12-19, 12-28
DOUBLE constraint, 12-9, 12-17, 12-19, 12-28
double quotes, 12-4, 12-5, 12-125
DRIVE constraint, 12-9, 12-17, 12-19, 12-29
DROP_SPEC constraint, 12-9, 12-17, 12-19, 12-30
DUTY_CYCLE_CORRECTION constraint, 12-9, 12-17,
12-30

E
edge decoders, 12-42, 12-44, 12-58

constraint examples, 12-86
creating wired-AND instance, 12-27
edge designations, 12-87

edge indicators, 12-44
EDIF netlist see netlist
EDIF2NGD, 12-3
EQUATE_F attribute, 12-9, 12-17, 12-19, 12-31
EQUATE_G attribute, 12-9, 12-17, 12-19, 12-31
EXAMINE-CI, 12-141, 12-142, 12-156

F
F mode, 12-21, 12-26
F5MAP, 12-22, 12-33, 12-35, 12-42, 12-48, 12-61, 12-76,
12-79, 12-97

placement constraints, 12-81
FAST constraint, 12-5, 12-9, 12-17, 12-19, 12-32, 12-125
FFS group name, 12-68, 12-70, 12-71
FG mode, 12-21, 12-26
FGM mode, 12-21, 12-26
FILE attribute, 12-10, 12-17, 12-19, 12-33
flip-flop, 12-22, 12-56, 12-69, 12-70, 12-79, 12-91, 12-130

and PERIOD constraint, 12-122
and TNM attribute, 12-117
and XC5200, 12-39, 12-43, 12-55, 12-126, 12-130
CLB, 12-21, 12-34, 12-45, 12-62
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CLB examples, 12-84, 12-88
FFS group name, 12-68, 12-70, 12-71
FFX extension and NGDBUILD, 12-105
IOB, 12-51
macros with RLOCs, 12-110
mapper processing with RLOC constraints, 12-97
RLOC constraint examples, 12-98
timing groups in PCF, 12-134
triggering by rising/falling clock edges, 12-119
with LOC constraint, 12-84, 12-88
with RLOC constraint, 12-98, 12-102, 12-105
with RLOC sets, 12-99
X, 12-85
XC4000 location extensions, 12-44, 12-59
Xilinx-supplied macros, 12-110
Y, 12-85

FMAP, 12-22, 12-33, 12-35, 12-42, 12-48, 12-61, 12-76, 12-
79

grouping function generators into one CLB, 12-23,
12-80
mapping constraint examples, 12-91, 12-92
placement constraints, 12-81
relationally placed macros, 12-138
schematic example, 12-94
using with RLOC constraints, 12-97

FORCE-0, 12-141, 12-156
FORCE-1, 12-141, 12-156
FORCE-CI, 12-141, 12-156
FORCE-F1, 12-141, 12-156
FORCE-F3-, 12-141, 12-156
FORCE-G4, 12-141
FREQUENCY physical constraint, 12-17, 12-126, 12-136
function generators, 12-142

base configuration modes, 12-21
carry logic, 12-139
carry mode configuration syntax, 12-142
grouping with BLKNM attribute, 12-23
grouping with HBLKNM attribute, 12-34
grouping with XBLKNM attribute, 12-80
logic equations for F and G, 12-31, 12-143
mapping constraints, 12-92
mapping into F, 12-92
mapping into H, 12-92
placement constraints, 12-81
see also individual carry mode configuration
mnemonics
specifying with LOC constraint, 12-84

G
global buffer placement, 12-44, 12-45, 12-58, 12-89

corner designations, 12-89

global constraints
in constraints file, 12-125
OFFSET, 12-52
PART, 12-56
TEMPERATURE, 12-66
time group attributes, 12-67
TSidentifier, 12-73
VOLTAGE, 12-78

H
H_SET constraint, 12-100, 12-114

and mapper processing, 12-106
compared to HU_SET, 12-35
implicit, 12-101
sets, 12-104

generated name, 12-102
modification of, 12-105
separating elements, 12-107

summary, 12-103
with RLOC_ORIGIN, 12-114

half edge indicators, 12-44, 12-45, 12-58, 12-59
HBLKNM constraint, 12-7, 12-10, 12-17, 12-34
hierarchical design see design hierarchy
HMAP, 12-22, 12-33, 12-35, 12-42, 12-48, 12-61, 12-76,
12-79

mapping constraints, 12-91, 12-92
placement constraints, 12-81
relationally placed macros, 12-138
RLOC constraints, 12-97
schematic example, 12-94
with BLKNM attribute, 12-23, 12-80
with MAP attribute, 12-48

horizontal longline, 12-28
HU_SET constraint, 12-10, 12-17, 12-35

and removal from H_SET, 12-100
purpose, 12-100, 12-107
RLOC set hierarchy, 12-101, 12-107, 12-108, 12-109,
12-112
summary, 12-103
with RLOC_ORIGIN constraint, 12-114

I
I/O

buffers, 12-54, 12-90
constraint examples, 12-90
edge indicators, 12-44
element, 12-22, 12-33, 12-79
half edge indicators, 12-45, 12-59
pads, 12-68, 12-70, 12-71, 12-90
pins, 12-43
placement, 12-45
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primitives
and NODELAY attribute, 12-51
with LOC constraint, 12-42
with RLOC constraint, 12-97

registers, 12-90
IBUF, 12-24, 12-69, 12-70
INCDEC-F-CI, 12-142, 12-153
INCDEC-FG-1, 12-142, 12-154
INCDEC-FG-CI, 12-142, 12-154
INCDEC-G-0, 12-142, 12-154
INCDEC-G-CI, 12-142, 12-155
INCDEC-G-F1, 12-142, 12-155
INC-F-CI, 12-141, 12-149
INC-FG-1, 12-141, 12-149
INC-FG-CI, 12-141, 12-149
INC-G-1, 12-141, 12-150
INC-G-CI, 12-141, 12-150
INC-G-F1, 12-141, 12-150
INC-G-F3-, 12-141, 12-151
INIT constraint, 12-6, 12-10, 12-17, 12-19, 12-36
INIT_0x constraint, 12-10, 12-17, 12-37

addresses, 12-37
usage rules, 12-38

INREG constraint, 12-10, 12-17, 12-19, 12-40
in PCF, 12-126

instance, 12-7
instance name, 12-7
IOB constraint, 12-10, 12-17, 12-40
IOBs, 12-22, 12-26, 12-29, 12-32, 12-33, 12-40, 12-42, 12-
50, 12-55, 12-79, 12-91, 12-126, 12-130, 12-134

base configuration, 12-21
block definition, 12-7
constraint examples, 12-90
I/O constraints, 12-90
increasing output speed with FAST attribute, 12-32
location designations, 12-44, 12-48, 12-58
removing default delay, 12-51
with global buffers, 12-89
XC3000 configuration options, 12-26

IOPAD, 12-43
IPAD, 12-43

K
KEEP constraint, 12-10, 12-17, 12-19, 12-41

L
latches, 12-39, 12-55, 12-126, 12-130, 12-134

delay, 12-51
time group, 12-69, 12-70

LATCHES keyword, 12-68, 12-70, 12-71, 12-118, 12-134
LCA block names, 12-34, 12-79

LOC constraint, 12-11, 12-17, 12-19
compared to RLOC constraints, 12-97
CPLD syntax, 12-47
dot extensions on ranges, 12-44
examples

BUFT placement, 12-81, 12-82
CLB placement, 12-84, 12-85
CLBMAP placement, 12-92
decode logic placement, 12-86
flip-flop placement, 12-88
FMAP and HMAP placement, 12-92
global buffer placement, 12-89
I/O placement, 12-90
IOB placement, 12-90
memory placement, 12-94, 12-95

FPGA syntax for
multiple locations, 12-46
range of locations, 12-46
single location, 12-45

in PCF see LOCATE, 12-127
on carry logic symbol, 12-141
on CPLDs, 12-43
on FPGAs, 12-42
propagation down design hierarchy, 12-110
schematic syntax, 12-4
SOFT locations, 12-3, 12-46

LOCATE physical constraint, 12-17, 12-127
LOCK physical constraint, 12-17, 12-127
LogiBlox, 12-95
logic cell (LC), 12-23, 12-34, 12-80, 12-157
longline, 12-28, 12-83, 12-132
LSB, 12-144, 12-145, 12-146, 12-148, 12-150, 12-151, 12-
152, 12-153, 12-154, 12-155
LUTs, 12-36, 12-61, 12-97

M
macro

attaching constraints to, 12-19
attaching RLOCs to, 12-110

MAP constraint, 12-11, 12-17, 12-19, 12-48
examples, 12-91, 12-92

mapper, 12-5, 12-28, 12-32
addition function, 12-105, 12-106
carry mode trimming, 12-142
hierarchy processing, 12-108, 12-113
IOB constraints, 12-90
processing of CLBMAP symbol, 12-91

MAXDELAY constraint, 12-11, 12-17, 12-19, 12-49, 12-
124

in PCF, 12-128
used with TSidentifier, 12-15, 12-73, 12-120

MAXSKEW constraint, 12-11, 12-17, 12-19, 12-49, 12-124
in PCF, 12-128

MEDDELAY constraint, 12-11, 12-17, 12-19, 12-50
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Mentor, 12-3
MSB, 12-143, 12-145, 12-147

N
NCD file

set constraints removed, 12-112
NCF see Netlist Constraints File, 12-2
net

attaching constraints to, 12-25
constraints on, 12-19, 12-32
controlling delays, 12-124
controlling skew, 12-124
prioritizing in PCF, 12-132
S(ave) attribute, 12-64

net flag attribute, 12-13, 12-20, 12-64
netlist, 12-81, 12-86, 12-88, 12-89, 12-90, 12-94, 12-95

 see also Netlist Constraint File (NCF)
constraints overridden by UCF, 12-112
conversion of Mentor and Xilinx property names,
12-3
instance name, 12-7
relationship of physical constraints to, 12-125

Netlist Constraints File, 12-2, 12-4, 12-17
applicable constraints, 12-17
case sensitivity, 12-4, 12-81
rules, 12-5

NGDBUILD, 12-32, 12-34, 12-50, 12-51
constraints file used, 12-7
hierarchy for HU_SET names, 12-35

NODELAY constraint, 12-11, 12-18, 12-19, 12-51
NOMERGE property, 12-41
NOREDUCE constraint, 12-11, 12-18, 12-19, 12-52

O
OE, 12-24
OFFSET constraint, 12-12, 12-18, 12-52

in PCF, 12-129
OPAD, 12-43
OPT_EFFORT constraint, 12-12, 12-18, 12-20, 12-54
OPTIMIZE constraint, 12-12, 12-18, 12-19, 12-54
OUTREG constraint, 12-12, 12-18, 12-20, 12-55

in PCF, 12-130

P
PAD symbols, 12-43, 12-69, 12-70, 12-90
PAR, 12-3, 12-28, 12-55

CLB constraints, 12-85
enabling for XC5200 fast routing, 12-40
FMAP mapping, 12-94
HMAP mapping, 12-94
placement constraints

schematic syntax, 12-3
PART constraint, 12-12, 12-18, 12-20, 12-56

PATH physical constraint, 12-18, 12-130
used with MAXDELAY, 12-128
with TIG, 12-135

PCF file see Physical Constraints File
PENALIZE TILDE physical constraint, 12-18, 12-131
PERIOD constraint, 12-12, 12-18, 12-20, 12-57, 12-122,
12-123

in PCF, 12-131, 12-135
used with TSidentifier, 12-15, 12-74, 12-75

physical constraints, 12-2, 12-125
Physical Constraints File, 12-2, 12-17, 12-125
physical design, 12-2

applicable attributes, 12-17
physical location types, 12-44, 12-58
pin grid arrays, 12-91
PIN physical constraint, 12-18, 12-132

used with PATH, 12-130
used with TIG, 12-135
with TIMEGRP, 12-134

PLC, 12-48
PRIORITIZE physical constraint, 12-18, 12-132
PROHIBIT constraint, 12-13, 12-18, 12-20, 12-46, 12-58

examples, 12-85, 12-89, 12-91, 12-95
in PCF, 12-132

properties, 12-3
prorating delay characteristics, 12-66, 12-78
PUC, 12-11, 12-48, 12-92
pull-up resistors, 12-28
PULLUP symbols, 12-28, 12-33
PUO, 12-11, 12-48, 12-92
PWR_MODE constraint, 12-13, 12-18, 12-20, 12-60

R
R(eset) a register, 12-36
RAM, 12-23, 12-34, 12-35, 12-36, 12-42, 12-61, 12-76, 12-
79, 12-117

constraint examples, 12-44, 12-94
initialization, 12-36
location extensions not supported, 12-59
timing groups, 12-69, 12-70
with RLOCs, 12-97

RAMB4s, 12-42, 12-43
constraint examples, 12-95
slice extension, 12-43

RAMD, 12-23, 12-34, 12-35, 12-42, 12-61, 12-76, 12-79,
12-97
RAMS, 12-23, 12-34, 12-35, 12-42, 12-61, 12-76, 12-79, 12-
97, 12-134

constraint examples, 12-44
location extensions not supported, 12-59

registers
attributes on XC5200 logic cell, 12-23, 12-80
constraints on, 12-33, 12-35, 12-36, 12-42, 12-61, 12-
76, 12-97
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initialization, 12-36
input registers

constraints on, 12-50, 12-51
relationally placed macros, 12-138
reserved words, 12-5, 12-68, 12-70, 12-71, 12-118, 12-125
RLOC constraint, 12-4, 12-13, 12-18, 12-20, 12-61

affects of mapper on, 12-105, 12-106, 12-113
carry logic, 12-141
general syntax guidelines, 12-97
grouping logic elements, 12-97
hierarchy sets (H_SET), 12-100
in relationally placed macros, 12-138
LOC propagation, 12-110
on carry logic symbols, 12-141
set linkage, 12-103
set modification, 12-105
set modifiers, 12-109
set types summary, 12-102
sets, 12-99, 12-102
symbols that accept RLOC, 12-97
turn off/on for specific elements, 12-77, 12-112
user defined groups (U_SET), 12-99
with HU_SET, 12-101, 12-107
with Xilinx macros, 12-110
XC5200 slice placement, 12-61

RLOC_ORIGIN constraint, 12-18, 12-20
affects of mapper on, 12-112
modifying H_SET, 12-100, 12-103, 12-104, 12-114
modifying HU_SET, 12-103, 12-114
modifying U_SET, 12-102
priority in netlist vs UCF file, 12-112
purpose, 12-62, 12-111
syntax, 12-4, 12-5, 12-13, 12-63, 12-114
use to change RLOC to LOC, 12-111
with sets that include BUFT symbols, 12-111

RLOC_RANGE constraint, 12-13, 12-20
affects of mapper on, 12-111
applicability, 12-18
modifying H_SET, 12-100, 12-103, 12-104
modifying HU_SET, 12-103
modifying U_SET, 12-102
priority in netlist vs UCF file, 12-112
purpose, 12-63, 12-111
syntax, 12-4, 12-5, 12-63, 12-111

ROM, 12-23, 12-34, 12-35, 12-36, 12-42, 12-61, 12-76, 12-
79

constraint examples, 12-44, 12-94
initialization, 12-36
location extensions not supported, 12-59
with RLOCs, 12-97

RPMs, 12-138
RPMs see relationally placed macros

S
S(ave) attribute, 12-13, 12-18, 12-20, 12-64
S(et) a register, 12-36
schematic

FMAP and HMAP example, 12-94
instance, 12-7
placing attributes on symbols, 12-3

semicolon
in UCF and NCF, 12-4

separator characters, 12-4, 12-15, 12-73, 12-76
with wildcards, 12-111

SITEGRP physical constraint, 12-18, 12-127, 12-133
slice extension

Virtex, 12-43
XC5200 CLBs, 12-61

SLOW constraint, 12-13, 12-18, 12-20, 12-64
SOFT location, 12-3, 12-46
soft macros, 12-43, 12-84, 12-138

LOC applied to, 12-90
special function access symbols, 12-51
SR, 12-24
SRLs, 12-36, 12-97
STARTUP_WAIT constraint, 12-13, 12-18, 12-65
SUB-F-CI, 12-141, 12-145
SUB-FG-CI, 12-141, 12-145
SUB-G-1, 12-141, 12-145
SUB-G-CI, 12-142, 12-146
SUB-G-F1, 12-142, 12-146
SUB-G-F3-, 12-142, 12-146
symbols

attributes on schematics, 12-3
TIMEGRP, 12-117
TIMESPEC, 12-119

synchronous reset, 12-143
syntax

constraint summary list, 12-8
conventions, 12-8
PCF file, 12-125
schematic, 12-3
UCF/NCF files, 12-4
wildcards, 12-6

T
TBUF

block definition, 12-7
Virtex slice extension, 12-43

TCK, 12-51
TDI, 12-51
TEMPERATURE constraint, 12-14, 12-18, 12-66

in PCF file, 12-133
TIG constraint, 12-14, 12-15, 12-18, 12-20, 12-67, 12-75,
12-121

in PCF, 12-135



Index

Libraries Guide, Release M1.5 4-167

time group attributes, 12-14, 12-18, 12-20, 12-67, 12-69
TIMEGRP keyword, 12-67
TIMEGRP physical constraint, 12-134

with FREQUENCY, 12-136
with FREQUENCY in PCF, 12-126
with MAXDELAY, 12-128
with MAXSKEW, 12-129
with PATH, 12-130
with PERIOD, 12-131

TIMEGRP primitive, 12-118
constraints on, 12-67, 12-68, 12-117, 12-118, 12-119

TIMESPEC primitive
constraints on, 12-73
use to define timing requirements, 12-117, 12-119

timing, 12-30
timing names, 12-69
timing specification, 12-67, 12-69, 12-70, 12-71, 12-72, 12-
73

applying to a design, 12-117
TMS, 12-51
TNM constraint, 12-14, 12-18, 12-20, 12-57, 12-67, 12-72,
12-73, 12-74, 12-75, 12-117, 12-118, 12-119, 12-122, 12-123
TNM_NET constraint, 12-14, 12-70
TPSYNC constraint, 12-14, 12-18, 12-20, 12-71
TPTHRU constraint, 12-14, 12-18, 12-72, 12-74, 12-75,
12-120
TS see TSidentifier constraint
TSidentifier constraint, 12-18, 12-20

adding timing specifications to UCF, 12-119
defining priority for timing specifications, 12-121
ignoring, 12-121
in PCF, 12-135

with ALLCLOCKNETS, 12-126, 12-131, 12-136
with FREQUENCY, 12-126, 12-136
with MAXDELAY, 12-128
with PERIOD, 12-131, 12-135
with TIG, 12-135

purpose, 12-73
syntax, 12-15, 12-73
used with MAXDELAY, 12-73
used with PERIOD, 12-74, 12-75, 12-122, 12-123
with DROP_SPEC, 12-9, 12-30
with PERIOD, 12-12, 12-57
with TIG, 12-14, 12-67

TSidentifier name
considerations for Mentor Graphics, 12-3

U
U_SET constraint, 12-15, 12-18, 12-20, 12-114

applying USE_RLOC to, 12-113
purpose, 12-76, 12-99
summary, 12-102
with RLOC_ORIGIN, 12-114
with USE_RLOC constraint, 12-113

UCF see User Constraints File, 12-2
USE_RLOC constraint, 12-15, 12-18, 12-20

purpose, 12-77, 12-112
to turn RLOCs on/off, 12-112
using with U_SET, 12-113

User Constraints File, 12-2, 12-4, 12-17
applicable constraints, 12-17
case sensitivity, 12-4, 12-81
CLB constraints, 12-84
constraints on CLBMAP, 12-91
DLL constraints, 12-86
edge decoder constraints, 12-86
flip-flop constraints, 12-88
FMAP constraints, 12-92
global buffer constraints, 12-89, 12-90
HMAP constraints, 12-92
I/O constraints, 12-90
IOB constraints, 12-90
prohibit constraints, 12-90
RAM constraints, 12-94
RAMB4s, 12-96
ROM constraints, 12-94
rules, 12-5
timing constraints, 12-117

V
VHDL, 12-1
VOLTAGE constraint, 12-15, 12-18, 12-78

in PCF file, 12-136

W
WAND, 12-27, 12-42, 12-61, 12-86, 12-87, 12-97
wide-edge decoders, 12-27
wildcards, 12-63, 12-83, 12-85, 12-86, 12-95, 12-111, 12-
141

for CLB rows/columns, 12-88
WIREAND constraint, 12-15, 12-18, 12-20, 12-79

X
XBLKNM constraint, 12-16, 12-18, 12-79
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