PAVE
Framework
User’s Guide

V1.0

September 27, 2001

S XILINX®

& XILINX"

The Xilinx logo shown above is a registered trademark of Xilinx, Inc.

ASYL, FPGA Architect, FPGA Foundry, NeoCAD, NeoCAD EPIC, NeoCAD PRISM, NeoROUTE, Timing Wizard, TRACE, XACT, XILINX,
XC2064, XC3090, XC4005, XC5210, and XC-DS501 are registered trademarks of Xilinx, Inc.

A4

The shadow X shown above is a trademark of Xilinx, Inc.

All XC-prefix product designations, A.K.A Speed, Alliance Series, AllianceCORE, BITA, CLC, Configurable Logic Cell, CoolRunner, CORE Gen-
erator, CoreLINX, Dual Block, EZTag, FastCLK, FastCONNECT, FastFLASH, FastMap, Fast Zero Power, Foundation, HardWire, IRL, LCA, Logi-
BLOX, Logic Cell, LogiCORE, LogicProfessor, MicroVia, MultiLINX, PLUSASM, PowerGuide, PowerMaze, QPro, RealPCl, RealPCl 64/66,
Selectl/O, SelectRAM, SelectRAM+, Silicon Xpresso, Smartguide, Smart-IP, SmartSearch, Smartspec, SMARTSwitch, Spartan, TrueMap, UIM,
VectorMaze, VersaBlock, VersaRing, Virtex, WebFitter, WebLINX, WebPACK, XABEL, XACTstep, XACTstep Advanced, XACT step Foundry,
XACT-Floorplanner, XACT-Performance, XAM, XAPP, X-BLOX, X-BLOX plus, XChecker, XDM, XDS, XEPLD, Xilinx Foundation Series, XPP, XSI,
and ZERO+ are trademarks of Xilinx, Inc. The Programmable Logic Company and The Programmable Gate Array Company are service marks
of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown herein; nor does it convey any
license under its patents, copyrights, or maskwork rights or any rights of others. Xilinx, Inc. reserves the right to make changes, at any time, in
order to improve reliability, function or design and to supply the best product possible. Xilinx, Inc. will not assume responsibility for the use of any
circuitry described herein other than circuitry entirely embodied in its products. Xilinx, Inc. devices and products are protected under one or more
of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216; 4,713,557, 4,746,822; 4,750,155; 4,758,985; 4,820,937, 4,821,233; 4,835,418;
4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135; 5,023,606; 5,028,821; 5,047,710; 5,068,603; 5,140,193; 5,148,390;
5,155,432; 5,166,858; 5,224,056; 5,243,238; 5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704;
5,329,174; 5,329,181, 5,331,220; 5,331,226, 5,332,929; 5,337,255; 5,343,406; 5,349,248; 5,349,249; 5,349,250; 5,349,691; 5,357,153;
5,360,747; 5,361,229; 5,362,999; 5,365,125; 5,367,207; 5,386,154; 5,394,104; 5,399,924, 5,399,925; 5,410,189; 5,410,194; 5,414,377;
5,422,833; 5,426,378; 5,426,379; 5,430,687; 5,432,719; 5,448,181; 5,448,493; 5,450,021, 5,450,022; 5,453,706; 5,455,525; 5,466,117;
5,469,003; 5,475,253; 5,477,414, 5,481,206, 5,483,478; 5,486,707; 5,486,776; 5,488,316; 5,489,858; 5,489,866; 5,491,353; 5,495,196;
5,498,979; 5,498,989; 5,499,192; 5,500,608; 5,500,609; 5,502,000; 5,502,440; 5,504,439; 5,506,518; 5,506,523; 5,506,878; 5,513,124;
5,517,135; 5,521,835; 5,521,837; 5,523,963; 5,523,971; 5,524,097; 5,526,322; 5,528,169; 5,528,176; 5,530,378; 5,530,384; 5,546,018;
5,550,839; 5,550,843; 5,552,722; 5,553,001, 5,559,751, 5,561,367; 5,561,629; 5,561,631, 5,563,527, 5,563,528; 5,563,529; 5,563,827;
5,565,792; 5,566,123; 5,570,051; 5,574,634; 5,574,655; 5,578,946; 5,581,198; 5,581,199; 5,581,738; 5,583,450; 5,583,452; 5,592,105;
5,594,367; 5,598,424, 5,600,263; 5,600,264; 5,600,271; 5,600,597; 5,608,342; 5,610,536; 5,610,790; 5,610,829; 5,612,633; 5,617,021;
5,617,041; 5,617,327; 5,617,573, 5,623,387, 5,627,480; 5,629,637; 5,629,886; 5,631,577; 5,631,583, 5,635,851, 5,636,368; 5,640,106;
5,642,058; 5,646,545; 5,646,547; 5,646,564; 5,646,903; 5,648,732; 5,648,913; 5,650,672; 5,650,946; 5,652,904; 5,654,631; 5,656,950;
5,657,290; 5,659,484, 5,661,660; 5,661,685; 5,670,896; 5,670,897; 5,672,966; 5,673,198; 5,675,262; 5,675,270; 5,675,589; 5,677,638;
5,682,107; 5,689,133; 5,689,516; 5,691,907; 5,691,912; 5,694,047; 5,694,056; 5,724,276; 5,694,399; 5,696,454; 5,701,091; 5,701,441;
5,703,759; 5,705,932; 5,705,938; 5,708,597; 5,712,579; 5,715,197; 5,717,340; 5,719,506; 5,719,507; 5,724,276; 5,726,484; 5,726,584;
5,734,866; 5,734,868; 5,737,234, 5,737,235; 5,737,631; 5,742,178; 5,742,531; 5,744,974, 5,744,979; 5,744,995; 5,748,942; 5,748,979;
5,752,006; 5,752,035; 5,754,459; 5,758,192; 5,760,603; 5,760,604; 5,760,607; 5,761,483; 5,764,076; 5,764,534; 5,764,564; 5,768,179;
5,770,951; 5,773,993; 5,778,439; 5,781,756; 5,784,313; 5,784,577, 5,786,240; 5,787,007; 5,789,938; 5,790,479; 5,790,882; 5,795,068;
5,796,269; 5,798,656; 5,801,546; 5,801,547; 5,801,548; 5,811,985; 5,815,004; 5,815,016; 5,815,404, 5,815,405; 5,818,255; 5,818,730;
5,821,772; 5,821,774, 5,825,202; 5,825,662; 5,825,787; 5,828,230; 5,828,231, 5,828,236; 5,828,608; 5,831,448; 5,831,460; 5,831,845;
5,831,907; 5,835,402; 5,838,167; 5,838,901; 5,838,954; 5,841,296; 5,841,867; 5,844,422; 5,844,424; 5,844,829; 5,844,844; 5,847,577;
5,847,579; 5,847,580; 5,847,993; 5,852,323; 5,861,761; 5,862,082; 5,867,396; 5,870,309; 5,870,327; 5,870,586; 5,874,834; 5,875,111;
5,877,632; 5,877,979; 5,880,492; 5,880,598; 5,880,620; 5,883,525; 5,886,538; 5,889,411, 5,889,413, 5,889,701, 5,892,681; 5,892,961,
5,894,420; 5,896,047; 5,896,329; 5,898,319; 5,898,320; 5,898,602; 5,898,618; 5,898,893; 5,907,245; 5,907,248; 5,909,125; 5,909,453;
5,910,732; 5,912,937; 5,914,514, 5,914,616; 5,920,201; 5,920,202; 5,920,223; 5,923,185; 5,923,602; 5,923,614; 5,928,338; 5,931,962;
5,933,023; 5,933,025; 5,933,369; 5,936,415; 5,936,424; 5,939,930; 5,942,913; 5,944,813; 5,945,837, 5,946,478; 5,949,690; 5,949,712;
5,949,983; 5,949,987; 5,952,839; 5,952,846; 5,955,888; 5,956,748; 5,958,026; 5,959,821, 5,959,881, 5,959,885; 5,961,576; 5,962,881;
5,963,048; 5,963,050; 5,969,539; 5,969,543; 5,970,142; 5,970,372; 5,971,595; 5,973,506; 5,978,260; 5,986,958; 5,990,704; 5,991,523;
5,991,788; 5,991,880; 5,991,908; 5,995,419; 5,995,744; 5,995,988; 5,999,014, 5,999,025; 6,002,282; and 6,002,991; Re. 34,363, Re. 34,444,
and Re. 34,808. Other U.S. and foreign patents pending. Xilinx, Inc. does not represent that devices shown or products described herein are free
from patent infringement or from any other third party right. Xilinx, Inc. assumes no obligation to correct any errors contained herein or to advise
any user of this text of any correction if such be made. Xilinx, Inc. will not assume any liability for the accuracy or correctness of any engineering
or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in such applications without the
written consent of the appropriate Xilinx officer is prohibited.

Copyright 1991-2001 Xilinx, Inc. All Rights Reserved.

PAVE Framework User’'s Guide www.Xilinx.com V1.0
1-800-255-7778

http://www.xilinx.com

XILINX PAVE INTERFACE SOFTWARE LICENSE

PLEASE READ THIS DOCUMENT CAREFULLY BEFORE USING THE SOFTWARE. UNLESS YOU HAVE A
SEPARATE WRITTEN LICENSE EXECUTED BY XILINX COVERING YOUR USE OF THE SOFTWARE, BY
USING THE SOFTWARE, YOU ARE AGREEING TO BE BOUND BY THE TERMS OF THIS LICENSE. IF YOU
DO NOT AGREE TO THE TERMS OF THIS LICENSE, YOU ARE NOT PERMITTED TO USE THE
SOFTWARE.

DISCLAIMER. SUBJECT TO APPLICABLE LAWS: (1) THE SOFTWARE IS PROVIDED FOR YOUR USE "AS
1S"; AND (2) XILINX AND ITS LICENSORS MAKE AND YOU RECEIVE NO WARRANTIES OR
CONDITIONS, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, AND XILINX SPECIFICALLY
DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT, OR FITNESS
FOR A PARTICULAR PURPOSE. XILINX DOES NOT WARRANT THAT THE FUNCTIONS CONTAINED IN
THE SOFTWARE WILL MEET YOUR REQUIREMENTS, OR THAT THE OPERATION OF THE SOFTWARE
WILL BE UNINTERRUPTED OR ERROR FREE, OR THAT DEFECTS IN THE SOFTWARE WILL BE
CORRECTED. FURTHERMORE, XILINX DOES NOT WARRANT OR MAKE ANY REPRESENTATIONS
REGARDING USE OR THE RESULTS OF THE USE OF THE SOFTWARE IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY OR OTHERWISE.

LIMITATION OF LIABILITY. SUBJECT TO APPLICABLE LAWS: (1) IN NO EVENT WILL XILINX OR ITS
LICENSORS BE LIABLE FOR ANY LOSS OF DATA, LOST PROFITS, COST OF PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES, OR FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL OR
INDIRECT DAMAGES ARISING FROM THE USE OR OPERATION OF THE SOFTWARE OR
ACCOMPANYING DOCUMENTATION, HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY; (2)
THIS LIMITATION WILL APPLY EVEN IF XILINX HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE; AND (3) THIS LIMITATION SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE
ESSENTIAL PURPOSE OF ANY LIMITED REMEDIES HEREIN.

1. License. XILINX, Inc. ("XILINX") hereby grants you a nonexclusive license to modify and use the PAVE (PLD
API for VxWorks Embedded systems) interface software (the "Software") solely for your use in developing
designs for XILINX programmable logic devices. XILINX and its licensors retain title to the Software and to any
patents, copyrights, trade secrets and other intellectual property rights therein.

2. Registration. Each licensed user must register with Xilinx, and the Software may be used solely by such
licensed user, provided that any licensed user may install a copy of the Software on multiple computers. You
may distribute the binary code compiled from such source code, subject to the terms of this License, but you
may not transfer, sublicense or distribute the source code for the Software.

3. Restrictions. The Software contains copyrighted material, trade secrets, and other proprietary information. You
may not publish any data or information that compares the performance of the Software with software created
or distributed by others.

4. Termination. This License is effective until terminated. This License will terminate immediately without notice
from XILINX if you fail to comply with any provision of this License. Upon termination you must discontinue
all use of the Software.

5. Governmental Use. The Software is commercial computer software developed exclusively at Xilinx's expense.
Accordingly, pursuant to the Federal Acquisition Regulations (FAR) Section 12.212 and Defense FAR
Supplement Section 227.2702, use, duplication and disclosure of the Software by or for the United States
Government is subject to the restrictions set forth in this License. Manufacturer is XILINX, INC., 2100 Logic
Drive, San Jose, California 95124.

6. Export Restriction. You agree that you will not export or reexport the Software, reference images or
accompanying documentation in any form without the appropriate government licenses. Your failure to
comply with this provision is a material breach of this License.

V1.0 www.Xilinx.com PAVE Framework User’'s Guide
1-800-255-7778

http://www.xilinx.com

10.

Third Party Beneficiary. You understand that portions of the Software and related documentation have been
licensed to XILINX from third parties and that such third parties are intended third party beneficiaries of the
provisions of this License.

Interoperability. If you acquired the Software in the European Union (EU), even if you believe you require
information related to the interoperability of the Software with other programs, you shall not decompile or
disassemble the Software to obtain such information, and you agree to request such information from Xilinx at
the address listed above. Upon receiving such a request, Xilinx shall determine whether you require such
information for a legitimate purpose and, if so, Xilinx will provide such information to you within a reasonable
time and on reasonable conditions.

Governing Law. This License shall be governed by the laws of the State of California, without reference to
conflict of laws principles, provided that if the Software is acquired in the EU, this License shall be governed by
the laws of the Republic of Ireland. The local language version of this License shall apply to Software acquired
in the EU. Irish law provides that certain conditions and warranties may be implied in contracts for the sale of
goods and in contracts for the supply of services. Such conditions and warranties are hereby excluded, to the
extent such exclusion, in the context of this transaction, is lawful under Irish law. Conversely, such conditions
and warranties, insofar as they may not be lawfully excluded, shall apply. Accordingly nothing in this License
shall prejudice any rights that you may enjoy by virtue of Sections 12, 13, 14 or 15 of the Irish Sale of Goods Act
1893 (as amended). Nothing in this Agreement will be interpreted or construed so as to limit or exclude the
rights or obligations of either party (if any) which it is unlawful to limit or exclude under the relevant national
laws and, where applicable, the laws of any Member State of the EU which implement relevant European
Communities Council Directives. Nothing in this Agreement will be interpreted or construed so as to limit or
exclude the rights or obligations of either party (if any) which it is unlawful to limit or exclude under the
relevant national laws and, where applicable, the laws of any Member State of the EU which implement
relevant European Communities Council Directives.

General. If for any reason a court of competent jurisdiction finds any provision of this License, or portion
thereof, to be unenforceable, that provision of the License shall be enforced to the maximum extent permissible
so as to effect the intent of the parties, and the remainder of this License shall continue in full force and effect.
This License constitutes the entire agreement between the parties with respect to the use of this Software and
related documentation, and supersedes all prior or contemporaneous understandings or agreements, written
or oral, regarding such subject matter.

Rev. 7/6/00

PAVE Framework User’'s Guide www.Xilinx.com V1.0

1-800-255-7778

http://www.xilinx.com

PAVE Framework User’'s Guide

PAVE Framework User’'s Guide

The following table shows the revision history for this document.

Version Revision
09/17/01 | 1.0 001 | Initial Xilinx release.
09/27/01 | 1.0 004 | Minor updates and cleanup.
V1.0 www.Xilinx.com PAVE Framework User’'s Guide

1-800-255-7778

http://www.xilinx.com

PAVE Framework User’'s Guide www.Xilinx.com V1.0
1-800-255-7778

http://www.xilinx.com

Contents

Preface: About This Manual

AdAItIONAl RESOUITEScoovviieee st 14
Typographical CONVENTIONS ... 17

Chapter 1. Introduction

PAVE FramEWOTKccooiiieiiiiiecee ettt sttt a bbb st en s 19
WY PANVE? ..ottt st 20
RS 1o= 1= 1o 1 1] 177 20
=] 1= o 11) Y TS 21
0 1Y 0 L) SO 21
DeVeloper ProAUCTIVILYcccviieiiececie et s nenne 22

Chapter 2: Getting Started

SYSteM REQUITEMENTS.........coiiiieiieceiee ettt 23
HAPAWWATE. ...ttt bbbt b s b b st et nn 23
SOTEUWATE ...t bbb bbb bbbt b et b ettt be e 23

INSTAITATION ..ot 24

PAVE SIF TULOMIAL ... 25
Generating @ FraMEWOIKc.oiiiiieiiie et se e esa e eseeneesesneneeas 25
Using the framework With TOrNado..........cccceeveieiiiicinie s 26

PAVE VXSIM TULOTIAL ... 30
Using the Standard Tornado-11 VXSim with PAVE ... 30
Running the Durango VXSim TULOrialcooiiiiiiii s 31

Installing to an alternate driVe ... s 33

Chapter 3: Using the PAVE SIF

IRL REQISTEr MOUEN ...t 35
ST FIOW ..o 37
LT E= L] (= o 1RSSO 37
SYSEEM SIMUIBLION ..ot e e e et e e saesre e e neereens 37
)Y A1 (= 1 1L o o | = o -SSP 37
SYSTEIM GENETALON ..ot 38
0ENEIAtESYSIEIM.DALo b 40
INP FI1E FOPMAL ... et ettt nn 40
Building a Custom FrameWoOrK ... 41
Payload GENEIALOL ..ot 42
generatepaYlOad.Dat. e 42
Formats for SEIECtMAP aNd JTAG ..o 44

Chapter 4: Using the PAVE API
HOW the PAVE AP OPEIALEScoiiiiicceee s 49

V1.0 www.Xilinx.com
Xilinx PAVE Framework User’s Guide 1-800-255-7778

Vii

http://www.xilinx.com

S XILINX®

Object Oriented Nature of the PAVE APl ... 51
AP STTUCTUTE ...ttt ettt ettt 53
FUNCLIONAl DESCIIPLION ..o 55
PAVE APT CIASSES......cooiictceie ettt sttt a et sasae st ben s 56
PAYIOAAS ..o 58

Payload Header StrUCLUIE ..o 58

Payload Configuration Segment StrUCLUIE.........cooverieieirie e 58

Chapter 5. Using PAVE for JTAG Configuration

HOW 1T OPEIALES ... 61
DesSigN CONSIABTATIONS. ... 62
COdE EXAMPIE ...ttt 62

Rewiring the XIRL INterface REQISTErcccvcviieicr s 63

Chapter 6: Using PAVE for SelectMAP Configuration

HOW 1T OPEIALES ... 65
DesSigN CONSIABTATIONS. ..o 66
COdE EXAMPIE ..ottt s 66

Rewiring the XIRL INterface REQISTErccccviiveieire et 67

Chapter 7: Network Configuration

NEtWOIK DOMAINS.......coiiiiiesee s 69
DEFINITIONS ..ttt b et nn 70
Host, Client and SErver DOMAINS..........cccviiiiiiiiienee e 70
Client and Server RelatioNShiPSccvieiiieiiise e 70

Configuration Across a TCP/IP NEetWOIK ... 71
PUIL CONFIQUIALION ... e bbb e 71
PUSH CONFIGUIALION ... e et 71

Appendix A: Architecting Systems for Upgradability with IRL

SUIMIMAIY .o 73
INEFOTUCTION ... bbb 73
TRL CONCEPLS ..ottt st s bbb 73
WRAL IS TRL? .ottt 73
Elements of @n IRL SYSTEM ...t 74
Host, Upgrade Portal, and Network CONCEPLScvvvvveeeieiiee e 76
Target SOftWAre CONCEPLSovevieerieeeise sttt et se e ene e eresneerenreneens 77
Target Hardware CONCEPLScviiveiiiiise s ettt se e e se e ene s stesnesaesrennens 7
IRL EXAMPIES ...ttt 78
Basic IRL-eNADIEd SYSLEMoouiiiiiie e e s 78
IRL N @ BFridge SYSTEIM ..ottt ettt b e e bbb nenneas 80
Memory usage for Storing DItSTrEaAMS ..o 81
USe Of PAVE N TRL SYSTEIMS ..ottt bbb 82
Available Development PIatfOrms..........coooiiiiii e 82
SUIMIMIAIY ..ttt ettt b bt et ae ket e s bt e b e e e b e eb b e e b e eh b e bt em b e sbeehe e sbe e e e aaeenenbe s 82
REVISION HISTOIY ... 83
viii www.xilinx.com V1.0

1-800-255-7778 Xilinx PAVE Framework User’'s Guide

http://www.xilinx.com

S XILINX®

Appendix B: Using Durango with the MCP750 and PAVE

DUIaNgO BOAId ..ot 85
Durango BIOCK Diagramcccoiiiiiiiiccceceeie e e 86
Durango MCP750 PAVE IMplementation ... 86
DUrango FramEWOTKccooiiiiiiiiiccce et 87
C0AE EXAMPIES ..ot 88
RESOUICES ...ttt ettt 89
XIRL Interface Register TabIes ... 90

SIgNal NamME DESCIIPLIONS.......ciuiiiiiitiiteie ettt b e see b e e 91

Appendix C: Durango Reference Design

HAardWare FEATUIES ...ttt ettt ettt 93
AVATADTIITY ..o bbb 96
AddItional INTOrMAatioNc.cooi e 96
DUrango PCB LaYOUL ...t 96

Appendix D: Using ADM-XRC with the MCP750 and PAVE

ADM-XRC BOAIU.......ccooiiiiiiiiieees ettt 99
ADM-XRC MCP750 PAVE Implementation.............cccocnniincnnnnsnenneenn, 100
1T (U] o BT TSP UP U OT PR UUTURTPRPIO 100
INP Files fOr ADM-XRCcouiiieicecce ettt st be e n e s s ae e re e 101
APPHICALIONS. ...ttt 101
TS I U n T N = | | ST 103
L PP TP P TP PP OPPPTPIN 105
ADM-XRC PaYl0adScoveiiiieiiicisisise sttt st ena e ene e enesne s 109
RESOUICES ...ttt st 109

Appendix E: PAVE APl Summary
APL Reference ManUALc.ccooiiiiceeeeee et 111

Appendix F: Glossary

V1.0 www.Xilinx.com ix
Xilinx PAVE Framework User’s Guide 1-800-255-7778

http://www.xilinx.com

S XILINX®

X www.Xilinx.com V1.0
1-800-255-7778 Xilinx PAVE Framework User’'s Guide

http://www.xilinx.com

X XILINX"
Preface

About This Manual

This manual describes the operation and use of the PAVE Framework and API . The
chapters cover the following topics:

e Introduction - Details of the PAVE Framework

= Getting Started - Installation of PAVE and how to generate a framework for your
hardware

= Using the PAVE API - Use of the PAVE API in your embedded system
= Using PAVE for JTAG Configuration - Reconfiguration of your hardware with JTAG

= Using PAVE for SelectMAP Configuration - Reconfiguration of your hardware with
SelectMAP

< Network Configuration - Details on using the PAVE client and server for upgrading
hardware and software

= Using PAVE with VxSim - Simulation of your software and hardware
In addition, this guide includes six appendices provide reference information:

= Appendix A - XAPP412 - Architecting Systems for Upgradability with IRL (Internet
Reconfigurable Logic)

= Appendix B - Using Durango with the MCP750 and PAVE

= Appendix C - Durango Reference Design

= Appendix D - Using ADM-XRC with the MCP750 and PAVE
e Appendix E - PAVE APl Summary

= Appendix F - Glossary

Users should have the following skills prior to using PAVE:

= Understanding of C++ programming language

= Familiarity with use of the Wind River Systems (WRS) Tornado IDE tools, including
VxWorks and VxSim

< Digital Design techniques and FPGA design skills

Training on C++ is widely available through college courses, self-help books and on-the-
job training. WRS offers training on their tools; links to this are listed below. Xilinx offers
courses in FPGA and digital design and tutorials on using the Xilinx tools. See below for
links to Xilinx training and tutorials.

V1.0 www.Xilinx.com 13
PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

S XILINX®

Preface: About This Manual

Additional Resources

For additional information on PAVE and IRL, go to http://www.xilinx.com/xilinxonline. The
following table lists resources you can access from this page. You can also directly access
some of these resources using the provided URLs.

Resource
C++ Resources

C++on
Google

Description/URL

http://directory.google.com/Top/Computers/Programming/Languages/C%
2B%2B/

Learning
C++ Today

Training

Wind River Systems Resources

http://cyberdiem.com/vin/learn.html

WRS offers a series of regularly-scheduled classes in the use of their
tools:

http://www.windriver.com/training/index.html

Support

IRL Training

Xilinx Resources

WRS offers a variety of support services for their tools:

http://www.windriver.com/corporate/html/tsmain.html

The IRL team is offering the following free training, Introduction to IRL
Architectures:

http://www.xilinx.com/support/training/freelearning.htm

Training

Training covering Xilinx design flows, from design entry to verification
and debugging along with the use of VHDL and Verilog and additional
IRL training can be found at:

http://www.xilinx.com/support/education-home.htm

Tutorial

Tutorials covering Xilinx design flows, from design entry to verification
and debugging

http://support.xilinx.com/support/techsup/tutorials/index.htm

Answers
Database

Current listing of solution records for the Xilinx software tools

Search this database using the search function at
http://support.xilinx.com/support/searchtd.htm

Application
Notes

Descriptions of device-specific design techniques and approaches

http://support.xilinx.com/apps/appsweb.htm

Data Book

Pages from The Programmable Logic Data Book, which describe device-
specific information on Xilinx device characteristics, including
readback, boundary scan, configuration, length count, and debugging

http://support.xilinx.com/partinfo/databook.htm

Xcell
Journals

Quarterly journals for Xilinx programmable logic users

http://support.xilinx.com/xcell/xcell.htm

14

www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com/xilinxonline
http://www.xilinx.com
http://directory.google.com/Top/Computers/Programming/Languages/C%2B%2B/
http://cyberdiem.com/vin/learn.html
http://www.windriver.com/training/index.html
http://www.xilinx.com/support/training/freelearning.htm
http://www.xilinx.com/support/education-home.htm
http://support.xilinx.com/support/techsup/tutorials/index.htm
http://support.xilinx.com/support/searchtd.htm
http://support.xilinx.com/apps/appsweb.htm
http://support.xilinx.com/partinfo/databook.htm
http://support.xilinx.com/xcell/xcell.htm

Additional Resources XX"JNX@

Resource Description/URL

Tech Tips Latest news, design tips, and patch information on the Xilinx design
environment
http://support.xilinx.com/support/techsup/journals/index.htm

Self-Support | Self-Supportability tools and Problem Solvers as follows:

and Problem How to Find Answers: How to use support.xilinx.com to solve your

Solvers
problem
Search our Knowledge Base: Fill out this keyword search form to find
the answers to your questions
Answer Browser: Browse through the Answers Knowledge base by
part type
Configuration Problem Solver: This problem solver will automatically
fix your configuration issues
Install Problem Solver: This problem solver will automatically
troubleshoot software installation issues
Programmer Solutions: Device support list, software, and HW-130
information
Virtex Power Estimator: Estimate Virtex power consumptions with our
web form or download the Excel spreadsheet
Technical Tips: This is the resource for hot issues and tips to get up and
running quickly
http://support.xilinx.com/support/troubleshoot

V1.0 www.xilinx.com 15

PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com
http://support.xilinx.com/support/techsup/journals/index.htm
http://support.xilinx.com/support/techsup/journals/index.htm

2:)(||_|NX® Preface: About This Manual

16 www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

Typographical Conventions 2:)(||_|NX®

Typographical Conventions

The following typographical conventions are used in this manual:

Red text indicates a cross-reference to information within this document. Click red
text to open the specified cross-reference.

Blue-underlined text indicates a link to a Web page. Click blue-underlined text to
browse the specified Web site.

Couri er font indicates C++ code

printf("%\n", CNSTApplicati onNAVE);

/* As in real C code, C code comments in this guide are enclosed in

sl ash-asteri sks as shown here */

/1 Alternatively, comrents might be on a single line like this
Courier indicates C++ classes and API Calls:

cl assl RLDevi ce: : Get Payl oadChecksum

t hi s- >Get Payl oadSi ze(szPayl oadPat h, &dwBi t st r eant5i ze, &dwibdul eSi ze)
Courier indicates drive letters, file names and paths, and contents of files:

C\

D:\ _pl at form syst engener at or\ _bui | ds\ _\ dur ango. wsp

gener at edevi ce Durango Virtexl | Engine.inp classlRLDevice

Couri er bol dindicates executables, scripts, and literal commands that you enter in
a syntactical statement. However, braces “{}” in Courier bold are not literal and
square brackets “[]” in Courier bold are literal only in the case of bus specifications,
such as bus [7:0].

- Thegenerat eserver. exe and gener at edevi ce. exe tools create the required
Tornado workspace and project files.

- Runthe gener at esyst em bat batch file;

Courier bold also indicates menu commands:

File - Open

Italic font denotes the following items.

- Variables that are substituted with user-defined values
edi f 2ngd desi gn_nane

- References to other documents.
See the Virtex-E Data Sheet for more information.

- Emphasis in text

If a wire is drawn so that it overlaps the pin of a symbol, the two nets are
not connected.

The standard, IEEE 1149.1 JTAG, will be referred to as “JTAG” for simplicity.

Angle brackets “<>" indicate something you fill in based on context, such as a path or
a drive letter:

<pat h>\ _buil d\client\simulator\defaul t\vxWrks. exe
Square brackets “[] denote the following items
- A generated entry or parameter
_buil ds\'server\[servernane]\devi ces
- C code syntax
st r Payl oadHeader . t heDevi ceConfi gurati on[0] . dwBi t st reanSi ze,
- Bus specifications
SMAP_DJ[2:0]

V1.0

www.Xilinx.com 17

PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

2:)(||_|NX® Preface: About This Manual

18 www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

&7 XILINX®
Chapter 1

Introduction

PAVE Framework

The PAVE Framework is an embedded applications development environment that can be
used in the design and deployment of upgradable systems applications. It consists of two
parts as shown in Figure 1-1:

= PAVE SIF (System Integration Framework) - This is a software environment that ties
leverages the Wind River System Tornado Il Integrated Development Environment
(IDE), the Xilinx Foundation tools, and Microsoft Visual Studio tools.

= PAVE API - A collection of C++ classes and object models that abstract an
implementation of a Xilinx FPGA, called the IRL-enabled Device implementation.

The PAVE Framework treats the programmable hardware as an object within the system,
similar to software objects used in C++. As a result, applications that are written using
PAVE tend to be highly object oriented, modular, and extremely upgradable. A single
module can be changed without replacing the entire framework.

Host Target PAVE C++ Application

HEE

2 i VxWorks RTOS
PAVE SIF PAVE API VxWorks Board Support
Package (BSP
2 WindRiver = WindRiver ge (BSP)

Microprocessor

FPGA

/K\:C;P/IP
PAVE Payload “ Nemork

Upgrade Portal

UG021_26_082001

Figure 1-1: Xilinx PAVE in IRL-enabled System

V1.0 www.Xilinx.com 19
PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

S XILINX®

Preface: Introduction

Why PAVE?

PAVE has been written in C++, an object oriented programming language that abstracts the
various underlying software components. This abstraction allows you to look at the larger
picture without spending time revisiting the minor underlying details whenever your
code changes. This allows a modular approach to fixing or upgrading code. This approach
can be likened to repairing a car; if your alternator fails, you replace just the alternator, and
not the whole engine.

User Application

PAVE

Xilinx IRL Enabled
Device Implementation
Bitstream

IRL Enabled
Device

UG021_01_080601

Figure 1-2: PAVE API, Application and IRL-Enabled Device

With PAVE, you can update any single module without replacing the complete system
software, as in our example above. As seen in Figure 1-2, every part of the system is a
module that can be changed. Since the relationship between the software and hardware are
clearly defined on a register-level basis, your FPGA designs and the software drivers for
them can be easily upgraded without having to change your entire system.

Xilinx created PAVE so that customers could more easily create field upgradable products.
When we say 'customers’, we mean not only the traditional FPGA designer who normally
uses our devices but also the software application developer and system architect who are
also responsible for designing the whole system. We understand that design of the
upgradable product not only involves the FPGA based target (the traditional responsibility
of the hardware design and firmware developer) but also the network-based delivery of
the payload modules to the target plus the creation/integration of the software on the host
development tools. Xilinx has taken a broad view of the problems to be solved in designing
field upgradable systems and is creating solutions that address different requirements of
the upgradable system specification.

Customers have told us that these requirements include:

Scalability

Customers want a tool that they can use for many different uses. This lowers support costs
and training time.

= Upgrade application design: the ability to use a single design methodology that can
span the spectrum of different memory systems as well as microprocessors is an

20

www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

Why PAVE?

S XILINX®

obvious benefit.

The PAVE API enables a customer's C++ upgrade application to operate with any type
of memory and 32 bit microprocessor which is supported by a Wind River VxWorks
Board Support Package (BSP). This C++ application therefore does not need to be re-
written when a new hardware platform is targeted. This includes flash, RAM and hard
disk memory as well as all of the popular 32 bit microprocessor architectures, making
the upgrade design extensible across a wide range of end products.

Also, the PAVE APl is provided in source form so that a user can modify it even further
to more closely match their needs.

= FPGA configuration: a single design methodology that can program the FPGA either
via SelectMAP or JTAG.

The PAVE API abstracts the SelectMAP and JTAG operation through software based
state machines and objects. The engineer does not have to worry about the specific
functional and timing issues involved with using these configuration methods.

= Updating both hardware and software: customers tell us they update software in their
systems as frequently, if not more often, than the hardware. A single methodology for
both would be the most efficient.

The payload created by the PAVE System Integration Framework (SIF) is defined to
contain both software modules in addition to FPGA bitstreams. Either or both can be
present in a payload.

= Performance: customers want to adjust the speed of the upgrade process to match
their system requirements. The PAVE API performance can scale with the processor
speed and it works over any type of local or system bus.

= Upgrade architecture; some applications require all targets to be updated on the
initiative of a central controller (a 'push' update) or for each unit to be updated when
it chooses (a 'pull’).

The PAVE Framework is applicable to both equally well. The PAVE SIF and API can be
used in either scenario.

Reliability

Low Cost

All customers have different ways to guarantee that their products are reliable and of high
guality. An upgrade tool needs to be flexible and powerful enough that it can enable highly
reliable upgrades.

The PAVE API enables applications that can control which version of either an FPGA
upgrade or a software upgrade is to be used. Applications can also be written monitoring
the success of the upgrade and what to do thereafter. These customer written applications
naturally are tuned to the very specific needs of the product. For instance, a 'rollback’
application can be written that monitors the status of the upgrade operation, and based
upon its results, rolls back to the previous FPGA configuration. The API supplies the
methods to do this.

Gaining the benefits of field upgradability without adding to the production cost of the
end product is a key goal. The ability to easily leverage the resources which are already in
the system - the microprocessor, memory, operating system - to create an upgradable
design can accomplish this goal of low cost.

The PAVE API is software that is run on the Target system processor. It's only hardware
requirement is a 32 bit register between the microprocessor and FPGA, that the API talks
to.

Engineering development costs are also lowered.

V1.0

www.Xilinx.com 21

PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

S XILINX®

Preface: Introduction

Code described in the PAVE framework can be reused across products because the PAVE
SIF can easily import and export project files. Also, the PAVE API customer application can
quickly be modified for new hardware in a new product. Both of these combine to give
lowered project development costs.

Developer Productivity

The upgrade process is not just about manipulating the target system, it is also about the
ease of creating the upgrade payload and managing upgrades in the future. For an
application developer, they want simple ways for their software application to access the
devices in the upgrade process. Also, how many companies have experienced the agony of
losing a designer and then having to re-create the work so that the product can be
upgraded?

The PAVE SIF contains developer utilities as well as an easy to use directory structure to
help the developer quickly create applications and manage them for years to come, as the
product evolves.

22

www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

&7 XILINX®
Chapter 2

Getting Started

This chapter describes installing the PAVE SIF and generating a sample framework. The
Durango example design is used for this sample to both insure your tools are correctly
installed and to give you a short tutorial in generating the framework. Details on how to
customize the framework for your design can be found in Chapter 3, Using the PAVE SIF.

System Requirements

The following list details the requirements for the PAVE Framework development
platform

Hardware

Host System

e 64 MB RAM (128 MB recommended).

« 300 MB disk space for typical installation.

e A CD-ROM for installation.

« Intel Pentium Il or better; Intel Pentium Il recommended.

< A network interface card with an Ethernet TCP/IP connection.
< Windows NT or Windows 2000

= Netscape 4.7 or Internet Explorer 4.0 or later web browser.

Target System

= VxWorks 5.4 or higher
= VxWorks compatible Board Support Package (BSP) supporting a 32-bit architecture.

Software

e WRS Tornado Il
e Microsoft Visual Studio v6.0
= Xilinx Foundation Software, 3.1i or higher

V1.0 www.Xilinx.com 23
PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 2: Getting Started

Installation

The Xilinx PAVE Framework is only available thought web distribution. The PAVE

Framework can be found at:

http://www.xilinx.com/xilinxonline/pave_dl/finaldwnldpage.htm

From this page you can download the latest release. Release notes for the release can be

found at this location.

The IRL home page is at:

http://www.xilinx.com/irl

You will need to be registered with the Xilinx web site and agree to the PAVE Software

License to gain access to the files. If you are not currently registered for the Xllinx website,

follow this link:

http://www.xilinx.com/xInx/xil_reg_profile.jsp

and click on the “New customers please register” link.

After downloading the PAVE files from the aforementioned web address, complete the

following steps to install a new PAVE Framework.

1. Ensure that you have enough disk space to install the new PAVE Framework.

2. Backup any existing PAVE Framework that you are currently developing in prior to
installing newer versions. The new PAVE Framework can be installed directly over
your existing framework after you have backed up your previous version.

3. Review the online release notes for the version of PAVE you are using. The release
notes can be found on the web page where you downloaded the PAVE Framework.

4. Unzip the PAVE zip file to your D: \ drive. PAVE must be installed in the root of your
drive (e.g. D: \). PAVE has some very long path names; making them much longer will
cause the . bat files to fail. Spaces in the pathnames are not allowed.

If you are must use a drive letter beside D: \ , you will need to modify the WRS
workspace files. See Installing to an alternate drive for details on this procedure.

5. After completing the previous step, you will now have three new directories in D: \

- D\ _platformsystengenerator
- D\ _platformncp750durango
- D\ _platformncp750adnxrc
The firstdirectory, D: \ _pl at f or m syst engener at or, is a template that you will use in
the next two sections of this chapter to generate a framework and perform a system
verification. Under D: \ _pl at f or m syst engener at or, you should see directory tree
that resembles the tree illustrated in Figure 2-1.
The second and third directories are pre-generated frameworks that target specific
hardware configurations.
The D:\ _pl at f or m ncp750dur ango targets the Motorola MCP750 and Durango IRL
reference design. More details on this can be found in Appendix B, Using Durango
with the MCP750 and PAVE.
The D:\ _pl at f or m ncp750adnxr ¢ targets the Motorola MCP750 and Alpha Data
ADM-XRC design. More details on this can be found in Appendix D, Using ADM-
XRC with the MCP750 and PAVE.

24 www.xilinx.com V1.0

1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com/xilinxonline/pave_dl/finaldwnldpage.htm
http://www.xilinx.com/xlnx/xil_reg_profile.jsp
http://www.xilinx.com/irl
http://www.xilinx.com

PAVE SIF Tutorial

S XILINX®

| _platform_systemgenerator |

| _builds |

include | | libraries | | objectfilesl | bin | | docs | | z |

—| host |

—| host | —| host

debug | debug |

server

durango

common

other

[0

release | release |

server

UG021_03_082801

Figure 2-1: System Generator Tree Diagram

PAVE SIF Tutorial

The following sections present a brief tutorial on using the PAVE SIF, using the Durango
example. In addition to showing you the basics of how to use the SIF, this validates your
setup and tool installations. The following screenshots appear best in Acrobat or Acroread
when scaled to 134%

Generating a Framework

1.

N

From your command prompt, change directory to:
<drive letter>:_platformsystengenerator_buil ds_

In this directory you will find several executable and . bat files along with several
. i np files. These four . i np files are input files to the code generation tools. Several
things you should note about this:

- The system description file, dur ango. i np, specifies the programmable devices in
the system, referencing the other three . i np files.

- The device specification . i np files (Vi rt exI | Engi ne. i np, Vi rtexl | Bri dge. i np,
and Cont r ol CPLD. i np) each have a specification of the registers in the
corresponding device. You can specify the register programming model for a
device in these files. Details on the .inp file format can be found in Chapter 3,
Using the PAVE SIF.

Run the gener at esyst em bat batch file; your screen output should look like

Figure 2-2. If you run it a second time it will complain about overwriting the

dur ango. wsp file. This is to prevent you from unintentionally overwriting the

dur ango. wsp file as you may have made some changes to it in the Tornado Il tool. To
solve this manually delete the file, dur ango. wsp prior to running the

gener at esyst em bat file.

V1.0

www.Xilinx.com 25

PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

2:)(||_|NX® Chapter 2: Getting Started

M& Command Prompt

D:~_platform_systemgenerators_buildss_2echo off
instantiateserver

devicegenerator

devicegenerator

devicegenerator

Prez=z any key to continue . . .

Diw_platform_systemgenerator~_builds~_>

Figure 2-2: Running the System Generator

WRS Tornado workspace files use absolute paths instead of relative paths. Once you
generate the system, the generated workspace files (.wsp) will be “hard-coded” to that
directory. If you need to change the path, you must regenerate the system.

3. Go back to the _bui | ds\ _ directory. You will now find that both a tornado and a
VisualStudio workspace files have been generated, respectively named dur ango. wsp
and dur ango. dsw

Using the framework with Tornado

Once you have created the system components that are resident in your system
framework, you can build the PAVE System Integration Framework. The steps below will
guide you through the build process.

1. Start the Wind River Systems Tornado Il Integrated Development Environment (IDE).

26

www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

PAVE SIF Tutorial S XILINX®

2. SelectFil e->Qpen Wor kspace. You will be presented with a dialog box that resembles
the dialog box shown in the Figure 2-3 below.

Open Workspace

Fiecentl Mew Existing |

Enter a workspace to open, or press ‘Browse. ' to search: 0k |

ID:"-._pIatfurm_systemgeneratl:ur"x_l:uuilds"'._"xdurangl:u. WEp Cancel

Browse. .. I

Help |

¥ Shaow this window an startup

Figure 2-3: Opening the durango.wsp file

3. Selectthe dur ango. wsp file in the _bui | ds\ _ directory. This is the VxWorks workspace
file for the framework that was generated in the previous section. Click the OK button
and the workspace will open as shown in Figure 2-4. This window is the Tornado II
IDE workspace window. If not already selected, select the Files tab in the workspace
window.

4. The gener at eser ver . exe and generatedevice.exe tools create the required Tornado
workspace and project files. There are two sets of project files shown in the workspace,
the ppc604gnu and the si mt gnu workspace files. These represent the downloadable
and simulatable build specifications respectively.

Within these sets of project files you will see project trees for the Vi rt ex! | Engi ne,
Virtexl|Bridge, Control CPLD, and the several test application project files. The
Vi rtexl | Engi ne, Virtexl | Bridge, and Cont r ol CPLD projects build the software
objectfiles for the IRL-enabled devices that are resident on the Durango system
component.

5. Generate the dependencies by right clicking on ppc604gnu_dur ango_control cpl d
and selecting the Dependenci es choice. Ensure that all of the checkboxes are selected.
Click on the Advanced button and select the Qui ck Scan option as seen in Figure 2-6.
Click &K for the Advanced dependencies and again for the original dependencies
dialog. The dialog box in Figure 2-7 shows the dependencies are being recalculated for
the elements of the selected build.

V1.0 www.Xilinx.com 27
PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 2: Getting Started

£ Tomado - [wWorkspace: durango]
| File Edit %iew Project Build Debug

Toolz “Window Help

=8| x|

D|2|E] %2 & 2|

alalolels] s

Z|z|.l2 M

[Merrmoeiavisan =] 2il=¢|@RIES] || Z] 2] o] B Bl

Build Spec |PP|:ED4gnu

=

=-§8l durango

&' ppcbl4gnu_durango_acceptancetest Files

&' ppcbl4gnu_durango_controlcpld Files

&' ppcbl4gnu_durango_developmenttest Files

&' ppcbl4gnu_durango_downloadiuldevicepayload Files

&' ppcbl4gnu_durango_regressiontest Files

&' ppcbl4gnu_durango_serverapplication_vx Files
&' ppcbl4gnu_durango_tutonal Files

&’ ppcbl4gnu_durango_uploadiuldevicepayload Files
&’ ppcbl4gnu_durango_wvirtexnbridge Files

&’ ppcbl4gnu_durango_wirtexnengine Files

&’ simntgnu_durango_acceptancetest Files

&’ simntgnu_durango_controlcpld Files

&’ simntgnu_durango_developmenttest Files

&’ simntgnu_durango_downloadirldevicepayload Files
&’ simntgnu_durango_productiontest Files

&’ simntgnu_durango_regressiontest Files

&’ simntgnu_durango_zerverapplication_vx Files

&’ simntgnu_durango_tutonal Files

&’ simntgnu_durango_uploadirldevicepayload Files
&’ simntgnu_durango_viritexnbndge Files

&’ simntgnu_durango_virtexnengine Files

Files | Vwiorks | Builds |

YWind River Syztems

| |Ln 175, Col 4 ¢

Figure 2-4: Durango Workspace in Tornado Il

Dependencies

Fegenerate project file dependencies:

= &l Project files

" Selected Project files

(W] clazzapilibran. cpp ﬂ
[w]clazzcontrolcpld. cpp
[w]clazzdevice.cpp

.u:lassull:ustreamdelwery Cfi
lazsilrnrnressiog con
il [>

K E3

Canicel |
Advanced... |
Help |

Figure 2-5: Dependencies Dialog

28 www.Xilinx.com
1-800-255-7778

V1.0
PAVE Framework User's Guide

http://www.xilinx.com

PAVE SIF Tutorial S XILINX®

Advanced options for dependencies generation [2]

— Read-only dependency path

Harmally our build spstem time checks all file dependencies
[Hinclude's] to zee if the file needs to be rebuilt. Thiz iz inefficient if
zome of the dependencies are known to be read-only. The read-only
dependency path allovws our build zpztem to go fazter by zkipping
dependencies in the following directarnies: Bemove

D4 Tarnado'targetyh
DA T ornadohtargetharc
D:ATomadohtargethconfig

il

Remove Default

— Quick Scan

[uick Szan iz a much faster way of analvzing dependencies, but it returns a superset of
the real dependencies. |f you frequently regenerate dependencies, we recommend wsing
Cuick Scan. |F pou frequently modify the headers in D:AT omadottargethh, we
recommend not wzing Buick Scan.

¥ Enable Quick Scan

k. I Cancel Help

Figure 2-6: Advanced Dependencies Dialog with Quick Scan enabled

Dependencies

Regenerate project file dependencies: or

Cancel

dependencies
[clazzilplugnplay. cpp] 0 13 Adaneed

il

Help

Figure 2-7: Updating Dependencies

6. Once the Dependencies have been generated, you can build the . out file. Right click
on ppc604gnu_dur ango_control cpl d and select the Rebui I d Al | . A build window
will pop up in Tornado, if it completes successfully, it will say “Done” at the end.

After you have successfully completed this process, you will be able to follow the normal
Tornado procedures to load and run the object modules for the PAVE Framework that you
have generated.

V1.0 www.Xilinx.com 29
PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

2:)(||_|NX® Chapter 2: Getting Started

PAVE VxSim Tutorial

The _pl at f or m ncp750dur ango framework provided with PAVE contains project files for
simulating a solution using the Tornado-Il VxSim simulator. The simulator is an excellent
way to become familiar with the PAVE API and the development tools in the Wind River
Systems Tornado-I1 Integrated Development Environment. The Durango workspace
shown in Figure 2-4 lists projects prefixed with ppc604gnu and also si mt gnu. The

si mt gnu prefixed projects can be built and downloaded to VxSim just as if one were
targeting physical hardware. Using PAVE and VxSim one can define the register set of a
device under development and begin to exercise the software and hardware interfaces
before physical devices are available.

Tutorial code within the Durango workspace presents a simple but generalizable register
based data flow example as well as a JTAG configuration flow example.

Using the Standard Tornado-Il VxSim with PAVE

The standard VxSim simulator shipped with Tornado-11 does not provide networking
support, however, together with the Tornado-I1 debugger it can be used to trace the flow of
code within the simntgnu_durango_tutorial project of the Durango framework.

1. Bring up the Tornado-Il IDE by double clicking on the workspace file
\ _bui I ds\ _\ durango. wsp.

2. Build the following projects shown in the Durango workspace by right-clicking on
them in the Files view and selecting the ReBui | d Al | option:
- simmtgnu_durango_contol cpld
- simmtgnu_durango_virtexiibridge
- simmtgnu_durango_virtexiiengi ne
- simmtgnu_durango_tutorial
3. Launch the standard VxSim simulator from the Tornado install directory by selecting

Start->Run from the Windows task bar and entering the following command line for
execution

<Drive Letter>:\Tornado\target\config\sinpc\vxWrks.exe -p0 -r10000000

Type the name of a program, Folder, document, or
Inkermet resource, and Windows will open it Far you,

CIpen; I'l,target‘l,cu:unfig'l,simpc'l,vx'u'-.-'curks.exe -pi0 -r 10000000 j

(o] 4 I Zance| | Browse, ., |

Figure 2-8: Running VxWorks for the Simulator

4. Configure the target server by selecting Tools -> Target Server->Configure and
configuring as shown in Figure 2-9. The description you put in this box will appear on
your launch dialog box when you use your Target Server in the future. Choose OK
instead of Launch.

5. Download each of the files listed in step 2 to the simulator using the right click and
selecting the Downl oad “<fi | ename>" option.

30 www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

PAVE VxSim Tutorial

S XILINX®

Configure Targek Servers i |

Target Server Descriptions

WuSimT arget ﬂ I e
Test

wSimT arget Copy |

Dezcrption IEase"-.-":-:SimTarget
Bemove |
v i&dd descnphion to mernc

Target Server Name I

— Target Server Ernperties—l Back End j —

Avalable Back Ends Timeout [sec) Re-try [Count]

Target Mame/IF Address |30.0.0.1

Command Line
totevr.exe 90.0.0.1 A -B wdbpipe ;I

2
k. I Launch | Cancel | Help |

Figure 2-9: Target Server Configuration for VxSim

Running the Durango VxSim Tutorial

You are now ready to run the si nnt gnu_dur ango_t ut ori al . Launch the Debugger by first
clicking on the “bug” icon in Tornado, and then clicking on the “running man” icon”. This
brings up the Run Task dialog shown below. We will step through the tutorial code

beginning at the function "durango_tutorial.

Run Taszk |

Tazk entny: Idurangn_tutnrial j

Argurnents:

¥ Break at entry point

k. I Cancel Help

Figure 2-10: Run Task dialog

V1.0 www.Xilinx.com
PAVE Framework User’'s Guide 1-800-255-7778

31

http://www.xilinx.com

S XILINX®

Chapter 2: Getting Started

The dialog box input is the equivalent to a executing an
-> sp (durango_tutorial, 1)

command from the Tornado Shell to spawn a new task with the specified entry point.
However, by launching a task through the debugger, one can trace through the code using
all of the Tornado Debugger functions such as step into, step over, run until a breakpoint,
and observe the system through watch variables and dumping memory contents.

The durango_t ut ori al code shows how to access a cl assRegi st er object, how to trap
accesses to the register, and also how a JTAG configuration is performed. Upon entry, the
durango_tutorial simulation code is steered by the ATTRcl assDur angoSI MULATI ONMODE
compiler flag defined in all the Durango si mt gnu projects. When simulation is enabled,
memory is allocated to represent the address space of a board instead of discovering and
memory mapping any physical hardware. Along with the flag mentioned above the
ATTRcl assSi mul at i onENABLESI MULATI ON compiler flag allows register operations to be
trapped and user code placed in the appropriate device user si mfile to be executed.
Sample code in

\ _buil ds\server\durango\devi ces\virtexiiengine\virtexiiengi neusersi mcpp

is delivered with the Durango framework to multiply any uploads to the CTLRE®DO register
(defined in the inp file) by two and write the result back to CTLRE®00. The following code
in\ _bui | ds\server\durango\tests\tutorial\tutorial.cpp exercises the register
level accesses and trapping:

ptr Server - >ptrDesi gnat edDevi ce->Di spl ayRegi sters();
ptr Server - >ptr Desi gnat edDevi ce- >pt r CTLREG)0- >Upl oad(2);

Output from the register level operations can be viewed in the VxWorks Simulator
window as shown in Figure 2-11. Using the cl assRegi st er objects with VxSim enables
interface testing without physical hardware.

Along with the simple register example, durango_tutorial is set up to perform a JTAG
configuration. An IRL payload file, ncp750dur ango_tutorial _jt.irl, isreadinand
split into it’s constituent loadable software module and bitstream. In the JTAG case the
bitstream is in the form of an XSVF file which is parsed and sequenced through the XIRL
interface register by the tutorial code. Using the debugger and setting breakpoints, one can
trace through the JTAG configuration process. The PAVE application developer needs only
call the APl methods exposed in the tutorial to initiate the underlying software state
machines. Upon successful completion of the JTAG process the J TAGCOVPLETECOVMAND is
printed to the Simulator window (Figure 2-11).

I ¥rWorks Simulator for Windows =10l x|

S

Copyright 1984-1998 Wind Riwver Systemz., Inc.

CPU:. V=S5im for Windows
VelWorks: 5.4
BSF vwer=zion: 1.1-1
Creation date: Apr 22 1999
WDE: Ready.

Fegister : CTLREEGOO : Walus : 00000000

Fegister : CTLEEGOD : Walus : 00000004

Executel TAGCOMPLETECOHMAND

[-] o0:00:00:0 —

[2z

Figure 2-11: VxSIm Window

32

www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

Installing to an alternate drive 2:)(||_|NX®

Installing to an alternate drive

The WRS Tornado tools depend on absolute paths to locate files. The directories,

_nmcp750dur ango and _ntp750adnxr ¢ were generated with the D:\ as their location and

they must be run from the D:\ or Tornado will not recognize them.

If you are unable to run them from the D: \ drive here is the procedure to fix this.

Durango - The _pl at f or m syst engener at or directory is an ungenerated version of
the _pl at f or m ncp750dur ango directory. Copy the _pl at f or m syst engener at or to
the desired drive and run the system generator to create the desired framework.

ADM-XRC - To move the _platform_mcp750admxrc to another drive you must edit all
the . wsp and . wpj files, changing every instance of “D: ” to “C: ” (case is not
important). This must be done with an editor that does not change the carriage returns
to a DOS format. Do not use Notepad or Wordpad as these will change the files to
DOS format. Suggested editors that are capable of changing the files correctly are:

Ultraedit has search and replace capability that can recursively search the directories
for strings in certain files. Ultraedit is shareware with a 30 day demo period. Ultraedit
can be obtained at:

http://www.ultraedit.com

XEmacs is a free open source text editor, under the GNU license. XEmacs can be
obtained at:

http://www.xemacs.org

V1.0

www.Xilinx.com 33

PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com
http://www.ultraedit.com
http://www.xemacs.org

2:)(||_|NX® Chapter 2: Getting Started

34 www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

& XILINX®

Chapter 3

Using the PAVE SIF

PAVE is distributed in a development framework called the PAVE Systems Integration
Framework, or SIF. This framework consists of a directory structure that is populated with
the requisite software source code and header files, Wind River Systems Tornado Il IDE
workspace and project files, utility applications, scripts, and documentation.

In Chapter 2 the basic process of generating a framework was presented. This chapter
expands on this by describing how to use and customize the PAVE System Integration
Framework to create a framework for your IRL-enabled device This chapter goes further
into the underlying concepts and the file formats used in the PAVE SIF.

While developers are not restricted to work within the framework, they are highly
encouraged to do so. First, the SIF is a turnkey solution that enables systems architects to
immediately focus on developing their application. The bulk of the setup has been
completed. Secondly, the framework enables the developer to take advantage of future
enhancements to the PAVE API with very little effort. Third, and most importantly, using
the framework will enhance the support that you will get from Xilinx IRL Solutions.

IRL Register model

The PAVE Framework views hardware from a register level, thus all hardware can be
described to the software in terms of registers. This allows hardware to be viewed as a
component that can be replaced and upgraded as needed, just as software is upgraded.
With this viewpoint, Xilinx has developed the IRL register model to allow a simple
interface that supports reconfiguration of an IRL-enabled devices across any memory
mapped bus (e.g. PCI). Figure 3-1 show the IRL register model.

The IRL-Enabled design is the TargetFPGA with the appropriate registers that PAVE can
communicate with. Since these registers are viewed by the software as objects, this register
model can be expanded by Xilinx or the user as needed through updates of the PAVE
Framework or use of the SIF. Any series of additional registers can be added quickly and
the corresponding software objects to use these registers can be added to the C++ code.

The IRL Register model in PAVE v1.0 supports configuration via JTAG and Xilinx
SelectMAP. The XIRL Interface Register is a 32-bit memory mapped register that handles
the configuration of the IRL-enabled device. It is shown outside the TargetFPGA as it has to
be available at configuration time. This register could be in another FPGA, a CPLD, or even
be a port on the processor, provided the software can directly address it. It is not
considered to be part of the IRL-enabled device since it must reside in another device. The
mapping of this register is shown in Figure 3-2. More detail on JTAG and SelectMAP
configuration via this register can be found in Chapter 5, Using PAVE for JTAG
Configuration and Chapter 6, Using PAVE for SelectMAP Configuration.

V1.0

www.Xilinx.com 35

PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 3: Using the PAVE SIF

XIRL_Interface[31:16]

Reserved
MODE_HSWAP_EN
MODE_M [2:0]
SMAP_D[7:3]

JTAG_BUFF_OE
JTAG_TCK
JTAG_TMS

JTAG_TDI
JTAG_TDO

XIRL_Interface[15:0]

SMAP_D[2:0]

SMAP_BUSY ————

SMAP_DONE
SMAP_INIT
SMAP_PROG
SMAP_CS
SMAP_RW
SMAP_CCLK
SMAP_BUFF_OE

classTargetFPGA : public classDevice

classDevice

classIRLBStreamDeliveryModule

classJTAG | classSelMAP

User Defined Components

classStateMachine

classSignalBuffer

classRegister

classPlatform

I XIRL Interface Register I

Y

TargetFPGA

Y

User Defined Registers

Device Specific
Register Set

IRL Enabled Device
Figure 3-1:

UG021_22_080601

IRL Register Model

[31]30] 20]28]27 |26 [25| 24| 23| 22 [21| 20] 10 18]17[16] §
L I L IL I

1

[|15]1afisfazfiafiof o8 [7]6[s5][a]s[2]1]0]
1

_

UG021_43_080601

Figure 3-2: XIRL Interface Register Map

36

www.Xilinx.com
1-800-255-7778

V1.0
PAVE Framework User's Guide

http://www.xilinx.com

®
SIF Flow S XILINX
SIF Flow
The flow of the SIF can be broken down in two main goals, upgrading your system and
simulating your upgradable system. This flow is represented in Figure 3-3.
Compile Generate Simulate Simulate
Software Payload Upgrade Durango
for VxSim Utility System Board
Define Fr:n:ees\irk/ Sc\glt\r/ivtzre Compile / Generate Run
| /g ?\’rgv‘:ztr:rs Generate Applications Software Payload USp ggécri:]! Durango
for P%VE System in PAVE for Hardware Utility 4 Board
with PAVE Framework
) Generate
Design PLD
Hardware .
Bitstreams

Initial Steps

UG021_42_080601

Figure 3-3: PAVE Flow Chart

Define the hardware registers - Using the . i np file format, described later in this
chapter, the designer defines his register set for the SIF.

Run the SIF System Generator to create a device framework.

Develop your embedded application in Tornado, using the Tornado Workspace
generated by the SIF.

Design your physical hardware, including the FPGA designs.
Generate the FPGA bitstreams.

System Simulation

Compile the simulation projects in Tornado. In the Durango workspace these are
listed under the build specification SI MNTgnu.

Generate the payload.
Simulate upgrading your system.

Simulate the system. This involves reading and writing the registers defined in the
initial steps. Further simulation of your FPGA and board designs can be performed
but this is beyond the scope of this manual.

System Upgrade

Compile the hardware projects in Tornado. In the Durango workspace these are listed
under the build specification PPC604gnu.
Generate the Payload.

Upgrade your system. Examples of the upgrade process for the ADM-XRC can be
found in Appendix D. The ADM-XRC code shipped with PAVE v1.0 includes push
and pull code segments.

Verify your hardware. In PAVE v1.0, Durango includes a “hello world” bitstream that
blinks some LEDs on the board; the ADM-XRC include a series of applications,

V1.0

www.Xilinx.com 37

PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 3: Using the PAVE SIF

including an FFT, and some graphics routines. Details on using the Durango board
can be found in Appendix B.

Figure 3-4 shows the tool flow of the SIF and where the Xilinx and WRS tools are used.
There are two major tools in the SIF, the System Generator and the Payload Generator.

Tornado Integration:

PAVE System Wind River | Generate Tornado
Generator Tornado workspace and
/ project files
System Specification PAVE 5 Header
System ®
Board Specification Integration 2 Bitstream for Target Device 0
Framework o
- T <>(O [~ | sw Device Driver for Target Device 0
Device ag
Specification % Bitstream for Target Device 1
©
a

SW Device Driver for Target Device 1

\ Payload File

Xilinx
Foundtion
ISE

UG021_27_082001

Figure 3-4: System Integration Framework Tool Flow Diagram

System Generator

The PAVE SIF includes several executables that process the user’s text descriptions of his
hardware.The gener at edevi ce. exe command in the gener at esyst em bat script are the
executables that create C++ source and header files, and related project files for the IRL-
enabled devices that comprise the server system component.

| _platform_systemgenerator |

| _builds | | include | | libraries | | objectfilesl | bin | | docs | | z |

—| host | —| host —| host

|—| client |

durango
server | —| server |
client

debug | debug |

client release | release |

—| common
—| other

server

durango

common

other

i

UG021_03_082801

Figure 3-5: System Generator Tree Diagram

38 www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

System Generator

S XILINX®

The most important components of the PAVE Systems Integration Framework directory
tree structure are illustrated above in Figure 3-5

The major source code components of the PAVE API are contained in the

l'i braries\server and thei ncl ude\ server directories. Additional source code
components that are required by the build can be found in the | i br ari es\ common and

i ncl ude\ common directories. The other major element of the build tree can be found under
the buil ds\server and _bui | ds\ host directory structure. Note that under this directory
there is a directory called the dur ango directory. This directory is provided as a tutorial
directory for illustrative purposes. This subdirectory tree is called the device component
framework tree. It contains the files that are specific to a particular class of system
component within a system. Figure 3-6 below depicts the dur ango directory and its
subdirectories.

| _builds/server/durango |

| serverapplications | | utilities | | tests | | devices |

| serverapplication |

downloadirldevicepayload| —| acceptancetest virtexllengine |

uploadirldevicepayload | —|deve|opmenttest| virtexllbridge |

—| productiontest controlcpld |

regressiontest

tutorial

UG021_09_082801

Figure 3-6: SIF Framework Tree Diagram

Note that the dur ango directory consists of four major subdirectories. These subdirectories
are listed below.

_bui l ds\ server\durango\clientserverapplications
_bui I ds\ server\ durango\ devi ces

_bui l ds\ server\durango\tests
_builds\server\durango\utilities

Each subdirectory consists of a set of project files (Tornado . wpj IDE project files) that
build specific test, development, and utility applications that are useful in the systems
development process. The developer is not required to implement these applications.
However, the PAVE framework and its code generation utilities automatically setup the
directories and generate the source code and header files thereby making it easier to
implement the functionality. The _bui | ds\ ser ver\ dur ango\ devi ces subdirectory
contains the source code and header files for the IRL-enabled Devices that comprise a
specific system component. For example, the devices directory is comprised of three
subdirectories. These are the Vi rt ex! | Engi ne, Vi rt ex! | Bri dge and cont r ol CPLD
directories. These subdirectories contain the source code, header, and project files that are
required to build an object module for each of these devices.

As can be inferred from the directory structure, the PAVE Systems Integration Framework
is setup to facilitate systems level development in a uniform context. Multiple software
development efforts for multiple system components (and the constituent parts) can occur
in parallel within the given software development framework. An additional benefit of
this approach is that components of the framework can be readily leveraged for future
product development efforts. Finally, the Systems Integration Framework is designed to

V1.0

www.Xilinx.com 39

PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 3: Using the PAVE SIF

enable developers to bifurcate derivative development efforts using a base framework. In
essence, the framework is in itself an object oriented construct.

generatesystem.bat

This file specifies how to build the framework. From the gener at esyst em bat file, a step
by step review of the commands:

1. Generate a server for the IRL-enabled device. The gener at eser ver . exe program is
called to generate the code and directory structure for the board:
gener at eserver Dur ango. i np

2. Generate the individual devices The gener at edevi ce. exe program is called to
generate the code and framework for the devices on the board. In the case of Durango

the devices are Cont rol CPLD, Vi rt exl | Engi ne,and Vi rt exI | Bri dge. The
gener at edevi ce. exe executable command takes three arguments.

- The first argument specifies the name of the system component for which you are
generating devices.

- The second argument specifies the Device Specification file that contains
information related to the programming interface of the device.

- The third argument specifies the C++ class assigned to the device.

The first line listed below is interpreted as "generate for the Durango board a device
called Vi rt ex! | Engi ne with baseclass of cl assl| RLDevi ce".

gener at edevi ce Durango Virtexl | Engine.inp classlRLDevice
gener at edevi ce Durango Virtexl I Bridge.inp classPC Device
gener at edevi ce Durango Control CPLD. i np cl assDevi ce

The VirtexllEngine is cl ass| RLDevi ce because it can be reconfigured directly under
software control. The VirtexlIBridge performs a PCI function so it is assigned to

cl assPCl Devi ce. The CPLD is a generic device and is assigned to cl assDevi ce. More
detail on classes can be found in Chapter 4, Using the PAVE API.

3. Rename the template Tornado workspace file.
nove /y VXW_. Wsp dur ango. wsp

The vwx_. wsp is a temporary file. This command won’t overwrite the dur ango. wsp to
prevent accidentally wiping out any changes you might have made in the workspace.

Note that any number of differing board setups could be put in this script, thus the name
gener at esystem

INP File format

The gener at esyst em bat requiresa. i np file that lists the devices in the system. There are
two inp file formats. The first type describes the system; an example is dur ango. i np. The
Durango board is composed of several reconfigurable objects as described in the

dur ango. i np file:

Vi rtexl | Engi ne

Virtexl | Bridge

Cont rol CPLD

The second type describes the actual register specification. An example of this is the
Vi rt exl | Engi ne. i np device specification file. In this file you will find the following line:

CTLRE®OO 0x00 O 32 true true true O0x00 api DWORD

This line represent the register specification for the VirtexlIEngine IRL-enabled device of
the Durango system component. Invoking gener at edevi ce. exe causes the creation of a

40

www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

Building a Custom Framework

S XILINX®

C++ class library that encapsulates the device-programming interface comprised of the
registers specified above. Both types of . i np files can have multiple entries.

Table 3-1: Breakdown of devicegenerator .inp format

Register Device .. | Number of . s Initial Access
Field Name| Offset Start Bit Bits Readable | Writable Initialize Value Width
CTLREGDO | 0x00 0 32 true true true 0x00 api DWORD

Table 3-1 list the fields for the Devi ce Gener at or . i np format. The definition of each field
is provided below:

= Register Field Name: Specifies the name of the register.

= Device Offset: Specifies the offset of this register within the device.

= Start Bit: Specifies the starting bit of the register field within a register.
= Number of Bits: Specifies the register field width in number of bits.

= Readable: Specifies whether or not the register is readable.

= Writable: Specifies whether or not the register is writable.

= Initialize: Specifies whether or not the register should be initialized when it its device
object is instantiated.

= Initial Value: Specifies the initial value that is written to the register field when that
register object is instantiated. This field is ignored if the Initialize parameter is false.

= Access Width: Specifies the access width of the register field. The valid values are
api DWORD, api WORD, or api BYTE.

Building a Custom Framework

The Durango example is compliant with the IRL register model and can be used as a
starting point for your hardware description.You may use the Vi rt ex! | Engi ne. i np,
Virtexl I Bridge.inp,Control CPLD. i np and the top level Dur ango. i np files as templates
to create your own system components within the framework. Here are some key things to
remember.

= The specification files must have a . i np extension, and be ordered hierarchically as
shown in the Durango example.

e Thegenerat eserver. exe and gener at edevi ce. exe utilities will use the name of the
specification files to create the source, header, and associated project files. For
example, if one of your device specification files is named MyDevi ce. i np, then the
corresponding C++ class that will be generated by gener at edevi ce is
cl assMyDevi ce. Note that these names are case sensitive. For example, the file
mydevi ce. i np will yield a class named cl assnydevi ce.

= The system component framework will be generated under the _bui | ds\ server
directory. An example of this generated directory can be seen in Figure 3-6 above.
= The device framework will be generated under
_buil ds\ server\[servernane] \devi ces

= You must generate the system component framework before the device frameworks
as indicated in the gener at esyst em bat script file.

Note that durango directories are generated under the _bui | ds\ host and

_bui I ds\ server directories. Again, these directories encapsulate code for the generated
board, Durango. For example, the _bui | ds\ host\ dur ango directory has all of the code
for host side applications related to the generated board. The _bui | ds\ ser ver\ dur ango
directory is a tree that contains the target side files related to the generated board.

V1.0

PAVE Framework User’'s Guide

www.Xilinx.com 41

1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 3: Using the PAVE SIF

This structure was chosen because it enables the developer to swap out whole components
of the application framework. For example, if the developer wishes to develop a new

Vi rt ex| | Engi ne codebase, he would swap out the

_bui I ds\'server\ durango\ devi ces\ vi rt exl | engi ne directory with a new framework.
Likewise, the entire _bui | ds\ ser ver\ dur ango directory could be replaced. Over time a
base of applications could be built up and swapped in and out this way.

Payload Generator

The PAVE API expects to receive the upgrade information in the form of a payload. The
payload consists of a header and at least one software module and bitstream. This
structure can be seen in Figure 3-7.

After generating the framework, compiling your code, and creating the bitstreams, you
must generate a payload for the PAVE API to download. The SIF includes a utility program
to handle this for you. In the _bui | ds\ _ directory, you will find two files,

gener at epayl oad. bat and gener at epayl oad. exe. The former copies your software
modules (Tornado .out files) and bitstreams (Xilinx . bi t and . xsvf files) to the local
directory, generates the payload by calling the latter, then finally cleans up the directory.

Header

T Module 0

Bitstream for Target Device 0 7

SW Device Driver for Target Device 0

| Module 1

Bitstream for Target Device 1 "

SW Device Driver for Target Device 1

1 Module N

Bitstream for Target Device N ud

SW Device Driver for Target Device N

UG021_31_082001

Figure 3-7: Payload Diagram

generatepayload.bat

The majority of the commands in the gener at epayl oad. bat file are self-explanatory
commands such as copy and del , but the gener at epayl oad. exe command bears further
examination. Here are some sample commands and the usage:

generatepayload O target.irl smap target.out target.bit FAFAFAFA AFAFAFAF
111

generatepayload O target.irl jtag target.out target.xsvf FAFAFAFA AFAFAFAF
111

gener at epayl oad <Mbdule |Index> <Configuration Type> <Software Device
Driver> <Bitstream> <Vendor Code> <Device |D> <Device Type> <Revision
Code>

Table 3-2 list the arguments for the gener at epayl oad. exe command. The definition of
each argument is provided below:

42

www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

Payload Generator

S XILINX®

Table 3-2: Breakdown of generatepayload.exe command usage

Argument Sample Value Comment
Module Index 0 0- 63
Output File target.irl Also an input file if it exists
Configuration Type smap Either smap orj t ag

Software Device Driver | target. out Generated by Tornado

Bitstream target. bit SelectMAP uses . bi t ; JTAG uses
. Xsvf.
Vendor Code FAFAFAFA
Device ID AFAFAFAF
Device Type 1 User defined, 32-bits maximum.
Revision Code 1
IRL Version 1
1. Module Index - Location in the payload from 0 to 63. To instantiate multiple devices in

@

© © N o

10.

one payload, rerun the command with the appropriate data for the next device and
increment the Module Index by one.Always start at 0 and increment by one. A graphic
representation of the Module Index can be seen in Figure 3-7 above.

Output File - Name of the output file. The recommended extension is . i r1 ". This
argument is also an input file when multiple modules are instantiated in the payload.

Configuration Type - Valid types in PAVE v1.0 are "smap" (SelectMAP) and "j t ag".
Software Device Driver - File name of the Tornado . out file.

Bitstream - Name of the file containing the bitstream. This cam be eithera. bit ora
. xsvf for SelectMAP and JTAG respectively.

Vendor Code - User-defined. Maximum size is 32-bits.
Device ID - User-defined. Maximum size is 32-bits.
Device Type - User-defined. Maximum size is 32-bits.
Revision Code - User-defined. Maximum size is 32-bits.

IRL Version - User-defined. Maximum size is 32-bits.

V1.0

www.Xilinx.com 43

PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 3: Using the PAVE SIF

Formats for SelectMAP and JTAG

SelectMAP requires that the module be created with a .. bi t file. JTAG configuration
requires use of the . xsvf format. Prior to generating the . xsvf format, if the target is a
Xilinx PROM you must also convert it to a . ncs format. The overall flow is shown in

Figure 3-8.

Y

FPGA Run PROMGen to

Create MCS File

Device JTAG
Info Programmer

!

Generate
SVF

!

Generate
XSVF

!

Play
XSVF

JTAG |

PROM FPGA

UG021_53_082801

Figure 3-8: XSVF Flow

The “Device Info” is any information the JTAG Programmer GUI requests, such as Package
type. Generating the XSVF file requires use of several Xilinx tools, including the Xilinx
JTAG Programmer and the SVF2XSVF conversion utility. Here are the steps for 3.1i.

44

www.Xilinx.com
1-800-255-7778

V1.0
PAVE Framework User's Guide

http://www.xilinx.com

Payload Generator 2:)(||_|NX®

1. Ifthe target isa PROM, you must generate a . nts file first. Otherwise, skip to step 2.
Open the PROM File Formatter (seen in Figure 3-9) and create a PROM file. You must
target a device that supports JTAG (XC18VXX series PROMSs).

 test_pdr - Xilink PROM File Formatter
File Edt Yiew Help

] =2 = e e =Y e e e s A e LA
BROM Description

=1 % PROM
E|@Ef' Data Stream H1 [Single Device 37
¢ b testhit [241000896 |

O End
.0 End PROM

For Help, press F1 |MCS-36 |Serial <C18w04 |93% -

Figure 3-9: PROM File Formatter

2. Open the JTAG Programmer and select Edit -> Add Devi ce. In the selection dialog,
select your . bit or. nts file.

Untitled - Xilinx JTAG Programmer

Eile Edit Operations Output “iew Help

B |21 N el e N e N et e [= N N L

TOI
KC2V1000_FFE96
test bit
TDO
For Help, press F1 SYF Mode |_|_ o
Figure 3-10: JTAG Programmer
V1.0 www.xilinx.com 45

PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 3: Using the PAVE SIF

3. Choose the Qutput -> Create SVF Fil e option. You should see a dialog as seen in

Figure 3-11; click OK and then set the name of the SVF file. .

SYF Options]|

Initial tranzition to Bun-Test A dle;

& Through T est-Logic-Feset

" Skipping Test-Logic-Feset

] I Cancel Help

Figure 3-11: SVF Options

4. Select Qperations -> Chain Qperations... and set the device you just added to
“Program”Then click Execute. and it will generate the SVF file as seen in Figure 3-13.

Chain Operationg |
i Device Type | File Mame Operation Execute I
HOA1000_FF3 test. bit Prograrn

Optione

Cloze

dlld

Help

4 |2
Selected Device Operation: -

Figure 3-12: Chain Operations

Operation Status |

Loading Boundam-Scan Dezcnption Language [BSOL] file
'C:Filined1SE_3 i vines2/datalmo 2y 000_fF396.bed'. .. completed succeszfully.

test(Devicel] Generating S%F wectors to check boundary-gzcan chain integrity... done.
‘test[Devicel]: Reading bit-ztream file. .. done.

‘test[Devicel]: Generating SYF wectors to program device...dane.
test{Devicel]: SWF vectar generation for programming completed successfully.

e

All operationz were completed succezstully,
] I Wievs Log File

Figure 3-13: Status of SVF Generation

46 www.Xilinx.com

V1.0
1-800-255-7778

PAVE Framework User's Guide

http://www.xilinx.com

Payload Generator

S XILINX®

It you are using a . nts file you have the further option of verifying the device with the
SVF vectors. While in the Chain Operations, select the Options button and check the
Verify Program option, as seen below. This is the only readback operation supported in

PAVE v1.0.

Options

Frogram O ptions | Eraze Options I

v Erase Before Programming

¥ Werify

I™ | Eunctional Test

= | Secure iMade

[T Parallel tode

= (e 4 far EF

[Skip user amnay

& | rite Pratect

[T Bead Protect

[~ Load Fpga

Stardby Bawer
r [

Shanby Earer
-
[s mot-eascadatle]

™ | Extermal Fin« erfization

it I

[Usercode (5 Hex Chars)

| FFFFFFFF

]|

o |

Cancel | Help

Figure 3-14: Options to Allow PROM Readback

The SVF2XSVF utility must be run on the resulting . svf files.
For FPGA programing use this command line:

svf2xsvf -d -fpga -i

<input file nane>. svf

For PROM programming use this command line:

svf2xsvf -d -i <input file nanme>. svf

The SVF2XSVF utility can be found at:

ftp://ftp.xilinx.com/pub/swhelp/cpld/eisp_pc.zip

-0 <output file name>. xsvf

-0 <output file name>. xsvf

V1.0

PAVE Framework User’'s Guide

www.Xilinx.com

1-800-255-7778

47

ftp://ftp.xilinx.com/pub/swhelp/cpld/eisp_pc.zip
http://www.xilinx.com

S XILINX®

Chapter 3: Using the PAVE SIF

48

www.Xilinx.com

1-800-255-7778

V1.0
PAVE Framework User's Guide

http://www.xilinx.com

&7 XILINX®
Chapter 4

Using the PAVE API

The PAVE API is the runtime portion of the PAVE Framework. The PAVE v1.0 API, which
is principally focused on device configuration, operates on the XIRL Interface Register
described in the previous chapter. This chapter will review details about the API, it’s
classes, functions, and code, and discuss how to use it.

How the PAVE API Operates

Figure 4-1 below illustrates PAVE API interaction with the XIRL Interface Register. The
basic idea that is portrayed in the diagram is that the PAVE API uses its methods to
construct a cl assSi gnal Buf f er object, which is then sequenced to the hardware via the
methods of the cl assRegi st er and cl assPI at f or mobjects. Additionally, all methods of
the cl assRegi st er, cl assSi gnal Buf f er, and cl assPl at f or mobjects are exposed for
device driver writers to potentially use in their development efforts. In particular, the
combination of these classes with the cl assSt at eMachi ne object forms a powerful set of
utilities that can be used to construct very complex embedded applications.

PAVE v1.x API

classCompression

classPowerMgmt

PAVE v1.0 API

classJTAG classSelectMAP

TAP
State
Machine

classSignalBuffer

— 1
ML L[
L1
I S—

classRegister
classPlatform
XIRL Interface Register

UG021_23_080601

Figure 4-1: PAVE API Example

V1.0 www.Xilinx.com 49
PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 4: Using the PAVE API

PAVE v1.0 implements JTAG and SelectMAP as shown in Figure 4-1. In a future version of
PAVE, additional features, such as compression of the payload and power management,
could be added using the same underlying structure.

To illustrate this further, you could define additional user registers (via the PAVE SIF) and
then use existing classes or write new classes to manipulate these registers as required.
One example of this is the need to do Endian swapping. The cl assl RLPI at f or mcontains
a method to endian swap a dword:

enAPI Ret ur nCodes cl assl RLPI at f or m : DWORDENdi anSwap(
api DWORD *ptr Sour ceDWor d,
api DWORD *ptrDestinati onDWrd

)
Instead of reordering the register or software drivers for processors you want to support, a
simple bit of code could return the register data in the same format regardless of the
underlying processor:

if (this->bSwapAccess == TRUE)

{
dwTenp2 = dwTenp;
t hi s->ptr Pl at f or m >DWORDENndi anSwap(&wTenp2, &dwTenp);
*pt r DAORDRegi st er = dwTenp;
}
el se
{
*pt r DAORDRegi st er = dwTenp;
}
50 www.xilinx.com V1.0

1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

Object Oriented Nature of the PAVE API 2:)(||_|NX®

Object Oriented Nature of the PAVE API

The PAVE API and its components are a collection of C++ classes and object models that
abstract an implementation of a Xilinx Field Programmable Gate Array, FPGA, called the
IRL-enabled Device implementation. PAVE encapsulates a hierarchical set of hardware
and software specifications that define various levels of functionality in the IRL-enabled
Device implementation. The minimum set of specifications for the IRL-enabled Device
implementation requires a baseline set of features that are implemented in an FPGA which
enables it to be upgraded via software configuration using either JTAG or the Xilinx
SelectMAP protocols.

PAVE imposes a view of an FPGA as a standalone device object within a system
component. As a result, applications that are written using the PAVE API tend to be highly
object oriented, modular, and extremely upgradable. The device implementation, as
expressed ina. bit or. xsvf configuration bitstream file, and its requisite controlling
software module, the device driver, are component entities that uniquely define the
functionality of an FPGA within a particular system component. User, vendor, and third
party application content can be built on top of the PAVE API, as shown in Figure 4-2.

User Application

PAVE

Xilinx IRL Enabled
Device Implementation
Bitstream

IRL Enabled
Device

UG021_01_080601

Figure 4-2: PAVE Relationship to other Software and Hardware Objects

It is important to understand that PAVE views these two elements, bitstream and software
driver, as component pieces of a single entity. This entity is called the Payload. The payload
is essentially a concatenated bitstream and binary object module that are prepended with
a header. PAVE enables the application developer to deliver payloads to target devices
while simultaneously upgrading the embedded application program that hosts the
embedded device with a new device API. For example, consider the block diagram in
Figure 4-3 below, which is similar to the Durango board.

V1.0

www.Xilinx.com 51

PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 4: Using the PAVE API

——
=

Embedded L 1 .
Bridge Sel
PCI Bus electMAP
Processor — Interface Bridge Controller Target
FPGA FPGA
Slave Serial/
Parallel/
SelectMAP JTAG JTAG
Config In Config In|| Controller
b Leed—
g Factory
= Factory Jumper
o % Jumper -
,f) @ 0= XC18Vxx CNTL Config.
P,é Default AR CPLD
XC18Vxx 1
Upgrade I
33 :
28
O C
25
S0

UG021_39_082001

Figure 4-3: Bridge and Target Block Diagram

In this example, the reconfigurable target component consists of two FPGA devices, the
Target and the Bridge FPGAs. Each device has associated with it a specific payload that is
comprised of the configuration bitstream and software object module for the device.
Figure 4-4 below provides a logical depiction of a payload for this hardware.

Header

Bitstream for Bridge Device

Loadable Module for Bridge Device

Bitstream for Target Device

Loadable Module for Target Device

UG021_03_080601

Figure 4-4: Bridge and Target Sample Payload

Either device in the system component can be individually upgraded with a new
configuration bitstream, software, or both. The traditional monolithic view of the
application has been replaced with a component object view. Component object oriented
development is a prevalent technique in other types of application software development
where it is necessary for those applications to be upgraded once they have been deployed.
PAVE provides the embedded application developer with the same functionality via
dynamic linking and full and (in the future ...partial) device reconfiguration. Additionally,
the PAVE development model supports fully software controllable, dynamic and adaptive
system component configuration. This opens the door for the development of a
tremendously broad value proposition to product developers and end-users by way of
extended product life cycles and lower support costs.

52

www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

API Structure 2:)(||_|NX®
API Structure

The PAVE v1.0 software architecture is comprised of nine major software components that
support either JTAG or SelectMAP device configuration. Figure 4-5 shows the architecture
of the PAVE components.

classTargetFPGA : public classDevice

classDevice

classIRLBStreamDeliveryModule | User Defined Components

classJTAG | classSelMAP

classStateMachine

classSignalBuffer

classRegister

classPlatform

A4

XIRL Interface Register

1

. 1
. 1
. 1
! TargetFPGA User Defined Registers |
' 1
. 1
: Y :
) Device Specific X
X Register Set '
. 1
IRL Enabled Device UG021_22_080601

Figure 4-5: PAVE v1.0 API Structure

This diagram depicts the PAVE software components as an interdependent set of C++
objects. All PAVE API interaction with the target device occurs via a set of interface
registers. The primary register for device configuration is the XIRL Interface Register, seen
in Figure 4-6. The optional user-defined Registers are a set of registers that are components
of the optional PAVE APl components. Additionally, the device specific registers set
completes the programming model for an IRL-enabled Device.

V1.0 www.Xilinx.com 53
PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 4: Using the PAVE API

XIRL_Interface[31:16] |31{30[29[2827 |26 [25]24]23]22]21]20{19]18[17[16] §
L | L Il |

Reserved —T

MODE_HSWAP_EN
MODE_M [2:0]
SMAP_D[7:3]

JTAG_BUFF_OE
JTAG_TCK
JTAG_TMS

JTAG_TDI
JTAG_TDO

XIRL_Interface[15:0] 4 [15[1a]13|12f11|i0f o8 |76 |5]a]a]2|1]0]

SMAP_D[2:0] 41

SMAP_BUSY
SMAP_DONE
SMAP_INIT
SMAP_PROG
SMAP_CS
SMAP_RW
SMAP_CCLK
SMAP_BUFF_OE

UG021_43_080601

Figure 4-6: XIRL Interface Register

54

www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

http://www.xilinx.com

Functional Description 2:)(||_|NX®
Functional Description

The various elements of the PAVE APl communicate with IRL-enabled Devices through
memory mapped registers. In particular, the cl assl RLBSt r eanDel i ver yModul e object
contains a cl assRegi st er object called the pt r XI RLI nt er f ace register. This register
object is an abstraction of a physical device port through which configuration bitstreams
are uploaded to the targeted device. Additionally, the IRL-enabled Device specification
defines a set of optional registers that provide facilities for additional extensions.

Figure 4-7 below illustrates the relationship between the PAVE API and the physical device
hardware. The arrows in the diagram illustrate that software is communicating to

hardware .
User Apps
Communication Path
IRL Enabled Device
PAVE API
PAVE V1.0 Register Set
VxWorks OS -
XIRL Interface Register
Platform
Hardware/BSP
_ User Defined Registers
IRL Enabled Device(s)

UG021_10_082001

Figure 4-7: Communication Paths

V1.0 www.Xilinx.com 55
PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

S XILINX®

Chapter 4: Using the PAVE API

PAVE API Classes

The PAVE API consists of several C++ classes that form an object model called the PAVE
object model. These classes include

The cl assRegi st er object: This class is a C++ class that abstracts a device register. It
provides functionality to read from and write to the control registers (and fields
thereof) of an IRL-enabled device implementation. The cl assRegi st er class is a key
component of the PAVE API. It greatly facilitates the development of embedded
device drivers by handling the details of the masking and shifting operations that
normally accompany read, write, and modify operations on a register.

The cl assDevi ce object: This class a C++ base class from which all PAVE devices are
derived. The PAVE devi cegener at or tool that is distributed in the PAVE framework
is a C++ code generator tool that creates IRL-enabled device software models that are
derived from the cl assDevi ce object. The cl assDevi ce object is a container class for
multiple instances of cl assRegi st er objects.

The cl assl RLBSt r eanDel i ver yModul e object: This class is a C++ object that
encapsulates the JTAG or SelectMAP upgrade functionality of the IRL-enabled device.
This class is a base class from which other bitstream delivery modules can be derived
for specific hardware implementations. The cl assl RLBSt r eanDel i ver yMbdul e is
contained in the cl assDevi ce object. The cl ass| RLBSt r eanDel i ver yModul e is
comprised of separate JTAG and SelectMAP component objects. These are the

cl assJTAGConponent and cl assSel ect MAPConponent objects respectively. The

cl assl RLBSt r eanDel i ver yModul e is a required component in the IRL-enabled
Device implementation and therefore it defines PAVE v 1.0 functionality.

The cl assSt at eMachi ne object: The cl assSt at eMachi ne object is a C++ object that
abstracts the functionality of a finite state machine. This object is contained in the

cl assJTAGConponent object and is used to setup the TAP controller state machine
used in JTAG configuration mode. The cl assSt at eMachi ne object is very generic and
can also be used to facilitate the implementation of very complex real-time state
machines in embedded applications.

The cl assSi gnal Buf f er object: The cl assSi gnal Buf f er object is a C++ class that
encapsulates the functionality required to setup and sequence a set of control signals
to a hardware registers via software control. This class also contains a number of
utility methods that allow the developer to generate arbitrary test vectors that can be
used in device test benches.

The PAVE API framework is additionally composed of a number of supporting classes and
object models. These classes include

The cl assl RLPI at f or mobject: The PAVE API can be used in a wide variety of
hardware platform and embedded operating system environments. The

cl assPI at f or mobject facilitates this porting effort by forming a thin abstraction layer
between the platform specific code and application code. Figure 4-8 and Figure 4-9
below illustrate how the Objects and the RTOS are related to the upper layer
application code.

The cl assPCI Devi ce code is used to interface to the PCI interface on the board. In
this revision of the PAVE code the Durango board is a simple PCI target, with the
XIRL configuration register. This PCI interface only has one register beyond the
regular PCI configuration space. The vi rt ex! | Bri dge. i np describes this register.
The PCI configuration space is accessed through methods that the Vi rt ex!I | Bri dge
object inherits by being instantiated as a cl assPCl Devi ce object.

56

www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

PAVE API Classes

S XILINX®

User Apps. Future Xilinx
Tools

Future PAVE
Upgrades

PAVE Bitstream Delivery
Object

VxWorks OS

Platform - Hardware/BSP

IRL Enabled Devices

UG021_04_080601

Figure 4-8: System Relationships

Application The device API
is a standalone

element that can

Device AP be deployed as
part of a
Operating System payload. For
example, in
VxWorks this is
BSP

an objectfile. In
windows it is a

DLL. Both of

Hardware Device these are

dynamically
loadable

UG021_05_080601

Figure 4-9: Device API

V1.0
PAVE Framework User’'s Guide

www.Xilinx.com
1-800-255-7778

57

http://www.xilinx.com

S XILINX® Chapter 4: Using the PAVE API

Payloads

The principle element handled by the PAVE v1.0 APl is called the payload. A payload
consists of the three sets of elements illustrated below in Figure 4-10.

Header

Bitstream for Bridge Device

Loadable Module for Bridge Device

Bitstream for Target Device

Loadable Module for Target Device

UG021_03_080601

Figure 4-10: Generic Payload structure

This diagram shows the structure of a PAVE payload. The header component consists of
size and classification information for up to 64 device elements in the payload. These are
called device configuration segments. Note that each device element has associated with it
a bitstream and loadable module. Each instance of a PAVE device object has methods that
understand how to parse the payload and find the correct payload components that are
required for upgrading. The structures found in a payload are defined below.

Payload Header Structure

t ypedef struct

{
size_t dwNunber Devi cesl nPayl oad;

struct Devi ceConfi gurati on theDeviceConfigurati on[CNSTMAXNUVDEVI CES] ;
} struct Payl oadHeader ;

t ypedef struct Payl oadHeader *pntr_struct Payl oadHeader;

The constant CNSTMAXNUMDEVI CES is user definable. The payload header consists of
CNSTVAXNUMDEVI CES device configuration segments.

Payload Configuration Segment Structure

t ypedef struct

{

/* dwXl RLVendor Code is the user defined vendor code for the targeted
devi ce. */

api DWORD dwXl RLVendor Code;

/* dwXlI RLDevicelD is the user defined device ID for this device. The PAVE
v1l.0 APl uses this field to verify that the Device ID in the payl oad
mat ches the targeted device. */

58 www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

Payloads 2:)(||_|NX®
api DWORD dwXI RLDevi cel D,
/* dw RLRevi sionCode is a user defined revision code that the PAVE v1.0
APl's use to verify that the payload is the correct version for the tar-
get ed device. */
api DWORD dwXl RLRevi si onCode;
/* dw RLVersion is a user defined version code that the PAVE v1.0 API's
use to verify that the payl oad object nmodule is built using a correct ver-
sion for the targeted device. */
api DWORD dwXl RLVer si on;
/* ecDevi ceType indicates the type of the device. Valid values are eclRL-
SpartanDevi ce, eclRLSpartanl|Device, eclRLVirtexDevice, eclRLVirtexEDe-
vice, and ecl RLVirtexl|Device. */
enl RLDevi ceType ecDevi ceType;
/* ecProgranm nghMbde indicates the hardware device programming interface
inmplementation for this device. Valid values include eclRLSel ect MapPro-
gr amm ngMode, and ecl RLIJTAGBoundar yScanPr ogr amm nghvbde */
enl RLDevi cePr ogr anm nghbde ecPr ogr ami nghbde;
/* dwBitstreanSi ze indicates the device bitstream or XSVF buffer size in
bytes. */
size_t dwBi t st reantSi ze;
/* dwibdul eSi ze indicates the | oadable nodul e size in bytes. */
size_t dwibdul eSi ze;
/* dwBitstreanti ze indicates the device bitstream or XSVF buffer size in
bytes. */
size_t dwBi t st reantX f set ;
/* dwivbdul eSi ze i ndicates the | oadable nodule size in bytes. */
size_t dw\bdul ek f set ;
/* The following two paraneters are checksuns for the conponents. */
api DWORD dwBi t st r eantCheckSum
api DWORD dwivbdul eCheckSum
} structDeviceConfiguration;
t ypedef struct Devi ceConfiguration *pntr_structDeviceConfiguration;
V1.0 www.xilinx.com 59

PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 4: Using the PAVE API

60 www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

&7 XILINX®
Chapter 5

Using PAVE for JTAG Configuration

How it operates

A key component of the PAVE v1.0 API is the JTAG TAP controller state machine. This
object governs the sequence of signals that are generated in the signal buffer object. The
JTAG component controls state machine sequencing of the TAP controller as required to
shift data into or out of the TDI and TDOsignals respectively. Figure 5-1 illustrates the
program flow.

The XIRL Interface Register, Figure 5-2, contains a series of bits that constitute the JTAG
interface in PAVE v1.0. The PAVE software performs the function of the state machine that
generates the appropriate signals for the JTAG interface.By successive writes to the XIRL
Interface Register, the bus is clocked with the correct values.

From a software standpoint the use of this interface is relatively simple; a single high level
method invokes the JTAG interface and handles the entire configuration, returning the
status of the configuration once done. No knowledge of JTAG is required, nor are any
hardware state machines required.

PAVE v1.0 API

classJTAG classSelectMAP

TAP
State
Machine

classSignalBuffer

— 1
Moo
[S
I —

classRegister
classPlatform

XIRL Interface Register

UG021_56_082001

Figure 5-1: PAVE Configuration Data Flow for JTAG and SelectMAP

V1.0 www.Xilinx.com 61
PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

2:)(||_|NX® Chapter 5: Using PAVE for JTAG Configuration

XIRL_Interface[31:16] [31f30[290]28|27]26]25]24|23]22]21]20{19{18[1716] §
L | L I |

Reserved —T

MODE_HSWAP_EN
MODE_M [2:0]
SMAP_DI[7:3]

JTAG_BUFF_OE
JTAG_TCK
JTAG_TMS

JTAG_TDI
JTAG_TDO

XIRL_Interface[15:0] § [15[14[13[12f11|10] o8 {7 |6]|5]a[3|2]1]0]

SMAP_D[2:0] 41

SMAP_BUSY
SMAP_DONE
SMAP_INIT
SMAP_PROG
SMAP_CS
SMAP_RW
SMAP_CCLK
SMAP_BUFF_OE

UG021_43_080601

Figure 5-2: XIRL Interface Register Map

Design considerations

Several things should be considered in implementing a JTAG interface with PAVE:
= The payload must contain a . xsvf file for each module using JTAG.

= Since the clock is toggled on successive writes, the JTAG interface will run at about
half of the write frequency.

Code example

This example of using the JTAG interface involves several steps. Additional code for this
example can be found in the tut ori al . cpp file.

/1l Get the size of the payload elenents for the targeted device.

ptr Server - >ptrDesi gnat edDevi ce- >Get Payl oadSi ze(
"payl oads/ ncp750durango_tutorial jt.irl",
&dwBi t st reanBuf fer Si ze,
&dwibdul eBuf f er Si ze) ;

/| Cache the payload elenents into a | ocal buffer.

ptr Server - >ptr Desi gnat edDevi ce- >CachePayl oad(
"payl oads/ ncp750durango_tutorial jt.irl",
&pt r Bit streanBuf f er,
&pt r Modul eBuf fer);

62 www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

Code example 2:)(||_|NX®

/* Now upl oad the payload fromthese buffers. First the JTAG node is set,
foll owed by the Upl oadPayl oadFr onBuf f er met hod. */

ptr Server - >ptrDesi gnat edDevi ce- >ecl RLDevi cePr ogr amm nghWbde =
ecl RLIJTAGBoundar yScanPr ogr ammi nghbde;
ptr Server - >pt r Desi gnat edDevi ce- >Upl oadPayl oadFr onBuf f er (
dwBi t st reanBuf fer Si ze,
ptrBitstreanBuffer,
dwibdul eBuf f er Si ze,
pt r Modul eBuffer);

/* Uncache the payl oad el enents after the update has been conpl eted. Your
error checking should occur here, if desired. */

ptr Server - >pt r Desi gnat edDevi ce- >UnCachePayl oad(
ptrBitstreanBuffer,
pt r Modul eBuffer);

/1l Clean up so we don’t get nmenory | eaks or |eave dangling pointers

del ete ptrFraneCounter;
del ete ptrServer; }

Rewiring the XIRL Interface Register

The connectivity of the XIRL Register is defined in the cl assl RLBSt r eanDel i very. h file.
If you have need to quickly rewire the register to match your physical board wiring, this
can be done by modifying the definition. For example to swap the TDI and TDOpins, the
following section of code would be changed:

Old version:
#defi ne CNSTBSDIVSI gnal JTAG_TDI OFFSET 0x00000000
#defi ne CNSTBSDIVSI gnal JTAG TDI STARTBI T 3
#define CNSTBSDVSI gnal JTAG _TDI NUMBI TS 1
#defi ne CNSTBSDIVSI gnal JTAG_TDOOFFSET 0x00000000
#defi ne CNSTBSDIVSI gnal JTAG TDOSTARTBI T 4
#define CNSTBSDMVSI gnal JTAG_TDONUMBI TS 1
Swapped version:
#def i ne CNSTBSDIVSI gnal JTAG _TDI OFFSET 0x00000000
#defi ne CNSTBSDIVSI gnal JTAG TDI STARTBI T 4
#def i ne CNSTBSDIVSI gnal JTAG_TDI NUMBI TS 1
#def i ne CNSTBSDIVSI gnal JTAG_TDOOFFSET 0x00000000
#defi ne CNSTBSDIVSI gnal JTAG TDOSTARTBI T 3
#def i ne CNSTBSDIVSI gnal JTAG_TDONUMBI TS 1
V1.0 www.xilinx.com 63

PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

2:)(||_|NX® Chapter 5: Using PAVE for JTAG Configuration

64 www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

& XILINX®

Chapter 6

Using PAVE for SelectMAP

Configuration

How it operates
A key component of the

PAVE v1.0 APl is the SelectMAP object. This object governs the

sequence of signals that are generated in the cl assSi gnal Buf f er object when a
SelectMAP configuration method is invoked. Figure 6-1 shows the data flow from the
SelectMAP object to the XIRL Interface Register

The XIRL Interface Register, mapped in Figure 6-2, contains a series of bits that constitute

the SelectMAP interface

in PAVE v1.0. By writing to the XIRL Interface Register, the bus is

clocked with the correct values.
From a software standpoint the use of this interface is relatively simple; a single high level

method invokes the Sele

ctMAP interface and handles the entire configuration, returning

the status of the configuration once done.

PAVE v1.0 API

classJTAG

TAP
State
Machine

classSelectMAP

classSignalBuffer

— 1
ML

[S)
I —

classRegister
classPlatform

XIRL Interface Register

Figure 6-1: PAVE Configu

UG021_56_082001

ration Data Flow for JTAG and SelectMAP

V1.0
PAVE Framework User’'s Guide

www.Xilinx.com 65
1-800-255-7778

http://www.xilinx.com

2:)(||_|NX® Chapter 6: Using PAVE for SelectMAP Configuration

XIRL_Interface[31:16] [31f30[290]28|27]26]25]24|23]22]21]20{19{18[1716] §
L | L I |

Reserved —T

MODE_HSWAP_EN
MODE_M [2:0]
SMAP_DI[7:3]

JTAG_BUFF_OE
JTAG_TCK
JTAG_TMS

JTAG_TDI
JTAG_TDO

XIRL_Interface[15:0] § [15[14[13[12f11|10] o8 {7 |6]|5]a[3|2]1]0]

SMAP_D[2:0] 41

SMAP_BUSY
SMAP_DONE
SMAP_INIT
SMAP_PROG
SMAP_CS
SMAP_RW
SMAP_CCLK
SMAP_BUFF_OE

UG021_43_080601

Figure 6-2: XIRL Interface Register Map

Design considerations

Several things should be considered in implementing a SelectMAP interface with PAVE:
= The payload must contain a . bi t file for each module using SelectMAP.

= Due to the sequence of updates to the XIRL Register, the SelectMAP interface will run
at about half of the write frequency.

= The SMAP_BUSY signal is not monitored in PAVE v1.0; if you intend to run this at a very
high speed, make sure you do not exceed the maximum allowable speed of the device
being configured.

Code example

This example of using the SelectMAP interface involves several steps. Additional code for
this example can be found in the tutorial.cpp file.

/1l Get the size of the payload el enents for the targeted device.

ptr Server - >ptr Desi gnat edDevi ce- >Get Payl oadSi ze(
"payl oads/ ncp750durango_tutorial _smirl",
&IwWBi t st reanBuf f er Si ze,
&dwivbdul eBuf f er Si ze) ;

/1 Cache the payload elenents into a |ocal buffer.

ptr Server - >ptrDesi gnat edDevi ce- >CachePayl oad(
"payl oads/ ncp750durango_tutorial _smirl",

66 www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

Code example 2:)(||_|NX®

&pt r Bit streanBuf fer,
&pt r Modul eBuf fer);

/* Upload the payload from these buffers using SelectMAP. First the
Sel ect MAP npode is set, then the upload is performed. */

ptr Server - >ptr Desi gnat edDevi ce- >ecl RLDevi cePr ogr amm nghWbde =
ecl RLSel ect MapPr ogr anm nghbde;
ptr Server - >pt r Desi gnat edDevi ce- >Upl oadPayl oadFr onBuf f er (
dwBi t st reanBuf fer Si ze,
ptrBitstreanBuffer,
dwibdul eBuf f er Si ze,
pt r Modul eBuffer);

/* Uncache the payl oad el enents after the update has been conpl eted. Your
error checking should occur here, if desired. */

ptr Server - >ptr Desi gnat edDevi ce- >UnCachePayl oad(
ptrBitstreanBuffer,
pt r Modul eBuffer);

/1 Clean up so we don’t get nmenory | eaks or |eave dangling pointers

del ete ptrFraneCounter;
del ete ptrServer; }

Rewiring the XIRL Interface Register

The connectivity of the XIRL Register is defined in the cl assl RLBSt r eanDel i very. h file.
If you have need to quickly rewire the register, this can be done by modifying the
definition. For example to swap the CCLK and PROG pins, the following section of code
would be changed:

Old version:
#define CNSTBSDVSI gnal SMAP_CCLKOFFSET 0x00000000
#defi ne CNSTBSDVSi gnal SMAP_CCLKSTARTBI T 6
#defi ne CNSTBSDIVSI gnal SMAP_CCLKNUMBI TS 1
#define CNSTBSDVSI gnal SMAP_PROGOFFSET 0x00000000
#defi ne CNSTBSDVSi gnal SMAP_PROGSTARTBI T 9
#defi ne CNSTBSDIVSI gnal SMAP_PROGNUMBI TS 1
Swapped version;
#define CNSTBSDMVSI gnal SMAP_CCLKOFFSET 0x00000000
#def i ne CNSTBSDIVSi gnal SMAP_CCLKSTARTBI T 9
#defi ne CNSTBSDIVSi gnal SMAP_CCLKNUMBI TS 1
#define CNSTBSDVSI gnal SMAP_PROGOFFSET 0x00000000
#def i ne CNSTBSDIVSI gnal SMAP_PROGSTARTBI T 6
#defi ne CNSTBSDIVSI gnal SMAP_PROGNUMBI TS 1
V1.0 www.xilinx.com 67

PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

2:)(||_|NX® Chapter 6: Using PAVE for SelectMAP Configuration

68 www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

& XILINX®

Chapter 7

Network Configuration

The PAVE API provides both Host and Target side classes to implement a basic TCP/IP
sockets connection for you to test your IRL-enabled design across an ethernet cable. The
sockets code in PAVE v1.0 has no security and has only been tested in a simple lab
environment. Prior to deployment of any gear to the field, you should test your IRL-
enabled designs in all target environments. PAVE’s cl ass TCPI P channel provides methods
to open and close socket connections as well as to receive and send data. The

server appl i cati on. vx project withinthe _proj ect _ncp750adnmxr ¢ framework provides
the cl assTCPI P channel to perform reconfiguration over a network.

Network Domains

The PAVE Framework implements a system architecture that includes several domains.
These domains interact with each other with predefined relationships.

The PAVE Framework is logically partitioned into five sections or domains that embody
PAVE's Client/Server view of the embedded application. These are the Host, Client, Server,
Common, and Other domains. In PAVE v1.0 only the client, host and server domains are
being used. Figure 7-1 below illustrates the various domains and how they fit in the
context of an embedded systems application.

This figure shows a typical partitioning for an embedded system and how the payload
component moves through the system.

Host Client Server
Domain Domain Domain
yload
Processing Server
Host P Equipment
Network - ™ pave
A A
Y Y A
System/Peripheral Bus
Upgrade
Portal
Payload developed in Client receives, verifies, | Server applications
Hardware/Software and validates the run here.
Co-Design Environment payload prior to upload
to the server.
UG021_06_080601
Figure 7-1: Host, Client, and Server Domain Partitioning

V1.0

PAVE Framework User’'s Guide

www.Xilinx.com
1-800-255-7778

69

http://www.xilinx.com

S XILINX®

Chapter 7: Network Configuration

Definitions

Some of the terms being used here might be used in a different way than the common
understanding. To prevent any confusion on these relationships, let us start with a few
definitions:

= Obiject-centric - A self-centered viewpoint. Similar to being in an object and looking
out at other objects. An example of this is being in a car and watching other cars.

Object-centric terms:
- Upload - In the PAVE Framework, objects upload information. For example, the
cl assRegi st er: : Upl oad method results in the register being written.

- Download - In the PAVE framework, objects download information. For example,
the cl assRegi st er: : Downl oad method results in the contents of a register being
read.

= System-centric - Something that is evaluated in the context of the overall system. This
is like viewing a whole set of objects from outside. An example of this is a bird’s eye
view.

- Server - An object that provides some functionality to other objects.

- Client - An object that requests another object to perform some function for it.

= Additional Definitions:

- Client Domain - The client domain is a component of the PAVE Logical System
Partitioning. It is comprised of those elements that are involved in the control of
embedded system components.

- Server Domain - The server domain is a component of the PAVE Logical System

Partitioning. It is comprised of those elements that provide specialized
functionality within an embedded system.

Host, Client and Server Domains

The Host domain encapsulates those systems and software elements that are typically
associated with system development. For example, the developer workstation and
associated development tools (compilers, debuggers, Xilinx Foundation and Alliance
Series tools, Wind River Tornado, PAVE utilities, etc.) reside in the Host domain. The
upgrade portal is considered to be part of the host domain.

The system controller (e.g. a cPCI system slot board) and the software that is targeted for it
are Client Domain elements. This is referred to as the Client Domain because this
component and the codes that run there function as clients within the system. The third
major domain is the Server domain. This domain consists of the reconfigurable logic and
associated components.

Client and Server Relationships

There are two sets of client and server relationships in an IRL-enabled system using PAVE.

= Between reconfigurable logic (server) and the processor (client). In this case, the
FPGA/server provide a function to the processor/client, e.g. an FFT computation.

= Between the Target (server) and Upgrade Portal/Host (client). The host/client
requests an upgrade and the Target/server fulfills this request. This relationship is not
to be confused with the client and server domains.

The programs that are run on the Host and Target to handle the upgrades are named
respectively. The Host/Upgrade portal runscl i ent appl i cati on_nt and the Target runs
serverapplication_vx.

70

www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

Configuration Across a TCP/IP Network 2:)(||_|NX®

Configuration Across a TCP/IP Network

The Tornado tools support a basic socket connection through their sockLi b - the WRS
generic socket library. The NT Host-side applications use the standard wi nsock library.
Since all the API and host-side applications source code is available, additional networking
code can be added as needed by the system application.

Once the socket connection is established, the transfer of the configuration data can begin.
There are two primary means of doing this transfer, push and pull. More detailed
instructions on running these applications can be found in Appendix D.

Pull Configuration

Pull is similar to downloading files from the internet. Pull configuration uses a knowledge
of where the file is on the network and downloads it for processing.

The code is called with a fixed location of the file. This file could reside on the fixed storage
for the processor or elsewhere on the network. The file “pul | ”” contains this spawn process
call which successively retrieves payloads stored on disk and reconfigures the FPGA:

sp(adnxrc_al | deno, 10)

The argument 10 is the number of repetitions of admxrc_alldemo, a application program
for the ADM-XRC board. From the this method in server appl i cati on_vx. cpp:
ptrServer->Sanpl eLoad("fpga/fastlife");

Sanpl el oad is a method in cl assADMXRC and which downloads a file locally (target
processor) and then uploads it to the FPGA.

Push Configuration

Push can be compared to sending attachments on email; at the other end, the recipient
opens and uses (processes) the file. This configuration method sets up a server/client
connection with the Upgrade Portal and then will perform the upgrades as requested. The
host/upgrade portal uploads the file to the server, which uploads it to the FPGA.

The file “push” runs on the target and sets the IP address and port, then spawns the

adnxr c_server appl i cati on_vx process to handle this:

szIP = "127.0.0.1"

wPort = 4000

sp(adnxrc_serverapplication_vx, szl P, wPort)

The IP address and The IP address should be set to match the address of the Target. You can

set the port as desired.

= adnxrc_serverapplication_vx - handles semaphores, spawns the configuration
server,

e adnxrc_configurationserver - Opens and listens on a given port for configuration
packets. Handles reconfiguration, application shutdown, and restart.

V1.0 www.Xilinx.com 71
PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

2:)(||_|NX® Chapter 7: Network Configuration

72 www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

Application Note: Internet Reconfigurable Logic

X X"_lNX® Architecting Systems for Upgradability

XAPP412 (v1.0) June 29, 2001

with IRL (Internet Reconfigurable Logic)

Summary

Internet Reconfigurable Logic (IRL™) is a system design methodology to enable the remote
upgrade of hardware, while insuring the reliability of the upgrade. FPGAs, which are “Field
Programmable” are inherently capable of changing their functionality with a new bitstream.
IRL takes advantage of this capability by delivering new bitstreams and software drivers to the
remote hardware.

This application note will describe the basic concepts of an IRL-enabled system, detail design
considerations for building an IRL system and give a high level description of the PAVE
Framework, the Xilinx API and development framework that enables embedded systems to be
upgraded.

Introduction

IRL Concepts

The advent of Xilinx FPGAs, Flash Memory devices and ubiquitous networks provide the
means to store bitstreams and then upgrade them once the hardware has been shipped to the
final customer. Architecting your system for IRL will allow you to upgrade software, drivers,
firmware, and hardware remotely.

Reasons for enabling your system for field upgradability include:

» Interoperability - Products frequently have to interoperate with other vendor’s products, but
there is no reasonable way to test all the possible interactions prior to shipping the
product. If the system is IRL-enabled, interoperability issues can be resolved at a minimal
cost.

» Time To Market - The hardware can be shipped sooner with a subset of the full
functionality. Features that would have taken too long to add prior to the initial release can
be added after shipment.

« Design Corrections - In the event a flaw in the product appears after it ships to the final
customer, it can be corrected without the need for returns, recalls, field service, and the
accompanying customer dissatisfaction

» Performance Upgrades - The performance of the system can be upgraded as the
engineering team has time to tune the algorithms and data paths.

What is IRL?

Internet Reconfigurable Logic is a system design methodology that enables modification and
upgrading of hardware and software in a target system across a network without the need for a
service technician or user to directly perform the change. This methodology, when applied to
the design process, creates products that are IRL-enabled. IRL can enable upgrades of
multiple systems simultaneously, and the ability to go back to a previous configuration if
necessary.

A typical IRL-enabled system might include a

» A 32-bit processor based design with TCP/IP networking connectivity. An industry
standard example of this is the Single Board Computer (SBC), as typically seen in
CompactPCl and VME implementations.

 Real Time Operating System (RTOS) such as the WindRiver® Systems’ VxWorks®
» Xilinx PAVE (PLD API VxWorks Embedded) Framework

© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

XAPP412

www.Xilinx.com 73
1-800-255-7778

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

S XILINX®

When an upgrade is available, it would be sent to the target, where the PAVE API would
perform the upgrade. For example, a system, when IRL-enabled, might be able to
autonomously upgrade itself and recover from a power failure during this upgrade.

Elements of an IRL system

Creating an IRL-enabled system requires certain hardware and infrastructure components that
will allow the remote modifications to occur. As shown in Figure 1 below, there are several
elements to an IRL System.

TCP/IP Network

\
Payload —|__ / \\
T
m - u
Host Upgrade Target

Portal

XAPP412_01_041701

Figure 1: Block Diagram of Internet Reconfigurable Logic System

The Host is where hardware/software design environment resides and where the FPGA
bitstreams and application software are created. This would include the Xilinx design tools, the
RTOS build environment (such as WindRiver Systems’ Tornado®) where your software
applications are developed, and the PAVE System Integration Framework (SIF), which ties all of
these efforts together.

Once the upgrade is created, it is assembled into a Payload that is sent to the system to be
upgraded. The PAVE Framework includes utilities that allow generation of the payload for the
build environment on the Host.

The Upgrade Portal is the computer your Target communicates with to obtain the payload.
This could reside in your domain, or your end customers could operate it.

The Network shown in Figure 1 can be any TCP/IP based network: an Intranet, a local
network, a Virtual Private Network (VPN) or even the public Internet. The type of network used
will depend on the security requirements and the connectivity available at the location of the
final product. PAVE can perform a basic TCP/IP socket connection; any additional protocols for
security or other purposes would need to be added by the developer.

The Target system is the system that needs the hardware and/or software upgrade. This is the
product shipped to your customers and which resides remotely. This IRL-enabled target system
will, at a minimum, have a processor running the user’s application, the PAVE API (part of the
PAVE Framework), the RTOS runtime client (such as WindRiver Systems’ VxWorks), and an
FPGA. The processor handles communication with the network and has connectivity to the
FPGA. The PAVE API is called to perform the upgrade by the user embedded application.

A typical payload structure is shown in Figure 2. Since changes in hardware usually imply new
software drivers, these are included in the payload structure, so the drivers can be upgraded
concurrently with the hardware. The applications that run on the target can be upgraded as
well.

74

www.xilinx.com (v1.0) June 29, 2001
1-800-255-7778

http://www.xilinx.com

S XILINX®

Header

Bitstream for Target Device O

SW Device Driver for Target Device 0

Bitstream for Target Device 1

SW Device Driver for Target Device 1

Bitstream for Target Device N

SW Device Driver for Target Device N

X412_02_041701

Figure 2: Payload Diagram

Expanding on the block diagram in Figure 1, an IRL system in the field could look similar to
Figure 3. Here we have a target processor, a system or peripheral bus, and the FPGA(Ss). The
processor is running the user’s application, PAVE API, and the WindRiver RTOS. The
Upgrade portal is running a PAVE client that communicates with the PAVE Server running on
the target. The payload passes from the host to the target, via the upgrade portal and the
Internet. Once it arrives at the target, the PAVE Server and API perform the required functions
to upgrade the system.

Host

Host

-\

Payload developed in
Hardware/Software
Design Environment

TCP/IP
Network

|

Target Computer

Processor

Upgrade
Portal

"

"1 eave
|

Target FPGA(s)

Virtex

A

System/Peripheral Bus

Processor receives
and validates the
payload prior to FPGA

reconfiguration.

Reconfigurable logic
resides here.

Target System

Figure 3: Fielded IRL System

XAPP412_03_041701

(v1.0) June 29, 2001

www.Xilinx.com
1-800-255-7778

75

http://www.xilinx.com

S XILINX®

Host, Upgrade Portal, and Network Concepts

The beginning of the upgrade process is the creation of new FPGA designs and accompanying
software drivers, followed by testing in an appropriate environment. Once the upgrade is ready
to be sent to the field, the developer uses the utilities supplied with PAVE to create the payload.

After the payload has been assembled, the developer would publish it out to the Upgrade
portal, similar to how files are published for internet delivery. Once the payload has been
published to the upgrade portal, there are two main means to deliver the payload to the target
system.

Push (see Figure 4) is similar to broadcasting; the payloads are sent by the upgrade portal to
each target system. This allows the Upgrade portal to control the upgrade process and ensure
all systems have been upgraded.

Pull (see Figure 5) is similar to FTP; the target system contacts the upgrade portal to see if new
upgrades are available. If so, the payload is pulled off the portal by the target.

Network

Upgrade Target
Portal

XAPP412_04_041701

Figure 4: Pushing a payload to the target

Upgrade Target
Portal

Request

XAPP412_05_041701

Figure 5: Pulling a payload from the upgrade portal

Careful consideration of using push vs. pull should be done to ensure that upgrades do not
interfere with the end user’s operation of the system. The operator of a high-availability system,
such as the telecommunication services, might run the upgrade portal; in this case push would
offer complete control over the process. A user of a low-cost consumer product would not have
control of the upgrade portal. This user might prefer to have the option of upgrading or not; in
this case pull would be the best choice. If the upgrades are not free, the upgrade portal may
need to authenticate the user to ensure the upgrade was purchased.

76

www.xilinx.com (v1.0) June 29, 2001
1-800-255-7778

http://www.xilinx.com

S XILINX®

Target Software Concepts

Figure 6 is a model of the software stack that runs on the target. At the highest level is the user
applications. Running concurrently with the application is the PAVE API and server that caches
the payload, and then performs the upgrade.

On the second level, the PAVE API provides system calls for the customer C++ applications to
perform the reconfiguration process. The customer applications and API both interface directly
with the RTOS.

The third level is the WindRiver RTOS. VxWorks is the run-time component of the Tornado |l
embedded development platform and acts as the operating system "kernel" on your target
system. PAVE works directly with the VxWorks RTOS.

The Board Support Package (BSP) in level four in the stack is required to interface the desired
processor to the RTOS. Each different SBC running an RTOS will need a Board Support
Package to abstract the processor from the RTOS. The BSP used must match the RTOS and
the embedded processor combination used in your system. PAVE assumes the existence of the
BSP.

Application

PAVE
Device API

VxWorks RTOS

BSP for WRS VxWorks
RTOS (Hardware
Abstraction Layer)

Processor

X412_06_041701

Figure 6. Target software stack

Target Hardware concepts

Processor Coupling

In the embedded market, processors have a bus known as the Processor Local Bus (PLB)
that is directly fed from the processor and an Embedded System Bus (ESB), such as PCI, that
usually requires a bridge or host chip to interface from the system bus to this secondary bus.
The PLB varies depending on the processor and is not a standardized bus like PCI. The
Embedded System Bus is not to be confused with the term "system bus", widely used in PC
architectures to refer to the PLB. Connecting to the processor through an ESB is considered to
be Loosely coupled and connecting through the PLB is considered to be Tightly coupled. In
Figure 7 we see an example of these two different processor couplings.

Until recently, advanced processors (32-bit) could only be accessed through bridge chips
supplied by the processor vendor. This would lead to a multi-chip connection, which added
performance bottlenecks, consumed board space and power, and added cost to the design.
Now, with programmable logic, it's possible to directly access the processor local bus,
eliminating this series of chips, which is enhancing the importance of tight coupling to the PLB
in newer designs.

(v1.0) June 29, 2001

www.Xilinx.com 77
1-800-255-7778

http://www.xilinx.com

S XILINX®

IRL Examples

= WindRwer = WindRwer
owerPT PowerPC

SBC

Processor Local Bus

<Embedded System Bus>

S XILINX®

2 XILINX®

Loosely Coupled (e.g., PCI) Tightly Coupled
(e.g., Processor Local Bus)

X412_07_050901

Figure 7. Processor coupling

Double Buffering

FPGA bitstreams are frequently stored on flash devices (including Xilinx XC1800 series
devices), which can experience problems if the power fails while being written. IRL involves
designing your hardware so that it is impervious to power failures during the upgrade process.
The goal is to never have a piece of hardware that fails to operate.

For the IRL hardware to meet this requirement, it should have a Double Buffer design. One
example method could consisting of a Default configuration that is always available and a
second configuration that can store the upgrade.This Default configuration is never upgraded or
changed except at the factory. Addition of the second storage location allows upgrades to
occur, since the Default can not be changed. Double buffering ensures the hardware can be
reliably upgraded.

Rollback is the ability to revert to a previous upgrade (possibly the Default). In a system that
has space for more than two configurations, (e.g. using a commodity flash chip), it could
rollback to a known good upgrade that was previously installed.

Having examined the concepts that make up the IRL design methodology, let's examine a few
practical examples of how to implement an IRL-enabled target system using PAVE.

Basic IRL-enabled System

Figure 8 shows an IRL-enabled system with a processor, an FPGA, and multiple FPGA
configuration storage areas. The Processor communicates with the FPGA and, after
configuration, can perform an update of the upgrade PROM. A register in the bridge address
space receives the new bitstream and writes it out to the PROM via the JTAG controller.

78

www.xilinx.com (v1.0) June 29, 2001
1-800-255-7778

http://www.xilinx.com

S XILINX®

Processor Coupling
(ESB or PLB)

Embedded _
Processor Bridge

FPGA

Slave Serial/
Parallel/

SelectMAP JTAG JTAG
Config In Config In|| Controller

AVAGI Sy

Factory
Jumper

DATA

< CNTL

XC18Vxx XC18Vxx
Default Upgrade

J
Factory Jumper I

JTAG
Connector

Select
Logic/NVS

X412_08_041701
Figure 8: Example two PROM system

The PROM marked "Default" is the known good configuration from the factory. The default
should never be upgraded in the field as it provides a baseline configuration that the hardware
can revert to in case of failure of the upgrade process. This protects the hardware against
power failures, customer or technician mistakes, and any other failure mode that would render
the hardware inoperable (and non-upgradable). By preventing the end user from updating this
PROM, he will always have a fallback position in the event the upgrade fails. The factory
jumpers on the Default PROM’s JTAG lines physically prevent the changing of this PROM,
except during the manufacturing process. The upgrade PROM can be changed through the
JTAG controller in the FPGA. With only two storage locations, the new upgrade always
overwrites the old upgrade.

The Select Logic and Non-volatile storage (NVS) is to determine which PROM should be used
and use the default if a configuration error occurs during the loading of the upgrade. In it's
simplest form, it would attempt to load the upgrade PROM, monitor the DONE line of the FPGA,
and if it failed, automatically revert to the default PROM. Adding a small NVS device, such as a
Dallas Semiconductor DS2430A (scratchpad EEPROM) would allow specifying which PROM
to boot from initially. This NVS could allow a more sophisticated approach of choosing among
multiple upgrades. The select logic could be a CPLD or even something simpler, but, like the
default, it should not be modifiable outside the factory (unless there is a double buffer for the
CPLD configuration).

In the event of a configuration fault, the select logic should be able to detect this and attempt to
configure the FPGA with the Default bitstream. If the bitstream in the upgrade buffer is

(v1.0) June 29, 2001

www.Xilinx.com 79
1-800-255-7778

http://www.xilinx.com

S XILINX®

Processor Coupling > Brd9e SelectMAP
 — Interface Bridge Controller Target

corrupted or non-existent, the FPGA DONE signal will not go high. In this case the select logic
should attempt to load the default bitstream.

IRL in a Bridge System

Figure 9 shows an IRL system with a bridge and the two PROM model discussed in the last
example. The bridge FPGA initializes off the PROMSs; subsequently the target FPGA can be
configured from the processor through the bridge. In the previous example the FPGA was both
the bridge and the target. The interface in this case could be with either the ESB or PLB. A
register in the Bridge interface would accept the configuration data sent from the processor and
pass it on to the target via either the SelectMAP or JTAG controllers.

Use of a bridge in your system is not an IRL requirement; this example may or may not apply to
your design. This figure is an example of how you could perform double buffering, but not the
only way.

Embedded
Processor
FPGA FPGA
Slave Serial/
Parallel/
SelectMAP JTAG JTAG
Config In Config In[| Controller
< L. ®
g Factory
= Factory Jumper
o
OB Jumper -
IQ ® &= XC18Vxx CNTL Config.
'_
-—,§ Default SATR CPLD
XC18Vxx 1
Upgrade I
<5)
=
o C
25
$o
X412_09_050901

Figure 9: System with Bridge and Target FPGAs

In a programmable bridge system the processor cannot directly send configuration data prior to
the initial configuration of the bridge FPGA. All of the aforementioned details on insuring a
known good configuration still applies to this bridge. For the target FPGA in this diagram, the
processor is able to send configurations directly to it from the processor’s data storage. In this
case, two means of configuration supported under PAVE are shown, SelectMAP and JTAG.
The select logic used by the bridge is a CPLD that is acting as a mux for the two PROMSs.

General IRL System Considerations for Bridges

Communication between the Processor and the target FPGA occurs through a bridge. The
bridge facilitates the interface to the processor through the specified interface (e.g. ESB, PLB).
Most processors require a separate chip (a Bridge) to support an ESB. When using a bridge
chip, the processor is not directly mastering the bus to the FPGA. A few processors do have
direct ESB support on chip. These are considered to have the bridge built-in; this bridge would
be non-upgradable.

80

www.xilinx.com (v1.0) June 29, 2001
1-800-255-7778

http://www.xilinx.com

S XILINX®

PMC Connectors

C . Controll
ore Virtex-II ontrolier

Most SBCs do not provide direct access to the PLB via a plug-in form factor. In the case of a

CompactPCI system, a form factor known as PCI Mezzanine Card (PMC) is typically used. A
PMC card loosely coupled to the processor could be on the SBC board, or a PMC carrier in the
same chassis. A tight coupling would be the processor local bus (PLB), such as the PowerPC
405GP peripheral bus that is fed directly from the processor. The upgrade to the FPGA passes
through this coupling and into the FPGA,; this data is then updated into the appropriate storage
area.

Memory usage for storing bitstreams

Building on the models in last two examples, this next example adds additional memory space
for bitstream storage. Figure 10 shows a loosely coupled PMC system with configuration flash
in addition to the two PROMSs. This flash chip is a standard commodity flash, which are
available in varying sizes. Depending on the design, the flash chip could store additional Bridge
bitstreams, while depending on the Processor to supply the configuration to the target FPGA,
or target FPGA configurations could be stored there as well. Flash chips are able to store much
larger amounts of configuration data, and this could translate to multiple upgrades or support
for the largest FPGAs.

SelectLink

< SelectLink

Virtex-ll
Slave Serial/
Parallel/ JTAG JTAG
Config In Config In|| Controller
S " L‘ o
% a Factory
_ x Jumper
g . <
2 8 ONTL Config.
g = CPLD
8 DATA XC9500
CNTL
Config. Flash
DATA
EgS
29
O C
25
o
X412_10_050901

Figure 10: PMC example with Bridge, PROMs, and Flash

In this case, the CPLD is considered to be a thin device, basically a data mux with the majority
of the logic in the FPGA. The address lines feeding from both the FPGA or CPLD to the flash
chip would allow it be controlled from either chip.

In this example the default could reside in the Configuration flash or in a PROM; thus no
jumpers are shown on the PROMSs. If this is the case, it's the responsibility of the system
designer to ensure fail-safe operation.

(v1.0) June 29, 2001

www.Xilinx.com 81
1-800-255-7778

http://www.xilinx.com

S XILINX®

Use of PAVE in IRL Systems

The PAVE Framework is an embedded applications software development framework that can
be employed to facilitate the development of reconfigurable embedded applications.

Object Oriented Hardware

The PAVE Framework and its components are a collection of C++ classes and object models
that abstract an implementation of a Xilinx FPGA, called the IRL-enabled Device
implementation. PAVE treats the programmable hardware as an object within the system,
similar to software objects used in C++. As a result, applications that are written using PAVE
tend to be highly object oriented, modular, and extremely upgradable. You can change a single
module without replacing the whole framework.

SelectMAP and JTAG support

For PAVE 1.0, the programming interfaces supported are SelectMAP and JTAG, via the
configuration register contained in your design, typically in the bridge. When compiling the
design under the PAVE, you define the location of this and any other user registers in the device
memory map. PAVE will encapsulate this programming interface and generate C++ source and
header files and associated project files based on your design definition.

Available Development Platforms

Several development platforms that can be used for IRL are available today:

Motorola

The Motorola MCP750 SBC has the following features:
e MPC750 Power PC processor

« APMCslot

» Ethernet connection

e Compact Flash

Motorola Computer Group can be contacted at:

http://www.mcg.mot.com

Alpha Data

The Alpha Data ADM-XRC is a PMC card that allows reconfiguration of the FPGA across a
bridge. Details can be found at:

http://www.alphadata.co.uk/dsheet/adm-xrc.html

WInd River Systems
Wind River Systems makes the Tornado-Il RTOS development platform.

http://www.windriver.com

Xilinx
Xilinx offers IRL training and the PAVE Framework.

http://www.xilinx.com/xilinxonline

Summary

With minor hardware and software changes, you can enable your systems for IRL and add
much value for both you and your customers. The addition of IRL to your product will extend it's
life and simplify support and distribution models. With IRL, you could manufacture a single
physical version of your hardware and ship multiple different hardware versions. And your
customers will appreciate the speedy, hassle-free upgradability of your products.

82

www.xilinx.com (v1.0) June 29, 2001
1-800-255-7778

http://www.mcg.mot.com
http://www.alphadata.co.uk/dsheet/adm-xrc.html
http://www.windriver.com
http://www.xilinx.com
http://www.xilinx.com/xilinxonline

S XILINX®

The Xilinx PAVE Framework provides a powerful software framework that allows designers to
easily integrate IRL into their designs. The object oriented nature of PAVE eliminates the need
to handle low level issues with JTAG or SelectMAP programming, allowing the designer to
focus on the end-user’s application.

Future revisions of the PAVE Framework will bring additional functionality to your IRL-enabled
design. The modular nature of PAVE will allow you to add new features without disturbing your
current application framework.

Revision The following table shows the revision history for this document.
HIS'[OI‘y Date Version Revision
6/29/01 1.0 Initial Xilinx release.
(v1.0) June 29, 2001 www.xilinx.com 83

1-800-255-7778

http://www.xilinx.com

S XILINX®

84 www.xilinx.com (v1.0) June 29, 2001
1-800-255-7778

http://www.xilinx.com

& XILINX®
Appendix B

Using Durango with the MCP750
and PAVE

Durango Board

Durango, shown in Figure B-1, is a platform for demonstrating key IRL concepts and is a
model for the IRL architecture. It is a PMC card that includes a Virtex-11 PCI bridge and a
second Virtex-11 FPGA as the target of the IRL reconfiguration in PAVE v1.0.

Durango was designed to implement a target architecture for a Xilinx-based
reconfigurable system. The block diagram in Figure B-2 represents the portion of the
design utilized in the application and integration of the PAVE v1.0 functionality.

The architecture and design of Durango was intended to provide a platform to develop
feature beyond the initial PAVE v1.0 release. Additional information on the Durango
board/reference design can be found in Appendix C.

RN G == J5 -CiZ o3, £ o5 a ool C -:IH!H“"“GN[}
e o . . LIE?‘.E':‘F!: @
< JHURITEY

S30F
B0-4PE0D0/VZFE a
80T0L4v95793

L D00TAZIX

~
o
1
0
o
=
~—
(o]
—
=L
sl
=~
™
i
—
i
AL

[=}]
o
—
=]
=
L
=
w
[=2}
w
[T
[V

[©]
>
<=
- S
=]
X =
We
b

PHILIPPINES

C60 Ji4 (=]

Figure B-1: Durango IRL Reference Design (PMC side)

Note: When viewed in Adobe Acrobat, the picture above appears best at ~200% magnification.

V1.0 www.Xilinx.com 85
PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

S XILINX®

Appendix B: Using Durango with the MCP750 and PAVE

Durango Block Diagram

JTAG
Connector

Factory

Features of the Virtex-1lI-based Durango supporting PAVE v1.0:
= SelectMAP Configuration PAVE v1.0 (XC2V1000)

« JTAG Configuration, PAVE v1.0 (XC2V1000, XC18V04)
= Virtex-1l PCI Bridge

= Virtex-1l Target

= XC18V04 Non-volatile Storage

e 32-bit, 3.3 V PCI compliant Interface

e PMC PCI

= XIRL Register

= Direct SelectMAP connector for debugging.

= Direct JTAG connector for debugging.

InE:nggEe Virtex-ll SelectMAP i’> Virtex-lI
FPGA Controller |—— FPGA

Slave Serial/
Parallel/

SelectMAP JTAG JTAG
Config In Config In|| Controller

L1l

Jumper

DATA

Jumper

XC18Vxx [__CoNTL Config.

SelectMAP
Connector

o 0=
Default SATA CPLD
XC18Vxx Jumper
Upgrade I

UG021_58_092001

Figure B-2: Block Diagram of Durango Features Supported in PAVE v1.0

Durango MCP750 PAVE Implementation

The PAVE Framework was tested in two hardware platforms. One of these platforms was
a combination of the Motorola MCP750 and the Avnet/Xilinx Durango board. The IRL
host used an Ethernet TCP/IP connection to download the VxWorks images and payloads
to the MCP750 board. The other platform was the Alpha Data ADM-XRC/MCP750,
covered in Appendix D.

The MCP750 is a Single Board Computer (SBC) based on the PowerPC processor. It comes
in a 6U CompactPCI form factor. Figure B-3 shows the block diagram of the MCP750 and
the Durango board as the hardware was tested.

The Durango is a Virtex-11-based design (XC2Vv1000) and has been integrated with the
MCP750 over the CompactPCI backplane. The ADM-XRC is a Virtex-E-based design
(XCV1000E), housed on the PMC slot of the MCP750. The communication between the
MCP750 and the ADM-XRC (see Appendix D) was performed over the onboard PCI bus.
PAVE provided scalability of existing code, not only for evolution from a Virtex-E to a

86

www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

Durango Framework 2:)(||_|NX®

Virtex-Il product, but also across the unique board designs. Even with the layering
difference of PCI bridging and respective latency, building this solution with the Wind
River RTOS, VxWorks, enabled seamless scaling across the partitioning of the Target FPGA
within the system.

Ethernet A
I/F Chip
g
(5]
(]
=
c
o
o
o
=
(%) a
>
@
©
- Q
o 4
-
g
FLASH
1 | PPC 1t
O .
Tl o Bridge @—| Memory Controller
g | S
£l s
8 < PPC Processor Bus >
Motorola MCP750 1

Application <::> Application
PCI DATA

" Data
Signals Data

CompactPCl Backplane @ 3.3V

o &
L 3
2| ¢ PCI !
g9 Core | Bridge FPGA Target FPGA
s |8 VirtexIIBridge) >
O g VirtexllEngine
T T XIRL 1] SelectMAP
- Interface ITAG
Slave Serial/ Register Config In
Parallel/

Config In

<
ig
CNTL CPLD
% DATA MUX

JTAG

CNTL

JTAG
Connector

XC18Vxx [[XC18Vxx

SelectMAP

SelectMAP
Connector

PMC Carrier Card

UGD21_44_090501

Figure B-3: MCP750 with Durango Block Diagram

Durango Framework

The Durango software framework can be found under _pl at f or m ncp750dur ango. The
_pl atf orm syst engener at or directory is essentially an un-generated version of the
Durango framework. Running the system generator on _pl at f or m syst engener at or, as
outlined in the getting Started chapter, will create a directory identical to

_platform ncp750dur ango.

The _pl at f or m ncp750dur ango framework is initially ready to open in the Tornado tools,
when installed in D: \ .

V1.0 www.Xilinx.com 87
PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

2:)(||_|NX® Appendix B: Using Durango with the MCP750 and PAVE

Code Examples

The following illustrates a typical program for reconfiguring the Durango server
component. The program is very basic in that it simply loads a payload into memory,
writes it to the targeted device, and then frees the memory when the operation is
completed.

Voi d durango_tutorial (

voi d *ptrArgunents)

{ char *pt r BaseAddr ess;
voi d *ptrVirtexl | Engi neBitstream
voi d *ptrVirtexl | Engi neModul e;
st ruct Payl oadHeader st r Payl oadHeader ;
pntr_cl assbDur ango ptrServer;

// Initialize |ocal variables.

ptrBitstream = NULL;
pt r Modul e = NULL;

/1 Instantiate a dunmy address space for this test.
ptrBaseAddress = (char *)cal |l oc(4096, sizeof(char));
/1 Instantiate a server conponent.

ptrServer= new cl assDur ango(pt r BaseAddr ess) ;

/1 If the server was successfully instantiated,

if (ptrServer != NULL)

{

/* Pull the payload of the local file systeminto allocated nenory for
all three target devices. */

ptrServer->ptrVirtexl|Engi ne->CachePayl oad("t est payl oad. bi n",
&pt r | nput FPGABI t st r eam
&pt r | nput FPGAMbdul e) ;

/1 Load the payload into its targeted device.
ptrServer->ptrVirtexl|Engi ne->Upl oadPayl oadFr onBuf f er (
st r Payl oadHeader . t heDevi ceConfi gurati on[0] . dwBi t st reanti ze,
ptrlnput FPGABI t st ream
st r Payl oadHeader . t heDevi ceConfi gurati on[0] . dwibdul eSi ze,
pt r I nput FPGAMbdul €) ;

/!l Free allocated buffers.

ptrServer->ptrVirtexl|Engi ne->UnCachePayl oad(ptrVirtexl|Engi neBitstream

88 www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

Resources

S XILINX®

Resources

ptrVirtexl| Engi neMbdul e);
del ete ptrServer;}

el se

/! Add error code here.

free(ptrBaseAddress);}

Motorola produces the MCP750 Single Board Computer. Additional details on the
Motorola MCP750 can be found at:

http://www.mcg.mot.com/cfm/templates/product.cfm?Pagel D=895&Product|D=22
&PageTypelD=1

Avnet sells the Durango board as part of a IRL Reference Design Kit. Avnet also sells
many of the system components used in development of PAVE.

http://www.ads.avnet.com

- Xilinx PMC IRL Reference Design Kit (Durango) can be ordered from Avnet
Design Services. The part number is ADS-XLX-PMC-IRL

- Durango Data sheet
http://www.xilinx.com/partinfo/ds084.pdf

- Additional Motorola components for this reference design are available from
Avnet:
- MCP750-1352(cPCI PPC Single Board Computer)

- CPX2408-k (cPCI Enclosure)
- CFLASH-001(10MB cFlash Memory Card)

Tracewell Systems offers the T-Frame for Compact PCI which allows easy access to
boards without the use of extender cards.

www.tracewellsystems.com

- 580-6001-F00-00 (cPCI Enclosure)
ACT Technico sells PMC carrier cards for CompactPCI.

www.acttechnico.com
- 7000-3 cPCI/PMC Carrier card

V1.0

www.Xilinx.com 89

PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com
http://www.mcg.mot.com/cfm/templates/product.cfm?PageID=895&ProductID=22&PageTypeID=1
http://www.xilinx.com/partinfo/ds084.pdf
http://www.ads.avnet.com
www.tracewellsystems.com
www.acttechnico.com

S XILINX® Appendix B: Using Durango with the MCP750 and PAVE

XIRL Interface Register Tables

For your convenience we have included this table to assist in debugging the XIRL
configuration register as you write new code and test it.

Register Name: XIRL_Interface

BAR Space: BAR1

Address Offset: 0x00000000

Width: 32 bits

Power Up Value; 0x01A0000

5| % | B = © ~ < © .

JTAG TCK

R'W JTAG_TDI

RW SMAP_BUFF_OE?

R'W SMAP_RW

R'W SMAP_PROG

R SMAP_DONE

R'W SMAP_D[2: 0] 1

Table B-1: XIRL Interface Register Debugging Table (Lower Bits)

Table B-2: XIRL Interface Register Debugging Table (Upper Bits)

90 www.xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

http://www.xilinx.com

XIRL Interface Register Tables 2:)(||_|NX®

Notes:
1. Dual mode pins on Target device. Need to tri-state once configuration is complete.
2. Internal registered control signal that does not go out to Pad.

Signal Name Descriptions
= JTAG BUFF_CE - Tri-state control for the output buffers on the JTAG signals, TCK, TVS,
TDI . It is active LOW Tri-state enable and is LOW after power up.
e JTAG TCK, TM5,TDI , TDO- JTAG signals used to program the Target FPGA.

= SMAP_BUFF_CE - Tri-state control for the output buffers on the SMAP signals. Active
LOW tri-state control and is LOW after powerup

= SMAP_COCLK, SMAP_RWSMAP_CS, SMAP_PROG, SMAP_| NI T, SMAP_BUSY, SMAP_Df 7: 0] -
SelectMAP signals used to program the Target FPGA via SelectMAP port.

e M 2:0] - FPGA mode pins. JTAG mode is the default mode after power up.

= HSWAP_EN - Controls the pull-ups during configuration while M 2: 0] selects the
desired configuration mode. The signal HSWAP_EN is active LOW. A logic 0 commands
the 10Bs to employ weak pull-ups during configuration.

V1.0 www.Xilinx.com 91
PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

2:)(||_|NX® Appendix B: Using Durango with the MCP750 and PAVE

92 www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

& XILINX®
Appendix C

Durango Reference Design

The Durango board is joint project of Xilinx and Avnet to provide an IRL reference design
for a Xilinx-based embedded system. The Durango board is not only a reference design for
our customers; it has been used in the development, integration, and validation of the
PAVE API and SIF.

A reference design package is available from Xilinx supporting the PAVE v1.0 release.
Appendix B identifies how Durango has been integrated in an embedded development
platform to support PAVE v1.0 integration and validation. Durango is available for
purchase from Avnet Design Services. Details on how to obtain the Durango reference
package are provided later in this appendix. All other components of the development
platform are commercially available. A system bill of material covering the components of
the development platform is available; see Additional Information, page 96. Combining
the PAVE v1.0 SIF, API and template applications along with the Xilinx and Wind River
Systems tools enable the customer to create an upgradable platform.

Hardware Features

While Durango supports the required feature set for the PAVE 1.0 release, the architecture
and design are also intended to provide a platform to develop features for future releases.
Appendix B along with PAVE v1.0 support Durango for this release. The block diagram in
Figure C-2 and the following list includes both components and features of the board to
that will enable a flexible platform for continued development:

= Xilinx components:
- XC2V1000-4FG456C
- XC2V1000-4FF896C (upgradable to XC2V1500 or XC2V2000)
- XC18V04VvQ44C
- XC95288XL-7TQ144C
- XCR3256XL-7CS280C
e Memory:
Two: 16 MByte SDRAMSs
Six: 512Kbx18 QDR SRAMSs
- One: 2 MByte Parallel Flash memory
Two: 4Mbit Flash memories
« Board I/0 Connectors and Interfaces
- 32-Bit, PCI Bus Interface Connector
- IBM PPC405GP External Peripheral Bus Connector
- 2JTAG Connectors
- SelectMAP Connector
- AvBus™ I/0 Connector

V1.0 www.Xilinx.com 93
PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

S XILINX®

Appendix C: Durango Reference Design

Mictor Test Connectors

e Miscellaneous:

50 and 60 MHz oscillator

LEDs

Dip Switches (JTAG chain)

Push Buttons

Battery backup for V-II bitstream encryption

Additional details on Durango are provided in the reference design zip file.

gt == U3 Uy

Zige

& XILINXe

xca2vio00™
FF896AFT0109 :
FE11374A/D1W08-07 B

I /CES

W

PHILIPPINES

DE11342A/D034F-08

Ac2vione™
FG4564FT0109

2
4

VroZoril
LEOONIVFFBA
WLFOASTIX

201
V£966v1T4
LE00N3EYPTDL
i TX882560X

oXNITXGS

LTI HRHHTHE
N T,

Figure C-1: Durango IRL Reference Design Front and Rear

Note: When viewed in Adobe Acrobat, the picture above appears best at ~200% magnification.

94

www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User’s Guide

http://www.xilinx.com

Hardware Features

S XILINX®

QDR
SRAM

QDR
SRAM

SDRAM

ADDR

3
= = 3
) é yaav [a) é N
$10303UU0D O/| % Cn i
8
=)
< <
g g
a a
TIND 1LNO >
=N S 3
| OF
N ol I
g s o 8
< E c <
= -
TIND 1LNO >
=N i 3
e o6
X
=
~ 2
£ 3
5 &
3
L o2
el =79 x 2
Q% [ER= E €
2|25 g 3
< % O (@) <
L
o
K 1IND e
. _ uj Byuod ovIr S
o xX O
= 0o
\t ‘g’ £ s Ss3=aav
o S m
g c vivad z
= Kme | & = [g0 g
& @ o2 28 |]
0 o o IINO oL
O 38 NS ’/ o~ x
B /\
- © e <
O < =
ao = S
(7] O g p—
” 2
)
S10198UU0) DN 8 = 5
ada S
1) x - >
g 0= 3
g SR
g & -
10199UU0D 10193UU0D
ovir dVINIO9I8S
10109UU0D
$10}99UU0D DDd SVLL

&

Figure C-2: Block Diagram of Durango

Note: To better view this drawing in Adobe Acrobat, click on the “Rotate View 90° CW”
Icon in the Acrobat Command Bar.

V1.0

PAVE Framework User’'s Guide

www.Xilinx.com
1-800-255-7778

95

http://www.xilinx.com

S XILINX®

Appendix C: Durango Reference Design

Availability

The Durango board is available as part of the IRL Reference Design Kit, part number ADS-
XLX-PMC-IRL which can be ordered via Avnet Design Services. Price, availability, and
bundled options as described in detail at the Avnet Design Services web site at

www.ads.avnet.com

Additional Information

Durango has been tested with PAVE and the Motorola MCP 750 platform as detailed in
Appendix B. As a Virtex-1l based design, Durango does not support 5V PCI.

In the PAVE Release zip file, Xilinx provides detailed information about the Durango
hardware. This files included are:

= Schematics

< PCB layout (PADS)

= Bill of material, both for the Durango board and the development system.
= Bitstreams

= Source files for the FPGA and CPLD designs. The Xilinx PCI core is not included as part
of these source files.

The latest version of this zip file can be obtained at:

http://www.xilinx.com/irl

To compile the PCI Bridge design you must own or purchase a license for the Xilinx PCI
core. Details and documentation on the Xilinx PCI core can be found at:

http://www.xilinx.com/pci

Durango PCB Layout

Examples of the Durango layout with details of the major components can be seen in
Figure C-3 and Figure C-4.

96

www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com/irl
http://www.xilinx.com/pci
www.ads.avnet.com
http://www.xilinx.com

Durango PCB Layout 2:)(||_|NX®

AT TR TR R i
, % % { % R
1TAG L S o o IIIIIIIIIIIIII||||||||||||||||||
N
Switches = PMC
WLLLLITERTTTERTITERT] mo Connectors
LS4 S i
" Cenan Canan Cenns IIIIIIIIIIIIII||||||||||||||||||
* |||||%'EIIIIIIII}@:‘
e e W
.......".""'..'....‘SE ggo
CoolRunner E A/E/’ SDRAM (1 of 2)
XCR3256XL = =
. *;\E\\ Virtex-1l Bridge
—l = ’/\ ;,m (XC2Vv1000)
o _ Y)
PROMs
| g
|
|
Elg — T —— 25wl
: - Regulator
]
HE : 5
H | .
1.5 Volt
:: % = Regulz;)tor
|
B =
..,,
= .
E'g T 33voit
. E E Regulator
<
g
QDR -

Memory (6) ~_| ES Virtex-1l Engine
: (XC2V1000)
iz
HE
UG021_46_090701

Figure C-3: Durango Layout Diagram (front)
V1.0 www.Xilinx.com 97

PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

S XILINX®

Appendix C: Durango Reference Design

s E=F

L i

o
Y
N
@

= EH:e [N

e

(W |

£d

Peripheral Bus
Connectors (3)

£90 P

L Z48]

g@
8
. ceER . IHHInmnnnmm=
- |||||||||||||||||||l||l|||l||||||||
651 [mm) an
ovki [EE) = = g
HITHHHH S @ @£ =
G E E
R - 1111111 = D ©-
electMAP and FAIN) E E E = 4 _ Commodity
JTAG Comnector (gl EEIEE S MRS T S5 S & = u Flash
(Cable Access) - S= =3 = = 23
— — = = H
= =" w0 £49 gon = = CoolRunner
/E/ E Q ﬂllngﬁ=mn E E h JTAG
= = = =
SDRAM (20f2) = | mi= S5 EEEEgEE EEg S = %&
(20f2) S = - E [ER) o], = = o
<= = 1> oo JE S E | _|m
J—— = @@- W= = 3
SE= = " = = |o[S—
g lf= = 3 = = i XC95288XL
= = g = = CPLD
SEE = EI S S [N s
¥ -nnE @ @ = > I
S EE] S8 o0 3 o 2
& g700 uz S* —° == o® @i PES SEE]
[) = = e - o S [
pEEsE =EHg ZEH
uEm = ESEEZ ® ME; —_
[] = = H g e QDR JTAG
.l 5029 2 230 (=850 m) (Boundary Scan
N 0020 == 2 2 @ e @)
Tuy 80l coumm) B g bl BIZ Only)
i g w g
Battery Holder ~ —__| En Vo o R ax
(Virtex-Il Bitstream [. + |E= CO H HHE
Encryption Keys) P . (o) im EE =" nz
3 [Eu) [l W] 9 ==
o) EEe [oED D EmEE. o
.l-"n = oy muln: o » g
@ g8 mEa '”"E_E?Em e Pt gEI u
= gﬁ Ex EE) e, cof OF nz
s E= Eﬂ“""‘@_ Egﬁm rEuBEo 3 HH
§E E= " EEEEE S, 3 §EI @R ng
8 HH
T ERSER m@g ESZES),;, S 0] g i
SN 3Em EEEEpERES, JEmfE nz
2 [E8 oW = W) g EEYy m .Y
=T o S ma) ®]" oo B [EH] ™ o
o Ex) =] [F5] [F5) = i~
S029 N B8], o
- E S0l T HHES
‘W % g R B e H
02 = g no
001 HEES
. Towew vow 258 3 8 2 2 = o E T R
Iill: o @7z QEE & Eizniz 8 G a2 iE G EE nz
Zn N = QEE% E) (1] 2 ==
T NLEE 2 ‘' g L
i3 R FHEE 3 [k
i.ig 23 E ot HEH T E " LFEFY w8 " HEHE R " LR
@ 50 EEIEE ™ o (@] 100 EEEE] n“m@@ @i @@ nT
EEE EE ES) EEEEEER i(iEE ES E=w ij@@m H
s (=] [H] nn§ = == ﬂﬂg Eﬁmo ﬂﬂ§. [H) 5] .., N2
2R HEE) 01 oud EEEED HH R [15] HHRe
us g pHEEE EH HEEEE EH iFiig gﬂ i
@3 ° 28 HOE BEICk nz
Ez cuEs) ES) m@‘ ﬂuil:? IE(EE? gzwuﬂ O Eltr u”
) nizlolrllllmllulzloll|||||||||l|l|||||||||||||l|||l|||||||||||l|||l|||||||||||||l
%M.. [RA] | 610) £o10 [Em) £210 [mm) 1010 (=) E{ 0] g:

UG021_47_090701

Figure C-4: Durango Layout Diagram (back)

98 V1.0

PAVE Framework User's Guide

www.Xilinx.com
1-800-255-7778

http://www.xilinx.com

& XILINX®
Appendix D

Using ADM-XRC with the MCP750
and PAVE

ADM-XRC Board

The ADM-XRC, produced by Alpha Data Ltd, shown in Figure D-1, is a platform for
demonstrating many of the key IRL concepts. Itis a PMC card that includes a PLX 9080 PCI
bridge and a Virtex-E FPGA as the target of the IRL reconfiguration in PAVE v1.0. The
XCV1000E has a BG560 foot print which enabled the ADM-XRC to accommodate Virtex
devices from XCV405E to XCV2000E

Figure D-1: Alpha Data ADM-XRC Board

Note: When viewed in Adobe Acrobat, the picture above appears best at ~300% magnification.

V1.0 www.xilinx.com 99
PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

S XILINX® Appendix D: Using ADM-XRC with the MCP750 and PAVE

SSRAM SSRAM SSRAM SSRAM
128K 128K 128K 128K
X X X X
32 32 32 32
A/D
PCI
PCI Bus Interface
PLX 9080
Debug Virtex
Resources XCV1000E
Clock
Generator | Select /0 |

1/0 Connector

UG021_49_080601

Figure D-2: ADM-XRC Block Diagram

ADM-XRC MCP750 PAVE Implementation

The PAVE Framework was tested in two hardware platforms. One of these platforms was
a combination of the Motorola MCP750 and the Alpha Data Ltd. ADM-XRC board. The
IRL host, used an Ethernet TCP/IP connection to download the VxWorks images and
payloads to the MCP750 board. The other platform was the Avnet/Xilinx Durango,
covered in Appendix B.

The ADM-XRC software framework is a fixed (pre-generated) framework that must be
installed on D: \ drive. The _pl at f or m ntp750adnmxr ¢ framework is initially ready to open
in the Tornado tools, when installed in D: \ .

Setup

The MCP750 is a Single Board Computer (SBC) based on the PowerPC processor. It comes
in a 6U CompactPClI form factor. The MCP750 has a single PMC slot at 5V. The ADM-XRC
board uses a PLX 9080 as the PCI interface which supports 5 V PCI. Figure D-3 show the
block diagram of the MCP750 and the ADM-XRC board as the hardware was tested.

100 www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

S XILINX®

Applications
[Ethernet A
I/F Chip SRAM
A
= |
@]
3]
2
I<E PCI o .
8 [T | interface [Virtex-Il
O
=
2 E =
g ks | Alpha Data ADM-XRC
@ 3
£
FLASH
L] PPC - 1
|
6 -
% g ridge Memory Controller
S| 2
€| o y
8 PPC Processor Bus
A
[[Motorola MCP750

UG021_50_090501

Figure D-3: MCP750 with ADM-XRC Block Diagram

INP Files for ADM-XRC

Applications

Similar to the Durango framework, the ADM-XRC framework was generated from a series
of .inp files that describe the hardware to PAVE. The ADM-XRC contains three devices:

< PLX9080
= VirtexEngine
< ControlCPLD

The .inp file for the PLX device maps all the registers for the PLX device, except the PCI
registers. PCI registers are abstracted by cl assPCl Devi ce.

Included with the PAVE v1.0 release are several applications for the ADM-XRC. The push

and pull applications are similar to the concepts outlined in XAPP412. The FFT application

passes data to three nodes for processing: Host CPU, MCP750, and ADM-XRC V1000E

FPGA.

These application descriptions presume some familiarity with how to configure and use

the MCP750 and use of the Tornado tools. Steps that you must perform that are common to

all applications:

= The serial port on the MCP750 should be connected to a computer running the
VxWorks hyperterminal (COM1 or COM2 depending on your system.) as seen below
during the boot process. Use the prompt in the terminal to configure the MCP750’s
settings.

< You must start the Tornado FTP server for the MCP750 board to log into and fetch the

V1.0

www.Xilinx.com 101

PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

S XILINX®

Appendix D: Using ADM-XRC with the MCP750 and PAVE

#g vaworks1 - HyperTerminal

File Edit iew Call

Tranzfer Help

1
auto-booting. ..

host inet (h)
gateway inet [g)

Artached TCP/IP

Loading. ..

Prezsz any key to stop auto-boot...

boot dewice : dec

unit numher HE

proceszor number HIt|

host name : Jjdawvisi0

file name : di/_platform mep?iladmxre/ buildsifclient/systenimage /defa
ult/vxworks

inet on ethernet (e) : 149.199.171.63

uzer (u) : irltarget00
ftp password (pw) 1 irltarget00
flags (£) : 0Ox0

target name ([thn) 1 irltarget00

Attaching network interface lo0... done.

: 149.199.171. 168 |
: 149.199.171.254

interface to dcl.

=

B! No log file open - WFTPD =] E3
File Edt “iew Logging Message: Secunty Help

Figure D-4: Tornado VxWorks Hyperterminal

VxWorks image it needs to boot. In Security -> User/Ri ghts... youwill need to
enter the name of the MCP750 board as a new user.

[L 3906] 09f14/01
[C 3906] 0941 4f01
[C 3906] 0941 4f01
[L 3906] 09f14/01
[C 3906] 0941 4f01
[C 3906] 0941 4f01
[C 3906] 0941 4f01
[C 3906] 0941 4f01
[C 3906] 0941 4f01
[C 3906] 0941 4f01
[C 3906] 0941 4f01
[G 3906] 09714
[C 3906] 0941 4f01
[C 3906] 0941 4f01

For Help, press F1

10:54:09 Connection accepted from 149.199.171.63

10:54:09 Command "USER irltarget00" received

10:54:09 PASSword accepted

10:54:09 User irltarget00 logged in.

10:54:09 Command "TYPE I'" received

10:54:09 TYPE setto I N

10:54:09 Command "PORT 149,199.171.63.4,1" received

10:54:09 PORT setto 149.199.171.63 - 1025 [4,1]

10:54:09 Command "RETR d:f platform_mcpf50admxrc] builds/client{sy
10:54:09 RETRieve started on file d:f platform_mcp750admxrcf builds/c
10:54:09 Transfer finished

10:54:09 Got file d:_platform_mcp750admxrcy_buildsiclientisystemimag
10:54:09 Command "QUIT" received

10:54:09 QUIT or close - user irltarget00 logged out

1 socket |0 users | | | o

Figure D-5: Tornado FTP server

102

www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

Applications

S XILINX®

= You have to start the target server to run the applications - You can run it from a
command line with these settings:

tgtsvr.exe 127.0.0.1 -n ntp750 -V -m 2097152 -B wdbrpc -Bt 5 -Br 5

Alternately, you can run the Target Server from Tornado. Tool s - > Target Server -

> Configure...

address to match the IP address of the target.

Configure Target Servers

T arget Server Dezcriptions

Copy |

Dezcription I‘»-’:-:Wu:urks Target
Bemove |
v Add description ko menu

Target Server Mame IMEF‘?EEI

— Target Server Properties —I Back End

Ayailable Back End: Timeout [zec] A e-try [Count]

loopback ﬂ |5 Iﬂ
rEtrom

Target Mame/IF Address |1 43.199.171.63

Command Line

bgtzvrexe 149.199.171.62 -n MCPFE0 - -m 2097152 -B ;I
wdbrpz -BE & -Br &

ak. I Launch Cancel | Help |

Figure D-6: Tornado Target Server Configuration

as shown below .Click Launch when done. In either case, set the IP

= For all applications run the server side applications first. Specifically these scripts:

Push and Pull

pul |
push
fft

The push and pull applications show different means of updating the FPGA and system
software. Pull simply consists of a series of fetches to known locations on the network.
Push is a bit more sophisticated, requiring the software to set up a socket and perform a
series of processes to complete the update of the FPGA and associated driver.

This set of steps assumes you have the ADM-XRC hardware installed in a MCP750. For
simplicity, the following paths will be under D: \ _pl at f or m ncp750adnxr ¢\ unless listed
as part of a file.

V1.0
PAVE Framework User’'s Guide

www.Xilinx.com
1-800-255-7778

103

http://www.xilinx.com

S XILINX® Appendix D: Using ADM-XRC with the MCP750 and PAVE

Pull Application

1. Edit\ _builds\client\systeni mage\defaul t\pull.Setthe IP address to match the
IP address of the MCP750; set the host name and path appropriately.

WSt at us = i oDef Pat hSet ("irl host 01:
d:/ _platformncp750adnxrc/ _buil ds/client/systenm mage/ default");

szIP = "127.0.0. 1"

2. Open the tornado shell. You must be in\ _bui I ds\ cl i ent\ syst eni nage\ def aul t
directory; you can verify this by the pwd command.
> de
D:/ _pl at form ncp750adnxr ¢/ _buil ds/ client/syst en nmage/ def aul t
Invoke the pull script (use the “<* symbol before the filename)

-> <pul |

3. To stop, wait for the default 10 iterations to complete.

Push Application

1. Edit\ _builds\client\systeni mage\defaul t\ push. The Hostname and path in the
i oDef Pat hSet command and the Target IP address should be changed to reflect your
Host and Target systems.

i oDef Pat hSet ("irl host01:d:/_pl atform ncp750adnxrc/ _builds/client/
system nmage/ defaul t");

szIP = "127.0.0. 1"
Edit the following files so their IP addresses match the target’s IP address and, in the
case of the confi gurati oncl i ent. bat file, also set the path:
- \bin\rel ease\bin\startclient. bat
- \bin\rel ease\ bi n\ configurationclient.bat
- \bin\rel ease\ bi n\ shut down. bat

2. Open\ _buil ds\ _\ adnxr c. wsp in Tornado. Build the following projects:
- ppc405gnu_adnxrc_control cpl d
- ppc405gnu_admxr c_pl x9080
- ppc405gnu_adnxrc_serverappl i cation_vx
- ppc405gnu_adnxrc_vi rt exengi ne

3. Open the tornado shell. You must be in\ _bui I ds\ cl i ent\ syst eni mage\ def aul t
directory; you can verify this by the pwd command.
-> pwd
D:/ _platform ncp750adnxrc/ _buil ds/client/system nage/ def aul t
Start the push script (use the “<* symbol before the filename)
-> <push

4. Start the client application by running \ bi n\r el ease\ bi n\startcli ent. bat from
the host.

5. To change the application with Push, drag and drop payloads (. i r| files) icons onto
the \ bi n\ r el ease\ bi n\ confi gurationclient.bat file. Payloads files are under
\ _bui Il ds\client\systeni mage\ def aul t\ payl oads\ . When this works successfully,
you will see a dialog as shown below:

104 www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

S XILINX®

Applications
Hilinx IRL Configuration Client
'ou are requesting to reconfigure device 0
iwith the contents of papload
C:* PLATF~3%_buildshclientt57'S TEM ~1\defaultspaploadziPayLOA™1.IRL
Do you wizh bo continue?
Mo | Eancell
Figure D-7:
6. To stop this application, perform the following steps:
a. Inthe Tornado shell, issue this command (including the *“<*):
-> <stop
b. From the host run\ bi n\ r el ease\ bi n\ shut down. bat
c. Typectrl-cinthestartclient.bat window. Both the Target and Host side tasks
should now be terminated and the system is ready to run another application.
FFT

Design partitioning is an important concept for IRL Architectures. The design can be

viewed in three paradigms:

= Modeling -The algorithm can be modeled on the host processor. This modeling can be
done in Mathwork’s Matlab.

< Embedding/Fielding - The Target processor can run the algorithm with code
compiled from C.

= Acceleration - The FPGA increases the speed of the algorithm to multiple times the
performance of either the host or target CPU.

How you divide the work between the processor (host or embedded) and the FPGA can

make a tremendous difference in speed for the final product. Computational-intensive

tasks such as large FFTs and Encryption/Decryption can find a large performance increase
when run on an FPGA. With this in mind, we have included an FFT application that
interacts with Matlab to show how a design can be partitioned in a system. For this
application Matlab is providing data to the nodes doing the FFT computation; Matlab
receives the processed data and plots it for all three implementations (Host CPU, Target

CPU, and Target FPGA).

Running the FFT Application

This set of steps assumes you have the ADM-XRC hardware installed in a MCP750 and

have Matlab installed on your host. For simplicity, the following paths will be under

D:\ _pl at f orm ncp750adnxr ¢\ unless listed as part of a file.

1. Editthe\bi n\rel ease\ bi n\startsinul ati on. m file. Replace the IP Address
“127.0.0.1” with the actual IP address being used on your Target (e.g. MCP750 board)
system. If your system is not “Big Endian” set that to false.

t heFuncti onControl . bServer Bi gEndi an = ' TRUE' ;
t heFuncti onControl . szl PAddr ess = 127.0.0. 1,

2. Edit\ _builds\client\systen nmage\ def aul t\fft and set the IP address to match

the target’s IP address; set the host name and path appropriately.
WSt at us = i oDef Pat hSet ("irl host 01:
V1.0 www.xilinx.com 105

PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

S XILINX®

Appendix D: Using ADM-XRC with the MCP750 and PAVE

4,

5.

d:/ _platformncp750adnxrc/ _buil ds/client/systen mage/ default");
szIP = "127.0.0.1"

If you haven’t done so from the Push and Pull applications, edit the following files so
their IP addresses match the target’s IP address and, in the

configurationclient. bat, setthe path:

- \bin\rel ease\bin\startclient. bat

- \bin\rel ease\ bi n\ configurationclient.bat

- \bin\rel ease\ bi n\ shut down. bat

VisualC++ Build - NT / Win2000 Build - The Host-side executables and batch files are
present in the framework and do not require rebuilding. However, Visual Studio
workspace (*.dsw) files are provided to rebuild these executables. If you need to
rebuild the file follow these steps:

- Open_builds\host\admxrc\clientapplications\clientapplication\
x86-wi n32\ adnxrc_cl i entapplicati on_ntdswfile in VisualC++.

- The FileView tab should look as shown below.

_'W'l:urkspace 'admwrc_clientapplication nt' 1 project(s)
admxrc_chentapplication_nt files

=2 Classtfim | [2] Fieview |

Figure D-8:

- Select the following menu items:
- Build -> Set Active Configuration... and set it to release configuration.
- Build -> dean
- Build -> Rebuild Al

Visual Studio workspaces are also present in:

\ _bui I ds\ host\ admxrc\clientapplications\configurationclient\
x86-wi n32\

\ _bui l ds\ host\adnxrc\clientapplications\shutdownx86-w n32\

\ _bui I ds\ host\ adnxr c\ si nul at i ons\ nexf uncti ont enpl at e\ x86-w n32\

Open\ _bui I ds\ _\ adnxr c. wsp in Tornado. Build the following projects:
- ppc405gnu_adnxrc_control cpl d

- ppc405gnu_admxr c_pl x9080

- ppc405gnu_adnxrc_serverappl i cation_vx

- ppc405gnu_adnxrc_vi rtexengi ne

Open the tornado shell. You must be in\ _bui | ds\ cl i ent\ syst eni mage\ def aul t
directory; you can verify this by the pwd command.

106

www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

Applications XX"JNX@

-> pwd
D:/ _platform ncp750adnxrc/ _buil ds/client/system nage/ def aul t

Start the FFT script (use the “<* symbol before the filename)
-> <fft
6. Start the client application by running \ bi n\r el ease\ bi n\startclient.bat from
the host.
7. Start Matlab on Host NT or Win2000 system. Within Matlab command window
>> cd D:_pl at form ncp750adnmxr c\ bi n\rel ease\ bin
>> startsinulation.m

You should now see a single peaked frequency spectrum sweep back and forth on a Matlab
plot window, as seen below. The first picture shows the FFT computation being performed
on the MCP750 CPU. The second shows the FFT being performed on the Host CPU. The
last shows the FFT being run on the FPGA on the ADM-XRC. The Host CPU and Target
CPU use floating point math; the Target FPGA uses integer math.

<} Figure Mo. 1 10| x|

File Edit Wew Insert Tools Window Help

-40

-B0

-100

-120

-140

-160

Normalized from Full Scale)

-180

dB (

] 50 100 150 200 260 300 350 400 480 500

Figure D-9: 1024 Point FFT on the Host CPU

V1.0 www.Xilinx.com 107
PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

S XILINX® Appendix D: Using ADM-XRC with the MCP750 and PAVE

<} Figure Mo. 1

File Edit Wew Insert Tools Window Help

Host «» PAVE <« Target CPU (MCP750) :
I:I I I I T I

20

-40]

-50

-80

—
o
(]

dB (Normalized from Full Scale)

<} Figure Mo. 1
Fil= Edit Wew Insert Tools Window Help

Host «» PAVE < Target FPGA (ADMXRC) :
l:l I I I T I I

=20
=400

B0 : : ' . . .
a0 ﬂm'wb-ﬂ‘l_—f;ﬂﬁ"ﬂwﬂ Lar;’;.mﬂ,i.t.c':-u;.:r;m:fi.e_..,.J.__i,_,,.r,ui_.,w;-;i i

dB (Normalized from Full Scale)

—
[mn]
=

100 150 200 250 300 350 400 450 500

Figure D-10: 1024 Point FFT on the Target CPU (top) and ADM-XRC V1000E FPGA (bottom)

www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

Resources

S XILINX®

8.

To stop the FFT application, perform the following steps:

a. Inthe Tornado shell, issue this command (including the “<*):
-> <stop

b. From the host run\ bi n\r el ease\ bi n\ shut down. bat

c. Type ctrl-c in the Matlab window.

ADM-XRC Payloads

The payloads included with the PAVE frameworks have been generated for a V1000E
based ADM-XRC board. Creating payloads for an ADM-XRC with a different FPGA is
done by

1.

Resources

Place the bit file with the appropriate naming convention into the
\ _bui Il ds\client\systeni mage\ def aul t\ f pga directory.

Edit\ _bui | ds\ _\ gener at epayl! oad. bat to reflect the new bit file name.

Run gener at epayl oad. bat . This will create a. i rl payload file in
\ _builds\client\system nage\defaul t\ payl oads\

Note: The gener at epay! oad. bat script may take a few minutes to complete.

Motorola - Additional details on the Motorola MCP750 can be found at:

http://www.mcg.mot.com/cfm/templates/product.cfm?Pagel D=895&ProductID
=22&PageTypelD=1

Alpha Data Ltd. - Additional details on the ADM-XRC board can be found at:
http://www.alphadata.co.uk/dsheet/adm-xrc.html

Mathworks - Producers of the Matlab program.
http://www.mathworks.com/

V1.0

www.Xilinx.com 109

PAVE Framework User’'s Guide 1-800-255-7778

http://www.mcg.mot.com/cfm/templates/product.cfm?PageID=895&ProductID=22&PageTypeID=1
http://www.alphadata.co.uk/dsheet/adm-xrc.html
http://www.mathworks.com/
http://www.xilinx.com

S XILINX® Appendix D: Using ADM-XRC with the MCP750 and PAVE

110 www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

& XILINX®
Appendix E

PAVE APl Summary

API Reference Manual

This chapter provides detailed descriptions of the objects that comprise the PAVE Object
Model and associated API.

The classes referenced in this chapter are:
e Thecl assRegi st er object.

e Thecl assDevi ce object.

e Thecl assl RLDevi ce object

e Thecl assSi gnal Buf f er object.

= The cl assSt at eMachi ne object.

V1.0 www.Xilinx.com 111
PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

S XILINX®

Appendix E: PAVE APl Summary

cl assRegi ster::classRegi ster

Synopsis

cl assRegi ster::classRegister (
api PHYSI CALADDRESS ptrOfset,
api WORD wStartBit,
api WORD wNunber O Bi t s,
api BOCOL bReadabl e,
api BOCL bWi t eabl e,
api BOCOL blnitialize,
api DWORD dwi ni ti al i zedVval ue,
size_t wAddr essabl eW dt h,
voi d *pt r Par ent Devi ce,
enAPI Ret ur nCodes (*pf nDevi ceModel Functi on) (api BYTE, void *),
api BOCOL bEnabl ePAL,
pntr_classIRLPlatform ptrPlatform

)

Description

This function is the default constructor for a cl assRegi st er object. The cl assRegi st er
object is an abstraction of a register in the programming interface of an IRL-enabled device.

Parameters

ptrOffset: Ofset address of the register within the | RL-enabl ed
devi ce.

wStartBit: The starting bit of the register field within a 32 bit word.
wWNunber OF Bits: The width of the register field in bits.

bReadabl e: | ndicates whether or not the register is readable.
bWiteable: Indicates whether or not the register is witable.

blnitialize: Indicates whether or not an initial value should be
witten to the register when it is instantiated.

dwi nitializedValue: Indicates the value to wite to the register.

wAddr essabl eW dt h: | ndi cates the addressi ng boundary on which the
register field is addressed.

ptrParent Device: A pointer to the device object in which this register
resi des.

pf nDevi ceMbdel Function: A pointer to a function which is called when
this register is witten to. See chapter 4, Sinmulation with the SIF.

bEnabl ePAL: Enabl es the uses of platformspecific routines for reading
and witing to registers.

ptrPlatform The pointer to the platformabstraction |ayer.

Return Values

Pointer to the newy instantiate regi ster object.

See Also

cl assRegi ster:: ~cl assRegi ster

112

www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

API Reference Manual XX"JNX@
cl assRegi ster::~cl assRegi ster

Synopsis
cl assRegi ster:: ~cl assRegi ster (
);
Description
This function is the destructor for a cl assRegi st er object.
Parameters
N/A
Return Values
See Also

cl assRegi ster::classRegi ster

V1.0 www.Xilinx.com 113
PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

S XILINX®

Appendix E: PAVE APl Summary

cl assRegi ster:: Upl oad

Synopsis

enAPI Ret ur nCodes cl assRegi ster:: Upload (
api DWORD dwval ue

)

Description

This function results in the value in dwval ue being written to the register that this instance
of the register object abstracts. The register is properly address and the data aligned
accordingly based on the register specification.

Parameters
¢ dwval ue: Indicates the value to wite to the register.

Return Values

enAPIl Functi onSuccessful — if the function conpl etes successfully.
enAPI FunctionFailed — if the function fails.
See Also

cl assRegi st er: : Downl oad
cl assRegi ster:: Mdify

114

www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

API Reference Manual XX"JNX@

cl assRegi st er:: Downl oad

Synopsis
enAPI Ret ur nCodes cl assRegi st er:: Downl oad (
api DWORD *ptrVal ue
);
Description

This function results in the register contents being read into the api DWORD pointed to by
pt r Val ue. The register is properly address and the data aligned accordingly based on the
register specification.

Parameters

e ptrValue: a pointer to a api DAORD i nto which the register contents are
to be read.

Return Values

enAPI Functi onSuccessful — if the function conpl etes successfully.
enAPI FunctionFailed — if the function fails.
See Also

cl assRegi st er: : Upl oad
cl assRegi ster:: Mdify

V1.0 www.Xilinx.com 115
PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

S XILINX®

Appendix E: PAVE APl Summary

cl assRegi ster:: Mdify

Synopsis

enAPI Ret ur nCodes cl assRegister:: Mdify (
api DWORD dwval ue

)

Description

This function results in the register contents being modified by the contents of api DWORD
dwval ue. The Modify method is particularly useful for addressing fields within a register.
The register is properly address and the data aligned accordingly based on the register
specification.

Parameters

¢ dwval ue: an api DAORD from which the register contents are to be
witten.

Return Values

enAPI Functi onSuccessful — if the function conpl etes successfully.
enAPI FunctionFailed — if the function fails.
See Also

cl assRegi st er: : Downl oad
cl assRegi ster: : Upl oad

116

www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

API Reference Manual

S XILINX®

cl assRegi ster:: Upl oadSi gnal s

Synopsis
enAPI Ret ur nCodes cl assRegi st er:: Upl oadSi gnal s (
api DWORD *ptrBuffer,
api DWORD dwBuf f er Lengt h,
api DWORD dwSet upTi ne,
api DWORD dwHol dTi e
)
Description

This function results in the contents of a signal buffer being sequentially written to the
register which the instance of this register object abstracts.

Parameters

ptrBuffer: a pointer to a buffer of data values to wite to the
register.

dwBuf ferLength: the length of the buffer.

dwSet upTine: the delay in platformticks to wait prior to witing each
value to the register.

dwHol dTi me: the delay in platformticks to wait after witing each
value to the register.

Return Values

enAPIl Functi onSuccessful — if the function conpl etes successfully.
enAPI FunctionFailed — if the function fails.
See Also

cl assRegi st er: : Downl oad

cl assRegi st er: : Upl oad

cl assRegi ster:: Mdify

V1.0

www.Xilinx.com 117

PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

S XILINX®

Appendix E: PAVE APl Summary

cl assRegi ster:: Toggl eSi gnal

Synopsis
enAPI Ret ur nCodes cl assRegi st er:: Upl oadSi gnal s (
api DWORD dwAssert Condi ti on,
api DWORD dwDeassert edCondi ti on,
api DWORD dwNuniroggl es,
api DWORD dwSet upTi ne,
api DWORD dwHol dTi e
)
Description

This function results in the contents of a register being sequentially written to with the
dwAssert edCondi ti on and dwDeassert edCondi ti on values.

Parameters

dwAssert Condi tion: The value to wite to the register as the asserted
condi ti on.

dwDeassertedCondi ti on: The value to wite to the register as the
deasserted condition.

dwNuniToggl es: The nunber of iterations to assert the signal on the
port.

dwSet upTime: the delay in platformticks to wait prior to witing each
value to the register.

dwHol dTi me: the delay in platformticks to wait after witing each
value to the register.

Return Values

enAPI Functi onSuccessful — if the function conpl etes successfully.
enAPl FunctionFailed — if the function fails.
See Also

cl assRegi st er: : Downl oad

cl assRegi st er: : Upl oad

cl assRegi ster:: Mdify

118

www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

API Reference Manual XX"JNX@

cl assReqi st er:: Reset

Synopsis
enAPI Ret ur nCodes cl assRegi ster:: Reset (
);
Description

This function results in the initial value being written to the register that this instance of the
register object abstracts.

Parameters

Return Values

enAPIl Functi onSuccessful — if the function conpl etes successfully.
enAPl FunctionFailed — if the function fails.
See Also

cl assRegi st er: : Downl oad
cl assRegi ster:: Mdify

V1.0 www.Xilinx.com 119
PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

2:)(||_|NX® Appendix E: PAVE APl Summary

cl assRegi ster::C ear

Synopsis
enAPI Ret ur nCodes cl assRegi ster::d ear (
);
Description

This function results in a 0x00000000 being written to the register that this instance of the
register object abstracts.

Parameters

Return Values

enAPIl Functi onSuccessful — if the function conpl etes successfully.
enAPl FunctionFailed — if the function fails.
See Also

cl assRegi st er: : Downl oad
cl assRegi ster:: Mdify

120 www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

API Reference Manual XX"JNX@

classRegister::Initialize

Synopsis
enAPl Ret ur nCodes cl assRegister::Initialize (
);
Description

This function results in the initial value being written to the register that this instance of the
register object abstracts.

Parameters

Return Values

enAPIl Functi onSuccessful — if the function conpl etes successfully.
enAPl FunctionFailed — if the function fails.
See Also

cl assRegi st er: : Downl oad
cl assRegi ster:: Mdify

V1.0 www.Xilinx.com 121
PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

S XILINX®

Appendix E: PAVE APl Summary

cl assRegi ster:: D spl ay

Synopsis

enAPIl Ret ur nCodes cl assRegi ster::Display (
char *szAnnot ati on

)

Description

This function prints to stdout the contents of the register that this instance of the register
object abstracts.

Parameters

e szAnnotation: A annotating text string that you wish to have printed
out in conjunction with the regi ster contents.

Return Values

enAPIl Functi onSuccessful — if the function conpl etes successfully.
enAPl FunctionFailed — if the function fails.
See Also

cl assRegi st er: : Downl oad

122

www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

API Reference Manual XX"JNX@

cl assDevi ce: : cl assDevi ce

Synopsis
cl assDevi ce: : cl assDevice (
)
Description

This function is the default constructor for device objects that have a register-level
programming model. Note that this is different from the IRL-enabled Device object, which
is re-configurable.

Parameters

Return Values

Pointer to a new cl assDevi ce object.
See Also

cl assDevi ce: : ~cl assDevi ce

V1.0 www.Xilinx.com 123
PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

2:)(||_|NX® Appendix E: PAVE APl Summary

cl assDevi ce: : cl assDevi ce

Synopsis
cl assDevi ce: : cl assDevice (
api PHYSI CALADDRESS pt r BaseAddr ess,
pntr_cl assl RLPlI at f orm ptrPlatform
);
Description

This function is a constructor for device objects that have a register-level programming
model. Note that this is different from the IRL-enabled Device object, which is re-
configurable.

Parameters

e ptrBaseAddress: The nmapped physical base address of the device that
this instance of the classDevice object abstracts.

e« ptrPlatform The pointer to the platform abstraction |ayer object.
Return Values

Pointer to a new cl assDevi ce object.

See Also

cl assDevi ce: : ~cl assDevi ce

124 www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

API Reference Manual XX"JNX@

cl assDevi ce: : cl assDevi ce

Synopsis
cl assDevi ce: : cl assDevice (
api WORD wDevi cel ndex,
api WORD wDevi cel nst ance,
api PHYSI CALADDRESS pt r BaseAddr ess,

pntr_classl RLPl atform ptrPlatform
)
Description

This function is a constructor for device objects that have a register-level programming
model. Note that this is different from the IRL-enabled Device object, which is re-
configurable.

Parameters

¢ whevicel ndex: The index of the device on the board.

¢ \WDevicel nstance: The instance of this particular class of device on the
boar d.

e ptrBaseAddress: The napped physical base address of the device that
this instance of the classDevice object abstracts.

e« ptrPlatform The pointer to the platform abstraction |ayer object.
Return Values

Pointer to a new cl assDevi ce object.

See Also

cl assDevi ce: : ~cl assDevi ce

V1.0 www.Xilinx.com 125
PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

2:)(||_|NX® Appendix E: PAVE APl Summary

cl assDevi ce: : ~cl assDevi ce

Synopsis
cl assDevi ce: : ~cl assDevi ce (
)
Description

This function is a destructor for device objects that have a register-level programming
model. Note that this is different from the IRL-enabled Device object, which is re-
configurable.

Parameters

Return Values

See Also

cl assDevi ce: : cl assDevi ce

126 www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

API Reference Manual

S XILINX®

cl assDevi ce: : Upl oadRegi st er

Synopsis
enAPI Ret ur nCodes cl assDevi ce: : Upl oadRegi st er (
api PHYSI CALADDRESS ptrOfset,
api WORD wStartBit,
api WORD WNurber O0F Bi t s,
api DWORD dwval ue,
size_t wAddr essabl eW dt h
)
Description

This function uploads the contents of dwval ue to the register pointed to by pt r O f set .

Parameters

ptrOfset: The offset to the devices register.
wStartBit: The start bit of the register field to upl oad.
wWNunmber O Bits: The nunber of bits in the register field.
dwval ue: The value to upload to the register.

wAddr essabl eW dth: How to address the register (api BYTE, api WORD,
api DWORD)

Return Values

enAPI Functi onSuccessful — if the function conpl etes successfully.
enAPI FunctionFailed — if the function fails.
See Also

cl assDevi ce: : cl assDevi ce

V1.0

www.Xilinx.com 127

PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

2:)(||_|NX® Appendix E: PAVE APl Summary

cl assl RLDevi ce: : cl assl RLDevi ce

Synopsis
cl assl RLDevi ce: : cl assl RLDevi ce (

api PHYSI CALADDRESS pt r BaseAddr ess,
pntr_cl assl RLPl atfornptrPl atform

);
Description

The default constructor of the cl ass| RLDevi ce object. The cl assl| RLDevi ce object is an
abstraction of an IRL-enabled device. This is a virtual base class from which system
component specific IRL-enabled device objects can be derived.

Parameters

e ptrBaseAddress: The napped physical base address of the |RL-enabled
device that this instance of the classl RLDevi ce object abstracts.

e« ptrPlatform The pointer to the platform abstraction |ayer object.
Return Values

This function returns a pointer to a new instance of a classlRLDevice
obj ect .

See Also

cl assl RLDevi ce: : ~cl assl| RLDevi ce

128 www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

API Reference Manual XX"JNX@

cl assl RLDevi ce: : cl assl RLDevi ce

Synopsis
cl assl RLDevi ce:: cl assl RLDevice (
api WORD wDevi cel ndex,
api WORD wDevi cel nst ance,

api PHYSI CALADDRESS pt r BaseAddr ess,
pntr_classl RLPl atfornptrPl atform
)

Description

The constructor of the cl assl RLDevi ce object. The cl assl RLDevi ce object is an
abstraction of an IRL-enabled with a register programming model.

Parameters

¢ whevicel ndex: The index of the device on the board.

¢ \WDevicel nstance: The instance of this particular class of device on the
boar d.

e ptrBaseAddress: The napped physical base address of the |RL-enabled
device that this instance of the classDevice object abstracts.

e« ptrPlatform The pointer to the platform abstraction |ayer object.
Return Values

This function returns a pointer to a new instance of a classlRLDevice
obj ect .

See Also

cl assl RLDevi ce: : ~cl assl| RLDevi ce

V1.0 www.Xilinx.com 129
PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

2:)(||_|NX® Appendix E: PAVE APl Summary

cl assl RLDevi ce: : ~cl assl| RLDevi ce

Synopsis

cl assl RLDevi ce: : ~cl assl| RLDevi ce (

)
Description

The default destructor of the cl assDevi ce object. This function deinstantiates the
cl assl RLDevi ce object.

Parameters

Return Values

See Also

cl assl RLDevi ce: : cl assl| RLDevi ce

130 www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

API Reference Manual XX"JNX@

cl assl RLDevi ce: : CachePayl oad

Synopsis
enAPI Ret ur nCodes cl assl RLDevi ce: : CachePayl oad (
api STRI NG szPayl oadURL,
voi d **pptrBitstreanBuffer,
voi d **ppt r Modul eBuf f er
)
Description

This method reads in the specified payload object from the local file system and places the
bitstream and object module segments in memory.

Parameters

e szPayloadURL: the fully qualified path of the payl oad object which is
to be uploaded into the device that this instance of the device object
abstracts.

e pptrBitstreanBuffer: pointer a pointer to the buffer where the
configuration bitstreamis to be stored.

e pptrMdul eBuffer: pointer to a pointer to the buffer where the binary
object nmodule is to be stored.

Return Values

enAPI Functi onSuccessful — if the function conpl etes successfully.
enAPl FunctionFailed — if the function fails.
See Also

cl assl RLDevi ce: : cl assl RLDevi ce

V1.0 www.Xilinx.com 131
PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

2:)(||_|NX® Appendix E: PAVE APl Summary

cl assl RLDevi ce: : Get Payl oadSi ze

Synopsis
enAPI Ret ur nCodes cl assl RLDevi ce: : Get Payl oadSi ze (
api STRI NG szPayl oadURL,
api DWORD *ptrBitstreanSti ze,
api DWORD *pt r Modul eSi ze
)
Description

This method returns the sizes of the configuration bitstream and binary object module
segments in bytes. This information is extracted from the header of the payload object.

Parameters

e szPayloadURL: the fully qualified path of the payl oad object which is
to be uploaded into the device that this instance of the device object
abstracts.

e ptrBitstreantSize: a pointer to an api DAORD where the configuration
bitstreamsize is to be stored.

e ptrMdul eSize a pointer to an api DAORD where the binary object nodul e
size is to be stored.

Return Values

enAPI Functi onSuccessful — if the function conpl etes successfully.
enAPl FunctionFailed — if the function fails.
See Also

cl assl RLDevi ce: : cl assl RLDevi ce

132 www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

API Reference Manual 2:)(||_|NX®
cl assl RLDevi ce: : Get Payl oadO f set

Synopsis
enAPI Ret ur nCodes cl assl RLDevi ce: : Get Payl oadOf f set (
api STRI NG szPayl oadURL,
api DWORD *ptrBitstreanOffset,
api DWORD *pt r Modul eX f set
)
Description

This method returns the offset of the configuration bitstream and binary object module
segments in bytes. This information is extracted from the header of the payload object.

Parameters

e szPayloadURL: the fully qualified path of the payl oad object which is
to be uploaded into the device that this instance of the device object
abstracts.

e ptrBitstreanOffset: a pointer to an api DANORD where the configuration
bitstreamsize is to be stored.

e ptrMdul eGfset a pointer to an api DAORD where the binary object nodul e
size is to be stored.

Return Values

enAPI Functi onSuccessful — if the function conpl etes successfully.
enAPl FunctionFailed — if the function fails.
See Also

cl assl RLDevi ce: : cl assl RLDevi ce

V1.0 www.Xilinx.com 133
PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

S XILINX®

Appendix E: PAVE APl Summary

cl assl RLDevi ce: : Get Payl oadChecksum

Synopsis

enAPI Ret ur nCodes cl assl RLDevi ce: : Get Payl oadOf f set (
api STRI NG szPayl oadURL,

api DWORD *ptrBitstreanChecksum

api DWORD *pt r Modul eChecksum

)

Description

This method returns the checksum of the configuration bitstream and binary object
module segments in bytes. This information is extracted from the header of the payload
object.

Parameters

e szPayloadURL: the fully qualified path of the payl oad object which is
to be uploaded into the device that this instance of the device object
abstracts.

e ptrBitstreanChecksum a pointer to an api DNORD where the configuration
bitstreamsize is to be stored.

e PtrMdul eChecksum a pointer to an api DAORD where the binary object
nodul e size is to be stored.

Return Values

enAPI Functi onSuccessful — if the function conpl etes successfully.
enAPl FunctionFailed — if the function fails.
See Also

cl assl RLDevi ce: : cl assl RLDevi ce

134

www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

API Reference Manual

S XILINX®

cl assl RLDevi ce: : Upl oadPayl oadFr onBuf f er

Synopsis
enAPI Ret ur nCodes cl assl RLDevi ce: : Upl oadPayl oadFr onBuf fer (
api DWORD dwBi t st reanBuf fer Si ze,
voi d *ptrBitstreanBuffer,
api DWORD dwibdul eBuf f er Si ze,
voi d *pt r Modul eBuf f er
)
Description

This method uploads the cached configuration bitstream to the IRL-enabled device that
this instance of the cl assl RLDevi ce object abstracts. Additionally, the cached binary
object module is reloaded.

Parameters

dwBi t streanBuf fer Si ze: the size of the configuration bitstream cache
in bytes.

ptrBitstreanBuffer: a pointer to the buffer where the configuration
bitstreamis contai ned.

Damvbdul eBuf f er Si ze: the size of the object nodule buffer.

ptrModul eBuffer: a pointer to the buffer where the binary object nodul e
i s contained.

Return Values

enAPIl Functi onSuccessful — if the function conpl etes successfully.
enAPI FunctionFailed — if the function fails.
See Also

cl assl RLDevi ce: : Downl oadPayl oadToBuf f er

cl assl RLDevi ce: : Upl oadPayl oadFronFi |l e

V1.0

www.Xilinx.com 135

PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

2:)(||_|NX® Appendix E: PAVE APl Summary

cl assl RLDevi ce: : Upl oadPayl oadFronFi | e

Synopsis
enAPI Ret ur nCodes cl assl RLDevi ce: : Upl oadPayl oadFronfil e (
api STRI NG szHeader Pat h,
api STRI NG szBi t streanPat h,
api STRI NG szModul ePat h
)
Description

This method uploads the file system resident configuration bitstream to the IRL-enabled
device that this instance of the cl ass!| RLDevi ce object abstracts. Additionally, the cached
binary object module is reloaded.

Parameters

e szHeaderPath: the fully qualified path of the payl oad object header
which is to be uploaded into the device that this instance of the
devi ce obj ect abstracts.

e szBitstreanmPath: the fully qualified path of the configuration
bitstreamwhich is to be uploaded into the device that this instance of
t he devi ce object abstract.

e szModul ePath: the fully qualified path of the binary object nodul e
which is to be uploaded into the device that this instance of the
devi ce obj ect abstract.

Return Values

enAPIl Functi onSuccessful — if the function conpl etes successfully.
enAPI FunctionFailed — if the function fails.
See Also

cl assl RLDevi ce: : Downl oadPayl oadToFi | e
cl assl RLDevi ce: : Upl oadPayl oadFr onBuf f er

136 www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

API Reference Manual 2:)(||_|NX®
cl assl RLDevi ce: : Spl it Payl oad

Synopsis
enAPI Ret ur nCodes cl assl RLDevi ce: : Split Payl oad (
api STRI NG szPayl oadPat h,
api STRI NG szHeader Pat h,
api STRI NG szBit streanPat h,
api STRI NG szModul ePat h
);
Description

This method splits a payload object into its constituent components.
Parameters

e szPayloadPath: the fully qualified path of the payl oad object
e szHeaderPath: the fully qualified path of the payl oad object header.

e szBitstreanmPath: the fully qualified path of the configuration
bi tstream

e szModul ePath: the fully qualified path of the binary object.

Return Values

enAPI Functi onSuccessful — if the function conpl etes successfully.
enAPl FunctionFailed — if the function fails.
See Also
N A
V1.0 www.Xilinx.com 137

PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

S XILINX®

Appendix E: PAVE APl Summary

cl assl RLDevi ce: : Downl oadPayl oadToBuf f er

Synopsis

enAPI Ret ur nCodes cl assl RLDevi ce: : Downl oadPayl oadToBuf fer (
voi d *ptrBitstreanBuffer,

voi d *pt r Modul eBuf f er

)

Description

This method downloads the current device configuration into the indicated configuration
bitstream buffer. The binary object module associated with this component is also
downloaded.

Parameters

e ptrBitstreanBuffer: the buffer into which the configuration bitstream
is to be downl oaded.

e ptrMdul eBuffer: the buffer into which the binary object nodule is to
be | oaded.

Return Values

enAPI Functi onSuccessful — if the function conpl etes successfully.
enAPl FunctionFailed — if the function fails.
See Also

cl assl RLDevi ce: : Upl oadPayl oadFr onBuf f er
cl assl RLDevi ce: : Downl oadPayl oadToFi | e

138

www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

API Reference Manual XX"JNX@
cl assl RLDevi ce: : Downl oadPayl oadToFi | e

Synopsis
enAPI Ret ur nCodes cl assl RLDevi ce: : Downl oadPayl oadToBuf fer (
api STRI NG szBi t st reanPat h,
api STRI NG szModul ePat h
);
Description

This method downloads the current device configuration into the indicated configuration
bitstream file. The binary object module associated with this component is also
downloaded to a file.

Parameters

e szBitstreanmPath: the fully qualified path of the configuration
bitstreamwhich is to be upl oaded into the device that this instance of
t he devi ce object abstract.

e szMddulePath: the fully qualified path of the binary object nodule
which is to be uploaded into the device that this instance of the
devi ce obj ect abstract.

Return Values

enAPIl Functi onSuccessful — if the function conpl etes successfully.
enAPI FunctionFailed — if the function fails.
See Also

cl assl RLDevi ce: : Upl oadPayl oadFrontil e
cl assl RLDevi ce: : Downl oadPayl oadToBuf f er

V1.0 www.Xilinx.com 139
PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

2:)(||_|NX® Appendix E: PAVE APl Summary

cl assl RLDevi ce: : UnCachePayl oad

Synopsis
enAPI Ret ur nCodes cl assl RLDevi ce: : UnCachePayl oad (
voi d *ptrBitstreanBuffer,
voi d *pt r Modul eBuf f er
);
Description

This method frees configuration bitstream and module buffers that were allocated by

CachePayl oad. This function must be called at the completion of the updating process.

Parameters

e ptrBitstreanBuffer: a pointer to the configuration bitstream buffer.

e ptrMdul eBuffer: a pointer to the binary object nodul e buffer.

Return Values

enAPI Functi onSuccessful — if the function conpl etes successfully.
enAPl FunctionFailed — if the function fails.
See Also

cl assl RLDevi ce: : CachePayl oad
cl assl RLDevi ce: : Upl oadPayl oadFr onBuf f er

140 www.Xilinx.com

V1.0

1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

API Reference Manual

S XILINX®

cl assl RLDevi ce: : Upl oadRegi st er

Synopsis
enAPI Ret ur nCodes cl assDevi ce: : Upl oadRegi ster (
api PHYSI CALADDRESS ptr O fset,

api WORD wStartBit,

api WORD wNunber O Bi t s,

api DWORD dwval ue,

size_t wAddr essabl eW dt h

)

Description

This method uploads a register field specified by the parameters with the value in
dwval ue.

Parameters

ptrOfset: an offset fromthe base address of the device to the
register in which this register field is |ocated.

wStartBit: the starting bit of the register field within the register.
wWNunmber O Bits: the nunber of bits in the register field.
dwval ue: the value to upload to the register.

WAddr essabl eW dt h: the address boundary of the register that contains
the register field of interest.

Return Values

enAPI Functi onSuccessful — if the function conpl etes successfully.
enAPl FunctionFailed — if the function fails.
See Also

cl assl RLDevi ce: : Downl oadRegi st er

cl assl RLDevi ce: : Modi f yRegi st er

V1.0

www.Xilinx.com 141

PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

S XILINX®

Appendix E: PAVE APl Summary

cl assl RLDevi ce: : Downl oadRegi st er

Synopsis
enAPI Ret ur nCodes cl assl RLDevi ce: : Downl oadRegi ster (
api PHYSI CALADDRESS ptr O fset,

api WORD wStartBit,

api WORD wNunber O Bi t s,

api DWORD *ptrVal ue,

size_t wAddr essabl eW dt h
)

Description

This method downloads the contents of a register field specified by the parameters into the
location pointed to by pt r Val ue.

Parameters

ptrOfset: an offset fromthe base address of the device to the
register in which this register field is |ocated.

wStartBit: the starting bit of the register field within the register.
wWNunmber O Bits: the nunber of bits in the register field.
ptrValue: the location of where to store the register contents.

WAddr essabl eW dt h: the address boundary of the register that contains
the register field of interest.

Return Values

enAPI Functi onSuccessful — if the function conpl etes successfully.
enAPl FunctionFailed — if the function fails.
See Also

cl assl RLDevi ce: : Upl oadRegi st er

cl assl RLDevi ce: : Modi f yRegi st er

142

www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

API Reference Manual

S XILINX®

cl assl RLDevi ce: : Modi f yRegi st er

Synopsis
enAPI Ret ur nCodes cl assl RLDevi ce: : Modi f yRegi ster (
api PHYSI CALADDRESS ptr O fset,

api WORD wStartBit,

api WORD wNunber O Bi t s,

api DWORD dwval ue,

size_t wAddr essabl eW dt h
)

Description

This method performs a read/modify/write operation of dwval ue to the contents of a
register field specified by the parameters.

Parameters

ptrOfset: an offset fromthe base address of the device to the
register in which this register field is |ocated.

wStartBit: the starting bit of the register field within the register.
wWNunmber O Bits: the nunber of bits in the register field.
dwval ue: value to nmodify the register field wth.

wAddr essabl eW dt h: the address boundary of the register that contains
the register field of interest.

Return Values

enAPI Functi onSuccessful — if the function conpl etes successfully.
enAPl FunctionFailed — if the function fails.
See Also

cl assl RLDevi ce: : Upl oadRegi st er

cl assl RLDevi ce: : Modi f yRegi st er

V1.0

www.Xilinx.com 143

PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

S XILINX®

Appendix E: PAVE APl Summary

cl assSi gnal Buffer::classSi gnal Buf fer

Synopsis
cl assSi gnal Buf fer:: cl assSi gnal Buffer (
api DWORD dwLengt h
)
Description
The default constructor for a signal buffer object.

Parameters

dwLength: Specifies the length of the buffer. If length is 0 then the
signal buffer object is instantiated but it's ptrBuffer elenent is
NULL. This allows the signal buffer to have other buffers attached to
it without the need to allocate themat instantiation tine.

Return Values

N A

See Also

cl assSi gnal Buf fer:: ~cl assSi gnal Buffer

144

www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

API Reference Manual XX"JNX@
cl assSi gnal Buffer:: ~cl assSi gnal Buf f er

Synopsis
cl assSi gnal Buf fer:: ~cl assSi gnal Buffer (
);
Description
The method deinstantiates the signal buffer object.
Parameters
« NA
Return Values
N A
See Also

cl assSi gnal Buf fer:: cl assSi gnal Buf fer

V1.0 www.Xilinx.com 145
PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

S XILINX®

Appendix E: PAVE APl Summary

cl assSi gnal Buffer:: AttachBuffer
Synopsis

enAPI Ret ur nCodes cl assSignal Buf fer:: AttachBuffer (
api DWORD *ptrBuffer,

api DWORD dwLengt h

)

Description

The method attaches a api DWORD array to a Signal Buffer object.
Parameters

e ptrBuffer: the api DAWORD array which is to be attached to the Signal
Buf fer.

e dwlLength: the length of the api DAORD array.

Return Values

enAPI Functi onSuccessful — if the function conpl etes successfully.
enAPl FunctionFailed — if the function fails.
See Also

cl assSi gnal Buf fer:: DetachBuffer

146

www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

API Reference Manual XX"JNX@
cl assSi gnal Buffer:: DetachBuffer

Synopsis
enAPI Ret ur nCodes cl assSi gnal Buf fer:: DetachBuffer (
);
Description
The method detaches an api DWORD array from the Signal Buffer object.
Parameters
« NA

Return Values

enAPIl Functi onSuccessful — if the function conpl etes successfully.
enAPl FunctionFailed — if the function fails.
See Also

cl assSi gnal Buf fer:: AttachBuffer

V1.0 www.Xilinx.com 147
PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

S XILINX®

Appendix E: PAVE APl Summary

cl assSi gnal Buffer:: Assert Si gnal

Synopsis
enAPI Ret ur nCodes
api DWORD
api DWORD
api DWORD
api DWORD
api WORD
)

Description

cl assSignal Buf fer:: AssertSi gnal (
dwAssert edSt at e,

dwDeassert edSt at e,

dwDel ayBef or eAsserti on,

dwbur at i onOf Asserti on,

WSi gnal O f set | nRegi st er

The method sets a bitfield within aword of acl assSi gnal Buf f er to dwAssert edSt at e for
dwDur at i onCf Asser ti on number of elements. The assertion is delayed from the start of
the buffer by dwDel ayBef or eAsserti on elements.

Parameters

. dwAssert edSt at e:

the value to be inserted into the bitfield in the

asserted elenments of the Signal Buffer.

¢ dwDeassertedState: the value to be inserted into the bitfield in the
non-asserted el ements of the Signal Buffer.

¢ dwbDel ayBef oreAssertion: the nunber of elenments that are non-asserted

in the Signal

Buf fer prior to assertion.

e WwSignal OfsetlnRegister: the position of the bitfield within the words

of the Signal Buffer.
Return Values
enAPI Functi onSuccessful — if the function conpl etes successfully.
enAPl FunctionFailed — if the function fails.

See Also

cl assSi gnal Buf fer::
cl assSi gnal Buf fer::
cl assSi gnal Buf fer::
cl assSi gnal Buf fer::
cl assSi gnal Buf fer::
cl assSi gnal Buf fer::

Serial i zeRepetitiveBit Sequence
SerializeRepetitivePattern
SerializePatternStream

Seri al i zePat t er nDWor d

Paral | el i zeSeri al Stream

Paral |l el i zeSeri al DWrd

148

www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

API Reference Manual XX"JNX@

cl assSignal Buffer:: SerializeRepetitiveBitSequence

Synopsis
enAPI Ret ur nCodes cl assSignal Buf fer:: SerializeRepetitiveBitSequence(
api DWORD dwBuf fer Of f set
api DWORD dwBi t Sequence,
api WORD dwNunBi t sl nSequence,
api DWORD dwNunber Repeti ti ons,
api WORD WSi gnal O f set | nRegi st er
)
Description

The method will repetitively insert a bit sequence specified by dwBi t Sequence into
successive elements of a Signal Buffer in bit position wSi gnal O f set | nRegi st er.
Figure E-1 below illustrates how this method functions under the following invocation:

this->SerializeRepetitiveBitSequence(l, 0x16, 5, 3, 2);

In this example the 5 bit pattern word, 0x16, serially-shifted into bit position 0 of the Signal
Buffer three times, offset by 1 word.

/ WSi gnal Of f set | nRegi ster = 2

31 30......... 3 2 1 O
0 — dwBufferOffset = 1
1 1
2 0
3 1 ‘_dei t Sequence= 0x16 = b10110
dwNunBi t sl nSequence = 5
4 1
5 0
6 1
7 0
8 1 dwNunber Repetitions = 3
9 1
10 0
11 1
12 0
13 1
14 1
15 0
Figure E-1: this->SerializeRepetitiveBitSequence(1, 0x16, 5, 3, 2);
V1.0 www.xilinx.com 149

PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

S XILINX®

Appendix E: PAVE APl Summary

Parameters

dwBufferOffset: the starting offset into the Signal Buffer into which
the pattern is serially shifted.

dwBi t Sequence: the pattern to be serially shifted into the Signal
Buffer.

dwNunBi t sl nSequence: the nunmber of bits in the pattern to shift into
the Signal Buffer.

dwNunber Repetitions: the number of iterations to repeat the pattern.

WwSi gnal Of fset I nRegi ster: the position of the bitfield within the words
of the Signal Buffer.

Return Values

enAPI Functi onSuccessful — if the function conpl etes successfully.
enAPI FunctionFailed — if the function fails.
See Also

cl assSignal Buf fer:: SerializeRepetitivePattern

cl assSignal Buf fer:: SerializePatternStream

cl assSignal Buf fer:: SerializePatternDWrd

cl assSignal Buf fer::ParallelizeSerial Stream

cl assSignal Buffer::ParallelizeSerial DWrd

150

www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

API Reference Manual XX"JNX@

cl assSignal Buffer:: SerializeRepetitivePattern

Synopsis
enAPI Ret ur nCodes cl assSignal Buf fer:: SerializeRepetitivePattern(
api DWORD dwBuf fer Of f set
api DWORD dwd ockLengt h,
api DWORD dwPat t er n,
api WORD WSi gnal Of f set | nRegi st er
)
Description

This method is a variant of Seri al i zeRepeti ti veBi t Sequence. The method will
repetitively insert a 32 bit pattern specified by dwPat t er n into successive elements of a
Signal Buffer in bit position wSi gnal O f set | nRegi st er. The pattern is repeated for an
integral number of dwd ockLengt h/32 iterations. Figure E-2 below illustrates how this
method functions under the following invocation;

this->SerializeRepetitivePattern(2, 1024, 0x0000000B, 0);

In this example the pattern word, 0x0000000B, serially-shifted into bit position 0 of the
Signal Buffer 32 times, offset by 0 words.

/WSi gnal O f setI nRegi ster = 0
31 30............... 1 0

0
b—dwWBuf ferOf f set = 2
1
2
30
31 b——dwPat t ern = 0x0000000B
32
33
34
dwCl ockLength = 1024
3F2
3FD
3FE Not e truncati on of | ast two
3FF “(/"bus
Figure E-2: this->SerializeRepetitivePattern(2, 1024, 0x0000000B, 0);
V1.0 www.Xilinx.com 151

PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

S XILINX®

Appendix E: PAVE APl Summary

Parameters

dwBufferOffset: the starting offset into the Signal Buffer into which
the pattern is serially shifted.

dwd ockLength: the total length of the pattern to be witten.
dwPattern: the 32 bit pattern to be witten into the Signal Buffer.
dwNurnber Repetitions: the number of iterations to repeat the pattern.

WSi gnal Of f set | nRegi ster: the position of the bitfield within the words
of the Signal Buffer.

Return Values

enAPI Functi onSuccessful — if the function conpl etes successfully.
enAPl FunctionFailed — if the function fails.
See Also

cl assSignal Buf fer:: SerializeRepetitiveBitSequence

cl assSignal Buf fer:: SerializePatternStream

cl assSignal Buf fer:: SerializePatternDWrd

cl assSignal Buf fer::ParallelizeSerial Stream

cl assSignal Buf fer:: ParallelizeSerial DWrd

152

www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

API Reference Manual

S XILINX®

classSignal Buffer:: SerializePatternStream

Synopsis
enAPI Ret ur nCodes cl assSignal Buf fer:: SerializePatternStrean(
api DWORD dwBuf fer Of f set
api DWORD *ptrPatternArray,
api DWORD dwNunBi t sl nPat t er nArr ay,
api BOCL bLeft Shift,
api WORD WSi gnal O f set | nRegi st er
)
Description

This method serially shifts an array of pattern words (containing
dwhNunBi t sl nPat t er nArr ay total) into a Signal Buffer in bit position
wSi gnal O f set | nRegi st er, offset by dwBuf f er O f set .

this->SerializePatternStrean(0, ptrArray, 32*1024, true, 0);

In this example, the array pt r Ar r ay is serially left-shifted into bit position 0 of the Signal
Buffer.

Parameters

e« dwBufferOffset: the starting offset into the Signal Buffer into which
the pattern is serially shifted.

e ptrPatternArray: the Array in which the sequence of pattern bits
reside.

e dwNunBitsinPatternArray: the total number of bits in the pattern. If
ptrPatternArray consisted of 32 el ements, then dwNunBitslnPatternArray
woul d be 1024 bits.

e DbLeftShift: if true the bits of each elenent are left-shift out of the
element. If false, the bits are right-shifted out.

¢ WwSignal OfsetlnRegister: the position of the bitfield within the words
of the Signal Buffer.

Return Values

enAPI Functi onSuccessful — if the function conpl etes successfully.
enAPl FunctionFailed — if the function fails.
See Also

cl assSignal Buffer::SerializeRepetitiveBitSequence
cl assSignal Buf fer:: SerializeRepetitivePattern

cl assSignal Buf fer:: SerializePatternDWrd

cl assSignal Buffer::ParallelizeSerial Stream

cl assSignal Buf fer:: ParallelizeSerial DWwrd

V1.0

www.Xilinx.com 153

PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

S XILINX®

Appendix E: PAVE APl Summary

cl assSignal Buffer:: SerializePatternDWrd

Synopsis

enAPI Ret ur nCodes cl assSignal Buf fer:: SerializePatternDWrd(
api DWORD dwBuf fer Of f set

api DWORD dwPat t er n,

api WORD wWNunBi t sl nPat t ern,

api BOCL bShi ftLeft,

api WORD WSi gnal O f set | nRegi st er

)

Description

This method serially shifts a pattern word, dwPat t er n, (containing wNunBi t sl nPat t er n)
into a Signal Buffer in bit position wSi gnal Of f set | nRegi st er, offset by dwBuf f er Of f set .

this->SerializePatternDWrd(0, O0x1C, 5, true, 0);

In this example, the pattern 0x1C is serially left-shifted into bit position 0 of the Signal
Buffer.

Parameters

e« dwBufferOffset: the starting offset into the Signal Buffer into which
the pattern is serially shifted.

e dwPattern: the pattern word in which the sequence of pattern bits
reside.

e dwNunBitsinPattern: the total number of bits in the pattern.

. bLeftShift: if true the bits of each elenent are left-shift out of the
element. If false, the bits are right-shifted out.

¢ WwSignal OfsetlnRegister: the position of the bitfield within the words
of the Signal Buffer.

Return Values

enAPI Functi onSuccessful — if the function conpl etes successfully.
enAPl FunctionFailed — if the function fails.
See Also

cl assSignal Buf fer:: SerializeRepetitiveBitSequence
cl assSignal Buf fer:: SerializeRepetitivePattern

cl assSignal Buffer:: SerializePatternStream

cl assSignal Buf fer::ParallelizeSerial Stream

cl assSignal Buf fer::ParallelizeSerial DWrd

154

www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

API Reference Manual

S XILINX®

cl assSignal Buffer::ParallelizeSerial Stream

Synopsis
enAPI Ret ur nCodes cl assSignal Buffer:: ParallelizeSerial Strean
api DWORD dwSeri al StreantX f set,
api DWORD *ptrPatternArray,
api DWORD dwPat t er nArraylLengt h,
api DWORD dwNunBi t sl nSeri al Stream
api WORD WSi gnal O f set | nRegi st er
)
Description

This method parallelizes a serial stream of bits into an array of 32 bit words.
this->ParallelizeSerial Streanm(1, ptrArray, 4, 128, 0);

In this example, the bit-pattern in bit 0 of elements 0-3 of the Signal Buffer, offset by word
1, are serially left-shifted into an array of words pointed to by pt r Pat t er nArr ay.

Parameters

e dwSerial StreanOffset: the starting offset into the Signal Buffer into
which the pattern is extracted.

e ptrPatternArray: the pattern array into which the sequence of pattern
bits are shifted.

e dwPatternArrayLength: the total nunber of 32 words in the pattern
array.

. dwNunBi t sl nSerial Stream the total nunber of bits in the serial stream
to extract.

e WwSignal OfsetlnRegister: the position of the bitfield within the words
of the Signal Buffer.

Return Values

enAPI Functi onSuccessful — if the function conpl etes successfully.
enAPl FunctionFailed — if the function fails.
See Also

cl assSignal Buffer::SerializeRepetitiveBitSequence
cl assSignal Buf fer:: SerializeRepetitivePattern

cl assSignal Buffer:: SerializePatternStream

cl assSignal Buffer::SerializePatternDWrd

cl assSignal Buf fer:: ParallelizeSerial DWrd

V1.0

www.Xilinx.com 155

PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

S XILINX®

Appendix E: PAVE APl Summary

cl assSignal Buffer:: ParallelizeSerial DWrd

Synopsis

enAPI Ret ur nCodes cl assSignal Buf fer:: ParallelizeSerial DWrd(
api DWORD dwSeri al StreantX f set,

api DWORD *ptrPattern,

api WORD wWNunBi t sl nSeri al DWrd,

api WORD WSi gnal Of f set | nRegi st er

)

Description

This method parallelizes a serial pattern of wNunBi t sl nSer i al DWr d bits, resident in bit
WwSi gnal Of f set | nRegi st er, into a 32 bit word.

this->ParallelizeSerial DWrd (1, ptrPattern, 13, 0);

In this example, the bit-pattern in bit 0 of elements 1-13 of the Signal Buffer, (*offset by 1
word), are serially left-shifted into a word pointed to by pt r Pat t er n.

Parameters

e dwSerial StreanOffset: the starting offset into the Signal Buffer into
which the pattern is extracted.

e« ptrPattern: the pattern word into which the sequence of pattern bits
are shifted.

e dwNunBitsinSerial DWrd: the total nunber of bits in the serial stream
to extract.

¢ WwSignal OfsetlnRegister: the position of the bitfield within the words
of the Signal Buffer.

Return Values

enAPI Functi onSuccessful — if the function conpl etes successfully.
enAPl FunctionFailed — if the function fails.
See Also

cl assSignal Buf fer:: SerializeRepetitiveBitSequence
cl assSignal Buffer:: SerializeRepetitivePattern

cl assSignal Buf fer:: SerializePatternStream

cl assSignal Buf fer:: SerializePatternDWrd

cl assSignal Buf fer::ParallelizeSerial Stream

156

www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

API Reference Manual

S XILINX®

cl assSignal Buffer:: ParallelizeSerial DWrd

Synopsis
enAPI Ret ur nCodes cl assSignal Buf fer:: ParallelizeSerial DWrd(
api DWORD dwSeri al StreantX f set,
api DWORD *ptrPattern,
api WORD wWNunBi t sl nSeri al DWrd,
api WORD WSi gnal Of f set | nRegi st er
r
)
Description

This method parallelizes a serial stream of bits into an array of 32 bit words.
this->ParallelizeSerial Strean(0, ptrArray, 4, 128, 0);

In this example, the bit-pattern in bit 0 of elements 0-3 of the Signal Buffer are serially left-

shifted into an array of words pointed to by pt r Pat t er nArr ay.
Parameters

e« dwBufferOffset: the starting offset into the Signal Buffer
the pattern is serially shifted.

into which

e dwPattern: the pattern word in which the sequence of pattern bits

resi de.

e dwNunBitsinPattern: the total number of bits in the pattern.

. bLeftShift: if true the bits of each elenent are left-shift out of the

element. If false, the bits are right-shifted out.

¢ WwSignal OfsetlnRegister: the position of the bitfield within the words

of the Signal Buffer.

Return Values

enAPI Functi onSuccessful — if the function conpl etes successfully.
enAPl FunctionFailed — if the function fails.
See Also

cl assSignal Buf fer:: SerializeRepetitiveBitSequence
cl assSignal Buf fer:: SerializeRepetitivePattern

cl assSignal Buffer:: SerializePatternStream

cl assSignal Buf fer:: SerializePatternDWrd

cl assSignal Buf fer:: ParallelizeSerial Stream

V1.0

www.Xilinx.com

PAVE Framework User’'s Guide 1-800-255-7778

157

http://www.xilinx.com

2:)(||_|NX® Appendix E: PAVE APl Summary

cl assSi gnal Buffer:: Upl oadFil e

Synopsis
enAPI Ret ur nCodes cl assSi gnal Buf fer: : Upl oadFi | g(
char *szFi | eName
);
Description

This method uploads a binary file of data into the Signal Buffer object.
Parameters

e szFileNanme: the fully qualified path to the binary file which is to be
upl oaded.

Return Values

enAPIl Functi onSuccessful — if the function conpl etes successfully.
enAPl FunctionFailed — if the function fails.
See Also

cl assSi gnal Buf fer: : Downl oadFi | e

158 www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

API Reference Manual XX"JNX@

cl assSi gnal Buf f er: : Downl oadFi | e

Synopsis
enAPI Ret ur nCodes cl assSi gnal Buf f er:: Downl oadFi | e(
char *szFi | eName
);
Description

This method downloads a Signal Buffer into a binary file.
Parameters

e szFileNanme: the fully qualified path to the binary file which is to be
downl oaded to.

Return Values

enAPIl Functi onSuccessful — if the function conpl etes successfully.
enAPl FunctionFailed — if the function fails.
See Also

cl assSi gnal Buf fer:: Upl oadFi |l e

V1.0 www.Xilinx.com 159
PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

2:)(||_|NX® Appendix E: PAVE APl Summary

cl assSi gnal Buffer:: Cl earBuffer

Synopsis
enAPI Ret ur nCodes cl assSignal Buf fer:: O earBuffer(
);
Description
This method sets all elements of the Signal Buffer to 0.
Parameters

- NA

Return Values

enAPIl Functi onSuccessful — if the function conpl etes successfully.
enAPl FunctionFailed — if the function fails.
See Also

cl assSi gnal Buf fer: : Di spl ayBuf fer

160 www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

API Reference Manual XX"JNX@

cl assSi gnal Buf f er: : Movel ndex

Synopsis
enAPI Ret ur nCodes cl assSi gnal Buf fer:: Movel ndex(
api DWORD dwNewl ndexLocat i on
);
Description

This method moves the Signal Buffer cursor that points to the next fill position in the Signal
Buffer. This cursor can be used as an offset in the fill functions. It is important to note that
when the functions

cl assSignal Buf fer:: SerializeRepetitiveBitSequence,
cl assSignal Buf fer:: SerializeRepetitivePattern,

cl assSignal Buf fer:: SerializePatternStream

cl assSignal Buf fer:: SerializePatternDWrd,

cl assSignal Buffer::ParallelizeSerial Stream and

cl assSignal Buf fer:: ParallelizeSerial DWrd

are used, they increment the cursor.
Parameters
« NA

Return Values

enAPI Functi onSuccessful — if the function conpl etes successfully.
enAPI FunctionFailed — if the function fails.
See Also

cl assSi gnal Buf fer:: Getl ndex

V1.0 www.Xilinx.com 161
PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

S XILINX®

Appendix E: PAVE APl Summary

cl assSi gnal Buf fer:: Getl ndex
Synopsis

enAPI Ret ur nCodes cl assSi gnal Buf fer:: Get |l ndex(
api DWORD *ptrl ndexLocati on

)

Description

This method gets the Signal Buffer index pointer that points to the next fill position in the
Signal Buffer. This cursor can be used as an offset in the fill functions. Itis important to note
that when the functions

cl assSignal Buf fer:: SerializeRepetitiveBitSequence,
cl assSignal Buf fer:: SerializeRepetitivePattern,

cl assSignal Buf fer:: SerializePatternStream

cl assSignal Buf fer:: SerializePatternDWrd,

cl assSignal Buffer::ParallelizeSerial Stream and

cl assSignal Buf fer:: ParallelizeSerial DWrd

are used, they increment the index pointer.
Parameters
« NA

Return Values

enAPI Functi onSuccessful — if the function conpl etes successfully.
enAPI FunctionFailed — if the function fails.
See Also

cl assSi gnal Buf fer: : Movel ndex

162

www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

API Reference Manual XX"JNX@
cl assSi gnal Buffer:: D splayBuffer

Synopsis
enAPI Ret ur nCodes cl assSi gnal Buf fer:: Di spl ayBuf fer(
)
enAPI Ret ur nCodes cl assSi gnal Buf fer: : Di spl ayBuf f er (
api DWORD dwNCl ocks
)

Description

This method displays all or N elements of the Signal Buffer on stdout.
Parameters

« NA

Return Values

enAPI Functi onSuccessful — if the function conpl etes successfully.
enAPl FunctionFailed — if the function fails.
See Also

cl assSi gnal Buf fer:: C earBuffer

V1.0 www.Xilinx.com 163
PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

2:)(||_|NX® Appendix E: PAVE APl Summary

classSignal Buffer::Fill TestPattern

Synopsis
enAPI Ret ur nCodes cl assSignal Buffer::Fill TestPattern(
api WORD wComandLengt h
);
Description

This method fills the Signal Buffer with 8 test patterns in signal location
0,4,8,12,16,20,24,28,32.

Parameters
¢ wConmmandLengt h: nunber of elenments to fill.

Return Values

enAPIl Functi onSuccessful — if the function conpl etes successfully.
enAPI FunctionFailed — if the function fails.
See Also

cl assSi gnal Buf fer: : Di spl ayBuf fer

164 www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

API Reference Manual XX"JNX@

cl assSt at eMachi ne: : cl assSt at eMachi ne

Synopsis
cl assSt at eMachi ne: : cl assSt at eMachi ne (
api DWORD dwNSt at es,
api DWORD dwNSt i nul i,
api DWORD dwnitial State
)
Description

This method is the constructor for a state machine object. It instantiates an abstraction of a
finite state machine consisting of a set of State Elements of dimensionality dwNSt at es by
dwWNSti mul i .

Parameters

dwNSt ates: the set of all states through which the finite state nachine
can transition.

dwNStimuli: the set of all stimuli to which the finite state nachine can
respond.

dwmnitial State: the initial state in which the state machine is set.
Return Values

« NA

See Also

cl assSt at eMachi ne: : ~cl assSt at eMachi ne

V1.0 www.Xilinx.com 165
PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

2:)(||_|NX® Appendix E: PAVE APl Summary

cl assSt at eMachi ne: : ~cl assSt at eMachi ne

Synopsis
cl assSt at eMachi ne: : ~cl assSt at eMachi ne (
);
Description

This method is the destructor of the state machine object. It deinstantiates and frees the
memory allocate for the State Element set.

Parameters

¢« dwNStates: the set of all states through which the finite state nachine
can transition.

e dwNStinmuli: the set of all stinuli to which the finite state machine
can respond.

Return Values

enAPI Functi onSuccessful — if the function conpl etes successfully.
enAPl FunctionFailed — if the function fails.
See Also

cl assSt at eMachi ne: : cl assSt at eMachi ne

166 www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

API Reference Manual

S XILINX®

cl assSt at eMachi ne: : Set El enent

Synopsis
EnAPI Ret ur nCodes cl assSt at eMachi ne: : Set El enent (
api DWORD dwst at e,
api DWORD dwstimul i,
api DWORD dwNext St at e,
api DWORD dwQut put ,

enAPI Ret ur nCodes (*ptrTarget Function)(void *)

)

Description

This method initializes an individual node in the cl assSt at eMachi ne state space.

Parameters

dwState: the state index of the node to be initialized.
dwStimuli: the stinuli index of the node to be initialized.
dwNext State: the state to which this node will transition.

dwQut put: the output code to express at the conpletion of transitioning
to the new state.

ptrTarget Function: a pointer to a void function which is executed at
the transition to the new state.

Return Values

enAPI Functi onSuccessful — if the function conpl etes successfully.
enAPl FunctionFailed — if the function fails.
See Also

cl assSt at eMachi ne: : Junp

V1.0

www.Xilinx.com 167

PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

2:)(||_|NX® Appendix E: PAVE APl Summary

cl assSt at eMachi ne: : Junp

Synopsis
enAPI Ret ur nCodes cl assSt at eMachi ne: : Junp (
api DWORD dwst at e,
api DWORD dwstimul i,
voi d *pt r Ar gunent
)
Description
This method executes the function that is associated with a node in the set of state
elements.
Parameters

. dwState: the state index of the node to be executed.

e dwStinmuli: the stimuli index of the node to be executed.
e ptrArgunent: a void pointer to an argunment which is passed to the
function.

Return Values

enAPI Functi onSuccessful — if the function conpl etes successfully.
enAPI FunctionFailed — if the function fails.
See Also

cl assSt at eMachi ne: : Set El enent

168 www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

API Reference Manual

S XILINX®

cl assSt at eMachi ne: : Transi ti on

Synopsis

enAPI Ret ur nCodes cl assStat eMachi ne:: Transition (
api DWORD dwstimli,

voi d *pt r Ar gunment

)

Description

This method will step the state machine based on it’s current state and input stimuli.

Parameters

e dwStinuli: the stimuli that is to be applied to the state machine.

e ptrArgunment: a void pointer to an argument which is passed to the
function.

Return Values

enAPI Functi onSuccessful — if the function conpl etes successfully.
enAPl FunctionFailed — if the function fails.
See Also

cl assSt at eMachi ne: : Junp

V1.0

www.Xilinx.com 169

PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

2:)(||_|NX® Appendix E: PAVE APl Summary

170 www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

& XILINX®

Appendix F

Glossary

API

Application Program Interface, a set of routines, protocols, and tools for building software
applications. An APl makes it easier to develop a program by providing all the building
blocks, which a programmer puts together.

APIs are implemented by writing function calls in the program, which provide the linkage
to a specific sub-routine for execution. Thus, an APl implies that some program module or
routine is either already in place or must be linked in to perform the tasks requested by the
function call.

Architecture

How the system or software is constructed.

Boot ROMs

BSP

Bus

C++

The program used to start a computer that is stored in Read Only Memory. In VxWorks,
boot ROMs are used to download the VxWorks kernel from a host computer over the
network.

Board Support Package. The part of VxWorks that manages the CPU board on which
VxWorks runs, that is, the part which handles the hardware like Ethernet, serial, etc.

The physical connection between components of a single computer system. Imagine itas a
freeway with multiple lanes connecting various parts of the system. There are different
types of busses (VME, EISA, PCI, etc.).

A high-level programming language developed at Bell Labs that is able to manipulate the
computer at a low level like assembly language. C can be compiled into machine
languages for almost all computers. For example, UNIX is written in C and runs in a wide
variety of micros, minis and mainframes.

An object-oriented version of the C programming language.

V1.0

www.Xilinx.com 171

PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

X XILINX® Appendix F: Glossary

C++ Classes

In object-oriented C++ programming, a class is a category of objects. For example, there
might be a class called shape that contains objects which are circles, rectangles, and
triangles. The class defines all the common properties of the different objects that belong to
it.

C++ Methods

The underlying function contained in a C++ class that preforms a specific operation.

C++ Objects

In object-oriented C++ programming, an object is a self-contained entity that consists of
both data and procedures to manipulate the data.

Client

This term is a system-centric term. An object that requests another object to perform some
function for it. For example, in a Compact PCI system the system slot board is a client to
other special purpose, peripheral slot boards in the rack.

Client Domain

The client domain is a component of the PAVE Logical System Partitioning. It is comprised
of those elements that are involved in the control of embedded system components.

Codebase

Fundamental underlying code of a program, without the associated data files.

Deinstantiate

Destroying an instance of an object.

Device element

A segment in a payload that contains the configuration information for a specific device.

Device object

An FPGA in an IRL-enabled System. PAVE views an FPGA as a standalone device object
within a system component that software can modify at will, like any other software
component.

Download

This term is object-centric. In the PAVE framework, objects download information. For
example, the classRegister::Download method results in the contents of a register being
read.

Driver

The software that communicates between a hardware peripheral and the rest of the system.
Often called a “device driver.” In VxWorks, a device driver often refers only to those
drivers which have a UNIX-like interface.

Embedded system

A specialized computer, often hidden from the end user, used to control devices such as
automobiles, home and office appliances, hand-held units of all kinds as well as machines

172

www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

S XILINX®

as sophisticated as space vehicles. Operating system and application functions are often
combined in the same program. An embedded system implies a fixed set of functions
programmed into a non-volatile memory (ROM, flash memory, etc.) in contrast to a
general-purpose computing machine. Think of it like a self-contained system. An example
would be a computer in a car that controls the ignition system. Because they often operate
critically important applications, reliable real-time reactions are vital.

Endian Swap

Data can be ordered with the MSB at the beginning or end of multibyte data type.
Depending on the system you are targeting you may or may not need to preform an endian
swap to correctly align the data. More details on Byte ordering can be found at:

http://webopedia.internet.com/TERM/B/big_endian.html

Environment

A particular configuration of hardware or software. The environment refers to a hardware
platform and the operating system that is used in it. A programming environment would
include the compiler and associated development tools. Environment is used in other
ways to express a type of configuration, such as a networking environment.

Flash memory

Memory that, unlike most RAM, retains its value when powered down, but can only be
erased in bulk. Often used instead of PROMs.

FPGA

Field Programmable Gate Array, invented by Xilinx in 1984. FPGAs are CMOS SRAM-
based devices, that reload their configuration each time they are powered up.

Host

A host (computer) communicates with a target (a CPU board running VxWorks) over a
network.

Host Domain

The host domain is a component of the PAVE Logical System Partitioning. It is comprised
of those elements that are used to develop and manage embedded applications. A
workstation and its resident tool chain are generally host domain elements.

Instantiate

Creating a new instance of an object.

IP

Internet Protocol. The IP part of the TCP/IP communications protocol. IP implements the
network layer (layer 3) of the protocol, which contains a network address and is used to
route a message to a different network or subnetwork. IP accepts “packets” from the layer
4 transport protocol (TCP or UDP), adds its own header to it and delivers a “datagram” to
the layer 2 data link protocol. It may also break the packet into fragments to support the
maximum transmission unit (MTU) of the network.

IRL-enabled Device
A Xilinx FPGA with the configuration pins connected in an IRL-enabled Architecture.

V1.0

www.Xilinx.com 173

PAVE Framework User’'s Guide 1-800-255-7778

http://webopedia.internet.com/TERM/B/big_endian.html
http://www.xilinx.com

X XILINX® Appendix F: Glossary

IRL-enabled Architecture

The combination of a processor running PAVE, a memory mapped device configuration
register, and a Xilinx FPGA. Figure F-1 shows the difference between an IRL-enabled
Device and an IRL-enabled Architecture.

Processor running PAVE API

A A

IRL Enabled Device
Configuration Register

Xilinx PLD

User
Register Set

IRL Enabled Architecture

UG021_52_082001

Figure F-1: IRL Enabled Architecture

Library

A collection of usually related subroutines in one file. Re-usable libraries are the basis of
object-oriented programming.

Methods
See C++ Methods.

Object-centric

A view point that is self centered.

Object Model

Object oriented programming (OOP)

Programming that supports object technology. It is an evolutionary form of modular
programming with more formal rules that allow pieces of software to be reused and
interchanged between programs. OOP is thought to increase productivity by allowing
programmers to focus on higher level software objects.

174 www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

S XILINX®

Payload
A combination of header information, configuration bitstreams, and device object modules
that are concatenated into a single binary object and transported to a system.

PLD
Programmable Logic Device. Can be used generically for both SRAM-based FPGAs and
macro-cell based devices such as CPLDs and PALSs.

Real-time

Refers to the ability to respond to events quickly and predictably. In real-time
programming a late response is a wrong response.

Real-time operating system (RTOS)

An operating system designed for use in a real-time computer system. A master control
program that can provide immediate response to input signals and transactions. Vx\Works
isan RTOS.

Real-time server

That part of a computer network that handles the real-time needs of the system. VxWorks
is often used as a real-time server.

SBC
Single Board Computer, typically a system board used in a CompactPCIl or VME system.
SelectMAP
SelectMAP is an 8-bit bidirectional databus interface to the Virtex configuration logic that
may be used for both configuration and readback.
Server

This term is a system-centric term. An object that provides some functionality to other
objects. For example, in a Compact PCI system the peripheral slot boards are servers to the
system slot board.

Server Domain

The client domain is a component of the PAVE Logical System Partitioning. It is comprised
of those elements that provide specialized functionality within an embedded system.

SIF

System Integration Framework. Part of the PAVE Framework that customizes your
software environment for your hardware setup.

Socket

A software protocol developed by UC Berkeley that allows a program on one system to
talk to a program on another system.

Source code

The human readable version of a software program. The source code is then compiled and
linked to generate code that a computer can run (binary executable). In other words,
programmers write (or read) source code; computers run binary executables.

www.Xilinx.com 175

PAVE Framework User’'s Guide 1-800-255-7778

http://www.xilinx.com

X XILINX® Appendix F: Glossary

System-centric

A view point that is evaluated in the context of the overall system.

TCP/IP
Transport Control Protocol/Internet Protocol. Often used to refer to the Internet Protocol
(IP) in general. Internet Protocol has different ways of handling and packaging data for
transport over a network, such as TCP and UDP (User Datagram Protocol).

Target

The computer into which a program is loaded and run.

Target agent

In Tornado, the software on the target hardware that is responsible for communicating
with the host computer.

Target server

In Tornado, the software on the host computer responsible for managing communications
with the target hardware.

Upload

This term is object-centric. In the PAVE framework, objects upload information. For
example, the cl assRegi st er: : Upl oad method results in the register being written.

XSVF

Xilinx Serial Vector Format.

176

www.Xilinx.com V1.0
1-800-255-7778 PAVE Framework User's Guide

http://www.xilinx.com

Index

A

About This Manual 13
ADMXRC 33,99 - 100
ADMXRC Applications 101
ADMXRC Payloads 109
API Calls
classDevice 56
~classDevice 126
classDevice 123 - 125
UploadRegister 127
classIRLBStreamDeliveryModule 55 -
56
classIRLDevice
~classIRLDevice 130
CachePayload 131
classIRLDevice 128 - 129
DownloadPayloadToBuffer 138
DownloadPayloadToFile 139
DownloadRegister 142
GetPayloadChecksum 134
GetPayloadOffset 133
GetPayloadSize 132
ModifyRegister 143
SplitPayload 137
UnCachePayload 140
UploadPayloadFromBuffer 135
UploadPayloadFromFile 136
UploadRegister 141
classIRLPlatform 50, 56
classPClDevice 101
classPlatform 49
classRegister 49, 56
~classRegister 113
classRegister 112
Clear 120
Display 122
Download 115
Initialize 121
Modify 116
Reset 119
ToggleSignal 118
Upload 114
UploadSignals 117
classSignalBuffer 49, 56
~classSignalBuffer 145
AssertSignal 148
AttachBuffer 146
classSignalBuffer 144
ClearBuffer 160
DetachBuffer 147
DisplayBuffer 163
DownloadFile 159
FillTestPattern 164
Getindex 162
Movelndex 161
ParallelizeSerialDWord 156 -
157
ParallelizeSerialStream 155
SerializePatternDWord 154
SerializePatternStream 153

SerializeRepetitiveBitSequence
149
SerializeRepetitivePattern 151
UploadFile 158
classStateMachine 49, 56

~classStateMachine 166
classStateMachine 165
Jump 168
SetElement 167
Transition 169

API Structure 53

B

Building a Custom Framework 41

C

C++

Methods 172
Resources 14
Training 13

D

Developer Productivity 22
Durango 33, 85

Durango Code Examples 88
Durango Framework 87
Durango Hardware Features 94
Durango PCB Layout 96
Durango Reference Design 93

F

FFT 105

Installation 24

Installing to an alternate drive 33
IRL Register model 35
IRL-Enabled 20

J

JTAG
Code example 62
Format 44
Programmer 45
SVF2XSVF 47

TAP Controller 61
XSVF 44, 62

L

Low Cost 21

M

Motorola MCP750 85, 100

N

Network
Configuration 69
Domains 69
TCP/IP 71
Network Configuration 69

P

PAVE
API 19, 49
API Classes 56
Framework 19, 29
Framework Partitioning 69
generatedevice.exe 27, 38
generatepayload.bat 42
generatepayload.exe 42
generatepayload.exe usage 43
generateserver.exe 27, 40
generatesystem.bat 38, 40
INP Format 40 - 41
SIF 19, 35
SIF Flow 37
SIF Tutorial 25
Skills Required 13
Software License iii
Training 14
VxSim Tutorial 30
Payload 51
Payload Configuration Segment
Structure 58
Payload Diagram 42
Payload Generator 42
Payload Header Structure 58
Payloads 58
Pull 71, 103

Push 71, 103

R

Reliability 21

V1.0
PAVE Framework User’'s Guide

www.Xilinx.com
1-800-255-7778

177

http://www.xilinx.com

S XILINX®

S

Scalability 20
SelectMAP 44, 65
Bitstreams 66
Code example 66
Summary 93
System Domains 70
System Generator 26, 38
System Requirements 23

T

Text Editors 33
Typographical Conventions 17

W

Wind River Systems
Support 14
Tornado 26
Training 14

X

Xilinx
Support 14 - 15
XIRL Interface Register 49, 61
Map 36
Rewiring 63, 67
Signal Names 91
Tables 90

178

www.Xilinx.com

1-800-255-7778

V1.0
PAVE Framework User's Guide

http://www.xilinx.com

	PAVE Framework User’s Guide
	Contents

	About This Manual
	Additional Resources
	Typographical Conventions

	Introduction
	PAVE Framework
	Why PAVE?
	Scalability
	Reliability
	Low Cost
	Developer Productivity

	Getting Started
	System Requirements
	Hardware
	Software

	Installation
	PAVE SIF Tutorial
	Generating a Framework
	Using the framework with Tornado

	PAVE VxSim Tutorial
	Using the Standard Tornado-II VxSim with PAVE
	Running the Durango VxSim Tutorial

	Installing to an alternate drive

	Using the PAVE SIF
	IRL Register model
	SIF Flow
	Initial Steps
	System Simulation
	System Upgrade

	System Generator
	generatesystem.bat
	INP File format

	Building a Custom Framework
	Payload Generator
	generatepayload.bat
	Formats for SelectMAP and JTAG

	Using the PAVE API
	How the PAVE API Operates
	Object Oriented Nature of the PAVE API
	API Structure
	Functional Description
	PAVE API Classes
	Payloads
	Payload Header Structure
	Payload Configuration Segment Structure

	Using PAVE for JTAG Configuration
	How it operates
	Design considerations
	Code example
	Rewiring the XIRL Interface Register

	Using PAVE for SelectMAP Configuration
	How it operates
	Design considerations
	Code example
	Rewiring the XIRL Interface Register

	Network Configuration
	Network Domains
	Definitions
	Host, Client and Server Domains
	Client and Server Relationships

	Configuration Across a TCP/IP Network
	Pull Configuration
	Push Configuration

	Architecting Systems for Upgradability with IRL
	Summary
	Introduction
	IRL Concepts
	What is IRL?
	Elements of an IRL system
	Host, Upgrade Portal, and Network Concepts
	Target Software Concepts
	Target Hardware concepts

	IRL Examples
	Basic IRL-enabled System
	IRL in a Bridge System
	Memory usage for storing bitstreams
	Use of PAVE in IRL Systems
	Available Development Platforms
	Summary

	Revision History

	Using Durango with the MCP750 and PAVE
	Durango Board
	Durango Block Diagram
	Durango MCP750 PAVE Implementation
	Durango Framework
	Code Examples
	Resources
	XIRL Interface Register Tables
	Signal Name Descriptions

	Durango Reference Design
	Hardware Features
	Availability
	Additional Information
	Durango PCB Layout

	Using ADM-XRC with the MCP750 and PAVE
	ADM-XRC Board
	ADM-XRC MCP750 PAVE Implementation
	Setup
	INP Files for ADM-XRC

	Applications
	Push and Pull
	FFT
	ADM-XRC Payloads

	Resources

	PAVE API Summary
	API Reference Manual
	classRegister::classRegister
	classRegister::~classRegister
	classRegister::Upload
	classRegister::Download
	classRegister::Modify
	classRegister::UploadSignals
	classRegister::ToggleSignal
	classRegister::Reset
	classRegister::Clear
	classRegister::Initialize
	classRegister::Display
	classDevice::classDevice
	classDevice::classDevice
	classDevice::classDevice
	classDevice::~classDevice
	classDevice::UploadRegister
	classIRLDevice::classIRLDevice
	classIRLDevice::classIRLDevice
	classIRLDevice::~classIRLDevice
	classIRLDevice::CachePayload
	classIRLDevice::GetPayloadSize
	classIRLDevice::GetPayloadOffset
	classIRLDevice::GetPayloadChecksum
	classIRLDevice::UploadPayloadFromBuffer
	classIRLDevice::UploadPayloadFromFile
	classIRLDevice::SplitPayload
	classIRLDevice::DownloadPayloadToBuffer
	classIRLDevice::DownloadPayloadToFile
	classIRLDevice::UnCachePayload
	classIRLDevice::UploadRegister
	classIRLDevice::DownloadRegister
	classIRLDevice::ModifyRegister
	classSignalBuffer::classSignalBuffer
	classSignalBuffer::~classSignalBuffer
	classSignalBuffer::AttachBuffer
	classSignalBuffer::DetachBuffer
	classSignalBuffer::AssertSignal
	classSignalBuffer::SerializeRepetitiveBitSequence
	classSignalBuffer::SerializeRepetitivePattern
	classSignalBuffer::SerializePatternStream
	classSignalBuffer::SerializePatternDWord
	classSignalBuffer::ParallelizeSerialStream
	classSignalBuffer::ParallelizeSerialDWord
	classSignalBuffer::ParallelizeSerialDWord
	classSignalBuffer::UploadFile
	classSignalBuffer::DownloadFile
	classSignalBuffer::ClearBuffer
	classSignalBuffer::MoveIndex
	classSignalBuffer::GetIndex
	classSignalBuffer::DisplayBuffer
	classSignalBuffer::FillTestPattern
	classStateMachine::classStateMachine
	classStateMachine::~classStateMachine
	classStateMachine::SetElement
	classStateMachine::Jump
	classStateMachine::Transition

	Glossary
	Index

