
Development
System
Reference
Guide
Development System Reference Guide — 3.1i
Introduction

Design Flow

PARTGEN

NGDBuild

User Constraints (UCF) File

Using Timing Constraints

Logical Design Rule Check

MAP—The Technology
Mapper

LCA2NCD

The Physical Constraints
(PCF) File

DRC—Physical Design Rule
Check

PAR—Place and Route

PIN2UCF

TRACE
Printed in U.S.A.

Development System Reference Guide
SPEEDPRINT

BitGen

PROMGen

NGDAnno

NGD2EDIF

NGD2VER

NGD2VHDL

XFLOW

Xilinx Development System
Files

EDIF2NGD, XNF2NGD, and
NGDBuild

Development System Reference Guide
R

The Xilinx logo shown above is a registered trademark of Xilinx, Inc.

ASYL, FPGA Architect, FPGA Foundry, NeoCAD, NeoCAD EPIC, NeoCAD PRISM, NeoROUTE, Timing Wizard,
TRACE, XACT, XILINX, XC2064, XC3090, XC4005, XC5210, and XC-DS501 are registered trademarks of Xilinx,
Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

All XC-prefix product designations, A.K.A Speed, Alliance Series, AllianceCORE, BITA, CLC, Configurable Logic
Cell, CoolRunner, CORE Generator, CoreLINX, Dual Block, EZTag, FastCLK, FastCONNECT, FastFLASH,
FastMap, Fast Zero Power, Foundation, HardWire, IRL, LCA, LogiBLOX, Logic Cell, LogiCORE, LogicProfessor,
MicroVia, MultiLINX, PLUSASM, PowerGuide, PowerMaze, QPro, RealPCI, RealPCI 64/66, SelectI/O,
SelectRAM, SelectRAM+, Silicon Xpresso, Smartguide, Smart-IP, SmartSearch, Smartspec, SMARTSwitch,
Spartan, TrueMap, UIM, VectorMaze, VersaBlock, VersaRing, Virtex, WebFitter, WebLINX, WebPACK, XABEL,
XACTstep, XACTstep Advanced, XACTstep Foundry, XACT-Floorplanner, XACT-Performance, XAM, XAPP, X-
BLOX, X-BLOX plus, XChecker, XDM, XDS, XEPLD, Xilinx Foundation Series, XPP, XSI, and ZERO+ are
trademarks of Xilinx, Inc. The Programmable Logic Company and The Programmable Gate Array Company are
service marks of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown
herein; nor does it convey any license under its patents, copyrights, or maskwork rights or any rights of others.
Xilinx, Inc. reserves the right to make changes, at any time, in order to improve reliability, function or design and
to supply the best product possible. Xilinx, Inc. will not assume responsibility for the use of any circuitry described
herein other than circuitry entirely embodied in its products. Xilinx, Inc. devices and products are protected under
one or more of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216; 4,713,557; 4,746,822; 4,750,155;
4,758,985; 4,820,937; 4,821,233; 4,835,418; 4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135;
5,023,606; 5,028,821; 5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056; 5,243,238;
5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704; 5,329,174; 5,329,181;
5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248; 5,349,249; 5,349,250; 5,349,691; 5,357,153;
5,360,747; 5,361,229; 5,362,999; 5,365,125; 5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925; 5,410,189;
5,410,194; 5,414,377; 5,422,833; 5,426,378; 5,426,379; 5,430,687; 5,432,719; 5,448,181; 5,448,493; 5,450,021;
5,450,022; 5,453,706; 5,455,525; 5,466,117; 5,469,003; 5,475,253; 5,477,414; 5,481,206; 5,483,478; 5,486,707;
5,486,776; 5,488,316; 5,489,858; 5,489,866; 5,491,353; 5,495,196; 5,498,979; 5,498,989; 5,499,192; 5,500,608;
5,500,609; 5,502,000; 5,502,440; 5,504,439; 5,506,518; 5,506,523; 5,506,878; 5,513,124; 5,517,135; 5,521,835;
5,521,837; 5,523,963; 5,523,971; 5,524,097; 5,526,322; 5,528,169; 5,528,176; 5,530,378; 5,530,384; 5,546,018;
5,550,839; 5,550,843; 5,552,722; 5,553,001; 5,559,751; 5,561,367; 5,561,629; 5,561,631; 5,563,527; 5,563,528;
5,563,529; 5,563,827; 5,565,792; 5,566,123; 5,570,051; 5,574,634; 5,574,655; 5,578,946; 5,581,198; 5,581,199;
5,581,738; 5,583,450; 5,583,452; 5,592,105; 5,594,367; 5,598,424; 5,600,263; 5,600,264; 5,600,271; 5,600,597;
5,608,342; 5,610,536; 5,610,790; 5,610,829; 5,612,633; 5,617,021; 5,617,041; 5,617,327; 5,617,573; 5,623,387;
5,627,480; 5,629,637; 5,629,886; 5,631,577; 5,631,583; 5,635,851; 5,636,368; 5,640,106; 5,642,058; 5,646,545;
5,646,547; 5,646,564; 5,646,903; 5,648,732; 5,648,913; 5,650,672; 5,650,946; 5,652,904; 5,654,631; 5,656,950;
5,657,290; 5,659,484; 5,661,660; 5,661,685; 5,670,896; 5,670,897; 5,672,966; 5,673,198; 5,675,262; 5,675,270;
5,675,589; 5,677,638; 5,682,107; 5,689,133; 5,689,516; 5,691,907; 5,691,912; 5,694,047; 5,694,056; 5,724,276;
5,694,399; 5,696,454; 5,701,091; 5,701,441; 5,703,759; 5,705,932; 5,705,938; 5,708,597; 5,712,579; 5,715,197;
5,717,340; 5,719,506; 5,719,507; 5,724,276; 5,726,484; 5,726,584; 5,734,866; 5,734,868; 5,737,234; 5,737,235;
Xilinx Development System

5,737,631; 5,742,178; 5,742,531; 5,744,974; 5,744,979; 5,744,995; 5,748,942; 5,748,979; 5,752,006; 5,752,035;
5,754,459; 5,758,192; 5,760,603; 5,760,604; 5,760,607; 5,761,483; 5,764,076; 5,764,534; 5,764,564; 5,768,179;
5,770,951; 5,773,993; 5,778,439; 5,781,756; 5,784,313; 5,784,577; 5,786,240; 5,787,007; 5,789,938; 5,790,479;
5,790,882; 5,795,068; 5,796,269; 5,798,656; 5,801,546; 5,801,547; 5,801,548; 5,811,985; 5,815,004; 5,815,016;
5,815,404; 5,815,405; 5,818,255; 5,818,730; 5,821,772; 5,821,774; 5,825,202; 5,825,662; 5,825,787; 5,828,230;
5,828,231; 5,828,236; 5,828,608; 5,831,448; 5,831,460; 5,831,845; 5,831,907; 5,835,402; 5,838,167; 5,838,901;
5,838,954; 5,841,296; 5,841,867; 5,844,422; 5,844,424; 5,844,829; 5,844,844; 5,847,577; 5,847,579; 5,847,580;
5,847,993; 5,852,323; 5,861,761; 5,862,082; 5,867,396; 5,870,309; 5,870,327; 5,870,586; 5,874,834; 5,875,111;
5,877,632; 5,877,979; 5,880,492; 5,880,598; 5,880,620; 5,883,525; 5,886,538; 5,889,411; 5,889,413; 5,889,701;
5,892,681; 5,892,961; 5,894,420; 5,896,047; 5,896,329; 5,898,319; 5,898,320; 5,898,602; 5,898,618; 5,898,893;
5,907,245; 5,907,248; 5,909,125; 5,909,453; 5,910,732; 5,912,937; 5,914,514; 5,914,616; 5,920,201; 5,920,202;
5,920,223; 5,923,185; 5,923,602; 5,923,614; 5,928,338; 5,931,962; 5,933,023; 5,933,025; 5,933,369; 5,936,415;
5,936,424; 5,939,930; 5,942,913; 5,944,813; 5,945,837; 5,946,478; 5,949,690; 5,949,712; 5,949,983; 5,949,987;
5,952,839; 5,952,846; 5,955,888; 5,956,748; 5,958,026; 5,959,821; 5,959,881; 5,959,885; 5,961,576; 5,962,881;
5,963,048; 5,963,050; 5,969,539; 5,969,543; 5,970,142; 5,970,372; 5,971,595; 5,973,506; 5,978,260; 5,986,958;
5,990,704; 5,991,523; 5,991,788; 5,991,880; 5,991,908; 5,995,419; 5,995,744; 5,995,988; 5,999,014; 5,999,025;
6,002,282; and 6,002,991; Re. 34,363, Re. 34,444, and Re. 34,808. Other U.S. and foreign patents pending.
Xilinx, Inc. does not represent that devices shown or products described herein are free from patent infringement
or from any other third party right. Xilinx, Inc. assumes no obligation to correct any errors contained herein or to
advise any user of this text of any correction if such be made. Xilinx, Inc. will not assume any liability for the
accuracy or correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in
such applications without the written consent of the appropriate Xilinx officer is prohibited.

Copyright 1991-2000 Xilinx, Inc. All Rights Reserved.
Development System Reference Guide

About This Manual

The Development System Reference Guide contains information on the
software programs in the Xilinx Development System. Generally, the
chapters are organized in the following way.

• A brief summary of program functions

• A syntax statement

• A review of the input files used and the output files generated by
the program

• A listing of the commands, options, or parameters used by the
program

• Examples of how you can use the program

For an overview of the Xilinx Development System describing how
these programs are used in the design flow, see the “Design Flow”
chapter.

Note This Xilinx software release is certified as Year 2000 compliant

Manual Contents
The Development System Reference Guide provides detailed information
about converting, implementing, and verifying designs in the Xilinx
environment. Check the program chapters for information on what
program works with each family of Field Programmable Gate Array
(FPGA) or Complex Programmable Logic Device (CPLD). The
following is a brief overview of the contents and organization of the
Development System Reference Guide.
Development System Reference Guide — 3.1i i

Development System Reference Guide
• Chapter 1, “Introduction” —This chapter describes some basics
that are common to the different Xilinx Development System
modules.

• Chapter 2, “Design Flow”—This chapter describes the basic
design processes: design entry, implementation, and verification.

• Chapter 3, “PARTGEN”—The PARTGEN command allows you
to obtain information about installed devices and families

• Chapter 4, “NGDBuild”—NGDBuild performs all of the steps
necessary to read a netlist file in XNF or EDIF format and create
an NGD (Native Generic Database) file describing the logical
design reduced to Xilinx primitives.

• Chapter 5, “User Constraints (UCF) File”—The UCF File is an
ASCII file in which you enter constraints affecting how the
logical design is implemented.

• Chapter 6, “Using Timing Constraints”—This chapter describes
how you specify timing requirements for your design.

• Chapter 7, “Logical Design Rule Check”—The Logical DRC
(Design Rule Check) is a series of tests run to verify the logical
design described by the NGD (Native Generic Database) file.

• Chapter 8, “MAP—The Technology Mapper”—MAP maps the
logic defined by an NGD file into FPGA elements such as CLBs,
IOBs, and TBUFs.

• Chapter 9, “LCA2NCD”—LCA2NCD translates an LCA file from
an earlier Xilinx Development System release to an NCD file.

• Chapter 10, “Physical Constraints (PCF) File”—The PCF file is an
ASCII file containing physical constraints created by the MAP
program and physical constraints you enter.

• Chapter 11, “DRC—Physical Design Rule Check”—The physical
Design Rule Check (DRC) consists of a series of tests used to
discover physical errors in your design.

• Chapter 12, “PAR—Place and Route”—PAR places and routes
FPGA designs.

• Chapter 13, “PIN2UCF”—PIN2UCF generates pin locking
constraints in a UCF file by reading a a placed NCD file for
FPGAs or GYD file for CPLDs.
ii Xilinx Development System

• Chapter 14, “TRACE”—TRACE (Timing Reporter and Circuit
Evaluator) performs static timing analysis of the physical design
based on input timing constraints.

• Chapter 15, “SPEEDPRINT”— SPEEDPRINT lists block delays
for a specified device and its speed grades.

• Chapter 16, “BitGen”—BitGen creates a configuration bitstream
for an FPGA design.

• Chapter 17, “PROMGen” —PROMGen converts a configuration
bitstream (BIT) file into a file that can be downloaded to a PROM.
PROMGen also combines multiple BIT files for use in a daisy
chain of FPGA devices.

• Chapter 18, “NGDAnno”—NGDAnno annotates timing informa-
tion found in the physical NCD design file back to the logical
NGD file.

• Chapter 19, “NGD2EDIF”—NGD2EDIF converts an NGD file to
an EDIF file for use in simulation.

• Chapter 20, “NGD2VER”—NGD2VER converts an NGD file to a
Verilog HDL file for use in simulation.

• Chapter 21, “NGD2VHDL”—NGD2VHDL converts an NGD file
to a VHDL file for use in simulation.

• Chapter 22 “XFLOW”—XFLOW is a command tool that runs the
full suite of implementation and simulation flows.

• Appendix A, “Xilinx Development System Files”—This appendix
gives an alphabetic listing of the files used by the Xilinx Develop-
ment System.

• Appendix B, “EDIF2NGD, XNF2NGD, and NGDBuild” —This
appendix describes the netlist readers (EDIF2NGD and
XNF2NGD) and how they interact with NGDBuild.

Additional Resources

For additional information, go to http://support.xilinx.com.
The following table lists some of the resources you can access from
Development System Reference Guide iii

Development System Reference Guide
this Web site. You can also directly access these resources using the
provided URLs.

Resource Description/URL

Tutorials Tutorials covering Xilinx design flows, from design entry to verification
and debugging
http://support.xilinx.com/support/techsup/tutorials/
index.htm

Answers
Database

Current listing of solution records for the Xilinx software tools
Search this database using the search function at
http://support.xilinx.com/support/searchtd.htm

Application
Notes

Descriptions of device-specific design techniques and approaches
http://support.xilinx.com/apps/appsweb.htm

Data Book Pages from The Programmable Logic Data Book, which contain device-
specific information on Xilinx device characteristics, including readback,
boundary scan, configuration, length count, and debugging
http://support.xilinx.com/partinfo/databook.htm

Xcell Journals Quarterly journals for Xilinx programmable logic users
http://support.xilinx.com/xcell/xcell.htm

Technical Tips Latest news, design tips, and patch information for the Xilinx design
environment
http://support.xilinx.com/support/techsup/journals/
index.htm
iv Xilinx Development System

Conventions

This manual uses the following conventions. An example illustrates
each convention.

Typographical
The following conventions are used for all documents.

• Courier font indicates messages, prompts, and program files
that the system displays.

speed grade: - 100

• Courier bold indicates literal commands that you enter in a
syntactical statement. However, braces “{ }” in Courier bold are
not literal and square brackets “[]” in Courier bold are literal
only in the case of bus specifications, such as bus [7:0].

rpt_del_net=

Courier bold also indicates commands that you select from a
menu.

File → Open

• Italic font denotes the following items.

♦ Variables in a syntax statement for which you must supply
values

edif2ngd design_name

♦ References to other manuals
Development System Reference Guide — 3.1i v

Development System Reference Guide
See the Development System Reference Guide for more informa-
tion.

♦ Emphasis in text

If a wire is drawn so that it overlaps the pin of a symbol, the
two nets are not connected.

• Square brackets “[]” indicate an optional entry or parameter.
However, in bus specifications, such as bus [7:0], they are
required.

edif2ngd [option_name] design_name

• Braces “{ }” enclose a list of items from which you must choose
one or more.

lowpwr ={on|off}

• A vertical bar “|” separates items in a list of choices.

lowpwr ={on|off}

• A vertical ellipsis indicates repetitive material that has been
omitted.

IOB #1: Name = QOUT’

IOB #2: Name = CLKIN’

.

.

.

• A horizontal ellipsis “….” indicates that an item can be repeated
one or more times.

allow block block_name loc1 loc2locn;

Online Document
The following conventions are used for online documents.

• Red-underlined text indicates an interbook link, which is a cross-
reference to another book. Click the red-underlined text to open
the specified cross-reference.
vi Xilinx Development System

• Blue-underlined text indicates an intrabook link, which is a cross-
reference within a book. Click the blue-underlined text to open
the specified cross-reference.
Development System Reference Guide vii

Development System Reference Guide
viii Xilinx Development System

Contents
About This Manual
Manual Contents .. i
Additional Resources ... iii

Conventions
Typographical... v
Online Document ... vi

Chapter 1 Introduction

Invoking Xilinx Development System Programs 1-1
Command Line... 1-2

Notes about Screen Messages... 1-4
Part Numbers in Commands... 1-4
–f Option ... 1-6

Reading NCD Files with NCDRead.. 1-7
Terminology ... 1-10
Supported Platforms .. 1-13

Chapter 2 Design Flow

Overview .. 2-1
Design Entry... 2-4

Schematic Entry Overview.. 2-5
Library Elements.. 2-5
Hierarchical Design.. 2-6
CORE Generator Tool (FPGAs Only) 2-7
LogiBLOX Tool .. 2-7

HDL Entry/Synthesis... 2-8
Controlling Implementation with Constraints............................. 2-8

Mapping (FPGAs Only).. 2-9
Block Placement .. 2-9
Development System Reference Guide — 3.1i ix

Development System Reference Guide
Timing Specifications... 2-9
Testing Designs with Functional Simulation 2-9
Netlist Translation Program Overview 2-10

Design Implementation .. 2-10
FPGA Editor ... 2-13
FPGA Design Techniques.. 2-14

Design Size and Performance .. 2-14
Global Clock Distribution... 2-14
Other Synchronous Design Considerations.............................. 2-15
Data Feedback and Clock Enable .. 2-16
Counters ... 2-17

Design Verification ... 2-18
Overview ... 2-19
Pre-Simulation Translation.. 2-21

NGDAnno (FPGAs Only) ... 2-23
CPLD Command.. 2-24
Netlist Writers .. 2-24
Additional Translation Options... 2-26

Schematic-Based Simulation .. 2-26
Functional Simulation .. 2-27
Timing Simulation .. 2-27

HDL-Based Simulation.. 2-28
Static Timing Analysis With TRACE (FPGAs Only) 2-31
In-Circuit Verification... 2-31

Design Rule Checker (FPGAs Only) 2-32
Xilinx Design Download Cables... 2-32

Chapter 3 PARTGEN

PARTGEN.. 3-1
PARTGEN Syntax.. 3-1
PARTGEN Files ... 3-2

Input Files ... 3-2
Output Files... 3-2

PARTGEN Options .. 3-3
–arch (Print Information for Specified architecture) 3-4
–i (Print a List of Devices, Packages, and Speeds) 3-5
–p (Creates Package file and Partlist.xct File) 3-6
–v (Creates Packages and Partlist.xct File) 3-7

Partlist.xct File Contents .. 3-8
Header .. 3-8
Device Attributes... 3-8
x Xilinx Development System

Contents
Chapter 4 NGDBuild

NGDBuild ... 4-1
Converting a Netlist to an NGD File.. 4-3

NGDBuild Syntax ... 4-3
NGDBuild Files... 4-4

Input Files ... 4-4
Output Files... 4-6
Intermediate Files ... 4-6

NGDBuild Options.. 4-7
–a (Add PADs to Top-Level Port Signals) 4-7
–dd (Destination Directory) .. 4-7
–f (Execute Commands File) ... 4-7
–i (Ignore UCF File) ... 4-8
–l (Libraries to Search) ... 4-8
–modular initial (Initial Budgeting of Modular Design) 4-8
–modular module (Active Module Implementation) 4-9
–modular assemble (Module Assembly) 4-9
–nt (Netlist Translation Type) ... 4-9
–p (Target Architecture) ... 4-9
–r (Ignore LOC Constraints) ... 4-10
–sd (Search Specified Directory) ... 4-10
–u (Allow Unexpanded Blocks) .. 4-11
–uc (User Constraints File) .. 4-11
–ur (Read User Rules File) .. 4-12

Netlister Launcher .. 4-12
File Names and Locations.. 4-12

Chapter 5 User Constraints (UCF) File

Overview .. 5-1
UCF Flow ... 5-2

Chapter 6 Using Timing Constraints

Timing Requirements and Xilinx Software 6-2
IOB Register Specification and Reporting...................................... 6-3
Entering Timing Specifications... 6-4

Entering Timing Specifications in a Schematic 6-4
Entering Timing Specifications in a Constraints File................. 6-6

Specifying Groups.. 6-7
Using Predefined Groups.. 6-8
Creating User-Defined Groups Using TNMs............................. 6-11

Placing TNMs on Nets ... 6-15
Development System Reference Guide xi

Development System Reference Guide
Placing TNMs on Macro or Primitive Pins 6-15
Placing TNMs on Primitive Symbols.................................... 6-16
Placing TNMs on Macro Symbols.. 6-16
Placing TNMs on Nets or Pins to Group Flip-Flops and
Latches .. 6-19

Creating User-Defined Groups Using TNM_NET 6-21
Creating New Groups from Existing Groups............................. 6-23
Combining Multiple Groups into One .. 6-25
Creating Groups by Exclusion .. 6-25
Defining Flip-Flop Subgroups by Clock Sense 6-26
Defining Latch Subgroups by Gate Sense................................ 6-27
Creating Groups by Pattern Matching....................................... 6-27

How to Use Wildcards to Specify Net Names...................... 6-27
Pattern Matching Syntax.. 6-28
Additional Pattern Matching Details..................................... 6-29

Defining a Clock Period (PERIOD Constraint) 6-30
Simple Method .. 6-31
Preferred Method .. 6-32
Specifying Derived Clocks .. 6-33
PERIOD Specifications on CLKDLLs.. 6-34

OFFSET Timing Specifications .. 6-36
Global OFFSET .. 6-38
Net-Specific OFFSET Constraints .. 6-39

Examples ... 6-40
Specific OFFSET Constraints with Timegroups 6-44

Group OFFSET... 6-46
Ignoring Selected Paths (TIG).. 6-47
Basic FROM –TO Syntax... 6-48
Specifying Timing Points.. 6-50

Using TPSYNC to Define Synchronous Points......................... 6-50
Using TPTHRU to Define Through Points 6-53

Using TPTHRU or TPSYNC in a FROM–TO Constraint................ 6-54
Specifying Time Delay in TS Attributes.. 6-56
Using the PRIORITY Keyword ... 6-58
Sample Schematic Using TIMESPEC/TIMEGRP Symbol 6-58
Prorating Constraints ... 6-60

VOLTAGE Constraint.. 6-60
TEMPERATURE Constraint ... 6-60

Additional Timing Constraints .. 6-61
Controlling Net Skew (MAXSKEW)... 6-61
Controlling Net Delay (MAXDELAY) ... 6-62
Controlling Path Tracing ... 6-63
xii Xilinx Development System

Contents
Path Tracing Examples.. 6-65
The DROP_SPEC Constraint ... 6-66
The USELOWSKEWLINES Constraint..................................... 6-66

Constraints Priority... 6-68
Syntax Summary.. 6-69

TNM Attributes .. 6-69
TIMEGRP Attributes ... 6-70
TIMESPEC Attributes ... 6-72
Other Constraints.. 6-75

Chapter 7 Logical Design Rule Check

Logical DRC... 7-1
Logical DRC Tests ... 7-2

Block Check .. 7-2
Net Check ... 7-3
Pad Check .. 7-3
Clock Buffer Check ... 7-4
Name Check ... 7-4
Primitive Pin Check... 7-5

Chapter 8 MAP—The Technology Mapper

MAP ... 8-2
MAP Syntax ... 8-3
MAP Files... 8-4

Input Files ... 8-4
Output Files... 8-5

MAP Options .. 8-7
–b (Convert Clock Buffers—XC4000E/L and Spartan Only) 8-9
–c (Pack CLBs) .. 8-9
–cm (Cover Mode) ... 8-10
–d (Use DI Pin—XC3000 Architectures Only) 8-11
–detail (Write Out Detailed MAP Report) 8-11
–f (Execute Commands File) ... 8-11
–fp (Floorplanner) .. 8-11
–gf (Guide NCD File) ... 8-12
–gm (Guide Mode) ... 8-12
–ir (Do Not Use RLOCs to Generate RPMs) 8-12
–k (Map to Input Functions) ... 8-12
–l (No logic replication) .. 8-13
–o (Output File Name) ... 8-14
–oe (Logic Optimization Effort) .. 8-15
Development System Reference Guide xiii

Development System Reference Guide
–os (Logic Optimization Style) ... 8-15
–p (Xilinx Part Number) .. 8-16
–pr (Pack Registers in I/O) ... 8-17
–r (No Register Ordering) .. 8-17
-tx (Transform Buses) .. 8-18
–u (Do Not Remove Unused Logic) ... 8-18

The MAP Process .. 8-19
Register Ordering... 8-21
Guided Mapping... 8-23
Simulating Map Results ... 8-25
The MAP Report (MRP) File .. 8-27
Halting MAP ... 8-34

Chapter 9 LCA2NCD

LCA2NCD .. 9-1
LCA2NCD Syntax .. 9-2
LCA2NCD Files.. 9-3

Input Files ... 9-3
Output Files... 9-3

LCA2NCD Options ... 9-3
–p (Placement Only) .. 9-3
–f (Execute Commands File) ... 9-4
–w (Overwrite Existing File) ... 9-4

Translating Unnamed Components ... 9-4

Chapter 10 Physical Constraints (PCF) File

The PCF File .. 10-1
Interaction Between Constraints .. 10-3

Chapter 11 DRC—Physical Design Rule Check

DRC ... 11-1
DRC Syntax ... 11-2
DRC Files... 11-2

Input File ... 11-2
Output File .. 11-2

DRC Options .. 11-3
–e (Error Report) .. 11-3
–o (Output file) ... 11-3
–s (Summary Report) ... 11-3
–v (Verbose Report) ... 11-3
–z (Report Incomplete Programming) 11-3
xiv Xilinx Development System

Contents
DRC Types... 11-4
DRC Errors and Warnings ... 11-4

Chapter 12 PAR—Place and Route

PAR.. 12-2
PAR and the Timing Analysis Software ... 12-3
Automatic Timespecing.. 12-5
PAR Syntax.. 12-5
PAR Files ... 12-6

Input Files ... 12-6
Output Files... 12-6

PAR Options .. 12-7
–c (Number of Cost-Based Router Cleanup Passes) 12-8
–d (Number of Delay-Based Router Cleanup Passes) 12-8
-dfs (Thorough timing analysis of paths) 12-9
–e (Delay-based cleanup passes—Completely Routed
Designs) ... 12-9
–f (Execute Commands File) ... 12-9
–gf (Guide NCD File) ... 12-10
–gm (Guide Mode) ... 12-10
–i (Number of Router Iterations) .. 12-10
-k (Re-Entrant Routing) .. 12-11
-kpaths (Faster Analysis of Paths) ... 12-11
–l (Overall Effort Level) .. 12-12
–m (Multi-Tasking Mode) ... 12-13
–n (Number of PAR Iterations) ... 12-13
–ol (Overall Effort Level) .. 12-13
–p (No placement) ... 12-14
–pl (Placer Effort Level) ... 12-14
–r (No Routing) .. 12-15
–rl (Router Effort Level) .. 12-15
–s (Number of Results to Save) ... 12-15
–t (Starting Placer Cost Table) ... 12-16
–ub (Use Bonded I/Os) .. 12-16
–w (Overwrite Existing Files) ... 12-16
–x (Ignore Timing Constraints) ... 12-16

PAR Operation ... 12-18
Placement ... 12-18
Routing.. 12-18

Guided PAR ... 12-20
Incremental Designs ... 12-20
PCI Cores ... 12-22
Development System Reference Guide xv

Development System Reference Guide
Output from PAR.. 12-23
Intermediate Failing Timespec Summary 12-27
The Place and Route (PAR) Report File................................... 12-28
The Delay (DLY) File .. 12-35
The PAD File... 12-38
Guide Reporting.. 12-43

Scoring the Routed Design .. 12-45
Turns Engine (PAR Multi-Tasking Option) 12-47

Turns Engine Overview... 12-47
Turns Engine Input Files ... 12-49
Turns Engine NCD Output File ... 12-50
Homogeneous and Heterogeneous Networks 12-50
Limitations... 12-50
System Requirements... 12-51

New Preferred Method... 12-51
Old Method .. 12-52

Turns Engine Environment Variables 12-53
Starting the Turns Engine From the Command Line 12-54
Debugging... 12-54
Screen Output... 12-56

Command Line Examples .. 12-59
Halting PAR.. 12-61

Chapter 13 PIN2UCF

PIN2UCF.. 13-1
PIN2UCF Syntax.. 13-3
PIN2UCF Files ... 13-4

Input Files ... 13-4
Output Files... 13-4

PIN2UCF Options .. 13-5
–o (Output File Name) ... 13-5
–r (Write to a Report File) .. 13-5

PIN2UCF Scenarios... 13-6

Chapter 14 TRACE

TRACE... 14-2
TRACE Syntax ... 14-2
TRACE Files .. 14-3

Input Files ... 14-3
Output Files... 14-3

TRACE Options.. 14-4
xvi Xilinx Development System

Contents
–a (Advanced Analysis) ... 14-4
–e (Generate an Error Report) ... 14-4
–f (Execute Commands File) ... 14-5
–l (Limit Timing Report) .. 14-5
–o (Output File Name) ... 14-5
–s (Change Speed) .. 14-6
–skew (Analyze Clock Skew for All Clocks) 14-6
–stamp (Generates STAMP timing model files) 14-6
–tsi (Generate a Timespec Interaction Report) 14-7
–u (Report Uncovered Paths) .. 14-7
–v (Generate a Verbose Report) .. 14-8

Command Line Examples .. 14-8
TRACE Input Details .. 14-9
TRACE Output Details ... 14-9

Timing Verification with TRACE.. 14-10
Net Delay Constraints.. 14-10
Net Skew Constraints .. 14-10
Path Delay Constraints .. 14-11
Clock Skew and Setup Checking... 14-12

Reporting with TRACE.. 14-14
Data Sheet Reports .. 14-17
Guaranteed Setup and Hold Reporting..................................... 14-20

Setup Times... 14-21
Hold Times... 14-22

Summary Report... 14-22
Summary Report (Without a Physical Constraints File
Specified)... 14-23
Summary Report (With a Physical Constraints File
Specified)... 14-25

Error Report .. 14-27
Verbose Report... 14-30
TSI Report... 14-35

Design Example 1 (with Sample TSI Report) 14-36
Design Example 2 (with Sample TSI Report) 14-39

Halting TRACE... 14-43

Chapter 15 SPEEDPRINT

SPEEDPRINT .. 15-1
SPEEDPRINT Syntax .. 15-2
SPEEDPRINT Options... 15-2

–min (Display Minimum Speed Data) 15-2
–s (Speed Grade) .. 15-2
Development System Reference Guide xvii

Development System Reference Guide
–t (Specify Temperature) ... 15-3
–v (Specify Voltage) ... 15-3

Example Commands.. 15-3
Example Outputs.. 15-3

Chapter 16 BitGen

BitGen .. 16-1
BitGen Syntax .. 16-2
BitGen Files.. 16-3

Input Files ... 16-3
Output Files... 16-3

BitGen Options... 16-5
–a (Tie All Interconnect) ... 16-5
–b (Create Rawbits File) .. 16-5
–d (Do Not Run DRC) .. 16-5
–f (Execute Commands File) ... 16-6
–g (Set Configuration) .. 16-6
–g (Set Configuration—XC3X00 Devices) 16-6
–g (Set Configuration—XC4000 and Spartan) 16-9
–g (Set Configuration—XC5200 Devices) 16-20
–g (Set Configuration—Virtex/-E/-II and Spartan-II Devices) ... 16-27
–h or –help (Command Usage) .. 16-36
–j (No BIT File) ... 16-36
–l (Create a Logic Allocation File) .. 16-36
–m (Generate a Mask File) .. 16-37
–n (Save a Tied design) ... 16-37
–t (Tie Unused Interconnect) ... 16-37
–u (Use Critical Nets Last) ... 16-39
–w (Overwrite Existing Output File) ... 16-39

Chapter 17 PROMGen

PROMGen.. 17-1
PROMGen Syntax.. 17-3
PROMGen Files ... 17-3

Input Files ... 17-3
Output Files... 17-3
Bit Swapping in PROM Files... 17-3

PROMGen Options .. 17-4
–b (Disable Bit Swapping—HEX Format Only) 17-4
–c (Checksum) ... 17-5
–d (Load Downward) .. 17-5
xviii Xilinx Development System

Contents
–f (Execute Commands File) ... 17-5
–help (Command Help) .. 17-5
–l option (Disable Length Count) ... 17-5
–n (Add BIT FIles) .. 17-6
–o (Output File Name) ... 17-6
–p (PROM Format) .. 17-6
–r (Load PROM File) .. 17-7
–s (PROM Size) ... 17-8
–u (Load Upward) .. 17-8
–x (Specify Xilinx PROM) ... 17-8

Examples ... 17-9

Chapter 18 NGDAnno

NGDAnno... 18-1
NGDAnno Syntax... 18-4
NGDAnno Files .. 18-4

Input Files ... 18-4
Output Files... 18-5

NGDAnno Options ... 18-5
–f (Execute Commands File) ... 18-5
–module (Physical Simulation of Active Module) 18-6
–o (Output File Name) ... 18-6
–p (PCF File) .. 18-7
–report (Generate Hierarchy Loss Report) 18-7
–s (Change Speed) .. 18-7

Dedicated Global Signals in Back-Annotation Simulation.............. 18-8
XC3000A/L and 3100A/L .. 18-8
XC4000E/L/EX/XL/XV/XLA and Spartan/XL............................. 18-8
XC5200 ... 18-9
Virtex/-II/-E and Spartan-II .. 18-9

Hierarchy Changes in Annotated Designs 18-10
Guaranteed Setup and Hold Check ... 18-10

Chapter 19 NGD2EDIF

NGD2EDIF ... 19-1
NGD2EDIF Syntax ... 19-3
NGD2EDIF Files .. 19-3

Input Files ... 19-3
Output Files... 19-4

NGD2EDIF Options.. 19-4
–a (Write All Properties) ... 19-4
Development System Reference Guide xix

Development System Reference Guide
–b (Use Buffers to Model Delays) .. 19-4
–c (Reference Design Name as Specified—Mentor) 19-4
–f (Execute Commands File) ... 19-5
–hpn (Set HDL Pin Names) ... 19-5
–i (Annotate Timing Properties to Instances) 19-5
–l (Local Scope) ... 19-5
–n (Generate Flattened Netlist) .. 19-6
–v (Vendor) .. 19-6
–vpt (Mentor Viewpoint) ... 19-6
–w (Overwrite Output) .. 19-6

XMM (RAM Initialization) File... 19-6
Generic File Format for XMM File... 19-7

Generic Initialization File Example....................................... 19-8
EDIF Identifier Naming Conventions.. 19-8

Chapter 20 NGD2VER

NGD2VER.. 20-2
NGD2VER Syntax.. 20-3
NGD2VER Files ... 20-4

Input Files ... 20-4
Output Files... 20-4

NGD2VER Options .. 20-5
–10ps (Set Time Precision to be 10ps) 20-5
–aka (Write Also-Known-As Names as Comments) 20-5
–cd (Include `celldefine\`endcelldefine in Verilog File) 20-5
–f (Execute Commands File) ... 20-6
–gp (Bring Out Global Reset Net as Port) 20-6
–ism (Include SimPrim Modules in Verilog File) 20-6
–log (Rename the Log File) ... 20-7
–ne (No Name Escaping) ... 20-7
–op (Specify the Period for Oscillator) 20-7
–pf (Generate Pin File) ... 20-7
–pms (Port Names Match Child Signal Names) 20-8
–r (Retain Hierarchy) .. 20-8
–sdf_path (Full Path to SDF File) ... 20-8
–shm (Write $shm Statements in Test Fixture File) 20-9
–tf (Generate Test Fixture File) .. 20-9
–ti (Top Instance Name) .. 20-9
–tm (Top Module Name) .. 20-9
–tp (Bring Out Global Tristate Net as Port) 20-9
–ul (Write ‘uselib Directive) .. 20-10
–verbose (Display Processing Messages in Verbose Mode) ... 20-10
xx Xilinx Development System

Contents
–w (Overwrite Existing Files) ... 20-10
Setting Global Set/Reset, Tristate, and PRLD 20-10
Test Fixture File ... 20-11
Bus Order in Verilog Files .. 20-11
Verilog Identifier Naming Conventions... 20-12
Compile Scripts for Verilog Libraries.. 20-13

Chapter 21 NGD2VHDL

NGD2VHDL.. 21-2
NGD2VHDL Syntax.. 21-3
NGD2VHDL Files ... 21-4

Input Files ... 21-4
Output Files... 21-4

NGD2VHDL Options .. 21-5
–a (Architecture Only) .. 21-5
–aka (Write Also-Known-As Names as Comments) 21-5
–ar (Rename Architecture Name) .. 21-5
–f (Execute Commands File) ... 21-5
–gp (Bring Out Global Reset Net as Port) 21-5
–log (Specify the Log File) ... 21-6
–op (Specify the Period for Oscillator) 21-6
–pms (Port Names Match Child Signal Names) 21-6
–r (Retain Hierarchy) .. 21-6
–rpw (Specify the Pulse Width for ROC) 21-7
–tb (Generate Testbench File) ... 21-7
–te (Top Entity Name) .. 21-7
–ti (Top Instance Name) .. 21-7
–tp (Bring Out Global Tristate Net as Port) 21-8
–tpw (Specify the Pulse Width for TOC) 21-8
–verbose (Display Processing Messages in Verbose Mode) ... 21-8
–w (Overwrite Existing Files) ... 21-8
–xon (Select Output Behavior for Timing Violations) 21-9

VHDL Global Set/Reset Emulation .. 21-9
VHDL Only STARTUP Block .. 21-9
VHDL Only STARTBUF Cell ... 21-10
VHDL Only STARTUP_VIRTEX Block and
STARTBUF_VIRTEX Cell... 21-11
VHDL Only RESET-ON-CONFIGURATION (ROC) Cell 21-11
VHDL Only ROCBUF Cell... 21-13
VHDL Only Tristate-On-Configuration (TOC) Cell 21-13
VHDL Only TOCBUF .. 21-14
VHDL Only Oscillators .. 21-14
Development System Reference Guide xxi

Development System Reference Guide
Example 1: Oscillator VHDL .. 21-15
Example 2: Oscillator Test Bench.. 21-16

Bus Order in VHDL Files.. 21-17
VHDL Identifier Naming Conventions .. 21-18
Compile Scripts for VHDL Libraries ... 21-19

Chapter 22 XFLOW

Overview .. 22-2
Halting XFLOW ... 22-3

XFLOW Syntax .. 22-4
Running XFLOW ... 22-5

Example 1 ... 22-6
Example 2 ... 22-6
Example 3 ... 22-6
More Examples ... 22-7

Flow Types... 22-7
–config (Create a BIT File for FPGAs) 22-8
–fit (Fit a CPLD Device) ... 22-8
–fsim (Perform a Functional Simulation) 22-9
–implement (Run FPGA implementation) 22-10
–tsim (Perform a Timing Simulation) .. 22-11

Option Files .. 22-11
Option File Structure and Content .. 22-12
Option File Sample ... 22-13

XFLOW Options ... 22-15
–ed (Copy Files to Export Directory) .. 22-15
–g (Specify a Global Variable) ... 22-16
–h (Help) .. 22-16
–log (Specify Log File) ... 22-16
–norun (Creates a Script File) .. 22-17
–o (Change Output File Name) .. 22-18
–p (Enter a Part Name) .. 22-18
–rd (Copy Report Files) .. 22-19
–wd (Specify a Working Directory) ... 22-19

Input Files... 22-20
User Input Design File .. 22-20
Flow Files.. 22-22

Description... 22-22
Flow File Example ... 22-26

Output Files.. 22-30
xxii Xilinx Development System

Contents
Appendix A Xilinx Development System Files

Appendix B EDIF2NGD, XNF2NGD, and NGDBuild
EDIF2NGD... B-1

EDIF2NGD Syntax.. B-3
EDIF2NGD Files ... B-4

Input Files .. B-4
Output Files ... B-5

EDIF2NGD Options .. B-5
–a (Add PADs to Top-Level Port Signals) B-5
–f (Execute Commands File) .. B-5
–l (Libraries to Search) ... B-5
–p (Part Name) ... B-6
–r (Ignore LOC Properties) ... B-6

XNF2NGD.. B-7
XNF2NGD Syntax... B-9
XNF2NGD Files .. B-9

Input Files .. B-9
Output Files ... B-10

XNF2NGD Options ... B-10
–f (Execute Commands File) .. B-10
–l (Libraries to Search) ... B-10
–p (Part Name) ... B-11
–r (Ignore LOC Properties) ... B-11
–u (Top-Level XNF Netlist) ... B-12

NGDBuild ... B-12
Converting a Netlist to an NGD File.. B-13
Bus Matching .. B-15

Netlister Launcher .. B-16
Netlister Launcher Rules Files .. B-18
User Rules File ... B-18

User Rules and System Rules... B-19
User Rules Format... B-19
Value Types in Key Statements... B-21

System Rules File ... B-22
Rules File Examples ... B-25

Example 1: EDF_RULE System Rule.................................. B-25
Example 2: User Rule.. B-26
Example 3: User Rule.. B-26
Example 4: User Rule.. B-27

File Names and Locations.. B-28
Development System Reference Guide xxiii

Development System Reference Guide
xxiv Xilinx Development System

Chapter 1

Introduction

This chapter describes some basics that are common to the different
Xilinx Development System modules. The chapter contains the
following sections.

• “Invoking Xilinx Development System Programs”

• “Command Line”

• “Reading NCD Files with NCDRead”

• “Terminology”

• “Supported Platforms”

Invoking Xilinx Development System Programs
You can start Xilinx Development System programs in the following
ways.

• Enter a command at the UNIX™ command line or on a DOS
command line in an MS-DOS™ Prompt window (Windows 95®)
or a Command Prompt window (Windows NT®).

• Invoke a command from one of the following Xilinx graphical
applications.

♦ Design Manager/Flow Engine

♦ Foundation Project Manager

♦ Timing Analyzer

♦ FPGA Editor

♦ Hardware Debugger

♦ PROM File Formatter
Development System Reference Guide — 3.1i 1-1

Development System Reference Guide
Note The graphical applications are described in separate manuals.
This reference manual describes only the command line interface.

Command Line
Command line options are entered on the command line in any order,
preceded by a hyphen (–), sometimes preceded by a + (plus sign), and
separated by spaces. Most command line options are case-sensitive.
When an option requires an additional parameter, that parameter
must be separated from the option letter by spaces or tabs (for
example, -l 5 is correct, -l5 is not).

Files are position-dependent. For example, par input.ncd output.ncd
freq.pcf is legal; par input.ncd freq.pcf output.ncd is not. File
extension use is case-sensitive. All file extensions (for example, .ncd)
must be in lower case for all command line tools.

For options that can be specified multiple times, the option letter
must, in most cases, precede each parameter. For example, –l
xilinxun synopsys is not acceptable, while –l xilinxun -l synopsys is
allowed.

Options can appear anywhere on the command line. Arguments that
are bound to a particular option must appear after the option. For
example, –f command_file is legal; command_file –f is not.

When you enter the Xilinx Development System application name on
the command line with no arguments and the application requires
one or more arguments (PAR, for example), a message appears
consisting of the command line format string. The format string
contains the following symbols, along with literals

Symbol Description

[] Encloses items that are optional

{} Encloses items that may be repeated zero or more
times.

<> Encloses a variable name or number for which you
must substitute information.

, (comma) Indicates a range for an integer variable.

– (dash) Indicates the start of an option name.

+ Indicates the start of an option name.
1-2 Xilinx Development System

Introduction
When you enter the Xilinx Development System application name on
the command line followed by –help or –h, a message displays that
explains each of the options and arguments. For example, when you
type edif2ngd –h, the following message appears.

edif2ngd: version 3.1i
Copyright (c) 1995-2000 Xilinx, Inc. All rights reserved.
Usage: edif2ngd [-a] [-r] {-l <library>} [-p <partname>] <edif_file>
[<ngo_file>]

-a Add PAD’s to all top level port signals
-r Remove LOC props from the design
-l library Design is built from <library>
-p partname Override/define part name in EDIF file
<edif_file> EDIF 2 0 0 format file
<ngo_file> Output ‘.ngo’ file. Default is <infile>.ngo.

To redirect this message to a file (to read later or to print out), enter
the following.

command_name –help >& filename

For Xilinx Development System applications that have architecture-
specific command lines, enter the application name plus –help (or –h)
plus the architecture to get the verbose message specific to that
architecture. If you do not specify the architecture, a message similar
to the following appears.

Use ’<appname> -help <architecture>’ to get
detailed

usage for a particular architecture.

: The bind operator. Binds a variable name to a range.

| Logical OR to indicate a choice of one out of many
items. The OR operator may only separate logical
groups or literal keywords.

() Encloses a logical grouping for a choice between
subformats.

Symbol Description
Development System Reference Guide 1-3

Development System Reference Guide
Notes about Screen Messages
<infile[.ncd]> indicates that the .ncd extension is optional but that the
extension must be .ncd.

<infile<.xnf>> indicates that the .xnf extension is optional and is
appended only if there is no other extension in the file name.

Part Numbers in Commands
The EDIF2NGD, XNF2NGD, NGDBuild, MAP, and XFLOW
commands have options to specify the part into which your design
will be implemented. A complete Xilinx part number consists of these
elements.

• Architecture (for example, xc4000ex)

• Device (for example, xc4028ex)

• Package (for example, pq208)

• Speed (for example, -3)

The following table shows the various way to specify a part on the
command line.

Specification Examples

Architecture only 4000ex
x4000ex
xc4000ex

Device only 4028ex
x4028ex
xc4028ex

DevicePackage 4028exhq240
x4028exhq240
xc4028exhq240

Device–Package 4028ex-hq240
x4028ex-hq240
xc4028ex-hq240

DevicePackage–Speed 4028exhq240-3
x4028exhq240-3
xc4028exhq240-3
1-4 Xilinx Development System

Introduction
Note SPEEDPRINT requires a device name (part number) that is
somewhat different from the previous table. See the “SPEEDPRINT”
chapter for details.

You can specify a part number at a number of points in the design
flow. A part number specified in a later step of the design flow
overrides a part number specified in an earlier step.

The following list below indicates the points in the design flow when
you can specify a part number. In the list, a part number specified
later in the design process overrides a specification at an earlier level.
As an example, a part specified when you run MAP (the last bulleted
item) overrides a part specified at any other step in the design flow.

• There may be a part specified in the input netlist.

• There may be a part specified in an NCF (Netlist Constraints
File).

• You can specify a part with the –p option when you run a netlist
reader (EDIF2NGD or XNF2NGD).

• You can specify a part in a UCF (User Constraints File).

• You can specify a part with the –p option when you run
NGDBuild.

When you run NGDBuild, you must have already specified at
least a device architecture

• You can specify a part with the –p option when you run MAP.

Device–Package–Speed 4028ex-3-hq240
x4028ex-3-hq240
xc4028ex-3-hq240

Device–Speed 4028ex-3-hq240
x4028ex-3-hq240
xc4028ex-3-hq240

Device–Speed–Package 4028ex-3-hq240
x4028ex-3-hq240
xc4028ex-3-hq240

Device–SpeedPackage 4028ex-3hq240
x4028ex-3hq240
xc4028ex-3hq240

Specification Examples
Development System Reference Guide 1-5

Development System Reference Guide
When you run MAP, an architecture, device, and package must be
specified, either on the MAP command line or earlier in the design
flow. MAP selects a default speed if none has been specified. You can
only run MAP for a part from the architecture you specified when
you ran NGDBuild.

–f Option
For any Xilinx Development System executable, you can store argu-
ments (that is, file names and command options) in a file and then
execute the arguments at any time by entering the –f option on the
UNIX or DOS command line followed by the name of the file
containing the arguments. This can be useful if you frequently
execute the same arguments each time you perform the command, or
if the command line becomes too long.

You can use the options file in the following two ways.

• To supply all the command arguments, as in this example.

par –f command_file

command_file is the name of the file containing the command-line
arguments.

• To insert certain command line arguments within the command
line, as in this example.

par –i 33 –f placeoptions –s 4 –f routeoptions
design_i.ncd design_o.ncd

placeoptions is the name of a file containing placement
command arguments.

routeoptions is the name of a file containing routing command
arguments.

The space between the –f flag and the file name is required.

The command file is an ASCII file containing the command
arguments. Arguments are separated by a space and can be spread
across one or more lines within the file. You can put new lines or tabs
anywhere white space is allowed on the UNIX or DOS command line.
You can put all arguments on the same line, or one argument per line,
or a combination of these. There is no line length limitation within the
file.
1-6 Xilinx Development System

Introduction
All carriage returns and other non-printable characters are treated as
space and ignored. Comments are designated by a # (pound sign)
and go to the end of the line.

Following is an example of a command file.

Sample Command File

#command line options for par for design mine.ncd
-a -n 10
-w
-l 5
-s 2 #will save the two best results
/home/users/jimbob/designs/xilinx/mine.ncd
#directory for output designs
/home/users/jimbob/designs/xilinx/output.dir
#use timing constraints file
/home/users/jimbob/designs/xilinx/mine.pcf

Reading NCD Files with NCDRead
An NCD (Native Circuit Description) file contains a physical
description of your design in terms of the components in the target
architecture. NCDRead enables you to quickly generate an ASCII
(text) file based on the data found in one or more NCD files.

To start NCDRead from the UNIX or DOS command line, type the
following.

ncdread [–o outfile_name] filename0.ncd
{filename1.ncd ...}

Note Standard output goes only to your screen if you do not use the
–o option to write the output to a file.

Following is an example of an output file from NCDRead. The
example gives information on three of the components in the design.
An actual file includes information on all the components.

Loading device database for application ncread from file
"testclk.ncd"."testclk" is an NCD, version 2.28, device xcv100,
package bg256, speed -4

Loading device for application ncread from file ’v100.nph’ in
environment
/build/bcxfndry/C.13/rtf.
Development System Reference Guide 1-7

Development System Reference Guide
NC_DESIGN <testclk> - version 2.28
vendor = Xilinx, package = bg256, speed = -4
72 comps

NC_BEL:5 - <C253> ngdid = 5
cmprim = <lut-or-mem>
comp = <core_inst/counter2/cont<3>>, cmid = 48
signals on pin:

A1 - core_inst/counter2/C54/N32
A2 - core_inst/counter2/N356
A3 - syn2748
D - core_inst/counter2/C65/N19
bel config info:

Inverted pins:
clkedge=CM_CLKRISING
O=(~I0*I1*~I2)+(~I0*I1*I2)+(I0*I1*I2)
lutmode is EQN_MODE_LUT
clk_is_inverted=FALSE,shift_register=FALSE

.

.

.
NC_BEL:7 - <core_inst/counter2/cont_reg<3>> ngdid = 5
cmprim = <latch-or-ff>
comp = <core_inst/counter2/cont<3>>, cmid = 73
signals on pin:

CK - ck2
D - core_inst/counter2/C65/N19
Q - core_inst/counter2/cont<3>
INIT - core_inst/counter1/n224
bel config info :

Inverted pins:
clkedge=CM_CLKRISING
clkinvert=FALSE,resetmode=TRUE resetedge=CM_SRFALLING
resetinvert=FALSE

.

.

.
NC_COMP:3 - <core_inst/counter2/cont<3>> ngid = 5, external = 0
siteparam:10, site:-1, l2pmap:-1, macro:-1

Config String: <CYSELF:#OFF CYSELG:#OFF CKINV:1 COUTUSED:#OFF
YUSED:#OFF XUSED:#OFF XBUSED:#OFF F5USED:#OFF YBMUX:#OFF
1-8 Xilinx Development System

Introduction
CYINIT:#OFF DYMUX:1 DXMUX:1 CY0F:#OFF CY0G:#OFF
F:#LUT:D=(~A1*A2*~A3)+(~A1*A2*A3)+(A1*A2*A3)
G:#LUT:D=(~A1*A2*~A3)+(~A1*A2*A3)+(A1*A2*A3) RAMCONFIG:#OFF
REVUSED:#OFF BYMUX:#OFF BXMUX:#OFF CEMUX:#OFF SRMUX:SR
GYMUX:GFXMUX:F SYNC_ATTR:ASYNC SRFFMUX:0 INITY:LOW FFX:#FF

FFY:#FF
INITX:LOW>
There are <10> paths.

17: [f:12] 8 pins F1:F1 F:A1 F:D FXMUX:F FXMUX:OUT DXMUX:1
DXMUX:OUT FFX:D Container (1): 18

43: [f:12] 8 pins F2:F2 F:A2 F:D FXMUX:F FXMUX:OUT DXMUX:1
DXMUX:OUT FFX:D
Container (1): 44

69: [f:12] 8 pins F3:F3 F:A3 F:D FXMUX:F FXMUX:OUT DXMUX:1
DXMUX:OUT FFX:
Container (1): 70

89: [f:12] 8 pins G1:G1 G:A1 G:D GYMUX:G GYMUX:OUT DYMUX:1
DYMUX:OUT FFY:D
Container (1): 90

107: [f:12] 8 pins G2:G2 G:A2 G:D GYMUX:G GYMUX:OUT DYMUX:1
DYMUX:OUT FFY:D

Container (1): 108
123: [f:12] 8 pins G3:G3 G:A3 G:D GYMUX:G GYMUX:OUT DYMUX:1

DYMUX:OUT FFY:D

Container (1): 124
531: [f:8] 6 pins CLK:CLK CKINV:1 CKINV:OUT FFX:CK FFX:Q XQ:XQ
532: [f:8] 6 pins CLK:CLK CKINV:1 CKINV:OUT FFY:CK FFY:Q YQ:YQ
569: [f:8] 8 pins SR:SR SRMUX:SR SRMUX:OUT SRFFMUX:0 SRFFMUX:OUT

FFX:INIT

FFX:Q XQ:XQ
570: [f:8] 8 pins SR:SR SRMUX:SR SRMUX:OUT SRFFMUX:0 SRFFMUX:OUT

FFY:INIT

FFY:Q YQ:YQ

There are <26> delays.
Pin Types:

Real_pin=<00> pintype=<0x10,16>
Development System Reference Guide 1-9

Development System Reference Guide
Real_pin=<00> pintype=<0x10,16>
.
.
.

Terminology
Commonly used terms in the Xilinx Development System are defined
in this section. Terms specific to certain Xilinx Development System
modules are described in the relevant chapters.

• A device is a particular FPGA or CPLD. For example, a Xilinx
XC4010E is a device.

• A site is a programmable logic element (used or unused) located
within the device.

• A component is a logic configuration that will, at some point, go
into a physical site. Examples of components are CLBs, IOBs,
tristate buffers, pull-up resistors, and oscillators.

• A net (also called a signal) is a set of two or more component pins
to be electrically connected in the finished design. A net normally
consists of a driver pin and one or more load pins, but it may
have more than one driver pin in certain cases. A net does not
pass through a logic block, except in the case of route-throughs
(routes that pass through occupied or unoccupied logic sites).
The following figure shows two examples of nets. In the example,
Net 1 consists of a driver pin (A) and a single load pin (B). Net 2
consists of a driver pin (A) and multiple load pins (B, C, and D).
The net contains a route-through at component COMP_1.
1-10 Xilinx Development System

Introduction
Figure 1-1 Net Example

• A path is an ordered set of elements identifying a logic flow
pathway through a circuit. A path can consist of a single net or a
grouping of related nets and components. You can have multiple
paths (consisting of nets and components) between the two pins.
When a component is selected as part of a path, both the input
pin to the component and the output pin are included in the path.

A path starts by including a clock-to-out delay at a synchronous
element (flip flop, RAM, or latch) or from a pad. The path
continues adding net delays and combinatorial delays. A path
ends with a setup-to-clock delay at an asynchronous element (flip

X8921

A
B

B

C

Net 1

A

Net 2

COMP_1
Development System Reference Guide 1-11

Development System Reference Guide
flop, RAM, or latch) or at a pad. The following figure shows a
path through CLB1, CLB2, and CLB3.

Figure 1-2 Path Example

• A bus is a grouping of related nets. For example, you can create a
bus containing the nets DATA_00, DATA_01, DATA_02 and
DATA_03—nets that supply data to RAM.

• A BEL is a Basic ELement. BELs are the building blocks that make
up a component (CLB or IOB)—function generators, flip-flops,
carry logic, and RAMs.

• A physical macro is a logical function such as a counter that is
created from a set of physical components for a specific device
family. Physical macros, which are created using the FPGA
Editor, are stored in files with the .nmc extension. In addition to
components and nets, the file can also contain relative placement
and/or routing information. A physical macro can be unplaced,
partially placed, or fully placed, and it can also be unrouted,
partially routed, or fully routed. Note that you cannot perform
functional simulation of a physical macro. See the “Working with
Physical Macros” chapter of the FPGA Editor Guide for
information about physical macros.

Tcko + Tnet1 + Tiho +

NET1

NET2

Path Start Point
X8922

Path End Point

CLK

GLUT FFS

FLUT

HLUT

FFS

GLUT FFS

FLUT

HLUT

FFS

GLUT FFS

FLUT

HLUT

FFS

CLB1 CLB2 CLB3
1-12 Xilinx Development System

Introduction
Supported Platforms
The Alliance 3.1i software supports several different operating
systems, as shown in the following table.

Platform Type Version Number

Solaris Solaris 2.6 and 2.7

HP Series 9000 HP-UX 10.20 and 11.0

Windows NT NT 4.0, 98/2000
Development System Reference Guide 1-13

Development System Reference Guide
1-14 Xilinx Development System

Chapter 2

Design Flow

This chapter describes the process for creating, implementing, veri-
fying, and downloading designs for FPGA and CPLD devices. For a
complete description of FPGAs and CPLDs, refer to The Programmable
Logic Data Book.

This chapter contains the following sections.

• “Overview”

• “Design Entry”

• “Design Implementation”

• “FPGA Editor”

• “FPGA Design Techniques”

• “Design Verification”

Overview
The design flow is a three-step process that consists of the following
stages

• Design Entry — In this stage of the design flow, you create your
design using a Xilinx-supported schematic editor, a Hardware
Description Language (HDL) for text-based entry, or both.

• Design Implementation — By implementing to a specific Xilinx
architecture, you convert the logical design file format, such as
EDIF, that you created in the design entry stage into a physical
file format. The physical information is contained in the NCD
(Native Circuit Description) file for FPGAs and the VM6 file for
CPLDs. Then you create a bitstream file from these files and
optionally program a PROM or EPROM for subsequent program-
ming of your Xilinx device.
Development System Reference Guide — 3.1i 2-1

Development System Reference Guide
• Design Verification — Using a gate level simulator, the Xilinx
XChecker™ cable, the Parallel Cable III, or MultiLINX™ cable,
you ensure that your design meets your timing requirements and
functions properly. See the Hardware User Guide for more infor-
mation about Xilinx download cables and demonstration boards.

The Xilinx design flow is shown in the following figure.

Figure 2-1 Xilinx Design Flow Overview

The full design flow is an iterative process of entering, implementing,
and verifying your design until it is correct and complete. The Xilinx
Development System allows quick design iterations through the
design flow cycle. Because Xilinx devices permit unlimited
reprogramming, you do not need to discard devices when debugging
your design in-circuit.

X9244

Design Entry Design
Verification

 Functional and Timing
 Simulation
 Static Timing Analysis

 In-Circuit Verification

 Schematic Entry
 HDL Entry/Synthesis

Back-Annotation

Design
Implementation

 Optimization

 Mapping
 Placement
 Routing

 Fitting

 Bitstream Generation

FPGAs

CPLDs

Download to a
Xilinx Device

Functional Simulation
2-2 Xilinx Development System

Design Flow
The following table defines the terms used in the preceding figure.

Table 2-1 Design Flow Terms

Term Description

Schematic entry Creation of designs using graphic symbols

HDL Entry/
Synthesis

Creation of designs using Hardware
Description Language (HDL) or state
machine editor

Optimization Conversion of device-independent or
behavioral logic descriptions to a form that
can be efficiently implemented in a Xilinx
device

Mapping Representation of a design’s logic as
resources of the Xilinx FPGA

Placement Assignment of design blocks created
during mapping to specific locations in the
FPGA

Routing Assignment of the interconnect paths in
FPGAs

Fitting Assignment of logic from your design into
physical macrocell locations in the CPLD.
Routing is performed automatically, and
because of the UIM architecture, all designs
are routable.

Bitstream
generation

Conversion of a design into a bitstream that
can be loaded into a Xilinx device

Back-annotation Association of implementation net delay
information with the original nets found in
the input design

Simulation Emulation of a design‘s logic and timing
using input stimuli
Development System Reference Guide 2-3

Development System Reference Guide
The following figure shows the Xilinx software flow chart for
designs.

Figure 2-2 Xilinx Software Design Flow

Design Entry
This section introduces the Xilinx design entry process. You can enter
a design with a schematic editor or a text-based tool. For the Alliance
software, these entry methods require Xilinx-supported third-party
tools, which produce a design file in some third party netlist formats.
For Foundation, you access the design entry tools from the
Foundation Project Manager.

Design entry begins with a design concept, expressed as a drawing or
functional description. From the original design, a netlist is created,
then synthesized and translated into a Native Generic Object (NGO)
file. This file is fed into a program called NGDBuild, which produces
a logical Native Generic Database (NGD) file.

X8975

NMC
Physical Macro

Verilog
SDF 2.1

HDL

VHDL
SDF 2.1

Simulation
Libraries

CORE Generator LogiBLOX

Schematic Capture

Constraints Editor NGD

UCF

BIT

MEM

NGDAnnoNGM

LCA

EDIF
2 0 0

JED PRG

MAP

JTAG
Programmer

Device
Programmer

VM6

CPLD Timing
Analyzer

LCA2NCD

TRACE PAR

Hardware Debugger JTAG ProgrammerPROMGen

BITGen

FPGA Editor

Synthesis Simulation

EDIF 2 0 0 &
Constraints

XNF v6 &
Constraints

Guide File
GYD

NGA

Netlist Translation Out

Testbench
Stimulus

NCD & Constraints

NCD & Constraints

Guide File
NCD

CPLD Fitter

NGDBuild NGDBuild

Synthesis
Libraries

Schematic
Libraries

Verilog

VHDL
2-4 Xilinx Development System

Design Flow
The following figure illustrates the design entry process.

Figure 2-3 Design Entry Flow

The following sections describe schematic and text-based HDL
design entry methods in detail.

Schematic Entry Overview
Schematic tools provide a graphic interface for design entry. You can
use these tools to connect symbols representing the logic components
in your design. You can build your design with individual gates, or
you can combine gates to create functional blocks. This section
focuses on ways to enter functional blocks using library elements and
the LogiBLOX and CORE Generator tools.

Library Elements

The following section discusses primitives and macros, which are the
“building blocks” of component libraries.

Xilinx libraries provide primitives as well as common high-level
macro functions. Primitives are basic circuit elements, such as AND

X8997

HDL
CORE Generator & LogiBLOX

Schematic Capture

NGD

UCF

Synthesis

EDIF 2 0 0 &
Constraints

XNF v6 &
Constraints

Schematic
Libraries

Synthesis
Libraries

NGDBuild
Development System Reference Guide 2-5

Development System Reference Guide
and OR gates. Each primitive has a unique library name, symbol, and
description. Macros contain multiple library elements, which can
include primitives and other macros.

There are two types of macros you can use with Xilinx FPGAs. Soft
macros, available for all FPGAs, have pre-defined functionality, but
have flexible mapping, placement, and routing. Relationally placed
macros (RPMs) have fixed mapping and relative placement. They are
are available for all device families except the XC3000, XC3100, and
XC9500 families.

Macros are not available for synthesis because synthesis tools have
their own module generators and do not require RPMs. If you wish to
override the module generation, you can instantiate LogiBLOX or
CORE Generator modules. For most leading-edge synthesis tools,
this does not offer an advantage unless it is for a module that cannot
be inferred.

Hierarchical Design

Schematics usually contain hierarchy, which is important for the
following reasons.

• Helps you conceptualize your design

• Adds structure to your design

• Promotes easier design debugging

• Makes it easier to combine different design entry methods (sche-
matic, HDL, or state editor) for different parts of your design

• Makes it easier to design incrementally; incremental design
consists of designing, implementing, and verifying individual
sub-blocks of a design in stages

• Reduces optimization time

• Facilitates concurrent design; concurrent design is the process of
dividing a design among a number of people who develop
different parts of the design in parallel.
2-6 Xilinx Development System

Design Flow
Hierarchical Names

A specific hierarchical name identifies each library element, unique
block, and instance you create. The following example shows a hier-
archical name with a 2-input OR gate in the first instance of a multi-
plexer in a 4-bit counter.

/Acc/alu_1/mult_4/8count_3/4bit_0/mux_1/or2

Note Xilinx strongly recommends that you name the components
and nets in your design. These names are preserved and used by the
FPGA Editor. These names are also used for back-annotation and
appear in the debug and analysis tools. If you do not name your
components and nets, the schematic editor automatically generates
the names. For example, if left unnamed, the software might name
the previous example as follows.

/$1a123/$1b942/$1c23/$1d235/$1e121/$1g123/$1h57

It can be very difficult to analyze circuits with automatically gener-
ated names, because they only have meaning for Xilinx software.

CORE Generator Tool (FPGAs Only)

The Xilinx CORE Generator design tool delivers parameterizable
cores that are optimized for Xilinx FPGAs. The library includes cores
ranging from simple delay elements to complex DSP (Digital Signal
Processing) filters and multiplexers. For details, refer to the CORE
Generator Guide. You can also refer to the Xilinx IP (Intellectual Prop-
erty) Center Web site at http://www.xilinx.com/ipcenter,
which offers the latest IP solutions. These solutions include design
reuse tools, free reference designs, DSP and PCI solutions, IP imple-
mentation tools, cores, specialized system level services, and vertical
application IP solutions.

LogiBLOX Tool

The LogiBLOX tool can generate a variety of variable-sized MSI- and
LSI-level design building blocks such as adders, counters, decoders,
and shift registers. These modules complement the Xilinx macro
libraries, which contain simpler, fixed-size logic and gate functions.
The LogiBLOX tool also integrates these modules into your design.
For further information, see the LogiBLOX Guide.
Development System Reference Guide 2-7

Development System Reference Guide
Note The LogiBLOX tool does not support the Virtex, Virtex-II,
Virtex-E, and Spartan-II FPGA families. For these families, use the
CORE Generator tool.

HDL Entry/Synthesis
Hardware Description Languages (HDLs) and their associated
simulators and synthesizers are powerful tools for integrated circuit
designers. A typical HDL supports a mixed-level description in
which gate and netlist constructs are used with functional
descriptions. This mixed-level capability enables you to describe
system architectures at a very high level of abstraction, then
incrementally refine a design’s detailed gate-level implementation.

HDL descriptions play an important role in modern design method-
ology for the following reasons.

• You can verify design functionality early in the design process. A
design written as an HDL description can be simulated immedi-
ately. Design simulation at this higher level, before implementa-
tion at the gate-level, allows you to evaluate architectural and
design decisions.

• An HDL description is more easily read and understood than a
netlist or schematic description. HDL descriptions provide tech-
nology-independent documentation of a design and its function-
ality. Because the initial HDL design description is technology
independent, you can use it again to generate the design in a
different technology, without having to translate it from the orig-
inal technology.

• Large designs are easier to handle with HDL tools than schematic
tools.

Xilinx supports HDL synthesis tools for several third-party synthesis
vendor partners.

Controlling Implementation with Constraints
Before you implement your design, you may want to constrain it
within certain timing or placement parameters. You can specify
mapping, block placement, and timing specifications during design
entry. The following sections describe these methods.
2-8 Xilinx Development System

Design Flow
Mapping (FPGAs Only)

You can specify how a particular block of logic is mapped into CLBs
using a CLBMAP for all XC3000 and XC3100 FPGA families; an
FMAP or HMAP for all XC4000 and Spartan FPGA families; an
FMAP for all Virtex FPGA families; or an FMAP or F5MAP for
XC5200 FPGAs. These mapping symbols can be used in your
schematic. However, if you overuse these specifications, it may be
harder to route your design.

Block Placement

Block placement can be constrained to a specific location, to one of
multiple locations, or to a location range. Locations can be specified
in the schematic, with synthesis tools, or in the User Constraint File
(UCF). Poor block placement can adversely affect both the placement
and the routing of a design. Typically, block placement defines I/O
placement. For details about placement constraints, refer to the
“Placement Constraints” section in the Libraries Guide.

Timing Specifications

You can specify timing requirements for paths in your design directly
in your schematic. PAR (the Xilinx FPGA Place and Route program)
uses these timing specifications to achieve optimum performance
when placing and routing your design. See the Timing Analyzer Guide
and the Constraints Editor Guide for a detailed explanation of timing
specifications. Also refer to the “Using Timing Constraints” chapter
in this manual, the Development System Reference Guide.

Testing Designs with Functional Simulation
After you have entered your design, you can either simulate or
implement your design. Functional simulation tests the logic in your
design to determine if it works properly. You can save time during
subsequent design steps if you perform functional simulation early in
the design flow. For Alliance Software Series users, details on func-
tional simulation can be found in the CAE-specific interface user
guide provided with your Xilinx interface. For Foundation users,
refer to the Foundation Series User Guide.
Development System Reference Guide 2-9

Development System Reference Guide
Netlist Translation Program Overview
Two netlist translation programs allow you to read netlists into the
Xilinx software tools. EDIF2NGD allows you to read an EDIF 2 0 0
(Electronic Data Interchange Format) file. XNF2NGD allows you to
read an XNF (Xilinx Netlist Format). In Figure 2-3, these programs are
contained within the “Netlist Translation” block. The NGDBuild
program automatically invokes these programs as needed to convert
your EDIF or XNF file to the required format for the Xilinx software
tools.

You can find detailed descriptions of the EDIF2NGD, XNF2NGD,
and NGDBuild programs in later chapters in this book, the Develop-
ment System Reference Guide.

Design Implementation
Design implementation begins with the mapping or fitting of a
logical design file to a specific device and is complete when the
physical design has been successfully routed and a bitstream has
been generated.

The following two figures give an overall view of the design imple-
mentation process for FPGAs and CPLDs.
2-10 Xilinx Development System

Design Flow
Figure 2-4 Design Implementation Flow (FPGAs)

X8998

NGD

BIT

TRACE

Hardware Debugger JTAG ProgrammerPROMGen

BITGen

PAR

NCD & Constraints

NCD & Constraints

Guide File
NCD

MAP

FPGA Editor
Development System Reference Guide 2-11

Development System Reference Guide
Figure 2-5 Design Implementation Flow (CPLDs)

X8812

Design Loader

NGD

Auto Device/Speed Selector

Logic Synthesis
Technology Mapping

Global Net Optimization

Logic Optimization Partitioning

Exporting
Assignments

Export Level Generator

PTerm Mapping

Power/Slew Optimization

Post-Mapping
Enhancements

Routing

CPLD Fitter
Implementation Options

RPT GYD

Pin Feedback Generation

Fitter Report (Text)

JED

HPLUSAS6

HPREP6

JTAG Download

VM6

VM6
2-12 Xilinx Development System

Design Flow
FPGA Editor
The FPGA Editor is a graphical application used to display and
configure your FPGA designs. You can perform the following func-
tions with the FPGA Editor.

• Place and route critical components before running automatic
place and route tools on an entire design

• Modify placement and routing manually; the editor allows both
automatic and manual component placement and routing

• Read from and write to the Physical Constraints File (PCF) to
create and modify constraints

• Verify timing against constraints

• Create physical macros (NMC files)

Editing operations performed within the FPGA Editor change the
configuration of the design and also change the design database.
Editing functions include selecting, adding, and deleting objects,
viewing and changing object attributes, copying components,
swapping components and net pins, placing components, and
routing.

The FPGA Editor has its own set of commands, many of which can be
customized to suit your work style. You can access these commands
from the pull-down menus, user toolbar, command macros, hot keys
and aliases, or by entering the commands on a command line within
the FPGA Editor window.

In addition to customizing commands, other FPGA Editor tools may
also be tailored to your needs. For example, you can do the following.

• Decide what commands are performed when the FPGA Editor
window first opens

• Choose the colors for different objects (for example, components)
and areas (for example, the push button panel or command area)
in the FPGA Editor window

• Use command macros and hot keys

For more information, see the FPGA Editor Guide.
Development System Reference Guide 2-13

Development System Reference Guide
FPGA Design Techniques
The Xilinx FPGA architecture is best suited for synchronous design.
Strict synchronous design ensures that all registers are driven from
the same time base with no clock skew. The following sections outline
several tips for producing high-performance synchronous designs.

Design Size and Performance
Information about design size and performance can help you to
optimize your design. When you place and route your design, the
resulting report files list the number of CLBs, IOBs, and other device
resources available. A first pass estimate can be obtained by
processing the design through the MAP program.

If you want to determine the design size and performance without
running automatic implementation software, you can quickly obtain
an estimate from a rough calculation based on the Xilinx FPGA archi-
tecture. See The Programmable Logic Data Book for more information on
all Xilinx FPGA architectures.

Global Clock Distribution
Xilinx clock networks guarantee extremely small clock skew values.
The following table lists the resources available for the Xilinx FPGA
families.

Table 2-2 Global Clock Resources

FPGA Family Resource Number Destination Pins

XC3000A/L
XC3100A/L

GCLK
ACLK

1
1

Clock
Clock

XC4000E/L BUFGP
BUFGS

4
4

Clock, control, or certain input
Clock, control, or certain input

XC4000EX/XL/
XV/XLA

BUFG
BUFGLS
BUFGE
BUFFCLK

8
8
8
4

Clock, control, or certain input
Clock, control, or certain input
Clock, control, or certain input
I/O clock

XC5200 BUFG 4 Clock, control, or certain input

Spartan BUFGP
BUFGS

4
4

Clock, control, or certain input
Clock, control, or certain input
2-14 Xilinx Development System

Design Flow
Note In certain devices families, global clock buffers are connected to
control pin and logic inputs. If a design requires extensive routing,
there may be extra routing delay to these loads.

Other Synchronous Design Considerations
Other considerations for achieving a synchronous design include the
following.

• Use clock enables instead of gated clocks to control the latching
of data into registers. See the figures in the following section.

• If your design has more clocks than the number of global clock
distribution networks, try to redesign to reduce the number of
clocks. Otherwise, put the clocks that have the lowest fanout onto
normally routed nets, and specify a low MAXSKEW rating.
Remember that a clock net routed through a normal net has skew.

SpartanXL BUFGLS 8 Clock, control, or certain input

Virtex, Virtex-E,
Spartan-II

BUFG 4 Clock

Virtex-II BUFGMUX 16 Clock

Table 2-2 Global Clock Resources

FPGA Family Resource Number Destination Pins
Development System Reference Guide 2-15

Development System Reference Guide
Data Feedback and Clock Enable
The following figure shows a gated clock. The gated clock’s corre-
sponding timing diagram indicates that this implementation can lead
to clock glitches; this can cause the flip-flop to clock at the wrong
time.

Figure 2-6 Gated Clock

The following figure shows a synchronous alternative to the gated
clock using a data path. The flip-flop is clocked at every clock cycle
and the data path is controlled by an enable. When the enable is Low,
the multiplexer feeds the output of the register back on itself. When
the enable is High, new data is fed to the flip-flop and the register
changes its state. This circuit guarantees a minimum clock pulse
width and it does not add skew to the clock. The XC4000, XC5200,
Spartan-II, and Virtex flip-flops have a built-in clock-enable (CE).

X9201

Enable
Clock

D Q

Clock

Enable

Clock
Enable

Output

a) Gated Clock

b) Corresponding Timing Diagram

Clock
Enable
2-16 Xilinx Development System

Design Flow
Figure 2-7 Synchronous Design Using Data Feedback

Counters
Cascading several small counters to create a larger counter is similar
to a gated clock. For example, if two 8-bit counters are connected, the
TC (terminal counter) of the first counter is a large AND function
gating the second clock input. Using the CE input, you can create a
synchronous design as shown in the following figure. In this case, the
TC (terminal counter) of the first stage is connected directly to the CE
of the second stage.

X9202

Enable

Clock

D Q

Clock

Enable

Output

a) Using a Feedback Path

b) Corresponding Timing Diagram

D

Development System Reference Guide 2-17

Development System Reference Guide
Figure 2-8 Two 8-Bit Counters Connected to Create a 16-Bit
Counter

Design Verification
This section introduces design verification, which is the process of
testing the functionality and performance of your design. The Xilinx
Development System supports three complementary methods for
design verification: simulation, static timing analysis, and in-circuit
verification.

a) 16-bit counter with TC connected to the clock.

TC

Q0 Q7. . . .

TC

Q8 Q15. . . .

CE

X2093

TC

b) 16-bit counter with TC connected to the clock-enable.
Q0 Q7. . . .

TC

Q8 Q15. . . .

CE

CLK

IM
PROPER M

ETHOD
2-18 Xilinx Development System

Design Flow
Overview
Design verification procedures should occur throughout your design
process, as illustrated in the following figure.

Figure 2-9 Three Verification Methods of the Design Flow
(FPGAs)

In-Circuit Verification

Static Timing Analysis

Input Stimulus

Simulation Netlist

Simulation

Xilinx FPGA

Design Entry
Integrated Tool

Functional Simulator
Paths

Timing Simulation Path

Simulation

Static Timing

In-Circuit Verification

Basic Design Flow

X7208

NGD

NCD

BitGen

BIT

Mapping, Placement
and Routing

Translate to
Simulator Format

Translate to
Simulator Format

Back-Annotation

NGA

Translation
Development System Reference Guide 2-19

Development System Reference Guide
Figure 2-10 Three Verification Methods of the Design Flow
(CPLDs)

You can verify Xilinx designs in three different ways.

• Simulation

• Static timing

• In-circuit verification

In-Circuit Verification

Static Timing Analysis

Input Stimulus

Simulation Netlist

Simulation

Xilinx CPLD

Design Entry
Integrated Tool

Functional Simulator
Paths

Timing Simulation Path

Simulation

Static Timing

In-Circuit Verification

Basic Design Flow

X8813

NGD

VM6

Programming
File Creation

JED

Optimization and
Fitting

JTAG
Programmer

Translate to
Simulator Format

Translate to
Simulator Format

Back-Annotation

NGA

Translation
2-20 Xilinx Development System

Design Flow
Each verification type uses different design tools, as shown in the
following table.

Pre-Simulation Translation
Before simulation occurs, the physical design information must be
translated and distributed back to the logical design. For FPGAs, this
back-annotation process is done with a program called NGDAnno.
For CPLDs, back-annotation is performed with the TSIM Timing
Simulator. These programs create a database for the netlist writers,
which translate the back-annotated information into a netlist format
that can be used for simulation. The back-annotation flows are shown
in the following figures.

Table 2-3 Verification Tools

Type of Verification Tools

Simulation Third Party Simulators (Integrated and
Non-Integrated)

Static Timing TRACE (Command Line)
Timing Analyzer (GUI)
Mentor Graphics® TAU and Viewlogic®
BLAST software for use with the STAMP
file format (for I/O timing verification only)

In-Circuit Verification Design Rule Checker
Download or XChecker Cable
Development System Reference Guide 2-21

Development System Reference Guide
Figure 2-11 Back-Annotation (FPGAs)

PAR

X8970

NGDAnno

NGD2EDIF

MAP

NGD
Logical Design

NCD
Physical Design

(Mapped)

NCD
Physical Design

(Placed and Routed)

NGM

NGD2VER

NGD2VHDL

NGA

EDIF

VHD

SDF

SDF

V

PCF

ARF ALF

*

*Command line only
2-22 Xilinx Development System

Design Flow
Figure 2-12 Back-Annotation (CPLDs)

Note The NGD2XNF program and the XNF output file format are not
supported in this software release.

NGDAnno (FPGAs Only)

NGDAnno is a program that distributes delays, setup and hold time,
and pulse widths found in the physical NCD design file back to the
logical NGD file.

NGDAnno merges mapping information from the NGM file with
placement, routing, and timing information from the NCD file. This
data is combined into a Native Generic Annotated (NGA) file. The
NGA file is input to the appropriate netlist writer (NGD2EDIF,
NGD2VER, or NGD2VHDL) which then converts the binary Xilinx
database format back to an ASCII netlist.

X8814

TSIM
Timing Simulator

NGD2EDIF

Optimization
and Fitting

NGD
Logical Design

VM6
Physical Design

NGD2VER

NGD2VHDL

NGA

EDIF

VHD

SDF

SDF

V

Command line only
Development System Reference Guide 2-23

Development System Reference Guide
Note Use caution when making changes to the functional behavior of
your design. For example, if you make logical changes to an NCD
design from within the FPGA Editor, NGDAnno will be unable to
correlate the changed objects in the physical design with the objects
in the logical design. It will then recreate the entire NGA design from
the NCD and issue a warning indicating that the NCD is out of sync
with the NGM.

An NCD file is input to the NGDAnno program. The NCD file can be
a mapped-only design, or a partial or fully placed and routed design.
An NGM file which is created by the mapper is an optional source of
input.

The output of NGDAnno is an NGA file, which is a back-annotated
NGD file. For details on NGDAnno refer to the “NGDAnno” chapter.

CPLD Command

The CPLD command automatically generates the NGA file unless the
command is run with the –notsim option. For a description of the
CPLD command and its options, refer to the “Fitter Command and
Option Summary” appendix in the CPLD Synthesis Design Guide.

Netlist Writers

Netlist writers take the output of NGDAnno or the CPLD command
and create a simulation netlist in the specified format. An NGD or
NGA file is input to each of the netlist writers. The NGD file is a
logical design file containing primitive components, while the NGA
file is a back-annotated logical design file. Following is a list of the
supported netlist writers with descriptions of their input and output
files.

• NGD2EDIF — takes an NGD or NGA file and translates it into an
EDIF netlist.

Output from the NGD2EDIF program is an EDN file, a netlist in
EDIF format. The default EDN file produced by NGD2EDIF is
generic. If you want to produce EDIF targeted to Mentor
Graphics or Viewlogic, you must include the –v (vendor) option.

• NGD2VER — translates an NGD or NGA file into a Verilog
netlist (V) file. If the input is an NGA file, NGD2VER also gener-
ates an SDF (Standard Delay Format) file.
2-24 Xilinx Development System

Design Flow
The resulting V and SDF files have the same root name as the
NGD or NGA file unless you specify otherwise.

The SDF file contains timing information intended solely for use
with the Verilog file which was generated from the same NGA
file. Do not attempt to use the SDF file in conjunction with the
original Verilog netlist design or the product of another netlist
writer.

• NGD2VHDL — translates an NGD or NGA file into a VHDL
netlist (VHD). If the input file is an NGA file, NGD2VHDL also
generate an SDF (Standard Delay Format) file. The VHD and SDF
files have a time_sim root name by default.

Note You can change the root name of your files using the Simu-
lation Options dialog box in the Design Manager. See the Design
Manager or Flow Engine online help for more information.

For more information on the Netlist Writers or NGDAnno, refer to
later chapters in this manual.

Invoking Netlist Writer Programs

You can invoke any of the supported netlist writer programs (for
example, NGD2VER, NGD2VHDL, or NGD2EDIF) from the UNIX or
DOS command line. These programs and their options are described
in later chapters of this book.

You can also set most of the netlist writer options using the Alliance
Design Manager or Foundation Project Manager. To access these
options, do the following.

Note The Foundation Series ISE Project Navigator runs the default
settings for the netlist writer options. The netlist writer used is deter-
mined by the synthesis tool selected in the Project Properties dialog
box. Right-click the Targeted Device and Synthesis Tool entry in the
Process window and select Properties to open the Project Proper-
ties dialog box.

1. Do one of the following.

♦ In the Design Manager, select Design → Options.

♦ In the Project Manager, select Implementation →
Options.
Development System Reference Guide 2-25

Development System Reference Guide
2. Select a simulation vendor from the Simulation drop-down list
box.

3. Click Edit Options.

Note See the online help available from these tools for more informa-
tion on each option.

Additional Translation Options

In addition to back-annotating a fully routed design, you can back-
annotate a translated but unmapped design or a mapped but
unrouted design for FPGAs. You can also create an output netlist to
allow simulation of the design at the different stages of development
in the Xilinx environment.

Pre-implementation Circuit Verification

For example, if you want to verify that the circuit logic is correct before
you implement the design, you can use the data in a non-
implemented NGD design as input to the netlist writers NGD2EDIF,
NGD2VER, or NGD2VHDL. You can then run a simulation program
on the resulting netlist.

Simulating Designs with Block Delays (FPGAs Only)

To simulate a design that contains only IOB and CLB block delays,
you can take the NCD file produced by MAP and then run
NGDAnno. Afterwards, run the appropriate netlist writer to generate
a simulatable netlist.

Block delays are generally 50% of your path delay. Simulating with
block delays is an imprecise method of determining whether your
timing will be met before you actually place and route. (However,
this simulation type is less time consuming than performing a full
timing simulation.) The simulation process is shown in Figure 2-11.

Schematic-Based Simulation
Design simulation involves testing your design using software
models. It is most effective when testing the functionality of your
design and its performance under worst-case conditions. You can
easily probe internal nodes to check your circuit’s behavior, and then
use these results to make changes in your schematic.
2-26 Xilinx Development System

Design Flow
Simulation is performed using third-party tools that are linked to the
Xilinx Development System. Use the various CAE-specific interface
user guides, which cover the commands and features of the Xilinx-
supported simulators, as your primary reference.

The software models provided for your simulation tools are designed
to perform detailed characterization of your design. You can perform
functional or timing simulation, as described in the following
sections.

Functional Simulation

Functional simulation determines if the logic in your design is correct
before you implement it in a device.

Functional simulation can take place at the earliest stages of the
design flow. Because timing information for the implemented design
is not available at this stage, the simulator tests the logic in the design
using unit delays.

Note It is usually faster and easier to correct design errors if you
perform functional simulation early in the design flow.

The verification methods figures show the design flows for
integrated and non-integrated simulation tools. Integrated tools such
as Mentor or Viewlogic contain a built-in interface which links the
simulator and a schematic editor, allowing the tools to use the same
netlist. You can move directly from entry to simulation when using a
set of integrated tools.

Functional simulation in schematic-based tools is usually performed
immediately after design entry in the capture environment. The sche-
matic capture tool requires a Xilinx Unified Library and the simulator
requires a library if the tools are not integrated. Most of the sche-
matic-based tools will require translation from their native database
to XNF or EDIF for implementation. The return path from implemen-
tation is usually XNF or EDIF with certain exceptions where a sche-
matic tool is tied to an HDL simulator.

Timing Simulation

Timing simulation verifies that your design runs at the desired speed
for your device under worst-case conditions. This process is
performed after your design is mapped, and placed and routed for
FPGAs or fitted for CPLDs. At this time, all design delays are known.
Development System Reference Guide 2-27

Development System Reference Guide
Timing simulation is valuable because it can verify timing relation-
ships and determine the critical paths for the design under worst-case
conditions. It can also determine whether or not the design contains
set-up or hold violations.

To input timing information into your design, you must convert the
routed NCD file into an NGA file. The resulting NGA file can then be
translated by NGD2EDIF, NGD2VER, or NGD2VHDL. These netlist
writers create suitable formats for various simulators.

Note Naming the nets during your design entry is important for both
functional and timing simulation. This allows you to find the nets in
the simulations more easily than looking for a machine-generated
name.

HDL-Based Simulation
Xilinx supports functional and timing simulation of HDL designs at
the following three points in the HDL design flow as shown in the
following figure.

Figure 2-13 Simulation Points for HDL Designs

X9243

HDL RTL
Simulation

Synthesis

Xilinx
Implementation

HDL Timing
Simulation

HDL
Design

Testbench
Stimulus

Post-Synthesis Gate-Level
Functional SimulationCORE Generator

Modules

SimPrim
Library

LogiBLOX
Modules

UniSim
Library
2-28 Xilinx Development System

Design Flow
• Register Transfer Level (RTL) simulation which may include the
following

♦ Instantiated UniSim library components

♦ LogiBLOX modules

♦ LogiCORE models

• Post-synthesis functional simulation with one of the following.

♦ Gate-level UniSim library components

♦ Gate-level pre-route SimPrim library components

• Post-implementation back-annotated timing simulation with the
following.

♦ SimPrim library components

♦ Standard Delay Format (SDF) file

The three primary simulation points can be expanded to allow for
two additional post-synthesis simulations, as shown in the following
table. These two additional points can be used when the synthesis
tool either cannot write VHDL or Verilog, or if the netlist is not in
terms of UniSim components.

These simulation points are described in the “Simulation Points”
section of the Synthesis and Simulation Design Guide.

The libraries required to support the simulation flows are described
in detail in the “VHDL/Verilog Libraries and Models” section of the
Synthesis and Simulation Design Guide. The new flows and libraries
now support closer functional equivalence of initialization behavior

Table 2-4 Five Simulation Points in HDL Design Flow

Simulation UniSim
LogiBLOX
Models

SimPrim SDF

RTL X X

Post-Synthesis X X

Functional Post-NGDBuild
(Optional)

X

Functional Post-MAP
(Optional)

X X

Post-Route Timing X X
Development System Reference Guide 2-29

Development System Reference Guide
between functional and timing simulations. This is due to the addi-
tion of new methodologies and library cells to simulate GSR/GTS
behavior.

It is important to address the built-in reset circuitry behavior in your
designs starting with the first simulation to ensure that the
simulations agree at the three primary points.

If you do not simulate GSR (Global Set/Reset) behavior prior to
synthesis and place and route, your RTL and possibly post-synthesis
simulations will not initialize to the same state as your post-route
timing simulation. As a result, your various design descriptions are
not functionally equivalent and your simulation results will not
match.

In addition to the behavioral representation for GSR, you need to add
a Xilinx implementation directive. This directive is used to specify to
the place and route tools to use the special purpose GSR net that is
pre-routed on the chip, and not to use the local asynchronous set/
reset pins. Some synthesis tools can identify, from the behavioral
description, the GSR net, and will place the STARTUP module on the
net to direct the implementation tools to use the global network.
However, other synthesis tools interpret behavioral descriptions liter-
ally, and will introduce additional logic into your design to imple-
ment a function. Without specific instructions to use device global
networks, the Xilinx implementation tools will use general purpose
logic and interconnect resources to redundantly build functions
already provided by the silicon.

Even if GSR behavior is not described, the actual chip initializes
during configuration, and the post-route netlist will have this net that
must be driven during simulation. The “Understanding the Global
Signals for Simulation” section of the Synthesis and Simulation Design
Guide includes the methodology to describe this behavior, as well as
the GTS (Global Tristate) behavior for output buffers.

For a complete discussion of GSR and GTS, refer to the “Defining
Global Signals in VHDL” and “Defining Global Signals in Verilog”
sections of the Synthesis and Simulation Design Guide.

Xilinx VHDL simulation supports the VITAL standard. This standard
allows you to simulate with any VITAL-compliant simulator.

Built-in Verilog support allows you to simulate with the Cadence
Verilog-XL and other compatible simulators. Xilinx HDL simulation
2-30 Xilinx Development System

Design Flow
supports all current Xilinx FPGA and CPLD devices. Refer to the
“VHDL/Verilog Libraries and Models” section for the list of
supported VHDL and Verilog standards.

For information about CPLD HDL simulation refer to the “Simu-
lating Your Design” chapter of the CPLD Synthesis Design Guide.

Static Timing Analysis With TRACE (FPGAs Only)
Static timing analysis is best for quick timing checks of a design after
placement and routing is complete.

TRACE (Timing Reporter and Circuit Evaluator) is a Xilinx applica-
tion program designed to provide static timing analysis and can be
used to evaluate how well the place and route tools have met any
input timing constraints.

By using TRACE, you can quickly check for timing problems in your
FPGA design. You can also use TRACE to determine path delays in
your design.

TRACE performs two major functions.

• Timing verification — the process of verifying that the design
meets your timing constraints.

• Reporting — the process of enumerating input constraint viola-
tions and placing them into an accessible file. TRACE can be run
on partially or completely placed and routed designs. The timing
information reported issued by TRACE depends on the
completeness of the placement and routing of the input design.

Within the Design Manager, TRACE is run using the Timing
Analyzer. See the Timing Analyzer Guide for details.

In-Circuit Verification
As a final test, you can verify how your design performs in the target
application. In-circuit verification tests the circuit under typical
operating conditions. Because you can program your Xilinx devices
repeatedly, you can easily load different iterations of your design into
your device and test it in-circuit. To verify your design in-circuit,
download your design bitstream into a device with the Xilinx
XChecker Cable, Parallel Cable III, or MultiLINX cable.
Development System Reference Guide 2-31

Development System Reference Guide
Note For information about Xilinx cables and hardware, see the Hard-
ware User Guide.

Design Rule Checker (FPGAs Only)

Before generating the final bitstream, it is important to use the DRC
option in BitGen to evaluate the NCD file for problems that could
prevent the design from functioning properly. DRC is invoked auto-
matically unless you use the –d option.

Xilinx Design Download Cables

Xilinx provides the Parallel Cable III, XChecker cable, or MultiLINX
cable, depending on which development system you are using. To
download your design, you must create a configuration bitstream.

For FPGAs, you can use the XChecker or MultiLINX cable to read
back and verify configuration data. Detailed cable connection and
daisy-chain information is provided in the Hardware Debugger Guide.

Note The Xilinx Parallel Cable III can be used for FPGA and CPLD
design download and readback, but it does not have a design verifi-
cation function.

With the XChecker cable, you can use the Hardware Debugger to take
snapshots of the circuit at specific clock cycles. You can obtain these
snapshots by performing serial readback of the nodes during in-
circuit operation. With the Hardware Debugger software, you can
speed up your analysis by limiting the readback bitstream to only
those nodes and clock cycles in which you have interest.

You can also use the XChecker cable to probe your design after you
download it. Probing internal nodes allows you to pinpoint the loca-
tion of any design problems.

Use the XChecker cable when you do not want to specify additional
IOBs and routing resources on your Xilinx FPGA for probing. This
allows you to decide how you want to probe after you have down-
loaded your design.
2-32 Xilinx Development System

Design Flow
The MultiLINX Cable is compatible in supporting readback and
verify for all the FPGAs supported by the XChecker cable. In addition
to the supporting legacy devices, the MultiLINX Cable supports the
devices that were not supported by the XChecker cable. Supported
devices include those devices in the 4000E, 4000XL, and Spartan fami-
lies whose BIT file size is more than 256K bits. The MultiLINX Cable
also supports readback and verify for Virtex device families.

Note Debug is not available with the MultiLINX Cable in this release.
Development System Reference Guide 2-33

Development System Reference Guide
2-34 Xilinx Development System

Chapter 3

PARTGEN

This program is compatible with the following Xilinx devices.

• Spartan™/XL

• Virtex™

• XC9500™/XL

• XC4000E™/L/EX/XL/XV/XLA

• XC3000A™/L

• XC3100A™/L

• XC5200™

This chapter describes PARTGEN. The chapter contains the following
sections.

• “PARTGEN”

• “PARTGEN Syntax”

• “PARTGEN Files”

• “PARTGEN Options”

• “Partlist.xct File Contents”

PARTGEN
The PARTGEN command displays various levels of information
about installed Xilinx devices and families depending on which
options are selected.

PARTGEN Syntax
Following is the syntax for PARTGEN.
Development System Reference Guide — 3.1i 3-1

Development System Reference Guide
partgen [options]

Options can be any number of the options listed in the “PARTGEN
Options” section. They do not need to be listed in any particular
order. Separate multiple options with spaces.

PARTGEN Files
The following subsections describe the input and output files for
PARTGEN.

Input Files
PARTGEN does not have any user input files.

Output Files
PARTGEN creates the output file, partlist.xct. This output file is only
generated when using the –p and –v options. See the “Partlist.xct File
Contents” section for a detailed description.

The –p and –v options also generate package files. These files corre-
late IOBs with output pin names. The –p option generates a three
column entry describing the pins. The –v option adds four more
columns of descriptive pin information.

For example, the command partgen –p xc4003 generates the package
files: 4003cb100.pkg, 4003pc84.pkg, 4003pq100.pkg, 4003cq100.pkg,
and 4003pg120.pkg. Following is a portion of the package file for the
xc4003cb100.

package 4003cb100

pin PAD1 P99

pin PAD2 P98

pin PAD3 P97

pin PAD4 P96

pin PAD5 P95

pin PAD6 P94

pin PAD7 P93

pin PAD8 P92

pin PAD9 P91
3-2 Xilinx Development System

PARTGEN
.

.

.

The first column contains either “pin” (user accessible pin) or
“pkpin” (dedicated pin). The second column specifies the pin name.
For user accessible pins, the name of the pin is the bonded pad name
associated with an IOB on the device, or the name of a multipurpose
pin. For dedicated pins, the name is either the functional name of the
pin, or N.C. specifying No Connection. The third column specifies the
package pin.

The command partgen –v generates package (.pkg) files and gener-
ates a seven column entry describing the pins. The first three columns
are described above.

The fourth column, IO_BANK, is a positive integer associated with a
bank, or -1 for no bank association. The fifth column, specifying func-
tion name, consists of a string indicating how the pin is used. If the
pin is dedicated, then the string will indicate a specific function. If the
pin is a generic user pin, the string will be “IO.” If the pin is multipur-
pose, an underscore separated set of characters will make up the
string. The sixth column indicates the closest CLB row or column to
the pin, and appears in the form R[0-9]C[0-9]. The seventh column is
composed of a string for each pin associated with a LVDS IOB. The
string consists of and index and the letter M or S. Index values will go
from 0 to the number of LVDS pairs. The value for a non-LVDS pin
will default to N.A. The following are examples of the verbose pin
descriptors in partgen.

pkpin N.C. D9 -1 N.C.N.A. N.A.

pkpin DONE M12 -1 DONE N.A.N.A.

pkpin VCCO N1 -1 VCCO N.A.N.A.

pin PAD2 B3 0 IO R0C0 0S

pin PAD17 AB23 7 IO_TDO R6C48 N.A.

PARTGEN Options
Following is a description of the command line options and how they
affect the behavior of PARTGEN. With no options, PARTGEN prints
out the following usage message.
Development System Reference Guide 3-3

Development System Reference Guide
partgen - Print out the list of supported parts for the installed
architectures.
-i: print a list of devices, packages, and speeds that are
installed.
-arch: print a list of devices, packages, and speeds for the
specified

architecture (if it is installed).
-p: generate a partlist.xct. If no architecture, device or part

is specified, print all information to parlist.xct. Otherwise
generate

data only for the family members specified.
-v: generate a verbose partlist.xct. If no architecture, device, or
device

package is specified, print all information to parlist.xct,
Otherwise

generate data only for the family members specified.
NOTE: -v and -p options are mutually exclusive.

–arch (Print Information for Specified architecture)
–arch architecture_name

The –arch option prints a list of devices, packages, and speeds for a
specified architecture that has been installed.

Valid entries for architecture_name are as follows:

• Spartan

• SpartanXL

• Virtex

• XC9500

• XC9500XL

• XC4000

• XC4000EX

• XC4000XL

• XC4000XV

• XC4000XLA

• XC3000
3-4 Xilinx Development System

PARTGEN
• XC3100

• XC5200

For example, entering the command partgen -arch spartan2 displays
the following information.

2s100 SPEEDS:-6 -5 -4
x2s100

2s15 SPEEDS:-6 -5 -4
x2s15

2s150 SPEEDS:-6 -5 -4
x2s150

2s30 SPEEDS:-6 -5 -4
x2s30

2s50 SPEEDS:-6 -5 -4
x2s50

–i (Print a List of Devices, Packages, and Speeds)
The –i option prints out a list of devices, packages, and speeds that
have been installed. Following is a portion of a sample display.

s05 SPEEDS: -4 -3
PC84
VQ100

s10 SPEEDS: -4 -3
PC84
VQ100
TQ144

s20 SPEEDS: -4 -3
VQ100
TQ144
PQ208

s30 SPEEDS: -4 -3
VQ100
TQ144
PQ208
PQ240
BG256

s40 SPEEDS: -4 -3
PQ208
PQ240
Development System Reference Guide 3-5

Development System Reference Guide
BG256
2s100 SPEEDS: -6 -5 -4

x2s100
2s15 SPEEDS: -6 -5 -4

x2s15
.
.
.

–p (Creates Package file and Partlist.xct File)
–p name

The –p option generates a partlist.xct file for the specified name and
also creates package files. All files are placed in the current working
directory. Valid name entries include architectures, devices, and
parts. Following are example command line entries of each type.

–p xc4000 (Architecture)

–p xc4003 (Device)

–p 4003CB100 Part)

If no architecture, device, or PART is specified with the –p option,
detailed information for every installed device is submitted to the
partlist.xct file.

The –p option generates more detailed information than the -arch
options but less information that the –v option. The –p and –v options
are mutually exclusive, that is, you can specify one or the other but
not both.

Following is an example display for the command partgen -p
4036EXHQ240.

part4000 4036EXhq240 NA.die 4036hq240.pkg \
TDI=PAD284 TCK=PAD283 TMS=PAD268 \
NCLBROWS=36 NCLBCOLS=36 STYLE=XC4000EX \
EDGE_DECODERS=4 \
IN_FF_PER_IOB=1 OUT_FF_PER_IOB=1 \
NFRAMES=1775 NBITSPERFRAME=462

For a description of the entries in the partlist.xct file, see the
“Partlist.xct File Contents” section.
3-6 Xilinx Development System

PARTGEN
–v (Creates Packages and Partlist.xct File)
–v name

The –v option generates a partlist.xct file for the specified name and
also creates packages files. Valid name entries include architectures,
devices, parts. Following are example command line entries of each
type.

partgen –v xc4000 (Architecture)

partgen –v xc4003 (Device)

partgen –v 4003CB100 (Part)

If no architecture, device, or part is specified with the –v option,
information for every installed device is submitted to the partlist.xct
file.

The –v option generates more detailed information than the –p
option. The –p and –v options are mutually exclusive, that is, you can
specify one or the other but not both.

Following is an example display for the command partgen -v
4036EXHQ240.

part4000 4036EXhq240 NA.die 4036hq240.pkg \
TDI=PAD284 TCK=PAD283 TMS=PAD268 \
NCLBROWS=36 NCLBCOLS=36 STYLE=XC4000EX \
EDGE_DECODERS=4 \
IN_FF_PER_IOB=1 OUT_FF_PER_IOB=1 \
NPADS_PER_ROW=2 NPADS_PER_COL=2 \
NFRAMES=1775 NBITSPERFRAME=462 \

NIOBS=288 NBIOBS=193 \
SLICES_PER_CLB=1 \
FFS_PER_SLICE=2 \
LATCHES_PER_SLICE=TRUE \
LUT_NAME=F LUT_SIZE=4 LUT_NAME=G LUT_SIZE=4 \
LUT_NAME=H LUT_SIZE=3 \NUM_GLOBAL_BUFFERS=8 \
BUFGLS_NNW=PAD1 BUFGLS_NNE=PAD71 BUFGLS_SSW=PAD216

BUFGLS_SSE=PAD145 BUFGLS_WNW=PAD288 BUFGLS_ENE=PAD73
BUFGLS_WSW=PAD217
BUFGLS_ESE=PAD143 \

NUM_TBUFS_PER_ROW=76\
NUM_CARRY_ELEMENTS_PER_SLICE=2\
Development System Reference Guide 3-7

Development System Reference Guide
SPEEDGRADE=-2 LUTDELAY=1500 IOB_IN_DELAY=1710
IOB_OUT_DELAY=7310 \

SPEEDGRADE=-3 LUTDELAY=1700 IOB_IN_DELAY=1810
IOB_OUT_DELAY=7820 \

SPEEDGRADE=-4 LUTDELAY=2040
IOB_IN_DELAY=2170IOB_OUT_DELAY=9380

For a description of the entries in the partlist.xct file, see the
“Partlist.xct File Contents” section.

Partlist.xct File Contents
The partlist.xct file contains detailed information about architectures
and devices.

The partlist.xct file is a series of part entries. There is one entry for
every part supported in the installed software. The following subsec-
tions describe the information contained in the partlist.xct file.

Header
The first part is a header for the entry. The format of the entry looks
like the following.

part architecture family partname diename package-
filename

Following is an example for the XC4036EXhq240.

part4000 4036EXhq240 NA.die 4036hq240.pkg

Device Attributes
The header is followed by a list of device attributes. Not all attributes
are applicable to all devices.

• BSCAN pin mappings: TDK=PAD# TDI=PAD# TMS=PAD#

• CLB row and column sizes: NCLBROWS=# NCLBCOLS=#

• Sub-family designation: STYLE=sub_family
(For example, STYLE = XC4000EX)

• Width of the edge decoder (found in the XC5200 and XC4000
families): EDGE_DECODER=#

• Input registers: IN_FF_PER_IOB=#
3-8 Xilinx Development System

PARTGEN
• Output registers: OUT_FF_PER_IOB=#

• Number of pads per row and per column: NPADS_PER_ROW=#
NPADS_PER_COL=#

• Bitstream information:

♦ Number of frames: NFRAMES=#

♦ Number bits/frame: NBITSPERFRAME=#

The preceding bulleted items display for both the -p and -v options.
The following bulleted items only display when using the -v option.

• Number of IOBS in device: NIOBS=#

• Number of bonded IOBS: NBIOBS=#

• Slices per CLB: SLICES_PER_CLB=#

For slice-based architectures; for example. virtex.

(For non-slice based architectures, assume one slice per CLB)

• Flip-flops for each slice: FFS_PER_SLICE=#

• Latches for each slice: LATCHES_PER_SLICE={TRUE|FALSE}

• LUTs in a slice: LUT_NAME=name LUT_SIZE=#

• Number of global buffers: NUM_GLOBAL_BUFFERS=#

(The number of places where a buffer can drive a global clock
combination)

• External Clock IOB pins:

♦ For the XC3000 family: TCLKIOB=PAD# BCLKIOB=PAD#

♦ For the XC4000/XC4000E family:

BUFGP_TL=PAD#, BUFGP_BL=PAD#,
BUFGP_BR=PAD#, BUFGP_TR=PAD#,
BUFGS_TL=PAD#, BUFGS_BL=PAD#,
BUFGS_BR=PAD#, BUFGS_TR=PAD#

♦ For the XC4000EX/XC4000XL/XC4000XLA/XC4000XV/
SpartanXL families:

BUFGLS_NNW=PAD#,
BUFGLS_WNW=PAD#,
BUFGLS_NNE=PAD#,
Development System Reference Guide 3-9

Development System Reference Guide
BUFGLS_ENE=PAD#,
BUFGLS_SSW=PAD#,
BUFGLS_WSW=PAD#,
BUFGLS_SSE=PAD#,
BUFGLS_ESE=PAD#

♦ For the XC5200 family:

BUFG_TL=PAD#, BUFG_TR=PAD#,
BUFG_BL=PAD#, BUFG_BR=PAD#

♦ For the Virtex families and Spartan2:

GCLKBUF0=PAD#, GCLKBUF1=PAD#,
GCLKBUF2=PAD#, GCLKBUF3=PAD#

• Oscillator pins for the XC3000 family:

OSCIOB1=PAD#, OSCIOB2=PAD#

• Block RAM:

NUM_BLK_RAMS=#
BLK_RAM_COLS=# BLK_RAM_COL0=# BLK_RAMCOL1=#
BLK_RAM_COL2=# BLK_RAM_COL_3=#
BLK_RAM_SIZE=4096x1 BLK_RAM_SIZE=2048x2
BLK_RAM_SIZE=512x8 BLK_RAM_SIZE=256x16

Block RAM locations are given with reference to CLB columns. In
the following example, Block RAM 5 is positioned in CLB column
32.

NUM_BLK_RAMS=10 BLK_RAM_COL_5=32
BLK_RAM_SIZE=4096X1

• Select RAM:

NUM_SEL_RAMS=# SEL_RAM_SIZE=#X#

• Select Dual Port RAM:

SEL_DP_RAM={TRUE|FALSE}

This field indicates whether the select RAM can be used as a dual
port ram. The assumption is that the number of addressable
elements is reduced by half, that is, the size of the select RAM in
Dual Port Mode is half that indicated by SEL_RAM_SIZE.

• Speed grade information: SPEEDGRADE=#
3-10 Xilinx Development System

PARTGEN
• Typical delay across a LUT for each speed grade: LUTDELAY=#

• Typical IOB input delay: IOB_IN_DELAY=#

• Typical IOB output delay: IOB_OUT_DELAY=#

• Maximum LUT constructed in a slice:

MAX_LUT_PER_SLICE=#

(From all the LUTs in the slice)

• Max LUT constructed in a CLB: MAX_LUT_PER_CLB=#

(This field describes how wide a LUT can be constructed in the
CLB from the available LUTs in the slice.)

• Number of internal tristate buffers in a device: NUM_TBUFFS=#
Development System Reference Guide 3-11

Development System Reference Guide
3-12 Xilinx Development System

Chapter 4

NGDBuild

This program is compatible with the following families.

• Spartan/XL/-II

• Virtex/-E/-II

• XC9500/XL/XV

• XC4000E/L/EX/XL/XV/XLA

• XC3000A/L

• XC3100A/L

• XC5200

This chapter describes the NGDBuild program. The chapter contains
the following sections.

• “NGDBuild”

• “NGDBuild Syntax”

• “NGDBuild Files”

• “NGDBuild Options”

• “Netlister Launcher”

• “File Names and Locations”

NGDBuild
NGDBuild performs all the steps necessary to read a netlist file in
XNF or EDIF format and create an NGD file describing the logical
design (a logical design is in terms of logic elements such as AND
gates, OR gates, decoders, flip-flops, and RAMs). The NGD file
resulting from an NGDBuild run contains both a logical description
Development System Reference Guide — 3.1i 4-1

Development System Reference Guide
of the design reduced to Xilinx NGD (Native Generic Database) prim-
itives and a description in terms of the original hierarchy expressed in
the input netlist. The output NGD file can be mapped to the desired
device family.

The following figure is a simplified drawing of the design flow
through NGDBuild. NGDBuild invokes other programs and gener-
ates intermediate (NGO) files that are not shown in the drawing. For
a complete description of how NGDBuild works, see the
“EDIF2NGD, XNF2NGD, and NGDBuild” appendix.

Figure 4-1 NGDBuild Design Flow

X8999

NMC
Physical Macros

Referenced in Netlist

NGDBuild
Netlister
Launcher

UCF
User Constraints File

NGD
Generic Database

BLD
Build Report

NCF
Netlist Constraints File

XNF 6.1
Netlist

EDIF 2 0 0
Netlist
4-2 Xilinx Development System

NGDBuild
Converting a Netlist to an NGD File
NGDBuild performs the following steps to convert a netlist to an
NGD file.

1. Reads the source netlist

NGDBuild invokes the Netlister Launcher. The Netlist Launcher
determines the type of the input netlist and starts the appropriate
netlist reader program. The netlist readers incorporate NCF files
associated with each netlist. NCF files contain timing and layout
constraints for each module.

2. Reduces all components in the design to NGD primitives

NGDBuild merges components that reference other files.
NGDBuild also finds the appropriate system library components,
physical macros (NMC files), and behavioral models.

3. Checks the design by running a Logical DRC (Design Rule
Check) on the converted design

The Logical DRC is a series of tests on the logical design. It is
described in the “Logical Design Rule Check” chapter.

4. Writes an NGD file as output

Note This procedure, the Netlister Launcher, and the netlist reader
programs are described in more detail in the “EDIF2NGD,
XNF2NGD, and NGDBuild” appendix.

NGDBuild Syntax
The following command reads the design into the Xilinx Develop-
ment system and converts it to an NGD file.

ngdbuild [options] design_name [ngd_file[.ngd]]

options can be any number of the NGDBuild options listed in the
“NGDBuild Options” section. They do not need to be listed in any
particular order. Separate multiple options with spaces.

design_name is the top-level name of the design file you want to
process. To ensure the design processes correctly, specify a file exten-
sion for the input file. Use one of the legal file extensions specified in
the “Input Files” section. Using an incorrect or nonexistent file exten-
sion causes NGDBuild to fail without creating an NGD file. If you use
Development System Reference Guide 4-3

Development System Reference Guide
an incorrect file extension, NGDBuild may issue an “unexpanded”
error.

ngd_file[.ngd] is the output file in NGD format. The output file name,
its extension, and its location are determined as follows.

• If you do not specify an output file name, the output file has the
same name as the input file, with an .ngd extension.

• If you specify an output file name with no extension, NGDBuild
appends the .ngd extension to the file name.

• If you specify a file name with an extension other than .ngd, you
get an error message and NGDBuild does not run.

• If the output file already exists, it is overwritten with the new file.

NGDBuild Files
This section describes the NGDBuild input and output files.

Input Files
The input files to NGDBuild are the following.

• Design file—The input design can be an XNF or EDIF 2 0 0
netlist. If the input netlist is in another format that the Netlister
Launcher recognizes, the Netlister Launcher invokes the program
necessary to convert the netlist to EDIF or XNF format, then
invokes the appropriate netlist reader, EDIF2NGD or XNF2NGD.

With the default Netlister Launcher options, NGDBuild recog-
nizes and processes files with the extensions shown in the
following table. NGDBuild searches the top-level design netlist
directory for a netlist file with one of these extensions in the order
shown in this table. For example, NGDBuild searches for an XTF
file first. If one is not found, it then searches for an XG file and so
forth.

Netlist Type Recognized Extensions

XNF .xtf, .xg, .xff, .sxnf, .xnf

EDIF .sedif, .edn, .edf, .edif

PLD .pld
4-4 Xilinx Development System

NGDBuild
Note Remove all out of date netlist files from your directory.
Obsolete netlist files may cause errors in NGDBuild.

• UCF file—The User Constraints File is an ASCII file that you
create. You can create this file using the Constraints Editor. See
the Constraints Editor Guide for more information. The file
contains timing and layout constraints that affect how the logical
design is implemented in the target device. The constraints in the
file are added to the information in the output NGD file.

By default, NGDBuild reads the constraints in the UCF file auto-
matically if the UCF file has the same base name as the input
design file and a .ucf extension. You can override the default
behavior and specify a different constraints file by entering a –uc
option to the NGDBuild command line. See the “–uc (User
Constraints File)” section for more information.

• NCF file—The Netlist Constraints File is produced by a CAE
vendor toolset. This file contains constraints specified within the
toolset. The netlist reader invoked by NGDBuild reads the
constraints in this file if the NCF file has the same name as the
input netlist file. It adds the constraints to the intermediate NGO
file and the output NGD file.

Note If the NGO file for a netlist file is up to date, NGDBuild
looks for an NCF file with the same base name as the netlist in the
netlist directory and compares the timestamp of the NCF file
against that of the NGO file. If the NCF file is newer, XNF2NGD
or EDIF2NGD is run again. However, if an NCF file existed on a
previous run of NGDBuild and the NCF file was deleted,
NGDBuild does not detect that XNF2NGD or EDIF2NGD must
be run again. In this case, you must use the –nt on option to force
a rebuild. See the “–nt (Netlist Translation Type)” section for
more information.

• NGC file—This binary file contains the implementation of a
module in the design. If an NGC file exists for a module,
NGDBuild reads this file directly, without looking for a source
EDIF or XNF netlist. In HDL design flows, LogiBLOX creates an
NGC file to define each module.

• NMC files—These physical macros are binary files that contain
the implementation of a physical macro instantiated in the
design. NGDBuild reads the NMC file to create a behavioral
simulation model for the macro.
Development System Reference Guide 4-5

Development System Reference Guide
• MEM files—These LogiBLOX memory definition files are text
files that define the contents of LogiBLOX memory modules.
NGDBuild reads MEM files in design flows where LogiBLOX
does not create NGC files directly. See the “Module Descriptions”
chapter of the LogiBLOX Guide for details.

Unless a full path is provided to NGDBuild, it searches for netlist,
NGC, NMC, and MEM files in the following locations.

• The working directory from which NGDBuild was invoked

• The path specified for the top-level design netlist on the
NGDBuild command line

• Any path specified with the –sd switch on the NGDBuild
command line

Output Files
Output from NGDBuild consists of the following files.

• NGD file—This binary file contains a logical description of the
design in terms of both its original components and hierarchy
and the NGD primitives to which the design reduces.

• BLD file—This build report file contains information about the
NGDBuild run and about the subprocesses run by NGDBuild.
Subprocesses include EDIF2NGD, XNF2NGD, and programs
specified in the URF file. The BLD file has the same root name as
the output NGD file and a .bld extension. The file is written into
the same directory as the output NGD file.

Note If you attach a pull-up or pull-down property on a pad net in
your UCF file, a comment in the BLD file indicates that NGDBuild
added a pull-up or pull-down instance to the net.

Intermediate Files
NGO files—(Not shown in Figure 4-1) These binary files contain a
logical description of the design in terms of its original components
and hierarchy. These files are created when NGDBuild reads the
input netlist. If these files already exist, NGDBuild reads the existing
files. If these files do not exist or are out of date, NGDBuild creates
them.
4-6 Xilinx Development System

NGDBuild
NGDBuild Options
This section describes NGDBuild command line options.

–a (Add PADs to Top-Level Port Signals)
If the top-level input netlist is in EDIF format, the –a option causes
NGDBuild to add a PAD symbol to every signal that is connected to a
port on the root-level cell. This option has no effect on lower-level
netlists or on a top-level XNF netlist.

Whether you need to use –a depends on the behavior of your third-
party EDIF writer. If your EDIF writer treats pads as instances (like
other library components), you should not use –a. If your EDIF writer
treats pads as hierarchical ports, you should use –a to infer actual pad
symbols. If you do not use –a where necessary, logic may be improp-
erly removed during mapping.

For EDIF files produced by Mentor Graphics and Cadence, the –a
option is set automatically; you do not have to enter –a explicitly for
these vendors.

Note The NGDBuild –a option corresponds to the EDIF2NGD –a
option. If you run EDIF2NGD on the top-level EDIF netlist separately,
rather than allowing NGDBuild to run EDIF2NGD, you should use
the two –a options consistently.

–dd (Destination Directory)
–dd ngo_directory

The –dd option specifies the directory for intermediate files (design
NGO files and netlist files). If the –dd option is not specified, files are
placed in the current directory.

–f (Execute Commands File)
–f command_file

The –f option executes the command line arguments in the specified
command_file. For more information on the –f option, see the “–f
Option” section of the “Introduction” chapter.
Development System Reference Guide 4-7

Development System Reference Guide
–i (Ignore UCF File)
The –i option ignores the UCF file in the top-level design netlist direc-
tory. If –i is not specified, NGDBuild checks for a UCF file and, if one
is detected, loads it.

Note If you use this option, do not use the –uc option.

–l (Libraries to Search)
–l libname

The –l option indicates the list of libraries to search when
determining what library components were used to build the design.
This option is passed to the appropriate netlist reader. The
information allows NGDBuild to determine the source of the design’s
components so it can resolve the components to NGD primitives.

You can specify multiple libraries by entering multiple –l libname
entries on the NGDBuild command line.

The allowable entries for libname are the following.

• xilinxun (Xilinx Unified library)

• synopsys

Note You do not have to enter xilinxun with a –l option. The Xilinx
Development System tools automatically access these libraries. In
cases where NGDBuild automatically detects Synopsys designs (for
example, the netlist extension is .sxnf or .sedif), you do not have to
enter synopsys with a –l option.

–modular initial (Initial Budgeting of Modular Design)
The –modular initial option sets up the initial budgeting for the
modular design session. NGDBuild generates an NGO and NGD file
for the top-level design with all of the instantiated modules repre-
sented as unexpanded blocks. This NGD file cannot be mapped but
can be used with the Floorplanner and Constraints Editor tools.

For more information on modular design, see http://
support.xilinx.com/xapp/xapp404.pdf.
4-8 Xilinx Development System

NGDBuild
–modular module (Active Module Implementation)
–modular module -active active_module_name

The –modular module option saves the name of the active module in
the generated NGD file for later processing in a modular design
session.

–modular assemble (Module Assembly)
–modular assemble -pimpath pim_directory_path
-use_pim pim_module_name

The –modular assemble option links the Physically Implemented
Modules (PIMs) to the top-level design. Use the –pimpath sub-option
to specify the directory that contains the PIMs. Use the –usepim sub-
option to instantiate one or many PIMs in the top-level design.
Following is an example of how to use the –usepim sub-option to
specify two PIMs.

–modular assemble -pimpath pimpath -use_pim
pim_module_name1 -use_pim pim_module_name2

–nt (Netlist Translation Type)
–nt {timestamp | on | off }

The –nt option determines how timestamps are treated by the
Netlister Launcher when it is invoked by NGDBuild. A timestamp is
information in a file that indicates the date and time the file was
created. The timestamp option (which is the default if no –nt option is
specified) has the Netlister Launcher perform the normal timestamp
check and update NGO files according to their timestamps. The on
option translates netlists regardless of timestamps (rebuilding all
NGO files), and the off option does not rebuild an existing NGO file,
regardless of its timestamp.

–p (Target Architecture)
–p part

The –p option specifies the part into which the design is
implemented.The –p option can specify an architecture only, a
complete part specification (device, package, and speed), or a partial
specification (for example, device and package only).
Development System Reference Guide 4-9

Development System Reference Guide
The syntax for the –p option is described in the “Part Numbers in
Commands” section of the “Introduction” chapter. Examples of part
entries are XCV50-TQ144 and XCV50-TQ144-5.

When you specify the part, the NGD file produced by NGDBuild is
optimized for mapping into that architecture.

You do not have to specify a –p option if your NGO file already
contains information about the desired vendor and family (for
example, if you placed a PART property in a schematic or a CONFIG
PART statement in a UCF file). However, you can override the infor-
mation in the NGO file with the –p option when you run NGDBuild.

–r (Ignore LOC Constraints)
The –r option eliminates all location constraints (LOC=) found in the
input netlist or UCF file. Use this option when you migrate to a
different device or architecture, because locations in one architecture
may not match locations in another.

Note If you previously ran NGDBuild on your design and NGO files
are present, you must use the –nt on option the first time you use –r.
This forces a rebuild of the NGO files, allowing NGDBuild to run
EDIF2NGD or XNF2NGD to remove location constraints.

–sd (Search Specified Directory)
–sd search_path

The –sd option adds the specified search_path to the list of directories
to search when resolving file references (that is, files specified in the
schematic with a FILE=filename property) and when searching for
netlist, NGO, NGC, NMC, and MEM files. You do not have to specify
a search path for the top-level design netlist directory, because it is
automatically searched by NGDBuild.

The search_path must be separated from the –sd by spaces or tabs (for
example, –sd designs is correct, –sddesigns is not).
4-10 Xilinx Development System

NGDBuild
You can specify multiple –sd options on the command line. Each
must be preceded with –sd; you cannot combine multiple search_path
specifiers after one –sd. For example, the following syntax is not
acceptable.

–sd /home/macros/counter /home/designs/pal2

The following syntax is acceptable.

–sd /home/macros/counter –sd /home/designs/pal2

–u (Allow Unexpanded Blocks)
In the default behavior of NGDBuild (without –u option), NGDBuild
generates an error if a block in the design cannot be expanded to
NGD primitives. If this error occurs, an NGD file is not written.

If you enter the –u option, NGDBuild generates a warning instead of
an error if a block cannot be expanded, and writes an NGD file
containing the unexpanded block.

You may want to run NGDBuild with the –u option to perform
preliminary mapping, placement and routing, timing analysis, or
simulation on the design even though the design is not complete. To
ensure the unexpanded blocks remains in the design when it is
mapped, run the MAP program with the –u (Do Not Remove Unused
Logic) option.

–uc (User Constraints File)
–uc ucf_file[.ucf]

The –uc option specifies a UCF (User Constraints File) for the
Netlister Launcher to read. The UCF file contains timing and layout
constraints that affect how the logical design is implemented in the
target device.

The user constraints file must have a .ucf extension. If you specify a
user constraints file without an extension, NGDBuild appends the
.ucf extension to the file name. If you specify a file name with an
extension other than .ucf, you get an error message and NGDBuild
does not run.

If you do not enter a –uc option and a UCF file exists with the same
base name as the input design file and a .ucf extension, NGDBuild
automatically reads the constraints in this UCF file.
Development System Reference Guide 4-11

Development System Reference Guide
The User Constraints File is described in the “User Constraints (UCF)
File” chapter.

Note If you use this option, do not use the –i option.

–ur (Read User Rules File)
–ur rules_file[.urf]

The –ur option specifies a user rules file for the Netlister Launcher to
access. This file determines the acceptable netlist input files, the
netlist readers that read these files, and the default netlist reader
options. This file also allows you to specify third party tool
commands for processing designs.

The user rules file must have a .urf extension. If you specify a user
rules file with no extension, NGDBuild appends the .urf extension to
the file name. If you specify a file name with an extension other than
.urf, you get an error message and NGDBuild does not run.

The user rules file is described in the “User Rules File” section of the
“EDIF2NGD, XNF2NGD, and NGDBuild” appendix.

Netlister Launcher
The Netlister Launcher, which is part of NGDBuild, performs any
netlist translations necessary to execute the NGDBuild command.
The Netlister Launcher is described in detail in the “Netlister
Launcher” section of the “EDIF2NGD, XNF2NGD, and NGDBuild”
appendix.

File Names and Locations
Following are some notes about file names and notations in
NGDBuild.

• An intermediate file has the same root name as the design that
produced it. An intermediate file is generated when more than
one netlist reader is needed to translate a netlist to a NGO file.

• Netlist root file names in the search path must be unique. For
example, if you have the design state.edn, you cannot have
another design named state.xnf in any of the directories specified
in the search path.
4-12 Xilinx Development System

NGDBuild
• NGDBuild and the Netlister Launcher support quoted file
names. Quoted file names may have special characters (for
example, a space) that are not normally allowed.

• If the output directory specified in the call to NGDBuild is not
writable, an error is displayed and NGDBuild fails.
Development System Reference Guide 4-13

Development System Reference Guide
4-14 Xilinx Development System

Chapter 5

User Constraints (UCF) File

This chapter contains the following sections.

• “Overview”

• “UCF Flow”

Overview
The UCF file is an ASCII file specifying constraints on the logical
design. You create this file and enter your constraints in the file with a
text editor.

Note You can also use the Constraints Editor to create constraints
within a UCF file. Refer to the Constraints Editor Guide for details.

These constraints affect how the logical design is implemented in the
target device. The file can also be used to override constraints speci-
fied during design entry.

The following types of logical constraints can be included in the UCF
file.

• Placement

• Mapping

• Timing

• BitGen

These constraints and the syntax for entering them in the UCF are
described in the “Attributes, Constraints, and Carry Logic” chapter of
the Libraries Guide. A more detailed description of timing constraints
can be found in the “Using Timing Constraints” chapter of this
manual, the Development System Reference Guide.
Development System Reference Guide — 3.1i 5-1

Development System Reference Guide
UCF Flow
The following figure illustrates the UCF flow.

Figure 5-1 UCF File Flow

The UCF file is an input to NGDBuild (see the preceding figure). The
constraints in the UCF file become part of the information in the NGD
file produced by NGDBuild. Some of these constraints are used when
the design is mapped by MAP and some of the constraints are written
into the PCF (Physical Constraints File) produced by MAP. The
constraints in the PCF file are used by the each of the physical design
tools (for example, PAR and the timing analysis tools), which are run
after your design is mapped.

X7423

NGDBuild

NGD
Generic Database

(Containing Constraints)

UCF
User Constraints FileDesign Netlist
5-2 Xilinx Development System

Chapter 6

Using Timing Constraints

The timing constraints described in this chapter are compatible with
the following families.

• XC3000A/L

• XC3100A/L

• XC4000E/L

• XC4000EX/XL/XLA/XV

• XC5200

• Virtex/-E/-II

• Spartan/XL/-II

For information about using timing constraints with CPLDs, consult
the CPLD Schematic Design Guide and the CPLD Synthesis Design
Guide.

This chapter describes how you specify timing constraints and
contains the following sections.

• “Timing Requirements and Xilinx Software”

• “IOB Register Specification and Reporting”

• “Entering Timing Specifications”

• “Specifying Groups”

• “Defining a Clock Period (PERIOD Constraint)”

• “OFFSET Timing Specifications”

• “Ignoring Selected Paths (TIG)”

• “Basic FROM –TO Syntax”
Development System Reference Guide — 3.1i 6-1

Development System Reference Guide
• “Specifying Timing Points”

• “Using TPTHRU or TPSYNC in a FROM–TO Constraint”

• “Specifying Time Delay in TS Attributes”

• “Using the PRIORITY Keyword”

• “Sample Schematic Using TIMESPEC/TIMEGRP Symbol”

• “Prorating Constraints”

• “Additional Timing Constraints”

• “Constraints Priority”

• “Syntax Summary”

Timing Requirements and Xilinx Software
Xilinx software enables you to specify precise timing requirements
for your Xilinx FPGA designs. You can specify the timing
requirements for any nets or paths in your design. One way of
specifying path requirements is to first identify a set of paths by
identifying a group of start and end points. The start and end points
can be flip-flops, I/O pads, latches, or RAMs. You can then control
the worst-case timing on the set of paths by specifying a single delay
requirement for all paths in the set.

The primary method of specifying timing requirements is by entering
them on the schematic. However, you can also specify timing require-
ments in constraints files (UCF and PCF). For detailed information
about the constraints you can use with your schematic entry soft-
ware, refer to the “Attributes, Constraints, and Carry Logic” chapter
of the Libraries Guide.

Once you define timing specifications and then map the design, PAR
places and routes your design based on these requirements.

To analyze the results of your timing specifications, use TRACE
(Timing Report , Circuit Evaluator, and TSI Report). Refer to the
“TRACE” chapter for more information.
6-2 Xilinx Development System

Using Timing Constraints
IOB Register Specification and Reporting
In the 3.1i release, the Xilinx timing tool analyzes OFFSET and FROM
TO constraints that include IOB registers. The timing tool reports
paths that start or end at IOB registers (including paths between
components). This strategy requires the analysis of paths that inter-
nally have no length (that is, no components or connections), only a
setup requirement, for pad-to-setup paths that originate at a pad and
terminate at the input register within the same IOB. In the following
example, the pad from the IOB pad to the input register IFD is
analyzed and reported by the timing tool.

When these paths are analyzed for either TRACE or PAR, they may
create timing errors that cannot be corrected because the timing
requirement is less than the setup time for the I/O register. Under
these conditions, TRACE always generates a timing error and PAR
ceases, indicating that the place and route of the design is impossible
due to existing constraints.

IOB

IFD

DATAPAD

CLKIOB

CLKPAD CLKBUF

X8924
Development System Reference Guide 6-3

Development System Reference Guide
Entering Timing Specifications
This section describes the basic methods for entering timing
specifications in a schematic or User Constraints File (UCF).

The following notes apply to Mentor Graphics users.

• The term attribute in this chapter is equivalent to property as used
in the Mentor Graphics environment.

• The Mentor netlist writer (ENWRITE) converts all property
names to lowercase letters, and the Xilinx netlist reader
EDIF2NGD then converts the property names to uppercase
letters. Because property names are processed in this way, you
must enter variable text in certain constraints in upper case
letters only. This requirement is discussed in the following
sections.

♦ “Entering Timing Specifications in a Schematic”

♦ “Creating New Groups from Existing Groups”

Entering Timing Specifications in a Schematic
The TIMESPEC schematic primitive, as illustrated in Figure 6-1,
serves as a placeholder for timing specifications, which are called TS
attribute definitions. Every TS attribute must be defined in a
TIMESPEC primitive, and only TIMESPEC primitives can carry TS
attribute definitions. Every TS attribute begins with the letters ‘‘TS”
and ends with a unique identifier that can consist of letters, numbers,
or the underscore character (_).

TS attribute definitions can be any length, but only 30 characters are
displayed in the TIMESPEC window. Each TIMESPEC primitive can
hold up to eight TS attributes. If you want to include more than eight
TS attributes, you can use multiple TIMESPEC primitives in your
schematic.
6-4 Xilinx Development System

Using Timing Constraints
Figure 6-1 TIMESPEC Primitive

How you add a TIMESPEC primitive to your schematic depends on
your specific schematic-entry software. Refer to the appropriate
Xilinx Interface Guide for step-by-step instructions.

A TS attribute defines the allowable delay for paths in your design.
The basic syntax for a TS attribute is as follows.

TSidentifier=FROM source_group TO dest_group delay

TSidentifier is a unique name for the TS attribute, source_group and
dest_group are groups of start points and end points, and delay defines
the maximum delay for the paths between the start points and end
points. The delay parameter defines the maximum delay for the
attribute. Nanoseconds are the default units for specifying delay time
in TS attributes. You can also specify delay using other units, such as
picoseconds or megahertz.

Note Keywords, such as FROM, TO, and TS appear in the documen-
tation in upper case; however, you can enter them in the TIMESPEC
primitive in either upper or lower case. The characters in the
keywords must be all upper case or all lower case. Examples of
acceptable keywords are: FROM, TO, from, to. Examples of unaccept-
able keywords are: From, To, fRoM, tO

Note: The Mentor netlist writer (ENWRITE) converts all property
names to lower case letters, and the Xilinx netlist reader EDIF2NGD
then converts the property names to upper case letters. To ensure
references from one constraint to another are processed correctly, a
TSidentifier name should contain only upper case letters on a Mentor
Schematic (TSMAIN, for example, but not TSmain or TSMain).

X7430

TIMESPEC
TS_P2P=FROM PADS to PADS 20;
Development System Reference Guide 6-5

Development System Reference Guide
Also, if a TSidentifier name is referenced in a property value, it must
be entered in upper case letters. For example, the TSID1 in the second
constraint below must be entered in upper case letters to match the
TSID1 name in the first constraint.

TSID1 = FROM gr1 TO gr2 50;

TSMAIN = FROM here TO there TSID1 /2;

The basic TS attribute is described in detail in the “Basic FROM –TO
Syntax” section. More detailed forms of the attribute are also
described in that section.

Note A colon may be used as a separator instead of a space in all
timing specifications.

Entering Timing Specifications in a Constraints File
You can enter timing specifications as constraints in a UCF file. When
you then run NGDBuild on your design, your timing specifications
are added to the design database as part of the NGD file.

To avoid manually entering timing constraints in a UCF file, use the
Xilinx Constraints Editor, a tool that greatly simplifies constraint
creation. For a detailed description of how to use the editor, see the
Constraints Editor Guide.

The basic syntax for a timing specification entered in a constraints file
is the TS attribute syntax described in the “Basic FROM –TO Syntax”
section.

Although not required, Xilinx recommends that NET and INST
names be enclosed in double quotes to avoid errors. Additionally,
inverted signal names that contain a tilde, for example, ~OUTSIG1,
must always be enclosed in double quotes. Other special characters
that must be enclosed in quotes are the asterisk (*) and question mark
(?).

You can use the wildcard character (*) to traverse the hierarchy of a
directory within a UCF or NCF file. Consider the following directory
hierarchy.
6-6 Xilinx Development System

Using Timing Constraints
With the example hierarchy, the following specifications illustrate the
scope of the wildcard.

INST * => <everything>

INST /* => <everything>
INST /*/ => <$A1,$B1,$C1>
INST $A1/* => <$A21,$A22,$A3,$A4>
INST $A1/*/ => <$A21,$A22>
INST $A1/*/* => <$A3,$A4>
INST $A1/*/*/ => <$A3>
INST $A1/*/*/* => <$A4>
INST $A1/*/*/*/ => <$A4>
INST /*/*22/ => <$A22,$B22,$C22>
INST /*/*22 => <$A22,$A3,$A4,$B22,$B3,$C22,$C3>
INST /*/*22/* => <$A3,$A4,$B3,$C22,$C3>

Specifying Groups
In a TS attribute, you specify the set of paths to be analyzed by
grouping start and end points in one of the following ways.

• Refer to a predefined group by specifying one of the corre-
sponding keywords — FFS, PADS, LATCHES, or RAMS.

• Create your own groups within a predefined group by tagging
symbols with TNM (pronounced tee-name) attributes.

• Create groups that are combinations of existing groups using
TIMEGRP symbols.

• Create groups by pattern matching on net names.

The following sections discuss each method in detail.

$A21 $A22

$A3

$A4

$A1

$B21 $B22

$B3

$B1

$C21 $C22

$C3

$C1

X8571
Development System Reference Guide 6-7

Development System Reference Guide
Using Predefined Groups
You can refer to a group of flip-flops, input latches, pads, or RAMs by
using the corresponding keywords.

From-To statements enable you to define timing specifications for
paths between predefined groups. The following examples are TS
attributes that reside in the TIMESPEC primitive or are entered in the
UCF. This method enables you to easily define default timing specifi-
cations for the design, as illustrated by the following examples.

Schematic syntax in TIMESPEC primitive

TS01=FROM FFS TO FFS 30

TS02=FROM LATCHES TO LATCHES 25

TS03=FROM PADS TO RAMS 70

TS04=FROM FFS TO PADS 55

UCF syntax

TIMESPEC TS01=FROM FFS TO FFS 30;

TIMESPEC TS02=FROM LATCHES TO LATCHES 25;

TIMESPEC TS03=FROM PADS TO RAMS 70;

TIMESPEC TS04=FROM FFS TO PADS 55;

A predefined group can also carry a name qualifier; the qualifier can
appear any place where the predefined group is used. This name
qualifier restricts the number of elements being referred to. The
syntax used is as follows.

Keyword Description

FFS CLB or IOB flip-flops only; not flip-flops built from
function generators (Shift Register LUTs are included
in Virtex/-E/-II and Spartan-II devices also)

LATCHES CLB or IOB latches only; not latches built from func-
tion generators

PADS Input/Output pads

RAMS For architectures with RAMS (LUT RAMS and Block
RAMS are included for Virtex/-E/-II and Spartan-II
devices but Shift Register LUTs are not included in
RAMS)
6-8 Xilinx Development System

Using Timing Constraints
predefined group (name_qualifier [name_qualifier])

name_qualifier is the full hierarchical name of the net that is sourced
by the primitive being identified.

The name qualifier can include wildcard characters (*) to indicate any
number of characters (or ? to indicate a single character) which allows
the specification of more than one net or allows you to shorten the
full hierarchical name to something that is easier to type.

As an example, specifying the group FFS(MACRO_A/Q?) selects
only the flip-flops driving the Q0, Q1, Q2 and Q3 nets in the
following macro.
Development System Reference Guide 6-9

Development System Reference Guide
Figure 6-2 Using Qualifiers with Predefined Groups

To create more specific groups see the following section.

X7431

Q3

MACRO_A

D

CE

CLR

Vcc Vcc

Q

D

CE

CLR

Q

D

CE

CLR

Q

D

CE

CLR

Q D

CE

CLR

Q

D

CE

CLR

Q

D

CE

CLR

Q

D

CE

CLR

Q

Q1

Q0

Q2

R3

R1

R0

R2

OUT3

OUT1

OUT0

OUT2
6-10 Xilinx Development System

Using Timing Constraints
Creating User-Defined Groups Using TNMs
A TNM (timing name) is an attribute that can be used to identify the
elements that make up a group which can then be used in a timing
specification. A TNM is a property that you place directly on your
schematic to tag a specific net, element pin, primitive or macro.
All symbols tagged with the TNM identifier are considered a group.
Place TNM attributes directly on your schematic or in a UCF file
using the following syntax. Special rules apply when using TNM
with the PERIOD constraint for Virtex/-E/-II and Spartan-II
CLKDLLs. Refer to the “PERIOD Specifications on CLKDLLs”
section.

Schematic syntax

TNM=identifier

UCF syntax

{NET | INST | PIN} object_name TNM=identifier;

identifier is a value that consists of any combination of letters,
numbers, or underscores. Keep the TNM short for convenience and
clarity.

Do not use the reserved words FFS, LATCHES, PADS, RAMS,
RISING, FALLING, TRANSHI, TRANSLO, or EXCEPT, as identifiers.
The constraints in the table below are also reserved words and should
not be used as identifiers.

Reserved Words (Constraints)

ADD FAST NODELAY

ALU FBKINV OPT

ASSIGN FILE OSC

BEL F_SET RES

BLKNM HBLKNM RLOC

CAP HU_SET RLOC_ORIGIN

CLKDV_DIVIDE H_SET RLOC_RANGE

CLBNM INIT SCHNM

CMOS INIT OX SLOW

CYMODE INTERNAL STARTUP_WAIT
Development System Reference Guide 6-11

Development System Reference Guide
Note: If you want to use a keyword as an identifier, you can enclose
the keyword in quotation marks. In the TNM statement
TNM=RAMS ”CMOS”, CMOS is treated as an identifier instead of a
keyword.

You can specify as many groups of end points as are necessary to
describe the performance requirements of your design. However, to
simplify the specification process and reduce the place and route
time, use as few groups as possible.

A predefined group can be used in a TNM specification, using the
following syntax on a schematic or UCF file.

Schematic syntax

TNM=predefined_group identifier

UCF syntax

{NET | INST | PIN} object_name TNM=predefined_group iden-
tifier;

The object_name is the net, pin, or instance name.

The predefined_group is one of the groups (for example, FFS or RAMS)
defined in the “Using Predefined Groups” section and identifier is a
value that consists of any combination of letters, numbers, or under-
scores. Paths defined by the TNM are traced forward if placed on a
net or pin, through any number of gates or buffers, until they reach a
member of the predefined_group. That element is added to the speci-

DECODE IOB SYSTEM

DEF IOSTANDARD TNM

DIVIDE1_BY LIBVER TRIM

DIVIDE2_BY LOC TS

DOUBLE LOWPWR TTL

DRIVE MAP TYPE

DUTY_CYCLE_
CORRECTION

MEDFAST USE_RLOC

EQN MEDSLOW U_SET

FAST MINIM

Reserved Words (Constraints)
6-12 Xilinx Development System

Using Timing Constraints
fied TNM group. TNM does not trace through the element to the next
element; forward tracing stops at the element.

This mechanism is called forward tracing. If TNM is placed on an
instance, paths are traced “downward” through a hierarchy instead
of forward along a net.

Note If a TNM is placed on an input pad net, the constraint only
applies to the input pad. In that case, refer to the “Creating User-
Defined Groups Using TNM_NET” section.

The specification shown below, when attached to a net, would create
a group called FIFO_CORE consisting of all of the RAM primitives
traced forward on the net. The specification shows the schematic and
UCF syntax.

Schematic syntax

TNM=RAMS FIFO_CORE

UCF syntax

NET net_name TNM=RAMS FIFO_CORE;

The following figure illustrates the preceding TNM identifier. The
two RAMs traced forward from the net are included in the group.
The flip flop is not.
Development System Reference Guide 6-13

Development System Reference Guide
Figure 6-3 TNM Placed on a Net

A defined net in a TNM statement can have a name qualifier (for
example, TNM=FFS (FRED*) GRP_A), as described in the “Creating
Groups by Pattern Matching” section.

You can use several methods for tagging groups of end points:
placing identifiers on nets, macro or primitive pins, primitives, or
macro symbols. Which method you choose depends on how the path
end points are related in your design. For each of these elements, you
can use the predefined group syntax described earlier in this section.

The following subsections discuss the different methods of placing
TNMs in your design. The same TNM attribute can be used as many
ways and as many times as necessary to get the TNM applied to all of
the elements in the desired group.

You can place TNM attributes in either of two places: in the schematic
as discussed in this section or in a constraints file (UCF or NCF).

The syntax for specifying TNMs in a UCF or NCF constraints file is
described in the “Attributes, Constraints, and Carry Logic” chapter of
the Libraries Guide.

D Q

D O
WE
A0
A1
A2
A3
A4

D O
WE
A0
A1
A2
A3
A4

CLOCK

D3

D2

D1

TNM=RAMS:FIFO_CORE

Q3

X8526
6-14 Xilinx Development System

Using Timing Constraints
Placing TNMs on Nets

The TNM attribute can be placed on any net in the design. The
attribute indicates that the TNM value should be attached to all valid
elements fed by all paths that fan forward from the tagged net.
Forward tracing stops at any flip-flop, latch, RAM or pad. See Figure
6-3. TNMs do not propagate across IBUFs if they are attached to the
input pad net. Also refer to the “Creating User-Defined Groups Using
TNMs” section.

Placing TNMs on Macro or Primitive Pins

The TNM attribute can be placed on any macro or component pin in
the design if the design entry package allows placement of attributes
on macro or primitive pins. The attribute indicates that the TNM
value should be attached to all valid elements fed by all paths that fan
forward from the tagged pin. Forward tracing stops at any flip-flop,
latch, RAM or pad. The following illustration shows the valid
elements for a TNM attached to the schematic a macro pin.

Figure 6-4 TNM Placed on a Macro Pin

The syntax for the UCF file would be

EN
D Q

EN

D Q
I

O

DI DO

ADDRS
WE

DI DO

ADDRS
WE

D

X8528

TNM=FFS:FLOPS

MEM

WE
A0
A1
A2
A3

O

FLOPS

DI DO

FLOPS
Development System Reference Guide 6-15

Development System Reference Guide
PIN pin_name TNM=FFS FLOPS;

Placing TNMs on Primitive Symbols

You can group individual logic primitives explicitly by flagging each
symbol, as illustrated by the following figure.

Figure 6-5 TNM on Primitive Symbols

In the figure, the flip-flops tagged with the TNM form a group called
“‘FLOPS.” The untagged flip-flop on the right side of the drawing is
not part of the group.

Place only one TNM on each symbol, driver pin, or macro driver pin.

Schematic syntax

TNM=FLOPS

UCF syntax

INST symbol_name TNM=FLOPS;

Placing TNMs on Macro Symbols

A macro is an element that performs some general purpose higher
level function. It typically has a lower level design that consists of
primitives, other macros, or both, connected together to implement

D

TNM=FLOPS

TNM=FLOPS

Q

D Q

D Q

LOGIC

LOGIC

X8532

CLK
6-16 Xilinx Development System

Using Timing Constraints
the higher level function. An example of a macro function is a 16-bit
counter.

A TNM attribute attached to a macro indicates that all elements
inside the macro (at all levels of hierarchy below the tagged macro)
are part of the named group.

When a macro contains more than one symbol type and you want to
group only a single type, use the TNM identifier in conjunction with
one of the predefined groups: FFS, RAMS, PADS, or LATCHES as
indicated by the following syntax examples.

Schematic syntax

TNM=FFS identifier

TNM=RAMS identifier

TNM=LATCHES identifier

TNM=PADS identifier

UCF syntax

INST macro_name TNM=FFS identifier;

INST macro_name TNM=RAMS identifier;

INST macro_name TNM=LATCHES identifier;

INST macro_name TNM=PADS identifier;

If multiple symbols of the same type are contained in the same
hierarchical block, you can simply flag that hierarchical symbol, as
illustrated by the following figure. In the figure, all flip-flops
included in the macro are tagged with the TNM ‘‘FLOPS”. By tagging
the macro symbol, you do not have to tag each underlying symbol
individually.
Development System Reference Guide 6-17

Development System Reference Guide
Figure 6-6 TNM on Macro Symbol

EN
D Q

EN

D Q
I

O

DI DO

ADDRS

TNM=FFS:FLOPS

WE

DI DO

ADDRS
WE

Q5
Q4
Q3
Q2
Q1
Q0
EN

POS
PH0
PH1
PH2
PH3
NEG

X4678
6-18 Xilinx Development System

Using Timing Constraints
Placing TNMs on Nets or Pins to Group Flip-Flops
and Latches

You can easily group flip-flops, latches, or both by flagging a
common input net, typically either a clock net or an enable net. If you
attach a TNM to a net or driver pin, that TNM applies to all flip-flops
and input latches that are reached through the net or pin. That is, that
path is traced forward, through any number of gates or buffers, until
it reaches a flip-flop or input latch. That element is added to the
specified TNM group.

The following figure illustrates the use of a TNM on a net that traces
forward to create a group of flip-flops.

In the figure, the attribute TNM=FLOPS traces forward to the first
two flip-flops, which form a group called FLOPS. The bottom flip-
flop is not part of the group FLOPS.

Figure 6-7 TNM on Net Used to Group Flip-Flops

The following figure illustrates placing a TNM on a clock net, which
traces forward to all three flip-flops and forms the group Q_FLOPS.

AND

FD Q

O

Pxx

X8553

FD Q

FD Q

Pxx

Pxx O

O

O

D1 D

C

D

C

D

C

IBUF
TNM=FLOPS

IBUF

GCLK

O

O

O CLK

XNOR

INV

INV

CLKNI

IPAD

IPAD

IPAD
I ICLKIN

I

I AIN0

BIN0

I

I

A0

B0

1

2

1

2

OBUF

OBUF

OBUF

I O
OPAD

OPAD

OPAD

I O

I O

BIT00

BIT01

BIT02

O

O

O

BIT0

BIT1

BIT2

D3

D2

Pxx

Pxx

Pxx
Development System Reference Guide 6-19

Development System Reference Guide
Figure 6-8 TNM on Clock Pin Used to Group Flip-Flops

The TNM parameter on nets or pins is allowed to have a qualifier.

For example, on schematics

TNM=FFS data

TNM=RAMS fifo

TNM=LATCHES capture

In UCF files

{NET | PIN} net_or_pin_name TNM=FFS data;

{NET | PIN} net_or_pin_name TNM=RAMS fifo;

{NET | PIN} net_or_pin_name TNM=LATCHES capture;

A qualified TNM is traced forward until it reaches the first storage
element (flip-flop, latch, or RAM). If that type of storage element
matches the qualifier, the storage element is given that TNM value.
Whether or not there is a match, the TNM is not traced through that
storage element.

TNM parameters on nets or pins are never traced through a storage
element (flip-flop, latch or RAM).

D Q

Q1

D Q

CLOCK

TNM=Q_FLOPS

D Q
D1

D3

D2 Q2

Q3

X8531
6-20 Xilinx Development System

Using Timing Constraints
Creating User-Defined Groups Using TNM_NET
A TNM_NET (timing name for nets) is an attribute that can be used
to identify the elements that make up a group which can then be used
in a timing specification. Essentially TNM_NET is equivalent to TNM
on a net except for pad nets. Special rules apply when using
TNM_NET with the PERIOD constraint for Virtex/-E/-II CLKDLLs.
Refer to the “PERIOD Specifications on CLKDLLs” section.

A TNM_NET is a property that you normally use in conjunction with
an HDL design to tag a specific net. All nets tagged with the
TNM_NET identifier are considered a group. The UCF syntax is as
follows.

NET net_name TNM_NET=identifier;

identifier is a value that consists of any combination of letters,
numbers, or underscores. Keep the TNM_NET short for convenience
and clarity. The basic syntax rules for TNM_NET and TNM are iden-
tical. Refer to the “Creating User-Defined Groups Using TNM_NET”
section for details.

The TNM_NET attribute can be used to define certain types of nets
that cannot be adequately described by the TNM constraint. This
attribute is specifically targeted for use in HDL designs.

For example, consider the following design.

C
INTCLK

BUFG
PADCLK

FFA

C

FFB

X8347

IPAD
Development System Reference Guide 6-21

Development System Reference Guide
In the preceding design, a TNM associated with the PAD symbol only
includes the PAD symbol as a member in a timing analysis group. For
example, the following UCF file entry creates a time group that
includes the IPAD symbol only.

NET PADCLK TNM=PADS(*) PADGRP; (UCF file example)

However, using TNM to define a time group for the net PADCLK
creates an empty time group.

NET PADCLK TNM=FFS(*) FFGRP;(UCF file example)

All properties that apply to a pad are transferred from the net to the
PAD symbol. Since the TNM is transferred from the net to the PAD
symbol, the qualifier, “FFS(*)” does not match the PAD symbol.

To overcome this obstacle for schematic designs using TNM, you can
create a time group for the INTCLK net.

NET INTCLK TNM=FFS(*) FFGRP;(UCF file example)

However, for HDL designs, the only meaningful net names are the
ones connected directly to pads. Then, use TNM_NET to create the
FFGRP time group.

NET PADCLK TNM_NET=FFS(*) FFGRP;(UCF file example)

NGDBuild does not transfer a TNM_NET attribute from a net to a
PAD as it does with TNM.

TNM_NET can be used in NCF or UCF files as a property attached to
an object in an input netlist (EDIF or XNF). TNM_NET is not
supported in PCF files.

TNM_NET can only be used with nets. If TNM_NET is used with any
other object such as a pin or symbol, a warning is generated and the
TNM_NET definition is ignored.
6-22 Xilinx Development System

Using Timing Constraints
Creating New Groups from Existing Groups
In addition to naming groups using the TNM identifier, you can also
define groups in terms of other groups. You can create a group that is
a combination of existing groups by defining a TIMEGRP attribute as
follows.

Schematic syntax in TIMEGRP primitive

newgroup=existing_grp1 existing_grp2 [existing_grp3
. . .]

UCF syntax

TIMEGRP newgroup=existing_grp1 existing_grp2 [
existing_grp3 . . .];

newgroup is a newly created group that consists of existing groups
created via TNMs, predefined groups, or other TIMEGRP attributes.

The Mentor netlist writer (ENWRITE™) converts all property names
to lower case letters, and the Xilinx netlist reader EDIF2NGD then
converts the property names to upper case letters. To ensure
references from one constraint to another are processed correctly,

• Group names should contain only upper case letters on a Mentor
Schematic (MY_FLOPS, for example, but not my_flops or
My_flops).

• If a group name appears in a property value, it must also be
expressed in upper case letters. For example, the GROUP3 in the
first constraint below must be entered in upper case letters to
match the GROUP3 in the second constraint.

Schematic syntax in TIMEGRP primitive

GROUP1 = gr2 GROUP3
GROUP3 = FFS except grp5

UCF syntax

TIMEGRP GROUP1 = gr2 GROUP3;
TIMEGRP GROUP3 = FFS except grp5;
Development System Reference Guide 6-23

Development System Reference Guide
TIMEGRP attributes reside in the TIMEGRP primitive, as illustrated
in the figure below. Once you create a TIMEGRP attribute definition
within a TIMEGRP primitive, you can use it in the TIMESPEC
primitive. Each TIMEGRP primitive can hold up to eight group
definitions. Since your design might include more than eight
TIMEGRP attributes, you can use multiple TIMEGRP primitives.

Figure 6-9 TIMEGRP Primitive

You can place TIMEGRP attributes in either of two places: in the
TIMEGRP primitive on the schematic as discussed in this section or
in a constraints file (UCF or NCF). The syntax for specifying
TIMEGRPs in a UCF or NCF constraints file is described in the
“Attributes, Constraints, and Carry Logic” chapter of the Libraries
Guide.

You can use TIMEGRP attributes to create groups using the following
methods.

• Combining multiple groups into one

• Creating groups by exclusion

• Defining flip-flop subgroups by clock sense

The following subsections discuss each method in detail.

X4330

TIMEGRP
some_ffs=flips:flops
6-24 Xilinx Development System

Using Timing Constraints
Combining Multiple Groups into One
You can define a group by combining other groups. The following
syntax example illustrates the simple combining of two groups.

Schematic syntax in TIMEGRP primitive

big_group=small_group medium_group

UCF syntax

TIMEGRP big_group=small_group medium_group;

In this syntax example, small_group and medium_group are existing
groups defined using a TNM or TIMEGRP attribute. Within the
TIMEGRP primitive, TIMEGRP attributes can be listed in any order;
that is, you can create a TIMEGRP attribute that references another
TIMEGRP attribute that appears after the initial definition.

Note A circular definition, as shown below, causes an error when you
run your design through NGDBuild.

Schematic syntax in TIMEGRP primitive

many_ffs=ffs1 ffs2
ffs1=many_ffs ffs3

UCF syntax

TIMEGRP many_ffs=ffs1 ffs2;
TIMEGRP ffs1=many_ffs ffs3;

Creating Groups by Exclusion
You can define a group that includes all elements of one group except
the elements that belong to another group, as illustrated by the
following syntax examples.

Schematic syntax in TIMEGRP primitive

group1=group2 EXCEPT group3

UCF syntax

TIMEGRP group1=group2 EXCEPT group3;
Development System Reference Guide 6-25

Development System Reference Guide
• group1 represents the group being defined. It contains all of the
elements in group2 except those that are also in group3.

• group2 and group3 can be a valid TNM, predefined group, or
TIMEGRP attribute.

As illustrated by the following example, you can specify multiple
groups to include or exclude when creating the new group.

Schematic syntax in TIMEGRP primitive

group1=group2 group3 EXCEPT group3 group5

UCF syntax

TIMEGRP group1=group2 group3 EXCEPT group4 group5;

The example defines a group1 that includes the members of group2
and group3, except for those members that are part of group4 or
group5. All of the groups before the keyword EXCEPT are included,
and all of the groups after the keyword are excluded.

Certain reserved words cannot be used as group names. These
reserved words are described in the “Creating User-Defined Groups
Using TNM_NET” section

Defining Flip-Flop Subgroups by Clock Sense
You can create subgroups using the keywords RISING and FALLING
to group flip-flops triggered by rising and falling edges.

Schematic syntax in TIMEGRP primitive

group1=RISING ffs

group2=RISING ffs_group

group3=FALLING ffs

group4=FALLING ffs_group

UCF syntax

TIMEGRP group1=RISING ffs;

TIMEGRP group2=RISING ffs_group;

TIMEGRP group3=FALLING ffs;

TIMEGRP group4=FALLING ffs_group;
6-26 Xilinx Development System

Using Timing Constraints
group1 to group4 are new groups being defined. The ffs_group must be
a group that includes only flip-flops.

Note Keywords, such as EXCEPT, RISING, and FALLING, appear in
the documentation in upper case; however, you can enter them in the
TIMEGRP primitive in either lower or upper case. You cannot enter
them in a combination of lower and upper case.

The following example defines a group of flip-flops that switch on
the falling edge of the clock.

Schematic syntax in TIMEGRP primitive

falling_ffs=FALLING ffs

UCF syntax

TIMEGRP falling_ffs=FALLING ffs;

Defining Latch Subgroups by Gate Sense
Groups of type LATCHES (no matter how these groups are defined)
can be easily separated into transparent high and transparent low
subgroups. The TRANSHI and TRANSLO keywords are provided for
this purpose, and are used in TIMEGRP statements like the RISING
and FALLING keywords for flip-flop groups. For example

Schematic syntax in TIMEGRP primitive

lowgroup=TRANSLO latchgroup highgroup=TRANSHI
latchgroup

UCF syntax

TIMEGRP lowgroup=TRANSLO latchgroup;
TIMEGRP highgroup=TRANSHI latchgroup;

Creating Groups by Pattern Matching
When creating groups, you can use wildcard characters to define
groups of symbols whose associated net names match a specific
pattern.

How to Use Wildcards to Specify Net Names

The wildcard characters, * and ?, enable you to select a group of
symbols whose output net names match a specific string or pattern.
Development System Reference Guide 6-27

Development System Reference Guide
The asterisk (*) represents any string of zero or more characters. The
question mark (?) indicates a single character.

For example, DATA* indicates any net name that begins with
“DATA,” such as DATA, DATA1, DATA22, DATABASE, and so on.
The string NUMBER? specifies any net names that begin with
‘‘NUMBER” and end with one single character, for example,
NUMBER1, NUMBERS but not NUMBER or NUMBER12.

You can also specify more than one wildcard character. For example,
*AT? specifies any net names that begin with any series of characters
followed by ‘‘AT” and end with any one character such as BAT1,
CAT2, and THAT5. If you specify *AT??, you would match BAT11,
CAT26, and THAT50.

Pattern Matching Syntax

The syntax for creating a group using pattern matching is shown
below.

Schematic syntax in TIMEGRP primitive

group=predefined_group(pattern)

UCF syntax

TIMEGRP group=predefined_group(pattern);

predefined_group can only be one of the following predefined
groups—FFS, LATCHES, PADS, or RAMS. The pattern is any string of
characters used in conjunction with one or more wildcard characters.

Note When specifying a net name, you must use its full hierarchical
path name so PAR can find the net in the flattened design.

For flip-flops, input latches, and RAMs, specify the output net name.
For pads, specify the external net name.

The following example illustrates creating a group that includes the
flip-flops that source nets whose names begin with $1I3/FRED.

Schematic syntax in TIMEGRP primitive

group1=ffs($1I3/FRED*)

UCF syntax

TIMEGRP group1=ffs($1I3/FRED*);
6-28 Xilinx Development System

Using Timing Constraints
The following example illustrates a group that excludes certain flip-
flops whose output net names match the specified pattern.

Schematic syntax in TIMEGRP primitive

this_group=ffs EXCEPT ffs(a*)

UCF syntax

TIMEGRP this_group=ffs EXCEPT ffs(a*);

In this example, this_group includes all flip-flops except those
whose output net names begin with the letter “a.”

The following defines a group named “some_latches”.

Schematic syntax in TIMEGRP primitive

some_latches=latches($1I3/xyz*)

UCF syntax

TIMEGRP some_latches=latches($113/xyz*);

The group some_latches contains all input latches whose output
net names start with “$1I3/xyz.”

Additional Pattern Matching Details

In addition to using pattern matching when you create timing
groups, you can specify a predefined group qualified by a pattern
any place you specify a predefined group. The syntax below illus-
trates how pattern matching can be used within a timing specifica-
tion.

Schematic syntax in TIMESPEC primitive

TSidentifier=FROM predefined_group(pattern) TO
predefined_group
(pattern) delay

UCF syntax

TIMESPEC TSidentifier=FROM
predefined_group(pattern) TO predefined_group
(pattern) delay;

Instead of specifying just one pattern, you can also specify a list of
patterns separated by a colon (:) as illustrated below.

Schematic syntax in TIMEGRP primitive
Development System Reference Guide 6-29

Development System Reference Guide
some_ffs=ffs(a*:b?:c*d)

UCF syntax

TIMEGRP some_ffs=ffs(a*:b?:c*d);

The group some_ffs contains flip-flops whose output net names
adhere to one of the following rules.

• Start with the letter “a”

• Contain two characters; the first character is “b”

• Start with “c” and end with “d”

Defining a Clock Period (PERIOD Constraint)
A clock period specification checks timing clocked by the net (all
paths that terminate at a register clocked by the specified net).

The period specification is attached to the clock net. The definition of
a clock period is unlike a FROM-TO style specification because the
timing analysis tools automatically take into account any inversions
of the clock net at register clock pins.

A PERIOD constraint on the clock net in the following figure would
generate a check for delays on all paths that terminate at a pin that
has a setup or hold timing constraint relative to the clock net. This
could include the data paths D1 to CLB1.D, CLB1.Q to CLB2.D, as
well as the path EN to CLB2.EC (if the enable were synchronous with
respect to the clock).
6-30 Xilinx Development System

Using Timing Constraints
Figure 6-10 Paths for PERIOD Constraint

In 3.1i, the timing tool no longer checks pad-to-register paths relative
to setup requirements. For example in the preceding figure, the path
from D1 to Pin D of CLB1 is no longer included in the PERIOD
constraint.

Simple Method
A simple method of defining a clock period is to attach the following
attribute directly to a net in the path that drives the register clock
pins.

Schematic syntax

PERIOD = period { HIGH | LOW } [high_or_low_time]

UCF syntax

[period_item] PERIOD = period { HIGH | LOW }
[high_or_low_time] ;

period_item is one of the following,

• NET “net_name”

• TIMEGRP “group_name”

• ALLCLOCKNETS (PCF only)

Interconnect
and Logic

Interconnect
and Logic

D

CLB1

R
Q D

CLB2

EC

Q

D0

D1

OUT0

OUT1

CLK

EN

X8533

PERIOD=100:HIGH:50
Development System Reference Guide 6-31

Development System Reference Guide
period is the required clock period. The default units are nanoseconds,
but the timing number can be followed by ps, ns, us, or ms. Units
may be entered with or without a leading space, and are case-insensi-
tive. The HIGH|LOW keyword indicates whether the first pulse in
the period is high or low, and the optional high_or_low_time is the
duty cycle of the first pulse. If an actual time is specified, it must be
less than the period. If no high or low time is specified the default
duty cycle is 50%. The default units for high_or_low_time is ns, but the
number can be followed by % or by ps, ns, us or ms if you want to
specify an actual time measurement.

The PERIOD constraint is forward traced in exactly the same way a
TNM would be and attaches itself to all of the flip-flops that the
forward tracing reaches. If a more complex form of tracing behavior
is required (for example, where gated clocks are used in the design),
you must place the PERIOD on a particular net or use the preferred
method described next.

Preferred Method
The preferred method for defining a clock period allows more
complex derivative relationships to be defined as well as a simple
clock period. The following attribute is attached to a TIMESPEC
symbol in conjunction with a TNM attribute attached to the relevant
clock net.

Schematic syntax in a TIMESPEC symbol

TSidentifier=PERIOD TNM_reference period {HIGH | LOW}
[high_or_low_time]

UCF syntax

TIMESPEC TSidentifier=PERIOD TNM_reference period
{HIGH | LOW} [high_or_low_time] ;

identifier is a reference identifier that has a unique name.

TNM_reference is the identifier name that is attached to a clock net (or
a net in the clock path) using a TNM attribute.

• NET “net_name”

• TIMEGRP “group_name”

• ALLCLOCKNETS
6-32 Xilinx Development System

Using Timing Constraints
The variable name period is the required clock period. The default
units for period are nanoseconds, but the number can be followed by
ps, ns, us, or ms. Units may be entered with or without a leading
space, and are case-insensitive. The HIGH|LOW keyword indicates
whether the first pulse in the period is high or low, and the optional
high_or_low_time is the polarity of the first pulse. If an actual time is
specified, it must be less than the period. If no high or low time is
specified the default duty cycle is 50%. The default units for
high_or_low_time is ns, but the number can be followed by % or by ps,
ns, us, or ms if you want to specify an actual time measurement.

Example:

Clock net sys_clk has the attribute tnm=master_clk attached to it
and the following attribute is attached to a TIMESPEC primitive.

Schematic syntax in a TIMESPEC symbol

TS_master=PERIOD master_clk 50 HIGH 30

UCF syntax

TIMESPEC TS_master=PERIOD master_clk 50 HIGH 30;

This period constraint applies to the net master_clk, and defines a
clock period of 50 nanoseconds, with an initial 30 nanosecond high
time.

Specifying Derived Clocks
The preferred method of defining a clock period uses an identifier,
allowing another clock period specification to reference it. To define
the relationship in the case of a derived clock, use the following
syntax.

Schematic syntax in a TIMESPEC symbol

TSidentifier=PERIOD TNM_reference
another_PERIOD_identifier
[{/|*}number] [{HIGH|LOW} high_or_low_time]

UCF syntax

TIMESPEC TSidentifier=PERIOD TNM_reference
another_PERIOD_identifier
[{/|*}number] [{HIGH|LOW} high_or_low_time] ;
Development System Reference Guide 6-33

Development System Reference Guide
• identifier is a reference identifier that has a unique name.

• TNM_reference is the identifier name that is attached to a clock net
or a net in the clock path using a TNM attribute.

• another_PERIOD_identifier is the name of the identifier used on
another period specification.

• number is a floating point number.

• The HIGH|LOW keyword indicates whether the first pulse in
the period is high or low, and the optional high_or_low_time is the
polarity of the first pulse. If an actual time is specified it must be
less than the period. If no high or low time is specified, the
default duty cycle is 50%. The default units for high_or_low_time
is ns, but the number can be followed by % or by ps, ns, us, or ms
if you want to specify an actual time measurement.

Example

A clock net has the attribute tnm=slave_clk attached to it and the
following attribute is attached to a TIMESPEC primitive.

Schematic syntax in a TIMESPEC symbol

ts_slave1=PERIOD slave_clk TS_master *4

UCF syntax

TIMESPEC ts_slave1=PERIOD slave_clk TS_master
*4;

PERIOD Specifications on CLKDLLs
A TNM or TNM_NET group on a net is usually traced forward to tag
all of the flip-flops, latches, and RAMs driven by that net. However, if
the group traces into the clock input pin of a Virtex/-E/-II or Spartan-
II CLKDLL or CLKDLLHF symbol, it is not simply traced through the
CLKDLL outputs.

When a TNM or TNM_NET group is traced into the CLKIN pin of a
Spartan-II, Virtex/-E/-II CLKDLL component, NGDBuild examines
the TNM group to ensure that it meets all the following conditions.

• Used in only one PERIOD specification

• Not used in a FROM-TO or OFFSET specification

• Not referenced in any user group definition
6-34 Xilinx Development System

Using Timing Constraints
Note If a group is traced into the CLKDLL but is not used in exactly
one PERIOD specification, NGDBuild issues an error. To tag the
elements driven by the CLKDLL, place TNM or TNM_NET groups
directly on the CLKDLL output nets.

If the TNM or TNM_NET group meets these conditions, NGDBuild
copies the PERIOD specification to each CLKDLL output net and
adjusts it as shown in the following table

In addition to creating new PERIOD specifications at the CLKDLL
outputs, NGDBuild also creates new TNM or TNM_NET groups to
use in those specifications. The new groups are traced forward from
the CLKDLL output net to tag all flip-flops, latches, and RAMs
controlled by that clock signal.

Output Pin Adjustments

CLK0
CLK90
CLK180
CLK270

If the DUTY_CYCLE_CORRECTION=TRUE property is found, the duty
cycle is adjusted to 50%/50%.

If DUTY_CYCLE_CORRECTION=FALSE is found, the duty cycle is
unchanged from the original PERIOD specification.

If the DUTY_CYCLE_CORRECTION property is not found, the default
value of TRUE is assumed.

CLK2X
CLK2X180

If originally expressed as FREQUENCY, the FREQUENCY value is
doubled.

If originally expressed as PERIOD, the PERIOD value is divided in half.

The duty cycle is adjusted to 50%/50%.

CLKDV If originally expressed as FREQUENCY, the FREQUENCY value is
divided by the value in the CLKDV_DIVIDE property.

If originally expressed as PERIOD, the PERIOD value is multiplied by
the value in the CLKDV_DIVIDE property.

If the CLKDV_DIVIDE value is not found, the default value of 2.0 is
used.

The duty cycle is adjusted to 50%.
Development System Reference Guide 6-35

Development System Reference Guide
Each new TNM or TNM_NET group created by NGDBuild is named
the same as the corresponding CLKDLL output net.The TSidentifier
for the new PERIOD specification uses the TS_ prefix followed by the
net name. These new groups and specifications are shown in timing
analysis reports.

The following figure indicates how new groups are created at the
outputs of the DLL for a TNM_NET group specification at the
CLKDLL inputs.

The sample PERIOD specification for the figure is as follows:

Figure 6-11 TNM_NET Generation

Note The new TNM or TNM_NET groups and PERIOD specifica-
tions are not visible in the Constraints Editor, because they are
created from the user-applied specification each time NGDBuild is
run.

OFFSET Timing Specifications
Offsets are used to define the timing relationship between an external
clock and its associated data-in or data-out pin. Using this option
allows you to do the following.

• Calculate whether a setup time is being violated at a flip-flop
whose data and clock inputs are derived from external nets.

• Specify the delay of an external output net derived from the Q
output of an internal flip-flop being clocked from an external
device pin.

TNM_NET=CLK_NET

TS02=PERIOD 10 HIGH 5ns

TS02=PERIOD 5 HIGH 5ns

TNM_NET=system_generated

TNM_NET=system_generated

X8923

CLK0CLKIN CLKDLL

CLK90

CLK180

CLK270

CLK2X

CLKDV

LOCKED

CLKFB

RST
6-36 Xilinx Development System

Using Timing Constraints
Following are some of the advantages of using the OFFSET
constraint.

• Includes the clock path delay for each individual synchronous
elements

• Subtracts the clock path delay from the data path delay for inputs
and adds the clock path delay to the data path delay for outputs

• Includes paths for all synchronous element types (FFS, RAMS,
and LATCHES)

• Utilizes a global syntax that allows all inputs or outputs to be
constrained by a clock

• Allows specifying IO constraints either directly as the setup and
clock-to-out required by a device (IN BEFORE and OUT AFTER)
or indirectly as the time used by the path external to the device
(IN AFTER and OUT BEFORE)

There are basically three types of offset specifications.

• Global

• Net-specific

• Group

Since the global and group OFFSET constraints are not associated
with a single data net or component, these two types can also be
entered on a TIMESPEC symbol in the design netlist with Tsid.

Schematic syntax in a TIMESPEC symbol

TSid=[TIMEGRP name] OFFSET = {IN|OUT} offset_time
[units] {BEFORE|AFTER} clk_name [TIMEGRP group_name]

UCF syntax

[TIMEGRP name] OFFSET = {IN|OUT} offset_time [units]
{BEFORE|AFTER} clk_name [TIMEGRP group_name];

Note In the UCF file, you cannot specify the TSid format.
Development System Reference Guide 6-37

Development System Reference Guide
See the next section and the “Group OFFSET” section for syntax
details. As with the PERIOD and MAXDELAY timing specifications,
if the same TSid is defined in the design netlist (or NCF) and the UCF
file, the UCF file takes precedence.

The following subsections describe the use of each type of OFFSET in
PCF and UCF files and explain the scope of each specification.

Global OFFSET
Release 3.1i supports the use of the global OFFSET constraint. Release
3.1i also supports the use of time groups within global OFFSET
constraints. On a schematic, enter the global OFFSET in the
TIMESPEC symbol.

UCF syntax

 OFFSET = {IN|OUT} offset_time [units] {BEFORE|AFTER}
clk_name [TIMEGRP group_name];

PCF syntax

 OFFSET = {IN|OUT} offset_time [units] {BEFORE|AFTER}
COMP clk_iob_name [TIMEGRP group_name];

offset_time is the external offset and units is an optional field that indi-
cates the units for the offset time. The default units are nanoseconds,
but the timing number can be followed by ps, ns, us, ms, GHz, MHz,
or KHz to show the intended units.

The UCF syntax variable clk_name is the fully hierarchical net name of
the clock net between its pad and its input buffer.

The clk_iob_name is the block name of the clock IOB.

The optional TIMEGRP group_name defines a group of registers that
will be analyzed. By default, all registers clocked by clk_name will be
analyzed.

IN | OUT specifies that the offset is computed with respect to an
input IOB or an output IOB. For a bidirectional IOB, the IN |OUT
syntax lets you specify the flow of data (input or output) on the IOB.

BEFORE | AFTER indicates whether data is to arrive (input) or leave
(output) the device before or after the clock input.

All inputs/outputs are offset relative to clk_name or iob_name. For
example, OFFSET IN 20 ns BEFORE clk1 dictates that all inputs will
6-38 Xilinx Development System

Using Timing Constraints
have data present at the pad at least 20 ns before the triggering edge
of clk1 arrives at the pad.

Net-Specific OFFSET Constraints
The OFFSET constraint can also be used to specify a constraint for a
specific data net in a UCF file or schematic or a specific input or
output component in a PCF file.

Schematic syntax when attached to a net

 OFFSET = {IN|OUT} offset_time [units] {BEFORE|AFTER}
clk_name [TIMEGRP group_name]

UCF syntax

 NET name OFFSET = {IN|OUT} offset_time [units]
{BEFORE|AFTER} clk_name [TIMEGRP group_name];

PCF syntax

 COMP “ name” OFFSET = {IN |OUT} offset_time [units]
{BEFORE|AFTER} COMP “ clk_iob_name” [TIMEGRP
“group_name”];

The PCF file uses blocks (comps) instead of nets.

If COMP “iob_name“ is omitted in the PCF or NET “name” is
omitted in the UCF, the specification is assumed to be global.

offset_time is the external offset.

units is an optional field that indicates the units for offset time. The
default units are in nanoseconds, but the timing number can be
followed by ps, ns, us, GHz, MHz, or KHz to indicate the intended
units.

clk_iob_name is the block name of the clock IOB.

It is possible for one offset constraint to generate multiple data and
clock paths (for example, when both data and clock inputs have more
than a single sequential element in common).
Development System Reference Guide 6-39

Development System Reference Guide
Examples

The offset constraint examples in this section apply to the following
figures.

Figure 6-12 OFFSET Example Schematic

Figure 6-13 OFFSET IN Timing Diagram

Figure 6-14 OFFSET OUT Timing Diagram

Example 1— OFFSET IN BEFORE

OFFSET IN BEFORE defines the available time for data to propagate
from the pad and setup at the synchronous element (COMP). The

CLK

DATA
TSUDATA_IN

CLK_SYS

TCLK

TDATA TQ

TCO

Q_OUTQ

COMP

FPGA Boundary

X8737

DATA_IN

CLK_SYS

TIN_AFTER TIN_BEFORE

TP

X8735

Q_OUT

CLK_SYS

TOUT_AFTER

TP

TOUT_BEFORE

X8736
6-40 Xilinx Development System

Using Timing Constraints
time can be thought of as the time differential of data arriving at the
edge of the device before the next clock edge arrives at the device. See
Figure 6-12 and Figure 6-13. The equation that defines this relation-
ship is as follows.

TDATA + TSU - TCLK < TIN_BEFORE

For example, if TIN_BEFORE equals 20 ns, the following syntax applies.

Schematic syntax attached to DATA_IN

OFFSET=IN 20.0 BEFORE CLK_SYS

UCF syntax

NET DATA_IN OFFSET=IN 20.0 BEFORE CLK_SYS;

PCF syntax

COMP DATA_IN OFFSET=IN 20.0 ns BEFORE COMP CLK_SYS;

This constraint indicates that the data will be present on the
DATA_IN pad at least 20 ns before the triggering edge of the clock net
arrives at the clock pad.

To ensure that the timing requirements are met, the timing analysis
software verifies that the maximum delay along the path DATAIN to
COMP (minus the 20.0 ns offset) would be less than or equal to the
minimum delay along the reference path CLOCK to COMP.

Example 2 — OFFSET IN AFTER

This constraint describes the time used by the data external to the
FPGA. OFFSET subtracts this time from the PERIOD declared for the
clock to determine the available time for the data to propagate from
the pad and setup at the synchronous element. The time can be
thought of as the differential of data arriving at the edge of the device
after the current clock edge arrives at the edge of the device. See
Figure 6-12 and Figure 6-14. The equation that defines this relation-
ship is as follows.

 TDATA + TSU - TCLK < TP - TIN_AFTER

TP is the clock period.

For example, if TIN_AFTER equals 30 ns, the following syntax applies.

Schematic syntax attached to DATA_IN

OFFSET=IN 30.0 AFTER CLK_SYS;
Development System Reference Guide 6-41

Development System Reference Guide
UCF syntax

NET DATA_IN OFFSET=IN 30.0 AFTER CLK_SYS;

PCF syntax

COMP DATA_IN OFFSET=IN 30.0 ns AFTER COMP CLK_SYS;

This constraint indicates that the data will arrive at the pad of the
device (COMP) no more than 30 ns after the triggering edge of the
clock arrives at the clock pad. The path DATA_IN to COMP would
contain the setup time for the COMP data input relative to the
CLK_SYS input.

Verification is almost identical to Example 1, except that the offset
margin (30.0 ns) is added to the data path delay. This is caused by the
data arriving after the reference input. The timing analysis software
verifies that the data can be clocked in prior to the next triggering
edge of the clock.

A PERIOD or FREQUENCY is required only for offset OUT
constraints with the BEFORE keyword or offset IN with the AFTER
keyword.

Example 3 — OFFSET OUT AFTER

This constraint defines the time available for the data to propagate
from the synchronous element to the pad. This time can also be
considered as the differential of data leaving the edge of the device
after the current clock edge arrives at the edge of the device. See
Figure 6-12 and Figure 6-14.

The equation that defines this relationship is as follows.

 TQ + TCO + TCLK < TOUT_AFTER

For example, if TOUT_AFTER equals 35 ns, the following syntax
applies.

Schematic syntax attached to Q_OUT

OFFSET=OUT 35.0 AFTER CLK_SYS

UCF syntax

NET Q_OUT OFFSET=OUT 35.0 AFTER CLOCK;

PCF syntax

COMP Q_OUT OFFSET=OUT 35.0 ns AFTER COMP CLK_SYS;
6-42 Xilinx Development System

Using Timing Constraints
This constraint calls for the data to leave the FPGA 35 ns after the
present clock input arrives at the clock pad. The path COMP to
Q_OUT would include the CLOCK-to-Q delay (component delay).

Verification involves ensuring that the maximum delay along the
reference path (CLK_SYS to COMP) and the maximum delay along
the data path (COMP to Q_OUT) does not exceed the specified offset.

Example 4 — OFFSET OUT BEFORE

This constraint defines the time used by the data external to the
FPGA. OFFSET subtracts this time from the clock PERIOD to deter-
mine the available time for the data to propagate from the synchro-
nous element to the pad. The time can also be considered as the
differential of data leaving the edge of the device before the next
clock edge arrives at the edge of the device. See Figure 6-12 and
Figure 6-14. The equation that defines this relationship is as follows.

 TQ + TCO + TCLK < TP - TOUT_BEFORE

For example, if TOUT_BEFORE equals 15 ns, the following syntax
applies.

Schematic syntax attached to Q_OUT

OFFSET=OUT 15.0 BEFORE CLK_SYS

UCF syntax

NET Q_OUT OFFSET=OUT 15.0 BEFORE CLK_SYS;

PCF syntax

COMP Q_OUT OFFSET=OUT 15.0 ns BEFORE COMP CLK_SYS;
Development System Reference Guide 6-43

Development System Reference Guide
This constraint states that the data clocked to Q_OUT must leave the
FPGA 15 ns before the next triggering edge of the clock arrives at the
clock pad. The path COMP to Q_OUT includes the CLK_SYS-to-Q
delay (component delay). The data clocked to Q_OUT will leave the
FPGA 15.0 ns before the next clock input.

Verification involves ensuring that the maximum delay along the
reference path (CLK_SYS to COMP) and the maximum delay along
the data path (COMP to Q_OUT) do not exceed the clock period
minus the specified offset.

As in Example 2, a PERIOD or FREQUENCY constraint is required
only for offset OUT constraints with the BEFORE keyword or offset
IN with the AFTER keyword.

Specific OFFSET Constraints with Timegroups

A clock register time group allows you to define a specific set of regis-
ters to which an OFFSET constraint applies based on a clock edge.
Consider the following example.

Figure 6-15 Using Timegroups with Registers

You can define time groups for the registers A, B and C, even though
these registers have the same data and clock source. The syntax is as
follows.

Schematic syntax in TIMEGRP primitive

AB=RISING FFS C =FALLING FFS;

UCF /PCF syntax

X8458

CBA

DATA

CLOCK
6-44 Xilinx Development System

Using Timing Constraints
TIMEGRP AB=RISING FFS; TIMEGRP C =FALLING FFS;

Schematic syntax attached to DATA

OFFSET=IN 10 BEFORE CLOCK TIMEGRP AB

OFFSET=IN 20 BEFORE CLOCK TIMEGRP C

UCF syntax

NET DATA OFFSET=IN 10 BEFORE CLOCK TIMEGRP AB;

NET DATA OFFSET=IN 20 BEFORE CLOCK TIMEGRP C;

PCF syntax

COMP DATA OFFSET=IN 10 BEFORE COMP CLOCK TIMEGRP AB;

COMP DATA OFFSET=IN 20 BEFORE COMP CLOCK TIMEGRP C;

Even though the registers A, B and C have a common data and clock
source, timing analysis applies two different offsets (10 ns and 20 ns).
Registers A and B belong to the offset with 10 ns and Register C
belongs to the offset with 20 ns.

However, you must use some caution when using timegroups with
registers. Consider the following diagram.

Figure 6-16 Problematic Timegroup Definition

This circuit is identical to Figure 6-15 except that an inverter has been
inserted in the path to Register B. In this instance, even though this
register is a member of the time group whose offset triggers on the

X8459

CBA

DATA

CLOCK
Development System Reference Guide 6-45

Development System Reference Guide
rising edge, the addition of the inverter classifies register B as trig-
gering on the falling edge like Register C.

Normally, the tools will move an inverter to the register, in which
case, B would be a part of the timegroup “Falling”. However if the
clock is gated with logic that inverts, then the inverter will not
become part of the register. In that case, one way to solve this
problem is to create a timegroup with an exception for Register B. See
the “Creating Groups by Exclusion” section for details.

Group OFFSET
You can also define OFFSET constraints within the TIMESPEC
primitive with a leading TIMEGRP reference.

Schematic syntax in TIMESPEC primitive

TSidentifier=TIMEGRP name OFFSET={IN|OUT}
offset_time [units] {BEFORE|AFTER} clk_name [TIMEGRP
group_name]

The UCF and PCF syntax do not require the TSidentifier.

UCF syntax

[TIMEGRP name] OFFSET= {IN|OUT} offset_time [units]
{BEFORE|AFTER} clk_name [TIMEGRP group_name];

PCF syntax

[TIMEGRP name] OFFSET= {IN|OUT} offset_time [units]
{BEFORE|AFTER} COMP clk_iob_name [TIMEGRP
group_name];

The timing group specified at the beginning has a different purpose
than the timegroup specified at the end. The first time group is a list
of data pads that the OFFSET applies to, while the last time group
(register time group) is a list of synchronous elements that specifies
which register elements clocked by clk_name or clk_iob_name should
be analyzed.

Note If the first group has FFs or the second group has PADS,
NGDBuild generates an error.

offset_time is the external offset.

units is an optional field that indicates the units for offset time. The
default units are in nanoseconds, but the timing number can be
6-46 Xilinx Development System

Using Timing Constraints
followed by ps, ns, us, GHz, MHz, or KHz to indicate the intended
units.

clk_iob_name is the block name of the clock IOB.

Ignoring Selected Paths (TIG)
In a design, some paths do not require timing analysis. These are
paths that exist in the design, but are never used during time-critical
operations. If you indicate a timing requirement on these paths, more
important paths might be slower, which can result in failure to meet
the timing requirements.

The value of TIG may be any of the following.

• Empty (global TIG that blocks all paths)

• A single TSid to block

• A comma separated list of TSids to block, for example

NET $1I567/$Sig_5 TIG=TS_fast, TS_even_faster;

To indicate that all timing specifications through a net, primitive pin
or macro pin are to be ignored, attach the following attribute to the
desired element.

Schematic syntax

TIG

UCF syntax

{NET | PIN | INSTANCE} name TIG;

If this attribute is attached to a net, primitive pin, or macro pin, all
paths that fan forward from the point of application of the attribute
are treated as if they don’t exist for the purposes of timing analysis
during implementation. In the following figure, NET C is ignored.
However, note that the lower path of NET B that runs through the
two OR gates would not be ignored.
Development System Reference Guide 6-47

Development System Reference Guide
Figure 6-17 TIG Example

The following attribute would be attached to a net to inform the
timing analysis tools that it should ignore paths through the net for
specification TS43:

Schematic syntax

TIG = TS43

UCF syntax

NET net_name TIG = TS43;

You cannot perform path analysis in the presence of combinatorial
loops. Therefore, the timing tools ignore certain connections to break
combinatorial loops. You can use the TIG constraint to direct the
timing tools to ignore specified nets or load pins, consequently
controlling how loops are broken.

Basic FROM –TO Syntax
Within the TIMESPEC primitive, you use the following syntax to
specify timing requirements between specific end points.

TSidentifier=FROM source_group TO dest_group delay

TSidentifier=FROM source_group delay

TSidentifier =TO dest_group delay

Unspecified FROM or TO, as in the second and third syntax
statements, implies all points.

D Q

D Q

D Q

D Q

TIG

Ignored Paths

NET C

NET B

NET A

X8529
6-48 Xilinx Development System

Using Timing Constraints
The From-To statements are TS attributes that reside in the
TIMESPEC primitive. The parameters source_group and dest_group
must be one of the following.

• Predefined groups

• Previously created TNM identifiers

• Groups defined in TIMEGRP symbols

• TPSYNC groups

Predefined groups consist of FFS, LATCHES, RAMS, or PADS and are
discussed in the “Using Predefined Groups” section. TNMs are intro-
duced in the “Creating User-Defined Groups Using TNMs” section.
TIMEGRP symbols are introduced in the “Creating New Groups
from Existing Groups” section.

Note Keywords, such as FROM, TO, and TS appear in the documen-
tation in upper case; however, you can enter them in the TIMESPEC
primitive in either upper or lower case. You cannot enter them in a
combination of lower and upper case.

The delay parameter defines the maximum delay for the attribute.
Nanoseconds are the default units for specifying delay time in TS
attributes. You can also specify delay using other units, such as pico-
seconds or megahertz.

Refer to the “Specifying Time Delay in TS Attributes” section later in
this chapter for more information on time delay. The delay can be a
function of another TIMESPEC (TS01*2).

The following examples illustrate the use of From-To TS attributes.

Schematic syntax in TIMESPEC primitive

TS01=FROM FFS TO FFS 30

TS_OTHER=FROM PADS TO FFS 25

TS_THIS=FROM FFS TO RAMS 35

TS_THAT=FROM PADS TO LATCHES 35

UCF syntax

TIMESPEC TS01=FROM FFS TO FFS 30;

TIMESPEC TS_OTHER=FROM PADS TO FFS 25;

TIMESPEC TS_THIS=FROM FFS TO RAMS 35;
Development System Reference Guide 6-49

Development System Reference Guide
TIMESPEC TS_THAT=FROM PADS TO LATCHES 35;

You can place TS attributes containing From-To statements in either
of two places: in the TIMESPEC primitive on the schematic as
discussed in this chapter or in a constraints (UCF) file.

Specifying Timing Points
There are situations where a particular point or set of points in your
design needs to be flagged for reference in subsequent timing specifi-
cations. Timing points are used for these specifications.

There are two types of timing points.

• A TPSYNC timing point is used to allow a point to be used as the
start or the end of timing path, even though the point may not
apply to a flip-flop, latch, RAM or I/O pad.

• A TPTHRU timing point identifies an intermediate point on a
path.

The following sections describe how these timing points are
specified.

Using TPSYNC to Define Synchronous Points
There are cases where the timing of a design must be defined from or
to a point in the design that is not a flip-flop, latch, RAM or I/O pad.
For example, you might want to specify a point at the output of a
latch defined using a function generator instead of a latch symbol.
The TPSYNC timing point identifies one or a group of these points.

 A TPSYNC attribute has the following syntax.

Schematic syntax

TPSYNC = identifier

UCF syntax

{NET | PIN | INST} TPSYNC= identifier;
6-50 Xilinx Development System

Using Timing Constraints
identifier is a name that is used in timing specifications in the same
way that groups are used. The same identifier can be used on several
points which are then treated as a group from the point of view of
timing analysis. The identifier must be different from any identifier
used for a TNM attribute.

The way a TPSYNC timing point is used depends on the object to
which it is attached.

• Attached to a net, TPSYNC identifies the source of the net as a
potential source or destination for timing specifications.

• Attached to an output macro pin, TPSYNC identifies all of the
sources inside the macro that drive the pin to which the attribute
is attached as potential sources or destinations for timing specifi-
cations. In the following diagram. POINTY applies to the
inverter.

TPSYNC=POINTX

X8524
Development System Reference Guide 6-51

Development System Reference Guide
Figure 6-18 TPSYNCs Attached to Macro Pins

If the macro pin is an input pin (that is, there are no sources for
the pin in the macro), then all of the load pins in the macro are
flagged as synchronous points. In the preceding figure POINTX
applies to the input AND gate.

• Attached to a primitive pin, TPSYNC flags the primitive’s pin as
a potential source or destination for timing specifications;
TPSYNC applies to the pin it is attached to.

• Attached to a primitive symbol, TPSYNC identifies the output(s)
of that element as a potential source or destination for timing
specifications. See the following figure.

D Q

Q1

D Q

CLOCK

D Q
D1

D3

D2 Q2

Q3

X8551

TPSYNC=POINTX

TPSYNC=POINTY
6-52 Xilinx Development System

Using Timing Constraints
The use of a TPSYNC timing point to define a synchronous point in a
design implies that the flagged point cannot be merged into a
function generator. For example, consider the following diagram.

In this example, because of the TPSYNC definition, the two gates
cannot be merged into a single function generator.

Using TPTHRU to Define Through Points
The TPTHRU attribute defines an intermediate point in a path. A
point or group defined with TPTHRU attributes is used in detailed
timing specifications.

A TPTHRU attribute has the following syntax.

TPTHRU = identifier

identifier is a name that is used in timing specifications in the same
way that groups are used. The same identifier can be used on several
points which are then treated as a group from the point of view of
timing analysis.

The identifier must be different from any identifier used for a TNM
attribute or TPSYNC.

TPSYNC=POINTX

X8552

TPSYNC=FOO

Function
Generator

Function
Generator

X8758
Development System Reference Guide 6-53

Development System Reference Guide
Timing specifications using TPTHRU groups are described in the
“Specifying Time Delay in TS Attributes” section.

Using TPTHRU or TPSYNC in a FROM–TO
Constraint

It is sometimes convenient to define intermediate points on a path to
which a specification applies. This defines the maximum allowable
delay and has the following syntax.

Schematic syntax in TIMESPEC primitive

TSidentifier=FROM source_group THRU thru_point [THRU
thru_point] TO dest_group allowable_delay [units]

TSidentifier=FROM source_group THRU thru_point [THRU
thru_point] allowable_delay [units]

TSidentifier=THRU thru_point [THRU thru_point] TO
dest_group allowable_delay [units]

UCF syntax

TIMESPECTSidentifier=FROM source_group THRU
thru_point [THRU thru_point] TO dest_group
allowable_delay [units];

TIMESPEC TSidentifier=FROM source_group THRU
thru_point [THRU thru_point] allowable_delay
[units];

TIMESPEC TSidentifier=THRU thru_point [THRU
thru_point] allowable_delay [units];

Unspecified FROM or TO, as in the second and third syntax state-
ments, implies all points.

• identifier is an ASCII string made up of the characters A..Z, a..z,
0..9, underbar (_), and forward slash (/).

• source_group and dest_group are user-defined, predefined groups
or TPSYNCs.

• thru_point is an intermediate point used to qualify the path,
defined using a TPTHRU attribute.

• allowable_delay is the timing requirement.

• units is an optional field to indicate the units for the allowable
delay. Default units are nanoseconds, but the timing number can
6-54 Xilinx Development System

Using Timing Constraints
be followed by ps, ns, us, ms, GHz, MHz, or KHz to indicate the
intended units.

The example shows how to use the TPTHRU attribute with the THRU
attribute on a schematic. The UCF syntax is as follows.

INST FLOPA TNM=A;

INST FLOPB TNM=B;

NET MYNET TPTHRU=ABC

TIMESPEC TSpath1=FROM A THRU ABC TO B 30;

The following schematic shows the placement of the TPTHRU
attribute and the resultant path that is defined.

Figure 6-19 TPTHRU Example

D Q

D Q

D Q

D Q

X8525

TNM=A

FLOPA
FLOPB

TNM=B

TPTHRU=ABC

MYNET

TIMESPEC

TSpath1=FROM:A:THRU:ABC:TO:B:30
Development System Reference Guide 6-55

Development System Reference Guide
Specifying Time Delay in TS Attributes
Nanoseconds are the default units for specifying delay times in TS
attributes. However, after specifying the maximum delay or
minimum frequency numerically, you can enter the unit of measure
by specifying the following.

• PS for picoseconds, NS for nanoseconds, US for microseconds, or
MS for milliseconds

• MHZ for megahertz, KHZ for kilohertz, or GHz for gigahertz

As an alternate way of specifying time delay, you can specify one
time delay in terms of another. Instead of specifying a time or
frequency in a TS attribute definition, you can specify a multiple or
division of another TS attribute. This is useful in a system where all
clocks are derived from a master clock; in this situation, changing the
timing specification for the master clock changes the specification for
all clocks in the system.

Use the syntax below to specify a TS attribute delay in terms of
another.

Schematic syntax attached to TIMESPEC primitive

TSidentifier=specification
reference_TS_attribute[{*|/}number]

UCF syntax

TIMESPEC TSidentifier=specification
reference_TS_attribute[{*|/}number];

number can be either a whole number or a decimal. The specification
can be any From-To statement as illustrated by the following exam-
ples.

FROM PADS TO PADS

FROM group1 TO group2

FROM tnm_identifier TO FFS

FROM LATCHES TO group1

Use “*” to represent multiplication and “/” to represent division. The
specification type of the reference TS attribute does not need to be the
same as the TS attribute being defined; however, it must not be
specified in terms of TIG.
6-56 Xilinx Development System

Using Timing Constraints
Examples:

Examples of specifying a TS attribute in terms of another are as
follows. In these cases, assume that the reference attributes were
specified as delays (not frequencies).

In the example below, the paths between flip-flops and pads are
placed and routed so that their delay is at most 10 times the delay
specified in the TS05 attribute.

Schematic syntax in TIMESPEC primitive

TS08=FROM FFS TO PADS TS05*10

UCF syntax

TIMESPEC TS08=FROM FFS TO PADS TS05*10;

In the example below, the paths between input and output pads are
placed and routed so that their delay is at most one-eighth the delay
specified in the TS07 attribute.

Schematic syntax in TIMESPEC primitive

TS1=FROM PADS TO PADS TS07/8

UCF syntax

TIMESPEC TS1=FROM PADS TO PADS TS07/8;

Note When a reference attribute is specified as a frequency, a multiple
represents a faster specification; a division represents a slower speci-
fication.

You can also specify a TS attribute in terms of a TS attribute that is
already a specification of another. The following example provides an
illustration.

Schematic syntax in TIMESPEC primitive

TS09=FROM FFS TO FFS 50

TS10=FROM FFS TO PADS TS09*2

TS11=FROM PADS TO PADS TS10*4

UCF syntax

TIMESPEC TS09=FROM FFS TO FFS 50;

TIMESPEC TS10=FROM FFS TO PADS TS09*2;

TIMESPEC TS11=FROM PADS TO PADS TS10*4;
Development System Reference Guide 6-57

Development System Reference Guide
Using the PRIORITY Keyword
There may be situations where there is a conflict between two
TIMESPECs that cover the same path. In these cases you can define
the priority of a TIMESPEC using the following syntax.

normal_timespec_syntax PRIORITY integer

normal_timespec_syntax is a legal TIMESPEC and integer represents
the priority (the smaller the number, the higher the priority). The
number can be positive, negative, or zero, and the value only has
meaning when compared with other PRIORITY values.

Note The PRIORITY keyword cannot be used with the MAXDELAY,
or MAXSKEW constraint.

Sample Schematic Using TIMESPEC/TIMEGRP
Symbol

TNM identifiers define symbols or groups of symbols that are used in
timing specifications. They can also define other groups. The
following figure shows an example of a TNM attribute attached to an
individual symbol. In this circuit, the flip-flop D_FF has the attribute
TNM=D_FF attached to it.
6-58 Xilinx Development System

Using Timing Constraints
Figure 6-20 Example of Using TNMs and TIMEGRPs in a
Schematic

The TIMEGRP symbol contains an attribute that defines a group of
flip-flops called Q_FFS, which includes all flip-flops in the schematic
except the one labeled D_FF. You can then use the group Q_FFS to
create timing specifications in the TIMESPEC primitive. The flip-flop
D_FF has its clock enable driven at 1/2 of the clock frequency;
therefore, its flip-flop to pad and pad to flip-flop timing specifications
are longer than the flip-flop to pad specifications in the Q_FFS group.

C
CE

D Q

CLR

C
CE

D Q

CLR

C
CE

D Q

CLR

C
CE

D Q

CLR

C
CE

D Q

CLR

Q3

Q2

Q1

Q0

Q0

Q1

Q2

Q3D3

D2

D1

D0

+5
VCC

FDCE

FDCE

FDCE

FDCE

FDCE

D_FF

TNM=D_FF AND4

D_EN

RDATA RD_OUT

Q3_OUT

Q2_OUT

Q1_OUT

Q0_OUT

OPAD

OPAD

OPAD

OPAD

OPAD

OBUF

OBUF

OBUF

OBUF

OBUF

GND

INV

XOR2

XOR2

XOR2

DATA

CLK

IPAD

IPAD

D_IN

K_IN

IBUF

BUFG

C3

C2

AND2

AND3

X6170

Q_FFS=FFS:EXCEPT:D_FF TS_CLK_CYCLE=FROM:FFS:TO:FFS:50

TS_CTR=FROM:Q_FFS:TO:PADS=25

TS_D_O=FROM:D_FF:TO:PADS=50

TS_D_I=FROM:PADS:TO:D_FF=50

TIMEGRP TIMESPEC
Development System Reference Guide 6-59

Development System Reference Guide
Prorating Constraints
The prorating constraints, VOLTAGE and TEMPERATURE, provide a
method for determining timing delay characteristics based on known
environmental parameters. On a schematic, you can enter these
constraints in any empty space. For Release 3.1i these two constraints
are supported for XC4000XL/XLA. New speed file releases for
existing architectures will support these two constraints.

Note Prorating is not intended for military and industrial ranges. It is
applicable only within the commercial ranges.

VOLTAGE Constraint
This constraint allows the specification of the operating voltage. This
provides a means of prorating delay characteristics based on the
specified voltage.

Note Each architecture has its own specific range of supported volt-
ages. If the entered voltage does not fall within the supported range,
the constraint is ignored and an architecture-specific default value is
used instead. The UCF syntax is as follows.

VOLTAGE=value[units]

value is an integer or real number specifying the voltage and units is
an optional parameter specifying the unit of measure. V specifies
volts, the default voltage unit.

TEMPERATURE Constraint
This constraint allows the specification of the operating temperature
which provides a means of prorating device delay characteristics
based on the specified junction temperature. Prorating is a linear
scaling operation on existing speed file delays and is applied globally
to all delays.

Note Each architecture has its own specific range of valid operating
temperatures. If the entered temperature does not fall within the
supported range, the constraint is ignored and an architecture-
specific default value is used instead. The UCF syntax is as follows.

TEMPERATURE=value[C |F| K]
6-60 Xilinx Development System

Using Timing Constraints
value is an integer or a real number specifying the temperature. C, K,
and F are the temperature units: F is degrees Fahrenheit, K is degrees
Kelvin, and C is degrees Celsius, the default.

Additional Timing Constraints
There are additional properties and constraints you can specify for
the timing analysis tools. They are the following.

• Net skew control (MAXSKEW)

• Net delay control

• Path tracing control

• The DROP_SPEC constraint

• The USELOWSKEWLINES constraint

Controlling Net Skew (MAXSKEW)
Skew is the difference between the minimum and maximum of the
maximum load delays on a net. You can control the maximum
allowable skew on a net by attaching the MAXSKEW attribute
directly to the net. Syntax is as follows.

skew_item MAXSKEW=allowable_skew [units];

allowable_skew is the timing requirement.

The default units for allowable_skew are nanoseconds, but the timing
number can be followed by ps, ns, us, ms, GHz, MHz, or KHz to indi-
cate the intended units.skew_item is one of the following,

• NET “net_name”

• TIMEGRP “group_name” (PCF only)

• ALLCLOCKNETS (PCF only)

Note TIMEGRP and ALLCLOCKNETS are supported in PCF files
only.

It is important to understand exactly what MAXSKEW defines.
Consider the following example.
Development System Reference Guide 6-61

Development System Reference Guide
Figure 6-21 MAXSKEW

In the preceding diagram, for ta(1,2), 1 ns is the minimum delay and 2
ns is the maximum delay for the Register A clock. For tb(2,4), 2 ns is
the minimum delay and 4 ns is the maximum delay for the Register B
clock. MAXSKEW defines the maximum of tb minus the maximum of
ta, that is, 4-2=2. Since the data delay is greater than MAXSKEW (DD
is 2.5 while MAXSKEW is 2), no race condition occurs. However,
MAXSKEW does not account for the circumstance where one of the
registers is operating at minimum delay (for example, ta=1) while a
second register is operating at maximum delay (for example, tb=4).
Under those conditions, the skew is 3 ns (tb - ta= 3). Since the data
delay (DD = 2.5) is less than the skew, a race condition exists.

Controlling Net Delay (MAXDELAY)
You can control the maximum allowable delay on a net by attaching
the MAXDELAY attribute directly to the net. The UCF syntax is as
follows.

NET net_name MAXDELAY=path_value

path_value is one of the following,

• delay_time [units]

units defaults to nanoseconds, but the delay time number can be
followed by ps, ns, us, or ms (picoseconds, nanoseconds, micro-
seconds, or milliseconds) to specify the units

• frequency units

units can be specified as GHz, MHz, or KHz (gigahertz, mega-
hertz, or kilohertz)

BA

t (1,2)a t (2,4)
b

Data Delay (DD) = 2.5

X8474
6-62 Xilinx Development System

Using Timing Constraints
Controlling Path Tracing
Path tracing controls allows you to enable or disable specific paths
within device components (for example, CLBs and IOBs) for timing
analysis. These constraints can only be entered in a PCF file; they cannot
be applied during design entry or in a UCF or NCF file.

This constraint can be applied at a global or group scope. The path
tracing syntax is as follows.

[TIMEGRP predefined_group] {ENABLE | DISABLE}= symbol;

symbol is a component delay symbol, and predefined_group (which is
optional) represents the name of a previously-defined time group. If
there is no TIMEGRP predefined_group qualifier, the path tracing
control applies to all logic cells in the design.

The symbol, which is case-insensitive, can be either of the following.

• A standard component delay symbol name (for example,
reg_sr_q or tbuf_i_o, as described in the following table).

• There is a one-to-many correspondence between these symbol
names and data book symbol names, and the data book symbols
to which each standard block delay signal applies varies from
one device family to another.

• A component delay specified in the Xilinx Programmable Logic
Data Book (for example, TILO (entered as TILO) or TCCK (entered
as TCCK)).

The following table describes the standard block delay symbols.

Table 6-1 Standard Block Delay Symbols for Path Tracing

Symbol Path Type Default

reg_sr_q Set/Reset to output propagation
delay

Disabled

reg_sr_clk Set/Reset to clock setup and hold
checks

Disabled

lat_d_q Data to output transparent latch
delay

Disabled

ram_d_o RAM data to output propagation
delay

Disabled
Development System Reference Guide 6-63

Development System Reference Guide
The IOB configuration for Virtex/-E/-II and Spartan-II is somewhat
different than the IOB configuration for other architectures. See the
following figure

ram_we_o RAM write enable to output propa-
gation delay

Enabled

tbuf_t_o TBUF tristate to output propagation
delay

Enabled

tbuf_i_o TBUF input to output propagation
delay

Enabled

io_pad_i IO pad to input propagation delay Enabled

io_t_pad IO tristate to pad propagation delay Enabled

io_o_i IO output to input propagation
delay. Disabled for tristated IOBs

Enabled

io_o_pad IO output to pad propagation delay Enabled

Table 6-1 Standard Block Delay Symbols for Path Tracing

Symbol Path Type Default
6-64 Xilinx Development System

Using Timing Constraints
Figure 6-22 Simplified IOB Configurations and io_t_pad

For the Virtex/-E/-II and Spartan-II IOBs, there is no default path. If a
latch is used (latch mode), then io_t_pad controls the D to Q path
through the latch. By default D to Q is enabled which is different than
other internal latches. The clock to Q of the latch is not disabled by
io_t_pad.

If a register is used instead of a latch, the clock to Q of the register is
not disabled by io_t_pad.

Path Tracing Examples

The PCF file constraint below prevents timing analysis on any path
that includes the I to O delay on a TBUF component. The constraint
applies to all TBUF components in the design.

DISABLE = "tbuf_i_o";

The PCF file constraint below disables the I to O delay on the TBUF
components in the group mygroup, if applicable.

Simplified IOB for standard architectures

Simplified IOB for Virtex

CLK

QDT

T
Path for io_t_pad

Pad

Pad

Latched Path
for Tristate control

X8678

Latch
or
FF
Development System Reference Guide 6-65

Development System Reference Guide
TIMEGRP "mygroup" DISABLE = "tbuf_i_o";

The PCF file constraint below disables the TILO databook component
delay in the group mygroup, if applicable.

TIMEGRP "mygroup" DISABLE = "TILO";

The delay symbol names in the Xilinx Programmable Logic Data Book
do not always agree with the delay names reported in TRACE (the
Xilinx timing analyzer). To ensure your path tracing constraints are
processed correctly and to allow your constraints to be portable from
one device to another, use the delay names reported by TRACE
instead of the databook names.

You can control path tracing for a single instance by creating a group
containing only the instance, then specifying this group in a path
tracing constraint.

The DROP_SPEC Constraint
A constraint specified in a UCF constraints file takes precedence over
one with the same name in the input design. This allows you to
redefine or modify constraints without having to edit the input
design. The DROP_SPEC constraint allows you to specify that a
timing constraint defined in the input design should be dropped
from the analysis. The UCF syntax is as follows.

TSidentifier = DROP_SPEC

identifier is the identifier name used with another timing specification.
This constraint can be used when new specifications defined in a
constraints file do not directly override all specifications defined in
the input design, and some of these input design specifications need
to be dropped.

While this timing command is not expected to be used much in an
input netlist (or NCF file), it is not illegal. If defined in an input
design this attribute must be attached to a TIMESPEC primitive.

The USELOWSKEWLINES Constraint
The Virtex/-E/-II and Spartan-II devices offer twenty four lines of
low skew resources for secondary clocks. You can specify the
USELOWSKEWLINES constraint in the UCF file to take advantage of
these resources. Specify this constraint only when all four primary
clocks have been used.
6-66 Xilinx Development System

Using Timing Constraints
The UCF syntax for the USELOWSKEWLINES constraint follows.

NET net_name USELOWSKEWLINES;

The presence of a USELOWSKEWLINES constraint on any net indi-
cates that this net must be routed on secondary low-skew clock
resources. PAR routes the low skew resources that trigger the timing
analyzer to perform a skew analysis.
Development System Reference Guide 6-67

Development System Reference Guide
Constraints Priority
In some cases, two timing specifications cover the same path. For
cases where the two timing specifications on the path are mutually
exclusive, the following constraint rules apply.

• Priority depends on the file in which the constraint appears. A
constraint in a file accessed later in the design flow replaces a
constraint in a file accessed earlier in the design flow. Priority is
as follows (first listed is the highest priority, last listed is the
lowest).

♦ Constraints in a Physical Constraints File (PCF)

♦ Constraints in a User Constraints File (UCF)

♦ Constraints in a Netlist Constraints File (NCF)

♦ Attributes in a schematic

• If two timing specifications cover the same path, the priority is as
follows (first listed is the highest priority, last listed is the lowest).

♦ Timing Ignore (TIG)

♦ FROM THRU TO

♦ FROM TO

♦ Specific OFFSET

♦ Group OFFSET

♦ Global OFFSET

♦ PERIOD

♦ ALLPATHS

• FROM THRU TO or FROM TO statements have a priority order
that depends on the type of source and destination groups
included in a statement. The priority is as follows (first listed is
the highest priority, last listed is the lowest).

♦ Both the source group and the destination group are user-
defined groups

♦ Either the source group or the destination group is a
predefined group
6-68 Xilinx Development System

Using Timing Constraints
♦ Both the source group and the destination group are
predefined groups

• OFFSET constraints take precedence over more global constraints
such as the ALLPATHS constraints.

If two specific OFFSET constraints at the same level of prece-
dence interact, an OFFSET with a register qualifier takes prece-
dence over an OFFSET without a qualifier; if otherwise
equivalent, the latter in the constraint file takes precedence.

• Net delay and Net skew specifications are analyzed indepen-
dently of path delay analysis and do not interfere with one
another.

Syntax Summary
The following sections summarize the syntax for timing constraints.

TNM Attributes
The following table lists the syntax used when creating TNMs, which
you enter directly on the primitive symbol, macro symbol, net, or
driver pin.

TNM Attribute Syntax Where Applied

Schematic syntax:
TNM=identifier
TNM=predefined_group identifier

UCF syntax:
{NET | PIN | INSTANCE} name TNM=identifier
{NET | PIN | INSTANCE} name TNM=predefined_group identifier;

Net, Symbol, Pin,
Macro
Development System Reference Guide 6-69

Development System Reference Guide
TIMEGRP Attributes
The following table lists the syntax used with the TIMEGRP primi-
tive.

Group Type TIMEGRP Attribute Syntax

Combine Schematic syntax in TIMEGRP primitive:
new_group=group1 group2 [group3 . . .]

UCF syntax:
TIMEGRP new_group=group1 group2 [group3 . . .];

Exclude Schematic syntax in TIMEGRP primitive:
new_group=group1[group2 . . .]EXCEPT group3[group4 ...]

UCF syntax:
TIMEGRP new_group=group1[group2 . . .] EXCEPT group3[group4 ...];

Clock Edge
(flip-flops)

Schematic syntax in TIMEGRP primitive:
new_group=RISING group1
new_group=FALLING group1

UCF syntax:
TIMEGRP new_group=RISING group1;
TIMEGRP new_group=FALLING group1;

Gate Edge
(latches)

Schematic syntax in TIMEGRP primitive:
new_group=TRANSHI group1
new_group=TRANSLO group1

UCF syntax:
TIMEGRP new_group=TRANSHI group1;
TIMEGRP new_group=TRANSLO group1;
6-70 Xilinx Development System

Using Timing Constraints
Pattern
Matching

Schematic syntax in TIMEGRP primitive:
new_group=predefined_group (name_qualifier1[name_qualifier2 . . .])

UCF syntax:
TIMEGRP new_group=predefined_group (name_qualifier1[name_qualifier2 . .
.]);

Net-specific
OFFSETs

Schematic syntax when attached to a net:
OFFSET = {IN|OUT} offset_time [units] {BEFORE|AFTER} clk_name
[TIMEGRP group_name]

UCF syntax:
NET name OFFSET = {IN|OUT} offset_time [units] {BEFORE|AFTER}
clk_name [TIMEGRP group_name];

PCF syntax:
COMP “iob_name” OFFSET = {IN|OUT} offset_time [units]
{BEFORE|AFTER} COMP “clk_iob_name” [TIMEGRP “group_name”];

Group Type TIMEGRP Attribute Syntax
Development System Reference Guide 6-71

Development System Reference Guide
TIMESPEC Attributes
The following table lists the syntax used for parameters that define
TS attributes, which reside in the TIMESPEC primitive or appear in
UCF or NCF files.

Spec Type TS Attribute Syntax

Basic
From-To

Schematic syntax in TIMESPEC primitive:
TSid=FROM source_group TO dest_group delay
TSid=FROM source_group delay
TSid=TO dest_group delay

UCF syntax:
TIMESPEC TSid=FROM source_group TO dest_group delay;
TIMESPEC TSid=FROM source_group delay;
TIMESPEC TSid=TO dest_group delay;

Ignore Schematic syntax in TIMESPEC primitive:
TSid=IGNORE

UCF syntax:
TIMESPEC TSid=IGNORE;

Through
point

Schematic syntax in TIMESPEC primitive:
TSid=FROM source_group THRU thru_point[THRU
thru_point] TO dest_group delay
TSid=FROM source_group THRU thru_point[THRU
thru_point] delay
TSid=THRU thru_point[THRU thru_point] TO dest_group delay

UCF syntax:
TIMESPEC TSid=FROM source_group THRU thru_point[THRU
thru_point] TO dest_group delay;
TIMESPEC TSid=FROM source_group THRU thru_point[THRU
thru_point] delay;
TIMESPEC TSid=THRU thru_point[THRU thru_point] TO dest_group
delay;
6-72 Xilinx Development System

Using Timing Constraints
Linked
specification

Schematic syntax in TIMESPEC primitive:
TSid=FROM source_group TO dest_group another_TSid
[*|/]number
TSid=FROM source_group another_TSid
[*|/]number
TSid=TO dest_group another_TSid[*|/]number

UCF syntax:
TIMESPEC TSid=FROM source_group TO dest_group another_TSid
[*|/]number;
TIMESPEC TSid=FROM source_group another_TSid
[*|/]number;
TIMESPEC TSid=TO dest_group another_TSid[*|/]number;

Clock period Schematic syntax in TIMESPEC primitive:
TSid=PERIOD TNM_reference period {HIGH|LOW} [high_or_low_time]

UCF syntax:
TIMESPEC TSid=PERIOD TNM_reference period {HIGH|LOW}
[high_or_low_time];

Derived
clocks

Schematic syntax in TIMESPEC primitive:
TSid=PERIOD TNM_reference another_PERIOD_identifier
[/|*]number{HIGH|LOW} [high_or_low_time]

UCF syntax:
TIMESPEC TSid=PERIOD TNM_reference another_PERIOD_identifier
[/|*]number{HIGH|LOW} [high_or_low_time];

Spec Type TS Attribute Syntax
Development System Reference Guide 6-73

Development System Reference Guide
The following table lists additional attributes or constraints that are
used in or affect TS attributes.

TS attribute
priority

normal_timespec_syntax PRIORITY integer

Group
OFFSETs

Schematic syntax in TIMESPEC primitive:
TSidentifier=TIMEGRP name OFFSET= {IN|OUT} offset_time [units]
{BEFORE|AFTER} clk_name [TIMEGRP group_name]

The UCF and PCF syntax do not require the TSidentifier.

UCF syntax:
[TIMEGRP name] OFFSET= {IN|OUT} offset_time [units]
{BEFORE|AFTER} clk_name [TIMEGRP group_name];

PCF syntax:
[TIMEGRP name] OFFSET= {IN|OUT} offset_time [units]
{BEFORE|AFTER} COMP clk_iob_name [TIMEGRP group_name];

Attribute Syntax
Where
Applied

How Used

Schematic syntax on net, pin, symbol, or
macro:TPTHRU=identifier

UCF syntax:
{NET | PIN | INSTANCE} name TPTHRU=identi-
fier;

Net,
symbol,
pin,
macro

In through point TS
attribute

Schematic syntax on net, pin, symbol, or macro:
TPSYNC=identifier

UCF syntax:
{NET | PIN | INSTANCE} name TPSYNC=identi-
fier;

Net,
symbol,
pin,
macro

As group in TS attribute

Spec Type TS Attribute Syntax
6-74 Xilinx Development System

Using Timing Constraints
Other Constraints
The following table lists additional timing constraints.

Schematic syntax on net or pin:
TIG
TIG=identifier

UCF syntax:
{NET | PIN} name TIG;
{NET | PIN} name TIG=identifier;

Net, pin Prevents timing analysis

TSidentifier=DROP_SPEC; (Constraints file only) N/A Prevents timing analysis
for TSidentifier

Attribute Syntax Where Applied How Used

Schematic syntax on net or pin:
PERIOD period {HIGH|LOW}
[high_or_low_time]

UCF syntax:
{NET | PIN} name PERIOD period
{HIGH|LOW} [high_or_low_time];

Nets, pins Specifies register
clock period

Schematic syntax:
MAXSKEW=allowable_skew

UCF syntax:
NET name MAXSKEW=allowable_skew;

PCF Syntax:
{NET | TIMEGRP | ALLCLOCKNETS}
name MAXSKEW=allowable_skew;

Nets, timegroups,
ALLCLOCKNETS

Specifies skew

Attribute Syntax
Where
Applied

How Used
Development System Reference Guide 6-75

Development System Reference Guide
Schematic syntax:
MAXDELAY= path_value [PRIORITY integer]

UCF syntax:
 NET net_name MAXDELAY= path_value
[PRIORITY integer];

PCF syntax:
TSidentifier=MAXDELAY path path_value
[PRIORITY integer];

{NET | TIMEGRP | ALLCLOCKNETS}
name MAXDELAY= path_value [PRIORITY
integer];

PATH path_name MAXDELAY= path_value
[PRIORITY integer];

ALLPATHS MAXDELAY= path_value
[PRIORITY integer];

FROM group_item THRU group_item1...
group_itemn MAXDELAY= path_value
[PRIORITY integer];

FROM group_item THRU group_item1...
group_itemn TO group_item MAXDELAY=
path_value [PRIORITY integer];

THRU group_item1... group_itemn TO
group_item MAXDELAY= path_value
[PRIORITY integer];

Nets, Paths,
FROM THRU,
FROM THRU TO,
THRU TO

Specifies delay

Schematic syntax:
USELOWSKEWLINES

UCF syntax: NET net_name USELOWSKEW-
LINES;

Nets Routes nets to low
skew lines

Attribute Syntax Where Applied How Used
6-76 Xilinx Development System

Chapter 7

Logical Design Rule Check

This program is compatible with the following families.

• Spartan/XL/-II

• Virtex/-E/-II

• XC9500/XL/XV

• XC4000E/L/EX/XL/XV/XLA

• XC3000A/L

• XC3100A/L

• XC5200

This chapter describes the Logical Design Rule Check (DRC). The
chapter contains the following sections.

• “Logical DRC”

• “Logical DRC Tests”

Logical DRC
The Logical DRC (Design Rule Check), is a series of tests run to verify
the logical design in the NGD (Native Generic Database) file. The
Logical DRC (also called the NGD DRC) performs device-indepen-
dent checks; they do not depend on the FPGA to which you will
eventually map the design.
Development System Reference Guide — 3.1i 7-1

Development System Reference Guide
The Logical DRC generates messages to show the status of the tests
performed. Messages can be error messages (for conditions where the
logic will not operate correctly) or warnings (for conditions where the
logic is incomplete).

The Logical DRC runs automatically at the following times.

• At the end of NGDBuild, before NGDBuild writes out the NGD
file

NGDBuild writes out the NGD file if DRC warnings are discov-
ered, but does not write out an NGD file if DRC errors are discov-
ered.

• At the end of NGD2EDIF, NGD2VER, or NGD2VHDL, before
writing out the netlist file

The netlist writers do not perform the entire DRC. They only
perform the Net and Name checks. A netlist writer writes out a
netlist file even if DRC warnings or errors are discovered.

Logical DRC Tests
The Logical DRC performs six types of checks.

• Block check

• Net check

• Pad check

• Clock buffer check

• Name check

• Primitive pin check

The following sections describe these tests.

Block Check
The block check verifies that each terminal symbol in the NGD hier-
archy (that is, each symbol that is not resolved to any lower-level
components) is an NGD primitive. A block check failure is treated as
an error. As part of the block check, the DRC also checks user-defined
properties on symbols and the values on the properties to make sure
they are legal.
7-2 Xilinx Development System

Logical Design Rule Check
Net Check
The net check determines the number of NGD primitive output pins
(drivers), tristate pins (drivers) and input pins (loads) on each signal
in the design. If a signal does not have at least one driver (or one
tristate driver) and at least one load, a warning is generated. An error
is generated if a signal has multiple non-tristate drivers or any combi-
nation of tristate and non-tristate drivers. As part of the net check, the
DRC also checks user-defined properties on signals and the values on
the properties to make sure they are legal.

Pad Check
The pad check verifies that each signal connected to pad primitives
obeys the following rules.

• If the PAD is an input pad, the signal to which it is connected can
only be connected to the following types of primitives.

♦ Buffers

♦ Clock buffers

♦ PULLUP

♦ PULLDOWN

♦ BSCAN

The input signal can be attached to multiple primitives, but only
one of each of the above types. For example, the signal can be
connected to a buffer primitive, a clock buffer primitive, and a
PULLUP primitive, but it cannot be connected to a buffer primi-
tive and two clock buffer primitives. Also, the signal cannot be
connected to both a PULLUP primitive and a PULLDOWN prim-
itive. Any violation of the rules above results in an error, with the
exception of signals attached to multiple pull-ups or pull-downs,
which produces a warning. A signal which is not attached to any
of the above types of primitives also produces a warning.

• If the PAD is an output pad, the signal it is attached to can only be
connected to one of the following primitive outputs.

♦ A single buffer primitive output

♦ A single tristate primitive output

♦ A single BSCAN primitive
Development System Reference Guide 7-3

Development System Reference Guide
In addition, the signal can also be connected to one of the
following primitives.

♦ A single PULLUP primitive

♦ A single PULLDOWN primitive

Any other primitive output connections on the signal results in
an error.

If the condition above is met, the output PAD signal may also be
connected to one clock buffer primitive input, one buffer primi-
tive input, or both.

• If the PAD is a bidirectional or unbonded pad, the signal it is
attached to must obey the rules stated above for input and output
pads. Any other primitive connections on the signal results in an
error. The signal connected to the pad must be configured as both
an input and an output signal; if it is not, you receive a warning.

• If the signal attached to the pad has a connection to a top-level
symbol of the design, that top-level symbol pin must have the
same type as the pad pin, except that output pads can be associ-
ated with tristate top-level pins. A violation of this rule results in
a warning.

• If a signal is connected to multiple pads, an error is generated. If a
signal is connected to multiple top-level pins, a warning is gener-
ated.

Clock Buffer Check
The clock buffer configuration check verifies that the output of each
clock buffer primitive is connected to only inverter, flip-flop or latch
primitive clock inputs, or other clock buffer inputs. Violations are
treated as warnings.

Name Check
The name check verifies the uniqueness of names on NGD objects as
defined below. The tests, and the messages reported by a violation of
the tests, are as follows.

• Pin names must be unique within a symbol. A violation results in
an error.
7-4 Xilinx Development System

Logical Design Rule Check
• Instance names must be unique within the instance’s position in
the hierarchy (that is, a symbol cannot have two symbols with the
same name under it). A violation results in a warning.

• Signal names must be unique within the signal’s hierarchical
level (that is, if you push down into a symbol, you cannot have
two signals with the same name). A violation results in a
warning.

• Global signal names must be unique within the design. A viola-
tion results in a warning.

Primitive Pin Check
The primitive pin check verifies that certain pins on certain primi-
tives are connected to signals in the design. The following table
shows which pins are tested on each NGD primitive type.

Note If one of these pins is not connected to a signal, you receive a
warning.

Table 7-1 Checked Primitive Pins

NGD Primitive Pins Checked

X_TRI IN, OUT, and CTL

X_FF IN, OUT, and CLK

X_LATCH IN, OUT, and CLK

X_IPAD PAD

X_OPAD PAD

X_BPAD PAD
Development System Reference Guide 7-5

Development System Reference Guide
7-6 Xilinx Development System

Chapter 8

MAP—The Technology Mapper

This program is compatible with the following families.

• Spartan/-II/XL

• Virtex/-E/-II

• XC3000A/L

• XC3100A/L

• XC4000E/L

• XC4000EX/XL/XV/XLA

• XC5200

This chapter describes MAP. The chapter contains the following
sections.

• “MAP”

• “MAP Syntax”

• “MAP Files”

• “MAP Options”

• “The MAP Process”

• “Register Ordering”

• “Guided Mapping”

• “Simulating Map Results”

• “The MAP Report (MRP) File”

• “Halting MAP”
Development System Reference Guide — 3.1i 8-1

Development System Reference Guide
MAP
MAP maps a logical design to a Xilinx FPGA. The input to mapping
is an NGD file, which contains a logical description of the design in
terms of both the hierarchical components used to develop the design
and the lower level Xilinx primitives, and any number of NMC
(macro library) files, each of which contains the definition of a
physical macro. MAP first performs a logical DRC (Design Rule
Check) on the design in the NGD file. MAP then maps the logic to the
components (logic cells, I/O cells, and other components) in the
target Xilinx FPGA. The output design is an NCD (Native Circuit
Description) file – a physical representation of the design mapped to
the components in the Xilinx FPGA. The NCD file can then be placed
and routed.

The flow through MAP is shown in the following figure. MAP can be
invoked from the Design Manager/Flow Engine graphical interface
or from the UNIX or DOS command line. The Design Manager/Flow
Engine is described in the Design Manager/Flow Engine Guide. This
chapter describes running MAP from the UNIX or DOS command
line.
8-2 Xilinx Development System

MAP—The Technology Mapper
Figure 8-1 MAP

MAP Syntax
The following syntax maps your design.

map [options] infile[.ngd] [pcf_file[.pcf]]

Options can be any number of the MAP options listed in the “MAP
Options” section. They do not need to be listed in any particular
order. Separate multiple options with spaces.

Infile[.ngd] is the input NGD file. You do not have to enter the .ngd
extension.

X7204

NGMMAP

NGD
Generic Database

NMC
Macro Definition

PCF
Physical Constraints

MRP
MAP Report

Guide File

NCD
Circuit Description -

Mapped to Desired Device

MAP
Floorplanner File
Development System Reference Guide 8-3

Development System Reference Guide
Pcf_file[.pcf] is the Physical Constraints File in PCF format. A
constraints file name is optional on the command line, but if one is
entered it must be entered after the input file name. You do not have
to enter the .pcf extension. The constraints file name and its location
are determined in this way.

• If you do not specify a physical constraints file name on the
command line, the physical constraints file has the same name as
the output file, with a .pcf extension. The file is placed in the
output file’s directory.

• If you specify a physical constraints file with no path specifier
(for example, cpu_1.pcf instead of /home/designs/cpu_1.pcf), the
.pcf file is placed in the current working directory.

• If you specify a physical constraints file name with a full path
specifier (for example, /home/designs/cpu_1.pcf), the physical
constraints file is placed in the specified directory.

• If the physical constraints file already exists, MAP reads the file,
checks it for syntax errors, and overwrites the
schematic-generated section of the file. MAP also checks the
user-generated section for errors and corrects errors by
commenting out physical constraints in the file or by halting the
operation. If no errors are found in the user-generated section,
the section remains the same.

For a discussion of the output file name and its location, see the “–o
(Output File Name)” section.

MAP Files
This section describes the MAP input and output files.

Input Files
MAP uses the following files as inputs.

• NGD file—Native Generic Database file. This file contains a
logical description of the design expressed both in terms of the
hierarchy used when the design was first created and in terms of
lower-level Xilinx primitives to which the hierarchy resolves. The
file also contains all of the constraints applied to the design
during design entry or entered in a UCF (User Constraints File).
The NGD file is created by NGDBuild.
8-4 Xilinx Development System

MAP—The Technology Mapper
• NMC files—Macro library files. An NMC file contains the
definition of a physical macro. When there are macro instances in
the NGD design file, NMC files are used to define the macro
instances. There is one NMC file for each type of macro in the
design file.

• Guide NCD file—An optional input file generated from a
previous MAP run. An NCD file contains a physical description
of the design in terms of the components in the target Xilinx
device. A guide NCD file is an output NCD file from a previous
MAP run that is used as an input to guide a later MAP run.

• Guide NGM file—A binary design file containing all of the data
in the input NGD file as well as information on the physical
design produced by the mapping. See “Guided Mapping” section
for details.

• MFP—Map Floorplanner File, which is generated by the
Floorplanner, specified as an input file with the -fp option. The
MFP file is essentially used as a guide file for mapping. To create
a Map Floorplanner File, you must first have generated an NGD
file and a mapped NCD file. When you have run MAP to
generate an NCD file, you can open the mapped NCD file in the
Floorplanner, modify the placement of components, and then
generate an MFP file. You can then use the MFP file as an input
file with the -fp map option. The MFP file is only created for the
XC4000, Spartan/-II, and Virtex/-E/-II architectures.

• MDF file—MAP Directive File. The MDF is an optional input file
used for guided mapping. The MDF file describes how logic was
decomposed when the guide design was mapped. MAP uses the
hints in the MDF as a guide for logic decomposition in the guided
mapping run.

Output Files
Output from MAP consists of the following files.

• NCD file—Native Circuit Description. A physical description of
the design in terms of the components in the target Xilinx device.
For a discussion of the output NCD file name and its location, see
the “–o (Output File Name)” section.

• PCF (Physical Constraints) file—an ASCII text file containing the
constraints specified during design entry expressed in terms of
Development System Reference Guide 8-5

Development System Reference Guide
physical elements. The physical constraints in the PCF file are
expressed in Xilinx’s constraint language. This file is described in
“Physical Constraints (PCF) File” chapter.

MAP either creates a PCF file if none exists or rewrites an existing
file by overwriting the schematic-generated section of the file
(between the statements SCHEMATIC START and SCHEMATIC
END). For an existing physical constraints file, MAP also checks
the user-generated section for syntax errors, and signals errors by
halting the operation. If no errors are found in the user-generated
section, the section is unchanged.

• NGM file—a binary design file containing all of the data in the
input NGD file as well as information on the physical design
produced by the mapping. The NGM file is used to correlate the
back-annotated design netlist to the structure and naming of the
source design.

• MRP (MAP report) file—a file containing information about the
MAP command run. The MRP file lists any errors and warnings
found in the design, lists design attributes specified, details on
how the design was mapped (for example, the logic that was
removed or added and how signals and symbols in the logical
design were mapped into signals and components in the physical
design). The file also supplies statistics about component usage
in the mapped design. See “The MAP Report (MRP) File” section
for more details.

• MDF (MAP Directive File)—a file describing how logic was
decomposed when the design was mapped. In guided mapping,
MAP uses the hints in the MDF as a guide for logic
decomposition.

The MRP, MDF and NGM files produced by a MAP run all have the
same name as the output file, with the appropriate extension. If the
MRP, MDF or NGM files already exist, they are overwritten by the
new files.
8-6 Xilinx Development System

MAP—The Technology Mapper
MAP Options
The following table illustrates which architectures can be used with
each option.

Table 8-1 Map Options and Architectures

Options Architectures

-b Spartan, xc4000e/l

-c Spartan, SpartanXL, Spartan-II, xc3000a/l, xc3100/a/l,
xc4000e/ex/l/xl/xla/xv, xc5200, Virtex-E/-II

-cm Spartan, SpartanXL, Spartan-II, xc3000a/l, xc3100/a/l,
xc4000e/ex/l/xl/xla/xv, xc5200, Virtex/-E/-II,

-d xc3000a/l, xc3100a/l

-detail all FPGA architectures

-f Spartan, SpartanXL, Spartan-II, Virtex/-E/-II, xc3000a/
l, xc3100/a/l, xc4000e/ex/l/xl/xla/xv, xc5200

-fp Spartan, SpartanXL, Spartan-II, xc4000e/ex/l/xl/xla/
xv, xc5200, Virtex/-E/-II

-gf Spartan, SpartanXL, xc3000a/l, xc3100/a/l, xc4000e/
ex/l/xl/xla/xv, xc5200

-gm Spartan, SpartanXL, xc3000a/l, xc3100/a/l, xc4000e/
ex/l/xl/xla/xv, xc5200

-ir Spartan, SpartanXL, Spartan-II, Virtex/-E/-II, xc4000e/
ex/l/xl/xla/xv, xc5200

-k Spartan, SpartanXL, Spartan-II, Virtex/-E/-II, xc4000e/
ex/l/xl/xla/xv, xc5200

-l Spartan, SpartanXL, Spartan-II, Virtex/-E/-II, xc4000e/
ex/l/xl/xla/xv, xc5200

-o All architectures

-oe Spartan, SpartanXL, xc3000a/l, xc3100/a/l, xc4000e/
ex/l/xl/xla/xv, xc5200

-os Spartan, SpartanXL, xc3000a/l, xc3100/a/l, xc4000e/
ex/l/xl/xla/xv, xc5200

-p Spartan, SpartanXL, Spartan-II, Virtex/-E/-II, xc3000a/
l, xc3100/a/l, xc4000e/ex/l/xl/xla/xv, xc5200
Development System Reference Guide 8-7

Development System Reference Guide
-pr Spartan, SpartanXL, Spartan-II, Virtex/-E/-II, xc3000a/
l, xc3100/a/l, xc4000e/ex/l/xl/xla/xv

-r Spartan, SpartanXL, Spartan-II, xc3000a/l, xc3100/a/l,
xc4000e/ex/l/xl/xla/xv, Virtex/-E/-II

-tx Spartan-II, Virtex/-E/-II

-u Spartan, SpartanXL, Spartan-II, Virtex/-E/-II, xc3000a/
l, xc3100/a/l, xc4000e/ex/l/xl/xla/xv, xc5200

Table 8-1 Map Options and Architectures

Options Architectures
8-8 Xilinx Development System

MAP—The Technology Mapper
–b (Convert Clock Buffers—XC4000E/L and Spartan
Only)

Note This option does not apply to the Spartan-II or SpartanXL
architecture.

The –b option replaces GCLKs and ACLKs (primary and secondary
clocks) with a generic clock buffer (CKBUF) prior to mapping. This
option is useful when you are mapping an XNF netlist created in the
Synopsys environment where all clocks are mapped to BUFGP
(primary clock buffers) and secondary clocks are not used. The –b
option gives MAP the greatest amount of latitude in choosing the
clock assignments.

Note MAP does not override the LOC= constraint.

–c (Pack CLBs)
–c [packfactor]

The –c option determines the degree to which CLBs are packed when
the design is mapped. The valid range of values for the packfactor is
0–100.

The packfactor values ranging from 1 to 100 roughly specify the
percentage of CLBs available in a target device for packing your
design's logic.

A packfactor of 100 means that all CLBs in a target part are available
for design logic. A packfactor of 100 results in minimum packing
density, while a packfactor of 1 represents maximum packing density.
Specifying a lower packfactor results in a denser design, but the design
may then be more difficult to place and route.

The –c 0 option specifies that only *related* logic (that is, logic having
signals in common) should be packed into a single CLB. Specifying
–c 0 yields the least densely packed design.

For values of –c from 1 to 100, MAP merges unrelated logic into the
same CLB only if the design requires more resources than are
available in the target device (an "overmapped" design). If there are
more resources available in the target device than are needed by your
design, the number of CLBs utilized when –c 100 is specified may
equal the number required when –c 0 is specified.
Development System Reference Guide 8-9

Development System Reference Guide
Note The –c 1 setting should only used to determine the maximum
density (minimum area) to which a design can be packed; it should
almost never be used in the actual implementation of a design.
Designs packed to this maximum density generally have longer run
times, severe routing congestion problems in PAR, and poor design
performance.

The default packfactor (the value if you do not specify a –c option, or
enter a –c option without a packfactor) is 97% for the XC4000E
architecture and 100% for all other XC4000 architectures,
Virtex/-E/-II, and Spartan/XL/-II.

Processing a design with the –c 0 option is a good way to get a first
estimate of the number of CLBs required by your design.

–cm (Cover Mode)
–cm {area | speed | balanced }

The –cm option specifies the criteria used during the “cover” phase of
MAP. In the “cover” phase, MAP assigns the logic to CLB function
generators (LUTs).

• The area setting makes reducing the number of LUTs (and
therefore the number of CLBs) the highest priority.

• The speed setting makes reducing the number of levels of LUTS
(the number of LUTs a path passes through) the highest priority.
This setting makes it easiest to achieve your timing constraints
after the design is placed and routed. For most designs there is a
small increase in the number of LUTs (compared to the area
setting), but in some cases the increase may be large.

• The balanced setting balances the two priorities—reducing the
number of LUTs and reducing the number of levels of LUTs. It
produces results similar to the speed setting but avoids the
possibility of a large increase in the number of LUTs.

The default setting for the –cm option is area (cover for minimum
number of LUTs). For synthesis based designs, changing the default
does not result in improved performance.
8-10 Xilinx Development System

MAP—The Technology Mapper
–d (Use DI Pin—XC3000 Architectures Only)
If you specify this option, MAP can use the DI (Direct Input) pin of
each CLB in the device for the XC3000A, XC3000L, XC3100A and
XC3100L architectures. If you use this pin, the setup time requirement
for each CLB flip-flop is reduced, but the DI pin has a hold time
requirement (which none of the other CLB logic input pins has).
Using the DI pin results in a denser design, but the design may then
be more difficult to place and route. Even if you specify the –d option,
MAP tries to minimize the use of the DI pin.

–detail (Write Out Detailed MAP Report)
This option writes out a detailed MAP report. The option replaces the
MAP_REPORT_DETAIL environment variable.

–f (Execute Commands File)
–f command_file

The –f option executes the command line arguments in the specified
command_file. For more information on the –f option, see the “–f
Option” section of the “Introduction” chapter.

–fp (Floorplanner)
–fp filename.mfp

The –fp option requires the specification of an existing MFP file
created by the Floorplanner. The MFP file is essentially used as a
guide file for mapping.

The MFP file is created in the Floorplanner from a previously
mapped NCD file. If you use the -fp option, you cannot use the guide
file option (-gf).

The -fp option can be used with the XC4000/E/L, XC4000EX/XL/
XLA/XV, Spartan/XL/-II, and Virtex/-E/-II architectures.

For more information about the Floorplanner, see the Floorplanner
Reference/User Guide.
Development System Reference Guide 8-11

Development System Reference Guide
–gf (Guide NCD File)
–gf guidefile

The –gf option specifies the name of an existing NCD file (from a
previous MAP run) to be used as a guide for the current MAP run.
For Virtex/-E/-II architectures, guided mapping also uses the NGM
file. For a description of guided mapping, see the “Guided Mapping”
section.

–gm (Guide Mode)
–gm {exact | leverage }

The –gm option specifies the form of guided mapping to be used.

In the EXACT mode the mapping in the guide file is followed exactly.
In the LEVERAGE mode, the guide design is used as a starting point
for mapping but, in cases where the guided design tools cannot find
matches between net and block names in the input and guide
designs, or your constraints rule out any matches, the logic is not
guided.

For a description of guided mapping, see the “Guided Mapping”
section.

–ir (Do Not Use RLOCs to Generate RPMs)
If you enter the –ir option, MAP uses RLOC constraints to group logic
within CLBs, but does not use the constraints to generate RPMs
(Relationally Placed Macros) controlling the relative placement of
CLBs. Stated another way, the RLOCs are not used to control the
relative placement of the CLBs with respect to each other.

For the XC4000 and Spartan architectures, the -ir option has an
additional behavior; the RLOC constraint that cannot be met is
ignored and the mapper will continue processing the design. A
warning is generated for each RLOC that is ignored. The resulting
mapped design is a valid design.

This option does not apply to the XC3000 architecture.

–k (Map to Input Functions)
The syntax for Spartan-II and Virtex/-E/ architectures follows:
8-12 Xilinx Development System

MAP—The Technology Mapper
–k {4 |5 |6}

The syntax for the Virtex-II architecture follows:

–k {4 |5 |6| 7| 8}

You can specify the maximum size function that is covered. The
default is 4. For compatibility with M1.5, use –k 4. Covering to 5, 6, 7
or 8 input functions results in the use of F5MUX, F6MUX, and
FXMUX.

For the XC4000 and XC5200 architectures, only –k is specified (not 4,
5 or 6). If the –k option is specified, logic functions of five inputs are
mapped into a single CLB (if possible). To perform this mapping, all
three of the function generators in the CLB may be used

By mapping input functions into single CLBs, the –k option may
produce a mapping with fewer levels of logic, thus eliminating a
number of CLB-to-CLB delays. On the other hand, using the –k
option may prevent logic from being packed into CLBs in a way that
minimizes CLB utilization.

For synthesis-based designs, specifying –k 4 has litle effect. This is
because MAP combines smaller input functions into large functions
such as F5MUX, F6MUX, F7MUX and F8MUX.

The –k option does not apply to the XC3000 architecture.

–l (No logic replication)
If you do not specify the –l option, MAP can perform logic
replication, a logic optimization in which the program takes a single
driver driving multiple loads and maps it as multiple components,
each driving a single load (see the following figure). Logic replication
results in a mapping that often makes it easier to meet your timing
requirements, since some delays can be eliminated on critical nets.

This option does not apply to the XC3000 and XC5200 architectures.
Development System Reference Guide 8-13

Development System Reference Guide
Figure 8-2 Logic Replication (–l Option)

–o (Output File Name)
–o outfile[.ncd]

Specifies the name of the output NCD file for the design. The .ncd
extension is optional. The output file name and its location are
determined in this way.

• If you do not specify an output file name with the –o option, the
output file has the same name as the input file, with an .ncd
extension. The file is placed in the input file’s directory

• If you specify an output file name with no path specifier (for
example, cpu_dec.ncd instead of /home/designs/cpu_dec.ncd),
the NCD file is placed in the current working directory.

• If you specify an output file name with a full path specifier (for
example, /home/designs/cpu_dec.ncd), the output file is placed
in the specified directory.

Without Logic Replication With Logic Replication

X6973

Function
Generator

Function
Generator

Function
Generator

Function
Generator

Function
Generator

A
B

C
D

E
F

E
F

C
D

A
B

Replicated
8-14 Xilinx Development System

MAP—The Technology Mapper
If the output file already exists, it is overwritten with the new NCD
file. You do not receive a warning when the file is overwritten.

–oe (Logic Optimization Effort)
–oe {normal | high }

The –oe option specifies the effort MAP uses when performing logic
optimization. In the high setting, MAP exerts a greater effort to
optimize combinatorial logic, but the mapping takes longer to
complete. The high setting must be used if the input to the MAP is
not optimized, for example, a design created in XABEL.

For the –oe option to apply, the –os (logic optimization style) option
must be enabled; that is, –os must have a setting other than none.

If logic optimization is specified by the –os option, the default setting
for the –oe option is normal.

See the following section for guidelines on when to use logic
optimization.

Note Logic optimization has little effect on most synthesis-based
designs.

This option does not apply to Virtex/-E/-II or Spartan-II.

–os (Logic Optimization Style)
–os {area | speed | balanced }

Logic optimization in the context of MAP refers to FPGA-specific
4-input lookup optimization by the OPTIX optimizer.

The –os option specifies what type of logic optimization MAP
performs.

• The area setting optimizes combinatorial logic in a way that uses
the minimum number of logic cell function generators (LUTs).
This setting minimizes the amount of device area taken up when
the design is placed and routed.

• The speed setting optimizes in a way that makes it easiest to
achieve your timing constraints after the design is placed and
routed, even if more function generators must be used.

• The balanced setting gives you the optimum combination of
area and speed.
Development System Reference Guide 8-15

Development System Reference Guide
The default setting for the –os option disables logic optimization—no
optimization is performed. You may want to avoid performing logic
optimization in the following cases.

• Your design has already been optimized (for example, a design
created in the Synopsys toolset). If the input to MAP has already
been optimized (including FPGA-specific 4-input LUT
optimization), the MAP results with the –os option enabled may
be worse than without the option.

• Your design has been entered as a schematic using Xilinx Unified
Library components. In this case, the MAP results with the –os
option enabled may be worse than without the option.

• You want to make sure you can perform back-annotation on any
of the logic in your original design. Optimization may make
some of the logic unavailable for back-annotation.

Note: After combinatorial logic optimization has been performed,
you lose the correlation between signal names in the NCD file and
signal names in the original design. User signal names are not
preserved within optimized combinatorial networks. This affects
back-annotation and also results in a reduction in the amount of
guided mapping and guided placement and routing that can be
performed. However, signals connected to pads or to the outputs of
tbufs, flip-flops, latches, and RAMS are preserved for back-
annotation.

This option does not apply to Virtex/-E/-II or Spartan-II.

–p (Xilinx Part Number)
–p part

Specifies the Xilinx part number for the device. The syntax for the –p
option is described in the “Part Numbers in Commands” section of
the “Introduction” chapter. Examples of part entries are XC4003E-
PC84, and XC4028EX-HQ240-3.

If you do not specify a part number using the –p option, MAP selects
the part specified in the input NGD file. If the information in the
input NGD file does not specify a complete device and package, you
must enter a device and package specification using the –p option.
MAP supplies a default speed value, if necessary.
8-16 Xilinx Development System

MAP—The Technology Mapper
Note: The architecture you specify with the –p option must match the
architecture specified within the input NGD file.
You may have chosen this architecture when you ran NGDBuild or
during an earlier step in the design entry process (for example, you
may have specified the architecture as an attribute within a
schematic, or specified it as an option to a netlist reader). If the
architecture does not match, you have to run NGDBuild again and
specify the desired architecture.

Note You can only enter a part number or device name from a device
library you have installed on your system. For example, if you have
not installed the 4006E device library, you cannot create a design
using the 4006E–PC84 part.

–pr (Pack Registers in I/O)
–pr {i | o | b}

When MAP runs without the –pr option, MAP can only place
flip-flops or latches within an I/O cell if your design entry method
specifies that these components are to be placed within I/O cells. For
example, if you create a schematic using IFDX (Input D Flip-Flop) or
OFDX (Output D Flip-Flop) design elements, the physical
components corresponding to these design elements must be placed
in I/O cells. The –pr option specifies that flip-flops or latches may be
packed into input registers (i selection), output registers (o selection),
or both (b selection) even if the components have not been specified
in this way. This option does not apply to the XC5200 architecture.

–r (No Register Ordering)
The –r option disables register ordering. If you specify this option,
register bit names are ignored when registers are mapped, and the
bits are not mapped in any special order. If you do not specify this
option, MAP looks at the register bit names for similarities and tries
to map register bits in an ordered manner (called “register ordering”).
For a description of register ordering, see the “Register Ordering”
section.

Note For Virtex/-E/-II, If you are migrating from an M1.5 design to a
3.1i design, you must use the -r option to maintain the behavior of the
M1.5 design.

This option does not apply to the XC5200 architecture.
Development System Reference Guide 8-17

Development System Reference Guide
-tx (Transform Buses)
–tx {on | off | aggressive | limit }

The -tx option specifes what type of bus transformation MAP
performs. The four permitted settings are on, off, aggressive, and
limit. The following example illustrates how the settings are used.

This example design is mapped to a XCV50 Virtex device.

Bus A has 4 TBUFs

Bus B has 20 TBUFs

Bus C has 30 TBUFs

The default behavior in the MAP program is as follows:

• The on setting performs partial transformation for a long chain
that exceeds the device limit.

Bus A is transformed to LUTs (number of TBUFs is >1, ≤4)

Bus B is transformed to CY chain (number of TBUFs is >4, ≤48)

Bus C is partially transformed. (25 TBUF + 1 dummy TBUF due to
the maximum width of the XCV50 device + CY chain imple-
menting the other 5 TBUFS)

• The off setting turns bus transformation off. This is the default
setting.

• The aggressive setting transforms the entire bus.

Buses A, B have the same result as the on setting.

Bus C is implemented entirely by CY chain. (30 ≤ the default
upper limit for carry chain transformation)

• The limit setting is the most conservative. It transforms only that
portion of the bus that exceeds the device limit.

–u (Do Not Remove Unused Logic)
If –u is specified, MAP maps unused components and nets in the
input design and includes them as part of the output design. If –u is
not specified, MAP eliminates unused components and nets from the
design before mapping.
8-18 Xilinx Development System

MAP—The Technology Mapper
The –u option is helpful if you want to run a preliminary mapping on
an unfinished design, possibly to see how many components the
mapped design uses. By specifying –u, you are assured that all of the
design’s logic (even logic that is part of incomplete nets) is mapped.

The MAP Process
To map a design, MAP performs these steps.

1. Choose the target Xilinx device, package, and speed. MAP selects
a part in this way.

♦ If a part is specified on the MAP command line, this is the
part used.

♦ If the command line does not specify a part, MAP selects the
part specified in the input NGD file. If the information in the
input NGD file does not specify a complete architecture,
device, and package, you receive an error message and MAP
does not continue. MAP supplies a default speed if necessary

2. Read the information in the input design file.

3. Perform a Logical DRC (Design Rule Check) on the input design.
If any DRC errors are detected, the MAP run is aborted. If any
DRC warnings are detected, the warnings are reported, but the
MAP run continues. The Logical DRC (also called the NGD DRC)
is described in “Logical Design Rule Check” chapter.

Note: Step 3 is skipped if the NGDBuild DRC was successful.

4. Assign the device global clock buffers (if possible).

5. Remove unused logic. All unused components and nets are
removed, unless these conditions exist.

♦ A Xilinx S (Save) constraint has been placed on a net during
design entry. If an unused net has an S constraint, the net and
all used logic connected to the net (as drivers or loads) is
retained. All unused logic connected to the net is deleted.
For a more complete description of the S constraint, see the
“Attributes, Constraints, and Carry Logic” chapter of the
Libraries Guide.

♦ The –u option was specified on the MAP command line. If
this option is specified, all unused logic is kept in the design.
Development System Reference Guide 8-19

Development System Reference Guide
6. Map pads and their associated logic into IOBs.

7. Map the logic into Xilinx components (IOBs, CLBs, etc.). If any
Xilinx mapping control symbols appear in the design hierarchy
of the input file (for example, FMAP or HMAP symbols targeted
to an XC4000EX device), MAP uses the existing mapping of these
components in preference to remapping them. The mapping is
influenced by various constraints; these constraints are described
in the “Attributes, Constraints, and Carry Logic” chapter of the
Libraries Guide.

8. Update the information received from the input NGD file and
write this updated information into an NGM file. This NGM file
contains both logical information about the design and physical
information about how the design was mapped. The NGM file is
used only for back-annotation On Virtex/-E/-II devices, guided
mapping uses the NGM file. For more information, see the
“Guided Mapping” section.

9. Create a physical constraints (PCF) file. This is a text file
containing any constraints specified during design entry. If no
constraints were specified during design entry, an empty file is
created so that you can enter constraints directly into the file
using a text editor or indirectly through the FPGA Editor.

MAP either creates a PCF file if none exists or rewrites an existing
file by overwriting the schematic-generated section of the file
(between the statements SCHEMATIC START and SCHEMATIC
END). For an existing constraints file, MAP also checks the
user-generated section and may either comment out constraints
with errors or halt the program. If no errors are found in the user-
generated section, the section remains the same.

Note On a Virtex/-E/-II design, you must use a MAP generated
PCF file . The timing tools perform skew checking only with a
MAP0-generated PCF file.

10. Create an MDF file, which describes how logic was decomposed
when the design was mapped. The MDF file is used for guided
mapping.

This step does not apply to Virtex/-E/-II or Spartan-II.

11. Run a physical Design Rule Check (DRC) on the mapped design.
If DRC errors are found, MAP does not write an NCD file.
8-20 Xilinx Development System

MAP—The Technology Mapper
12. Create an NCD file, which represents the physical design. The
NCD file describes the design in terms of Xilinx components—
CLBs, IOBs, etc.

13. Write a MAP report (MRP) file, which lists any errors or
warnings found in the design, details how the design was
mapped, and supplies statistics about component usage in the
mapped design.

Register Ordering
When you map a design containing registers, the MAP software can
optimize the way the registers are grouped into CLBs (slices for
Virtex/-E/-II or Spartan-II—there are two slices per CLB). This
optimized mapping is called “register ordering.”

A CLB (Virtex/-E/-II or Spartan-II slice) has two flip-flops, so two
register bits can be mapped into one CLB. For PAR (Place And Route)
to place a register in the most effective way, you often want as many
pairs of contiguous bits as possible to be mapped together into the
same CLBs (for example, bit 0 and bit 1 together in one CLB, bit 2 and
bit 3 in another).

MAP pairs register bits (performing “register ordering”) if it can
recognize that a series of flip-flops comprise a register. When you
create your design, you can name register bits in a way that ensures
they are mapped using register ordering.

Note MAP does not perform register ordering on any flip-flops which
have BLKNM, LOC, or RLOC properties attached to them. The
BLKNM, LOC, and RLOC properties define how blocks are to be
mapped, and these properties override register ordering.

To be recognized as a candidate for register ordering, the flip-flops
must have these characteristics.

• The flip-flops must share a common clock signal and common
control signals (for example, Reset and Clock Enable).

• The flip-flop output signals must all be named according to this
convention.
Development System Reference Guide 8-21

Development System Reference Guide
♦ Output signal names must begin with a common root
containing at least one alphabetic character.

♦ The names must end with numeric characters or with
numeric characters surrounded by parentheses (“(“ and “)”
), angle brackets (“<“ and “>”), or square brackets (“[“ and
“]”).

For example, acceptable output signal names for register
ordering are as follows.

If a series of flip-flops is recognized as a candidate for register
ordering, they are paired in CLBs in sequential numerical order. For
example, in the first set of names shown above, data1 and data2, are
paired in one CLB, while data3 and data4 are paired in another.

In the example below, no register ordering is performed, since the
root names for the signals are not identical

Note In the OrCAD® schematic capture program, an underbar (_)
and a sheet number are appended to each output signal name (for
example, data01_1 or add15_12). In order to allow register ordering
on designs developed using the OrCAD tools, MAP checks each
signal name to see if it ends with an underbar followed by numeric
characters.

When it finds a signal with this type of name, MAP ignores the
underbar and the numeric characters when it considers the signal for
register ordering. For example, if signals are named data00_1 and
data01_2, MAP considers them as data00 and data01 for purposes of
register ordering. These two signals are mapped to the same CLB.

data1 addr(04) bus<1>

data2 addr(08) bus<2>

data3 addr(12) bus<3>

data4 addr(16) bus<4>

bus<5>

data01

addr02

atod03

dtoa04
8-22 Xilinx Development System

MAP—The Technology Mapper
Two extra notes:

• MAP does not change signal names when it checks for
underbars—it only ignores the underbar and the number when it
checks to see if the signal is a candidate for register ordering.

• Because of the way signals are checked, make sure you don’t use
an underbar as your bus delimiter. If you name a bus signal
data0_01 and a non-bus signal data1, MAP sees them as data0
and data1 and register orders them even though you do not want
them register ordered.

When you run the MAP command the default setting performs
register ordering. If you specify the –r option when you run the
command, the software does not perform register ordering and maps
the register bits as if they were unrelated.

Guided Mapping
In guided mapping, an existing NCD is used to guide the current
MAP run. The guide file may be from any stage of implementation:
unplaced or placed, unrouted or routed. We recommend that you
generate your NCD file using the current release of Xilinx software.
However, MAP does support guided mapping using NCD files from
the previous release.

The following figure shows the flow used when you perform guided
mapping.
Development System Reference Guide 8-23

Development System Reference Guide
Figure 8-3 Guided Mapping

In the EXACT mode the mapping in the guide file is followed exactly.
Any logic in the input NGD file that matches logic mapped into the
physical components of the NCD guide file is implemented exactly as
in the guide file. Mapping (including signal to pin assignments),
placement and routing are all identical. Logic that is not matched to
any guide component is mapped by a subsequent mapping step.

If there is a match in EXACT mode, but your constraints would
conflict with the mapping in the guide file component, an error is
posted. If an error is posted, you can modify the constraints to
eliminate conflicts, change to the LEVERAGE guide mode (which is
less restrictive), modify the logical design changes to avoid conflicts,
or abandon using guided design.

X8995

MAP

NGD
Input Design

NCD
Mapped Design

NGM
Mapped Design

PAR

NCD
Placed and Routed Design

NGD
Modified Input Design

NCD
Guide File

NGM
Guide File

MAP

NCD
New Mapped Design

MDF
Decomposition

Hints

First MAP Run Second MAP Run
8-24 Xilinx Development System

MAP—The Technology Mapper
In the LEVERAGE mode, the guide design is used as a starting point
in order to speed up the design process. However, in cases where the
guided design tools cannot find matches or your constraints rule out
any matches, the logic is not guided. Whenever the guide design
conflicts with the your mapping, placement or routing constraints,
the guide is ignored and your constraints are followed.

Since the LEVERAGE mode only uses the guide design as a starting
point for mapping, MAP may subsequently choose to alter the
mapping to improve the speed or density of the implementation (for
example, MAP may choose to collapse additional gates into a guided
CLB).

For Spartan and Virtex/-E/-II devices, MAP uses the NGM as well as
the NCD files as guides. You do not additionally specify the NGM file
on the command line; MAP infers the appropriate NGM file from the
NCD file you specify. If MAP does not find an NGM file in the same
directory as the NCD, it generates a warning. In this case, MAP uses
the NCD file alone as the guide file.

Note: For Verilog® or VHDL netlist input designs, re-synthesizing
modules typically cause signal and instance names in the resulting
netlist to be significantly different from the netlist obtained in earlier
synthesis runs. This occurs even if the source level Verilog or VHDL
code only contains a small change. Because guided mapping depends
on signal and component names, synthesis designs often have a low
"match rate" when guided. Therefore, guided mapping is not
recommended for most synthesis-based designs, although there may
be cases where it could be a successful alternative technique.

Simulating Map Results
When simulating from NGM files, you are not simulating a mapped
result, that is, you are simulating the logical circuit description.
Simulating from the NCD file actually simulates the physical circuit
description.

MAP may generate an error that is not detected in the back-annotated
simulation netlist. For example, you may run the following command
after running MAP to generate the backannotated simulation netlist.

ngdanno mapped.ncd mapped.ngm -o mapped.nga

This command creates a back-annotated simulation netlist using the
logical-to-physical cross-reference file named mapped.ngm. This
Development System Reference Guide 8-25

Development System Reference Guide
cross-reference file contains information about the logical design
netlist which means that the back-annotated simulation netlist
(mapped.nga) is actually a back-annotated version of the logical
design. However, if MAP makes a physical error, for example,
implements an Active Low function for an Active High function, this
error will not be detected in the mapped.nga file which means that
the error will not show up in the simulation.

Consider the following logical circuit generated by NGDBuild from
an input design file.

Figure 8-4 Logical Circuit Representation

Note the Boolean output from the combinatorial logic. Suppose that
after running MAP for the preceding circuit, you obtain the following
result.

Figure 8-5 CLB Configuration

D Q

CLK

A * B + C * D

A
B

C
D

X8549

D Q

CLK

LUT

CLB

A * B + C * D

A

B

C

D

X8550
8-26 Xilinx Development System

MAP—The Technology Mapper
Note that MAP has generated an active low (C) instead of an active
high (C). Therefore, the Boolean output for the combinatorial logic is
incorrect. When you run NGDAnno using the mapped.ngm file
(ngdanno mapped.ncd mapped.ngm -o mapped.nga), you will not
detect this logical error because the delays are back-annotated to the
correct logical design not to the physical design.

One way to detect the error is by running the NGDAnno command
without using the mapped.ngm cross-reference file.

ngdanno mapped.ncd -o mapped.nga

Then physical simulations using the mapped.nga file will normally
detect a physical error. However, even though, an error is detected,
the specific type of error is not easily recognizable. You can use the
FPGA Editor to try to pinpoint the error or call Xilinx Customer
Support. It is also possible that the physical simulation is reporting an
error that does not exist, that is, the CLB configuration is correct. In
that instance, you can use the FPGA Editor to determine if the CLB is
correctly modelled.

Lastly, if both the logical and physical simulations do not discover
existing errors, you may need to use more test vectors in the
simulations.

The MAP Report (MRP) File
The MAP report (MRP) file is an ASCII (text) file containing
information about the MAP command run. Although detailed
information varies depending upon the device to which you have
mapped, the format of the file is the same regardless of the device
used.

Note The MRP file is formatted for viewing in a monospace (non-
proportional) font. If the text editor you use for viewing the report
uses a proportional font, the columns in the report do not line up
correctly.

A sample MRP file is shown below. This is an abbreviated file—most
MAP report files are considerably larger than the one shown below.

The report file is divided into a number of sections. Sections appear
in the report file even if they are empty (that is, even if there are no
messages that apply to them).

These are the sections in the MAP report file.
Development System Reference Guide 8-27

Development System Reference Guide
• Design Information—Shows your MAP command, line, the
device to which the design has been mapped, and when the
mapping was performed.

• Design Summary—Summarizes the mapper run, showing the
number of errors and warnings, and how many of the resources
in the target device are used by the mapped design.

• Table of Contents—Lists the remaining sections of the MAP
report.

• Errors (Section 1)—Shows any errors generated as a result of the
following.

♦ Errors associated with the logical DRC tests performed at the
beginning of the mapper run. These errors do not depend on
the device to which you are mapping.

♦ Errors the mapper discovers (for example, a pad is not
connected to any logic, or a bidirectional pad is placed in the
design but signals only pass in one direction through the
pad). These errors may depend on the device to which you
are mapping.

♦ Errors associated with the physical DRC run on the mapped
design.

• Warnings (Section 2)—Shows any warnings generated as a result
of the following.

♦ Warnings associated with the logical DRC tests performed at
the beginning of the mapper run. These warnings do not
depend on the device to which you are mapping.

♦ Warnings the mapper discovers. These warnings may
depend on the device to which you are mapping.

♦ Warnings associated with the physical DRC run on the
mapped design.

• Design Attributes (Section 3)—Shows any attributes (properties)
specified when the design was created. Some of these attributes
also appear as physical constraints in the physical constraints file
(PCF) produced by the mapper run.

• Removed Logic Summary (Section 4)—Summarizes the number
of blocks and signals removed from the design. The section
reports on these kinds of removed logic.
8-28 Xilinx Development System

MAP—The Technology Mapper
♦ Blocks trimmed—A “trimmed” block is a block removed
because it is along a path that has no driver or no load.
Trimming is recursive; that is, if Block A becomes
unnecessary because logic to which it is connected has been
trimmed, then Block A is also trimmed.

♦ Blocks removed—A “removed” block is removed because it
can be eliminated without changing the operation of the
design. Removal is recursive; that is, if Block A becomes
unnecessary because logic to which it is connected has been
removed, then Block A is also removed.

♦ Blocks optimized—An “optimized” block is a block removed
because its output remains constant regardless of the state of
the inputs (for example, an AND gate with one input tied to
ground). Logic generating an input to this optimized block
(and to no other blocks) is also removed, and appears in this
section.

♦ Signals removed—Signals that were removed because they
were attached only to removed blocks.

♦ Signals merged—A signal is merged when two signals are
combined because a component separating them was
removed.

• Removed Logic (Section 5)—Describes in detail all logic (design
components and nets) removed from the input NGD file when
the design was mapped. The preceding description of Section 4
defines the types of logic removed. More generally, logic may be
removed because

♦ A design uses only part of the logic in a library macro.

♦ The design has been mapped even though it is not yet
complete.

♦ The mapper has optimized the design logic.

♦ Unused logic has been created in error during schematic
entry.

This section also indicates which nets were merged (that is, two
nets were combined when a component separating them was
removed).
Development System Reference Guide 8-29

Development System Reference Guide
In this section, if the removal of a signal or symbol results in the
subsequent removal of an additional signal or symbol, the line
describing the subsequent removal is indented. This indentation
is repeated as a chain of related logic is removed. To quickly
locate the cause for the removal of a chain of logic, look above the
entry in which you are interested and locate the top-level line,
which is not indented.

• Added Logic (Section 6)—Describes any logic that was added to
the design by the mapper. For example, logic is added when a
design contains global reset buffers but the device to which you
are mapping does not have global reset buffers. The mapper adds
the necessary logic to perform the global reset function

• Expanded Logic (Section 7)—If enabled, describes the mapping
of logic that has been added to the database to resolve certain
design blocks (for example, LogiBLOX modules).

By default this section is empty, since the section may contain
thousands of lines and the information is not needed by the
majority of users. To create this section, select the -detail option

• Symbol Cross Reference (Section 9)—If enabled, shows where
symbols in the logical design were mapped in the physical
design.

By default this section is empty, since the section may contain
thousands of lines and the information is not needed by the
majority of users. To create this section, select the -detail option.
8-30 Xilinx Development System

MAP—The Technology Mapper
• IOB Properties (Section 10)—Lists each IOB to which the user has
supplied constraints along with the applicable constraints. The
possible IOB properties are shown in the following table; the
applicability of the properties and options varies from one
architecture to another. The following table applies only to the
XC4000X, Spartan/XL architectures.

• RPMs (Section 11)—Indicates each RPM (Relationally Placed
Macro) used in the design, and the number of device components
used to implement the RPM.

• Guide Report (Section 12)—If you have mapped using a guide
file, shows the guide mode used (EXACT or LEVERAGE) and the
percentage of objects that were successfully guided.

• Area Group Summary (Section 13)— The mapper summarizes
results for each area group. MAP uses area groups to specify a
group of logical blocks that are packed into separate physical
areas.

A sample MAP Report (MRP) file is shown below.

Note The MAP Report is formatted for viewing in a monospace
(non-proportional) font. If the text editor you use for viewing the
report uses a proportional font, the columns in the report do not line
up correctly.

Xilinx Mapping Report File for Design ’area_con14’
Copyright (c) 1995-2000 Xilinx, Inc. All rights reserved.

Table 8-2 IOB Properties

Property Meaning Options

SLEW Output slew rate SLOW or FAST

PULLUP Enable pull-up resistor N/A

PULLDOWN Enable pull-down resistor N/A

FF/LATCH Input flip-flop/latch data
source

NODELAY,
MEDDELAY, or SYNC

SYNC Fast capture latch data
source

NODELAY or
MEDDELAY

DRIVE Drive value on output
pads

12 or 24 ma.
Development System Reference Guide 8-31

Development System Reference Guide
Design Information

Command Line : map -u area_con14.ngd
Target Device : xv50
Target Package : bg256
Target Speed : -6
Mapper Version : virtex -- HEAD
Mapped Date : Tue Mar 7 13:30:28 2000

Design Summary

Number of errors: 0
Number of warnings: 56
Number of Slices: 0 out of 768 0%
Number of Slices containing

 unrelated logic: 0 out of 0 0%
Number of 4 input LUTs: 0 out of 1,536 0%
Number of Block RAMs: 2 out of 8 25%

Total equivalent gate count for design: 32,768

Table of Contents

Section 1 - Errors
Section 2 - Warnings
Section 3 - Design Attributes
Section 4 - Removed Logic Summary
Section 5 - Removed Logic
Section 6 - Added Logic
Section 7 - Expanded Logic
Section 8 - Signal Cross-Reference
Section 9 - Symbol Cross-Reference
Section 10 - IOB Properties
Section 11 - RPMs
Section 12 - Guide Report
Section 13 - Area Group Summary

Section 1 - Errors

Section 2 - Warnings

8-32 Xilinx Development System

MAP—The Technology Mapper
WARNING:DesignRules:368 - Netcheck: Sourceless. Net clk has no
source.
WARNING:DesignRules:368 - Netcheck: Sourceless. Net en has no
source.
WARNING:DesignRules:368 - Netcheck: Sourceless. Net rst has no
source.
WARNING:DesignRules:368 - Netcheck: Sourceless. Net we has no
source.
WARNING:DesignRules:368 - Netcheck: Sourceless. Net addr11 has no
source.
.
.
.
WARNING:DesignRules:367 - Netcheck: Loadless. Net m2_m2_doa0 has no
load.
WARNING:DesignRules:367 - Netcheck: Loadless. Net m2_m2_doa1 has no
load.
WARNING:DesignRules:367 - Netcheck: Loadless. Net m2_m2_dob0 has no
load.
WARNING:DesignRules:367 - Netcheck: Loadless. Net m2_m2_dob1 has no
load.

Section 3 - Design Attributes

Section 4 - Removed Logic Summary

Section 5 - Removed Logic

Section 6 - Added Logic

Section 7 - Expanded Logic

To enable this section, set the detailed map report option and rerun
map.

Section 8 - Signal Cross-Reference

Development System Reference Guide 8-33

Development System Reference Guide
To enable this section, set the detailed map report option and rerun
map.

Section 9 - Symbol Cross-Reference

To enable this section, set the detailed map report option and rerun
map.

Section 10 - IOB Properties

Section 11 - RPMs

Section 12 - Guide Report

Guide not run on this design.

Section 13 - Area Group Summary

AREA_GROUP AG_ONE
RANGE: RAMB4_R1C1:RAMB4_R3C1

No COMPRESSION specified for AREA_GROUP AG_ONE
Number of BlockRAMs: 2 out of 3 66%

Halting MAP
To halt MAP, enter CONTROL-C (on a workstation) or CONTROL-
BREAK (on a PC). On a workstation, make sure that when you enter
CONTROL-C the active window is the window from which you
invoked the mapper. The operation in progress is halted. Some files
may be left when the mapper is halted (for example, a MAP report
file or a physical constraints file), but these files may be discarded
since they represent an incomplete operation.
8-34 Xilinx Development System

Chapter 9

LCA2NCD

LCA2NCD is compatible with the following families.

• XC4000E

• XC3000A/L

• XC3100A/L

• XC5200

This chapter describes LCA2NCD. The chapter contains the
following sections.

• “LCA2NCD”

• “LCA2NCD Syntax”

• “LCA2NCD Files”

• “LCA2NCD Options”

• “Translating Unnamed Components”

LCA2NCD
Earlier releases of the Xilinx Development System stored the physical
design in a Logic Cell™ Array (LCA™) file. The current Xilinx Devel-
opment System tools operate on physical designs in the NCD (Circuit
Description) format. LCA files are ASCII (human-readable) files;
NCD files are binary (machine-readable) files.

LCA2NCD converts an LCA file to an NCD file, as shown in the
following figure. The NCD file produced by LCA2NCD can be placed
and routed, viewed in the FPGA Editor, analyzed for timing, and
back-annotated in the current Xilinx Development System.
Development System Reference Guide — 3.1i 9-1

Development System Reference Guide
Figure 9-1 LCA2NCD File Conversion

LCA2NCD Syntax
The following syntax converts an LCA file to an NCD file.

lca2ncd [options] lca_file[.lca] [ncd_file][.ncd]]

options can be any number of the options listed in the “LCA2NCD
Options” section. They do not need to be listed in any particular
order. Separate multiple options with spaces.

lca_file is the LCA file to be converted. If you enter a file name with no
extension, LCA2NCD looks for a file with an .lca extension and the
name you specified.

ncd_file is an optional name for the output NCD file. The output file
name, its extension, and its location are determined in the following
way.

• If you do not specify an output file name, the output file has the
same name as the input file, with an .ncd extension.

• If you specify an output file name with no extension, LCA2NCD
appends the .ncd extension to the file name.

• If you specify a file name with an extension other than .ncd, you
get an error message and LCA2NCD does not run.

LCA2NCD

X7473

NCD
Physical Circuit

Description

LCA
Physical Circuit

Description

MDF
Composition

Hints

L2N
LCA2NCD Report
9-2 Xilinx Development System

LCA2NCD
• If you do not specify a full path name, the output file is placed in
the directory from which you ran LCA2NCD.

LCA2NCD Files
The input files that LCA2NCD requires and the output files that
LCA2NCD generates are described below.

Input Files
Input to LCA2NCD consists of a Xilinx LCA file. This is a mapped
design file generated in a previous revision of the Xilinx Develop-
ment System. The file may also contain placement and routing infor-
mation

Output Files
Output from LCA2NCD consists of the following files.

• NCD file—This file is a physical description of the design in
terms of Xilinx components, such as logic cells and I/O cells.

• MDF file—The MAP Directive File describes how logic was
decomposed when the design was originally mapped. The MDF
file is used for guided mapping with the current Xilinx Develop-
ment System software. In guided mapping, the file enables MAP
to recreate the decompositions chosen when the design was first
mapped. This file is only created if there are Mapper directives in
the LCA file.

• L2N file—This is a report file containing information about the
LCA2NCD run.

LCA2NCD Options
Following is a description of the command line options and how they
affect the behavior of LCA2NCD.

–p (Placement Only)
If you specify the –p option, LCA2NCD includes placement informa-
tion from the input LCA file in the output NCD file, but no routing
information.
Development System Reference Guide 9-3

Development System Reference Guide
–f (Execute Commands File)
–f command_file

The –f option executes the command line arguments in the specified
command_file. For more information on the –f option, see the “–f
Option” section of the “Introduction” chapter.

–w (Overwrite Existing File)
The –w option overwrites the output NCD file if it already exists. By
default (no –w specified), LCA2NCD does not overwrite an existing
file

Translating Unnamed Components
A Xilinx LCA file can contain unnamed components. Components
that are unnamed in an LCA file are dynamically named when used
in the Xilinx Development System tools; that is, component names
change depending on whether the components are placed or
unplaced.

In an LCA file, components are assigned names using the NmBlk
construct. Although a component in an LCA file does not have to be
assigned a name, both the FPGA Editor and PAR require something
by which to refer to the component. In the Xilinx Development
System tools, the name applied to a component is dynamic—the
same component has a different name when it is placed or unplaced.

 If an unnamed component is placed, it is referred to in the following
way.

$sitename_id

sitename is the site in which the component is placed. id is an integer.

If an unnamed component is unplaced, it is referred to in the
following way.

$typename_id

typename is the type of component, such as CLB, IOB, or TBUF. id is an
integer.

If an unplaced component is placed in PAR or the FPGA Editor, or if a
placed component is unplaced, the string by which it is referred to
changes.
9-4 Xilinx Development System

LCA2NCD
The FPGA Editor allows you to rename components. If you use the
FPGA Editor to assign a name to an unnamed component, the name
you supply then remains with the component, whether the compo-
nent is placed or unplaced.
Development System Reference Guide 9-5

Development System Reference Guide
9-6 Xilinx Development System

Chapter 10

Physical Constraints (PCF) File

This chapter describes the Physical Constraints File (PCF). The
chapter contains the following sections

• “The PCF File”

• “Interaction Between Constraints”

The PCF File
The NGD file produced when a design netlist is read into the Xilinx
Development System may contain a number of logical constraints.
These constraints originate in any of these sources.

• An attribute assigned within a schematic or HDL file.

• A constraint entered in a UCF (User Constraints File).

• A constraint appearing in an NCF (Netlist Constraints File)
produced by a CAE vendor toolset.

Logical constraints in the NGD file are read by MAP. MAP uses some
of the constraints to map the design, and converts other logical
constraints to physical constraints. MAP then writes these physical
constraints into a Physical Constraints File (PCF).

The PCF file is an ASCII file containing two separate sections: a
section for those physical constraints created by the mapper and a
section for physical constraints entered by the user. The mapper
section is rewritten every time you run the mapper. Mapper-gener-
ated physical constraints appear first in the file, followed by user
physical constraints. This order dictates that in the event of conflicts
between mapper-generated and user constraints, user constraints are
last-read and override. The mapper-generated section of the file is
preceded by a SCHEMATIC START notation on a separate line.
Development System Reference Guide — 3.1i 10-1

Development System Reference Guide
The end of this section is indicated by SCHEMATIC END, also on a
separate line. User-generated constraints, such as timing constraints,
should always be entered after SCHEMATIC END.

You can write user constraints directly into the file or you can write
them indirectly (or undo them) from within the FPGA Editor. (For
more information on constraints in the FPGA Editor, see the FPGA
Editor Reference/User Guide).

The PCF file is an optional input to PAR, the FPGA Editor, TRACE,
NGDAnno, and BitGen (see the following figure).

The file may contain any number of constraints and any number of
comments in any order. A comment consists of either a pound sign
(#) or double slashes (//) followed by any number of other characters
up to a new line. Illegal constraints are automatically commented out
by the program.

Figure 10-1 PCF File Flow

MAP

X7424

PCF
Physical Constraints

PARFPGA Editor BitGenTRACE NGDAnno

NGD
Generic Database

(Containing Constraints)
10-2 Xilinx Development System

Physical Constraints (PCF) File
Interaction Between Constraints
Schematic constraints are placed at the beginning of the PCF file by
MAP. The start and end of this section is indicated with SCHEMATIC
START and SCHEMATIC END, respectively. Because of a “last-read”
order, all constraints that you enter in this file should come after
SCHEMATIC END.

Note You are not prohibited from entering a user constraint before
the schematic constraints section, but if you do, a conflicting
constraint in the schematic-based section may override your entry.

Every time a design is remapped, the schematic section of the PCF file
is overwritten by the mapper. The user constraints section is left
intact, but certain constraints may be invalid because of the new
mapping.
Development System Reference Guide 10-3

Development System Reference Guide
10-4 Xilinx Development System

Chapter 11

DRC—Physical Design Rule Check

This program is compatible with the following families.

• Spartan/XL/-II

• Virtex/-E/-II

• XC4000E/L/EX/XL/XV/XLA

• XC3000A/L

• XC3100A/L

• XC5200

The chapter contains the following sections.

• “DRC”

• “DRC Syntax”

• “DRC Files”

• “DRC Options”

• “DRC Types”

• “DRC Errors and Warnings”

DRC
The physical Design Rule Check (DRC) consists of a series of tests to
discover physical errors and some logic errors in the design. Three
Xilinx Development System modules employ physical DRC. The
physical DRC is used in the following ways.
Development System Reference Guide — 3.1i 11-1

Development System Reference Guide
• MAP automatically runs physical DRC after it has mapped the
design.

• PAR (Place and Route) automatically runs physical DRC on nets
when it routes the design.

• You can run physical DRC from within the FPGA Editor. The
DRC also runs automatically after certain FPGA Editor opera-
tions (for example, when you edit a logic cell or when you manu-
ally route a net). For a description of how the DRC works within
the FPGA Editor, see the “Verifying Your Design” section in the
FPGA Editor Guide.

• BitGen, which creates a a BIT file for programming the device,
automatically runs physical DRC.

• You can run physical DRC from the UNIX or DOS command line.

DRC Syntax
To run DRC, enter the following on the UNIX or DOS command line.

drc [options] file_name

options can be any number of the DRC options listed in the “DRC
Options” section. They do not need to be listed in any particular
order. Separate multiple options with spaces.

file_name is the name of the NCD file on which DRC is to be run.

DRC Files
This section describes the DRC input and output files.

Input File
The input to DRC is an NCD file. The NCD file is a mapped, physical
description of your design.

Output File
The output of DRC is a TDR file. The TDR file is an ASCII DRC
report. The contents of this file is determined by the options you
select for the DRC command.
11-2 Xilinx Development System

DRC—Physical Design Rule Check
DRC Options
This section describes the options that are available for the DRC
command line.

–e (Error Report)
The –e option produces a report containing details about errors only.
No details are given about warnings.

–o (Output file)
–o outfile_name

The –o option overrides the default output report file file_name.tdr
with outfile_name.tdr.

–s (Summary Report)
The –s option produces a summary report only. The report indicates
the number of errors and warnings found but does not supply any
details about them.

–v (Verbose Report)
The –v option reports all warnings and errors. This is the default
option for DRC.

–z (Report Incomplete Programming)
The –z option reports incomplete programming as errors. Certain
DRC violations are considered errors when the DRC runs as part of
the BitGen command but are considered warnings at all other times
the DRC runs. These violations usually indicate the design is incom-
pletely programmed (for example, a logic cell has been only partially
programmed or a signal has no driver). The violations would create
errors if you tried to program the device, so they are reported as
errors when BitGen creates a BIT file for device programming. If you
run DRC from the command line without the –z option, these viola-
tions are reported as warnings only. With the –z option, these viola-
tions are reported as errors.
Development System Reference Guide 11-3

Development System Reference Guide
DRC Types
Physical DRC can perform four types of checks.

• Net check—This check examines one or more routed or unrouted
signals and reports any problems with pin counts, tristate buffer
inconsistencies, floating segments, antennae, and partial routes.

• Block check—This check examines one or more placed or
unplaced components and reports any problems with logic,
physical pin connections, or programming.

• Chip check—This check examines a special class of checks for
signals, components, or both at the chip level, such as placement
rules with respect to one side of the device.

• All checks—This check performs net, block, and chip checks.

When you run DRC from the command line (as described in the
previous sections), it automatically performs net, block, and chip
checks.

In the FPGA Editor, you can run the net check on selected objects or
on all of the signals in the design. Similarly, the block check can be
performed on selected components or on all of the design’s compo-
nents. When you check all components in the design, the block check
performs extra tests on the design as a whole (for example, tristate
buffers sharing long lines and oscillator circuitry configured
correctly) in addition to checking the individual components. In the
FPGA Editor, you can run the net check and block check separately or
together.

For a description of how the DRC works within the FPGA Editor, see
the “Verifying Your Design” section of the FPGA Editor Guide.

DRC Errors and Warnings
A DRC error indicates a condition in which the routing or component
logic will not operate correctly (for example, a net without a driver or
a logic block that is incorrectly programmed). A DRC warning indi-
cates a condition where the routing or logic is incomplete (for
example, a net is not fully routed or a logic block has been
programmed to process a signal but there is no signal on the appro-
priate logic block pin).
11-4 Xilinx Development System

DRC—Physical Design Rule Check
Certain messages may appear as either warnings or errors,
depending on the application and signal connections. For example, in
a net check, a pull-up not used on a signal connected to a decoder
generates an error message. A pull-up not used on a signal connected
to a tristate buffer only generates a warning.

Incomplete programing (for example, a signal without a driver or a
partially programmed logic cell) is reported as an error when the
DRC runs as part of the BitGen command, but is reported as a
warning when the DRC runs as part of any other program. The –z
option to the DRC command reports incomplete programming as an
error instead of a warning. For a description of the –z DRC option,
see the “–z (Report Incomplete Programming)” section.
Development System Reference Guide 11-5

Development System Reference Guide
11-6 Xilinx Development System

Chapter 12

PAR—Place and Route

This program is compatible with the following families.

• XC3000A/L

• XC3100A/L

• XC4000E/L

• XC4000EX/XL/XV/XLA

• XC5200

• Spartan/XL/-II

• Virtex/-E/-II

The chapter contains the following sections.

• “PAR”

• “PAR and the Timing Analysis Software”

• “Automatic Timespecing”

• “PAR Syntax”

• “PAR Files”

• “PAR Options”

• “PAR Operation”

• “Guided PAR”

• “Output from PAR”

• “Scoring the Routed Design”

• “Turns Engine (PAR Multi-Tasking Option)”

• “Command Line Examples”
Development System Reference Guide — 3.1i 12-1

Development System Reference Guide
• “Halting PAR”

PAR
After a design has undergone the necessary translation to bring it into
the NCD (Circuit Description) format, it is ready for placement and
routing. This phase is done by PAR (Xilinx’s Place and Route
program). PAR takes an NCD file, places and routes the design, and
outputs an NCD file which is used by the bitstream generator
(BitGen). The output NCD file can also act as a guide file when you
reiterate placement and routing for a design to which minor changes
have been made after the previous iteration.

In the Xilinx Development System, PAR places and routes a design
using a combination of two methods.

• Cost-based—This means that placement and routing are
performed using various cost tables which assign weighted
values to relevant factors such as constraints, length of connec-
tion, and available routing resources. Cost-based placement and
cost-based routing are further described in the “PAR Operation”
section.

• Timing-Driven—The Xilinx timing analysis software enables
PAR to place and route a design based upon your timing
constraints. Timing-driven PAR is described in the “PAR and the
Timing Analysis Software” section.

Flow through the PAR module is shown in the following figure. The
figure shows a PAR run that produces a single output design file.
12-2 Xilinx Development System

PAR—Place and Route
Figure 12-1 PAR Flow

PAR and the Timing Analysis Software
Timing-driven PAR is based upon Xilinx’s timing analysis software,
an integrated static timing analysis tool (that is, it does not depend on
input stimulus to the circuit). This means that placement and routing
are executed according to timing constraints that you specify in the
beginning of the design process. The timing analysis software inter-
acts with PAR to ensure that the timing constraints you impose on the
design are met.

PAR

NCD
Circuit Description

(Mapped)

Guide File

Input for Re-Entrant PAR

DLY
Delay Information

PAR
PAR Report

PAD
Pin Information

NCD
Circuit Description

(Placed/Routed)

X7205

PCF
Physical Constraints

Intermediate
Failing Timespec

SummaryGuide File
Report

XPI
Report
Development System Reference Guide 12-3

Development System Reference Guide
To use timing-driven PAR, you can specify your timing constraints in
any of these ways.

• You can enter the timing constraints as properties in a schematic
capture or HDL design entry program.

• You can write your timing constraints into a User Constraints File
(UCF). This file is processed by NGDBuild when the logical
design database is generated.

To avoid manually entering timing constraints in a UCF file, use
the Xilinx Constraints Editor, a tool that greatly simplifies
constraint creation. For a detailed description of how to use the
editor, see the Constraints Editor Guide.

• You can enter the timing constraints in the Physical Constraints
File (PCF), a file that is generated by MAP. The PCF file contains
any timing constraints specified using the two previously
described methods and any additional constraints you enter
directly in the file.

Timing-driven placement and timing-driven routing are automati-
cally invoked if PAR finds timing constraints in the physical
constraints file. The physical constraints file serves as input to the
timing analysis software. The timing constraints supported by the
Xilinx Development System are described in the “Using Timing
Constraints” chapter.

Note Depending upon the types of timing constraints specified and
the values assigned to the constraints, PAR run time may be
increased.

When PAR is complete, you can verify that the design’s timing char-
acteristics (relative to the physical constraints file) have been met by
running TRACE (Timing Reporter and Circuit Evaluator), Xilinx’s
timing verification and reporting utility. TRACE, which is described
in detail in the “TRACE” chapter, issues an ASCII report showing
any timing warnings and errors and other information relevant to the
design. There is a terse summary report of timing in the PAR report
also.

Note If you are going to run a design without timing constraints,
better circuit performance most likely can be obtained by enabling
the Delay Based Cleanup router pass. Alternatively, consider running
timing driven PAR by supplying timing constraints with the input
design.
12-4 Xilinx Development System

PAR—Place and Route
Automatic Timespecing
For Spartan-II and Virtex/-E designs, PAR performs automatic
timespecing if it detects no timing constraints. This feature is invoked
only if you set the effort levels at 3, 4 or 5. Effort level 2 is the default
at which PAR runs. For more information on effort levels, see the “–l
(Overall Effort Level)” section. Automatic timespecing can be
suppressed. See the “–x (Ignore Timing Constraints)” section for
details.

When automatic timespecing is invoked, PAR analyzes the design for
clock nets and attempts to increase the frequency of clocks. If you
were to increase the clock frequency using a timing-driven flow, you
would perform multiple runs of PAR with progressively higher
frequencies. Each run would require you to increase the frequency
specifications on clocks in your design. PAR would attempt to meet
these specifications, not improve on them. You might continue to
increase the frequency specifications until PAR can no longer meet
them. At this point, your design would achieve optimal clock
frequency. In contrast, automatic timespecing allows you to achieve
good clock frequency results in the shortest possible time.

Specifying timing constraints in your design file can still yield the
best possible runtime and frequency. However, automatic
timespecing provides significantly improved runtime and clock
frequency compared with non timing driven mode.

PAR Syntax
The following syntax places and routes your design.

par [options] infile[.ncd] outfile pcf_file[.pcf]

Options can be any number of the PAR options listed in the “PAR
Options” section. They do not need to be listed in any particular
order. Separate multiple options with spaces.

Infile is the design file you wish to place and/or route. The file must
have an .ncd extension, but you do not have to specify the .ncd exten-
sion on the command line.

Outfile is the target design file which is written after PAR is finished.
If the command options you specify yield a single output design file,
outfile has an extension of .ncd or .dir. An .ncd extension generates an
output file in NCD format; the .dir extension directs PAR to create a
Development System Reference Guide 12-5

Development System Reference Guide
directory in which to place the output file (in NCD format). If the
command options you specify yield more than one output design file
(that is, you enter the –n option described in the “PAR Options”
section), outfile must have an extension of .dir. The multiple output
files (in NCD format) are placed in the directory with the .dir exten-
sion.

If the file or directory you specify already exists, you get an error
message and the operation does not run. You can override this
protection and automatically overwrite existing files by using the –w
option (described in the “PAR Options” section).

Pcf_file is a physical constraints file. The file contains the constraints
you entered during design entry, constraints you added using the
UCF (User Constraints File), and constraints you added directly in
the PCF file. If you do not enter the name of a physical constraints file
on the command line and the current directory contains an existing
physical constraints file with the infile name and a .pcf extension, PAR
uses the PCF file.

PAR Files
This section describes the PAR input and output files.

Input Files
Input to PAR consists of the following files.

• NCD file—a mapped design.

• PCF file—an ASCII file containing constraints based on attributes
in the schematic or on constraints you have placed in a UCF file.
A complete list of constraints can be found in the “Attributes,
Constraints, and Carry Logic” chapter of the Libraries Guide. PAR
supports all of the timing constraints described in that chapter.

• Guide NCD file—an optional template file for placing and
routing the design.

Output Files
Output from PAR consists of the following files.

• NCD file—a placed and routed design file (may contain place-
ment and routing information in varying degrees of completion).
12-6 Xilinx Development System

PAR—Place and Route
• PAR file—a PAR report including summary information of all
placement and routing iterations.

• DLY file—a file containing delay information for each net in the
design.

• PAD file—a file containing I/O pin assignments.

• Guide Report File—a file created if you use the -gf option

• Intermediate Failing Timespec Summary— a summary generated
for failing timing specifications

• Xilinx Par Information— This XPI report displays whether or not
the design routed and if timing specifications were met.

PAR Options
You can customize the PAR operation by specifying options when
you run PAR. You can have PAR place without routing. You can have
PAR perform a single placement, or perform a number of placements
using different cost tables. You can specify an effort level to indicate
to PAR whether the design is simple or complex. You can also specify
the maximum number of passes the router may perform and the
number and type of cleanup passes the router runs.

PAR options are entered on the command line in any order, preceded
by a hyphen (–), and separated by spaces. You must enter options in
lower case letters. For those options that require an additional param-
eter, the option and the parameter must be separated by spaces or
tabs. Options that do not require an additional parameter may be
grouped together preceded by a single hyphen (for example, –rwx is
the same as –r –w –x).

Following is a description of the command line options and how they
affect the behavior of PAR. If you run PAR with illegal options or do
not specify an input file, a brief listing of the supported options and
their functions is printed on the screen. If you want to view all of the
options, type the following on the command line.

par | more

This allows you to scroll through the options.

OR

par > filename
Development System Reference Guide 12-7

Development System Reference Guide
This redirects the options to a file that you specify.

–c (Number of Cost-Based Router Cleanup Passes)
–c cost_passes

If you run both cost-based cleanup passes and delay-based cleanup
passes (see –d and –e options below), the cost-based passes run
before the delay-based passes. The valid range of cost_passes is 0–5.
The default setting for –c is 1 for all devices except Spartan-II and
Virtex/-E/-II, for which the default is 0.

Following are some strategies for using the cleanup routers (either
cost or delay based).

• On non-timing driven runs, cleanup routing can significantly
improve delays and is, in fact, mandatory for XC3000 devices.

• If cost-based cleanup does not yield the desired performance on a
non-timing driven run, running a delay-based cleanup pass may
often significantly improve circuit performance.

• For timing-driven runs, the cleanup passes can improve timing
on those elements of the design that are not covered by timing
constraints.

• Also, for designs in which normal iterative routing is not quite
making the timing goal (but is somewhat close, say 3 - 5%) a
delay-based cleanup pass can sometimes reorganize the routing
enough such that follow-up re-entrant iterative routing passes
are then able to meet timing.

Note The -c option is not recommended for use with Virtex/-E/-II or
Spartan-II. The evaluation of this option with these architectures indi-
cates that the option creates much longer runtimes with hardly any
improvement.

–d (Number of Delay-Based Router Cleanup Passes)
–d delay_passes

If you do not use the –d option, the router does not run any delay-
based cleanup passes (described in the “Routing” section). If you run
both delay-based cleanup passes and cost-based cleanup passes (see
–c option above), the cost-based passes run before the delay-based
passes. Typically, the first delay-based cleanup pass produces the
12-8 Xilinx Development System

PAR—Place and Route
greatest improvement, with less improvement on each successive
pass. It is also possible that delay passes do not show any improve-
ment.

The valid range of delay_passes is 0–5, and the default is 0.

If you want to run delay-based cleanup passes only on designs that
have been routed to completion (100% routed), use the –e option
(described below) instead of the –d option.

Note The -d option is not recommended for use with Virtex/-E/II or
Spartan-II. The evaluation of this option with these architectures indi-
cates that the option creates much longer runtimes with little
improvement.

-dfs (Thorough timing analysis of paths)
The -dfs option specifies that PAR utilize depth-first search timing
analysis, which analyzes all paths covered by timing constraints in
order to perform timing-driven place and route. This method is more
thorough than the default method (-kpaths) and may result in longer
PAR runtimes. See the “Output Files” section for a discussion of the
connection-based method.

–e (Delay-based cleanup passes—Completely
Routed Designs)

–e number

The –e option operates in the same way as the –d option described
previously, but the –d option runs on all output designs produced by
the PAR run, while the –e option only runs on those output designs
which have been routed to completion. The number of passes is 0–5,
and the default is 0.

Note This option is not recommended for use with Virtex/-E/-II or
Spartan-II. The evaluation of this option with these architectures indi-
cates that the option creates much longer runtimes with little
improvement.

–f (Execute Commands File)
–f command_file
Development System Reference Guide 12-9

Development System Reference Guide
The –f option executes the command line arguments in the specified
command_file. For more information on the –f option, see the “–f
Option” section of the “Introduction” chapter.

–gf (Guide NCD File)
–gf guide_file

The –gf option specifies the name of an NCD file (from a previous
MAP or PAR run) to be used as a guide for this PAR run. The guide
file is an NCD file which is used as a template for placing and routing
the input design. For more information on the guide file, see the
“Guided PAR” section.

–gm (Guide Mode)
–gm {exact | leverage }

The –gm option specifies the form of guided placement and routing
PAR uses—exact or leveraged. The default is exact mode. For more
information on the guide modes, see the “Guided PAR” section.

You specify the NCD to use as a guide file by entering a –gf option
(see the “Output Files” section) on the PAR command line. If you do
not specify a guide file, PAR is guided by the placement and routing
information in the input NCD file. The “Guided PAR” section
describes how PAR operates if no guide file is specified.

–i (Number of Router Iterations)
–i route_passes

Run a maximum number of passes of the router, stopping earlier only
if the routing goes to 100% completion and all constraints are met.
Each pass is a single attempt to route a placement to completion, and
the screen displays a message for each pass.

The valid range of route_passes is 0–2000. If you do not use the –i
option, the router runs until it either routes to 100% completion and
meets its timing constraints or intelligently determines it will not
succeed.
12-10 Xilinx Development System

PAR—Place and Route
-k (Re-Entrant Routing)
The –k option runs re-entrant (also called incremental) routing.
Routing begins with the existing placement and routing left in place.
Re-entrant routing is useful if you wish to manually route parts of the
design and then continue automatic routing, if you halted the route
prematurely (for example, with a Control-C) and wish to resume, or if
you wish to run additional route or delay reduction passes.

-kpaths (Faster Analysis of Paths)
The non-enumerative connection-based method (the default method)
has a runtime proportional to the size of the design, unlike the DFS
method, which has a runtime proportional to the number of paths in
the design.

There are two significant differences between the connection-based
method and the DFS method.

• The DFS method analyzes all paths except those that actually
contain a circuit cycle, including paths that contain connections
that cause a circuit cycle for other paths in the circuit. The connec-
tion-based method may not analyze these paths depending on
circuit topology. Consider the following example circuit.

Figure 12-2 Circuit Cycles

The DFS method traces the path from IN, through A, through the
signal LOOP, back to the left-most logic block and to the signal
OUT. The new connection-based method may not trace this path
because a combinatorial cycle exists at the output of A.

IN

A

OUT

B
LOOP

X8725
Development System Reference Guide 12-11

Development System Reference Guide
• The DFS method removes false paths from a design that requires
contending tristate enable signals. The connection-based method
does not perform this optimization which means that it may
analyze some paths that are statically false based on tristate
enable signals. Consider the following circuit.

Figure 12-3 Tristate Buffer Paths

A signal can pass through four paths in the preceding circuit but two
of the paths are false (A1 to B2 and B1 to A2). In order for a signal to
pass through the upper left tristate buffer A1, the enable signal A
must be true. In order to prevent a bus contention on the A1 output,
the enable signal B must be false. Since buffer B2 is also controlled by
the enable signal B, the path through A1 cannot pass through B2
(because when A is enabled, B is disabled). The converse is also true,
if B is enabled, the only valid path is from B1 to B2.

In the example circuit, the DFS method only considers true paths. The
connection-based will trace the false paths and the true paths.

–l (Overall Effort Level)
–l effort_level

The –l option is identical to the –ol option. See the “Output Files”
section.

A1

A

B1

B

A2

A

B2

B

X8724
12-12 Xilinx Development System

PAR—Place and Route
–m (Multi-Tasking Mode)
–m nodefile_name

The –m option allows you to assign PAR multi-run jobs (specified
with the –n option) to a group of nodes. See the “Turns Engine (PAR
Multi-Tasking Option)” section.

–n (Number of PAR Iterations)
–n iterations

The –n option determines the number of iterations (place and route
passes) performed at the effort level specified by the –l option.

Each iteration uses a different cost table when the design is placed
and produces a different NCD file. If you enter -n 0, the software
continues to place and route, stopping either after the design is fully
routed or after completing the iteration at cost table 100 and meeting
all timing constraints. If you don’t specify the –n option, one place
and route iteration runs.

If you specify a –t option, the iterations begin at the cost table speci-
fied by –t.

The valid range of iterations is 0–100, and the default is 1.

–ol (Overall Effort Level)
–ol effort_level

The –ol option sets the overall PAR effort level. The effort level speci-
fies the level of effort PAR uses to place and route your design to
completion and achieve your timing constraints.

There are five values for effort_level. Level 1 is the lowest level, and
corresponds to the least complex design. Level 5 would be used on
the most complex design. The level is not an absolute; it shows
instead relative effort. After you use PAR for a while, you will be
better able to estimate whether a design is simple or complex.
Development System Reference Guide 12-13

Development System Reference Guide
If you place and route a simple design at a complex level, the design
is placed and routed properly, but the process takes more time than
placing and routing at a simpler level. If you place and route a
complex design at a simple level, the design may not route to comple-
tion or may route less completely (or with worse delay characteris-
tics) than at a more complex level.

The effort_level range is 1–5, and the default level is 2.

The –ol level sets an effort level for placement and another effort level
for routing. These levels also have a range of 1–5. The placement and
routing levels set at a given –ol level depend on the device family in
the NCD file. You can determine the default placer and router effort
levels for a device family by reading the PAR Report file produced by
your PAR run.

You can override the placer level set by the –ol option by entering a –
pl (Placer Effort Level) option, and you can override the router level
by entering a –rl (Router Effort Level) option.

Note On Spartan-II and Virtex/-E devices, automatic timespecing is
performed if PAR does not detect timing constraints and the effort
level is set at 3, 4, or 5. See the“Automatic Timespecing” section in
this chapter for more information.

–p (No placement)
The –p option bypasses both constructive and optimizing placement
(described in the “Placement” section). When you use this option,
existing routes are ripped up before routing begins. You can,
however, leave the existing routing in place if you use the –k option
instead of the –p option.

–pl (Placer Effort Level)
–pl placer_effort_level

The –pl option sets the placer effort level. The effort level specifies the
level of effort used when placing the design. Level 1 is the lowest
level, and corresponds to the least complex design. Level 5 would be
used on the most complex design. For a description of effort level, see
the “Output Files” section.

The placer_effort_level range is 1–5, and the default level set if you do
not enter a –pl option is determined by the setting of the –ol option.
12-14 Xilinx Development System

PAR—Place and Route
This default varies depending on the device family in the input NCD
file. You can determine the default placer effort level for a given –ol
level and device family by reading the PAR Report file produced by
your PAR run.

–r (No Routing)
Do not route the design.

–rl (Router Effort Level)
–rl router_effort_level

The –rl option sets the router effort level. The effort level specifies the
level of effort used when routing the design. Level 1 is the lowest
level and corresponds to the least complex design. Level 5 would be
used on the most complex design. For a description of effort level, see
the “Output Files” section.

The router_effort_level range is 1–5, and the default level set if you do
not enter a –rl option is determined by the setting of the –ol option.
This default varies depending on the device family in the input NCD
file. You can determine the default router effort level for a given –ol
level and device family by reading the PAR Report file produced by
your PAR run.

–s (Number of Results to Save)
–s number_to_save

The –s option saves only the number of results you specify. If you do
not use the –s option, all results are saved.

The –s option does not care how many iterations you performed or
how many effort levels were used. It compares every result to every
other result and leaves you with the best number of NCD files. The
best outputs are determined by a score assigned to each output
design. This score takes into account such factors as the number of
unrouted nets, the delays on nets and conformance to your timing
constraints. The lower the score, the better the design. This score is
described in the “Scoring the Routed Design” section.

The valid range for number_to_save is 0–100, and the default –s setting
(no –s option specified) saves all results.
Development System Reference Guide 12-15

Development System Reference Guide
–t (Starting Placer Cost Table)
–t placer_cost_table

The –t option specifies the cost table at which the placer starts (placer
cost tables are described in the “Placement” section). If you do not
specify the –t option, the PAR software starts at placer cost table 1. If
cost table 100 is reached, placement does not begin at 1 again, even if
command options specify that more placements should be
performed. Cost tables are not an ordered set. There is no correlation
between a cost table’s number and its relative value.

The placer_cost_table range is 1–100, and the default is 1.

–ub (Use Bonded I/Os)
If you do not specify the –ub option, I/O logic that MAP has identi-
fied as internal can only be placed in unbonded I/O sites.

If the –ub option is specified, PAR can place this internal I/O logic
into bonded I/O sites in which the I/O pad is not used. The option
also allows PAR to route through bonded I/O sites.

If you use the –ub option, you must make sure this logic is not placed
in bonded sites connected to external signals, power, or ground. You
can prevent this condition by placing PROHIBIT constraints on the
appropriate bonded I/O sites.

–w (Overwrite Existing Files)
If the specified output file already exists, overwrite the existing file
(including the input file).

If the specified output is a directory, overwrite files in the directory.
With this option, any PAR, PAD, and DLY files generated overwrite
existing PAR, PAD, and DLY files.

–x (Ignore Timing Constraints)
If you do not specify the –x option, the PAR software automatically
runs a timing-driven PAR run if any timing constraints are found in
the physical constraints file. If you do specify –x, timing-driven PAR
is not invoked in any case.
12-16 Xilinx Development System

PAR—Place and Route
The –x option might be used if you have timing constraints specified
in your physical constraints file, but you want to execute a quick PAR
run without using the timing-driven PAR feature, to give you a rough
idea of how difficult the design is to place and route.

Note On Spartan-II and Virtex/-E devices, using the -x option
suppresses the automatic timespecing feature. For more information,
see the “Automatic Timespecing” sectionin this chapter.

Options, default values, and ranges are summarized below.

Option Default Setting Range

–c number The default setting for –c is 1 for all
devices except Spartan II, Virtex/-E/-
II, for which the default is 0.

0–5

–d number 0 (No delay-based router cleanup
passes)

0–5

–dfs Run connection- based method
(No –dfs, -kpaths is the default)

N/A

–e number 0 (No delay-based router cleanup
passes on completely routed designs)

0–5

–gf No guide file N/A

–gm [leverage | exact] Exact N/A

–i number Run until completion or until router
decides it can not complete

0–2000

–k Run placement (Do not run re-entrant
routing)

N/A

-kpaths Run connection-based method
(-kpaths is the default)

N/A

–l number 2 (Overall effort level 2) 1–5

–m nodefile_name Do not run the Turns Engine N/A

–n number 1 (One place and route iteration) 0–100

–ol number 2 (Overall effort level 2) 1–5

–p Run placement N/A

–pl number Determined by –ol setting 1–5

–r Run router N/A

–rl number Determined by –ol setting 1–5
Development System Reference Guide 12-17

Development System Reference Guide
PAR Operation
The following sections describe how placement and routing are
performed by PAR.

Placement
The PAR module places in two stages: a constructive placement and
an optimizing placement. PAR writes the NCD file after constructive
placement and modifies the NCD after optimizing placement.

During constructive placement, PAR places components into sites
based on factors such as constraints specified in the input file (for
example, certain components must be in certain locations), the length
of connections, and the available routing resources. This placement
also takes into account “cost tables”, which assign weighted values to
each of the relevant factors. There are 100 possible cost tables.
Constructive placement continues until all components are placed.
PAR writes the NCD file after constructive placement.

The optimizing placement is a fine tuning of the results of the
constructive placement. Optimizing is run only at specific levels, and
the number of passes may vary. PAR rewrites the NCD file after opti-
mizing placement.

Timing-driven placement is automatically invoked if PAR finds
timing constraints in the physical constraints file.

Routing
Routing is done in two stages: constructive routing and cleanup. PAR
writes the NCD file only at the end of an iteration after more than 60
minutes of routing have elapsed, and it only writes out a new NCD
file if the design quality improves.

–s number Save all 1–100

–t number 1 (Start placer at cost table 1) 1–100

–ub Do not use bonded I/Os N/A

–w Do not overwrite N/A

–x Use timing constraints in PCF file N/A

Option Default Setting Range
12-18 Xilinx Development System

PAR—Place and Route
During constructive routing, the router performs an iterative proce-
dure to converge on a solution that accomplishes these goals.

• Routing the design to completion.

• Meeting your timing constraints.

If both of these goals cannot be met, the first is considered more
important; that is, PAR tries to route to completion even if your
timing constraints are not met.

During cleanup routing, the router takes the result of constructive
routing and reroutes some connections to accomplish these goals.

• Minimizing the delays on all nets.

• Decreasing the number of routing resources used.

If both of these goals cannot be met, the first is considered more
important; that is, PAR tries to route to minimize delays in preference
to decreasing the number of routing resources used.

There are two types of cleanup routing you can perform—a faster
cost-based cleanup routing and a more intensive delay-based cleanup
routing. Cost-based cleanup runs much faster than delay-based
cleanup, but delay-base cleanup usually produces a result that has
faster in-circuit performance.

Timing-driven routing is automatically invoked if PAR finds timing
constraints in the physical constraints file.

Note To achieve your timing constraints while routing an XC4000E/
L/EX/XL design, PAR may add an additional pullup to a net at the
output of a TBUF. PAR adds this pullup to the longline on which the
net is routed. The pullup is added if the net contains a single pullup
and the design has been completely routed, but the net containing the
pullup has one or more timing errors.
Development System Reference Guide 12-19

Development System Reference Guide
Guided PAR
You can use guide files to modify your design incrementally or you
can integrate your design with PCI Core guide files. The following
sections describe both types of guided PAR use.

Incremental Designs
An optional guide design file can be fed into PAR. The guide file is an
NCD file which is used as a template for placing and routing the
input design. This is useful if minor incremental changes have been
made to create a new design. To increase productivity, you can use
your last design iteration as a guide design for the next design itera-
tion, that is, your output NCD file becomes the guide design file for
your next iteration of the design (see the following figure).

Figure 12-4 Guided PAR for Incremental Design

Two command line options control guided PAR. The –gf option spec-
ifies the NCD guide file, and the –gm option determines whether
exact mode or leveraged mode is used to guide PAR.

guid_par.ai

PAR

NCD
Input Design

NCD
Placed and Routed

 Design

NCD
Modified Input Design

NCD
Guide File

PAR

X7202

First PAR Run Second PAR Run

NCD
New Placed and Routed

 Design
12-20 Xilinx Development System

PAR—Place and Route
The guide design is used as follows.

• If a component in the new design is constrained to the same loca-
tion that a component is placed in the guide file, this component
will be defined as matching.

• If a component in the new design has the same name as a compo-
nent in the guide design, that component will match the guide
component.

• If a signal in the new design has the same name as a signal in the
guide design, the signal will match the guide signal.

• Any matching component in the new design will be placed in the
site corresponding to the location of the matching guide compo-
nent, if possible.

• Matching component’s pins will be swapped to match those of
the guide component with regard to matching signals, if possible.

• All of the connections between matching driver and load pins of
the matching signals will have the routing information preserved
from the guide file, if possible.

When PAR runs using a guide design as input, PAR first places and
routes any components and signals that fulfill the matching criteria
described above. Then PAR places and routes the remainder of the
logic.

To place and route the remainder of the logic, PAR does the
following.

• If you have selected exact guided PAR (by entering the –gm exact
option on the PAR command line), the placement and routing of
the matching logic are locked. Neither placement nor routing can
be changed to accommodate the additional logic.

• If you have selected leveraged guided PAR (by entering the –gm
leverage option on the PAR command line), PAR tries to main-
tain the placement and routing of the matching logic, but changes
placement or routing if it is necessary in order to place and route
to completion and achieve your timing constraints (if possible).

Some cases where the leveraged mode is necessary are as follows:

♦ You have added logic that makes it impossible to meet your
timing constraints without changing the placement and
routing in the guide design.
Development System Reference Guide 12-21

Development System Reference Guide
♦ You have added logic that demands a certain site or certain
routing resource, and that site or routing resource is already
being used in the guide design.

As one example of this condition, in XC4000EX devices
TBUFs must be routed along long lines. If you add TBUFs to
an XC4000EX design but your guide design uses too many of
the required long lines, you are not able to route this design
to completion unless you use the leveraged option.

If you enter a –gm (guide mode) option but do not specify a guide file
with the –gf option, PAR is guided by the placement and routing
information in the input NCD file. Depending on whether you
specify exact mode or leveraged mode, PAR locks the input NCD’s
existing placement and routing (exact mode), or tries to maintain the
placement and routing, but modifies them in an effort to place and
route to completion and achieve your timing constraints (leveraged
mode).

Note For Verilog or VHDL netlist input designs, re-synthesizing
modules typically cause signal and instance names in the resulting
netlist to be significantly different from the netlist obtained in earlier
synthesis runs. This occurs even if the source level Verilog or VHDL
code only contains a small change. Because guided PAR depends on
signal and component names, synthesis designs often have a low
"match rate" when guided. Therefore, guided PAR is not recom-
mended for most synthesis-based designs, although there may be
cases where it could be a successful alternative technique.

PCI Cores
For the 3.1i release, you can use a guide file to add a PCI Core, which
is a standard I/O interface, to your design. The PCI Core guide file
must already be placed and routed. PAR only places and routes the
signals that run from the PCI Core to the input NCD design; it does
not place or route any portion of the PCI Core. You can also use the
resulting design (PCI Core integrated with your initial design) as a
guide file. However, you must then use the exact option for -gm, not
leverage, when generating a modified design.

Guided PAR supports more precise matching of placement and
routing of PCI Cores that are used as reference designs in a guide file:
12-22 Xilinx Development System

PAR—Place and Route
• Components locked in the input design are guided by compo-
nents in the reference design of a guide file in the corresponding
location.

• Signals that differ only by additional loads in the input design
will have the corresponding pins routed according to the refer-
ence design in the guide file.

• Guide summary information in the PAR report describes the
amount of logic from the reference design that matches logic in
the input design.

For detailed information about designing with PCI, refer to the Xilinx
PCI web page (http://www.xilinx.com/products/logicore/pci/
pcilit.htm).

Output from PAR
The output of PAR is a placed and routed NCD file (the output design
file). In addition to the output design file, a PAR run generates a
report file with a .par extension, a delay file with a .dly extension, and
a pinout file with a .pad extension. The PAR file contains execution
information about the place and route job as well as all constraint
messages. The DLY file contains delay information about the routed
nets in the design. The PAD file lists IOBs (Input/Output Blocks) on
the chip and the primary pins associated with the IOBs.

If the options that you specify when running PAR are options that
produce a single output design file, your output is the output design
file, a PAR file, a DLY file, and a PAD file. The PAR file, the DLY file,
and the PAD file all have the same root name as the output design
file.

If you run multiple iterations of placement and routing, you produce
an output design file, a PAR file, a DLY file, and a PAD file for each
iteration. Consequently, when you run multiple iterations you have
to specify a directory in which to place these files.

As the command is performed, PAR records a summary of all place-
ment and routing iterations in one PAR file at the same level as the
directory you specified, then places the output files (in NCD format)
in the specified directory. Also, a PAR file, a DLY file, and a PAD file
are created for each NCD file, describing in detail each individual
iteration.
Development System Reference Guide 12-23

Development System Reference Guide
For example, suppose you have a directory named design with a
design file called address.ncd, as shown in the following figure.

Suppose you run three iterations of place and route, using a different
cost table entry each time (cost tables are explained in the “Place-
ment” section) and specify that the resulting output be put into a
directory called output.dir. The actual command would be

par –n 3 -l 1 address.ncd output.dir

–n 3 is the number of iterations you want to run, –l 1 sets the place-
ment effort level, address.ncd is your input design file, and
output.dir is the name of the directory in which you want to place the
results of the PAR run.

The files resulting from the command are shown in the following
figure.

X7231

design

address.ncd
12-24 Xilinx Development System

PAR—Place and Route
The naming convention for the files, which may contain placement
and routing information in varying degrees of completion, is
placer_level_router_level_table.file_extension.

In the sample above, the effort level and cost table entries start at 1
(the default value). The PAR, DLY, and PAD files are described in the
following sections. When you run multiple iterations, you get a
summary PAR report file like the one shown below.

Note The PAR Report is formatted for viewing in a monospace (non-
proportional) font. If the text editor you use for viewing the report
uses a proportional font, the columns in the report do not line up
correctly.

X7232

design

output.dir

1_1_1.ncd

output.par

1_1_1.dly 1_1_1.pad 1_1_1.par

address.ncd

1_1_2.ncd 1_1_3.ncd 1_1_3.dly 1_1_3.pad 1_1_3.par1_1_2.dly 1_1_2.pad 1_1_2.par
Development System Reference Guide 12-25

Development System Reference Guide
PAR: Xilinx Place And Route 3.1i.
Copyright (c) 1995-2000 Xilinx, Inc. All rights reserved.

par -ol 3 -n 5 -i 20 main_pcb.ncd main_pcb.pcf

Constraints file: main_pcb.pcf.

Level/ Design Timing Number Run NCD
Cost [ncd] Score Score Unrouted Time Status
---------- ------- -------- ------- ---- ------------
3_3_1 * 716 0 0 01:02 Complete
3_3_5 * 724 0 0 01:08 Complete
3_3_2 * 730 0 0 01:05 Complete

3_3_4 * 812 0 0 01:06 Complete
3_3_3 * 827 0 0 01:13 Complete

* : Design saved.

par done!

At the top of the summary PAR file is information regarding the soft-
ware level, copyright information, and the date and time of the run.
Directly below that is the command line used to run PAR, followed
by the name of any physical constraints file used.

The body of the report consists of the following columns.

Level/Cost [ncd]—indicates the effort level (1–5) at which PAR is
run. In the sample above, 3_3_4 indicates placer level 3, router level 3,
and the fourth cost table used.

Design Score—see “Incremental Designs” section.

Timing Score—see “Incremental Designs” section.

Number Unrouted—indicates the number of unrouted nets in the
design.

Run Time—the time required to complete the job in minutes and
seconds.
12-26 Xilinx Development System

PAR—Place and Route
NCD Status—describes the state of the output NCD file generated by
the PAR run. Possible values for this column are

• Complete—an NCD file has been generated by a full PAR run.

• ^C Checkpoint—initiated by the user, the PAR run was stopped
at one of the PAR checkpoints. PAR produced an NCD file, but all
iterations may not have been completed.

• Checkpoint—the PAR run was stopped at one of the PAR check-
points, not because of user intervention but because of some
unknown reason.

• No NCD—the PAR job was stopped prematurely and the NCD
file was not checkpointed.

Intermediate Failing Timespec Summary
PAR generates an intermediate failing timespec summary only in the
routing phase. The summary name is design_name.itr.

The router creates this summary after an iteration not during an itera-
tion. If interrupted during normal operation of an iteration (for
example, CTRL-C), you are prompted with the following options if a
time specification has failed:

CNTRL-C interrupt detected.
Please choose one of the following options:

1. Continue processing and ignore the interrupt.
2. Normal program exit at next check point.

This will result in saving the best results so
far,
after concluding current processing.

3. Exit program immediately.
4. Display Failing Timespec Summary.
5. Cancel the current job and move to the next one

at
the next check point.

Enter choice -->

If you select 3. PAR exits. If you select 4, PAR displays the contents of
the ITR file on the screen and resumes execution. (Option 5 allows
you to terminate jobs that use the -n option for multiple iterations.) If
Development System Reference Guide 12-27

Development System Reference Guide
Options 4 and 5 are not applicable, the following messages displays
for those options on a CTRL C instead of the ones shown previously.

4. Display Failing Timespec Summary.
(Not applicable: Data not available)

5. Cancel the current job and move to the next one
at
the next check point.
(Not applicable: Not a multi-run job.)

Following is a sample ITR report.

Asterisk (*) preceding a constraint indicates it was not met.
--
 Constraint | Requested |Actual | Logic

| | |Levels
--
* OFFSET = OUT 15 nS AFTER COMP "ck1_i”| 15.000ns|15.800ns| 5
--

1 constraint not met.

PAR creates an intermediate failing timespec summary generated
from the end of the previous iteration. If the interrupt occurred
during the first iteration, no intermediate summary is created.

The Place and Route (PAR) Report File
The place and route (PAR) report file contains execution information
about the PAR command run. The file shows the steps taken as the
program converges on a placement and routing solution. A sample
PAR file is shown following.

Note The PAR Report is formatted for viewing in a monospace (non-
proportional) font. If the text editor you use for viewing the report
uses a proportional font, the columns in the report do not line up
correctly.

Release 3.1i - Par D.18
Wed Mar 8 11:12:50 2000

par -w xcvsink.ncd routed

Constraints file: xcvsink.pcf
12-28 Xilinx Development System

PAR—Place and Route
Loading device database for application par from file "xcvsink.ncd".
"Synopsys_edif" is an NCD, version 2.28, device xcv50, package

pq240,speed -6
Loading device for application par from file ’v50.nph’ in
environment /build/bcxfndry/D.18/rtf.
Device speed data version: PRELIMINARY 1.99 2000-03-02.

Device utilization summary:

Number of External GCLKIOBs 1 out of 4 25%
Number of External IOBs 8 out of 166 4%

Number of SLICEs 5 out of 768 1%

Number of GCLKs 1 out of 4 25%

Overall effort level (-ol): 2 (default)
Placer effort level (-pl): 2 (default)
Placer cost table entry (-t): 1
Router effort level (-rl): 2 (default)

Starting initial Placement phase. REAL time: 4 secs
Finished initial Placement phase. REAL time: 4 secs
Starting the placer. REAL time: 4 secs
Placement pass 1 .
Placer score = 660
Optimizing ...
Placer score = 645
Starting IO Improvement. REAL time: 4 secs

CPU time: 2 secs
Placer score = 645
Finished IO Improvement. REAL time: 4 secs

CPU time: 2 secs

Placer completed in real time: 4 secs

Writing design to file "routed.ncd".
Total REAL time to Placer completion: 4 secs
Development System Reference Guide 12-29

Development System Reference Guide
Total CPU time to Placer completion: 2 secs

PAR Placer Norm: NPU time: 6 secs
0 connection(s) routed; 26 unrouted.
Starting router resource preassignment
Completed router resource preassignment. REAL time: 4 secs

CPU time: 2 secs
NPU time: 7 secs

Starting iterative routing.
Routing active signals.
.
End of iteration 1
26 successful; 0 unrouted; (0) REAL time: 5 secs

CPU time: 3 secs
NPU time: 7 secs

Constraints are met.
Total REAL time: 5 secs
 NPU time: 7 secs
Total CPU time: 3 secs
 NPU time: 7 secs
End of route. 26 routed (100.00%); 0 unrouted.
No errors found.
Completely routed.

This design was run without timing constraints. It is likely that
much better circuit performance can be obtained by trying either or
both of the following:

- Enabling the Delay Based Cleanup router pass, if not already
enabled

- Supplying timing constraints in the input design

Total REAL time to Router completion: 5 secs
Total CPU time to Router completion: 3 secs

Generating PAR statistics.

The Delay Summary Report

The Score for this design is: 122
12-30 Xilinx Development System

PAR—Place and Route
The Number of signals not completely routed for this design is: 0

The Average Connection Delay for this design is: 0.961 ns
The Maximum Pin Delay is: 1.842 ns
The Average Connection Delay on the 10 Worst Nets is: 1.303 ns

Listing Pin Delays by value: (ns)
d < 1.00 < d < 2.00 < d < 3.00 < d < 4.00 < d < 5.00 d >= 5.00
--------- --------- --------- --------- --------- ---------
 9 17 0 0 0 0
Writing design to file "routed.ncd".

All signals are completely routed.

Total REAL time to PAR completion: 6 secs
Total CPU time to PAR completion: 3 secs
PAR Norm: NPU time: 8 secs

==
Timing wizard resettargets history.

Entry TWiters TWtime
----- ------- ------
==
Time spent in Timing analysis. CPU: 0 secs
Time spent in Timing analysis. NPU: 0 secs
==

Placement: Completed - No errors found.
Routing: Completed - No errors found.

PAR done.

Sometimes the design is completely routed, but the router continues
to route in the attempt to meet timing constraints.

Note that in the sample PAR file above, in the “starting iterative
routing” section, after the end of iteration 1, there is a figure in paren-
theses (0). This represents the timing score for the design (not to be
confused with the PAR score) at the end of the particular iteration.
Development System Reference Guide 12-31

Development System Reference Guide
This figure appears in the PAR file only when timing constraints have
been specified in a PCF file. When the timing score is 0 (as it is in this
example after iteration 1), this means that all timing constraints have
been met. This score (0) also appears at the end of the delay report
section of the PAR file.

The timing score at the end of the “starting iterative routing” section
may not agree with the timing score in the Delay Summary Report.
This can occur if a MAXSKEW constraint is scored and not met.

Had the design been completely routed but failed to meet all timing
constraints, the score would have been a figure other than 0. A non-
zero number would appear at the end of the delay report section.
This tells you immediately whether your timing constraints have
been met. It is possible that the timing score shown in parentheses at
the top of the file may be different from the one shown in the delay
summary section of the file. The score shown in the delay summary
section is always the correct one.

The last section of the PAR file contains a summary of the delay infor-
mation for the routed design. The DLY (delay) file produced by the
PAR run contains more detailed timing information. The DLY file is
discussed in the following section.

If you specify a command option that produces multiple output
design files, there is a PAR file indicating all of the place and route
iterations performed, and individual PAR files describing placement
and routing for each design file produced.

Note In PAR reporting, a tilde (~) preceding a delay value indicates
that the delay value is approximate. Values with the tilde cannot be
calculated exactly because of excessive delays, resistance, or capaci-
tance on the net. You can use the PENALIZE TILDE constraint to
penalize these delays by a specified percentage (see the “TRACE”
chapter and the “Attributes, Constraints, and Carry Logic” chapter of
the Libraries Guide for a description of the PENALIZE TILDE
constraint).

Some notes about the entries in the PAR file.

• The Placer score is a rating of the relative “cost” of a placement. A
lower score indicates a better (that is, less “costly”) placement.

• In the Delay Summary Report section of the PAR report file
where average delays are listed (beginning with THE AVERAGE
CONNECTION DELAY for this design), there are two columns of
12-32 Xilinx Development System

PAR—Place and Route
figures. The first column gives the actual averages for the design.
The figures in the second column, which are enclosed by paren-
theses, indicate the averages after the imposition of a tilde
penalty.

• The Score For This Design is a rating of the routed design. The
score is discussed in the “Scoring the Routed Design” section

• Timing score is always 0 (zero) if all timing constraints have been
met. If not, the figure is other than 0.

For the Virtex/-E/-II and Spartan-II devices, if more than one
SelectIO standard is used, an additional section on Select IO utiliza-
tion and usage summary is added to the PAR file. This section shows
details for the different IO banks. It shows the IO standard, the
output reference voltage (VCCO)] for the bank, the input reference
voltage (VREF) for the bank, the PAD and Pin names. In addition, the
section gives a summary for each bank with the number of pads
being used, the voltages of the VREFs, and the VCCOs. A sample
Select IO utilization and Usage Summary of the PAR file follows.
Development System Reference Guide 12-33

Development System Reference Guide
Select IO Utilization and Usage Summary

NR - means Not Required.
Each Group of a specific Standard is listed.
IO standard (LVTTL Vref=NR Vcco=3.30) occupies 45 pads.
IO standard (CTT Vref=1.50 Vcco=3.30) occupies 8 pads.
IO standard (SSTL3_I Vref=0.90 Vcco=3.30) occupies 12 pads.
Bank Summary

NR - means Not Required
Bank 0 has 20 pads and is 80% utilized.
Vref should be set to NR volts.
Vcco should be set to 3.30 volts.

Name IO Select StdVref Vcco Pad Pin
---- -----------------------------------
bidir<7 IO LVTTL NR 3.30 PAD2 P238
bidir<6> IO LVTTL NR 3.30 PAD3 P237
bidir<3> IO LVTTL NR 3.30 PAD8 P231
bidir<1> IO LVTTL NR 3.30 PAD10 P230
b<10> I LVTTL NR PAD11 P229
.
.
.
b<7> I LVTTL NR PAD17 P221
a<10> I LVTTL NR PAD18 P220

Bank 1 has 22 pads and is 13% utilized.
Vref should be set to NR volts.
 Name IO Select Std Vref Vcco Pad Pin
 ---- -- ---------- ------ ------ ------ ------
 .
 .
 .
Bank 7 has 21 pads and is 38% utilized.
Vref should be set to 0.90 volts.
Vref sites in this bank cannot be used for user IOBs.
Vcco should be set to 3.30 volts.

Name IO Select StdVref Vcco Pad Pin
---- -------------------------------------
bidir<11> IO SSTL3_I 0.90 3.30 PAD169 P28
bidir<8> IO SSTL3_I 0.90 3.30 PAD170 P27
bidir<9> IO SSTL3_I 0.90 3.30 PAD172 P25
bidir<10> IO SSTL3_I 0.90 3.30 PAD173 P24
12-34 Xilinx Development System

PAR—Place and Route
c<9> O CTT 3.30 PAD181 P13
c<10> O CTT 3.30 PAD187 P7
c<7 O LVTTL 3.30 PAD190 P4
c<8> O CTT 3.30 PAD191 P3

Total REAL time to Placer completion: 40 secs
Total CPU time to Placer completion: 31 secs

For guided par, the PAR report displays summary information
describing the total amount and percentage of components and
signals in the input design guided by the reference design. The report
also displays the total/percentage of components and signals from
the reference design (guide file) that were used to guide the input
design. See the “Guide Reporting” section.

The Delay (DLY) File
The delay file is output by each PAR run and is placed in the direc-
tory with the NCD output of the design file and the PAR file. The
delay file contains delay information for each net in the design and
includes the following:

• A listing of the 20 nets with the longest delays., In a DLY file,
maximum delays are preceded by a tilde, indicating that the
delay shown is only approximate. Following each tilde delay is a
figure in parentheses. This figure represents the approximate
delay with a certain percentage automatically added to it (a
“worst case” situation) when specified by the user in the physical
constraints (PCF) file. When the Xilinx Development System’s
timing analysis software looks at the delays, it uses the value in
parentheses rather than the approximate value represented by
the tilde. For more information on the PENALIZE TILDE
constraint, see the “TRACE” chapter in this manual and the
“Attributes, Constraints, and Carry Logic” chapter of the Libraries
Guide.

• A delay analysis for each net, including the net name, followed
by the driver pin and the load pin(s).

The following is a portion of a delay file. If this were a complete file, it
would show the load delays for all nets in the design.

Note The Delay Report is formatted for viewing in a monospace
(non-proportional) font. If the text editor you use for viewing the
Development System Reference Guide 12-35

Development System Reference Guide
report uses a proportional font, the columns in the report do not line
up correctly.

Wed Mar 8 11:12:56 2000

File: routed.dly

The 20 Worst Net Delays are:

| Max Delay (ns) | Netname |

 1.842 n112
 1.770 n107
 1.596 n114
 1.590 n109
 1.590 n110
 1.573 n111
 1.361 n108
 1.361 n113
 0.345 n58
 0.006 U15/P
 0.000 add_18/INC_AND<4>
 0.000 add_18/INC_AND<6>
 0.000 add_18/INC_AND<2>

--
 Net Delays
--
U15/P
 clk.GCLKOUT
 0.006 U15/U2.IN

add_18/INC_AND<2>
 n113.COUT
 0.000 n111.CIN

add_18/INC_AND<4>
 n111.COUT
 0.000 n109.CIN

add_18/INC_AND<6>
12-36 Xilinx Development System

PAR—Place and Route
 n109.COUT
 0.000 n107.CIN

n107
 n107.XQ
 1.770 incout<7>.O
 1.168 n107.F2

n108
 n109.YQ
 1.361 incout<6>.O
 1.038 n109.G4

n109
 n109.XQ
 1.590 incout<5>.O
 1.323 n109.F1

n110
 n111.YQ
 1.590 incout<4>.O
 1.038 n111.G4

n111
 n111.XQ
 1.573 incout<3>.O
 1.168 n111.F2

n112
 n113.YQ
 1.842 incout<2>.O
 1.082 n113.G3

n113
 n113.XQ
 1.361 incout<1>.O
 1.168 n113.F2

n114
 n114.YQ
Development System Reference Guide 12-37

Development System Reference Guide
 1.461 incout<0>.O
 1.596 n113.BX
 1.215 n114.BY

n58
 U15/U2.OUT
 0.309 n113.CLK
 0.345 n111.CLK
 0.345 n109.CLK
 0.345 n107.CLK
 0.302 n114.CLK

The PAD File
The PAD file contains a listing of all IOBs used in the design and their
associated pads. The file specifies connections to device pins (with a P
prefix).

The PAD file is divided into three sections.

• The first section lists the component name in the first column.
The second column of this section lists the designations of the
device pins.

• The second section lists the pin number in the first column, the
component name in the second column, and any constraints
assigned to the component in the third column.

• The third section lists the pinouts in the form of constraints.
These constraints can be cut and pasted into a PCF file as
constraints for later PAR runs.

For 3.1i, the PAD file reports all dual-purpose pins that are used
during configuration as well during normal operation.

For the Virtex/-E/-II or Spartan-II devices, when SelectIOs are used,
the PAD file also contains details of the pads that must be used for the
input reference voltage (VREF), and those that must be used for the
output reference voltage (VCCO). For the VREF pads, their location
and the value of the input reference voltage is shown. A sample
Virtex PAD file follows.

Note The PAD Report is formatted for viewing in a monospace (non-
proportional) font. If the text editor you use for viewing the report
12-38 Xilinx Development System

PAR—Place and Route
uses a proportional font, the columns in the report do not line up
correctly.

Release 3.1i - Par D-18
Wed Mar 8 09:54:08 2000
Xilinx PAD Specification File

Input file: mapped.ncd
Output file: t.ncd
Part type: xc2v250
Speed grade: -6
Package: fg256
Pinout by Pin Name:
+--+-----------+-----------------------------
|Pin Name| Direction | Pin | IO |Drive | Slew | Resistor |
| | | Number | Standard |Strength | Rate | |

+--+-----------+---
clk			INPUT	L5	LVDS
clkb	INPUT	K1			
d	INPUT	M1	LVDS		
db	INPUT	M2			
io	OUTPUT	M3	LVDS		
iob	OUTPUT	M4			
o	OUTPUT	L3	LVDS		
ob	OUTPUT	L4			
to	OUTPUT	L1	LVDS		
tob (VREF)	OUTPUT	L2			
+--+-----------+---+					
Dedicated or Special Pin Name:					
+--+----					
Dedicated or Special Pin Name	Pin	Voltage			
	Number				
+--+---+					
CCLK	T14				
DONE	T15				
DXN	C15				
DXP	C16				
GND	G10				
.					
.					
GND	L10				
HSWAP_EN	A3				
M0	D16				
M1	D15				
M2	D14				
NC2	A4				
PROG	A2				
PWRDWN_B	C2				
TCK	N1				
TDI	N3				
TDO	P15				
TMS	N2				
Development System Reference Guide 12-39

Development System Reference Guide
| VCCI | R1 | |
.
.
.
VCCO_4	M9	na
VCCO_4	L9	na
VCCO_5	L8	na
VCCO_5	M8	na
VCCO_6	J5	na
VCCO_6	J6	na
VCCO_7	H5	na
VCCO_7	H6	na
VPP	B3	
VREF	A8	
.		
.		
VREF	G3	
VREF	F15	
VREF	F2	
VREF	E3	
+--+----		
Pinout by Pin Number:		
+--------------+-----------------------------------+-----------+--		
Pin Number	Pin Name	Direction
+--------------+-----------------------------------+-----------+------------+		
A1	(GND)	
A2	(PROG)	
A3	(HSWAP_EN)	
A4	(NC2)	
A5	---	UNUSED
.		
.		
.		
C11	---	UNUSED
C12	---	UNUSED
C13	---	UNUSED
.		
.		
E3	(VREF)	
E4	---	UNUSED
E5	(VCCINT)	
E6	(VREF)	
E7	---	UNUSED
E8	(VCCO_0)	
E9	(VCCO_1)	
E10	---	UNUSED
E11	(VREF)	
E12	(VCCINT)	
E13	---	UNUSED
E14	---	UNUSED
E15	---	UNUSED
E16	---	UNUSED
F1	---	UNUSED
F2	(VREF)	
F3	---	UNUSED
F4	---	UNUSED
F5	---	UNUSED
F6	(GND)	
F7	(GND)	
F8	(VCCO_0)	
F9	(VCCO_1)	
F10	(GND)	
F11	(GND)	
12-40 Xilinx Development System

PAR—Place and Route
.

.
G10	(GND)		
G11	(GND)		
G12	---	UNUSED	
G13	---	UNUSED	
G14	(VREF)		
G15	---	UNUSED	
G16	---	UNUSED	
H1	---	UNUSED	
H2	---	UNUSED	
H3	---	UNUSED	
H4	---	UNUSED	
H5	(VCCO_7)		
H6	(VCCO_7)		
H7	(GND)		
H8	(GND)		
H9	(GND)		
H10	(GND)		
H11	(VCCO_2)		
H12	(VCCO_2)		
H13	---	UNUSED	
H14	---	UNUSED	
H15	(VREF)		
H16	---	UNUSED	
J1	---	UNUSED	
.			
.			
.			
J14	---	UNUSED	
J15	---	UNUSED	
J16	---	UNUSED	
K1	clkb	INPUT	
K2	---	UNUSED	
K3	(VREF)		
K4	---	UNUSED	
K5	---	UNUSED	
K6	(GND)		
K7	(GND)		
K8	(GND)		
K9	(GND)		
K10	(GND)		
K11	(GND)		
K12	---	UNUSED	
K13	---	UNUSED	
.			
.			
.			
L16	---	UNUSED	
M1	d	INPUT	
M2	db	INPUT	
M3	io	OUTPUT	
M4	iob	OUTPUT	
M5	(VCCINT)		
M6	(VREF)		
M7	---	UNUSED	
M8	(VCCO_5)		
M9	(VCCO_4)		
M10	---	UNUSED	
M11	(VREF)		
M12	(VCCINT)		
M13	---	UNUSED	
.

Development System Reference Guide 12-41

Development System Reference Guide
.

.
P6	---	UNUSED	
P7	---	UNUSED	
P8	---	UNUSED	
P9	---	UNUSED	
P10	---	UNUSED	
P11	---	UNUSED	
P12	(VREF)		
P13	---	UNUSED	
P14	(VCCINT)		
P15	(TDO)		
P16	---	UNUSED	
R1	(VCCI)		
R2	(GND)		
R3	---	UNUSED	
R4	(VREF)		
.			
.			
.			
R15	(GND)		
R16	(VCCI)		
T1	(GND)		
T2	---	UNUSED	
T3	---	UNUSED	
T4	---	UNUSED	
T5	---	UNUSED	
T6	---	UNUSED	
T7	---	UNUSED	
T8	---	UNUSED	
T9	(VREF)		
T10	---	UNUSED	
T11	---	UNUSED	
T12	---	UNUSED	
T13	---	UNUSED	
T14	(CCLK)		
T15	(DONE)		
T16	(GND)		
+--------------+-----------------------------------+-----------+--
#
To preserve the pinout above for future design iterations,
simply run "Lock Pins..." from the Design Manager’s Design
menu, or invoke PIN2UCF from the command line. The location constraints
above will be written into your specified UCF file. (The constraints
listed below are in PCF format and cannot be directly used in the UCF file).
#
COMP "clk" LOCATE = SITE "L5" ;
COMP "clkb" LOCATE = SITE "K1" ;
COMP "d" LOCATE = SITE "M1" ;
COMP "db" LOCATE = SITE "M2" ;
COMP "io" LOCATE = SITE "M3" ;
COMP "iob" LOCATE = SITE "M4" ;
COMP "o" LOCATE = SITE "L3" ;
COMP "ob" LOCATE = SITE "L4" ;
COMP "to" LOCATE = SITE "L1" ;
COMP "tob" LOCATE = SITE "L2" ;
#

12-42 Xilinx Development System

PAR—Place and Route
Guide Reporting
This report, which is included in the PAR report file, is generated
when using the -gf option. The report describes the criteria used to
select each component and signal used to guide the design. It may
also enumerate the criteria used to reject some subset of the compo-
nents and signals that were eliminated as candidates.

Following is an example of guide file information that displays in the
PAR file.

Release 3.1i - Par D.18
Wed Mar 8 14:14:17 2000
Constraints file: mapped.pcf
Loading device database for application par from file "mapped.ncd".
 "lvds" is an NCD, version 2.32, device xc2v250, package fg256,
speed -6
Loading device for application par from file ’2v250.nph’ in
environment
Device speed data version: DEVELOPMENT 1.39b 2000-03-06.
Starting Guide File Processing.
Loading device database for application par from file "jay.ncd".
 "lvds" is an NCD, version 2.32, device xc2v250, package fg256,
speed -6
Finished Guide File Processing.
Guide Summary Report:
 Guide file: "jay.ncd" Guide mode: "exact"
 Guide File Components matched: 12 out of 12 100%
 Placed Guide File Components: 12 out of 12 100%
 Guide File Signals matched: 22 out of 22 100%
 Design Totals:
 Design Components matched: 12 out of 12 100%
 Designs Components matching Placement: 12 out of 12 100%
 Design Signals matched: 22 out of 22 100%
For a detailed guide report refer to the "guided.grf" file.
Device utilization summary:
 Number of External DIFFMs 5 out of 86 5%
 Number of External DIFFSs 5 out of 86 5%
 Number of SLICEs 1 out of 1536 1%
 Number of BUFGMUXs 1 out of 16 6%
Overall effort level (-ol): 2 (default)
Placer effort level (-pl): 2 (default)
Placer cost table entry (-t): 1
Development System Reference Guide 12-43

Development System Reference Guide
Router effort level (-rl): 2 (default)
Starting Clock Logic Placement. REAL time: 15 secs
Finished Clock Logic Placement. REAL time: 16 secs
Starting clustering phase. REAL time: 16 secs
Finished clustering phase. REAL time: 16 secs
Starting Directed Placer. REAL time: 17 secs
Placement pass 1 .
Placer score = 1920
Placer score = 1920
Finished Directed Placer. REAL time: 17 secs
Starting Optimizing Placer. REAL time: 17 secs
Optimizing
Swapped 0 comps.
Xilinx Placer [1] 1920 REAL time: 17 secs
Finished Optimizing Placer. REAL time: 17 secs
Writing design to file "guided.ncd".
Total REAL time to Placer completion: 18 secs
Total CPU time to Placer completion: 5 secs
14 connection(s) routed; 0 unrouted active, 1 unrouted PWR/GND.
Starting router resource preassignment
Completed router resource preassignment. REAL time: 19 secs
 CPU time: 6 secs
 NPU time: 15 secs
End of iteration 1
14 successful; 0 unrouted active,
 1 unrouted PWR/GND; (0) REAL time: 20 secs
 CPU time: 6 secs
 NPU time: 15 secs
Constraints are met.
Routing PWR/GND nets.
Power and ground nets completely routed.
Total REAL time: 20 secs
Total CPU time: 6 secs
End of route. 15 routed (100.00%); 0 unrouted.
No errors found.
Completely routed.
Total REAL time to Router completion: 22 secs
Total CPU time to Router completion: 6 secs
Generating PAR statistics.
 The Delay Summary Report
 The Score for this design is: 86
The Number of signals not completely routed for this design is: 0
12-44 Xilinx Development System

PAR—Place and Route
 The Average Connection Delay for this design is: 0.745 ns
 The Maximum Pin Delay is: 4.206 ns
 The Average Connection Delay on the 10 Worst Nets is: 0.619 ns
 Listing Pin Delays by value: (ns)
 d < 1.00 < d < 2.00 < d < 3.00 < d < 4.00 < d < 5.00 d >= 5.00
 --------- --------- --------- --------- --------- -------
 13 1 0 0 1 0
Writing design to file "guided.ncd".
All signals are completely routed.
Total REAL time to PAR completion: 25 secs
Total CPU time to PAR completion: 7 secs
Placement: Completed - No errors found.
Routing: Completed - No errors found.
PAR done.

Scoring the Routed Design
The SCORE FOR THIS DESIGN is a rating of the routed design. The
PAR file (a portion of which is shown below) shows the total score as
well as the individual factors making up the score. The score takes the
following factors into account (weighted by their relative impor-
tance).

• The number of unrouted nets (unr)

• The number of timing constraints not met (ncst)

• The amount (expressed in ns) that the timing constraints were not
met (acst)

• Maximum delay on a net with a weight greater than 3

• Net weights or priorities

• The average of all of the maximum delays on all nets (av)

• The average of the maximum delays for the ten highest delay
nets (10w)

The lower the score, the better the result.

The formula that produces the score is

5000*unr + 1000*ncst + 20*acst + (delay*weight)*0.2 + av*100 +
10w*20

The score in the PAR Report is shown following.
Development System Reference Guide 12-45

Development System Reference Guide
Note The PAR file is formatted for viewing in a monospace (non-
proportional) font. If the text editor you use for viewing the report
uses a proportional font, the columns in the report do not line up
correctly.
12-46 Xilinx Development System

PAR—Place and Route
The Delay Summary Report
The SCORE FOR THIS DESIGN is: 230

The NUMBER OF SIGNALS NOT COMPLETELY ROUTED for this design is: 0

The AVERAGE CONNECTION DELAY for this design is: 1.735
The MAXIMUM PIN DELAY IS: 4.603
The AVERAGE CONNECTION DELAY on the 10 WORST NETS is:2.837
Listing Pin Delays by value: (nsec)
d < 1.00 d 2.00 >d < 3.00 <d < 4.00 <d < 5.00 d >= 5.00
--------- -------- ------- ----- ------ ----

55 127 153 2 6 0

Timing score: 0

When a design has been routed to your satisfaction, you can use
BitGen to produce a bitstream file.

Turns Engine (PAR Multi-Tasking Option)
This Xilinx Development System option allows you to use multiple
systems (nodes) that are networked together for a multi-run PAR job,
significantly reducing the total amount of time to completion. You
can specify multi-tasking from the UNIX command line.

Turns Engine Overview
Before the Turns Engine was developed for the Xilinx Development
System, PAR could only run multiple jobs in a linear way. The total
time required to complete PAR was equal to the sum of the times that
it took for each of the PAR jobs to run. This is illustrated by the
following PAR command.

par -l 5 -n 10 -i 10 -c 1 mydesign.ncd output.dir

The above tells PAR to run 10 place and route passes (-n 10) at effort
level 5 (-l 5), a maximum of 10 router passes (-i 10), and one cost-
based cleanup pass (c 1). It runs each of the 10 jobs consecutively,
generating an output NCD file for each job, i.e., output.dir/
5_5_1.ncd, output.dir/5_5_2.ncd, etc. If each job takes approximately
one hour, then the run takes approximately 10 hours.
Development System Reference Guide 12-47

Development System Reference Guide
Suppose, however, that you have five nodes available. The Turns
Engine allows you to use all five nodes at the same time, dramatically
reducing the time required for all ten jobs. To do this you must first
generate a file containing a list of the node names, one per line as in
the following example.

Note A pound sign (#) in the example indicates a comment.

NODE names

jupiter #Fred’s node
mars #Harry’s node
mercury #Betty’s node
neptune #Pam’s node
pluto #Mickey’s node

Now run the job from the command line as follows.

par -m nodefile_name -l 5 -n 10 -i 10 -c 1 myde-
sign.ncd output.dir

nodefile_name is the name of the node file you created.

This runs the following jobs on the nodes specified.

jupiter: par -l 5 -i 10 -c 1 mydesign.ncd output.dir/5_5_1.ncd
mars: par -l 5 -i 10 -c 1 mydesign.ncd output.dir/5_5_2.ncd
mercury: par -l 5 -i 10 -c 1 mydesign.ncd output.dir/5_5_3.ncd
neptune: par -l 5 -i 10 -c 1 mydesign.ncd output.dir/5_5_4.ncd
pluto: par -l 5 -i 10 -c 1 mydesign.ncd output.dir/5_5_5.ncd

As the jobs finish, the remaining jobs are started on the nodes until all
10 jobs are complete. Since each job takes approximately one hour, all
10 jobs complete in approximately two hours.

Note You cannot judge the relative benefits of multiple placements by
running the Turns Engine with options that generate multiple place-
ments but do not route any of the placed designs (the –r PAR option
specifies “no routing”). The design score you receive is the same for
each placement. To get some indication of the quality of the placed
designs, run at least one routing iteration (–i 1) on each placed design.
12-48 Xilinx Development System

PAR—Place and Route
Turns Engine Input Files
The following are the input files to the Turns Engine.

• NCD File—A mapped design.

• Nodelist file—A user-created ASCII file listing workstation
names. A sample nodelist file is shown below.

This is a comment

Note: machines are accessed by Turns Engine

from top to bottom

Sparc 20 machines running Solaris

kirk

spock

mccoy

krusher

janeway

picard

Sparc 10 machines running SunOS

michael

jermaine

marlon

tito

jackie

HPs running HP-UX

william

george

ronald
Development System Reference Guide 12-49

Development System Reference Guide
jimmy

gerald

Turns Engine NCD Output File
The naming convention for the NCD file, which may contain place-
ment and routing information in varying degrees of completion, is
placer_level_router_level_table.ncd. If any of these elements are not
used, they are replaced by an ’x’. For example, for the first design file
being run with the options -n 5 -t 16 -rl 4 -pl 2, the NCD output file
name would be 2_4_16.ncd. The second file would be named
2_4_17.ncd. For the first design file being run with the options -n 5 -t
16 -r -pl 2, the NCD output file name would be 2_x_16.ncd. The
second file would be named 2_x_17.ncd.

Homogeneous and Heterogeneous Networks
The Turns Engine can run on the following networks.

• Homogenous networks—All SunOS, all Solaris, or all HP-UX.

• Heterogeneous networks—A mix of SunOS, Solaris, and HP-UX.
You must have the Xilinx software and a license for each platform
on which you intend to run. See the sample .cshrc file below to
set up the environment variables. This is possible because the
nodes read their environment variables from the .cshrc file; they
do not receive them from the launching node.

Limitations
The following limitations apply to the Turns Engine.

• The Turns Engine can operate only on Xilinx FPGA families. It
cannot operate on CPLDs.

• The Turns Engine can only operate on UNIX workstations.

• Each run targets the same part, and uses the same algorithms and
options. Only the starting point, or the cost table entry, is varied.
12-50 Xilinx Development System

PAR—Place and Route
System Requirements
For 3.1i, there is a new preferred method for setting up system
requirements. The following two subsections describe each of these
methods—the new and the old.

New Preferred Method

For the new method, you create a file, which can be sourced on
remote systems, to set up the environment. This file is sourced with
the Bourne Shell so it must be in the correct format. To source the file,
follow these steps:

1. Create a file with a fixed path that can be accessed by all the
systems you are using. For example:

/net/$ {nodename} /home/jim/parmsetup

2. Add the lines to set up the XILINX environment variable and the
path.

Example for HP systems:

export XILINX=/net/${nodename} /home/jim/xilinx
export PATH=$XILINX/bin/hp: /usr/bin: /usr/sbin

export SHLIB_PATH=$XILINX/bin/hp

Example for SUN Solaris systems:

export XILINX=/net/${nodename} /home/jim/xilinx

export PATH=$XILINX/bin/sol: /usr/bin: /usr/sbin

export LD_LIBRARY_PATH=$XILINX/bin/sol

For mixed sets of systems, you need a more sophisticated script
that can set up the proper environment.

3. After setting up this file, set the environment variable
PAR_M_SETUPFILE to the name of your file.

Example for C shell:

setenv PAR_M_SETUPFILE /net/${nodename} /home/jim/parm-
setup

Example for Bourne or Korn shells:
Development System Reference Guide 12-51

Development System Reference Guide
export PAR_M_SETUPFILE=/net/${nodename} /home/jim/parm-
setup;

Old Method

The following list describes the system requirements for running the
turns engine.

• rsh must be located through the path variable.

• The executables required on the systems defined in the nodes file
are

♦ /bin/sh

♦ par (must be located through path variable).

• The Turns Engine logs onto a node and then invokes PAR. The
environment variables on the node are read from the node’s
.cshrc file (or equivalent); they are not passed from the host to the
node. Therefore, all the Xilinx environment variables below must
be defined in the .cshrc file. If not, the PAR process on the node
will not be able to find the software or the licenses.

♦ XILINX (points at Xilinx directory structure — must be a
path accessible to both the machine from which the Turns
Engine is run and the node).

♦ LD_LIBRARY_PATH (supports par path for shared libraries
— must be a path accessible to both the machine from which
the Turns Engine is run and the node).

♦ path (contains $XILINX/bin/$PLATFORM, where $PLAT-
FORM is one of the following: sun, sol, hp, or rs6000)

To determine if everything is set up correctly, you can run the rsh
command to the nodes to be used. Type the following.

rsh node_name /bin/sh -c par

If you get the usage message back on your screen, everything is set
correctly.
12-52 Xilinx Development System

PAR—Place and Route
Turns Engine Environment Variables
The environment variables below are interpreted by the Turns Engine
manager.

• PAR_AUTOMNTPT—Specifies the network automount point.
The Turns Engine uses network path names to access files. For
example, a local path name to a file may be designs/cpu.ncd, but
the network path name may be /home/machine_name/ivan/
designs/cpu.ncd or /net/machine_name/ivan/designs/cpu.ncd.
The PAR_AUTOMNT environment variable should be set to the
value of the network automount point. The automount points for
the examples above are /home and /net. The default value for
PAR_AUTOMNT is /net.

The line below sets the automount point to /nfs. If the current
working directory is /usr/user_name/design_name on node
mynode, the command cd /nfs/mynode/usr/user_name/
design_name is generated before PAR runs on the machine.

setenv PAR_AUTOMNTPT /nfs

The setting below does not issue a cd command; you are required
to enter full paths for all of the input and output file names.

setenv PAR_AUTOMNTPT ""

The setting below tells the system that paths on the local worksta-
tion are the same as paths on remote workstations. This can be
the case if your network does not use an automounter and all of
the mounts are standardized, or if you do use an automounter
and all mount points are handled generically.

setenv PAR_AUTOMNTPT "/"

• PAR_AUTOMNTTMPPT—Most networks use the /tmp_mnt
temporary mount point. If your network uses a temporary mount
point with a different name, like /t_mnt, then you must set the
PAR_AUTOMNTTMPPT variable to the temporary mount point
name. In the example above you would set
PAR_AUTOMNTTMPPT to /t_mnt. The default value for
PAR_AUTOMNTTMPPT is /tmp_mnt.

• PAR_M_DEBUG—Causes the Turns Engine to run in debug
mode. If the Turns Engine is causing errors that are difficult to
correct, you can run PAR in debug mode in the following way.
Development System Reference Guide 12-53

Development System Reference Guide
1. Set the PAR_M_DEBUG variable.

setenv PAR_M_DEBUG 1

2. Create a node list file containing only a single entry (one node).

This single entry is necessary because if the node list contains
multiple entries, the debug information from all of the nodes is
intermixed, and troubleshooting is difficult.

3. Run PAR with the –m (multi-tasking mode) option.

In debug mode, all of the output from all commands generated
by the PAR run is echoed to the screen. There are also additional
checks performed in debug mode, and additional information
supplied to aid in solving the problem.

• PAR_M_SETUPFILE—See the “New Preferred Method” section
for a discussion of this variable.

Starting the Turns Engine From the Command Line
The following is the PAR command line syntax to run the Turns
Engine.

par -m nodelist_file -n #_of_iterations -s
#_of_iterations_to_save mapped_desgin.ncd
output_directory.dir

-m nodelist_file specifies the nodelist file for the Turns Engine run.

-n #_of_iterations specifies the number of place and route passes.

-s #_of_iterations_to_save saves only the best -s results.

mapped design.ncd is the input NCD file.

output_directory.dir is the directory where the best results (–s option)
are saved. Files include placed and routed NCD, summary timing
reports (DLY), pinout files (PAD), and log files (PAR).

Debugging
With the Turns Engine you may receive messages from the login
process. The problems are usually related to the network or to envi-
ronment variables.

• Network Problem—You may not be able to logon to the machines
listed in the nodelist file.
12-54 Xilinx Development System

PAR—Place and Route
♦ Try to ping the nodes by running the following command.

ping machine_name

You should get a message that the machine is alive. The ping
command should also be in your path (UNIX cmd: which
ping).

♦ Try to logon to the nodes using the command rsh machine_
name. You should be able to logon to the machine. If you
cannot, make sure rsh is in your path (UNIX cmd: which rsh).
If rsh is in your path, but you still cannot logon, contact your
network administrator.

♦ Try to launch PAR on a node by entering the following
command.

rsh machine_name /bin/sh -c par.

This is the same command that the Turns Engine uses to
launch PAR. If this command is successful, everything is set
up correctly for the machine_name node.

• Environment Problem—logon to the node with the problem by
entering the following UNIX command

rsh machine name

Check the $XILINX, $LD_LIBRARY_PATH, and $PATH variables
by entering the UNIX command echo $ variable_name.

If these variables are not set correctly, check to make sure these
variables are defined in your .cshrc file.

Note Some, but not all, errors in reading the .cshrc may prevent
the rest of the file from being read. These errors may need to be
corrected before the XILINX environment variables in the .cshrc
are read. The error message /bin/sh: par not found indicates that
the environment in the .cshrc file is not being correctly read by
the node.
Development System Reference Guide 12-55

Development System Reference Guide
Screen Output
When PAR is running multiple jobs and is not in multi-tasking mode,
output from PAR is displayed on the screen as the jobs run. When
PAR is running multiple jobs in multi-tasking mode, you only see
information regarding the current status of the Turns Engine. For
example, when the job described in the “Turns Engine Overview”
section is executed, the following screen output would be generated.

Starting job 5_5_1 on node jupiter
Starting job 5_5_2 on node mars
Starting job 5_5_3 on node mercury
Starting job 5_5_4 on node neptune
Starting job 5_5_5 on node pluto

When one of the jobs finishes, a message similar to the following
displays.

Finished job 5_5_3 on node mercury

These messages continue until there are no jobs left to run, at which
time “Finished” appears on your screen.

Note For HP workstations, you are not able to interrupt the job with
Control-C as described below if you do not have Control-C set as the
escape character. To set the escape character, refer to your HP manual.

You may interrupt the job at any time by pressing Control-C. If you
interrupt the program, you see the following on your screen.

CONTRL-C interrupt detected.
Please choose one of the following options:
1. Continue processing and ignore the interrupt.
2. Normal program exit at next check point.
3. Exit program immediately.
4. Add a node for running jobs.
5. Stop using a node.
6. Display current status.

Enter choice - - >

Choices are described below.

1. Continue processing and ignore the interrupt—self-explanatory.

2. Normal program exit at next check point—allows the Turns
Engine to wait for all jobs to finish before terminating. PAR is
12-56 Xilinx Development System

PAR—Place and Route
allowed to generate the master PAR output file (PAR), which
describes the overall run results

When you select option 2, a secondary menu appears as shown
below.

How would you like to handle the currently running job?
 1. Allow jobs to finish.
 2. Halt jobs at next checkpoint.
 3. Halt jobs immediately.
Enter choice - - >

a) Allow jobs to finish — current jobs finish but no other jobs
start if there are any. For example, if you are running 100 jobs
(–n 100) and the current jobs running are 5_5_49 and 5_5_50,
when these jobs finish, job 5_5_51 is not started.

b) Halt jobs at next checkpoint — all current jobs stop at the
next checkpoint; no new jobs are started.

c) Halt jobs immediately — all current jobs stop immediately;
no other jobs start

3. Exit program immediately — all running jobs stop immediately
(without waiting for running jobs to terminate) and PAR exits the
Turns Engine.

4. Add a node for running jobs — allows you to dynamically add a
node on which you can run jobs. When you make this selection,
you are prompted as follows.

Input the name of the node to be added to the list

After you enter the node name, a job starts immediately on that
node and a “Starting job” message is displayed.

5. Stop using a node — allows you to remove a node from the list
so that no job runs on that node.

If you select Stop using a node, you must also select from the
following options.

Which node do you wish to stop using?
 1. jupiter
 2. mars
 3. mercury
Enter number identifying the node.(<CR> to ignore)
Development System Reference Guide 12-57

Development System Reference Guide
Enter the number identifying the node. If you enter a legal
number, you are asked to make a selection from this menu.

Do you wish to
 1.Terminate the current job immediately and resubmit.
 2.Allow the job to finish.
Enter number identifying choice. (<CR> to ignore)

The options are described below.

a) Terminate the current job immediately and resubmit—halts
the job immediately and sets it up again to be run on the next
available node. The halted node is not used again unless it is
enabled by the “add” function.

b) Allow the job to finish—finishes the node’s current job,
then disables the node from running additional jobs.

Note The list of nodes described above is not necessarily
numbered in a linear fashion. Nodes that are disabled are not
displayed. For example, if NODE2 is disabled, the next time
“Stop using a node” is opted, the following is displayed.

Which node do you wish to stop using?

 1. jupiter
 3. mercury
Enter number identifying the node. (<CR> to ignore)

6. Display current status — displays the current status of the Turns
Engine. It shows the state of nodes and the respective jobs. Here
is a sample of what you would see if you chose this option.

ID NODE STATUS JOB TIME

1. jupiter Job Running 5_5_10 02:30:45
2. mars Job Running 5_5_11 02:28:03
3. mercury Not Available
4. neptune Pending Term 5_5_12 02:20:01
5. pluto Job Running 5_5_13 02:20:01
6. venus Idle
7. earth Job Running 5_5_12 25

Each entry is described below:
12-58 Xilinx Development System

PAR—Place and Route
♦ jupiter has been running job 5_5_10 for approximately 2 1/2
hours.

♦ mars has been running job 5_5_11 for approximately 2 1/2
hours.

♦ mercury has been deactivated by the user with the “Stop
using a node” option or it was not an existing node or it was
not running. Nodes are “pinged” to see if they exist and are
running before attempting to start a job.

♦ neptune has been halted “immediately” with job resubmis-
sion. The Turns Engine is waiting for the job to terminate.
Once this happens the status is changed to “not available”.

♦ pluto has been running job 5_5_13 for 2 hours 20 minutes.

♦ venus has finished its current job and is available for another.
When you see the “Idle” message, it usually means that no
other jobs are available.

♦ earth is running job 5_5_12. This job was resubmitted when
neptune was dropped. It has been running for 25 seconds. It
is unlikely that you will see the same job listed twice (as in
the sample above) since the job pending termination usually
finishes very quickly.

There is also a status named “Job Finishing”. This appears if the
Turns Engine has been instructed to halt the job at the next check-
point.

Command Line Examples
Following are a few examples of PAR command lines and a descrip-
tion of what each does.

Example 1:

The following command places and routes the design in the file
input.ncd and writes the placed and routed design to output.ncd.

par input.ncd output.ncd

Example 2:

The following command skips the placement phase and preserves all
routing information without locking it (re-entrant routing). Then it
runs up to 999 passes of the router or stops upon completion and
Development System Reference Guide 12-59

Development System Reference Guide
conformance to timing constraints found in the pref.pcf file. Then it
runs three delay-based cleanup router passes. If the design is already
completely routed, the effect of this command is to just run three
delay-based cleanup passes.

par -k -i 999 -c 0 -d 3 input.ncd output.ncd pref.pcf

Example 3:

The following command runs 20 place and route iterations at overall
effort level 3. The mapping of the overall level (–ol) to placer effort
level (–pl) and router effort level (–rl) depends on the device to which
the design was mapped, and placer level and router level do not
necessarily have the same value. The iterations begin at cost table
entry 5. Only the best 3 output design files are saved. The output
design files (in NCD format) are placed into a directory called
results.dir.

par -n 20 -ol 3 -t 5 -s 3 input.ncd results.dir

Now, if you wanted to run two passes of cost-based and delay-based
cleanup on the three designs saved (without running placement), you
would enter this command for each design.

par -k -i 0 -c 2 -d 2 input.ncd output.ncd

Example 4:

The following command copies the input design to the output
design. The placement and routing phases are skipped completely.
Since a delay file is generated as a result of the command, you can use
these options to check the delay times in your design without having
PAR change any of the design’s placement or routing.

par -pr input.ncd output.ncd

Example 5:

The following command allows re-entrant routing. Use this
command when your design is only partially routed and you want to
complete it or when the design does not meet your timing constraints
and additional routing passes are needed to meet the constraints.
Placement and placement optimization are skipped. In this case up to
30 router passes are run (you could run up to 2000). This may result
in local rip-up and reroute if 20 router passes are run with no
progress.

par -k -i 30 input.ncd output.ncd
12-60 Xilinx Development System

PAR—Place and Route
Example 6:

The following command gives you a delay report for a placed and
routed file without modifying the file.

par -pwr input.ncd input.ncd

Example 7:

The following command runs PAR (using the Turns Engine) on all
nodes listed in the file named “allnodes”. It runs 10 place and route
passes at placer effort level 3 and router effort level 2 on the file
“mydesign.ncd”. It runs one cost-based cleanup pass of the router.

par -m allnodes -pl 3 –rl 2 -n 10 -i 10 -c l myde-
sign.ncd output.dir

Halting PAR
Note You are not able to halt PAR with Control-C as described below
if you do not have Control-C set as the interrupt character. To set the
interrupt character, enter stty intr ^V^C in the .login file or .cshrc file.

To halt a PAR operation, enter Control-C. In a few seconds, this
message appears.

CNTRL-C interrupt detected.

Please choose one of the following options:
1. Continue processing and ignore the interrupt.
2. Normal program exit at next check point.
 This will result in saving the best results so

far,
 after concluding current processing.
3. Exit program immediately.
4. Display Failing Timespec Summary.
5. Cancel the current job and move to the next one

at
the next check point.

Enter choice -->

If you have no failing time specifications or are not using the -n
option, Options 4 and 5 display as follows.

4. Display Failing Timespec Summary.
(Not applicable: Data not available)
Development System Reference Guide 12-61

Development System Reference Guide
5. Cancel the current job and move to the next one
at
the next check point.
(Not applicable: Not a multi-run job.)

You then select one of the five options shown on the screen. The
options work in this way.

• Option 1—this option causes PAR to continue operating as before
the interruption. PAR then runs to completion.

• Option 2—this option continues the current place/route iteration
until one of the following “check points”.

♦ After constructive placement

♦ After the current optimization pass

♦ After the current routing iteration

The system then exits the PAR run and saves an intermediate
output file containing the results up to the check point.

If you use this option, you may continue the PAR operation
at a later time. To do this, you must look in the PAR report file
to find the point at which you interrupted the PAR run. You
can then run PAR on the output NCD file produced by the
interrupted run, setting command line options to continue
the run from the point at which it was interrupted.

Option 2 halt during routing may be helpful if you notice that
the router is performing multiple passes without improve-
ment, and it is obvious that the router will not achieve 100%
completion. In this case, you may want to halt the operation
before it ends and use the results to that point instead of
waiting for PAR to end by itself.

• Option 3—this option stops the PAR run immediately. You do not
get any output file for the current place/route iteration. You do,
however, still have output files for previously completed place/
route iterations.

• Option 4—PAR displays the contents of the ITR file on the screen
and then resumes execution.

• Option 5—Terminates current iteration if you have used the -n
option and continues the next iteration.
12-62 Xilinx Development System

PAR—Place and Route
Note If you started the PAR operation from the Design Manager as a
background process on a workstation, you must bring the process to
the foreground using the fg command before you can halt the PAR
operation.

After you run PAR, you can use the FPGA Editor on the NCD file to
examine and edit the results. You can also perform a static timing
analysis using TRACE or the Timing Analyzer. When the design is
routed to your satisfaction, you can input the resulting NCD file into
the Xilinx Development System’s BitGen program. BitGen creates
files that are used for downloading the design configuration to the
target FPGA. For details on BitGen, see the “BitGen” chapter.
Development System Reference Guide 12-63

Development System Reference Guide
12-64 Xilinx Development System

Chapter 13

PIN2UCF

This program is compatible with the following families.

• Spartan/XL/-II

• Virtex/-E/-II

• XC9500/XL/XV

• XC4000E/L/EX/XL/XV/XLA

• XC3000A/L

• XC3100A/L

• XC5200

This chapter describes PIN2UCF. The chapter contains the following
sections.

• “PIN2UCF”

• “PIN2UCF Syntax”

• “PIN2UCF Files”

• “PIN2UCF Options”

• “PIN2UCF Scenarios”

PIN2UCF
PIN2UCF is a program that generates pin locking constraints in a
UCF file by reading a placed NCD file for FPGAs or GYD file for
CPLDs. PIN2UCF writes its output to an existing UCF file. If there is
no existing UCF file, PIN2UCF creates a new file. The following
figure shows the flow through PIN2UCF.
Development System Reference Guide — 3.1i 13-1

Development System Reference Guide
Figure 13-1 PIN2UCF Flow

The PIN2UCF is used to back-annotate pin locking constraints to the
UCF file from a successfully placed and routed design (FPGAs) or
successfully fitted design (CPLDs).

The program extracts pin locations and logical pad names from an
existing NCD or GYD file and writes this information to a UCF file.

Pin locking constraints are written to a PINLOCK section in the UCF
file. The PINLOCK section begins with the statement #PINLOCK
BEGIN and ends with the statement #PINLOCK END. By default,
PIN2UCF does not write conflicting constraints to a UCF file. Prior to
creating a PINLOCK section, if PIN2UCF discovers conflicting
constraints, it writes information to a report file, named pinlock.rpt.

The pinlock.rpt file has two sections: Constraint Conflicts Informa-
tion and List of Errors and Warnings.

• The Constraints Conflicts Information section does not display if
there are fatal input errors, for example, missing inputs or invalid
inputs. However, the created report file contains the List of Errors
and Warnings.

• The Constraints Conflicts Information section has two subsec-
tions.

♦ Net name conflicts on the pins

♦ Pin name conflicts on the nets

PIN2UCF

NCD
(Placed and Routed -- For FPGAs)

or
GYD

(Pin Freeze File -- for CPLDs)

UCF FileReport File

X8629
13-2 Xilinx Development System

PIN2UCF
If there are no conflicting constraints, both subsections under the
Constraint Conflicts Information section contain a single line
indicating that there are no conflicts.

• The List of Errors and Warnings displays only if there are errors
or warnings.

User-specified pin locking constraints are never overwritten in a UCF
file. However, if the user-specified constraints are exact matches of
PIN2UCF generated constraints, a pound sign (#) is added in front of
all matching user-specified location constraint statements. The pound
sign indicates that a statement is a comment. To restore the original
UCF file (the file without the PINLOCK section), remove the
PINLOCK section and delete the pound sign from each of the user-
specified statements.

Note PIN2UCF does not check if existing constraints in the UCF file
are valid pin locking constraints.

PIN2UCF writes to an existing UCF file under the following condi-
tions.

• The contents in the PINLOCK section are all pin lock matches
and there are no conflicts between the PINLOCK section and the
rest of the UCF file.

• The PINLOCK section contents are all comments and there are no
conflicts outside the PINLOCK section.

• There is no PINLOCK section and no other conflicts in the UCF
file.

• Comments inside an existing PINLOCK section are never
preserved by a new run of PIN2UCF.

• If PIN2UCF finds a CSTTRANS comment, it equates “INST
name” to “NET name” and then checks for comments.

PIN2UCF Syntax
To invoke PIN2UCF from the UNIX or DOS command line, enter the
following.

pin2ucf {ncd_file.ncd | pin_freeze_file.gyd} [–r
report_file_name -o output.ucf]

ncd_file or pin_freeze_file must be the name of an existing file.
Development System Reference Guide 13-3

Development System Reference Guide
PIN2UCF Files
This section describes the PIN2UCF input and output files.

Input Files
Input to PIN2UCF can be either of the following files.

• NCD file—The minimal requirement is a placed NCD file, but
you would normally use a placed and routed NCD file that meets
(or is fairly close to meeting) timing specifications.

• GYD file—The PIN2UCF pin locking utility replaces the old GYD
file mechanism that was used by CPLDs to lock pins. The GYD
file is still available as an input guide file to control pin locking.
Running PIN2UCF is the recommended method of pin locking to
be used instead of specifying the GYD file as a Guide file.

Output Files
If there is no existing UCF file, PIN2UCF creates one. If a design.ucf
file is not specified for PIN2UCF and a UCF file with the same root
name exists in the same directory as the design file, the program
appends to that file automatically unless there are constraint
conflicts.

A pinlock.rpt file is written to the current directory by default. Use
the –r option to write a report file to another directory. See the “–r
(Write to a Report File)” section for more information.
13-4 Xilinx Development System

PIN2UCF
PIN2UCF Options
The –o and –r options are the only PIN2UCF options.

–o (Output File Name)
–o outfile[.ucf]

The –o option specifies the name of the output UCF file for the
design. The –o option is useful in the following ways.

• The UCF file used for the design has a different root name than
the design name. By default, PIN2UCF writes a ncd_file.ucf file if
–o is not specified. You can use this option to write the pin
locking constraints to the UCF file with a different root name.

• You want to write a UCF file to a different directory.

–r (Write to a Report File)
–r report_file_name

The –r option writes the PIN2UCF report into the specified report file.
If this option is not used, then a pinlock.rpt file is automatically
written to the current directory.
Development System Reference Guide 13-5

Development System Reference Guide
PIN2UCF Scenarios
The following table describes the various PIN2UCF scenarios.

Scenarios PIN2UCF Behavior
Files Created or
Updated

No UCF file is present. PIN2UCF creates a UCF file and
writes the pin locking constraints to
the UCF file.

pinlock.rpt
design_name.ucf

UCF file is present.

There are no pin locking
constraints in the UCF file or
this file contains some user-
specified pin locking
constraints outside of the
PINLOCK section.

None of the user specified
constraints conflict with the
PIN2UCF generated
constraints.

PIN2UCF appends the pin locking
constraints in the PINLOCK section
to the end of the file.

pinlock.rpt
design_name.ucf
13-6 Xilinx Development System

PIN2UCF
UCF file is present.

This file contains some user-
specified pin locking
constraints either inside or
outside of the PINLOCK
section.

Some of the user specified
constraints conflict with the
PIN2UCF generated
constraints

PIN2UCF does not write the
PINLOCK section. Instead it exits
after providing an error message. It
writes a list of conflicting
constraints.

pinlock.rpt

UCF file is present.

There are no pin locking
constraints in the UCF file.

There is a PINLOCK section
in the UCF file generated
from a previous run of
PIN2UCF or manually
created by the user.

None of these constraints in
the PINLOCK section conflict
with PIN2UCF generated
constraints

PIN2UCF writes a new PINLOCK
section in the UCF file after deleting
the existing PINLOCK section. The
contents of the existing PINLOCK
section are moved to the new
PINLOCK section.

pinlock.rpt
design_name.ucf

Scenarios PIN2UCF Behavior
Files Created or
Updated
Development System Reference Guide 13-7

Development System Reference Guide
13-8 Xilinx Development System

Chapter 14

TRACE

This program is compatible with the following families.

• XC3000A/L

• XC3100A/L

• XC4000E/L

• XC4000EX/XL/XV/XLA

• XC5200

• Spartan/XL/-II

• Virtex/-E/-II

This chapter describes TRACE®. The chapter contains the following
sections.

• “TRACE”

• “TRACE Syntax”

• “TRACE Files”

• “TRACE Options”

• “Command Line Examples”

• “TRACE Input Details”

• “TRACE Output Details”

• “Halting TRACE”
Development System Reference Guide — 3.1i 14-1

Development System Reference Guide
TRACE
TRACE (Timing Reporter And Circuit Evaluator) provides static
timing analysis of a design based on input timing constraints.

Note On the command line, the TRACE command is entered as trce
(without an “A”).

TRACE performs two major functions.

• Timing verification—the process of verifying that the design
meets your timing constraints.

• Reporting—the process of enumerating input constraint viola-
tions and placing them into an accessible file. TRACE can be run
on unplaced designs, completely placed and routed designs, or
designs that are placed and routed to any degree of completion.

Figure 14-1 TRACE

TRACE Syntax
The following syntax runs TRACE.

trce [options] design[.ncd] [constraint[.pcf]]

Options can be any number of the TRACE options listed in the
“TRACE Options” section. They do not need to be listed in any
particular order. Separate multiple options with spaces.

NCD

TRACE

PCF
(optional)

TWR

X7218
14-2 Xilinx Development System

TRACE
Design[.ncd] is the name of the input physical design file. If you enter
a file name with no extension, TRACE looks for an NCD file with the
name you specified.

Constraint[.pcf] specifies the name of a timing physical constraints
file. This file is used to define timing constraints for the design. If you
do not specify a physical constraints file, TRACE looks for one with
the same root name as the NCD file.

TRACE Files
This section describes the TRACE input and output files.

Input Files
Input files to TRACE are as follows.

• NCD file—a mapped design. The type of timing information you
receive depends on whether the design is unplaced, placed only,
or placed and routed.

• PCF file—an optional user-modifiable ASCII Physical
Constraints File produced by MAP. The PCF file contains timing
constraints used in the TRACE timing analysis.

Note The Viewlogic® CAE tools create a file with a .pcf extension
when generating a plot of a Viewlogic schematic. This PCF file is not
related to a Xilinx PCF file. Since TRACE automatically reads a PCF
file with the same root name as your design file, make sure your
directory does not contain a Viewlogic PCF file with the same root
name as your NCD file.

Output Files
Output from TRACE is a timing report (TWR) file. There are three
different types of timing reports: summary report, error report and
verbose report. The type of report produced is determined by the
Development System Reference Guide 14-3

Development System Reference Guide
TRACE command line options you enter, as shown in the following
table.

Note In addition to the timing (TWR) report, you can specify -tsi on
the command line to generate a Timespec Interaction Report (TSI).
See the“TSI Report” section in this chapter for details.

TRACE Options
This section describes the options to the TRACE command.

–a (Advanced Analysis)
The –a option can only be used if you are not supplying any timing
constraints (in a PCF file) to TRACE. The –a option writes out a
timing report containing the following.

• An analysis that enumerates all clocks and the required OFFSETs
for each clock.

• An analysis of paths having only combinatorial logic, ordered by
delay.

This information is supplied in place of the default information for
the output timing report type (summary, error, or verbose).

–e (Generate an Error Report)
–e [limit]

The –e option causes the timing report to be an error report instead of
a summary report. See the “Error Report” section for a sample error
report.

The report has the same root name as the input design and a .twr
extension. You can assign a different root name for the report on the
command line, but the extension must be .twr.

Table 14-1 TRACE Options and Reports

TRACE Option Timing (TWR) Report Produced

No –e or –v Summary report

-e Error report

-v Verbose report
14-4 Xilinx Development System

TRACE
The limit is an integer limit on the number of items reported per
constraint. The integer limit can be used to limit the number of items
reported for each timing constraint in the report file (the default is 3
items).

–f (Execute Commands File)
–f command_file

The –f option executes the command line arguments in the specified
command_file. For more information on the –f option, see the “–f
Option” section of the “Introduction” chapter.

–l (Limit Timing Report)
The -l option is an integer limit on the number of items reported per
constraint. The integer limit can be used to limit the number of items
reported for each timing constraint in the report file (the default is 3
items).

–o (Output File Name)
The –o option specifies the name of the output timing report. The .twr
extension is optional.

–o outfile[.twr]

The –o option specifies the name of the output timing report. The .twr
extension is optional.
Development System Reference Guide 14-5

Development System Reference Guide
–s (Change Speed)
–s [speed]

The –s option overrides the device speed contained in the input NCD
file and instead performs an analysis for the device speed you specify.
The –s option applies to whichever report type you produce in this
TRACE run. The option allows you to see if faster or slower speed
grades meet your timing requirements.

The device speed can be entered with or without the leading dash. For
example, both –s 3 and –s –3 are valid entries.

Some architectures support minimum timing analysis. The command
line syntax for min timing analysis is: trace -s min. Do not place a
leading dash before min.

Note The –s option only changes the speed grade for which the
timing analysis is performed; it does not save the new speed grade to
the NCD file.

–skew (Analyze Clock Skew for All Clocks)
–skew

This -skew option analyzes clock skew for all clocks including those
using non-dedicated clock routing resources.

–stamp (Generates STAMP timing model files)
–stamp stampfile design.ncd

Note A stampfile entry is required before the NCD file entry for the
3.1i release.

When you specify the -stamp option, TRACE generates a pair of
STAMP timing model files stampfile.mod and stampfile.data that
characterize the design’s timing.

The STAMP compiler can be used for any board when performing
static timing analysis.

There are four methods of running TRACE with the STAMP option to
obtain a complete STAMP model report.
14-6 Xilinx Development System

TRACE
• Run with advanced analysis (-a)

• Run using default analysis (that is, with no constraint file and
without advanced analysis).

• Construct constraints to cover all paths in the design.

• Run using the unconstrained path report (-u option) for
constraints which only partially cover the design.

For either of the last two options, you should not have any path
controls or TIGs or be aware that those paths are not part of the
model.

–tsi (Generate a Timespec Interaction Report)
–tsi designfile.tsi designfile.ncd designfile.pcf

When you specify the -tsi option, TRACE generates a Timespec Inter-
action Report. You must specify the design name on the command
line. You can also specify the NCD and PCF files from which the
Timespec Interaction Report analyzes constraints. If you do not
specify the NCD and PCF files, TRACE looks for files that have the
same root design name with .ncd and .pcf extensions.

–u (Report Uncovered Paths)
–u [limit]

The –u option reports delays for paths that are not covered by timing
constraints. The option adds an “Unconstrained path analysis”
constraint to your existing constraints. This constraint performs a
default path enumeration on any paths for which no other constraints
apply. The default path enumeration includes circuit paths to data
and clock pins on sequential components and data pins on primary
outputs.

The limit variable is an integer limit on the number of unconstrained
paths reported for each timing constraint in the report file (the default
is 3 items).

In the TRACE report, the following is included for the “Uncon-
strained path analysis” constraint.

• The minimum period for all of the uncovered paths to sequential
components.
Development System Reference Guide 14-7

Development System Reference Guide
• The maximum delay for all of the uncovered paths containing
only combinatorial logic.

• For a verbose report only, a listing of periods for sequential paths
and delays for combinatorial paths. The list is ordered by delay in
descending order, and the number of entries in the list can be
controlled by specifying a limit when you enter the –v (Generate
a Verbose Report) command line option.

–v (Generate a Verbose Report)
–v [limit]

The –v option generates a verbose report. The report has the same
root name as the input design and a .twr extension. You can assign a
different root name for the report on the command line, but the exten-
sion must be .twr.

The limit variable is an integer limit on the number of items reported
per constraint. The integer limit can be used to limit the number of
items reported for each timing constraint in the report file (the default
is 3 items).

Command Line Examples
The following command verifies the timing characteristics of the
design named design1.ncd, generating a summary timing report.
Timing constraints contained in the file group1.pcf are the timing
constraints for the design. This generates the report file design1.twr.

trce design1.ncd group1.pcf

The following command produces a file listing all delay characteris-
tics for the design named design1.ncd, using the timing constraints
contained in the file group1.pcf. The verbose report file is called
output.twr.

trce –v design1.ncd group1.pcf –o output.twr

The following command analyzes the file design1.ncd and reports on
the three worst errors for each constraint in timing.pcf. The report is
called design1.twr.

trce –e 3 design1.ncd timing.pcf

The following command generates a TSI report in addition to a
summary timing report. The TSI report is called design1.tsi (specified
14-8 Xilinx Development System

TRACE
on the command line). The summary timing report is called
design1.twr.

trce –tsi design1.tsi design1.ncd timing.pcf

TRACE Input Details
Input to TRACE is a mapped NCD design and an optional physical
constraints (PCF) file based upon timing constraints that you specify.
Constraints can indicate such things as clock speed for input signals,
the external timing relationship between two or more signals, abso-
lute maximum delay on a design path, or a general timing require-
ment for a class of pins.

TRACE Output Details
TRACE output is an ASCII timing report file that enables you to see
how well the timing constraints for the design have been met. The file
is written into your current working directory and has a .twr exten-
sion. The default name for the file is the same root name as the NCD
file. You can designate a different root name for the file, but it must
have a .twr extension. The extension .twr is assumed if not specified.

The timing report lists statistics on the design, any detected timing
errors, and a number of warning conditions.

Timing errors indicate absolute or relative timing constraint violations.
These include the following.

• Path delay errors—where the path delay exceeds the maximum
delay constraint for a path.

• Net delay errors—where a net connection delay exceeds the
maximum delay constraint for the net.

• Offset errors—where either the delay offset between an external
clock and its associated data-in pin is insufficient to meet the
internal logic’s timing requirements or the delay offset between
an external clock and its associated data-out pin exceeds the
external logic’s timing requirements.

• Net skew errors—where skew between net connections exceeds
the maximum skew constraint for the net.

Timing errors may require design modifications, running PAR, or
both.
Development System Reference Guide 14-9

Development System Reference Guide
Warnings point out potential problems such as circuit cycles or a
constraint that does not define any paths.

Three types of reports are available. You determine the report type by
entering the appropriate option entry on the UNIX or DOS command
line or by selecting the type of report from the Timing Analyzer (see
the “TRACE Options” section). Each type of report is described in the
“Reporting with TRACE” section.

Timing Verification with TRACE
TRACE checks the delays in the NCD design file against your timing
constraints. If delays are exceeded, TRACE issues the appropriate
timing error.

Net Delay Constraints

The delay for a constrained net is checked to ensure that the rout-
edelay is less than or equal to the netdelayconstraint.

routedelay ≤ netdelayconstraint

routedelay is the signal delay between the driver pin and the load
pin(s) on a net. This is an estimated delay if the design is placed but
not routed.

Any nets showing delays that do not meet this condition generate
timing errors in the timing report.

Net Skew Constraints

Signal skew on a net with multiple load pins is the difference
between minimum and maximum load delays.

signalskew = (maxdelay - mindelay)

maxdelay is the maximum delay between the driver pin and a load
pin.

mindelay is the minimum delay between the driver pin and a load
pin.

For constrained nets in the PCF, skew is checked to ensure that the
signalskew is less than or equal to the maxskewconstraint.

signalskew ≤ maxskewconstraint
14-10 Xilinx Development System

TRACE
If the skew is found to exceed the maximum skew constraint, the
timing report shows a skew error.

Path Delay Constraints

The pathdelay equls the sum of logic (component) delay, route (wire)
delay, and setup time (if any), minus clock skew (if any).

pathdelay = logicdelay + routedelay + setuptime -
clockskew

The delay for constrained paths is checked to ensure that the path-
delay is less than or equal to the maxpathdelayconstraint.

pathdelay ≤ maxpathdelayconstraint.

logicdelay is the pin-to-pin delay through a component.

routedelay is the signal delay between component pins in a path.
This is an estimated delay if the design is placed but not routed.

setuptime (for clocked paths only) is the time that data must be
present on an input pin before the arrival of the triggering edge of a
clock signal.
Development System Reference Guide 14-11

Development System Reference Guide
clockskew (for register-to-register clocked paths only) is the differ-
ence between the amount of time the clock signal takes to reach the
destination register and the amount of time the clock signal takes to
reach the source register. Clock skew is discussed in the following
section.

Paths showing delays that do not meet this condition generate timing
errors in the timing report.

Clock Skew and Setup Checking

Clock skew must be accounted for in register-to-register setup checks.
For register-to-register paths, the data delay must reach the destina-
tion register within a single clock period for the destination register.
The timing analysis software ensures that any clock skew between
the source and destination registers is accounted for in this check.

Note In default mode, that is, without using the -skew option, only
dedicated clock resource skew accounting is performed. With the
-skew option, non-dedicated clock skew accounting is also
performed.

A setup check performed on register-to-register paths checks the
following condition.

Slack = constraint + Tsk - (Tpath + Tsu)

constraint is the required time interval for the path, either specified
explicitly by you with a FROM TO constraint, or derived from a
PERIOD constraint.

Tpath is the summation of component and connection delays along
the path (including the Tcko delay from the source register).

Tsu (setup) is the setup requirement for the destination register.Tsk
(skew) is the difference between the arrival time for the destination
register and the source register.

Negative slack indicates that a setup error may occur, because the
data from the source register does not set up at the target register for
a subsequent clock edge.
14-12 Xilinx Development System

TRACE
In the following figure, the clock skew Tsk is the delay from the clock
input (CLKIOB) to register D (TclkD) less the delay from the clock
input (CLKIOB) to register S (TclkS). Negative skew relative to the
destination reduces the amount of time available for the data path,
and positive skew relative to the destination register is truncated to
zero.

Figure 14-2 Clock Skew Example

Because the total clock path delay is used to determine the clock
arrival times at the source register (TclkS) and the destination register
(TclkD), this check still applies if the source and destination clocks
originate at the same chip input but travel through different clock
buffers and/or routing resources, as shown in the following figure.

Figure 14-3 Clock Passing Through Multiple Buffers

When the source and destination clocks originate at different chip
inputs, no obvious relationship between the two clock inputs exists
for the timing software (because the software cannot determine the
clock arrival time or phase information).

Interconnect
and Logic

S D

CLKIOB

X8260

Interconnect
and Logic

S D

CLKIOB
X8261
Development System Reference Guide 14-13

Development System Reference Guide
For FROM TO specifications, the software assumes you have taken
into account the external timing relationship between the chip inputs.
The software assumes both clock inputs arrive simultaneously, and
the difference between the destination clock arrival time (TclkD) and
the source clock arrival time (TclkS) does not account for any differ-
ence in the arrival times at the two chip clock inputs.

Figure 14-4 Clocks Originating at Different Device Inputs

The clock skew Tsk is not accounted for in setup checks covered by
PERIOD constraints where the clock paths to the source and destina-
tion registers originate at different clock inputs.

Reporting with TRACE
 The timing report produced by TRACE is an ASCII file prepared for
a particular design. It reports statistics on the design, a summary of
timing warnings and errors, and optional detailed net and path delay
reports.

Note All TRACE reports are formatted for viewing in a monospace
(non-proportional) font. If the text editor you use for viewing the
reports uses a proportional font, the columns in the reports do not
line up correctly.

This section covers the three different types of timing reports gener-
ated by TRACE. They are as follows.

• The summary report—Contains summary information, design
statistics, and statistics for each constraint in the PCF file.

Interconnect
and Logic

S D

X8262

CLKIOB

CLKIOB
14-14 Xilinx Development System

TRACE
• The error report—Lists timing errors and associated net/path
delay information.

• The verbose report—Lists delay information for all nets and
paths.

In each type of report, the header specifies the command line used to
generate the report, the type of report, the input design name, the
optional input physical constraints file name, and device and speed
data for the input NCD file. At the end of each report is a timing
summary, which includes the following information.

• The number of timing errors found in the design. This informa-
tion appears in all reports

• A timing score, showing the total amount of error (in picosec-
onds) for all timing constraints in the design

• The number of paths and nets covered by the constraints

• The number of route delays and the percentage of connections
covered by timing constraints

Note The percentage of connections covered by timing constraints is
given in a “% coverage” statistic. The statistic does not indicate the
percentage of paths covered; it indicates the percentage of connec-
tions covered. Even if you have entered constraints that cover all
paths in the design, this percentage may be less than 100%, since
some connections are never included for static timing analysis (for
example, connections to the STARTUP component).

• The number of nets covered by constraints

• A list of global statistics for the design

In the following sections, a description of each report is accompanied
by a sample.

Following are some additional notes about timing reports.

• For any of the three types of reports, if you specify a physical
constraints file that contains invalid data, a list of physical
constraints file errors appears at the beginning of the report.
These include errors in constraint syntax.
Development System Reference Guide 14-15

Development System Reference Guide
• In a timing report, a tilde (~) preceding a delay value indicates
that the delay value is approximate. Values with the tilde cannot
be calculated exactly because of excessive delays, resistance, or
capacitance on the net, that is, the path is too complex too calcu-
late accurately.

The tilde (~) also means that the path may exceed the numerical
value listed next to the tilde by as much as 20%. You can use the
PENALIZE TILDE constraint to penalize these delays by a speci-
fied percentage (see the “Attributes, Constraints, and Carry
Logic” chapter of the Libraries Guide for a description of the
PENALIZE TILDE constraint).

• In a timing report, an “e” preceding a delay value indicates that
the delay value is estimated because the path is not routed.

• In a timing report, an “R” appended to a delay value indicates
the value was calculated for a rising signal, and an “F” indicates
the value for a falling signal. An “X” indicates that the signal’s
edge is indeterminate. If rising and falling values are different,
TRACE reports the appropriate delay.

• TRACE detects when a path cycles (that is, when the path passes
through a driving output more than once), and reports the total
number of cycles detected in the design. When TRACE detects a
cycle, it disables the cycle from being analyzed. If the cycle itself
is made up of many possible routes, each route is disabled for all
paths which converge through the cycle in question and the total
number is included in the reported cycle tally.

A path is considered to cycle outside of the influence of other
paths in the design. Thus if a valid path follows a cycle from
another path, but actually converges at an input and not a
driving output, the path is not disabled and will contain the
elements of the cycle which may be disabled on another path.

• In Xilinx FPGAs,455 tristate buffer (TBUF) outputs are always
routed on longlines. Pullup resistors may also be tied to these
longlines. The timing effects of a TBUF/pullup combination is
handled differently in the various FPGA architectures.

♦ In XC3000A/L, XC3100A/L, 4000E/L, XC5200, and Spartan/
XL designs, the delay associated with the longline is built
into the component delay for the TBUF, and is not included
in the delay reported for the net on the longline.
14-16 Xilinx Development System

TRACE
♦ In XC4000EX/XL/XV designs, the net delay on the longline
is computed and reported as if the pullup (and not the TBUF
output) is driving the net. If you want the delay to be
computed with the TBUF driving the net, do not include any
pullups at the output of the TBUF.

• Error counts reflect the number of path endpoints (register setup
inputs, output pads) that fail to meet timing specifications, not
the number of paths that fail the specification. Consider the
following circuit.

Figure 14-5 Error Reporting

If an error is generated at both the endpoints of A and B, the
timing report would list two errors—one for each endpoint.

• On Virtex-II designs, the MAP program places information that is
necessary to identify dedicated clocks in the PCF file. You must
use a PCF generated by the MAP program to ensure timing anal-
ysis on these designs.

Data Sheet Reports
In 3.1i, the summary, error, and verbose reports contain a data sheet
report. This report only includes IOs that are covered by the specified
physical timing constraints, if any. A warning is issued if the report
does not cover any IOs of the design due to the specified timing
constraints. In the absence of a physical constraint file, all IO timing is
analyzed and reported (less the effects of any default path tracing
controls). Unconstrained path analysis can be used with a constraint
file to increase the coverage of the report to include paths not explic-

9 paths

A
1 path

B

X8360
Development System Reference Guide 14-17

Development System Reference Guide
itly specified in the constraints file. The report includes the source
and destination PAD names, and either the propagation delay
between the source and destination or the setup and hold require-
ments for the source relative to the destination. This report summa-
rizes the following delay characteristics for the design:

• External setup/hold requirements

The maximum setup and hold times of device data inputs are
listed relative to each clock input. When two or more paths from
a data input exist relative to a device clock input, the worst-case
setup and hold times are reported. One worst-case setup and
hold time is reported for each data input and clock input combi-
nation in the design.

Following is an example of an external setup/hold requirement
in the data sheet report:

Setup/Hold to clock ck1_i

---------------+------------+------------+

| Setup to |Hold to |

Source Pad |clk (edge) |clk (edge)|

---------------+------------+------------+

start_i |2.816(R) |0.000(R) |

---------------+------------+------------+

• Clock-to-output propagation delays

• The maximum propagation delay from clock inputs to device
data outputs are listed for each clock input. When two or more
paths from a clock input to a data output exist, the worst-case
propagation delay is reported. One worst-case propagation delay
is reported for each data output and clock input combination.

Following are two examples of clock-to-output propagation
delays in the data sheet report:

Clock ck1_i to Pad

---------------+------------+

|clk (edge)|

Destination Pad|to PAD |
14-18 Xilinx Development System

TRACE
---------------+------------+

out1_o | 16.691(R)|

---------------+------------+

Clock to Setup on destination clock ck2_i

---------------+---------+---------+---------+--

|Src/Dest| Src/Dest| Src/Dest| Src/Dest|

Source Clock|Rise/Rise|Fall/Rise|Rise/Fall|Fall/

Fall|

---------------+---------+---------+---------+-+

ck2_i | 12.647 | | | |

ck1_i |10.241 | | | |

---------------+---------+---------+---------+-+

• Input-to-output propagation delays

The maximum propagation delay from each device input to each
device output is reported if a combinational path exists between
the device input and output. When two or more paths exist
between a device input and output, the worst-case propagation
delay is reported. One worst-case propagation delay is reported
for every input and output combination in the design.

Following are examples of input-to-output propagation delays:

Pad to Pad

Source Pad |Destination Pad|Delay |

---------------+---------------+---------+

BSLOT0 |D0S |37.534 |

BSLOT1 |D09 |37.876 |

BSLOT2 |D10 |34.627 |

BSLOT3 |D11 |37.214 |

CRESETN |VCASN0 |51.846 |
Development System Reference Guide 14-19

Development System Reference Guide
CRESETN |VCASN1 |51.846 |

CRESETN |VCASN2 |49.776 |

CRESETN |VCASN3 |52.408 |

CRESETN |VCASN4 |52.314 |

CRESETN |VCASN5 |52.314 |

CRESETN |VCASN6 |51.357 |

CRESETN |VCASN7 |52.527 |

---------------+---------------+---------

There are four methods of running TRACE to obtain a complete data
sheet report.

• Run with advanced analysis (-a)

• Run using default analysis (that is, with no constraint file and
without advanced analysis)

• Construct constraints to cover all paths in the design

• Run using the unconstrained path report for constraints which
only partially cover the design

For either of the last two options, you should not have any path
controls or TIGs or be aware that those paths will not be part of the
report.

Guaranteed Setup and Hold Reporting
Guaranteed setup and hold values obtained from speed files are used
in the data sheet reports for IOB input registers when these registers
are clocked by specific clock routing resources and when the guaran-
teed setup and hold times are available for a specified device and
speed.

Specific clock routing resources are clock networks that originate at a
clock IOB, use a clock buffer to reach a clock routing resource and
route directly to IOB registers.

Guaranteed setup and hold times are also used for reporting of input
OFFSET constraints.

The following figure and text describes the external setup and hold
time relationships.
14-20 Xilinx Development System

TRACE
Figure 14-6 Guaranteed Setup and Hold

The pad CLKPAD of clock input component CLKIOB drives a global
clock buffer CLKBUF, which in turn drives an input flip-flop IFD. The
input flip-flop IFD clocks a data input driven from DATAPAD within
the component IOB.

Setup Times

The external setup time is defined as the setup time of DATAPAD
within IOB relative to CLKPAD within CLKIOB. When a guaranteed
external setup time exists in the speed files for a particular DATAPAD
and the CLKPAD pair and configuration, this number is used in
timing reports. When no guaranteed external setup time exists in the
speed files for a particular DATAPAD and CLKPAD pair, the external
setup time is reported as the maximum path delay from DATAPAD to
the IFD plus the maximum IFD setup time, less the minimum of
maximum path delay(s) from the CLKPAD to the IFD.

IOB

IFD

DATAPAD

CLKIOB

CLKPAD CLKBUF

X8924
Development System Reference Guide 14-21

Development System Reference Guide
Hold Times

The external hold time is defined as the hold time of DATAPAD
within IOB relative to CLKPAD within CLKIOB. When a guaranteed
external hold time exists in the speed files for a particular DATAPAD
and the CLKPAD pair and configuration, this number is used in
timing reports.

When no guaranteed external hold time exists in the speed files for a
particular DATAPAD and CLKPAD pair, the external hold time is
reported as the maximum path delay from CLKPAD to the IFD plus
the maximum IFD hold time, less the minimum of maximum path
delay(s) from the DATAPAD to the IFD.

Summary Report
The summary report includes the name of the design file being
analyzed, the device speed and report level, followed by a statistical
brief that includes the summary information (timing errors, etc.
described above) and design statistics. The report also list statistics
for each constraint in the PCF file, including the number of timing
errors for each constraint.

A summary report is produced when you do not enter an –e (error
report) or –v (verbose report) option on the TRACE command line.

Two sample summary reports are shown below. The first sample
shows the results without having a physical constraints file. The
second sample shows the results when a physical constraints file is
specified.

If no physical constraints file exists or if there are no timing
constraints in the PCF file, TRACE performs default path and net
enumeration to provide timing analysis statistics. Default path
enumeration includes all circuit paths to data and clock pins on
sequential components and all data pins on primary outputs. Default
net enumeration includes all nets.

Note The summary report is formatted for viewing in a monospace
(non-proportional) font. If the text editor you use for viewing the
report uses a proportional font, the columns in the report do not line
up correctly.
14-22 Xilinx Development System

TRACE
Summary Report (Without a Physical Constraints File
Specified)

The following sample summary report represents the output of this
TRACE command.

trce -o summary.twr ramb16_s1.ncd

The name of the report is summary.twr. No preference file is specified
on the command line, and the directory containing the file
ram16_s1.ncd did not contain a PCF file called ramb16_s1.pcf.

--
Xilinx TRACE, Version 3.1i
Copyright (c) 1995-2000 Xilinx, Inc. All rights reserved.
Design file: ramb16_s1.ncd
Device,speed: xc2v250,-6
Report level: summary report
--

WARNING:Timing - No timing constraints found, doing default
enumeration.
Asterisk (*) preceding a constraint indicates it was not met.
--
 Constraint | Requested | Actual | Logic

| | | Levels
--
 Default period analysis | | 2.840ns | 2
--
 Default net enumeration | | 0.001ns |
--

All constraints were met.

Data Sheet report:

All values displayed in nanoseconds (ns)

Setup/Hold to clock clk
---------------+------------+------------+
 | Setup to | Hold to |
Source Pad | clk (edge) | clk (edge) |
Development System Reference Guide 14-23

Development System Reference Guide
---------------+------------+------------+
ad0 | 0.263(R)| 0.555(R)|
ad1 | 0.263(R)| 0.555(R)|
ad10 | 0.263(R)| 0.555(R)|
ad11 | 0.263(R)| 0.555(R)|
ad12 | 0.263(R)| 0.555(R)|
ad13 | 0.263(R)| 0.555(R)|
ad2 | 0.263(R)| 0.555(R)|
ad3 | 0.263(R)| 0.555(R)|
ad4 | 0.263(R)| 0.555(R)|
ad5 | 0.263(R)| 0.555(R)|
ad6 | 0.263(R)| 0.555(R)|
ad7 | 0.263(R)| 0.555(R)|
ad8 | 0.263(R)| 0.555(R)|
ad9 | 0.263(R)| 0.555(R)|
di | 0.263(R)| 0.555(R)|
en | 1.407(R)| 0.000(R)|
ssr | 1.213(R)| 0.000(R)|
we | 1.117(R)| 0.000(R)|
---------------+------------+------------+
Clock clk to Pad
---------------+------------+
 | clk (edge) |
Destination Pad| to PAD |
---------------+------------+
d0 | 7.496(R)|
---------------+------------+

Timing summary:

Timing errors: 0 Score: 0

Constraints cover 20 paths, 21 nets, and 21 connections (100.0%
coverage)

Design statistics:
 Minimum period: 2.840ns (Maximum frequency: 352.113MHz)
 Maximum combinational path delay: 6.063ns
 Maximum net delay: 0.001ns
Analysis completed Wed Mar 8 14:52:30 2000
--
14-24 Xilinx Development System

TRACE
Summary Report (With a Physical Constraints File
Specified)

The following sample summary report represents the output of this
TRACE command

trce -o summary1.twr ramb16_s1.ncd clkperiod.pcf

The name of the report is summary1.twr. The timing analysis repre-
sented in the file were performed by referring to the constraints in the
file clkperiod.pcf.

--
Xilinx TRACE, Version 3.1i
Copyright (c) 1995-2000 Xilinx, Inc. All rights reserved.

Design file: ramb16_s1.ncd
Physical constraint file: clkperiod.pcf
Device,speed: xc2v250,-6
Report level: summary report
--

Asterisk (*) preceding a constraint indicates it was not met.

--
Constraint | Requested | Actual | Logic

| | | Levels
--
TS01 = PERIOD TIMEGRP "clk" 10.0ns | | |
--
OFFSET = IN 3.0 ns AFTER COMP "clk" TIMEG | 3.000ns| 8.593ns 2
RP "rams"
--
* TS02 = MAXDELAY FROM TIMEGRP "rams" TO TI | 6.000ns | 6.063ns |2
 MEGRP "pads" 6.0 nS | | |
--

1 constraint not met.

Data Sheet report:

All values displayed in nanoseconds (ns)
Development System Reference Guide 14-25

Development System Reference Guide
Setup/Hold to clock clk
---------------+------------+------------+
 | Setup to | Hold to |
Source Pad | clk (edge) | clk (edge) |
---------------+------------+------------+
ad0 | 0.263(R)| 0.555(R)|
ad1 | 0.263(R)| 0.555(R)|
ad10 | 0.263(R)| 0.555(R)|
ad11 | 0.263(R)| 0.555(R)|
ad12 | 0.263(R)| 0.555(R)|
ad13 | 0.263(R)| 0.555(R)|
ad2 | 0.263(R)| 0.555(R)|
ad3 | 0.263(R)| 0.555(R)|
ad4 | 0.263(R)| 0.555(R)|
ad5 | 0.263(R)| 0.555(R)|
ad6 | 0.263(R)| 0.555(R)|
ad7 | 0.263(R)| 0.555(R)|
ad8 | 0.263(R)| 0.555(R)|
ad9 | 0.263(R)| 0.555(R)|
di | 0.263(R)| 0.555(R)|
en | 1.407(R)| 0.000(R)|
ssr | 1.213(R)| 0.000(R)|
we | 1.117(R)| 0.000(R)|
---------------+------------+------------+
Clock clk to Pad
---------------+------------+
 | clk (edge) |
Destination Pad| to PAD |
---------------+------------+
d0 | 7.496(R)|
---------------+------------+

Timing summary:

Timing errors: 1 Score: 63

Constraints cover 19 paths, 0 nets, and 21 connections (100.0%
coverage)

Design statistics:
14-26 Xilinx Development System

TRACE
 Maximum path delay from/to any node: 6.063ns
 Maximum input arrival time after clock: 8.593ns

Analysis completed Wed Mar 8 14:54:31 2000
--

When the physical constraints file includes timing constraints, the
summary report lists the percentage of all design connections covered
by timing constraints. If there are no timing constraints, the report
shows 100 percent coverage. An asterisk precedes constraints that
fail.

Error Report
The error report lists timing errors and associated net/path delay
information. Errors are ordered by constraint and, within constraints,
by slack (the difference between the constraint and the analyzed
value, with a negative slack indicating an error condition). The
maximum number of errors listed for each constraint is set by the
limit you enter on the command line. The error report also contains a
list of all time groups defined in the PCF file and all of the members
defined within each group.

The main body of the error report lists all timing constraints as they
appear in the input PCF file. If the constraint is met, the report simply
states the number of items scored by TRACE, reports no timing errors
detected, and issues a brief report line, indicating important informa-
tion (for example, the maximum delay for the particular constraint).
If the constraint is not met, it gives the number of items scored by
TRACE, the number of errors encountered, and a detailed breakdown
of the error.

For errors in which the path delays are broken down into individual
net and component delays, the report lists each physical resource and
the logical resource from which the physical resource was generated.

As in the other three types of reports, descriptive material appears at
the top. A timing summary always appears at the end of the report. A
sample error report follows.

Note The error report is formatted for viewing in a monospace (non-
proportional) font. If the text editor you use for viewing the report
uses a proportional font, the columns in the report do not line up
correctly.
Development System Reference Guide 14-27

Development System Reference Guide
The following sample error report (error.twr) represents the output of
this TRACE command.

trce -o error3.twr -e 3 ramb16_s1.ncd

--
Xilinx TRACE, Version 3.1i
Copyright (c) 1995-2000 Xilinx, Inc. All rights reserved.
Design file: ramb16_s1.ncd
Physical constraint file: clkperiod.pcf
Device,speed: xc2v250,-6
Report level: error report
--

==
Timing constraint: TS01 = PERIOD TIMEGRP "clk" 10.0ns ;
 0 items analyzed, 0 timing errors detected.
--

==
Timing constraint: OFFSET = IN 3.0 ns AFTER COMP "clk" TIMEGRP
"rams" ;
 18 items analyzed, 0 timing errors detected.
 Maximum allowable offset is 8.593ns.
--

==
Timing constraint: TS02 = MAXDELAY FROM TIMEGRP "rams" TO TIMEGRP
"pads" 6.0 nS ;
 1 item analyzed, 1 timing error detected.
 Maximum delay is 6.063ns.
--
Slack: -0.063ns path RAMB16 to d0 relative to
 6.000ns delay constraint

Path RAMB16 to d0 contains 2 levels of logic:
Path starting from Comp: RAMB16.CLKA (from CLK)
To Delay type Delay(ns) Physical Resource
 Logical Resource(s)
--- --------
RAMB16.DOA0 Tbcko 2.543R RAMB16
 RAMB16.A
14-28 Xilinx Development System

TRACE
IOB.O1 net (fanout=1) e 0.001R N$41
IOB.PAD Tioop 3.519R d0
 I$22
 d0

Total (6.062ns logic, 0.001ns route) 6.063ns
 (100.0% logic, 0.0% route)
--

1 constraint not met.

Data Sheet report:

All values displayed in nanoseconds (ns)

Setup/Hold to clock clk
---------------+------------+------------+
 | Setup to | Hold to |
Source Pad | clk (edge) | clk (edge) |
---------------+------------+------------+
ad0 | 0.263(R)| 0.555(R)|
ad1 | 0.263(R)| 0.555(R)|
ad10 | 0.263(R)| 0.555(R)|
ad11 | 0.263(R)| 0.555(R)|
ad12 | 0.263(R)| 0.555(R)|
ad13 | 0.263(R)| 0.555(R)|
ad2 | 0.263(R)| 0.555(R)|
ad3 | 0.263(R)| 0.555(R)|
ad4 | 0.263(R)| 0.555(R)|
ad5 | 0.263(R)| 0.555(R)|
ad6 | 0.263(R)| 0.555(R)|
ad7 | 0.263(R)| 0.555(R)|
ad8 | 0.263(R)| 0.555(R)|
ad9 | 0.263(R)| 0.555(R)|
di | 0.263(R)| 0.555(R)|
en | 1.407(R)| 0.000(R)|
ssr | 1.213(R)| 0.000(R)|
we | 1.117(R)| 0.000(R)|
---------------+------------+------------+

Clock clk to Pad
Development System Reference Guide 14-29

Development System Reference Guide
---------------+------------+
 | clk (edge) |
Destination Pad| to PAD |
---------------+------------+
d0 | 7.496(R)|
---------------+------------+

Table of Timegroups:

TimeGroup clk:
Signals:
 CLK

TimeGroup pads:
BELs:
 di ad10 en ad11 ad12 clk ad13 ad0 ad1 ad2 ad3
ad4 ad5 ad6
we ad7 ad8 ad9 d0 ssr

TimeGroup rams:
BELs:
 RAMB16.A
Timing summary:

Timing errors: 1 Score: 63

Constraints cover 19 paths, 0 nets, and 21 connections (100.0%
coverage)

Design statistics:
 Maximum path delay from/to any node: 6.063ns
 Maximum input arrival time after clock: 8.593ns

Analysis completed Wed Mar 8 14:55:32 2000
--

Verbose Report
The verbose report is similar to the error report, providing more
details on delays for all constrained paths and nets in the design.
14-30 Xilinx Development System

TRACE
Entries are ordered by constraint and, within constraints, by slack.
The maximum number of items listed for each constraint is set by the
limit you enter on the command line.

Note The data sheet report and STAMP model display skew values
on non-dedicated clock resources that do not display in the default
period analysis of the normal verbose report. The data sheet report
and STAMP model must include skew because skew affects the
external timing model. To display skew values in the verbose report,
use the -skew option

The verbose report also contains a list of all time groups defined in
the PCF file, and all of the members defined within each group.

As in the other types of reports, descriptive material appears at the
top.

The body of the verbose report enumerates each constraint as it
appears in the input physical constraints file, the number of items
scored by TRACE for that constraint, and the number of errors
detected for the constraint. Each item is described, ordered by
descending slack. A Report line for each item provides important
information, such as the amount of delay on a net and by how much
the constraint is met.

For path constraints, if there is an error, the report indicates the
amount by which the constraint is exceeded. For errors in which the
path delays are broken down into individual net and component
delays, the report lists each physical resource and the logical resource
from which the physical resource was generated.

If there are no errors, the report indicates that the constraint passed
and by how much. Each logic and route delay is analyzed, totaled,
and reported.

Note The verbose report is formatted for viewing in a monospace
(non-proportional) font. If the text editor you use for viewing the
report uses a proportional font, the columns in the report do not line
up correctly.

The following sample verbose report (verbose.twr) represents the
output of this TRACE command.

trce -o verbose1.twr -v 1 ramb16_sl.ncd

--
Xilinx TRACE, Version HEAD (HEAD)
Development System Reference Guide 14-31

Development System Reference Guide
Copyright (c) 1995-2000 Xilinx, Inc. All rights reserved.
Design file: ramb16_s1.ncd
Physical constraint file: clkperiod.pcf
Device,speed: xc2v250,-6
Report level: verbose report, limited to 1 item per constraint
--

==
Timing constraint: TS01 = PERIOD TIMEGRP "clk" 10.0ns ;
 0 items analyzed, 0 timing errors detected.
--

==
Timing constraint: OFFSET = IN 3.0 ns AFTER COMP "clk" TIMEGRP
"rams" ;
 18 items analyzed, 0 timing errors detected.
 Maximum allowable offset is 8.593ns.
--
Slack: 5.593ns path en to RAMB16 relative to
 1.433ns delay constraint clk to RAMB16 and
 7.000ns offset en to clk
Data path en to RAMB16 contains 2 levels of logic:
Path starting from Comp: IOB.PAD
To Delay type Delay(ns) Physical Resource
 Logical Resource(s)
--- --------
IOB.I Tiopi 0.877R en
 en
 I$31
RAMB16.ENA net (fanout=1) e 0.001R N$1
RAMB16.CLKA Tbeck 1.962R RAMB16
 RAMB16.A

Total (2.839ns logic, 0.001ns route) 2.840ns (to CLK)
 (100.0% logic, 0.0% route)

Clock path clk to RAMB16 contains 2 levels of logic:
Path starting from Comp: IOB.PAD
To Delay type Delay(ns) Physical Resource
 Logical Resource(s)
--- --------
14-32 Xilinx Development System

TRACE
IOB.I Tiopi 0.877R clk
 clk
 clk/new_buffer
BUFGMUX.I0 net (fanout=1) e 0.001R clk/new_buffer
BUFGMUX.O Tgi0o 0.554R I$9
 I$9
RAMB16.CLKA net (fanout=1) e 0.001R CLK

Total (1.431ns logic, 0.002ns route) 1.433ns
 (99.9% logic, 0.1% route)
--

==
Timing constraint: TS02 = MAXDELAY FROM TIMEGRP "rams" TO TIMEGRP
"pads" 6.0 nS ;
 1 item analyzed, 1 timing error detected.
 Maximum delay is 6.063ns.
--
Slack: -0.063ns path RAMB16 to d0 relative to
 6.000ns delay constraint

Path RAMB16 to d0 contains 2 levels of logic:
Path starting from Comp: RAMB16.CLKA (from CLK)
To Delay type Delay(ns) Physical Resource
 Logical Resource(s)
--- --------
RAMB16.DOA0 Tbcko 2.543R RAMB16
 RAMB16.A
IOB.O1 net (fanout=1) e 0.001R N$41
IOB.PAD Tioop 3.519R d0
 I$22
 d0

Total (6.062ns logic, 0.001ns route) 6.063ns
 (100.0% logic, 0.0% route)

--

1 constraint not met.

Data Sheet report:
Development System Reference Guide 14-33

Development System Reference Guide

All values displayed in nanoseconds (ns)
Setup/Hold to clock clk
---------------+------------+------------+
 | Setup to | Hold to |
Source Pad | clk (edge) | clk (edge) |
---------------+------------+------------+
ad0 | 0.263(R)| 0.555(R)|
ad1 | 0.263(R)| 0.555(R)|
ad10 | 0.263(R)| 0.555(R)|
ad11 | 0.263(R)| 0.555(R)|
ad12 | 0.263(R)| 0.555(R)|
ad13 | 0.263(R)| 0.555(R)|
ad2 | 0.263(R)| 0.555(R)|
ad3 | 0.263(R)| 0.555(R)|
ad4 | 0.263(R)| 0.555(R)|
ad5 | 0.263(R)| 0.555(R)|
ad6 | 0.263(R)| 0.555(R)|
ad7 | 0.263(R)| 0.555(R)|
ad8 | 0.263(R)| 0.555(R)|
ad9 | 0.263(R)| 0.555(R)|
di | 0.263(R)| 0.555(R)|
en | 1.407(R)| 0.000(R)|
ssr | 1.213(R)| 0.000(R)|
we | 1.117(R)| 0.000(R)|
---------------+------------+------------+
Clock clk to Pad
---------------+------------+
 | clk (edge) |
Destination Pad| to PAD |
---------------+------------+
d0 | 7.496(R)|
---------------+------------+

Table of Timegroups:

TimeGroup clk:
Signals:
 CLK
TimeGroup pads:
14-34 Xilinx Development System

TRACE
BELs:
 di ad10 en ad11 ad12 clk ad13 ad0 ad1 ad2 ad3
ad4 ad5 ad6 we ad7 ad8 ad9 d0 ssr

TimeGroup rams:
BELs:
 RAMB16.A

Timing summary:

Timing errors: 1 Score: 63

Constraints cover 19 paths, 0 nets, and 21 connections (100.0%
coverage)

Design statistics:
 Maximum path delay from/to any node: 6.063ns
 Maximum input arrival time after clock: 8.593ns

Analysis completed Wed Mar 8 15:05:31 2000
--

TSI Report
The TSI (TimeSpec Interaction) report describes interactions among
timing constraints in your design. The report lists three categories of
constraints: exclusive, duplicate, and extracted.

• Exclusive coverage occurs when a particular constraint is the only
one that covers some paths from, to, or between the start and end
points listed in the report.

• Duplicate coverage occurs when a constraint covers some paths
from, to, or between the start and end points, but one or more
other constraints cover the same paths as well.

• Extracted coverage occurs when some paths from, to, or between
the start and end points that were supposed to be covered by a
particular constraint are instead covered by a higher priority
constraint.

The TSI report does not list the paths themselves; it lists the start
points as sources and the end points as destinations. You might see
Development System Reference Guide 14-35

Development System Reference Guide
sources listed without destinations. For example a source can be
listed in the exclusive constraint category without any destination.
This means paths from that source are covered in the exclusive
constraints category. However, the destination is covered by another
category, duplicate or extracted. Similarly, you might see destinations
listed without sources. This means paths to that destination are
covered by one category of constraints, but the source is covered by
another. Also note that not every source has a corresponding destina-
tion. Paths do not always exist between start and end points. The
report lists start and end points between which there may be paths.

Two design examples with sample TSI reports follow. Design
Example 1 illustrates how the timing tools determine extracted
coverage. Design Example 2 illustrates how the timing tools deter-
mine duplicate coverage.

Design Example 1 (with Sample TSI Report)
This design example illustrates extracted coverage. The following
figure contains two source registers, S1 and S2, two destination regis-
ters D1 and D2, and common intermediate logic.

Figure 14-7 TSI Design Example 1

In this design, the registers S1, S2, D1 and D2 are all clocked by the
same clock signal “CLOCK.” A combinatorial function in the logic is

X8996

S1

S2

D1

D2

Logic

Clock
Enable
14-36 Xilinx Development System

TRACE
the result of the two signals driven by registers S1 and S2. The four
circuit paths in this example are as follows.

A={S1->D1}

B={S1->D2}

C={S2->D1}

D={S2->D2}

The following excerpt from the PCF file shows the related design
constraints. A period constraint is defined for the clock signal, and a
maximum delay constraint for the paths originating from the source
register S1. (S1 has a clock enable signal.)

net “CLOCK” period=10

from BEL “S1” maxdelay=15

The period constraint defines the paths A, B, C and D in the design
example. The maximum delay constraint defines the paths A and B.
Since the maximum delay constraint takes priority over the period
constraint, the paths A and B are covered by the maximum delay
constraint only; they are extracted from period constraint coverage.
The paths C and D are covered by the period constraint.

The following TSI report for this design represents the output of this
TRACE command.

trce -tsi example1.tsi tsinew.ncd example1.pcf -
o example1.twr

--
Xilinx TRACE, Version 3.1i
Copyright (c) 1995-2000 Xilinx, Inc. All rights reserved.
trce -tsi example1.tsi tsinew.ncd example1.pcf -o example1.twr
Design file: tsi.ncd
Physical constraint file: example1.pcf
Report level: timespec interaction report
--
==
Timing constraint: from BEL "S1" maxdelay = 15
==
Paths from, to, or between the following sources and destinations
are covered exclusively by this timing constraint:

Sources:
Development System Reference Guide 14-37

Development System Reference Guide
S1
 Destinations:
The following constraints duplicately cover some or all paths from,
to, or between the sources and destinations listed below each
constraint:

Constraint: net "CLOCK" period = 10
Sources:
Destinations:

D1 D2
The following constraints extracted some or all

paths from, to, or between the sources and
destinations listed below each constraint:

==
Timing constraint: net "CLOCK" period = 10
==
Paths from, to, or between the following sources and destinations
are covered exclusively by this timing constraint:

Sources:
S2

Destinations:
The following constraints duplicately cover some or all paths from,
to, or between the sources and destinations listed below each
constraint:

Constraint: from BEL "S1" maxdelay = 15
Sources:
Destinations:

D1 D2

The following constraints extracted some or all paths from, to, or
between the sources and destinations listed below each constraint:

Constraint: from BEL "S1" maxdelay = 15
Sources:

S1
Destinations:

===

Pathtracing Controls: 12 entries (Default Settings)

Standard Name: reg_sr_q State: Disabled
14-38 Xilinx Development System

TRACE
Trio Trlat Trri Trpo
.
.
.

Active Pathtracing Controls

Disabled Signals (global):

None
Disabled Pins (global):

None
Disabled Delays (global):

Trio Trlat Trri Trpo
.
.
.
Constraint Disables:

None

Active Component Pathtracing Controls

Timespec interaction analysis completed Fri Feb 4 09:38:16 2000
--

Design Example 2 (with Sample TSI Report)
This example illustrates duplicate coverage. It uses a different PCF
file with the same design as the previous example. The design
example follows.
Development System Reference Guide 14-39

Development System Reference Guide
Figure 14-8 TSI Design Example 2

To recap the design, the registers S1, S2, D1 and D2 are all clocked by
the same clock signal “CLOCK.” A combinatorial function in the
logic is the result of the two signals driven by registers S1 and S2. The
four circuit paths in the example are as follows.

A={S1->D1}

B={S1->D2}

C={S2->D1}

D={S2->D2}

In this example, the PCF file defines a maxdelay constraint for the
paths from the source register S1 to the destination register D1.

net “CLOCK” period=10

from BEL “S1” to BEL “D1” maxdelay=15

The period constraint defines the paths A, B, C and D. The maxdelay
constraint defines the set of paths A. The maxdelay constraint takes
priority over the period constraint, but the timing tools are not path
based and therefore cannot give precedence to the maxdelay
constraint.

X8996

S1

S2

D1

D2

Logic

Clock
Enable
14-40 Xilinx Development System

TRACE
Note If precedence were given to the maxdelay constraint, the source
S1 and destination D1 would have to be removed from coverage by
the period constraint. This would also entail removing the paths
defined by B and C. Since this is not the purpose of the constraint, the
timing tools do not extract the paths affected by the period constraint.

In this situation, the path A is covered duplicately by both the period
and the maxdelay constraints. The paths B, C, and D are covered by
the period constraint alone.

Duplicate coverage may indicate that you need to refine your
constraints. With reference to this example, the questions the designer
might ask are:

• If the Clock Enable is used only on the S1 register, why doesn’t
the maxdelay constraint apply to all paths from S1 (as opposed to
paths to D1)?

• If the S1 to D1 path is truly an exception to the period constraint,
why isn’t the S2 to D1 path also an exception?

To refine these constraints, the designer can consider the following:

• Define a clock period constraint using a timegrp (S1, D1). Include
only S1, D1 and a slow period in the timegrp period constraint.

• Define another timegrp (S2, D2) period constraint listing only S2,
D2 and a fast period.

• Define a constraint with any cross-group timing requirement.

The following TSI report for this design represents the output of this
TRACE command.

trce -tsi example2.tsi tsinew.ncd example2.pcf -
o example2.twr

--

Xilinx TRACE, Version 3.1i
Copyright (c) 1995-2000 Xilinx, Inc. All rights reserved.
Design file: tsi.ncd
Physical constraint file: example2.pcf
Report level: timespec interaction report
--

==
Development System Reference Guide 14-41

Development System Reference Guide
Timing constraint: from BEL "BEL_SOURCE.FFY" to BEL
"BEL_DEST.FFY"
maxdelay = 15
==
Paths from, to, or between the following sources and destinations
are covered exclusively by this timing constraint:
Sources:
Destinations:

The following constraints duplicately cover some or all paths from,
to, or between the sources and destinations listed below each
constraint:
Constraint: net "CLOCK" period = 10

Sources:
BEL_SOURCE.FFY

Destinations:
BEL_DEST.FFY

The following constraints extracted some or all paths from, to, or
between the sources and destinations listed below each constraint:

==
Timing constraint: net "CLOCK" period = 10
==
Paths from, to, or between the following sources and destinations
are covered exclusively by this timing constraint:

Sources:
BEL_SOURCE.FFX

Destinations:
BEL_DEST.FFX

The following constraints duplicately cover some or all paths from,
to, or between the sources and destinations listed below each
constraint:

Constraint: from BEL "BEL_SOURCE.FFY" to BEL "BEL_DEST.FFY"
maxdelay =15

Sources:
BEL_SOURCE.FFY

Destinations:
BEL_DEST.FFY
14-42 Xilinx Development System

TRACE
The following constraints extracted some or all paths from, to, or
between the sources and destinations listed below each constraint:
==

Pathtracing Controls: 12 entries (Default Settings)

Standard Name: reg_sr_q State: Disabled

Trio Trlat Trri TrpoStandard Name: reg_sr_clk State:
Disabled
.
.
.

Active Pathtracing Controls

Disabled Signals (global):

None
Disabled Pins (global):

None
Disabled Delays (global):

Trio Trlat Trri Trpo
Topsc+Tpslic Tops+Tpdsli Topsc+Tpdslic

.

.

.
Constraint Disables:
 None

Active Component Pathtracing Controls

Timespec interaction analysis completed Wed Feb 2 15:51:55 2000
--

Halting TRACE
To halt TRACE, enter CONTROL-C (on a workstation) or
CONTROL-BREAK (on a PC). On a workstation, make sure that
when you enter CONTROL-C, the active window is the window
from which you invoked TRACE. The program prompts you to
Development System Reference Guide 14-43

Development System Reference Guide
confirm the interrupt. Some files may be left when TRACE is halted
(for example, a TRACE report file or a physical constraints file), but
these files may be discarded because they represent an incomplete
operation.
14-44 Xilinx Development System

Chapter 15

SPEEDPRINT

Speedprint is compatible with the following families.

• Spartan/XL/-II

• Virtex

• XC4000/E/L/EX/XL/XV/XLA

• XC3000A/L

• XC3100A/L

• XC5200

This chapter contains the following sections.

• “SPEEDPRINT”

• “SPEEDPRINT Syntax”

• “SPEEDPRINT Options”

• “Example Commands” section

• “Example Outputs”

SPEEDPRINT
SPEEDPRINT lists important block delays for a specific device’s
speed grade in a convenient tabular format of an ASCII file. The
program is not intended to replace data sheets, but rather should be
used as a supplement. The SPEEDPRINT program reports devices
and speed grades installed on your system.

For detailed information, see the The Programmable Logic Data Book or
the data sheets at the Xilinx web site.
Development System Reference Guide — 3.1i 15-1

Development System Reference Guide
Figure 15-1 SPEEDPRINT

SPEEDPRINT Syntax
The following syntax runs speedprint.

speedprint [options] device_name

options can be any number of the SPEEDPRINT options listed in any
order. Make sure to separate multiple options with spaces. See the
next section for a description of these options.

To display a description of the SPEEDPRINT command and its
options, enter speedprint or speedprint -h.

SPEEDPRINT Options
This section describes the options to the SPEEDPRINT command.

–min (Display Minimum Speed Data)
–min

The –m option displays minimum speed data for a device. This
option overrides the –s option if both are used.

–s (Speed Grade)
–s [speed_grade]

The –s option with a speed_grade argument (for example, -4)
displays data for the specified speed grade. If the –s option is

X8849

SPEEDPRINT

Input Command
Options

Block Delay
Report
15-2 Xilinx Development System

SPEEDPRINT
omitted, delay data for the default, which is the fastest speed grade, is
displayed.

–t (Specify Temperature)
–t temperature

The –t option specifies the operating die temperature in degrees
Celsius. If this option is omitted, the worst-case temperature is used.

–v (Specify Voltage)
–v voltage

The –v option specifies the operating voltage of the device in volts. If
this option is omitted, the worst-case voltage is used.

Example Commands
The following table describes some example commands

Example Outputs
Following is the first part of a speed grade report for the XC4044XL
device. The following command generates the displayed report.

speedprint xc4044xl

The default speed grade, temperature, and voltage settings are
described at the beginning of the file.

Block delay report for a: x4044xl

Command Description

speedprint Prints usage message

speedprint xc4044xl Uses the default speed grade

speedprint –s -3 xc4044xl
speedprint -s 3 xc4044xl

Both displays block delays for
speed grade -3

speedprint –v 3.0 -t 40 xc4044xl Uses default speed grade at 3.0
volts and 40 degrees C

speedprint –s min xc4044xl
speedprint -min xc4044xl

Both display data for the
minimum speed grade.
Development System Reference Guide 15-3

Development System Reference Guide
Speed grade is: -09
Version id for speed file is: x1_0.45 1.24 PRELIMINARY xilinx
This speed file supports voltage adjustments over the range of
3.000000 to 3.600000 volts.
Temperature adjustments are supported over the junction
temperature range of 0.000000 to 85.000000 degrees Celsius
This report prepared for default temperature and voltage.
Note - this report is intended to present the effect of different
speedgrades and voltage/temperature adjustments on block delays,
for specific situations use the timing analyzer report instead.
Delays are reported in picoseconds, where a range of delays is
given they represent the fastest and slowest paths reported under
that name.
When a block is placed in a site normally used for another type
of block, a IOB placed in a Clock IOB site for example, small
variations in delay may occur which are not included in this report.

External Setup and Hold requirements for global clocks

Delays for a CLB

Tpfhen 4300 Tpfhep 0 Tpfsen 800

Tpfsep 10200-10800 Tphd 0 Tphed 0

TPhen 4300 Tphep 0 Tphn 3800

Tphp 0 Tpsd 6800 Tpsed 9100

Tpsen 800 Tpsep 10200-10800 Tpsn 800

Tpsp 8600

Tah 2000 Tahds 0 Tahs 0

Taht 2000 Tahts 0 Tas 1959-2430

Tasc+Tas 3760 Tasc+Tass 3460 Tasc+Tast 3760

Tasc+Tasts 3460 Tasc+Tick 2670 Tasc+Tihck 3440

Tasc+Tiho 3760 Tasc+Tihto 4410 Tasc+Tilo 2989

Tasc+Tito 3639 Tascy 1800 Tasds 1660-2130

Tass 1660-2130 Tast 1950-2430 Tasts 1650-2130

Tbyp 140 Tcbyp 929 Tckd 0

Tckdi 0 Tckdt 0 Tckec 0
15-4 Xilinx Development System

SPEEDPRINT
Delays for a IOB

Delays for a TBUF

Tckhh0 0 Tckhh1 0 Tckhh2 0

Tcki 0 Tckih 0 Tckk -7080-5410

Tcko 1470 Tckr 0 Tcto 1680

.

.

.

Tchio 2300 Tckpi 0 Tckpic 0

Tckpid 0 Tckpidc 0 Tckpim 0

Tckpimc 0 Tckpis 0 Tckpisc 0

Tckpisd 0 Tckpisdc 0 Tckps 0

Tckpsc 0 Tckpsd 0 Tckpsdc 0

Tecik 60 Tecok -190 Tikec 0

.

.

.

Trpo 18050 Trri 18390 Ttshz 4100

Ttshz 4100 Ttsonf 3300 Ttsonfc 4150

Ttsons 5000 Ttsonsc 5850

Tio 470 Toff 600 Ton 800
Development System Reference Guide 15-5

Development System Reference Guide
15-6 Xilinx Development System

Chapter 16

BitGen

This program is compatible with the following families.

• XC3000A/L

• XC3100A/L

• XC4000E/L

• XC4000EX/XL/XV/XLA

• XC5200

• Spartan/XL/-II

• Virtex/-E/-II

This chapter describes BitGen. The chapter contains the following
sections.

• “BitGen”

• “BitGen Syntax”

• “BitGen Files”

• “BitGen Options”

BitGen
BitGen produces a bitstream for Xilinx device configuration. After the
design has been completely routed, it is necessary to configure the
device so that it can execute the desired function. This is done with
BitGen, Xilinx’s bitstream generation program. BitGen takes a fully
routed NCD (Circuit Description) file as its input and produces a
configuration bitstream—a binary file with a .bit extension.

The BIT file contains all of the configuration information from the
NCD file defining the internal logic and interconnections of the
Development System Reference Guide — 3.1i 16-1

Development System Reference Guide
FPGA, plus device-specific information from other files associated
with the target device. The binary data in the BIT file can then be
downloaded into the FPGA’s memory cells or it can be used to create
a PROM file (see the “PROMGen” chapter).

Figure 16-1 BitGen

BitGen Syntax
The following syntax creates a bitstream from your NCD file.

bitgen [options] infile[.ncd] [outfile] [pcf_file]

options is one or more of the options listed in the “BitGen Options”
section.

Infile is the name of the NCD design for which you want to create the
bitstream. You may specify only one design file, and it must be the
first file specified on the command line.

You do not have to use an extension. If you do not, .ncd is assumed. If
you do use an extension, it must be .ncd.

X9227

DRC

BGN

BitGen

LL
(Optional)

NCD
Circuit Description

(Placed/Routed)

MSK
(Optional)

PROMGen

BIT RBT

Hardware Debugger
16-2 Xilinx Development System

BitGen
Outfile is the name of the output file. If you do not specify an output
file name, BitGen creates one in the input file’s directory. If you
specify -l on the command line, the extension is .ll (see –l command
line option). If you specify –m (see –m command line option), the
extension is .msk. If you specify –b, the extension is .rbt. Otherwise
the extension is .bit. If you do not specify an extension, BitGen
appends one according to the aforementioned rules. If you do include
an extension, it must also conform to the rules.

Pcf_file is the name of a physical constraints (PCF) file. BitGen uses
this file to determine which nets in the design are critical for tiedown
(see the “–t (Tie Unused Interconnect)” section). BitGen automatically
reads the .pcf file by default. If the physical constraints file is the
second file specified on the command line, it must have a .pcf
extension. If it is the third file specified, the extension is optional; .pcf
is assumed. If a .pcf file name is specified, it must exist, otherwise the
input design name with a .pcf extension is read if that file exists.

A report file containing all of BitGen’s output is automatically created
under the same directory as the output file. The report file has the
same root name as the output file and a .bgn extension.

BitGen Files
The input files that BitGen requires and the output files that BitGen
generates are described below.

Input Files
Input to BitGen consists of the following files.

• NCD file—a physical description of the design mapped, placed
and routed in the target device. The NCD file must be fully
routed.

• PCF—an optional user-modifiable ASCII Physical Constraints
File. If you specify a PCF file on the BitGen command line,
BitGen uses this file to determine which nets in the design are
critical for tiedown (see the “–t (Tie Unused Interconnect)”
section).

Output Files
Output from BitGen consists of the following files.
Development System Reference Guide 16-3

Development System Reference Guide
• BIT file—a binary file with a .bit extension. The BIT file contains
all of the configuration information from the NCD file defining
the internal logic and interconnections of the FPGA, plus device-
specific information from other files associated with the target
device. The binary data in the BIT file can then be downloaded
into the FPGA’s memory cells or it can be used to create a PROM
file (see the “PROMGen” chapter).

• RBT file—an optional “rawbits” file with an .rbt extension. The
rawbits file consists of ASCII ones and zeros representing the
data in the bitstream file. If you enter a –b option on the BitGen
command line. an RBT file is produced in addition to the binary
BIT file (see the “–b (Create Rawbits File)” section).

• LL file—an optional ASCII logic allocation file with an .ll
extension. The logic allocation file indicates the bitstream
position of latches, flip-flops, and IOB inputs and outputs. An LL
file is produced if you enter a –l option on the BitGen command
line (see the “–l (Create a Logic Allocation File)” section).

• MSK file—an optional mask file with an .msk extension. This file
is used to compare relevant bit locations for executing a readback
of configuration data contained in an operating FPGA. A MSK
file is produced if you enter a –m option on the BitGen command
line (see the “–m (Generate a Mask File)” section).

• BGN file—a report file containing information about the BitGen
run.

• DRC file—a Design Rule Check (DRC) file for the design. A DRC
runs and the DRC file is produced unless you enter a –d option
on the BitGen command line (see the “–d (Do Not Run DRC)”
section).
16-4 Xilinx Development System

BitGen
BitGen Options
Following is a description of the command line options and how they
affect the behavior of BitGen.

Note For a complete description of the Xilinx Development System
command line syntax, see the “Command Line” section of the
“Introduction” chapter.

Options for the BitGen command are as follows.

–a (Tie All Interconnect)
Used with the -t option to force tiedown to fail if all nodes are not
tied. This option also allows tiedown to implement user signals.

–b (Create Rawbits File)
Create a "rawbits" (file_name.rbt) file. The rawbits file consists of
ASCII ones and zeros representing the data in the bitstream file.

If you are using a microprocessor to configure a single FPGA, you can
include the rawbits file in the source code as a text file to represent the
configuration data. The sequence of characters in the rawbits file is
the same as the sequence of bits written into the FPGA.

–d (Do Not Run DRC)
Do not run DRC (Design Rule Check). Without the –d option, BitGen
runs a DRC and saves the DRC results in two output files: the BitGen
report file. (file_name.bgn) and the DRC file (file_name.drc). If you
enter the –d option, no DRC information appears in the report file
and no DRC file is produced.

Running DRC before a bitstream is produced detects any errors that
could cause the FPGA to malfunction. If DRC does not detect any
errors, BitGen produces a bitstream file (unless you use the –j option
described in the “–j (No BIT File)” section).

You cannot disable the DRC with the –d option if you have specified
a –t (Tie Unused Interconnect) option. The DRC always runs if you
specify –t.
Development System Reference Guide 16-5

Development System Reference Guide
–f (Execute Commands File)
–f command_file

The –f option executes the command line arguments in the specified
command_file. For more information on the –f option, see the “–f
Option” section of the “Introduction” chapter.

–g (Set Configuration)
The –g option specifies the startup timing and other bitstream
options for Xilinx FPGAs. The settings for the –g option depend on
the design’s architecture. These settings are described in the
following sections.

• “–g (Set Configuration—XC3X00 Devices)”

• “–g (Set Configuration—XC4000 and Spartan)”

• “–g (Set Configuration—XC5200 Devices)”

• “–g (Set Configuration—Virtex/-E/-II and Spartan-II Devices)”

–g (Set Configuration—XC3X00 Devices)
The –g option has sub-options that represent settings you use to set
the configuration for an XC3X00A/L design. These options have the
following syntax.

bitgen –g option: setting

For example, to set the input signal thresholds to CMOS level instead
of TTL level, use the following syntax.

bitgen –g inputs:CMOS

The following sections describe the startup sequences for the –g
option applied to an XC3X00 design.

DonePin

Enables or disables internal pull-up on the DONE/PROGRAM (D/P)
pin. The Pullnone setting indicates there is no connection to the pull-
up.

Use this option only if you are planning to connect an external pull-
up resistor to this pin. The internal pull-up resistor has a value of 2 to
8 kohm and is automatically connected if you do not use this option.
16-6 Xilinx Development System

BitGen
The D/P pins configure an open-drain driver that requires a pull-up
resistor to indicate the end of the configuration.

DoneTime

Releases the DONE/PROGRAM (D/P) pin one Cclk cycle before the
IOBs become active (Before setting) or one Cclk cycle after the IOBs
become active (After setting).

The After setting clearly indicates the end of the configuration
process. The Before setting can be used to de-activate external
configuration drivers so that they do not contend with active outputs
on the same pin. The use of After would create a 1-Cclk-period
contention. The alternative, using the LDC output, might cause a
short contention spike. Before avoids these problems.

Input

This option sets the FPGA design input-signal thresholds to TTL or
CMOS level for interface capability. CMOS improves noise immunity
and reduces static power consumption.

The special-purpose clock inputs, TCLKIN, BCLKIN, and PWRDN
always require CMOS-level signals, even if the FPGA design input
thresholds are specified as TTL compatible

Architectures: XC3000A/L, XC3100A/L

Settings: Pullup, Pullnone

Default: Pullup

Architectures: XC3000A/L, XC3100A/L

Settings: Before, After

Default: Before

Architectures: XC3000A/L, XC3100A/L

Settings: TTL, CMOS

Default: TTL
Development System Reference Guide 16-7

Development System Reference Guide
LC_Alignment

Determines how length count is calculated to control when the device
changes from configuration to user operation. The two methods of
calculating length count, DONE Alignment and Length Count
Alignment, are discussed in The Programmable Logic Data Book. The
FPGA Configuration Guidelines Application Note also contains length
count information.

Oscillator

This option specifies crystal oscillator options for XC3X00 series
devices. The crystal oscillator is associated with the auxiliary clock
buffer in the lower-right corner of the die.

The Disable option disables the FPGA crystal oscillator; Enable
enables it. The EnableDiv2 option enables the oscillator and divides
the crystal output frequency by two in order to guarantee a
symmetrical clock signal

ReadBack

This option specifies readback options for XC3X00 families. After the
FPGA design has been configured, the FPGA configuration data can
be read back and compared with the original configuration data.
Readback is initiated by a Low-to-High transition on the M0/RTRIG
pin. Once you give the readback command, external logic must drive
the Cclk input to read back each data bit. The readback data appears
on the RDATA pin.

The Disable option disables readback. The Once option enables a one-
time readback and Command enables readback on command.

The Disable and Once options are used for design security. The Once
option allows only one readback, typically performed during
manufacturing. After this, readback can never be invoked again.
If the FPGA device is powered by a standby battery and the

Architectures: XC3000A/L, XC3100A/L

Settings: Length, DONE

Default Length

Architectures: XC3000A/L, XC3100A/L

Settings: Disable, Enable, EnableDiv2

Default Disable
16-8 Xilinx Development System

BitGen
configuration source is removed, the FPGA design configuration data
is completely secure from being read or copied.

ResetTime

Removes INTERNAL RESET one clock cycle before or one clock cycle
after the IOB becomes active.

When you specify the After setting, the outputs go active while all
internal flip-flops are still being held in Reset. When you specify the
Before setting, the internal logic becomes operational before the
outputs go active.

–g (Set Configuration—XC4000 and Spartan)
Note For Spartan-II -g options, see the “–g (Set Configuration—
Virtex/-E/-II and Spartan-II Devices)” section.

This option specifies the startup timing and other bitstream options
for the XC4000E/L, XC4000EX/XL/XV, and Spartan devices. Timing
sequences are predefined startup defaults that use the following
syntax.

bitgen –g timing_sequence

There are four valid startup sequences: Cclk_Nosync, Cclk_Sync,
Uclk_Nosync, and Uclk_Sync. These startup sequences are described
in the next section. For more information about startup timing, refer
to The Programmable Logic Data Book.

The default startup sequence for the –g option is Cclk_Nosync. This
startup sequence makes an XC4000 or Spartan device compatible
with an XC3X00 device that is set for early Done and late Reset. Enter
the following,

bitgen –g cclk_nosync

Architectures: XC3000A/L, XC3100A/L

Settings: Command, Disable, Once

Default Command

Architectures: XC3000A/L, XC3100A/L

Settings: Before, After

Default After
Development System Reference Guide 16-9

Development System Reference Guide
The –g option has sub-options that represent settings you use to set
the configuration for an XC4000 or Spartan design. These options
have the following syntax.

bitgen –g option: setting

For example, to enable Cyclic Redundancy Checking (CRC), use the
following syntax.

bitgen –g crc:enable

The following sections describe the startup sequences for the –g
option.

Startup Sequences and the –g Option

This section describes the four predefined startup sequences and
their defaults; then it describes the options, their settings, and their
defaults.

Note When mixing devices, the one with the latest “finished point”
should be the master. The master stops clocking when it reaches the
finished point. See The Programmable Logic Data Book for more
information.

Cclk_Nosync

This is the default startup sequence for the –g option. Selecting this
sequence causes the following defaults to take effect.

This startup sequence makes an XC4000, Spartan, or XC5200 device
consistent with an XC3X00 device set for early Done and late Reset.

StartupClk: Cclk

SyncToDone: No

DoneActive: C1

OutputsActive: C2

GSRInactive: C3
16-10 Xilinx Development System

BitGen
Cclk_Sync

Selecting this sequence causes the following defaults to take effect.

This startup sequence is the most consistent with the XC3X00 devices,
since it synchronizes the release of GSR and I/Os to the external
DoneIn signal. This startup sequence makes an XC4000 or Spartan
device consistent with an XC3X00 device set for early Done and late
Reset.

Uclk_Nosync

Selecting this sequence causes the following defaults to take effect

This startup sequence makes XC4000 or Spartan devices inconsistent
with XC3X00 devices if they are in the same daisy chain, since the
release of Done is synchronized to an external User Clock. There is no
synchronization of I/Os or GSR to DoneIn.

Uclk_Sync

Selecting this sequence causes the following defaults to take effect.

StartupClk: Cclk

SyncToDone: Yes

DoneActive: C1

OutputsActive: DI_PLUS_1

GSRInactive: DI_PLUS_1

StartupClk: Useclk

SyncToDone: No

DoneActive: U2

OutputsActive: U3

GSRInactive: U4

StartupClk: Userclk

SyncToDone: Yes

DoneActive: U2

OutputsActive: D1_PLUS_1

GSRInactive: D1_PLUS_2
Development System Reference Guide 16-11

Development System Reference Guide
This startup sequence makes XC4000 or Spartan devices inconsistent
with XC3X00 devices if they are in the same daisy chain, since the
release of Done is synchronized to an external User Clock. I/Os and
GSR are synchronous to the clocks following DoneIn.

When using Uclk_Sync or Uclk_Nosync, you must provide a user
clock to finish the configuration sequence. Without a user clock the
FPGA will not configure.

Sub-Options for Startup Sequence (–g Option)

The sub-options available with the four startup sequences are
described below. These sub-options use the –g option:setting syntax.

AddressLines

Determines the number of address lines (18 or 22) used for device
configuration. The 22 setting activates four extra device pins as
configuration address lines.

BSCAN_Config

When disabled, BSCAN_Config inhibits the BSCAN-based
configuration after the device is successfully configured. This feature
allows board testing without the risk of reconfiguring XLA devices
by toggling the TCK/TMS/TDI/TDO lines.

BSCAN_Status

When enabled, BSCAN_Status allows direct sensing of the DONE
configuration state after performing a BSCAN-based configuration.
Previously, there was no direct method for determining if a BSCAN-
based configuration was successful.

Architectures: XC4000EX only (XC4000XL, XC4000XLA, and
XC4000XV always have 22 active address lines)

Settings: 18, 22

Default 18

Architectures: XC4000XLA, XC4000XV, SpartanXL

Settings: Disable, Enable

Default: Enable
16-12 Xilinx Development System

BitGen
5V_Tolerant_IO

If set to On, this option allows a 3.3V device circuitry to tolerate 5V
operation. For any device that operates on a mixed circuit
environment with 3.3V and 5V, ensure that On is set. For any circuitry
that operates exclusively on 3.3V, such as in a laptop computer, set
the option to Off. The Off option reduces power consumption.

ConfigRate

Selects the configuration clock rate. There are two choices: slow or
fast. Slow is equivalent to 1 MHz, and fast is equivalent to 8 MHz
(nominal).

CRC

Enables or disables Cyclic Redundancy Checking (CRC) on a chip-
by-chip basis during configuration.

DoneActive

Selects the event that activates the FPGA Done signal. There are a
maximum of four events that you can select from at one time. These
events are Cclk edges or external (user) clock edges.

Architectures: XC4000XLA, XC4000XV, SpartanXL

Settings: Disable, Enable

Default: Disable

Architectures: XC4000XLA, XC4000XV, SpartanXL/-II

Settings: On, Off

Default: On

Architectures: XC4000E/L, XC4000EX/XL/XLA/XV, Spartan,
and SpartanXL

Settings: Slow, Fast

Default: Slow

Architectures: XC4000E/L, XC4000EX/XL/XLA/XV, Spartan,
and SpartanXL

Settings: Enable, Disable

Default: Enable
Development System Reference Guide 16-13

Development System Reference Guide
The actual options available at any time depend on the selections
made for StartupClk and SyncToDone

Valid settings for DoneActive are as follows.

DonePin

Enables or disables internal pull-up on the DONE pin. The Pullnone
setting indicates there is no connection to the pull-up.

Architectures: XC4000E/L, XC4000EX/XL/XV/XLA, Spartan,
and SpartanXL

Settings: C1 — first-Cclk rising edge after the length
count is met.
C2 — second-Cclk rising edge after the length
count is met.
C3 — third-Cclk rising edge after the length
count is met.
C4 — fourth-Cclk rising edge after the length
count is met.
U2 — second-valid-user-clock rising edge after
C1.
U3 — third-valid-user-clock rising edge after
C1.
U4 — fourth-valid-user-clock rising edge after
C1.

Default: C1

StartupClk SyncToDone DoneActive

Cclk Yes C1, C2 or C3

Cclk No C1, C2, C3, or C4

UserClk Yes C1 or U2

UserClk No C1, U2, U3, or U4

Architectures: XC4000E/L, XC4000EX/XL/XLA/XV, Spartan,
and SpartanXL

Settings: Pullup, Pullnone

Default: Pullup
16-14 Xilinx Development System

BitGen
ExpressMode

When enabled, ExpressMode creates a unique type of bitstream for
configuration.

GSRInactive

Selects the event that releases the internal set-reset to the latches and
flip-flops. You can select one of nine events: a Cclk edge, an external
(user) clock edge, or the external signal DoneIn. Only some of these
events become options at one time depending on the combination of
StartupClk and SyncToDone selected.

Architectures: XC4000XLA, XC4000XV, SpartanXL

Settings: Disable, Enable

Default: Disable

Architectures: XC4000E/L, XC4000EX/XL/XLA/XV, Spartan,
SpartanXL

Settings: C2 — second-Cclk rising edge after the length
count is met.
C3 — third-Cclk rising edge after the length
count is met.
C4 — fourth-Cclk rising edge after the length
count is met.
U2 — second-valid-user-clock rising edge after
C1 (first-Cclk rising edge after length count is
met).
U3 — third-valid-user-clock rising edge after C1
(first-Cclk rising edge after length count is met).
U4 — fourth-valid-user-clock rising edge after
C1 (first-Cclk rising edge after length count is
met).
DI — when the DoneIn signal goes High.
DI_PLUS_1 — first Cclk or valid user clock
rising edge (depending on selection of Star-
tupClk) after DoneIn goes High.
DI_PLUS_2 — second Cclk or valid user clock
rising edge (depending on selection of Star-
tupClk) after DoneIn goes High.

Default: C3
Development System Reference Guide 16-15

Development System Reference Guide
Valid settings for GSRInactive are as follows.

Input

Sets the input threshold level for IOBs.

LC_Alignment

The LC_Alignment option determines how length count is calculated
to control when the device changes from configuration to user
operation. The two methods of calculating length count, DONE
Alignment and Length Count Alignment, are discussed in the
Configuration section of the The Programmable Logic Data Book. The
FPGA Configuration Guidelines Application Note also contains
length count information.

M0Pin

Adds a pull-up or a pull-down to the M0 (Mode 0) pin. Selecting one
option enables it and disables the others. The Pullnone setting
indicates there is no connection to either the pull-up or the pull-
down.

StartupClk SyncToDone GSRInactive

Cclk Yes C2, C3, DI, or DI_PLUS_1

Cclk No C2, C3, or C4

UserClk Yes U2, DI, DI_PLUS_1, or DI_PLUS_2

UserClk No U2, U3, or U4

Architectures: XC4000E/L, XC4000EX, Spartan

Settings: TTL, CMOS

Default: TTL

Architectures: XC4000E/L, XC4000EX/XL/XLA/XV, Spartan,
SpartanXL

Settings: Length, DONE

Default Length

Architectures: XC4000E/L, XC4000EX/XL/XLA/XV, Spar-
tanXL

Settings: Pullup, Pulldown, Pullnone

Default: Pullnone
16-16 Xilinx Development System

BitGen
M1 Pin

Adds a pull-up or a pull-down to the M1 (Mode 1) pin. Selecting one
option enables it and disables the others. The Pullnone setting
indicates there is no connection to either the pull-up or the pull-down

M2Pin

Adds a pull-up or a pull-down to the M2 (Mode 2) pin. Selecting one
option enables it and disables the others. The Pullnone setting indi-
cates there is no connection to either the pull-up or the pull-down.

Output

Sets the output level for IOBs,

OutputsActive

Selects the event that releases the I/O from 3-state condition and
turns the configuration related pins operational. There are a
maximum of four events that you can select from at one time. These
events are selected from a group of Cclk edges, a group of external
(user) clock edges, and the external signal DoneIn. The actual options
available at any time depend on the selections made for StartupClk
and SyncToDone.

Architectures: XC4000E/L, XC4000EX/XL/XLA/XV

Settings: Pullup, Pulldown, Pullnone

Default: Pullnone

Architectures: XC4000E/L, XC4000EX/XL/XLA/XV

Settings: Pullup, Pulldown, Pullnone

Default: Pullnone

Architectures: XC4000E/L, XC4000EX, Spartan

Settings: TTL, CMOS

Default: TTL
Development System Reference Guide 16-17

Development System Reference Guide
Valid settings for OutputsActive are as follows.

Architectures: XC4000E/L, XC4000EX/XL/XLA/XV, Spartan,
SpartanXL

Settings: C2 — second-Cclk rising edge after the length
count is met.
C3 — third-Cclk rising edge after the length
count is met.
C4 — fourth-Cclk rising edge after the length
count is met.
U2 — second-valid-user-clock rising edge after
C1 (first-Cclk rising edge after length count is
met)
U3 — third-valid-user-clock rising edge after C1
(first-Cclk rising edge after length count is met)
U4 — fourth-valid-user-clock rising edge after
C1 (first-Cclk rising edge after length count is
met)
DI — when the DoneIn signal goes High
DI_PLUS_1 — first Cclk or valid user clock
rising edge (depending on selection of Star-
tupClk) after DoneIn goes High
DI_PLUS_2 — second Cclk or valid user clock
rising edge (depending on selection of Star-
tupClk) after DoneIn goes High

Default: C2

StartupClk SyncToDone OutputsActive

Cclk Yes C2, C3, DI, or DI_PLUS_1

Cclk No C2, C3, or C4

UserClk Yes U2, DI, DI_PLUS_1, or DI_PLUS_2

UserClk No U2, U3, or U4
16-18 Xilinx Development System

BitGen
PowerDown

Enables or disables internal pull-up on the PowerDown pin. The
Pullnone setting indicates there is no connection to the pull-up.

ReadAbort

Enables or disables aborting the readback sequence during the read-
back sequence.

ReadCapture

Enables or disables readback of configuration bitstream.

ReadClk

Sets the readback clock to be CClk or to a user-supplied clock (from a
net inside the FPGA that is connected to the ‘i’ pin of the RDCLK
schematic block).

Note In modes where CClk is an output, the pin is driven by the
internal oscillator.

Architectures: SpartanXL

Settings: Pullup, Pullnone

Default: Pullup

Architectures: XC4000E/L, XC4000EX/XL/XLA/XV, Spartan,
SpartanXL

Settings: Enable, Disable

Default: Disable

Architectures: XC4000E/L, XC4000EX/XL/XLA/XV, Spartan,
SpartanXL

Settings: Enable, Disable

Default: Disable

Architectures: XC4000E/L, XC4000EX/XL/XLA/XV, Spartan,
SpartanXL

Settings: Cclk (pin—see Note), Rdbk (user-supplied)

Default: Cclk
Development System Reference Guide 16-19

Development System Reference Guide
StartupClk

Selects a user-supplied clock or the internal Cclk for controlling the
post-configuration startup phase of the FPGA initialization

Note In modes where Cclk is an output, the pin is driven by the
internal oscillator.

SyncToDone

Synchronizes the I/O startup sequence to the external DoneIn signal.

TdoPin

Adds a pull-up, a pull-down, or neither to the TDO pin (Test Data
Out for Boundary Scan). Selecting one option enables it and disables
the others. The Pullnone setting indicates there is no connection to
either the pull-up or the pull-down.

–g (Set Configuration—XC5200 Devices)
The –g option has sub-options that represent settings you use to set
the configuration for an XC5200 design. These options have the
following syntax.

bitgen –g option: setting

For example, to enable Cyclic Redundancy Checking (CRC), use the
following syntax.

Architectures: XC4000E/L, XC4000EX/XL/XLA/XV, Spartan,
SpartanXL

Settings: Cclk (pin—see Note), UserClk (user-supplied)

Default: Cclk

Architectures: XC4000E/L, XC4000EX/XL/XLA/XV, Spartan,
SpartanXL

Settings: Yes, No

Default: No

Architectures: XC4000E/L, XC4000EX/XL/XLA/XV, Spartan,
SpartanXL

Settings: Pullup, Pulldown, Pullnone

Default: Pullnone
16-20 Xilinx Development System

BitGen
bitgen –g crc:enable

The following sections describe the startup sequences for the –g
option.

BSReconfig

Enable or disable reconfiguration via boundary scan.

BSReadback

Enable or disable reading back configuration data via boundary scan.

ConfigRate

Selects the configuration clock rate. There are three choices: slow,
med, and fast. Slow is equivalent to .75 MHz, med is equivalent to 6
MHz, and fast is equivalent to 12 MHz (nominal).

CRC

Enables or disables Cyclic Redundancy Checking (CRC) on a chip-
by-chip basis during configuration.

Input

This option sets the FPGA design input-signal thresholds to TTL or
CMOS level for interface capability. CMOS improves noise immunity
and reduces static power consumption.

Architectures: XC5200

Settings: Disable, Enable

Default: Disable

Architectures: XC5200

Settings: Disable, Enable

Default: Disable

Architectures: XC5200

Settings: Slow, Med, Fast

Default: Slow

Architectures: XC5200

Settings: Enable, Disable

Default: Enable
Development System Reference Guide 16-21

Development System Reference Guide
The special-purpose clock inputs, TCLKIN, BCLKIN, and PWRDN
always require CMOS-level signals, even if the FPGA design input
thresholds are specified as TTL compatible.

DoneActive

Selects the event that activates the FPGA Done signal. There are a
maximum of four events that you can select from at one time. These
events are Cclk edges or external (user) clock edges.
The actual options available at any time depend on the selections
made for StartupClk and SyncToDone.

Valid settings for DoneActive are as follows.

Architectures: XC5200

Settings: TTL, CMOS

Default: TTL

Architectures: XC5200

Settings: C1 — first-Cclk rising edge after the length
count is met.
C2 — second-Cclk rising edge after the length
count is met.
C3 — third-Cclk rising edge after the length
count is met.
C4 — fourth-Cclk rising edge after the length
count is met.
U2 — second-valid-user-clock rising edge after
C1.
U3 — third-valid-user-clock rising edge after
C1.
U4 — fourth-valid-user-clock rising edge after
C1.

Default: C1

StartupClk SyncToDone DoneActive

Cclk Yes C1, C2 or C3

Cclk No C1, C2, C3, or C4

UserClk Yes C1 or U2

UserClk No C1, U2, U3, or U4
16-22 Xilinx Development System

BitGen
DonePin

Enables or disables internal pull-up on the DONE pin. The Pullnone
setting indicates there is no connection to the pull-up.

GSRInactive

Selects the event that releases the internal set-reset to the latches and
flip-flops. You can select one of nine events: a Cclk edge, an external
(user) clock edge, or the external signal DoneIn.

Only some of these events become options at one time depending on
the combination of StartupClk and SyncToDone selected.

Architectures: XC5200

Settings: Pullup, Pullnone

Default: Pullup

Architectures: XC5200

Settings: C2 — second-Cclk rising edge after the length
count is met.
C3 — third-Cclk rising edge after the length
count is met.
C4 — fourth-Cclk rising edge after the length
count is met.
U2 — second-valid-user-clock rising edge after
C1 (first-Cclk rising edge after length count is
met).
U3 — third-valid-user-clock rising edge after C1
(first-Cclk rising edge after length count is met).
U4 — fourth-valid-user-clock rising edge after
C1 (first-Cclk rising edge after length count is
met).
DI — when the DoneIn signal goes High
DI_PLUS_1 — first Cclk or valid user clock
rising edge (depending on selection of Star-
tupClk) after DoneIn goes High
DI_PLUS_2 — second Cclk or valid user clock
rising edge (depending on selection of Star-
tupClk) after DoneIn goes High

Default: C3
Development System Reference Guide 16-23

Development System Reference Guide
Valid settings for GSRInactive are as follows.

Input

Sets the input threshold level for IOBs.

LC_Alignment

The LC_Alignment option determines how length count is calculated
to control when the device changes from configuration to user
operation. The two methods of calculating length count, DONE
Alignment and Length Count Alignment, are discussed in the
Configuration section of The Programmable Logic Data Book. The FPGA
Configuration Guidelines Application Note also contains length count
information.

OscClk

Determines whether the XC5200 oscillator is driven by the internal
16-MHz clock (CClk setting) or by a user clock (UserClk setting). If
you specify UserClk, the clock must be connected to the OSC.CK pin
of the device’s OSC component.

StartupClk SyncToDone GSRInactive

Cclk Yes C2, C3, DI, or DI_PLUS_1

Cclk No C2, C3, or C4

UserClk Yes U2, DI, DI_PLUS_1, or DI_PLUS_2

UserClk No U2, U3, or U4

Architectures: XC5200

Settings: TTL, CMOS

Default: TTL

Architectures: XC5200

Settings: Length, DONE

Default: Length

Architectures: XC5200

Settings: UserClk, CClk

Default: Cclk
16-24 Xilinx Development System

BitGen
OutputsActive

Selects the event that releases the I/O from 3-state condition and
turns the configuration related pins operational. There are a
maximum of four events that you can select from at one time. These
events are selected from a group of Cclk edges, a group of external
(user) clock edges, and the external signal DoneIn.

The actual options available at any time depend on the selections
made for StartupClk and SyncToDone.

Architectures: XC5200

Settings: C2 — second-Cclk rising edge after the length
count is met.
C3 — third-Cclk rising edge after the length
count is met.
C4 — fourth-Cclk rising edge after the length
count is met.
U2 — second-valid-user-clock rising edge after
C1 (first-Cclk rising edge after length count is
met).
U3 — third-valid-user-clock rising edge after C1
(first-Cclk rising edge after length count is met).
U4 — fourth-valid-user-clock rising edge after
C1 (first-Cclk rising edge after length count is
met).
DI — when the DoneIn signal goes High
DI_PLUS_1 — first Cclk or valid user clock
rising edge (depending on selection of
StartupClk) after DoneIn goes High
DI_PLUS_2 — second Cclk or valid user clock
rising edge (depending on selection of
StartupClk) after DoneIn goes High

Default: C2
Development System Reference Guide 16-25

Development System Reference Guide
Valid settings for OutputsActive are as follows.

ProgPin

Enables or disables internal pull-up on the PROGRAM pin. The pull-
up affects the pin after configuration. The Pullnone setting indicates
there is no connection to the pull-up.

ReadAbort

Enables or disables aborting the readback sequence during the
readback sequence.

ReadCapture

Enables or disables readback of configuration bitstream.

ReadClk

Sets the readback clock to be CClk or to a user-supplied clock (from a
net inside the FPGA that is connected to the ‘i’ pin of the RDCLK
schematic block).

StartupClk SyncToDone OutputsActive

Cclk Yes C2, C3, DI, or DI_PLUS_1

Cclk No C2, C3, or C4

UserClk Yes U2, DI, DI_PLUS_1, or DI_PLUS_2

UserClk No U2, U3, or U4

Architectures: XC5200

Settings: Pullup, Pullnone

Default: Pullup

Architectures: XC5200

Settings: Enable, Disable

Default: Disable

Architectures: XC5200

Settings: Enable, Disable

Default: Disable
16-26 Xilinx Development System

BitGen
Note In modes where CClk is an output, the pin is driven by the
internal oscillator.

StartupClk

Selects a user-supplied clock or the internal Cclk for controlling the
post-configuration startup phase of the FPGA initialization.

Note In modes where CClk is an output, the pin is driven by the
internal oscillator.

SyncToDone

Synchronizes the I/O startup sequence to the external DoneIn signal.

–g (Set Configuration—Virtex/-E/-II and Spartan-II
Devices)

The –g option has sub-options that represent settings you use to set
the configuration for a Virtex/-E/-II or Spartan-II design. These
options have the following syntax.

bitgen –g option: setting

For example, to enable Readback, use the following syntax.

bitgen –g Readback

The following sections describe the startup sequences for the –g
option.

ReadBack

Architectures: XC5200

Settings: Cclk (pin—see Note), Rdbk (user-supplied)

Default: Cclk

Architectures: XC5200

Settings: Cclk (pin—see Note), UserClk (user-supplied)

Default: Cclk

Architectures: XC5200

Settings: Yes, No

Default: No
Development System Reference Guide 16-27

Development System Reference Guide
This option allows you to perform Readback by the creating the
necessary bitstream.

Compress

This option uses the multiple frame write feature in the bitstream to
reduce the size of the bitstream, not just the .bit file. Using the
Compress option does not guarantee that the size of the bitstream
will shrink.

ConfigRate

Virtex/-E/-II and Spartan-II use an internal oscillator to generate the
configuration clock, CCLK, when configuring in a master mode. Use
the configuration rate option to select the rate for this clock.

Gclkdel0, Gclkdel1, Gclkdel2, Gclkdel3

Use these options to add delays to the global clocks. You should not use
this option unless instructed by Xilinx.

StartupClk

The startup sequence following the configuration of a device can be
synchronized to either Cclk, a User Clock, or the JTAG Clock. The
default is Cclk.

• Cclk

Enter Cclk to synchronize to an internal clock provided in the
FPGA device.

• UserClk

Enter UserClk to synchronize to a user-defined signal connected
to the CLK pin of the STARTUP symbol.

Architectures: Virtex/-E/-II, Spartan-II

Settings: To find out settings, enter bitgen -h virtex. Values
are in MHz. The default is 4.

Default: The default is the first item listed with bitgen -h
virtex command.

Architectures: Virtex/-E/-II, Spartan-II

Settings: 11111, binary string

Default: 11111
16-28 Xilinx Development System

BitGen
• Jtag Clock

Enter JtagClk to synchronize to the clock provided by JTAG. This
clock sequences the TAP controller which provides the control
logic for JTAG.

Note In modes where Cclk is an output, the pin is driven by an
internal oscillator.

PowerupClk

Selects which clock to synchronize to at the end of power up.

CclkPin

Adds an internal pull-up to the Cclk pin. The Pullnone setting
disables the pullup.

DonePin

Adds an internal pull-up to the DonePin pin. The Pullnone setting
disables the pullup.

Use this option only if you are planning to connect an external pull-
up resistor to this pin. The internal pull-up resistor is automatically
connected if you do not use this option.

Architectures: Virtex/-E/-II, Spartan-II

Settings: Cclk (pin—see Note), UserClk (user-supplied),
JtagCLK

Default: Cclk

Architectures: Virtex/-E/-II, Spartan-II

Settings: IntOsc, UserClk, CClk

Default: IntOsc

Architectures: Virtex/-E/-II, Spartan-II

Settings: Pullnone, Pullup

Default: Pullup

Architectures: Virtex/-E/-II, Spartan-II

Settings: Pullup, Pullnone

Default: Pullup
Development System Reference Guide 16-29

Development System Reference Guide
DrivePDStatusPin

Enables this output power-down status pin.

M0Pin

The M0 pin is used to determine the configuration mode. Adds an
internal pull-up, pull-down or neither to the M0 pin. The following
settings are available. The default is PullUp. Select Pullnone to
disable both the pull-up resistor and pull-down resistor on the M0
pin.

M1Pin

The M1 pin is used to determine the configuration mode. Adds an
internal pull-up, pull-down or neither to the M1 pin. The following
settings are available. The default is PullUp.

Select Pullnone to disable both the pull-up resistor and pull-down
resistor on the M1 pin.

M2Pin

 The M2 pin is used to determine the configuration mode. Adds an
internal pull-up, pull-down or neither to the M2 pin. The default is
PullUp. Select Pullnone to disable both the pull-up resistor and pull-
down resistor on the M2 pin.

Architectures: Spartan-II only

Settings: Yes, No

Default: Yes

Architectures: Virtex/-E/-II, Spartan-II

Settings: Pullup, Pulldown, Pullnone

Default: Pullup

Architectures: Virtex/-E/-II, Spartan-II

Settings: Pullup, Pulldown, Pullnone

Default: Pullup

Architectures: Virtex/-E/-II, Spartan-II

Settings: Pullup, Pulldown, Pullnone

Default: Pullup
16-30 Xilinx Development System

BitGen
PDStatusPin

Adds an internal pull-up to the PDStatusPin pin. The Pullnone
setting disables the pullup.

Use this option only if you are planning to connect an external pull-
up resistor to this pin.

PowerdownPin

Adds an internal pull-up to the input PowerdownPin pin. The
Pullnone setting disables the pullup.

Use this option only if you are planning to connect an external pull-
up resistor to this pin.

ProgPin

Adds an internal pull-up to the ProgPin pin. The Pullnone setting -
disables the pullup. The pull-up affects the pin after configuration.

TckPin

Adds a pull-up, a pull-down or neither to the TCK pin, the JTAG test
clock. Selecting one setting enables it and disables the others. The
Pullnone setting indicates there is no connection to either the pull-up
or the pull-down.

Architectures: Spartan-II only

Settings: Pullup, Pullnone

Default: Pullnone

Architectures: Spartan-II only

Settings: Pullup, Pullnone

Default: Pullnone

Architectures: Virtex/-E/-II, Spartan-II

Settings: Pullup, Pullnone

Default: Pullnone

Architectures: Virtex/-E/-II, Spartan-II

Settings: Pullup, Pulldown, Pullnone

Default: Pullup
Development System Reference Guide 16-31

Development System Reference Guide
TdiPin

Adds a pull-up, a pull-down, or neither to the TDI pin, the serial data
input to all JTAG instructions and JTAG registers. Selecting one
setting enables it and disables the others. The Pullnone setting
indicates there is no connection to either the pull-up or the pull-
down.

TdoPin

Adds a pull-up, a pull-down, or neither to the TdoPin pin, the serial
data output for all JTAG instruction and data registers. Selecting one
setting enables it and disables the others. The Pullnone setting indi-
cates there is no connection to either the pull-up or the pull-down.

TmsPin

Adds a pull-up, pull-down, or neither to the TMS pin, the mode input
signal to the TAP controller. The TAP controller provides the control
logic for JTAG. Selecting one setting enables it and disables the
others. The Pullnone setting indicates there is no connection to either
the pull-up or the pull-down

UnusedPin

Adds a pull-up, a pull-down, or neither to the UnusedPin, the serial
data output for all JTAG instruction and data registers. Selecting one
setting enables it and disables the others. The Pullnone setting
indicates there is no connection to either the pull-up or the pull-
down.

Architectures: Virtex/-E/-II, Spartan-II

Settings: Pullup, Pulldown, Pullnone

Default: Pullup

Architectures: Virtex/-E/-II, Spartan-II

Settings: Pullup, Pulldown, Pullnone

Default: Pullup

Architectures: Virtex/-E/-II, Spartan-II

Settings: Pullup, Pulldown, Pullnone

Default: Pullup
16-32 Xilinx Development System

BitGen
The following settings are available. The default is PullDown.

GSR_cycle

Selects the Startup phase that releases the internal set-reset to the
latches, flip-flops, and BRAM output latches. The Done setting
releases GSR when the DoneIn signal is High. DoneIn is either the
value of the Done pin or a delayed version if DonePipe=Yes

Keep should only be used when partial reconfiguration is going to be
implemented. Keep prevents the configuration state machine from
asserting control signals that could cause the loss of data.

GWE_cycle

Selects the Startup phase that asserts the internal write enable to flip-
flops, LUT RAMs, and shift registers. It also enables the BRAMs.
Before the Startup phase both BRAM writing and reading are
disabled.The Done setting asserts GWE when the DoneIn signal is
High. DoneIn is either the value of the Done pin or a delayed version
if DonePipe=Yes. The Keep setting is used to keep the current value
of the GWE signal

Architectures: Virtex/-E/-II, Spartan-II

Settings: Pullup, Pulldown, Pullnone

Default: Pulldown

Architectures: Virtex/-E/-II, Spartan-II

Settings: Done, 1, 2, 3, 4, 5, 6, Keep

Default: 6

Architectures: Virtex/-E/-II, Spartan-II

Settings: Done, 1, 2, 3, 4, 5, 6, Keep

Default: 6
Development System Reference Guide 16-33

Development System Reference Guide
GTS_cycle

Selects the Startup phase that releases the internal tristate control to
the IO buffers. The Done setting releases GTS when the DoneIn signal
is High. DoneIn is either the value of the Done pin or a delayed
version if DonePipe=Yes

LCK_cycle

Selects the Startup phase to wait until DLLs lock. If NoWait is
selected, the Startup sequence does not wait for DLLs.

DONE_cycle

Selects the Startup phase that activates the FPGA Done signal. Done
is delayed when DonePipe=Yes.

Persist

This option is needed for Readback and Partial Reconfiguration using
the SelectMAP configuration pins. If Persist is set to Yes, the pins
used for SelectMAP mode are prohibited for use as user IO. Refer to
the data sheet for a description of SelectMAP mode and the
associated pins.

Architectures: Virtex/-E/-II, Spartan-II

Settings: Done, 1, 2, 3, 4, 5, 6, Keep

Default: 5

Architectures: Virtex/-E/-II, Spartan-II

Settings: 0,1, 2, 3, 4, 5, 6, NoWait

Default: NoWait

Architectures: Virtex/-E/-II, Spartan-II

Settings: 1, 2, 3, 4, 5, 6

Default: 4

Architectures: Virtex/-E/-II, Spartan-II

Settings: No, Yes

Default: No
16-34 Xilinx Development System

BitGen
DriveDone

This option actively drives CFG_DONE (Done) high as opposed to
using pullup.

DonePipe

This option is intended for use with FPGAs being set up in a high-
speed daisy chain configuration.When set to Yes, the FPGA waits on
the CFG_DONE (DONE) pin to go High and then waits for the first
clock edge before moving to the Done state.

Security

Selecting Level1 disables Readback. Selecting Level2 disables
Readback and Partial Reconfiguration.

UserID

 You can enter up to an 8-digit hexadecimal code in the User ID
register. You can use the register to identify implementation revi-
sions.

DebugBitstream

 If the device does not configure correctly, you can debug the
bitstream using this option. The values allowed for the DebugBit-
stream option are No and Yes.

Architectures: Virtex/-E/-II, Spartan-II

Settings: No, Yes

Default: No

Architectures: Virtex/-E/-II, Spartan-II

Settings: No, Yes

Default: No

Architectures: Virtex/-E/-II, Spartan-II

Settings: None, level1, Level2

Default: None

Architectures: Virtex/-E/-II, Spartan-II

Values: No, Yes
Development System Reference Guide 16-35

Development System Reference Guide
In addition to a standard bitstream, a debug bitstream offers the
following features.

• Writes 32 0s to the LOUT register after the synchronization word

• Loads each frame individually

• Performs a cyclical redundancy check (CRC) after each frame

• Writes a column number to the LOUT register after each frame

–h or –help (Command Usage)
–h architecture

Displays a usage message for BitGen. The usage message displays all
of the available options for BitGen operating on the specified
architecture.

–j (No BIT File)
Do not create a bitstream file (.bit file). This option is generally used
when you want to generate a report without producing a bitstream.
For example, if you wanted to run DRC without producing a
bitstream file, you would use the -j option.

Note The .msk or .rbt files may still be created.

–l (Create a Logic Allocation File)
This option creates an ASCII logic allocation file (design.ll) for the
selected design. The logic allocation file indicates the bitstream
position of latches, flip-flops, and IOB inputs and outputs.

In some applications, you may want to observe the contents of the
FPGA internal registers at different times. The file created by the –l
option helps you identify which bits in the current bitstream
represent outputs of flip-flops and latches. Bits are referenced by
frame and bit number within the frame.

The Hardware Debugger uses the design.ll file to locate signal values
inside a readback bitstream.
16-36 Xilinx Development System

BitGen
–m (Generate a Mask File)
Creates a mask file. This file is used to compare relevant bit locations
for executing a readback of configuration data contained in an
operating FPGA.

–n (Save a Tied design)
This command is used with the –t option (described below) to save
the tied NCD file as _file_name.ncd (note the underscore in front of the
file name). The tied design file is placed in the same directory as the
output file. It has the same root name as the output file with an .ncd
extension. If you do not specify an output file, the tied design file is
placed in the input file’s directory and is named _file_name.ncd,
where _file_name is the root name of the input file. Use TRACE to run
timing analysis on the tied design. You can also use the FPGA Editor
to check the effects of the tiedown. This option is not supported for
Virtex/-E/-II or Spartan-II.

–t (Tie Unused Interconnect)
This option causes all unused interconnect to be tied to a logic low or
to a known level, keeping internal noise and power consumption to a
minimum. When you use the –t option, DRC runs first (before
tiedown). BitGen terminates if any DRC error occurs. A DRC
warning does not cause the bitstream generation program to abort,
but it may cause tiedown to fail.

After DRC, the –t option does the following.

• Ties all possible unused interconnect to tie sites or unused CLB
outputs and configures those outputs with a logic low (F=0 or
G=0)

• Attempts to tie any remaining interconnect to CLB outputs which
have not been designated as critical

• Attempts to tie remaining interconnect to the global or to the
auxiliary clock buffer outputs if unused (only in conjunction with
the -a option)

The only condition under which tie will add interconnect to a
“critical” net is if you use the –u option (allowing interconnect to be
added to critical nets as a “last resort”). A “critical” net is one with a
priority greater than 3.
Development System Reference Guide 16-37

Development System Reference Guide
The –t option does not add an XC4000 or XC5200 tristate buffer input
(I) pin or tristate (T) pin to a net.

When you add interconnect to used CLB or buffer outputs, delays
may be added on any net to which the outputs are connected. To
prevent the added delay, assign the net a priority greater than 3. You
can do this through the physical constraints file or through the FPGA
Editor. See the PRIORITIZE physical constraint in the “Attributes,
Constraints, and Carry Logic” chapter of the Libraries Guide. Note that
flagging too many nets as critical could cause the tiedown to fail.
When an interconnect is tied to a user-defined net, you get a message
giving the number of nodes added to the net. Delay characteristics for
the net associated with that source may change. (Only in conjunction
with the -a option)

When certain pins cannot be tied, you receive a warning message
supplying information about the design’s untied interconnect.

To remove the obstacles that have caused tiedown to fail, look
carefully at nets close to an untied PIP. An input pin could have
multiple input PIPs, and all of them could source the pin. If each of
these PIPs is associated with a critical net, they are not used, and the
input pin is left untied. To correct the problem, make one of the nets
“non-critical.” Do this by removing the PRIORITIZE constraint from
the net in the PCF file or in the FPGA Editor. Then run TRACE (the
timing analysis program) and evaluate any delay that might have
been added to the net. (Only in conjunction with the -a option)

If you use the –n option, the tied design is saved in a file
_file_name.ncd (note the underscore before the file name). You can
load the file into the FPGA Editor and examine the results of tiedown.
You can look at all of the original nets that have been affected by
tiedown and the net delays before and after tiedown.

Like unused internal interconnect, unused external I/O pins on the
chip must also have defined signal levels, that is, they must not be in
a floating condition. In XC4000E/EX FPGAs, unused IOBs are
automatically pulled HIGH with pull-up resistors.

Partial tiedown is the new default. Tiedown will print the number of
untied nodes and then continue. See the -a option also. Partial
tiedown never ties to user signals.

This option is not supported for Virtex/-E/-II or Spartan-II.
16-38 Xilinx Development System

BitGen
–u (Use Critical Nets Last)
Because of possible added delay, tiedown does not add interconnect
to any net that has been assigned a priority greater than 3. This option
allows interconnect to be added to critical nets as a “last resort.”

This option is not supported for Virtex/-E/-II or Spartan-II.

–w (Overwrite Existing Output File)
Enables you to overwrite an existing BIT, LL, MSK, or RBT output
file.
Development System Reference Guide 16-39

Development System Reference Guide
16-40 Xilinx Development System

Chapter 17

PROMGen

This program is compatible with the following Xilinx devices.

• Spartan/XL/-II

• Virtex/E/-II

• XC4000E/L/EX/XL/XV/XLA

• XC3000A/L

• XC3100A/L

• XC5200

This chapter describes PROMGen. The chapter contains the
following.

• “PROMGen”

• “PROMGen Syntax”

• “PROMGen Files”

• “PROMGen Options”

• “Examples” section

PROMGen
PROMGen formats a BitGen-generated configuration bitstream (BIT)
file into a PROM format file. The PROM file contains configuration
data for the FPGA device. PROMGen converts a BIT file into one of
three PROM formats: MCS-86 (Intel), EXORMAX (Motorola), or
TEKHEX (Tektronix). It can also generate a Hex file format.
Development System Reference Guide — 3.1i 17-1

Development System Reference Guide
Figure 17-1 PROMGen

There are two functionally equivalent versions of PROMGen. There is
a stand-alone version you can access from an operating system
prompt. There is also an interactive version, called the PROM File
Formatter, that you can access from inside the Design Manager for
Alliance or the Project Manager in Foundation. This chapter first
describes the stand-alone version; the interactive version is described
in the PROM File Formatter Guide.

You can also use PROMGen to concatenate bitstream files to daisy-
chain FPGAs.

Note If the destination PROM is one of the Xilinx Serial PROMs, you
are using a Xilinx PROM Programmer, and the FPGAs are not being
daisy-chained, it is not necessary to make a PROM file. See the Hard-
ware User Guide for more information about daisy-chained designs

X9226

BIT

MCS
PROM File

PROMGen

Device Configuration

TEK
PROM File HEXEXO

PROM File

PRM
Memory Map
17-2 Xilinx Development System

PROMGen
PROMGen Syntax
To start PROMGen from the operating system prompt, use the
following syntax.

promgen [options]

Options can be any number of the options listed in the “PROMGen
Options” section. Separate multiple options with spaces.

PROMGen Files
This section describes the PROMGen input and output files.

Input Files
The input to PROMGEN consists of BIT files— one or more bitstream
files. BIT files contain configuration data for an FPGA design.

Output Files
Output from PROMGEN consists of the following files.

• PROM files—The file or files containing the PROM configuration
information. Depending on the PROM file format your PROM
programmer uses, you can output a TEK, MCS, or EXO file. If
you are using a microprocessor to configure your devices, you
can output a HEX file, which contains a hexadecimal representa-
tion of the bitstream.

• PRM file—The PRM file is a PROM image file. It contains a
memory map of the output PROM file. The file has a .prm exten-
sion.

Bit Swapping in PROM Files
PROMGen produces a PROM file in which the bits within a byte are
swapped compared to the bits in the input BIT file. Bit swapping
(also called “bit mirroring”) reverses the bits within each byte, as
shown in the following figure.
Development System Reference Guide 17-3

Development System Reference Guide
Figure 17-2 Bit Swapping

In a bitstream contained in a BIT file, the Least Significant Bit (LSB) is
always on the left side of a byte. But when a PROM programmer or a
microprocessor reads a data byte, it identifies the LSB on the right
side of the byte. In order for the PROM programmer or micropro-
cessor to read the bitstream correctly, the bits in each byte must first
be swapped so they are read in the correct order.

In this release of the Xilinx Development System, the bits are
swapped for all of the PROM formats: MCS, EXO, and TEK. For a
HEX file output, bit swapping is on by default, but it can be turned
off by entering a –b PROMGen option that is available only for HEX
file format.

PROMGen Options
This section describes the options that are available for the PROMGen
command.

–b (Disable Bit Swapping—HEX Format Only)
This option only applies if the –p option specifies a HEX file for the
output of PROMGen. By default (no –b option), bits in the HEX file
are swapped compared to bits in the input BIT files. If you enter a –b
option, the bits are not swapped. Bit swapping is described in the “Bit
Swapping in PROM Files” section.

X8074

Original Data 1 0 0 0 1 0 1 0
8 A

5 1
Data in PROM File or HEX File 0 1 0 1 0 0 0 1
17-4 Xilinx Development System

PROMGen
–c (Checksum)
promgen –c

The –c option generates a checksum value appearing in the .prm file.
This value should match the checksum in the prom programmer. Use
this option to verify that correct data was programmed into the prom.

–d (Load Downward)
promgen –d hexaddress0 filename filename...

This option loads one or more BIT files from the starting address in a
downward direction. Specifying several files after this option causes
the files to be concatenated in a daisy chain. You can specify multiple
–d options to load files at different addresses. You must specify this
option immediately before the input bitstream file.

Here is the multiple file syntax.

promgen –d hexaddress0 filename filename...

Here is the multiple –d options syntax.

promgen –d hexaddress1 filename -d hexaddress2 file-
name...

–f (Execute Commands File)
–f command_file

The –f option executes the command line arguments in the specified
command_file. For more information on the –f option, see the “–f
Option” section of the “Introduction” chapter.

–help (Command Help)
This option displays help that describes the PROMGen options.

–l option (Disable Length Count)
promgen –l

The –l option disables the length counter in the FPGA bitstream. It is
valid only for SpartanXL, 4000EX, 4000XL, 4000XV, and 4000XLA
devices. Use this option when chaining together bitstreams exceeding
the 24 bit limit imposed by the length counter.
Development System Reference Guide 17-5

Development System Reference Guide
–n (Add BIT FIles)
–n file1[.bit] file2[.bit]...

This option loads one or more BIT files up or down from the next
available address following the previous load. The first –n option
must follow a –u or –d option because -n does not establish a direc-
tion. Files specified with this option are not daisy-chained to previous
files. Files are loaded in the direction established by the nearest prior
–u, –d, or –n option.

The following syntax shows how to specify multiple files. When you
specify multiple files, PROMGen daisy-chains the files.

promgen –d hexaddress file0 –n file1 file2...

The syntax for using multiple –n options follows. Using this method
prevents the files from being daisy-chained.

promgen –d hexaddress file0 –n file1 -n file2...

–o (Output File Name)
–o file1[.ext] file2[.ext]...

This option specifies the output file name of a PROM if it is different
from the default. If you do not specify an output file name, the PROM
file has the same name as the first BIT file loaded.

ext is the extension for the applicable PROM format.

Multiple file names may be specified to split the information into
multiple files. If only one name is supplied for split PROM files (by
you or by default), the output PROM files are named file_#.ext, where
file is the base name, # is 0, 1, etc., and ext is the extension for the
applicable PROM format.

promgen –d hexaddress file0 –o filename

–p (PROM Format)
–p {mcs | exo | tek | hex}

This option sets the PROM format to one of the following: MCS (Intel
MCS86), EXO (Motorola EXORMAX), TEK (Tektronix TEKHEX). The
option may also produce a HEX file, which is a hexadecimal repre-
sentation of the configuration bitstream used for microprocessor
17-6 Xilinx Development System

PROMGen
downloads. If specified, the –p option must precede any –u, –d, or –n
options. The default format is MCS.

–r (Load PROM File)
–r promfile

This option reads an existing PROM file as input instead of a BIT file.
All of the PROMGen output options may be used, so the –r option
can be used for splitting an existing PROM file into multiple PROM
files or for converting an existing PROM file to another format.
Development System Reference Guide 17-7

Development System Reference Guide
–s (PROM Size)
–s promsize1 promsize2...

This option sets the PROM size in kilobytes. The PROM size must be
a power of 2. The default value is 64 kilobytes. The –s option must
precede any –u, –d, or –n options.

Multiple promsize entries for the –s option indicates the PROM will be
split into multiple PROM files.

Note PROMGen PROM sizes are specified in bytes. The Programmable
Logic Data Book specifies PROM sizes in bits for Xilinx serial PROMs
(see –x option).

–u (Load Upward)
–u hexaddress0 filename1 filename2...

This option loads one or more BIT files from the starting address in
an upward direction. When you specify several files after this option,
PROMGen concatenates the files in a daisy chain. You can load files at
different addresses by specifying multiple –u options.

This option must be specified immediately before the input bitstream
file.

–x (Specify Xilinx PROM)
–x xilinx_prom1 xilinx_prom2...

The –x option specifies one or more Xilinx serial PROMs for which
the PROM files are targeted. Use this option instead of the –s option if
you know the Xilinx PROMs to use.

Multiple xilinx_prom entries for the –x option indicates the PROM
will be split into multiple PROM files.
17-8 Xilinx Development System

PROMGen
Examples
To load the file test.bit up from address 0x0000 in MCS format, enter
the following information at the command line.

promgen –u 0 test

To daisy-chain the files test1.bit and test2.bit up from address 0x0000
and the files test3.bit and test4.bit from address 0x4000 while using a
32K PROM and the Motorola EXORmax format, enter the following
information at the command line.

promgen –s 32 –p exo –u 00 test1 test2 –u 4000 test3
test4

To load the file test.bit into the PROM programmer in a downward
direction starting at address 0x400, using a Xilinx XC1718D PROM,
enter the following information at the command line.

promgen –x xc1718d –d 0x400 test

To specify a PROM file name that is different from the default file
name enter the following information at the command line.

promgen options filename –o newfilename
Development System Reference Guide 17-9

Development System Reference Guide
17-10 Xilinx Development System

Chapter 18

NGDAnno

This program is compatible with the following families.

• Spartan/XL/-II

• Virtex/-E/-II

• XC4000E/L/EX/XL/XV/XLA

• XC3000A/L

• XC3100A/L

• XC5200

This chapter describes the NGDAnno program. The chapter contains
the following sections.

• “NGDAnno”

• “NGDAnno Syntax”

• “NGDAnno Files”

• “NGDAnno Options”

• “Dedicated Global Signals in Back-Annotation Simulation”

• “Hierarchy Changes in Annotated Designs”

• “Guaranteed Setup and Hold Check”

NGDAnno
The back-annotation process generates a generic timing simulation
model. In the Xilinx Development System, NGDAnno back-annotates
timing information using an NCD file and optionally, an NGM file.
The NCD file, the output of MAP or PAR, represents the physical
design. The NGM file, the output of MAP, represents the logical
Development System Reference Guide — 3.1i 18-1

Development System Reference Guide
design. NGDAnno performs either physical back-annotation or
logical back-annotation depending on whether an NGM file is
supplied as input.

If you do not supply an NGM file, NGDAnno performs physical
back-annotation. It produces a simulation model based on the phys-
ical implementation only.

If you supply an NGM file, NGDAnno performs logical back-annota-
tion. It distributes timing information associated with placement,
routing, and block configuration from the physical NCD design file
onto the logical design represented in the NGM file. If timing delays
cannot be back-annotated to the logical model, NGDAnno inserts a
physical model in place of the logical model. For example, NGDAnno
might insert a LUT in place of a group of AND gates. The ARF file
shows which instance or net names were replaced. For more informa-
tion, see the “Hierarchy Changes in Annotated Designs” section.

Note If you make logical changes to an NCD design in the FPGA
Editor and change the functional behavior of your design, NGDAnno
cannot correlate the changed objects in the physical design with the
objects in the logical design. NGDAnno recreates the entire NGA
design from the NCD file. A warning indicates that the NCD file is no
longer synchronized with the NGM file and that a new NGA file has
been created from the NCD file.

For both logical and physical back-annotation, NGDAnno outputs an
annotated logical design that has a .nga (Native Generic Annotated)
extension. The NGA file is input to the appropriate netlist writer
(NGD2EDIF, NGD2VHDL, or NGDVER). The netlist writer converts
the back-annotated file in Xilinx format into netlist format for simula-
tion.

In addition to back-annotating a fully routed design, you can perform
back-annotation at other stages in the design flow. If you want to
verify that the logic is correct before you map your design, you can use
the data in an unmapped NGD file as input to the NGD2EDIF,
NGD2VER, or NGD2VHDL program and run a simulation program
on the resulting netlist. If you want to simulate with components, and
not route delays, you can run back-annotation on the unrouted NCD
file generated by the MAP program.
18-2 Xilinx Development System

NGDAnno
The back-annotation flow is shown in the following figure.

Figure 18-1 Back-Annotation Flow

You can run back-annotation by invoking NGDAnno and netlist
writer programs from the UNIX or DOS command line or from the
Design Manager/Flow Engine. Command line usage is explained in
this chapter and in the netlist writer chapters. To use the Design
Manager/Flow Engine for any of the programs, see the Design
Manager/Flow Engine Guide.

PAR

X8970

NGDAnno

NGD2EDIF

MAP

NGD
Logical Design

NCD
Physical Design

(Mapped)

NCD
Physical Design

(Placed and Routed)

NGM

NGD2VER

NGD2VHDL

NGA

EDIF

VHD

SDF

SDF

V

PCF

ARF ALF

*

*Command line only
Development System Reference Guide 18-3

Development System Reference Guide
NGDAnno Syntax
To perform back-annotation from the UNIX or DOS command line,
enter the following.

ngdanno [options] ncd_file[.ncd] [ngm_file[.ngm]]

ncd_file is the input NCD (physical design file). If you specify an NCD
file on the command line without specifying an NGM file, NGDAnno
performs physical back-annotation and the NGA file is generated
from the NCD file. The NGA file contains annotated information
about the physical implementation only.

ngm_file is an optional NGM file—a design file produced by MAP
that contains information about the logical design and information
about how the logical design corresponds to the physical design. If
you specify an NGM file, NGDAnno attempts to annotate physical
information onto the logical netlist. The NGM file is useful in the
following ways.

• For schematic-based designs, the NGM file can help regain net
names lost in mapping.

• For HDL synthesis-based designs, the NGM file can help recover
the original design hierarchy.

If you do not specify an NGA file with the –o option (described in the
“NGDAnno Options” section), an NGA file is generated in the same
directory as the NCD. The NGA file has the same root name as the
NCD file. For example, the following command generates an NGA
file named mydesign.nga.

ngdanno mydesign.ncd

NGDAnno Files
This section describes the NGDAnno input and output files.

Input Files
Input to the NGDAnno program is the following.

• NCD file—This physical design file may be mapped only,
partially or fully placed, and partially or fully routed.

• NGM file (optional but recommended)—This mapped NGD file
is created by the MAP program. This file contains a logical and
18-4 Xilinx Development System

NGDAnno
physical netlist and the correlation of blocks and pins between
the two.

• PCF file (optional)—This is a physical constraints file.

Output Files
Output from the NGDAnno program is the following.

• NGA file—This is a back-annotated NGD file.

Note NGA files generated in previous releases cannot be used
with the netlist writers (NGD2EDIF, NGD2VHDL, or NGDVER)
in this release. You must rerun NGDAnno to generate an NGA
file for use with a netlist writer.

• ALF file—This annotation log file contains information about the
NGDAnno run, including information on logical annotation fail-
ures. The ALF file has the same root name as the output NGA file
and an .alf extension. The file is written into the same directory as
the output NGA file.

• ARF file—This annotation report file contains information about
lost instance or net names. The ARF file has the same root name
as the output NGA file and an .arf extension. The file is written
into the same directory as the output NGA file.

This report file is only generated when you use the –report
option. See the “–report (Generate Hierarchy Loss Report)”
section for more information.

NGDAnno Options
This section contains descriptions of NGDAnno command line
options.

–f (Execute Commands File)
–f command_file

The –f option executes the command line arguments in the specified
command_file. For more information on the –f option, see the “–f
Option” section of the “Introduction” chapter.
Development System Reference Guide 18-5

Development System Reference Guide
–module (Physical Simulation of Active Module)
The –module option locates the active module in your NCD file and
creates an NGA file based on this module. NGDAnno constructs the
top-level interface in the NGA file based only on the active module’s
interface signals.

To use this option you must specify an NCD file that contains an
active module. To specify an active module, use the –modular
module option with NGDBuild as described in the “–modular
module (Active Module Implementation)” section of the
“NGDBuild” chapter.

For more information on modular design, see http://
support.xilinx.com/xapp/xapp404.pdf.

Note You cannot use the –module option with an NGM file or with
an NCD file that does not contain an active module. In these cases,
NGDAnno issues an error.

–o (Output File Name)
–o out_file[.nga]

The –o option specifies the output design file in NGA format. The
.nga extension is optional. The output file name and its location are
determined in the following ways.

• If you do not specify an output file name with the –o option, the
output file has the same name as the input NCD file, with an .nga
extension. The file is placed in the input NCD file’s directory.

• If you specify an output file name with no path specifier (for
example, cpu_dec.nga instead of /home/designs/cpu_dec.nga),
the NGA file is placed in the current working directory.

• If you specify an output file name with a full path specifier (for
example, /home/designs/cpu_dec.nga), the output file is placed
in the specified directory.

If the output file already exists, it is overwritten with the new NGA
file.
18-6 Xilinx Development System

NGDAnno
–p (PCF File)
-p pcf_file.pcf

The –p option allows you to specify a PCF (Physical Constraints) file
as input to NGDAnno. You only need to specify a constraints file if it
contains the following.

• Level information (CMOS or TTL) for IOBs in a 4000E or 4000EX
design

• Prorating constraints

Prorating constraints and prorated delays are described in the
“Prorating Constraints” section of the “Using Timing Constraints”
chapter.

–report (Generate Hierarchy Loss Report)
The –report option generates an ARF report file. This report contains
information about original net and instance names that were lost
during back-annotation. Determination of lost nets are based on a flat
view of the design. If a net traverses hierarchical boundaries, a loss is
reported only if the entire net is removed. This report’s introduction
explains the reasons for lost net and instance names and provides a
key for how to read the report.

This option must be run with an NGM file present. If it is run without
this file, NGDAnno issues a warning and does not produce the report
file.

Note This option is not recommended for users of synthesis tools that
have unpredictable naming conventions.

–s (Change Speed)
-s [speed]

The –s option instructs NGDAnno to annotate the device speed you
specify to the NGA file. The device speed can be entered with or
without the leading dash. For example, both –s 3 and –s –3 are allow-
able entries.

Some architectures support the –s min option. This option instructs
NGDAnno to annotate a minimum delay, rather than a maximum
Development System Reference Guide 18-7

Development System Reference Guide
worst-case delay, to the NGA file. The command line syntax is the
following.

-s min

–s –min is not an allowable entry.

Note Settings made with the –s min option override any prorated
timing parameters in the PCF file.

Dedicated Global Signals in Back-Annotation
Simulation

This section presents information on how global signals are treated in
back-annotation simulation.

Note For a description of the STARTUP, STARTUP_VIRTEX,
STARTUP_VIRTEX2, and STARTUP_SPARTAN2 components, see the
“Design Elements (SOP3 to XORCY_L)” chapter of the Libraries
Guide.

XC3000A/L and 3100A/L
In XC3000 and XC3100 devices, the global reset signal (whose name
varies depending on the CAE vendor) is assigned a pin on the device.
You must include this pin in your call to the top level module and
stimulate the pin. The global reset signal should be pulsed Low to
reset all flip-flops in the design, then held High for normal operation.

XC4000E/L/EX/XL/XV/XLA and Spartan/XL
For the XC4000 device family, Spartan devices, and SpartanXL
devices, a High signal on the GSR (Global Set/Reset) net initializes
each flip-flop and latch to the state (0 or 1) specified by its INIT prop-
erty (default is 0). For XC4000 devices, the INIT property must match
the flip-flop type, except in the case of FD and LD components. A
High signal on GTS (Global Tristate) sets all outputs to a tristate
condition. If you have not used the STARTUP component in your
original design, these signals are initialized to their inactive states.
Otherwise, you must stimulate the input GSR and GTS pins of the
STARTUP device either directly or through logic from explicit pins on
the device.
18-8 Xilinx Development System

NGDAnno
XC5200
In XC5200 devices, GR (Global Reset) is assigned a pin on the device.
You must include this pin in your call to the top level module and
stimulate the pin. The global reset signal is active-High. A High
signal on GTS (Global Tristate) sets all outputs to a tristate condition.
If you have not used the STARTUP component in your original
design, these signals are initialized to their inactive states. Otherwise,
you must stimulate the input GR and GTS pins of the STARTUP
device either directly or through logic from explicit pins on the
device.

Virtex/-II/-E and Spartan-II
For Virtex, Virtex-II, Virtex-E, and Spartan-II devices, a High signal
on the GSR (Global Set/Reset) net initializes each flip-flop and latch
to the state (0 or 1) specified by its INIT property (default is 0) and
each Block RAM data output to 0. The INIT property must match the
flip-flop type. For example, if you use an FDR flip-flop, you must
retain the automatically assigned INIT=R property. The DLL and the
contents of the following memory elements are unaffected by GSR:
LUT RAM, Block RAM, SRL16, and SRLC16. A High signal on GTS
(Global Tristate) sets all outputs to a tristate condition. If you have not
used the STARTUP_VIRTEX component in your original design,
these signals are initialized to their inactive states. Otherwise, you
must stimulate the input GSR and GTS pins of the
STARTUP_VIRTEX device either directly or through logic from
explicit pins on the device.

Virtex-II devices differ slightly from Virtex devices. The startup block
for Virtex-II is called STARTUP_VIRTEX2. In addition, GSR has two
levels of control. By default when GSR is asserted, a register sets or
presets according to its type. For example, an FDR flip-flop changes
to 0 when GSR is asserted. With Virtex-II, you can also override this
default behavior by using the INIT property. For example, if you
assign INIT=S for FDR, asserting GSR changes the state of the register
to 1 instead of the default value of 0.
Development System Reference Guide 18-9

Development System Reference Guide
Note Using a BUFGMUX element in your design may cause inaccu-
rate simulation if all the following conditions occur: both clock inputs
(I0 and I1) are used, GSR is activated during simulation (after simula-
tion time ‘0’), and the secondary clock input (I1) is selected before or
while GSR is active. In this case, the primary clock input (I0) is incor-
rectly selected. This occurs because there is a cross-coupled register
pair that ensures the BUFGMUX output does not inadvertently
generate a clock edge. When GSR is asserted, these registers initialize
to the default state of I0. To select the secondary clock, you must send
a clock pulse to both the primary and secondary clock inputs while
GSR is inactive.

Hierarchy Changes in Annotated Designs
If you supply an NGM file as input, NGDAnno attempts to retain
your original design hierarchy. However, NGDAnno may flatten part
of your original design hierarchy when generating a simulation
netlist under the following conditions.

• Logical correlation loss on a CLB, IOB, or slice due to logic opti-
mization and logic replication during mapping

• Failures in logical annotation

• Lost logic is located in different parts of the design hierarchy

For example, if a flip-flop with the hierarchical name A/B/X is
merged with a flip-flop named A/C/Y, and the resulting CLB is
affected by optimization or logic replication, hierarchical blocks A/B
and A/C are flattened out of the netlist. The two flip-flops now lie at
the same level of hierarchy (the A level) and are replaced by the CLB
physical model.

For information on which blocks were flattened, see the ARF file
generated when you use the –report option described in the “–report
(Generate Hierarchy Loss Report)” section.

Guaranteed Setup and Hold Check
In addition to the setup and hold checks already performed during
back-annotation, NGDAnno creates a Guaranteed Setup and Hold
Check (GSUH) primitive between each input pad that drives an IOB
register and global clock pad that drives the register’s clock pin. The
GSUH values match closely with the pin-to-pin setup and hold
18-10 Xilinx Development System

NGDAnno
values published in The Programmable Logic Data Book. Only device
families and configurations that have published pin-to-pin setup and
hold values are supported by the new GSUH primitive.

This checking only occurs for IOBs and clock configurations that
meet the requirements for a particular device. Generally, devices
require an externally driven clock that uses the global clock resources
to clock an input IOB register. Older device families may not support
all GSUH combinations.

Note Clock and data signals must be routed to the same hierarchical
level for the GSUH primitive to be created. If a GSUH primitive
cannot be created, NGDAnno issues a warning.
Development System Reference Guide 18-11

Development System Reference Guide
18-12 Xilinx Development System

Chapter 19

NGD2EDIF

This program is compatible with the following families.

• Spartan/XL/-II

• Virtex/-E/-II

• XC9500/XL/XV

• XC4000E/L/EX/XL/XV/XLA

• XC3000A/L

• XC3100A/L

• XC5200

This chapter describes the NGD2EDIF program. The chapter contains
the following sections.

• “NGD2EDIF”

• “NGD2EDIF Syntax”

• “NGD2EDIF Files”

• “NGD2EDIF Options”

• “XMM (RAM Initialization) File”

• “EDIF Identifier Naming Conventions”

NGD2EDIF
NGD2EDIF produces an EDIF 2 0 0 netlist in terms of the Xilinx
primitive set, allowing you to simulate pre- and post-route designs.

NGD2EDIF can produce an EDIF file representing a design in any of
these stages.
Development System Reference Guide — 3.1i 19-1

Development System Reference Guide
• An unmapped design—To translate an unmapped design, the
input to NGD2EDIF is an NGD file—a logical description of your
design. The output from NGD2EDIF is an EDIF file containing a
functional description of the design without timing information.

• A mapped, unrouted design—To translate a mapped design that
has not been placed and routed, the input to NGD2EDIF is an
NGA file— an annotated logical description of your design—
generated from a mapped physical design. The output from
NGD2EDIF is an EDIF file containing a functional description of
the design and timing information containing component delays
but without routing delays.

• A routed design—To translate a design which has been placed
and routed, the input to NGD2EDIF is an NGA file generated
from a routed physical design. The output from NGD2EDIF is an
EDIF file containing a functional description of the design and
timing information containing both component and routing
delays.

The design flow for NGD2EDIF is shown in the following figure.

Figure 19-1 NGD2EDIF Design Flow

Note If you use a prohibited core in your design, NGD2EDIF issues
an error message and does not export your design. If you use an
encrypted core, NGD2EDIF generates an encrypted file.

NGD2EDIF

NGA (Annotated Design)
or

NGD (Logical Design)

XMM
RAM Initialization

(Optional)

EDIF 2 0 0 Netlist
(for Simulation)

X7227
19-2 Xilinx Development System

NGD2EDIF
NGD2EDIF Syntax
To invoke the NGD2EDIF translation program from the UNIX or
DOS command line, enter the following.

ngd2edif [options] infile[.ngd|.nga] [outfile[.edn]]

options can be any number of the NGD2EDIF options listed in the
“NGD2EDIF Options” section. They do not need to be listed in any
particular order. Separate multiple options with spaces.

infile[.ngd|.nga] indicates the input file. If you enter a file name
without an extension, NGD2EDIF looks for a file with an .nga exten-
sion and the name you specified. If you want to translate an NGD file,
you must enter the .ngd extension. Without the .ngd extension
NGD2EDIF does not use the NGD file as input, even if an NGA file is
not present.

outfile[.edn] is the name of the NGD2EDIF output file if you want to
name it other than the root NGD design name. If you do not give an
extension, .edn is added.

Note If you are using the Viewlogic design entry tools, the outfile
name must be different from the original design name to avoid
conflict with the original WIR and EDIF files. See the “Timing Simula-
tion” chapter in the Viewlogic Interface Guide for details.

NGD2EDIF Files
This section describes the NGD2EDIF input and output files.

Input Files
Input to the NGD2EDIF program can be either of the following files.

• NGA file—This back-annotated logical design file contains Xilinx
primitive components.

• NGD file—This logical design file contains Xilinx primitive
components.
Development System Reference Guide 19-3

Development System Reference Guide
Output Files
Output from NGD2EDIF consists of the following files.

• EDN file—This is a netlist file in EDIF format. The default EDN
file produced by NGD2EDIF is generic. If you want to produce
EDIF targeted to Mentor Graphics or Viewlogic, you must
include the –v option (described in the “–v (Vendor)” section) on
the command line.

• XMM file— This optional RAM initialization file defines the
initial contents of the RAMs in the design for the simulator. The
file is described in the “XMM (RAM Initialization) File” section.

If an XMM file is generated, it has the same base name and is
written into the same directory as the output EDIF netlist.

NGD2EDIF Options
This section describes the NGD2EDIF command options.

–a (Write All Properties)
The –a option causes NGD2EDIF to write all properties into the
output EDIF netlist. The default is to write only timing delay
properties and certain other properties that define the behavior of the
design logic (for example, RAM INIT properties). In most cases the –a
option is not necessary. Check with your simulation vendor on
whether this option is a requirement for their tools.

–b (Use Buffers to Model Delays)
The –b option causes NGD2EDIF to model certain delays using
buffers. The proper setting for the –b and –i options is chosen
automatically if you entered a –v option. If your SimPrim library
vendor is not one of the supported values for the –v option, consult
the vendor for the proper –b and –i option settings.

–c (Reference Design Name as Specified—Mentor)
The –c option applies to the Mentor Graphics design flow. The option
ensures that the output of Mentor’s ENRead (EDIF reader) program
is an EDDM Single Object simulation model registered to the design
component located in the current directory.
19-4 Xilinx Development System

NGD2EDIF
If the –c option is not specified, a library entry in the EDIF file
instructs ENRead to place the simulation model in a subdirectory
named design_lib. For example, if your design name is adder4,
ENRead places the simulation model in the subdirectory adder4_lib/
adder4.

If the –c option is specified, the library entry in the EDIF file instructs
ENRead to place the simulation model directly in the design direc-
tory. For example, the simulation model for the design adder4 is
placed in the current directory right under adder4 (as opposed to
being placed in adder4_lib/adder4). In this directory, the Mentor
simulator finds the simulation model.

If you specify the –c option, you must also specify both the –n
(Generate Flattened Netlist) option and the –v (Vendor) option, with
the –v option specifying –v mentor.

–f (Execute Commands File)
–f command_file

The –f option executes the command line arguments in the specified
command_file. For more information on the –f option, see the “–f
Option” section of the “Introduction” chapter

–hpn (Set HDL Pin Names)
The –hpn option sets SimPrim pin names to HDL compliant names.
The pin name IN is set to I, and the pin name OUT is set to O.

–i (Annotate Timing Properties to Instances)
The –i option causes NGD2EDIF to annotate all timing properties to
instances. The proper setting for the –i and –b options are chosen
automatically if you entered a –v option. If your SimPrim library
vendor is not one of the supported values for the –v option, consult
the vendor for the proper –i and –b option settings.

–l (Local Scope)
The –l option gives dedicated signals (such as the Global Set/Reset
signal) local (non-global) scope. If your simulation vendor is
Foundation, Mentor Graphics, or Viewlogic, the default NGD2EDIF
action is to give dedicated signals global scope. If you are simulating
Development System Reference Guide 19-5

Development System Reference Guide
a board-level schematic that references more than one Xilinx device,
the global dedicated signals from each netlist are implicitly connected
by the simulator. If this is not what you want, use the –l option to
make the signals local to each device. You then need to reference each
dedicated signal by the appropriate hierarchically-qualified signal
name.

If your simulation vendor is not Foundation, Mentor Graphics, or
Viewlogic, the –l option is enabled by default.

–n (Generate Flattened Netlist)
The –n option writes out a flattened netlist.

–v (Vendor)
–v vendor

The –v option specifies the CAE vendor toolset that uses the resulting
EDIF file. Allowable entries are viewlog (for Viewlogic), mentor, and
fndtn (for Foundation).

The –v option customizes the output EDIF file for the specified
vendor’s simulator. The option also determines whether an XMM
(RAM initialization) file is produced and the format of the file (if one
is produced). The XMM file is described in the “XMM (RAM Initial-
ization) File” section.

–vpt (Mentor Viewpoint)
–vpt viewpoint_name

The –vpt option specifies the desired viewpoint for a Mentor EDIF
output.

–w (Overwrite Output)
The –w option overwrites the output file.

XMM (RAM Initialization) File
The XMM file defines the initial contents of the RAMs in the design
for the simulator. An XMM file is only created if the design contains
RAMs. Some simulators require an XMM file; other simulators can
read the RAM initialization directly from the output EDIF file and do
19-6 Xilinx Development System

NGD2EDIF
not need a separate XMM file. The way you use the file depends on
the simulator vendor you specify with the –v option to NGD2EDIF.

• If you are using a Viewlogic simulator (–v viewlog), an XMM file
is created in LOADM format for use by ViewSim. See the “Timing
Simulation” chapter in the Viewlogic Interface Guide for informa-
tion on loading the XMM file into ViewSim.

• If you are using a Mentor Graphics simulator (–v mentor), no
XMM file is created. QuickSim takes the RAM initialization infor-
mation directly from the EDIF netlist.

• If you are using another simulator (no –v option), an XMM file is
generated in a generic format, which is described in the next
section. Your simulator may or may not need this separate file;
consult your vendor’s documentation for details.

Note RAM initialization data is not created for the Virtex Block RAM.

Generic File Format for XMM File
This section describes the format of the generic XMM file, which is
created when the –v option is not specified for NGD2EDIF. Consult
you simulator vendor’s documentation to determine how to use this
generic XMM file.

In most cases you do not need to understand the format of the generic
XMM file. The following information is provided for reference. For
ease of processing by scripting languages, the generic initialization
file consists of newline-separated records. Each record has the
following three tokens, separated by white space, with the position of
each token denoting its meaning.

primitive_type instance_name init_value

The tokens are defined as follows.

primitive_type is the name of a RAM primitive in the SimPrim library.
It is a string value.

instance_name is a hierarchically-qualified instance name for a partic-
ular RAM SimPrim in the design. It is a string value. Hierarchical
names are separated by the forward slash (/) character. The
instance_name is expressed in terms of the names in the original
design, not in terms of the EDIF identifiers. The original names are
more likely to correlate to the original design, but are not checked for
Development System Reference Guide 19-7

Development System Reference Guide
uniqueness and may not be legal for the simulation interface. The
simulation interface must read the generic initialization file to resolve
these problems.

init_value represents the contents of the specified RAM instance. The
init_value is a hexadecimal number with a 0x prefix. The most signifi-
cant bit of this number should be loaded into the highest address of
the RAM, continuing so that the least-significant bit is loaded into the
lowest address of the RAM. As with the INIT property value, a one-
bit-wide RAM is assumed. The number is padded with zeroes so that
the number of bits exactly matches the number of addressable loca-
tions in the RAM primitive.

Generic Initialization File Example

An example generic initialization file is shown following.

X_RAMS16 $1I32/$1I47/FIFO/BANK03 0x6A47
X_RAM32 TOP/IFC/DATA/O7 0x003F097D
X_RAMD16 TOP/$3I107/$7I100 0x0000

The generic initialization file also contains several comment lines that
document when and how the file was made and describe the file
format. Each comment line begins with a pound (#) character; these
lines can be ignored by programs using the initialization file.

EDIF Identifier Naming Conventions
An identifier in a EDIF file must adhere to the following conventions.

• Must begin with an alphabetic or ampersand character (a–z, A–Z,
or &)

• Can contain alphanumeric (a–z, A–Z, 0-9) or underscore (_) char-
acters
19-8 Xilinx Development System

Chapter 20

NGD2VER

This program is compatible with the following families.

• Spartan/XL/-II

• Virtex/-E/-II

• XC9500/XL/XV

• XC4000E/L/EX/XL/XV/XLA

• XC3000A/L

• XC3100A/L

• XC5200

This chapter describes the NGD2VER program. The chapter contains
the following sections.

• “NGD2VER”

• “NGD2VER Syntax”

• “NGD2VER Files”

• “NGD2VER Options”

• “Setting Global Set/Reset, Tristate, and PRLD”

• “Test Fixture File”

• “Bus Order in Verilog Files”

• “Verilog Identifier Naming Conventions”

• “Compile Scripts for Verilog Libraries”
Development System Reference Guide — 3.1i 20-1

Development System Reference Guide
NGD2VER
NGD2VER translates your design into a Verilog HDL file containing
a netlist description of your design in terms of Xilinx simulation
primitives. You can use the Verilog file to perform a back-end
simulation with a Verilog simulator.

Simulation is based on SimPrims, which create simulation models
using basic simulation primitives. For example, because a primitive
for the XC4000 dual-port RAM does not exist in the Verilog SimPrim
library files, NGD2VER builds a simulation model for the dual-port
RAM out of two 16x1 RAM SimPrim primitives.

NGD2VER can produce a Verilog file representing a design at any of
the following stages.

• An unmapped design—To translate an unmapped design, the
input to NGD2VER is an NGD file—a logical description of your
design. The output from NGD2VER is a Verilog file containing a
functional description of the design without timing information.

• A mapped, unrouted design—To translate a mapped design
which has not been placed and routed, the input to NGD2VER is
an NGA file— an annotated logical description of your design—
generated from a mapped physical design. The output from
NGD2VER is a Verilog file containing a functional description of
the design, and an additional SDF (Standard Delay Format) file
containing timing information. The SDF file contains component
delays without routing delays.

• A routed design—To translate a design that has been placed and
routed, the input to NGD2VER is an NGA file generated from a
routed physical design. The output from NGD2VER is a Verilog
file containing a functional description of the design and an SDF
file containing both component and routing delays.
20-2 Xilinx Development System

NGD2VER
The design flow for NGD2VER is shown in the following figure.

Figure 20-1 NGD2VER Design Flow

Note If you use a prohibited core in your design, NGD2VER issues an
error message and does not export your design. If you use an
encrypted core, NGD2VER generates an encrypted file.

NGD2VER Syntax
The following command translates your design to a Verilog file.

ngd2ver [options] infile[.ngd|.nga] [outfile[.v]]

options can be any number of the NGD2VER options listed in the
“NGD2VER Options” section. They do not need to be listed in any
particular order. Separate multiple options with spaces.

infile [.ngd|.nga] is the input NGD or NGA file. If you enter a file
name with no extension, NGD2VER looks for a file with an .nga
extension and the name you specified. If you want to translate an
NGD file, you must enter the .ngd extension. Without the .ngd exten-
sion NGD2VER does not use the NGD file as input, even if an NGA
file is not present.

NGD2VER

V
Verilog Netlist

(for Simulation)

X7228

NGA
(Annotated Design)

or
NGD

(Logical Design)

SDF
Standard Delay Format

PIN
Signal-to-Pin Mapping

(Optional)

TV
Test Fixture
(Optional)

ngd2ver.log
Log File
Development System Reference Guide 20-3

Development System Reference Guide
outfile[.v] indicates the file to which the Verilog output of NGD2VER
is written. The default is infile.v (infile is the same root name as the
input file). The SDF file has the same root name as the Verilog file.

NGD2VER Files
This section describes the NGD2VER input and output files.

Input Files
Input to NGD2VER can be either of the following files.

• NGA—This back-annotated logical design file is produced by
NGDAnno and contains Xilinx primitives.

• NGD—This logical design file is produced by NGDBuild and
contains Xilinx simulation primitives.

Output Files
Output from NGD2VER consists of the following files.

• V file—This Verilog HDL file contains the netlist information
obtained from the input NGD or NGA file. This file is a simula-
tion model and cannot be synthesized or used in any other
manner than simulation. This netlist uses simulation primitives
which may not represent the true implementation of the device;
however, the netlist represents a functional model of the imple-
mented design. Do not modify this file.

• SDF file—This SDF (Standard Delay Format) file contains delays
obtained from the input file. NGD2VER only generates an SDF
file if the input is an NGA file, which contains timing informa-
tion. The SDF file generated by NGD2VER is based on SDF
version 2.1.

Note The SDF file should only be used with the Verilog file. Do
not use the SDF file with the original design or with the product
of another netlist writer.

• LOG file—This log file contains all the messages generated
during the execution of NGD2VER.

• TV file—This optional test fixture file is created if you enter the –
tf option on the NGD2VER command line.
20-4 Xilinx Development System

NGD2VER
• PIN file—This is an optional Cadence signal-to-pin mapping file.
NGD2VER generates a PIN file if the input file contains routed
external pins and you have specified a –pf command line option.

NGD2VER only generates an PIN file if the input is an NGA file.
The files have the same root name as the NGA file.

NGD2VER Options
This section describes NGD2VER command options.

–10ps (Set Time Precision to be 10ps)
The –10ps option changes the default timescale statement from 1 ns/
1 ps to 1 ns/10 ps. This allows you to choose the appropriate simula-
tion resolution based on your simulation run-time requirements.

–aka (Write Also-Known-As Names as Comments)
The –aka option includes original user-defined identifiers as
comments in the Verilog netlist. This option is useful if user-defined
identifiers are changed because of name legalization processes in
NGD2VER.

–cd (Include `celldefine\`endcelldefine in Verilog File)
The –cd option applies to a Verilog file that will be used with the
Cadence Synergy synthesis tool. The –cd option encloses every
module definition in `celldefine and `endcelldefine constructs, as
shown below.

‘celldefine
module <module_name>

.

.

.
endmodule

‘endcelldefine

The `celldefine and `endcelldefine constructs tell the Cadence
Synergy software to treat an enclosed module as a black box (that is,
do not try to synthesize the enclosed module).
Development System Reference Guide 20-5

Development System Reference Guide
This option is used if a Cadence Synergy user instantiates a Logi-
BLOX module into the HDL source code.

–f (Execute Commands File)
–f command_file

The –f option executes the command line arguments in the specified
command_file. For more information on the –f option, see the “–f
Option” section of the “Introduction” chapter.

–gp (Bring Out Global Reset Net as Port)
-gp port_name

The –gp option causes NGD2VER to bring out the Global Reset signal
(which is connected to all flip-flops and latches in the physical
design) as a port on the top-level module in the output Verilog file.
Specifying the port name allows you to match the port name you
used in the front-end. The Global Reset signal is discussed in the
“Dedicated Global Signals in Back-Annotation Simulation” section of
the “NGDAnno” chapter.

This option is only used if the Global Reset net is not driven. For
example, if you include a STARTUP component in an XC4000 design,
you do not have to enter a –gp option, because the STARTUP compo-
nent drives the Global Reset net.

Note Do not use GR, GSR, PRELOAD, or RESET as port names,
because these are reserved names in the Xilinx software. Also, do not
use the name of any wire or port that already exists in the design,
because this causes NGD2VER to issue a fatal error.

–ism (Include SimPrim Modules in Verilog File)
The –ism switch includes SimPrim modules from the SimPrim library
in the output Verilog (.v) file. This option allows you to bypass speci-
fying the library path during simulation. However, using this switch
increases the size of your netlist file and increases your compile time.

When you run this option, NGD2VER checks that your library path is
set up properly. Following is an example of the appropriate path.

$XILINX/verilog/src/simprim
20-6 Xilinx Development System

NGD2VER
Note If you are using compiled libraries, this switch offers no advan-
tage. If you use this switch, do not use the –ul switch.

–log (Rename the Log File)
-log log_file

By default, the name of the NGD2VER log file is ngd2ver.log. The –
log option allows you to rename the log file. The log file contains all
of the messages displayed during the execution of NGD2VER.

–ne (No Name Escaping)
By default (with no –ne option), NGD2VER “escapes” illegal block or
net names in your design by placing a leading backslash (\) before
the name and appending a space at the end of the name. For example,
the net name “p1$40/empty” becomes “\p1$40/empty ” when name
escaping is used. Illegal Verilog characters are reserved Verilog
names, such as “input” and “output,” and any characters that do not
conform to the standards described in the “Verilog Identifier Naming
Conventions” section.

The –ne option replaces invalid characters with underscores so that
name escaping does not occur. For example, the net name “p1$40/
empty” becomes “p1$40_empty” when name escaping is not used.
The leading backslash does not appear as part of the identifier. The
resulting Verilog file can be used if a vendor’s Verilog software
cannot interpret escaped identifiers correctly.

–op (Specify the Period for Oscillator)
-op oscillator_period

The –op option specifies the period, in nanoseconds, for the oscillator.
You must specify a positive integer to stimulate the component prop-
erly. If you do not enter a value for the –op option, the default is 100
ns.

Note Use this option only if OSC4 or OSC5 is included in your
design.

–pf (Generate Pin File)
The –pf option writes out a pin file—a Cadence signal-to-pin
mapping file with a .pin extension.
Development System Reference Guide 20-7

Development System Reference Guide
Note NGD2VER only generates an PIN file if the input is an NGA
file.

–pms (Port Names Match Child Signal Names)
The –pms option forces port names and child signal names to match.
Ports or pins in the NGD database generally have two connections,
one to the port or parent signal and one to the child signal. In most
cases, these signal names are the same. If the names are not the same,
you can use this option to change the child signal names to match the
parent signal name.

–r (Retain Hierarchy)
The –r option writes out a Verilog HDL file that retains the hierarchy
in the original design as much as possible. This option groups logic
based on the original design hierarchy. To run NGD2VER with the –r
option, you must have supplied an NGM file as input when you ran
NGDAnno (see the “Input Files” section of the “NGDAnno” chapter).
If you did not supply an NGM file, the NGA file produced is based
on the NCD file, rather than the original design hierarchy.

The default setting (with no –r option) produces a flattened Verilog
HDL file.

Note In some cases, it is not possible to preserve hierarchy. If
NGDAnno cannot back-annotate timing delays, it inserts a physical
model into the logical model. If the logical elements for any CLB
spanned hierarchy, the hierarchy is flattened as a result of this inser-
tion. See the “Hierarchy Changes in Annotated Designs” section of
the “NGDAnno” chapter for more information.

–sdf_path (Full Path to SDF File)
-sdf_path [path_name]

The –sdf_path option outputs the SDF file to the specified full path.
This option writes the full path and the SDF file name to the
$sdf_annotate statement. If a full path is not specified, it writes the
full path of the current work directory and the SDF file name to the
$sdf_annotate file.
20-8 Xilinx Development System

NGD2VER
Note NGD2VER only generates an SDF file if the input is an NGA
file, which contains timing information. This option is allowed on an
NGA file but not on an NGD file.

–shm (Write $shm Statements in Test Fixture File)
The -shm option places $shm statements in the structural Verilog file
created by NGD2VER. These $shm statements allow VerilogXL to
display simulation data as waveforms.

–tf (Generate Test Fixture File)
The –tf option generates a test fixture file. The file has a .tv extension,
and it is a ready-to-use template test fixture Verilog file based on the
input NGD or NGA file.

–ti (Top Instance Name)
-ti top_instance_name

The –ti option specifies a user instance name for the design under test
in the test fixture file created with the -tf option.

–tm (Top Module Name)
–tm top_module_name

The –tm option changes the name of the top-level module name
appearing within the NGD2VER output files. By default (with no –tm
option), the output files inherit the top module name from the input
NGD or NGA file.

–tp (Bring Out Global Tristate Net as Port)
–tp port_name

The –tp option causes NGD2VER to bring out the global tristate
signal (which forces all FPGA outputs to the high-impedance state) as
a port on the top-level entity in the output Verilog file. Specifying the
port name allows you to match the port name you used in the front-
end.

This option is only used if the global tristate net is not driven. For
example, if you include a STARTUP component in an XC4000 design,
Development System Reference Guide 20-9

Development System Reference Guide
you do not have to enter a –tp option, because the STARTUP compo-
nent drives the global tristate net.

Note Do not use the name of any wire or port that already exists in
the design, because this causes NGD2VER to issue a fatal error.

–ul (Write ‘uselib Directive)
The –ul option causes NGD2VER to write a library path pointing to
the SimPrim library into the output Verilog (.v) file. The path is
written as shown following.

‘uselib dir=$XILINX/verilog/src/simprims libext=.v

$XILINX is the location of the Xilinx software.

If you do not enter a –ul option, the ‘uselib line is not written into the
Verilog file.

Note A blank ‘uselib statement is automatically appended to the end
of the Verilog file to clear out the ‘uselib data. If you use this switch,
do not use the –ism switch.

–verbose (Display Processing Messages in Verbose
Mode)

The –verbose option displays detailed Verilog processing messages
during the execution of NGD2VER.

–w (Overwrite Existing Files)
The –w option causes NGD2VER to overwrite the .v file if it already
exists. By default, NGD2VER does not overwrite the .v file.

Note All other output files are automatically overwritten.

Setting Global Set/Reset, Tristate, and PRLD
For information on setting Global Set/Reset and Global Tristate for
FPGAs, see the “Defining Global Signals in Verilog” section of the
Synthesis and Simulation Design Guide.

For information on setting Global PRLD for CPLDs, refer to the
“Simulating Your Design” chapter of the CPLD Synthesis Design
Guide.
20-10 Xilinx Development System

NGD2VER
Test Fixture File
The end of the test fixture (TV) file produced by NGD2VER contains
the following commands.

#1000 $stop

// #1000 $finish

The $stop command terminates simulation from the test fixture and
places the simulator in “interactive mode.” This mode allows you to
view the waveforms produced or allows interaction with other
programs that need the simulator open.

To exit automatically instead of entering interactive mode, edit the
test fixture file to remove or comment out the $stop line and uncom-
ment the $finish line.

Bus Order in Verilog Files
When you compile your unit-under-test design from NGD2VER
along with your test fixture, there may be mismatches on bused ports.

This problem occurs when your unit under test has top-level ports
that are defined as LSB-to-MSB, as shown in the following example.

input [0:7] A;

As a result of the way your input design was converted to a netlist
before it was read into the Xilinx implementation software, the Xilinx
design database does not include information on how bus direction
was defined in the original design. When NGD2VER writes out a
structural timing Verilog description, all buses are written as MSB-to-
LSB, as shown in the following example.

input [7:0] A;

If your ports are defined as LSB-to-MSB in your original input design
and test fixture, there is a port mismatch when the test fixture is
compiled for timing simulation. Use one of the following methods to
solve this problem.

• In the test fixture, modify the instantiation of the unit under test
so that all ports are defined as MSB-to-LSB for timing simulation.

• Define all ports as MSB-to-LSB in your original design and test
fixture. For example, enter [7:0] instead of [0:7].
Development System Reference Guide 20-11

Development System Reference Guide
Note Bus order will be preserved in the following cases: if the design
input file is EDIF and the buses are declared as port arrays, if you are
doing logical simulation, or if you are doing back-annotation with an
NGM file as input.

Verilog Identifier Naming Conventions
An identifier in a Verilog file must adhere to the following conven-
tions. For more information see the IEEE Standard Description
Language Based on the Verilog™ Hardware Description Language manual.

• Must begin with an alphabetic or underscore character (a-z, A-Z,
or _)

• Can contain alphanumeric (a-z, A-Z, 0-9), underscore (_), or
dollar sign ($) characters

• May use any character by escaping with a backslash(\) at the
beginning of the identifier and terminating with a white space (a
blank, tab, newline, or formfeed). For example, the identifier
“reset*” is not acceptable but the identifier “\reset* ” is accept-
able.

• Can be up to 1024 characters long

• Cannot contain white space

Note Identifiers are case sensitive.

During the name legalization process, NGD2VER writes identifiers
that contain invalid characters with a leading backslash and a
following white space. If you want to change this default behavior,
use the –ne option described in the “–ne (No Name Escaping)”
section.
20-12 Xilinx Development System

NGD2VER
Compile Scripts for Verilog Libraries
You must compile libraries for your simulation tools to recognize
Xilinx components. To perform timing or post-synthesis functional
HDL simulation, you must compile the SimPrim libraries. If the HDL
code contains instantiated components, you must compile the
UniSim or LogiBLOX libraries. If the HDL code contains instantiated
components from the CORE Generator System, you must compile the
CORE Generator behavioral models before you can perform a behav-
ioral simulation. Refer to the CORE Generator Guide for more informa-
tion.

To compile libraries, refer to the “Compiling HDL Libraries” section
of the Synthesis and Simulation Design Guide.

Note You do not need to compile libraries for Verilog-XL.
Development System Reference Guide 20-13

Development System Reference Guide
20-14 Xilinx Development System

Chapter 21

NGD2VHDL

This program is compatible with the following families.

• Spartan/XL/-II

• Virtex/-E/-II

• XC9500/XL/XV

• XC4000E/L/EX/XL/XV/XLA

• XC3000A/L

• XC3100A/L

• XC5200

This chapter describes the NGD2VHDL program. The chapter
contains the following sections.

• “NGD2VHDL”

• “NGD2VHDL Syntax”

• “NGD2VHDL Files”

• “NGD2VHDL Options”

• “VHDL Global Set/Reset Emulation”

• “Bus Order in VHDL Files”

• “VHDL Identifier Naming Conventions”

• “Compile Scripts for VHDL Libraries”
Development System Reference Guide — 3.1i 21-1

Development System Reference Guide
NGD2VHDL
The NGD2VHDL program translates your design into a VHDL file
containing a netlist description of the design in terms of Xilinx simu-
lation primitives. You can use the VHDL file to perform a back-end
simulation by a VHDL simulator.

Simulation is based on SimPrims, which create simulation models
using basic simulation primitives. For example, because a primitive
for the XC4000 dual-port RAM does not exist in the VITAL SimPrim
library files, NGD2VHDL builds a simulation model for the dual port
ram out of two 16x1 RAM SimPrim primitives.

NGD2VHDL produces a VHDL file representing a design in any of
the following stages.

• An unmapped design—To translate an unmapped design, the
input to NGD2VHDL is an NGD file—a logical description of
your design. The output from NGD2VHDL is a VHDL file
containing a functional description of the design without timing
information.

• A mapped, unrouted design—To translate a mapped design
which has not been placed and routed, the input to NGD2VHDL
is an NGA file— an annotated logical description of your
design—generated from a mapped physical design. The output
from NGD2VHDL is a VHDL file containing a functional descrip-
tion of the design, and an additional SDF (Standard Delay
Format) file containing timing information. The SDF file contains
component delays without routing delays.

• A routed design—To translate a design which has been placed
and routed, the input to NGD2VHDL is an NGA file generated
from a routed physical design. The output from NGD2VHDL is a
VHDL file containing a functional description of the design and
an SDF file containing both component and routing delays.
21-2 Xilinx Development System

NGD2VHDL
The design flow for NGD2VHDL is shown in the following figure.

Figure 21-1 NGD2VHDL Design Flow

Note If you use a prohibited core in your design, NGD2VHDL issues
an error message and does not export your design. If you use an
encrypted core, NGD2VHDL generates an encrypted file.

NGD2VHDL Syntax
The following command translates your design to a VHDL file.

ngd2vhdl [options] infile[.ngd|.nga] [outfile[.vhd]]

options can be any number of the NGD2VHDL options listed in the
“NGD2VHDL Options” section. They do not need to be listed in any
particular order. Separate multiple options with spaces.

infile [.ngd|.nga] is the input NGD or NGA file. If you enter a file
name without an extension, NGD2VHDL looks for a file with an .nga
extension and the name you specified. If you want to translate an
NGD file, you must enter the .ngd extension. Without the .ngd exten-
sion NGD2VHDL does not use the NGD file as input, even if an NGA
file is not present.

NGD2VHDL

VHD
VHDL Netlist

(for Simulation)

X7229

NGA
(Annotated Design)

or
NGD

(Logical Design)

SDF
Standard Delay Format

PIN
Signal-to-Pin Mapping

(Optional)

TVHD
Testbench
(Optional)

ngd2vhdl.log
Log File
Development System Reference Guide 21-3

Development System Reference Guide
outfile[.vhd] indicates the file to which the VHDL output of
NGD2VHDL is written. The default is infile.vhd (infile is the same
root name as the input file). The SDF file has the same root name as
the VHDL file.

NGD2VHDL Files
This section describes the NGD2VHDL input and output files.

Input Files
Input to NGD2VHDL can be any of the following files.

• NGA—This back-annotated logical design file contains Xilinx
primitive components.

• NGD—This logical design file contains Xilinx primitive compo-
nents.

Output Files
Output from NGD2VHDL consists of the following files.

• VHD file—This VITAL 95 IEEE compliant VHDL file contains the
netlist information obtained from the input NGD or NGA file.
This file is a simulation model and cannot be synthesized or used
in any other manner than simulation. This netlist uses simulation
primitives which may not represent the true implementation of
the device; however, the netlist represents a functional model of
the implemented design. Do not modify this file.

• SDF file—This Standard Delay Format file contains delays
obtained from the input file. NGD2VHDL only generates an SDF
file if the input is an NGA file, which contains timing informa-
tion. The SDF file generated by NGD2VHDL is based on SDF
version 2.1.

• LOG file—This log file contains all the messages generated
during the execution of NGD2VHDL.

• Testbench file—This optional testbench file is created if you enter
the –tb option on the NGD2VHDL command line. The file has a
.tvhd extension.
21-4 Xilinx Development System

NGD2VHDL
NGD2VHDL Options
This section describes the NGD2VHDL command options.

–a (Architecture Only)
By default, NGD2VHDL generates both entities and architectures for
the input design. If the –a option is specified, no entities are
generated and only architectures appear in the output.

–aka (Write Also-Known-As Names as Comments)
The –aka option includes original user-defined identifiers as
comments in the VHDL netlist. This option is useful if user-defined
identifiers are changed because of name legalization processes in
NGD2VHDL.

–ar (Rename Architecture Name)
-ar architecture_name

The –ar option allows you to rename the architecture name generated
by NGD2VHDL. The default architecture name for each entity in the
netlist is STRUCTURE.

–f (Execute Commands File)
–f command_file

The –f option executes the command line arguments in the specified
command_file. For more information on the –f option, see the “–f
Option” section of the “Introduction” chapter.

–gp (Bring Out Global Reset Net as Port)
–gp port_name

The –gp option causes NGD2VHDL to bring out the Global Reset
signal (which is connected to all flip-flops and latches in the physical
design) as a port on the top-level entity in the output VHDL file.
Specifying the port name allows you to match the port name you
used in the front-end. The Global Reset signal is discussed in the
“VHDL Global Set/Reset Emulation” section.
Development System Reference Guide 21-5

Development System Reference Guide
This option is only used if the Global Reset net is not driven. For
example, if you include a STARTUP component in an XC4000 design,
you do not have to enter a –gp option, because the STARTUP compo-
nent drives the Global Reset net.

Note Do not use GR, GSR, PRELOAD, or RESET as port names,
because these are reserved names in the Xilinx software.

–log (Specify the Log File)
–log log_file

By default, the name of the NGD2VHDL log file is ngd2vhdl.log. The
–log option allows you to rename the log file. The log file contains all
of the messages displayed during the execution of NGD2VHDL.

–op (Specify the Period for Oscillator)
–op oscillator_period

The –op option specifies the period, in nanoseconds, for the oscillator.
You must specify a positive integer to stimulate the component
properly. If you do not enter a value for the –op option, the default is
100 ns.

Note Use this option only if OSC4 or OSC5 is included in your
design.

–pms (Port Names Match Child Signal Names)
The –pms option forces port names and child signal names to match.
Ports or pins in the NGD database generally have two connections,
one to the port or parent signal and one to the child signal. In most
cases, these signal names are the same. If the names are not the same,
you can use this option to change the child signal names to match the
parent signal name.

–r (Retain Hierarchy)
The –r option writes out a VHDL file that retains the hierarchy in the
original design as much as possible. This option groups logic based
on the original design hierarchy. To run NGD2VHDL with the –r
option, you must have supplied an NGM file as input when you ran
NGDAnno (see the “Input Files” section of the “NGDAnno” chapter).
21-6 Xilinx Development System

NGD2VHDL
If you did not supply an NGM file, the NGA file produced is based
on the NCD file, rather than the original design hierarchy.

The default setting (with no –r option) produces a flattened VHDL
file.

Note In some cases, it is not possible to preserve hierarchy. If
NGDAnno cannot back-annotate timing delays, it inserts a physical
model into the logical model. If the logical elements for any CLB
spanned hierarchy, the hierarchy is flattened as a result of this inser-
tion. See the “Hierarchy Changes in Annotated Designs” section of
the “NGDAnno” chapter for more information.

–rpw (Specify the Pulse Width for ROC)
–rpw roc_pulse_width

The –rpw option specifies the pulse width, in nanoseconds, for the
ROC component. You must specify a positive integer to stimulate the
component properly. This option is not required. By default, the ROC
pulse width is set to 100 ns.

–tb (Generate Testbench File)
The –tb option writes out a testbench file with a .tvhd extension. The
default top-level instance name within the testbench file is UUT. If
you enter a –ti (Top Instance Name) option, the top-level instance
name is the name specified by the –ti option.

–te (Top Entity Name)
–te top_entity_name

The –te option specifies the name of the top-level entity in the
structural VHDL file produced by NGD2VHDL for timing
simulation. By default (with no –te option), the output files inherit the
top entity name from the input NGD or NGA file.

–ti (Top Instance Name)
–ti top_instance_name

The –ti option specifies the name of the top-level instance name
appearing within the output SDF file and testbench file (if produced).
Development System Reference Guide 21-7

Development System Reference Guide
The option allows you to match the top-level instance name to the
name specified in your test driver VHDL file. Without this option, the
SDF file generated by NGD2VHDL cannot be processed properly by
VHDL simulators (for example, Model Technology vsim) for timing
simulation.

If you do not enter a –ti option, the output files contain a top-level
instance name of UUT.

–tp (Bring Out Global Tristate Net as Port)
–tp port_name

The –tp option causes NGD2VHDL to bring out the global tristate
signal (which forces all FPGA outputs to the high-impedance state) as
a port on the top-level entity in the output VHDL file. Specifying the
port name allows you to match the port name you used in the front-
end.

This option is only used if the global tristate net is not driven. For
example, if you include a STARTUP component in an XC4000 design,
you do not have to enter a –tp option, because the STARTUP compo-
nent drives the global tristate net.

–tpw (Specify the Pulse Width for TOC)
–tpw toc_pulse_width

The –tpw option specifies the pulse width, in nanoseconds, for the
TOC component. You must specify a positive integer to stimulate the
component properly. This option is required when you instantiate the
TOC component (for example, when the Global Set/Reset and
Tristate nets are sourceless in the design).

–verbose (Display Processing Messages in Verbose
Mode)

The –verbose option displays detailed VHDL processing messages
when NGD2VHDL is run.

–w (Overwrite Existing Files)
The –w option causes NGD2VHDL to overwrite the .vhd file if it
exists. By default, NGD2VHDL does not overwrite the .vhd file.
21-8 Xilinx Development System

NGD2VHDL
Note All other output files are automatically overwritten.

–xon (Select Output Behavior for Timing Violations)
–xon {true |false }

The –xon option specifies the output behavior when timing violations
occur on memory elements. If you set this option to true, any memory
elements that violate a setup time trigger X on the outputs. If you set
this option to false, the signal’s previous value is retained. If you do
not set this option, –xon true is run.

VHDL Global Set/Reset Emulation
VHDL requires ports for all signals to be controlled by a testbench.
There are VHDL specific components that can be instantiated in the
RTL and post-synthesis VHDL description in order to enable the
simulation of the global signals for Global Set/Reset and Global
Tristate. NGD2VHDL creates a port on the back-annotated design
entity for stimulating the Global Set/Reset or Tristate enable signals.
This port does not actually exist on the configured part.

You do not need to use the –gp switch to create an external port if you
instantiated a STARTUP block in the implemented design. In this
case, the port is already identified and connected to the Global Set/
Reset or Tristate enable signal. If you do not use the –gp option or a
STARTUP block, you will need to use a special cell. Detailed direc-
tions for specific emulation cells and their uses follow.

Note The term “STARTUP” refers to the STARTUP block for all
device families, including the Virtex STARTUP block,
STARTUP_VIRTEX, and the Virtex-II STARTUP block,
STARTUP_VIRTEX2. The term “STARTBUF” refers to the STARTBUF
cell for all device families, including the Virtex STARTBUF cell,
STARTBUF_VIRTEX, and the Virtex-II STARTBUF cell,
STARTBUF_VIRTEX2.

VHDL Only STARTUP Block
The STARTUP block is traditionally instantiated to identify the GR,
PRLD, or GSR signals for implementation. However, the only time
simulation is enabled in the traditional method is when the net
attached to the GSR or GTS also goes off chip, because the STARTUP
block does not have simulation models. You can use the following
Development System Reference Guide 21-9

Development System Reference Guide
new cells to simulate global set/reset or tristate nets in all cases,
whether or not the signal goes off chip.

Note The Virtex and Virtex-II STARTUP blocks are subsets of the
XC4000 STARTUP block. However, they differ from the XC4000
STARTUP block in that they have no outputs, as shown in the
following figure.

Figure 21-2 STARTUP and STARTUP_VIRTEX Blocks

VHDL Only STARTBUF Cell
The STARTBUF cell passes a Reset or Tristate signal in the same way
that a buffer allows simulation to proceed, and it also instantiates the
STARTUP block for implementation. STARTBUF is a more simulation
friendly version of a typical STARTUP block. There is one version
that works for all technologies, even though the XC5200 and the
XC4000 STARTUP blocks have different pin names. Implementation
with the correct STARTUP block is handled automatically. An
instantiation example for the STARTBUF cell follows.

U1: STARTBUF port map (GSRIN => DEV_GSR_PORT, GTSIN
=>DEV_GTS_PORT, CLKIN => ‘0’, GSROUT => GSR_NET,
GTSOUT => GTS_NET, Q2OUT => open, Q3OUT => open,
Q1Q4OUT => open, DONEINOUT => open):

One or both of the input ports GSRIN and GTSIN of the STARTBUF
component and the associated output ports GSROUT and GTSOUT
can be used. The pins that are left “open” can be used to pass
configuration instructions down to implementation, just as on a
traditional STARTUP block. You can do this by connecting the
appropriate signal to the port instead of leaving it in an “open”
condition.

Note The STARTBUF_VIRTEX and STARTBUF_VIRTEX2 cells are
similar to the STARTBUF cell, but GSROUT is not available.

X8760

CLK

GTS

GSR

DONEIN

STARTUP

Q1Q4

Q3

Q2

STARTUP_VIRTEX

GTS

GSR

CLK
21-10 Xilinx Development System

NGD2VHDL
VHDL Only STARTUP_VIRTEX Block and
STARTBUF_VIRTEX Cell

Global Set/Reset and Global Tristate for the Virtex STARTUP block,
STARTUP_VIRTEX, and STARTBUF cell, STARTBUF_VIRTEX,
operate as described in the preceding sections with the following
qualifications.

Note This information also applies to STARTUP_VIRTEX2 and
STARTBUF_VIRTEX2.

• Pre-NGDBuild UniSim VHDL simulation of the GSR signal is not
supported.

The simulation libraries will start up in the correct state; however,
you cannot reset the design after simulation time ‘0.’

• During Pre-NGDBuild UniSim VHDL simulation, designs are
properly initialized at simulation time ‘0.’

• Post-NGDBuild SimPrim VHDL simulation of GSR is supported.

To correctly back-annotate a GSR signal, instantiate a
STARTUP_VIRTEX or STARTBUF_VIRTEX symbol and correctly
connect the GSR input signal of that component. When back-
annotated, your GSR signal is correctly connected to the associ-
ated registers and RAM blocks.

• Pre-NGDBuild UniSim VHDL simulation of the GTS signal is
supported.

Instantiate either a STARTBUF_VIRTEX, TOC, or TOCBUF for
this functionality.

VHDL Only RESET-ON-CONFIGURATION (ROC) Cell
This cell is created during back-annotation if you do not use the –gp
option or STARTUP block options. It can be instantiated in the front
end to match functionality with GSR, GR, or PRLD. (This is done in
both functional and timing simulation.) During back-annotation, the
entity and architecture for the ROC cell is placed in the design’s
output VHDL file. In the front end, the entity and architecture are in
the UniSim Library, and require only a component instantiation.

 The ROC cell generates a one-time initial pulse to drive the GR, GSR,
or PRLD net starting at time ‘0’ for a user-defined pulse width. You
Development System Reference Guide 21-11

Development System Reference Guide
can set the pulse width with a generic in a configuration statement.
The default value of “width” is 0 ns, which disables the ROC cell and
results in the Global Set/Reset being held Low. (Active-Low resets
are handled within the netlist itself and require you to invert this
signal before using it.)

The ROC cell allows you to simulate with the same testbench as in the
RTL simulation, and also allows you to control the width of the global
set/reset signal in the implemented design.

The ROC components require a value for the generic WIDTH, usually
specified with a configuration statement. Otherwise, a generic map is
required as part of the component instantiation.

You can set the generic with any generic mapping method you
choose. Set the “width” generic after consulting The Programmable
Logic Data Book for the particular part and mode you have imple-
mented.

For example, a XC4000E part can vary from 10 ms to 130 ms. The
value to look for is the TPOR (Power-ON Reset) parameter found in
the Configuration Switching Characteristics tables for master, slave,
and peripheral modes.

One of the easiest methods for mapping the generic is a configuration
for the user’s testbench. An example testbench configuration for
setting the generic is as follows.

CONFIGURATION cfg_my_timing_testbench OF my_testbench IS
FOR my_testbench_architecture

FOR ALL:my_design USE ENTITY work.my_design(structure);
FOR structure

FOR ALL:roc ENTITY USE work.roc (roc_v)
Generic MAP (width => 100 ms);

END FOR;
END FOR;

END FOR;
END FOR;

END cfg_my_timing_testbench;

The following is an instantiation example for the ROC cell.

U1: ROC port map (0 =>GSR_NET);
21-12 Xilinx Development System

NGD2VHDL
VHDL Only ROCBUF Cell
The ROCBUF allows you to provide stimulus for the Reset on Config-
uration signal through a testbench but the port connected to it is not
implemented as a chip pin. The port can be brought back in the
timing simulation with the –gp switch on NGD2VHDL. An example
of instantiation of the ROCBUF cell follows.

U1: ROCBUF port map (I => SIM_GSR_PORT, O => GSR_NET);

Note This cell is not available for Virtex, Virtex-E, Virtex-II, and
Spartan-II devices.

VHDL Only Tristate-On-Configuration (TOC) Cell
This cell is created if you do not use the –tp or StartUp block options.
The entity and architecture for the TOC cell is placed in the design’s
output VHDL file. The TOC cell generates a one-time initial pulse to
drive the GR, GSR, or PRLD net starting at time ‘0’ for a user-defined
pulse width. The pulse width can be set with a generic. The default
value of “width” is 0 ns, which disables the TOC cell and results in
the Tristate enable being held Low. (Active-Low Tristate enables are
handled within the netlist itself and require you to invert this signal
before using it.)

The TOC cell allows you to simulate with the same testbench as in the
RTL simulation, and also allows you to control the width of the
Tristate enable signal in the implemented design.

The TOC components require a value for the generic WIDTH, usually
specified with a configuration statement. Otherwise, a generic map is
required as part of the component instantiation.

You may set the generic with any generic mapping method you
choose. Set the “width” generic after consulting The Programmable
Logic Data Book for the particular part and mode you have imple-
mented.

For example, a XC4000E part can vary from 10 ms to 130 ms. The
value to look for is the TPOR (Power-ON Reset) parameter found in
the Configuration Switching Characteristics tables for master, slave,
and peripheral modes.
Development System Reference Guide 21-13

Development System Reference Guide
One of the easiest methods for mapping the generic is a configuration
for the user’s testbench. An example testbench configuration for
setting the generic is as follows.

CONFIGURATION cfg_my_timing_testbench OF my_testbench IS

FOR my_testbench_architecture
FOR ALL:my_design USE ENTITY work.my_design(structrue);

FOR structure
FOR ALL:toc ENTITY USE work.toc (toc_v)

Generic MAP (width => 100 ms);
END FOR;

END FOR;
END FOR;

END FOR;
END cfg_my_timing_testbench;

VHDL Only TOCBUF
The TOCBUF allows you to provide stimulus for the Global Tristate
signal (GTS) through a testbench but the port connected to it is not
implemented as a chip pin. The port can be brought back in the
timing simulation with the –tp switch on NGD2VHDL. An example
of the instantiation of the TOCBUF cell follows.

U2: TOCBUF port map (I =>SIM_GTS_PORT, O =>GTS_NET);

VHDL Only Oscillators
Oscillator output can vary within a fixed range. The cell is not
included in the SimPrim library, because you cannot drive global
signals in VHDL designs. Schematic simulators can define and drive
global nets so the cell is not required. Verilog has the ability to drive
nets within a lower level module as well. Therefore the oscillator cells
are only required in VHDL. After back-annotation, their entity and
architectures are contained in the design’s VHDL output.

For functional simulation, they may be instantiated and simulated
with the UniSim Library.

The period of the base frequency must be set in order for the simula-
tion to proceed, because the default period of 0 ns disables the oscil-
lator. The oscillator’s frequency can very significantly with process
and temperature.
21-14 Xilinx Development System

NGD2VHDL
Before you set the base period parameter, consult The Programmable
Logic Data Book for the particular part you are using. For example, the
section in The Programmable Logic Data Book for the XC4000 Series On-
Chip Oscillator states that the base frequency can vary from 4 MHz to
10 MHz, and is nominally 8 MHz. This means the base period generic
“period_8m” in the XC4000E OSC4 VHDL model can range from 250
ns to 100 ns. An example of this follows.

Note The OSC4 cell is only available for the XC4000 device family
and for Spartan and SpartanXL devices.

Example 1: Oscillator VHDL

Following is an example of the XC4000E OSC4 VHDL model.

library IEEE;

use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

library UNISIM;
use UNISIM.all;

entity test1 is
port (DATAIN: in STD_LOGIC;
DATAOUT: out STD_LOGIC);
end test1;

architecture inside of test1 is

signal RST: STD_LOGIC;

component ROC
port(O: out STD_LOGIC);
end component;

component OSC4
port(F8M: out STD_LOGIC);
end component;

signal internalclock: STD_LOGIC;
begin

U0: ROC port map (RST);
Development System Reference Guide 21-15

Development System Reference Guide

U1: OSC4 port map (F8M=>internalclock);

process(internalclock)
begin
if (RST=’1’) then
DATAOUT <= ’0’;

elsif(internalclock’event and internalclock=’1’) then
DATAOUT <= DATAIN;

end if;

end process;

end inside;

Example 2: Oscillator Test Bench

Following is a second example.

library IEEE;

use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

library UNISIM;
use UNISIM.all;

entity test_oftest1 is end test_oftest1;

architecture inside of test_oftest1 is

component test1
port(DATAIN: in STD_LOGIC;
DATAOUT: out STD_LOGIC);
end component;

signal userdata, userout: STD_LOGIC;

begin

UUT: test1 port map(DATAIN=>userdata,DATAOUT=>userout);
21-16 Xilinx Development System

NGD2VHDL

myinput: process
begin
userdata <= ’1’;
wait for 299 ns;
userdata <= ’0’;wait for 501 ns;
end process;

end inside;

configuration overall of test_oftest1 is
for inside

for UUT:test1
for inside

for U0:ROC use entity UNISIM.ROC(ROC_V)
generic map (WIDTH=> 52 ns);
end for;

for U1:OSC4 use entity UNISIM.OSC4(OSC4_V)
generic map (PERIOD_8M=> 25 ns);
end for;

end for;
end for;

end for;
end overall;

This configuration is for pre-NGDBuild simulation. A similar config-
uration is used for post-NGDBuild simulation. The ROC, TOC, and
OSC4 are mapped to the WORK library, and corresponding architec-
ture names may be different. Review the .vhd file created by
NGD2VHDL for the current entity and architecture names for post-
NGDBuild simulation.

Bus Order in VHDL Files
When you compile your unit-under-test design from NGD2VHDL
with your testbench, there may be mismatches on bused ports.

This problem occurs when your unit under test has top-level ports
that are defined as LSB-to-MSB, as shown in the following example.

A: in STD_LOGIC_VECTOR (0 to 7);
Development System Reference Guide 21-17

Development System Reference Guide
As a result of the way your input design was converted to a netlist
before it was read into the Xilinx implementation software, the Xilinx
design database does not include information on how bus direction
was defined in the original design. When NGD2VHDL writes out a
structural timing VHDL description, all buses are written as MSB-to-
LSB, as shown in the following example.

A: in STD_LOGIC_VECTOR (7 downto 0);

If your ports were defined as LSB-to-MSB in your original input
design and testbench, there is a port mismatch when the testbench is
compiled for timing simulation. Use one of the following to solve this
problem.

• In the testbench, modify the instantiation of the unit under test so
that all ports are defined as MSB-to-LSB for timing simulation

• Define all ports as MSB-to-LSB in the original design and test-
bench, by using the downto clause instead of the to clause to
specify a bus range.

Note Bus order will be preserved in the following cases: if the design
input file is EDIF and the buses are declared as port arrays, if you are
doing logical simulation, or if you are doing back-annotation with an
NGM file as input.

VHDL Identifier Naming Conventions
An identifier in a VHDL file must adhere to the following conven-
tions. For more information see the IEEE Standard VHDL Language
Reference Manual or the IEEE Standard VITAL Application-Specific Inte-
grated Circuit (ASIC) Modeling Specification.

• Must begin with alphabetic characters (a–z or A–Z)

• Can contain alphanumeric (a–z, A–Z, 0-9) or underscore (_) char-
acters

• Can be up to 1024 characters long

• Cannot contain white space

Note Identifiers are not case sensitive.

During the name legalization process, NGD2VHDL substitutes any
illegal characters with the underscore (_) character.
21-18 Xilinx Development System

NGD2VHDL
Compile Scripts for VHDL Libraries
You must compile libraries for your simulation tools to recognize
Xilinx components. To perform timing or post-synthesis functional
HDL simulation, you must compile the SimPrim libraries. If the HDL
code contains instantiated components, you must compile the
UniSim or LogiBLOX libraries. If the HDL code contains instantiated
components from the CORE Generator System, you must compile the
COREGen behavioral models before you can perform a behavioral
simulation. Refer to the CORE Generator System User Guide for more
information.

To compile libraries, refer to the “Compiling HDL Libraries” section
of the Synthesis and Simulation Design Guide.
Development System Reference Guide 21-19

Development System Reference Guide
21-20 Xilinx Development System

Chapter 22

XFLOW

XFLOW is compatible with the following families.

• Spartan/XL/-II

• Virtex/-E/-II

• XC3000A/L

• XC3100A/L

• XC4000E/L

• XC4000EX/XL/XV/XLA

• XC5200

• XC9500

• XC9500XL

The chapter contains the following sections.

• “Overview”

• “XFLOW Syntax”

• “Running XFLOW”

• “Flow Types”

• “Option Files”

• “XFLOW Options”

• “Input Files”

• “Output Files”
Development System Reference Guide — 3.1i 22-1

Development System Reference Guide
Overview
The purpose of XFLOW is to provide a mechanism for users to encap-
sulate the Xilinx implementation or simulation flows within their
own tools. These user tools might be simple scripts or they might be
company frameworks.

XFLOW is a command line tool that allows you to run the full suite of
Xilinx implementation and simulation flows. To run, XFLOW reads a
design file, flow file, and option files as inputs. The flow file specifies
the sequence of Xilinx tools to run on a design. The option file
specifies the command line options for each of the tools listed in the
flow file. Xilinx has provided six option files for implementation:
three each for FPGAs and CPLDs and numerous option files for
simulation. See the “Option Files” section for a list of these files.
Xilinx has also provided three flow files to perform some basic
implementation sequences. See the “Flow Files” section for a list.

If you run XFLOW on a design for the first time, XFLOW searches
through the hierarchy and copies the corresponding flow and option
files into your working directory. For later runs with the same
command line options, XFLOW searches through your install
hierarchy (or tree) and copies the flow files and option files. The
hierarchical search is as follows:

• Current working directory (First)

• Directories specified with the XFLOWPATH environment
variable. This variable is used to define implementations for
project-based, team-based, or company-wide settings. For
example, consider a project team working on a design. If a project
team has decided on the flow file and options file to use, the team
can keep these files in a central repository pointed to by the
XFLOWPATH environment variable. The variable ensures that
the team members will run the same flow with the
predetermined options which avoids inconsistencies.

• Installed area specified with the XILINX environment variable
(Last)
22-2 Xilinx Development System

XFLOW
If the design is an FPGA and you are using the -implement, -tsim, or
-config flow types, the default flow file is fpga.flw. If the design is a
CPLD and you are using the -fit or -tsim options, the default file is
cpld.flw. If you are running a functional simulation for either an
FPGA or CPLD using the -fsim flow type, the default flow file is
fsim.flw.

XFLOW executes the programs in the order specified in the flow file.
It checks the options file to find the corresponding options for each
program in the flow file.

Halting XFLOW
You can manually interrupt the flow while XFLOW is in session
using Control-C on your keyboard. When you halt XFLOW while
PAR is in progress, you can choose one of several options. See the
“Halting PAR” section of the “PAR—Place and Route” chapter for a
detailed description.

Figure 22-1 XFLOW

XFLOW

Input File

X8848

CPLD
Programming

Data

Input Command
Options and Files

FPGA
Programming

Data

PROM Files

Annotated
Netlist

Data

Timing Simulation
DataGuide Files

Application Data
Files
Development System Reference Guide 22-3

Development System Reference Guide
XFLOW Syntax
Following is the syntax for XFLOW.

xflow [flow type] [option file] [xflow option]
design_name

The combined syntax of the flow type and option file runs the Xilinx
command line tools. The following table illustrates the relationship
between each flow type and its option file. Xilinx provides the option
files listed in the table for each flow type. You can also create your
own option files.

Note This chapter uses the UNIX command line syntax. UNIX
platforms use a slash (/) to specify a directory path while PCs use a
backslash (\). Make sure that you use the correct syntax for your
platform.

Flow type can be any of those listed in the “Flow Types” section. If you
do not specify a flow type on the command line, XFLOW defaults to
the -implement fast_runtime flow type on FPGA devices and the -fit
balanced flow type on CPLD devices. To run functional simulation,
you must specify a flow type. See Table 22-2 for more information.
Each of these flow types requires a file argument, for example,
-implement balanced.

Note The -fsim flow type cannot be used with the -implement, -tsim,
-fit, or -config flow types.

An option file must be specified for each flow type. See the “Option
Files” section for details.

flow types option file

-implement fast_runtime.opt
balanced.opt
high_effort.opt

-tsim See Table 22-2.

-config bitgen.opt

-fit balanced.opt
speed.opt
density.opt

-fsim See Table 22-2.
22-4 Xilinx Development System

XFLOW
An xflow option can be any of the options listed in the following table:

Options can be listed in any particular order. Separate multiple
options with spaces. The design_name is the only required input file.
See the “Option Files” section for a description of input design file
formats.

Running XFLOW
You can run XFLOW iteratively on your design. Before each run, you
can edit any input file. Input files are netlists or program files. When
you edit program files and rerun XFLOW, you need not change the
command line syntax. XFLOW detects that an input file has changed
and runs the flow from that point on. For instance, if you modify the
EDIF file, XFLOW runs all the programs for that flow. If, instead, you
modify the MFP file that the Floor Planner program produces,
XFLOW detects that change and starts the next flow from MAP.

The examples below illustrate how XFLOW works on the first run
and on successive runs.

XFLOW
Options

Arguments Description

–ed export_directory Copies export files to the export_
directory

-f filename Reads command line argument
from file

–g variable:value Specifies a global variable

–h Displays help/usage message

–log Specifies a log file name

–norun Creates flow, option, and script
files in the working directory and
then stops.

–o output_filename Changes output file name

–p partname Specifies a part name

–rd report_directory Copies report files to the
report_directory

–wd working_directory Specifies a working directory
Development System Reference Guide 22-5

Development System Reference Guide
Example 1
The following example shows how to run XFLOW for the first time
using the -implement flow type.

xflow -implement balanced calc

You must have an argument for the flow type. In this example, the
argument for the -implement flow type is the balanced.opt file.
Notice, the filename extensions for both the balanced.opt file and the
calc.edf files are not specified on the command line. XFLOW looks for
the EDIF file with the design name calc, determines it is new or
edited, and executes all the programs specified in the flow file.

XFLOW searches for the fpga.flw and balanced.opt files in the
working directory. If these files cannot be found in the working
directory, XFLOW copies the files to the working directory from the
hierarchical search.

Example 2
The following example illustrates how to use the same command line
syntax to rerun part of the flow. The user edits the MFP file produced
by the Floorplanner and wants to rerun the flow from MAP.

xflow -implement balanced calc

The command line syntax remains the same as in Example 1.
However, XFLOW detects the change in the calc.mfp file and there-
fore starts executing the programs in the flow file from MAP.

Note In order for XFLOW to detect input file changes on its own, you
must not enter the design filename extension on the command line. If
you do specify the design filename extension, it is an explicit
directive to XFLOW to look at that particular input file. In the above
example, you can specify the NGD extension to the design. If you
enter the filename calc.ngd on the command line it explicitly directs
XFLOW to use the NGD file as its input and start the flow from MAP.

Example 3
On the third run of XFLOW, the user edits the option file by
modifying the Trace command line.

xflow -implement balanced calc
22-6 Xilinx Development System

XFLOW
The command line syntax remains the same as in the earlier runs of
XFLOW shown in Examples 1 and 2. In this case, XFLOW notes the
change in the option file and starts the flow from the Trace program.

More Examples
The examples in this section show how to use combinations of flow
types and options on different designs.

The following example shows how to use a combination of flow
types to implement, configure, and perform an EDIF timing
simulation on an FPGA.

xflow -p xcv100bg256-5 -implement balanced -tsim
generic_edif -config bitgen testclk

The following example shows how to use a combination of flow
types to fit and perform a VHDL timing simulation on a CPLD.

xflow -p xc95144pq160-7 -fit balanced -tsim
generic_vhdl main_pcb

Flow Types
Following is a description of the flow types and how they affect the
behavior of XFLOW. For a desired flow, select a combination of the
-implement, -tsim, -fit, -fsim, and -config flow types.

Note The -fsim flow type must be used by itself and cannot be
combined with the -implement, -tsim, -fit, or -config flow types.

You do not need to specify the complete path for option files on the
command line. XFLOW searches for option files in the following
hierarchy:

• Current working directory (first)

• Directories specified using XFLOWPATH

• $XILINX (last)

If you want to create your own option files, Xilinx recommends that
you make a copy of an existing file, rename it option_file.opt, and
then modify it.
Development System Reference Guide 22-7

Development System Reference Guide
–config (Create a BIT File for FPGAs)
-config option_file[.opt]

This flow type creates a bitstream for FPGA device configuration. The
-config flow type automatically invokes the fpga.flw flow file in the
$XILINX/xilinx/data directory. The flow file runs only BITGEN.

Xilinx provides the bitgen.opt option file as the only option_file in the
$XILINX/xilinx/data directory.

Note The -config flow type requires a file name argument. There is no
implied default.

Example:

The following example shows how to use a combination of flow
types to implement and configure an FPGA.

xflow -p xcv100bg256-5 -implement balanced[.opt]
-config bitgen[.opt] testclk.edf

–fit (Fit a CPLD Device)
–fit option_file[.opt]

This flow type incorporates logic from a design into physical
macrocell locations in a CPLD. Routing is performed automatically.

Xilinx provides three files as option_files in the $XILINX/epld/data
directory. These files are shown in the following table.

The -fit flow type automatically copies the cpld.flw flow file from the
$XILINX/epld/data directory. The flow file runs the ngdbuild, hitop,
taengine, hprep sequence.

Note The -fit flow type requires a file name argument. There is no
implied default.

Table 22-1 Option Files for -fit

Option Files Description

balanced.opt balanced between speed and density

speed.opt optimized for speed

density.opt optimized for density
22-8 Xilinx Development System

XFLOW
Example:

The following example shows how to use a combination of flow
types to fit and perform a VHDL timing simulation on a CPLD.

xflow -p xc95144pq160-7 -fit balanced[.opt] -tsim
generic_vhdl[.opt] main_pcb.edn

–fsim (Perform a Functional Simulation)
–fsim option_file[.opt]

This flow type performs a functional simulation for FPGA or CPLD
designs.

Xilinx provides FPGA option_files in the $XILINX/xilinx/data
directory and CPLD option_files in $XILINX/epld/data. The
following table summarizes these option files.

Table 22-2 Option Simulation Files

Flow Name Family Option File Description

VHDL Functional/
Timing
Simulation

FPGA/
CPLD

generic_vhdl.opt Generic VHDL

active_vhdl.opt Active VHDL

modelsim_vhdl.opt Modelsim VHDL

vss_vhdl.opt VSS VHDL

speedwave_vhdl.opt Speedwave VHDL

Verilog Functional/
Timing
Simulation

FPGA/
CPLD

generic_verilog.opt Generic Verilog

modelsim_verilog.opt Modelsim Verilog

concept_nc_verilog.opt Concept-NC Verilog

concept_verilog_xl.opt Concept Verilog-XL

nc_verilog.opt NC Verilog

verilog_xl.opt Verilog-XL

vcs_verilog.opt VCS Verilog

EDIF Functional/
Timing Simulation
Flow

FPGA/
CPLD

generic_edif.opt Generic EDIF

fndtn_edif.opt Foundation EDIF

viewsim_edif.opt Viewsim EDIF

quicksim_edif.opt Quicksim EDIF
Development System Reference Guide 22-9

Development System Reference Guide
Note The -fsim flow type requires a file name argument. There is no
implied default. Also, you cannot use this flow type in conjunction
with the -implement, -tsim, -config, or -fit flow types.

The following example show how to perform an EDIF functional
simulation on an FPGA.

xflow -p xcv100bg256-5 -fsim generic_edif[.opt]
testclk.edf

–implement (Run FPGA implementation)
–implement option_file[.opt]

Xilinx provides three option_files in the $XILINX/xilinx/data
directory. The -implement flow type automatically invokes the
fpga.flw flow file in the $XILINX/xilinx/data directory. The flow file
runs ngdbuild, map, trce, par, and trce.

Note The -implement flow type requires a file name argument. There
is no implied default.

The following table shows the option files provided by Xilinx.

Table 22-3 Option Files for -implement

Option Files Family Description

fast_runtime.opt FPGA Runs the software tools non-
timing driven. This option file
provides the fastest runtimes at
the expense of design
performance. It is recommended
for medium to slow speed
designs.

balanced.opt FPGA Runs at PAR Effort Level 2.
Operates at a level between
fast_runtime.opt and
high_effort.opt

high_effort.opt FPGA Runs the software tools timing
driven at PAR Effort Level 4. High
effort creates longer
runtimes. It is recommended for
creating designs that operate at
high speeds.
22-10 Xilinx Development System

XFLOW
The following example show how to use the -implement flow type.

xflow -p xcv100bg256-5 -implement balanced[.opt]
testclk.edf

XFLOW searches for the fpga.flw and balanced.opt files in the
working directory. If these files cannot be found in the working
directory, XFLOW copies the files to the working directory from
either the path specified by the XFLOWPATH environment variable
the install area and then executes the programs specified in the flow
file.

–tsim (Perform a Timing Simulation)
–tsim option_file[.opt]

This flow type performs a timing simulation for FPGA or CPLD
designs.

Xilinx provides FPGA option_files in the $XILINX/xilinx/data
directory and CPLD option_files in $XILINX/epld/data. See Table 22-
2 for a list of the files.

Note The -tsim flow type requires a file name argument. There is no
implied default.

Example:

The following example shows how to use a combination of flow
types to fit and perform a VHDL timing simulation on a CPLD.

xflow -p xc95144pq160-7 -fit balanced.opt -tsim
generic_vhdl.opt main_pcb.edn

Option Files
The options for all programs that are part of a flow are contained in
option files. These files have an .opt extension. Xilinx provides option
files for each flow type. Refer to the previous flow file subsections for
a listing of the installed option files.

• –config (Create a BIT File for FPGAs)

• –fit (Fit a CPLD Device)

• –fsim (Perform a Functional Simulation)

• –implement (Run FPGA implementation)
Development System Reference Guide 22-11

Development System Reference Guide
• –tsim (Perform a Timing Simulation)

The option files are located in the $XILINX/xilinx/data or $XILINX/
epld/data directories.The option file data is in ASCII format, which
can be edited.

Option File Structure and Content
For each program in the flow file, the option file has a corresponding
program block. This block lists the default command line options that
are enabled. Preceding each block is a comment section with help
messages to obtain the list of all command line options for a program.

Options in the option file can be switches, files, or parameter files.

• Switches

Switches that do not require any arguments, that is, the switch
enables or disables a specific operation. For example. -r

Switches that require one or more arguments that are strings or
integers. For example, -pl 5 or -cm area.

Switches that accept values in the format option value:value. For
example, -g DonePin:PULLUP;

• Files

This category includes command line options that are just file
names.

Example: calc.pcf;

• Parameter files

This category specifies parameters for programs in a flow. All the
parameters are written into a file.

Example:

CTL file for program hitop for CPLD devices. The option file for
CPLD flow has the following entry for program "hitop" to create
the CTL file.

Program hitop

-f <design>.ngd;

-d <design>;
22-12 Xilinx Development System

XFLOW
-l <design>.log

ParamFile: <design>.ctl

"DT_SYNTHESIS:TRUE";

"MC9500_INPUT_LIMIT: 36";

"GSR_OPT; TRUE";

End ParamFile

End Program

hitop

For this example, XFLOW creates a CTL file, design.ctl with all the
parameters listed in the option file.

Option File Sample
Following is an option file, balanced.opt, that is used with the
-implement flow type. For the most up-to-date version of the file, see
the file located in $XILINX/xilinx/data.

FLOWTYPE = FPGA;
###
Filename: balanced.opt
##
Option File For Xilinx FPGA Implementation Flow
Version: 3.1.1
###

Options for Translator
#
Type "ngdbuild -h" for a detailed list of ngdbuild command line
options
#
Program ngdbuild
-p <partname>; # Partname to use - picked from xflow
commandline
-nt timestamp; # NGO File generation. Regenerate only when

source netlist is newer than existing
NGO file (default)

<userdesign>; # User design - pick from xflow command line
Development System Reference Guide 22-13

Development System Reference Guide
<design>.ngd; # Name of NGD file. Filebase same as design
filebase
End Program ngdbuild

#
Options for Mapper
#
Type "map -h <arch>" for a detailed list of map command line
options
#
Program map
-o <design>_map.ncd;# Output Mapped ncd file
<inputdir><design>.ngd;# Input NGD file
<inputdir><design>.pcf;# Physical constraints file
END Program map

#
Options for Post Map Trace
#
Type "trce -h" for a detailed list of trce command line options

#
Program post_map_trce
-e 3; # Produce error report limited to 3 items per
constraint
-o <design>_map.twr;# Output trace report file
<inputdir><design>_map.ncd; # Input mapped ncd
<inputdir><design>.pcf; # Physical constraints file
END Program post_map_trce
#
Options for Place and Route
#
Type "par -h" for a detailed list of par command line options

#
Program par
<design>_map.ncd; # Input mapped NCD file
<inputdir><design>.ncd; # Output placed and routed NCD
<inputdir><design>.pcf; # Input physical constraints file
END Program par

22-14 Xilinx Development System

XFLOW
#
Options for Post Par Trace
#
Type "trce -h" for a detailed list of trce command line options

#
Program post_par_trce
-e 3; # Produce error report limited to 3 items per
constraint
-o <design>.twr; # Output trace report file
<inputdir><design>.ncd; # Input placed and routed ncd
<inputdir><design>.pcf; # Physical constraints file
END Program post_par_trce

XFLOW Options
This section describes the xflow options. These options can be used at
the command line with any of the flow types and their arguments.

–ed (Copy Files to Export Directory)
–ed export_directory

This option copies files specified in the export section of a flow file to
the export_directory. The default is the working directory. See the
“Flow Files” section for a description of the export section of the flow
file.

If you use the -ed export_directory option with the -wd
working_directory option and do not specify an absolute pathname for
the export_directory, the directory is placed underneath the
working_directory. For example,

xflow -p xcv100bg256-5 -implement balanced.opt -wd
sub3 -ed /usr/export3 testclk.edf

The export3 directory is created if it does not already exist
underneath the sub3 directory.

If you do not want the export directory to be a subdirectory of the
working directory, enter an absolute pathname. For example,

xflow -p xcv100bg256-5 -implement balanced.opt -wd
sub3 -ed /usr/export3 testclk.edf
Development System Reference Guide 22-15

Development System Reference Guide
–g (Specify a Global Variable)
–g variable:value

You can specify a global variable at the command line or in the flow
file. If global variables are specified in both places, the command line
takes precedence over the flow file. For an example of global
variables in the flow file, see the sample flow file in the “Flow Files”
section.

The following example shows how to specify a global variable at the
command line.

xflow -implement balanced -g$simulation_output :
time_sim calc

–h (Help)
The -h option displays a list of valid options with brief descriptions.

–log (Specify Log File)
The -log option allows you to specify a log filename at the command
line. XFLOW writes the log file to the working directory after each
run. By default, the log filename is xflow.log.
22-16 Xilinx Development System

XFLOW
–norun (Creates a Script File)
By default, XFLOW begins executing programs that are enabled in
the flow file. If you do not want program execution to begin, specify
the -norun option. XFLOW then creates test flow and option files
listing the command lines for all the enabled program and then stops.

The following example shows how to use the -norun option to create
the initial flow and options files in the working directory and then
stop.

xflow -p xcv100bg256-5 -implement balanced.[opt]
-norun testclk.edf

This example copies the balanced.opt and fpga.flw files to the current
directory. The example command also creates the following script
file:

###
Script file to run the flow

###
#
Command line for ngdbuild
#
ngdbuild -p xcv100bg256-5 -nt timestamp /home/
xflow_test/testclk.edf testclk.ngd
#
Command line for map
#
map -o testclk_map.ncd testclk.ngd testclk.pcf
#
Command line for par
#
par -w -ol 2 -d 0 testclk_map.ncd testclk.ncd
testclk.pcf
#
Command line for post_par_trce
#
trce -e 3 -o testclk.twr testclk.ncd testclk.pcf
Development System Reference Guide 22-17

Development System Reference Guide
–o (Change Output File Name)
–o output_filename

This option allows you to change the output file base name. If you do
not specify this option, the output file name will have the base name
of the input file.

The following example show how to use the -o option to change the
base name of output files.

xflow -p xcv100bg256-5 -implement balanced [.opt] -o
newname testclk.edf

All output files have the base name “newname” instead of “testclk”.

–p (Enter a Part Name)
–p partname

The –p option allows you to specify a device. For a list of valid
options, see the “Part Numbers in Commands” section of the
“Introduction” chapter.

For FPGA part types, you must designate a part name with a package
name. If you do not, XFLOW halts at map indicating that a package
needs to be specified. (You can obtain package names for installed
devices using the PARTGEN command with the -i option.)

If the -p option is not specified, one of the following occurs:

• XFLOW searches for the part name in the input design file. If
XFLOW finds a part number, it uses that number as the target
device for the design.

• If XFLOW does not find a part number in the design input file, it
prints an error message indicating that a part number is missing.

Note If the design is a CPLD, either the part number or the family
name can be specified.

The following example show how to use the -p option for a Virtex
design.

xflow -p xcv100bg256-5 -implement high_effort.opt
testclk.edf
22-18 Xilinx Development System

XFLOW
–rd (Copy Report Files)
–rd report_directory

The -rd option copies the reports specified in the report section of the
of the flow file to the report_directory. The default report_directory is
the working directory.

If you use the -rd report_directory option with the -wd
working_directory option and do not specify an absolute pathname for
the report_directory, the directory is placed underneath the
working_directory. For example,

xflow -p xcv100bg256-5 -implement balanced.opt -wd
sub3 -rd report3 testclk.edf

The report3 directory is created, if it does not already exist, under-
neath the sub3 directory.

If you do want the report directory to be a subdirectory of the
working directory, enter an absolute pathname. For example,

xflow -p xcv100bg256-5 -implement balanced.opt -wd
sub3 -rd /usr/report3 testclk.edf

Refer to the following for a list of FPGA and CPLD report files:

• Table 22-6

• Table 22-7

–wd (Specify a Working Directory)
–wd working_directory

The -wd option defines a working directory. The default is the current
directory. If no path is specified for the working_directory, then the
directory is created, if it does not already exist, in the current working
directory and all generated files are placed in the new directory. For
example, assume that your current working directory is named
“project”, your design name is “test_clock.edf” and you enter the
following command:

xflow -p xcv100bg256-5 -fsim generic_edif.opt -wd sub1
testclk.edf

The directory sub1 is created, if it does not already exist, and all the
files generated from XFLOW are placed in the sub1 directory.
Following is a list of the files for the example.
Development System Reference Guide 22-19

Development System Reference Guide
• fsim.flw

• netlist.lst

• test_clock.ngo

• func_sim.edn

• test_clock.bld

• xflow.log

• generic_edif.opt

• test_clock.ngd

• xflow.scr

You can also enter an absolute path for a working_directory.
Following is an example for an existing directory, /usr/project1.

xflow -p xcv100bg256-5 -fsim generic_edif.opt -wd /
usr/project1 testclk.edf

In this example, all generated files are placed in /usr/project1.

Input Files
The inputs to XFLOW are a user input file, a flow file, and one or
more option files.The flow file is automatically utilized when
specifying a flow type—implement, tsim, config, fit, or fsim.

User Input Design File
The only required input file to XFLOW is an input design file. This
design file can be an EDIF or XNF netlist, a PLD file, an NGD file, or
NCD file. The following table indicates valid input files. The input
file must be in one of these formats.

An input netlist file usually has a top-level module and several sub-
design modules. The top-level file must be in one of the supported
formats. The sub-design modules can be in other formats such as
Verilog and VHDL.
22-20 Xilinx Development System

XFLOW
The UCF file allows you to specify constraints independently of an
input netlist file. There can only be one UCF file per design. The UCF
file will be read automatically by NGDBuild if the file resides in the
same directory and has the same base name as the input design file. If
the UCF file must have a different base name than an input netlist
file, you can modify the -uc option for NGDBuild in an option file to
read the UCF file.

All other input files are specified as arguments to the options. These
option files are described in the “Option Files” section.

NGD files or NCD files can also be used as input files if you want to
start the flow at an intermediate point such as MAP or PAR, rather
than at the beginning stage with an EDIF or XNF netlist.

Table 22-4 Valid Input Files

File Type Syntax Location

EDIF Netlist *.edf
*.edn
*.edif
*.sedif

Current working directory

XNF Netlist *.xnf
*.xtf
*.sxnf

Current working directory

PLD File *.pld Current working directory

NGD File *.ngd Current working directory

NCD File *.ncd Current working directory
Development System Reference Guide 22-21

Development System Reference Guide
Flow Files
The following subsections describe the flow file and provide an
example.

Description

All designs targeted for Xilinx devices follow a flow. A flow is a
sequence of programs that are automatically invoked to implement,
configure, and simulate a design. For example, to prepare an FPGA
design for VHDL timing simulation, run the design through
ngdbuild, map, par, ngdanno, and ngd2vhdl program flow. This
sample flow requires the use of the -implement and -tsim flow types.

If you select either the -implement, -fit, -config, -tsim, or -fsim flow
type, XFLOW automatically invokes one of the XIlinx flow files. The
following table shows which flow files are invoked for each flow
type.

Note Invoked programs depend on which option file is used with
each flow type. See the “Option Files” section for details about option
files.

The flow file, which is ASCII format, contains the following
information.

Table 22-5 Xilinx Flow Files

Family Flow Name Flow Type Flow Phase Programs

FPGA fpga.flw
-implement Implementation ngdbuild, map, trce, par, trce

-tsim Timing
Simulation

ngdanno, ngd2edif, ngd2ver,
ngd2vhdl

-config Configuration bitgen

CPLD cpld.flw -fit Fit ngdbuild, hitop, taengine,
hprep6

-tsim Timing
Simulation

tsim, ngd2edif, ngd2ver,
ngd2vhdl

FPGA/
CPLD

fsim.flw -fsim Functional
Simulation

ngdbuild, ngd2edif, ngd2ver,
ngd2vhdl
22-22 Xilinx Development System

XFLOW
• ExportDir

The directory in which to copy the outputs of individual
programs in the flow. The output files are specified under the
Exports option in the program block. ExportDir defaults to your
working directory. You can also specify the export directory
using the -ed command line option. The command line overrides
any Export directory in a flow file.

• ReportDir

The directory in which to copy the report files generated by the
programs in the flow. The report files are specified under the
Reports option in the program block. ReportDir defaults to your
working directory. You can also specify the report directory using
the -rd command line option. The command line overrides any
Report directory in a flow file.

• Program block for each executable in the flow

Each program has the following information

♦ Program program_name

The name of the program, for example, ngdbuild. The
Program statement is the first line of the Program block. The
last line of a Program block is End Program.

♦ Flag: ENABLED | DISABLED

ENABLED: Only run the program if there are options in the
options file.

DISABLED: Do not run the program even if there are options
in the options file.

♦ Input:filename

The name of the input file for the program. For example, for
the map program, the input file is a design.ngd file.

♦ Executable:executable_name

A program block can be defined with or without the
Executable construct. The Executable construct is useful
when you want to define multiple option blocks for the same
program.
Development System Reference Guide 22-23

Development System Reference Guide
Case 1:

If a program is defined with the Executable construct,
XFLOW uses the executable_name to build the program’s
command line. The program’s option block in the option file
has the same program_name. The program_name masks the
executable name so that you can define multiple option
blocks for the same program allowing you to control which
programs are executed

For example, if you want to run TRCE, once after MAP and
then again after PAR. The program name can be given any
name you want. Within the block, the Executable construct
will specify the correct name of the program. When XFLOW
builds the command line for the program, it uses the name
specified within the Executable construct. When you define
the options for TRCE in the option file, there will be two
entries and XFLOW will choose the correct one.

Example:

Program post_map_trce
Flag: ENABLED
Executable: trce
Input: design_map.ncd
Exports: design.twr
End Program post_map_trce

Case 2:

If a program block is defined without the Executable
construct, XFLOW uses the program_name to build the
command line

♦ Exports: exported_files_list

List of program output files to copy into ExportDir

♦ Reports: list_of_report_files

List of program generated report files to copy into ReportDir
22-24 Xilinx Development System

XFLOW
♦ Variable Assignments $variable_name=value;

Variable assignments can be used in the option files. During
runtime, variables are substituted with their assigned values.
You can use variables to specify the base name for the reports
and program input or output files. The base name for
functional simulation is func_sim. The base name for timing
simulation is time_sim. Defined variables have global scope.

♦ End Program program_name

The last line of a Program block is End Program.

• User command block

You can use this block to run programs or scripts between Xilinx
programs. For example, if you want to run a script after map, you
can add a User Command Block in the fpga.flw file as follows:

UserCommand

Cmdline: “myscript.csh”

End UserCommand

Following are some more examples of User Command Blocks:

UserCommand

Cmdline:"printenv";

End UserCommand

UserCommand

Cmdline:"ls -ltr";

End UserCommand

UserCommand

Cmdline:"ls -l calc.ngo";#This works if calc.ngo

#exists.

If calc.ngo does not
exist,

the ls command will

return a non zero

to xflow and xflow will
Development System Reference Guide 22-25

Development System Reference Guide
end and give an

error message.

End UserCommand

UserCommand

Cmdline:"/home/test/xflow/userscript.csh";

End UserCommand

Following are some examples of User Command Blocks that do
not work.

UserCommand

Cmdline:"ls -l *.ngo"; # doesn’t handle the
"*"

End UserCommand

UserCommand

Cmdline:"/bin/rm -rf $MYVAR/calc.ngo";

doesn’t handle the "$"

End UserCommand

UserCommand

Cmdline:"if (-e *.ngo) /bin/rm -rf *.ngo";

doesn’t hamdle the "("

End UserCommand

Flow File Example

Following is an example fpga.flw file. For the most up-to-date
version of the file, see the file located in $XILINX/xilinx/data.

###
FileName: fpga.flw
##
Flow File to run Xilinx FPGA Flow
Version: 3.1.1
##
ExportDir: <workdir>; # Directory to copy program outputs
ReportDir: <workdir>; # Directory to copy program reports
22-26 Xilinx Development System

XFLOW

#
#Global user-defined variables
#
Variables
$simulation_output = time_sim;
End variables

#
#Flow Info for XST
#
#Program xst
#Flag: ENABLED
#Input: <synthdesign>
#Triggers: <design>.cst;
#Exports: <design>_xst.edn;
#End Program xst

#
Flow Info for Translator
#
Program ngdbuild
Flag : ENABLED;
Input: <userdesign>
Triggers: <design>.ucf, <design>.urf, <design>.ncf, netlist.lst;
Exports : <design>.ngd;
Reports : <design>.bld;
End Program ngdbuild

#
Flow Info for Mapper
#
Program map
Flag: ENABLED;
Input: <design>.ngd;
Triggers: <design>.mfp;
Exports : <design>_map.ncd;
Reports : <design>_map.mrp;
End Program map

#
Flow Info for Post Map Trace
Development System Reference Guide 22-27

Development System Reference Guide
#
Program post_map_trce
Flag: DISABLED;
Executable: trce;
Input: <design>_map.ncd;
Reports: <design>.twr; <design>_map.tsi;
End Program post_map_trce

#
Flow Info for Place and Route
#
Program par
Flag : ENABLED;
Input: <design>_map.ncd;
Triggers: <design>.pcf;
Exports : <design>.ncd;
Reports: <design>.par <design>.dly, <design>.pad;
End Program par

#
Flow Info for Post Par Trace
#
Program post_par_trce
Flag: ENABLED;
Executable: trce;
Input: <design>.ncd;
Reports: <design>.twr; <design>.tsi;
End Program post_par_trce

#
Flow Info for Annotator
#
Program ngdanno
Flag: ENABLED;
Input: <design>.ncd;
Exports: <design>.nga;
End Program ngdanno

#
Flow Info for EDIF Netlist Writer
#
Program ngd2edif
22-28 Xilinx Development System

XFLOW
Flag: ENABLED;
Input: <design>.nga;
$input_extension = nga;
Exports: $simulation_output.edn $simulation_output.xmm;
End Program ngd2edif

#
#Flow Info for Mentor Quicksim EDIF
#
Program ngd2edif_mentor
Flag: ENABLED
Executable: ngd2edif;
Input: <design>.nga;
$input_extension = nga;
Exports: <design>.edn, <design>.xmm;
End Program ngd2edif_mentor

#
Flow Info for Verilog Netlist Writer
#
Program ngd2ver
Flag: ENABLED;
Input: <design>.nga;
$input_extension = nga;
Exports: $simulation_output.v $simulation_output.sdf,

$simulation_output.pin, $simulation_output.tv;
End Program ngd2ver

#
Flow Info for VHDL Netlist Writer
#
Program ngd2vhdl
Flag: ENABLED;
Input: <design>.nga;
$input_extension = nga;
Exports: $simulation_output.vhd $simulation_output.sdf,

$simulation_output.pin, $simulation_output.tvhd;
End Program ngd2vhdl

#
Flow Info for Bitgen
#

Development System Reference Guide 22-29

Development System Reference Guide
Program bitgen
Flag: ENABLED;
Input: <design>.ncd;
Exports: <design>.bit, <design>.ll, <design>.msk, <design>.rbt;
Reports: <design>.bgn, <design>.drc;
End Program bitgen
#

Output Files
Output files from XFLOW may be generated for the following:

• FPGA programming data

• CPLD programming data

• Annotated netlist data—These files are only generated if you run
the timing simulation flows

• Timing simulation data—These files are only generated if you
run the timing simulation flows. They are the primary output of
the back-annotation process.

• Functional simulation data—These files are only generated if you
run the functional simulation flows.

• Guide data

• Reports

The following tables illustrate specific files that are generated for each
type.

The design.ll file is generated if the -l option is set for bitgen in the
option file.

Table 22-6 FPGA Programming Data

File Type Syntax Location

Bitstream design.bit Current working directory
Export directory

LL file design.ll Current working directory
Export directory

Rawbits file design.rbt Current working directory
Export directory
22-30 Xilinx Development System

XFLOW
The design.rbt file is created if the -b option is set for bitgen in the
option file.

Note that VM6 files from previous releases cannot be used as inputs
to 3.1i downstream processes. You must rerun the fitter using the 3.1i
software to create a new VM6 file before performing any of the
following tasks:

• Creating a JEDEC programming file (.jed file from the hprep
program

• Creating a timing report (.tim file from the taengine)

• Running the Timing Analyzer

• Creating a timing simulation model (.nga file from the tsim
program) for input to NGD2EDIF, NGD2VHDL, or NGD2VER.

Table 22-7 CPLD Programming Data

File Type Syntax Location

JEDEC file design.jed Current working directory
Export directory

Design file design.vm6 Current working directory
Export directory

Table 22-8 Annotated Netlist Data

File Type Syntax Location

EDIF netlist time_sim.edn Current working directory
Export directory

XNF netlist time_sim.xnf Current working directory
Export directory

XMM file time_sim.xm
m

Current working directory
Export directory
Development System Reference Guide 22-31

Development System Reference Guide
Annotated netlist files are only generated if you run timing simula-
tion flows.

Table 22-9 Functional Simulation Data

File Type Syntax Location

EDIF simulation file func_sim.edif Current working directory
Export directory

Verilog simulation file func_sim.v Current working directory
Export directory

Verilog test vector file func_sim.tv Current working directory
Export directory

VHDL simulation file func_sim.vhd Current working directory
Export directory

VHDL test vector file func_sim.tvhd Current working directory
Export directory

Table 22-10 Timing Simulation Data

File Type Syntax Location

EDIF simulation file time_sim.edif Current working directory
Export directory

Verilog simulation file time_sim.v Current working directory
Export directory

Verilog test vector file time_sim.tv Current working directory
Export directory

VHDL simulation file time_sim.vhd Current working directory
Export directory

VHDL test vector file time_sim.tvhd Current working directory
Export directory

SDF simulation file time_sim.sdf Current working directory
Export directory
22-32 Xilinx Development System

XFLOW
Timing simulation data files are only generated if you run timing
simulation flows. These files are the primary output of back-
annotation.

XFLOW generates various reports depending on which command
line options are used. The following tables indicate the types of
generated reports.

Table 22-11 Guide Data

File Type Syntax Location

FPGA guide file *.ncd Current working directory
Export directory

CPLD guide file *.gyd Current working directory
Export directory

Table 22-12 Application Data Files

File Type Syntax Location

XFLOW log file xflow.log Current working directory
Export directory

XFLOW script file xflow.scr Current working directory
Export directory

XFLOW history file xflow.his Current working directory
Export directory

Table 22-13 FPGA Report Files

Report Flow Type Location

Translation Report
(design.bld)

Current Working Directory
Report Director

Mapping
(design_map.mrp)

Current Working Directory
Report Director

Logic Level Timing
(design_map.twr)

Current Working Directory
Report Director

Place and Route
(design.par)

-implement Current Working Directory
Report Director

Pad
(design.pad)

Current Working Directory
Report Director
Development System Reference Guide 22-33

Development System Reference Guide
Asynchronous Delay
(design.dly)

Current Working Directory
Report Director

Post Layout Timing
(design.twr)

Current Working Directory
Report Director

BitGen
(design.bgn)

-config Current Working Directory
Report Director

Table 22-14 CPLD Report Files

Report Flow Type Location

Translation
(design.bld)

Current Working Directory
Report Directory

Fitting
(design.rpt)

-fit Current Working Directory
Report Directory

Post Layout Timing
(design.tim)

Current Working Directory
Report Directory

Table 22-13 FPGA Report Files

Report Flow Type Location
22-34 Xilinx Development System

Appendix A

Xilinx Development System Files

This appendix gives an alphabetic listing of the files used by the
Xilinx Development System.

Name Type Produced By Description

ALF ASCII NGDAnno Log file containing information
about an NGDAnno run

ARF ASCII NGDAnno Report file containing information
about lost instance or net names

BIT Data BitGen Download bitstream file for devices
containing all of the configuration
information from the NCD file

BGN ASCII BitGen Report file containing information
about a BitGen run

BLD ASCII NGDBuild Report file containing information
about an NGDBuild run, including
the subprocesses run by NGDBuild

DATA C File TRCE File created with the -stamp option
to TRCE that contains timing model
information

DC ASCII Synopsys FPGA
Compiler

Synopsys setup file containing
constraints read into the Xilinx
Development System

DLY ASCII PAR File containing delay information
for each net in a design

DRC ASCII BitGen Design Rule Check file produced by
BitGen
Development System Reference Guide — 3.1i A-1

Development System Reference Guide
EDIF (various
file extensions)

ASCII CAE vendor’s EDIF 2
0 0 netlist writer.

EDIF netlist. The Xilinx Develop-
ment System accepts an EDIF 2 0 0
Level 0 netlist file

EDN ASCII NGD2EDIF Default extension for an EDIF
2 0 0 netlist file

EPL ASCII FPGA Editor FPGA Editor command log file. The
EPL file keeps a record of all FPGA
Editor commands executed and
output generated. It is used to
recover an aborted FPGA Editor
session.

EXO Data PROMGen PROM file in Motorola’s EXORMAT
format

FLW ASCII Provided with soft-
ware

File containing command sequences
for XFLOW programs

fpga_editor.ini ASCII Xilinx software Script that determines what FPGA
Editor commands are performed
when the FPGA Editor starts up

fpga_editor_
user.ini

ASCII Xilinx software Supplement to the fpga_editor.ini
file used for modifying or adding to
the fpga_editor.ini file

GYD ASCII CPLD fitter CPLD guide file

HEX Hex PROMGen Command Output file from PROMGEN that
contains a hexadecimal representa-
tion of a bitstream

ITR ASCII PAR Intermediate failing timespec
summary from routing

JED JEDEC CPLD fitter Programming file to be down-
loaded to a device

LOG ASCII NGD2VER
NGD2VHDL

Log file containing all the messages
generated during the execution of
NGD2VER (ngd2ver.log) or
NGD2VHDL (ngd2vhdl.log)

LCA ASCII Xilinx Development
System

Mapped file of an earlier release
Xilinx design

Name Type Produced By Description
A-2 Xilinx Development System

L2N ASCII LCA2NCD Report file containing information
about an LCA2NCD run

LL ASCII BitGen Optional ASCII logic allocation file
with an .ll extension. The logic allo-
cation file indicates the bitstream
position of latches, flip-flops, and
IOB inputs and outputs.

MEM ASCII User (with text editor)
LogiBLOX

User-edited memory file that
defines the contents of a ROM

MCS Data PROMGen PROM-formatted file in Intel’s
MCS-86 format

MDF ASCII MAP or LCA2NCD A file describing how logic was
decomposed when the design was
mapped. The MDF file is used for
guided mapping.

MFP ASCII Floorplanner Map Floorplanner File, which is
generated by the Floorplanner,
specified as an input file with the
–fp option. The MFP file is essen-
tially used as a guide file for
mapping.

MOD ASCII TRCE File created with the –stamp option
in TRCE that contains timing model
information

MRP ASCII MAP MAP report file containing informa-
tion about a technology mapper
command run

MSK Data BitGen File used to compare relevant bit
locations when reading back config-
uration data contained in an oper-
ating Xilinx device

NCD Data Mappers, LCA2NCD,
PAR, FPGA Editor

Flat physical design database corre-
lated to the physical side of the
NGD in order to provide coupling
back to the user’s original design

Name Type Produced By Description
Development System Reference Guide A-3

Development System Reference Guide
NCF ASCII CAE Vendor toolset Vendor-specified logical constraints
files

NGA Data NGDAnno Back-annotated mapped NCD file

NGC Binary LogiBLOX File containing the implementation
of a module in the design

NGD Data NGDBuild Generic Database file. This file
contains a logical description of the
design expressed both in terms of
the hierarchy used when the design
was first created and in terms of
lower-level Xilinx primitives to
which the hierarchy resolves.

NGM Data MAP File containing all of the data in the
input NGD file as well as informa-
tion on the physical design
produced by the mapping. The
NGM file is used for back-annota-
tion.

NGO Data Netlist Readers File containing a logical description
of the design in terms of its original
components and hierarchy

NMC Binary FPGA Editor Xilinx physical macro library file
containing a physical macro defini-
tion that can be instantiated into a
design

OPT Text Input file option Option file used by XFLOW

PAD ASCII PAR File containing a listing of all
I/O components used in the design
and their associated primary pins

PAR ASCII PAR PAR report file containing execution
information about the PAR
command run. The file shows the
steps taken as the program
converges on a placement and
routing solution

Name Type Produced By Description
A-4 Xilinx Development System

PCF ASCII MAP, FPGA Editor File containing physical constraints
specified during design entry (that
is, schematics) and constraints
added by the user

PRM ASCII PROMGen File containing a memory map of a
PROM file showing the starting and
ending PROM address for each BIT
file loaded

RBT ASCII BitGen “Rawbits" file consisting of ASCII
ones and zeros representing the
data in the bitstream file

RPT ASCII PIN2UCF Report file generated by PIN2UCF
when conflicting constraints are
discovered. The name is pinlock.rpt.

RCV ASCII FPGA Editor FPGA Editor recovery file

SCR ASCII FPGA Editor or
XFLOW

FPGA Editor or XFLOW command
script file

SDF ASCII NGD2VER,
NGD2VHDL

File containing the timing data for a
design. Standard Delay Format File

TDR ASCII DRC Physical DRC report file

TEK Data PROMGen PROM-formatted file in Tektronix’s
TEKHEX format

TV ASCII NGD2VER Verilog test fixture file

TVHD ASCII NGD2VHDL VHDL testbench file

TWR ASCII TRACE Timing report file produced by
TRACE

UCF ASCII User (with text editor) User-specified logical constraints
files

URF ASCII User (with text editor) User-specified rules file containing
information about the acceptable
netlist input files, netlist readers,
and netlist reader options

V ASCII NGD2VER Verilog netlist

VHD ASCII NGD2VHDL VHDL netlist

Name Type Produced By Description
Development System Reference Guide A-5

Development System Reference Guide
VM6 Design CPLD Fitter Output file from fitter

XMM ASCII NGD2EDIF File defining the initial contents of
the RAMs in the design for a simu-
lator

XNF ASCII Previous releases of
Xilinx Development
System, CAE vendor
toolsets

Xilinx netlist format file

XTF ASCII Previous releases of
Xilinx Development
System

Xilinx netlist format file

XPI ASCII PAR File containing PAR run summary

Name Type Produced By Description
A-6 Xilinx Development System

Appendix B

EDIF2NGD, XNF2NGD, and NGDBuild

This appendix describes the netlist reader programs, EDIF2NGD and
XNF2NGD, and how these programs interact with NGDBuild. The
appendix contains the following sections.

• “EDIF2NGD”

• “XNF2NGD”

• “NGDBuild”

• “Netlister Launcher”

• “File Names and Locations”

EDIF2NGD
This program is compatible with the following families.

• Spartan/XL/-II

• Virtex/-E/-II

• XC9500/XL/XV

• XC4000E/L/EX/XL/XV/XLA

• XC3000A/L

• XC3100A/L

• XC5200

The EDIF2NGD program allows you to read an EDIF (Electronic
Design Interchange Format) 2 0 0 file into the Xilinx Development
System toolset. EDIF2NGD converts an industry-standard EDIF
netlist to an NGO file—a Xilinx-specific format. The EDIF file
includes the hierarchy of the input schematic. The output NGO file is
Development System Reference Guide — 3.1i B-1

Development System Reference Guide
a binary database describing the design in terms of the components
and hierarchy specified in the input design file. The following figure
shows the flow through EDIF2NGD.

Figure B-1 EDIF2NGD Design Flow

The NGO file can be converted to an NGD file using the NGDBuild
program. The NGD file can be mapped into an NCD file, which can
then be placed and routed.

Synthesis
Vendor Tools

NCF
Netlist Constraints File

EDIF2NGD

Schematic
Drawing

EDIF 2 0 0
Writer

NGO

EDIF 2 0 0 Netlist

CAE VENDOR
TOOLS

XILINX
DEVELOPMENT
SYSTEM

X6994
B-2 Xilinx Development System

EDIF2NGD, XNF2NGD, and NGDBuild
The input file must be a Level 0 EDIF netlist, as defined in the EDIF 2
0 0 specification. The Xilinx Development System toolset can under-
stand EDIF files developed using components from any of these
libraries.

• Xilinx Unified Libraries (described in the Libraries Guide)

• XSI (Xilinx Synopsys Interface) Libraries

• Any Xilinx physical macros you create

Note Xilinx tools do not recognize Xilinx Unified Libraries compo-
nents defined as macros; they only recognize the primitives from this
library. The third-party EDIF writer must include definitions for all
macros.

You can run EDIF2NGD in the following ways.

• From the Design Manager/Flow Engine with the Translate step

• Automatically from NGDBuild

• From the UNIX or DOS command line, as described in the
following sections

Note When creating nets or symbols names, do not use reserved
names. Reserved names are the names of symbols for primitives and
macros in the Libraries Guide and net names GSR, RESET, GR, and
PRELOAD. If you used these names, EDIF2NGD issues an error.

EDIF2NGD Syntax
The following command reads your EDIF netlist and converts it to an
NGO file.

edif2ngd [options] edif_file ngo_file

options can be any number of the EDIF2NGD options listed in the
“EDIF2NGD Options” section. They do not need to be listed in any
particular order. Separate multiple options with spaces.

edif_file is the EDIF 2 0 0 input file to be converted. The file must have
an extension. If the file has an extension other than .edn, you must
enter the extension as part of edif_file. If you enter a file name with no
extension, EDIF2NGD looks for a file with an .edn extension and the
name you specified.
Development System Reference Guide B-3

Development System Reference Guide
Note For EDIF2NGD to read a Mentor Graphics EDIF file, you must
have installed the Mentor Graphics software component on your
system. Similarly, to read a Cadence EDIF file, you must have
installed the Cadence software component.

ngo_file is the output file in NGO format. The output file name, its
extension, and its location are determined in the following way.

• If you do not specify an output file name, the output file has the
same name as the input file, with an .ngo extension.

• If you specify an output file name with no extension, EDIF2NGD
appends the .ngo extension to the file name.

• If you specify a file name with an extension other than .ngo, you
get an error message and EDIF2NGD does not run.

• If you do not specify a full path name, the output file is placed in
the directory from which you ran EDIF2NGD.

If the output file exists, it is overwritten with the new file.

EDIF2NGD Files
This section describes the EDIF2NGD input and output files.

Input Files

EDIF2NGD uses the following files as inputs.

• EDIF file—This is an EDIF 2 0 0 netlist file. The file must be a
Level 0 EDIF netlist, as defined in the EDIF 2 0 0 specification.

• NCF file—This Netlist Constraints File is produced by a vendor
toolset and contains constraints specified within the toolset.
EDIF2NGD reads the constraints in this file and adds the
constraints to the output NGO file.

EDIF2NGD reads the constraints in the NCF file if the NCF file
has the same base name as the input EDIF file and an .ncf exten-
sion. The name of the NCF file does not have to be entered on the
EDIF2NGD command line.
B-4 Xilinx Development System

EDIF2NGD, XNF2NGD, and NGDBuild
Output Files

The output of EDIF2NGD is an NGO file—a binary file containing a
logical description of the design in terms of its original components
and hierarchy.

EDIF2NGD Options
This section describes the EDIF2NGD command options.

–a (Add PADs to Top-Level Port Signals)

The –a option adds PAD properties to all top level port signals. This
option is necessary if the EDIF2NGD input is an EDIF file in which
PAD symbols were translated into ports. If you do not specify a –a
option for one of these EDIF files, the absence of PAD instances in the
EDIF file causes EDIF2NGD to read the design incorrectly. Subse-
quently, MAP interprets the logic as unused and removes it.

In all Mentor Graphics and Cadence EDIF files PAD symbols are
translated into ports. For EDIF files from either of these vendors, the –
a option is set automatically; you do not have to enter the –a option
on the EDIF2NGD command line.

–f (Execute Commands File)

–f command_file

The –f option executes the command line arguments in the specified
command_file. For more information on the –f option, see the “–f
Option” section of the “Introduction” chapter.

–l (Libraries to Search)

–l libname

The –l option specifies a library to search when determining what
library components were used to build the design. This information
is necessary for NGDBuild, which must determine the source of the
design’s components before it can resolve the components to Xilinx
primitives.
Development System Reference Guide B-5

Development System Reference Guide
You may specify multiple –l options on the command line. Each must
be preceded with –l; you cannot combine multiple libname specifiers
after one –l. For example, –l xilinxun synopsys is not acceptable,
while –l xilinxun –l synopsys is acceptable.

The allowable entries for libname are the following.

• xilinxun (For Xilinx Unified library)

• synopsys

Note You do not have to enter xilinxun with a –l option. The Xilinx
Development System tools automatically access these libraries. You
do not have to enter synopsys with a –l option if the EDIF netlist
contains an author construct with the string “Synopsys.” In this case,
EDIF2NGD automatically detects that the design is from Synopsys.

–p (Part Name)

–p part

The –p option specifies the part into which your design is imple-
mented. The –p option can specify an architecture only, a complete
part specification (device, package, and speed), or a partial specifica-
tion (for example, device and package only).

The syntax for the –p option is described in the “Part Numbers in
Commands” section of the “Introduction” chapter. Examples of part
entries are XCV50-TQ144 and XCV50-TQ144-5.

If you do not specify a part when you run EDIF2NGD, you will have
to specify one when you run NGDBuild.

You can also use the –p option to override a part name in the input
EDIF netlist or a part name in an NCF file.

–r (Ignore LOC Properties)

The –r option filters out all location properties (LOC=) from the
design. This option can be used when you are migrating to a different
device or architecture, because locations in one architecture do not
match locations in another.
B-6 Xilinx Development System

EDIF2NGD, XNF2NGD, and NGDBuild
XNF2NGD
This program is compatible with the following families.

• Spartan/XL/-II

• XC9500/XL/XV

• XC4000E/L/EX/XL/XV/XLA

• XC3000A/L

• XC3100A/L

• XC5200

Note XNF primitives are not defined for the Virtex families, and XNF
files created for Virtex families are rejected by XNF2NGD. However,
if you have XNF netlists that were created for the XC3000, XC4000E,
or XC5200 architectures, you can include these XNF netlists in a
design that you target to a Virtex device.

XNF2NGD allows you to read a Version 6.1 XNF (Xilinx Netlist
Format) file into the Xilinx Development System toolset. XNF2NGD
converts an XNF file to an NGO file, which is a binary database
describing the netlist in terms of Xilinx components. After you
convert the XNF file to an NGO file, you run NGDBuild to create an
NGD file, which expands the design to include a description reduced
to Xilinx primitives. The following figure shows the flow through
XNF2NGD.
Development System Reference Guide B-7

Development System Reference Guide
Figure B-2 XNF2NGD Design Flow

You can run XNF2NGD in the following ways.

• From the Design Manager/Flow Engine with the Translate step

• Automatically from NGDBuild

• From the UNIX or DOS command line, as described in the
following sections.

Note When creating nets or symbols names, do not use reserved
names. Reserved names are the names of symbols for primitives and
macros in the Libraries Guide and net names GSR,RESET, GR, and
PRELOAD. If you use these names, XNF2NGD issues an error.

Synthesis
Vendor Tools

Schematic
Drawing

NCF
Netlist Constraints File

XNF
Writer

XNF2NGD

NGO

XNF
Xilinx Netlist Format

CAE VENDOR
TOOLS

XILINX
DEVELOPMENT
SYSTEM

X7203
B-8 Xilinx Development System

EDIF2NGD, XNF2NGD, and NGDBuild
XNF2NGD Syntax
The following command reads your XNF netlist and converts it to an
NGO file.

xnf2ngd [options] xnf_file ngo_file

options can be any number of the XNF2NGD options listed in the
“XNF2NGD Options” section. They do not need to be listed in any
particular order. Separate multiple options with spaces.

xnf_file is the input file (in XNF format) to be converted. The file can
have any extensions (for example, .xnf, .xtf, .xff, .xg, or .sxnf), as long
as the file is in XNF format. If you enter a file name with no extension,
XNF2NGD looks for a file with an .xnf extension and the name you
specified.

ngo_file is the output file in NGO format. The output file name, its
extension, and its location are determined in the following way.

• If you do not specify an output file name, the output file has the
same name as the input file, with an .ngo extension.

• If you specify an output file name with no extension, XNF2NGD
appends the .ngo extension to the file name.

• If you specify a file name with an extension other than .ngo, you
get an error message and XNF2NGD does not run.

• If you do not specify a full path name, the output file is placed in
the directory from which you ran XNF2NGD.

If the output file already exists, it is overwritten with the new file.

XNF2NGD Files
This section describes the XNF2NGD input and output files.

Input Files

XNF2NGD uses the following files as inputs.

• XNF file—This is the Xilinx Netlist Format (XNF) text file. The
file can have any extension as long as the contents are in XNF
format.

• NCF file—This Netlist Constraints File is produced by a vendor
toolset and contains constraints specified within the toolset.
Development System Reference Guide B-9

Development System Reference Guide
XNF2NGD reads the constraints in this file and adds the
constraints to the output NGO file.

XNF2NGD reads the constraints in the NCF file if the NCF file
has the same name as the input XNF file and an extension of .ncf.
The name of the NCF file does not have to be entered on the
XNF2NGD command line.

Output Files

The output of XNF2NGD is an NGO file—a binary file containing a
logical description of the design in terms of its original components
and hierarchy.

XNF2NGD Options
This section describes the XNF2NGD command options.

–f (Execute Commands File)

–f command_file

The –f option executes the command line arguments in the specified
command_file. For more information on the –f option, see the “–f
Option” section of the “Introduction” chapter.

–l (Libraries to Search)

–l libname

The –l option indicates the list of libraries to search when deter-
mining what library components were used to build the design. This
information is necessary for NGDBuild, which must determine the
source of the design’s components before it can resolve the compo-
nents to Xilinx primitives.

You can specify multiple –l options on the command line. Each must
be preceded with –l; you cannot combine multiple libname specifiers
after one -l. For example, –l xilinxun synopsys is not acceptable,
while –l xilinxun –l synopsys is acceptable.

The allowable entries for libname are the following.

• xilinxun (For Xilinx Unified library)

• synopsys
B-10 Xilinx Development System

EDIF2NGD, XNF2NGD, and NGDBuild
• XC3000

• XC4000

• XC9500

Note You do not have to enter xilinxun with a –l option. The Xilinx
Development System tools automatically access these libraries. In
most cases, you do not have to enter XC3000 or XC4000 with a –l
option. However, if your XNF file contains an input latch (INLAT)
component and no part type is specified in the XNF file, the meaning
of the INLAT component is ambiguous. In this case, XNF2NGD will
stop with an error message. You must run XNF2NGD again using the
–l option to define the INLAT component; –l XC3000 means the
INLAT is transparent High and –l XC4000 means it is transparent
Low.

–p (Part Name)

–p part

The –p option specifies the part into which your design is imple-
mented. The –p option can specify an architecture only, a complete
part specification (device, package, and speed), or a partial specifica-
tion (for example, device and package only).

The syntax for the –p option is described in the “Part Numbers in
Commands” section of the “Introduction” chapter. Examples of part
entries are XCV50-TQ144 and XCV50-TQ144-5.

If you do not specify a part when you run XNF2NGD, you will have
to specify one when you run NGDBuild.

You may also use the –p option to override a part name in the input
XNF netlist or a part name in an NCF file.

–r (Ignore LOC Properties)

The –r option filters out all location properties (LOC=) from the
design. This can be used when you are migrating to a different device
or architecture, because locations in one architecture do not match
locations in another.
Development System Reference Guide B-11

Development System Reference Guide
–u (Top-Level XNF Netlist)

The –u option specifies that the input XNF file is the top-level design
netlist. When XNF2NGD translates netlists at lower hierarchical
levels, XNF2NGD adds to the lower-level NGO file information that
is unnecessary in the top-level NGO file. The –u option prevents this
information from being added to the top-level NGO file.

NGDBuild
This program is compatible with the following families.

• Spartan/XL/-II

• Virtex/-E/-II

• XC9500/XL/XV

• XC4000E/L/EX/XL/XV/XLA

• XC3000A/L

• XC3100A/L

• XC5200

NGDBuild performs all the steps necessary to read a netlist file in
XNF or EDIF format and create an NGD file describing the logical
design. The NGD file resulting from an NGDBuild run contains both
a logical description of the design reduced to NGD primitives and a
description in terms of the original hierarchy expressed in the input
netlist. The output NGD file can be mapped to the desired device
family.
B-12 Xilinx Development System

EDIF2NGD, XNF2NGD, and NGDBuild
Converting a Netlist to an NGD File
NGDBuild performs the following steps to convert a netlist to an
NGD file. This flow is shown in the following figure.

Figure B-3 NGDBuild and the Netlist Readers

1. Reads the source netlist

To perform this step, NGDBuild invokes the Netlister Launcher, a
part of the NGDBuild software which determines the type of the
input netlist and starts the appropriate netlist reader program. If
the input netlist is in EDIF or XNF format, the Netlister Launcher
invokes EDIF2NGD or XNF2NGD. If the input netlist is in
another format that the Netlister Launcher recognizes, the
Netlister Launcher invokes the program necessary to convert the

NCF
Netlist Constraints File

NGO
Top-Level

X7221

Netlist
(EDIF or XNF)

Netlist Reader
(EDIF2NGD or XNF2NGD)

NMC
Physical Macros

Referenced in Netlist

NGDBuild

Files
Referenced in Netlist

NGO
For Files

Referenced in Netlist

NGC
LogiBLOX or Core Modules

Referenced in Netlist

NGD
Generic Database

Netlister
Launcher

UCF
User Constraints File

BLD
Build Report
Development System Reference Guide B-13

Development System Reference Guide
netlist to EDIF or XNF format, then invokes EDIF2NGD or
XNF2NGD. The netlist reader produces an NGO file for the top-
level netlist file.

If any subfiles are referenced in the top-level netlist (for example,
a PAL description file, or another schematic file), the Netlister
Launcher invokes the appropriate netlist reader for each of these
files to convert each referenced file to an NGO file.

The Netlister Launcher is described in the “Netlister Launcher”
section. The netlist reader programs are described in the “File
Names and Locations” section and the “XNF2NGD” section.

2. Reduces all components in the design to NGD primitives

To perform this step, NGDBuild merges components that refer-
ence other files by finding the referenced NGO files. NGDBuild
also finds the appropriate system library components, physical
macros (NMC files) and behavioral models.

3. Checks the design by running a Logical DRC (Design Rule
Check) on the converted design

The Logical DRC is a series of tests on the logical design. It is
described in “Logical Design Rule Check” chapter.

4. Writes an NGD file as output

When NGDBuild reads the source netlist, it detects any files or parts
of the design that have changed since the last run of NGDBuild. It
updates files as follows.

• If you have modified your input design since you last ran
NGDBuild, NGDBuild updates all of the files affected by the
change and use the updated files to produce a new NGD file.

The Netlister Launcher checks timestamps (date and time infor-
mation) for netlist files and intermediate NGDBuild files (NGOs).
If an NGO file has a timestamp earlier than the netlist file that
produced it, the NGO file is updated and a new NGD file is
produced.

• NGDBuild completes the NGD production if all or some of the
intermediate files already exist. These files may exist if you ran a
netlist reader before you ran NGDBuild. NGDBuild uses the
existing files and create the remaining files necessary to produce
the output NGD file.
B-14 Xilinx Development System

EDIF2NGD, XNF2NGD, and NGDBuild
Note If the NGO for an netlist file is up to date, NGDBuild looks for
an NCF file with the same base name as the netlist in the netlist direc-
tory and compares the timestamp of the NCF file against that of the
NGO file. If the NCF file is newer, XNF2NGD or EDIF2NGD is run
again. However, if an NCF file existed on a previous run of
NGDBuild and the NCF file was deleted, NGDBuild will not detect
that XNF2NGD or EDIF2NGD must be run again. In this case, you
must use the –nt on option to force a rebuild.

Syntax, files, and options for the NGDBuild command are described
in the “NGDBuild” chapter.

Bus Matching
When NGDBuild encounters an instance of one netlist within another
netlist, it requires that each pin specified on the upper-level instance
match to a pin (or port) on the lower-level netlist. Two pins must have
exactly the same name in order to be matched. This requirement
applies to all FPGAs and CPLDs supported for NGDBuild.

If the interface between the two netlists uses bused pins, these pins
are expanded into scalar pins before any pin matching occurs. For
example, the pin A[7:0] might be expanded into 8 pins namedA[7]
through A[0]. If both netlists use the same nomenclature (that is, the
same index delimiter characters) when expanding the bused pin, the
scalar pin names will match exactly. However, if the two netlists were
created by different vendors and different delimiters are used, the
resulting scalar pin names do not match exactly.

In cases where the scalar pin names do not match exactly, NGDBuild
analyzes the pin names in both netlists and attempts to identify
names that resulted from the expansion of bused pins. When it identi-
fies a bus-expanded pin name, it tries several other bus-naming
conventions to find a match in the other netlist so it can merge the
two netlists. For example, if it finds a pin named A(3) in one netlist, it
looks for pins named A(3), A[3], A<3> or A3 in the other netlist.
Development System Reference Guide B-15

Development System Reference Guide
Following are the bus naming conventions understood by
NGDBuild.

If your third-party netlist writer allows you to specify the bus-
naming convention, use one of the conventions shown in the
preceding table to avoid “pin mismatch” errors during NGDBuild. If
your third-party EDIF writer preserves bus pins using the EDIF
“array” construct, the bus pins will be expanded by EDIF2NGD
using parentheses, which is one of the supported naming conven-
tions.

Note NGDBuild support for bused pins is limited to this under-
standing of different naming conventions. It is not able to merge
together two netlists if a bused pin has different indices between the
two files. For example, it cannot match A[7:0] in one netlist to A[15:8]
in another.

In the Xilinx UnifiedPro library for Virtex, some of the pins on the
block RAM primitives are bused. If your third-party netlist writer
uses one of the bus naming conventions listed in the preceding table
or uses the EDIF array construct, these primitives are recognized
properly by NGDBuild. The use of any other naming convention may
result in an “unexpanded block” error during NGDBuild.

Netlister Launcher
The Netlister Launcher, which is part of NGDBuild, performs any
netlist translations necessary to execute the NGDBuild command.

When NGDBuild is invoked, the Netlister launcher goes through the
following steps.

1. The Netlister Launcher initializes itself with a set of rules for
determining what netlist reader to use with each type of netlist,
and the options with which each reader is invoked.).

Table B-1 Bus Naming Conventions

Naming Convention Example

busname(index) DI(3)

busname<index> DI<3>

busname[index] DI[3]

busnameindex DI3
B-16 Xilinx Development System

EDIF2NGD, XNF2NGD, and NGDBuild
The rules are contained in the system rules file (described in the
“System Rules File” section) and in the user rules file (described
in the “User Rules File” section).

2. NGDBuild makes the directory of the top-level netlist the first
entry in the Netlister Launcher’s list of search paths.

3. For the top-level design and for each file referenced in the top-
level design, NGDBuild queries the Netlist Launcher for the pres-
ence of the corresponding NGO file.

4. For each NGO file requested, the Netlister Launcher performs the
following actions.

♦ Determines what netlist is the source for the requested NGO
file

The Netlister Launcher determines the source netlist by
looking in its rules database for the list of legal netlist exten-
sions. Then, it looks in the search path (which includes the
current directory) for a netlist file possessing a legal exten-
sion and the same name as the requested NGO file.

♦ Finds the requested NGO file

The Netlister Launcher looks first in the directory specified
with the –dd option (or current directory if a directory is not
specified). If the NGO file is not found there and the source
netlist was not found in the search path, the Netlister
Launcher looks for the NGO file in the search path.

♦ Determines whether the NGO file must be created or
updated

If neither the netlist source file nor the NGO file is found,
NGDBuild exits with an error.

If the netlist source file is found but the corresponding NGO
file is not found, the Netlister Launcher invokes the proper
netlist reader to create the NGO file.

If the netlist source file is not found but the corresponding
NGO file is found, the Netlister Launcher indicates to
NGDBuild that the file exists and NGDBuild uses this NGO
file.

If both the netlist source file and the corresponding NGO file
are found, the netlist file’s time stamp is checked against the
Development System Reference Guide B-17

Development System Reference Guide
NGO file’s timestamp. If the timestamp of the NGO file is
later than the source netlist, the Netlister Launcher returns a
“found” status to NGDBuild. If the timestamp of the NGO
file is earlier than the netlist source, or the NGO file is not
present in the expected location, then the Launcher creates
the NGO file from the netlist source by invoking the netlist
reader specified by its rules.

Note The timestamp check can be overridden by options on the
NGDBuild command line. The –nt on option updates all existing
NGO files, regardless of their timestamps. The –nt off option does
not update any existing NGO files, regardless of their times-
tamps.

5. The Netlister launcher indicates to NGDBuild that the requested
NGO files have been found, and NGDBuild can process all of
these NGO files.

Netlister Launcher Rules Files
The behavior of the Netlister Launcher is determined by rules
defined in the system rules file and the user rule file. These rules
determine the following.

• What netlist source files are acceptable

• Which netlist reader reads each of these netlist files

• What the default options are for each netlist reader

The system rules file contains the default rules supplied with the
Xilinx Development System software. The user rules file can add to or
override the system rules.

The following sections describe the user rules file and the system
rules.

User Rules File
The user rules file can add to or override the rules in the system rules
file. You can specify the location of the user rules file with the –ur
option to the NGDBuild command line. The user rules file must have
a .urf extension. See the “–ur (Read User Rules File)” section of the
“NGDBuild” chapter for more information.
B-18 Xilinx Development System

EDIF2NGD, XNF2NGD, and NGDBuild
User Rules and System Rules

User rules are treated as described below.

• A user rule can override a system rule if it specifies the same
source and target files as the system rule.

• A user rule can supplement a system rule if its target file is iden-
tical to a system rule’s source file, or if its source file is the same
as a system rule’s target file.

• A user rule that has a source file identical to a system rule’s target
file and a target file that is identical to the same system rule’s
source file is illegal, because it defines a loop.

User Rules Format

Each rule in the user rules file has the following format.

RuleName = <rulename1>;

<key1> = <value1>;

<key2> = <value2>;

 .

 .

 .

<keyn> = <valuen>;

The following is a description of the keys allowed and the values
expected.

Note All of the values mentioned in the following paragraphs are
described in the “Value Types in Key Statements” section.

• RuleName—This key identifies the beginning of a rule. It is also
used in error messages relating to the rule. It expects a RULE-
NAME value. A value is required.

• NetlistFile—This key specifies a netlist or class of netlists that the
netlist reader takes as input. The extension of NetlistFile is used
Development System Reference Guide B-19

Development System Reference Guide
together with the TargetExtension to identify the rule. It expects
either a FILENAME or an EXTENSION value. If a file name is
specified, it should be just a file name (that is, no path). Any
leading path is ignored. A value is required.

• TargetExtension—This key specifies the class of files generated
by the netlist reader. It is used together with the extension from
NetlistFile to identify the rule. It expects an EXTENSION value.
A value is required.

• Netlister—This key specifies the netlist reader to use when trans-
lating a specific netlist or class of netlists to a target file. The
specific netlist or class of netlists is specified by NetlistFile, and
the class of target files is specified by TargetExtension. It expects
an EXECUTABLE value. A value is required.

• NetlisterTopOptions—This key specifies options for the netlist
reader when compiling the top level design. It expects an
OPTIONS value or the keyword NONE. Included in this string
should be the keywords $INFILE and $OUTFILE, in which the
input and output files is substituted. In addition, the following
keywords may appear.

♦ $PART—The part passed to NGDBuild by the –p switch is
substituted. It may include architecture, device, package and
speed information. The syntax for a $PART specification is
the same as described in the “Part Numbers in Commands”
section of the “Introduction” chapter.

♦ $FAMILY—The family passed to NGDBuild by the –p switch
is substituted. A value is optional.

♦ $DEVICE—The device passed to NGDBuild by the –p switch
is substituted. A value is optional.

♦ $PKG—The package passed to NGDBuild by the –p switch is
substituted. A value is optional.

♦ $SPEED—The speed passed to NGDBuild by the –p switch is
substituted. A value is optional.

♦ $LIBRARIES—The libraries passed to NGDBuild. A value is
optional.

♦ $IGNORE_LOCS—Substitute the –r option to EDIF2NGD or
XNF2NGD if the NGDBuild command line contained a –r
option.
B-20 Xilinx Development System

EDIF2NGD, XNF2NGD, and NGDBuild
♦ $ADD_PADS—Substitute the –a option to EDIF2NGD if the
NGDBuild command line contained a –a option.

The options in the NetlisterTopOptions line must be enclosed in
quotation marks.

• NetlisterOptions—This key specifies options for the netlist reader
when compiling sub-designs. It expects an OPTIONS value or the
keyword NONE. Included in this string should be the keywords
$INFILE and $OUTFILE, in which the input and output files is
substituted. In addition, any of the keywords that may be entered
for the NetlisterTopOptions key may also be used for the Netlis-
terOptions key.

The options in the NetlisterOptions line must be enclosed in
quotation marks.

• NetlisterDirectory—This key specifies the directory in which to
run the netlist reader. The launcher changes to this directory
before running the netlist reader. It expects a DIR value or the
keywords $SOURCE, $OUTPUT, or NONE, where the path to the
source netlist is substituted for $SOURCE, the directory specified
with the -dd option is substituted for $OUTPUT, and the current
working directory is substituted for NONE. A value is optional.

• NetlisterSuccessStatus—This key specifies the return code that
the netlist reader returns if it ran successfully. It expects a
NUMBER value or the keyword NONE. The number may be
preceded with one of the following: =, <, >, or !. A value is
optional.

Value Types in Key Statements

The value types used in the preceding key statements are the
following.

• RULENAME—Any series of characters except for a semicolon (;)
and white space (for example, space, tab, newline).

• EXTENSION—A “.” followed by an extension that conforms to
the requirements of the platform.

• FILENAME—A file name that conforms to the requirements of
the platform.
Development System Reference Guide B-21

Development System Reference Guide
• EXECUTABLE—An executable name that conforms to the
requirements of the platform. It may be a full path to an execut-
able or just an executable name. If it is just a name, then the
$PATH environment variable is used to locate the executable.

• DIR—A directory name that conforms to the requirements of the
platform.

• OPTIONS—Any valid string of options for the executable.

• NUMBER—Any series of digits.

• STRING—Any series of characters in double quotes.

System Rules File
The system rules are shown following. The system rules file is not an
ASCII file, but for the purpose of describing the rules, the rules are
described using the same syntax as in the user rules file. This syntax
is described in the “User Rules File” section.

Note If a rule attribute is not specified, it is assumed to have the value
NONE.

###
xnf2ngd rules
###

RuleName = XNF_RULE;
NetlistFile = .xnf;
TargetExtension = .ngo;
Netlister = xnf2ngd;
NetlisterTopOptions = "[-p $PART] -u [$IGNORE_LOCS] {-l $LIBRARIES}
$INFILE $OUTFILE";
NetlisterOptions = "[-p $PART] [$IGNORE_LOCS] {-l $LIBRARIES}
$INFILE $OUTFILE";
NetlisterDirectory = NONE;
NetlisterSuccessStatus = 0;

RuleName = XTF_RULE;
NetlistFile = .xtf;
TargetExtension = .ngo;
Netlister = xnf2ngd;
NetlisterTopOptions = "[-p $PART] -u [$IGNORE_LOCS] {-l $LIBRARIES}
$INFILE $OUTFILE";
B-22 Xilinx Development System

EDIF2NGD, XNF2NGD, and NGDBuild
NetlisterOptions = "[-p $PART] [$IGNORE_LOCS] {-l $LIBRARIES}
$INFILE $OUTFILE";
NetlisterDirectory = NONE;
NetlisterSuccessStatus = 0;

RuleName = XFF_RULE;
NetlistFile = .xff;
TargetExtension = .ngo;
Netlister = xnf2ngd;
NetlisterTopOptions = "[-p $PART] -u [$IGNORE_LOCS] {-l $LIBRARIES}
$INFILE $OUTFILE";
NetlisterOptions = "[-p $PART] [$IGNORE_LOCS] {-l $LIBRARIES}
$INFILE $OUTFILE";
NetlisterDirectory = NONE;
NetlisterSuccessStatus = 0;

RuleName = XG_RULE;
NetlistFile = .xg;
TargetExtension = .ngo;
Netlister = xnf2ngd;
NetlisterTopOptions = "[-p $PART] -u [$IGNORE_LOCS] {-l $LIBRARIES}
$INFILE $OUTFILE";
NetlisterOptions = "[-p $PART] [$IGNORE_LOCS] {-l $LIBRARIES}
$INFILE $OUTFILE";
NetlisterDirectory = NONE;
NetlisterSuccessStatus = 0;

RuleName = SYN_XNF_RULE;
NetlistFile = .sxnf;
TargetExtension = .ngo;
Netlister = xnf2ngd;
NetlisterTopOptions = "[-p $PART] -u [$IGNORE_LOCS] -l synopsys {-l
$LIBRARIES} $INFILE $OUTFILE";
NetlisterOptions = "[-p $PART] [$IGNORE_LOCS] -l synopsys {-l
$LIBRARIES}
$INFILE $OUTFILE";
NetlisterDirectory = NONE;
NetlisterSuccessStatus = 0;

###
edif2ngd rules
Development System Reference Guide B-23

Development System Reference Guide
###

RuleName = EDN_RULE;
NetlistFile = .edn;
TargetExtension = .ngo;
Netlister = edif2ngd;
NetlisterTopOptions = "[$IGNORE_LOCS] [$ADD_PADS] {-l $LIBRARIES}
$INFILE $OUTFILE";
NetlisterOptions = "-noa [$IGNORE_LOCS] {-l $LIBRARIES} $INFILE
$OUTFILE";
NetlisterDirectory = NONE;
NetlisterSuccessStatus = 0;

RuleName = EDF_RULE;
NetlistFile = .edf;
TargetExtension = .ngo;
Netlister = edif2ngd;
NetlisterTopOptions = "[$IGNORE_LOCS] [$ADD_PADS] {-l $LIBRARIES}
$INFILE $OUTFILE";
NetlisterOptions = "-noa [$IGNORE_LOCS] {-l $LIBRARIES} $INFILE
$OUTFILE";
NetlisterDirectory = NONE;
NetlisterSuccessStatus = 0;

RuleName = EDIF_RULE;
NetlistFile = .edif;
TargetExtension = .ngo;
Netlister = edif2ngd;
NetlisterTopOptions = "[$IGNORE_LOCS] [$ADD_PADS] {-l $LIBRARIES}
$INFILE $OUTFILE";
NetlisterOptions = "-noa [$IGNORE_LOCS] {-l $LIBRARIES} $INFILE
$OUTFILE";
NetlisterDirectory = NONE;
NetlisterSuccessStatus = 0;

RuleName = SYN_EDIF_RULE;
NetlistFile = .sedif;
TargetExtension = .ngo;
Netlister = edif2ngd;
NetlisterTopOptions = NONE;
NetlisterOptions = "-l synopsys [$IGNORE_LOCS] {-l $LIBRARIES}
B-24 Xilinx Development System

EDIF2NGD, XNF2NGD, and NGDBuild
$INFILE $OUTFILE";
NetlisterDirectory = NONE;
NetlisterSuccessStatus = 0;

###
other rules
###

RuleName = PLD_RULE;
NetlistFile = .pld;
TargetExtension = .xnf;
Netlister = readpld;
NetlisterTopOptions = "-f $INFILE -t -ox $OUTFILE";
NetlisterOptions = "-f $INFILE -ox $OUTFILE";
NetlisterDirectory = NONE;
NetlisterSuccessStatus = 0;

Rules File Examples
The following sections provide examples of system and user rules.
The first example is the basis for understanding the ensuing user
rules examples.

Example 1: EDF_RULE System Rule

As shown in the “System Rules File” section, the EDF_RULE system
rule is defined as follows.

RuleName = EDF_RULE;
NetlistFile = .edf;
TargetExtension = .ngo;
Netlister = edif2ngd;
NetlisterTopOptions = "[$IGNORE_LOCS] [$ADD_PADS] {-l $LIBRARIES}
$INFILE $OUTFILE";
NetlisterOptions = "-noa [$IGNORE_LOCS] {-l $LIBRARIES} $INFILE
$OUTFILE";
NetlisterDirectory = NONE;
NetlisterSuccessStatus = 0;
Development System Reference Guide B-25

Development System Reference Guide
The EDF_RULE instructs the Netlister Launcher to use EDIF2NGD to
translate an EDIF file to an NGO file. If the top-level netlist is being
translated, the options defined in NetlisterTopOptions are used; if a
lower-level netlist is being processed, the options defined by Netlis-
terOptions are used. Because NetlisterDirectory is NONE, the
Netlister Launcher runs EDIF2NGD in the current working directory
(the one from which NGDBuild was launched). The launcher expects
EDIF2NGD to issue a return code of 0 if it was successful; any other
value is interpreted as failure.

Example 2: User Rule

Following is a another example of a User Rule.

// URF Example 2
RuleName = OTHER_RULE; // end-of-line comments are also allowed
NetlistFile = .oth;
TargetExtension = .edf;
Netlister = other2edf;
NetlisterOptions = "$INFILE $OUTFILE";
NetlisterSuccessStatus = 1;

The user rule OTHER_RULE defines a completely new translation,
from a hypothetical OTH file to an EDIF file. To do this translation,
the other2edf program is used. The options defined by NetlisterOp-
tions are used for translating all OTH files, regardless of whether they
are top-level or lower-level netlists (because no explicit NetlisterTo-
pOptions is given). The launcher expects other2edf to issue a return
code of 1 if it was successful; any other value be interpreted as failure.

After the Netlister Launcher has used OTHER_RULE to run
other2edf and create an EDIF file, it uses the EDF_RULE system rule
(shown in the preceding section) to translate the EDIF file to an NGO
file.

Example 3: User Rule

Following is a another example of a User Rule.

// URF Example 3
RuleName = EDF_LIB_RULE;
NetlistFile = .edf;
TargetExtension = .ngo;
NetlisterOptions = "-l xilinxun $INFILE $OUTFILE";
B-26 Xilinx Development System

EDIF2NGD, XNF2NGD, and NGDBuild
Because both the NetlistFile and TargetExtension of this user rule
match those of the system rule EDF_RULE (shown in the “Example 1:
EDF_RULE System Rule” section), the EDF_LIB_RULE overrides the
EDF_RULE system rule. Any settings that are not defined by the
EDF_LIB_RULE are inherited from EDF_RULE. So EDF_LIB_RULE
uses the same netlister (EDIF2NGD), the same top-level options, the
same directory, and expects the same success status as EDF_RULE.
However, when translating lower-level netlists, the options used are
only “–l xilinxun $INFILE $OUTFILE.” (There is no reason to use “–l
xilinxun” on EDIF2NGD; this is for illustrative purposes only.)

Example 4: User Rule

Following is a another example of a User Rule.

// URF Example 4
RuleName = STATE_EDF_RULE;
NetlistFile = state.edf;
TargetExtension = .ngo;
Netlister = state2ngd;

Although the NetlistFile is a complete file name, this user rule also
matches the system rule EDF_RULE (shown in the “Example 1:
EDF_RULE System Rule” section), because the extensions of Netlist-
File and TargetExtension match. When the Netlister Launcher tries to
make a file called state.ngo, it uses this rule instead of the system rule
EDF_RULE (assuming that state.edf exists). As with the previous
example, the unspecified settings are inherited from the matching
system rule. The only change is that the fictitious program state2ngd
is used in place of EDIF2NGD.

Note that if EDF_LIB_RULE (from the example in the “Example 3:
User Rule” section) and this rule were both in the user rules file,
STATE_EDF_RULE includes the modifications made by
EDF_LIB_RULE. So a lower-level state.edf is translated by running
state2ngd with the “-l xilinxun” option.
Development System Reference Guide B-27

Development System Reference Guide
File Names and Locations
Following are some notes about file names and notations in
NGDBuild.

• An intermediate file has the same root name as the design that
produced it. An intermediate file is generated when more than
one netlist reader is needed to translate a netlist to a NGO file.

• Netlist root file names in the search path must be unique. For
example, if you have the design state.edn, you cannot have
another design named state.xnf in any of the directories specified
in the search path.

• NGDBuild and the Netlister Launcher support quoted file
names. Quoted file names may have special characters (for
example, a space) that are not normally allowed.

• If the output directory specified in the call to NGDBuild is not
writable, an error is displayed and NGDBuild fails.
B-28 Xilinx Development System

Index
Numerics
-10ps option

NGD2VER, 20-5

A
-a option

BitGen, 16-5
EDIF2NGD, B-5
NGD2EDIF, 19-4
NGD2VHDL, 21-5
NGDBuild, 4-7
TRCE, 14-4

AddressLines option, 16-12
advanced analysis, 14-4
-aka option

NGD2VER, 20-5
NGD2VHDL, 21-5

ALF files, 18-5, A-1
ALLCLOCKNETS keyword

with MAXSKEW, 6-61
with PERIOD, 6-31, 6-32

annotated netlist data (XFLOW), 22-31
application data files (XFLOW), 22-33
-ar option

NGD2VHDL, 21-5
architecture name, renaming, 21-5
architectures supported

for BitGen, 16-1
for EDIF2NGD, B-1
for LCA2NCD, 9-1
for logical DRC, 7-1

for MAP, 8-1
for MAP options, 8-7
for NGD2EDIF, 19-1
for NGD2VER, 20-1
for NGD2VHDL, 21-1
for NGDAnno, 18-1
for NGDBuild, 4-1
for PAR, 12-1
for PARTGEN, 3-1
for physical DRC, 11-1
for PIN2UCF, 13-1
for PROMGen, 17-1
for SPEEDPRINT, 15-1
for TRACE, 14-1
for XFLOW, 22-1
for XNF2NGD, B-7

area group summary
MAP, description, 8-31

area setting, 8-10, 8-15
ARF files, 18-5, A-1

generating, 18-7
asterisk, 6-28
attributes, definition, 6-4
automatic timespecing

PAR, 12-5
automount points, 12-53

B
-b option

BitGen, 16-5
MAP, architectures, 8-7
Development System Reference Guide — 3.1i Index-1

Development System Reference Guide
MAP, description, 8-9
NGD2EDIF, 19-4
PROMGen, 17-4

back-annotation
see also NGDAnno
CPLD command, 2-24
description, 2-3
errors, 8-26
flow diagrams, 2-21
global signals

Virtex and Spartan-II, 18-9
XC3X00, 18-8
XC4000 and Spartan/XL, 18-8
XC5200, 18-9

netlist writers, 2-24
NGD2EDIF, 2-24
NGD2VER, 2-24
NGD2VHDL, 2-25
NGDAnno, 2-23
translation options, 2-26

balanced setting, 8-10, 8-15
balanced.opt, 22-10
BEL, definition, 1-12
BGN files, 16-4, A-1
bidirectional pads, 7-4
BIT files

creating with XFLOW, 22-8
description, 16-4, A-1
disabling, 16-36
loading downward, 17-5
loading up or down, 17-6
loading upward, 17-8

bit swapping
description, 17-3, 17-4
disabling, 17-4

BitGen
-a option, 16-5
-b option, 16-5
BGN files, A-1
BIT files, A-1
-d option, 16-5
description, 16-1

disabling DRC, 16-5
DRC files, A-1
filename extension, 16-2
-g option, 16-6-16-36
-h option, 16-36
input files, 16-3
-j option, 16-36
-l option, 16-36
LL files, A-3
-m option, 16-37
MSK files, A-3
-n option, 16-37
options, 16-5
output files, 16-3
RBT files, A-5
supported families, 16-1
-t option, 16-37, 16-38
-u option, 16-39
-w option, 16-39
XFLOW, 22-8

bitstream generation, 2-3
BLD files, 4-6, A-1
block

allowing unexpanded, 4-11
check, logical DRC, 7-2
check, physical DRC, 11-4
delay symbols, for path tracing, 6-63
delays, simulating with, 2-26
placement, 2-9
STARTUP, VHDL only, 21-9
STARTUP_VIRTEX, VHDL only, 21-11

blocks
optimized, 8-29
removed, 8-29
trimmed, 8-29

bonded I/Os, 12-16
BSCAN primitive, 7-3
BSCAN_Config option, 16-12
BSCAN_Status option, 16-12
BSReadback option, 16-21
BSReconfig option, 16-21
buffers, 7-3
Index-2 Xilinx Development System

Index
buffers, using to model delays, 19-4
BUFGMUX element, 18-10
BUFGP primitives, 8-9
bus

definition, 1-12
matching, B-15
matching in Virtex, B-16
naming conventions, B-16
order in Verilog files, 20-11
order in VHDL files, 21-17

C
-c option

checksum, 17-5
MAP, architectures, 8-7
MAP, description, 8-9
NGD2EDIF, 19-4
PAR, 12-8

cables, download, 2-32
Cadence Synergy synthesis tool, 20-5
case-sensitivity

command line options, 1-2
keywords, 6-5, 6-27, 6-49

Cclk_Nosync, 16-10
Cclk_Sync, 16-11
CclkPin option, 16-29
-cd option, 20-5
cell

ROC, 21-11
ROCBUF, 21-13
STARTBUF, 21-10
STARTBUF_VIRTEX, 21-11
TOC, 21-13
TOCBUF, 21-14

chip check, physical DRC, 11-4
circuit cycles, 12-11, 14-16
CKBUF, 8-9
CLBMAP symbol, 2-9
CLBs, 8-9
cleanup

passes, delay-based, 12-9
passes, delay-based router, 12-8

routers, strategies for using, 12-8
routing, 12-19

clock
buffer check, 7-4
buffers, 8-9
distribution, global, 2-14
enable, 2-15, 2-16
period see PERIOD constraint
resource, global, 2-14
sense, defining, 6-26
skew, 14-12, 14-13

clocks
at different chip inputs, 14-14
derived, specifying, 6-33
in synchronous designs, 2-15
periods, defining, 6-31, 6-32
skew, for TRCE, 14-6
stamp, for TRCE, 14-6
through multiple buffers, 14-13

clock-to-output propagation delays, 14-18
-cm option

architectures, 8-7
description, 8-10

CMOS, 16-7, 16-21
colons, as separators, 6-6
combinatorial loops, 6-48, 12-11
command files, 1-6
command line see commands
commands

file, executing, 9-4, 12-10, 14-5, 17-5
options, entering, 1-2
part numbers in, 1-4

COMP “iob_name“, 6-39
compile scripts, Verilog, 20-13
compile scripts, VHDL, 21-19
component, definition, 1-10
Compress option

Spartan-II, 16-28
Virtex/-E/-II, 16-28

-config flow type, XFLOW, 22-8
ConfigRate option

Spartan-II, Virtex/-E/-II, 16-28
Development System Reference Guide Index-3

Development System Reference Guide
Virtex/-E/-II, 16-28
XC4000 and Spartan, 16-13
XC5200, 16-21

configuration
clock rate, 16-13, 16-21, 16-28
-g option, 16-6-16-35

constraints
controlling implementation, 2-8
DROP_SPRC, 6-66
files, timing specifications, 6-6
in PCF files, 10-3
in UCF files, 5-1
interaction between, 10-3
location see location constraints
logical, sources of, 10-1
net delay, 14-10
net skew, 14-10
path delay, 14-11
pin locking, 13-2
priorities, 6-68
prorating, 6-60
temperature, 6-60
timing see timing constraints
VOLTAGE, 6-60

Constraints Editor, 6-6
constructive

placement, 12-18
routing, 12-18

CONTROL-BREAK
halting MAP, 8-34
halting TRACE, 14-43

CONTROL-C
halting MAP, 8-34
halting TRACE, 14-43
halting turns engine, 12-56

Control-C
halting XFLOW, 22-3

CORE Generator tool
description, 2-7

cores, 20-3, 21-3
cost tables, placer, 12-16
cost-based

PAR, description, 12-2
router cleanup passes, 12-8

counters, 2-17
cover mode, 8-10
CPLD

command, 2-24
fitter, GYD files, A-2
fitter, JED files, A-2
programming data (XFLOW), 22-31
report files (XFLOW), 22-34

cpld.flw, 22-22
CRC option

XC4000 and Spartan, 16-13
XC5200, 16-21

critical nets, 16-39
cycles

circuit, 12-11
detecting in TRACE, 14-16

D
-d option

BitGen, 16-5
MAP, architectures, 8-7
MAP, description, 8-11
PAR, 12-8
PROMGen, 17-5

data feedback, 2-16
DATA files, A-1
data sheet reports

comparing with verbose report, 14-31
description, 14-17
obtaining a complete report, 14-20

DC files, A-1
-dd option

NGDBuild, 4-7
debug mode, turns engine, 12-53
DebugBitstream option, 16-35
debugging, turns engine, 12-54
default flow files, XFLOW, 22-3
delay file

description, 12-35
tilde, 12-35
Index-4 Xilinx Development System

Index
delay-based
cleanup passes, 12-9
router cleanup passes, 12-8

delays
modeling with buffers, 19-4
nets, 6-62

derived clocks, specifying, 6-33
design entry

controlling implementation with
constraints, 2-8
description, 2-1, 2-4
flow diagram, 2-5
library elements, 2-5
schematic entry, 2-5

design flow
description, 2-1
flow diagram, 2-2, 2-4

design implementation
description, 2-1, 2-10
flow diagrams, 2-10
mapping, 2-9

design performance, 2-14
design size, 2-14
design techniques, for FPGAs, 2-14
design verification

description, 2-2, 2-18
flow diagram, 2-19
functional simulation, 2-27
schematic-based simulation, 2-26
timing simulation, 2-27
tools, 2-21

designs, scoring routed ones, 12-45
-detail option

MAP, architectures, 8-7
MAP, description, 8-11

device
attributes, 3-8
definition, 1-10
speed, annotating to NGA file, 18-7

devices, listing with PARTGEN, 3-5
DFS method

description, 12-11

differences with kpaths, 12-12
-dfs option

PAR, 12-9
Direct Input Pin, 8-11
DISABLE keyword, 6-63
division, for time delays, 6-56
DLY files, A-1
DONE/PROGRAM pin, 16-6, 16-7
Done_cycle option, 16-34
DoneActive option

XC4000 and Spartan, 16-13, 16-14
XC5200, 16-22

DonePin option
Spartan-II, 16-29
Virtex/-E/-II, 16-29
XC3X000, 16-6
XC4000 and Spartan, 16-14
XC5200, 16-23

DonePipe option, 16-35
DoneTime option, XC3X000, 16-7
double quotes, 6-6
download cables, description, 2-32
DRC

 see also logical DRC
description, 2-32
disabling for BitGen, 16-5
file, BitGen, 16-4
files, A-1

DRC command, physical
block check, 11-4
chip check, 11-4
compatible families, 11-1
description, 11-1
-e option, 11-3
error report, 11-3
errors, 11-4
incomplete programming, 11-3
input files, 11-2
net check, 11-4
-o option, 11-3
output files, 11-2
report files, 11-2, 11-3
Development System Reference Guide Index-5

Development System Reference Guide
-s option, 11-3
syntax, 11-2
TDR files, A-5
-v option, 11-3
verbose report, 11-3
warnings, 11-4

DRC, logical
block check, 7-2
clock buffer check, 7-4
description, 7-1
name check, 7-4
net check, 7-3
netlist writers, 7-2
pad check, 7-3
primitive pin check, 7-5
running automatically, 7-2
supported families, 7-1
types of tests, 7-2

DriveDone option, 16-35
DrivePDStatusPin option, 16-30
DROP_SPEC constraint, 6-66
duplicate coverage, inTSI report, 14-35

E
-e option

DRC command, 11-3
PAR, 12-9
TRCE, 14-4

-ed option
with -wd option, 22-15
XFLOW, description, 22-15
XFLOW, example, 22-15

EDIF
file naming, 19-8
identifiers, 19-8

EDIF files, A-2
description, B-4
writing all properties to, 19-4

EDIF2NGD
-a option, B-5
description, B-1
-f option, B-5

flow diagram, B-2
input files, B-4
-l option, B-5
options, B-5
output files, B-5
-p option, B-6
-r option, B-6
supported families, B-1
syntax, B-3

EDN files, 19-4, A-2
effort level

-l PAR option, 12-12
-ol PAR option, 12-13
placer, -pl PAR option, 12-14
router, -rl PAR option, 12-15

ENABLE keyword, 6-63
End Program construct, 22-25
entity

suppressing, 21-5
environment

problems, turns engine, 12-55
variables, for turns engines, 12-53

ENWRITE, 6-4, 6-6, 6-23
EPL files, A-2
error reports

-dfs vs -kpaths, 14-17
generating with TRCE, 14-4
TRACE, 14-27, 14-28

errors
DRC command, 11-4
MRP files, 8-28
net delay, 14-9
net skew, 14-9
offset, 14-9
path delays, 14-9

EXACT mode, 8-12, 8-24
exact option for PAR, 12-21
examples

first run, 22-6
more examples, 22-7
rerunning part of the flow, 22-6
third run, 22-6
Index-6 Xilinx Development System

Index
EXCEPT keyword, 6-25, 6-70
exclusion, creating groups, 6-25
exclusive coverage, in TSI report, 14-35
Executable construct, 22-23, 22-24
existing groups, new groups, 6-23
EXO files, A-2
Export Directory, 22-15
ExportDir, 22-23
Exports construct, 22-24
ExpressMode option, 16-15
external setup/hold requirements, 14-18
extracted coverage, in TSI report, 14-35

F
-f option

architectures supported for MAP, 8-7
description, 1-6
EDIF2NGD, B-5
NGD2EDIF, 19-5
NGD2VER, 20-6
NGD2VHDL, 21-5
NGDAnno, 18-5
NGDBuild, 4-7
PAR, 12-10
TRACE, 14-5
XNF2NGD, B-10

FALLING keyword, 6-26, 6-70
false paths, 12-12
families supported

for BitGen, 16-1
for EDIF2NGD, B-1
for LCA2NCD, 9-1
for logical DRC, 7-1
for MAP, 8-1
for NGD2EDIF, 19-1
for NGD2VER, 20-1
for NGD2VHDL, 21-1
for NGDAnno, 18-1
for NGDBuild, 4-1
for PAR, 12-1
for PARTGEN, 3-1
for physical DRC, 11-1

for PIN2UCF, 13-1
for PROMGen, 17-1
for SPEEDPRINT, 15-1
for timing constraints, 6-1
for TRACE, 14-1
for XFLOW, 22-1
for XNF2NGD, B-7

fast_runtime.opt, 22-10
files

 see also input or output files
in commands, 1-2
netlist, naming, 4-12
overwriting, 12-16
package, creating, 3-6, 3-7
partlist.xct, 3-6, 3-7
partlist.xctfile, 3-7
redirecting messages, 1-3
simulation files, XFLOW, 22-9

Files category, XFLOW option files, 22-12
-fit flow type

option files, 22-8
XFLOW, description, 22-8

fitting, description, 2-3
five-input functions, 8-13
five-V_Tolerant_IO, 16-13
Flag construct, 22-23
flip-flops

defining subgroups, 6-26
grouping with TNM, 6-19
grouping with TNMs, 6-19, 6-20
register ordering, 8-21, 8-22

Floorplanner
-fp option, 8-11
MFP files, 8-5, A-3

flow files
defaults, 22-3
example, 22-26
ExportDir, 22-23
program blocks, 22-23
ReportDir, 22-23
user command blocks, 22-25
XFLOW, description, 22-22
Development System Reference Guide Index-7

Development System Reference Guide
flow types
description, 22-7
examples, 22-7
option simulation files, 22-9
relationship with option files, 22-4
search hierarchy, 22-7

FLW files, A-2
FMAP symbol, 2-9
forward tracing, 6-13, 6-15, 6-20, 6-32
-fp option, 8-5, 8-7, 8-11
FPGA Editor

block checks, 11-4
command log files, A-2
description, 2-13
net checks, 11-4
NGDAnno, 2-24
NMC files, A-4
PCF files, A-5
RCV files, A-5
SCR script files, A-5

FPGA programming data (XFLOW), 22-30
FPGA report files (XFLOW), 22-33
fpga.flw, 22-22, 22-26
fpga_editor.ini script, A-2
fpga_editor_user.ini script, A-2
FROM-THRU

examples, 6-72
with TPSYNC, 6-54

FROM-THRU-TO examples, 6-72
FROM-TO

examples, 6-8, 6-49, 6-72
rules for using, 6-49
syntax, 6-48, 6-73
with TPSYNC, 6-54
with TPTHRU, 6-54

-fsim flow type
option simulation files, 22-9
XFLOW, description, 22-9

fsim.flw, 22-22
FSMAP symbol, 2-9
functional simulation

data (XFLOW), 22-32

description, 2-9, 2-27

G
-g BitGen option

description, 16-6
Spartan-II

CclkPin, 16-29
Compress option, 16-28
DebugBitstream, 16-35
Done_cycle, 16-34
DonePin, 16-29
DonePipe, 16-35
DriveDone, 16-35
DrivePDStatusPin, 16-30
Gclkdel, 16-28
GSR_cycle, 16-33
GTS_cycle, 16-34
GWE_cycle, 16-33
LCK_cycle, 16-34
M0Pin, 16-30
M1Pin, 16-30
M2Pin, 16-30
PDStatusPin, 16-31
Persist, 16-34
PowerdownPin, 16-31
ProgPin, 16-31
ReadBack, 16-28
Security, 16-35
StartupClk, 16-28
TckPin, 16-31
TdiPin, 16-32
TdoPin, 16-32
TmsPin, 16-32
UnusedPin, 16-32
UserID, 16-35

Spartan-II, Virtex/-E/-II
ConfigRate, 16-28
PowerupClk, 16-29

Virtex/-E/-II
CclkPin, 16-29
Compress, 16-28
ConfigRate, 16-28
Index-8 Xilinx Development System

Index
DebugBitstream, 16-35
Done_cycle, 16-34
DonePin, 16-29
DonePipe, 16-35
DriveDone, 16-35
Gclkdel, 16-28
GSR_cycle, 16-33
GTS_cycle, 16-34
GWE_cycle, 16-33
LCK_cycle, 16-34
M0Pin, 16-30
M1Pin, 16-30
M2Pin, 16-30
Persist, 16-34
ProgPin, 16-31
ReadBack, 16-28
Security, 16-35
StartupClk, 16-28
TckPin, 16-31
TdiPin, 16-32
TdoPin, 16-32
TmsPin, 16-32
UnusedPin, 16-32
UserID, 16-35

XC3X00
DonePin, 16-6
DoneTime, 16-7
Input, 16-7
LC_Alignment, 16-8
Oscillator, 16-8
Readback, 16-8
ResetTime, 16-9

XC4000 and Spartan
AddressLines, 16-12
BSCAN_Config, 16-12
BSCAN_Status, 16-12
Cclk_Nosync, 16-10
Cclk_Sync, 16-11
ConfigRate, 16-13
CRC, 16-13
description, 16-9
DoneActive, 16-13, 16-14

DonePin, 16-14
ExpressMode, 16-15
f5V_Tolerant_IO, 16-13
GSRInactive, 16-15, 16-16
Input, 16-16
LC_Alignment, 16-16
M0Pin, 16-16
M1Pin, 16-17
M2Pin, 16-17
Output, 16-17
OutputsActive, 16-17
PowerDown, 16-19
ReadAbort, 16-19
ReadCapture, 16-19
ReadClk, 16-19
startup sequences, 16-10
StartupClk, 16-20
SyncToDone, 16-20
TdoPin, 16-20
Uclk_Nosync, 16-11

XC5200
BSReadback, 16-21
BSReconfig, 16-21
ConfigRate, 16-21
CRC, 16-21
DoneActive, 16-22
DonePin, 16-23
GSRInactive, 16-23
Input, 16-21, 16-24
LC_Alignment, 16-24
OscClk, 16-24
OutputsActive, 16-25
ProgPin, 16-26
ReadAbort, 16-26
ReadCapture, 16-26
ReadClk, 16-26
StartupClk, 16-27
SyncToDone, 16-27

-g option
XFLOW, description, 22-16

gate sense, defining latch subgroups, 6-27
gated clocks, 2-15, 2-16, 2-17
Development System Reference Guide Index-9

Development System Reference Guide
Gclkdel option, 16-28
-gf option

MAP, architectures, 8-7
MAP, description, 8-12
PAR, 12-10

global
clock distribution, 2-14
clock resources, 2-14
OFFSET constraint, 6-37
reset, as port, 20-6, 21-5
reset, back-annotation

XC3X00, 18-8
XC5200, 18-9

set/reset, back-annotation
Virtex and Spartan-II, 18-9
XC4000 and Spartan/XL, 18-8

tristate signal, as port, 20-9, 21-8
Global PRLD, setting, 20-10
Global Set/Reset, setting, 20-10
Global Set/Reset, simulation, 2-30
Global Tristate, setting, 20-10
global variable, 22-16
-gm option

MAP, architectures, 8-7
MAP, description, 8-12
PAR, 12-10, 12-22

-gp option
NGD2VER, 20-6
NGD2VHDL, 21-5

groups
by clock sense, with TIMEGRP, 6-26
by exclusion, with TIMEGRP, 6-25
by pattern matching, 6-27
specifying, 6-7
TIMEGRP, 6-23

GSR_cycle option, 16-33
GSRInactive option

XC4000 and Spartan, 16-15, 16-16
XC5200, 16-23

GTS_cycle option, 16-34
guaranteed setup and hold, 14-20, 14-21,
18-10

guide
data (XFLOW), 22-33
designs, using, 12-21
files, NCD files, 8-5
mode, 12-10, 12-22
mode option, 8-12
NCD file, 12-10
NCD file, for MAP, 8-12
NGD file, for MAP, 8-12
reporting, 12-43

guided
mapping, description, 8-23
mapping, -gm option, 8-12
mapping, HDL designs, 8-25
mapping, illustration, 8-24
mapping, MDF files, 8-5
mapping, MFP file, 8-11
mapping, MFP files, 8-5
PAR, description, 12-20
PAR, incremental designs, 12-20
PAR, PCI cores, 12-22
PAR, with HDL designs, 12-22

GWE_cycle option, 16-33
GYD files, 13-4, A-2

H
-h option

BitGen, 16-36
XFLOW, description, 22-16

HDL
advantages, 2-8
description, 2-8

HDL compliant names, 19-5
HDL designs

guided mapping, 8-25
guided PAR, 12-22
TNM_NET, 6-21

HDL-based simulation
description, 2-28
flow diagram, 2-28
post-synthesis functional simulation,
2-29
Index-10 Xilinx Development System

Index
RTL simulation, 2-29
simulation points, 2-29

-help option, 1-3, 17-5
HEX files, A-2
hierarchical

design, 2-6
names, 2-7

hierarchy, retaining in design
NGD2VER, 20-8
NGD2VHDL, 21-6

high_effort.opt, 22-10
HMAP symbol, 2-9
hold times, 14-22
-hpn option

NGD2EDIF, 19-5

I
-i option

NGD2EDIF, 19-5
NGDBuild, 4-8
PAR, 12-10
PARTGEN, 3-4, 3-5

I/O startup sequence, 16-20
-I/Os

releasing from 3-state condition, 16-25
I/Os

bonded, 12-16
packing registers, 8-17
releasing from 3-state condition, 16-17

identifiers
in EDIF, 19-8
in Verilog, 20-12
in VHDL, 21-18
user-defined names as comments in
Verilog netlist, 20-5
user-defined names as comments in
VHDL netlist, 21-5

-implement flow type
balanced.opt, 22-10
examples, 22-11
fast_runtime.opt, 22-10
high_effort.opt, 22-10

option files, 22-10
XFLOW, description, 22-10

implementation
tools, invoking, 1-1
XFLOW -implement, 22-10

in-circuit verification
description, 2-31
Design Rule Checker, 2-32

incremental designs, PAR, 12-20
Input construct, 22-23
input files

BitGen, 16-3
DRC command, 11-2
EDIF2NGD, B-4
LCA2NCD, 9-3
MAP, 8-4
NGD2EDIF, 19-3
NGD2VER, 20-4
NGD2VHDL, 21-4
NGDAnno, 18-4
NGDBuild, 4-4
PAR, 12-6
PARTGEN, 3-2
PIN2UCF, 13-4
PROMGen, 17-3
TRCE, 14-3, 14-9
turns engine, 12-49
XFLOW, 22-20
XNF2NGD, B-9

input functions, mapping to, 8-12, 8-13
Input option

XC3X000, 16-7
XC4000 and Spartan, 16-16
XC5200, 16-21, 16-24

input pads
connecting to primitives, 7-3
TNMs, 6-13

input-to-output propagation delays, 14-19
INST name, 6-6
instance name

specifying in SDF and TVHD file, 21-7
specifying in TV file, 20-9
Development System Reference Guide Index-11

Development System Reference Guide
interconnects, unused, 16-37, 16-38
Intermediate Failing Timespec Summary,
12-27
intermediate files see NGO files
inverted signal names, 6-6
io_t_pad, 6-65
IOB configurations

Spartan-II, 6-64, 6-65
Virtex, 6-64
Virtex/E/-II, 6-65

IOB registers
reporting timing constraints, 6-3
specifying timing constraints, 6-3

IOBs
input threshold levels, 16-24
properties, 8-31
setting output levels, 16-17

-ir option
architectures, 8-7
description, 8-12

-ism option
NGD2VER, 20-6

iterations
multiple, for PAR, 12-23
-n PAR option, 12-13
router, 12-10

ITR
files, A-2
report, 12-28

J
-j option, 16-36
JED files, A-2

K
-k option

description, 8-12, 8-13
MAP, architectures, 8-7
MAP, description, 8-13
PAR, 12-11

keywords

ALLCLOCKNETS, 6-31
as identifiers, 6-12
case-sensitivity, 6-5, 6-27, 6-49
DISABLE, 6-63
ENABLE, 6-63
EXCEPT, 6-25, 6-70
FALLING, 6-26, 6-70
in quotation marks, 6-12
PRIORITY, 6-58
RISING, 6-26, 6-70
TRANSHI, 6-27, 6-70
TRANSLO, 6-27, 6-70

-kpaths
analysis, differences with DFS, 12-12
PAR option, 12-11

L
-l option, 17-5

BitGen, 16-36
EDIF2NGD, B-5
MAP, architectures, 8-7
MAP, description, 8-13
NGD2EDIF, 19-5
NGDBuild, 4-8
PAR, 12-12
XNF2NGD, B-10

L2N files, 9-3, A-3
latches

grouping with TNMs, 6-19
subgroups, defining with TIMEGRP,
6-27

LC_Alignment option
XC3X000, 16-8
XC4000 and Spartan, 16-16
XC5200, 16-24

LCA files
description, 9-1, A-2
translating unnamed components, 9-4
unnamed components, 9-4

LCA2NCD
compatible families, 9-1
description, 9-1
Index-12 Xilinx Development System

Index
-f option, 9-4
flow diagram, 9-1
input files, 9-3
L2N files, A-3
MDF files, A-3
NCD file output name, 9-2
options, 9-3
output files, 9-3
-p option, 9-3
placement, 9-3
report files, 9-3
syntax, 9-2
-w option, 9-4

LCK_cycle option, 16-34
length count, 16-8, 16-16, 16-24
LEVERAGE mode, 8-12, 8-24, 8-25
leverage option for PAR, 12-21
libraries, searching, 4-8, B-5, B-10
library elements

description, 2-5
macros, 2-5

LL files, 16-4, 16-36, A-3
LOC see location constraints
local scope, for dedicated signals, 19-5
location

constraints, eliminating, 4-10
properties, filtering, B-6, B-11

log file, 22-16
LOG files, 20-4, 20-7, 21-4, 21-6, A-2
-log option

NGD2VER, 20-7
NGD2VHDL, 21-6
XFLOW, description, 22-16

LogiBLOX
description, 2-7
MEM files, A-3
NGC files, A-4

logic
added by MAP, 8-30
allocation file, 16-36
expanded by MAP, 8-30
optimization, disadvantages, 8-16

optimization, effort, 8-15
optimization, style, 8-15
removed from NGD files, 8-29
replication, 8-13
unused, 8-18

logical constraints, in UCF files, 5-1
logical DRC

 see DRC, logical
logicdelay, 14-11
longlines, pullups, 12-19
LUTs, reducing, 8-10

M
-m option

BitGen, 16-37
PAR, 12-13

M0Pin option
Spartan-II, 16-30
Virtex/-E/-II, 16-30
XC4000 and Spartan, 16-16

M1Pin option
Spartan-II, 16-30
Virtex/-E/-II, 16-30
XC4000 and Spartan, 16-17

M2Pin option
Spartan-II, 16-30
Virtex/-E/-II, 16-30
XC4000 and Spartan, 16-17

macros
pins, attaching TPSYNC, 6-52
Relationally Placed, 2-6
soft, 2-6
synthesis, 2-6
TMNs, 6-15

MAP
added logic, 8-30
-b option, 8-9
-c option, 8-9
-cm option, 8-10
compatible families, 8-1
-d option, 8-11
description, 8-2
Development System Reference Guide Index-13

Development System Reference Guide
-detail option, 8-11
directive files see MDF files
EXACT mode, 8-24
expanded logic, 8-30
Floorplanner File see MFP files
flow diagram, 8-2
-fp option, 8-11
-gf option, 8-12
-gm option, 8-12
halting, 8-34
input files, 8-4
invoking, 8-2
-ir option, 8-12
-k option, 8-12, 8-13
-l option, 8-13
LEVERAGE mode, 8-24, 8-25
MDF files, A-3
MRP files, 8-27

area group summary, 8-31
description, A-3

NGM files, A-4
-o option, 8-14
-oe option, 8-15
options and architectures, 8-7
-os option, 8-15
output files, 8-5
-p option, 8-16
PCF files, 8-4, A-5
-pr option, 8-17
process, 8-19, 8-20
-r option, 8-17
register ordering, 8-21
Report Files see MRP files
simulating results, 8-25
syntax, 8-3
to 5-input functions, 8-13
-tx option, 8-18
-u option, 8-18

mapping
description, 2-3, 2-9
to input functions, 8-12, 8-13

Mask file, 16-37

matching, buses, B-15
MAXDELAY

description, 6-62
MAXSKEW

description, 6-61
MCS files, A-3
MDF files, 8-5, 8-6, 9-3, A-3
MEM files, 4-6, A-3
Mentor

Graphics ENRead, 19-4
netlist writer, 6-4, 6-6, 6-23

Mentor viewpoint, 19-6
messages

on screen displays, 1-4
redirecting to files, 1-3
symbols used, 1-2
verbose mode, 20-10, 21-8

MFP files, 8-5, 8-11, A-3
-min option

SPEEDPRINT, 15-2
MOD files, A-3
-modular assemble option

NGDBuild, 4-9
modular design

active module, 4-9
initial budgeting, 4-8
linking PIMs to top-level design, 4-9
locating the active module, 18-6

-modular initial option
NGDBuild, 4-8

-modular module option
NGDBuild, 4-9

module
as black box in Verilog file, 20-5
name, changing, 20-9

-module option
NGDAnno, 18-6

mount points, 12-53
MRP files

description, 8-6, 8-27, A-3
errors, 8-28
example, 8-31
Index-14 Xilinx Development System

Index
sections, 8-28
warnings, 8-28

MSK files, 16-4, A-3
MultiLINX Cable, 2-33
multiple

buffers, 14-13
groups, creating with TIMEGRP, 6-25
iterations for PAR, 12-23, 12-25
pads, 7-4
PROM files, 17-8
systems, running PAR, 12-48

multiplication for time delays, 6-56
multi-tasking

mode, -m PAR option, 12-13
option, for PAR, 12-47, 12-50

N
-n option

BitGen, 16-37
NGD2EDIF, 19-6
PAR, 12-13
PROMGen, 17-6

name
check, logical DRC, 7-4
legalization, in VHDL files, 21-5
qualifiers, predefined groups, 6-8
qualifiers, wildcards, 6-9

name escaping, 20-7
naming conventions

EDIF, 19-8
for buses, B-16
Verilog, 20-12
VHDL, 21-18

NCD files
as guide file, 8-5, 12-10
description, 8-2, 8-5, 18-4, A-3
output file name, 8-14
overwriting, 9-4
reading with NCDRead, 1-7
specifying for LCA2NCD, 9-2

NCDRead, 1-7
NCF files

description, 4-5, A-4, B-4, B-9
wildcard characters, 6-6

-ne option, 20-7
NGD2VER, 20-7

negative slack, 14-12
net

check, logical DRC, 7-3
check, physical DRC, 11-4
delay constraints, 14-10
delay errors, 14-9
skew constraints, 14-10
skew errors, 14-9

NET name, 6-6
netlist

bus matching, B-15
converting to NGD files, 4-3
data files (XFLOW), 22-31
flattening, 18-10, 19-6
translation, 4-3, B-13
translation, description, 2-10
writers, description, 2-24
writers, invoking, 2-25
writers, logical DRC, 7-2

Netlister Launcher
description, B-16
system rules file, B-22
treatment of timestamps, 4-9

nets
critical, 16-39
definition, 1-10
delay, 6-62
example, 1-11
names, specifying with wildcards, 6-27
skew, 6-61
TNMs, 6-14, 6-15
TPSYNC, 6-51

net-specific, OFFSET constraint, 6-39
networks

automount points, 12-53
for turns engines, 12-50
problems, turns engine, 12-54

new groups, from existing groups, 6-23
Development System Reference Guide Index-15

Development System Reference Guide
NGA files, 18-5
annotating device speed, 18-7
description, 19-3, 20-4, 21-4, A-4
specifying, 18-6

NGC files, 4-5, A-4
NGD files

allowing unexpanded blocks, 4-11
description, 4-6, 19-3, 20-4, 21-4, A-4
input to MAP, 8-4
logical constraints, 10-1
removed logic, 8-29

NGD2EDIF
-a option, 19-4
-b option, 19-4
-c option, 19-4
description, 2-24, 19-1
EDN files, A-2
-f option, 19-5
flow diagram, 19-2
-hpn option, 19-5
-i option, 19-5
identifiers, 19-8
input design stages, 19-1
input files, 19-3
-l option, 19-5
-n option, 19-6
options, 19-4
output files, 19-4
supported families, 19-1
syntax, 19-3
-v option, 19-6
-vpt option, 19-6
-w option, 19-6
XMM file, 19-6

NGD2VER
-10ps option, 20-5
-aka option, 20-5
-cd option, 20-5
compile scripts, 20-13
description, 2-24, 20-2
-f option, 20-6
flow diagram, 20-3

-gp option, 20-6
identifiers, 20-12
input design stages, 20-2
input files, 20-4
-ism option, 20-6
LOG files, A-2
-log option, 20-7
-ne option, 20-7
-op option, 20-7
options, 20-5
output files, 20-4
-pf option, 20-7
-pms option, 20-8
-r option, 20-8
SDF files, A-5
-sdf option, 20-8
-shm option, 20-9
supported families, 20-1
syntax, 20-3
-tf option, 20-9
-ti option, 20-9
-tm option, 20-9
-tp option, 20-9
TV files, A-5
-ul option, 20-10
V files, A-5
-verbose option, 20-10
-w option, 20-10

NGD2VHDL
-a option, 21-5
-aka option, 21-5
-ar option, 21-5
compile scripts, 21-19
description, 2-25, 21-2
-f option, 21-5
flow diagram, 21-3
global set/reset and tristate port, 21-9
-gp option, 21-5
identifiers, 21-18
input design stages, 21-2
input files, 21-4
LOG files, A-2
Index-16 Xilinx Development System

Index
-log option, 21-6
-op option, 21-6
options, 21-5
output files, 21-4
-pms option, 21-6
-r option, 21-6
-rpw option, 21-7
supported families, 21-1
syntax, 21-3
-tb option, 21-7
-te option, 21-7
-ti option, 21-7
-tp option, 21-8
-tpw option, 21-8
TVHD files, A-5
-verbose option, 21-8
VHD files, A-5
-w option, 21-8
-xon option, 21-9

NGDAnno
ALF files, A-1
ARF files, A-1
description, 18-1
-f option, 18-5
flow diagram, 18-3
FPGA Editor, 2-24
global reset signals, 18-8
guaranteed setup and hold, 18-10
input files, 18-4
-module option, 18-6
netlist flattening, 18-10
NGA files, A-4
-o option, 18-6
options, 18-5
output files, 18-5
-p option, 18-7
report files, 18-7
-report option, 18-7
-s option, 18-7
supported families, 18-1
syntax, 18-4
without mapped.ngm file, 8-25

NGDBuild
-a option, 4-7
BLD files, A-1
bus matching, B-15
bus matching, Virtex, B-16
bus naming conventions, B-16
converting netlists, 4-3
converting netlists (detailed), B-13
-dd option, 4-7
description, 4-1
-f option, 4-7
file naming conventions, B-28
flow diagram, 4-2
-i option, 4-8
input files, 4-4
intermediate files, 4-6
-l option, 4-8
logical DRC, 7-2
-modular assemble option, 4-9
-modular initial option, 4-8
-modular module option, 4-9
Netlister Launcher, B-16
NGD file, 4-1
NGD files, A-4
-nt option, 4-9
options, 4-7
output files, 4-6
-p option, 4-9
-r option, 4-10
report files, 4-6
-sd option, 4-10
supported families, 4-1
syntax, 4-3
system rules file, B-22
-u option, 4-11
-uc option, 4-11
-ur option, 4-12

NGM files, 8-6, 8-20, 18-4, A-4
NGO files

description, 4-6, A-4, B-5, B-10
naming, 4-12
overriding information, 4-10
Development System Reference Guide Index-17

Development System Reference Guide
specifying a destination directory, 4-7
timestamps, 4-9

NMC files, 4-5, 8-5, A-4
nodelist files, 12-49
-norun option

XFLOW, description, 22-17
XFLOW, example, 22-17

-nt option
NGDBuild, 4-9

O
-o option

DRC command, 11-3
MAP, architectures, 8-7
MAP, description, 8-14
NGDAnno, 18-6
PIN2UCF, 13-5
PROMGen, 17-6
TRCE, 14-5
XFLOW, description, 22-18

-oe MAP option
architecures, 8-7
description, 8-15

OFFSET constraint
advantages of, 6-36
description, 6-36
examples, 6-40
global, 6-37, 6-38
net-specific, 6-39, 6-71
syntax, 6-37, 6-38, 6-39, 6-46
types, 6-37
with Timegroups, 6-44
with TIMEGRP, 6-46, 6-74

offset errors, 14-9
OFFSET IN AFTER, 6-41
OFFSET IN BEFORE, 6-40
OFFSET OUT AFTER, 6-42
OFFSET OUT BEFORE, 6-43
-ol option

PAR, 12-13
-op option

NGD2VER, 20-7

NGD2VHDL, 21-6
OPT files, A-4
optimization, logic

description, 2-3
effort, 8-15
style, 8-15

optimizing placement, 12-18
option files

example, 22-13
-fit flow type, 22-8
-implement flow type, 22-10
locations, XFLOW, 22-11
relationship with flow types, 22-4
XFLOW, 22-11

option simulation files, 22-9
options

command line, entering, 1-2
using spaces, 1-2

-os option
architectures, 8-7
description, 8-15

OscClk option, XC5200, 16-24
Oscillator option, XC3000, 16-8
oscillators

NGD2VER, 20-7
NGD2VHDL, 21-6
VHDL only, 21-14

output directory, write error, 4-13
output files

BitGen, 16-3
DRC command, 11-2
EDIF2NGD, B-5
LCA2NCD, 9-3
MAP, 8-5
multiple iterations of PAR, 12-25
name, NCD files, 8-14
name, PROMGen, 17-6
NGD2EDIF, 19-4
NGD2VER, 20-4
NGD2VHDL, 21-4
NGDAnno, 18-5
NGDBuild, 4-6
Index-18 Xilinx Development System

Index
overwriting, 16-39, 19-6, 20-10, 21-8
PAR, 12-6, 12-23
PARTGEN, 3-2
PIN2UCF, 13-4
PROMGen, 17-3
specifying for XFLOW, 22-18
TRCE, 14-3, 14-9
XFLOW, 22-30
XNF2NGD, B-10

Output option, 16-17
output pads, connecting to primitives, 7-3
output signal names, register ordering,
8-22
outputs, SPEEDPRINT, 15-3
OutputsActive option

XC4000 and Spartan, 16-17
XC5200, 16-25

P
-p option

EDIF2NGD, B-6
for part numbers, 1-5
LCA2NCD, 9-3
MAP, architectures, 8-7
MAP, description, 8-16
NGDAnno, 18-7
NGDBuild, 4-9
PAR, 12-14
PARTGEN, 3-6
PROMGen, 17-6
XFLOW, description, 22-18
XFLOW, examples, 22-18
XFLOW, package names, 22-18
XNF2NGD, B-11

pack
CLBs, 8-9
registers in I/O, 8-17

package
files, creating, 3-6, 3-7
names, XFLOW, 22-18

packages, listing with PARTGEN, 3-5
pad check, logical DRC, 7-3

PAD files, 12-38, A-4
pads

adding to top-level port signals, 4-7,
B-5
connecting to top-level symbols, 7-4
input, connecting to primitives, 7-3
output, connecting to primitives, 7-3
unbonded, connecting to primitives,
7-4

PAR
automatic timespecing, 12-5
-c option, 12-8
command examples, 12-59, 12-60
cost-based, 12-2
-d option, 12-8
delay file, 12-35
description, 12-2
-dfs option, 12-9
displaying options, 12-7
DLY files, A-1
-e option, 12-9
-f option, PAR, 12-10
files, overwriting, 12-16
flow diagram, 12-3
-gf option, 12-10
-gm option, 12-10, 12-22
guided, 12-20
halting, 12-61, 12-63
-i option, 12-10
ignoring timing constraints, 12-16
input files, 12-6
Intermediate Failing Timespec
Summary, 12-27
ITR files, A-2
-k option, 12-11
-kpaths option, 12-11
-l option, 12-12
-m option, 12-13
multiple iterations, 12-23
multi-tasking option, 12-47, 12-50
-n option, 12-13
operation, placement, 12-18
Development System Reference Guide Index-19

Development System Reference Guide
options, 12-7
options summary, 12-17
output files, 12-6, 12-23
outputs for multiple iterations, 12-25
-p option, 12-14
PAD file, 12-38
PAD files, A-4
PCF files, 12-6
-r option, 12-15
register placement, 8-21
report file, 12-28, 12-31, A-4
reports, Select IO, 12-33
running on multiple systems, 12-48
-s option, 12-15
saving results, 12-15
Spartan-II, Select I/Os, 12-38
strategies for guided designs, 12-21
summary report file, 12-25, 12-26
supported families, 12-1
syntax, 12-5
-t option, 12-16
tilde in reports, 12-32
timing driven, 12-2, 12-3
-w option, 12-16
-x option, 12-16

PAR_AUTOMNTPT, 12-53
PAR_AUTOMNTTMPPT, 12-53
PAR_M_DEBUG, 12-53
PAR_M_SETUPFILE, 12-51
Parallel Cable III, 2-32
parameter files, XFLOW option files, 22-12
part names, XFLOW, 22-18
part number option, 4-9, 8-16, 22-18, B-6,
B-11
part numbers

commands, 1-4
specifying in commands, 1-5

PARTGEN
description, 3-1
-i option, 3-4, 3-5
input files, 3-2
listing device attributes, 3-8

options, 3-3
output files, 3-2
-p option, 3-6
supported families, 3-1
syntax, 3-1
usage message, 3-3
-v option, 3-7

partlist.xct file, 3-2, 3-6, 3-7, 3-8
path delay constraints, 14-11
paths

definition, 1-11
disabling tracing, 6-63
enabling tracing, 6-63
example, 1-12
false, 12-12
loops, detecting with TRACE, 14-16
tracing, block delay symbols, 6-63
tracing, controlling, 6-63
tracing, examples, 6-65
tristate buffer, 12-12

pattern matching, 6-27, 6-28, 6-29, 6-71
PCF files, 18-5

ALLCLOCKNETS keyword, 6-31,
6-32, 6-61
BitGen, 16-3
constraints entry, 10-3
description, 8-5, 10-1, 10-2, A-5
flow diagram, 10-2
in MAP, 8-4
PAR, 12-6
schematic constraints, 10-3
specifying, 18-7
summary reports, 14-23
TNM_NET, 6-22
TRACE, 14-3

PCI cores, 12-22
PDStatusPin option, Spartan-II, 16-31
performance, design, 2-14
PERIOD constraint

description, 6-30
example, 6-33
example, derived clocks, 6-34
Index-20 Xilinx Development System

Index
forward tracing, 6-32
paths, 6-30, 6-32
syntax, 6-31, 6-73, 6-75
with CLKDLLs, 6-34

Persist option, 16-34
-pf option

NGD2VER, 20-7
Physical Constraints File see PCF files
physical DRC see DRC command, physical
physical macro, definition, 1-12
pin check, primitive, 7-5
PIN files, 20-5, 20-7
pin locking constraints

PIN2UCF, 13-2
user-specified, 13-3

PIN2UCF
description, 13-1
flow diagram, 13-1
input files, 13-4
-o option, 13-5
options, 13-5
output files, 13-4
output files, changing default name,
13-5
pinlock.rpt file, 13-2
pinlock.rpt files, A-5
-r option, 13-5
report files, 13-5
RPT files, A-5
scenarios, 13-6
supported families, 13-1
syntax, 13-3

pinlock.rpt files, 13-2, A-5
pins, Direct Input, 8-11
-pl option

PAR, 12-14
Place and Route see PAR
placement

block, 2-9
bypassing, -p PAR option, 12-14
constructive, 12-18
description, 2-3

LCA2NCD, 9-3
optimizing, 12-18

placer
cost tables, 12-16
effort level, 12-14

platforms, supported for 3.1i, 1-13
-pms option

NGD2VER, 20-8
NGD2VHDL, 21-6

port
global reset signal as, 20-6, 21-5
global tristate signal as, 20-9, 21-8

post-synthesis functional simulation, 2-29
PowerDown option, 16-19
PowerdownPin option, Spartan-II, 16-31
PowerupClk option, 16-29
-pr MAP option

architectures, 8-8
description, 8-17

predefined groups
keywords, 6-7
name qualifiers, 6-8
TNMs, 6-12

pre-implementation verification, 2-26
pre-simulation translation, 2-21
primitive pin check, 7-5
primitive pins

attaching TPSYNC, 6-52
TNMs, 6-15

primitive symbols
attaching TPSYNC, 6-52
TNMs, 6-16

primitives
connecting to bidirectional pads, 7-4
connecting to input pads, 7-3
connecting to output pads, 7-3
connecting to unbonded pads, 7-4
description, 2-5

priorities, of timing constraints, 6-68
PRIORITY keyword, 6-58
PRM files, 17-3, A-5
ProgPin option
Development System Reference Guide Index-21

Development System Reference Guide
Spartan-II, 16-31
Virtex/-E/-II, 16-31
XC5200, 16-26

program blocks
description, 22-23
End Program construct, 22-25
Executable construct, 22-23, 22-24
Exports construct, 22-24
Flag construct, 22-23
Input construct, 22-23
Program construct, 22-23
Reports construct, 22-24
variable assignments, 22-25

Program construct, 22-23
PROM

files, bit swapping, 17-3, 17-4
files, description, 17-3
files, loading, 17-7
files, multiple, 17-8
formats, 17-6
sizes, 17-8

PROMGen
-b option, 17-4
-d option, 17-5
description, 17-1, 17-2
examples, 17-9
EXO files, A-2
flow diagram, 17-1
-help option, 17-5
HEX files, A-2
input files, 17-3
MCS files, A-3
-n option, 17-6
-o option, 17-6
options, 17-4
output file name, 17-6
output files, 17-3
-p option, 17-6
PRM files, A-5
-r option, 17-7
-s option, 17-8
supported families, 17-1

syntax, 17-3
TEK files, A-5
-u option, 17-8
-x option, 17-8

propagation delays
clock-to-output, 14-18
input-to-output, 14-19

property, 6-4
prorating constraints, 6-60
PULLDOWN primitive, 7-3
pulldowns

adding to M0, 16-16
adding to M1, 16-17
adding to M2, 16-17
adding to Spartan-II M0 pin, 16-30
adding to Spartan-II M1 pin, 16-30
adding to Spartan-II M2 pin, 16-30
adding to Spartan-II TCK pin, 16-31
adding to Spartan-II TDI pin, 16-32
adding to Spartan-II TDO pin, 16-32
adding to Spartan-II TMS pin, 16-32
adding to Spartan-II UnusedPin, 16-32
adding to TdoPin, 16-20
adding to Virtex/-E/-II M0 pin, 16-30
adding to Virtex/-E/-II M1 pin, 16-30
adding to Virtex/-E/-II M2 pin, 16-30
adding to Virtex/-E/-II TCK pin, 16-31
adding to Virtex/-E/-II TDI pin, 16-32
adding to Virtex/-E/-II TDO pin,
16-32
adding to Virtex/-E/-II TMS pin, 16-32
adding to Virtex/-E/-II UnusedPin,
16-32

pullups
adding to Cclk pin, 16-29
adding to M0, 16-16
adding to M1, 16-17
adding to M2, 16-17
adding to Spartan-II M0 pin, 16-30
adding to Spartan-II M1 pin, 16-30
adding to Spartan-II M2 pin, 16-30
adding to Spartan-II ProgPin, 16-31
Index-22 Xilinx Development System

Index
adding to Spartan-II TCK pin, 16-31
adding to Spartan-II TDI pin, 16-32
adding to Spartan-II TDO pin, 16-32
adding to Spartan-II TMS pin, 16-32
adding to Spartan-II UnusedPin, 16-32
adding to TdoPin, 16-20
adding to Virtex/-E/-II M0 pin, 16-30
adding to Virtex/-E/-II M1 pin, 16-30
adding to Virtex/-E/-II M2 pin, 16-30
adding to Virtex/-E/-II TCK pin, 16-31
adding to Virtex/-E/-II TDI pin, 16-32
adding to Virtex/-E/-II TDO pin,
16-32
adding to Virtex/-E/II TMS pin, 16-32
adding to Virtex/-E/-II UnusedPin,
16-32
longline, 12-19
on PROGRAM pin, 16-26

pulse width
for ROC, 21-7
for TOC, 21-8

Q
qualifiers, with TNMs, 6-20
question marks, pattern matching, 6-28
quotation marks

in file names, 4-13
keywords, 6-12

quotes, special characters, 6-6

R
-r option

EDIF2NGD, B-6
MAP, architectures, 8-8
MAP, description, 8-17
NGD2VER, 20-8
NGD2VHDL, 21-6
NGDBuild, 4-10
PAR, 12-15
PIN2UCF, 13-5
PROMGen, 17-7

XNF2NGD, B-11
rawbits file, 16-5
RBT files, 16-4, 16-5, A-5
RCV files, A-5
-rd option

XFLOW, description, 22-19
XFLOW, examples, 22-19

ReadAbort option
XC4000 and Spartan, 16-19
XC5200, 16-26

ReadBack option
Spartan-II, 16-28
Virtex/-E/-II, 16-28
XC3X000, 16-8

ReadCapture option
XC4000 and Spartan, 16-19
XC5200, 16-26

ReadClk option
XC4000 and Spartan, 16-19
XC5200, 16-26

re-entrant routing, -k Par option, 12-11
register ordering

disabling, 8-17
flip-flop characteristics, 8-21, 8-22
output signal names, 8-22

register placement, 8-21
registers

packing, 8-17
with Timegroups, 6-44

register-to-register paths, 14-12
Relationally Placed Macros (RPMs), 2-6,
8-12
report files

DRC command, 11-2, 11-3
LCA2NCD, 9-3
NGDAnno, 18-7
NGDBuild, 4-6
PAR, 12-25, 12-26, 12-28, 12-31
PAR delay file, 12-35
PAR PAD file, 12-38
PIN2UCF, 13-5
pinlock.rpt, 13-2
Development System Reference Guide Index-23

Development System Reference Guide
summary TRACE report, 14-22, 14-23
TRACE, 14-14, 14-15
tsi, 14-7
verbose, 14-8
XFLOW, 22-19, 22-33

-report option
NGDAnno, 18-7

ReportDir, 22-23
Reports construct, 22-24
requirements, timing, 6-2
reserved names, 20-6, 20-7, 21-6, B-3, B-8
reserved words, 6-11
Reset-On-Configuration see ROC
ResetTime option, XC3X000, 16-9
RISING keyword, 6-26, 6-70
-rl option

PAR, 12-15
RLOC constraints, 8-12
ROC

description, 21-11
specifying pulse width, 21-7

ROCBUF, 21-13
routed designs, scoring, 12-45
routedelay, 14-11
router

effort level,-rl PAR option, 12-15
iterations, 12-10

route-throughs, 1-10
routing

cleanup, 12-19
constructive, 12-18
description, 2-3
-r PAR option, 12-15
re-entrant, 12-11

RPT files, A-5
-rpw option, 21-7
RTL simulation, 2-29
rules files see user rules file, system rules
file

S
-s option

DRC command, 11-3
NGDAnno, 18-7
PAR, 12-15
PROMGen, 17-8
SPEEDPRINT, 15-2
TRCE, 14-6

schematic entry
description, 2-5

schematic entry, description, 2-3
schematic-based simulation, 2-26
schematics

constraints, placement in PCF files,
10-3
entering timing specifications, 6-4

SCR script files, A-5
screen messages, 1-4
script files

fpga_editor.ini, A-2
fpga_editor_user.ini, A-2

-sd option
NGDBuild, 4-10

SDF files
description, 2-25, 20-4, 21-4, A-5
outputting to specified path, 20-8

-sdf option
NGD2VER, 20-8

search
hierarchy, XFLOW, 22-2, 22-7
paths, specifying, 4-10

Security option, 16-35
SelectIOs, 12-33, 12-38
separators, colons, 6-6
setup checking, 14-12
setup times, 14-21
setup/hold

guaranteed, 14-20, 14-21
NGDAnno, 18-10
requirements, 14-18

setuptime, 14-11
-shm option

NGD2VER, 20-9
shm statements, in Verilog file, 20-9
Index-24 Xilinx Development System

Index
signal names, inverted, 6-6
signal names, matching parent and child

in Verilog file, 20-8, 21-6
signals

connecting to pads, 7-4, B-5
making local to a device, 19-5
merged, 8-29
removed, 8-29

SimPrim
libraries, pointing to, 20-10
modules, including in the Verilog file,
20-6
pin names, setting to HDL compliant
names, 19-5

simulation
description, 2-3
files, XFLOW, 22-9
functional, 2-27
global reset, 2-30
HDL-based, 2-28
in-circuit verification, 2-31
MAP results, 8-25
schematic-based, 2-26
timing, 2-27
with block delays, 2-26

site, definition, 1-10
sizes

designs, 2-14
of PROMs, 17-8

-skew option, 14-12
TRCE, 14-6

skew, definition, 6-61
slack, 14-12
slices, 8-21
soft macros, 2-6
spaces, for options, 1-2
Spartan-II

-c PAR option, 12-8
-d PAR option, 12-9
g BitGen option, 16-27
IOB configuration, 6-64
IOB configurations, 6-65

SelectIOs, 12-38
slices, 8-21

special characters, in quotes, 6-6
speed setting, 8-10, 8-15
speed, overriding with -s option, 14-6
SPEEDPRINT

compatible families, 15-1
description, 15-1
example commands, 15-3
example outputs, 15-3
-min option, 15-2
options, 15-2
-s option, 15-2
syntax, 15-2
-t option, 15-3
temperature, 15-3
-v option, 15-3
voltage, 15-3

speeds, listing with PARTGEN, 3-5
SRF file see system rules file
STAMP model, comparing with verbose
report, 14-31
-stamp option, 14-6

TRCE, 14-6
STARTBUF cell

description, 21-10
Virtex, 21-11

startup
Cclk_Nosync, 16-10
Cclk_Sync, 16-11
-g BitGen option, 16-10
STARTBUF, 21-10
STARTBUF_VIRTEXonly, 21-11
STARTUP block, VHDL only, 21-9
STARTUP_VIRTEX block, VHDL
only, 21-11
Uclk_Nosync, 16-11
Uclk_Sync, 16-12

STARTUP block, VHDL only
description, 21-9
Virtex, 21-11

StartupClk option
Development System Reference Guide Index-25

Development System Reference Guide
Spartan-II, 16-28
Virtex/-E/-II, 16-28
XC4000 and Spartan, 16-20
XC5200, 16-27

static timing analysis, description, 2-31
summary reports

TRACE, 14-22, 14-23
without PCF file, 14-23

switches, XFLOW option files, 22-12
symbols, in messages, 1-2
synchronous designs

considerations, 2-15
data feedback, 2-16
global clock distribution, 2-14

synchronous points, 6-50
SyncToDone option, 16-20

XC5200, 16-27
synthesis, macros, 2-6
system requirements, turns engines, 12-51,
12-52
system rules file

displayed, B-22
example, B-25
versus user rules, B-19

T
-t option

BitGen, 16-37, 16-38
PAR, 12-16
SPEEDPRINT, 15-3

-tb option
NGD2VHDL, 21-7

TckPin option, Spartan-II, 16-31
TckPin option, Virtex/-E/-II, 16-31
TdiPin option, Spartan-II, 16-32
TdiPin option, Virtex/-E/-II, 16-32
TdoPin option

Spartan-II, 16-32
Virtex/-E/-II, 16-32
XC4000 and Spartan, 16-20

TDR files, A-5
changing default name, 11-3

-te option
NGD2VHDL, 21-7

TEK files, A-5
TEMPERATURE constraint, 6-60
temperature, SPEEDPRINT, 15-3
temporary mount points, 12-53
test fixture file see TV files
testbench file

generating, 21-7
text-based entry, description, 2-3
-tf option

NGD2VER, 20-9
through-points, using TPTHRU, 6-53
THRU, with TPTHRU, 6-55
-ti option

NGD2VER, 20-9
NGD2VHDL, 21-7

tied design file, 16-37
tiedown, 16-5
TIG

description, 6-47
example, 6-48
syntax, 6-47, 6-72, 6-75

tilde
in delay file, 12-35
in PAR report files, 12-32
in TRACE report, 14-16

time delays
division, 6-56
in TIMESPECs, 6-56
multiplication, 6-56

Timegroups
with inverters, 6-45
with OFFSET, 6-44
with registers, 6-44

TIMEGRP
attributes, placement, 6-24
combining multiple groups, 6-25
creating groups by exclusion, 6-25
creating new groups, 6-23
creating various groups, 6-24
defining latch subgroups, 6-27
Index-26 Xilinx Development System

Index
grouping by exclusion, 6-25
groups by clock sense, 6-26
groups by pattern matching, 6-27
primitive, 6-24
relation to TIMESPEC, 6-24
reserved words, 6-11
sample schematic, 6-58
syntax, 6-23, 6-70
with MAXSKEW, 6-61
with OFFSET, 6-46, 6-74
with PERIOD, 6-31, 6-32

timescale statement, changing default, 20-5
TIMESPEC

pattern matching, 6-29
primitive, 6-4
primitive, keywords, 6-5
PRIORITY keyword, 6-58
relation to TIMEGRP, 6-24
sample schematic, 6-58
syntax, 6-72
time delays, 6-56

timespec interaction report
TRACE, 14-7

timestamp option, 4-9
timestamps

checking in NGO files, 4-9
timing analysis

advanced, 14-4
-dfs option, 12-9
-kpaths option, 12-11

timing constraints
compatible families, 6-1
DROP_SPEC, 6-66
entering in files, 6-6
entering in schematics, 6-4
entering on schematics, 6-4
FROM-TO, 6-48
ignoring in PAR, 12-16
IOB registers, 6-3
MAXDELAY, 6-62
MAXSKEW, 6-61
OFFSET, 6-36

PERIOD, 6-30
predefined groups, 6-8
priorities, 6-68
reserved words, 6-11
specifying, 6-2, 12-4
TIG, 6-47
TIMEGRP, 6-23
TIMESPEC use, 6-8
TNM_NET, 6-21
TNMs, 6-11
TPSYNC, 6-50
TS attributes, 6-56
user-defined groups, 6-11

timing errors
net delay, 14-9
net skew, 14-9
offset, 14-9
path delay, 14-9

timing points, specifying, 6-50
timing properties, annotating to instances,
19-5
timing reports, description, 14-15
timing requirements, 6-2
timing scores, 12-32
timing simulation

data (XFLOW), 22-32
description, 2-27
post-implementation, 2-29

timing specifications
see also timing constraints
entering on schematics, 6-4
in constraint files, 6-6
overview, 2-9

timing verification, TRCE, 14-10
timing violations

setting output behavior, 21-9
timing-driven PAR, 12-2, 12-3
-tm option

NGD2VER, 20-9
TmsPin option, 16-32
TNM constraint

CLKDLLs, 6-34, 6-35, 6-36, 12-27
Development System Reference Guide Index-27

Development System Reference Guide
description, 6-11
forward tracing, 6-13, 6-15, 6-20
grouping flip–flops, 6-19
grouping flip-flops and latches, 6-19
input pads, 6-13
on clock pin grouping flip-flops, 6-20
on macro pins, 6-15
on macro symbols, 6-16
on macros, 6-15
on nets, 6-15, 6-19
on nets to group flip-flops, 6-19
on pins, 6-19
on primitive symbols, 6-16
path tracing, 6-12
placed on nets, 6-14
predefined groups, 6-12
primitive pins, 6-15
qualifiers, 6-20
storage elements, 6-20
syntax, 6-11, 6-69
user-defined groups, 6-11

TNM_NET constraint
CLKDLLs, 6-34, 6-35, 6-36, 12-27
description, 6-21
example, 6-22
PCF files, 6-22
UCF syntax, 6-21
user-defined groups, 6-21
with nets, 6-22

TOC
description, 21-13
specifying pulse width, 21-8

TOCBUF, 21-14
-tp option

NGD2VER, 20-9
NGD2VHDL, 21-8

TPSYNC
attached to net, 6-51
attached to output macro pin, 6-51
attached to primitive pins, 6-52
attached to primitive symbols, 6-52
defining synchronous points, 6-50

description, 6-50
restrictions, 6-53
syntax, 6-50, 6-74
with FROM-THRU, 6-54
with FROM-TO, 6-54

TPTHRU
defining through points, 6-53
description, 6-50
example, 6-55
syntax, 6-74
with FROM-TO, 6-54
with THRU, 6-55

-tpw option
NGD2VHDL, 21-8

TRACE
description, 2-31, 14-2
detecting path cycles, 14-16
error report, 14-27, 14-28
falling signals, 14-16
flow diagram, 14-2
halting, 14-43
PCF files, 14-3
reports, 14-14, 14-15
rising signals, 14-16
summary report, 14-22, 14-23
supported families, 14-1
timing verification, 14-10
TSI report, 14-35
TWR files, A-5
verbose report, 14-30, 14-31

tracing, forward, 6-13, 6-15, 6-20
transform buses, 8-18

aggressive setting, 8-18
limit setting, 8-18
off setting, 8-18
on setting, 8-18

TRANSHI keyword, 6-27, 6-70
translation

of netlist, 4-3
pre-simulation, 2-21

translation options
description, 2-26
Index-28 Xilinx Development System

Index
pre-implementation verification, 2-26
simulating with block delays, 2-26

TRANSLO keyword, 6-27, 6-70
TRCE

-a option, 14-4
DATA files, A-1
data sheet reports, 14-17
-e option, 14-4
example commands, 14-8
-f option, 14-5
input files, 14-3, 14-9
MOD files, A-3
-o option, 14-5
options, 14-4
output files, 14-3, 14-9
-s option, 14-6
syntax, 14-2

tristate
buffer paths, 12-12
enable signals, 12-12

Tri-State-On-Configuration cell see TOC
TS attributes

delay time units, 6-56
description, 6-4
examples, 6-57
placement, 6-50
syntax, 6-5, 6-73
time delays, 6-56

-tsi option
TRCE, 14-7

TSI report
design example, 14-36, 14-39
duplicate coverage, 14-35
exclusive coverage, 14-35
extracted coverage, 14-35
TRACE, 14-35

TSidentifier constraint
in PCF

with ALLCLOCKNETS, 6-31, 6-32
with MAXDELAY, 6-62

-tsim flow type
option simulation files, 22-9

XFLOW, description, 22-11
XFLOW, example, 22-11

TTL, 16-7, 16-21
turns engine

debug mode, 12-53
debugging, 12-54
description, 12-47
environment problems, 12-55
environment variables, 12-53
halting with CONTROL-C, 12-56
input files, 12-49
limitations, 12-50
NCD output file, 12-50
network problems, 12-54
nodelist file, 12-49
running on networks, 12-50
screen output, 12-56
starting from command line, 12-54
system requirements, 12-51, 12-52

TV files, 20-4, 20-9, 20-11, A-5
TVHD files, 21-4, A-5

generating, 21-7
TWR files, A-5
-tx option

MAP, description, 8-18

U
-u option

BitGen, 16-39
MAP, architectures, 8-8
MAP, description, 8-18
NGDBuild, 4-11
PROMGen, 17-8
TRCE, 14-7
XNF2NGD, B-12

-ub option
PAR, 12-16

-uc option
NGDBuild, 4-11

UCF files, A-5
as NGDBuild input, 4-5
description, 5-1
Development System Reference Guide Index-29

Development System Reference Guide
ignoring, 4-8
logical constraints, 5-1
specifying, 4-11
wildcard characters, 6-6
XFLOW, 22-21

UCF syntax, TNM_NET, 6-21
Uclk_Nosync, 16-11
Uclk_Sync, 16-12
-ul option

NGD2VER, 20-10
unbonded pads, connecting to primitives,
7-4
uncovered paths, for TRCE, 14-7
underbars, 8-22, 8-23
unnamed components, in LCA files, 9-4
unused interconnects, 16-37, 16-38
unused logic, keeping, 8-18
UnusedPin option

Spartan-II, 16-32
Virtex/-E/-II, 16-32

-ur option
NGDBuild, 4-12

URF files, A-5
specifying, 4-12

user command blocks
description, 22-25
examples, 22-25

user input files, XFLOW, 22-20
user rules file

examples, B-26
format, B-19
key values, B-21
keys, B-19
specifying, 4-12
versus system rules, B-19

user-defined groups
TNM_NET, 6-21
TNMs, 6-11

UserID option, 16-35

V
V files, 20-4, A-5

overwriting, 20-10
-v option

DRC command, 11-3
NGD2EDIF, 19-6
PARTGEN, 3-7
SPEEDPRINT, 15-3
TRCE, 14-8

variable assignments, XFLOW, 22-25
vendor toolset, specifying, 19-6
-verbose option

NGD2VER, 20-10
NGD2VHDL, 21-8

verbose reports
comparing with data sheet report,
14-31
comparing with STAMP model, 14-31
TRACE, 14-8, 14-30, 14-31

verification
timing, with TRCE, 14-10
tools, 2-21

Verilog
compile scripts, 20-13, 21-19
file naming, 20-12
identifiers, 20-12

VHD files, 21-4, A-5
VHDL

file naming, 21-18
files, bus order, 21-17
identifiers, 21-18

Virtex
bus matching, B-16
IOB configuration, 6-64

Virtex/-E/-II
-c PAR option, 12-8
-d PAR option, 12-9
-g BitGen option, 16-27
-g Bitgen option, 16-27
IOB configurations, 6-65
SelectIO standard, 12-33
slices, 8-21

VM6 files, A-6
3.1i version, 22-31
Index-30 Xilinx Development System

Index
VOLTAGE constraint, 6-60
voltage, SPEEDPRINT, 15-3
-vpt option, 19-6

W
-w option

BitGen, 16-39
LCA2NCD, 9-4
NGD2EDIF, 19-6
NGD2VER, 20-10
NGD2VHDL, 21-8
PAR, 12-16

warnings
DRC command, 11-4
MRP files, 8-28

-wd option
-with -ed option, 22-15
XFLOW, description, 22-19
XFLOW, examples, 22-20

wildcards
asterisk, 6-28
in UCF or NCF files, 6-6
name qualifiers, 6-9
question mark, 6-28
specifying net names, 6-27

working directory, XFLOW, 22-19, 22-20

X
-x option

PAR, 12-16
PROMGen, 17-8

XChecker cable, 2-32
XFLOW

annotated netlist data, 22-31
application data files, 22-33
compatible families, 22-1
-config flow type, 22-8
CPLD programming data, 22-31
CPLD report files, 22-34
default flow files, 22-3
description, 22-2

-ed option, 22-15
examples, 22-7
file search strategy, 22-11
first run example, 22-6
-fit flow type, 22-8
flow diagram, 22-3
flow files, 22-22
flow type examples, 22-7
flow types, 22-7
flow types and option files, 22-4
FLW files, A-2
FPGA programming data, 22-30
FPGA report files, 22-33
-fsim flow type, 22-9
functional simulation data, 22-32
-g option, 22-16
guide data, 22-33
-h option, 22-16
halting, 22-3
-implement flow type, 22-10
input files, 22-20
-log option, 22-16
netlist data files, 22-31
-norun option, 22-17
-o option, 22-18
OPT files, A-4
option file locations, 22-11
option files

description, 22-11
example, 22-13
Files, 22-12
parameter files, 22-12
switches, 22-12

option simulation files, 22-9
output files, 22-30
-p option, 22-18
-rd option, 22-19
Report Files, 22-19
running XFLOW, 22-5
search hierarchy, 22-2
specifying output files, 22-18
syntax, 22-4
Development System Reference Guide Index-31

Development System Reference Guide
table of options, 22-5
timing simulation data, 22-32
-tsim flow type, 22-11
UCF files, 22-21
user input files, 22-20
VM6 files, 22-31
-wd option, 22-19, 22-20
working directory, 22-19, 22-20
XFLOWPATH, 22-2

XFLOWPATH, 22-2
XMM file

description, 19-4, 19-6
generic file format, 19-7
generic simulator, 19-7
Mentor Graphics simulator, 19-7
-v option, 19-7
Viewlogic simulator, 19-7

XMM files, A-6
XNF files, A-6, B-9
XNF2NGD

description, B-7
-f option, B-10
flow diagram, B-7
input files, B-9
-l option, B-10
output files, B-10
-p option, B-11
-r option, B-11
supported families, B-7
syntax, B-9
-u option, B-12

-xon option
NGD2VHDL, 21-9

XPI
report, 12-7

XPI files, A-6
XTF files, A-6
Index-32 Xilinx Development System

	Development System Reference Guide
	About This Manual
	Conventions
	Typographical
	Online Document

	Table of Contents
	Introduction
	Invoking Xilinx Development System Programs
	Command Line
	Notes about Screen Messages
	Part Numbers in Commands
	–f Option

	Reading NCD Files with NCDRead
	Terminology
	Supported Platforms

	Design Flow
	Overview
	Design Entry
	Schematic Entry Overview
	Library Elements
	Hierarchical Design
	Hierarchical Names

	CORE Generator Tool (FPGAs Only)
	LogiBLOX Tool

	HDL Entry/Synthesis
	Controlling Implementation with Constraints
	Mapping (FPGAs Only)
	Block Placement
	Timing Specifications

	Testing Designs with Functional Simulation
	Netlist Translation Program Overview

	Design Implementation
	FPGA Editor
	FPGA Design Techniques
	Design Size and Performance
	Global Clock Distribution
	Other Synchronous Design Considerations
	Data Feedback and Clock Enable
	Counters

	Design Verification
	Overview
	Pre-Simulation Translation
	NGDAnno (FPGAs Only)
	CPLD Command
	Netlist Writers
	Invoking Netlist Writer Programs

	Additional Translation Options
	Pre-implementation Circuit Verification
	Simulating Designs with Block Delays (FPGAs Only)

	Schematic-Based Simulation
	Functional Simulation
	Timing Simulation

	HDL-Based Simulation
	Static Timing Analysis With TRACE (FPGAs Only)
	In-Circuit Verification
	Design Rule Checker (FPGAs Only)
	Xilinx Design Download Cables

	PARTGEN
	PARTGEN
	PARTGEN Syntax
	PARTGEN Files
	Input Files
	Output Files

	PARTGEN Options
	–arch (Print Information for Specified architecture)
	–i (Print a List of Devices, Packages, and Speeds)
	–p (Creates Package file and Partlist.xct File)
	–v (Creates Packages and Partlist.xct File)

	Partlist.xct File Contents
	Header
	Device Attributes

	NGDBuild
	NGDBuild
	Converting a Netlist to an NGD File

	NGDBuild Syntax
	NGDBuild Files
	Input Files
	Output Files
	Intermediate Files

	NGDBuild Options
	–a (Add PADs to Top-Level Port Signals)
	–dd (Destination Directory)
	–f (Execute Commands File)
	–i (Ignore UCF File)
	–l (Libraries to Search)
	–modular initial (Initial Budgeting of Modular Design)
	–modular module (Active Module Implementation)
	–modular assemble (Module Assembly)
	–nt (Netlist Translation Type)
	–p (Target Architecture)
	–r (Ignore LOC Constraints)
	–sd (Search Specified Directory)
	–u (Allow Unexpanded Blocks)
	–uc (User Constraints File)
	–ur (Read User Rules File)

	Netlister Launcher
	File Names and Locations

	User Constraints (UCF) File
	Overview
	UCF Flow

	Using Timing Constraints
	Timing Requirements and Xilinx Software
	IOB Register Specification and Reporting
	Entering Timing Specifications
	Entering Timing Specifications in a Schematic
	Entering Timing Specifications in a Constraints File

	Specifying Groups
	Using Predefined Groups
	Creating User-Defined Groups Using TNMs
	Placing TNMs on Nets
	Placing TNMs on Macro or Primitive Pins
	Placing TNMs on Primitive Symbols
	Placing TNMs on Macro Symbols
	Placing TNMs on Nets or Pins to Group Flip-Flops and Latches

	Creating User-Defined Groups Using TNM_NET
	Creating New Groups from Existing Groups
	Combining Multiple Groups into One
	Creating Groups by Exclusion
	Defining Flip-Flop Subgroups by Clock Sense
	Defining Latch Subgroups by Gate Sense
	Creating Groups by Pattern Matching
	How to Use Wildcards to Specify Net Names
	Pattern Matching Syntax
	Additional Pattern Matching Details

	Defining a Clock Period (PERIOD Constraint)
	Simple Method
	Preferred Method
	Specifying Derived Clocks
	PERIOD Specifications on CLKDLLs

	OFFSET Timing Specifications
	Global OFFSET
	Net-Specific OFFSET Constraints
	Examples
	Example 1— OFFSET IN BEFORE
	Example 2 — OFFSET IN AFTER
	Example 3 — OFFSET OUT AFTER
	Example 4 — OFFSET OUT BEFORE

	Specific OFFSET Constraints with Timegroups

	Group OFFSET

	Ignoring Selected Paths (TIG)
	Basic FROM –TO Syntax
	Specifying Timing Points
	Using TPSYNC to Define Synchronous Points
	Using TPTHRU to Define Through Points

	Using TPTHRU or TPSYNC in a FROM–TO Constraint
	Specifying Time Delay in TS Attributes
	Using the PRIORITY Keyword
	Sample Schematic Using TIMESPEC/TIMEGRP Symbol
	Prorating Constraints
	VOLTAGE Constraint
	TEMPERATURE Constraint

	Additional Timing Constraints
	Controlling Net Skew (MAXSKEW)
	Controlling Net Delay (MAXDELAY)
	Controlling Path Tracing
	Path Tracing Examples

	The DROP_SPEC Constraint
	The USELOWSKEWLINES Constraint

	Constraints Priority
	Syntax Summary
	TNM Attributes
	TIMEGRP Attributes
	TIMESPEC Attributes
	Other Constraints

	Logical Design Rule Check
	Logical DRC
	Logical DRC Tests
	Block Check
	Net Check
	Pad Check
	Clock Buffer Check
	Name Check
	Primitive Pin Check

	MAP—The Technology Mapper
	MAP
	MAP Syntax
	MAP Files
	Input Files
	Output Files

	MAP Options
	–b (Convert Clock Buffers—XC4000E/L and Spartan Only)
	–c (Pack CLBs)
	–cm (Cover Mode)
	–d (Use DI Pin—XC3000 Architectures Only)
	–detail (Write Out Detailed MAP Report)
	–f (Execute Commands File)
	–fp (Floorplanner)
	–gf (Guide NCD File)
	–gm (Guide Mode)
	–ir (Do Not Use RLOCs to Generate RPMs)
	–k (Map to Input Functions)
	–l (No logic replication)
	–o (Output File Name)
	–oe (Logic Optimization Effort)
	–os (Logic Optimization Style)
	–p (Xilinx Part Number)
	–pr (Pack Registers in I/O)
	–r (No Register Ordering)
	–tx (Transform Buses)
	–u (Do Not Remove Unused Logic)

	The MAP Process
	Register Ordering
	Guided Mapping
	Simulating Map Results
	The MAP Report (MRP) File
	Halting MAP

	LCA2NCD
	LCA2NCD
	LCA2NCD Syntax
	LCA2NCD Files
	Input Files
	Output Files

	LCA2NCD Options
	–p (Placement Only)
	–f (Execute Commands File)
	–w (Overwrite Existing File)

	Translating Unnamed Components

	Physical Constraints (PCF) File
	The PCF File
	Interaction Between Constraints

	DRC—Physical Design Rule Check
	DRC
	DRC Syntax
	DRC Files
	Input File
	Output File

	DRC Options
	–e (Error Report)
	–o (Output file)
	–s (Summary Report)
	–v (Verbose Report)
	–z (Report Incomplete Programming)

	DRC Types
	DRC Errors and Warnings

	PAR—Place and Route
	PAR
	PAR and the Timing Analysis Software
	Automatic Timespecing
	PAR Syntax
	PAR Files
	Input Files
	Output Files

	PAR Options
	–c (Number of Cost-Based Router Cleanup Passes)
	–d (Number of Delay-Based Router Cleanup Passes)
	-dfs (Thorough timing analysis of paths)
	–e (Delay-based cleanup passes—Completely Routed Designs)
	–f (Execute Commands File)
	–gf (Guide NCD File)
	–gm (Guide Mode)
	–i (Number of Router Iterations)
	-k (Re-Entrant Routing)
	-kpaths (Faster Analysis of Paths)
	–l (Overall Effort Level)
	–m (Multi-Tasking Mode)
	–n (Number of PAR Iterations)
	–ol (Overall Effort Level)
	–p (No placement)
	–pl (Placer Effort Level)
	–r (No Routing)
	–rl (Router Effort Level)
	–s (Number of Results to Save)
	–t (Starting Placer Cost Table)
	–ub (Use Bonded I/Os)
	–w (Overwrite Existing Files)
	–x (Ignore Timing Constraints)

	PAR Operation
	Placement
	Routing

	Guided PAR
	Incremental Designs
	PCI Cores

	Output from PAR
	Intermediate Failing Timespec Summary
	The Place and Route (PAR) Report File
	The Delay (DLY) File
	The PAD File
	Guide Reporting

	Scoring the Routed Design
	Turns Engine (PAR Multi-Tasking Option)
	Turns Engine Overview
	Turns Engine Input Files
	Turns Engine NCD Output File
	Homogeneous and Heterogeneous Networks
	Limitations
	System Requirements
	New Preferred Method
	Old Method

	Turns Engine Environment Variables
	Starting the Turns Engine From the Command Line
	Debugging
	Screen Output

	Command Line Examples
	Halting PAR

	PIN2UCF
	PIN2UCF
	PIN2UCF Syntax
	PIN2UCF Files
	Input Files
	Output Files

	PIN2UCF Options
	–o (Output File Name)
	–r (Write to a Report File)

	PIN2UCF Scenarios

	TRACE
	TRACE
	TRACE Syntax
	TRACE Files
	Input Files
	Output Files

	TRACE Options
	–a (Advanced Analysis)
	–e (Generate an Error Report)
	–f (Execute Commands File)
	–l (Limit Timing Report)
	–o (Output File Name)
	–s (Change Speed)
	–skew (Analyze Clock Skew for All Clocks)
	–stamp (Generates STAMP timing model files)
	–tsi (Generate a Timespec Interaction Report)
	–u (Report Uncovered Paths)
	–v (Generate a Verbose Report)

	Command Line Examples
	TRACE Input Details
	TRACE Output Details
	Timing Verification with TRACE
	Net Delay Constraints
	Net Skew Constraints
	Path Delay Constraints
	Clock Skew and Setup Checking

	Reporting with TRACE
	Data Sheet Reports
	Guaranteed Setup and Hold Reporting
	Setup Times
	Hold Times

	Summary Report
	Summary Report (Without a Physical Constraints File Specified)
	Summary Report (With a Physical Constraints File Specified)

	Error Report
	Verbose Report
	TSI Report
	Design Example 1 (with Sample TSI Report)
	Design Example 2 (with Sample TSI Report)

	Halting TRACE

	SPEEDPRINT
	SPEEDPRINT
	SPEEDPRINT Syntax
	SPEEDPRINT Options
	–min (Display Minimum Speed Data)
	–s (Speed Grade)
	–t (Specify Temperature)
	–v (Specify Voltage)

	Example Commands
	Example Outputs

	BitGen
	BitGen
	BitGen Syntax
	BitGen Files
	Input Files
	Output Files

	BitGen Options
	–a (Tie All Interconnect)
	–b (Create Rawbits File)
	–d (Do Not Run DRC)
	–f (Execute Commands File)
	–g (Set Configuration)
	–g (Set Configuration—XC3X00 Devices)
	–g (Set Configuration—XC4000 and Spartan)
	–g (Set Configuration—XC5200 Devices)
	–g (Set Configuration—Virtex/-E/-II and Spartan-II Devices)
	–h or –help (Command Usage)
	–j (No BIT File)
	–l (Create a Logic Allocation File)
	–m (Generate a Mask File)
	–n (Save a Tied design)
	–t (Tie Unused Interconnect)
	–u (Use Critical Nets Last)
	–w (Overwrite Existing Output File)

	PROMGen
	PROMGen
	PROMGen Syntax
	PROMGen Files
	Input Files
	Output Files
	Bit Swapping in PROM Files

	PROMGen Options
	–b (Disable Bit Swapping—HEX Format Only)
	–c (Checksum)
	–d (Load Downward)
	–f (Execute Commands File)
	–help (Command Help)
	–l option (Disable Length Count)
	–n (Add BIT FIles)
	–o (Output File Name)
	–p (PROM Format)
	–r (Load PROM File)
	–s (PROM Size)
	–u (Load Upward)
	–x (Specify Xilinx PROM)

	Examples

	NGDAnno
	NGDAnno
	NGDAnno Syntax
	NGDAnno Files
	Input Files
	Output Files

	NGDAnno Options
	–f (Execute Commands File)
	–module (Physical Simulation of Active Module)
	–o (Output File Name)
	–p (PCF File)
	–report (Generate Hierarchy Loss Report)
	–s (Change Speed)

	Dedicated Global Signals in Back-Annotation Simulation
	XC3000A/L and 3100A/L
	XC4000E/L/EX/XL/XV/XLA and Spartan/XL
	XC5200
	Virtex/-II/-E and Spartan-II

	Hierarchy Changes in Annotated Designs
	Guaranteed Setup and Hold Check

	NGD2EDIF
	NGD2EDIF
	NGD2EDIF Syntax
	NGD2EDIF Files
	Input Files
	Output Files

	NGD2EDIF Options
	–a (Write All Properties)
	–b (Use Buffers to Model Delays)
	–c (Reference Design Name as Specified—Mentor)
	–f (Execute Commands File)
	–hpn (Set HDL Pin Names)
	–i (Annotate Timing Properties to Instances)
	–l (Local Scope)
	–n (Generate Flattened Netlist)
	–v (Vendor)
	–vpt (Mentor Viewpoint)
	–w (Overwrite Output)

	XMM (RAM Initialization) File
	Generic File Format for XMM File
	Generic Initialization File Example

	EDIF Identifier Naming Conventions

	NGD2VER
	NGD2VER
	NGD2VER Syntax
	NGD2VER Files
	Input Files
	Output Files

	NGD2VER Options
	–10ps (Set Time Precision to be 10ps)
	–aka (Write Also-Known-As Names as Comments)
	–cd (Include `celldefine\`endcelldefine in Verilog File)
	–f (Execute Commands File)
	–gp (Bring Out Global Reset Net as Port)
	–ism (Include SimPrim Modules in Verilog File)
	–log (Rename the Log File)
	–ne (No Name Escaping)
	–op (Specify the Period for Oscillator)
	–pf (Generate Pin File)
	–pms (Port Names Match Child Signal Names)
	–r (Retain Hierarchy)
	–sdf_path (Full Path to SDF File)
	–shm (Write $shm Statements in Test Fixture File)
	–tf (Generate Test Fixture File)
	–ti (Top Instance Name)
	–tm (Top Module Name)
	–tp (Bring Out Global Tristate Net as Port)
	–ul (Write ‘uselib Directive)
	–verbose (Display Processing Messages in Verbose Mode)
	–w (Overwrite Existing Files)

	Setting Global Set/Reset, Tristate, and PRLD
	Test Fixture File
	Bus Order in Verilog Files
	Verilog Identifier Naming Conventions
	Compile Scripts for Verilog Libraries

	NGD2VHDL
	NGD2VHDL
	NGD2VHDL Syntax
	NGD2VHDL Files
	Input Files
	Output Files

	NGD2VHDL Options
	–a (Architecture Only)
	–aka (Write Also-Known-As Names as Comments)
	–ar (Rename Architecture Name)
	–f (Execute Commands File)
	–gp (Bring Out Global Reset Net as Port)
	–log (Specify the Log File)
	–op (Specify the Period for Oscillator)
	–pms (Port Names Match Child Signal Names)
	–r (Retain Hierarchy)
	–rpw (Specify the Pulse Width for ROC)
	–tb (Generate Testbench File)
	–te (Top Entity Name)
	–ti (Top Instance Name)
	–tp (Bring Out Global Tristate Net as Port)
	–tpw (Specify the Pulse Width for TOC)
	–verbose (Display Processing Messages in Verbose Mode)
	–w (Overwrite Existing Files)
	–xon (Select Output Behavior for Timing Violations)

	VHDL Global Set/Reset Emulation
	VHDL Only STARTUP Block
	VHDL Only STARTBUF Cell
	VHDL Only STARTUP_VIRTEX Block and STARTBUF_VIRTEX Cell
	VHDL Only RESET-ON-CONFIGURATION (ROC) Cell
	VHDL Only ROCBUF Cell
	VHDL Only Tristate-On-Configuration (TOC) Cell
	VHDL Only TOCBUF
	VHDL Only Oscillators
	Example 1: Oscillator VHDL
	Example 2: Oscillator Test Bench

	Bus Order in VHDL Files
	VHDL Identifier Naming Conventions
	Compile Scripts for VHDL Libraries

	XFLOW
	Overview
	Halting XFLOW

	XFLOW Syntax
	Running XFLOW
	Example 1
	Example 2
	Example 3
	More Examples

	Flow Types
	–config (Create a BIT File for FPGAs)
	–fit (Fit a CPLD Device)
	–fsim (Perform a Functional Simulation)
	–implement (Run FPGA implementation)
	–tsim (Perform a Timing Simulation)

	Option Files
	Option File Structure and Content
	Option File Sample

	XFLOW Options
	–ed (Copy Files to Export Directory)
	–g (Specify a Global Variable)
	–h (Help)
	–log (Specify Log File)
	–norun (Creates a Script File)
	–o (Change Output File Name)
	–p (Enter a Part Name)
	–rd (Copy Report Files)
	–wd (Specify a Working Directory)

	Input Files
	User Input Design File
	Flow Files
	Description
	Flow File Example

	Output Files

	Xilinx Development System Files
	EDIF2NGD, XNF2NGD, and NGDBuild
	EDIF2NGD
	EDIF2NGD Syntax
	EDIF2NGD Files
	Input Files
	Output Files

	EDIF2NGD Options
	–a (Add PADs to Top-Level Port Signals)
	–f (Execute Commands File)
	–l (Libraries to Search)
	–p (Part Name)
	–r (Ignore LOC Properties)

	XNF2NGD
	XNF2NGD Syntax
	XNF2NGD Files
	Input Files
	Output Files

	XNF2NGD Options
	–f (Execute Commands File)
	–l (Libraries to Search)
	–p (Part Name)
	–r (Ignore LOC Properties)
	–u (Top-Level XNF Netlist)

	NGDBuild
	Converting a Netlist to an NGD File
	Bus Matching

	Netlister Launcher
	Netlister Launcher Rules Files
	User Rules File
	User Rules and System Rules
	User Rules Format
	Value Types in Key Statements

	System Rules File
	Rules File Examples
	Example 1: EDF_RULE System Rule
	Example 2: User Rule
	Example 3: User Rule
	Example 4: User Rule

	File Names and Locations

	Index

