
R

PAVE
Framework
User’s Guide
V1.0

September 27, 2001

PAVE Framework User’s Guide www.xilinx.com V1.0
1-800-255-7778

The Xilinx logo shown above is a registered trademark of Xilinx, Inc.

ASYL, FPGA Architect, FPGA Foundry, NeoCAD, NeoCAD EPIC, NeoCAD PRISM, NeoROUTE, Timing Wizard, TRACE, XACT, XILINX,
XC2064, XC3090, XC4005, XC5210, and XC-DS501 are registered trademarks of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

All XC-prefix product designations, A.K.A Speed, Alliance Series, AllianceCORE, BITA, CLC, Configurable Logic Cell, CoolRunner, CORE Gen-
erator, CoreLINX, Dual Block, EZTag, FastCLK, FastCONNECT, FastFLASH, FastMap, Fast Zero Power, Foundation, HardWire, IRL, LCA, Logi-

BLOX, Logic Cell, LogiCORE, LogicProfessor, MicroVia, MultiLINX, PLUSASM, PowerGuide, PowerMaze, QPro, RealPCI, RealPCI 64/66,
SelectI/O, SelectRAM, SelectRAM+, Silicon Xpresso, Smartguide, Smart-IP, SmartSearch, Smartspec, SMARTSwitch, Spartan, TrueMap, UIM,

VectorMaze, VersaBlock, VersaRing, Virtex, WebFitter, WebLINX, WebPACK, XABEL, XACTstep, XACTstep Advanced, XACTstep Foundry,
XACT-Floorplanner, XACT-Performance, XAM, XAPP, X-BLOX, X-BLOX plus, XChecker, XDM, XDS, XEPLD, Xilinx Foundation Series, XPP, XSI,
and ZERO+ are trademarks of Xilinx, Inc. The Programmable Logic Company and The Programmable Gate Array Company are service marks

of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown herein; nor does it convey any
license under its patents, copyrights, or maskwork rights or any rights of others. Xilinx, Inc. reserves the right to make changes, at any time, in
order to improve reliability, function or design and to supply the best product possible. Xilinx, Inc. will not assume responsibility for the use of any
circuitry described herein other than circuitry entirely embodied in its products. Xilinx, Inc. devices and products are protected under one or more
of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216; 4,713,557; 4,746,822; 4,750,155; 4,758,985; 4,820,937; 4,821,233; 4,835,418;

4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135; 5,023,606; 5,028,821; 5,047,710; 5,068,603; 5,140,193; 5,148,390;
5,155,432; 5,166,858; 5,224,056; 5,243,238; 5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704;
5,329,174; 5,329,181; 5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248; 5,349,249; 5,349,250; 5,349,691; 5,357,153;
5,360,747; 5,361,229; 5,362,999; 5,365,125; 5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925; 5,410,189; 5,410,194; 5,414,377;
5,422,833; 5,426,378; 5,426,379; 5,430,687; 5,432,719; 5,448,181; 5,448,493; 5,450,021; 5,450,022; 5,453,706; 5,455,525; 5,466,117;
5,469,003; 5,475,253; 5,477,414; 5,481,206; 5,483,478; 5,486,707; 5,486,776; 5,488,316; 5,489,858; 5,489,866; 5,491,353; 5,495,196;
5,498,979; 5,498,989; 5,499,192; 5,500,608; 5,500,609; 5,502,000; 5,502,440; 5,504,439; 5,506,518; 5,506,523; 5,506,878; 5,513,124;
5,517,135; 5,521,835; 5,521,837; 5,523,963; 5,523,971; 5,524,097; 5,526,322; 5,528,169; 5,528,176; 5,530,378; 5,530,384; 5,546,018;
5,550,839; 5,550,843; 5,552,722; 5,553,001; 5,559,751; 5,561,367; 5,561,629; 5,561,631; 5,563,527; 5,563,528; 5,563,529; 5,563,827;
5,565,792; 5,566,123; 5,570,051; 5,574,634; 5,574,655; 5,578,946; 5,581,198; 5,581,199; 5,581,738; 5,583,450; 5,583,452; 5,592,105;
5,594,367; 5,598,424; 5,600,263; 5,600,264; 5,600,271; 5,600,597; 5,608,342; 5,610,536; 5,610,790; 5,610,829; 5,612,633; 5,617,021;
5,617,041; 5,617,327; 5,617,573; 5,623,387; 5,627,480; 5,629,637; 5,629,886; 5,631,577; 5,631,583; 5,635,851; 5,636,368; 5,640,106;
5,642,058; 5,646,545; 5,646,547; 5,646,564; 5,646,903; 5,648,732; 5,648,913; 5,650,672; 5,650,946; 5,652,904; 5,654,631; 5,656,950;
5,657,290; 5,659,484; 5,661,660; 5,661,685; 5,670,896; 5,670,897; 5,672,966; 5,673,198; 5,675,262; 5,675,270; 5,675,589; 5,677,638;
5,682,107; 5,689,133; 5,689,516; 5,691,907; 5,691,912; 5,694,047; 5,694,056; 5,724,276; 5,694,399; 5,696,454; 5,701,091; 5,701,441;
5,703,759; 5,705,932; 5,705,938; 5,708,597; 5,712,579; 5,715,197; 5,717,340; 5,719,506; 5,719,507; 5,724,276; 5,726,484; 5,726,584;
5,734,866; 5,734,868; 5,737,234; 5,737,235; 5,737,631; 5,742,178; 5,742,531; 5,744,974; 5,744,979; 5,744,995; 5,748,942; 5,748,979;
5,752,006; 5,752,035; 5,754,459; 5,758,192; 5,760,603; 5,760,604; 5,760,607; 5,761,483; 5,764,076; 5,764,534; 5,764,564; 5,768,179;
5,770,951; 5,773,993; 5,778,439; 5,781,756; 5,784,313; 5,784,577; 5,786,240; 5,787,007; 5,789,938; 5,790,479; 5,790,882; 5,795,068;
5,796,269; 5,798,656; 5,801,546; 5,801,547; 5,801,548; 5,811,985; 5,815,004; 5,815,016; 5,815,404; 5,815,405; 5,818,255; 5,818,730;
5,821,772; 5,821,774; 5,825,202; 5,825,662; 5,825,787; 5,828,230; 5,828,231; 5,828,236; 5,828,608; 5,831,448; 5,831,460; 5,831,845;
5,831,907; 5,835,402; 5,838,167; 5,838,901; 5,838,954; 5,841,296; 5,841,867; 5,844,422; 5,844,424; 5,844,829; 5,844,844; 5,847,577;
5,847,579; 5,847,580; 5,847,993; 5,852,323; 5,861,761; 5,862,082; 5,867,396; 5,870,309; 5,870,327; 5,870,586; 5,874,834; 5,875,111;
5,877,632; 5,877,979; 5,880,492; 5,880,598; 5,880,620; 5,883,525; 5,886,538; 5,889,411; 5,889,413; 5,889,701; 5,892,681; 5,892,961;
5,894,420; 5,896,047; 5,896,329; 5,898,319; 5,898,320; 5,898,602; 5,898,618; 5,898,893; 5,907,245; 5,907,248; 5,909,125; 5,909,453;
5,910,732; 5,912,937; 5,914,514; 5,914,616; 5,920,201; 5,920,202; 5,920,223; 5,923,185; 5,923,602; 5,923,614; 5,928,338; 5,931,962;
5,933,023; 5,933,025; 5,933,369; 5,936,415; 5,936,424; 5,939,930; 5,942,913; 5,944,813; 5,945,837; 5,946,478; 5,949,690; 5,949,712;
5,949,983; 5,949,987; 5,952,839; 5,952,846; 5,955,888; 5,956,748; 5,958,026; 5,959,821; 5,959,881; 5,959,885; 5,961,576; 5,962,881;
5,963,048; 5,963,050; 5,969,539; 5,969,543; 5,970,142; 5,970,372; 5,971,595; 5,973,506; 5,978,260; 5,986,958; 5,990,704; 5,991,523;

5,991,788; 5,991,880; 5,991,908; 5,995,419; 5,995,744; 5,995,988; 5,999,014; 5,999,025; 6,002,282; and 6,002,991; Re. 34,363, Re. 34,444,
and Re. 34,808. Other U.S. and foreign patents pending. Xilinx, Inc. does not represent that devices shown or products described herein are free
from patent infringement or from any other third party right. Xilinx, Inc. assumes no obligation to correct any errors contained herein or to advise
any user of this text of any correction if such be made. Xilinx, Inc. will not assume any liability for the accuracy or correctness of any engineering

or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in such applications without the
written consent of the appropriate Xilinx officer is prohibited.

Copyright 1991-2001 Xilinx, Inc. All Rights Reserved.

R

http://www.xilinx.com

V1.0 www.xilinx.com PAVE Framework User’s Guide
1-800-255-7778

XILINX PAVE INTERFACE SOFTWARE LICENSE

PLEASE READ THIS DOCUMENT CAREFULLY BEFORE USING THE SOFTWARE. UNLESS YOU HAVE A
SEPARATE WRITTEN LICENSE EXECUTED BY XILINX COVERING YOUR USE OF THE SOFTWARE, BY
USING THE SOFTWARE, YOU ARE AGREEING TO BE BOUND BY THE TERMS OF THIS LICENSE. IF YOU
DO NOT AGREE TO THE TERMS OF THIS LICENSE, YOU ARE NOT PERMITTED TO USE THE
SOFTWARE.

DISCLAIMER. SUBJECT TO APPLICABLE LAWS: (1) THE SOFTWARE IS PROVIDED FOR YOUR USE "AS
IS"; AND (2) XILINX AND ITS LICENSORS MAKE AND YOU RECEIVE NO WARRANTIES OR
CONDITIONS, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, AND XILINX SPECIFICALLY
DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT, OR FITNESS
FOR A PARTICULAR PURPOSE. XILINX DOES NOT WARRANT THAT THE FUNCTIONS CONTAINED IN
THE SOFTWARE WILL MEET YOUR REQUIREMENTS, OR THAT THE OPERATION OF THE SOFTWARE
WILL BE UNINTERRUPTED OR ERROR FREE, OR THAT DEFECTS IN THE SOFTWARE WILL BE
CORRECTED. FURTHERMORE, XILINX DOES NOT WARRANT OR MAKE ANY REPRESENTATIONS
REGARDING USE OR THE RESULTS OF THE USE OF THE SOFTWARE IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY OR OTHERWISE.

LIMITATION OF LIABILITY. SUBJECT TO APPLICABLE LAWS: (1) IN NO EVENT WILL XILINX OR ITS
LICENSORS BE LIABLE FOR ANY LOSS OF DATA, LOST PROFITS, COST OF PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES, OR FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL OR
INDIRECT DAMAGES ARISING FROM THE USE OR OPERATION OF THE SOFTWARE OR
ACCOMPANYING DOCUMENTATION, HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY; (2)
THIS LIMITATION WILL APPLY EVEN IF XILINX HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE; AND (3) THIS LIMITATION SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE
ESSENTIAL PURPOSE OF ANY LIMITED REMEDIES HEREIN.

1. License. XILINX, Inc. ("XILINX") hereby grants you a nonexclusive license to modify and use the PAVE (PLD
API for VxWorks Embedded systems) interface software (the "Software") solely for your use in developing
designs for XILINX programmable logic devices. XILINX and its licensors retain title to the Software and to any
patents, copyrights, trade secrets and other intellectual property rights therein.

2. Registration. Each licensed user must register with Xilinx, and the Software may be used solely by such
licensed user, provided that any licensed user may install a copy of the Software on multiple computers. You
may distribute the binary code compiled from such source code, subject to the terms of this License, but you
may not transfer, sublicense or distribute the source code for the Software.

3. Restrictions. The Software contains copyrighted material, trade secrets, and other proprietary information. You
may not publish any data or information that compares the performance of the Software with software created
or distributed by others.

4. Termination. This License is effective until terminated. This License will terminate immediately without notice
from XILINX if you fail to comply with any provision of this License. Upon termination you must discontinue
all use of the Software.

5. Governmental Use. The Software is commercial computer software developed exclusively at Xilinx's expense.
Accordingly, pursuant to the Federal Acquisition Regulations (FAR) Section 12.212 and Defense FAR
Supplement Section 227.2702, use, duplication and disclosure of the Software by or for the United States
Government is subject to the restrictions set forth in this License. Manufacturer is XILINX, INC., 2100 Logic
Drive, San Jose, California 95124.

6. Export Restriction. You agree that you will not export or reexport the Software, reference images or
accompanying documentation in any form without the appropriate government licenses. Your failure to
comply with this provision is a material breach of this License.

http://www.xilinx.com

PAVE Framework User’s Guide www.xilinx.com V1.0
1-800-255-7778

7. Third Party Beneficiary. You understand that portions of the Software and related documentation have been
licensed to XILINX from third parties and that such third parties are intended third party beneficiaries of the
provisions of this License.

8. Interoperability. If you acquired the Software in the European Union (EU), even if you believe you require
information related to the interoperability of the Software with other programs, you shall not decompile or
disassemble the Software to obtain such information, and you agree to request such information from Xilinx at
the address listed above. Upon receiving such a request, Xilinx shall determine whether you require such
information for a legitimate purpose and, if so, Xilinx will provide such information to you within a reasonable
time and on reasonable conditions.

9. Governing Law. This License shall be governed by the laws of the State of California, without reference to
conflict of laws principles, provided that if the Software is acquired in the EU, this License shall be governed by
the laws of the Republic of Ireland. The local language version of this License shall apply to Software acquired
in the EU. Irish law provides that certain conditions and warranties may be implied in contracts for the sale of
goods and in contracts for the supply of services. Such conditions and warranties are hereby excluded, to the
extent such exclusion, in the context of this transaction, is lawful under Irish law. Conversely, such conditions
and warranties, insofar as they may not be lawfully excluded, shall apply. Accordingly nothing in this License
shall prejudice any rights that you may enjoy by virtue of Sections 12, 13, 14 or 15 of the Irish Sale of Goods Act
1893 (as amended). Nothing in this Agreement will be interpreted or construed so as to limit or exclude the
rights or obligations of either party (if any) which it is unlawful to limit or exclude under the relevant national
laws and, where applicable, the laws of any Member State of the EU which implement relevant European
Communities Council Directives. Nothing in this Agreement will be interpreted or construed so as to limit or
exclude the rights or obligations of either party (if any) which it is unlawful to limit or exclude under the
relevant national laws and, where applicable, the laws of any Member State of the EU which implement
relevant European Communities Council Directives.

10. General. If for any reason a court of competent jurisdiction finds any provision of this License, or portion
thereof, to be unenforceable, that provision of the License shall be enforced to the maximum extent permissible
so as to effect the intent of the parties, and the remainder of this License shall continue in full force and effect.
This License constitutes the entire agreement between the parties with respect to the use of this Software and
related documentation, and supersedes all prior or contemporaneous understandings or agreements, written
or oral, regarding such subject matter.

Rev. 7/6/00

http://www.xilinx.com

V1.0 www.xilinx.com PAVE Framework User’s Guide
1-800-255-7778

PAVE Framework User’s Guide
PAVE Framework User’s Guide

The following table shows the revision history for this document.

Version Revision

09/17/01 1.0_001 Initial Xilinx release.

09/27/01 1.0_004 Minor updates and cleanup.

http://www.xilinx.com

PAVE Framework User’s Guide www.xilinx.com V1.0
1-800-255-7778

http://www.xilinx.com

V1.0 www.xilinx.com vii
Xilinx PAVE Framework User’s Guide 1-800-255-7778

Preface: About This Manual
Additional Resources .. 14
Typographical Conventions ... 17

Chapter 1: Introduction
PAVE Framework.. 19
Why PAVE?.. 20

Scalability.. 20
Reliability.. 21
Low Cost ... 21
Developer Productivity .. 22

Chapter 2: Getting Started
System Requirements.. 23

Hardware.. 23
Software .. 23

Installation ... 24
PAVE SIF Tutorial .. 25

Generating a Framework ... 25
Using the framework with Tornado... 26

PAVE VxSim Tutorial ... 30
Using the Standard Tornado-II VxSim with PAVE.. 30
Running the Durango VxSim Tutorial ... 31

Installing to an alternate drive .. 33

Chapter 3: Using the PAVE SIF
IRL Register model... 35
SIF Flow ... 37

Initial Steps ... 37
System Simulation... 37
System Upgrade .. 37

System Generator .. 38
generatesystem.bat.. 40
INP File format .. 40

Building a Custom Framework ... 41
Payload Generator .. 42

generatepayload.bat.. 42
Formats for SelectMAP and JTAG .. 44

Chapter 4: Using the PAVE API
How the PAVE API Operates .. 49

Contents

http://www.xilinx.com

viii www.xilinx.com V1.0
1-800-255-7778 Xilinx PAVE Framework User’s Guide

R

Object Oriented Nature of the PAVE API ... 51
API Structure ... 53
Functional Description ... 55
PAVE API Classes ... 56
Payloads... 58

Payload Header Structure.. 58
Payload Configuration Segment Structure.. 58

Chapter 5: Using PAVE for JTAG Configuration
How it operates .. 61
Design considerations... 62
Code example .. 62

Rewiring the XIRL Interface Register... 63

Chapter 6: Using PAVE for SelectMAP Configuration
How it operates .. 65
Design considerations... 66
Code example .. 66

Rewiring the XIRL Interface Register... 67

Chapter 7: Network Configuration
Network Domains... 69

Definitions .. 70
Host, Client and Server Domains.. 70
Client and Server Relationships .. 70

Configuration Across a TCP/IP Network ... 71
Pull Configuration... 71
Push Configuration ... 71

Appendix A: Architecting Systems for Upgradability with IRL
Summary ... 73
Introduction ... 73
IRL Concepts ... 73

What is IRL? ... 73
Elements of an IRL system... 74
Host, Upgrade Portal, and Network Concepts ... 76
Target Software Concepts .. 77
Target Hardware concepts... 77

IRL Examples .. 78
Basic IRL-enabled System .. 78
IRL in a Bridge System ... 80
Memory usage for storing bitstreams .. 81
Use of PAVE in IRL Systems ... 82
Available Development Platforms.. 82
Summary .. 82

Revision History .. 83

http://www.xilinx.com

V1.0 www.xilinx.com ix
Xilinx PAVE Framework User’s Guide 1-800-255-7778

R

Appendix B: Using Durango with the MCP750 and PAVE
Durango Board ... 85
Durango Block Diagram .. 86
Durango MCP750 PAVE Implementation ... 86
Durango Framework .. 87
Code Examples ... 88
Resources .. 89
XIRL Interface Register Tables ... 90

Signal Name Descriptions.. 91

Appendix C: Durango Reference Design
Hardware Features .. 93
Availability .. 96
Additional Information .. 96
Durango PCB Layout ... 96

Appendix D: Using ADM-XRC with the MCP750 and PAVE
ADM-XRC Board... 99
ADM-XRC MCP750 PAVE Implementation... 100

Setup.. 100
INP Files for ADM-XRC ... 101

Applications... 101
Push and Pull ... 103
FFT... 105
ADM-XRC Payloads ... 109

Resources .. 109

Appendix E: PAVE API Summary
API Reference Manual .. 111

Appendix F: Glossary

Index .. 177

http://www.xilinx.com

x www.xilinx.com V1.0
1-800-255-7778 Xilinx PAVE Framework User’s Guide

R

http://www.xilinx.com

V1.0 www.xilinx.com 13
PAVE Framework User’s Guide 1-800-255-7778

R

Preface

About This Manual

This manual describes the operation and use of the PAVE Framework and API . The
chapters cover the following topics:

• Introduction - Details of the PAVE Framework
• Getting Started - Installation of PAVE and how to generate a framework for your

hardware
• Using the PAVE API - Use of the PAVE API in your embedded system
• Using PAVE for JTAG Configuration - Reconfiguration of your hardware with JTAG
• Using PAVE for SelectMAP Configuration - Reconfiguration of your hardware with

SelectMAP
• Network Configuration - Details on using the PAVE client and server for upgrading

hardware and software
• Using PAVE with VxSim - Simulation of your software and hardware

In addition, this guide includes six appendices provide reference information:

• Appendix A - XAPP412 - Architecting Systems for Upgradability with IRL (Internet
Reconfigurable Logic)

• Appendix B - Using Durango with the MCP750 and PAVE
• Appendix C - Durango Reference Design
• Appendix D - Using ADM-XRC with the MCP750 and PAVE
• Appendix E - PAVE API Summary
• Appendix F - Glossary

Users should have the following skills prior to using PAVE:

• Understanding of C++ programming language
• Familiarity with use of the Wind River Systems (WRS) Tornado IDE tools, including

VxWorks and VxSim
• Digital Design techniques and FPGA design skills

Training on C++ is widely available through college courses, self-help books and on-the-
job training. WRS offers training on their tools; links to this are listed below. Xilinx offers
courses in FPGA and digital design and tutorials on using the Xilinx tools. See below for
links to Xilinx training and tutorials.

http://www.xilinx.com

14 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Preface: About This Manual
R

Additional Resources
For additional information on PAVE and IRL, go to http://www.xilinx.com/xilinxonline. The
following table lists resources you can access from this page. You can also directly access
some of these resources using the provided URLs.

Resource Description/URL

C++ Resources

C++ on
Google

http://directory.google.com/Top/Computers/Programming/Languages/C%
2B%2B/

Learning
C++ Today

http://cyberdiem.com/vin/learn.html

Wind River Systems Resources

Training WRS offers a series of regularly-scheduled classes in the use of their
tools:

http://www.windriver.com/training/index.html

Support WRS offers a variety of support services for their tools:

http://www.windriver.com/corporate/html/tsmain.html

Xilinx Resources

IRL Training The IRL team is offering the following free training, Introduction to IRL
Architectures:

http://www.xilinx.com/support/training/freelearning.htm

Training Training covering Xilinx design flows, from design entry to verification
and debugging along with the use of VHDL and Verilog and additional
IRL training can be found at:

http://www.xilinx.com/support/education-home.htm

Tutorial Tutorials covering Xilinx design flows, from design entry to verification
and debugging

http://support.xilinx.com/support/techsup/tutorials/index.htm

Answers
Database

Current listing of solution records for the Xilinx software tools

Search this database using the search function at
http://support.xilinx.com/support/searchtd.htm

Application
Notes

Descriptions of device-specific design techniques and approaches

http://support.xilinx.com/apps/appsweb.htm

Data Book Pages from The Programmable Logic Data Book, which describe device-
specific information on Xilinx device characteristics, including
readback, boundary scan, configuration, length count, and debugging

http://support.xilinx.com/partinfo/databook.htm

Xcell
Journals

Quarterly journals for Xilinx programmable logic users

http://support.xilinx.com/xcell/xcell.htm

http://www.xilinx.com/xilinxonline
http://www.xilinx.com
http://directory.google.com/Top/Computers/Programming/Languages/C%2B%2B/
http://cyberdiem.com/vin/learn.html
http://www.windriver.com/training/index.html
http://www.xilinx.com/support/training/freelearning.htm
http://www.xilinx.com/support/education-home.htm
http://support.xilinx.com/support/techsup/tutorials/index.htm
http://support.xilinx.com/support/searchtd.htm
http://support.xilinx.com/apps/appsweb.htm
http://support.xilinx.com/partinfo/databook.htm
http://support.xilinx.com/xcell/xcell.htm

V1.0 www.xilinx.com 15
PAVE Framework User’s Guide 1-800-255-7778

Additional Resources
R

Tech Tips Latest news, design tips, and patch information on the Xilinx design
environment

http://support.xilinx.com/support/techsup/journals/index.htm

Self-Support
and Problem
Solvers

Self-Supportability tools and Problem Solvers as follows:

How to Find Answers: How to use support.xilinx.com to solve your
problem

Search our Knowledge Base: Fill out this keyword search form to find
the answers to your questions

Answer Browser: Browse through the Answers Knowledge base by
part type

Configuration Problem Solver: This problem solver will automatically
fix your configuration issues

Install Problem Solver: This problem solver will automatically
troubleshoot software installation issues

Programmer Solutions: Device support list, software, and HW-130
information

Virtex Power Estimator: Estimate Virtex power consumptions with our
web form or download the Excel spreadsheet

Technical Tips: This is the resource for hot issues and tips to get up and
running quickly

http://support.xilinx.com/support/troubleshoot

Resource Description/URL

http://www.xilinx.com
http://support.xilinx.com/support/techsup/journals/index.htm
http://support.xilinx.com/support/techsup/journals/index.htm

16 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Preface: About This Manual
R

http://www.xilinx.com

V1.0 www.xilinx.com 17
PAVE Framework User’s Guide 1-800-255-7778

Typographical Conventions
R

Typographical Conventions
The following typographical conventions are used in this manual:

• Red text indicates a cross-reference to information within this document. Click red
text to open the specified cross-reference.

• Blue-underlined text indicates a link to a Web page. Click blue-underlined text to
browse the specified Web site.

• Courier font indicates C++ code
printf("%s\n", CNSTApplicationNAME);

/* As in real C code, C code comments in this guide are enclosed in

slash-asterisks as shown here */

// Alternatively, comments might be on a single line like this

• Courier indicates C++ classes and API Calls:
classIRLDevice::GetPayloadChecksum

this->GetPayloadSize(szPayloadPath,&dwBitstreamSize,&dwModuleSize)

• Courier indicates drive letters, file names and paths, and contents of files:
C:\

D:_platform_systemgenerator_builds_\durango.wsp

generatedevice Durango VirtexIIEngine.inp classIRLDevice

• Courier bold indicates executables, scripts, and literal commands that you enter in
a syntactical statement. However, braces “{ }” in Courier bold are not literal and
square brackets “[]” in Courier bold are literal only in the case of bus specifications,
such as bus [7:0].
- The generateserver.exe and generatedevice.exe tools create the required

Tornado workspace and project files.
- Run the generatesystem.bat batch file;

• Courier bold also indicates menu commands:

File → Open

• Italic font denotes the following items.
- Variables that are substituted with user-defined values

edif2ngd design_name

- References to other documents.
See the Virtex-E Data Sheet for more information.

- Emphasis in text
If a wire is drawn so that it overlaps the pin of a symbol, the two nets are
not connected.

• The standard, IEEE 1149.1 JTAG, will be referred to as “JTAG” for simplicity.
• Angle brackets “<>” indicate something you fill in based on context, such as a path or

a drive letter:
<path>_build\client\simulator\default\vxWorks.exe

• Square brackets “[]” denote the following items
- A generated entry or parameter

_builds\server\[servername]\devices

- C code syntax
strPayloadHeader.theDeviceConfiguration[0].dwBitstreamSize,

- Bus specifications
SMAP_D[2:0]

http://www.xilinx.com

18 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Preface: About This Manual
R

http://www.xilinx.com

V1.0 www.xilinx.com 19
PAVE Framework User’s Guide 1-800-255-7778

R

Chapter 1

Introduction

PAVE Framework
The PAVE Framework is an embedded applications development environment that can be
used in the design and deployment of upgradable systems applications. It consists of two
parts as shown in Figure 1-1:

• PAVE SIF (System Integration Framework) - This is a software environment that ties
leverages the Wind River System Tornado II Integrated Development Environment
(IDE), the Xilinx Foundation tools, and Microsoft Visual Studio tools.

• PAVE API - A collection of C++ classes and object models that abstract an
implementation of a Xilinx FPGA, called the IRL-enabled Device implementation.

The PAVE Framework treats the programmable hardware as an object within the system,
similar to software objects used in C++. As a result, applications that are written using
PAVE tend to be highly object oriented, modular, and extremely upgradable. A single
module can be changed without replacing the entire framework.

Figure 1-1: Xilinx PAVE in IRL-enabled System

PAVE API

PAVE C++ Application

PAVE API

Target

UG021_26_082001

VxWorks Board Support
Package (BSP)

VxWorks RTOS

Microprocessor

FPGA

PAVE SIF

PAVE Payload
Upgrade Portal

Host

TCP/IP
Network

http://www.xilinx.com

20 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Preface: Introduction
R

PAVE has been written in C++, an object oriented programming language that abstracts the
various underlying software components. This abstraction allows you to look at the larger
picture without spending time revisiting the minor underlying details whenever your
code changes. This allows a modular approach to fixing or upgrading code. This approach
can be likened to repairing a car; if your alternator fails, you replace just the alternator, and
not the whole engine.

With PAVE, you can update any single module without replacing the complete system
software, as in our example above. As seen in Figure 1-2, every part of the system is a
module that can be changed. Since the relationship between the software and hardware are
clearly defined on a register-level basis, your FPGA designs and the software drivers for
them can be easily upgraded without having to change your entire system.

Why PAVE?
Xilinx created PAVE so that customers could more easily create field upgradable products.
When we say 'customers', we mean not only the traditional FPGA designer who normally
uses our devices but also the software application developer and system architect who are
also responsible for designing the whole system. We understand that design of the
upgradable product not only involves the FPGA based target (the traditional responsibility
of the hardware design and firmware developer) but also the network-based delivery of
the payload modules to the target plus the creation/integration of the software on the host
development tools. Xilinx has taken a broad view of the problems to be solved in designing
field upgradable systems and is creating solutions that address different requirements of
the upgradable system specification.

Customers have told us that these requirements include:

Scalability
Customers want a tool that they can use for many different uses. This lowers support costs
and training time.

• Upgrade application design: the ability to use a single design methodology that can
span the spectrum of different memory systems as well as microprocessors is an

Figure 1-2: PAVE API, Application and IRL-Enabled Device

User Application

PAVE

Xilinx IRL Enabled
Device Implementation
Bitstream

IRL Enabled
Device

UG021_01_080601

http://www.xilinx.com

V1.0 www.xilinx.com 21
PAVE Framework User’s Guide 1-800-255-7778

Why PAVE?
R

obvious benefit.

The PAVE API enables a customer's C++ upgrade application to operate with any type
of memory and 32 bit microprocessor which is supported by a Wind River VxWorks
Board Support Package (BSP). This C++ application therefore does not need to be re-
written when a new hardware platform is targeted. This includes flash, RAM and hard
disk memory as well as all of the popular 32 bit microprocessor architectures, making
the upgrade design extensible across a wide range of end products.

Also, the PAVE API is provided in source form so that a user can modify it even further
to more closely match their needs.

• FPGA configuration: a single design methodology that can program the FPGA either
via SelectMAP or JTAG.

The PAVE API abstracts the SelectMAP and JTAG operation through software based
state machines and objects. The engineer does not have to worry about the specific
functional and timing issues involved with using these configuration methods.

• Updating both hardware and software: customers tell us they update software in their
systems as frequently, if not more often, than the hardware. A single methodology for
both would be the most efficient.

The payload created by the PAVE System Integration Framework (SIF) is defined to
contain both software modules in addition to FPGA bitstreams. Either or both can be
present in a payload.

• Performance: customers want to adjust the speed of the upgrade process to match
their system requirements. The PAVE API performance can scale with the processor
speed and it works over any type of local or system bus.

• Upgrade architecture: some applications require all targets to be updated on the
initiative of a central controller (a 'push' update) or for each unit to be updated when
it chooses (a 'pull').

The PAVE Framework is applicable to both equally well. The PAVE SIF and API can be
used in either scenario.

Reliability
All customers have different ways to guarantee that their products are reliable and of high
quality. An upgrade tool needs to be flexible and powerful enough that it can enable highly
reliable upgrades.

The PAVE API enables applications that can control which version of either an FPGA
upgrade or a software upgrade is to be used. Applications can also be written monitoring
the success of the upgrade and what to do thereafter. These customer written applications
naturally are tuned to the very specific needs of the product. For instance, a 'rollback'
application can be written that monitors the status of the upgrade operation, and based
upon its results, rolls back to the previous FPGA configuration. The API supplies the
methods to do this.

Low Cost
Gaining the benefits of field upgradability without adding to the production cost of the
end product is a key goal. The ability to easily leverage the resources which are already in
the system - the microprocessor, memory, operating system - to create an upgradable
design can accomplish this goal of low cost.

The PAVE API is software that is run on the Target system processor. It's only hardware
requirement is a 32 bit register between the microprocessor and FPGA, that the API talks
to.

Engineering development costs are also lowered.

http://www.xilinx.com

22 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Preface: Introduction
R

Code described in the PAVE framework can be reused across products because the PAVE
SIF can easily import and export project files. Also, the PAVE API customer application can
quickly be modified for new hardware in a new product. Both of these combine to give
lowered project development costs.

Developer Productivity
The upgrade process is not just about manipulating the target system, it is also about the
ease of creating the upgrade payload and managing upgrades in the future. For an
application developer, they want simple ways for their software application to access the
devices in the upgrade process. Also, how many companies have experienced the agony of
losing a designer and then having to re-create the work so that the product can be
upgraded?

The PAVE SIF contains developer utilities as well as an easy to use directory structure to
help the developer quickly create applications and manage them for years to come, as the
product evolves.

http://www.xilinx.com

V1.0 www.xilinx.com 23
PAVE Framework User’s Guide 1-800-255-7778

R

Chapter 2

Getting Started

This chapter describes installing the PAVE SIF and generating a sample framework. The
Durango example design is used for this sample to both insure your tools are correctly
installed and to give you a short tutorial in generating the framework. Details on how to
customize the framework for your design can be found in Chapter 3, Using the PAVE SIF.

System Requirements
The following list details the requirements for the PAVE Framework development
platform

Hardware

Host System
• 64 MB RAM (128 MB recommended).
• 300 MB disk space for typical installation.
• A CD-ROM for installation.
• Intel Pentium II or better; Intel Pentium III recommended.
• A network interface card with an Ethernet TCP/IP connection.
• Windows NT or Windows 2000
• Netscape 4.7 or Internet Explorer 4.0 or later web browser.

Target System
• VxWorks 5.4 or higher
• VxWorks compatible Board Support Package (BSP) supporting a 32-bit architecture.

Software
• WRS Tornado II
• Microsoft Visual Studio v6.0
• Xilinx Foundation Software, 3.1i or higher

http://www.xilinx.com

24 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Chapter 2: Getting Started
R

Installation
The Xilinx PAVE Framework is only available thought web distribution. The PAVE
Framework can be found at:

http://www.xilinx.com/xilinxonline/pave_dl/finaldwnldpage.htm

From this page you can download the latest release. Release notes for the release can be
found at this location.

The IRL home page is at:

http://www.xilinx.com/irl

You will need to be registered with the Xilinx web site and agree to the PAVE Software
License to gain access to the files. If you are not currently registered for the XIlinx website,
follow this link:

http://www.xilinx.com/xlnx/xil_reg_profile.jsp

and click on the “New customers please register” link.

After downloading the PAVE files from the aforementioned web address, complete the
following steps to install a new PAVE Framework.

1. Ensure that you have enough disk space to install the new PAVE Framework.

2. Backup any existing PAVE Framework that you are currently developing in prior to
installing newer versions. The new PAVE Framework can be installed directly over
your existing framework after you have backed up your previous version.

3. Review the online release notes for the version of PAVE you are using. The release
notes can be found on the web page where you downloaded the PAVE Framework.

4. Unzip the PAVE zip file to your D:\ drive. PAVE must be installed in the root of your
drive (e.g. D:\). PAVE has some very long path names; making them much longer will
cause the .bat files to fail. Spaces in the pathnames are not allowed.

If you are must use a drive letter beside D:\, you will need to modify the WRS
workspace files. See Installing to an alternate drive for details on this procedure.

5. After completing the previous step, you will now have three new directories in D:\
- D:_platform_systemgenerator

- D:_platform_mcp750durango

- D:_platform_mcp750admxrc

The first directory, D:_platform_systemgenerator, is a template that you will use in
the next two sections of this chapter to generate a framework and perform a system
verification. Under D:_platform_systemgenerator, you should see directory tree
that resembles the tree illustrated in Figure 2-1.

The second and third directories are pre-generated frameworks that target specific
hardware configurations.

The D:_platform_mcp750durango targets the Motorola MCP750 and Durango IRL
reference design. More details on this can be found in Appendix B, Using Durango
with the MCP750 and PAVE.

The D:_platform_mcp750admxrc targets the Motorola MCP750 and Alpha Data
ADM-XRC design. More details on this can be found in Appendix D, Using ADM-
XRC with the MCP750 and PAVE.

http://www.xilinx.com/xilinxonline/pave_dl/finaldwnldpage.htm
http://www.xilinx.com/xlnx/xil_reg_profile.jsp
http://www.xilinx.com/irl
http://www.xilinx.com

V1.0 www.xilinx.com 25
PAVE Framework User’s Guide 1-800-255-7778

PAVE SIF Tutorial
R

PAVE SIF Tutorial
The following sections present a brief tutorial on using the PAVE SIF, using the Durango
example. In addition to showing you the basics of how to use the SIF, this validates your
setup and tool installations. The following screenshots appear best in Acrobat or Acroread
when scaled to 134%

Generating a Framework
1. From your command prompt, change directory to:

<drive letter>:_platform_systemgenerator_builds_

In this directory you will find several executable and .bat files along with several
.inp files. These four .inp files are input files to the code generation tools. Several
things you should note about this:

- The system description file, durango.inp, specifies the programmable devices in
the system, referencing the other three .inp files.

- The device specification .inp files (VirtexIIEngine.inp, VirtexIIBridge.inp,
and ControlCPLD.inp) each have a specification of the registers in the
corresponding device. You can specify the register programming model for a
device in these files. Details on the .inp file format can be found in Chapter 3,
Using the PAVE SIF.

2. Run the generatesystem.bat batch file; your screen output should look like
Figure 2-2. If you run it a second time it will complain about overwriting the
durango.wsp file. This is to prevent you from unintentionally overwriting the
durango.wsp file as you may have made some changes to it in the Tornado II tool. To
solve this manually delete the file, durango.wsp prior to running the
generatesystem.bat file.

Figure 2-1: System Generator Tree Diagram

_builds include libraries

_platform_systemgenerator

objectfiles docsbin z

host host

client
durango

client

server

server

durango

common

other

common

_

other

host debug

release

debug

releaseclient

server

common

other

UG021_03_082801

http://www.xilinx.com

26 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Chapter 2: Getting Started
R

WRS Tornado workspace files use absolute paths instead of relative paths. Once you
generate the system, the generated workspace files (.wsp) will be “hard-coded” to that
directory. If you need to change the path, you must regenerate the system.

3. Go back to the _builds_ directory. You will now find that both a tornado and a
VisualStudio workspace files have been generated, respectively named durango.wsp
and durango.dsw.

Using the framework with Tornado
Once you have created the system components that are resident in your system
framework, you can build the PAVE System Integration Framework. The steps below will
guide you through the build process.

1. Start the Wind River Systems Tornado II Integrated Development Environment (IDE).

Figure 2-2: Running the System Generator

http://www.xilinx.com

V1.0 www.xilinx.com 27
PAVE Framework User’s Guide 1-800-255-7778

PAVE SIF Tutorial
R

2. Select File->Open Workspace. You will be presented with a dialog box that resembles
the dialog box shown in the Figure 2-3 below.

3. Select the durango.wsp file in the _builds_ directory. This is the VxWorks workspace
file for the framework that was generated in the previous section. Click the OK button
and the workspace will open as shown in Figure 2-4. This window is the Tornado II
IDE workspace window. If not already selected, select the Files tab in the workspace
window.

4. The generateserver.exe and generatedevice.exe tools create the required Tornado
workspace and project files.There are two sets of project files shown in the workspace,
the ppc604gnu and the simntgnu workspace files. These represent the downloadable
and simulatable build specifications respectively.

Within these sets of project files you will see project trees for the VirtexIIEngine,
VirtexIIBridge, ControlCPLD, and the several test application project files. The
VirtexIIEngine, VirtexIIBridge, and ControlCPLD projects build the software
objectfiles for the IRL-enabled devices that are resident on the Durango system
component.

5. Generate the dependencies by right clicking on ppc604gnu_durango_controlcpld
and selecting the Dependencies choice. Ensure that all of the checkboxes are selected.
Click on the Advanced button and select the Quick Scan option as seen in Figure 2-6.
Click OK for the Advanced dependencies and again for the original dependencies
dialog. The dialog box in Figure 2-7 shows the dependencies are being recalculated for
the elements of the selected build.

Figure 2-3: Opening the durango.wsp file

http://www.xilinx.com

28 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Chapter 2: Getting Started
R

Figure 2-4: Durango Workspace in Tornado II

Figure 2-5: Dependencies Dialog

http://www.xilinx.com

V1.0 www.xilinx.com 29
PAVE Framework User’s Guide 1-800-255-7778

PAVE SIF Tutorial
R

6. Once the Dependencies have been generated, you can build the .out file. Right click
on ppc604gnu_durango_controlcpld and select the Rebuild All. A build window
will pop up in Tornado, if it completes successfully, it will say “Done” at the end.

After you have successfully completed this process, you will be able to follow the normal
Tornado procedures to load and run the object modules for the PAVE Framework that you
have generated.

Figure 2-6: Advanced Dependencies Dialog with Quick Scan enabled

Figure 2-7: Updating Dependencies

http://www.xilinx.com

30 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Chapter 2: Getting Started
R

PAVE VxSim Tutorial
The _platform_mcp750durango framework provided with PAVE contains project files for
simulating a solution using the Tornado-II VxSim simulator. The simulator is an excellent
way to become familiar with the PAVE API and the development tools in the Wind River
Systems Tornado-II Integrated Development Environment. The Durango workspace
shown in Figure 2-4 lists projects prefixed with ppc604gnu and also simntgnu. The
simntgnu prefixed projects can be built and downloaded to VxSim just as if one were
targeting physical hardware. Using PAVE and VxSim one can define the register set of a
device under development and begin to exercise the software and hardware interfaces
before physical devices are available.

Tutorial code within the Durango workspace presents a simple but generalizable register
based data flow example as well as a JTAG configuration flow example.

Using the Standard Tornado-II VxSim with PAVE
The standard VxSim simulator shipped with Tornado-II does not provide networking
support, however, together with the Tornado-II debugger it can be used to trace the flow of
code within the simntgnu_durango_tutorial project of the Durango framework.

1. Bring up the Tornado-II IDE by double clicking on the workspace file
builds\durango.wsp.

2. Build the following projects shown in the Durango workspace by right-clicking on
them in the Files view and selecting the ReBuild All option:
- simntgnu_durango_contolcpld

- simntgnu_durango_virtexiibridge

- simntgnu_durango_virtexiiengine

- simntgnu_durango_tutorial

3. Launch the standard VxSim simulator from the Tornado install directory by selecting
Start->Run from the Windows task bar and entering the following command line for
execution
<Drive Letter>:\Tornado\target\config\simpc\vxWorks.exe -p0 -r10000000

4. Configure the target server by selecting Tools -> Target Server->Configure and
configuring as shown in Figure 2-9. The description you put in this box will appear on
your launch dialog box when you use your Target Server in the future. Choose OK
instead of Launch.

5. Download each of the files listed in step 2 to the simulator using the right click and
selecting the Download “<filename>” option.

Figure 2-8: Running VxWorks for the Simulator

http://www.xilinx.com

V1.0 www.xilinx.com 31
PAVE Framework User’s Guide 1-800-255-7778

PAVE VxSim Tutorial
R

Running the Durango VxSim Tutorial
You are now ready to run the simntgnu_durango_tutorial. Launch the Debugger by first
clicking on the “bug” icon in Tornado, and then clicking on the “running man” icon”. This
brings up the Run Task dialog shown below. We will step through the tutorial code
beginning at the function "durango_tutorial".

Figure 2-9: Target Server Configuration for VxSim

Figure 2-10: Run Task dialog

http://www.xilinx.com

32 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Chapter 2: Getting Started
R

The dialog box input is the equivalent to a executing an

-> sp (durango_tutorial, 1)

command from the Tornado Shell to spawn a new task with the specified entry point.
However, by launching a task through the debugger, one can trace through the code using
all of the Tornado Debugger functions such as step into, step over, run until a breakpoint,
and observe the system through watch variables and dumping memory contents.

The durango_tutorial code shows how to access a classRegister object, how to trap
accesses to the register, and also how a JTAG configuration is performed. Upon entry, the
durango_tutorial simulation code is steered by the ATTRclassDurangoSIMULATIONMODE
compiler flag defined in all the Durango simntgnu projects. When simulation is enabled,
memory is allocated to represent the address space of a board instead of discovering and
memory mapping any physical hardware. Along with the flag mentioned above the
ATTRclassSimulationENABLESIMULATION compiler flag allows register operations to be
trapped and user code placed in the appropriate device usersim file to be executed.
Sample code in

_builds\server\durango\devices\virtexiiengine\virtexiiengineusersim.cpp

is delivered with the Durango framework to multiply any uploads to the CTLREG00 register
(defined in the inp file) by two and write the result back to CTLREG00. The following code
in _builds\server\durango\tests\tutorial\tutorial.cpp exercises the register
level accesses and trapping:

ptrServer->ptrDesignatedDevice->DisplayRegisters();

ptrServer->ptrDesignatedDevice->ptrCTLREG00->Upload(2);

Output from the register level operations can be viewed in the VxWorks Simulator
window as shown in Figure 2-11. Using the classRegister objects with VxSim enables
interface testing without physical hardware.

Along with the simple register example, durango_tutorial is set up to perform a JTAG
configuration. An IRL payload file, mcp750durango_tutorial_jt.irl, is read in and
split into it’s constituent loadable software module and bitstream. In the JTAG case the
bitstream is in the form of an XSVF file which is parsed and sequenced through the XIRL
interface register by the tutorial code. Using the debugger and setting breakpoints, one can
trace through the JTAG configuration process. The PAVE application developer needs only
call the API methods exposed in the tutorial to initiate the underlying software state
machines. Upon successful completion of the JTAG process the JTAGCOMPLETECOMMAND is
printed to the Simulator window (Figure 2-11).

Figure 2-11: VxSIm Window

http://www.xilinx.com

V1.0 www.xilinx.com 33
PAVE Framework User’s Guide 1-800-255-7778

Installing to an alternate drive
R

Installing to an alternate drive
The WRS Tornado tools depend on absolute paths to locate files. The directories,
_mcp750durango and _mcp750admxrc were generated with the D:\ as their location and
they must be run from the D:\ or Tornado will not recognize them.

If you are unable to run them from the D:\ drive here is the procedure to fix this.

• Durango - The _platform_systemgenerator directory is an ungenerated version of
the _platform_mcp750durango directory. Copy the _platform_systemgenerator to
the desired drive and run the system generator to create the desired framework.

• ADM-XRC - To move the _platform_mcp750admxrc to another drive you must edit all
the .wsp and .wpj files, changing every instance of “D:” to “C:” (case is not
important). This must be done with an editor that does not change the carriage returns
to a DOS format. Do not use Notepad or Wordpad as these will change the files to
DOS format. Suggested editors that are capable of changing the files correctly are:

Ultraedit has search and replace capability that can recursively search the directories
for strings in certain files. Ultraedit is shareware with a 30 day demo period. Ultraedit
can be obtained at:

http://www.ultraedit.com

XEmacs is a free open source text editor, under the GNU license. XEmacs can be
obtained at:

http://www.xemacs.org

http://www.xilinx.com
http://www.ultraedit.com
http://www.xemacs.org

34 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Chapter 2: Getting Started
R

http://www.xilinx.com

V1.0 www.xilinx.com 35
PAVE Framework User’s Guide 1-800-255-7778

R

Chapter 3

Using the PAVE SIF

PAVE is distributed in a development framework called the PAVE Systems Integration
Framework, or SIF. This framework consists of a directory structure that is populated with
the requisite software source code and header files, Wind River Systems Tornado II IDE
workspace and project files, utility applications, scripts, and documentation.

In Chapter 2 the basic process of generating a framework was presented. This chapter
expands on this by describing how to use and customize the PAVE System Integration
Framework to create a framework for your IRL-enabled device This chapter goes further
into the underlying concepts and the file formats used in the PAVE SIF.

While developers are not restricted to work within the framework, they are highly
encouraged to do so. First, the SIF is a turnkey solution that enables systems architects to
immediately focus on developing their application. The bulk of the setup has been
completed. Secondly, the framework enables the developer to take advantage of future
enhancements to the PAVE API with very little effort. Third, and most importantly, using
the framework will enhance the support that you will get from Xilinx IRL Solutions.

IRL Register model
The PAVE Framework views hardware from a register level, thus all hardware can be
described to the software in terms of registers. This allows hardware to be viewed as a
component that can be replaced and upgraded as needed, just as software is upgraded.
With this viewpoint, Xilinx has developed the IRL register model to allow a simple
interface that supports reconfiguration of an IRL-enabled devices across any memory
mapped bus (e.g. PCI). Figure 3-1 show the IRL register model.

The IRL-Enabled design is the TargetFPGA with the appropriate registers that PAVE can
communicate with. Since these registers are viewed by the software as objects, this register
model can be expanded by Xilinx or the user as needed through updates of the PAVE
Framework or use of the SIF. Any series of additional registers can be added quickly and
the corresponding software objects to use these registers can be added to the C++ code.

The IRL Register model in PAVE v1.0 supports configuration via JTAG and Xilinx
SelectMAP. The XIRL Interface Register is a 32-bit memory mapped register that handles
the configuration of the IRL-enabled device. It is shown outside the TargetFPGA as it has to
be available at configuration time. This register could be in another FPGA, a CPLD, or even
be a port on the processor, provided the software can directly address it. It is not
considered to be part of the IRL-enabled device since it must reside in another device. The
mapping of this register is shown in Figure 3-2. More detail on JTAG and SelectMAP
configuration via this register can be found in Chapter 5, Using PAVE for JTAG
Configuration and Chapter 6, Using PAVE for SelectMAP Configuration.

http://www.xilinx.com

36 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Chapter 3: Using the PAVE SIF
R

Figure 3-1: IRL Register Model

classPlatform

classRegister

classSignalBuffer

classStateMachine

classJTAG

classDevice

classTargetFPGA : public classDevice

TargetFPGA

classIRLBStreamDeliveryModule

classSelMAP

User Defined Components

User Defined Registers

XIRL Interface Register

Device Specific
Register Set

UG021_22_080601IRL Enabled Device

Figure 3-2: XIRL Interface Register Map

UG021_43_080601

XIRL_Interface[31:16]

XIRL_Interface[15:0]

SMAP_D[7:3]

SMAP_D[2:0]

29 28 27 26 25 24 23 22 21 20 19 18 17

Reserved
MODE_HSWAP_EN

MODE_M [2:0]

SMAP_BUSY
SMAP_DONE

SMAP_INIT
SMAP_PROG

31 30

12131415 11 10 9 8 7 6 5 4 3 2 1 0

SMAP_CS
SMAP_RW

SMAP_CCLK
SMAP_BUFF_OE

16

JTAG_BUFF_OE
JTAG_TCK
JTAG_TMS

JTAG_TDI
JTAG_TDO

http://www.xilinx.com

V1.0 www.xilinx.com 37
PAVE Framework User’s Guide 1-800-255-7778

SIF Flow
R

SIF Flow
The flow of the SIF can be broken down in two main goals, upgrading your system and
simulating your upgradable system. This flow is represented in Figure 3-3.

Initial Steps
• Define the hardware registers - Using the .inp file format, described later in this

chapter, the designer defines his register set for the SIF.
• Run the SIF System Generator to create a device framework.
• Develop your embedded application in Tornado, using the Tornado Workspace

generated by the SIF.
• Design your physical hardware, including the FPGA designs.
• Generate the FPGA bitstreams.

System Simulation
• Compile the simulation projects in Tornado. In the Durango workspace these are

listed under the build specification SIMNTgnu.
• Generate the payload.
• Simulate upgrading your system.
• Simulate the system. This involves reading and writing the registers defined in the

initial steps. Further simulation of your FPGA and board designs can be performed
but this is beyond the scope of this manual.

System Upgrade
• Compile the hardware projects in Tornado. In the Durango workspace these are listed

under the build specification PPC604gnu.
• Generate the Payload.
• Upgrade your system. Examples of the upgrade process for the ADM-XRC can be

found in Appendix D. The ADM-XRC code shipped with PAVE v1.0 includes push
and pull code segments.

• Verify your hardware. In PAVE v1.0, Durango includes a “hello world” bitstream that
blinks some LEDs on the board; the ADM-XRC include a series of applications,

Figure 3-3: PAVE Flow Chart

Define
Hardware

I/O Registers
for PAVE

Create
Framework/
Generate
System

with PAVE

Write
Software

Applications
in PAVE

Framework

Compile
Software

for Hardware

Compile
Software
for VxSim

Generate
Payload
Utility

Generate
Payload
Utility

Upgrade
System

Run
Durango

Board

Simulate
Upgrade
System

Simulate
Durango

Board

Design
Hardware

Generate
PLD

Bitstreams

UG021_42_080601

http://www.xilinx.com

38 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Chapter 3: Using the PAVE SIF
R

including an FFT, and some graphics routines. Details on using the Durango board
can be found in Appendix B.

Figure 3-4 shows the tool flow of the SIF and where the Xilinx and WRS tools are used.
There are two major tools in the SIF, the System Generator and the Payload Generator.

System Generator
The PAVE SIF includes several executables that process the user’s text descriptions of his
hardware.The generatedevice.exe command in the generatesystem.bat script are the
executables that create C++ source and header files, and related project files for the IRL-
enabled devices that comprise the server system component.

Figure 3-4: System Integration Framework Tool Flow Diagram

System Specification PAVE
System

Integration
Framework

Xilinx
Foundtion

ISE

PA
V

E

P
ay

lo
ad

 G
en

er
at

or

PAVE System
Generator

Wind River
Tornado

Tornado Integration:
Generate Tornado
workspace and
project files

Board Specification

Device
Specification

UG021_27_082001

Header

Bitstream for Target Device 0

SW Device Driver for Target Device 0

Bitstream for Target Device 1

SW Device Driver for Target Device 1

Payload File

Figure 3-5: System Generator Tree Diagram

_builds include libraries

_platform_systemgenerator

objectfiles docsbin z

host host

client
durango

client

server

server

durango

common

other

common

_

other

host debug

release

debug

releaseclient

server

common

other

UG021_03_082801

http://www.xilinx.com

V1.0 www.xilinx.com 39
PAVE Framework User’s Guide 1-800-255-7778

System Generator
R

The most important components of the PAVE Systems Integration Framework directory
tree structure are illustrated above in Figure 3-5

The major source code components of the PAVE API are contained in the
libraries\server and the include\server directories. Additional source code
components that are required by the build can be found in the libraries\common and
include\common directories. The other major element of the build tree can be found under
the _builds\server and _builds\host directory structure. Note that under this directory
there is a directory called the durango directory. This directory is provided as a tutorial
directory for illustrative purposes. This subdirectory tree is called the device component
framework tree. It contains the files that are specific to a particular class of system
component within a system. Figure 3-6 below depicts the durango directory and its
subdirectories.

Note that the durango directory consists of four major subdirectories. These subdirectories
are listed below.

_builds\server\durango\clientserverapplications

_builds\server\durango\devices

_builds\server\durango\tests

_builds\server\durango\utilities

Each subdirectory consists of a set of project files (Tornado .wpj IDE project files) that
build specific test, development, and utility applications that are useful in the systems
development process. The developer is not required to implement these applications.
However, the PAVE framework and its code generation utilities automatically setup the
directories and generate the source code and header files thereby making it easier to
implement the functionality. The _builds\server\durango\devices subdirectory
contains the source code and header files for the IRL-enabled Devices that comprise a
specific system component. For example, the devices directory is comprised of three
subdirectories. These are the VirtexIIEngine, VirtexIIBridge and controlCPLD
directories. These subdirectories contain the source code, header, and project files that are
required to build an object module for each of these devices.

As can be inferred from the directory structure, the PAVE Systems Integration Framework
is setup to facilitate systems level development in a uniform context. Multiple software
development efforts for multiple system components (and the constituent parts) can occur
in parallel within the given software development framework. An additional benefit of
this approach is that components of the framework can be readily leveraged for future
product development efforts. Finally, the Systems Integration Framework is designed to

Figure 3-6: SIF Framework Tree Diagram

serverapplications

serverapplication

utilities tests

_builds/server/durango

devices

downloadirldevicepayload

uploadirldevicepayload

acceptancetest

developmenttest

productiontest

regressiontest

tutorial

virtexIIengine

virtexIIbridge

controlcpld

UG021_09_082801

http://www.xilinx.com

40 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Chapter 3: Using the PAVE SIF
R

enable developers to bifurcate derivative development efforts using a base framework. In
essence, the framework is in itself an object oriented construct.

generatesystem.bat
This file specifies how to build the framework. From the generatesystem.bat file, a step
by step review of the commands:

1. Generate a server for the IRL-enabled device. The generateserver.exe program is
called to generate the code and directory structure for the board:
generateserver Durango.inp

2. Generate the individual devices The generatedevice.exe program is called to
generate the code and framework for the devices on the board. In the case of Durango
the devices are ControlCPLD, VirtexIIEngine, and VirtexIIBridge. The
generatedevice.exe executable command takes three arguments.
- The first argument specifies the name of the system component for which you are

generating devices.
- The second argument specifies the Device Specification file that contains

information related to the programming interface of the device.
- The third argument specifies the C++ class assigned to the device.

The first line listed below is interpreted as "generate for the Durango board a device
called VirtexIIEngine with baseclass of classIRLDevice".

generatedevice Durango VirtexIIEngine.inp classIRLDevice

generatedevice Durango VirtexIIBridge.inp classPCIDevice

generatedevice Durango ControlCPLD.inp classDevice

The VirtexIIEngine is classIRLDevice because it can be reconfigured directly under
software control. The VirtexIIBridge performs a PCI function so it is assigned to
classPCIDevice. The CPLD is a generic device and is assigned to classDevice. More
detail on classes can be found in Chapter 4, Using the PAVE API.

3. Rename the template Tornado workspace file.
move /y vxw_.wsp durango.wsp

The vwx_.wsp is a temporary file. This command won’t overwrite the durango.wsp to
prevent accidentally wiping out any changes you might have made in the workspace.

Note that any number of differing board setups could be put in this script, thus the name
generatesystem.

INP File format
The generatesystem.bat requires a .inp file that lists the devices in the system. There are
two inp file formats. The first type describes the system; an example is durango.inp. The
Durango board is composed of several reconfigurable objects as described in the
durango.inp file:

VirtexIIEngine

VirtexIIBridge

ControlCPLD

The second type describes the actual register specification. An example of this is the
VirtexIIEngine.inp device specification file. In this file you will find the following line:

CTLREG00 0x00 0 32 true true true 0x00 apiDWORD

This line represent the register specification for the VirtexIIEngine IRL-enabled device of
the Durango system component. Invoking generatedevice.exe causes the creation of a

http://www.xilinx.com

V1.0 www.xilinx.com 41
PAVE Framework User’s Guide 1-800-255-7778

Building a Custom Framework
R

C++ class library that encapsulates the device-programming interface comprised of the
registers specified above. Both types of .inp files can have multiple entries.

Table 3-1 list the fields for the Device Generator .inp format. The definition of each field
is provided below:

• Register Field Name: Specifies the name of the register.
• Device Offset: Specifies the offset of this register within the device.
• Start Bit: Specifies the starting bit of the register field within a register.
• Number of Bits: Specifies the register field width in number of bits.
• Readable: Specifies whether or not the register is readable.
• Writable: Specifies whether or not the register is writable.
• Initialize: Specifies whether or not the register should be initialized when it its device

object is instantiated.
• Initial Value: Specifies the initial value that is written to the register field when that

register object is instantiated. This field is ignored if the Initialize parameter is false.
• Access Width: Specifies the access width of the register field. The valid values are

apiDWORD, apiWORD, or apiBYTE.

Building a Custom Framework
The Durango example is compliant with the IRL register model and can be used as a
starting point for your hardware description.You may use the VirtexIIEngine.inp,
VirtexIIBridge.inp, ControlCPLD.inp and the top level Durango.inp files as templates
to create your own system components within the framework. Here are some key things to
remember.

• The specification files must have a .inp extension, and be ordered hierarchically as
shown in the Durango example.

• The generateserver.exe and generatedevice.exe utilities will use the name of the
specification files to create the source, header, and associated project files. For
example, if one of your device specification files is named MyDevice.inp, then the
corresponding C++ class that will be generated by generatedevice is
classMyDevice. Note that these names are case sensitive. For example, the file
mydevice.inp will yield a class named classmydevice.

• The system component framework will be generated under the _builds\server
directory. An example of this generated directory can be seen in Figure 3-6 above.

• The device framework will be generated under
_builds\server\[servername]\devices

• You must generate the system component framework before the device frameworks
as indicated in the generatesystem.bat script file.

Note that durango directories are generated under the _builds\host and
_builds\server directories. Again, these directories encapsulate code for the generated
board, Durango. For example, the _builds\host\durango directory has all of the code
for host side applications related to the generated board. The _builds\server\durango
directory is a tree that contains the target side files related to the generated board.

Table 3-1: Breakdown of devicegenerator .inp format

Register
Field Name

Device
Offset Start Bit Number of

Bits Readable Writable Initialize Initial
Value

Access
Width

CTLREG00 0x00 0 32 true true true 0x00 apiDWORD

http://www.xilinx.com

42 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Chapter 3: Using the PAVE SIF
R

This structure was chosen because it enables the developer to swap out whole components
of the application framework. For example, if the developer wishes to develop a new
VirtexIIEngine codebase, he would swap out the
_builds\server\durango\devices\virtexIIengine directory with a new framework.
Likewise, the entire _builds\server\durango directory could be replaced. Over time a
base of applications could be built up and swapped in and out this way.

Payload Generator
The PAVE API expects to receive the upgrade information in the form of a payload. The
payload consists of a header and at least one software module and bitstream. This
structure can be seen in Figure 3-7.

After generating the framework, compiling your code, and creating the bitstreams, you
must generate a payload for the PAVE API to download. The SIF includes a utility program
to handle this for you. In the _builds_ directory, you will find two files,
generatepayload.bat and generatepayload.exe. The former copies your software
modules (Tornado .out files) and bitstreams (Xilinx .bit and .xsvf files) to the local
directory, generates the payload by calling the latter, then finally cleans up the directory.

generatepayload.bat
The majority of the commands in the generatepayload.bat file are self-explanatory
commands such as copy and del, but the generatepayload.exe command bears further
examination. Here are some sample commands and the usage:

generatepayload 0 target.irl smap target.out target.bit FAFAFAFA AFAFAFAF
1 1 1

generatepayload 0 target.irl jtag target.out target.xsvf FAFAFAFA AFAFAFAF
1 1 1

generatepayload <Module Index> <Configuration Type> <Software Device
Driver> <Bitstream> <Vendor Code> <Device ID> <Device Type> <Revision
Code>

Table 3-2 list the arguments for the generatepayload.exe command. The definition of
each argument is provided below:

Figure 3-7: Payload Diagram

Header

Bitstream for Target Device 0

SW Device Driver for Target Device 0

UG021_31_082001

Bitstream for Target Device 1

SW Device Driver for Target Device 1

Bitstream for Target Device N

SW Device Driver for Target Device N

Module 0

Module 1

Module N

http://www.xilinx.com

V1.0 www.xilinx.com 43
PAVE Framework User’s Guide 1-800-255-7778

Payload Generator
R

1. Module Index - Location in the payload from 0 to 63. To instantiate multiple devices in
one payload, rerun the command with the appropriate data for the next device and
increment the Module Index by one.Always start at 0 and increment by one. A graphic
representation of the Module Index can be seen in Figure 3-7 above.

2. Output File - Name of the output file. The recommended extension is ".irl". This
argument is also an input file when multiple modules are instantiated in the payload.

3. Configuration Type - Valid types in PAVE v1.0 are "smap" (SelectMAP) and "jtag".

4. Software Device Driver - File name of the Tornado .out file.

5. Bitstream - Name of the file containing the bitstream. This cam be either a .bit or a
.xsvf for SelectMAP and JTAG respectively.

6. Vendor Code - User-defined. Maximum size is 32-bits.

7. Device ID - User-defined. Maximum size is 32-bits.

8. Device Type - User-defined. Maximum size is 32-bits.

9. Revision Code - User-defined. Maximum size is 32-bits.

10. IRL Version - User-defined. Maximum size is 32-bits.

Table 3-2: Breakdown of generatepayload.exe command usage

Argument Sample Value Comment

Module Index 0 0-63

Output File target.irl Also an input file if it exists

Configuration Type smap Either smap or jtag

Software Device Driver target.out Generated by Tornado

Bitstream target.bit SelectMAP uses .bit; JTAG uses
.xsvf.

Vendor Code FAFAFAFA

Device ID AFAFAFAF

Device Type 1 User defined, 32-bits maximum.

Revision Code 1

IRL Version 1

http://www.xilinx.com

44 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Chapter 3: Using the PAVE SIF
R

Formats for SelectMAP and JTAG
SelectMAP requires that the module be created with a .bit file. JTAG configuration
requires use of the .xsvf format. Prior to generating the .xsvf format, if the target is a
Xilinx PROM you must also convert it to a .mcs format. The overall flow is shown in
Figure 3-8.

The “Device Info” is any information the JTAG Programmer GUI requests, such as Package
type. Generating the XSVF file requires use of several Xilinx tools, including the Xilinx
JTAG Programmer and the SVF2XSVF conversion utility. Here are the steps for 3.1i.

Figure 3-8: XSVF Flow

Start

PROM

FPGA

JTAG

PROM
or

FPGA?

UG021_53_082801

JTAG
Programmer

Device
Info

Generate
SVF

Generate
XSVF

Play
XSVF

PROM FPGA

Run PROMGen to
Create MCS File

http://www.xilinx.com

V1.0 www.xilinx.com 45
PAVE Framework User’s Guide 1-800-255-7778

Payload Generator
R

1. If the target is a PROM, you must generate a .mcs file first. Otherwise, skip to step 2.
Open the PROM File Formatter (seen in Figure 3-9) and create a PROM file. You must
target a device that supports JTAG (XC18VXX series PROMs).

2. Open the JTAG Programmer and select Edit -> Add Device. In the selection dialog,
select your .bit or .mcs file.

Figure 3-9: PROM File Formatter

Figure 3-10: JTAG Programmer

http://www.xilinx.com

46 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Chapter 3: Using the PAVE SIF
R

3. Choose the Output -> Create SVF File option. You should see a dialog as seen in
Figure 3-11; click OK and then set the name of the SVF file. .

4. Select Operations -> Chain Operations... and set the device you just added to
“Program”Then click Execute. and it will generate the SVF file as seen in Figure 3-13.

Figure 3-11: SVF Options

Figure 3-12: Chain Operations

Figure 3-13: Status of SVF Generation

http://www.xilinx.com

V1.0 www.xilinx.com 47
PAVE Framework User’s Guide 1-800-255-7778

Payload Generator
R

It you are using a .mcs file you have the further option of verifying the device with the
SVF vectors. While in the Chain Operations, select the Options button and check the
Verify Program option, as seen below. This is the only readback operation supported in
PAVE v1.0.

5. The SVF2XSVF utility must be run on the resulting .svf files.

For FPGA programing use this command line:

svf2xsvf -d -fpga -i <input file name>.svf -o <output file name>.xsvf

For PROM programming use this command line:

svf2xsvf -d -i <input file name>.svf -o <output file name>.xsvf

The SVF2XSVF utility can be found at:

ftp://ftp.xilinx.com/pub/swhelp/cpld/eisp_pc.zip

Figure 3-14: Options to Allow PROM Readback

ftp://ftp.xilinx.com/pub/swhelp/cpld/eisp_pc.zip
http://www.xilinx.com

48 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Chapter 3: Using the PAVE SIF
R

http://www.xilinx.com

V1.0 www.xilinx.com 49
PAVE Framework User’s Guide 1-800-255-7778

R

Chapter 4

Using the PAVE API

The PAVE API is the runtime portion of the PAVE Framework. The PAVE v1.0 API, which
is principally focused on device configuration, operates on the XIRL Interface Register
described in the previous chapter. This chapter will review details about the API, it’s
classes, functions, and code, and discuss how to use it.

How the PAVE API Operates
Figure 4-1 below illustrates PAVE API interaction with the XIRL Interface Register. The
basic idea that is portrayed in the diagram is that the PAVE API uses its methods to
construct a classSignalBuffer object, which is then sequenced to the hardware via the
methods of the classRegister and classPlatform objects. Additionally, all methods of
the classRegister, classSignalBuffer, and classPlatform objects are exposed for
device driver writers to potentially use in their development efforts. In particular, the
combination of these classes with the classStateMachine object forms a powerful set of
utilities that can be used to construct very complex embedded applications.

Figure 4-1: PAVE API Example

classPowerMgmt

PAVE v1.x API

classCompression

UG021_23_080601

PAVE v1.0 API

classSelectMAP

classSignalBuffer

cl
a

ss
R

e
g

is
te

r

cl
a

ss
P

la
tfo

rm

classJTAG

TAP
State
Machine

X
IR

L
In

te
rf

ac
e

R
eg

is
te

r

http://www.xilinx.com

50 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Chapter 4: Using the PAVE API
R

PAVE v1.0 implements JTAG and SelectMAP as shown in Figure 4-1. In a future version of
PAVE, additional features, such as compression of the payload and power management,
could be added using the same underlying structure.

To illustrate this further, you could define additional user registers (via the PAVE SIF) and
then use existing classes or write new classes to manipulate these registers as required.
One example of this is the need to do Endian swapping. The classIRLPlatform contains
a method to endian swap a dword:

enAPIReturnCodes classIRLPlatform::DWORDEndianSwap(

apiDWORD *ptrSourceDWord,

apiDWORD *ptrDestinationDWord

);

Instead of reordering the register or software drivers for processors you want to support, a
simple bit of code could return the register data in the same format regardless of the
underlying processor:

if (this->bSwapAccess == TRUE)

{

dwTemp2 = dwTemp;

this->ptrPlatform->DWORDEndianSwap(&dwTemp2, &dwTemp);

*ptrDWORDRegister = dwTemp;

}

else

{

*ptrDWORDRegister = dwTemp;

}

http://www.xilinx.com

V1.0 www.xilinx.com 51
PAVE Framework User’s Guide 1-800-255-7778

Object Oriented Nature of the PAVE API
R

Object Oriented Nature of the PAVE API
The PAVE API and its components are a collection of C++ classes and object models that
abstract an implementation of a Xilinx Field Programmable Gate Array, FPGA, called the
IRL-enabled Device implementation. PAVE encapsulates a hierarchical set of hardware
and software specifications that define various levels of functionality in the IRL-enabled
Device implementation. The minimum set of specifications for the IRL-enabled Device
implementation requires a baseline set of features that are implemented in an FPGA which
enables it to be upgraded via software configuration using either JTAG or the Xilinx
SelectMAP protocols.

PAVE imposes a view of an FPGA as a standalone device object within a system
component. As a result, applications that are written using the PAVE API tend to be highly
object oriented, modular, and extremely upgradable. The device implementation, as
expressed in a .bit or .xsvf configuration bitstream file, and its requisite controlling
software module, the device driver, are component entities that uniquely define the
functionality of an FPGA within a particular system component. User, vendor, and third
party application content can be built on top of the PAVE API, as shown in Figure 4-2.

It is important to understand that PAVE views these two elements, bitstream and software
driver, as component pieces of a single entity. This entity is called the Payload. The payload
is essentially a concatenated bitstream and binary object module that are prepended with
a header. PAVE enables the application developer to deliver payloads to target devices
while simultaneously upgrading the embedded application program that hosts the
embedded device with a new device API. For example, consider the block diagram in
Figure 4-3 below, which is similar to the Durango board.

Figure 4-2: PAVE Relationship to other Software and Hardware Objects

User Application

PAVE

Xilinx IRL Enabled
Device Implementation
Bitstream

IRL Enabled
Device

UG021_01_080601

http://www.xilinx.com

52 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Chapter 4: Using the PAVE API
R

In this example, the reconfigurable target component consists of two FPGA devices, the
Target and the Bridge FPGAs. Each device has associated with it a specific payload that is
comprised of the configuration bitstream and software object module for the device.
Figure 4-4 below provides a logical depiction of a payload for this hardware.

Either device in the system component can be individually upgraded with a new
configuration bitstream, software, or both. The traditional monolithic view of the
application has been replaced with a component object view. Component object oriented
development is a prevalent technique in other types of application software development
where it is necessary for those applications to be upgraded once they have been deployed.
PAVE provides the embedded application developer with the same functionality via
dynamic linking and full and (in the future …partial) device reconfiguration. Additionally,
the PAVE development model supports fully software controllable, dynamic and adaptive
system component configuration. This opens the door for the development of a
tremendously broad value proposition to product developers and end-users by way of
extended product life cycles and lower support costs.

Figure 4-3: Bridge and Target Block Diagram

Embedded
Processor

Bridge
FPGA

Target
FPGA

UG021_39_082001

PCI Bus
Bridge

Interface
SelectMAP
Controller

Slave Serial/
Parallel/

SelectMAP
Config In

XC18Vxx
Upgrade

XC18Vxx
Default

Config.
CPLD

Factory
Jumper

JT
A

G
C

o
n
n
e
ct

o
r

S
e
le

ct
M

A
P

C
o
n
n
e
ct

o
r

CNTL

C
N

T
L

D
A

T
A

DATA

Factory
Jumper

JTAG
Controller

JTAG
Config In

Figure 4-4: Bridge and Target Sample Payload

Header

Bitstream for Bridge Device

Loadable Module for Bridge Device

Bitstream for Target Device

Loadable Module for Target Device

UG021_03_080601

http://www.xilinx.com

V1.0 www.xilinx.com 53
PAVE Framework User’s Guide 1-800-255-7778

API Structure
R

API Structure
The PAVE v1.0 software architecture is comprised of nine major software components that
support either JTAG or SelectMAP device configuration. Figure 4-5 shows the architecture
of the PAVE components.

This diagram depicts the PAVE software components as an interdependent set of C++
objects. All PAVE API interaction with the target device occurs via a set of interface
registers. The primary register for device configuration is the XIRL Interface Register, seen
in Figure 4-6. The optional user-defined Registers are a set of registers that are components
of the optional PAVE API components. Additionally, the device specific registers set
completes the programming model for an IRL-enabled Device.

Figure 4-5: PAVE v1.0 API Structure

classPlatform

classRegister

classSignalBuffer

classStateMachine

classJTAG

classDevice

classTargetFPGA : public classDevice

TargetFPGA

classIRLBStreamDeliveryModule

classSelMAP

User Defined Components

User Defined Registers

XIRL Interface Register

Device Specific
Register Set

UG021_22_080601IRL Enabled Device

http://www.xilinx.com

54 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Chapter 4: Using the PAVE API
R

Figure 4-6: XIRL Interface Register

UG021_43_080601

XIRL_Interface[31:16]

XIRL_Interface[15:0]

SMAP_D[7:3]

SMAP_D[2:0]

29 28 27 26 25 24 23 22 21 20 19 18 17

Reserved
MODE_HSWAP_EN

MODE_M [2:0]

SMAP_BUSY
SMAP_DONE

SMAP_INIT
SMAP_PROG

31 30

12131415 11 10 9 8 7 6 5 4 3 2 1 0

SMAP_CS
SMAP_RW

SMAP_CCLK
SMAP_BUFF_OE

16

JTAG_BUFF_OE
JTAG_TCK
JTAG_TMS

JTAG_TDI
JTAG_TDO

http://www.xilinx.com

V1.0 www.xilinx.com 55
PAVE Framework User’s Guide 1-800-255-7778

Functional Description
R

Functional Description
The various elements of the PAVE API communicate with IRL-enabled Devices through
memory mapped registers. In particular, the classIRLBStreamDeliveryModule object
contains a classRegister object called the ptrXIRLInterface register. This register
object is an abstraction of a physical device port through which configuration bitstreams
are uploaded to the targeted device. Additionally, the IRL-enabled Device specification
defines a set of optional registers that provide facilities for additional extensions.
Figure 4-7 below illustrates the relationship between the PAVE API and the physical device
hardware. The arrows in the diagram illustrate that software is communicating to
hardware .

Figure 4-7: Communication Paths

Platform
Hardware/BSP

VxWorks OS

PAVE API

User Apps

IRL Enabled Device(s)

UG021_10_082001

IRL Enabled Device

User Defined Registers

XIRL Interface Register

PAVE V1.0 Register Set

Communication Path

http://www.xilinx.com

56 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Chapter 4: Using the PAVE API
R

PAVE API Classes
The PAVE API consists of several C++ classes that form an object model called the PAVE
object model. These classes include

• The classRegister object: This class is a C++ class that abstracts a device register. It
provides functionality to read from and write to the control registers (and fields
thereof) of an IRL-enabled device implementation. The classRegister class is a key
component of the PAVE API. It greatly facilitates the development of embedded
device drivers by handling the details of the masking and shifting operations that
normally accompany read, write, and modify operations on a register.

• The classDevice object: This class a C++ base class from which all PAVE devices are
derived. The PAVE devicegenerator tool that is distributed in the PAVE framework
is a C++ code generator tool that creates IRL-enabled device software models that are
derived from the classDevice object. The classDevice object is a container class for
multiple instances of classRegister objects.

• The classIRLBStreamDeliveryModule object: This class is a C++ object that
encapsulates the JTAG or SelectMAP upgrade functionality of the IRL-enabled device.
This class is a base class from which other bitstream delivery modules can be derived
for specific hardware implementations. The classIRLBStreamDeliveryModule is
contained in the classDevice object. The classIRLBStreamDeliveryModule is
comprised of separate JTAG and SelectMAP component objects. These are the
classJTAGComponent and classSelectMAPComponent objects respectively. The
classIRLBStreamDeliveryModule is a required component in the IRL-enabled
Device implementation and therefore it defines PAVE v 1.0 functionality.

• The classStateMachine object: The classStateMachine object is a C++ object that
abstracts the functionality of a finite state machine. This object is contained in the
classJTAGComponent object and is used to setup the TAP controller state machine
used in JTAG configuration mode. The classStateMachine object is very generic and
can also be used to facilitate the implementation of very complex real-time state
machines in embedded applications.

• The classSignalBuffer object: The classSignalBuffer object is a C++ class that
encapsulates the functionality required to setup and sequence a set of control signals
to a hardware registers via software control. This class also contains a number of
utility methods that allow the developer to generate arbitrary test vectors that can be
used in device test benches.

The PAVE API framework is additionally composed of a number of supporting classes and
object models. These classes include

• The classIRLPlatform object: The PAVE API can be used in a wide variety of
hardware platform and embedded operating system environments. The
classPlatform object facilitates this porting effort by forming a thin abstraction layer
between the platform specific code and application code. Figure 4-8 and Figure 4-9
below illustrate how the Objects and the RTOS are related to the upper layer
application code.

• The classPCIDevice code is used to interface to the PCI interface on the board. In
this revision of the PAVE code the Durango board is a simple PCI target, with the
XIRL configuration register. This PCI interface only has one register beyond the
regular PCI configuration space. The virtexIIBridge.inp describes this register.
The PCI configuration space is accessed through methods that the VirtexIIBridge
object inherits by being instantiated as a classPCIDevice object.

http://www.xilinx.com

V1.0 www.xilinx.com 57
PAVE Framework User’s Guide 1-800-255-7778

PAVE API Classes
R

Figure 4-8: System Relationships

Figure 4-9: Device API

User Apps. Future Xilinx
Tools

Future PAVE
Upgrades

PAVE Bitstream Delivery
Object

VxWorks OS

Platform - Hardware/BSP

IRL Enabled Devices

UG021_04_080601

Application

Device API

Operating System

BSP

Hardware Device

The device API
is a standalone
element that can
be deployed as
part of a
payload. For
example, in
VxWorks this is
an objectfile. In
windows it is a
DLL. Both of
these are
dynamically
loadable

UG021_05_080601

http://www.xilinx.com

58 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Chapter 4: Using the PAVE API
R

Payloads
The principle element handled by the PAVE v1.0 API is called the payload. A payload
consists of the three sets of elements illustrated below in Figure 4-10.

This diagram shows the structure of a PAVE payload. The header component consists of
size and classification information for up to 64 device elements in the payload. These are
called device configuration segments. Note that each device element has associated with it
a bitstream and loadable module. Each instance of a PAVE device object has methods that
understand how to parse the payload and find the correct payload components that are
required for upgrading. The structures found in a payload are defined below.

Payload Header Structure
typedef struct

{

size_t dwNumberDevicesInPayload;

structDeviceConfiguration theDeviceConfiguration[CNSTMAXNUMDEVICES];

} structPayloadHeader;

typedef structPayloadHeader *pntr_structPayloadHeader;

The constant CNSTMAXNUMDEVICES is user definable. The payload header consists of
CNSTMAXNUMDEVICES device configuration segments.

Payload Configuration Segment Structure
typedef struct

{

/* dwXIRLVendorCode is the user defined vendor code for the targeted
device. */

apiDWORD dwXIRLVendorCode;

/* dwXIRLDeviceID is the user defined device ID for this device. The PAVE
v1.0 API uses this field to verify that the Device ID in the payload
matches the targeted device. */

Figure 4-10: Generic Payload structure

Header

Bitstream for Bridge Device

Loadable Module for Bridge Device

Bitstream for Target Device

Loadable Module for Target Device

UG021_03_080601

http://www.xilinx.com

V1.0 www.xilinx.com 59
PAVE Framework User’s Guide 1-800-255-7778

Payloads
R

apiDWORD dwXIRLDeviceID;

/* dwIRLRevisionCode is a user defined revision code that the PAVE v1.0
API's use to verify that the payload is the correct version for the tar-
geted device. */

apiDWORD dwXIRLRevisionCode;

/* dwIRLVersion is a user defined version code that the PAVE v1.0 API's
use to verify that the payload object module is built using a correct ver-
sion for the targeted device. */

apiDWORD dwXIRLVersion;

/* ecDeviceType indicates the type of the device. Valid values are ecIRL-
SpartanDevice, ecIRLSpartanIIDevice, ecIRLVirtexDevice, ecIRLVirtexEDe-
vice, and ecIRLVirtexIIDevice. */

enIRLDeviceType ecDeviceType;

/* ecProgrammingMode indicates the hardware device programming interface
implementation for this device. Valid values include ecIRLSelectMapPro-
grammingMode, and ecIRLJTAGBoundaryScanProgrammingMode */

enIRLDeviceProgrammingMode ecProgrammingMode;

/* dwBitstreamSize indicates the device bitstream or XSVF buffer size in
bytes. */

size_t dwBitstreamSize;

/* dwModuleSize indicates the loadable module size in bytes. */

size_t dwModuleSize;

/* dwBitstreamSize indicates the device bitstream or XSVF buffer size in
bytes. */

size_t dwBitstreamOffset;

/* dwModuleSize indicates the loadable module size in bytes. */

size_t dwModuleOffset;

/* The following two parameters are checksums for the components. */

apiDWORD dwBitstreamCheckSum;

apiDWORD dwModuleCheckSum;

} structDeviceConfiguration;

typedefstructDeviceConfiguration *pntr_structDeviceConfiguration;

http://www.xilinx.com

60 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Chapter 4: Using the PAVE API
R

http://www.xilinx.com

V1.0 www.xilinx.com 61
PAVE Framework User’s Guide 1-800-255-7778

R

Chapter 5

Using PAVE for JTAG Configuration

How it operates
A key component of the PAVE v1.0 API is the JTAG TAP controller state machine. This
object governs the sequence of signals that are generated in the signal buffer object. The
JTAG component controls state machine sequencing of the TAP controller as required to
shift data into or out of the TDI and TDO signals respectively. Figure 5-1 illustrates the
program flow.

The XIRL Interface Register, Figure 5-2, contains a series of bits that constitute the JTAG
interface in PAVE v1.0. The PAVE software performs the function of the state machine that
generates the appropriate signals for the JTAG interface.By successive writes to the XIRL
Interface Register, the bus is clocked with the correct values.

From a software standpoint the use of this interface is relatively simple; a single high level
method invokes the JTAG interface and handles the entire configuration, returning the
status of the configuration once done. No knowledge of JTAG is required, nor are any
hardware state machines required.

Figure 5-1: PAVE Configuration Data Flow for JTAG and SelectMAP

PAVE v1.0 API

classSelectMAP

classSignalBuffer

cl
a
ss

R
e
g
is

te
r

cl
a
ss

P
la

tfo
rm

classJTAG

TAP
State
Machine

X
IR

L
In

te
rf

ac
e

R
eg

is
te

r

UG021_56_082001

http://www.xilinx.com

62 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Chapter 5: Using PAVE for JTAG Configuration
R

Design considerations
Several things should be considered in implementing a JTAG interface with PAVE:

• The payload must contain a .xsvf file for each module using JTAG.
• Since the clock is toggled on successive writes, the JTAG interface will run at about

half of the write frequency.

Code example
This example of using the JTAG interface involves several steps. Additional code for this
example can be found in the tutorial.cpp file.

// Get the size of the payload elements for the targeted device.

ptrServer->ptrDesignatedDevice->GetPayloadSize(

"payloads/mcp750durango_tutorial_jt.irl",

&dwBitstreamBufferSize,

&dwModuleBufferSize);

//Cache the payload elements into a local buffer.

ptrServer->ptrDesignatedDevice->CachePayload(

"payloads/mcp750durango_tutorial_jt.irl",

&ptrBitstreamBuffer,

&ptrModuleBuffer);

Figure 5-2: XIRL Interface Register Map

UG021_43_080601

XIRL_Interface[31:16]

XIRL_Interface[15:0]

SMAP_D[7:3]

SMAP_D[2:0]

29 28 27 26 25 24 23 22 21 20 19 18 17

Reserved
MODE_HSWAP_EN

MODE_M [2:0]

SMAP_BUSY
SMAP_DONE

SMAP_INIT
SMAP_PROG

31 30

12131415 11 10 9 8 7 6 5 4 3 2 1 0

SMAP_CS
SMAP_RW

SMAP_CCLK
SMAP_BUFF_OE

16

JTAG_BUFF_OE
JTAG_TCK
JTAG_TMS

JTAG_TDI
JTAG_TDO

http://www.xilinx.com

V1.0 www.xilinx.com 63
PAVE Framework User’s Guide 1-800-255-7778

Code example
R

/* Now upload the payload from these buffers. First the JTAG mode is set,
followed by the UploadPayloadFromBuffer method. */

ptrServer->ptrDesignatedDevice->ecIRLDeviceProgrammingMode =

ecIRLJTAGBoundaryScanProgrammingMode;

ptrServer->ptrDesignatedDevice->UploadPayloadFromBuffer(

dwBitstreamBufferSize,

ptrBitstreamBuffer,

dwModuleBufferSize,

ptrModuleBuffer);

/* Uncache the payload elements after the update has been completed. Your
error checking should occur here, if desired. */

ptrServer->ptrDesignatedDevice->UnCachePayload(

ptrBitstreamBuffer,

ptrModuleBuffer);

// Clean up so we don’t get memory leaks or leave dangling pointers

delete ptrFrameCounter;

delete ptrServer; }

Rewiring the XIRL Interface Register
The connectivity of the XIRL Register is defined in the classIRLBStreamDelivery.h file.
If you have need to quickly rewire the register to match your physical board wiring, this
can be done by modifying the definition. For example to swap the TDI and TDO pins, the
following section of code would be changed:

Old version:

#define CNSTBSDMSignalJTAG_TDIOFFSET 0x00000000

#define CNSTBSDMSignalJTAG_TDISTARTBIT 3

#define CNSTBSDMSignalJTAG_TDINUMBITS 1

#define CNSTBSDMSignalJTAG_TDOOFFSET 0x00000000

#define CNSTBSDMSignalJTAG_TDOSTARTBIT 4

#define CNSTBSDMSignalJTAG_TDONUMBITS 1

Swapped version:

#define CNSTBSDMSignalJTAG_TDIOFFSET 0x00000000

#define CNSTBSDMSignalJTAG_TDISTARTBIT 4

#define CNSTBSDMSignalJTAG_TDINUMBITS 1

#define CNSTBSDMSignalJTAG_TDOOFFSET 0x00000000

#define CNSTBSDMSignalJTAG_TDOSTARTBIT 3

#define CNSTBSDMSignalJTAG_TDONUMBITS 1

http://www.xilinx.com

64 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Chapter 5: Using PAVE for JTAG Configuration
R

http://www.xilinx.com

V1.0 www.xilinx.com 65
PAVE Framework User’s Guide 1-800-255-7778

R

Chapter 6

Using PAVE for SelectMAP
Configuration

How it operates
A key component of the PAVE v1.0 API is the SelectMAP object. This object governs the
sequence of signals that are generated in the classSignalBuffer object when a
SelectMAP configuration method is invoked. Figure 6-1 shows the data flow from the
SelectMAP object to the XIRL Interface Register

The XIRL Interface Register, mapped in Figure 6-2, contains a series of bits that constitute
the SelectMAP interface in PAVE v1.0. By writing to the XIRL Interface Register, the bus is
clocked with the correct values.

From a software standpoint the use of this interface is relatively simple; a single high level
method invokes the SelectMAP interface and handles the entire configuration, returning
the status of the configuration once done.

Figure 6-1: PAVE Configuration Data Flow for JTAG and SelectMAP

PAVE v1.0 API

classSelectMAP

classSignalBuffer

cl
a
ss

R
e
g
is

te
r

cl
a
ss

P
la

tfo
rm

classJTAG

TAP
State
Machine

X
IR

L
In

te
rf

ac
e

R
eg

is
te

r

UG021_56_082001

http://www.xilinx.com

66 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Chapter 6: Using PAVE for SelectMAP Configuration
R

Design considerations
Several things should be considered in implementing a SelectMAP interface with PAVE:

• The payload must contain a .bit file for each module using SelectMAP.
• Due to the sequence of updates to the XIRL Register, the SelectMAP interface will run

at about half of the write frequency.
• The SMAP_BUSY signal is not monitored in PAVE v1.0; if you intend to run this at a very

high speed, make sure you do not exceed the maximum allowable speed of the device
being configured.

Code example
This example of using the SelectMAP interface involves several steps. Additional code for
this example can be found in the tutorial.cpp file.

// Get the size of the payload elements for the targeted device.

ptrServer->ptrDesignatedDevice->GetPayloadSize(

"payloads/mcp750durango_tutorial_sm.irl",

&dwBitstreamBufferSize,

&dwModuleBufferSize);

//Cache the payload elements into a local buffer.

ptrServer->ptrDesignatedDevice->CachePayload(

"payloads/mcp750durango_tutorial_sm.irl",

Figure 6-2: XIRL Interface Register Map

UG021_43_080601

XIRL_Interface[31:16]

XIRL_Interface[15:0]

SMAP_D[7:3]

SMAP_D[2:0]

29 28 27 26 25 24 23 22 21 20 19 18 17

Reserved
MODE_HSWAP_EN

MODE_M [2:0]

SMAP_BUSY
SMAP_DONE

SMAP_INIT
SMAP_PROG

31 30

12131415 11 10 9 8 7 6 5 4 3 2 1 0

SMAP_CS
SMAP_RW

SMAP_CCLK
SMAP_BUFF_OE

16

JTAG_BUFF_OE
JTAG_TCK
JTAG_TMS

JTAG_TDI
JTAG_TDO

http://www.xilinx.com

V1.0 www.xilinx.com 67
PAVE Framework User’s Guide 1-800-255-7778

Code example
R

&ptrBitstreamBuffer,

&ptrModuleBuffer);

/* Upload the payload from these buffers using SelectMAP. First the
SelectMAP mode is set, then the upload is performed. */

ptrServer->ptrDesignatedDevice->ecIRLDeviceProgrammingMode =

ecIRLSelectMapProgrammingMode;

ptrServer->ptrDesignatedDevice->UploadPayloadFromBuffer(

dwBitstreamBufferSize,

ptrBitstreamBuffer,

dwModuleBufferSize,

ptrModuleBuffer);

/* Uncache the payload elements after the update has been completed. Your
error checking should occur here, if desired. */

ptrServer->ptrDesignatedDevice->UnCachePayload(

ptrBitstreamBuffer,

ptrModuleBuffer);

// Clean up so we don’t get memory leaks or leave dangling pointers

delete ptrFrameCounter;

delete ptrServer; }

Rewiring the XIRL Interface Register
The connectivity of the XIRL Register is defined in the classIRLBStreamDelivery.h file.
If you have need to quickly rewire the register, this can be done by modifying the
definition. For example to swap the CCLK and PROG pins, the following section of code
would be changed:

Old version:

#define CNSTBSDMSignalSMAP_CCLKOFFSET 0x00000000

#define CNSTBSDMSignalSMAP_CCLKSTARTBIT 6

#define CNSTBSDMSignalSMAP_CCLKNUMBITS 1

#define CNSTBSDMSignalSMAP_PROGOFFSET 0x00000000

#define CNSTBSDMSignalSMAP_PROGSTARTBIT 9

#define CNSTBSDMSignalSMAP_PROGNUMBITS 1

Swapped version:

#define CNSTBSDMSignalSMAP_CCLKOFFSET 0x00000000

#define CNSTBSDMSignalSMAP_CCLKSTARTBIT 9

#define CNSTBSDMSignalSMAP_CCLKNUMBITS 1

#define CNSTBSDMSignalSMAP_PROGOFFSET 0x00000000

#define CNSTBSDMSignalSMAP_PROGSTARTBIT 6

#define CNSTBSDMSignalSMAP_PROGNUMBITS 1

http://www.xilinx.com

68 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Chapter 6: Using PAVE for SelectMAP Configuration
R

http://www.xilinx.com

V1.0 www.xilinx.com 69
PAVE Framework User’s Guide 1-800-255-7778

R

Chapter 7

Network Configuration

The PAVE API provides both Host and Target side classes to implement a basic TCP/IP
sockets connection for you to test your IRL-enabled design across an ethernet cable. The
sockets code in PAVE v1.0 has no security and has only been tested in a simple lab
environment. Prior to deployment of any gear to the field, you should test your IRL-
enabled designs in all target environments. PAVE’s classTCPIP channel provides methods
to open and close socket connections as well as to receive and send data. The
serverapplication.vx project within the _project_mcp750admxrc framework provides
the classTCPIP channel to perform reconfiguration over a network.

Network Domains
The PAVE Framework implements a system architecture that includes several domains.
These domains interact with each other with predefined relationships.

The PAVE Framework is logically partitioned into five sections or domains that embody
PAVE's Client/Server view of the embedded application. These are the Host, Client, Server,
Common, and Other domains. In PAVE v1.0 only the client, host and server domains are
being used. Figure 7-1 below illustrates the various domains and how they fit in the
context of an embedded systems application.

This figure shows a typical partitioning for an embedded system and how the payload
component moves through the system.

Figure 7-1: Host, Client, and Server Domain Partitioning

Network

Upgrade
Portal

Host

Payload developed in
Hardware/Software
Co-Design Environment

Host
Domain

Processing
Equipment

Server

Payload

PAVE

UG021_06_080601

1

2

3 4

Client receives, verifies,
and validates the
payload prior to upload
to the server.

Client
Domain

Server applications
run here.

Server
Domain

System/Peripheral Bus

http://www.xilinx.com

70 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Chapter 7: Network Configuration
R

Definitions
Some of the terms being used here might be used in a different way than the common
understanding. To prevent any confusion on these relationships, let us start with a few
definitions:

• Object-centric - A self-centered viewpoint. Similar to being in an object and looking
out at other objects. An example of this is being in a car and watching other cars.

Object-centric terms:

- Upload - In the PAVE Framework, objects upload information. For example, the
classRegister::Upload method results in the register being written.

- Download - In the PAVE framework, objects download information. For example,
the classRegister::Download method results in the contents of a register being
read.

• System-centric - Something that is evaluated in the context of the overall system. This
is like viewing a whole set of objects from outside. An example of this is a bird’s eye
view.
- Server - An object that provides some functionality to other objects.
- Client - An object that requests another object to perform some function for it.

• Additional Definitions:
- Client Domain - The client domain is a component of the PAVE Logical System

Partitioning. It is comprised of those elements that are involved in the control of
embedded system components.

- Server Domain - The server domain is a component of the PAVE Logical System
Partitioning. It is comprised of those elements that provide specialized
functionality within an embedded system.

Host, Client and Server Domains
The Host domain encapsulates those systems and software elements that are typically
associated with system development. For example, the developer workstation and
associated development tools (compilers, debuggers, Xilinx Foundation and Alliance
Series tools, Wind River Tornado, PAVE utilities, etc.) reside in the Host domain. The
upgrade portal is considered to be part of the host domain.

The system controller (e.g. a cPCI system slot board) and the software that is targeted for it
are Client Domain elements. This is referred to as the Client Domain because this
component and the codes that run there function as clients within the system. The third
major domain is the Server domain. This domain consists of the reconfigurable logic and
associated components.

Client and Server Relationships
There are two sets of client and server relationships in an IRL-enabled system using PAVE.

• Between reconfigurable logic (server) and the processor (client). In this case, the
FPGA/server provide a function to the processor/client, e.g. an FFT computation.

• Between the Target (server) and Upgrade Portal/Host (client). The host/client
requests an upgrade and the Target/server fulfills this request. This relationship is not
to be confused with the client and server domains.

The programs that are run on the Host and Target to handle the upgrades are named
respectively. The Host/Upgrade portal runs clientapplication_nt and the Target runs
serverapplication_vx.

http://www.xilinx.com

V1.0 www.xilinx.com 71
PAVE Framework User’s Guide 1-800-255-7778

Configuration Across a TCP/IP Network
R

Configuration Across a TCP/IP Network
The Tornado tools support a basic socket connection through their sockLib - the WRS
generic socket library. The NT Host-side applications use the standard winsock library.
Since all the API and host-side applications source code is available, additional networking
code can be added as needed by the system application.

Once the socket connection is established, the transfer of the configuration data can begin.
There are two primary means of doing this transfer, push and pull. More detailed
instructions on running these applications can be found in Appendix D.

Pull Configuration
Pull is similar to downloading files from the internet. Pull configuration uses a knowledge
of where the file is on the network and downloads it for processing.

The code is called with a fixed location of the file. This file could reside on the fixed storage
for the processor or elsewhere on the network. The file “pull” contains this spawn process
call which successively retrieves payloads stored on disk and reconfigures the FPGA:

sp(admxrc_alldemo, 10)

The argument 10 is the number of repetitions of admxrc_alldemo, a application program
for the ADM-XRC board. From the this method in serverapplication_vx.cpp:

ptrServer->SampleLoad("fpga/fastlife");

Sampleload is a method in classADMXRC and which downloads a file locally (target
processor) and then uploads it to the FPGA.

Push Configuration
Push can be compared to sending attachments on email; at the other end, the recipient
opens and uses (processes) the file. This configuration method sets up a server/client
connection with the Upgrade Portal and then will perform the upgrades as requested. The
host/upgrade portal uploads the file to the server, which uploads it to the FPGA.

The file “push” runs on the target and sets the IP address and port, then spawns the
admxrc_serverapplication_vx process to handle this:

szIP = "127.0.0.1"

wPort = 4000

sp(admxrc_serverapplication_vx,szIP,wPort)

The IP address and The IP address should be set to match the address of the Target. You can
set the port as desired.

• admxrc_serverapplication_vx - handles semaphores, spawns the configuration
server,

• admxrc_configurationserver - Opens and listens on a given port for configuration
packets. Handles reconfiguration, application shutdown, and restart.

http://www.xilinx.com

72 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Chapter 7: Network Configuration
R

http://www.xilinx.com

XAPP412 www.xilinx.com 73
1-800-255-7778

© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

Summary Internet Reconfigurable Logic (IRL™) is a system design methodology to enable the remote
upgrade of hardware, while insuring the reliability of the upgrade. FPGAs, which are “Field
Programmable” are inherently capable of changing their functionality with a new bitstream.
IRL takes advantage of this capability by delivering new bitstreams and software drivers to the
remote hardware.

This application note will describe the basic concepts of an IRL-enabled system, detail design
considerations for building an IRL system and give a high level description of the PAVE
Framework, the Xilinx API and development framework that enables embedded systems to be
upgraded.

Introduction The advent of Xilinx FPGAs, Flash Memory devices and ubiquitous networks provide the
means to store bitstreams and then upgrade them once the hardware has been shipped to the
final customer. Architecting your system for IRL will allow you to upgrade software, drivers,
firmware, and hardware remotely.

Reasons for enabling your system for field upgradability include:

• Interoperability - Products frequently have to interoperate with other vendor’s products, but
there is no reasonable way to test all the possible interactions prior to shipping the
product. If the system is IRL-enabled, interoperability issues can be resolved at a minimal
cost.

• Time To Market - The hardware can be shipped sooner with a subset of the full
functionality. Features that would have taken too long to add prior to the initial release can
be added after shipment.

• Design Corrections - In the event a flaw in the product appears after it ships to the final
customer, it can be corrected without the need for returns, recalls, field service, and the
accompanying customer dissatisfaction

• Performance Upgrades - The performance of the system can be upgraded as the
engineering team has time to tune the algorithms and data paths.

IRL Concepts What is IRL?
Internet Reconfigurable Logic is a system design methodology that enables modification and
upgrading of hardware and software in a target system across a network without the need for a
service technician or user to directly perform the change. This methodology, when applied to
the design process, creates products that are IRL-enabled. IRL can enable upgrades of
multiple systems simultaneously, and the ability to go back to a previous configuration if
necessary.

A typical IRL-enabled system might include a

• A 32-bit processor based design with TCP/IP networking connectivity. An industry
standard example of this is the Single Board Computer (SBC), as typically seen in
CompactPCI and VME implementations.

• Real Time Operating System (RTOS) such as the WindRiver® Systems’ VxWorks®

• Xilinx PAVE (PLD API VxWorks Embedded) Framework

Appendix A

Architecting Systems for Upgradability with IRL Application Note: Internet Reconfigurable Logic

Architecting Systems for Upgradability
with IRL (Internet Reconfigurable Logic)

XAPP412 (v1.0) June 29, 2001

R

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

74 www.xilinx.com (v1.0) June 29, 2001
1-800-255-7778

R

When an upgrade is available, it would be sent to the target, where the PAVE API would
perform the upgrade. For example, a system, when IRL-enabled, might be able to
autonomously upgrade itself and recover from a power failure during this upgrade.

Elements of an IRL system
Creating an IRL-enabled system requires certain hardware and infrastructure components that
will allow the remote modifications to occur. As shown in Figure 1 below, there are several
elements to an IRL System.

The Host is where hardware/software design environment resides and where the FPGA
bitstreams and application software are created. This would include the Xilinx design tools, the
RTOS build environment (such as WindRiver Systems’ Tornado®) where your software
applications are developed, and the PAVE System Integration Framework (SIF), which ties all of
these efforts together.

Once the upgrade is created, it is assembled into a Payload that is sent to the system to be
upgraded. The PAVE Framework includes utilities that allow generation of the payload for the
build environment on the Host.

The Upgrade Portal is the computer your Target communicates with to obtain the payload.
This could reside in your domain, or your end customers could operate it.

The Network shown in Figure 1 can be any TCP/IP based network: an Intranet, a local
network, a Virtual Private Network (VPN) or even the public Internet. The type of network used
will depend on the security requirements and the connectivity available at the location of the
final product. PAVE can perform a basic TCP/IP socket connection; any additional protocols for
security or other purposes would need to be added by the developer.

The Target system is the system that needs the hardware and/or software upgrade. This is the
product shipped to your customers and which resides remotely. This IRL-enabled target system
will, at a minimum, have a processor running the user’s application, the PAVE API (part of the
PAVE Framework), the RTOS runtime client (such as WindRiver Systems’ VxWorks), and an
FPGA. The processor handles communication with the network and has connectivity to the
FPGA. The PAVE API is called to perform the upgrade by the user embedded application.

A typical payload structure is shown in Figure 2. Since changes in hardware usually imply new
software drivers, these are included in the payload structure, so the drivers can be upgraded
concurrently with the hardware. The applications that run on the target can be upgraded as
well.

Figure 1: Block Diagram of Internet Reconfigurable Logic System

TCP/IP Network

Upgrade
Portal

Target

XAPP412_01_041701

Host

Payload

http://www.xilinx.com

(v1.0) June 29, 2001 www.xilinx.com 75
1-800-255-7778

R

Expanding on the block diagram in Figure 1, an IRL system in the field could look similar to
Figure 3. Here we have a target processor, a system or peripheral bus, and the FPGA(s). The
processor is running the user’s application, PAVE API, and the WindRiver RTOS. The
Upgrade portal is running a PAVE client that communicates with the PAVE Server running on
the target. The payload passes from the host to the target, via the upgrade portal and the
Internet. Once it arrives at the target, the PAVE Server and API perform the required functions
to upgrade the system.

Figure 2: Payload Diagram

Header

Bitstream for Target Device 0

SW Device Driver for Target Device 0

X412_02_041701

Bitstream for Target Device 1

SW Device Driver for Target Device 1

Bitstream for Target Device N

SW Device Driver for Target Device N

Figure 3: Fielded IRL System

TCP/IP
Network

Upgrade
Portal

Host

Payload developed in
Hardware/Software
Design Environment

Host

Processor

Payload

PAVE

XAPP412_03_041701

1

2

3

Virtex

4

Processor receives
and validates the
payload prior to FPGA
reconfiguration.

Target Computer

Target System

Reconfigurable logic
resides here.

Target FPGA(s)

System/Peripheral Bus

http://www.xilinx.com

76 www.xilinx.com (v1.0) June 29, 2001
1-800-255-7778

R

Host, Upgrade Portal, and Network Concepts
The beginning of the upgrade process is the creation of new FPGA designs and accompanying
software drivers, followed by testing in an appropriate environment. Once the upgrade is ready
to be sent to the field, the developer uses the utilities supplied with PAVE to create the payload.

After the payload has been assembled, the developer would publish it out to the Upgrade
portal, similar to how files are published for internet delivery. Once the payload has been
published to the upgrade portal, there are two main means to deliver the payload to the target
system.

Push (see Figure 4) is similar to broadcasting; the payloads are sent by the upgrade portal to
each target system. This allows the Upgrade portal to control the upgrade process and ensure
all systems have been upgraded.

Pull (see Figure 5) is similar to FTP; the target system contacts the upgrade portal to see if new
upgrades are available. If so, the payload is pulled off the portal by the target.

Careful consideration of using push vs. pull should be done to ensure that upgrades do not
interfere with the end user’s operation of the system. The operator of a high-availability system,
such as the telecommunication services, might run the upgrade portal; in this case push would
offer complete control over the process. A user of a low-cost consumer product would not have
control of the upgrade portal. This user might prefer to have the option of upgrading or not; in
this case pull would be the best choice. If the upgrades are not free, the upgrade portal may
need to authenticate the user to ensure the upgrade was purchased.

Figure 4: Pushing a payload to the target

Figure 5: Pulling a payload from the upgrade portal

Network

Upgrade
Portal

Target

XAPP412_04_041701

1

2

3

Network

Upgrade
Portal

Response

Request

Target

XAPP412_05_041701

1

2

3

http://www.xilinx.com

(v1.0) June 29, 2001 www.xilinx.com 77
1-800-255-7778

R

Target Software Concepts
Figure 6 is a model of the software stack that runs on the target. At the highest level is the user
applications. Running concurrently with the application is the PAVE API and server that caches
the payload, and then performs the upgrade.

On the second level, the PAVE API provides system calls for the customer C++ applications to
perform the reconfiguration process. The customer applications and API both interface directly
with the RTOS.

The third level is the WindRiver RTOS. VxWorks is the run-time component of the Tornado II
embedded development platform and acts as the operating system "kernel" on your target
system. PAVE works directly with the VxWorks RTOS.

The Board Support Package (BSP) in level four in the stack is required to interface the desired
processor to the RTOS. Each different SBC running an RTOS will need a Board Support
Package to abstract the processor from the RTOS. The BSP used must match the RTOS and
the embedded processor combination used in your system. PAVE assumes the existence of the
BSP.

Target Hardware concepts

Processor Coupling

In the embedded market, processors have a bus known as the Processor Local Bus (PLB)
that is directly fed from the processor and an Embedded System Bus (ESB), such as PCI, that
usually requires a bridge or host chip to interface from the system bus to this secondary bus.
The PLB varies depending on the processor and is not a standardized bus like PCI. The
Embedded System Bus is not to be confused with the term "system bus", widely used in PC
architectures to refer to the PLB. Connecting to the processor through an ESB is considered to
be Loosely coupled and connecting through the PLB is considered to be Tightly coupled. In
Figure 7 we see an example of these two different processor couplings.

Until recently, advanced processors (32-bit) could only be accessed through bridge chips
supplied by the processor vendor. This would lead to a multi-chip connection, which added
performance bottlenecks, consumed board space and power, and added cost to the design.
Now, with programmable logic, it’s possible to directly access the processor local bus,
eliminating this series of chips, which is enhancing the importance of tight coupling to the PLB
in newer designs.

Figure 6: Target software stack

Application

PAVE
Device API

VxWorks RTOS

BSP for WRS VxWorks
RTOS (Hardware
Abstraction Layer)

Processor

X412_06_041701

http://www.xilinx.com

78 www.xilinx.com (v1.0) June 29, 2001
1-800-255-7778

R

Double Buffering

FPGA bitstreams are frequently stored on flash devices (including Xilinx XC1800 series
devices), which can experience problems if the power fails while being written. IRL involves
designing your hardware so that it is impervious to power failures during the upgrade process.
The goal is to never have a piece of hardware that fails to operate.

For the IRL hardware to meet this requirement, it should have a Double Buffer design. One
example method could consisting of a Default configuration that is always available and a
second configuration that can store the upgrade.This Default configuration is never upgraded or
changed except at the factory. Addition of the second storage location allows upgrades to
occur, since the Default can not be changed. Double buffering ensures the hardware can be
reliably upgraded.

Rollback is the ability to revert to a previous upgrade (possibly the Default). In a system that
has space for more than two configurations, (e.g. using a commodity flash chip), it could
rollback to a known good upgrade that was previously installed.

IRL Examples Having examined the concepts that make up the IRL design methodology, let’s examine a few
practical examples of how to implement an IRL-enabled target system using PAVE.

Basic IRL-enabled System
Figure 8 shows an IRL-enabled system with a processor, an FPGA, and multiple FPGA
configuration storage areas. The Processor communicates with the FPGA and, after
configuration, can perform an update of the upgrade PROM. A register in the bridge address
space receives the new bitstream and writes it out to the PROM via the JTAG controller.

Figure 7: Processor coupling

Loosely Coupled (e.g., PCI)

SBC

SBC

Tightly Coupled
(e.g., Processor Local Bus)

X412_07_050901

E
m

be
dd

ed
 S

ys
te

m
 B

us

R

P
ro

ce
ss

or
 L

oc
al

 B
us

R

http://www.xilinx.com

(v1.0) June 29, 2001 www.xilinx.com 79
1-800-255-7778

R

The PROM marked "Default" is the known good configuration from the factory. The default
should never be upgraded in the field as it provides a baseline configuration that the hardware
can revert to in case of failure of the upgrade process. This protects the hardware against
power failures, customer or technician mistakes, and any other failure mode that would render
the hardware inoperable (and non-upgradable). By preventing the end user from updating this
PROM, he will always have a fallback position in the event the upgrade fails. The factory
jumpers on the Default PROM’s JTAG lines physically prevent the changing of this PROM,
except during the manufacturing process. The upgrade PROM can be changed through the
JTAG controller in the FPGA. With only two storage locations, the new upgrade always
overwrites the old upgrade.

The Select Logic and Non-volatile storage (NVS) is to determine which PROM should be used
and use the default if a configuration error occurs during the loading of the upgrade. In it’s
simplest form, it would attempt to load the upgrade PROM, monitor the DONE line of the FPGA,
and if it failed, automatically revert to the default PROM. Adding a small NVS device, such as a
Dallas Semiconductor DS2430A (scratchpad EEPROM) would allow specifying which PROM
to boot from initially. This NVS could allow a more sophisticated approach of choosing among
multiple upgrades. The select logic could be a CPLD or even something simpler, but, like the
default, it should not be modifiable outside the factory (unless there is a double buffer for the
CPLD configuration).

In the event of a configuration fault, the select logic should be able to detect this and attempt to
configure the FPGA with the Default bitstream. If the bitstream in the upgrade buffer is

Figure 8: Example two PROM system

Embedded
Processor

FPGA

X412_08_041701

Processor Coupling
(ESB or PLB)

Bridge

Slave Serial/
Parallel/

SelectMAP
Config In

XC18Vxx
Upgrade

Select
Logic/NVS

XC18Vxx
Default

Factory Jumper

JTAG
Controller

JTAG
Config In

JT
A

G
C

on
ne

ct
or

C
N

T
L

D
A

T
A

Factory
Jumper

http://www.xilinx.com

80 www.xilinx.com (v1.0) June 29, 2001
1-800-255-7778

R

corrupted or non-existent, the FPGA DONE signal will not go high. In this case the select logic
should attempt to load the default bitstream.

IRL in a Bridge System
Figure 9 shows an IRL system with a bridge and the two PROM model discussed in the last
example. The bridge FPGA initializes off the PROMs; subsequently the target FPGA can be
configured from the processor through the bridge. In the previous example the FPGA was both
the bridge and the target. The interface in this case could be with either the ESB or PLB. A
register in the Bridge interface would accept the configuration data sent from the processor and
pass it on to the target via either the SelectMAP or JTAG controllers.

Use of a bridge in your system is not an IRL requirement; this example may or may not apply to
your design. This figure is an example of how you could perform double buffering, but not the
only way.

In a programmable bridge system the processor cannot directly send configuration data prior to
the initial configuration of the bridge FPGA. All of the aforementioned details on insuring a
known good configuration still applies to this bridge. For the target FPGA in this diagram, the
processor is able to send configurations directly to it from the processor’s data storage. In this
case, two means of configuration supported under PAVE are shown, SelectMAP and JTAG.
The select logic used by the bridge is a CPLD that is acting as a mux for the two PROMs.

General IRL System Considerations for Bridges

Communication between the Processor and the target FPGA occurs through a bridge. The
bridge facilitates the interface to the processor through the specified interface (e.g. ESB, PLB).
Most processors require a separate chip (a Bridge) to support an ESB. When using a bridge
chip, the processor is not directly mastering the bus to the FPGA. A few processors do have
direct ESB support on chip. These are considered to have the bridge built-in; this bridge would
be non-upgradable.

Figure 9: System with Bridge and Target FPGAs

Embedded
Processor

Bridge
FPGA

Target
FPGA

X412_09_050901

Processor Coupling
Bridge

Interface
SelectMAP
Controller

Slave Serial/
Parallel/

SelectMAP
Config In

XC18Vxx
Upgrade

XC18Vxx
Default

Config.
CPLD

Factory
Jumper

JT
A

G
C

on
ne

ct
or

S
el

ec
tM

A
P

C
on

ne
ct

or

CNTL

C
N

T
L

D
A

T
A

DATA

Factory
Jumper

JTAG
Controller

JTAG
Config In

http://www.xilinx.com

(v1.0) June 29, 2001 www.xilinx.com 81
1-800-255-7778

R

Most SBCs do not provide direct access to the PLB via a plug-in form factor. In the case of a
CompactPCI system, a form factor known as PCI Mezzanine Card (PMC) is typically used. A
PMC card loosely coupled to the processor could be on the SBC board, or a PMC carrier in the
same chassis. A tight coupling would be the processor local bus (PLB), such as the PowerPC
405GP peripheral bus that is fed directly from the processor. The upgrade to the FPGA passes
through this coupling and into the FPGA; this data is then updated into the appropriate storage
area.

Memory usage for storing bitstreams
Building on the models in last two examples, this next example adds additional memory space
for bitstream storage. Figure 10 shows a loosely coupled PMC system with configuration flash
in addition to the two PROMs. This flash chip is a standard commodity flash, which are
available in varying sizes. Depending on the design, the flash chip could store additional Bridge
bitstreams, while depending on the Processor to supply the configuration to the target FPGA,
or target FPGA configurations could be stored there as well. Flash chips are able to store much
larger amounts of configuration data, and this could translate to multiple upgrades or support
for the largest FPGAs.

In this case, the CPLD is considered to be a thin device, basically a data mux with the majority
of the logic in the FPGA. The address lines feeding from both the FPGA or CPLD to the flash
chip would allow it be controlled from either chip.

In this example the default could reside in the Configuration flash or in a PROM; thus no
jumpers are shown on the PROMs. If this is the case, it’s the responsibility of the system
designer to ensure fail-safe operation.

Figure 10: PMC example with Bridge, PROMs, and Flash

Virtex-II Virtex-II

X412_10_050901

PCI Signals PCI
Core

SelectMAP
Controller

Slave Serial/
Parallel/
Config In

XC18Vxx

XC18Vxx
Config.
CPLD

XC9500

Config. Flash

JT
A

G
C

on
ne

ct
or

P
M

C
 C

on
ne

ct
or

s

S
el

ec
tM

A
P

C
on

ne
ct

or

CNTL

CNTL

SelectLink

SelectLink

C
N

T
L

D
A

T
A

A
D

D
R

E
S

S

DATA

DATA

Factory
Jumper

JTAG
Controller

JTAG
Config In

http://www.xilinx.com

82 www.xilinx.com (v1.0) June 29, 2001
1-800-255-7778

R

Use of PAVE in IRL Systems
The PAVE Framework is an embedded applications software development framework that can
be employed to facilitate the development of reconfigurable embedded applications.

Object Oriented Hardware

The PAVE Framework and its components are a collection of C++ classes and object models
that abstract an implementation of a Xilinx FPGA, called the IRL-enabled Device
implementation. PAVE treats the programmable hardware as an object within the system,
similar to software objects used in C++. As a result, applications that are written using PAVE
tend to be highly object oriented, modular, and extremely upgradable. You can change a single
module without replacing the whole framework.

SelectMAP and JTAG support

For PAVE 1.0, the programming interfaces supported are SelectMAP and JTAG, via the
configuration register contained in your design, typically in the bridge. When compiling the
design under the PAVE, you define the location of this and any other user registers in the device
memory map. PAVE will encapsulate this programming interface and generate C++ source and
header files and associated project files based on your design definition.

Available Development Platforms
Several development platforms that can be used for IRL are available today:

Motorola

The Motorola MCP750 SBC has the following features:

• MPC750 Power PC processor

• A PMC slot

• Ethernet connection

• Compact Flash

Motorola Computer Group can be contacted at:

http://www.mcg.mot.com

Alpha Data

The Alpha Data ADM-XRC is a PMC card that allows reconfiguration of the FPGA across a
bridge. Details can be found at:

http://www.alphadata.co.uk/dsheet/adm-xrc.html

WInd River Systems

Wind River Systems makes the Tornado-II RTOS development platform.

http://www.windriver.com

Xilinx

Xilinx offers IRL training and the PAVE Framework.

http://www.xilinx.com/xilinxonline

Summary
With minor hardware and software changes, you can enable your systems for IRL and add
much value for both you and your customers. The addition of IRL to your product will extend it’s
life and simplify support and distribution models. With IRL, you could manufacture a single
physical version of your hardware and ship multiple different hardware versions. And your
customers will appreciate the speedy, hassle-free upgradability of your products.

http://www.mcg.mot.com
http://www.alphadata.co.uk/dsheet/adm-xrc.html
http://www.windriver.com
http://www.xilinx.com
http://www.xilinx.com/xilinxonline

(v1.0) June 29, 2001 www.xilinx.com 83
1-800-255-7778

R

The Xilinx PAVE Framework provides a powerful software framework that allows designers to
easily integrate IRL into their designs. The object oriented nature of PAVE eliminates the need
to handle low level issues with JTAG or SelectMAP programming, allowing the designer to
focus on the end-user’s application.

Future revisions of the PAVE Framework will bring additional functionality to your IRL-enabled
design. The modular nature of PAVE will allow you to add new features without disturbing your
current application framework.

Revision
History

The following table shows the revision history for this document.

Date Version Revision

6/29/01 1.0 Initial Xilinx release.

http://www.xilinx.com

84 www.xilinx.com (v1.0) June 29, 2001
1-800-255-7778

R

http://www.xilinx.com

V1.0 www.xilinx.com 85
PAVE Framework User’s Guide 1-800-255-7778

R

Appendix B

Using Durango with the MCP750
and PAVE

Durango Board
Durango, shown in Figure B-1, is a platform for demonstrating key IRL concepts and is a
model for the IRL architecture. It is a PMC card that includes a Virtex-II PCI bridge and a
second Virtex-II FPGA as the target of the IRL reconfiguration in PAVE v1.0.

Durango was designed to implement a target architecture for a Xilinx-based
reconfigurable system. The block diagram in Figure B-2 represents the portion of the
design utilized in the application and integration of the PAVE v1.0 functionality.

The architecture and design of Durango was intended to provide a platform to develop
feature beyond the initial PAVE v1.0 release. Additional information on the Durango
board/reference design can be found in Appendix C.

Note: When viewed in Adobe Acrobat, the picture above appears best at ~200% magnification.

Figure B-1: Durango IRL Reference Design (PMC side)

http://www.xilinx.com

86 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix B: Using Durango with the MCP750 and PAVE
R

Durango Block Diagram
Features of the Virtex-II-based Durango supporting PAVE v1.0:

• SelectMAP Configuration PAVE v1.0 (XC2V1000)
• JTAG Configuration, PAVE v1.0 (XC2V1000, XC18V04)
• Virtex-II PCI Bridge
• Virtex-II Target
• XC18V04 Non-volatile Storage
• 32-bit, 3.3 V PCI compliant Interface
• PMC PCI
• XIRL Register
• Direct SelectMAP connector for debugging.
• Direct JTAG connector for debugging.

Durango MCP750 PAVE Implementation
The PAVE Framework was tested in two hardware platforms. One of these platforms was
a combination of the Motorola MCP750 and the Avnet/Xilinx Durango board. The IRL
host used an Ethernet TCP/IP connection to download the VxWorks images and payloads
to the MCP750 board. The other platform was the Alpha Data ADM-XRC/MCP750,
covered in Appendix D.

The MCP750 is a Single Board Computer (SBC) based on the PowerPC processor. It comes
in a 6U CompactPCI form factor. Figure B-3 shows the block diagram of the MCP750 and
the Durango board as the hardware was tested.

The Durango is a Virtex-II-based design (XC2V1000) and has been integrated with the
MCP750 over the CompactPCI backplane. The ADM-XRC is a Virtex-E-based design
(XCV1000E), housed on the PMC slot of the MCP750. The communication between the
MCP750 and the ADM-XRC (see Appendix D) was performed over the onboard PCI bus.
PAVE provided scalability of existing code, not only for evolution from a Virtex-E to a

Figure B-2: Block Diagram of Durango Features Supported in PAVE v1.0

Virtex-II
FPGA

Virtex-II
FPGA

UG021_58_092001

Bridge
Interface

SelectMAP
Controller

Slave Serial/
Parallel/

SelectMAP
Config In

XC18Vxx
Upgrade

XC18Vxx
Default

Config.
CPLD

Factory
Jumper

JT
A

G
C

on
ne

ct
or

S
el

ec
tM

A
P

C
on

ne
ct

or

CNTL

C
N

T
L

D
A

T
A

DATA

Jumper

JTAG
Controller

JTAG
Config In

Jumper

http://www.xilinx.com

V1.0 www.xilinx.com 87
PAVE Framework User’s Guide 1-800-255-7778

Durango Framework
R

Virtex-II product, but also across the unique board designs. Even with the layering
difference of PCI bridging and respective latency, building this solution with the Wind
River RTOS, VxWorks, enabled seamless scaling across the partitioning of the Target FPGA
within the system.

Durango Framework
The Durango software framework can be found under _platform_mcp750durango. The
_platform_systemgenerator directory is essentially an un-generated version of the
Durango framework. Running the system generator on _platform_systemgenerator, as
outlined in the getting Started chapter, will create a directory identical to
_platform_mcp750durango.

The _platform_mcp750durango framework is initially ready to open in the Tornado tools,
when installed in D:\.

Figure B-3: MCP750 with Durango Block Diagram

UG021_44_090501

C
om

pa
ct

P
C

I B
ac

kp
la

ne
 @

 3
.3

 V

Ethernet

I/F Chip

C
om

pa
ct

P
C

I
C

om
pa

ct
P

C
I

B
rid

ge

Bridge

PPC

Memory Controller

FLASH
P

C
I L

oc
al

 B
us

PPC Processor Bus

Motorola MCP750

PMC Carrier Card

P
M

C
 C

on
ne

ct
or

Bridge FPGA
VirtexIIBridge Target FPGA

VirtexIIEngine

PCI
Signals

PCI
Core

XIRL
Interface
RegisterSlave Serial/

Parallel/
Config In

X
C

18
V

xx
X

C
18

V
xx

CPLD
MUXJT

A
G

C
on

ne
ct

or
P

M
C

 C
on

ne
ct

or
S

el
ec

tM
A

P
C

on
ne

ct
or

CNTL

C
N

T
L

D
A

T
A

DATA

JTAG

SelectMAP

DATA
Application

Data
Application

Data

SelectMAP
JTAG

Config In

http://www.xilinx.com

88 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix B: Using Durango with the MCP750 and PAVE
R

Code Examples
The following illustrates a typical program for reconfiguring the Durango server
component. The program is very basic in that it simply loads a payload into memory,
writes it to the targeted device, and then frees the memory when the operation is
completed.

Void durango_tutorial(

void *ptrArguments)

{ char *ptrBaseAddress;

void *ptrVirtexIIEngineBitstream,

void *ptrVirtexIIEngineModule;

structPayloadHeader strPayloadHeader;

pntr_classDurango ptrServer;

// Initialize local variables.

ptrBitstream = NULL;

ptrModule = NULL;

// Instantiate a dummy address space for this test.

ptrBaseAddress = (char *)calloc(4096, sizeof(char));

// Instantiate a server component.

ptrServer= new classDurango(ptrBaseAddress);

// If the server was successfully instantiated,

if (ptrServer != NULL)

{

/* Pull the payload of the local file system into allocated memory for

all three target devices. */

ptrServer->ptrVirtexIIEngine->CachePayload("testpayload.bin",

&ptrInputFPGABitstream,

&ptrInputFPGAModule);

// Load the payload into its targeted device.

ptrServer->ptrVirtexIIEngine->UploadPayloadFromBuffer(

strPayloadHeader.theDeviceConfiguration[0].dwBitstreamSize,

ptrInputFPGABitstream,

strPayloadHeader.theDeviceConfiguration[0].dwModuleSize,

ptrInputFPGAModule);

// Free allocated buffers.

ptrServer->ptrVirtexIIEngine->UnCachePayload(ptrVirtexIIEngineBitstream,

http://www.xilinx.com

V1.0 www.xilinx.com 89
PAVE Framework User’s Guide 1-800-255-7778

Resources
R

 ptrVirtexIIEngineModule);

delete ptrServer;}

else

{

// Add error code here.

}

free(ptrBaseAddress);}

Resources
• Motorola produces the MCP750 Single Board Computer. Additional details on the

Motorola MCP750 can be found at:

http://www.mcg.mot.com/cfm/templates/product.cfm?PageID=895&ProductID=22
&PageTypeID=1

• Avnet sells the Durango board as part of a IRL Reference Design kit. Avnet also sells
many of the system components used in development of PAVE.

http://www.ads.avnet.com

- Xilinx PMC IRL Reference Design Kit (Durango) can be ordered from Avnet
Design Services. The part number is ADS-XLX-PMC-IRL

- Durango Data sheet
http://www.xilinx.com/partinfo/ds084.pdf

- Additional Motorola components for this reference design are available from
Avnet:
- MCP750-1352(cPCI PPC Single Board Computer)
- CPX2408-k (cPCI Enclosure)
- CFLASH-001(10MB cFlash Memory Card)

• Tracewell Systems offers the T-Frame for Compact PCI which allows easy access to
boards without the use of extender cards.

www.tracewellsystems.com

- 580-6001-F00-00 (cPCI Enclosure)
• ACT Technico sells PMC carrier cards for CompactPCI.

www.acttechnico.com

- 7000-3 cPCI/PMC Carrier card

http://www.xilinx.com
http://www.mcg.mot.com/cfm/templates/product.cfm?PageID=895&ProductID=22&PageTypeID=1
http://www.xilinx.com/partinfo/ds084.pdf
http://www.ads.avnet.com
www.tracewellsystems.com
www.acttechnico.com

90 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix B: Using Durango with the MCP750 and PAVE
R

XIRL Interface Register Tables
For your convenience we have included this table to assist in debugging the XIRL
configuration register as you write new code and test it.

Register Name: XIRL_Interface

BAR Space: BAR1

Address Offset: 0x00000000

Width: 32 bits

Power Up Value: 0x01A0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R/W

R/W JTAG_BUFF_OE2

R/W JTAG_TCK

R/W JTAG_TMS

R/W JTAG_TDI

R JTAG_TDO

R/W SMAP_BUFF_OE2

R/W SMAP_CCLK

R/W SMAP_RW1

R/W SMAP_CS1

R/W SMAP_PROG

R SMAP_INIT1

R SMAP_DONE

R SMAP_BUSY1

R/W SMAP_D[2:0]1

Table B-1: XIRL Interface Register Debugging Table (Lower Bits)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 R/W

R/W SMAP_D[7:3]1

R/W MODE_M[2:0]

R/W MODE_HSWAP_EN

R/W Reserved

Table B-2: XIRL Interface Register Debugging Table (Upper Bits)

http://www.xilinx.com

V1.0 www.xilinx.com 91
PAVE Framework User’s Guide 1-800-255-7778

XIRL Interface Register Tables
R

Notes:
1. Dual mode pins on Target device. Need to tri-state once configuration is complete.
2. Internal registered control signal that does not go out to Pad.

Signal Name Descriptions
• JTAG_BUFF_OE - Tri-state control for the output buffers on the JTAG signals, TCK, TMS,

TDI. It is active LOW Tri-state enable and is LOW after power up.
• JTAG_TCK, TMS,TDI, TDO - JTAG signals used to program the Target FPGA.
• SMAP_BUFF_OE - Tri-state control for the output buffers on the SMAP signals. Active

LOW tri-state control and is LOW after powerup
• SMAP_CCLK, SMAP_RW, SMAP_CS, SMAP_PROG, SMAP_INIT, SMAP_BUSY, SMAP_D[7:0] -

SelectMAP signals used to program the Target FPGA via SelectMAP port.
• M[2:0] - FPGA mode pins. JTAG mode is the default mode after power up.
• HSWAP_EN - Controls the pull-ups during configuration while M[2:0] selects the

desired configuration mode. The signal HSWAP_EN is active LOW. A logic 0 commands
the IOBs to employ weak pull-ups during configuration.

http://www.xilinx.com

92 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix B: Using Durango with the MCP750 and PAVE
R

http://www.xilinx.com

V1.0 www.xilinx.com 93
PAVE Framework User’s Guide 1-800-255-7778

R

Appendix C

Durango Reference Design

The Durango board is joint project of Xilinx and Avnet to provide an IRL reference design
for a Xilinx-based embedded system. The Durango board is not only a reference design for
our customers; it has been used in the development, integration, and validation of the
PAVE API and SIF.

A reference design package is available from Xilinx supporting the PAVE v1.0 release.
Appendix B identifies how Durango has been integrated in an embedded development
platform to support PAVE v1.0 integration and validation. Durango is available for
purchase from Avnet Design Services. Details on how to obtain the Durango reference
package are provided later in this appendix. All other components of the development
platform are commercially available. A system bill of material covering the components of
the development platform is available; see Additional Information, page 96. Combining
the PAVE v1.0 SIF, API and template applications along with the Xilinx and Wind River
Systems tools enable the customer to create an upgradable platform.

Hardware Features
While Durango supports the required feature set for the PAVE 1.0 release, the architecture
and design are also intended to provide a platform to develop features for future releases.
Appendix B along with PAVE v1.0 support Durango for this release. The block diagram in
Figure C-2 and the following list includes both components and features of the board to
that will enable a flexible platform for continued development:

• Xilinx components:
- XC2V1000-4FG456C
- XC2V1000-4FF896C (upgradable to XC2V1500 or XC2V2000)
- XC18V04VQ44C
- XC95288XL-7TQ144C
- XCR3256XL-7CS280C

• Memory:
- Two: 16 MByte SDRAMs
- Six: 512Kbx18 QDR SRAMs
- One: 2 MByte Parallel Flash memory
- Two: 4Mbit Flash memories

• Board I/O Connectors and Interfaces
- 32-Bit, PCI Bus Interface Connector
- IBM PPC405GP External Peripheral Bus Connector
- 2 JTAG Connectors
- SelectMAP Connector
- AvBus™ I/O Connector

http://www.xilinx.com

94 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix C: Durango Reference Design
R

- Mictor Test Connectors
• Miscellaneous:

- 50 and 60 MHz oscillator
- LEDs
- Dip Switches (JTAG chain)
- Push Buttons
- Battery backup for V-II bitstream encryption

Additional details on Durango are provided in the reference design zip file.

Note: When viewed in Adobe Acrobat, the picture above appears best at ~200% magnification.

Figure C-1: Durango IRL Reference Design Front and Rear

http://www.xilinx.com

V1.0 www.xilinx.com 95
PAVE Framework User’s Guide 1-800-255-7778

Hardware Features
R

Note: To better view this drawing in Adobe Acrobat, click on the “Rotate View 90° CW”
Icon in the Acrobat Command Bar.

Figure C-2: Block Diagram of Durango

V
ir

te
x-

II
B

ri
d

g
e

V
ir

te
x-

II
T

ar
g

et

U
G

02
1_

57
_0

91
10

1

P
C

I
S

ig
na

ls

P
C

I
C

or
e

S
D

R
A

M

S
el

ec
tM

A
P

C
on

tr
ol

le
r

T
B

D
In

te
rf

ac
e

C
on

fig
ur

at
io

n
P

or
t I

n

S
D

R
A

M
 C

on
tr

ol
le

r

X
C

18
V

04

X
C

18
V

04
C

o
n

fig
.

C
P

L
D

X
C

95
00

P
P

C
C

P
L

D
X

P
L

A
3

C
o

n
fig

. F
la

shJT
A

G
C

on
tr

ol
le

r

JTAG Config In

JTAG
Connector

PMC Connectors

I/O Connectors

SelectMAP
Connector

C
N

T
L

C
N

T
L/

D
A

T
A

P
P

C
 S

ig
na

ls

C
N

T
L/

D
A

T
A

S
el

ec
tL

in
k

S
el

ec
tL

in
k

CNTL

A
D

D
R

DATA

S
D

R
A

M CNTL

CNTL

DATA

DATA

Q
D

R
S

R
A

M

CNTL

A
D

D
R

DATA

Q
D

R
S

R
A

M

Q
D

R
S

R
A

M
Q

D
R

S
R

A
M

Q
D

R
S

R
A

M

Q
D

R
S

R
A

M

CNTL

DATA

C
N

T
L

D
A

T
A

C
N

T
L

D
A

T
A

CNTL

DATA

CNTL

DATA

ADDRESS

D
A

T
A

JTAG
Connector

PCC Connectors

JT
A

G
C

on
tr

ol
le

r

A
D

D
R

ADDR

http://www.xilinx.com

96 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix C: Durango Reference Design
R

Availability
The Durango board is available as part of the IRL Reference Design Kit, part number ADS-
XLX-PMC-IRL which can be ordered via Avnet Design Services. Price, availability, and
bundled options as described in detail at the Avnet Design Services web site at

www.ads.avnet.com

Additional Information
Durango has been tested with PAVE and the Motorola MCP 750 platform as detailed in
Appendix B. As a Virtex-II based design, Durango does not support 5 V PCI.

In the PAVE Release zip file, Xilinx provides detailed information about the Durango
hardware. This files included are:

• Schematics

• PCB layout (PADS)
• Bill of material, both for the Durango board and the development system.
• Bitstreams
• Source files for the FPGA and CPLD designs. The Xilinx PCI core is not included as part

of these source files.

The latest version of this zip file can be obtained at:

http://www.xilinx.com/irl

To compile the PCI Bridge design you must own or purchase a license for the Xilinx PCI
core. Details and documentation on the Xilinx PCI core can be found at:

http://www.xilinx.com/pci

Durango PCB Layout
Examples of the Durango layout with details of the major components can be seen in
Figure C-3 and Figure C-4.

http://www.xilinx.com/irl
http://www.xilinx.com/pci
www.ads.avnet.com
http://www.xilinx.com

V1.0 www.xilinx.com 97
PAVE Framework User’s Guide 1-800-255-7778

Durango PCB Layout
R

Figure C-3: Durango Layout Diagram (front)

QDR

Memory (6)

1.5 Volt

Regulator

UG021_46_090701

2.5 Volt

Regulator

3.3 Volt

Regulator

SDRAM (1 of 2)

PMC

Connectors

Virtex-II Bridge

(XC2V1000)

Virtex-II Engine

(XC2V1000)

XC1800

PROMs

CoolRunner

XCR3256XL

JTAG

Switches

http://www.xilinx.com

98 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix C: Durango Reference Design
R

Figure C-4: Durango Layout Diagram (back)

Peripheral Bus

Connectors (3)

Commodity

Flash

CoolRunner

JTAG

Battery Holder

(Virtex-II Bitstream

Encryption Keys)

SDRAM (2 of 2)

SelectMAP and

JTAG Connector

(Cable Access)

XC95288XL

CPLD

UG021_47_090701

QDR JTAG

(Boundary Scan

Only)

http://www.xilinx.com

V1.0 www.xilinx.com 99
PAVE Framework User’s Guide 1-800-255-7778

R

Appendix D

Using ADM-XRC with the MCP750
and PAVE

ADM-XRC Board
The ADM-XRC, produced by Alpha Data Ltd, shown in Figure D-1, is a platform for
demonstrating many of the key IRL concepts. It is a PMC card that includes a PLX 9080 PCI
bridge and a Virtex-E FPGA as the target of the IRL reconfiguration in PAVE v1.0. The
XCV1000E has a BG560 foot print which enabled the ADM-XRC to accommodate Virtex
devices from XCV405E to XCV2000E

Note: When viewed in Adobe Acrobat, the picture above appears best at ~300% magnification.

Figure D-1: Alpha Data ADM-XRC Board

http://www.xilinx.com

100 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix D: Using ADM-XRC with the MCP750 and PAVE
R

ADM-XRC MCP750 PAVE Implementation
The PAVE Framework was tested in two hardware platforms. One of these platforms was
a combination of the Motorola MCP750 and the Alpha Data Ltd. ADM-XRC board. The
IRL host, used an Ethernet TCP/IP connection to download the VxWorks images and
payloads to the MCP750 board. The other platform was the Avnet/Xilinx Durango,
covered in Appendix B.

The ADM-XRC software framework is a fixed (pre-generated) framework that must be
installed on D:\ drive. The _platform_mcp750admxrc framework is initially ready to open
in the Tornado tools, when installed in D:\.

Setup
The MCP750 is a Single Board Computer (SBC) based on the PowerPC processor. It comes
in a 6U CompactPCI form factor. The MCP750 has a single PMC slot at 5V. The ADM-XRC
board uses a PLX 9080 as the PCI interface which supports 5 V PCI. Figure D-3 show the
block diagram of the MCP750 and the ADM-XRC board as the hardware was tested.

Figure D-2: ADM-XRC Block Diagram

SSRAM
128K

x
32

SSRAM
128K

x
32

SSRAM
128K

x
32

SSRAM
128K

x
32

I/O Connector

Virtex
XCV1000E

PCI
Interface
PLX 9080

Debug
Resources

Clock
Generator

A/D

Select I/O

UG021_49_080601

PCI Bus

http://www.xilinx.com

V1.0 www.xilinx.com 101
PAVE Framework User’s Guide 1-800-255-7778

Applications
R

INP Files for ADM-XRC
Similar to the Durango framework, the ADM-XRC framework was generated from a series
of .inp files that describe the hardware to PAVE. The ADM-XRC contains three devices:

• PLX9080
• VirtexEngine
• ControlCPLD

The .inp file for the PLX device maps all the registers for the PLX device, except the PCI
registers. PCI registers are abstracted by classPCIDevice.

Applications
Included with the PAVE v1.0 release are several applications for the ADM-XRC. The push
and pull applications are similar to the concepts outlined in XAPP412. The FFT application
passes data to three nodes for processing: Host CPU, MCP750, and ADM-XRC V1000E
FPGA.
These application descriptions presume some familiarity with how to configure and use
the MCP750 and use of the Tornado tools. Steps that you must perform that are common to
all applications:
• The serial port on the MCP750 should be connected to a computer running the

VxWorks hyperterminal (COM1 or COM2 depending on your system.) as seen below
during the boot process. Use the prompt in the terminal to configure the MCP750’s
settings.

• You must start the Tornado FTP server for the MCP750 board to log into and fetch the

Figure D-3: MCP750 with ADM-XRC Block Diagram

PCI
Interface

Alpha Data ADM-XRC

UG021_50_090501

B
ac

kp
la

ne
Ethernet

I/F Chip
C

om
pa

ct
P

C
I

B
rid

ge

Bridge

PPC

Memory Controller

FLASH

P
C

I L
oc

al
 B

us

PPC Processor Bus

Motorola MCP750

P
M

C
 C

on
ne

ct
or

SRAM

Virtex-II

http://www.xilinx.com

102 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix D: Using ADM-XRC with the MCP750 and PAVE
R

VxWorks image it needs to boot. In Security -> User/Rights... you will need to
enter the name of the MCP750 board as a new user.

Figure D-4: Tornado VxWorks Hyperterminal

Figure D-5: Tornado FTP server

http://www.xilinx.com

V1.0 www.xilinx.com 103
PAVE Framework User’s Guide 1-800-255-7778

Applications
R

• You have to start the target server to run the applications - You can run it from a
command line with these settings:
tgtsvr.exe 127.0.0.1 -n mcp750 -V -m 2097152 -B wdbrpc -Bt 5 -Br 5

Alternately, you can run the Target Server from Tornado. Tools -> Target Server -
> Configure... as shown below .Click Launch when done. In either case, set the IP
address to match the IP address of the target.

• For all applications run the server side applications first. Specifically these scripts:
- pull

- push

- fft

Push and Pull
The push and pull applications show different means of updating the FPGA and system
software. Pull simply consists of a series of fetches to known locations on the network.
Push is a bit more sophisticated, requiring the software to set up a socket and perform a
series of processes to complete the update of the FPGA and associated driver.

This set of steps assumes you have the ADM-XRC hardware installed in a MCP750. For
simplicity, the following paths will be under D:_platform_mcp750admxrc\ unless listed
as part of a file.

Figure D-6: Tornado Target Server Configuration

http://www.xilinx.com

104 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix D: Using ADM-XRC with the MCP750 and PAVE
R

Pull Application

1. Edit _builds\client\systemimage\default\pull. Set the IP address to match the
IP address of the MCP750; set the host name and path appropriately.

wStatus = ioDefPathSet("irlhost01:
d:/_platform_mcp750admxrc/_builds/client/systemimage/default");

szIP = "127.0.0.1"

2. Open the tornado shell. You must be in _builds\client\systemimage\default
directory; you can verify this by the pwd command.

-> pwd

D:/_platform_mcp750admxrc/_builds/client/systemimage/default

Invoke the pull script (use the “<“ symbol before the filename)

-> <pull

3. To stop, wait for the default 10 iterations to complete.

Push Application

1. Edit _builds\client\systemimage\default\push. The Hostname and path in the
ioDefPathSet command and the Target IP address should be changed to reflect your
Host and Target systems.

ioDefPathSet("irlhost01:d:/_platform_mcp750admxrc/_builds/client/
systemimage/default");

szIP = "127.0.0.1"

Edit the following files so their IP addresses match the target’s IP address and, in the
case of the configurationclient.bat file, also set the path:

- \bin\release\bin\startclient.bat

- \bin\release\bin\configurationclient.bat

- \bin\release\bin\shutdown.bat

2. Open _builds_\admxrc.wsp in Tornado. Build the following projects:
- ppc405gnu_admxrc_controlcpld

- ppc405gnu_admxrc_plx9080

- ppc405gnu_admxrc_serverapplication_vx

- ppc405gnu_admxrc_virtexengine

3. Open the tornado shell. You must be in _builds\client\systemimage\default
directory; you can verify this by the pwd command.

-> pwd

D:/_platform_mcp750admxrc/_builds/client/systemimage/default

Start the push script (use the “<“ symbol before the filename)

-> <push

4. Start the client application by running \bin\release\bin\startclient.bat from
the host.

5. To change the application with Push, drag and drop payloads (.irl files) icons onto
the \bin\release\bin\configurationclient.bat file. Payloads files are under
_builds\client\systemimage\default\payloads\. When this works successfully,
you will see a dialog as shown below:

http://www.xilinx.com

V1.0 www.xilinx.com 105
PAVE Framework User’s Guide 1-800-255-7778

Applications
R

6. To stop this application, perform the following steps:

a. In the Tornado shell, issue this command (including the “<“):
-> <stop

b. From the host run \bin\release\bin\shutdown.bat

c. Type ctrl-c in the startclient.bat window. Both the Target and Host side tasks
should now be terminated and the system is ready to run another application.

FFT
Design partitioning is an important concept for IRL Architectures. The design can be
viewed in three paradigms:

• Modeling -The algorithm can be modeled on the host processor. This modeling can be
done in Mathwork’s Matlab.

• Embedding/Fielding - The Target processor can run the algorithm with code
compiled from C.

• Acceleration - The FPGA increases the speed of the algorithm to multiple times the
performance of either the host or target CPU.

How you divide the work between the processor (host or embedded) and the FPGA can
make a tremendous difference in speed for the final product. Computational-intensive
tasks such as large FFTs and Encryption/Decryption can find a large performance increase
when run on an FPGA. With this in mind, we have included an FFT application that
interacts with Matlab to show how a design can be partitioned in a system. For this
application Matlab is providing data to the nodes doing the FFT computation; Matlab
receives the processed data and plots it for all three implementations (Host CPU, Target
CPU, and Target FPGA).

Running the FFT Application
This set of steps assumes you have the ADM-XRC hardware installed in a MCP750 and
have Matlab installed on your host. For simplicity, the following paths will be under
D:_platform_mcp750admxrc\ unless listed as part of a file.

1. Edit the \bin\release\bin\startsimulation.m file. Replace the IP Address
“127.0.0.1” with the actual IP address being used on your Target (e.g. MCP750 board)
system. If your system is not “Big Endian” set that to false.

theFunctionControl.bServerBigEndian = 'TRUE';

theFunctionControl.szIPAddress = 127.0.0.1;

2. Edit _builds\client\systemimage\default\fft and set the IP address to match
the target’s IP address; set the host name and path appropriately.

wStatus = ioDefPathSet("irlhost01:

Figure D-7:

http://www.xilinx.com

106 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix D: Using ADM-XRC with the MCP750 and PAVE
R

d:/_platform_mcp750admxrc/_builds/client/systemimage/default");

szIP = "127.0.0.1"

If you haven’t done so from the Push and Pull applications, edit the following files so
their IP addresses match the target’s IP address and, in the
configurationclient.bat, set the path:

- \bin\release\bin\startclient.bat

- \bin\release\bin\configurationclient.bat

- \bin\release\bin\shutdown.bat

3. VisualC++ Build - NT / Win2000 Build - The Host-side executables and batch files are
present in the framework and do not require rebuilding. However, Visual Studio
workspace (*.dsw) files are provided to rebuild these executables. If you need to
rebuild the file follow these steps:
- Open _builds\host\admxrc\clientapplications\clientapplication\

x86-win32\admxrc_clientapplication_ntdsw file in VisualC++.
- The FileView tab should look as shown below.

- Select the following menu items:
- Build -> Set Active Configuration... and set it to release configuration.
- Build -> Clean
- Build -> Rebuild All

Visual Studio workspaces are also present in:

_builds\host\admxrc\clientapplications\configurationclient\
x86-win32\

_builds\host\admxrc\clientapplications\shutdownx86-win32\

_builds\host\admxrc\simulations\mexfunctiontemplate\x86-win32\

4. Open _builds_\admxrc.wsp in Tornado. Build the following projects:
- ppc405gnu_admxrc_controlcpld

- ppc405gnu_admxrc_plx9080

- ppc405gnu_admxrc_serverapplication_vx

- ppc405gnu_admxrc_virtexengine

5. Open the tornado shell. You must be in _builds\client\systemimage\default
directory; you can verify this by the pwd command.

Figure D-8:

http://www.xilinx.com

V1.0 www.xilinx.com 107
PAVE Framework User’s Guide 1-800-255-7778

Applications
R

-> pwd

D:/_platform_mcp750admxrc/_builds/client/systemimage/default

Start the FFT script (use the “<“ symbol before the filename)

-> <fft

6. Start the client application by running \bin\release\bin\startclient.bat from
the host.

7. Start Matlab on Host NT or Win2000 system. Within Matlab command window
>> cd D:_platform_mcp750admxrc\bin\release\bin

>> startsimulation.m

You should now see a single peaked frequency spectrum sweep back and forth on a Matlab
plot window, as seen below. The first picture shows the FFT computation being performed
on the MCP750 CPU. The second shows the FFT being performed on the Host CPU. The
last shows the FFT being run on the FPGA on the ADM-XRC. The Host CPU and Target
CPU use floating point math; the Target FPGA uses integer math.

Figure D-9: 1024 Point FFT on the Host CPU

http://www.xilinx.com

108 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix D: Using ADM-XRC with the MCP750 and PAVE
R

Figure D-10: 1024 Point FFT on the Target CPU (top) and ADM-XRC V1000E FPGA (bottom)

http://www.xilinx.com

V1.0 www.xilinx.com 109
PAVE Framework User’s Guide 1-800-255-7778

Resources
R

8. To stop the FFT application, perform the following steps:

a. In the Tornado shell, issue this command (including the “<“):
-> <stop

b. From the host run \bin\release\bin\shutdown.bat

c. Type ctrl-c in the Matlab window.

ADM-XRC Payloads
The payloads included with the PAVE frameworks have been generated for a V1000E
based ADM-XRC board. Creating payloads for an ADM-XRC with a different FPGA is
done by

1. Place the bit file with the appropriate naming convention into the
_builds\client\systemimage\default\fpga directory.

2. Edit _builds_\generatepayload.bat to reflect the new bit file name.

3. Run generatepayload.bat. This will create a .irl payload file in
_builds\client\systemimage\default\payloads\

Note: The generatepayload.bat script may take a few minutes to complete.

Resources
• Motorola - Additional details on the Motorola MCP750 can be found at:

http://www.mcg.mot.com/cfm/templates/product.cfm?PageID=895&ProductID
=22&PageTypeID=1

• Alpha Data Ltd. - Additional details on the ADM-XRC board can be found at:

http://www.alphadata.co.uk/dsheet/adm-xrc.html

• Mathworks - Producers of the Matlab program.

http://www.mathworks.com/

http://www.mcg.mot.com/cfm/templates/product.cfm?PageID=895&ProductID=22&PageTypeID=1
http://www.alphadata.co.uk/dsheet/adm-xrc.html
http://www.mathworks.com/
http://www.xilinx.com

110 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix D: Using ADM-XRC with the MCP750 and PAVE
R

http://www.xilinx.com

V1.0 www.xilinx.com 111
PAVE Framework User’s Guide 1-800-255-7778

R

Appendix E

PAVE API Summary

API Reference Manual
This chapter provides detailed descriptions of the objects that comprise the PAVE Object
Model and associated API.

The classes referenced in this chapter are:

• The classRegister object.
• The classDevice object.
• The classIRLDevice object
• The classSignalBuffer object.
• The classStateMachine object.

http://www.xilinx.com

112 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix E: PAVE API Summary
R

classRegister::classRegister

Synopsis
classRegister::classRegister (

apiPHYSICALADDRESS ptrOffset,

apiWORD wStartBit,

apiWORD wNumberOfBits,

apiBOOL bReadable,

apiBOOL bWriteable,

apiBOOL bInitialize,

apiDWORD dwInitializedValue,

size_t wAddressableWidth,

void *ptrParentDevice,

enAPIReturnCodes (*pfnDeviceModelFunction)(apiBYTE, void *),

apiBOOL bEnablePAL,

pntr_classIRLPlatform ptrPlatform

);

Description

This function is the default constructor for a classRegister object. The classRegister
object is an abstraction of a register in the programming interface of an IRL-enabled device.

Parameters

• ptrOffset: Offset address of the register within the IRL-enabled
device.

• wStartBit: The starting bit of the register field within a 32 bit word.

• wNumberOfBits: The width of the register field in bits.

• bReadable: Indicates whether or not the register is readable.

• bWriteable: Indicates whether or not the register is writable.

• bInitialize: Indicates whether or not an initial value should be
written to the register when it is instantiated.

• dwInitializedValue: Indicates the value to write to the register.

• wAddressableWidth: Indicates the addressing boundary on which the
register field is addressed.

• ptrParentDevice: A pointer to the device object in which this register
resides.

• pfnDeviceModelFunction: A pointer to a function which is called when
this register is written to. See chapter 4, Simulation with the SIF.

• bEnablePAL: Enables the uses of platform specific routines for reading
and writing to registers.

• ptrPlatform: The pointer to the platform abstraction layer.

Return Values

Pointer to the newly instantiate register object.

See Also

classRegister::~classRegister

http://www.xilinx.com

V1.0 www.xilinx.com 113
PAVE Framework User’s Guide 1-800-255-7778

API Reference Manual
R

classRegister::~classRegister

Synopsis
classRegister::~classRegister (

);

Description

This function is the destructor for a classRegister object.

Parameters

N/A

Return Values

See Also

classRegister::classRegister

http://www.xilinx.com

114 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix E: PAVE API Summary
R

classRegister::Upload

Synopsis
enAPIReturnCodes classRegister::Upload (

apiDWORD dwValue

);

Description

This function results in the value in dwValue being written to the register that this instance
of the register object abstracts. The register is properly address and the data aligned
accordingly based on the register specification.

Parameters

• dwValue: Indicates the value to write to the register.

Return Values

enAPIFunctionSuccessful – if the function completes successfully.

enAPIFunctionFailed – if the function fails.

See Also

classRegister::Download

classRegister::Modify

http://www.xilinx.com

V1.0 www.xilinx.com 115
PAVE Framework User’s Guide 1-800-255-7778

API Reference Manual
R

classRegister::Download

Synopsis
enAPIReturnCodes classRegister::Download (

apiDWORD *ptrValue

);

Description

This function results in the register contents being read into the apiDWORD pointed to by
ptrValue. The register is properly address and the data aligned accordingly based on the
register specification.

Parameters

• ptrValue: a pointer to a apiDWORD into which the register contents are
to be read.

Return Values

enAPIFunctionSuccessful – if the function completes successfully.

enAPIFunctionFailed – if the function fails.

See Also

classRegister::Upload

classRegister::Modify

http://www.xilinx.com

116 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix E: PAVE API Summary
R

classRegister::Modify

Synopsis
enAPIReturnCodes classRegister::Modify (

apiDWORD dwValue

);

Description

This function results in the register contents being modified by the contents of apiDWORD
dwValue. The Modify method is particularly useful for addressing fields within a register.
The register is properly address and the data aligned accordingly based on the register
specification.

Parameters

• dwValue: an apiDWORD from which the register contents are to be
written.

Return Values

enAPIFunctionSuccessful – if the function completes successfully.

enAPIFunctionFailed – if the function fails.

See Also

classRegister::Download

classRegister::Upload

http://www.xilinx.com

V1.0 www.xilinx.com 117
PAVE Framework User’s Guide 1-800-255-7778

API Reference Manual
R

classRegister::UploadSignals

Synopsis
enAPIReturnCodes classRegister::UploadSignals (

apiDWORD *ptrBuffer,

apiDWORD dwBufferLength,

apiDWORD dwSetupTime,

apiDWORD dwHoldTime

);

Description

This function results in the contents of a signal buffer being sequentially written to the
register which the instance of this register object abstracts.

Parameters

• ptrBuffer: a pointer to a buffer of data values to write to the
register.

• dwBufferLength: the length of the buffer.

• dwSetupTime: the delay in platform ticks to wait prior to writing each
value to the register.

• dwHoldTime: the delay in platform ticks to wait after writing each
value to the register.

Return Values

enAPIFunctionSuccessful – if the function completes successfully.

enAPIFunctionFailed – if the function fails.

See Also

classRegister::Download

classRegister::Upload

classRegister::Modify

http://www.xilinx.com

118 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix E: PAVE API Summary
R

classRegister::ToggleSignal

Synopsis
enAPIReturnCodes classRegister::UploadSignals (

apiDWORD dwAssertCondition,

apiDWORD dwDeassertedCondition,

apiDWORD dwNumToggles,

apiDWORD dwSetupTime,

apiDWORD dwHoldTime

);

Description

This function results in the contents of a register being sequentially written to with the
dwAssertedCondition and dwDeassertedCondition values.

Parameters

• dwAssertCondition: The value to write to the register as the asserted
condition.

• dwDeassertedCondition: The value to write to the register as the
deasserted condition.

• dwNumToggles: The number of iterations to assert the signal on the
port.

• dwSetupTime: the delay in platform ticks to wait prior to writing each
value to the register.

• dwHoldTime: the delay in platform ticks to wait after writing each
value to the register.

Return Values

enAPIFunctionSuccessful – if the function completes successfully.

enAPIFunctionFailed – if the function fails.

See Also

classRegister::Download

classRegister::Upload

classRegister::Modify

http://www.xilinx.com

V1.0 www.xilinx.com 119
PAVE Framework User’s Guide 1-800-255-7778

API Reference Manual
R

classRegister::Reset

Synopsis
enAPIReturnCodes classRegister::Reset (

);

Description

This function results in the initial value being written to the register that this instance of the
register object abstracts.

Parameters

Return Values

enAPIFunctionSuccessful – if the function completes successfully.

enAPIFunctionFailed – if the function fails.

See Also

classRegister::Download

classRegister::Modify

http://www.xilinx.com

120 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix E: PAVE API Summary
R

classRegister::Clear

Synopsis
enAPIReturnCodes classRegister::Clear (

);

Description

This function results in a 0x00000000 being written to the register that this instance of the
register object abstracts.

Parameters

Return Values

enAPIFunctionSuccessful – if the function completes successfully.

enAPIFunctionFailed – if the function fails.

See Also

classRegister::Download

classRegister::Modify

http://www.xilinx.com

V1.0 www.xilinx.com 121
PAVE Framework User’s Guide 1-800-255-7778

API Reference Manual
R

classRegister::Initialize

Synopsis
enAPIReturnCodes classRegister::Initialize (

);

Description

This function results in the initial value being written to the register that this instance of the
register object abstracts.

Parameters

Return Values

enAPIFunctionSuccessful – if the function completes successfully.

enAPIFunctionFailed – if the function fails.

See Also

classRegister::Download

classRegister::Modify

http://www.xilinx.com

122 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix E: PAVE API Summary
R

classRegister::Display

Synopsis
enAPIReturnCodes classRegister::Display (

char *szAnnotation

);

Description

This function prints to stdout the contents of the register that this instance of the register
object abstracts.

Parameters

• szAnnotation: A annotating text string that you wish to have printed
out in conjunction with the register contents.

Return Values

enAPIFunctionSuccessful – if the function completes successfully.

enAPIFunctionFailed – if the function fails.

See Also

classRegister::Download

http://www.xilinx.com

V1.0 www.xilinx.com 123
PAVE Framework User’s Guide 1-800-255-7778

API Reference Manual
R

classDevice::classDevice

Synopsis
classDevice::classDevice (

);

Description

This function is the default constructor for device objects that have a register-level
programming model. Note that this is different from the IRL-enabled Device object, which
is re-configurable.

Parameters

Return Values

Pointer to a new classDevice object.

See Also

classDevice::~classDevice

http://www.xilinx.com

124 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix E: PAVE API Summary
R

classDevice::classDevice

Synopsis
classDevice::classDevice (

apiPHYSICALADDRESS ptrBaseAddress,

pntr_classIRLPlatform ptrPlatform

);

Description

This function is a constructor for device objects that have a register-level programming
model. Note that this is different from the IRL-enabled Device object, which is re-
configurable.

Parameters

• ptrBaseAddress: The mapped physical base address of the device that
this instance of the classDevice object abstracts.

• ptrPlatform: The pointer to the platform abstraction layer object.

Return Values

Pointer to a new classDevice object.

See Also

classDevice::~classDevice

http://www.xilinx.com

V1.0 www.xilinx.com 125
PAVE Framework User’s Guide 1-800-255-7778

API Reference Manual
R

classDevice::classDevice

Synopsis
classDevice::classDevice (

apiWORD wDeviceIndex,

apiWORD wDeviceInstance,

apiPHYSICALADDRESS ptrBaseAddress,

pntr_classIRLPlatform ptrPlatform

);

Description

This function is a constructor for device objects that have a register-level programming
model. Note that this is different from the IRL-enabled Device object, which is re-
configurable.

Parameters

• wDeviceIndex: The index of the device on the board.

• WDeviceInstance: The instance of this particular class of device on the
board.

• ptrBaseAddress: The mapped physical base address of the device that
this instance of the classDevice object abstracts.

• ptrPlatform: The pointer to the platform abstraction layer object.

Return Values

Pointer to a new classDevice object.

See Also

classDevice::~classDevice

http://www.xilinx.com

126 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix E: PAVE API Summary
R

classDevice::~classDevice

Synopsis
classDevice::~classDevice (

);

Description

This function is a destructor for device objects that have a register-level programming
model. Note that this is different from the IRL-enabled Device object, which is re-
configurable.

Parameters

Return Values

See Also

classDevice::classDevice

http://www.xilinx.com

V1.0 www.xilinx.com 127
PAVE Framework User’s Guide 1-800-255-7778

API Reference Manual
R

classDevice::UploadRegister

Synopsis
enAPIReturnCodes classDevice::UploadRegister(

apiPHYSICALADDRESS ptrOffset,

apiWORD wStartBit,

apiWORD wNumberOfBits,

apiDWORD dwValue,

size_t wAddressableWidth

);

Description

This function uploads the contents of dwValue to the register pointed to by ptrOffset.

Parameters

• ptrOffset: The offset to the devices register.

• wStartBit: The start bit of the register field to upload.

• wNumberOfBits: The number of bits in the register field.

• dwValue: The value to upload to the register.

• wAddressableWidth: How to address the register (apiBYTE, apiWORD,
apiDWORD)

Return Values

enAPIFunctionSuccessful – if the function completes successfully.

enAPIFunctionFailed – if the function fails.

See Also

classDevice::classDevice

http://www.xilinx.com

128 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix E: PAVE API Summary
R

classIRLDevice::classIRLDevice

Synopsis
classIRLDevice::classIRLDevice (

apiPHYSICALADDRESS ptrBaseAddress,

pntr_classIRLPlatformptrPlatform

);

Description

The default constructor of the classIRLDevice object. The classIRLDevice object is an
abstraction of an IRL-enabled device. This is a virtual base class from which system
component specific IRL-enabled device objects can be derived.

Parameters

• ptrBaseAddress: The mapped physical base address of the IRL-enabled
device that this instance of the classIRLDevice object abstracts.

• ptrPlatform: The pointer to the platform abstraction layer object.

Return Values

This function returns a pointer to a new instance of a classIRLDevice
object.

See Also

classIRLDevice::~classIRLDevice

http://www.xilinx.com

V1.0 www.xilinx.com 129
PAVE Framework User’s Guide 1-800-255-7778

API Reference Manual
R

classIRLDevice::classIRLDevice

Synopsis
classIRLDevice:: classIRLDevice (

apiWORD wDeviceIndex,

apiWORD wDeviceInstance,

apiPHYSICALADDRESS ptrBaseAddress,

pntr_classIRLPlatformptrPlatform

);

Description

The constructor of the classIRLDevice object. The classIRLDevice object is an
abstraction of an IRL-enabled with a register programming model.

Parameters

• wDeviceIndex: The index of the device on the board.

• WDeviceInstance: The instance of this particular class of device on the
board.

• ptrBaseAddress: The mapped physical base address of the IRL-enabled
device that this instance of the classDevice object abstracts.

• ptrPlatform: The pointer to the platform abstraction layer object.

Return Values

This function returns a pointer to a new instance of a classIRLDevice
object.

See Also

classIRLDevice::~classIRLDevice

http://www.xilinx.com

130 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix E: PAVE API Summary
R

classIRLDevice::~classIRLDevice

Synopsis
classIRLDevice::~classIRLDevice (

);

Description

The default destructor of the classDevice object. This function deinstantiates the
classIRLDevice object.

Parameters

Return Values

See Also

classIRLDevice::classIRLDevice

http://www.xilinx.com

V1.0 www.xilinx.com 131
PAVE Framework User’s Guide 1-800-255-7778

API Reference Manual
R

classIRLDevice::CachePayload

Synopsis
enAPIReturnCodes classIRLDevice::CachePayload (

apiSTRING szPayloadURL,

void **pptrBitstreamBuffer,

void **pptrModuleBuffer

);

Description

This method reads in the specified payload object from the local file system and places the
bitstream and object module segments in memory.

Parameters

• szPayloadURL: the fully qualified path of the payload object which is
to be uploaded into the device that this instance of the device object
abstracts.

• pptrBitstreamBuffer: pointer a pointer to the buffer where the
configuration bitstream is to be stored.

• pptrModuleBuffer: pointer to a pointer to the buffer where the binary
object module is to be stored.

Return Values

enAPIFunctionSuccessful – if the function completes successfully.

enAPIFunctionFailed – if the function fails.

See Also

classIRLDevice::classIRLDevice

http://www.xilinx.com

132 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix E: PAVE API Summary
R

classIRLDevice::GetPayloadSize

Synopsis
enAPIReturnCodes classIRLDevice::GetPayloadSize (

apiSTRING szPayloadURL,

apiDWORD *ptrBitstreamSize,

apiDWORD *ptrModuleSize

);

Description

This method returns the sizes of the configuration bitstream and binary object module
segments in bytes. This information is extracted from the header of the payload object.

Parameters

• szPayloadURL: the fully qualified path of the payload object which is
to be uploaded into the device that this instance of the device object
abstracts.

• ptrBitstreamSize: a pointer to an apiDWORD where the configuration
bitstream size is to be stored.

• ptrModuleSize a pointer to an apiDWORD where the binary object module
size is to be stored.

Return Values

enAPIFunctionSuccessful – if the function completes successfully.

enAPIFunctionFailed – if the function fails.

See Also

classIRLDevice::classIRLDevice

http://www.xilinx.com

V1.0 www.xilinx.com 133
PAVE Framework User’s Guide 1-800-255-7778

API Reference Manual
R

classIRLDevice::GetPayloadOffset

Synopsis
enAPIReturnCodes classIRLDevice::GetPayloadOffset (

apiSTRING szPayloadURL,

apiDWORD *ptrBitstreamOffset,

apiDWORD *ptrModuleOffset

);

Description

This method returns the offset of the configuration bitstream and binary object module
segments in bytes. This information is extracted from the header of the payload object.

Parameters

• szPayloadURL: the fully qualified path of the payload object which is
to be uploaded into the device that this instance of the device object
abstracts.

• ptrBitstreamOffset: a pointer to an apiDWORD where the configuration
bitstream size is to be stored.

• ptrModuleOffset a pointer to an apiDWORD where the binary object module
size is to be stored.

Return Values

enAPIFunctionSuccessful – if the function completes successfully.

enAPIFunctionFailed – if the function fails.

See Also

classIRLDevice::classIRLDevice

http://www.xilinx.com

134 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix E: PAVE API Summary
R

classIRLDevice::GetPayloadChecksum

Synopsis
enAPIReturnCodes classIRLDevice::GetPayloadOffset (

apiSTRING szPayloadURL,

apiDWORD *ptrBitstreamChecksum,

apiDWORD *ptrModuleChecksum

);

Description

This method returns the checksum of the configuration bitstream and binary object
module segments in bytes. This information is extracted from the header of the payload
object.

Parameters

• szPayloadURL: the fully qualified path of the payload object which is
to be uploaded into the device that this instance of the device object
abstracts.

• ptrBitstreamChecksum: a pointer to an apiDWORD where the configuration
bitstream size is to be stored.

• PtrModuleChecksum: a pointer to an apiDWORD where the binary object
module size is to be stored.

Return Values

enAPIFunctionSuccessful – if the function completes successfully.

enAPIFunctionFailed – if the function fails.

See Also

classIRLDevice::classIRLDevice

http://www.xilinx.com

V1.0 www.xilinx.com 135
PAVE Framework User’s Guide 1-800-255-7778

API Reference Manual
R

classIRLDevice::UploadPayloadFromBuffer

Synopsis
enAPIReturnCodes classIRLDevice::UploadPayloadFromBuffer (

apiDWORD dwBitstreamBufferSize,

void *ptrBitstreamBuffer,

apiDWORD dwModuleBufferSize,

void *ptrModuleBuffer

);

Description

This method uploads the cached configuration bitstream to the IRL-enabled device that
this instance of the classIRLDevice object abstracts. Additionally, the cached binary
object module is reloaded.

Parameters

• dwBitstreamBufferSize: the size of the configuration bitstream cache
in bytes.

• ptrBitstreamBuffer: a pointer to the buffer where the configuration
bitstream is contained.

• DwModuleBufferSize: the size of the object module buffer.

• ptrModuleBuffer: a pointer to the buffer where the binary object module
is contained.

Return Values

enAPIFunctionSuccessful – if the function completes successfully.

enAPIFunctionFailed – if the function fails.

See Also

classIRLDevice::DownloadPayloadToBuffer

classIRLDevice::UploadPayloadFromFile

http://www.xilinx.com

136 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix E: PAVE API Summary
R

classIRLDevice::UploadPayloadFromFile

Synopsis
enAPIReturnCodes classIRLDevice::UploadPayloadFromFile (

apiSTRING szHeaderPath,

apiSTRING szBitstreamPath,

apiSTRING szModulePath

);

Description

This method uploads the file system resident configuration bitstream to the IRL-enabled
device that this instance of the classIRLDevice object abstracts. Additionally, the cached
binary object module is reloaded.

Parameters

• szHeaderPath: the fully qualified path of the payload object header
which is to be uploaded into the device that this instance of the
device object abstracts.

• szBitstreamPath: the fully qualified path of the configuration
bitstream which is to be uploaded into the device that this instance of
the device object abstract.

• szModulePath: the fully qualified path of the binary object module
which is to be uploaded into the device that this instance of the
device object abstract.

Return Values

enAPIFunctionSuccessful – if the function completes successfully.

enAPIFunctionFailed – if the function fails.

See Also

classIRLDevice::DownloadPayloadToFile

classIRLDevice::UploadPayloadFromBuffer

http://www.xilinx.com

V1.0 www.xilinx.com 137
PAVE Framework User’s Guide 1-800-255-7778

API Reference Manual
R

classIRLDevice::SplitPayload

Synopsis
enAPIReturnCodes classIRLDevice::SplitPayload (

apiSTRING szPayloadPath,

apiSTRING szHeaderPath,

apiSTRING szBitstreamPath,

apiSTRING szModulePath

);

Description

This method splits a payload object into its constituent components.

Parameters

• szPayloadPath: the fully qualified path of the payload object

• szHeaderPath: the fully qualified path of the payload object header.

• szBitstreamPath: the fully qualified path of the configuration
bitstream.

• szModulePath: the fully qualified path of the binary object.

Return Values

enAPIFunctionSuccessful – if the function completes successfully.

enAPIFunctionFailed – if the function fails.

See Also

N/A.

http://www.xilinx.com

138 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix E: PAVE API Summary
R

classIRLDevice::DownloadPayloadToBuffer

Synopsis
enAPIReturnCodes classIRLDevice::DownloadPayloadToBuffer (

void *ptrBitstreamBuffer,

void *ptrModuleBuffer

);

Description

This method downloads the current device configuration into the indicated configuration
bitstream buffer. The binary object module associated with this component is also
downloaded.

Parameters

• ptrBitstreamBuffer: the buffer into which the configuration bitstream
is to be downloaded.

• ptrModuleBuffer: the buffer into which the binary object module is to
be loaded.

Return Values

enAPIFunctionSuccessful – if the function completes successfully.

enAPIFunctionFailed – if the function fails.

See Also

classIRLDevice::UploadPayloadFromBuffer

classIRLDevice::DownloadPayloadToFile

http://www.xilinx.com

V1.0 www.xilinx.com 139
PAVE Framework User’s Guide 1-800-255-7778

API Reference Manual
R

classIRLDevice::DownloadPayloadToFile

Synopsis
enAPIReturnCodes classIRLDevice::DownloadPayloadToBuffer (

apiSTRING szBitstreamPath,

apiSTRING szModulePath

);

Description

This method downloads the current device configuration into the indicated configuration
bitstream file. The binary object module associated with this component is also
downloaded to a file.

Parameters

• szBitstreamPath: the fully qualified path of the configuration
bitstream which is to be uploaded into the device that this instance of
the device object abstract.

• szModulePath: the fully qualified path of the binary object module
which is to be uploaded into the device that this instance of the
device object abstract.

Return Values

enAPIFunctionSuccessful – if the function completes successfully.

enAPIFunctionFailed – if the function fails.

See Also

classIRLDevice::UploadPayloadFromFile

classIRLDevice::DownloadPayloadToBuffer

http://www.xilinx.com

140 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix E: PAVE API Summary
R

classIRLDevice::UnCachePayload

Synopsis
enAPIReturnCodes classIRLDevice::UnCachePayload (

void *ptrBitstreamBuffer,

void *ptrModuleBuffer

);

Description

This method frees configuration bitstream and module buffers that were allocated by
CachePayload. This function must be called at the completion of the updating process.

Parameters

• ptrBitstreamBuffer: a pointer to the configuration bitstream buffer.

• ptrModuleBuffer: a pointer to the binary object module buffer.

Return Values

enAPIFunctionSuccessful – if the function completes successfully.

enAPIFunctionFailed – if the function fails.

See Also

classIRLDevice::CachePayload

classIRLDevice::UploadPayloadFromBuffer

http://www.xilinx.com

V1.0 www.xilinx.com 141
PAVE Framework User’s Guide 1-800-255-7778

API Reference Manual
R

classIRLDevice::UploadRegister

Synopsis
enAPIReturnCodes classDevice::UploadRegister (

apiPHYSICALADDRESS ptrOffset,

apiWORD wStartBit,

apiWORD wNumberOfBits,

apiDWORD dwValue,

size_t wAddressableWidth

);

Description

This method uploads a register field specified by the parameters with the value in
dwValue.

Parameters

• ptrOffset: an offset from the base address of the device to the
register in which this register field is located.

• wStartBit: the starting bit of the register field within the register.

• wNumberOfBits: the number of bits in the register field.

• dwValue: the value to upload to the register.

• WAddressableWidth: the address boundary of the register that contains
the register field of interest.

Return Values

enAPIFunctionSuccessful – if the function completes successfully.

enAPIFunctionFailed – if the function fails.

See Also

classIRLDevice::DownloadRegister

classIRLDevice::ModifyRegister

http://www.xilinx.com

142 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix E: PAVE API Summary
R

classIRLDevice::DownloadRegister

Synopsis
enAPIReturnCodes classIRLDevice::DownloadRegister (

apiPHYSICALADDRESS ptrOffset,

apiWORD wStartBit,

apiWORD wNumberOfBits,

apiDWORD *ptrValue,

size_t wAddressableWidth

);

Description

This method downloads the contents of a register field specified by the parameters into the
location pointed to by ptrValue.

Parameters

• ptrOffset: an offset from the base address of the device to the
register in which this register field is located.

• wStartBit: the starting bit of the register field within the register.

• wNumberOfBits: the number of bits in the register field.

• ptrValue: the location of where to store the register contents.

• WAddressableWidth: the address boundary of the register that contains
the register field of interest.

Return Values

enAPIFunctionSuccessful – if the function completes successfully.

enAPIFunctionFailed – if the function fails.

See Also

classIRLDevice::UploadRegister

classIRLDevice::ModifyRegister

http://www.xilinx.com

V1.0 www.xilinx.com 143
PAVE Framework User’s Guide 1-800-255-7778

API Reference Manual
R

classIRLDevice::ModifyRegister

Synopsis
enAPIReturnCodes classIRLDevice::ModifyRegister (

apiPHYSICALADDRESS ptrOffset,

apiWORD wStartBit,

apiWORD wNumberOfBits,

apiDWORD dwValue,

size_t wAddressableWidth

);

Description

This method performs a read/modify/write operation of dwValue to the contents of a
register field specified by the parameters.

Parameters

• ptrOffset: an offset from the base address of the device to the
register in which this register field is located.

• wStartBit: the starting bit of the register field within the register.

• wNumberOfBits: the number of bits in the register field.

• dwValue: value to modify the register field with.

• wAddressableWidth: the address boundary of the register that contains
the register field of interest.

Return Values

enAPIFunctionSuccessful – if the function completes successfully.

enAPIFunctionFailed – if the function fails.

See Also

classIRLDevice::UploadRegister

classIRLDevice::ModifyRegister

http://www.xilinx.com

144 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix E: PAVE API Summary
R

classSignalBuffer::classSignalBuffer

Synopsis
classSignalBuffer::classSignalBuffer (

apiDWORD dwLength

);

Description

The default constructor for a signal buffer object.

Parameters

• dwLength: Specifies the length of the buffer. If length is 0 then the
signal buffer object is instantiated but it’s ptrBuffer element is
NULL. This allows the signal buffer to have other buffers attached to
it without the need to allocate them at instantiation time.

Return Values

N/A

See Also

classSignalBuffer::~classSignalBuffer

http://www.xilinx.com

V1.0 www.xilinx.com 145
PAVE Framework User’s Guide 1-800-255-7778

API Reference Manual
R

classSignalBuffer::~classSignalBuffer

Synopsis
classSignalBuffer::~classSignalBuffer (

);

Description

The method deinstantiates the signal buffer object.

Parameters

• N/A

Return Values

N/A

See Also

classSignalBuffer::classSignalBuffer

http://www.xilinx.com

146 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix E: PAVE API Summary
R

classSignalBuffer::AttachBuffer

Synopsis
enAPIReturnCodes classSignalBuffer::AttachBuffer (

apiDWORD *ptrBuffer,

apiDWORD dwLength

);

Description

The method attaches a apiDWORD array to a Signal Buffer object.

Parameters

• ptrBuffer: the apiDWORD array which is to be attached to the Signal
Buffer.

• dwLength: the length of the apiDWORD array.

Return Values

enAPIFunctionSuccessful – if the function completes successfully.

enAPIFunctionFailed – if the function fails.

See Also

classSignalBuffer::DetachBuffer

http://www.xilinx.com

V1.0 www.xilinx.com 147
PAVE Framework User’s Guide 1-800-255-7778

API Reference Manual
R

classSignalBuffer::DetachBuffer

Synopsis
enAPIReturnCodes classSignalBuffer::DetachBuffer (

);

Description

The method detaches an apiDWORD array from the Signal Buffer object.

Parameters

• N/A

Return Values

enAPIFunctionSuccessful – if the function completes successfully.

enAPIFunctionFailed – if the function fails.

See Also

classSignalBuffer::AttachBuffer

http://www.xilinx.com

148 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix E: PAVE API Summary
R

classSignalBuffer::AssertSignal

Synopsis
enAPIReturnCodes classSignalBuffer::AssertSignal (

apiDWORD dwAssertedState,

apiDWORD dwDeassertedState,

apiDWORD dwDelayBeforeAssertion,

apiDWORD dwDurationOfAssertion,

apiWORD wSignalOffsetInRegister

);

Description

The method sets a bitfield within a word of a classSignalBuffer to dwAssertedState for
dwDurationOfAssertion number of elements. The assertion is delayed from the start of
the buffer by dwDelayBeforeAssertion elements.

Parameters

• dwAssertedState: the value to be inserted into the bitfield in the
asserted elements of the Signal Buffer.

• dwDeassertedState: the value to be inserted into the bitfield in the
non-asserted elements of the Signal Buffer.

• dwDelayBeforeAssertion: the number of elements that are non-asserted
in the Signal Buffer prior to assertion.

• wSignalOffsetInRegister: the position of the bitfield within the words
of the Signal Buffer.

Return Values

enAPIFunctionSuccessful – if the function completes successfully.

enAPIFunctionFailed – if the function fails.

See Also

classSignalBuffer::SerializeRepetitiveBitSequence

classSignalBuffer::SerializeRepetitivePattern

classSignalBuffer::SerializePatternStream

classSignalBuffer::SerializePatternDWord

classSignalBuffer::ParallelizeSerialStream

classSignalBuffer::ParallelizeSerialDWord

http://www.xilinx.com

V1.0 www.xilinx.com 149
PAVE Framework User’s Guide 1-800-255-7778

API Reference Manual
R

classSignalBuffer::SerializeRepetitiveBitSequence

Synopsis
enAPIReturnCodes classSignalBuffer::SerializeRepetitiveBitSequence(

apiDWORD dwBufferOffset,

apiDWORD dwBitSequence,

apiWORD dwNumBitsInSequence,

apiDWORD dwNumberRepetitions,

apiWORD wSignalOffsetInRegister

);

Description

The method will repetitively insert a bit sequence specified by dwBitSequence into
successive elements of a Signal Buffer in bit position wSignalOffsetInRegister.
Figure E-1 below illustrates how this method functions under the following invocation:

this->SerializeRepetitiveBitSequence(1, 0x16, 5, 3, 2);

In this example the 5 bit pattern word, 0x16, serially-shifted into bit position 0 of the Signal
Buffer three times, offset by 1 word.

Figure E-1: this->SerializeRepetitiveBitSequence(1, 0x16, 5, 3, 2);

wSignalOffsetInRegister = 2

31 30.........3 2 1 0

0 dwBufferOffset = 1

1 1

dwBitSequence= 0x16 = b10110

dwNumBitsInSequence = 5

2 0

3 1

4 1

5 0

6 1

7 0

8 1 dwNumberRepetitions = 3

9 1

10 0

11 1

12 0

13 1

14 1

15 0

http://www.xilinx.com

150 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix E: PAVE API Summary
R

Parameters

• dwBufferOffset: the starting offset into the Signal Buffer into which
the pattern is serially shifted.

• dwBitSequence: the pattern to be serially shifted into the Signal
Buffer.

• dwNumBitsInSequence: the number of bits in the pattern to shift into
the Signal Buffer.

• dwNumberRepetitions: the number of iterations to repeat the pattern.

• wSignalOffsetInRegister: the position of the bitfield within the words
of the Signal Buffer.

Return Values

enAPIFunctionSuccessful – if the function completes successfully.

enAPIFunctionFailed – if the function fails.

See Also

classSignalBuffer::SerializeRepetitivePattern

classSignalBuffer::SerializePatternStream

classSignalBuffer::SerializePatternDWord

classSignalBuffer::ParallelizeSerialStream

classSignalBuffer::ParallelizeSerialDWord

http://www.xilinx.com

V1.0 www.xilinx.com 151
PAVE Framework User’s Guide 1-800-255-7778

API Reference Manual
R

classSignalBuffer::SerializeRepetitivePattern

Synopsis
enAPIReturnCodes classSignalBuffer::SerializeRepetitivePattern(

apiDWORD dwBufferOffset,

apiDWORD dwClockLength,

apiDWORD dwPattern,

apiWORD wSignalOffsetInRegister

);

Description

This method is a variant of SerializeRepetitiveBitSequence. The method will
repetitively insert a 32 bit pattern specified by dwPattern into successive elements of a
Signal Buffer in bit position wSignalOffsetInRegister. The pattern is repeated for an
integral number of dwClockLength/32 iterations. Figure E-2 below illustrates how this
method functions under the following invocation:

this->SerializeRepetitivePattern(2, 1024, 0x0000000B, 0);

In this example the pattern word, 0x0000000B, serially-shifted into bit position 0 of the
Signal Buffer 32 times, offset by 0 words.

Figure E-2: this->SerializeRepetitivePattern(2, 1024, 0x0000000B, 0);

wSignalOffsetInRegister = 0

31 30...............1 0

0
dwBufferOffset = 2

1

2 0

… …

30 0

31 1 dwPattern = 0x0000000B

32 0

33 1

34 1

. dwClockLength = 1024

.

.

.

3F2 0

… …

3FD 0

3FE 1 Note truncation of last two
bits3FF 0

http://www.xilinx.com

152 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix E: PAVE API Summary
R

Parameters

• dwBufferOffset: the starting offset into the Signal Buffer into which
the pattern is serially shifted.

• dwClockLength: the total length of the pattern to be written.

• dwPattern: the 32 bit pattern to be written into the Signal Buffer.

• dwNumberRepetitions: the number of iterations to repeat the pattern.

• wSignalOffsetInRegister: the position of the bitfield within the words
of the Signal Buffer.

Return Values

enAPIFunctionSuccessful – if the function completes successfully.

enAPIFunctionFailed – if the function fails.

See Also

classSignalBuffer::SerializeRepetitiveBitSequence

classSignalBuffer::SerializePatternStream

classSignalBuffer::SerializePatternDWord

classSignalBuffer::ParallelizeSerialStream

classSignalBuffer::ParallelizeSerialDWord

http://www.xilinx.com

V1.0 www.xilinx.com 153
PAVE Framework User’s Guide 1-800-255-7778

API Reference Manual
R

classSignalBuffer::SerializePatternStream

Synopsis
enAPIReturnCodes classSignalBuffer::SerializePatternStream(

apiDWORD dwBufferOffset,

apiDWORD *ptrPatternArray,

apiDWORD dwNumBitsInPatternArray,

apiBOOL bLeftShift,

apiWORD wSignalOffsetInRegister

);

Description

This method serially shifts an array of pattern words (containing
dwNumBitsInPatternArray total) into a Signal Buffer in bit position
wSignalOffsetInRegister, offset by dwBufferOffset.

this->SerializePatternStream(0, ptrArray, 32*1024, true, 0);

In this example, the array ptrArray is serially left-shifted into bit position 0 of the Signal
Buffer.

Parameters

• dwBufferOffset: the starting offset into the Signal Buffer into which
the pattern is serially shifted.

• ptrPatternArray: the Array in which the sequence of pattern bits
reside.

• dwNumBitsInPatternArray: the total number of bits in the pattern. If
ptrPatternArray consisted of 32 elements, then dwNumBitsInPatternArray
would be 1024 bits.

• bLeftShift: if true the bits of each element are left-shift out of the
element. If false, the bits are right-shifted out.

• wSignalOffsetInRegister: the position of the bitfield within the words
of the Signal Buffer.

Return Values

enAPIFunctionSuccessful – if the function completes successfully.

enAPIFunctionFailed – if the function fails.

See Also

classSignalBuffer::SerializeRepetitiveBitSequence

classSignalBuffer::SerializeRepetitivePattern

classSignalBuffer::SerializePatternDWord

classSignalBuffer::ParallelizeSerialStream

classSignalBuffer::ParallelizeSerialDWord

http://www.xilinx.com

154 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix E: PAVE API Summary
R

classSignalBuffer::SerializePatternDWord

Synopsis
enAPIReturnCodes classSignalBuffer::SerializePatternDWord(

apiDWORD dwBufferOffset,

apiDWORD dwPattern,

apiWORD wNumBitsInPattern,

apiBOOL bShiftLeft,

apiWORD wSignalOffsetInRegister

);

Description

This method serially shifts a pattern word, dwPattern, (containing wNumBitsInPattern)
into a Signal Buffer in bit position wSignalOffsetInRegister, offset by dwBufferOffset.

this->SerializePatternDWord(0, 0x1C, 5, true, 0);

In this example, the pattern 0x1C is serially left-shifted into bit position 0 of the Signal
Buffer.

Parameters

• dwBufferOffset: the starting offset into the Signal Buffer into which
the pattern is serially shifted.

• dwPattern: the pattern word in which the sequence of pattern bits
reside.

• dwNumBitsInPattern: the total number of bits in the pattern.

• bLeftShift: if true the bits of each element are left-shift out of the
element. If false, the bits are right-shifted out.

• wSignalOffsetInRegister: the position of the bitfield within the words
of the Signal Buffer.

Return Values

enAPIFunctionSuccessful – if the function completes successfully.

enAPIFunctionFailed – if the function fails.

See Also

classSignalBuffer::SerializeRepetitiveBitSequence

classSignalBuffer::SerializeRepetitivePattern

classSignalBuffer::SerializePatternStream

classSignalBuffer::ParallelizeSerialStream

classSignalBuffer::ParallelizeSerialDWord

http://www.xilinx.com

V1.0 www.xilinx.com 155
PAVE Framework User’s Guide 1-800-255-7778

API Reference Manual
R

classSignalBuffer::ParallelizeSerialStream

Synopsis
enAPIReturnCodes classSignalBuffer::ParallelizeSerialStream(

apiDWORD dwSerialStreamOffset,

apiDWORD *ptrPatternArray,

apiDWORD dwPatternArrayLength,

apiDWORD dwNumBitsInSerialStream,

apiWORD wSignalOffsetInRegister

);

Description

This method parallelizes a serial stream of bits into an array of 32 bit words.

this->ParallelizeSerialStream(1, ptrArray, 4, 128, 0);

In this example, the bit-pattern in bit 0 of elements 0-3 of the Signal Buffer, offset by word
1, are serially left-shifted into an array of words pointed to by ptrPatternArray.

Parameters

• dwSerialStreamOffset: the starting offset into the Signal Buffer into
which the pattern is extracted.

• ptrPatternArray: the pattern array into which the sequence of pattern
bits are shifted.

• dwPatternArrayLength: the total number of 32 words in the pattern
array.

• dwNumBitsInSerialStream: the total number of bits in the serial stream
to extract.

• wSignalOffsetInRegister: the position of the bitfield within the words
of the Signal Buffer.

Return Values

enAPIFunctionSuccessful – if the function completes successfully.

enAPIFunctionFailed – if the function fails.

See Also

classSignalBuffer::SerializeRepetitiveBitSequence

classSignalBuffer::SerializeRepetitivePattern

classSignalBuffer::SerializePatternStream

classSignalBuffer::SerializePatternDWord

classSignalBuffer::ParallelizeSerialDWord

http://www.xilinx.com

156 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix E: PAVE API Summary
R

classSignalBuffer::ParallelizeSerialDWord

Synopsis
enAPIReturnCodes classSignalBuffer::ParallelizeSerialDWord(

apiDWORD dwSerialStreamOffset,

apiDWORD *ptrPattern,

apiWORD wNumBitsInSerialDWord,

apiWORD wSignalOffsetInRegister

);

Description

This method parallelizes a serial pattern of wNumBitsInSerialDWord bits, resident in bit
wSignalOffsetInRegister, into a 32 bit word.

this->ParallelizeSerialDWord (1, ptrPattern, 13, 0);

In this example, the bit-pattern in bit 0 of elements 1-13 of the Signal Buffer, (*offset by 1
word), are serially left-shifted into a word pointed to by ptrPattern.

Parameters

• dwSerialStreamOffset: the starting offset into the Signal Buffer into
which the pattern is extracted.

• ptrPattern: the pattern word into which the sequence of pattern bits
are shifted.

• dwNumBitsInSerialDWord: the total number of bits in the serial stream
to extract.

• wSignalOffsetInRegister: the position of the bitfield within the words
of the Signal Buffer.

Return Values

enAPIFunctionSuccessful – if the function completes successfully.

enAPIFunctionFailed – if the function fails.

See Also

classSignalBuffer::SerializeRepetitiveBitSequence

classSignalBuffer::SerializeRepetitivePattern

classSignalBuffer::SerializePatternStream

classSignalBuffer::SerializePatternDWord

classSignalBuffer::ParallelizeSerialStream

http://www.xilinx.com

V1.0 www.xilinx.com 157
PAVE Framework User’s Guide 1-800-255-7778

API Reference Manual
R

classSignalBuffer::ParallelizeSerialDWord

Synopsis
enAPIReturnCodes classSignalBuffer::ParallelizeSerialDWord(

apiDWORD dwSerialStreamOffset,

apiDWORD *ptrPattern,

apiWORD wNumBitsInSerialDWord,

apiWORD wSignalOffsetInRegister

r

);

Description

This method parallelizes a serial stream of bits into an array of 32 bit words.

this->ParallelizeSerialStream(0, ptrArray, 4, 128, 0);

In this example, the bit-pattern in bit 0 of elements 0-3 of the Signal Buffer are serially left-
shifted into an array of words pointed to by ptrPatternArray.

Parameters

• dwBufferOffset: the starting offset into the Signal Buffer into which
the pattern is serially shifted.

• dwPattern: the pattern word in which the sequence of pattern bits
reside.

• dwNumBitsInPattern: the total number of bits in the pattern.

• bLeftShift: if true the bits of each element are left-shift out of the
element. If false, the bits are right-shifted out.

• wSignalOffsetInRegister: the position of the bitfield within the words
of the Signal Buffer.

Return Values

enAPIFunctionSuccessful – if the function completes successfully.

enAPIFunctionFailed – if the function fails.

See Also

classSignalBuffer::SerializeRepetitiveBitSequence

classSignalBuffer::SerializeRepetitivePattern

classSignalBuffer::SerializePatternStream

classSignalBuffer::SerializePatternDWord

classSignalBuffer::ParallelizeSerialStream

http://www.xilinx.com

158 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix E: PAVE API Summary
R

classSignalBuffer::UploadFile

Synopsis
enAPIReturnCodes classSignalBuffer::UploadFile(

char *szFileName

);

Description

This method uploads a binary file of data into the Signal Buffer object.

Parameters

• szFileName: the fully qualified path to the binary file which is to be
uploaded.

Return Values

enAPIFunctionSuccessful – if the function completes successfully.

enAPIFunctionFailed – if the function fails.

See Also

classSignalBuffer::DownloadFile

http://www.xilinx.com

V1.0 www.xilinx.com 159
PAVE Framework User’s Guide 1-800-255-7778

API Reference Manual
R

classSignalBuffer::DownloadFile

Synopsis
enAPIReturnCodes classSignalBuffer::DownloadFile(

char *szFileName

);

Description

This method downloads a Signal Buffer into a binary file.

Parameters

• szFileName: the fully qualified path to the binary file which is to be
downloaded to.

Return Values

enAPIFunctionSuccessful – if the function completes successfully.

enAPIFunctionFailed – if the function fails.

See Also

classSignalBuffer::UploadFile

http://www.xilinx.com

160 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix E: PAVE API Summary
R

classSignalBuffer::ClearBuffer

Synopsis
enAPIReturnCodes classSignalBuffer::ClearBuffer(

);

Description

This method sets all elements of the Signal Buffer to 0.

Parameters

• N/A.

Return Values

enAPIFunctionSuccessful – if the function completes successfully.

enAPIFunctionFailed – if the function fails.

See Also

classSignalBuffer::DisplayBuffer

http://www.xilinx.com

V1.0 www.xilinx.com 161
PAVE Framework User’s Guide 1-800-255-7778

API Reference Manual
R

classSignalBuffer::MoveIndex

Synopsis
enAPIReturnCodes classSignalBuffer::MoveIndex(

apiDWORD dwNewIndexLocation

);

Description

This method moves the Signal Buffer cursor that points to the next fill position in the Signal
Buffer. This cursor can be used as an offset in the fill functions. It is important to note that
when the functions

classSignalBuffer::SerializeRepetitiveBitSequence,

classSignalBuffer::SerializeRepetitivePattern,

classSignalBuffer::SerializePatternStream,

classSignalBuffer::SerializePatternDWord,

classSignalBuffer::ParallelizeSerialStream, and

classSignalBuffer::ParallelizeSerialDWord

are used, they increment the cursor.

Parameters

• N/A.

Return Values

enAPIFunctionSuccessful – if the function completes successfully.

enAPIFunctionFailed – if the function fails.

See Also

classSignalBuffer::GetIndex

http://www.xilinx.com

162 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix E: PAVE API Summary
R

classSignalBuffer::GetIndex

Synopsis
enAPIReturnCodes classSignalBuffer::GetIndex(

apiDWORD *ptrIndexLocation

);

Description

This method gets the Signal Buffer index pointer that points to the next fill position in the
Signal Buffer. This cursor can be used as an offset in the fill functions. It is important to note
that when the functions

classSignalBuffer::SerializeRepetitiveBitSequence,

classSignalBuffer::SerializeRepetitivePattern,

classSignalBuffer::SerializePatternStream,

classSignalBuffer::SerializePatternDWord,

classSignalBuffer::ParallelizeSerialStream, and

classSignalBuffer::ParallelizeSerialDWord

are used, they increment the index pointer.

Parameters

• N/A.

Return Values

enAPIFunctionSuccessful – if the function completes successfully.

enAPIFunctionFailed – if the function fails.

See Also

classSignalBuffer::MoveIndex

http://www.xilinx.com

V1.0 www.xilinx.com 163
PAVE Framework User’s Guide 1-800-255-7778

API Reference Manual
R

classSignalBuffer::DisplayBuffer

Synopsis
enAPIReturnCodes classSignalBuffer::DisplayBuffer(

);

enAPIReturnCodes classSignalBuffer::DisplayBuffer(

apiDWORD dwNClocks

);

Description

This method displays all or N elements of the Signal Buffer on stdout.

Parameters

• N/A.

Return Values

enAPIFunctionSuccessful – if the function completes successfully.

enAPIFunctionFailed – if the function fails.

See Also

classSignalBuffer::ClearBuffer

http://www.xilinx.com

164 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix E: PAVE API Summary
R

classSignalBuffer::FillTestPattern

Synopsis
enAPIReturnCodes classSignalBuffer::FillTestPattern(

apiWORD wCommandLength

);

Description

This method fills the Signal Buffer with 8 test patterns in signal location
0,4,8,12,16,20,24,28,32.

Parameters

• wCommandLength: number of elements to fill.

Return Values

enAPIFunctionSuccessful – if the function completes successfully.

enAPIFunctionFailed – if the function fails.

See Also

classSignalBuffer::DisplayBuffer

http://www.xilinx.com

V1.0 www.xilinx.com 165
PAVE Framework User’s Guide 1-800-255-7778

API Reference Manual
R

classStateMachine::classStateMachine

Synopsis
classStateMachine::classStateMachine (

apiDWORD dwNStates,

apiDWORD dwNStimuli,

apiDWORD dwInitialState

);

Description

This method is the constructor for a state machine object. It instantiates an abstraction of a
finite state machine consisting of a set of State Elements of dimensionality dwNStates by
dwNStimuli.

Parameters

dwNStates: the set of all states through which the finite state machine
can transition.

dwNStimuli: the set of all stimuli to which the finite state machine can
respond.

dwInitialState: the initial state in which the state machine is set.

Return Values

• N/A.

See Also

classStateMachine::~classStateMachine

http://www.xilinx.com

166 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix E: PAVE API Summary
R

classStateMachine::~classStateMachine

Synopsis
classStateMachine::~classStateMachine (

);

Description

This method is the destructor of the state machine object. It deinstantiates and frees the
memory allocate for the State Element set.

Parameters

• dwNStates: the set of all states through which the finite state machine
can transition.

• dwNStimuli: the set of all stimuli to which the finite state machine
can respond.

Return Values

enAPIFunctionSuccessful – if the function completes successfully.

enAPIFunctionFailed – if the function fails.

See Also

classStateMachine::classStateMachine

http://www.xilinx.com

V1.0 www.xilinx.com 167
PAVE Framework User’s Guide 1-800-255-7778

API Reference Manual
R

classStateMachine::SetElement

Synopsis
EnAPIReturnCodes classStateMachine::SetElement (

apiDWORD dwState,

apiDWORD dwStimuli,

apiDWORD dwNextState,

apiDWORD dwOutput,

enAPIReturnCodes (*ptrTargetFunction)(void *)

);

Description

This method initializes an individual node in the classStateMachine state space.

Parameters

• dwState: the state index of the node to be initialized.

• dwStimuli: the stimuli index of the node to be initialized.

• dwNextState: the state to which this node will transition.

• dwOutput: the output code to express at the completion of transitioning
to the new state.

• ptrTargetFunction: a pointer to a void function which is executed at
the transition to the new state.

Return Values

enAPIFunctionSuccessful – if the function completes successfully.

enAPIFunctionFailed – if the function fails.

See Also

classStateMachine::Jump

http://www.xilinx.com

168 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix E: PAVE API Summary
R

classStateMachine::Jump

Synopsis
enAPIReturnCodes classStateMachine::Jump (

apiDWORD dwState,

apiDWORD dwStimuli,

void *ptrArgument

);

Description

This method executes the function that is associated with a node in the set of state
elements.

Parameters

• dwState: the state index of the node to be executed.

• dwStimuli: the stimuli index of the node to be executed.

• ptrArgument: a void pointer to an argument which is passed to the
function.

Return Values

enAPIFunctionSuccessful – if the function completes successfully.

enAPIFunctionFailed – if the function fails.

See Also

classStateMachine::SetElement

http://www.xilinx.com

V1.0 www.xilinx.com 169
PAVE Framework User’s Guide 1-800-255-7778

API Reference Manual
R

classStateMachine::Transition

Synopsis
enAPIReturnCodes classStateMachine::Transition (

apiDWORD dwStimuli,

void *ptrArgument

);

Description

This method will step the state machine based on it’s current state and input stimuli.

Parameters

• dwStimuli: the stimuli that is to be applied to the state machine.

• ptrArgument: a void pointer to an argument which is passed to the
function.

Return Values

enAPIFunctionSuccessful – if the function completes successfully.

enAPIFunctionFailed – if the function fails.

See Also

classStateMachine::Jump

http://www.xilinx.com

170 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix E: PAVE API Summary
R

http://www.xilinx.com

V1.0 www.xilinx.com 171
PAVE Framework User’s Guide 1-800-255-7778

R

Appendix F

Glossary

API

Application Program Interface, a set of routines, protocols, and tools for building software
applications. An API makes it easier to develop a program by providing all the building
blocks, which a programmer puts together.

APIs are implemented by writing function calls in the program, which provide the linkage
to a specific sub-routine for execution. Thus, an API implies that some program module or
routine is either already in place or must be linked in to perform the tasks requested by the
function call.

Architecture
How the system or software is constructed.

Boot ROMs
The program used to start a computer that is stored in Read Only Memory. In VxWorks,
boot ROMs are used to download the VxWorks kernel from a host computer over the
network.

BSP
Board Support Package. The part of VxWorks that manages the CPU board on which
VxWorks runs, that is, the part which handles the hardware like Ethernet, serial, etc.

Bus
The physical connection between components of a single computer system. Imagine it as a
freeway with multiple lanes connecting various parts of the system. There are different
types of busses (VME, EISA, PCI, etc.).

C
A high-level programming language developed at Bell Labs that is able to manipulate the
computer at a low level like assembly language. C can be compiled into machine
languages for almost all computers. For example, UNIX is written in C and runs in a wide
variety of micros, minis and mainframes.

C++
An object-oriented version of the C programming language.

http://www.xilinx.com

172 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix F: Glossary
R

C++ Classes
In object-oriented C++ programming, a class is a category of objects. For example, there
might be a class called shape that contains objects which are circles, rectangles, and
triangles. The class defines all the common properties of the different objects that belong to
it.

C++ Methods
The underlying function contained in a C++ class that preforms a specific operation.

C++ Objects
In object-oriented C++ programming, an object is a self-contained entity that consists of
both data and procedures to manipulate the data.

Client
This term is a system-centric term. An object that requests another object to perform some
function for it. For example, in a Compact PCI system the system slot board is a client to
other special purpose, peripheral slot boards in the rack.

Client Domain
The client domain is a component of the PAVE Logical System Partitioning. It is comprised
of those elements that are involved in the control of embedded system components.

Codebase
Fundamental underlying code of a program, without the associated data files.

Deinstantiate
Destroying an instance of an object.

Device element
A segment in a payload that contains the configuration information for a specific device.

Device object
An FPGA in an IRL-enabled System. PAVE views an FPGA as a standalone device object
within a system component that software can modify at will, like any other software
component.

Download
This term is object-centric. In the PAVE framework, objects download information. For
example, the classRegister::Download method results in the contents of a register being
read.

Driver
The software that communicates between a hardware peripheral and the rest of the system.
Often called a “device driver.” In VxWorks, a device driver often refers only to those
drivers which have a UNIX-like interface.

Embedded system
A specialized computer, often hidden from the end user, used to control devices such as
automobiles, home and office appliances, hand-held units of all kinds as well as machines

http://www.xilinx.com

V1.0 www.xilinx.com 173
PAVE Framework User’s Guide 1-800-255-7778

R

as sophisticated as space vehicles. Operating system and application functions are often
combined in the same program. An embedded system implies a fixed set of functions
programmed into a non-volatile memory (ROM, flash memory, etc.) in contrast to a
general-purpose computing machine. Think of it like a self-contained system. An example
would be a computer in a car that controls the ignition system. Because they often operate
critically important applications, reliable real-time reactions are vital.

Endian Swap
Data can be ordered with the MSB at the beginning or end of multibyte data type.
Depending on the system you are targeting you may or may not need to preform an endian
swap to correctly align the data. More details on Byte ordering can be found at:

http://webopedia.internet.com/TERM/B/big_endian.html

Environment
A particular configuration of hardware or software. The environment refers to a hardware
platform and the operating system that is used in it. A programming environment would
include the compiler and associated development tools. Environment is used in other
ways to express a type of configuration, such as a networking environment.

Flash memory
Memory that, unlike most RAM, retains its value when powered down, but can only be
erased in bulk. Often used instead of PROMs.

FPGA
Field Programmable Gate Array, invented by Xilinx in 1984. FPGAs are CMOS SRAM-
based devices, that reload their configuration each time they are powered up.

Host
A host (computer) communicates with a target (a CPU board running VxWorks) over a
network.

Host Domain
The host domain is a component of the PAVE Logical System Partitioning. It is comprised
of those elements that are used to develop and manage embedded applications. A
workstation and its resident tool chain are generally host domain elements.

Instantiate
Creating a new instance of an object.

IP
Internet Protocol. The IP part of the TCP/IP communications protocol. IP implements the
network layer (layer 3) of the protocol, which contains a network address and is used to
route a message to a different network or subnetwork. IP accepts “packets” from the layer
4 transport protocol (TCP or UDP), adds its own header to it and delivers a “datagram” to
the layer 2 data link protocol. It may also break the packet into fragments to support the
maximum transmission unit (MTU) of the network.

IRL-enabled Device
A Xilinx FPGA with the configuration pins connected in an IRL-enabled Architecture.

http://webopedia.internet.com/TERM/B/big_endian.html
http://www.xilinx.com

174 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix F: Glossary
R

IRL-enabled Architecture
The combination of a processor running PAVE, a memory mapped device configuration
register, and a Xilinx FPGA. Figure F-1 shows the difference between an IRL-enabled
Device and an IRL-enabled Architecture.

Library
A collection of usually related subroutines in one file. Re-usable libraries are the basis of
object-oriented programming.

Methods
See C++ Methods.

Object-centric
A view point that is self centered.

Object Model

Object oriented programming (OOP)
Programming that supports object technology. It is an evolutionary form of modular
programming with more formal rules that allow pieces of software to be reused and
interchanged between programs. OOP is thought to increase productivity by allowing
programmers to focus on higher level software objects.

Figure F-1: IRL Enabled Architecture

UG021_52_082001

Xilinx PLD

Processor running PAVE API

IRL Enabled Device
Configuration Register

User
Register Set

IRL Enabled Device

IRL Enabled Architecture

http://www.xilinx.com

V1.0 www.xilinx.com 175
PAVE Framework User’s Guide 1-800-255-7778

R

Payload
A combination of header information, configuration bitstreams, and device object modules
that are concatenated into a single binary object and transported to a system.

PLD
Programmable Logic Device. Can be used generically for both SRAM-based FPGAs and
macro-cell based devices such as CPLDs and PALs.

Real-time
Refers to the ability to respond to events quickly and predictably. In real-time
programming a late response is a wrong response.

Real-time operating system (RTOS)
An operating system designed for use in a real-time computer system. A master control
program that can provide immediate response to input signals and transactions. VxWorks
is an RTOS.

Real-time server
That part of a computer network that handles the real-time needs of the system. VxWorks
is often used as a real-time server.

SBC
SIngle Board Computer, typically a system board used in a CompactPCI or VME system.

SelectMAP
SelectMAP is an 8-bit bidirectional databus interface to the Virtex configuration logic that
may be used for both configuration and readback.

Server
This term is a system-centric term. An object that provides some functionality to other
objects. For example, in a Compact PCI system the peripheral slot boards are servers to the
system slot board.

Server Domain
The client domain is a component of the PAVE Logical System Partitioning. It is comprised
of those elements that provide specialized functionality within an embedded system.

SIF
System Integration Framework. Part of the PAVE Framework that customizes your
software environment for your hardware setup.

Socket
A software protocol developed by UC Berkeley that allows a program on one system to
talk to a program on another system.

Source code
The human readable version of a software program. The source code is then compiled and
linked to generate code that a computer can run (binary executable). In other words,
programmers write (or read) source code; computers run binary executables.

http://www.xilinx.com

176 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

Appendix F: Glossary
R

System-centric
A view point that is evaluated in the context of the overall system.

TCP/IP
Transport Control Protocol/Internet Protocol. Often used to refer to the Internet Protocol
(IP) in general. Internet Protocol has different ways of handling and packaging data for
transport over a network, such as TCP and UDP (User Datagram Protocol).

Target
The computer into which a program is loaded and run.

Target agent
In Tornado, the software on the target hardware that is responsible for communicating
with the host computer.

Target server
In Tornado, the software on the host computer responsible for managing communications
with the target hardware.

Upload
This term is object-centric. In the PAVE framework, objects upload information. For
example, the classRegister::Upload method results in the register being written.

XSVF
Xilinx Serial Vector Format.

http://www.xilinx.com

V1.0 www.xilinx.com 177
PAVE Framework User’s Guide 1-800-255-7778

A
About This Manual 13
ADMXRC 33, 99 - 100
ADMXRC Applications 101
ADMXRC Payloads 109
API Calls

classDevice 56
~classDevice 126
classDevice 123 - 125
UploadRegister 127

classIRLBStreamDeliveryModule 55 -
56

classIRLDevice
~classIRLDevice 130
CachePayload 131
classIRLDevice 128 - 129
DownloadPayloadToBuffer 138
DownloadPayloadToFile 139
DownloadRegister 142
GetPayloadChecksum 134
GetPayloadOffset 133
GetPayloadSize 132
ModifyRegister 143
SplitPayload 137
UnCachePayload 140
UploadPayloadFromBuffer 135
UploadPayloadFromFile 136
UploadRegister 141

classIRLPlatform 50, 56
classPCIDevice 101
classPlatform 49
classRegister 49, 56

~classRegister 113
classRegister 112
Clear 120
Display 122
Download 115
Initialize 121
Modify 116
Reset 119
ToggleSignal 118
Upload 114
UploadSignals 117

classSignalBuffer 49, 56
~classSignalBuffer 145
AssertSignal 148
AttachBuffer 146
classSignalBuffer 144
ClearBuffer 160
DetachBuffer 147
DisplayBuffer 163
DownloadFile 159
FillTestPattern 164
GetIndex 162
MoveIndex 161
ParallelizeSerialDWord 156 -

157
ParallelizeSerialStream 155
SerializePatternDWord 154
SerializePatternStream 153

SerializeRepetitiveBitSequence
149

SerializeRepetitivePattern 151
UploadFile 158

classStateMachine 49, 56
~classStateMachine 166
classStateMachine 165
Jump 168
SetElement 167
Transition 169

API Structure 53

B
Building a Custom Framework 41

C
C++

Methods 172
Resources 14
Training 13

D
Developer Productivity 22
Durango 33, 85
Durango Code Examples 88
Durango Framework 87
Durango Hardware Features 94
Durango PCB Layout 96
Durango Reference Design 93

F
FFT 105

I
Installation 24
Installing to an alternate drive 33
IRL Register model 35
IRL-Enabled 20

J
JTAG

Code example 62
Format 44
Programmer 45
SVF2XSVF 47

TAP Controller 61
XSVF 44, 62

L
Low Cost 21

M
Motorola MCP750 85, 100

N
Network

Configuration 69
Domains 69
TCP/IP 71

Network Configuration 69

P
PAVE

API 19, 49
API Classes 56
Framework 19, 29
Framework Partitioning 69
generatedevice.exe 27, 38
generatepayload.bat 42
generatepayload.exe 42
generatepayload.exe usage 43
generateserver.exe 27, 40
generatesystem.bat 38, 40
INP Format 40 - 41
SIF 19, 35
SIF Flow 37
SIF Tutorial 25
Skills Required 13
Software License iii
Training 14
VxSim Tutorial 30

Payload 51
Payload Configuration Segment

Structure 58
Payload Diagram 42
Payload Generator 42
Payload Header Structure 58
Payloads 58
Pull 71, 103
Push 71, 103

R
Reliability 21

Index

http://www.xilinx.com

178 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

R

S
Scalability 20
SelectMAP 44, 65

Bitstreams 66
Code example 66

Summary 93
System Domains 70
System Generator 26, 38
System Requirements 23

T
Text Editors 33
Typographical Conventions 17

W
Wind River Systems

Support 14
Tornado 26
Training 14

X
Xilinx

Support 14 - 15
XIRL Interface Register 49, 61

Map 36
Rewiring 63, 67
Signal Names 91
Tables 90

http://www.xilinx.com

	PAVE Framework User’s Guide
	Contents

	About This Manual
	Additional Resources
	Typographical Conventions

	Introduction
	PAVE Framework
	Why PAVE?
	Scalability
	Reliability
	Low Cost
	Developer Productivity

	Getting Started
	System Requirements
	Hardware
	Software

	Installation
	PAVE SIF Tutorial
	Generating a Framework
	Using the framework with Tornado

	PAVE VxSim Tutorial
	Using the Standard Tornado-II VxSim with PAVE
	Running the Durango VxSim Tutorial

	Installing to an alternate drive

	Using the PAVE SIF
	IRL Register model
	SIF Flow
	Initial Steps
	System Simulation
	System Upgrade

	System Generator
	generatesystem.bat
	INP File format

	Building a Custom Framework
	Payload Generator
	generatepayload.bat
	Formats for SelectMAP and JTAG

	Using the PAVE API
	How the PAVE API Operates
	Object Oriented Nature of the PAVE API
	API Structure
	Functional Description
	PAVE API Classes
	Payloads
	Payload Header Structure
	Payload Configuration Segment Structure

	Using PAVE for JTAG Configuration
	How it operates
	Design considerations
	Code example
	Rewiring the XIRL Interface Register

	Using PAVE for SelectMAP Configuration
	How it operates
	Design considerations
	Code example
	Rewiring the XIRL Interface Register

	Network Configuration
	Network Domains
	Definitions
	Host, Client and Server Domains
	Client and Server Relationships

	Configuration Across a TCP/IP Network
	Pull Configuration
	Push Configuration

	Architecting Systems for Upgradability with IRL
	Summary
	Introduction
	IRL Concepts
	What is IRL?
	Elements of an IRL system
	Host, Upgrade Portal, and Network Concepts
	Target Software Concepts
	Target Hardware concepts

	IRL Examples
	Basic IRL-enabled System
	IRL in a Bridge System
	Memory usage for storing bitstreams
	Use of PAVE in IRL Systems
	Available Development Platforms
	Summary

	Revision History

	Using Durango with the MCP750 and PAVE
	Durango Board
	Durango Block Diagram
	Durango MCP750 PAVE Implementation
	Durango Framework
	Code Examples
	Resources
	XIRL Interface Register Tables
	Signal Name Descriptions

	Durango Reference Design
	Hardware Features
	Availability
	Additional Information
	Durango PCB Layout

	Using ADM-XRC with the MCP750 and PAVE
	ADM-XRC Board
	ADM-XRC MCP750 PAVE Implementation
	Setup
	INP Files for ADM-XRC

	Applications
	Push and Pull
	FFT
	ADM-XRC Payloads

	Resources

	PAVE API Summary
	API Reference Manual
	classRegister::classRegister
	classRegister::~classRegister
	classRegister::Upload
	classRegister::Download
	classRegister::Modify
	classRegister::UploadSignals
	classRegister::ToggleSignal
	classRegister::Reset
	classRegister::Clear
	classRegister::Initialize
	classRegister::Display
	classDevice::classDevice
	classDevice::classDevice
	classDevice::classDevice
	classDevice::~classDevice
	classDevice::UploadRegister
	classIRLDevice::classIRLDevice
	classIRLDevice::classIRLDevice
	classIRLDevice::~classIRLDevice
	classIRLDevice::CachePayload
	classIRLDevice::GetPayloadSize
	classIRLDevice::GetPayloadOffset
	classIRLDevice::GetPayloadChecksum
	classIRLDevice::UploadPayloadFromBuffer
	classIRLDevice::UploadPayloadFromFile
	classIRLDevice::SplitPayload
	classIRLDevice::DownloadPayloadToBuffer
	classIRLDevice::DownloadPayloadToFile
	classIRLDevice::UnCachePayload
	classIRLDevice::UploadRegister
	classIRLDevice::DownloadRegister
	classIRLDevice::ModifyRegister
	classSignalBuffer::classSignalBuffer
	classSignalBuffer::~classSignalBuffer
	classSignalBuffer::AttachBuffer
	classSignalBuffer::DetachBuffer
	classSignalBuffer::AssertSignal
	classSignalBuffer::SerializeRepetitiveBitSequence
	classSignalBuffer::SerializeRepetitivePattern
	classSignalBuffer::SerializePatternStream
	classSignalBuffer::SerializePatternDWord
	classSignalBuffer::ParallelizeSerialStream
	classSignalBuffer::ParallelizeSerialDWord
	classSignalBuffer::ParallelizeSerialDWord
	classSignalBuffer::UploadFile
	classSignalBuffer::DownloadFile
	classSignalBuffer::ClearBuffer
	classSignalBuffer::MoveIndex
	classSignalBuffer::GetIndex
	classSignalBuffer::DisplayBuffer
	classSignalBuffer::FillTestPattern
	classStateMachine::classStateMachine
	classStateMachine::~classStateMachine
	classStateMachine::SetElement
	classStateMachine::Jump
	classStateMachine::Transition

	Glossary
	Index

