
Xilinx
Synthesis
Technology
(XST) User
Guide
XST User Guide — 3.1i
Introduction

HDL Coding Techniques

FPGA Optimization

CPLD Optimization

Design Constraints

VHDL Language Support

Verilog Language Support

Command Line Mode

XST Naming Conventions
Printed in U.S.A.

XST User Guide

XST User Guide
R

The Xilinx logo shown above is a registered trademark of Xilinx, Inc.

ASYL, FPGA Architect, FPGA Foundry, NeoCAD, NeoCAD EPIC, NeoCAD PRISM, NeoROUTE, Timing Wizard,
TRACE, XACT, XILINX, XC2064, XC3090, XC4005, XC5210, and XC-DS501 are registered trademarks of Xilinx,
Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

All XC-prefix product designations, A.K.A Speed, Alliance Series, AllianceCORE, BITA, CLC, Configurable Logic
Cell, CoolRunner, CORE Generator, CoreLINX, Dual Block, EZTag, FastCLK, FastCONNECT, FastFLASH,
FastMap, Fast Zero Power, Foundation, HardWire, IRL, LCA, LogiBLOX, Logic Cell, LogiCORE, LogicProfessor,
MicroVia, MultiLINX, PLUSASM, PowerGuide, PowerMaze, QPro, RealPCI, RealPCI 64/66, SelectI/O,
SelectRAM, SelectRAM+, Silicon Xpresso, Smartguide, Smart-IP, SmartSearch, Smartspec, SMARTSwitch,
Spartan, TrueMap, UIM, VectorMaze, VersaBlock, VersaRing, Virtex, WebFitter, WebLINX, WebPACK, XABEL,
XACTstep, XACTstep Advanced, XACTstep Foundry, XACT-Floorplanner, XACT-Performance, XAM, XAPP, X-
BLOX, X-BLOX plus, XChecker, XDM, XDS, XEPLD, Xilinx Foundation Series, XPP, XSI, and ZERO+ are
trademarks of Xilinx, Inc. The Programmable Logic Company and The Programmable Gate Array Company are
service marks of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown
herein; nor does it convey any license under its patents, copyrights, or maskwork rights or any rights of others.
Xilinx, Inc. reserves the right to make changes, at any time, in order to improve reliability, function or design and
to supply the best product possible. Xilinx, Inc. will not assume responsibility for the use of any circuitry described
herein other than circuitry entirely embodied in its products. Xilinx, Inc. devices and products are protected under
one or more of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216; 4,713,557; 4,746,822; 4,750,155;
4,758,985; 4,820,937; 4,821,233; 4,835,418; 4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135;
5,023,606; 5,028,821; 5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056; 5,243,238;
5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704; 5,329,174; 5,329,181;
5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248; 5,349,249; 5,349,250; 5,349,691; 5,357,153;
5,360,747; 5,361,229; 5,362,999; 5,365,125; 5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925; 5,410,189;
5,410,194; 5,414,377; 5,422,833; 5,426,378; 5,426,379; 5,430,687; 5,432,719; 5,448,181; 5,448,493; 5,450,021;
5,450,022; 5,453,706; 5,455,525; 5,466,117; 5,469,003; 5,475,253; 5,477,414; 5,481,206; 5,483,478; 5,486,707;
5,486,776; 5,488,316; 5,489,858; 5,489,866; 5,491,353; 5,495,196; 5,498,979; 5,498,989; 5,499,192; 5,500,608;
5,500,609; 5,502,000; 5,502,440; 5,504,439; 5,506,518; 5,506,523; 5,506,878; 5,513,124; 5,517,135; 5,521,835;
5,521,837; 5,523,963; 5,523,971; 5,524,097; 5,526,322; 5,528,169; 5,528,176; 5,530,378; 5,530,384; 5,546,018;
5,550,839; 5,550,843; 5,552,722; 5,553,001; 5,559,751; 5,561,367; 5,561,629; 5,561,631; 5,563,527; 5,563,528;
5,563,529; 5,563,827; 5,565,792; 5,566,123; 5,570,051; 5,574,634; 5,574,655; 5,578,946; 5,581,198; 5,581,199;
5,581,738; 5,583,450; 5,583,452; 5,592,105; 5,594,367; 5,598,424; 5,600,263; 5,600,264; 5,600,271; 5,600,597;
5,608,342; 5,610,536; 5,610,790; 5,610,829; 5,612,633; 5,617,021; 5,617,041; 5,617,327; 5,617,573; 5,623,387;
5,627,480; 5,629,637; 5,629,886; 5,631,577; 5,631,583; 5,635,851; 5,636,368; 5,640,106; 5,642,058; 5,646,545;
5,646,547; 5,646,564; 5,646,903; 5,648,732; 5,648,913; 5,650,672; 5,650,946; 5,652,904; 5,654,631; 5,656,950;
5,657,290; 5,659,484; 5,661,660; 5,661,685; 5,670,896; 5,670,897; 5,672,966; 5,673,198; 5,675,262; 5,675,270;
5,675,589; 5,677,638; 5,682,107; 5,689,133; 5,689,516; 5,691,907; 5,691,912; 5,694,047; 5,694,056; 5,724,276;
5,694,399; 5,696,454; 5,701,091; 5,701,441; 5,703,759; 5,705,932; 5,705,938; 5,708,597; 5,712,579; 5,715,197;
5,717,340; 5,719,506; 5,719,507; 5,724,276; 5,726,484; 5,726,584; 5,734,866; 5,734,868; 5,737,234; 5,737,235;
Xilinx Development System

5,737,631; 5,742,178; 5,742,531; 5,744,974; 5,744,979; 5,744,995; 5,748,942; 5,748,979; 5,752,006; 5,752,035;
5,754,459; 5,758,192; 5,760,603; 5,760,604; 5,760,607; 5,761,483; 5,764,076; 5,764,534; 5,764,564; 5,768,179;
5,770,951; 5,773,993; 5,778,439; 5,781,756; 5,784,313; 5,784,577; 5,786,240; 5,787,007; 5,789,938; 5,790,479;
5,790,882; 5,795,068; 5,796,269; 5,798,656; 5,801,546; 5,801,547; 5,801,548; 5,811,985; 5,815,004; 5,815,016;
5,815,404; 5,815,405; 5,818,255; 5,818,730; 5,821,772; 5,821,774; 5,825,202; 5,825,662; 5,825,787; 5,828,230;
5,828,231; 5,828,236; 5,828,608; 5,831,448; 5,831,460; 5,831,845; 5,831,907; 5,835,402; 5,838,167; 5,838,901;
5,838,954; 5,841,296; 5,841,867; 5,844,422; 5,844,424; 5,844,829; 5,844,844; 5,847,577; 5,847,579; 5,847,580;
5,847,993; 5,852,323; 5,861,761; 5,862,082; 5,867,396; 5,870,309; 5,870,327; 5,870,586; 5,874,834; 5,875,111;
5,877,632; 5,877,979; 5,880,492; 5,880,598; 5,880,620; 5,883,525; 5,886,538; 5,889,411; 5,889,413; 5,889,701;
5,892,681; 5,892,961; 5,894,420; 5,896,047; 5,896,329; 5,898,319; 5,898,320; 5,898,602; 5,898,618; 5,898,893;
5,907,245; 5,907,248; 5,909,125; 5,909,453; 5,910,732; 5,912,937; 5,914,514; 5,914,616; 5,920,201; 5,920,202;
5,920,223; 5,923,185; 5,923,602; 5,923,614; 5,928,338; 5,931,962; 5,933,023; 5,933,025; 5,933,369; 5,936,415;
5,936,424; 5,939,930; 5,942,913; 5,944,813; 5,945,837; 5,946,478; 5,949,690; 5,949,712; 5,949,983; 5,949,987;
5,952,839; 5,952,846; 5,955,888; 5,956,748; 5,958,026; 5,959,821; 5,959,881; 5,959,885; 5,961,576; 5,962,881;
5,963,048; 5,963,050; 5,969,539; 5,969,543; 5,970,142; 5,970,372; 5,971,595; 5,973,506; 5,978,260; 5,986,958;
5,990,704; 5,991,523; 5,991,788; 5,991,880; 5,991,908; 5,995,419; 5,995,744; 5,995,988; 5,999,014; 5,999,025;
6,002,282; and 6,002,991; Re. 34,363, Re. 34,444, and Re. 34,808. Other U.S. and foreign patents pending.
Xilinx, Inc. does not represent that devices shown or products described herein are free from patent infringement
or from any other third party right. Xilinx, Inc. assumes no obligation to correct any errors contained herein or to
advise any user of this text of any correction if such be made. Xilinx, Inc. will not assume any liability for the
accuracy or correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in
such applications without the written consent of the appropriate Xilinx officer is prohibited.

Copyright 1991-2000 Xilinx, Inc. All Rights Reserved.
XST User Guide

About This Manual

This manual describes Xilinx Synthesis Technology (XST) support for
HDL languages, Xilinx devices, and constraints for the Foundation
Series ISE software. The manual also discusses FPGA and CPLD
optimization techniques and explains how to run XST from the
Project Navigator Process window and command line.

Manual Contents
This manual contains the following chapters and appendixes.

• Chapter 1, “Introduction,” provides a basic description of XST
and lists supported architectures.

• Chapter 2, “HDL Coding Techniques,” describes a variety of
VHDL and Verilog coding techniques that can be used for
various digital logic circuits, such as registers, latches, tristates,
RAMs, counters, accumulators, multiplexers, decoders, and
arithmetic operations. The chapter also provides coding
techniques for state machines and black boxes.

• Chapter 3, “FPGA Optimization,” explains how constraints can
be used to optimize FPGAs and explains macro generation. The
chapter also describes Virtex primitives that are supported.

• Chapter 4, “CPLD Optimization,” discusses CPLD synthesis
options and the implementation details for macro generation.
XST User Guide — 3.1i i

XST User Guide
• Chapter 5, “Design Constraints,” describes constraints supported
for use with XST. The chapter explains which attributes and
properties can be used with FPGAs, CPLDs, VHDL and Verilog.
The chapter also explains how to set options from the Process
Properties dialog box within Project Navigator.

• Chapter 6, “VHDL Language Support,” explains how VHDL is
supported for XST. The chapter provides details on the VHDL
language, supported constructs, and synthesis options in
relationship to XST.

• Chapter 7, “Verilog Language Support,” describes XST support
for Verilog constructs and meta comments.

• Chapter 8, “Command Line Mode,” describes how to run XST
using the command line. The chapter describes the xst, run, and
set commands and their options.

• Appendix A, “XST Naming Conventions” discusses net naming
and instance naming conventions.

Additional Resources

For additional information, go to http://support.xilinx.com.
The following table lists some of the resources you can access from
this Web site. You can also directly access these resources using the
provided URLs.

Resource Description/URL

Tutorials Tutorials covering Xilinx design flows, from design entry to verification
and debugging
http://support.xilinx.com/support/techsup/tutorials/
index.htm

Answers
Database

Current listing of solution records for the Xilinx software tools
Search this database using the search function at
http://support.xilinx.com/support/searchtd.htm

Application
Notes

Descriptions of device-specific design techniques and approaches
http://support.xilinx.com/apps/appsweb.htm
ii Xilinx Development System

Data Book Pages from The Programmable Logic Data Book, which contain device-
specific information on Xilinx device characteristics, including readback,
boundary scan, configuration, length count, and debugging
http://support.xilinx.com/partinfo/databook.htm

Xcell Journals Quarterly journals for Xilinx programmable logic users
http://support.xilinx.com/xcell/xcell.htm

Technical Tips Latest news, design tips, and patch information for the Xilinx design
environment
http://support.xilinx.com/support/techsup/journals/
index.htm

Resource Description/URL
XST User Guide iii

XST User Guide
iv Xilinx Development System

Conventions

This manual uses the following conventions. An example illustrates
each convention.

Typographical
The following conventions are used for all documents.

• Courier font indicates messages, prompts, and program files
that the system displays.

speed grade: - 100

• Courier bold indicates literal commands that you enter in a
syntactical statement. However, braces “{ }” in Courier bold are
not literal and square brackets “[]” in Courier bold are literal
only in the case of bus specifications, such as bus [7:0].

rpt_del_net=

Courier bold also indicates commands that you select from a
menu.

File → Open

• Italic font denotes the following items.

♦ Variables in a syntax statement for which you must supply
values

edif2ngd design_name

♦ References to other manuals
XST User Guide — 3.1i v

XST User Guide
See the Development System Reference Guide for more informa-
tion.

♦ Emphasis in text

If a wire is drawn so that it overlaps the pin of a symbol, the
two nets are not connected.

• Square brackets “[]” indicate an optional entry or parameter.
However, in bus specifications, such as bus [7:0], they are
required.

edif2ngd [option_name] design_name

• Braces “{ }” enclose a list of items from which you must choose
one or more.

lowpwr ={on|off}

• A vertical bar “|” separates items in a list of choices.

lowpwr ={on|off}

• A vertical ellipsis indicates repetitive material that has been
omitted.

IOB #1: Name = QOUT’

IOB #2: Name = CLKIN’

.

.

.

• A horizontal ellipsis “….” indicates that an item can be repeated
one or more times.

allow block block_name loc1 loc2locn;

Online Document
The following conventions are used for online documents.

• Red-underlined text indicates an interbook link, which is a cross-
reference to another book. Click the red-underlined text to open
the specified cross-reference.
vi Xilinx Development System

• Blue-underlined text indicates an intrabook link, which is a cross-
reference within a book. Click the blue-underlined text to open
the specified cross-reference.
XST User Guide vii

XST User Guide
viii Xilinx Development System

Contents
About This Manual
Manual Contents .. i
Additional Resources ... ii

Conventions
Typographical... v
Online Document ... vi

Chapter 1 Introduction

Architecture Support .. 1-1
XST Flow.. 1-1

Chapter 2 HDL Coding Techniques

Introduction .. 2-2
Signed/Unsigned Support .. 2-12
Registers .. 2-12

Log File ... 2-13
Related Constraints .. 2-13
DFF with Positive-Edge Clock .. 2-13

VHDL Code.. 2-14
Verilog Code .. 2-14

DFF with Negative-Edge Clock and Asynchronous Clear 2-15
VHDL Code.. 2-16
Verilog Code .. 2-16

DFF with Positive-Edge Clock and Synchronous Set 2-17
VHDL Code.. 2-17
Verilog Code .. 2-18

DFF with Positive-Edge Clock and Clock Enable 2-18
VHDL Code.. 2-19
Verilog Code .. 2-20
XST User Guide — 3.1i ix

XST User Guide
Latches ... 2-20
Log File .. 2-21
Related Constraints ... 2-21
Latch with Positive Gate .. 2-21
Latch with Positive Gate and Asynchronous Clear.............. 2-23
4-bit Latch with Inverted Gate and Asynchronous Preset.... 2-25

4-bit Register with Positive-Edge Clock, Asynchronous
 Set and Clock Enable ... 2-26

VHDL Code.. 2-27
Verilog Code .. 2-28

Tristates ... 2-28
Log File ... 2-29
Related Constraints .. 2-29
Description Using Combinatorial Process and Always Block ... 2-29

VHDL Code.. 2-30
Verilog Code .. 2-31

Description Using Concurrent Assignment 2-31
VHDL Code.. 2-31
Verilog Code .. 2-32

Counters... 2-32
Log File ... 2-33
4-bit Unsigned Up Counter with Asynchronous Clear............... 2-33

VHDL Code.. 2-33
Verilog Code .. 2-34

4-bit Unsigned Down Counter with Synchronous Set 2-35
VHDL Code.. 2-35
Verilog Code .. 2-36

4-bit Unsigned Up Counter with Asynchronous Load
 from Primary Input .. 2-36

VHDL Code.. 2-36
Verilog Code .. 2-37

4-bit Unsigned Up Counter with Synchronous Load
 with a Constant .. 2-38

VHDL Code.. 2-38
Verilog Code .. 2-39

4-bit Unsigned Up Counter with Asynchronous Clear
 and Clock Enable.. 2-39

VHDL Code.. 2-40
Verilog Code .. 2-40

4-bit Unsigned Up/Down counter with Asynchronous Clear 2-41
VHDL Code.. 2-41
Verilog Code .. 2-42
x Xilinx Development System

Contents
4-bit Signed Up Counter with Asynchronous Reset.................. 2-43
VHDL Code.. 2-43
Verilog Code .. 2-43

Accumulators ... 2-44
Log File ... 2-45
4-bit Unsigned Up Accumulator with Asynchronous Clear 2-45

VHDL Code.. 2-46
Verilog Code .. 2-46

Shift Registers.. 2-47
Log File ... 2-49
Related Constraints .. 2-49
8-bit Shift-Left Register with Positive-Edge Clock,
 Serial In, and Serial Out.. 2-50

VHDL Code.. 2-50
Verilog Code .. 2-51

8-bit Shift-Left Register with Negative-Edge Clock,
 Clock Enable, Serial In, and Serial Out................................... 2-51

VHDL Code.. 2-51
Verilog Code .. 2-52

8-bit Shift-Left Register with Positive-Edge Clock,
 Asynchronous Clear, Serial In, and Serial Out 2-53

VHDL Code.. 2-53
Verilog Code .. 2-54

8-bit Shift-Left Register with Positive-Edge Clock,
 Synchronous Set, Serial In, and Serial Out 2-54

VHDL Code.. 2-55
Verilog Code .. 2-55

8-bit Shift-Left Register with Positive-Edge Clock,
 Serial In, and Parallel Out ... 2-56

VHDL Code.. 2-56
Verilog Code .. 2-57

8-bit Shift-Left Register with Positive-Edge Clock,
 Asynchronous Parallel Load, Serial In, and Serial Out 2-57

VHDL Code.. 2-57
Verilog Code .. 2-58

8-bit Shift-Left Register with Positive-Edge Clock, Synchronous
Parallel Load, Serial In, and Serial Out..................................... 2-59

VHDL Code.. 2-59
Verilog Code .. 2-60

8-bit Shift-Left/Shift-Right Register with Positive-Edge Clock,
 Serial In, and Parallel Out ... 2-60

VHDL Code.. 2-61
XST User Guide xi

XST User Guide
Verilog Code .. 2-61
Multiplexers .. 2-62

Log File ... 2-66
Related Constraints .. 2-67
4-to-1 1-bit MUX using IF Statement .. 2-67

VHDL Code.. 2-67
Verilog Code .. 2-68

4-to-1 MUX Using CASE Statement ... 2-68
VHDL Code.. 2-68
Verilog Code .. 2-69

4-to-1 MUX Using Tristate Buffers .. 2-70
VHDL Code.. 2-70
Verilog Code .. 2-70

No 4-to-1 MUX ... 2-71
VHDL Code.. 2-71
Verilog Code .. 2-72

Decoders.. 2-72
Log File ... 2-73
Related Constraints .. 2-73
VHDL (One-Hot) ... 2-73
Verilog (One-Hot).. 2-74
VHDL (One-Cold).. 2-74
Verilog (One-Cold) .. 2-75
VHDL .. 2-76
Verilog... 2-77
VHDL .. 2-78
Verilog... 2-79

Priority Encoders.. 2-80
Log File ... 2-80
3-Bit 1-of-9 Priority Encoder.. 2-80
Related Constraint .. 2-80
VHDL .. 2-81
Verilog... 2-81

Logical Shifters... 2-82
Log File ... 2-83
Related Constraints .. 2-83
Example 1 ... 2-83

VHDL .. 2-84
Verilog.. 2-84

Example 2 ... 2-85
VHDL ... 2-85
Verilog.. 2-85
xii Xilinx Development System

Contents
Example 3 ... 2-86
VHDL ... 2-86
Verilog.. 2-87

Arithmetic Operations... 2-87
Adders, Subtractors, Adders/Subtractors 2-88

Log File .. 2-88
Unsigned 8-bit Adder ... 2-89
Unsigned 8-bit Adder with Carry In...................................... 2-90
Unsigned 8-bit Adder with Carry Out 2-91
Unsigned 8-bit Adder with Carry In and Carry Out 2-92
Simple Signed 8-bit Adder ... 2-94
Unsigned 8-bit Subtractor .. 2-94
Unsigned 8-bit Adder/Subtractor ... 2-95

Comparators (=, /=,<, <=, >, >=) ... 2-97
Log File .. 2-97
Unsigned 8-bit Greater or Equal Comparator 2-97

Multipliers.. 2-98
Log File .. 2-99
Unsigned 8x4-bit Multiplier .. 2-99

Dividers ... 2-100
Log File .. 2-100
Division By Constant 2... 2-101

Resource Sharing ... 2-102
Log File .. 2-102
Related Constraint ... 2-102
Example... 2-103

RAMs ... 2-104
Log File ... 2-106
Related Constraints .. 2-106
Single Port RAM with Asynchronous Read............................... 2-107

VHDL ... 2-107
Verilog.. 2-108

Single Port RAM with "false" Synchronous Read 2-109
VHDL ... 2-109
Verilog.. 2-110
VHDL ... 2-111
Verilog.. 2-112

Single-Port RAM with Synchronous Read (Read Through)...... 2-113
VHDL ... 2-114
Verilog.. 2-115

Dual-port RAM with Asynchronous Read 2-116
VHDL ... 2-116
XST User Guide xiii

XST User Guide
Verilog.. 2-117
Dual-port RAM with False Synchronous Read 2-118

VHDL ... 2-119
Verilog.. 2-120

Dual-port RAM with Synchronous Read (Read Through)......... 2-120
VHDL .. 2-121
Verilog.. 2-122
VHDL ... 2-123
Verilog.. 2-125

Multiple-Port RAM Descriptions .. 2-125
VHDL ... 2-126
Verilog.. 2-127

State Machines .. 2-128
Related Constraints .. 2-129
FSM: 1 Process .. 2-130

VHDL ... 2-130
Verilog.. 2-131

FSM: 2 Processes... 2-132
VHDL ... 2-132
Verilog.. 2-133

FSM: 3 Processes... 2-134
VHDL ... 2-134
Verilog.. 2-136
State Registers .. 2-137
Next State Equations ... 2-137
FSM Outputs.. 2-137
FSM Inputs .. 2-138
State Encoding Techniques... 2-138

Log File ... 2-140
Black Box Support.. 2-141

Log File ... 2-141
Related Constraints .. 2-141
VHDL .. 2-142
Verilog... 2-142

Chapter 3 FPGA Optimization

Introduction .. 3-1
Virtex Specific Options ... 3-2
Timing Constraints ... 3-3

Definitions ... 3-3
Examples .. 3-4
Timing Model .. 3-5
xiv Xilinx Development System

Contents
Priority... 3-5
Limitations... 3-5

Macro Generation .. 3-6
Arithmetic Functions ... 3-6
Loadable Functions... 3-7
Multiplexers... 3-7
Priority Encoder .. 3-8
Decoder .. 3-8
Shift Register .. 3-8
RAMs .. 3-10

Log File Analysis .. 3-11
Design Optimization.. 3-11
Resource Usage ... 3-12
Timing Report ... 3-13

Timing Summary ... 3-14
Timing Detail ... 3-14

NCF Generation ... 3-15
Virtex Primitive Support.. 3-16

VHDL .. 3-18
Verilog... 3-18
Log File ... 3-19
Instantiation of MUXF5 ... 3-19

VHDL ... 3-19
Verilog.. 3-20

Instantiation of MUXF5 with XST Virtex Libraries 3-20
VHDL ... 3-20
Verilog.. 3-21

Related Constraints .. 3-21

Chapter 4 CPLD Optimization

CPLD Synthesis Options ... 4-1
Introduction ... 4-1
Global CPLD Synthesis Options ... 4-2

Families ... 4-2
List of Options.. 4-2

Implementation Details for Macro Generation................................ 4-3
Log File Analysis .. 4-5
NCF File ... 4-7
Improving Results .. 4-8

How to Obtain Better Frequency?... 4-9
How to Fit a Large Design? .. 4-10
XST User Guide xv

XST User Guide
Chapter 5 Design Constraints

Introduction .. 5-1
Setting Constraints and Options .. 5-2

Synthesis Options ... 5-3
Constraints File.. 5-5
Inference Report Detail.. 5-5

HDL Options ... 5-5
Xilinx Specific Options .. 5-7
Command Line Options .. 5-8
VHDL Attribute Syntax .. 5-9
Verilog Meta Comment Syntax ... 5-9
Constraint File Syntax and Utilization 5-10

XST Constraints ... 5-10
General ... 5-11

Optimization Goal .. 5-11
Optimization Effort ... 5-11
Box Type.. 5-12

Case Implementation Style ... 5-12
Translate Off/Translate On (Verilog/VHDL) 5-12
Parallel Case (Verilog)... 5-13
Full Case (Verilog) ... 5-13

Add IO Buffers .. 5-14
HDL Inference and Optimization .. 5-15

Automatic FSM Extraction .. 5-15
FSM Encoding Algorithm .. 5-15
FSM Flip-Flop Type .. 5-16
Enumeration Encoding.. 5-16
Extract RAM.. 5-17
Extract Muxes ... 5-17
Decoder Extraction ... 5-18
Priority Encoder Extraction ... 5-18
Shift Register Extraction ... 5-18
Logical Shifter Extraction .. 5-19
XOR Collapsing .. 5-19
Resource Sharing ... 5-19
Complex Clock Enable Extraction... 5-20
Resolution Style .. 5-20

FPGA Options .. 5-21
Mux Style .. 5-21
RAM Style ... 5-21
Speed Grade for Timing Analysis ... 5-22
xvi Xilinx Development System

Contents
Max Fanout ... 5-22
Add Generic Clock Buffer ... 5-23
Maximum Number of Clock Buffers Created by XST................ 5-23

Clock Buffer Type .. 5-23
Specifying a Port as a Clock.. 5-23
Packing Flip-Flops and Latches in IOBs.............................. 5-23

Sig_isclock .. 5-24
Register Duplication.. 5-24
Keep Hierarchy ... 5-24
Incremental Synthesis... 5-25
Resynthesis .. 5-27
Global Optimization Goal .. 5-27

CPLD Options .. 5-28
Macro Generator... 5-28
Flatten Hierarchy... 5-29
Macro Preserve... 5-29
XOR Preserve... 5-30
FF Optimization... 5-31
Complex Clock Enable Extraction... 5-32

Summary.. 5-32
Implementation Constraints ... 5-34

Handling by XST ... 5-34
Examples .. 5-35

Example 1.. 5-35
Example 2.. 5-35
Example 3.. 5-36

Third Party Constraints .. 5-36
Constraints Precedence... 5-39

Chapter 6 VHDL Language Support

Introduction .. 6-2
Data Types in VHDL .. 6-2

Overloaded Data Types .. 6-4
Bi-dimensional Array Types .. 6-5

Objects in VHDL... 6-6
Operators ... 6-6
Entity and Architecture Descriptions .. 6-7

Entity Declaration.. 6-7
Architecture Declaration.. 6-7
Component Instantiation ... 6-8
Component Configuration ... 6-10
Generic Parameter Declaration .. 6-11
XST User Guide xvii

XST User Guide
Combinatorial Circuits .. 6-12
Concurrent Signal Assignments.. 6-12
Simple Signal Assignment .. 6-12
Selected Signal Assignment ... 6-12
Conditional Signal Assignment ... 6-13
Generate Statement.. 6-13
Combinatorial Process.. 6-15
If .. Else Statement.. 6-17
Case Statement .. 6-18
For .. Loop Statement ... 6-19

Sequential Circuits ... 6-20
Sequential Process with a Sensitivity List................................. 6-20
Sequential Process without a Sensitivity List 6-21
Examples of Register and Counter Descriptions 6-21
Multiple Wait Statements Descriptions 6-23

Functions and Procedures ... 6-25
Packages ... 6-27

STANDARD Package ... 6-28
IEEE Packages ... 6-28
IEEE Numeric Packages... 6-29

VHDL Language Support ... 6-29
VHDL Reserved Words.. 6-36

Chapter 7 Verilog Language Support

Introduction .. 7-2
Behavioral Features of Verilog... 7-3

Variable Declaration.. 7-3
Data Types.. 7-4
Legal Statements .. 7-4
Expressions .. 7-5
Blocks ... 7-7
Modules .. 7-8
Module Declaration ... 7-8
Verilog Assignments ... 7-9
Continuous Assignments .. 7-9
Procedural Assignments ... 7-10

Combinatorial always blocks ... 7-10
if ... else statement... 7-11
case statement .. 7-11
for and repeat loops... 7-12
Sequential Always Blocks.. 7-13
Assign and Deassign Statements.. 7-15
xviii Xilinx Development System

Contents
Tasks and Functions.. 7-18
Blocking Versus Non-Blocking Procedural Assignments..... 7-20

Constants, Macros, Include Files and Comments 7-21
Constants... 7-21
Macros ... 7-21
Include Files... 7-22
Comments ... 7-22

Structural Verilog Features .. 7-23
Parameters... 7-26
Verilog Limitations in XST .. 7-27

Case Sensitivity .. 7-27
Blocking and Nonblocking Assignments 7-28

Verilog Meta Comments... 7-29
Language Support Tables.. 7-30
Primitives.. 7-34
Verilog Reserved Keywords... 7-35

Chapter 8 Command Line Mode

Introduction .. 8-1
Launching XST... 8-2
Setting Up an XST Script ... 8-4
Run Command ... 8-4
Set Command .. 8-8
Elaborate Command .. 8-8
Time Command.. 8-9
Example 1: How to Synthesize VHDL Designs.............................. 8-9

Case 1... 8-9
XST Shell... 8-10
Script Mode.. 8-11

Case 2... 8-12
Example 2: How to Synthesize Verilog Designs 8-14

Case 1... 8-15
XST Shell... 8-16
Script Mode.. 8-17

Case 2... 8-18

Appendix A XST Naming Conventions
Net Naming Conventions .. A-1
Instance Naming Conventions ... A-2
XST User Guide xix

XST User Guide
xx Xilinx Development System

Chapter 1

Introduction

This chapter contains the following sections.

• “Architecture Support”

• “XST Flow”

Architecture Support
The XST software supports only the following Xilinx architectures in
this release.

• Spartan™/-II

• Virtex™/-E/-II

• XC9500™/XL/XV

XST Flow
XST is a Xilinx tool that synthesizes HDL designs to create EDIF
netlists. This manual describes XST support for Xilinx devices, HDL
languages, and design constraints. The manual explains how to use
various design optimization and coding techniques when creating
designs for use with XST.

Before you synthesize your design, you can set a variety of options
for XST.

1. Select your top-level design in the Source window.
XST User Guide — 3.1i 1-1

XST User Guide
2. To set the options, right click Synthesize in the Process window.

3. Select Properties to display the Process Properties dialog box.
1-2 Xilinx Development System

Introduction
4. Set the desired Synthesis, HDL, and Xilinx Specific Options.

For a complete description of these options, refer to the “Setting
Constraints and Options” section in the “Design Constraints”
chapter.

5. When a design is ready to synthesize, you can invoke XST within
the Project Navigator. With the top-level source file selected,
double-click Synthesize in the Process window.
XST User Guide 1-3

XST User Guide
Note To run XST from the command line, refer to the “Command
Line Mode” chapter for details.

6. When synthesis is complete, view the results by double-clicking
View Synthesis Report. Following is a portion of a sample report.
1-4 Xilinx Development System

Introduction
Figure 1-1 View Synthesis Report
XST User Guide 1-5

XST User Guide
1-6 Xilinx Development System

Chapter 2

HDL Coding Techniques

This chapter contains the following sections:

• “Introduction”

• “Signed/Unsigned Support”

• “Registers”

• “Tristates”

• “Counters”

• “Accumulators”

• “Shift Registers”

• “Multiplexers”

• “Decoders”

• “Priority Encoders”

• “Logical Shifters”

• “Arithmetic Operations”

• “RAMs”

• “State Machines”

• “Black Box Support”
XST User Guide — 3.1i 2-1

XST User Guide
Introduction
Designs are usually made up of the glue logic and macros (for
example, flip-flops, adders, subtractors, counters, FSMs, RAMs). The
macros heavily impact performance of the synthesized designs.
Therefore, it is important to use some coding techniques to model the
macros so that they will be optimally processed by XST.

During its run, XST first of all tries to recognize (infer) as many
macros as possible. Then all these macros are passed to the low level
optimization step, either to preserve a macro as a separate block or to
merge it with surrounded logic in order to get better optimization
results. This filtering depends on the type and size of a macro (for
example, by default, 2-to-1 multiplexers are not preserved by
optimization engine). You have full control of the processing of
inferred macros through synthesis constraints.

Note Please refer to the “Design Constraints” chapter for more details
on constraints and their utilization.

There is detailed information about the macro processing in the XST
LOG file. It usually contains the following:

• The set of macros and associated signals, inferred by XST from
the VHDL/Verilog source on a block by block basis

• The overall statistics of recognized macros

• The number and type of macros preserved by low level
optimization.
2-2 Xilinx Development System

HDL Coding Techniques
The following example log displays the set of recognized macros on a
block by block basis.

Synthesizing Unit <timer>.
Extracting finite state machine <FSM_0> for signal <state>.
...
Extracting 4-bit register for signal <min1>.
...
Extracting 4-bit addsub for internal node.
Summary:

inferred 1 Finite State Machine(s).
inferred 17 D-type flip-flop(s).
inferred 4 Adder/Subtractor(s).

Unit <timer> synthesized.

Synthesizing Unit <decod>.
Extracting 1-bit xor2 for signal <colon>.
Extracting 1-bit xor2 for internal node.
...
Extracting 1-bit xor2 for internal node.
Summary:
 inferred 29 Xor(s).

Unit <decod> synthesized.
...
XST User Guide 2-3

XST User Guide
The following example displays the overall statistics of recognized
macros.

The following example displays the number and type of macros
preserved by the low level optimization.

..
===
 HDL Synthesis Report

 Macro Statistics
 # FSMs :1
 # Registers :5
 4-bit register :4
 1-bit register :1
 # Adders/Subtractors :4
 4-bit addsub :3
 4-bit subtractor :1
 # Xors :29

 1-bit xor2 :29

===
 ...

...
===
Final Results
...
Macro Statistics
FSMs : 1
Adders/Subtractors : 4
4-bit addsub : 3
4-bit subtractor : 1
...
===
2-4 Xilinx Development System

HDL Coding Techniques
This chapter discusses the following Macro Blocks:

• Registers

• Tristates

• Counters

• Accumulators

• Shift Registers

• Multiplexers

• Decoders

• Priority Encoders

• Logical Shifters

• Arithmetic Operators (Adders, Subtractors, Adders/Subtractors,
Comparators, Multiplicators, Dividers, Resource Sharing)

• RAMs

• State Machines

• Black Boxes

For each macro, VHDL as well as Verilog examples are given. There is
a list of constraints you can use to control the macro processing in
XST.

Note For macro implementation details please refer to the “FPGA
Optimization” chapter and the “CPLD Optimization” chapter.

The following table provides a list of all the examples in this chapter
as well as a list of VHDL and Verilog synthesis templates available
from the Language Templates in the Project Navigator.

1. To access the synthesis templates from the Project Navigator,
select Edit → Language Templates...

2. Click the + sign for either VHDL or Verilog.

3. Click the + sign next to Synthesis Templates.
XST User Guide 2-5

XST User Guide
Table 2-1 VHDL and Verilog Examples and Templates

Macro Blocks Chapter Examples Language Templates

Registers DFF with Positive-Edge
Clock

DFF with Negative-Edge
Clock and Asynchronous
Clear

DFF with Positive-Edge
Clock and Synchronous Set

DFF with Positive-Edge
Clock and Clock Enable

Latch with Positive Gate

Latch with Positive Gate and
Asynchronous Clear

Latch with Positive Gate and
Asynchronous Clear

4-bit Latch with Inverted
Gate and Asynchronous
Preset

4-bit Register with Positive-
Edge Clock, Asynchronous
Set and Clock Enable

D Flip Flop
D Flip Flop with Asynchronous
Reset
D Flip Flop with Clock Enable
D Flip Flop with Synchronous
Reset

D Latch
D Latch with Reset

Tristates Description Using
Combinatorial Process and
Always Block

Description Using
Concurrent Assignment

Process Method (VHDL)
Always Method (Verilog)
Standalone Method (VHDL and
Verilog)
2-6 Xilinx Development System

HDL Coding Techniques
Counters 4-bit Unsigned Up Counter
with Asynchronous Clear

4-bit Unsigned Down
Counter with Synchronous
Set

4-bit Unsigned Up Counter
with Asynchronous Load
from Primary Input

4-bit Unsigned Up Counter
with Synchronous Load with
a Constant

4-bit Unsigned Up Counter
with Asynchronous Clear
and Clock Enable

4-bit Unsigned Up/Down
counter with Asynchronous
Clear

4-bit Signed Up Counter
with Asynchronous Reset

4-bit asynchronous counter with
count enable, asynchronous reset
and synchronous load

Accumulators 4-bit Unsigned Up
Accumulator with
Asynchronous Clear

None

Table 2-1 VHDL and Verilog Examples and Templates

Macro Blocks Chapter Examples Language Templates
XST User Guide 2-7

XST User Guide
Shift Registers 8-bit Shift-Left Register with
Positive-Edge Clock, Serial
In, and Serial Out

8-bit Shift-Left Register with
Negative-Edge Clock, Clock
Enable, Serial In, and Serial
Out

8-bit Shift-Left Register with
Positive-Edge Clock, Asyn-
chronous Clear, Serial In, and
Serial Out

8-bit Shift-Left Register with
Positive-Edge Clock,
Synchronous Set, Serial In,
and Serial Out

8-bit Shift-Left Register with
Positive-Edge Clock, Serial
In, and Parallel Out

8-bit Shift-Left Register with
Positive-Edge Clock, Asyn-
chronous Parallel Load,
Serial In, and Serial Out

8-bit Shift-Left Register with
Positive-Edge Clock,
Synchronous Parallel Load,
Serial In, and Serial Out

8-bit Shift-Left/Shift-Right
Register with Positive-Edge
Clock, Serial In, and Parallel
Out

4-bit Loadable Serial In Serial
Out Shift Register

4-bit Serial In Parallel out Shift
Register

4-bit Serial In Serial Out Shift
Register

Table 2-1 VHDL and Verilog Examples and Templates

Macro Blocks Chapter Examples Language Templates
2-8 Xilinx Development System

HDL Coding Techniques
Multiplexers 4-to-1 1-bit MUX using IF
Statement

4-to-1 MUX Using CASE
Statement

4-to-1 MUX Using Tristate
Buffers

No 4-to-1 MUX

4-to-1 MUX Design with CASE
Statement

4-to-1 MUX Design with Tristate
Construct

Decoders VHDL (One-Hot)

Verilog (One-Hot)

VHDL (One-Cold)

Verilog (One-Cold)

3-to-8 Decoder, Synchronous
with Reset

Priority Encoders 3-Bit 1-of-9 Priority Encoder 8-to-3 encoder, Synchronous
with Reset

Logical Shifters Example 1
Example 2
Example 3

None

Table 2-1 VHDL and Verilog Examples and Templates

Macro Blocks Chapter Examples Language Templates
XST User Guide 2-9

XST User Guide
Arithmetic Operators Unsigned 8-bit Adder

Unsigned 8-bit Adder with
Carry In

Unsigned 8-bit Adder with
Carry Out

Unsigned 8-bit Adder with
Carry In and Carry Out

Simple Signed 8-bit Adder

Unsigned 8-bit Subtractor

Unsigned 8-bit Adder/
Subtractor

Unsigned 8-bit Greater or
Equal Comparator

Unsigned 8x4-bit Multiplier

Division By Constant 2

Resource Sharing

N-Bit Comparator, Synchronous
with Reset

Table 2-1 VHDL and Verilog Examples and Templates

Macro Blocks Chapter Examples Language Templates
2-10 Xilinx Development System

HDL Coding Techniques
RAMs Single Port RAM with Asyn-
chronous Read

Single Port RAM with "false"
Synchronous Read

Single-Port RAM with
Synchronous Read (Read
Through)

Dual-port RAM with Asyn-
chronous Read

Dual-port RAM with False
Synchronous Read

Dual-port RAM with
Synchronous Read (Read
Through)

Multiple-Port RAM
Descriptions

Single Port Block RAM

Single Port Distributed RAM

Dual Port Block RAM

Dual Port Distributed RAM

State Machines FSM: 1 Process
FSM: 2 Processes
FSM: 3 Processes

Binary State Machine

One-Hot State Machine

Black Boxes VHDL
Verilog

Table 2-1 VHDL and Verilog Examples and Templates

Macro Blocks Chapter Examples Language Templates
XST User Guide 2-11

XST User Guide
Signed/Unsigned Support
In XST, some macros such as adders or counters can be implemented
for signed and unsigned values. If you use VHDL, then depending on
the operation and type of the operands, you have to include
additional packages in your code. For example, in order to create an
Unsigned Adder you can use the following arithmetic packages and
types operating on unsigned values:

In order to create a Signed Adder you can use arithmetic packages
and types operating on signed values.

Please refer to the IEEE VHDL or Verilog Manual for more details on
available types.

Registers
XST is able to recognize flip-flops with the following control signals:

• Asynchronous Set/Clear

• Synchronous Set/Clear

• Clock Enable

PACKAGE TYPE

numeric_std unsigned

numeric_unsigned std_logic_vector

std_logic_arith unsigned

std_logic_unsigned std_logic_vector

PACKAGE TYPE

numeric_std signed

numeric_signed std_logic_vector

std_logic_arith signed

std_logic_signed std_logic_vector
2-12 Xilinx Development System

HDL Coding Techniques
Log File
The XST log file reports the type and size of recognized flip-flops
during the macro recognition step:

Related Constraints
A related constraint is IOB.

DFF with Positive-Edge Clock

...
Synthesizing Unit <flop>.

Extracting 1-bit register for signal <q>.
Summary:

inferred 1 D-type flip-flop(s).

Unit <flop> synthesized.
...

=============================
HDL Synthesis Report

Macro Statistics
Registers : 1

1-bit register : 1

==============================
...

Q

X3715

D FD

C

XST User Guide 2-13

XST User Guide
VHDL Code

Following is the equivalent VHDL code sample for the DFF with a
positive-edge clock.

library ieee;
use ieee.std_logic_1164.all;

entity flop is
port(C, D : in std_logic;

Q : out std_logic);
end flop;
architecture archi of flop is
begin

process (C)
begin

if (C’event and C=’1’) then
Q <= D;

end if;
end process;

end archi;

Verilog Code

Following is the equivalent Verilog code sample for the DFF with a
positive-edge clock.

module flop (C, D, Q);
input C, D;
output Q;
reg Q;

always @(posedge C)
begin

Q = D;

IO Pins Description

D Data Input

C Positive Edge Clock

Q Data Output
2-14 Xilinx Development System

HDL Coding Techniques
end
endmodule

Note When using VHDL, for positive-edge clock instead of using

if (C’event and C=’1’) then

you can also use

if (rising_edge(C)) then

and for negative-edge one you can use the

if (falling_edge(C)) then

construct.

DFF with Negative-Edge Clock and Asynchronous
Clear

IO Pins Description

D Data Input

C Negative-Edge Clock

CLR Asynchronous Clear (active High)

Q Data Output

Q

X3847

D

CLR

C

FDC_1
XST User Guide 2-15

XST User Guide
VHDL Code

Following is the equivalent VHDL code for a DFF with a negative-
edge clock and asynchronous clear.

library ieee;
use ieee.std_logic_1164.all;

entity flop is
port(C, D, CLR : in std_logic;

Q : out std_logic);
end flop;
architecture archi of flop is
begin

process (C, CLR)
begin

if (CLR = ’1’)then
Q <= ’0’;

elsif (C’event and C=’0’)then
Q <= D;

end if;
end process;

end archi;

Verilog Code

Following is the equivalent Verilog code for a DFF with a negative-
edge clock and asynchronous clear.

module flop (C, D, CLR, Q);
input C, D, CLR;
output Q;
reg Q;

always @(negedge C or posedge CLR)
begin

if (CLR)
Q = 1’b0;

else
Q = D;

end
endmodule
2-16 Xilinx Development System

HDL Coding Techniques
DFF with Positive-Edge Clock and Synchronous Set

VHDL Code

Following is the equivalent VHDL code for the DFF with a positive-
edge clock and synchronous set.

library ieee;
use ieee.std_logic_1164.all;

entity flop is
port(C, D, S : in std_logic;

Q : out std_logic);
end flop;
architecture archi of flop is
begin

process (C)
begin

if (C’event and C=’1’) then
if (S=’1’) then

Q <= ’1’;
else

Q <= D;

IO Pins Description

D Data Input

C Positive-Edge Clock

S Synchronous Set (active High)

Q Data Output

Q

X3722

D FDS

C

S

XST User Guide 2-17

XST User Guide
end if;
end if;

end process;
end archi;

Verilog Code

Following is the equivalent Verilog code for the DFF with a positive-
edge clock and synchronous set.

module flop (C, D, S, Q);
input C, D, S;
output Q;
reg Q;

always @(posedge C)
begin

if (S)
Q = 1’b1;

else
Q = D;

end
endmodule

DFF with Positive-Edge Clock and Clock Enable

Q

C

FDE

X8361

D

CE
2-18 Xilinx Development System

HDL Coding Techniques
VHDL Code

Following is the equivalent VHDL code for the DFF with a positive-
edge clock and clock Enable.

library ieee;
use ieee.std_logic_1164.all;

entity flop is
port(C, D, CE : in std_logic;

Q : out std_logic);
end flop;
architecture archi of flop is
begin

process (C)
begin

if (C’event and C=’1’) then
if (CE=’1’) then

Q <= D;
end if;

end if;
end process;

end archi;

IO Pins Description

D Data Input

C Positive-Edge Clock

CE Clock Enable (active High)

Q Data Output
XST User Guide 2-19

XST User Guide
Verilog Code

Following is the equivalent Verilog code for the DFF with a positive-
edge clock and clock enable.

module flop (C, D, CE, Q);
input C, D, CE;
output Q;
reg Q;

always @(posedge C)
begin

if (CE)
Q = D;

end
endmodule

Latches
XST is able to recognize latches with the Asynchronous Set/Clear
control signals.

Latches can be described using:

• Process (VHDL) and always block (Verilog)

• Concurrent state assignment
2-20 Xilinx Development System

HDL Coding Techniques
Log File

The XST log file reports the type and size of recognized latches
during the macro recognition step:

Related Constraints

A related constraint is IOB.

Latch with Positive Gate

...
Synthesizing Unit <latch>.

Extracting 1-bit latch for signal <q>.
Summary:

inferred 1 D-type latch(s).
Unit <latch> synthesized.
...
=============================
HDL Synthesis Report

Macro Statistics
Latches : 1

1-bit latch : 1
==============================
...

Q

X3740

D LD

G

XST User Guide 2-21

XST User Guide
VHDL Code

Following is the equivalent VHDL code for a latch with a positive
gate.

library ieee;
use ieee.std_logic_1164.all;

entity latch is
port(G, D : in std_logic;

Q : out std_logic);
end latch;
architecture archi of latch is
begin

process (G, D)
begin

if (G=’1’) then
Q <= D;

end if;
end process;

end archi;

IO Pins Description

D Data Input

G Positive Gate

Q Data Output
2-22 Xilinx Development System

HDL Coding Techniques
Verilog Code

Following is the equivalent Verilog code for a latch with a positive
gate.

module latch (G, D, Q);
input G, D;
output Q;
reg Q;

always @(G or D)
begin

if (G)
Q = D;

end
endmodule

Latch with Positive Gate and Asynchronous Clear

IO Pins Description

D Data Input

G Positive Gate

CLR Asynchronous Clear (active High)

Q Data Output

Q

X4070

D LDC

G

CLR
XST User Guide 2-23

XST User Guide
VHDL Code

Following is the equivalent VHDL code for a latch with a positive
gate and asynchronous clear.

library ieee;
use ieee.std_logic_1164.all;

entity latch is
port(G, D, CLR : in std_logic;

Q : out std_logic);
end latch;
architecture archi of latch is
begin

process (CLR, D, G)
begin

if (CLR=’1’) then
Q <= ’0’;

elsif (G=’1’) then
Q <= D;

end if;
end process;

end archi;

Verilog Code

Following is the equivalent Verilog code for a latch with a positive
gate and asynchronous clear.

module latch (G, D, CLR, Q);
input G, D, CLR;
output Q;
reg Q;

always @(G or D or CLR)
begin

if (CLR)
Q = 1’b0;

else if (G)
Q = D;

end
endmodule
2-24 Xilinx Development System

HDL Coding Techniques
4-bit Latch with Inverted Gate and Asynchronous
Preset

VHDL Code

Following is the equivalent VHDL code for a 4-bit latch with an
inverted gate and asynchronous preset.

library ieee;
use ieee.std_logic_1164.all;

entity latch is
port(D : in std_logic_vector(3 downto 0);

G, PRE : in std_logic;
Q : out std_logic_vector(3 downto 0));

end latch;
architecture archi of latch is
begin

process (PRE, G)
begin

if (PRE=’1’) then
Q <= "1111";

elsif (G=’0’) then

IO Pins Description

D[3:0] Data Input

G Inverted Gate

PRE Asynchronous Preset (active High)

Q[3:0] Data Output

Q

G

LDP_1

PRE

X8376

D

XST User Guide 2-25

XST User Guide
Q <= D;
end if;

end process;
end archi;

Verilog Code

Following is the equivalent Verilog code for a 4-bit latch with an
inverted gate and asynchronous preset.

module latch (G, D, PRE, Q);
input G, PRE;
input [3:0] D;
output [3:0] Q;
reg [3:0] Q;

always @(G or D or PRE)
begin

if (PRE)
Q = 4’b1111;

else if (~G)
Q = D;

end
endmodule

4-bit Register with Positive-Edge Clock,
Asynchronous Set and Clock Enable

X3721

FDPE

C

CE

QD

PRE
2-26 Xilinx Development System

HDL Coding Techniques
VHDL Code

Following is the equivalent VHDL code for a 4-bit register with a
positive-edge clock, asynchronous set and clock enable.

library ieee;
use ieee.std_logic_1164.all;

entity flop is
port(C, CE, PRE : in std_logic;

D : in std_logic_vector (3 downto 0);
Q : out std_logic_vector (3 downto 0));

end flop;
architecture archi of flop is
begin

process (C, PRE)
begin

if (PRE=’1’) then
Q <= "1111";

elsif (C’event and C=’1’)then
if (CE=’1’) then

Q <= D;
end if;

end if;
end process;

end archi;

IO Pins Description

D[3:0] Data Input

C Positive-Edge Clock

PRE Asynchronous Set (active High)

CE Clock Enable (active High)

Q[3:0] Data Output
XST User Guide 2-27

XST User Guide
Verilog Code

Following is the equivalent Verilog code for a 4-bit register with a
positive-edge clock, asynchronous set and clock enable.

module flop (C, D, CE, PRE, Q);
input C, CE, PRE;
input [3:0] D;
output [3:0] Q;
reg [3:0] Q;

always @(posedge C or posedge PRE)
begin

if (PRE)
Q = 4’b1111;

else
if (CE)

Q = D;
end

endmodule

Tristates
Tristate elements can be described using the following:

• Combinatorial process (VHDL) and always block (Verilog)

• Concurrent assignment
2-28 Xilinx Development System

HDL Coding Techniques
Log File
The XST log reports the type and size of recognized tristates during
the macro recognition step:

Related Constraints
There are no related constraints available.

Description Using Combinatorial Process and
Always Block

...
Synthesizing Unit <three_st>.

Extracting tristate(s) for signal <q>.
Summary:

inferred 1 Tristate(s).
Unit <three_st> synthesized.
...
=============================
HDL Synthesis Report

Found no macro
==============================
...

X9380

T

I O

BUFT
XST User Guide 2-29

XST User Guide
VHDL Code

Following is VHDL code for a tristate element using a combinatorial
process and always block.

library ieee;
use ieee.std_logic_1164.all;

entity three_st is
port(T : in std_logic;

I : in std_logic;
O : out std_logic);

end three_st;
architecture archi of three_st is
begin

process (I, T)
begin

if (T=’0’) then
O <= I;

else
O <= ’Z’;

end if;
end process;

end archi;

IO Pins Description

I Data Input

T Output Enable (active Low)

O Data Output
2-30 Xilinx Development System

HDL Coding Techniques
Verilog Code

Following is Verilog code for a tristate element using a combinatorial
process and always block.

module three_st (T, I, O);
input T, I;
output O;
reg O;

always @(T or I)
begin

if (~T)
O = I;

else
O = 1’bZ;

end
endmodule

Description Using Concurrent Assignment
In the following two examples, note that comparing to 0 instead of 1
will infer the BUFT primitive instead of the BUFE macro. (The BUFE
macro has an inverter on the E pin.)

VHDL Code

Following is VHDL code for a tristate element using a concurrent
assignment.

library ieee;
use ieee.std_logic_1164.all;

entity three_st is
port(T : in std_logic;

I : in std_logic;
O : out std_logic);

end three_st;
architecture archi of three_st is
begin

O <= I when (T=’0’)
else ’Z’;

end archi;
XST User Guide 2-31

XST User Guide
Verilog Code

Following is the Verilog code for a tristate element using a concurrent
assignment.

module three_st (T, I, O);
input T, I;
output O;

assign O = (~T) ? I: 1’bZ;
endmodule

Counters
XST is able to recognize counters with the following controls signals:

• Asynchronous Set/Clear

• Synchronous Set/Clear

• Asynchronous/Synchronous Load (signal and/or constant)

• Clock Enable

• Modes (Up, Down, Up/Down)

• Mixture of all mentioned above possibilities

HDL coding styles for the following control signals are equivalent to
the ones described in the “Registers” section of this chapter:

• Clock

• Asynchronous Set/Clear

• Synchronous Set/Clear

• Clock Enable

Moreover, XST supports unsigned as well as signed counters.
2-32 Xilinx Development System

HDL Coding Techniques
Log File
The XST log file reports the type and size of recognized counters
during the macro recognition step:

4-bit Unsigned Up Counter with Asynchronous Clear

VHDL Code

Following is VHDL code for a 4-bit unsigned Up counter with
asynchronous clear.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity counter is
port(C, CLR : in std_logic;

...
Synthesizing Unit <counter>.

Extracting 4-bit up counter for signal <tmp>.
Summary:

inferred 1 Counter(s).
Unit <counter> synthesized.
...
=============================
HDL Synthesis Report

Macro Statistics
Counters : 1

4-bit up counter: 1
==============================
...

IO Pins Description

C Positive-Edge Clock

CLR Asynchronous Clear (active High)

Q[3:0] Data Output
XST User Guide 2-33

XST User Guide
Q : out std_logic_vector(3 downto 0));
end counter;
architecture archi of counter is
signal tmp: std_logic_vector(3 downto 0);
begin

process (C, CLR)
begin

if (CLR=’1’) then
tmp <= "0000";

elsif (C’event and C=’1’) then
tmp <= tmp + 1;

end if;
end process;
Q <= tmp;

end archi;

Verilog Code

Following is the Verilog code for a 4-bit unsigned Up counter with
asynchronous clear.

module counter (C, CLR, Q);
input C, CLR;
output [3:0] Q;
reg [3:0] tmp;

always @(posedge C or posedge CLR)
begin

if (CLR)
tmp = 4’b0000;

else
tmp = tmp + 1’b1;

end
assign Q = tmp;

endmodule
2-34 Xilinx Development System

HDL Coding Techniques
4-bit Unsigned Down Counter with Synchronous Set

VHDL Code

Following is the VHDL code for a 4-bit unsigned Down counter with
synchronous set.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity counter is
port(C, S : in std_logic;

Q : out std_logic_vector(3 downto 0));
end counter;
architecture archi of counter is
signal tmp: std_logic_vector(3 downto 0);
begin

process (C)
begin

if (C’event and C=’1’) then
if (S=’1’) then

tmp <= "1111";
else

tmp <= tmp - 1;
end if;

end if;
end process;
Q <= tmp;

end archi;

IO Pins Description

C Positive-Edge Clock

S Synchronous Set (active High)

Q[3:0] Data Output
XST User Guide 2-35

XST User Guide
Verilog Code

Following is the Verilog code for a 4-bit unsigned Down counter with
synchronous set.

module counter (C, S, Q);
input C, S;
output [3:0] Q;
reg [3:0] tmp;

always @(posedge C)
begin

if (S)
tmp = 4’b1111;

else
tmp = tmp - 1’b1;

end
assign Q = tmp;

endmodule

4-bit Unsigned Up Counter with Asynchronous Load
from Primary Input

VHDL Code

Following is the VHDL code for a 4-bit unsigned Up Counter with
asynchronous load from primary input.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity counter is

IO Pins Description

C Positive-Edge Clock

ALOAD Asynchronous Load (active High)

D[3:0] Data Input

Q[3:0] Data Output
2-36 Xilinx Development System

HDL Coding Techniques
port(C, ALOAD : in std_logic;
D : in std_logic_vector(3 downto 0);
Q : out std_logic_vector(3 downto 0));

end counter;
architecture archi of counter is
signal tmp: std_logic_vector(3 downto 0);
begin

process (C, ALOAD, D)
begin

if (ALOAD=’1’) then
tmp <= D;

elsif (C’event and C=’1’) then
tmp <= tmp + 1;

end if;

end process;
Q <= tmp;

end archi;

Verilog Code

Following is the Verilog code for a 4-bit unsigned Up Counter with
asynchronous load from primary input.

module counter (C, ALOAD, D, Q);
input C, ALOAD;
input [3:0] D;
output [3:0] Q;
reg [3:0] tmp;

always @(posedge C or posedge ALOAD)
begin

if (ALOAD)
tmp = D;

else
tmp = tmp + 1’b1;

end
assign Q = tmp;

endmodule
XST User Guide 2-37

XST User Guide
4-bit Unsigned Up Counter with Synchronous Load
with a Constant

VHDL Code

Following is the VHDL code for a 4-bit unsigned Up Counter with
synchronous load with a constant.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity counter is
port(C, SLOAD : in std_logic;

Q : out std_logic_vector(3 downto 0));

end counter;
architecture archi of counter is
signal tmp: std_logic_vector(3 downto 0);

 begin
process (C)

begin
if (C’event and C=’1’) then

if (SLOAD=’1’) then
tmp <= "1010";

else
tmp <= tmp + 1;

end if;
end if;

end process;
Q <= tmp;

end archi;

IO Pins Description

C Positive-Edge Clock

SLOAD Synchronous Load (active High)

Q[3:0] Data Output
2-38 Xilinx Development System

HDL Coding Techniques
Verilog Code

Following is the Verilog code for a 4-bit unsigned Up Counter with
synchronous load with a constant.

module counter (C, SLOAD, Q);
input C, SLOAD;
output [3:0] Q;
reg [3:0] tmp;

always @(posedge C)
begin

if (SLOAD)
tmp = 4’b1010;

else
tmp = tmp + 1’b1;

end
assign Q = tmp;

endmodule

4-bit Unsigned Up Counter with Asynchronous Clear
and Clock Enable

IO Pins Description

C Positive-Edge Clock

CLR Asynchronous Clear (active High)

CE Clock Enable

Q[3:0] Data Output
XST User Guide 2-39

XST User Guide
VHDL Code

Following is the VHDL code for a 4-bit unsigned Up counter with
asynchronous clear and clock enable.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity counter is
port(C, CLR, CE : in std_logic;

Q : out std_logic_vector(3 downto 0));
end counter;
architecture archi of counter is
signal tmp: std_logic_vector(3 downto 0);
begin

process (C, CLR)
begin

if (CLR=’1’) then
tmp <= "0000";

elsif (C’event and C=’1’) then
if (CE=’1’) then

tmp <= tmp + 1;
end if;

end if;
end process;
Q <= tmp;

end archi;

Verilog Code

Following is the Verilog code for a 4-bit unsigned Up counter with
asynchronous clear and clock enable.

module counter (C, CLR, CE, Q);
input C, CLR, CE;
output [3:0] Q;
reg [3:0] tmp;

always @(posedge C or posedge CLR)
begin

if (CLR)
tmp = 4’b0000;
2-40 Xilinx Development System

HDL Coding Techniques
else
if (CE)

tmp = tmp + 1’b1;
end

assign Q = tmp;
endmodule

4-bit Unsigned Up/Down counter with Asynchronous
Clear

VHDL Code

Following is the VHDL code for a 4-bit unsigned Up/Down counter
with asynchronous clear.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity counter is
port(C, CLR, up_down : in std_logic;

Q : out std_logic_vector(3 downto 0));
end counter;

architecture archi of counter is
signal tmp: std_logic_vector(3 downto 0);
begin

process (C, CLR)
begin

if (CLR=’1’) then
tmp <= "0000";

IO Pins Description

C Positive-Edge Clock

CLR Asynchronous Clear (active High)

up_down up/down count mode selector

Q[3:0] Data Output
XST User Guide 2-41

XST User Guide
elsif (C’event and C=’1’) then
if (up_down=’1’) then

tmp <= tmp + 1;
else

tmp <= tmp - 1;
end if;

end if;
end process;
Q <= tmp;

end archi;

Verilog Code

Following is the Verilog code for a 4-bit unsigned Up/Down counter
with asynchronous clear.

module counter (C, CLR, up_down, Q);
input C, CLR, up_down;
output [3:0] Q;
reg [3:0] tmp;

always @(posedge C or posedge CLR)
begin

if (CLR)
tmp = 4’b0000;

else
if (up_down)

tmp = tmp + 1’b1;
else

tmp = tmp - 1’b1;
end

assign Q = tmp;
endmodule
2-42 Xilinx Development System

HDL Coding Techniques
4-bit Signed Up Counter with Asynchronous Reset

VHDL Code

Following is the VHDL code for a 4-bit signed Up counter with
asynchronous reset.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_signed.all;

entity counter is
port(C, CLR : in std_logic;

Q : out std_logic_vector(3 downto 0));
end counter;
architecture archi of counter is
signal tmp: std_logic_vector(3 downto 0);
begin

process (C, CLR)
begin

if (CLR=’1’) then
tmp <= "0000";

elsif (C’event and C=’1’) then
tmp <= tmp + 1;

end if;
end process;
Q <= tmp;

end archi;

Verilog Code

There is no equivalent Verilog code.

No constraints are available.

IO Pins Description

C Positive-Edge Clock

CLR Asynchronous Clear (active High)

Q[3:0] Data Output
XST User Guide 2-43

XST User Guide
Accumulators
An accumulator differs from a counter in the nature of the operands
of the add and subtract operation:

• In a counter, the destination and first operand is a signal or
variable and the other operand is a constant equal to 1:
A <= A + 1.

• In an accumulator, the destination and first operand is a signal or
variable, and the second operand is either:

♦ a signal or variable: A <= A + B.

♦ a constant not equal to 1: A <= A + Constant.

 An inferred accumulator can be up, down or updown. For an
updown accumulator, the accumulated data may differ between the
up and down mode:

...
if updown = ’1’ then
a <= a + b;

else
a <= a - c;

...

XST can infer an accumulator with the same set of control signals
available for counters. (Refer to the “Counters” section of this chapter
for more details.)
2-44 Xilinx Development System

HDL Coding Techniques
Log File
The XST log file reports the type and size of recognized accumulators
during the macro recognition step:

4-bit Unsigned Up Accumulator with Asynchronous
Clear

...
Synthesizing Unit <counter>.

Extracting 4-bit up accumulator for signal <tmp>.
Summary:

inferred 1 Accumulator(s).
Unit <counter> synthesized.
...
=============================
HDL Synthesis Report

Macro Statistics
Accumulators : 1

4-bit up accumulator : 1
==============================
...

IO Pins Description

C Positive-Edge Clock

CLR Asynchronous Clear (active High)

D[3:0] Data Input

Q[3:0] Data Output
XST User Guide 2-45

XST User Guide
VHDL Code

Following is the VHDL code for a 4-bit unsigned Up accumulator
with asynchronous clear.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity accum is
port(C, CLR : in std_logic;

D : in std_logic_vector(3 downto 0);
Q : out std_logic_vector(3 downto 0));

end accum;
architecture archi of accum is
signal tmp: std_logic_vector(3 downto 0);
begin

process (C, CLR)
begin

if (CLR=’1’) then
tmp <= "0000";

elsif (C’event and C=’1’) then
tmp <= tmp + D;

end if;
end process;
Q <= tmp;

end archi;

Verilog Code

Following is the Verilog code for a 4-bit unsigned Up accumulator
with asynchronous clear.

module accum (C, CLR, D, Q);
input C, CLR;
input [3:0] D;
output [3:0] Q;
reg [3:0] tmp;

always @(posedge C or posedge CLR)
begin

if (CLR)
tmp = 4’b0000;
2-46 Xilinx Development System

HDL Coding Techniques
else
tmp = tmp + D;

end
assign Q = tmp;

endmodule

No constraints are available.

Shift Registers
In general a shift register is characterized by the following control
and data signals, which are fully recognized by XST:

• clock

• serial input

• asynchronous set/reset

• synchronous set/reset

• synchronous/asynchronous parallel load

• clock enable

• serial or parallel output. The shift register output mode may be:

♦ serial: only the contents of the last flip-flop is accessed by the
rest of the circuit

♦ parallel: the contents of one or several of flip-flops other than
the last one, is accessed

• shift modes: left, right, etc.

There are different ways to describe shift registers. For example in
VHDL you can use:

• concatenation operator

 shreg <= shreg (6 downto 0) & SI;

• "for loop" construct

for i in 0 to 6 loop

shreg(i+1) <= shreg(i);

end loop;

shreg(0) <= SI;
XST User Guide 2-47

XST User Guide
• predefined shift operators as sll, srl, for example.

Consult the VHDL/Verilog language reference manuals for more
information.

FPGAs:

Before writing Shift Register behavior it is important to recall that
Virtex has a specific hardware resources to implement them: SRL16.

However, SRL16 supports only LEFT shift operation for a limited
number of IO signals:

• Clock

• Clock enable

• Serial data in

• Serial data out

It means, that if your shift register does have, for instance, a
synchronous parallel load, no SRL16 will be implemented. XST will
not try to infer SR4x, SR8x or SR16x macros. It will use specific
internal processing which allows it to bring the best final results.

The XST log file reports recognized shift registers when it can be
implemented using SRL16.

X8423

SRL16E

A2
A3

A1

A0
CLK

CE

D Q
2-48 Xilinx Development System

HDL Coding Techniques
Note In VHDL you have to use the "for loop" construct to infer
SRL16. In Verilog, you have to use the "<<" construct to infer SRL16.
XST currently does not infer SRL16 when using the concatenation
operator.

Log File
The XST log file reports the type and size of recognized shift registers
during the macro recognition step:

Related Constraints
A related constraint is shreg_extract.

...
Synthesizing Unit <shift>.

Extracting 8-bit shift register for signal
<tmp<7>>.

Summary:
inferred 1 Shift Register(s).

Unit <shift> synthesized.
...
=============================
HDL Synthesis Report
Macro Statistics
Shift Registers: 1

8-bit shift register: 1
==============================
...
XST User Guide 2-49

XST User Guide
8-bit Shift-Left Register with Positive-Edge Clock,
Serial In, and Serial Out

Note For this example, XST will infer SRL16.

VHDL Code

Following is the VHDL code for an 8-bit shift-left register with a
positive-edge clock, serial in, and serial out.

library ieee;
use ieee.std_logic_1164.all;

entity shift is
port(C, SI : in std_logic;

SO : out std_logic);
end shift;
architecture archi of shift is
signal tmp: std_logic_vector(7 downto 0);
begin

process (C)
begin

if (C’event and C=’1’) then
for i in 0 to 6 loop

tmp(i+1) <= tmp(i);
end loop;
tmp(0) <= SI;

end if;
end process;
SO <= tmp(7);

end archi;

IO Pins Description

C Positive-Edge Clock

SI Serial In

SO Serial Output
2-50 Xilinx Development System

HDL Coding Techniques
Verilog Code

Following is the Verilog code for an 8-bit shift-left register with a
positive-edge clock, serial in, and serial out.

module shift (C, SI, SO);
input C,SI;
output SO;
reg [7:0] tmp;

always @(posedge C)
begin

tmp = tmp << 1;
tmp[0] = SI;

end
assign SO = tmp[7];

endmodule

8-bit Shift-Left Register with Negative-Edge Clock,
Clock Enable, Serial In, and Serial Out

Note For this example, XST will infer SRL16E_1.

VHDL Code

Following is the VHDL code for an 8-bit shift-left register with a
negative-edge clock, clock enable, serial in, and serial out.

library ieee;
use ieee.std_logic_1164.all;

entity shift is
port(C, SI, CE : in std_logic;

SO : out std_logic);
end shift;

IO Pins Description

C Positive-Edge Clock

SI Serial In

CE Clock Enable (active High)

SO Serial Output
XST User Guide 2-51

XST User Guide
architecture archi of shift is
signal tmp: std_logic_vector(7 downto 0);
begin

process (C)
begin

if (C’event and C=’0’) then
if (CE=’1’) then

for i in 0 to 6 loop
tmp(i+1) <= tmp(i);

end loop;
tmp(0) <= SI;

end if;
end if;

end process;
SO <= tmp(7);

end archi;

Verilog Code

Following is the Verilog code for an 8-bit shift-left register with a
negative-edge clock, clock enable, serial in, and serial out.

module shift (C, CE, SI, SO);
input C,SI, CE;
output SO;
reg [7:0] tmp;

always @(negedge C)
begin

if (CE)
begin

tmp = tmp << 1;
tmp[0] = SI;

end
end
assign SO = tmp[7];

endmodule
2-52 Xilinx Development System

HDL Coding Techniques
8-bit Shift-Left Register with Positive-Edge Clock,
Asynchronous Clear, Serial In, and Serial Out

Note For this example XST will not infer SRL16, therefore the
concatenation operator can be used.

VHDL Code

Following is the VHDL code for an 8-bit shift-left register with a
positive-edge clock, asynchronous clear, serial in, and serial out.

library ieee;
use ieee.std_logic_1164.all;

entity shift is
port(C, SI, CLR : in std_logic;

SO : out std_logic);
end shift;
architecture archi of shift is
signal tmp: std_logic_vector(7 downto 0);
begin

process (C, CLR)
begin

if (CLR=’1’) then
tmp <= (others => ’0’);

elsif (C’event and C=’1’) then
tmp <= tmp(6 downto 0) & SI;

end if;
end process;
SO <= tmp(7);

end archi;

IO Pins Description

C Positive-Edge Clock

SI Serial In

CLR Asynchronous Clear (active High)

SO Serial Output
XST User Guide 2-53

XST User Guide
Verilog Code

Following is the Verilog code for an 8-bit shift-left register with a
positive-edge clock, asynchronous clear, serial in, and serial out.

module shift (C, CLR, SI, SO);
input C,SI,CLR;
output SO;
reg [7:0] tmp;

always @(posedge C or posedge CLR)
begin

if (CLR)
tmp = 8’b00000000;

else
begin

tmp = {tmp[6:0], SI};
end

end
assign SO = tmp[7];

endmodule

8-bit Shift-Left Register with Positive-Edge Clock,
Synchronous Set, Serial In, and Serial Out

Note For this example XST will not infer SRL16; therefore, the
concatenation operator can be used.

IO Pins Description

C Positive-Edge Clock

SI Serial In

S synchronous Set (active High)

SO Serial Output
2-54 Xilinx Development System

HDL Coding Techniques
VHDL Code

Following is the VHDL code for an 8-bit shift-left register with a
positive-edge clock, synchronous set, serial in, and serial out.

library ieee;
use ieee.std_logic_1164.all;

entity shift is
port(C, SI, S : in std_logic;

SO : out std_logic);
end shift;
architecture archi of shift is
signal tmp: std_logic_vector(7 downto 0);
begin

process (C, S)
begin

if (C’event and C=’1’) then
if (S=’1’) then

tmp <= (others => ’1’);
else

tmp <= tmp(6 downto 0) & SI;
end if;

end if;
end process;
SO <= tmp(7);

end archi;

Verilog Code

Following is the Verilog code for an 8-bit shift-left register with a
positive-edge clock, synchronous set, serial in, and serial out.

module shift (C, S, SI, SO);
input C,SI,S;
output SO;
reg [7:0] tmp;

always @(posedge C)
begin

if (S)
tmp = 8’b11111111;

else
XST User Guide 2-55

XST User Guide
begin
tmp = {tmp[6:0], SI};

end
end
assign SO = tmp[7];

endmodule

8-bit Shift-Left Register with Positive-Edge Clock,
Serial In, and Parallel Out

Note For this example XST will not infer SRL16; therefore, the
concatenation operator can be used.

VHDL Code

Following is the VHDL code for an 8-bit shift-left register with a
positive-edge clock, serial in, and serial out.

library ieee;
use ieee.std_logic_1164.all;

entity shift is
port(C, SI : in std_logic;

PO : out std_logic_vector(7 downto 0));
end shift;
architecture archi of shift is
signal tmp: std_logic_vector(7 downto 0);
begin

process (C)
begin

if (C’event and C=’1’) then
tmp <= tmp(6 downto 0)& SI;

end if;
end process;
PO <= tmp;

end archi;

IO Pins Description

C Positive-Edge Clock

SI Serial In

PO[7:0] Parallel Output
2-56 Xilinx Development System

HDL Coding Techniques
Verilog Code

Following is the Verilog code for an 8-bit shift-left register with a
positive-edge clock, serial in, and serial out.

module shift (C, SI, PO);
input C,SI;
output [7:0] PO;
reg [7:0] tmp;

always @(posedge C)
begin

tmp = {tmp[6:0], SI};
end
assign PO = tmp;

endmodule

8-bit Shift-Left Register with Positive-Edge Clock,
Asynchronous Parallel Load, Serial In, and Serial Out

Note For this example XST will not infer SRL16; therefore, the
concatenation operator can be used.

VHDL Code

Following is the VHDL code for an 8-bit shift-left register with a
positive-edge clock, asynchronous parallel load, serial in, and serial
out.

library ieee;
use ieee.std_logic_1164.all;

entity shift is
port(C, SI, ALOAD : in std_logic;

IO Pins Description

C Positive-Edge Clock

SI Serial In

ALOAD Asynchronous Parallel Load (active High)

D[7:0] Data Input

SO Serial Output
XST User Guide 2-57

XST User Guide
D : in std_logic_vector(7 downto 0);
SO : out std_logic);

end shift;
architecture archi of shift is
signal tmp: std_logic_vector(7 downto 0);
begin

process (C, ALOAD, D)
begin

if (ALOAD=’1’) then
tmp <= D;

elsif (C’event and C=’1’) then
tmp <= tmp(6 downto 0) & SI;

end if;
end process;
SO <= tmp(7);

end archi;

Verilog Code

Following is the Verilog code for an 8-bit shift-left register with a
positive-edge clock, asynchronous parallel load, serial in, and serial
out.

module shift (C, ALOAD, SI, D, SO);
input C,SI,ALOAD;
input [7:0] D;
output SO;
reg [7:0] tmp;

always @(posedge C or posedge ALOAD)
begin

if (ALOAD)
tmp = D;

else
begin

tmp = {tmp[6:0], SI};
end

end
assign SO = tmp[7];

endmodule
2-58 Xilinx Development System

HDL Coding Techniques
8-bit Shift-Left Register with Positive-Edge Clock,
Synchronous Parallel Load, Serial In, and Serial Out

Note For this example XST will not infer SRL16; therefore, the
concatenation operator can be used.

VHDL Code

Following is the VHDL code for an 8-bit shift-left register with a
positive-edge clock, synchronous parallel load, serial in, and serial
out.

library ieee;
use ieee.std_logic_1164.all;

entity shift is
port(C, SI, SLOAD : in std_logic;

D : in std_logic_vector(7 downto 0);
SO : out std_logic);

end shift;
architecture archi of shift is
signal tmp: std_logic_vector(7 downto 0);
begin

process (C)
begin

if (C’event and C=’1’) then
if (SLOAD=’1’) then

tmp <= D;
else

tmp <= tmp(6 downto 0) & SI;
end if;

end if;
end process;

IO Pins Description

C Positive-Edge Clock

SI Serial In

SLOAD Synchronous Parallel Load (active High)

D[7:0] Data Input

SO Serial Output
XST User Guide 2-59

XST User Guide
SO <= tmp(7);
end archi;

Verilog Code

Following is the Verilog code for an 8-bit shift-left register with a
positive-edge clock, synchronous parallel load, serial in, and serial
out.

module shift (C, SLOAD, SI, D, SO);
input C,SI,SLOAD;
input [7:0] D;
output SO;
reg [7:0] tmp;

always @(posedge C)
begin

if (SLOAD)
tmp = D;

else
begin

tmp = {tmp[6:0], SI};
end

end
assign SO = tmp[7];

endmodule

8-bit Shift-Left/Shift-Right Register with Positive-
Edge Clock, Serial In, and Parallel Out

Note For this example XST will not infer SRL16; therefore, the
concatenation operator can be used.

IO Pins Description

C Positive-Edge Clock

SI Serial In

left_right Left/right shift mode selector

PO[7:0] Parallel Output
2-60 Xilinx Development System

HDL Coding Techniques
VHDL Code

Following is the VHDL code for an 8-bit shift-left/shift-right register
with a positive-edge clock, serial in, and serial out.

library ieee;
use ieee.std_logic_1164.all;

entity shift is
port(C, SI, left_right : in std_logic;

PO : out std_logic_vector(7 downto 0));
end shift;
architecture archi of shift is
signal tmp: std_logic_vector(7 downto 0);
begin

process (C)
begin

if (C’event and C=’1’) then
if (left_right=’0’) then

tmp <= tmp(6 downto 0) & SI;
else

tmp <= SI & tmp(7 downto 1);
end if;

end if;
end process;
PO <= tmp;

end archi;

Verilog Code

Following is the Verilog code for an 8-bit shift-left/shift-right register
with a positive-edge clock, serial in, and serial out.

module shift (C, SI, left_right, PO);
input C,SI,left_right;
output PO;
reg [7:0] tmp;

always @(posedge C)
begin

if (left_right==1’b0)
begin

tmp = {tmp[6:0], SI};
XST User Guide 2-61

XST User Guide
end
else

begin
tmp = {SI, tmp[6:0]};

end
end
assign PO = tmp;

endmodule

Multiplexers
XST supports different description styles for multiplexers: if-then-
else, case, for example. When writing MUXs, you must pay particular
attention in order to avoid traps. For example, if you describe a MUX
using a Case statement and you do not specify all values of the
selector you may get latches instead of a muliplexer. Writing MUXs
you can also use “don't cares” to describe selector values.

During the macro inference step, XST makes a decision to infer or not
infer the MUXs. For example, if the MUX has several inputs which
are the same, then XST can decide not to infer it. In the case that you
do want to infer the MUX, you can force XST using the design
constraint called "mux_extract".

If you use Verilog, then you have to be aware that Verilog case
statements can be either full/not full or parallel/not parallel. A case
statement is:

• FULL if all possible branches are specified

• PARALLEL if it does not contain branches that can be executed
simultaneously
2-62 Xilinx Development System

HDL Coding Techniques
The following tables gives three examples of case statements with
different characteristics.

Full and Parallel Case

module full
(sel, i1, i2, i3, i4, o1);

input [1:0] sel;
input [1:0] i1, i2, i3, i4;
output [1:0] o1;

reg [1:0] o1;

always @(sel or i1 or i2 or i3 or i4)
begin

case (sel)
2’b00: o1 = i1;
2’b01: o1 = i2;
2’b10: o1 = i3;
2’b11: o1 = i4;

endcase
end

endmodule
XST User Guide 2-63

XST User Guide
not Full but Parallel

module notfull
(sel, i1, i2, i3, o1);
input [1:0] sel;
input [1:0] i1, i2, i3;
output [1:0] o1;

reg [1:0] o1;

always @(sel or i1 or i2 or i3)
begin

case (sel)
2’b00: o1 = i1;
2’b01: o1 = i2;
2’b10: o1 = i3;

endcase
end

endmodule
2-64 Xilinx Development System

HDL Coding Techniques
XST automatically determines the characteristics of the case
statements and generates logic using Multiplexers, Priority Encoders
and Latches that best implement the exact behavior of the case
statement.

This characterization of the case statements can be guided or
modified by using the Case Implementation Style parameter (Please
refer to the “Design Constraints” chapter for more details). Accepted
values for this parameter are default, full, parallel and
full-parallel:

• If the default is used, XST will implement the exact behavior of
the case statements.

• If full is used, XST will consider that case statements are complete
and will avoid latch creation.

• If parallel is used, XST will consider that the branches cannot
occur in parallel and will not use a priority encoder.

• If full-parallel is used, XST will consider that case statements are
complete and that the branches cannot occur in parallel, therefore
saving latches and priority encoders.

neither Full nor Parallel

module notfull_notparallel
(sel1, sel2, i1, i2, o1);
input [1:0] sel1, sel2;
input [1:0] i1, i2;
output [1:0] o1;

reg [1:0] o1;

always @(sel1 or sel2)
begin

case (2’b00)
sel1: o1 = i1;
sel2: o1 = i2;

endcase
end

endmodule
XST User Guide 2-65

XST User Guide
The following table indicates the resources used to synthesize the
three examples above using the four Case Implementation Styles. The
term "resources" means the functionality. For example, if using
"notfull_notparallel" with the Case Implementation Style "default",
from the functionality point of view XST will implement Priority
Encoder + Latch. But, it does not inevitably mean that XST will infer
the priority encoder during the macro recognition step.

Note Specifying full, parallel or full parallel may result in an
implementation with a behavior that may differ from the behavior of
the initial model.

Log File
The XST log file reports the type and size of recognized MUXs during
the macro recognition step:

Case Implementation Full notfull notfull_notparallel

default MUX Latch Priority Encoder +
Latch

parallel Latch Latch

full MUX Priority Encoder

full-parallel MUX MUX

...
Synthesizing Unit <mux>.

Extracting 1-bit 4-to-1 multiplexer for signal
<o>.

Summary:
inferred 1 Multiplexer(s).

Unit <mux> synthesized.
...
=============================
Macro Statistics
Multiplexers : 1

1-bit 4-to-1 multiplexer : 1
==============================
...
2-66 Xilinx Development System

HDL Coding Techniques
Related Constraints
Related constraints are mux_extract and mux_style.

4-to-1 1-bit MUX using IF Statement

VHDL Code

Following is the VHDL code for a 4-to-1 1-bit MUX using an IF
Statement.

library ieee;
use ieee.std_logic_1164.all;

entity mux is
port (a, b, c, d : in std_logic;

s : in std_logic_vector (1 downto 0);
o : out std_logic);

end mux;
architecture archi of mux is
begin

process (a, b, c, d, s)
begin

if (s = "00") then o <= a;
elsif (s = "01") then o <= b;
elsif (s = "10") then o <= c;
else o <= d;
end if;

end process;
end archi;

IO Pins Description

a, b, c, d Data Inputs

s[1:0] MUX selector

o Data Output
XST User Guide 2-67

XST User Guide
Verilog Code

Following is the Verilog code for a 4-to-1 1-bit MUX using an IF
Statement.

module mux (a, b, c, d, s, o);
input a,b,c,d;
input [1:0] s;
output o;
reg o;

always @(a or b or c or d or s)
begin

if (s == 2’b00) o = a;
else if (s == 2’b01) o = b;
else if (s == 2’b10) o = c;
else o = d;

end
endmodule

4-to-1 MUX Using CASE Statement

VHDL Code

Following is the VHDL code for a 4-to-1 1-bit MUX using a Case
Statement.

library ieee;
use ieee.std_logic_1164.all;

entity mux is
port (a, b, c, d : in std_logic;

s : in std_logic_vector (1 downto 0);
o : out std_logic);

end mux;

IO Pins Description

a, b, c, d Data Inputs

s[1:0] MUX selector

o Data Output
2-68 Xilinx Development System

HDL Coding Techniques
architecture archi of mux is
begin

process (a, b, c, d, s)
begin

case s is
when "00" => o <= a;
when "01" => o <= b;
when "10" => o <= c;
when others => o <= d;

end case;
end process;

end archi;

Verilog Code

Following is the Verilog Code for a 4-to-1 1-bit MUX using a Case
Statement.

module mux (a, b, c, d, s, o);
input a,b,c,d;
input [1:0] s;
output o;
reg o;

always @(a or b or c or d or s)
begin

case (s)
2’b00 : o = a;
2’b01 : o = b;
2’b10 : o = c;
default : o = d;

endcase
end

endmodule
XST User Guide 2-69

XST User Guide
4-to-1 MUX Using Tristate Buffers
This section shows VHDL and Verilog examples for a 4-to-1 Mux
using tristate buffers.

VHDL Code

Following is the VHDL code for a 4-to-1 1-bit MUX using tristate
buffers.

library ieee;
use ieee.std_logic_1164.all;

entity mux is
port (a, b, c, d : in std_logic;
 s : in std_logic_vector (3 downto 0);
 o : out std_logic);
end mux;

architecture archi of mux is
begin

o <= a when (s(0)=’0’) else ’Z’;
o <= b when (s(1)=’0’) else ’Z’;
o <= c when (s(2)=’0’) else ’Z’;
o <= d when (s(3)=’0’) else ’Z’;

end archi;

Verilog Code

Following is the Verilog Code for a 4-to-1 1-bit MUX using tristate
buffers.

module mux (a, b, c, d, s, o);
input a,b,c,d;
input [3:0] s;

IO Pins Description

a, b, c, d Data Inputs

s[3:0] MUX Selector

o Data Output
2-70 Xilinx Development System

HDL Coding Techniques
output o;

assign o = s[3] ? a :1’bz;
assign o = s[2] ? b :1’bz;
assign o = s[1] ? c :1’bz;
assign o = s[0] ? d :1’bz;

endmodule

No 4-to-1 MUX
The following example does not generate a 4-to-1 1-bit MUX, but 3-
to-1 MUX with 1-bit latch. The reason is that not all selector values
were described in the If statement. It is supposed that for the s=11
signal "O" keeps its old value, and therefore a memory element is
needed.

VHDL Code

Following is the VHDL code for a 3-to-1 1-bit MUX with a 1-bit latch.

library ieee;
use ieee.std_logic_1164.all;

entity mux is
port (a, b, c, d : in std_logic;

s : in std_logic_vector (1 downto 0);
o : out std_logic);

end mux;
architecture archi of mux is
begin

process (a, b, c, d, s)
begin

if (s = "00") then o <= a;
elsif (s = "01") then o <= b;
elsif (s = "10") then o <= c;

IO Pins Description

a, b, c, d Data Inputs

s[1:0] Selector

o Data Output
XST User Guide 2-71

XST User Guide
end if;
end process;

end archi;

Verilog Code

Following is the Verilog code for a 3-to-1 1-bit MUX with a 1-bit latch.

module mux (a, b, c, d, s, o);
input a,b,c,d;
input [1:0] s;
output o;
reg o;

always @(a or b or c or d or s)
begin

if (s == 2’b00) o = a;
else if (s == 2’b01) o = b;
else if (s == 2’b10) o = c;

end
endmodule

Decoders
A decoder is a multiplexer whose inputs are all constant with distinct
one-hot (or one-cold) coded values. Please refer to the “Multiplexers”
section of this chapter for more details. Here are two examples of 1-
of-8 decoders using One-Hot and One-Cold coded values.
2-72 Xilinx Development System

HDL Coding Techniques
Log File
The XST log file reports the type and size of recognized decoders
during the macro recognition step:

Related Constraints
A related constraint is decoder_extract.

VHDL (One-Hot)
Following is the VHDL code for a 1-of-8 decoder.

library ieee;
use ieee.std_logic_1164.all;

entity dec is
port (sel: in std_logic_vector (2 downto 0);

res: out std_logic_vector (7 downto 0));
end dec;
architecture archi of dec is

...
Synthesizing Unit <dec>.

Extracting 1-of-8 decoder for signal <res>.
Summary:

inferred 1 Decoder(s).
Unit <dec> synthesized.
...
=============================
Macro Statistics
Decoders : 1

1-of-8 decoder: 1
==============================
...

IO pins Description

s[2:0] Selector

res Data Output
XST User Guide 2-73

XST User Guide
begin
res <= "00000001" when sel = "000" else

"00000010" when sel = "001" else
"00000100" when sel = "010" else
"00001000" when sel = "011" else
"00010000" when sel = "100" else
"00100000" when sel = "101" else
"01000000" when sel = "110" else
"10000000";

end archi;

Verilog (One-Hot)
Following is the Verilog code for a 1-of-8 decoder.

module mux (sel, res);
input [2:0] sel;
output [7:0] res;
reg [7:0] res;

always @(sel or res)
begin

case (sel)
8’b000 : res = "00000001";
8’b001 : res = "00000010";
8’b010 : res = "00000100";
8’b011 : res = "00001000";
8’b100 : res = "00010000";
8’b101 : res = "00100000";
8’b110 : res = "01000000";
default : res = "10000000";

endcase
end

endmodule

VHDL (One-Cold)
Following is the VHDL code for a 1-of-8 decoder.

library ieee;
use ieee.std_logic_1164.all;

entity dec is
2-74 Xilinx Development System

HDL Coding Techniques
port (sel: in std_logic_vector (2 downto 0);
res: out std_logic_vector (7 downto 0));

end dec;
architecture archi of dec is
begin

res <= "11111110" when sel = "000" else
"11111101" when sel = "001" else
"11111011" when sel = "010" else
"11110111" when sel = "011" else
"11101111" when sel = "100" else
"11011111" when sel = "101" else
"10111111" when sel = "110" else
"01111111";

end archi;

Verilog (One-Cold)
Following is the Verilog code for a 1-of-8 decoder.

module mux (sel, res);
input [2:0] sel;
output [7:0] res;
reg [7:0] res;

always @(sel)
begin

case (sel)
8’b000 : res = "11111110";
8’b001 : res = "11111101";
8’b010 : res = "11111011";
8’b011 : res = "11110111";
8’b100 : res = "11101111";
8’b101 : res = "11011111";
8’b110 : res = "10111111";
default : res = "01111111";

endcase
end

endmodule
XST User Guide 2-75

XST User Guide
In the current version, XST does not infer decoders if one or several of
the decoder outputs are not selected, except when the unused
selector values are consecutive and at the end of the code space.
Following is an example:

VHDL
Following is the VHDL code.

library ieee;
use ieee.std_logic_1164.all;

entity dec is
port (sel: in std_logic_vector (2 downto 0);

res: out std_logic_vector (7 downto 0));
end dec;
architecture archi of dec is
begin

res <= "00000001" when sel = "000" else
-- unused decoder output
"XXXXXXXX" when sel = "001" else
"00000100" when sel = "010" else
"00001000" when sel = "011" else
"00010000" when sel = "100" else
"00100000" when sel = "101" else
"01000000" when sel = "110" else
"10000000";

end archi;

IO pins Description

s[2:0] Selector

res Data Output
2-76 Xilinx Development System

HDL Coding Techniques
Verilog
Following is the Verilog code.

module mux (sel, res);
input [2:0] sel;
output [7:0] res;
reg [7:0] res;

always @(sel)
begin

case (sel)
8’b000 : res = "00000001";
// unused decoder output
8’b001 : res = "xxxxxxxx";
8’b010 : res = "00000100";
8’b011 : res = "00001000";
8’b100 : res = "00010000";
8’b101 : res = "00100000";
8’b110 : res = "01000000";
default : res = "10000000";

endcase
end

endmodule

On the contrary, the following description leads to the inference of a
1-of-8 decoder.

IO pins Description

s[2:0] Selector

res Data Output
XST User Guide 2-77

XST User Guide
VHDL
Following is the VHDL code.

library ieee;
use ieee.std_logic_1164.all;

entity dec is
port (sel: in std_logic_vector (2 downto 0);

res: out std_logic_vector (7 downto 0));
end dec;

architecture archi of dec is
begin

res <= "00000001" when sel = "000" else
"00000010" when sel = "001" else
"00000100" when sel = "010" else
"00001000" when sel = "011" else
"00010000" when sel = "100" else
"00100000" when sel = "101" else

-- 110 and 111 selector values are unused
"XXXXXXXX";

end archi;
2-78 Xilinx Development System

HDL Coding Techniques
Verilog
Following is the Verilog code.

module mux (sel, res);
input [2:0] sel;
output [7:0] res;
reg [7:0] res;

always @(sel or res)
begin

case (sel)
8’b000 : res = "00000001";
8’b001 : res = "00000010";
8’b010 : res = "00000100";
8’b011 : res = "00001000";
8’b100 : res = "00010000";
8’b101 : res = "00100000";

// 110 and 111 selector values are unused
default : res = "xxxxxxxx";

endcase
end

endmodule
XST User Guide 2-79

XST User Guide
Priority Encoders
XST is able to recognize a priority encoder. But in most cases XST will
not infer it. You have to use the "priority_extract" constraint with the
value "Force" to force priority encoder inference. Xilinx strongly
suggests that you use this constraint on the signal-by-signal basis;
otherwise, the constraint may guide you towards sub-optimal results.

Log File
The XST log file reports the type and size of recognized priority
encoders during the macro recognition step:

3-Bit 1-of-9 Priority Encoder
Note For this example XST may infer a priority encoder. You must
use the "priority_extract" constraint with a value "Force" to force its
inference.

Related Constraint
A related constraint is priority_extract.

Synthesizing Unit <pencod>.
Extracting 3-bit 1-of-9 priority encoder for

signal <code>.
Summary:

inferred 3 Priority encoder(s).
Unit <pencod> synthesized.
...
=============================
HDL Synthesis Report

Macro Statistics
Priority Encoders : 1

3-bit 1-of-9 priority encoder : 1
==============================
...
2-80 Xilinx Development System

HDL Coding Techniques
VHDL
Following is the VHDL code for a 3-bit 1-of-9 Priority Encoder.

library ieee;
use ieee.std_logic_1164.all;

entity priority is
port (sel : in std_logic_vector (7 downto 0);

code : out std_logic_vector (2 downto 0));
end priority;
architecture archi of priority is

begin
code <= "000" when sel(0) = ’1’ else

"001" when sel(1) = ’1’ else
"010" when sel(2) = ’1’ else
"011" when sel(3) = ’1’ else
"100" when sel(4) = ’1’ else
"101" when sel(5) = ’1’ else
"110" when sel(5) = ’1’ else
"111" when sel(5) = ’1’ else
"xxx";

end archi;

Verilog
Following is the Verilog code for a 3-bit 1-of-9 Priority Encoder.

module priority (sel, code);
input [7:0] sel;
output [2:0] code;
reg code;

always @(sel)
begin

if (sel[0]) code <= "000";
else if (sel[1]) code <= "001";
else if (sel[2]) code <= "010";
else if (sel[3]) code <= "011";
else if (sel[4]) code <= "100";
else if (sel[5]) code <= "101";
else if (sel[6]) code <= "110";
else if (sel[7]) code <= "111";
XST User Guide 2-81

XST User Guide
else code <= 3’bxxx;
end

endmodule

Logical Shifters
Xilinx defines a Logical Shifter as a combinatorial circuit with 2
inputs and 1 output:

• The first input is a data input which will be shifted.

• The second input is a selector whose binary value defines the
shift distance.

• The output is the result of the shift operation.

Note All these IOs are mandatory; otherwise, XST will not infer a
Logical Shifter.

 Moreover, you have to adhere to the following conditions when
writing your HDL code:

• Use only logical, arithmetic and rotate shift operations. Shift
operations which fill vacated positions with values from another
signal are not recognized.

• For VHDL, you can use only predefined shift (sll, srl, rol, etc) or
concatenation operations only. Please refer to the IEE VHDL
language reference manual for more information on predefined
shift operations.

• Use only one type of shift operation.

• The n value in shift operation must be incremented or
decremented only by 1 for each consequent binary value of the
selector.

• The n value can be only positive.

• All values of the selector must be presented.
2-82 Xilinx Development System

HDL Coding Techniques
Log File
The XST log file reports the type and size of a recognized logical
shifter during the macro recognition step:

Related Constraints
A related constraint is shift_extract.

Example 1

...
Synthesizing Unit <shift>.

Extracting combinational logic shifter for
signal <so>.

Summary:
inferred 1 Combinational logic shifter(s).

Unit <shift> synthesized.
...
=============================
Macro Statistics
Logic shifters : 1

8-bit shifter logical left : 1
==============================
...

IO pins Description

D[7:0] Data Input

sel shift distance selector

SO[7:0] Data Output
XST User Guide 2-83

XST User Guide
VHDL

Following is the VHDL code for a logical shifter.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_unsigned.all;

entity lshift is
port(DI : in std_logic_vector(7 downto 0);

sel : in std_logic_vector(1 downto 0);
SO : out std_logic_vector(7 downto 0));

end lshift;
architecture archi of lshift is
begin

with sel select
SO <= DI when "00",

DI sll 1 when "01",
DI sll 2 when "10",
DI sll 3 when others;

end archi;

Verilog

Following is the Verilog code for a logical shifter.

module lshift (DI, sel, SO);
input [7:0] DI;
input [1:0] sel;
output [7:0] SO;
reg [7:0] SO;

always @(DI or sel)
begin

case (sel)
2’b00 : SO <= DI;
2’b01 : SO <= DI << 1;
2’b10 : SO <= DI << 2;
default : SO <= DI << 3;

endcase
end

endmodule
2-84 Xilinx Development System

HDL Coding Techniques
Example 2
XST will not infer a Logical Shifter for this example.

VHDL

Following is the VHDL code.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_unsigned.all;

entity lshift is
port(DI : in std_logic_vector(7 downto 0);

sel : in std_logic_vector(1 downto 0);
SO : out std_logic_vector(7 downto 0));

end lshift;
architecture archi of lshift is
begin

with sel select
SO <= DI when "00",

DI sll 1 when "01",
DI sll 2 when others;

end archi;

Verilog

Following is the Verilog code.

module lshift (DI, sel, SO);
input [7:0] DI;
input [1:0] sel;
output [7:0] SO;
reg [7:0] SO;

always @(DI or sel)
begin

IO pins Description

D[7:0] Data Input

sel shift distance selector

SO[7:0] Data Output
XST User Guide 2-85

XST User Guide
case (sel)
2’b00 : SO <= DI;
2’b01 : SO <= DI << 1;
default : SO <= DI << 2;
endcase

end
endmodule

Example 3
XST will not infer a Logical Shifter for this example.

VHDL

Following is the VHDL code.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_unsigned.all;

entity lshift is
port(DI : in std_logic_vector(7 downto 0);

sel : in std_logic_vector(1 downto 0);
SO : out std_logic_vector(7 downto 0));

end lshift;
architecture archi of lshift is
begin

with sel select
SO <= DI when "00",

 DI sll 1 when "01",
 DI sll 3 when "10",
 DI sll 2 when others;
end archi;

IO pins Description

D[7:0] Data Input

sel shift distance selector

SO[7:0] Data Output
2-86 Xilinx Development System

HDL Coding Techniques
Verilog

Following is the Verilog code.

module lshift (DI, sel, SO);
input [7:0] DI;
input [1:0] sel;
output [7:0] SO;
reg[7:0] SO;

always @(DI or sel)
begin

case (sel)
2’b00 : SO <= DI;
2’b01 : SO <= DI << 1;
2’b10 : SO <= DI << 3;
default : SO <= DI << 2;

endcase
end

endmodule

Arithmetic Operations
XST supports the following arithmetic operations:

• Adders with:

♦ Carry In

♦ Carry Out

♦ Carry In/Out

• Subtractors

• Adders/subtractors

• Comparators (=, /=,<, <=, >, >=)

• Multipliers

• Dividers

Adders, Subtractors, Comparators and Multipliers are supported for
signed and unsigned operations.
XST User Guide 2-87

XST User Guide
Please refer to the “Signed/Unsigned Support” section of this chapter
for more information on the signed/unsigned operations support in
VHDL.

 Moreover, XST does resource sharing for adders, subtractors,
adders/subtractors and multipliers.

Adders, Subtractors, Adders/Subtractors
This section provides HDL examples of adders and subtractors

Log File

The XST log file reports the type and size of recognized adder,
subtractor and adder/subtractor during the macro recognition step:

..
Synthesizing Unit <adder>.

Extracting 8-bit adder carry in for signal
<sum>.

Summary:
inferred 1 Adder/Subtractor(s).

Unit <adder> synthesized.
...
=============================
HDL Synthesis Report

Macro Statistics
Adders/Subtractors : 1

8-bit adder carry in : 1
==============================
2-88 Xilinx Development System

HDL Coding Techniques
Unsigned 8-bit Adder

This subsection contains a VHDL and Verilog description of an
unsigned 8-bit Adder.

VHDL

Following is the VHDL code for an unsigned 8-bit Adder.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity adder is
port(A,B : in std_logic_vector(7 downto 0);

SUM : out std_logic_vector(7 downto 0));
end adder;
architecture archi of adder is
begin

SUM <= A + B;
end archi;

Verilog

Following is the Verilog code for an unsigned 8-bit Adder.

module adder(A, B, SUM);
input [7:0] A;
input [7:0] B;
output [7:0] SUM;

assign SUM = A + B;
endmodule

IO pins Description

A[7:0], B[7:0] Add Operands

SUM[7:0] Add Result
XST User Guide 2-89

XST User Guide
Unsigned 8-bit Adder with Carry In

This section contains VHDL and Verilog descriptions of an unsigned
8-bit adder with Carry In.

VHDL

Following is the VHDL code for an unsigned 8-bit adder with carry
in.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity adder is
port(A,B : in std_logic_vector(7 downto 0);

CI : in std_logic;
SUM : out std_logic_vector(7 downto 0));

end adder;
architecture archi of adder is
begin

SUM <= A + B + CI;
end archi;

Verilog

Following is the Verilog code for an unsigned 8-bit adder with carry
in.

module adder(A, B, CI, SUM);
input [7:0] A;
input [7:0] B;
input CI;
output [7:0] SUM;

assign SUM = A + B + CI;
endmodule

IO pins Description

A[7:0], B[7:0] Add Operands

CI Carry In

SUM[7:0] Add Result
2-90 Xilinx Development System

HDL Coding Techniques
Unsigned 8-bit Adder with Carry Out

If you use VHDL, then before writing a "+" operation with Carry Out,
please examine the arithmetic package you are going to use. For
example "std_logic_unsigned" does not allow you to write "+" in the
following form to obtain Carry Out:

Res(9-bit) = A(8-bit) + B(8-bit)

The reason is that the size of the result for "+" in this package is equal
to the size of the longest argument, that is, 8 bit.

• One solution, for the example, is to adjust the size of operands A
and B to 9-bit using concatenation

Res <= ("0" & A) + ("0" & B);

In this case, XST recognizes that this 9-bit adder can be
implemented as 8-bit ones with Carry Out.

• Another solution is to convert A and B to integers and then
convert the result back to the std_logic vector, specifying the size
of the vector equal to 9:

VHDL

Following is the VHDL code for an unsigned 8-bit adder with carry
out.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity adder is
port(A,B : in std_logic_vector(7 downto 0);

SUM : out std_logic_vector(7 downto 0);
CO : out std_logic);

end adder;
architecture archi of adder is

IO pins Description

A[7:0], B[7:0] Add Operands

SUM[7:0] Add Result

CO Carry Out
XST User Guide 2-91

XST User Guide
signal tmp: std_logic_vector(8 downto 0);
begin

tmp <= conv_std_logic_vector(
(conv_integer(A) +
conv_integer(B)),9);

SUM <= tmp(7 downto 0);
CO <= tmp(8);

end archi;

In the preceding example, two arithmetic packages are used:

• std_logic_arith. It contains the integer to std_logic conversion
function, that is, conv_std_logic_vector.

• std_logic_unsigned. It contains the unsigned "+" operation.

Verilog

Following is the Verilog code for an unsigned 8-bit adder with carry
out.

module adder(A, B, SUM, CO);
input [7:0] A;
input [7:0] B;
output [7:0] SUM;
output CO;
wire [8:0] tmp;

assign tmp = A + B;
assign SUM = tmp [7:0];
assign CO = tmp [8];

endmodule

Unsigned 8-bit Adder with Carry In and Carry Out

This section contains VHDL and Verilog code for an unsigned 8-bit
adder with Carry In and Carry Out.

IO pins Description

A[7:0], B[7:0] Add Operands

CI Carry In

SUM[7:0] Add Result

CO Carry Out
2-92 Xilinx Development System

HDL Coding Techniques
VHDL

Following is the VHDL code for an unsigned 8-bit adder with carry in
and carry out.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity adder is
port(A,B : in std_logic_vector(7 downto 0);

CI : in std_logic;
SUM : out std_logic_vector(7 downto 0);
CO : out std_logic);

end adder;
architecture archi of adder is
signal tmp: std_logic_vector(8 downto 0);
begin

tmp <= conv_std_logic_vector(
(conv_integer(A) +
conv_integer(B) +
conv_integer(CI)),9);

SUM <= tmp(7 downto 0);
CO <= tmp(8);

end archi;

Verilog

Following is the Verilog code for an unsigned 8-bit adder with carry
in and carry out.

module adder(A, B, CI, SUM, CO);
input CI;
input [7:0] A;
input [7:0] B;
output [7:0] SUM;
output CO;
wire [8:0] tmp;
assign tmp = A + B + CI;
assign SUM = tmp [7:0];
assign CO = tmp [8];

endmodule
XST User Guide 2-93

XST User Guide
Simple Signed 8-bit Adder

VHDL

Following is the VHDL code for a simple signed 8-bit Adder.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_signed.all;

entity adder is
port(A,B : in std_logic_vector(7 downto 0);

SUM : out std_logic_vector(7 downto 0));
end adder;
architecture archi of adder is
begin

SUM <= A + B;
end archi;

Verilog

There is no equivalent Verilog code.

Unsigned 8-bit Subtractor

The following table describes the IO pins for an unsigned 8-bit
subtractor.

IO pins Description

A[7:0], B[7:0] Add Operands

SUM[7:0] Add Result

IO pins Description

A[7:0], B[7:0] Sub Operands

RES[7:0] Sub Result
2-94 Xilinx Development System

HDL Coding Techniques
VHDL

Following is the VHDL code for an unsigned 8-bit subtractor.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity subtr is
port(A,B : in std_logic_vector(7 downto 0);

RES : out std_logic_vector(7 downto 0));
end subtr;
architecture archi of subtr is
begin

RES <= A - B;
end archi;

Verilog

Following is the Verilog code for an unsigned 8-bit subtractor.

module subtr(A, B, RES);
input [7:0] A;
input [7:0] B;
output [7:0] RES;

assign RES = A - B;
endmodule

Unsigned 8-bit Adder/Subtractor

The following table describes the IO pins for an unsigned 8-bit
adder/subtractor.

IO pins Description

A[7:0], B[7:0] Add/Sub Operands

SUM[7:0] Add/Sub Result
XST User Guide 2-95

XST User Guide
VHDL

Following is the VHDL code for an unsigned 8-bit adder/subtractor.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity addsub is
port(A,B : in std_logic_vector(7 downto 0);

oper: in std_logic;
RES : out std_logic_vector(7 downto 0));

end addsub;
architecture archi of addsub is
begin

RES <= A + B when oper=’0’
else A - B;

end archi;

Verilog

Following is the Verilog code for an unsigned 8-bit adder/subtractor.

module addsub(A, B, oper, RES);
input oper;
input [7:0] A;
input [7:0] B;
output [7:0] RES;
reg [7:0] RES;

always @(A or B or oper)
begin

if (oper==1’b0) RES = A + B;
else RES = A - B;

end
endmodule
2-96 Xilinx Development System

HDL Coding Techniques
Comparators (=, /=,<, <=, >, >=)
This section contains a VHDL and Verilog description for an
unsigned 8-bit greater or equal comparator.

Log File

The XST log file reports the type and size of recognized comparators
during the macro recognition step:

Unsigned 8-bit Greater or Equal Comparator

The following table describes the IO pins for the comparator.

...
Synthesizing Unit <compar>.

Extracting 8-bit comparator greatequal for internal node.
Summary:

inferred 1 Comparator(s).
Unit <compar> synthesized.
...
=============================
HDL Synthesis Report

Macro Statistics
Comparators : 1

8-bit comparator greatequal : 1
==============================
...

IO pins Description

A[7:0], B[7:0] Add/Sub Operands

cmp Comparison Result
XST User Guide 2-97

XST User Guide
VHDL

Following is the VHDL code for an unsigned 8-bit greater or equal
comparator.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity compar is
port(A,B : in std_logic_vector(7 downto 0);

cmp : out std_logic);
end compar;
architecture archi of compar is
begin

cmp <= ’1’ when A >= B
else ’0’;

end archi;

Verilog

Following is the Verilog code for an unsigned 8-bit greater or equal
comparator.

module compar(A, B, cmp);
input [7:0] A;
input [7:0] B;
output cmp;

assign cmp = A >= B ? 1’b1 : 1’b0;
endmodule

Multipliers
When implementing a multiplier, the size of the resulting signal is
equal to the sum of 2 operand lengths. If you multiply A (8-bit signal)
by B (4-bit signal), then the size of the result must be declared as a 12-
bit signal.
2-98 Xilinx Development System

HDL Coding Techniques
Log File

The XST log file reports the type and size of recognized multipliers
during the macro recognition step:

Unsigned 8x4-bit Multiplier

The following table describes the IO pins.

VHDL

Following is the VHDL code for an unsigned 8x4-bit multiplier.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity mult is
port(A : in std_logic_vector(7 downto 0);

B : in std_logic_vector(3 downto 0);

...
Synthesizing Unit <mult>.

Extracting 8x4-bit multiplier for signal <res>.
Summary:

inferred 1 Multiplier(s).
Unit <mult> synthesized.
...
=============================
HDL Synthesis Report

Macro Statistics
Multipliers : 1

8x4-bit multiplier : 1
==============================
...

IO pins Description

A[7:0], B[7:0] MULT Operands

RES[7:0] MULT Result
XST User Guide 2-99

XST User Guide
RES : out std_logic_vector(11 downto 0));
end mult;
architecture archi of mult is
begin

RES <= A * B;
end archi;

Verilog

Following is the Verilog code for an unsigned 8x4-bit multiplier.

module compar(A, B, RES);
input [7:0] A;
input [3:0] B;
output [11:0] RES;

assign RES = A * B;
endmodule

Dividers
Divisions are not supported, except when the divisor is a constant
and is a power of 2. In that case, the operator is implemented as a
shifter; otherwise, an error message will be issued by XST.

Log File

When you implement a division with a constant with the power of 2,
XST does not issue any message during the macro recognition step. In
case your division does not correspond to the case supported by XST,
the following error message displays:

...
ERROR : (VHDL_0045). des.vhd (Line 11).
Operator is not supported yet : ’INVALID OPERATOR’
...
2-100 Xilinx Development System

HDL Coding Techniques
Division By Constant 2

The following table describes the IO pins.

VHDL

Following is the VHDL code for a Division By Constant 2 divider.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_unsigned.all;

entity divider is
port(DI : in std_logic_vector(7 downto 0);

DO : out std_logic_vector(7 downto 0));
end divider;
architecture archi of divider is
begin

DO <= DI / 2;
end archi;

Verilog

Following is the Verilog code for a Division By Constant 2 divider.

module divider(DI, DO);
input [7:0] DI;
output [7:0] DO;

assign DO = DI / 2;
endmodule

IO pins Description

DI[7:0], B[7:0] DIV Operands

DO[7:0] DIV Result
XST User Guide 2-101

XST User Guide
Resource Sharing
The goal of resource sharing (also known as folding) is to minimize
the number of operators and the subsequent logic in the synthesized
design. This optimization is based on the principle that two similar
arithmetic resources may be implemented as one single arithmetic
operator if they are never used at the same time. XST performs both
resource sharing and, if required, reduces of the number of
multiplexers that are created in the process.

XST supports resource sharing for adders, subtractors, adders/
subtractors and multipliers.

Log File

The XST log file reports the type and size of recognized arithmetic
blocks and multiplexers during the macro recognition step:

Related Constraint

The related constraint is resource_sharing.

...
Synthesizing Unit <addsub>.

Extracting 8-bit 2-to-1 multiplexer for internal node.
Extracting 8-bit addsub for signal <res>.
Summary:

inferred 1 Adder/Subtractor(s).
inferred 8 Multiplexer(s).

Unit <addsub> synthesized.
...
=============================
HDL Synthesis Report

Macro Statistics
Multiplexers : 1

8-bit 2-to-1 multiplexer : 1
Adders/Subtractors : 1

8-bit addsub : 1
==============================
...
2-102 Xilinx Development System

HDL Coding Techniques
Example

For the following VHDL/Verilog example, XST will give the
following solution:

VHDL

Following is the VHDL example for resource sharing.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity addsub is
port(A,B,C : in std_logic_vector(7 downto 0);

oper : in std_logic;
RES : out std_logic_vector(7 downto 0));

end addsub;
architecture archi of addsub is
begin

RES <= A + B when oper=’0’

IO pins Description

A[7:0], B[7:0], B[7:0] DIV Operands

oper Operation Selector

RES[7:0] Data Output

X8984

B

C
A

+/- RES

OPER
OPER
XST User Guide 2-103

XST User Guide
else A - C;
end archi;

Verilog

Following is the Verilog code for resource sharing.

module addsub(A, B, C, oper, RES);
input oper;
input [7:0] A;
input [7:0] B;
input [7:0] C;
output [7:0] RES;
reg [7:0] RES;

always @(A or B or C or oper)
begin

if (oper==1’b0) RES = A + B;
else RES = A - C;

end
endmodule

RAMs
If you do not want to instantiate RAM primitives in order to keep
your HDL code technology independent, XST offers an automatic
RAM recognition capability. XST can infer distributed as well as
Block RAM. It covers the following characteristics, offered by these
RAM types:

• Synchronous write

• Write enable

• Asynchronous or synchronous read

• Reset of the data output latches

• Single, dual or multiple-port read

• Single port write

 The type of the inferred RAM depends on its description:

• RAM descriptions with an asynchronous read generate a
distributed RAM macro
2-104 Xilinx Development System

HDL Coding Techniques
• RAM descriptions with a synchronous read generate a Block
RAM macro. In some cases, a Block RAM macro can actually be
implemented with Distributed RAM. The decision on the actual
RAM implementation is done by the macro generator.

Here is the list of VHDL/Verilog templates which will be described
below:

• Single port RAM with asynchronous read

• Single port RAM with "false" synchronous read

• Single-port RAM with synchronous read (Read Through)

• Dual-port RAM with asynchronous read

• Dual-port RAM with false synchronous read

• Dual-port RAM with synchronous read (Read Through)

• Multiple-port RAM descriptions

If a given template can be implemented using Block and Distributed
RAM, XST will implement BLOCK ones. You can use the "ram_style"
attribute to control RAM implementation and select a desirable RAM
type. Please refer to the “Design Constraints” chapter for more
details.

Please note that the following features specifically available with
Block RAM are not yet supported:

• Dual write port

• Data output reset

• RAM enable

• Different aspect ratios on each port

Please refer to the “FPGA Optimization” chapter for more details on
RAM implementation.
XST User Guide 2-105

XST User Guide
Log File
The XST log file reports the type and size of recognized RAM as well
as complete information on its I/O ports during the macro
recognition step:

Related Constraints
Related constraints are ram_extract and ram_style.

...
Synthesizing Unit <raminfr>.

Extracting 128-bit single-port RAM for signal <ram>.

-
ram type	distributed	
implementation	auto	
aspect ratio	32-word x 4-bit	
clock	connected to signal <clk>	rise
write enable	connected to signal <we>	high
address	connected to signal <a>	
data in	connected to signal <di>	
data out	connected to signal <do>	

-

Summary:
inferred 1 RAM(s).

Unit <raminfr> synthesized.
...
=============================
HDL Synthesis Report

Macro Statistics
RAMs : 1

128-bit single-port RAM : 1
==============================
...
2-106 Xilinx Development System

HDL Coding Techniques
Single Port RAM with Asynchronous Read
The following descriptions are directly mappable onto distributed
RAM only.

VHDL

Following is the VHDL code for a single port RAM with
asynchronous read.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity raminfr is
port (clk : in std_logic;

we : in std_logic;
a : in std_logic_vector(4 downto 0);
di : in std_logic_vector(3 downto 0);

IO Pins Description

clk Positive-Edge Clock

we Synchronous Write Enable (active High)

a Read/Write Address

di Data Input

do Data Output

X8976

Distributed
RAM

DO

WE

DI
A

CLK
XST User Guide 2-107

XST User Guide
do : out std_logic_vector(3 downto 0));
end raminfr;
architecture syn of raminfr is
type ram_type is array (31 downto 0)

of std_logic_vector (3 downto 0);
signal RAM : ram_type;

begin
process (clk)
begin

if (clk’event and clk = ’1’) then
if (we = ’1’) then

RAM(conv_integer(a)) <= di;
end if;

end if;
end process;
do <= RAM(conv_integer(a));

end syn;

Verilog

Following is the Verilog code for a single port RAM with
asynchronous read.

module raminfr (clk, we, a, di, do);

input clk;
input we;
input [4:0] a;
input [3:0] di;
output [3:0] do;
reg [3:0] ram [31:0];

always @(posedge clk) begin
if (we)

ram[a] <= di;
end
assign do = ram[a];

endmodule
2-108 Xilinx Development System

HDL Coding Techniques
Single Port RAM with "false" Synchronous Read
The following descriptions do not implement true synchronous read
access as defined by the Virtex block RAM specification, where the
read address is registered. They are only mappable onto Distributed
RAM with an additional buffer on the data output, as shown below:

VHDL

Following is the VHDL code for a single port RAM with “false”
synchronous read.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity raminfr is
port (clk : in std_logic;

we : in std_logic;

IO Pins Description

clk Positive-Edge Clock

we Synchronous Write Enable (active High)

a Read/Write Address

di Data Input

do Data Output

X8977

Distributed
RAM

DO

WE

DI
A

CLK

D

XST User Guide 2-109

XST User Guide
a : in std_logic_vector(4 downto 0);
di : in std_logic_vector(3 downto 0);
do : out std_logic_vector(3 downto 0));

end raminfr;

architecture syn of raminfr is
type ram_type is array (31 downto 0)

of std_logic_vector (3 downto 0);
signal RAM : ram_type;

begin
process (clk)
begin

if (clk’event and clk = ’1’) then
if (we = ’1’) then

RAM(conv_integer(a)) <= di;
end if;
do <= RAM(conv_integer(a));

end if;
end process;

end syn

Verilog

Following is the Verilog code for a single port RAM with “false”
synchronous read.

module raminfr (clk, we, a, di, do);

input clk;
input we;
input [4:0] a;
input [3:0] di;
output [3:0] do;
reg [3:0] ram [31:0];
reg [3:0] do;

always @(posedge clk) begin
if (we)

ram[a] <= di;
do <= ram[a];

end
2-110 Xilinx Development System

HDL Coding Techniques
endmodule

The following descriptions, featuring an additional reset of the RAM
output, are also only mappable onto Distributed RAM with an
additional resetable buffer on the data output as shown in the
following figure:

VHDL

Following is the VHDL code.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity raminfr is
port (clk : in std_logic;

we : in std_logic;

IO Pins Description

clk Positive-Edge Clock

we Synchronous Write Enable (active High)

rst Synchronous Output Reset (active High)

a Read/Write Address

di Data Input

do Data Output

X8978

Distributed
RAM

DO

WE

DI
A

CLK

D

RST
XST User Guide 2-111

XST User Guide
rst : in std_logic;
a : in std_logic_vector(4 downto 0);
di : in std_logic_vector(3 downto 0);
do : out std_logic_vector(3 downto 0));

end raminfr;

architecture syn of raminfr is
type ram_type is array (31 downto 0)

of std_logic_vector (3 downto 0);
signal RAM : ram_type;

begin
process (clk)
begin

if (clk’event and clk = ’1’) then
if (we = ’1’) then

RAM(conv_integer(a)) <= di;
end if;
if (rst = ’1’) then

do <= (others => ’0’);
else

do <= RAM(conv_integer(a));
end if;

end if;
end process;

end syn;

Verilog

Following the Verilog code.

module raminfr (clk, we, rst, a, di, do);

input clk;
input we;
input rst;
input [4:0] a;
input [3:0] di;
output [3:0] do;
reg [3:0] ram [31:0];
reg [3:0] do;

always @(posedge clk) begin
2-112 Xilinx Development System

HDL Coding Techniques
if (we)
ram[a] <= di;

if (rst)
do <= 4’b0;

else
do <= ram[a];

end
endmodule

Single-Port RAM with Synchronous Read (Read
Through)

 The following description implements a true synchronous read. A
true synchronous read is the synchronization mechanism available in
Virtex block RAMs, where the read address is registered on the RAM
clock edge. Such descriptions are directly mappable onto Block RAM,
as shown below (The same descriptions can also be mapped onto
Distributed RAM).

IO pins Description

clk Positive-Edge Clock

we Synchronous Write Enable (active High)

a Read/Write Address

di Data Input

do Data Output

X8979

Block
RAM

DO

WE

DI
A

CLK
XST User Guide 2-113

XST User Guide
VHDL

Following is the VHDL code for a single-port RAM with synchronous
read (read through).

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity raminfr is
port (clk : in std_logic;

we : in std_logic;
a : in std_logic_vector(4 downto 0);
di : in std_logic_vector(3 downto 0);
do : out std_logic_vector(3 downto 0));

end raminfr;
architecture syn of raminfr is
type ram_type is array (31 downto 0)

of std_logic_vector (3 downto 0);
signal RAM : ram_type;
signal read_a : std_logic_vector(4 downto 0);

begin
process (clk)
begin

if (clk’event and clk = ’1’) then
if (we = ’1’) then

RAM(conv_integer(a)) <= di;
end if;
read_a <= a;

end if;
end process;
do <= RAM(conv_integer(read_a));

end syn;
2-114 Xilinx Development System

HDL Coding Techniques
Verilog

Following is the Verilog code for a single-port RAM with
synchronous read (read through).

module raminfr (clk, we, a, di, do);

input clk;
input we;
input [4:0] a;
input [3:0] di;
output [3:0] do;
reg [3:0] ram [31:0];
reg [4:0] read_a;

always @(posedge clk) begin
if (we)

ram[a] <= di;
read_a <= a;

end
assign do = ram[read_a];

endmodule
XST User Guide 2-115

XST User Guide
Dual-port RAM with Asynchronous Read
The following example shows where the two output ports are used. It
is directly mappable onto Distributed RAM only.

VHDL

Following is the VHDL code for a dual-port RAM with asynchronous
read.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity raminfr is
port (clk : in std_logic;

IO pins Description

clk Positive-Edge Clock

we Synchronous Write Enable (active High)

a Write Address/Primary Read Address

dpra Dual Read Address

di Data Input

spo Primary Output Port

dpo Dual Output Port

X8980

Distributed
RAM DPO

SPO
WE

DPRA

DI
A

CLK
2-116 Xilinx Development System

HDL Coding Techniques
we : in std_logic;
a : in std_logic_vector(4 downto 0);
dpra : in std_logic_vector(4 downto 0);
di : in std_logic_vector(3 downto 0);
spo : out std_logic_vector(3 downto 0);
dpo : out std_logic_vector(3 downto 0));

end raminfr;
architecture syn of raminfr is
type ram_type is array (31 downto 0)

of std_logic_vector (3 downto 0);
signal RAM : ram_type;

begin
process (clk)
begin

if (clk’event and clk = ’1’) then
if (we = ’1’) then

RAM(conv_integer(a)) <= di;
end if;

end if;
end process;
spo <= RAM(conv_integer(a));
dpo <= RAM(conv_integer(dpra));

 end syn;

Verilog

Following is the Verilog code for a dual-port RAM with
asynchronous read.

module raminfr
(clk, we, a, dpra, di, spo, dpo);

input clk;
input we;
input [4:0] a;
input [4:0] dpra;
input [3:0] di;
output [3:0] spo;
output [3:0] dpo;
reg [3:0] ram [31:0];

always @(posedge clk) begin
XST User Guide 2-117

XST User Guide
if (we)
ram[a] <= di;

end
assign spo = ram[a];
assign dpo = ram[dpra];

endmodule

Dual-port RAM with False Synchronous Read
The following descriptions will be mapped onto Distributed RAM
with additional registers on the data outputs. Please note that this
template does not describe dual-port block RAM.

IO Pins Description

clk Positive-Edge Clock

we Synchronous Write Enable (active High)

a Write Address/Primary Read Address

dpra Dual Read Address

di Data Input

spo Primary Output Port

dpo Dual Output Port

X8981

Distributed
RAM

WE
DPRA

DI
A

CLK

CLK

CLK

SPOD

DPOD
2-118 Xilinx Development System

HDL Coding Techniques
VHDL

Following is the VHDL code for a dual-port RAM with false
synchronous read.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity raminfr is
port (clk : in std_logic;

we : in std_logic;
a : in std_logic_vector(4 downto 0);
pra : in std_logic_vector(4 downto 0);
di : in std_logic_vector(3 downto 0);
spo : out std_logic_vector(3 downto 0);
dpo : out std_logic_vector(3 downto 0));

end raminfr;
architecture syn of raminfr is
type ram_type is array (31 downto 0)

of std_logic_vector (3 downto 0);
signal RAM : ram_type;

begin
process (clk)
begin

if (clk’event and clk = ’1’) then
if (we = ’1’) then

RAM(conv_integer(a)) <= di;
end if;
spo <= RAM(conv_integer(a));
dpo <= RAM(conv_integer(dpra));

end if;
end process;

end syn;
XST User Guide 2-119

XST User Guide
Verilog

Following is the Verilog code for a dual-port RAM with false
synchronous read.

module raminfr
(clk, we, a, dpra, di, spo, dpo);

input clk;
input we;
input [4:0] a;
input [4:0] dpra;
input [3:0] di;
output [3:0] spo;
output [3:0] dpo;
reg [3:0] ram [31:0];
reg [3:0] spo;
reg [3:0] dpo;

always @(posedge clk) begin
if (we)

ram[a] <= di;
spo = ram[a];
dpo = ram[dpra];

end
endmodule

Dual-port RAM with Synchronous Read (Read
Through)

The following descriptions are directly mappable onto Block RAM, as
shown in the following figure. (They may also be implemented with
Distributed RAM.).
2-120 Xilinx Development System

HDL Coding Techniques
VHDL

Following is the VHDL code for a dual-port RAM with synchronous
read (read through).

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity raminfr is
port (clk : in std_logic;

we : in std_logic;
a : in std_logic_vector(4 downto 0);
dpra : in std_logic_vector(4 downto 0);
di : in std_logic_vector(3 downto 0);

IO Pins Description

clk Positive-Edge Clock

we Synchronous Write Enable (active High)

a Write Address/Primary Read Address

dpra Dual Read Address

di Data Input

spo Primary Output Port

dpo Dual Output Port

X8982

Block
RAM DPO

SPO
WE

DPRA

DI
A

CLK
XST User Guide 2-121

XST User Guide
spo : out std_logic_vector(3 downto 0);
dpo : out std_logic_vector(3 downto 0));

end raminfr;
architecture syn of raminfr is
type ram_type is array (31 downto 0)

of std_logic_vector (3 downto 0);
signal RAM : ram_type;
signal read_a : std_logic_vector(4 downto 0);
signal read_dpra : std_logic_vector(4 downto 0);

begin
process (clk)
begin

if (clk’event and clk = ’1’) then
if (we = ’1’) then

RAM(conv_integer(a)) <= di;
end if;
read_a <= a;
read_dpra <= dpra;

end if;
end process;
spo <= RAM(conv_integer(read_a));
dpo <= RAM(conv_integer(read_dpra));

end syn;

Verilog

Following is the Verilog code for a dual-port RAM with synchronous
read (read through).

module raminfr
(clk, we, a, dpra, di, spo, dpo);

input clk;
input we;
input [4:0] a;
input [4:0] dpra;
input [3:0] di;
output [3:0] spo;
output [3:0] dpo;
reg [3:0] ram [31:0];
reg [4:0] read_a;
reg [4:0] read_dpra;
2-122 Xilinx Development System

HDL Coding Techniques
always @(posedge clk) begin
if (we)

ram[a] <= di;
read_a <= a;
read_dpra <= dpra;

end
assign spo = ram[read_a];
assign dpo = ram[read_dpra];

endmodule

Note The two RAM ports may be synchronized on distinct clocks, as
shown in the following description. In this case, only a Block RAM
implementation will be applicable.

VHDL

Following is the VHDL code.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity raminfr is
port (clk1 : in std_logic;

clk2 : in std_logic;
we : in std_logic;
add1 : in std_logic_vector(4 downto 0);
add2 : in std_logic_vector(4 downto 0);
di : in std_logic_vector(3 downto 0);

IO pins Description

clk1 Positive-Edge Write/Primary Read Clock

clk2 Positive-Edge Dual Read Clock

we Synchronous Write Enable (active High)

add1 Write/Primary Read Address

add2 Dual Read Address

di Data Input

do1 Primary Output Port

do2 Dual Output Port
XST User Guide 2-123

XST User Guide
do1 : out std_logic_vector(3 downto 0);
do2 : out std_logic_vector(3 downto 0));

end raminfr;

architecture syn of raminfr is
type ram_type is array (31 downto 0)

of std_logic_vector (3 downto 0);
signal RAM : ram_type;
signal read_add1 : std_logic_vector(4 downto 0);
signal read_add2 : std_logic_vector(4 downto 0);

begin
process (clk1)
begin

if (clk1’event and clk1 = ’1’) then
if (we = ’1’) then

RAM(conv_integer(add1)) <= di;
end if;
read_add1 <= add1;

end if;
end process;
do1 <= RAM(conv_integer(read_add1));

process (clk2)
begin

if (clk2’event and clk2 = ’1’) then
read_add2 <= add2;

end if;
end process;
do2 <= RAM(conv_integer(read_add2));

end syn;
2-124 Xilinx Development System

HDL Coding Techniques
Verilog

Following is the Verilog code.

module raminfr
(clk1, clk2, we, add1, add2, di, do1, do2);

input clk1;
input clk2;
input we;
input [4:0] add1;
input [4:0] add2;
input [3:0] di;
output [3:0] do1;
output [3:0] do2;
reg [3:0] ram [31:0];
reg [4:0] read_add1;
reg [4:0] read_add2;

always @(posedge clk1) begin
if (we)

ram[add1] <= di;
read_add1 <= add1;

end
assign do1 = ram[read_add1];

always @(posedge clk2) begin
read_add2 <= add2;

end
assign do2 = ram[read_add2];

endmodule

Multiple-Port RAM Descriptions
XST can identify RAM descriptions with two or more read ports
accessing the RAM contents at different addresses than the write
address. However, there can only be one write port. The following
descriptions will be implemented by replicating the RAM contents
for each output port, as shown:
XST User Guide 2-125

XST User Guide
VHDL

Following is the VHDL code for a multiple-port RAM.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity raminfr is
port (clk : in std_logic;

we : in std_logic;
wa : in std_logic_vector(4 downto 0);
ra1 : in std_logic_vector(4 downto 0);
ra2 : in std_logic_vector(4 downto 0);

IO pins Description

clk Positive-Edge Clock

we Synchronous Write Enable (active High)

wa Write Address

ra1 Read Address of the first RAM

ra2 Read Address of the second RAM

di Data Input

do1 First RAM Output Port

do2 Second RAM Output Port

RAM 1

DO1DPO
SPO

WE
DI

WA A
RA1 DPRA

CLK

RAM 2

DODPO
SPO

WE
DI

WA A
RA2 DPRA

CLK
2-126 Xilinx Development System

HDL Coding Techniques
di : in std_logic_vector(3 downto 0);
do1 : out std_logic_vector(3 downto 0);
do2 : out std_logic_vector(3 downto 0));

end raminfr;
architecture syn of raminfr is
type ram_type is array (31 downto 0)

of std_logic_vector (3 downto 0);
signal RAM : ram_type;

begin
process (clk)
begin

if (clk’event and clk = ’1’) then
if (we = ’1’) then

RAM(conv_integer(wa)) <= di;
end if;

end if;
end process;
do1 <= RAM(conv_integer(ra1));
do2 <= RAM(conv_integer(ra2));

end syn;

Verilog

Following is the Verilog code for a multiple-port RAM.

module raminfr
(clk, we, wa, ra1, ra2, di, do1, do2);

input clk;
input we;
input [4:0] wa;
input [4:0] ra1;
input [4:0] ra2;
input [3:0] di;
output [3:0] do1;
output [3:0] do2;
reg [3:0] ram [31:0];

always @(posedge clk) begin
if (we)

ram[wa] <= di;
end
XST User Guide 2-127

XST User Guide
assign do1 = ram[ra1];
assign do2 = ram[ra2];

endmodule

State Machines
XST proposes a large set of templates to describe Finite State
Machines (FSMs). By default, XST tries to recognize FSMs from
VHDL/Verilog code and apply several state encoding techniques (it
can re-encode the user’s initial encoding) to get better performance or
less area. However, you can disable FSM extraction using a
"fsm_extract" design constraint.

Please note that XST can handle only synchronous state machines.

There are many ways to describe FSMs. A traditional FSM
representations incorporates Mealy and Moore machines:

For HDL, process (VHDL) and always blocks (Verilog) are the most
suitable ways for describing FSMs. (For description convenience
Xilinx uses "process" to refer to both: VHDL processes and Verilog
always blocks).

You may have several processes (1, 2 or 3) in your description,
depending upon how you consider and decompose the different
parts of the preceding model. Following is an example of the Moore
Machine with Asynchronous Reset "reset".

X8993

Next
State

Function

Output
Function

State
Register

RESET

Outputs
Inputs

CLOCK

Only for Mealy Machine
2-128 Xilinx Development System

HDL Coding Techniques
• 4 states: s1, s2, s3, s4

• 5 transitions

• 1 input: "x1"

• 1 output: "outp"

This model is represented by the following bubble diagram:

Related Constraints
Related constraints are:

• fsm_extract

• fsm_encoding

• fsm_fftype

• enum_encoding

X8988

S1

S2 S3

S4

RESET

x1 x1

outp=’1’ outp=’0’

outp=’0’

outp=’1’
XST User Guide 2-129

XST User Guide
FSM: 1 Process
Please note, in this example output signal "outp" is a register.

VHDL

Following is the VHDL code for an FSM with a single process.

library IEEE;
use IEEE.std_logic_1164.all;

entity fsm is
port (clk, reset, x1 : IN std_logic;

outp : OUT std_logic);
end entity;
architecture beh1 of fsm is
type state_type is (s1,s2,s3,s4);
signal state: state_type ;

begin
process (clk,reset)
begin

if (reset =’1’) then
state <=s1; outp<=’1’;

elsif (clk=’1’ and clk’Event) then
case state is

when s1 => if x1=’1’ then state <= s2;
else state <= s3;
end if;
outp <= ’1’;

when s2 => state <= s4; outp <= ’1’;
when s3 => state <= s4; outp <= ’0’;
when s4 => state <= s1; outp <= ’0’;

end case;
end if;

end process;
end beh1;
2-130 Xilinx Development System

HDL Coding Techniques
Verilog

Following is the Verilog code for an FSM with a single process.

module fsm (clk, reset, x1, outp);
input clk, reset, x1;
output outp;
reg outp;

reg [1:0] state;
parameter s1 = 2’b00; parameter s2 = 2’b01;
parameter s3 = 2’b10; parameter s4 = 2’b11;

always@(posedge clk or posedge reset)
begin

if (reset)
begin

state = s1; outp = 1’b1;
end

else
begin

case (state)
s1: begin

if (x1==1’b1) state = s2;
else state = s3;
outp = 1’b1;

end
s2: begin

state = s4; outp = 1’b1;
end

s3: begin
state = s4; outp = 1’b0;

end
s4: begin

state = s1; outp = 1’b0;
end

endcase
end

end
endmodule
XST User Guide 2-131

XST User Guide
FSM: 2 Processes
To eliminate a register from the "outputs", you can remove all
assignments “outp <=…” from the Clock synchronization section.

 This can be done by introducing two processes as shown in the
following figure.

VHDL

Following is VHDL code for an FSM with two processes.

library IEEE;
use IEEE.std_logic_1164.all;

entity fsm is
port (clk, reset, x1 : IN std_logic;

outp : OUT std_logic);
end entity;
architecture beh1 of fsm is
type state_type is (s1,s2,s3,s4);
signal state: state_type ;

begin
process1: process (clk,reset)
begin

if (reset =’1’) then state <=s1;
elsif (clk=’1’ and clk’Event) then

case state is
when s1 => if x1=’1’ then state <= s2;

else state <= s3;

X8986

PROCESS 1 PROCESS 2

Next
State

Function

Output
Function

State
Register

RESET

Outputs
Inputs

CLOCK

Only for Mealy Machine
2-132 Xilinx Development System

HDL Coding Techniques
end if;
when s2 => state <= s4;
when s3 => state <= s4;
when s4 => state <= s1;

end case;
end if;

end process process1;

process2 : process (state)
begin

case state is
when s1 => outp <= ’1’;
when s2 => outp <= ’1’;
when s3 => outp <= ’0’;
when s4 => outp <= ’0’;

end case;
end process process2;
end beh1;

Verilog

Following is the Verilog code for an FSM with two processes.

module fsm (clk, reset, x1, outp);
input clk, reset, x1;
output outp;
reg outp;

reg [1:0] state;
parameter s1 = 2’b00; parameter s2 = 2’b01;
parameter s3 = 2’b10; parameter s4 = 2’b11;

always @(posedge clk or posedge reset)
begin

if (reset)
state = s1;

else
begin

case (state)
s1: if (x1==1’b1) state = s2;

else state = s3;
s2: state = s4;
XST User Guide 2-133

XST User Guide
s3: state = s4;
s4: state = s1;

endcase
end

end

always @(state)
begin

case (state)
s1: outp = 1’b1;
s2: outp = 1’b1;
s3: outp = 1’b0;
s4: outp = 1’b0;

endcase
end

endmodule

FSM: 3 Processes
You can also separate the NEXT State function from the State
Register:

Separating the NEXT State function from the State Register provides
the following description:

VHDL

Following is the VHDL code for an FSM with three processes.

library IEEE;

X8987
PROCESS 1 PROCESS 3PROCESS 2

Next
State

Function

Output
Function

State
Register

RESET

Outputs
Inputs

CLOCK

Only for Mealy Machine
2-134 Xilinx Development System

HDL Coding Techniques
use IEEE.std_logic_1164.all;

entity fsm is
port (clk, reset, x1 : IN std_logic;

outp : OUT std_logic);
end entity;
architecture beh1 of fsm is
type state_type is (s1,s2,s3,s4);
signal state, next_state: state_type ;

begin
process1: process (clk,reset)
begin

if (reset =’1’) then
state <=s1;

elsif (clk=’1’ and clk’Event) then
state <= next_state;

end if;
end process process1;

process2 : process (state, x1)
begin

case state is
when s1 => if x1=’1’ then

next_state <= s2;
else

next_state <= s3;
end if;

when s2 => next_state <= s4;
when s3 => next_state <= s4;
when s4 => next_state <= s1;

end case;
end process process2;

process3 : process (state)
begin

case state is
when s1 => outp <= ’1’;
when s2 => outp <= ’1’;
when s3 => outp <= ’0’;
when s4 => outp <= ’0’;

end case;
XST User Guide 2-135

XST User Guide
end process process3;
end beh1;

Verilog

Following is the Verilog code for an FSM with three processes.

module fsm (clk, reset, x1, outp);
input clk, reset, x1;
output outp;
reg outp;

reg [1:0] state;
reg [1:0] next_state;
parameter s1 = 2’b00; parameter s2 = 2’b01;
parameter s3 = 2’b10; parameter s4 = 2’b11;

always @(posedge clk or posedge reset)
begin

if (reset) state = s1;
else state = next_state;

end

always @(state or x1)
begin

case (state)
s1: if (x1==1’b1) next_state = s2;

else next_state = s3;
s2: next_state = s4;
s3: next_state = s4;
s4: next_state = s1;

endcase
end

always @(state)
begin

case (state)
s1: outp = 1’b1;
s2: outp = 1’b1;
s3: outp = 1’b0;
s4: outp = 1’b0;

endcase
2-136 Xilinx Development System

HDL Coding Techniques
end
endmodule

State Registers

State Registers must to be initialized with an asynchronous or
synchronous signal. XST does not support FSM without initialization
signals. Please refer to the “Registers” section of this chapter for
templates on how to write Asynchronous and Synchronous
initialization signals.

In VHDL the type of a state register can be a different type: integer,
bit_vector, std_logic_vector, for example. But it is common and
convenient to define an enumerated type containing all possible state
values and to declare your state register with that type.

In Verilog, the type of state register can be an integer or a set of
defined parameters. In the following Verilog examples the state
assignments could have been made like this:

parameter [3:0]
s1 = 4’b0001,
s2 = 4’b0010,
s3 = 4’b0100,
s4 = 4’b1000;

reg [3:0] state;

These parameters can be modified to represent different state
encoding schemes.

Next State Equations

Next state equations can be described directly in the sequential
process or in a distinct combinational process. The simplest template
is based on a case statement. If using a separate combinational
process, its sensitivity list should contain the state signal and all FSM
inputs.

FSM Outputs

Non-registered outputs are described either in the combinational
process or concurrent assignments. Registered outputs must be
assigned within the sequential process.
XST User Guide 2-137

XST User Guide
FSM Inputs

Registered inputs are described using internal signals, which are
assigned in the sequential process.

State Encoding Techniques

 XST supports the following state encoding techniques.

• Auto

• One-Hot

• Gray

• Compact

• Johnson

• Sequential

• User

Auto

In this mode XST tries to select the best suited encoding algorithm for
each FSM.

One-Hot

One-hot encoding is the default encoding scheme. Its principle is to
associate one code bit and also one flip-flop to each state. At a given
clock cycle during operation, one and only state variable is asserted.
Only two state variables toggle during a transition between two
states. One-hot encoding is very appropriate with most FPGA targets
where a large number of flip-flops are available. It is also a good
alternative when trying to optimize speed or to reduce power
dissipation.

Gray

Gray encoding guarantees that only one state variable switches
between two consecutive states. It is appropriate for controllers
exhibiting long paths without branching. In addition, this coding
technique minimizes hazards and glitches. Very good results can be
obtained when implementing the state register with T flip-flops.
2-138 Xilinx Development System

HDL Coding Techniques
Compact

Compact encoding, consists of minimizing the number of state
variables and flip-flops. This technique is based on hypercube
immersion. Compact encoding is appropriate when trying to
optimize area.

Johnson

Like Gray, Johnson encoding shows benefits with state machines
containing long paths with no branching.

Sequential

Sequential encoding consists of identifying long paths and applying
successive radix two codes to the states on these paths. Next state
equations are minimized.

User

In this mode XST uses original encoding, specified in the HDL file.
For example if you use enumerated types for a state register, then in
addition you can use the "enum_encoding" constraint to assign a
specific binary value to each state. Please refer to the “Design
Constraints” chapter for more details.
XST User Guide 2-139

XST User Guide
Log File
The XST log file reports the full information of recognized FSM
during the macro recognition step. Moreover, if you allow XST to
choose the best encoding algorithm for your FSMs, it will report the
one it chose for each FSM.

...
Synthesizing Unit <fsm>.

Extracting finite state machine <FSM_0> for signal <state>.

-
States	4
Transitions	5
Inputs	1
Outputs	1
Reset type	asynchronous
Encoding	automatic
State register	D flip-flops

-

Summary:
inferred 1 Finite State Machine(s).

Unit <fsm> synthesized.
...
 =============================
HDL Synthesis Report

Macro Statistics
FSMs : 1
==============================
...
Optimizing FSM <FSM_0> with One-Hot encoding and D flip-flops.
...
2-140 Xilinx Development System

HDL Coding Techniques
Black Box Support
Your design may contain EDIF netlists generated by synthesis tools,
schematic editors, or any other design entry mechanism. These
modules must be instantiated in your code to be connected to the rest
of your design. This can be achieved in XST using black box
instantiation in the VHDL/Verilog code. The netlist will be
propagated to the final top-level netlist without being processed by
XST. Moreover, XST allows you to attach specific constraints to these
black box instantiations, which will be passed to the EDIF netlist or
NCF file.

Log File
From the flow point of view, the recognition of black boxes in XST is
done before macro inference process. Therefore the LOG file differs
from the one generated for other macros.

Related Constraints
XST has a "BOX_TYPE" constraint which can be applied to black
boxes. However, it was introduced essentially for the Virtex Primitive
instantiation in XST. Please read the “Virtex Primitive Support”
section in the “Design Constraints” chapter before using this
constraint.

...
Analyzing Entity <shift>(Architecture <archi>).
WARNING : (VHDL_0103).c:\jm\des.vhd (Line
24).Generating a Black Box for component
<my_block>.
Entity <shift> analyzed.
Unit <shift> generated.
...
XST User Guide 2-141

XST User Guide
VHDL
Following is the VHDL code for a black box.

library ieee;
use ieee.std_logic_1164.all;

entity black_b is
port(DI_1, DI_2 : in std_logic;

DOUT : out std_logic);
end black_b;

architecture archi of black_b is
component my_block

port (
I1 : in std_logic;
I2 : in std_logic;
O : out std_logic);

end component;

begin
inst: my_block port map (I1=>DI_1, I2=>DI_2, O=>DOUT);

end archi;

Verilog
Following is the Verilog code for a black box.

module my_block (in1, in2, dout);
input in1, in2;
output dout;

endmodule

module black_b (DI_1, DI_2, DOUT);
input DI_1, DI_2;
output DOUT;
my_block inst (.in1(DI_1), .in2(DI_2), .dout(DOUT));

endmodule

Note Please refer to the VHDL/Verilog language reference manuals
for more information on component instantiation.
2-142 Xilinx Development System

Chapter 3

FPGA Optimization

This chapter contains the following sections:

• “Introduction”

• “Virtex Specific Options”

• “Timing Constraints”

• “Macro Generation”

• “Log File Analysis”

• “NCF Generation”

• “Virtex Primitive Support”

Introduction
XST performs the following steps during FPGA synthesis and
optimization:

• Mapping and optimization on a entity/module by entity/
module basis

• Global optimization on the complete design

The output of this process is one or several EDIF files and a single .ncf
file.

This chapter describes the following:

• Constraints that can be applied to tune this synthesis and
optimization process

• Macro generation step

• Information in the log file
XST User Guide — 3.1i 3-1

XST User Guide
• Timing model used during the synthesis and optimization
process

• Constraints available for timing driven synthesis

• Information on the generated .ncf file

• Information on the support for primitives

Virtex Specific Options
XST support a set of options that allows the tuning of the synthesis
process according to the user constraints. This section lists the options
that relate to the FPGA-specific optimization of the synthesis process.
For details about each option, see the “FPGA Options” section of the
“Design Constraints” chapter

Following is a list of FPGA options.

• “Mux Style”

• “RAM Style”

• “Speed Grade for Timing Analysis”

• “Max Fanout”

• “Add Generic Clock Buffer”

• “Maximum Number of Clock Buffers Created by XST”

• “Sig_isclock”

• “Add IO Buffers”

• “Register Duplication”

• “Keep Hierarchy”

• “Incremental Synthesis”

• “Resynthesis”

• “Global Optimization Goal”
3-2 Xilinx Development System

FPGA Optimization
Timing Constraints
XST supports both global and specific timing constraints. Basically,
global timing constraints are applied to a domain (inpad_to_outpad
or offset_in_before for instance), specific timing constraints are either
applied to a domain or to a given specific signal and are associated
with a value (expressed in ns or MHz).

Definitions
The four possible domains are illustrated in the following schematic.

ALLCLOCKNETS (register to register) identifies all paths from any
clock signal to any clock signal.

PERIOD identifies all paths between all sequential element controlled
by the given signal name.

OFFSET_IN_BEFORE (inpad to register) identifies all paths from all
primary input ports to either all sequential elements or the sequential
elements driven by the given clock signal name.

OFFSET_OUT_AFTER (register to outpad) is similar to the previous
constraint but sets the constraint from the sequential elements to all
primary output ports.

INPAD_TO_OUTPAD (inpad to outpad) sets a maximum
combinational path constraint.

MAX_DELAY identifies the longest path of the complete design.

X8991

CLK CLK

QD QDIPAD OPAD

OPAD

IPAD

Inpad_to_Outpad
IPAD

Logic
Circuitry

Logic
Circuitry

Logic
Circuitry

Offset_in_Before AllClockNets/Period Offset_out_After
XST User Guide 3-3

XST User Guide
The following table summarizes global and specific constraints.

The main differences between a global and a specific constraint are as
follows.

• Specific timing constraints specify both a domain and a value.

• For specific constraints, XST will stop optimizing the design,
when the value specified in the specific constraint is met. For
global constraints, XST will continue optimization as long as
there is improvement.

• Specific timing constraints can be set only using the constraint
file or by setting attributes directly in your HDL file.

• Global constraints can be set only from the Process Properties
dialog box in the Project Navigator or from the on line options.

Examples
These examples illustrate how to set a constraint using the constraint
file.

attribute ALLCLOCKNETS of top : entity is "10ns";

attribute PERIOD of clk : signal is "100MHz" ;

attribute OFFSET_IN_BEFORE of clk1 : signal is
"10.4ns";

or

attribute OFFSET_IN_BEFORE of top : entity is "14ns";

attribute OFFSET_OUT_AFTER of TOP : entity is "5ns";

Constraints Applies to Global/Specific

ALLCLOCKNETS top entity/module Global or Specific

PERIOD specific clock signal Specific

OFFSET_IN_BEFORE top entity/module or specific
clock signal

Global or Specific

OFFSET_OUT_AFTER top entity/module or specific
clock signal

Global or Specific

INPAD_TO_OUTPAD top entity/module Global or Specific

MAX_DELAY top entity/module Global
3-4 Xilinx Development System

FPGA Optimization
or

attribute OFFSET_OUT_AFTER of clk2 : signal is
"2.5ns";

attribute INPAD_TO_OUTPAD of top : entity is "15ns";

Note See the “Design Constraints” chapter for more details on how to
set constraints in your HDL description.

Timing Model
The timing model used by XST for timing analysis takes into account
both logical delays and net delays. These delays are highly
dependent on the speed grade that can be specified to XST. These
delays are also dependent on the selected technology (Virtex, VirtexE,
...). Logical delays data are identical to the delays reported by Trce
(Timing analyzer after Place and Route). The Net delay model is
estimated based on the fanout load.

Priority
Constraints are processed in the following order:

• Specific constraints on signals (will contain a value)

• Specific constraints on top module (will contain a value)

• Global constraints on top module (no value)

For example:

• PERIOD will have priority over ALLCLOCKNETS

• Constraints on two different domains or two different signals
have the same priority (that is, INPAD_TO_OUTPAD can be
applied with PERIOD; PERIOD clk1 can be applied with PERIOD
clk2).

Limitations
If multiple specific constraints are set, XST will stop optimization
either when all constraints are satisfied or when optimization does
not succeed in satisfying the current most critical constraint.
XST User Guide 3-5

XST User Guide
Macro Generation
The Virtex Macro Generator module provides the XST HDL Flow
with a catalog of functions. These functions are identified by the
inference engine from the HDL description; their characteristics are
handed to the Macro Generator for optimal implementation. The set
of inferred functions ranges in complexity from simple arithmetic
operators such as adders, accumulators, counters, and multiplexers
to more complex building blocks such as multipliers, shift registers
and memories.

Inferred functions are optimized to deliver the highest levels of
performance and efficiency for Virtex architectures and then
integrated into the rest of the design. In addition, the generated
functions are optimized through their borders depending on the
design context.

This section categorizes, by function, all available macros and briefly
describes technology resources used in the building and optimization
phase.

Macro Generation can be controlled through attributes. These
attributes are listed in each subsection. For general information on
attributes see the “Design Constraints” chapter.

Arithmetic Functions
For Arithmetic functions, XST provides the following elements:

• Adders, Subtractors and Adder/Subtractors

• Cascadable Binary Counters

• Accumulators

• Incrementers, Decrementers and Incrementer/Decrementers

• Signed and Unsigned Multipliers

XST uses fast carry logic (MUXCY) to provide fast arithmetic carry
capability for high-speed arithmetic functions. The sum logic formed
from two XOR gates are implemented using LUTs and the dedicated
carry-XORs (XORCY). In addition, XST benefits from a dedicated
carry-ANDs (MULTAND) resource for high-speed multiplier
implementation.
3-6 Xilinx Development System

FPGA Optimization
Loadable Functions
For Loadable functions XST provides the following elements:

• Loadable Up, Down and Up/Down Binary Counters

• Loadable Up, Down and Up/Down Accumulators

XST is able to provide synchronously loadable, cascadable binary
counters and accumulators inferred in the HDL flow. Fast carry logic
is used to cascade the different stages of the macros. Synchronous
loading and count functions are packed in the same LUT primitive
for optimal implementation.

For Up/Down counters and accumulators, XST uses the dedicated
carry-ANDs to improve the performance.

Multiplexers
For multiplexers the Macro Generator provides the following two
architectures:

• MUXF5/MUXF6 based multiplexers

• Dedicated Carry-MUXs based multiplexers

MUXF5/MUXF6 based multiplexers are generated by using the
optimal tree structure of MUXF5 and MUXF6 primitives which
allows compact implementation of large inferred multiplexers. For
example, XST can implement an 8:1 multiplexer in a single CLB. In
some cases dedicated carry-MUXs are generated; these can provide
more efficient implementations especially for very large multiplexers.

In order to have a better control on the implementation of the inferred
multiplexer, XST offers a way to select the generation of either the
MUXF5/MUXF6 or Dedicated Carry-MUXs architectures. The
attribute mux_style specifies that an inferred multiplexer will be
implemented on a MUXF5/MUXF6 based architecture if the value is
"MUXF", or a Dedicated Carry-MUXs based architecture if the value
is "MUXCY"

You can apply this attribute to either a signal that defines the
multiplexer or the instance name of the multiplexer. This attribute
can also be global.

The attribute mux_extract with respectively the value "no"/"force"
can be used to disable/force the inference of the multiplexer.
XST User Guide 3-7

XST User Guide
Priority Encoder
The described if/elsif structure described in the “Priority Encoders”
section of the “HDL Coding Techniques” chapter will be
implemented with a 1-of-n priority encoder.

XST uses the MUXCY primitive to chain the conditions of the priority
encoder which results in its high-speed implementation.

You can enable/disable priority encoder inference using the
priority_extract property.

Generally, XST does not infer and therefore generate a large number
of priority encoders. Therefore, Xilinx recommends that you use the
"priority-extract = force" constraint.

Decoder
A decoder is a multiplexer whose inputs are all constant with distinct
one-hot (or one-cold) coded values. An n-bit or 1-of-m decoder is
mainly characterized by an m-bit data output and an n-bit selection
input, such that n**(2-1) < m <= n**2.

Once XST has inferred the decoder, the implementation uses the
MUXF5 or MUXCY primitive depending on the size of the decoder.

You can enable/disable decoder inference using the decoder_extract
property.

Shift Register
Two types of shift register are built by XST:

• Serial shift register with single output

• Parallel shift register with multiple outputs

The length of the shift register can vary from 1 bit to 16 bits as
determined from the following formula:

Width = (8*A3)+(4*A2)+(2*A1)+A0+1

If A3, A2, A1 and A0 are all zeros (0000), the shift register is one-bit
long. If they are all ones (1111), it is 16-bits long.

For serial shift register SRL16, flip flops are chained to the
appropriate width. For example, the serial shift register (Width=42)
will be implemented according to the following scheme.
3-8 Xilinx Development System

FPGA Optimization
For a parallel shift register, each output provides a width of a given
shift register. For each width a serial shift register is built, it drives
one output and the input of the next shift register. For example the
parallel 38-bit shift register with 3 outputs in the positions 7, 24 and
37 will be implemented according to the scheme shown in the
preceding figure.

You can enable/disable shift register inference using the
shreg_extract property.

CLK

IN D
SRL 16

CLOCK
A0
A1
A2
A3

CLK

FD
CLK

D
SRL 16

A0
A1
A2
A3

CLK

FD
CLK

D
SRL 16

A0
A1
A2
A3

OUT

42-BIT SERIAL SHIFT REGISTER

CLK

IN D
SRL 16

CLOCK
A0
A1
A2
A3

CLK

D
SRL 16

A0
A1
A2
A3

CLK

FD
CLK

D
SRL 16

A0
A1
A2
A3

OUT3

OUT2

OUT1

38-BIT PARALLEL SHIFT REGISTER

x8951
XST User Guide 3-9

XST User Guide
RAMs
Two types of RAM are available in the inference and generation
stages: Distributed and Block RAMs.

• If the RAM is asynchronous READ, Distributed RAM is inferred
and generated

• If the RAM is synchronous READ, Block RAM is inferred. In this
case, XST can implement Block RAM or Distributed RAM. The
default is Block RAM

 In the case of Distributed RAM, XST uses:

• RAM16X1S and RAM32X1S primitives for Single-Port
Synchronous Distributed RAM

• RAM16X1D primitives for Dual-Port Synchronous Distributed
RAM

In the case of Block RAM XST uses:

• RAMB4_Sn primitives for Single-Port Synchronous Block RAM

• RAMB4_Sn_Sn primitives for Dual-Port Synchronous Block
RAM

In order to have a better control on the implementation of the inferred
RAM, XST offers a way to control RAM inference and to select the
generation of Distributed RAM or Block RAMs (if possible).

The attribute ram_style specifies that an inferred RAM be generated
using

• Block RAM if the value is "block"

• Distributed RAM if the value is "distributed"

 You can apply the ram_style attribute either to a signal that defines
the RAM or the instance name of the RAM. This attribute can also be
global.

 If the RAM resources are limited, XST can generate additional RAMs
using registers using the attribute ram_extract with the value NO.
3-10 Xilinx Development System

FPGA Optimization
Log File Analysis
The XST log file related to FPGA optimization contains the following
sections:

• Design optimization

• Resource usage report

• Timing report

Design Optimization
During design optimization, XST reports the following:

• Potential removal of equivalent flip-flops.

Two flip-flops (latches) are equivalent when they have the same
data and control pins

• Register replication

Register replication is performed either for timing performance
improvement or for satisfying maximum fanout constraints.
Register replication can be turned off using the
register_duplication constraint.

Following is a portion of the log file.

Starting low level synthesis...
Optimizing unit <down4cnt> ...
Optimizing unit <doc_readwrite> ...
 ...
Optimizing unit <doc> ...
Building and optimizing final netlist ...
Register doc_readwrite_state_D2 equivalent to

doc_readwrite_cnt_ld has been removed
Register I_cci_i2c_wr_l equivalent to wr_l has been

removed
Register doc_reset_I_reset_out has been replicated

2 time(s)
Register wr_l has been replicated 2 time(s)
XST User Guide 3-11

XST User Guide
Resource Usage
In the Final Report, the Cell Usage section reports the count of all the
primitives used in the design. These primitives are classified in 8
groups:

• BELS

This group contains all the logical cells that are basic elements of
the Virtex technology, for example, LUTs, MUXCY, MUXF5,
MUXF6.

• Flip-flops and Latches

This group contains all the flip-flops and latches that are
primitives of the Virtex technology, for example, FDR, FDRE, LD.

• RAMS

This group contains all the RAMs.

• SHIFTERS

This group contains all the shift registers that use the Virtex
primitives. Namely SRL16, SRL16_1, SRL16E, SRL16E_1.

• Tri-States

This group contains all the tri-state primitives, namely the BUFT.

• Clock Buffers

This group contains all the clock buffers, namely BUFG, BUFGP,
BUFGDLL.

• IO Buffers

This group contains all the standard I/O buffers, except the clock
buffer, namely IBUF, OBUF, IOBUF, OBUFT, IBUF_GTL ...

• LOGICAL

This group contains all the logical cells primitives that are not
basic elements, namely AND2, OR2, ...

• OTHER

This group contains all the cells that have not been classified in
the previous groups.

The following section is an example of an XST report for cell usage:
3-12 Xilinx Development System

FPGA Optimization
==
 ...
Cell Usage :
IO Buffers : 24
OBUF : 8
IBUF : 16
BELS : 70
 # LUT4 : 33
LUT3 : 3
 # LUT2 : 34
===

Timing Report
At the end of the synthesis, XST reports the timing information for
the design. The report shows the information for all four possible
domains of a netlist: "register to register", "input to register", "register
to outpad" and "inpad to outpad".

The following is an example of a timing report section in the XST log:

TIMING REPORT
NOTE: THESE TIMING NUMBERS ARE ONLY A SYNTHESIS ESTIMATE.
 FOR ACCURATE TIMING INFORMATION PLEASE REFER TO THE TRACE REPORT
GENERATED AFTER PLACE-and-ROUTE

Timing Summary:

Speed Grade: -6
Minimum period: 7.523ns (Maximum Frequency: 132.926MHz)
Minimum input arrival time before clock: 8.945ns
Maximum output required time before clock: 14.220ns
Maximum combinational path delay: 10.899ns

Timing Detail:
All values displayed in nanoseconds (ns)
Path from Clock ’sysclk’ rising to Clock ’sysclk’ rising : 7.523ns
(Slack: -7.523ns)
XST User Guide 3-13

XST User Guide
 Gate Net
Cell:in->out fanout Delay Delay Logical Name
-- ------------
FDC:C->Q 15 1.372 2.970 I_state_2
 begin scope: ’block1’
LUT3:I1->O 1 0.738 1.265 LUT_54
 end scope: ’block1’
LUT3:I0->O 1 0.738 0.000 I_next_state_2
FDC:D 0.440 I_state_2
--
Total 7.523ns

Timing Summary

The Timing Summary section gives a summary of the timing paths
for all 4 domains:

The path from any clock to any clock in the design:

Minimum period: 7.523ns (Maximum Frequency:
132.926MHz)

The maximum path from all primary inputs to the sequential
elements:

Minimum input arrival time before clock: 8.945ns

The maximum path from the sequential elements to all primary
outputs:

Maximum output required time before clock: 14.220ns

The maximum path from inputs to outputs:

 Maximum combinational path delay: 10.899ns

If there is no path in the domain concerned "No path found" is then
printed instead of the value.

Timing Detail

The Timing Detail section describes the most critical path in detail for
each region:

The start point and end point of the path, the maximum delay of this
path, and the slack. The start and end points can be: Clock (with the
phase: rising/falling) or Port:
3-14 Xilinx Development System

FPGA Optimization
Path from Clock ’sysclk’ rising to Clock ’sysclk’
rising : 7.523ns (Slack: -7.523ns)

The detailed path shows the cell type, the input and output of this
gate, the fanout at the output, the gate delay, the net delay estimated
and the name of the instance. When entering a hierarchical block,
begin scope is printed, and similarly end scope is also printed
when exiting a block.

The preceding report corresponds to the following schematic:

NCF Generation
Besides EDIF files, XST generates a .ncf file that contains all
implementation constraints generated from HDL attributes (LOC, ...).

For example:

If the Verilog source file contains the following constraints:

// synthesis attribute HU_SET of u10 is MY_SET

// synthesis attribute LOC of in4 is L8

then the .ncf file will contain:

INST u10 HU_SET=MY_SET;

X8985

C Q

D

I1 O

LUT3

I1 O

LUT3

I_state_2 LUT_54 I_next_state_2

BLOCK1

1.372ns

0.440ns

2.970ns 0.738ns 1.265ns 0.738ns 0.000ns
XST User Guide 3-15

XST User Guide
NET in4 LOC=L8;

KEEP properties generated by the buffer insertion process (for
maximum fanout control or for optimization purpose, these
optimization can be turned off using the maximum_fanout option),
for example:

NET IBUF_dclk_1 keep;

Virtex Primitive Support
XST allows you to instantiate Virtex primitives directly in your
VHDL/Verilog code. Virtex primitives and macros such as
MUXCY_L, LUT4_L, CLKDLL, RAMB4_S1_S16, IBUFG_PCI33_5,
and NAND3b2 can be manually inserted in your HDL design
through instantiation. These primitives are not optimized by XST and
will be available in the final EDIF file(s). Timing information is
available for most of the primitives, allowing XST to perform efficient
timing driven optimization.

Some of these primitives can be generated through attributes:

• clock_buffer will force the use of BUFGDLL, IBUFG or BUFGP

• iostandard can be used to assign an I/O standard to an I/O
primitive, for example:

// synthesis attribute IOSTANDARD of in1 is
PCI33_5

will force generation of a _PCI33_5 IO (IBUF_PCI33_5, ...)

 The primitive support is based on the notion of the Black Box. Refer
to the “Black Box Support” section of the “HDL Coding Techniques”
chapter for the basics of the black box support.

However, there is a significant difference between black box and
primitive support. Assume you have a design with a submodule
called MUXF5. In general, the MUXF5 can be your own functional
block or Virtex Primitive. So, in order to avoid the confusion about
how XST will interpret this module you have to use or not use a
special constraint, called "BOX_TYPE". The only possible value for
BOX_TYPE is “black_box”. This attribute must be attached to the
component declaration of MUXF5.
3-16 Xilinx Development System

FPGA Optimization
In the case this attribute

• is attached to the MUXF5. XST will try interpret this module as a
Virtex Primitive. In the case it is

♦ true, XST will use its parameters, for instance in critical path
estimation

♦ false, XST will process it as a regular black box

• is not attached to the MUXF5. Then XST will process this block as
a Black Box.

In order to simplify the instantiation process, XST comes with VHDL
and Verilog Virtex libraries. These libraries contain the complete set
of Virtex Primitives declarations with an attached "BOX_TYPE"
constraint to each component. If you use

• VHDL, then you have to declare library "unisim" with its package
"vcomponents" in your source code.

library unisim;

use unisim.vcomponents.all;

The source code of this package can be found in the
"vhdl\src\unisims_vcomp.vhd" file of the XST installation.

• Verilog, then you have to include a library file "unisim_comp.v"
in your source code. This file can be found in the
"verilog\src\iSE" directory of the XST installation.

 ‘include "c:\xst\verilog\src\iSE\unisim_comp.v"

Some primitives, like LUT1, allow you to use INIT during
instantiation. In the VHDL case it is implemented via generic: code;
XST User Guide 3-17

XST User Guide
VHDL
Following is the VHDL code.

----- Component LUT1 -----
component LUT1
-- synopsys translate_off
 generic(
 TimingChecksOn: Boolean := DefaultTimingChecksOn;
 InstancePath: STRING := "*";
 Xon: Boolean := DefaultXon;
 MsgOn: Boolean := DefaultMsgOn;
 tpd_I0_O : VitalDelayType01 := (0.100 ns, 0.100 ns);
 tipd_I0 : VitalDelayType01 := (0.000 ns, 0.000 ns);
 INIT : bit_vector);
-- INIT : bit_vector := X"0");

-- synopsys translate_on
 port(
 O : out STD_ULOGIC;
 I0 : in STD_ULOGIC);
end component;
attribute BOX_TYPE of LUT1 : component is "BLACK_BOX";

Verilog
Following is the Verilog code.

module LUT1 (0, IO);
input I0;
output O;

endmodule
// synthesis attribute BOX_TYPE of LUT1 is "BLACK_BOX"
3-18 Xilinx Development System

FPGA Optimization
Log File
XST does not issue any message concerning instantiation of the Virtex
primitives during HDL synthesis. Please note, that in the case you
instantiate your own black box and you attach the "BOX_TYPE"
attribute to the component, then XST will not issue a message like
this:

Instantiation of MUXF5
In this example, the component is directly declared in the HDL
design file.

VHDL

Following is the VHDL code for instantiation of MUXF5.

library ieee;
use ieee.std_logic_1164.all;

entity black_b is
port(DI_1, DI_2, SI : in std_logic;

DOUT : out std_logic);
end black_b;

architecture archi of black_b is
component MUXF5

port (
0 : out STD_ULOGIC;
IO : in STD_ULOGIC;
I1 : in STD_ULOGIC;
S : in STD_ULOGIC);

end component;
attribute BOX_TYPE: string;

...
Analyzing Entity <black_b> (Architecture <archi>).
WARNING : (VHDL_0103). c:\jm\des.vhd (Line 23).
Generating a Black Box for component <my_block>.
Entity <black_b> analyzed. Unit <black_b>
generated.
...
XST User Guide 3-19

XST User Guide
attribute BOX_TYPE of MUXF5: component is "BLACK_BOX";
begin

inst: MUXF5 port map (I0=>DI_1, I1=>DI_2, S=>SI, O=>DOUT);
end archi;

Verilog

Following is the Verilog code for instantiation of a MUXF5.

module MUXF5 (O, I0, I1, S);
output 0;
input IO, I1, S;

endmodule
// synthesis attribute BOX_TYPE of MUXF5 is "BLACK_BOX"

module black_b (DI_1, DI_2, SI, DOUT);
input DI_1, DI_2, SI;
output DOUT;
MUXF5 inst (.I0(DI_1), .I1(DI_2), .S(SI), .O(DOUT));

endmodule

Instantiation of MUXF5 with XST Virtex Libraries
Following are VHDL and Verilog examples of an instantiation of a
MUXF5 with XST Virtex Libraries.

VHDL

Following is the VHDL code.

library ieee;
use ieee.std_logic_1164.all;
library unisim;
use unisim.vcomponents.all;

entity black_b is
port(DI_1, DI_2, SI : in std_logic;

DOUT : out std_logic);
end black_b;

architecture archi of black_b is
begin
inst: MUXF5 port map (I0=>DI_1, I1=>DI_2, S=>SI, O=>DOUT);
3-20 Xilinx Development System

FPGA Optimization
end archi;

Verilog

Following is the Verilog code.

‘include "c:\xst\verilog\src\iSE\unisim_comp.v"

module black_b (DI_1, DI_2, SI, DOUT);
input DI_1, DI_2, SI;
output DOUT;

MUXF5 inst (.I0(DI_1), .I1(DI_2), .S(SI), .O(DOUT));
endmodule

Related Constraints
Related constraints are BOX_TYPE and different PAR constraints that
can be passed from HDL to EDIF/NCF without processing.
XST User Guide 3-21

XST User Guide
3-22 Xilinx Development System

Chapter 4

CPLD Optimization

This chapter contains the following sections.

• “CPLD Synthesis Options”

• “Implementation Details for Macro Generation”

• “Log File Analysis”

• “NCF File”

• “Improving Results”

CPLD Synthesis Options
This section describes the CPLD supported families and the specific
options.

Introduction
XST performs device specific synthesis for XC9500/XL/XV families
and generates EDIF netlists ready for the CPLD fitter.

The general flow of XST for CPLD synthesis is the following:

1. HDL synthesis of VHDL/Verilog designs

2. Macro inference

3. Module optimization

4. EDIF netlist generation
XST User Guide — 3.1i 4-1

XST User Guide
The output of XST for CPLD synthesis consists of the following files:

• Hierarchical EDIF netlist

• NCF file

Global CPLD Synthesis Options
This section describes supported CPLD families and lists the XST
options related only to CPLD synthesis that can only be set from the
Process Properties dialog box within the Project Navigator.

Families

Three families are supported by XST for CPLD synthesis:

• XC9500

• XC9500xl

• XC9500xv

The synthesis for the XC9500xl and XC9500xv families include the
clock enable processing; you have the possibility to allow or to
invalidate the clock enable signal (when invalidating, it will be
replaced by equivalent logic). Also, the selection of the macros which
use the clock enable (counters, for instance) depends on the family
type. A counter with clock enable will be accepted for XC9500xl/xv
families, but rejected (replaced by equivalent logic) for XC9500
devices.

List of Options

Following is a list of CPLD synthesis options that can only be set from
the Process Properties dialog box within the Project Navigator. For
details about each option, refer to the “CPLD Options” section of the
“Design Constraints” chapter.

• “Macro Generator”

• “Flatten Hierarchy”

• “Macro Preserve”

• “XOR Preserve”

• “FF Optimization”
4-2 Xilinx Development System

CPLD Optimization
Implementation Details for Macro Generation
XST processes the following macros:

• adders

• subtractors

• add/sub

• multipliers

• comparators

• multiplexers

• counters

• logical shifters

• registers (flip-flops and latches)

• XORs

The macro generation is decided by the Macro Preserve option,
which can take two values: yes - macro generation is allowed or
no - macro generation is inhibited. The general macro generation flow
is the following:

• HDL infers macros and submits them to the low-level
synthesizer;

• Low-level synthesizer accepts or rejects the macros depending on
the resources required for the macro implementations.

An accepted macro becomes a hierarchical block (Macro+) or a
LogiBlOX black box (depending on the Macro Generator option). For
a rejected macro two cases are possible:

• If the hierarchy is kept (Flatten Hierarchy NO), the macro
becomes a hierarchical block;

• If the hierarchy is not kept (Flatten Hierarchy YES), the macro is
merged with the surrounded logic.

The rejected macro is replaced by equivalent logic generated by the
HDL synthesizer.
XST User Guide 4-3

XST User Guide
It may be that a rejected macro will be decomposed by the HDL
synthesizer in component blocks so that one component may be a
new macro requiring less resources that the initial one, and the
smaller macro may be accepted by XST. For instance, a DFF macro
with clock enable (CE) cannot be accepted when mapping onto the
XC9500 family. In this case the HDL synthesizer will submit two new
macros:

• a DFF macro without Clock Enable signal

• a MUX macro implementing the Clock Enable function

Very small macros (2-bit adders, 4-bit Multiplexers, shifters with shift
distance less than 2) are always merged with the surrounded logic,
independently of the Preserve Macro or Flatten Hierarchy options,
because the optimization process gives better results for larger
components.

When selecting Macro Generator=LogiBlox, the CPLD low level
synthesizer rejects all the macros which are not supported by
LogiBlox (macros with bit sizes greater than 64 bits, multipliers,
logical shifters, multiplexers with more than 8 bus entries). Also,
counters and registers with the following signals: asynchronous load,
synchronous load, out enable, count enable are rejected.

When selecting Macro Generator=Macro+, the CPLD low level
synthesizer rejects the Adders/Subtractors, multiplexers, signed
multipliers, XORs with 2 1-bit entries, and registers.

Latch macros are rejected and generated by the HDL synthesizer. XST
implements the latches by separate EDIF netlists:

• plslat.edn: latch with active high enable

• plslatc.edn: latch with asynchronous reset and active high enable

• plslatp.edn: latch with asynchronous set and active high enable

• plslatpc.edn: latch with asynchronous set, asynchronous reset and
active high enable

• plslatnpc.edn: latch with asynchronous set, asynchronous reset
and active low enable
4-4 Xilinx Development System

CPLD Optimization
Log File Analysis
XST messages related to CPLD synthesis are located after the
following message:

Starting low level synthesis ...

The log file printed by XST contains:

• Tracing of progressively unit optimizations:

 Optimizing unit unit_name ...

• Information, warnings or fatal messages related to unit
optimization:

♦ When equation shaping is applied:

Collapsing ...

Critical path optimization ...

♦ Removing equivalent flip-flops:

ff1 and ff2 are equivalent: ff2 is removed

♦ User constraints fulfilled by XST:

ncf constraint : constraint_name[=value] :
signal_name

♦ Removing properties of unused signals

node not used, ncf property constraint_name
removed : signal_name

♦ Removing properties for signal which cannot have a NET in
the EDIF netlist (tied to VCC/GND, equivalent with other
signals):

 no NET, ncf property removed : signal_name

♦ Multi-sources

Multi-source on signal signal_name replaced
by logic

(if ResolutionStyle = {wire_or | wire_and})

Multi-source on signal signal_name not
replaced by logic
XST User Guide 4-5

XST User Guide
(if ResolutionStyle = wire_ms) (fatal)

• The final netlist merging (for hierarchical designs): Merging
netlists ...

• Final results statistics:

Final Results

Output file name : file_name

Output format : edif

Optimization criterion : {area | speed}

Target Technology : {9500 | 9500xl | 9500xv}

Flatten Hierarchy : {yes | no}

Macro Preserve : {yes | no}

Macro Generation : {Macro+ | LogiBlox | Auto}

XOR Preserve : {yes | no}

Macro Statistics

FSMs : nb_of_FSMs

Comparators : nb_of_comparators

n-bit comparator {equal | not equal | greater
| less | greatequal | lessequal }:
nb_of_n_bit_comparators

Multiplexers : nb_of_multiplexers

n-bit m-to-1 multiplexer :
nb_of_n_bit_m_to_1_multiplexers

Adders/Subtractors : nb_of_adds_subs

 n-bit adder : nb_of_n_bit_adds

 n-bit subtractor : nb_of_n_bit_subs

Counters : nb_of_counters

n-bit {up | down | updown } counter:
nb_of_n_bit_counters
4-6 Xilinx Development System

CPLD Optimization
Design Statistics

Edif Instances : nb_of_instances

I/Os : nb_of_io_ports

Other data

.NCF file name : ncf_file_name

HDL output file name : hdl_file_name

HDL output format : {vhdl | verilog}

NCF File
The constraints (attributes) specified in the HDL design or in the
constraint file are written by XST into a constraint file with the same
name as the output netlist and the extension ncf. The path of the .ncf
file is the same as output netlist. The .ncf file is read and processed by
the CPLD fitter.

The .ncf file is always created by XST, even if no constraints are
specified. A previous .ncf file is not saved; it is always overwritten.

The NCF file generated by XST contains constraints on NETs.

When the equation shaping processing is applied, the .ncf file
contains Keep constraints for internal signals of the design and
Collapse constraints for all other AND/OR/INV primitives. So, the
CPLD fitter is forced to respect the equation tailoring done by XST.
An indication for the value of -pterms option of the CPLD fitter is
also written (as a comment) in .ncf file:

Minimum value for -pterms option is n

You must specify this value for -pterms option when running the
CPLD fitter.
XST User Guide 4-7

XST User Guide
Improving Results
XST produces optimized netlists for the CPLD fitter which fits them
in specified devices and creates the download programmable files.
The CPLD low-level optimization of XST consists of logic
minimization, subfunction collapsing, logic factorization, and logic
decomposition. The result of the optimization process is an EDIF
netlist corresponding to Boolean equation which will be reassembled
by the CPLD fitter to fit the best the macrocell capacities. A special
XST optimization process, known as equation shaping, is applied
when the following options are selected:

• Flatten Hierarchy yes

• Optimization Effort 2

• Optimization Criteria speed

• Macro Generator auto

In this case, XST optimizes and reduces the Boolean equations to sizes
accepted by device macrocells and forces the CPLD fitter to respect
these operations through Keep/Collapse constraints written in the
.ncf file. The .ncf file also contains an indication on the number of
PTerms that you must specify when calling the CPLD fitter:

Minimum value for -pterms option is n.

The equation shaping processing includes also a critical path
optimization algorithm, which tries to reduce the number of levels of
critical paths.

The CPLD fitter multi-level optimization is still recommended
because the special optimizations done by the fitter (D to T flip-flop
conversion, De Morgan Boolean expression selection).
4-8 Xilinx Development System

CPLD Optimization
How to Obtain Better Frequency?
The frequency depends on the number of logic levels (logic depth). In
order to reduce the number of levels, the following options are
recommended:

• Optimization Effort 2: this value implies the calling of the
collapsing algorithm, which tries to reduces the number of levels
without increasing the complexity beyond certain limits;

• Optimization Criteria speed: the priority is the reduction of
number of levels.

The following tries, in this order, may give successively better results
for frequency:

Try 1: only optimization effort 2 and speed optimization are selected.
The other options have default values:

• Optimization effort 2

• Optimization Criteria speed

Try 2: the user hierarchy is flattened. In this case the optimization
process has a global view of the design and the depth reduction may
be better:

• Optimization effort 2

• Optimization Criteria area

• Flatten Hierarchy yes

Try 3: the macros are merged with surrounded logic, the design
flattening is increased:

• Optimization effort 2

• Optimization Criteria area

• Flatten Hierarchy yes

• Macro Preserve no

Try 4: applying the equation shaping algorithm. The value of the
-pterms option which must be used for the CPLD fitter is written as a
warning message in the .ncf file. Options to be selected:

• Optimization effort 2

• Optimization Criteria speed
XST User Guide 4-9

XST User Guide
• Flatten Hierarchy yes

• Macro Generator Auto

The CPU time is increasing from try 1 to try 4.

Obtaining the best frequency depends also on the CPLD fitter
optimization. Xilinx recommends running the multi-level
optimization of the CPLD fitter with different values for the -pterms
options, starting with 20 and finishing with 50 (except for equation
shaping), with a step of 5. Statistically the value 30 gives the best
results for frequency.

How to Fit a Large Design?
If a design does not fit in the selected device, over passing the
number of device macrocells or device PTerm capacity, an area
optimization must be selected for XST. Statistically, the best area
results are obtained for the following options:

• Optimization effort 2

• Optimization Criteria area

• Default values for other options

Other options that may be tried for better fitting:

• Macro Generator LogiBlox. Some LogiBlox macros, especially
adders/subtractors/addsubs, give better results in the number of
macrocells and the results are improved when these macros are
not merged with the surrounded logic;

• Optimization effort 1: for this effort, the collapsing algorithm is
not called; sometimes the collapsing optimization increases the
design complexity (number of PTerms) and the fitting may fail.
4-10 Xilinx Development System

Chapter 5

Design Constraints

This chapter describes constraints, options, and attributes supported
for use with XST.

This chapter contains the following sections.

• “Introduction”

• “Setting Constraints and Options”

• “XST Constraints”

• “HDL Inference and Optimization”

• “FPGA Options”

• “CPLD Options”

• “Summary”

• “Implementation Constraints”

• “Third Party Constraints”

• “Constraints Precedence”

Introduction
Constraints are essential to help you meet your design goals or obtain
the best implementation of your circuit. Constraints are available in
XST to control various aspects of the synthesis process itself, as well
as placement and routing. Synthesis algorithms and heuristics have
been tuned to automatically provide optimal results in most
situations. In some cases, however, synthesis may fail to initially
achieve optimal results; some of the available constraints allow you
to explore different synthesis alternatives.
XST User Guide — 3.1i 5-1

XST User Guide
Several mechanisms are available to specify constraints:

• Options provide global control on most synthesis aspects. They
can be set either from within the Process Properties dialog box in
the Project Navigator or from the command line.

• VHDL attributes can be directly inserted in your VHDL code and
attached to individual elements of the design to control both
synthesis and placement and routing.

• Similarly, constraints can be Verilog meta comments in your
Verilog code.

• If needed, constraints can also be specified in a separate
constraints file.

Typically, global synthesis settings are defined within the Process
Properties dialog box in the Project Navigator or with command line
arguments, while VHDL attributes or Verilog meta comments can be
inserted in your source code to specify different choices for
individual parts of the design. Note that the local specification of a
constraint overrides its global setting. Similarly, if a constraint is set
both on a node (or an instance) and on the enclosing design unit, the
former takes precedence for the considered node (or instance).

Setting Constraints and Options
This section explains how to set global constraints and options from
the Process Properties dialog box within the Project Navigator.

For a brief description of each constraint that applies generally, that
is, to FPGAs, CPLDs, VHDL, and Verilog, refer to the “XST
Constraints” section in this chapter.

You can find descriptions of the FPGA constraints in the “FPGA
Options” section.

You can find descriptions of the CPLD constraints in the “CPLD
Options” section.

Note Except for the Value fields with check boxes, there is a
pulldown arrow or browse button in each Value field. However, you
cannot see the arrow until you click in the Value field.
5-2 Xilinx Development System

Design Constraints
Synthesis Options
In order to specify the VHDL synthesis options from the Project
Navigator:

1. Select a source file from the Source file window.

2. Right click on Synthesize in the Process window.

3. Select Properties.

4. When the Process Properties dialog box displays, click the
Synthesis Options tab.

Depending on the HDL language (VHDL or Verilog) and the
device family you have selected (FPGA or CPLD), one of three
dialog boxes displays:

Figure 5-1 Synthesis Options (VHDL and FPGA)
XST User Guide 5-3

XST User Guide
Figure 5-2 Synthesis Options (Verilog and FPGA)

Figure 5-3 Synthesis Options (VHDL or Verilog and CPLD)
5-4 Xilinx Development System

Design Constraints
Following is a list of the Synthesis Options that can be selected from
the dialog boxes:

• “Optimization Goal”

• “Optimization Effort”

• “Flatten Hierarchy” (CPLDs only)

• “Constraints File”

• “Inference Report Detail”

• Case Implementation Style

Refer to the “Full Case (Verilog)” section and the “Parallel Case
(Verilog)” section.

Constraints File

You can set the name of a constraints file used by XST by entering the
name of the constraints file in the Value for Constraints File. Do not
use directory or file names that contain spaces.

Inference Report Detail

This option is not supported for 3.1i.

HDL Options
With the Process Properties dialog box displayed for the Synthesize
process, select the HDL Option tab. The following dialog box
displays.
XST User Guide 5-5

XST User Guide
Figure 5-4 HDL Options Tab

Some of the HDL Options cannot be set within the Process Properties
dialog box. Following is a list of all HDL Options—including those
that cannot be set within the HDL Options tab of the Process
Properties dialog box:

• “Automatic FSM Extraction”

• “FSM Encoding Algorithm”

• “FSM Flip-Flop Type”

• “Enumeration Encoding”

• “Extract RAM”

• “RAM Style”

• “Extract Muxes”

• “Mux Style”

• “Decoder Extraction”

• “Priority Encoder Extraction”

• “Shift Register Extraction”

• “Logical Shifter Extraction”

• “XOR Collapsing”

• “Resource Sharing”
5-6 Xilinx Development System

Design Constraints
• “Complex Clock Enable Extraction”

• “Resolution Style”

Xilinx Specific Options
From the Process Properties dialog box for the Synthesize process,
select the Xilinx Specific Options tab to display the options.

Depending on the device family, one of the following dialog boxes
displays:

Figure 5-5 Xilinx Specific Options (FPGAs)
XST User Guide 5-7

XST User Guide
Figure 5-6 Xilinx Specific Options (CPLDs)

Following is a list of the Xilinx Specific Options:

• “Add IO Buffers”

• “Max Fanout” (FPGA Only)

• “Global Optimization Goal” (FPGA Only)

• “Keep Hierarchy” (FPGA Only)

• “Speed Grade for Timing Analysis” (FPGA Only)

• “Macro Preserve” (CPLD Only)

• “XOR Preserve” (CPLD Only)

• “FF Optimization” (CPLD Only)

Command Line Options
Options can be invoked in command-line mode using the following
syntax:

-OptionName OptionValue

Example:

run -ifn mydesign.v -ifmt verilog -ofn mydesign.edn
-o fmt edif -opt_mode speed -opt_level 2 -fsm_encoding
compact

For more details, refer to the “Command Line Mode” chapter.
5-8 Xilinx Development System

Design Constraints
VHDL Attribute Syntax
In your VHDL code, constraints can be described with VHDL
attributes. Before it can be used, an attribute must be declared with
the following syntax.

attribute AttributeName : Type ;

Example:

attribute RLOC : string ;

The attribute type defines the type of the attribute value. Allowed
types are string, boolean and integer. An attribute can be declared in
an entity or architecture. If declared in the entity, it is visible both in
the entity and the architecture body. If the attribute is declared in the
architecture, it cannot be used in the entity declaration. Once declared
a VHDL attribute can be specified as follows:

attribute AttributeName of ObjectList : ObjectType is
AttributeValue ;

Examples:

attribute RLOC of u123 : label is "R11C1.S0" ;

attribute bufg of signal_name: signal is {“clk”
|”sr”|”oe”};

The object list is a comma separated list of identifiers. Accepted object
types are entity, component, label, signal, variable and type.

Verilog Meta Comment Syntax
Constraints can be specified as follows in Verilog code:

 // synthesis attribute AttributeName [of]
ObjectName [is] AttributeValue

 Example:

// synthesis attribute RLOC of u123 is R11C1.S0
// synthesis attribute HU_SET u1 MY_SET
//synthesis attribute bufg of signal_name is {“clk”

|”sr”|”oe”};

Note The parallel_case, full_case, translate_on and translate_off
directives follow a different syntax described later in the section on
XST language level constraints.
XST User Guide 5-9

XST User Guide
Constraint File Syntax and Utilization
The constraint file syntax is derived from the VHDL attribute syntax
with a few differences pointed out below. The main difference is that
no attribute declaration is required. An attribute can be directly
specified using the following syntax:

attribute AttributeName of ObjectName : ObjectType is
"AttributeValue" [;]

A statement only applies to one object. A list of object identifiers
cannot be specified in the same statement. Allowed object types are
entity, label and signal. Attribute values are not typed and should
always be strings. In a hierarchical design, use the following begin
and end statements to access objects in hierarchical units. They are
not required if the considered object is in the top-level unit.

begin UnitName
end UnitName [;]

Example:

begin alu
attribute resource_sharing of result : signal is

"yes" ;
end alu ;

Note that begin and end statements only apply to design units. They
cannot refer to unit instances. As a result, begin and end statements
should never appear inside another begin/end section.

A constraint file can be specified in the Constraint File section of the
Process Properties dialog box in the Project Navigator, or with the
-attribfile command line option. The option value is a relative or
absolute path to the file.

XST Constraints
This section discusses various constraints that can be used with XST.
These constraints apply to FPGAs, CPLDs, VHDL, and Verilog. With
the exception of Box Type, these options can all be set within the
Synthesis Options tab of the Process Properties dialog box within the
Project Navigator.
5-10 Xilinx Development System

Design Constraints
General
This section describes the opt_mode, opt_level, and box_type
constraints. These constraints can be used with FPGAs, CPLDs,
VHDL, and Verilog

Optimization Goal

The opt_mode constraint defines the synthesis optimization strategy.
Available strategies are speed and area. By default, XST optimizations
are speed-oriented.

• speed: priority is to reduce the number of logic levels, therefore to
increase frequency;

• area: priority is to reduce the total amount of logic used for design
implementation, therefore to improve design fitting.

The constraint can be globally defined with the Optimization Goal
option in the Synthesis Options tab of the Process Properties dialog
box in the Project Navigator, or with the -opt_mode command line
option. Optimization can also be controlled locally at the VHDL
entity/architecture or Verilog module level with a VHDL attribute or
Verilog meta comment.

Optimization Effort

The opt_level constraint defines the synthesis optimization effort
level. Allowed values are 1 (normal optimization) and 2 (higher
optimization). The default optimization effort level is 1 (Normal).

• 1 (Normal): very fast processing, especially for hierarchical
designs

• 2 (Higher Optimization): time consuming processing, with
better results in number of macrocells or maximum frequency.

The constraint can be globally defined with the Optimization Effort
option in the Synthesis Options tab of the Process Properties dialog
box in the Project Navigator, or with the -opt_level command line
option. Optimization can also be controlled locally at the VHDL
entity/architecture or Verilog module level with a VHDL attribute or
Verilog meta comment.

Note Selecting optimization level 2 usually results in increased
synthesis run times.
XST User Guide 5-11

XST User Guide
Box Type

The box_type constraint characterizes an instance. It currently takes
only one possible value: black_box. The black_box value instructs XST
not to synthesize the instance and to propagate generic INIT values to
the output EDIF netlist.

The constraint can be attached to a VHDL or Verilog instance through
an attribute or a meta comment.

Case Implementation Style
This section describes the translate_on, translate_off, parallel_case,
and full_case directives. These directives can be globally defined with
the Case Implementation Style option in the Synthesis Options tab of
the Process Properties dialog box in the Project Navigator.

Translate Off/Translate On (Verilog/VHDL)

The translate_off and translate_on directives can be used to instruct
XST to ignore portions of your VHDL or Verilog code that are not
relevant for synthesis—for example, simulation code. The
translate_off directive marks the beginning of the section to be
ignored and the translate_on directive instructs XST to resume
synthesis from that point.

The directives are available as VHDL or Verilog meta comments. The
Verilog syntax differs from the standard meta comment syntax
presented earlier in this chapter, as shown below.

// synthesis translate_off
...code not synthesized...
// synthesis translate_on

In your VHDL code, the directives should be written as follows:

-- synthesis translate_off
 ...code not synthesized...
-- synthesis translate_on
5-12 Xilinx Development System

Design Constraints
Parallel Case (Verilog)

The parallel_case directive is a Verilog meta comment used to force a
case statement to be synthesized as a parallel multiplexer and
prevents the case statement from being transformed into a prioritized
if/elsif cascade.

The directive is exclusively available as a meta comment in your
Verilog code and cannot be specified in a VHDL description or in a
separate constraint file. The syntax differs from the standard meta
comment syntax presented earlier in this chapter, and shown in the
following:

// synthesis parallel_case

Since the directive does not contain a target reference, the meta
comment immediately follows the selector.

Example:

casex select // synthesis parallel_case
4’b1xxx: res = data1;
4’bx1xx: res = data2;
4’bxx1x: res = data3;
4’bxxx1: res = data4;
endcase

Full Case (Verilog)

The full_case directive is a Verilog meta comment used to indicate
that all possible selector values have been expressed in a case, casex
or casez statement. Values that are not expressed are simply
considered as never being reached during normal circuit operation,
and the directive prevents XST from creating additional hardware for
those conditions.

The directive is available as a meta comment in your Verilog code and
cannot be specified in a VHDL description or in a separate constraint
file. The syntax differs from the standard meta comment syntax
presented earlier in this chapter, as shown in the following line.

// synthesis full_case

Since the directive does not contain a target reference, the meta
comment immediately follows the selector.
XST User Guide 5-13

XST User Guide
Example:

casex select // synthesis full_case
4’b1xxx: res = data1;
4’bx1xx: res = data2;
4’bxx1x: res = data3;
4’bxxx1: res = data4;
endcase

Both the parallel_case and full_case directives may be applied to a
case selector. A single meta comment is necessary and both directives
should be separated by a space, as follows:

// synthesis parallel_case full_case

Add IO Buffers
XST automatically inserts Input/Output Buffers into the design. You
can manually instantiate I/O Buffers for some or all the I/Os, and
XST will insert I/O Buffers only for the remaining I/Os. If you do not
want XST to insert any I/O Buffers, then set this option to NO. This
option is useful to synthesize a part of a design to be instantiated later
on.

The iobuf constraint enables or disables IO buffer insertion. Allowed
values are yes and no. By default, buffer insertion is enabled.

When the Yes value is selected, IBUF and OBUF primitives will be
generated. IBUF/OBUF primitives are connected to I/O ports of the
top-level module. When XST is called to synthesize an internal
module which will be instantiated later in a larger design, you must
select NO for this option. If I/O buffers are added to a design, this
design cannot be used as a submodule of another design.

The constraint can only be specified globally with the Add IO Buffers
option in the Xilinx Specific Options tab of the Process Properties
dialog box within the Project Navigator, or with the -iobuf command
line option.
5-14 Xilinx Development System

Design Constraints
HDL Inference and Optimization
This section describes encoding and extraction constraints. Most of
the constraints can be set globally in the HDL Options tab of the
Process Properties dialog box in the Project Navigator. Constraints
that cannot be set in this dialog box are Automatic FSM Extraction
and Enumeration Encoding. The constraints described in this section
apply to FPGAs, CPLDs, VHDL, and Verilog.

Automatic FSM Extraction
The fsm_extract constraint enables or disables finite state machine
extraction and specific synthesis optimizations. Allowed values are
yes and no. By default, FSM synthesis is enabled (yes). This option
must be enabled in order to set values for the FSM Encoding
Algorithm and FSM Flip-Flop Type.

The constraint can be set with the -fsm_extract command line option.
A VHDL attribute or Verilog meta comment may also be used to
control FSM extraction at the VHDL entity/architecture or Verilog
module level, or for an individual signal.

FSM Encoding Algorithm
The fsm_encoding constraint selects the finite state machine coding
technique to be used. Available property values are auto, one-hot,
compact, sequential, gray, johnson, and user. The constraint defaults to
auto, meaning that the best coding technique is automatically selected
for each individual state machine. The Automatic FSM Extraction
option must be enabled in order to select a value for FSM Encoding
Algorithm.

The constraint can be globally set with the FSM Encoding Algorithm
option in the Process Properties dialog box in the Project Navigator,
or with the -fsm_encoding command line option. A VHDL attribute
or Verilog meta comment may also be applied on a VHDL entity/
architecture or Verilog module level, or on an individual signal.
XST User Guide 5-15

XST User Guide
FSM Flip-Flop Type
The fsm_fftype constraint defines with what type of flip-flops the
state register should be implemented in a FSM. Allowed values are: d
and t. By default, D flip-flops are used. The Automatic FSM
Extraction option must be enabled in order to select a value for FSM
Flip-Flop Type.

The constraint can be globally set with the FSM Flip-Flop Type option
in the Process Properties dialog box in the Project Navigator, or with
the -fsm_fftype command line option. A VHDL attribute or Verilog
meta comment may also be applied on a VHDL entity/architecture or
Verilog module level, or on an individual signal.

Enumeration Encoding
The enum_encoding constraint can be used to apply a specific
encoding to a VHDL enumerated type. The constraint value is a
string containing space-separated binary codes. The constraint can
only be specified as a VHDL attribute on the considered enumerated
type, as shown in the example below.

...
architecture behavior of example is
type statetype is (ST0, ST1, ST2, ST3);
attribute enum_encoding of statetype : type is "001

010 100 111";
signal state1 : statetype;
signal state2 : statetype;
begin
...

Note If the constraint is specified in a separate constraints file
instead, it should be applied directly to the signal(s) with the
considered enumerated type instead, as follows.

attribute enum_encoding of state1 : signal is "001 010
100 111";

attribute enum_encoding of state2 : signal is "001 010
100 111";
5-16 Xilinx Development System

Design Constraints
Note When describing a finite state machine using an enumerated
type for the state register, a particular encoding scheme may be
specified with an enum_encoding constraint. In order for this
encoding to be actually used by XST, you must also set the
fsm_encoding constraint to user for the considered state register.

Extract RAM
The ram_extract constraint enables or disables RAM macro inference.
Allowed values are yes, no and force. By default, RAM inference is
enabled (yes). For each identified RAM description, based on some
internal decision rules, XST actually creates a macro or optimizes it
with the rest of the logic. The force value allows you to override those
decision rules and force XST to create the mux macro.

The constraint can be globally set with the Extract RAM option in the
Process Properties dialog box within the Project Navigator, or with
the -ram_extract command line option. A VHDL attribute or Verilog
meta comment may also be used to control inference at the VHDL
entity/architecture or Verilog module level, or for an individual
signal.

Extract Muxes
The mux_extract constraint enables or disables multiplexer macro
inference. Allowed values are yes, no and force. By default,
multiplexer inference is enabled (yes). For each identified multiplexer
description, based on some internal decision rules, XST actually
creates a macro or optimizes it with the rest of the logic. The force
value allows you to override those decision rules and force XST to
create the mux macro.

The constraint can be globally set with the Extract Muxes option in
the Process Properties dialog box within the Project Navigator, or
with the -mux_extract command line option. A VHDL attribute or
Verilog meta comment may also be used to control inference at the
VHDL entity/architecture or Verilog module level, or for an
individual signal.
XST User Guide 5-17

XST User Guide
Decoder Extraction
The decoder_extract constraint enables or disables decoder macro
inference. Allowed values are yes (check box is checked) and no
(check box in not checked). By default, decoder inference is enabled
(check box is checked).

The constraint can be globally set with the Decoder Extraction option
in the Process Properties dialog box within the Project Navigator, or
with the -decoder_extract command line option. A VHDL attribute or
Verilog meta comment may also be used to control inference at the
VHDL entity/architecture or Verilog module level, or for an
individual signal.

Priority Encoder Extraction
The priority_extract constraint enables or disables priority encoder
macro inference. Allowed values are yes, no and force. By default,
priority encoder inference is enabled (yes). For each identified priority
encoder description, based on some internal decision rules, XST will
actually create a macro or optimize it with the rest of the logic. The
force value allows to override those decision rules and force XST to
extract the macro. Priority encoder rules are currently very restrictive.
Based on architectural considerations, the force value will allow you
to override these rules and potentially improve the quality of your
results.

The constraint can be globally set with the Priority Encoder
Extraction option in the Process Properties dialog box within the
Project Navigator, or with the -priority_extract command line option.
A VHDL attribute or Verilog meta comment may also be used to
control inference at the VHDL entity/architecture or Verilog module
level, or for an individual signal.

Shift Register Extraction
The shreg_extract constraint enables or disables shift register macro
inference. Allowed values are yes (check box is checked) and no
(check box is not checked) By default, shift register inference is
enabled.
5-18 Xilinx Development System

Design Constraints
The constraint can be globally set with the Shift Register Extraction
option in the Process Properties dialog box within the Project
Navigator, or with the -shreg_extract command line option. A VHDL
attribute or Verilog meta comment may also be used to control
inference at the VHDL entity/architecture or Verilog module level, or
for an individual signal.

Logical Shifter Extraction
The shift_extract constraint enables or disables logical shifter macro
inference. Allowed values are yes (check box is checked) and no
(check box is not checked). By default, logical shifter inference is
enabled.

The constraint can be globally set with the Logical Shifter Extraction
option in the Process Properties dialog box within the Project
Navigator, or with the -shift_extract command line option. A VHDL
attribute or Verilog meta comment may also be used to control
inference at the VHDL entity/architecture or Verilog module level, or
for an individual signal.

XOR Collapsing
The xor_collapse constraint controls whether cascaded XORs should
be collapsed into a single XOR. Allowed values are yes (check box is
checked) and no (check box is not checked). By default, XOR
collapsing is enabled.

The constraint can be globally set with the XOR Collapsing option in
the Process Properties dialog box within the Project Navigator, or
with the -xor_collapse command line option. A VHDL attribute or
Verilog meta comment may also be used to control inference at the
VHDL entity/architecture or Verilog module level, or for an
individual signal.

Resource Sharing
The resource_sharing constraint enables or disables resource sharing
of arithmetic operators. Allowed values are yes (check box is checked)
and no (check box is not checked). By default, resource sharing is
enabled.
XST User Guide 5-19

XST User Guide
The constraint can be globally set with the Resource Sharing option in
the Process Properties dialog box within the Project Navigator, or
with the -resource_sharing command line option. A VHDL attribute
or Verilog meta comment may also be used to control inference at the
VHDL entity/architecture or Verilog module level, or for an
individual signal.

Complex Clock Enable Extraction
Sequential macro inference in XST generates macros with clock
enable functionality whenever possible. The complex_clken
constraint instructs or prevents the inference engine to not only
consider basic clock enable templates, but also look for less obvious
descriptions where the clock enable can be used. Allowed values are
yes (check box is checked) and no (check box is not checked). By
default, clock enable extraction is performed with the higher effort.

The constraint can be globally set with the Complex Clock Enable
Extraction option in the Process Properties dialog box within the
Project Navigator, or with the -complex_clken command line option.
A VHDL attribute or Verilog meta comment may also be used to
control inference at the VHDL entity/architecture or Verilog module
level, or for an individual signal.

Resolution Style
The resolution style constraint controls how multisource situations
not protected by tristate logic are handled. Allowed values are
wire_ms, wire_or and wire_and. The wire_ms value is assumed by
default and instructs XST to exit with an error condition whenever
such a multisource situation is found. On the contrary, with the
wire_or and wire_and resolution styles, all detected situations are
replaced by respectively OR-based logic or AND_based logic, and
synthesis continues.

The constraint can only be defined globally with the Resolution Style
option in the Process Properties dialog box within the Project
Navigator, or with the -resolutionstyle command line option. The
constraint is not available as a VHDL attribute or Verilog meta
comment.
5-20 Xilinx Development System

Design Constraints
FPGA Options
This section describes FPGA HDL options. These options apply only
to FPGAs—not CPLDs.

Mux Style
The mux_style constraint controls the way the macrogenerator
implements the multiplexer macros. Allowed values are auto, muxf
and muxcy. The default value is auto, meaning that XST looks for the
best implementation for each considered macro. Available
implementation styles for the Virtex and Spartan2 series are based on
either MuxF5/F6 resources or MuxCY resources.

The constraint can be globally set with the Mux Style option in the
HDL Options tab of the Process Properties dialog box within the
Project Navigator, or with the -mux_style command line option. A
VHDL attribute or Verilog meta comment may also be used to control
mux implementation at the VHDL entity/architecture or Verilog
module level, or for an individual signal.

RAM Style
The ram_style constraint controls the way the macrogenerator
implements the inferred RAM macros. Allowed values are auto, block
and distributed. The default value is auto, meaning that XST looks for
the best implementation for each inferred RAM. The implementation
style can be manually forced to use block RAM or distributed RAM
resources available in the Virtex and Spartan2 series.

The constraint can be globally set with the RAM Style option in the
HDL Options tab of the Process Properties dialog box within the
Project Navigator, or with the -ram_style command line option. A
VHDL attribute or Verilog meta comment may also be used to control
RAM implementation at the VHDL entity/architecture or Verilog
module level, or for an individual signal a RAM is inferred from.
XST User Guide 5-21

XST User Guide
Speed Grade for Timing Analysis
For the timing analysis, XST takes into account the speed grade. By
specifying a different speed grade, XST will perform a different
optimization due to different timing information. The default is the
fastest speed grade available. The constraint value is an integer.
Values that can be selecteddepend on the architecture. Following is a
list of valid integers for each architecture:

• Virtex: 4, 5, and 6

• VirtexE: 6, 7, and 8

• Virtex2: 4, 5, and 6

• Spartan2: 5 and 6

The constraint can only be defined globally with the Speed Grade for
Timing Analysis option in the Xilinx Specific Options tab of the
Process Properties dialog box within the Project Navigator, or with
the -speedgrade command line option.

Max Fanout
The maxfanout constraint can be used to limit the fanout of nets. The
constraint value is an integer and is equal to 100 by default.

The constraint can be globally set with the Max Fanout option in the
Xilinx Specific Options tab of the Process Properties dialog box in the
Project Navigator, or with the -maxfanout command line option. A
VHDL attribute or Verilog meta comment may also be used to control
maximum fanout at the VHDL entity/architecture or Verilog module
level, or for an individual signal.

Large fanouts can cause routability problems, therefore XST tries to
limit fanout by duplicating gates or by inserting buffers. This limit is
not a technology limit but a guide to XST. It may happen that this
limit is not exactly respected, especially when this limit is small
(below 30).

In most cases, fanout control is performed by duplicating the gate
driving the net with a large fanout. If the duplication cannot be
performed, then buffers will be inserted. These buffers will be
protected against logic trimming at the implementation level by
defining a KEEP attribute in the .NCF file.
5-22 Xilinx Development System

Design Constraints
If the register replication option is set to NO then only buffers will be
used to control fanout of flip-flops and latches.

This option is global for the design, but you can control maximum
fanout independently for each entity/module or for given individual
signals by using attributes.

Add Generic Clock Buffer
The bufg constraint controls the maximum number of BUFG created
by XST. The constraint value is an integer and is equal to 4 by default.

The constraint can only be specified with the -bufg command line
option.

Maximum Number of Clock Buffers Created by XST
XST automatically inserts clock buffers for clock signals. If you want
XST to use less than the maximum number of clock buffers available,
then specify a lower number. This option is useful if the design being
synthesized is not complete and if the missing part contains clock
buffers. The default value is 4. The type of clock buffer used for a
given port can be controlled using the clock_buffer constraint.

Clock Buffer Type

The clock_buffer constraint selects the type of clock buffer to be
inserted on the clock port. Allowed values are bufgdll,ibufg,
bufgp,ibuf and none. By default, a BUFGP is inserted.

Specifying a Port as a Clock

The sig_isclock constraint can be used to indicate if an input port on a
black box is a clock.

Packing Flip-Flops and Latches in IOBs

XST considers the IOB constraints as an implementation constraint
and will therefore propagate them in the generated .ncf file.

XST also duplicates the flip-flops and latches driving the Enable pin
of output buffers, so that the corresponding flip-flops and latches can
be packed in the IOB.
XST User Guide 5-23

XST User Guide
The clock_buffer constraint selects the type of clock buffer to be
inserted on the clock port. Allowed values are bufgdll, ibufg, bufgp, ibuf
and none. By default, a BUFGP is inserted.

The constraint is available as a VHDL attribute or a Verilog meta
comment and should be attached to a port signal.

Sig_isclock
The sig_isclock constraint indicates if an input port on a black box is a
clock. Allowed values are yes and no.

The constraint is only available as a VHDL attribute or a Verilog meta
comment and should be attached to a port signal.

Register Duplication
The register_duplication constraint enables or disables register
replication. Allowed values are yes and no. By default, register
replication is enabled and is performed during timing optimization
and fanout control.

The constraint can be set with the -register_duplication command
line option. A VHDL attribute or Verilog meta comment may also be
used to control register replication at the VHDL entity/architecture
or Verilog module level.

Keep Hierarchy
XST may automatically flatten the design to get better results by
optimizing entity/module boundaries. You can set the
keep_hierarchy option to YES (check box is checked) so that the
generated netlist is hierarchical and respects the hierarchy and
interface of any Entity/Module of your design. This option is global
for the design, but it can also be specified independently for each
entity/module by using attributes. If the attribute keep_hierarchy is
set on a entity/module then its hierarchy and interface will be
preserved, while the remaining portion of the design may be
flattened.

In the following figure, if the attribute keep_hierarchy is set to the
entity/module I2, then the hierarchy of I2 will be in the final netlist,
but its contents I4, I5 will be flattened inside I2. Also I1, I3, I6, I7 will
be flattened.
5-24 Xilinx Development System

Design Constraints
The constraint can be globally set with the Keep Hierarchy option in
the Process Properties dialog box within the Project Navigator, or
with the -keep_hierarchy command line option. A VHDL attribute or
Verilog meta comment may also be used to control maximum fanout
at the VHDL entity/architecture or Verilog module level.

Incremental Synthesis
 XST allows incremental synthesis. This feature is based on two
constraints:

• Incremental_synthesis

• Resynthesis

If the incremental_synthesis option is set to YES (check box is
checked), then each entity/module of the design will be generated in
a single separate file.

When you synthesize a given design again, you can add the
resynthesize attribute only on the entity/module you have changed.
XST will automatically read the EDIF netlist of the unchanged entity/
module to get its timing information but will not modify it. Only the
entity/module with the Resynthesize attribute will be resynthesized.
Note that by default (check box is not checked), XST will consider
that a given entity module has not been modified, you must
manually insert the Resynthesis attribute to force resynthesis.

X8990

I0 I0

I2 KEEP HIERARCHY YES I2

I1 I3

I7 I6

I5 I4

Design View Netlist View

EDIF FILE 1 (I0)
XST User Guide 5-25

XST User Guide
The incremental_synthesis option can be applied independently on
any entity/module. In the following figure, the
incremental_synthesis attribute has been set to the entities I0 and I2.
Therefore two netlists will be generated, one for I0 and one for I2.
Because the entities/modules I1, I3, I4, I5, I6, I7 do not have the
incremental_synthesis attribute, they will not be in a separate file. In
the netlist describing I0, there will be the contents of I1, I3, I6 and I7;
their hierarchy will be preserved according to the option
keep_hierarchy, but by default, they will not be preserved. In the next
run, if you have changed the entity I4, you have to manually set the
attribute Resynthesize to this entity/module. As I4 belongs to the set
(I2, I4, I5), all these entity/module will be resynthesized, but the
netlist I0 will remain unchanged.

The incremental_synthesis constraint can be applied on a VHDL
entity or Verilog module so that XST generates a single and separate
EDIF netlist file for it and its descendents. Allowed values are yes
(check box is checked) and no (check box is not checked) By default,
the constraint is globally set to no and XST creates a unique netlist for
the complete design.

X8989

I0 (INCREMENTAL_SYNTHESIS YES)

I2 (INCREMENTAL_SYNTHESIS YES)

I1 I3

I7 I6

I5 I4

Design View Netlist View

EDIF FILE 1 (I0)

(EDIF I0 ...
...
...
...
...
...
...
...
...
...
...
...
(DESIGN I0 ...)
)

EDIF FILE 2 (I2)

(EDIF I2 ...
...
...
...
...
...
...
...
...
...
...
...
(DESIGN I2 ...)
)

5-26 Xilinx Development System

Design Constraints
The constraint can be globally set with the Incremental Synthesis
option in the Xilinx Specific Options tab of the Process Properties
dialog box within the Project Navigator, or with the
-incremental_synthesis command line option. A VHDL attribute or
Verilog meta comment can also be attached respectively to a VHDL
entity/architecture or to a Verilog module.

Resynthesis
The resynthesis constraint forces or prevents resynthesis of an entity
or module. Allowed values are yes and no. By default, your design is
always resynthesized whenever XST is run.

With a VHDL attribute or Verilog meta comment, the constraint can
be attached respectively to a VHDL entity/architecture or to a Verilog
module. No global resynthesis option is available.

Global Optimization Goal
XST can optimize different regions (register to register, inpad to
register, register to outpad and inpad to outpad) of the design
depending on this option. By default, XST optimizes the design for
Maximum Frequency (register to register). Please refer to the “Timing
Constraints” section of the “FPGA Optimization” chapter for a
detailed description of supported timing constraints.

The glob_opt constraint selects the global optimization goal. Allowed
values are allclocknets, inpad_to_outpad, offset_in_before, offset_out_after,
max_delay. By default, global optimization is tuned for clock
frequency maximization (ALLCLOCKNETS).

XST also supports a set of specific timing constraints allowing full
control of timing optimization. See the “Timing Constraints” section
of the “FPGA Optimization” chapter for details.

The constraint can only be specified globally with the Global
Optimization option in the Xilinx Specific Options tab of the Process
Properties dialog box within the Project Navigator, or with the
-glob_opt command line option.
XST User Guide 5-27

XST User Guide
CPLD Options
This section describes options that only apply to CPLDs.

Macro Generator
The macrogen constraint controls the generation of inferred macros
and provides a choice between the XST macro generator (Macro+)
and the LogiBLOX macro generator.

A macro inferred by the HDL synthesizer is passed to a CPLD low-
level synthesizer which calls a macrogenerator to create its
implementation. Two macrogenerators are available:

• Macro+: XST internal Macrogenerator

• LogiBlOX: M1 macrogenerator (the default)

A macro submitted by the HDL synthesizer may be accepted or
rejected by the CPLD synthesizer. An accepted macro becomes a
hierarchical block in the final netlist, its logic being generated by
Macro+ or, later, by CPLD fitter (LogiBlox macro).

Allowed values are macro+, logiblox and auto. By default, LogiBLOX is
automatically selected.

• Macro+: the accepted macros will be generated by Macro+

• LogiBlOX: the accepted macros will be replaced by black boxes
which will be expanded by CPLD fitter

• Auto: the best implementation of the macro, between Macro+ and
LogiBlOX, is selected

The Macro Generator option is closely related to the Macro Preserve
option: the macros are generated only if Macro Preserve is yes.
Otherwise, the macros are replaced by equivalent logic units
generated by the HDL synthesizer.

The constraint can only be defined globally with the Macro Generator
option in the Xilinx Specific Options tab of the Process Properties
dialog box within the Project Navigator, or with the -macrogen
command line option.
5-28 Xilinx Development System

Design Constraints
Flatten Hierarchy
This option is related to the hierarchical blocks (VHDL entities,
Verilog modules) specified in the HDL design and does not concern
the macros inferred by the HDL synthesizer. Two values are available
for this option:

• yes (check box is checked): hierarchical blocks are merged in the
top level module

• no (check box is not checked): allows the preservation of the
design hierarchy, as described in the HDL project. (the default)

Regardless of the Flatten hierarchy option, XST generates a single
EDIF file. In general, an HDL design is a collection of hierarchical
blocks and preserving the hierarchy gives the advantage of fast
processing because the optimization is done on separate pieces of
reduced complexity. Nevertheless, very often, merging the hierarchy
blocks improves the fitting results (less number of PTerms and device
macrocells, better frequency) because the optimization processes
(collapsing, factorization) are applied globally on the entire logic.

The merge constraint enables or disables hierarchical flattening of
user-defined design units. Allowed values are yes and no. By default,
the user hierarchy is preserved.

The constraint can only be defined globally with the Flatten
Hierarchy option in the Synthesis Options tab of the Process
Properties dialog box within the Project Navigator, or with the
-merge command line option.

Macro Preserve
This option is useful for making the macro handling independent of
design hierarchy processing (see Flatten Hierarchy option). So you
can merge all hierarchical blocks in the top module, but you can still
keep the macros as hierarchical modules. Also, you can keep the
design hierarchy excepting the macros which are merged with the
surrounded logic. Sometimes, merging the macros gives better results
for design fitting. Two values are available for this option:

• yes (check box is checked): macros are preserved and generated
by Macro+ or LogiBlox. This is the default.

• no (check box is not checked): macros are rejected and generated
by HDL synthesizer
XST User Guide 5-29

XST User Guide
Depending on the Flatten Hierarchy value, a rejected macro becomes
a hierarchical block (Flatten Hierarchy=no) or is merged in the design
logic (Flatten Hierarchy=yes). Please note that very small macros
(2-bit adders, 4-bit multiplexers) are always merged, independent of
the Macro Preserve or Flatten Hierarchy options.

The pld_mp constraint enables or disables hierarchical flattening of
macros.

The constraint can only be defined globally with the Macro Preserve
option in the Xilinx Specific Options tab of the Process Properties
dialog box within the Project Navigator, or with the -pld_mp
command line option.

XOR Preserve
The pld_xp constraint enables or disables hierarchical flattening of
XOR macros. Allowed values are yes (check box is checked) and no
(check box is not checked). By default, XOR macros are preserved
(check box is checked).

The constraint can only be defined globally with the XOR Preserve
option in the Xilinx Specific Options tab of the Process Properties
dialog box within the Project Navigator, or with the -pld_xp
command line option.

The XORs inferred by HDL synthesis are also considered as macro
blocks in the CPLD flow, but they are processed separately to give
more flexibility for the use of device macrocells XOR gates. Therefore,
you can decide to flatten its design (Flatten Hierarchy yes, Macro
Preserve no) but you want to preserve the XORs. Preserving XORs
has a great impact on reducing design complexity. Two values are
available for this option:

• yes: XOR macros are preserved

• no: XOR macros are merged with surrounded logic

The preserved XORs appear in the EDIF netlist as LogiBlOX XOR
macros, and will be expanded by the CPLD fitter.

Preserving the XORs, generally, gives better results, that is, the
number of PTerms is lower. The No value is useful to obtain
completely flat netlists. Sometimes, applying the global optimization
on a completely flat design improves the design fitting.
5-30 Xilinx Development System

Design Constraints
A completely flattened design is obtained selecting the following
options:

• Flatten Hierarchy yes

• Macro Preserve no

• XOR Preserve no

Note that the No value for this option does not guarantee the
elimination of the XOR operator from the EDIF netlist. During the
netlist generation, the netlist mapper tries to recognize and infer XOR
gates in order to decrease the logic complexity. This process is
independent of the XOR preservation done by HDL synthesis and is
guided only by the goal of complexity reduction.

FF Optimization
The pld_ffopt constraint enables or disables flip-flop optimization.
Flip-flop optimization includes the removal of equivalent flip-flops
and flip-flops with constant inputs. This processing increases the
fitting success as a result of the logic simplification implied by the
flip-flops elimination. Two values are available:

• yes (check box is checked): flip-flop optimization is allowed. This
is the default.

• no (check box is not checked): flip-flop optimization is inhibited

Note that the flip-flop optimization algorithm is time consuming,
therefore, when fast processing is desired, this option must be
invalidated.

The constraint can only be defined globally with the FF Optimization
option in the Xilinx Specific Option tab in the Process Properties
dialog box within the Project Navigator, or with the -pld_ffopt
command line option.
XST User Guide 5-31

XST User Guide
Complex Clock Enable Extraction
The pld_ce constraint specifies how sequential logic should be
implemented when it contains a clock enable, either using the specific
device resources available for that or generating equivalent logic.

The constraint can only be defined globally with the Clock Enable
option in the HDL Options tab of the Process Properties dialog box
within the Project Navigator, or with the -pld_ce command line
option.

 This option allows you to specify the way the clock enable function
will be implemented if presented in the design. Two values are
available:

• yes (check box is checked): the synthesizer implements the use of
the Clock Enable signal of the device

• no (check box is not checked): the Clock enable function will be
implemented through equivalent logic

Keeping or not keeping the clock enable signal depends on the design
logic. Sometimes, when the clock enable is the result of a Boolean
expression, saying No with this option may improve the fitting result
because the input data of the flip-flop is simplified when it is merged
with the clock enable expression.

Summary
The following summarizes all available XST-specific options, with
allowed values for each, the type of objects they can be applied to,
and usage restrictions. Defaults are indicated in bold.

Name Values Target Comment

box_type black_box label All

bufg integer global FPGA only

clock_buffer bufgdll, ibufg, bufgp,
ibuf, none

global FPGA only

decoder_extract yes, no global, entity, signal All

enum_encoding string type, signal All

fsm_extract yes, no global, entity, signal All
5-32 Xilinx Development System

Design Constraints
fsm_encoding auto, one-hot,
compact, sequential,
gray, johnson, user

global, entity, signal All

fsm_fftype d, t global, entity, signal All

full_case no value case statement Verilog meta
comments
only

glob_opt allclocknets,
inpad_to_outpad,
offset_in_before,
offset_out_after,
max_delay

global FPGA only

incremental_synthesis yes, no global, entity FPGA only

iobuf yes, no global All

keep_hierarchy yes, no global, entity FPGA only

macrogen auto, macro+, logiblox global CPLD only

maxfanout integer global, entity, signal FPGA only

merge yes, no global CPLD only

mux_extract yes, no global, entity, signal All

mux_style auto, muxf, muxcy global, entity, signal FPGA only

opt_level 1, 2 global All

opt_mode speed, area global All

parallel_case no value case statement Verilog meta
comments
only

pld_ce yes, no global CPLD only

pld_ffopt yes, no global CPLD only

pld_mp yes, no global CPLD only

pld_xp yes, no global CPLD only

priority_extract yes, no global, entity, signal All

ram_extract yes, no global, entity, signal FPGA only

ram_style auto, block,
distributed

global, entity, signal FPGA only

Name Values Target Comment
XST User Guide 5-33

XST User Guide
Implementation Constraints
This section explains how XST handles implementation constraints.

Handling by XST
Implementation constraints control placement and routing. They are
not directly useful to XST and are simply propagated and made
available to the implementation tools. The constraints are written
either in the output EDIF netlist or in the associated NCF file. In
addition, the object an implementation constraint is attached to will
be preserved. XST does not check the validity of an implementation
constraint.

Implementation constraints appear in an NCF/UCF file according to
one of the two following syntaxes:

{NET|INST|PIN} {NetName|InstName|PinName}
PropertyName;

{NET|INST|PIN} {NetName|InstName|PinName}
PropertyName=PropertyValue;

register_duplication yes, no global, entity FPGA only

resolution_style wire_ms, wire_or,
wire_and

global All

resource_sharing yes, no global, entity, signal All

resynthesis yes, no entity FPGA only

shift_extract yes, no global, entity, signal All

shreg_extract yes, no global, entity, signal All

sig_isclock yes, no signal FPGA only

speedgrade integer global FPGA only

translate_on no value local, no target All

translate_off no value local, no target All

xor_collapse yes, no global, entity, signal All

vlgcase full, parallel, full-
parallel

global Verilog only

Name Values Target Comment
5-34 Xilinx Development System

Design Constraints
When written in VHDL code, they should be specified as follows
respectively:

attribute PropertyName of
{NetName|InstName|PinName} : {signal|label} is
"true";

attribute PropertyName of
{NetName|InstName|PinName} : {signal|label} is
"PropertyValue";

In a Verilog description, they should be written as follows
respectively:

// synthesis attribute PropertyName [of]
{NetName|InstName|PinName} [is] "true"

 // synthesis attribute PropertyName [of]
{NetName|InstName|PinName} [is] "PropertyValue"

Examples
Following are three examples.

Example 1

When targeting an FPGA device, the RLOC constraint can be used to
indicate the placement of a design element on the FPGA die relatively
to other elements. Assuming a SRL16 instance of name srl1 to be
placed at location R9C0.S0, you may specify it as follows in your
Verilog code:

// synthesis attribute RLOC of srl1 : label is
"R9C0.S0";

The following line will be written the output NCF file:

INST srl1 RLOC=R9C0.S0;

Example 2

The NOREDUCE constraint, available with CPLDs, prevents the
optimization of the boolean equation generating a given signal.
Assuming a local signal is being assigned the arbitrary function
below and a NOREDUCE constraint attached to s:

signal s : std_logic;
attribute NOREDUCE : boolean;
XST User Guide 5-35

XST User Guide
attribute NOREDUCE of s : signal is “true”;
...
 s <= a or (a and b);

The following statements are written in the NCF file:

NET s NOREDUCE;
NET s KEEP;

Example 3

The PWR_MODE constraint, available when targeting CPLD
families, controls the power consumption characteristics of
macrocells. The following VHDL statement specifies that the function
generating signal s should be optimized for low power consumption.

attribute PWR_MODE : string;
attribute PWR_MODE of s : signal is "LOW";

The following statement is written in the NCF file by XST:

NET s PWR_MODE=LOW;
NET s KEEP;

If the NCF attribute applies to an instance (for example, IOB, DRIVE,
IOSTANDARD) and if the instance is not available (not instantiated)
in the HDL source, then the HDL attribute can be applied to the
signal on which XST will infer the instance.

Third Party Constraints
This section describes constraints of third-party synthesis vendors
that are supported by XST. For each of the constraints, the following
table gives the XST equivalent and indicates when automatic
conversion is available. For information on what these constraints
actually do, please refer to the corresponding vendor documentation.
Note that “NA” stands for “Not Available” in the following table.

Name Vendor XST Equivalent
Available
For

black_box Synplicity box_type NA

black_box_pad_pin Synplicity NA NA

black_box_tri_pins Synplicity NA NA

cell_list Synopsys NA NA
5-36 Xilinx Development System

Design Constraints
clock_list Synopsys NA NA

Directives for inferring FF and
latches

Synopsys NA NA

Enum Synopsys NA NA

full_case Synplicity
Synopsys

full_case Verilog

ispad Synplicity NA NA

map_to_module Synopsys NA NA

net_name Synopsys NA NA

parallel_case Synplicity
Synopsys

parallel_case Verilog

return_port_name Synopsys NA NA

resource_sharing directives Synopsys resource_sharing
directives

NA

set_dont_touch_network Synopsys NA NA

set_dont_touch Synopsys NA NA

set_dont_use_cel_name Synopsys NA NA

set_prefer Synopsys NA NA

state_vector Synopsys NA NA

syn_encoding Synplicity fsm_encoding NA

syn_hier Synplicity keep_hierarchy NA

syn_isclock Synplicity sig_isclock VHDL

syn_keep Synplicity keep* VHDL

syn_netlist_hierarchy Synplicity keep_hierarchy NA

syn_noarrayports Synplicity NA NA

syn_noclockbuf Synplicity clock_buffer VHDL

syn_preserve Synplicity NA NA

syn_ramstyle Synplicity NA NA

syn_sharing Synplicity resource_sharing NA

syn_state_machine Synplicity fsm_extract NA

Name Vendor XST Equivalent
Available
For
XST User Guide 5-37

XST User Guide
* You must use the Keep constraint instead of SIGNAL_PRESERVE.

Verilog example:

module testkeep (in1, in2, out1);
input in1;
input in2;
output out1;

wire aux1;
wire aux2;

// synthesis attribute keep of aux1 is "true"
// synthesis attribute keep of aux2 is "true"

assign aux1 = in1;
assign aux2 = in2;
assign out1 = aux1 & aux2;

endmodule

syn_tristate Synplicity NA NA

translate_off/translate_on Synplicity/
Synopsys

translate_off/
translate_on

VHDL/
Verilog

translate_on/translate_off Synplicity translate_on/
translate_off

Verilog

xc_clockbuftype Synplicity clock_buffer VHDL

xc_fast Synplicity fast VHDL

xc_ioff Synplicity iob** NA

xc_isgsr Synplicity NA NA

xc_loc Synplicity loc VHDL

xc_nodelay Synplicity nodelay VHDL

xc_padtype Synplicity iostandard NA

xc_pullup Synplicity pullup VHDL

xc_pulldown Synplicity pulldown VHDL

xc_slow Synplicity NONE NA

Name Vendor XST Equivalent
Available
For
5-38 Xilinx Development System

Design Constraints
The KEEP constraint can also be applied through the separate
synthesis constraint file:

Example syntax:

attribute keep of aux1 : signal is "true";

These are the only two ways of preserving a signal/net in an HDL
design and preventing optimization on the signal or net during
synthesis.

** The IOB=TRUE constraint currently must be applied to the internal
signals driven by flip-flops in order to be processed. If the constraint
is placed on the port signal, it is applied to the I/O buffer.

Constraints Precedence
Priority depends on the file in which the constraint appears. A
constraint in a file accessed later in the design flow overrides a
constraint in a file accessed earlier in the design flow. Priority is as
follows (first listed is the highest priority, last listed is the lowest).

1. Constraints in a Physical Constraints File (PCF)

2. Constraints in a User Constraints File (UCF)

3. Synthesis Constraint File

4. HDL file

5. Command Line/Process Properties dialog box in the Project
Navigator
XST User Guide 5-39

XST User Guide
5-40 Xilinx Development System

Chapter 6

VHDL Language Support

This chapter explains how VHDL is supported for XST. The chapter
provides details on the VHDL language, supported constructs, and
synthesis options in relationship to XST. The sections in this chapter
are as follows:

• “Introduction”

• “Data Types in VHDL”

• “Objects in VHDL”

• “Operators”

• “Entity and Architecture Descriptions”

• “Combinatorial Circuits”

• “Sequential Circuits”

• “Functions and Procedures”

• “Packages”

• “VHDL Language Support”

• “VHDL Reserved Words”

For a complete specification of VHDL, refer to the IEEE VHDL
Language Reference Manual.

For a detailed description of supported design constraints, refer to
the “Design Constraints” chapter. For a description of the VHDL
attribute syntax, see the “VHDL Attribute Syntax” section of the
“Design Constraints” chapter
XST User Guide — 3.1i 6-1

XST User Guide
Introduction
VHDL is a hardware description language that offers a broad set of
constructs for describing even the most complicated logic in a
compact fashion. The VHDL language is designed to fill a number of
requirements throughout the design process:

• Allows the description of the structure of a system—how it is
decomposed into subsystems and how those subsystems are
interconnected.

• Allows the specification of the function of a system using familiar
programming language forms.

• Allows the design of a system to be simulated prior to being
implemented and manufactured. This feature allows you to test
for correctness without the delay and expense of hardware
prototyping.

• Provides a mechanism for easily producing a detailed, device-
dependent version of a design to be synthesized from a more
abstract specification. This feature allows you to concentrate on
more strategic design decisions and reduce the overall time to
market for the design.

Data Types in VHDL
XST accepts the following VHDL basic types:

• Enumerated Types:

♦ BIT ('0','1')

♦ BOOLEAN (false, true)

♦ STD_LOGIC ('U','X','0','1','Z','W','L','H','-') where:

'U' means uninitialized

'X' means unknown

'0' means low

'1' means high

'Z' means high impedance

'W' means weak unknown
6-2 Xilinx Development System

VHDL Language Support
’L’ means weak low

’H’ means weak high

’-’ means don’t care

For XST synthesis, the ’0’ and ’L’ , ’1’ and ’H’ values are treated
identically. The ’X’, and ’-’ values are treated as don’t care. The
’U’ and ’W’ values are not accepted by XST. The ’Z’ value is
treated as high impedance.

♦ User defined enumerated type:

type COLOR is (RED,GREEN,YELLOW);

• Bit Vector Types:

♦ BIT_VECTOR

♦ STD_LOGIC_VECTOR

Unconstrained types (types whose length is not defined) are
not accepted

• Integer Type: INTEGER

The following types are VHDL predefined types:

• BIT

• BOOLEAN

• BIT_VECTOR

• INTEGER

 The following types are declared in the STD_LOGIC_1164 IEEE
package.

• STD_LOGIC

• STD_LOGIC_VECTOR

This package is compiled in the IEEE library. In order to use one of
these types, the following two lines must be added to the VHDL
specification:

library IEEE;

use IEEE.STD_LOGIC_1164.all;
XST User Guide 6-3

XST User Guide
Overloaded Data Types
The following basic types can be overloaded.

• Enumerated Types:

♦ STD_ULOGIC: contains the same nine values as the
STD_LOGIC type, but does not contain predefined resolution
functions.

♦ X01: subtype of STD_ULOGIC containing the ’X’, ’0’ and ’1’
values

♦ X01Z: subtype of STD_ULOGIC containing the ’X’, ’0’, ’1’ and
’Z’ values

♦ UX01: subtype of STD_ULOGIC containing the ’U’, ’X’, ’0’ and
’1’ values

♦ UX01Z: subtype of STD_ULOGIC containing the ’U’, ’X’, ’0’,’1’
and ’Z’ values

• Bit Vector Types:

♦ STD_ULOGIC_VECTOR

♦ UNSIGNED

♦ SIGNED

Unconstrained types (types whose length is not defined) are
not accepted.

• Integer Types:

♦ NATURAL

♦ POSITIVE

Any integer type within a user-defined range. As an
example, "type MSB is range 8 to 15;" means any integer
greater than 7 or less than 16.

The types NATURAL and POSITIVE are VHDL predefined types.

The types STD_ULOGIC (and subtypes X01, X01Z, UX01, UX01Z),
STD_LOGIC, STD_ULOGIC_VECTOR and STD_LOGIC_VECTOR
are declared in the STD_LOGIC_1164 IEEE package. This package is
compiled in the library IEEE. In order to use one of these types, the
following two lines must be added to the VHDL specification:
6-4 Xilinx Development System

VHDL Language Support
library IEEE;

use IEEE.STD_LOGIC_1164.all;

The types UNSIGNED and SIGNED (defined as an array of
STD_LOGIC) are declared in the STD_LOGIC_ARITH IEEE package.
This package is compiled in the library IEEE. In order to use these
types, the following two lines must be added to the VHDL
specification:

library IEEE;

use IEEE.STD_LOGIC_ARITH.all;

Bi-dimensional Array Types
XST supports bi-dimensional array types. The array must be fully
constrained in both dimensions. An example is shown below:

subtype WORD8 is STD_LOGIC_VECTOR (7 downto 0);

type TAB12 is array (11 downto 0) of WORD8;

The following examples demonstrate the various uses of
bi-dimensional array signals and variables.

Consider the declarations:

subtype WORD8 is STD_LOGIC_VECTOR (7 downto 0);

type TAB12 is array (11 downto 0) of WORD8;

signal WORD_A : WORD8;

signal TAB_A, TAB_B : TAB12;

A bi-dimensional array signal or variable can be completely used:

TAB_A <= TAB_B;

Just an index of the first array can be specified:

TAB_A (8) <= WORD_A;

Just indexes of the first and second arrays can be specified:

TAB_A (8) (0) <= ’1’;

Just a slice of the first array can be specified:

TAB_A (11 downto 8) <= TAB_B (3 downto 0);

Just an index of the first array and a slice of the second array can be
specified:
XST User Guide 6-5

XST User Guide
TAB_A (6) (3 downto 0) <= TAB_B (7) (4 downto 1);

Note also that the indices may be variable.

Objects in VHDL
VHDL objects include signals, variables and constants.

Signals can be declared in an architecture declarative part and used
anywhere within the architecture. Signals can be also declared in a
block and used within that block. Signals can be assigned by the
assignment operator "<=".

Example:

signal sig1: std_logic;

sig1 <= ’1’;

Variables are declared in a process, or a subprogram, and used within
that process or that subprogram. Variables can be assigned by the
assignment operator ":=”.

Example:

variable var1: std_logic_vector (7 downto 0);

var1 := "01010011";

Constants can be declared in any declarative region and can be used
within that region. Their value cannot be changed once declared.

Example:

signal sig1: std_logic_vector (5 downto 0);

constant init0 : std_logic_vector (5 downto 0) :=
"010111";

sig1 <= init0;

Operators
Supported operators are listed in Table 6-7. This section provides an
example of how to use each shift operator.

Example: sll (Shift Left Logical)

A(4 downto 0) sll 2 à A(2 downto 0) & “00”)

Example: srl (Shift Right Logical)
6-6 Xilinx Development System

VHDL Language Support
A(4 downto 0) srl 2 à “00” & A(4 downto 2)

Example: sla (Shift Left Arithmetic)

A(4 downto 0) sla 2 à A(2 downto 0) & A(0) & A(0)

Example: sra (Shift Right Arithmetic)

A(4 downto 0) sra 2 à A(4) & A(4) & A(4 downto 2)

Example: rol (Rotate Left)

A(4 downto 0) rol 2 à A(2 downto 0) & A(4 downto 3)

Example: ror (Rotate Right)

A(4 downto 0) ror 2 à A(1 downto 0) & A(4 downto 2)

Entity and Architecture Descriptions
A circuit description consists of two parts: the interface (defining the
I/O ports) and the body. In VHDL, the entity corresponds to the
interface and the architecture describes the behavior.

Entity Declaration
In the entity, the I/O ports of the circuit are declared. Each port has a
name, a mode (in, out, inout or buffer) and a type (ports A, B, C, D, E
in the Example 6-1).

Note that types of ports must be constrained, and not more than one-
dimensional array types are accepted as ports.

Architecture Declaration

In the architecture, internal signals may be declared. Each internal
signal has a name and a type (signal T in Example 6-1).

Example 6-1: Entity and Architecture Declaration

Library IEEE;
use IEEE.std_logic_1164.all;

entity EXAMPLE is
port (A,B,C : in std_logic;

 D,E : out std_logic);
end EXAMPLE;
XST User Guide 6-7

XST User Guide
architecture ARCHI of EXAMPLE is
signal T : std_logic;

begin
...
end ARCHI;

Component Instantiation
Structural descriptions assemble several blocks and allow the
introduction of hierarchy in a design. The basic concepts of hardware
structure are the component, the port and the signal. The component
is the building or basic block. A port is a component I/O connector. A
signal corresponds to a wire between components.

In VHDL, a component is represented by a design entity. This is
actually a composite consisting of an entity declaration and an
architecture body. The entity declaration provides the "external" view
of the component; it describes what can be seen from the outside,
including the component ports. The architecture body provides an
"internal" view; it describes the behavior or the structure of the
component.

The connections between components are specified within
component instantiation statements. These statements specify an
instance of a component occurring inside an architecture of an other
component or the circuit. Each component instantiation statement is
labeled with an identifier. Besides naming a component declared in a
local component declaration, a component instantiation statement
contains an association list (the parenthesized list following the
reserved word port map) that specifies which actual signals or ports
are associated with which local ports of the component declaration.

Example 6-2 gives the structural description of a half adder
composed of four nand2 components.

Example 6-2: Structural Description of a Half Adder

entity NAND2 is
port (A,B : in BIT;

Y : out BIT);
end NAND2;
architecture ARCHI of NAND2 is
begin
6-8 Xilinx Development System

VHDL Language Support
Y <= A nand B;
end ARCHI;

entity HALFADDER is
port (X,Y : in BIT;

C,S : out BIT);
end HALFADDER;
architecture ARCHI of HALFADDER is

component NAND2
port (A,B : in BIT;

Y : out BIT);
end component;
for all : NAND2 use entity work.NAND2(ARCHI);
signal S1, S2, S3 : BIT;

begin
NANDA : NAND2 port map (X,Y,S3);
NANDB : NAND2 port map (X,S3,S1);
NANDC : NAND2 port map (S3,Y,S2);
NANDD : NAND2 port map (S1,S2,S);
C <= S3;

 end ARCHI;

The synthesized top level netlist is shown in the following figure.

Figure 6-1 Synthesized Top Level Netlist

A

B
YNANDA

A

B
YNANDD

A

B
YNANDC

A

B
YNANDB

S3

S2

S1

Y

X

C

S

x8952
XST User Guide 6-9

XST User Guide
Component Configuration
Associating an entity/architecture pair to a component instance
provides the means of linking components with the appropriate
model (entity/architecture pair). XST supports component
configuration in the declarative part of the architecture:

for instantiation_list: component_name use
LibName.entity_Name(Architecture_Name);

Example 6-2 shows how to use a configuration clause for component
instantiation. The example contains the following “for all” statement:

for all : NAND2 use entity work.NAND2(ARCHI);

which dictates that all NAND2 components will use the entity
NAND2 and Architecture ARCHI.

Note When the configuration clause is missing for a component
instantiation, XST links the component to the entity with the same
name (and same interface) and the selected architecture to the most
recently compiled architecture. If no entity/architecture is found, a
black box is generated during the synthesis.
6-10 Xilinx Development System

VHDL Language Support
Generic Parameter Declaration
Generic parameters may also be declared in the entity declaration
part. An example use of generic parameters would be setting the
width of the design. In VHDL, describing circuits with generic ports
has the advantage that the same component can be repeatedly
instantiated with different values of generic ports as shown in
Example 6-3.

Example 6-3: Generic Instantiation of Components

Library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity addern is
generic (width : integer := 8);
port (A,B : in std_logic_vector (width-1 downto 0);

Y : out std_logic_vector (width-1 downto 0));
end addern;
architecture bhv of addern is
begin

Y <= A + B;
end bhv;

Library IEEE;
use IEEE.std_logic_1164.all;

entity top is
port (X, Y, Z : in std_logic_vector (12 downto 0);

A, B : in std_logic_vector (4 downto 0);
S :out std_logic_vector (16 downto 0));

end top;
architecture bhv of top is

component addern
generic (width : integer := 8);
port (A,B : in std_logic_vector (width-1 downto 0);

 Y : out std_logic_vector (width-1 downto 0));
end component;

for all : addern use entity work.addern(bhv);
signal C1 : std_logic_vector (12 downto 0);
XST User Guide 6-11

XST User Guide
signal C2, C3 : std_logic_vector (16 downto 0);
begin

U1 : addern generic map (n=>13), port map (X,Y,C1);
C2 <= C1 & A;
C3 <= Z & B;
U2 : addern generic map (n=>17), port map (C2,C3,S);

end bhv;

Combinatorial Circuits
The following subsections describes XST usage with various VHDL
constructs for combinatorial circuits.

Concurrent Signal Assignments
Combinatorial logic may be described using concurrent signal
assignments which can be defined within the body of the
architecture. VHDL offers three types of concurrent signal
assignments: simple, selected, and conditional. You can describe as
many concurrent statements as needed; the order of concurrent signal
definition in the architecture is irrelevant.

A concurrent assignment is made of two parts: left hand side, and
right hand side. The assignment changes when any signal in the right
part changes; in this case, the result is assigned to the signal on the
left part.

Simple Signal Assignment
T <= A and B;

Selected Signal Assignment
Example 6-4: Mux Description Using Selected Signal Assignment

library IEEE;
use IEEE.std_logic_1164.all;

entity select_bhv is
generic (width: integer := 8);
port (a, b, c, d: in std_logic_vector (width-1 downto 0);

selector: in std_logic_vector (1 downto 0);
T: out std_logic_vector (width-1 downto 0));
6-12 Xilinx Development System

VHDL Language Support
end select_bhv;
architecture bhv of select_bhv is
begin

with selector select
T <= a when "00",

b when "01",
c when "10",
d when others;

end bhv;

Conditional Signal Assignment
Example 6-5: Mux Description Using Conditional Signal
Assignment

entity when_ent is
generic (width: integer := 8);
port (a, b, c, d: in std_logic_vector (width-1 downto 0);

selector: in std_logic_vector (1 downto 0);
T: out std_logic_vector (width-1 downto 0));

end when_ent;
architecture bhv of when_ent is
begin

T <= a when selector = "00" else
b when selector ="01" else
c when selector ="10" else
d;

end bhv;

Generate Statement
The repetitive structures are declared with the "generate" VHDL
statement. For this purpose "for I in 1 to N generate" means that the
bit slice description will be repeated N times. As an example,
Example 6-6 gives the description of an 8-bit adder by declaring the
bit slice structure.

 Example 6-6: 8 Bit Adder Described with a "for...generate"
Statement

entity EXAMPLE is
port (A,B : in BIT_VECTOR (0 to 7);

CIN : in BIT;
SUM : out BIT_VECTOR (0 to 7);
XST User Guide 6-13

XST User Guide
COUT : out BIT
);
end EXAMPLE;
architecture ARCHI of EXAMPLE is

signal C : BIT_VECTOR (0 to 8);
begin

C(0) <= CIN;
COUT <= C(8);
LOOP_ADD : for I in 0 to 7 generate

SUM(I) <= A(I) xor B(I) xor C(I);
C(I+1) <= (A(I) and B(I)) or (A(I) and C(I)) or (B(I) and

 C(I));
end generate;

end ARCHI;

The "if condition generate" statement is also supported for static (non-
dynamic) conditions. Example 6-7 shows such an example. It is a
generic N-bit adder with a width ranging between 4 and 32.

Example 6-7: N Bit Adder Described with an "if...generate" and a
"for… generate" Statement

entity EXAMPLE is
generic (N : INTEGER := 8);
port (A,B : in BIT_VECTOR (N downto 0);

CIN : in BIT;
SUM : out BIT_VECTOR (N downto 0);
COUT : out BIT

);
end EXAMPLE;
architecture ARCHI of EXAMPLE is

signal C : BIT_VECTOR (N+1 downto 0);
begin

L1: if (N>=4 and N<=32) generate
C(0) <= CIN;
COUT <= C(N+1);
LOOP_ADD : for I in 0 to N generate

SUM(I) <= A(I) xor B(I) xor C(I);
C(I+1) <= (A(I)and B(I))or (A(I) and C(I)) or (B(I) and C(I));

end generate;
end generate;

end ARCHI;
6-14 Xilinx Development System

VHDL Language Support
Combinatorial Process
A process assigns values to signals in a different way than when
using concurrent signal assignments. The value assignments are
made in a sequential mode. The latest assignments may cancel
previous ones. See Example 6-8. First the signal S is assigned to 0, but
later on (for (A and B) =1), the value for S is changed to 1.

Example 6-8: Assignments in a Process

entity EXAMPLE is
port (A, B : in BIT;

S : out BIT);
end EXAMPLE;
architecture ARCHI of EXAMPLE is
begin
process (A, B)
begin

S <= ’0’ ;
if ((A and B) = ’1’) then

S <= ’1’ ;
end if;

end process;
end ARCHI;

A process is called combinatorial when its inferred hardware does
not involve any memory elements. Said differently, when all assigned
signals in a process are always explicitly assigned in all paths of the
process statements, then the process in combinatorial.

A combinatorial process has a sensitivity list appearing within
parenthesis after the word "process". A process is activated if an event
(value change) appears on one of the sensitivity list signals. For a
combinatorial process, this sensitivity list must contain all signals
which appear in conditions (if, case, etc.) and any signal appearing on
the right hand side of a assignment.

If one or more signals are missing from the sensitivity list, XST
generates a warning for the missing signals and adds them to the
sensitivity list. In this case, the result of the synthesis may be different
from the initial design specification.

A process may contain local variables. The variables are handled in a
similar manner as signals (but are not, of course, outputs to the
design).
XST User Guide 6-15

XST User Guide
In Example 6-9, a variable named AUX is declared in the declarative
part of the process and is assigned to a value (with ":=") in the
statement part of the process. Examples 9 and 10 are two examples of
a VHDL design using combinatorial processes.

Example 6-9: Combinatorial Process

library ASYL;
use ASYL.ARITH.all;

entity ADDSUB is
port (A,B : in BIT_VECTOR (3 downto 0) ;

ADD_SUB : in BIT;
S : out BIT_VECTOR (3 downto 0));

end ADDSUB;
architecture ARCHI of ADDSUB is
begin
process (A, B, ADD_SUB)

variable AUX : BIT_VECTOR (3 downto 0);
begin

if ADD_SUB = ’1’ then
AUX := A + B ;

else
AUX := A - B ;

end if;
S <= AUX;

end process;
end ARCHI;

Example 6-10: Combinatorial Process

entity EXAMPLE is
port (A, B : in BIT;

S : out BIT);
end EXAMPLE;
architecture ARCHI of EXAMPLE is
begin
process (A,B)

variable X, Y : BIT;
begin

X := A and B;
Y := B and A;
if X = Y then

S <= ’1’ ;
6-16 Xilinx Development System

VHDL Language Support
end if;
end process;

end ARCHI;

Note In combinatorial processes, if a signal is not explicitly assigned
in all branches of "if" or "case" statements, XST will generate a latch to
hold the last value. To avoid latch creation, assure that all assigned
signals in a combinatorial process are always explicitly assigned in all
paths of the process statements.

 Different statements can be used in a process:

• Variable and signal assignment

• If statement

• Case statement

• For ... Loop statement

• Function and procedure call

The following sections provide examples of each of these statements.

If .. Else Statement
If ... else statements use true/false conditions to execute statements. If
the expression evaluates to true, the first statement is executed. If the
expression evaluates to false (or x or z), the else statement is executed.
A block of multiple statements may be executed using begin and end
keywords. If ... else statements may be nested.

Example 6-11: Mux Description Using If ... Else Statement

library IEEE;
use IEEE.std_logic_1164.all;

entity mux4 is
port (a, b, c, d: in std_logic_vector (7 downto 0);

sel1, sel2: in std_logic;
outmux: out std_logic_vector (7 downto 0));

end mux4;
architecture behavior of mux4 is
begin

process (a, b, c, d, sel1, sel2)
begin

if (sel1 = ’1’) then
XST User Guide 6-17

XST User Guide
if (sel2 = ’1’) then
outmux <= a;

else
outmux <= b;

endif;
else

if (sel2 = ’1’) then
outmux <= c;

else
outmux <= d;

end if;
end if;

end process;
end behavior;

Case Statement
Case statements perform a comparison to an expression to evaluate
one of a number of parallel branches. The case statement evaluates
the branches in the order they are written; the first branch that
evaluates to true is executed. If none of the branches match, the
default branch is executed

Example 6-12: Mux Description Using the Case Statement

library IEEE;
use IEEE.std_logic_1164.all;

entity mux4 is
port (a, b, c, d: in std_logic_vector (7 downto 0);

sel: in std_logic_vector (1 downto 0);
outmux: out std_logic_vector (7 downto 0));

end mux4;
architecture behavior of mux4 is
begin

process (a, b, c, d, sel)
begin

case sel is
when "00" => outmux <= a;
when "01" => outmux <= b;
when "10" => outmux <= c;
when others =>

outmux <= d;-- case statement must be complete
6-18 Xilinx Development System

VHDL Language Support
end case;
end process;

end behavior;

For .. Loop Statement
The "for" statement is supported for :

• Constant bounds

• Stop test condition using operators <, <=, > or >=

• Next step computation falling in one of the following
specifications:

♦ var = var + step

♦ var = var - step

(where var is the loop variable and step is a constant value).

Example 6-13: For ... Loop Description

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity countzeros is
port (a: in std_logic_vector (7 downto 0);

Count: out std_logic_vector (2 downto 0));
end mux4;
architecture behavior of mux4 is

signal Count_Aux: std_logic_vector (2 downto 0);
begin

process (a)
begin

Count_Aux <= "000";
for i in a’rangeloop

if (a[i] = ’0’) then
Count_Aux <= Count_Aux + 1; -- operator "+" defined

--in std_logic_unsigned
end if;

end loop;
Count <= Count_Aux;

end process;
end behavior;
XST User Guide 6-19

XST User Guide
Sequential Circuits
Sequential circuits can be described using sequential processes. The
following two types of descriptions are allowed by XST:

• sequential processes with a sensitivity list

• sequential processes without a sensitivity list

Sequential Process with a Sensitivity List
A process is sequential when it is not a combinatorial process. In
other words, a process is sequential when some assigned signals are
not explicitly assigned in all paths of the statements. In this case, the
hardware generated has an internal state or memory (flip-flops or
latches).

Example 6-14 provides a template for describing sequential circuits.
Also refer to the chapter describing macro inference for additional
details (registers, counters, etc.).

Example 6-14: Sequential Process with Asynchronous,
Synchronous Parts

process (CLK, RST) ...
begin

if RST = <'0' | ‘ 1’ > then
-- an asynchronous part may appear here
-- optional part
.......

elsif <CLK'EVENT | not CLK’ STABLE>
and CLK = <'0' | ‘ 1’ > then
-- synchronous part
-- sequential statements may appear here

end if;
end process;

Note Asynchronous signals must be declared in the sensitivity list.
Otherwise, XST generates a warning and adds them to the sensitivity
list. In this case, the behavior of the synthesis result may be different
from the initial specification.
6-20 Xilinx Development System

VHDL Language Support
Sequential Process without a Sensitivity List
Sequential processes without a sensitivity list must contain a "wait"
statement. The "wait" statement must be the first statement of the
process and must be the only "wait" statement in the process. The
condition in the "wait" statement must be a condition on the clock
signal. Several "wait" statements in the same process are not accepted.
An asynchronous part can not be specified within processes without
a sensitivity list.

Example 6-15 shows the skeleton of such a process. The clock
condition may be a falling or a rising edge.

Example 6-15: Sequential Process Without a Sensitivity List

process ...
begin

wait until <CLK'EVENT | not CLK’ STABLE> and CLK = <‘ 0’ |'1'>;
... -- a synchronous part may be specified here.

end process;

Examples of Register and Counter Descriptions
Example 6-16 gives the description an 8-bit register using a process
with a sensitivity list. In Example 6-17, the same example is described
using a process without a sensitivity list containing a "wait"
statement.

Example 6-16: 8 bit Register Description Using a Process with a
Sensitivity List

entity EXAMPLE is
port (DI : in BIT_VECTOR (7 downto 0);

CLK : in BIT;
DO : out BIT_VECTOR (7 downto 0));

end EXAMPLE;
architecture ARCHI of EXAMPLE is
begin

process (CLK)
begin

if CLK'EVENT and CLK = '1' then
DO <= DI ;

end if;
end process;

end ARCHI;
XST User Guide 6-21

XST User Guide
Example 6-17: 8 bit Register Description Using a Process without a
Sensitivity List

entity EXAMPLE is
port (DI : in BIT_VECTOR (7 downto 0);

CLK : in BIT;
DO : out BIT_VECTOR (7 downto 0));

end EXAMPLE;
architecture ARCHI of EXAMPLE is
begin
process begin

wait until CLK’EVENT and CLK = ’1’;
DO <= DI ;

end process;
end ARCHI;

Example 6-18 gives the description of an 8-bit register with a clock
signal and an asynchronous reset signal.

Example 6-18: 8 bit Register Description Using a Process with a
Sensitivity List

entity EXAMPLE is
port (DI : in BIT_VECTOR (7 downto 0);

CLK : in BIT;
RST : in BIT;
DO : out BIT_VECTOR (7 downto 0));

end EXAMPLE;
architecture ARCHI of EXAMPLE is
begin
process (CLK, RST)
begin

if RST = ’1’ then
DO <= "00000000";

elsif CLK’EVENT and CLK = ’1’ then
DO <= DI ;

end if;
end process;

end ARCHI;
6-22 Xilinx Development System

VHDL Language Support
Example 6-19: 8 bit Counter Description Using a Process with a
Sensitivity List

library ASYL;
use ASYL.PKG_ARITH.all;

entity EXAMPLE is
port (CLK : in BIT;

RST : in BIT;
DO : out BIT_VECTOR (7 downto 0));

end EXAMPLE;
architecture ARCHI of EXAMPLE is
begin
process (CLK, RST)

variable COUNT : BIT_VECTOR (7 downto 0);
begin

if RST = ’1’ then
COUNT := "00000000";

elsif CLK’EVENT and CLK = ’1’ then
COUNT := COUNT + "00000001";

end if;
DO <= COUNT;

end process;
end ARCHI;

Multiple Wait Statements Descriptions
Sequential circuits can be described with multiple wait statements in
a process. When using XST, several rules must be respected to use
multiple wait statements. These rules are as follows:

• The process must only contain one loop statement.

• The first statement in the loop must be a wait statement.

• After each wait statement, a next or exit statement must be
defined.

• The condition in the wait statements must be the same for each
wait statement.

• This condition must use only one signal—the clock signal.

• This condition must have the following form:
XST User Guide 6-23

XST User Guide
"wait [on <clock_signal>] until [(<clock_signal>’EVENT |
not <clock_signal>’STABLE) and] <clock_signal> = <’0’ | ’1’>;"

Example 6-20 uses multiple wait statements. This example describes
a sequential circuit performing four different operations in sequence.
The design cycle is delimited by two successive rising edges of the
clock signal. A synchronous reset is defined providing a way to
restart the sequence of operations at the beginning. The sequence of
operations consists of assigning each of the four inputs: DATA1,
DATA2, DATA3 and DATA4 to the output RESULT.

Example 6-20: Sequential Circuit Using Multiple Wait Statements

library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity EXAMPLE is
port (DATA1, DATA2, DATA3, DATA4 : in
STD_LOGIC_VECTOR (3 downto 0);

RESULT : out STD_LOGIC_VECTOR (3 downto 0);
CLK : in STD_LOGIC;
RST : in STD_LOGIC := ’0’);

end EXAMPLE;
architecture ARCH of EXAMPLE is
begin
process begin

SEQ_LOOP : loop
wait until CLK’EVENT and CLK = ’1’;
exit SEQ_LOOP when RST = ’1’;
RESULT <= DATA1;

wait until CLK’EVENT and CLK = ’1’;
exit SEQ_LOOP when RST = ’1’;
RESULT <= DATA2;

wait until CLK’EVENT and CLK = ’1’;
exit SEQ_LOOP when RST = ’1’;
RESULT <= DATA3;

wait until CLK’EVENT and CLK = ’1’;
exit SEQ_LOOP when RST = ’1’;
RESULT <= DATA4;

end loop;
6-24 Xilinx Development System

VHDL Language Support
end process;
end ARCH;

Functions and Procedures
The declaration of a function or a procedure provides a mechanism
for handling blocks used multiple times in a design. Functions and
procedures can be declared in the declarative part of an entity, in an
architecture, or in packages. The heading part contains the
parameters: input parameters for functions and input, output and
inout parameters for procedures. These parameters can be
unconstrained; it means that they are not constrained to a given
bound. The content is similar to the combinatorial process content.

Resolution functions are not supported except the one defined in the
IEEE std_logic_1164 package.

Recursive function and procedure calls are also not supported.

Example 6-21 shows a function declared within a package. The
"ADD" function declared here is a single bit adder. This function is
called 4 times with the proper parameters in the architecture to create
a 4-bit adder. The same example described using a procedure is
shown in Example 6-22.

Example 6-21: Function Declaration and Function Call

package PKG is
function ADD (A,B, CIN : BIT)
return BIT_VECTOR;

end PKG;

package body PKG is
function ADD (A,B, CIN : BIT)
return BIT_VECTOR is

variable S, COUT : BIT;
variable RESULT : BIT_VECTOR (1 downto 0);

begin
S := A xor B xor CIN;
COUT := (A and B) or (A and CIN) or (B and CIN);
RESULT := COUT & S;
return RESULT;

end ADD;
end PKG;
XST User Guide 6-25

XST User Guide
use work.PKG.all;

entity EXAMPLE is
port (A,B : in BIT_VECTOR (3 downto 0);

CIN : in BIT;
S : out BIT_VECTOR (3 downto 0);
COUT: out BIT);

end EXAMPLE;
architecture ARCHI of EXAMPLE is
signal S0, S1, S2, S3 : BIT_VECTOR (1 downto 0);
begin

S0 <= ADD (A(0), B(0), CIN);
S1 <= ADD (A(1), B(1), S0(1));
S2 <= ADD (A(2), B(2), S1(1));
S3 <= ADD (A(3), B(3), S2(1));
S <= S3(0) & S2(0) & S1(0) & S0(0);
COUT <= S3(1);

end ARCHI;

Example 6-22: Procedure Declaration and Procedure Call

package PKG is
procedure ADD

(A,B, CIN : in BIT;
C : out BIT_VECTOR (1 downto 0));

end PKG;
package body PKG is
procedure ADD

(A,B, CIN : in BIT;
C : out BIT_VECTOR (1 downto 0)) is

variable S, COUT : BIT;
begin

S := A xor B xor CIN;
COUT := (A and B) or (A and CIN) or (B and CIN);
C := COUT & S;

end ADD;
end PKG;

use work.PKG.all;
6-26 Xilinx Development System

VHDL Language Support
entity EXAMPLE is
port (A,B : in BIT_VECTOR (3 downto 0);

CIN : in BIT;
S : out BIT_VECTOR (3 downto 0);
COUT : out BIT);

end EXAMPLE;
architecture ARCHI of EXAMPLE is
begin
process (A,B,CIN)

variable S0, S1, S2, S3 : BIT_VECTOR (1 downto
0);

begin
ADD (A(0), B(0), CIN, S0);
ADD (A(1), B(1), S0(1), S1);
ADD (A(2), B(2), S1(1), S2);
ADD (A(3), B(3), S2(1), S3);
S <= S3(0) & S2(0) & S1(0) & S0(0);
COUT <= S3(1);

end process;
end ARCHI;

Packages
VHDL models may be defined using packages. Packages contain
type and subtype declarations, constant definitions, function and
procedure definitions, and component declarations.

This mechanism provides the ability to change parameters and
constants of the design (for example, constant values, function
definitions). Packages may contain two declarative parts: package
declaration and body declaration. The body declaration includes the
description of function bodies declared in the package declaration.

XST provides full support for packages. To use a given package, the
following lines must be included at the beginning of the VHDL
design:

library lib_pack; -- lib_pack is the name of the library specified
where the package has been compiled (work by default)
use lib_pack.pack_name.all; -- pack_name is the name of the defined
package.

XST also supports predefined packages; these packages are
pre-compiled and can be included in VHDL designs. These packages
XST User Guide 6-27

XST User Guide
are intended for use during synthesis, but may also used for
simulation.

STANDARD Package
The Standard package contains basic types (bit, bit_vector, and
integer). The STANDARD package is included by default.

IEEE Packages
 The following IEEE packages are supported.

• std_logic_1164: defines types std_logic, std_ulogic,
std_logic_vector, std_ulogic_vector, and conversion functions
based on these types.

• std_logic_arith: supports types unsigned, signed vectors, and all
overloaded arithmetic operators on these types. It also defines
conversion and extended functions for these types.

• std_logic_unsigned: defines arithmetic operators on
std_ulogic_vector and considers them as unsigned operators.

• std_logic_signed: defines arithmetic operators on
std_logic_vector and considers them as signed operators.

• std_logic_misc: defines supplemental types, subtypes, constants,
and functions for the std_logic_1164 package (and_reduce,
or_reduce, ...)

Example:

library ieee;
use IEEE.std_logic_signed.all;
signal a, b, c: std_logic_vector (5 downto 0);
c <= a + b;
-- this operator "+" is defined in package std_logic_signed.
-- Operands are converted to signed vectors, and function "+"
-- defined in package std_logic_arith is called with signed
-- operands.
6-28 Xilinx Development System

VHDL Language Support
IEEE Numeric Packages
Numeric packages are the new IEEE standard packages for synthesis.

• numeric_bit: supports types unsigned, signed vectors based on
type bit, and all overloaded arithmetic operators on these types.
It also defines conversion and extended functions for these types.

• numeric_std: supports types unsigned, signed vectors based on
type std_logic. This package is equivalent to std_logic_arith.

• numeric_unsigned: defines arithmetic operators on
std_ulogic_vector and considers them as unsigned operators.
This package is equivalent to std_logic_unsigned.

• numeric_signed: defines arithmetic operators on std_logic_vector
and considers them as signed operators. This package is
equivalent to std_logic_signed.

• numeric_extra: defines supplemental functions for the
std_logic_1164 package (and_reduce, or_reduce, ...). This package
is equivalent to std_logic_misc.

VHDL Language Support
The following tables indicate which VHDL constructs are supported
in VHDL. For more information about these constructs, refer to the
sections following the tables.

Table 6-1 Design Entities and Configurations

Entity Header

Generics Supported

Ports Supported
(no unconstrained
ports)

Entity Declarative Part Supported

Entity Statement Part Unsupported

Architecture Bodies
Architecture Declarative Part Supported

Architecture Statement Part Supported

Configuration Declarations
Block Configuration Ignored

Component Configuration Ignored
XST User Guide 6-29

XST User Guide
Subprograms
Functions Supported

Procedures Supported

Packages

STANDARD Types TIME and
REAL are not
supported

TEXTIO Unsupported

STD_LOGIC_1164 Supported

STD_LOGIC_ARITH Supported

STD_LOGIC_SIGNED Supported

STD_LOGIC_UNSIGNED Supported

STD_LOGIC_MISC Supported

NUMERIC_BIT Supported

NUMERIC_EXTRA Supported

NUMERIC_SIGNED Supported

NUMERIC_UNSIGNED Supported

NUMERIC_STD Supported

ASYL.ARITH Supported

ASYL.SL_ARITH Supported

ASYL.PKG_RTL Supported

ASYL.ASYL1164 Supported

Enumeration Types

BOOLEAN, BIT Supported

STD_ULOGIC,
STD_LOGIC

Supported

XO1, UX01, XO1Z, UX01Z Supported

Character Supported

Integer Types

INTEGER Supported

POSITIVE Supported

NATURAL Supported

Physical Unsupported

Floating Unsupported

Table 6-1 Design Entities and Configurations
6-30 Xilinx Development System

VHDL Language Support
Composite

BIT_VECTOR Supported

STD_ULOGIC_VECTOR Supported

STD_LOGIC_VECTOR Supported

UNSIGNED Supported

SIGNED Supported

Record Unsupported

Access Unsupported

File Unsupported

Table 6-2 Mode

In, Out, Inout Supported

Buffer Supported

Linkage Unsupported

Table 6-3 Declarations

Type Supported for enumerated types, types with positive
range having constant bounds, bit vector types and bi-
dimensional arrays

Subtype Supported

Table 6-1 Design Entities and Configurations
XST User Guide 6-31

XST User Guide
Table 6-4 Objects

Constant Declaration Supported (deferred constants are not
supported)

Signal Declaration Supported (“register” or “bus” type
signals are not supported)

Variable Declaration Supported (no initial value except in
functions and procedures)

File Declaration Unsupported

Alias Declaration Supported

Attribute Declaration Supported for some attributes, otherwise
skipped (see the “Design Constraints”
chapter)

Component Declaration Supported

Table 6-5 Specifications

Attribute Only supported for some predefined attributes:
HIGH, LOW, LEFT, RIGHT, RANGE,
REVERSE_RANGE, LENGTH, POS,
ASCENDING, EVENT, STABLE,
LAST_VALUE, DRIVING_VALUE.
Otherwise, ignored.

Configuration Supported only with the “all” clause for
instances list. If no clause is added, XST looks
for the entity/architecture compiled in the
default library.

Disconnection Unsupported

Table 6-6 Names

Simple Names Supported

Selected Names Supported

Indexed Names Supported

Slice Names Supported for constant ranges (ranges with
constant bounds)
6-32 Xilinx Development System

VHDL Language Support
Note XST does not allow underscores in signal names (for example,
_DATA_1).

Table 6-7 Expressions

Operators

Logical Operators:
and, or, nand, nor, xor, xnor, not

Supported

Relational Operators:
=, /=, <, <=, >, >=

Supported

& (concatenation) Supported

Adding Operators: +, - Supported

* Supported

/, mod, rem Supported if the right operand is a
constant power of 2

Shift Operators:
sll, srl, sla, sra, rol, ror

Supported

abs Supported for constant operands

** Only supported if the left operand is 2

Sign: +, - Supported

Operands

Abstract Literals Only integer literals are supported

Physical Literals Ignored

Enumeration Literals Supported

String Literals Supported

Bit String Literals Supported

Record Aggregates Unsupported

Array Aggregates Supported

Function Call Supported

Qualified Expressions Supported for accepted predefined
attributes

Types Conversions Unsupported

Allocators Unsupported

Static Expressions Supported
XST User Guide 6-33

XST User Guide
Table 6-8 Sequential Statements

Wait Statement

Wait on sensitivity_list until
Boolean_expression. See the
“Sequential Circuits”
section for details.

Supported with one signal in the sensi-
tivity list and in the Boolean expression.
In case of multiple wait statements, the
sensitivity list and the Boolean
expression must be the same for each
wait statement.

Wait for time_expression. .
See the “Sequential
Circuits” section for
details.

Unsupported

Assertion Statement Ignored

Signal Assignment
Statement

Supported (delay is ignored)

Variable Assignment
Statement

Supported

Procedure Call Statement Supported

If Statement Supported

Case Statement Supported

Loop Statement

“for ... loop ... end ... loop” Supported for constant bounds only

“while ... loop ... end loop” Unsupported

“loop ... end loop” Only supported in the particular case of
multiple wait statements

Next Statement Only supported in a loop statement in
case of multiple wait statements

Exit Statement Only supported in a loop statement in
case of multiple wait statements

Return Statement Only supported in function bodies

Null Statement Supported
6-34 Xilinx Development System

VHDL Language Support
Concurrent
Statement

Process Statement Supported

Concurrent Procedure Call Supported

Concurrent Assertion
Statement

Ignored

Concurrent Signal
Assignment Statement

Supported (no “after” clause, no
“transport” or “guarded” options, no
waveforms)

Component Instantiation
Statement

Supported

“For ... Generate” Statement supported for constant bounds
only

“If ... Generate” Statement supported for static condition
only

Table 6-8 Sequential Statements
XST User Guide 6-35

XST User Guide
VHDL Reserved Words
The following table shows the VHDL reserved words.

abs configuration impure null rem type

access constant in of report unaffected

after disconnect inertial on return units

alias downto inout open rol until

all else is or ror use

and elsif label others select variable

architecture end library out severity wait

array entity linkage package signal when

assert exit literal port shared while

attribute file loop postponed sla with

begin for map procedure sll xnor

block function mod process sra xor

body generate nand pure srl

buffer generic new range subtype

bus group next record then

case guarded nor register to

component if not reject transport
6-36 Xilinx Development System

Chapter 7

Verilog Language Support

This chapter contains the following sections.

• “Introduction”

• “Behavioral Features of Verilog”

• “Structural Verilog Features”

• “Parameters”

• “Verilog Limitations in XST”

• “Verilog Meta Comments”

• “Language Support Tables”

• “Primitives”

• “Verilog Reserved Keywords”

For detailed information about Verilog design constraints and
options, refer to the “Design Constraints” chapter. For information
about the Verilog attribute syntax, see the “Verilog Meta Comment
Syntax” section of the “Design Constraints” chapter.

For information on setting Verilog options in the Process window of
the Project Navigator, refer to the “Setting Constraints and Options”
section of the “Design Constraints” chapter.
XST User Guide — 3.1i 7-1

XST User Guide
Introduction
Complex circuits are commonly designed using a top down
methodology. Various specification levels are required at each stage
of the design process. As an example, at the architectural level, a
specification may correspond to a block diagram or an Algorithmic
State Machine (ASM) chart. A block or ASM stage corresponds to a
register transfer block (register, adder, counter, multiplexer, glue
logic, finite state machine, for example.) where the connections are
N-bit wires. Use of an HDL language like Verilog allows expressing
notations such as ASM charts and circuit diagrams in a computer
language. Verilog provides both behavioral and structural language
structures which allow expressing design objects at high and low
levels of abstraction. Designing hardware with a language like
Verilog allows usage of software concepts such as parallel processing
and object-oriented programming. Verilog has a syntax similar to C
and Pascal and is supported by XST as IEEE 1364.

The Verilog support in XST provides an efficient way to describe both
the global circuit and each block according to the most efficient
"style". Synthesis is then performed with the best synthesis flow for
each block. Synthesis in this context is the compilation of high-level
behavioral and structural Verilog HDL statements into a flattened
gate-level netlist which can then be used to custom program
programmable logic device such as the Virtex FPGA family from
Xilinx. Different synthesis methods will be used for arithmetic blocks,
glue logic, and finite state machines.

This manual assumes that you are familiar with the basic notions of
Verilog. Please refer to the IEEE Verilog HDL Reference Manual for a
complete specification.
7-2 Xilinx Development System

Verilog Language Support
Behavioral Features of Verilog
This section contains descriptions of the behavioral features of
Verilog.

Variable Declaration
Variables in Verilog may be declared as integers or real. These
declarations are intended only for use in test code. Verilog provides
data types such as reg and wire for actual hardware description.

The difference between reg and wire is whether the variable is given
its value by behavioral (reg) or structural (wire) Verilog code. Both
reg and wire have a default width being one bit wide (scalar). To
specify an N-bit width (vectors) for a declared reg or wire, the left
and right bit positions are defined in square brackets separated by a
colon.

Example:

reg [3:0] arb_priority;
wire [31:0] arb_request;

where arb_request[31] is the MSB and arb_request[0] is the LSB.

Verilog supports concatenation of bits to form a wider wire or reg.
Example {arb_priority[2], arb_priority[1]} is a two bit reg. Verilog also
allows assignments to a set of bits from a declared reg or wire.

Example:

arb_priority[2:1] = arb_request[1:0];

Verilog allows arrays of reg and wires to be defined as follows:

reg [3:0] mem_array [31:0];

describes an array of 32 Elements each 4 bits wide which can be
assigned via behavioral verilog code or

wire [7:0] mem_array [63:0];

describes an array of 64 elements each 8 bits wide which can only be
assigned via structural Verilog code.

Note XST does not allow underscores in signal names (for example,
_DATA_1).
XST User Guide 7-3

XST User Guide
Data Types
The Verilog representation of the bit data type contains the following
four values:

• 0: logic zero

• 1: logic one

• x: unknown logic value

• z: high impedance

XST includes support for the following Verilog data types:

• Net: wire, tri, triand/wand, trior/wor

• Registers: reg, integer

• Supply nets: supply0, supply1

• Constants: parameter

• Memories

Net and registers can be either single bit (scalar) or multiple bit
(vectors).

Example 3-1 gives some examples of Verilog data types (as found in
the declaration section of a Verilog module).

Example 3-1: Basic Data Types

wire net1; // single bit net
reg r1; // single bit register
tri [7:0] bus1; // 8 bit tristate bus
reg [15:0] bus1; // 15 bit register
reg [7:0] mem[0:127]; // 8x128 memory register
parameter state1 = 3’b001; // 3 bit constant

Legal Statements
The following are statements that are legal in behavioral Verilog.

Variable and signal assignment:

• Variable = expression

• if (condition) statement

• if (condition) else statement
7-4 Xilinx Development System

Verilog Language Support
• case (expression)

constant: statement

 …

default: statement

endcase

• for (variable = expression; condition; variable = variable +
expression) statement

• while (condition) statement

• forever statement

• functions and tasks

Note All variables are declared as integer or reg. A variable cannot be
declared as a wire.

Expressions
An expression involves constants and variables with arithmetic (+, -,
*, /, %), logical (&, &&, |, ||, ^, ~, <<, >>), relational (<, ==, ===, <=,
>=, !=, !==, >) and conditional (?) operators. The logical operators are
further divided as bit-wise versus logical depending on whether it is
applied to an expression involving several bits or a single bit. The
following table lists the expressions supported by XST.

Table 7-1 Expressions

Concatenation {} Supported

Replication {{}} Supported

Arithmetic
+, -, * Supported

/ Supported only if second
operand is a power of 2

Modulus % Supported only if second
operand is a power of 2

Addition + Supported

Subtraction - Supported

Multiplication * Supported
XST User Guide 7-5

XST User Guide
Division / Supported
XST generates incorrect logic
for the division operator
between signed and
unsigned constants.
Example: -1235/3’bill

Remainder % Supported

Relational >, <, >=, <= Supported

Logical Negation ! Supported

Logical AND && Supported

Logical OR || Supported

Logical Equality == Supported

Logical Inequality != Supported

Case Equality === Unsupported

Case Inequality !== Unsupported

Bitwise Negation ~ Supported

Bitwise AND & Supported

Bitwise Inclusive OR | Supported

Bitwise Exclusive OR ^ Supported

Bitwise Equivalence ~^, ^~ Supported

Reduction AND & Supported

Reduction NAND ~& Supported

Reduction OR | Supported

Reduction NOR ~| Supported

Reduction XOR ^ Supported

Reduction XNOR ~^, ^~ Supported

Left Shift << Supported

Right Shift >> Supported

Conditional ?: Supported

Event OR or Supported

Table 7-1 Expressions
7-6 Xilinx Development System

Verilog Language Support
Note The (===) and (!==) are special comparison operators useful in
simulations to check if a variable is assigned a value of (x) or (z). They
have no meaning in hardware.

Blocks
Block statements are used to group statements together. XST only
supports sequential blocks. Within these blocks, the statements are
executed in the order listed. Parallel blocks are not supported by XST.
Block statements are designated by begin and end keywords, and
are discussed within examples later in this chapter.

Table 7-2 Results of Evaluating Expressions

a b a==b a===b a!=b a!==b a&b a&&b a|b a||b a^b

0 0 1 1 0 0 0 0 0 0 0

0 1 0 0 1 1 0 0 1 1 1

0 x x 0 x 1 0 0 x x x

0 z x 0 x 1 0 0 x x x

1 0 0 0 1 1 0 0 1 1 1

1 1 1 1 0 0 1 1 1 1 0

1 x x 0 x 1 x x 1 1 x

1 z x 0 x 1 x x 1 1 x

x 0 x 0 x 1 0 0 x x x

x 1 x 0 x 1 x x 1 1 x

x x x 1 x 0 x x x x x

x z x 0 x 1 x x x x x

z 0 x 0 x 1 0 0 x x x

z 1 x 0 x 1 x x 1 1 x

z x x 0 x 1 x x x x x

z z x 1 x 0 x x x x x
XST User Guide 7-7

XST User Guide
Modules
In Verilog a design component is represented by a module. The
connections between components are specified within module
instantiation statements. Such a statement specifies an instance of a
module. Each module instantiation statement must be given a name
(instance name). In addition to the name, a module instantiation
statement contains an association list that specifies which actual nets
or ports are associated with which local ports (formals) of the module
declaration.

All procedural statements occur in blocks that are defined inside
modules. There are two kinds of procedural blocks: the initial block
and the always block. Within each block, Verilog uses a begin and end
to enclose the statements. Since initial blocks are ignored during
synthesis, only always blocks are discussed. Always blocks usually
take the following format:

always
begin
statement
…..

end

where each statement is a procedural assignment line terminated by a
semicolon.

Module Declaration
In the module declaration, the I/O ports of the circuit are declared.
Each port has a name and a mode (in, out, and inout) as shown in the
example below. Following is an example of a module declaration

module EXAMPLE (A, B, C, D, E);
 input A, B, C;
 output D;
 inout E;
 wire D, E;
 ...
 assign E = oe ? A : 1’bz;
 assign D = B & E;

...
endmodule
7-8 Xilinx Development System

Verilog Language Support
The input and output ports defined in the module declaration called
EXAMPLE are the basic input and output I/O signals for the design.
The inout port in Verilog is analogous to a bi-directional I/O pin on
the device with the data flow for output versus input being
controlled by the enable signal to the tristate buffer. The preceding
example describes E as a tristate buffer with a high-true output
enable signal. If oe = 1, the value of signal A will be output on the pin
represented by E. If oe = 0, then the buffer is in high impedance (Z)
and any input value driven on the pin E (from the external logic) will
be brought into the device and fed to the signal represented by D.

Verilog Assignments
There are two forms of assignment statements in the Verilog
language:

• Continuous Assignments

• Procedural Assignments

Continuous Assignments
Continuous assignments are used to model combinatorial logic in a
concise way. Both explicit and implicit continuous assignments are
supported. Explicit continuous assignments are introduced by the
assign keyword after the net has been separately declared. Implicit
continuous assignments combine declaration and assignment.

Note Delays and strengths given to a continuous assignment are
ignored by XST.

Example of an explicit continuous assignment:

wire par_eq_1;
…..
assign par_eq_1 = select ? b : a;

Example of an implicit continuous assignment:

wire temp_hold = a | b;

Note Continuous assignments are only allowed on wire and tri data
types.
XST User Guide 7-9

XST User Guide
Procedural Assignments
Procedural assignments are used to assign values to variables
declared as regs and are introduced by always blocks, tasks, and
functions. Procedural assignments are usually used to model
registers and FSMs.

XST includes support for combinatorial functions, combinatorial and
sequential tasks, and combinatorial and sequential always blocks.

Combinatorial always blocks

Combinatorial logic can be modeled efficiently using two forms of
time control, namely the # and @ Verilog time control statements. The
time control is ignored for synthesis and hence this section
describes modeling combinatorial logic with the @ statement.

A combinatorial always block has a sensitivity list appearing within
parenthesis after the word "always @". An always block is activated if
an event (value change or edge) appears on one of the sensitivity list
signals. This sensitivity list contains all signals which appear in
conditions (if, case, for example) and any signal appearing on the
right hand side of an assignment.

Note In combinatorial processes, if a signal is not explicitly assigned
in all branches of “if" or "case" statements, XST will generate a latch to
hold the last value. To avoid latch creation, assure that all assigned
signals in a combinatorial process are always explicitly assigned in all
paths of the process statements.

Different statements can be used in a process:

• Variable and signal assignment

• If... else statement

• Case statement

• For loop statement

• Function and task call

The following sections provide examples of each of these statements.
7-10 Xilinx Development System

Verilog Language Support
if ... else statement

If ... else statements use true/false conditions to execute statements. If
the expression evaluates to true, the first statement is executed. If the
expression evaluates to false (or x or z), the else statement is executed.
A block of multiple statements may be executed using begin and end
keywords. If ... else statements may be nested.

Example 3-2: Mux Description Using If .. Else Statement

module mux4 (sel, a, b, c, d, outmux);
input [1:0] sel;
input [1:0] a, b, c, d;
output [1:0] outmux;
reg [1:0] outmux;

always @(sel or a or b or c or d)
begin

if (sel[1])
if (sel[0])

outmux = d;
else

outmux = c;
else

if (sel[0])
outmux = b;

else
outmux = a;

end
endmodule

case statement

case statements perform a comparison to an expression to evaluate
one of a number of parallel branches. The case statement evaluates
the branches in the order they are written; the first branch that
evaluates to true is executed. If none of the branches match, the
default branch is executed.

casez treats all z values in any bit position of the branch alternative
as a don’t care.

casex treats all x and z values in any bit position of the branch
alternative as a don’t care.
XST User Guide 7-11

XST User Guide
The question mark (?) can be used as a “don’t care” in any of the
preceding case statements.

Example 3-3: Mux Description Using CASE Statement

module mux4 (sel, a, b, c, d, outmux);
input [1:0] sel;
input [1:0] a, b, c, d;
output [1:0] outmux;
reg [1:0] outmux;

always @(sel or a or b or c or d)
begin

case (sel)
2’b00: outmux = a;
2’b01: outmux = b;
2’b10: outmux = c;
default: outmux = d;

endcase
end

endmodule

The preceding CASE statement will evaluate the values of the input
sel in priority order. To avoid priority processing, it is recommended
that you use a parallel-case Verilog meta comment which will ensure
parallel evaluation of the sel inputs.

Example:

always @(sel or a or b or c or d) //synthesis
parallel_case

for and repeat loops

When using always blocks, repetitive or bit slice structures can also
be described using the "for" statement or the "repeat" statement.

The "for" statement is supported for:

• Constant bounds

• Stop test condition using operators <, <=, > or >=
7-12 Xilinx Development System

Verilog Language Support
• Next step computation falling in one of the following
specifications:

♦ var = var + step

♦ var = var - step

(where var is the loop variable and step is a constant value).

The repeat statement is only supported for constant values.

Example 3-4: For Loop Description

module countzeros (a, Count);
input [7:0] a;
output [2:0] Count;
reg [2:0] Count;
reg [2:0] Count_Aux;
integer i;

always @(a)
begin

Count_Aux = 3’b0;
for (i = 0; i < 8; i = i+1)

begin
if (!a[i])

Count_Aux = Count_Aux+1;
end

Count = Count_Aux;
end

endmodule

Sequential Always Blocks

Sequential circuit description is based on always blocks with a
sensitivity list.

The sensitivity list contains a maximum of three edge-triggered
events: the clock signal event (which is mandatory) and possibly a
reset signal event and a set signal event. One and only one "if-else"
statement is accepted in such an always block.
XST User Guide 7-13

XST User Guide
An asynchronous part may appear before the synchronous part in the
first and the second branch of the "if-else" statement. Signals assigned
in the asynchronous part must be assigned to the constant values ’0’,
’1’, ’X’ or ’Z’ or any vector composed of these values.

These same signals must also be assigned in the synchronous part
(that is, the last branch of the "if-else" statement). The clock signal
condition is the condition of the last branch of the "if-else" statement.

Example 3-5: 8 Bit Register Using an Always Block

module seq1 (DI, CLK, DO);
input [7:0] DI;
input CLK;
output [7:0] DO;
reg [7:0] DO;

always @(posedge CLK)
DO = DI ;

endmodule

Example 3-6 gives the description of an 8-bit register with a clock
signal and an asynchronous reset signal. Example 3-7 describes an
8-bit counter.

Example 3-6: 8 Bit Register with Asynchronous Reset (high-true)
Using an Always Block

module EXAMPLE (DI, CLK, RST, DO);
input [7:0] DI;
input CLK, RST;
output [7:0] DO;
reg [7:0] DO;

always @(posedge CLK or posedge RST)
if (RST == 1’b1)

DO = 8’b00000000;
else

DO = DI;
endmodule
7-14 Xilinx Development System

Verilog Language Support
Example 3-7: 8 Bit Counter with Asynchronous Reset (low-true)
Using an Always Block

module seq2 (CLK, RST, DO);
input CLK, RST;
output [7:0] DO;
reg [7:0] DO;

always @(posedge CLK or posedge RST)
if (RST == 1’b1)

DO = 8’b00000000;
else

DO = DO + 8’b00000001;
endmodule

Assign and Deassign Statements

Assign and deassign statements are supported within simple
templates.

The following is an example of the general template for assign /
deassign statements:

module assig (RST, SELECT, STATE, CLOCK, DATA_IN);
 input RST;

input SELECT;
 input CLOCK;
 input [0:3] DATA_IN;
 output [0:3] STATE;

reg [0:3] STATE;

always @ (RST)
 if(RST)
 begin

assign STATE = 4'b 0;
 end else
 begin
 deassign STATE;
 end

always @ (posedge CLOCK)
XST User Guide 7-15

XST User Guide
 begin
 STATE = DATA_IN;
end

endmodule

Main limitations on support of the assign / deassign statement in
XST are as follows:

• For a given signal, there must be only one assign /deassign
statement. For example, the following design will be rejected:

module dflop (RST, SET, STATE, CLOCK, DATA_IN);
input RST;
input SET;
input CLOCK;
input DATA_IN;
output STATE;

reg STATE;

always @ (RST) // block b1
if(RST)

assign STATE = 1’b 0;
else

deassign STATE;

always @ (SET) // block b1
if(SET)

assign STATE = 1’b 1;
else

deassign STATE;

always @ (posedge CLOCK) // block b2
begin

STATE = DATA_IN;
end

endmodule

• The assign / deassign statement must be performed in the same
always block through an if /else statement. For example, the
following design will be rejected:
7-16 Xilinx Development System

Verilog Language Support
module dflop (RST, SET, STATE, CLOCK, DATA_IN);
input RST;
input SET;
input CLOCK;
input DATA_IN;
output STATE;

reg STATE;

always @ (RST or SET) // block b1
case ({RST,SET})

2’b00: assign STATE = 1’b 0;
2’b01: assign STATE = 1’b 0;
2’b10: assign STATE = 1’b 1;
2’b11: deassign STATE;

endcase

always @ (posedge CLOCK) // block b2
begin

STATE = DATA_IN;
end

endmodule

• You cannot assign a bit/part select of a signal through an assign /
deassign statement. For example, the following design will be
rejected:

module assig (RST, SELECT, STATE, CLOCK,DATA_IN);
input RST;
input SELECT;
input CLOCK;
input [0:7] DATA_IN;
output [0:7] STATE;

reg [0:7] STATE;

always @ (RST) // block b1
if(RST)
begin

assign STATE[0:7] = 8’b 0;
end else
XST User Guide 7-17

XST User Guide
begin
deassign STATE[0:7];

end

always @ (posedge CLOCK) // block b2
begin

if (SELECT)
STATE [0:3]= DATA_IN[0:3];

else
STATE [4:7]= DATA_IN[4:7];

end

Tasks and Functions

The declaration of a function or task is intended for handling blocks
used multiple times in a design. They must be declared and used in a
module. The heading part contains the parameters: input parameters
(only) for functions and input/output/inout parameters for tasks.
The content is similar to the combinatorial always block content.
Recursive function and task calls are not supported.

Example 3-8 shows a function declared within a module. The ADD
function declared is a single-bit adder. This function is called 4 times
with the proper parameters in the architecture to create a 4-bit adder.
The same example, described with a task, is shown in Example 3-9.

Example 3-8: Function Declaration and Function Call

module comb15 (A, B, CIN, S, COUT);
input [3:0] A, B;
input CIN;
output [3:0] S;
output COUT;
wire [1:0] S0, S1, S2, S3;
function [1:0] ADD;

input A, B, CIN;
reg S, COUT;
begin

S = A ^ B ^ CIN;
COUT = (A&B) | (A&CIN) | (B&CIN);
ADD = {COUT, S};

end
endfunction
7-18 Xilinx Development System

Verilog Language Support
assign S0 = ADD (A[0], B[0], CIN),
S1 = ADD (A[1], B[1], S0[1]),
S2 = ADD (A[2], B[2], S1[1]),
S3 = ADD (A[3], B[3], S2[1]),
S = {S3[0], S2[0], S1[0], S0[0]},

COUT = S3[1];
endmodule

Example 3-9: Task Declaration and Task Enable

module EXAMPLE (A, B, CIN, S, COUT);
input [3:0] A, B;
input CIN;
output [3:0] S;
output COUT;
reg [3:0] S;
reg COUT;
reg [1:0] S0, S1, S2, S3;

task ADD;
input A, B, CIN;
output [1:0] C;
reg [1:0] C;
reg S, COUT;

begin
S = A ^ B ^ CIN;
COUT = (A&B) | (A&CIN) | (B&CIN);
C = {COUT, S};

end
endtask

always @(A or B or CIN)
begin

ADD (A[0], B[0], CIN, S0);
ADD (A[1], B[1], S0[1], S1);
ADD (A[2], B[2], S1[1], S2);
ADD (A[3], B[3], S2[1], S3);
S = {S3[0], S2[0], S1[0], S0[0]};
COUT = S3[1];
XST User Guide 7-19

XST User Guide
end

endmodule

Blocking Versus Non-Blocking Procedural
Assignments

The # and @ time control statements delay execution of the statement
following them until the specified event is evaluated as true. Use of
blocking and non-blocking procedural assignments have time control
built into their respective assignment statement.

The # delay is ignored for synthesis.

The syntax for a blocking procedural assignment is shown in the
following example:

Example:

reg a;
a = #10 (b | c);

or

if (in1) out = 1’b0;
else out = in2;

As the name implies, these types of assignments block the current
process from continuing to execute additional statements at the same
time. These should mainly be used in simulation.

Non-blocking assignments, on the other hand, evaluate the
expression at the time when the statement executes but allow other
statements in the same process to execute as well at the same time.
The variable change only occurs after the specified delay.

The syntax for a non-blocking procedural assignment is as follows:

variable <= @(posedge or negedge bit) expression;

Example:

if (in1) out <= 1’b1;
else out <= in2;
7-20 Xilinx Development System

Verilog Language Support
Constants, Macros, Include Files and Comments
This section discusses constants, macros, include files, and comments

Constants

 By default, constants in Verilog are assumed to be decimal integers.
They can be specified explicitly in binary, octal, decimal or
hexadecimal by prefacing them with the appropriate syntax.

Example: 4’b1010, 4’o12, 4’d10 and 4’ha all represent the same value.

Macros

Verilog provides a way to define macros as shown in the following
example:

`define TESTEQ1 4’b1101

Later in the design code a reference to the defined macro is made as
follows:

 if (request == `TESTEQ1)

Example:

‘define myzero 0
assign mysig = ‘myzero;

Verilog provides the ‘ifdef and ‘endif constructs to determine
whether a macro is defined or not. These constructs are used to define
conditional compilation. If the macro called out by the ‘ifdef
command has been defined, that code will be compiled. If not, the
code following the ‘else command is compiled. The ‘else is not
required, but the ‘endif must complete the conditional statement.

 Example:

‘ifdef MYVAR
module if_MYVAR_is_declared;
...
endmodule
‘else
module if_MYVAR_is_not_declared;
...
endmodule
 ‘endif
XST User Guide 7-21

XST User Guide
Include Files

Verilog allows separating source code into more than one file. To use
the code contained in another file, the current file has the following
syntax:

 ‘include "path/file-name-to-be-included"

Multiple ‘include statements are allowed in a single Verilog file. This
is a great feature to make code modular and manageable in a team
design environment where different files describe different modules
of the design.

If files are referenced by an ‘include statement, they must not be
manually added to the project. For example, at the top of a Verilog file
you might see this:

‘timescale 1ns/1ps
‘include "modules.v"
...

If the specified file (in this case, modules.v) has been added to a
Foundation ISE project and is specified with an ‘include, conflicts will
occur and an error message displays:

ERROR: (VLG__5002). fifo.v Line 2. Duplicate
declarations of module

’RAMB4_S8_S8’

Comments

 There are two forms of comments in Verilog similar to the two forms
found in a language like C++.

• // Allows definition of a one-line comment.

• /* You can define a multi-line comment by enclosing it as
illustrated by this sentence*/
7-22 Xilinx Development System

Verilog Language Support
Structural Verilog Features
Structural Verilog descriptions assemble several blocks of code and
allow the introduction of hierarchy in a design. The basic concepts of
hardware structure are the module, the port and the signal. The
component is the building or basic block. A port is a component I/O
connector. A signal corresponds to a wire between components.

In Verilog, a component is represented by a design module. The
module declaration provides the "external" view of the component; it
describes what can be seen from the outside, including the
component ports. The module body provides an "internal" view; it
describes the behavior or the structure of the component.

The connections between components are specified within
component instantiation statements. These statements specify an
instance of a component occurring within another component or the
circuit. Each component instantiation statement is labeled with an
identifier. Besides naming a component declared in a local
component declaration, a component instantiation statement
contains an association list (the parenthesized list) that specifies
which actual signals or ports are associated with which local ports of
the component declaration.

The Verilog language provides a large set of built-in logic gates which
can be instantiated to build larger logic circuits. The set of logical
functions described by the built-in gates include AND, OR, XOR,
NAND, NOR and NOT.

Here is an example of building a basic XOR function of two single bit
inputs a and b.

module build_xor (a, b, c);
 input a, b;
 output c;
 wire c, a_not, b_not;
 not a_inv (a_not, a);
 not b_inv (b_not, b);
 and a1 (x, a_not, b);
 and a2 (y, b_not, a);
 or out (c, x, y);
endmodule
XST User Guide 7-23

XST User Guide
Each instance of the built-in modules has a unique instantiation name
such as a_inv, b_inv, out. The wiring up of the gates describes an
XOR gate in structural Verilog.

Example 3-12 gives the structural description of a half adder
composed of four, 2 input nand modules.

Example 3-12: Structural Description of a Half Adder

module halfadd (X, Y, C, S);
input X, Y;
output C, S;
wire S1, S2, S3;
nand NANDA (S3, X, Y);
nand NANDB (S1, X, S3);
nand NANDC (S2, S3, Y);
nand NANDD (S, S1, S2);
assign C = S3;

endmodule

Figure 7-1 Synthesized Top Level Netlist

The structural features of Verilog HDL also allow designing circuits
by instantiating pre-defined primitives such as gates, registers and
Xilinx specific primitives like CLKDLL and BUFGs. These primitives
are other than those included in the Verilog language. These
pre-defined primitives are supplied with the XST Verilog libraries
(virtex.v, xc9500.v, spartan2.v).

A

B
YNANDA

A

B
YNANDD

A

B
YNANDC

A

B
YNANDB

S3

S2

S1

Y

X

C

S

x8952
7-24 Xilinx Development System

Verilog Language Support
XST also allows instantiation of complex pre-defined macros from a
user developed library to build a larger design. Both name-based and
position-based referencing of I/O ports is supported during module
instantiation.

Example: Structural Instantiation of Register and BUFG

module foo (sysclk, in, reset,out);
 input sysclk, in, reset;
 output out;
 reg out;
 wire sysclk_out;

 FDC register (sysclk, reset, in, out); //position based
//referencing

 BUFG clk (.O(sysclk_out), .I(sysclk)); //name based referencing
….
endmodule

The virtex.v library file supplied with XST, includes the definitions
for FDC and BUFG.

module FDC (C, CLR, D, Q);
 input C;
 input CLR;
 input D;
 output Q;
endmodule
// synthesis attribute BOX_TYPE of FDC is "BLACK_BOX"

module BUFG (O, I);
 output O;
 input I;
endmodule
// synthesis attribute BOX_TYPE of BUFG is "BLACK_BOX"
XST User Guide 7-25

XST User Guide
Parameters
Verilog modules support defining constants known as
PARAMETERS which can be passed to module instances to define
circuits of arbitrary widths. PARAMETERS form the basis of creating
and using LPM blocks in a design to achieve hierarchy and stimulate
modular design techniques.

Example of using PARAMETERS

module lpm_reg (out, in, en, reset, clk);
 parameter SIZE = 1;
 input in, en, reset, clk;
 output out;
 wire [SIZE-1 : 0] in;
 reg [SIZE-1 : 0] out;
 always @(posedge clk or negedge reset)

begin
 if (!reset) out <= SIZE’b0;
 else if (en) out <= in;
 else out <= out; //redundant assignment
 end
endmodule
 module top (); //portlist left blank intentionally
 ...
 wire [7:0] sys_in, sys_out;
 wire sys_en, sys_reset, sysclk;
 lpm_reg #8 buf_373 (sys_out, sys_in, sys_en, sys_reset,sysclk);
 ...
 endmodule

Instantiation of the module lpm_reg with a instantiation width of 8
will cause the instance buf_373 to be 8 bits wide.

assign lpm_reg.out = 8’hFF;
7-26 Xilinx Development System

Verilog Language Support
Verilog Limitations in XST
This section describes Verilog limitations in XST support for case
sensitivity and blocking and nonblocking assignments.

Case Sensitivity
XST supports case sensitivity as follows:

• Designs using case equivalent names for IO ports, nets, regs and
memories

• Equivalent names are renamed using a postfix ("rnm<Index>)

• A rename construct is generated in the EDIF file

• Verilog identifiers that differ only in case

Following is an example.

module upperlower4 (input1, INPUT1, output1,
output2);

input input1;
input INPUT1;

The following restrictions apply for Verilog within XST:

• Designs using equivalent names (named blocks, tasks, and
functions) are rejected.

Example:

...
always @(clk)
begin: fir_main5
reg [4:0] fir_main5_w1;
reg [4:0] fir_main5_W1;

This code generates the following error message:

ERROR :(VLG_6004). Name conflict (<fir_main5/
fir_main5_w1> and <fir_main5/fir_main5_W1>)

• Designs using case equivalent module names are also rejected.

Example:

module UPPERLOWER10 (AA, aa, YT, yt);
...
XST User Guide 7-27

XST User Guide
module upperlower10 (a1, a2, yt1, yt2);
...

This example generates the following error message:

ERROR : (VLG__0106). Module name conflict
(UPPERLOWER10 and upperlower10).

Blocking and Nonblocking Assignments
XST rejects Verilog designs if a given signal is assigned through both
blocking and nonblocking assignments.

Example:

always @(in1) begin
if (in2) out1 = in1;
else out1 <= in2;

end

If a variable is assigned in both a blocking and nonblocking
assignment, the following error message is generated:

ERROR : (VLG__4600). "design.v", line n:
 Cannot mix blocking and non blocking assignments
 on signal <out1>.

There are also restrictions when mixing blocking and nonblocking
assignments on bits and slices.

The following example is rejected even if there is no real mixing of
blocking and non blocking assignments:

if (in2) begin
out1[0] = 1’b0;
out1[1] <= in1;

end
else begin

out1[0] = in2;
out1[1] <= 1’b1;

end

Errors are checked at the signal level, not at the bit level. Note that
this design is also rejected by Synplicity 5.14.

If there is more than a single VLG_4600 error, only the first one will
be reported.
7-28 Xilinx Development System

Verilog Language Support
In some cases, the line number for the error might be incorrect (as
there might be multiple lines where the signal has been assigned).

Verilog Meta Comments
XST supports meta comments in Verilog. Because Verilog does not
offer a method for attribute definition such as VHDL, meta comments
(comments that are understood by the Verilog parser) are used.

Meta comments can be used as follows:

• Set constraints on individual objects (for example, module,
instance, net)

• Set directives on synthesis

♦ parallel_case and full_case directives

♦ translate_on translate_off directives

♦ all tool specific directives (for example, syn_sharing), refer to
the “Design Constraints” chapter for details.

Meta comments can be written using the C-style (/* ... */) or the
Verilog style (// ...) for comments. C-style comments can be multiple
line. Verilog style comments end at the end of the line.

XST supports the following:

• Both C-style and Verilog style meta comments

• translate_on translate_off directives

// synthesis translate_on

// synthesis translate_off

• parallel_case, full_case directives

// synthesis parallel_case full_case

// synthesis parallel_case

// synthesis full_case

• Constraints on individual objects

The general syntax is:

// synthesis attribute AttributeName [of] ObjectName
[is] AttributeValue
XST User Guide 7-29

XST User Guide
Examples:

// synthesis attribute RLOC of u123 is R11C1.S0

// synthesis attribute HUSET u1 MY_SET

// synthesis attribute fsm_extract of State2 is "yes"

// synthesis attribute fsm_encoding of State2 is "gray"

For a full list of constraints, refer to the “Design Constraints” chapter.

Language Support Tables
The following tables indicate which Verilog constructs are supported
in XST. Previous sections in this chapter describe these constructs and
their use within XST.

Note XST does not allow underscores in signal names (for example,
_DATA_1).

Table 7-3 Constants

Integer Constants Supported

Real Constants Unsupported

Strings Constants Unsupported

Table 7-4 Data Types

Nets
net type

wire Supported

tri Supported

supply0,
supply1

Supported

wand, wor,
triand, trior

Supported

tri0, tri1, trireg Unsupported

drive
strength

Ignored
7-30 Xilinx Development System

Verilog Language Support
Registers

reg Supported

integer Supported

real Unsupported

realtime Unsupported

Vectors

net Supported

reg Supported

vectored Supported

scalared Supported

Memories Supported

Parameters Supported

Named Events Unsupported

Table 7-5 Continuous Assignments

Drive Strength Ignored

Delay Ignored

Table 7-6 Procedural Assignments

Blocking Assignments Supported

Non-Blocking Assignments Supported

Continuous Procedural
Assignments

assign Supported with
limitations See the
“Assign and
Deassign
Statements”
section

deassign

force Unsupported

release Unsupported

if Statement if, if else Supported

case Statement case, casex,
casez

Supported

Table 7-4 Data Types
XST User Guide 7-31

XST User Guide
forever Statement Unsupported

repeat Statement Unsupported

while Statement Unsupported

for Statement Supported (bounds
must be static)

fork/join Statement Unsupported

Timing Control on Procedural
Assignments

delay (#) Ignored

event (@) Unsupported

wait Unsupported

named events Unsupported

Sequential Blocks Supported

Parallel Blocks Unsupported

Specify Blocks Ignored

initial Statement Ignored

always Statement Supported

task Supported (Recur-
sion Unsupported)

functions Supported (Recur-
sion Unsupported)

disable Statement Unsupported

Table 7-7 System Tasks and Functions

System Tasks Ignored

System Functions Unsupported

Table 7-6 Procedural Assignments
7-32 Xilinx Development System

Verilog Language Support
Table 7-8 Design Hierarchy

Module definition Supported

Macromodule definition Unsupported

Hierarchical names Unsupported

defparam Supported

Array of instances Unsupported

Table 7-9 Compiler Directives

‘celldefine ‘endcelldefine Ignored

‘default_nettype Ignored

‘define Supported

‘undef Unsupported

‘ifdef ‘else ‘endif Supported

‘include Supported

‘resetall Ignored

‘timescale Ignored

‘unconnected_drive
‘nounconnected_drive

Ignored

‘uselib Unsupported
XST User Guide 7-33

XST User Guide
Primitives
XST supports certain gate level primitives. The supported format is
as follows:

gate_type instance_name (output, inputs, ...);

Example 3-10: Gate Level Primitive Instantiations

and U1 (out, in1, in2);
bufif1 U2 (triout, data, trienable);

The following table shows which primitives are supported.

Table 7-10 Primitives

Gate Level
Primitives

and nand nor or xnor xor Supported

buf not Supported

bufif0 bufif1 notif0 notif1 Supported

pulldown pullup Unsupported

drive strength Ignored

delay Ignored

array of primitives Unsupported

Switch Level
Primitives

cmos nmos pmos rcmos rnmos
rpmos

Unsupported

rtran rtranif0 rtranif1 tran tranif0
tranif1

Unsupported

User Defined
Primitives

Unsupported
7-34 Xilinx Development System

Verilog Language Support
Verilog Reserved Keywords
The following table shows the Verilog reserved keyword

always end ifnone or rpmos tranif1

and endcase initial output rtran tri

assign endmodule inout parameter rtranif0 tri0

begin endfunction input pmos rtranif1 tri1

buf endprimitive integer posedge scalared triand

bufif0 endspecify join primitive small trior

bufif1 endtable large pull0 specify trireg

case endtask macromodule pull1 specparam vectored

casex event medium pullup strong0 wait

casez for module pulldown strong1 wand

cmos force nand rcmos supply0 weak0

deassign forever negedge real supply1 weak1

default for nmos realtime table while

defparam function nor reg task wire

disable highz0 not release time wor

edge highz1 notif0 repeat tran xnor

else if notif1 rnmos tranif0 xor
XST User Guide 7-35

XST User Guide
7-36 Xilinx Development System

Chapter 8

Command Line Mode

This chapter describes how to run XST using the command line. The
chapter contains the following sections.

• “Introduction”

• “Launching XST”

• “Setting Up an XST Script”

• “Run Command”

• “Set Command”

• “Elaborate Command”

• “Time Command”

• “Example 1: How to Synthesize VHDL Designs”

• “Example 2: How to Synthesize Verilog Designs”

Introduction
With XST, you can run synthesis in command line mode instead of
from the Process window in the Project Navigator. To run synthesis
from the command line, you must use special executable files. If you
work on a workstation, the name of the executable is "xst". On a PC,
the name of the executable is "xst.exe".

Before attempting to run XST, it must be properly installed. The XST
installation directory must be specified using the XST_HOME
environment variable or through the -home option.

The XST_EXE and XST_HOME variables must be set as follows:

XST_EXE=path_to_ISE\bin\nt\xst.exe

XST_HOME=path_to_ISE\data\HDLSynthesis\nt
XST User Guide — 3.1i 8-1

XST User Guide
XST will generate 3 types of files:

• Design output files include EDIF (.EDN) and .NCF.

These files are generated in the current output directory (see the
-ofn option)

• Temporary files

Temporary file are generated in the XST temp directory. By
default the XST temp directory is /tmp on workstations and the
directory specified by either the TEMP or TMP environment
variables under Windows. The XST temp directory can be
changed using the "set -tmpdir" command.

• VHDL compilation files

Note There are no compilation files for Verilog.

VHDL compilation files are generated in the VHDL dump
directory. The default dump directory is the XST temp directory.
The VHDL dump directory can be changed using the
"set -dumpdir" command.

Note It is strongly suggested that you clean the VHDL dump directory
regularly because the directory contains the files resulting from the
compilation of all VHDL files during all XST sessions. Eventually the
number of files stored in the VHDL dump directory may severely
impact CPU performances. This directory is not automatically
cleaned by XST.

Launching XST
You can run XST in two ways.

• XST Shell—You can type xst and then enter directly into an XST
shell. You enter your commands and execute them. In fact, in
order to run synthesis you have to specify a complete command
with all required options before running. XST does not accept a
mode where you can first enter set option_1, then set option_2,
and then enter run.

All the options must be set up at once. Therefore, this method is
very cumbersome and Xilinx suggests the use of the next
described method.
8-2 Xilinx Development System

Command Line Mode
• Script File—You can store your commands in a separate script file
and run all of them at once. To execute your script file, run the
following workstation or PC command:

xst -ifn script_file_name [-ofn] log_file_name

Note The -ofn option is not mandatory. If you omit it, then all
messages will display on the screen.

Besides the -ifn and -ofn options, XST also accepts the -home option.
The -home option allows you to specify the XST installation directory
and overwrites the XST_HOME definition.

For example, assume that the text below is contained in a file foo.scr.

run
-ifn tt1.vhd
-ifmt VHDL
-opt_mode SPEED
-opt_level 1
-ofn tt1.edn
-family virtex

This script file can be executed under XST using the following
command:

Workstation:

xst -ifn foo.scr

PC:

xst.exe -ifn foo.scr

You can also generate a log file with the following command:

Workstation:

xst -ifn foo.scr -ofn foo.log

PC:

xst.exe -ifn foo.scr -ofn foo.log

Besides the -ifn and -ofn options, XST also accepts the -home option.
This option allows you to specify the XST installation directory and
will overwrite the XST_HOME definition.

A script file can be run either using xst -ifn script name, or executed
under the XST prompt, by using the script script name command.
XST User Guide 8-3

XST User Guide
Setting Up an XST Script
An XST script is a set of commands, each command having various
options. XST recognizes the following commands:

• run

• set

• elaborate

• time short

Run Command
Following is a description of the run command.

• The command begins with a keyword run, which is followed by
a set of options and its values

run option_1_value option_2_value ...

• Each option name starts with dash (-). For instance: -ifn, -ifmt,
-ofn.

• Each option has one value. There are no options without a value.

• The value for a given option can be one of the following:

♦ Predefined by XST (for instance, YES or NO)

♦ Any string (for instance, a file name or a name of the top level
entity)

♦ An integer

• Options and values are case sensitive.

In the following tables, you can find the name of each option and its
values.

• First column—the name of the options you can use in command
line mode. If the option is in bold, then it means that it must be
present in the command line.

• Second column—the option description

• Third column—the possible values of this option. The values in
bold are the default values.
8-4 Xilinx Development System

Command Line Mode
Table 8-1 Global Options

Run Command
Options

Description Values

-ifn Input/Project File Name file_name

-ifmt Input Format VHDL, Verilog, NSR, EDIF

-ofn Output File Name file_name

-ofmt Output File Format EDIF

-family Target Technology Virtex, VirtexE, Virtex2, Spartan2,
9500, 9500XL, 9500XV

-opt_mode Optimization Criteria AREA, SPEED

-opt_level Optimization Effort 1, 2

-attribfile Constraint File Name file_name

Table 8-2 VHDL Source Options

Run Command
Options

Description Values

-work_lib Work Library name

-ent Entity Name name

-arch Architecture name

Table 8-3 Verilog Source Options

Run Command
Options

Description Values

-top Top Module name name

-vlgcase Case Implementation Style Full, Parallel, Full-Parallel
XST User Guide 8-5

XST User Guide
Table 8-4 HDL Options (VHDL and Verilog)

Run Command
Options

Description Values

-fsm_extract Automatic FSM Extraction YES, NO

-fsm_encoding Encoding Algorithm Auto, One-Hot, Compact,
Sequential, Gray, Johnson, User

-fsm_fftype FSM Flip-Flop Type D, T

-ram_extract FSM Flip-Flop Type YES, NO

-ram_style RAM Style Auto, distributed, block

-mux_extract Mux Extraction YES, NO, FORCE

-mux_style Mux Style Auto, MUXF, MUXCY

-decoder_extract Decoder Extraction YES, NO

-priority_extract Priority Encoder Extraction YES, NO, FORCE

-shreg_extract Shift Register Extraction YES, NO

-shift_extract Logical Shift Extraction YES, NO

-xor_collapse XOR Collapsing YES, NO

-resource_sharing Resource Sharing YES, NO

-complex_clken Complex Clock Enable
Extraction

YES, NO

-resolutionStyle Resolution Style WIRE_OR, WIRE_AND,
WIRE_MS
8-6 Xilinx Development System

Command Line Mode
Table 8-5 Target Options (9500, 9500XL, 9500XV)

Run Command
Options

Description Values

-iobuf Add I/O Buffers YES, NO

-macrogen Macro Generator Macro+, LogiBLOX, Auto

-pld_mp Macro Preserve YES, NO

-pld_xp XOR Preserve YES, NO

-merge Flatten Hierarchy YES, NO

-pld_ce Clock Enable YES, NO

-pld_ffopt Flip-Flop Optimization YES, NO

-wysiwyg What You See Is What You Get YES, NO

-ofmt Output Format EDIF

Table 8-6 Target Options (Virtex, VirtexE, Virtex2, Spartan2)

Run Command
Options

Description Values

-iobuf Add I/O Buffers YES, NO

-speedgrade Speed Grade for Timing
Analysis

integer (Default is the fastest
speed grade available)

-macrogen Macro Generator Macro+

-bufg Maximum Number of BUFGs
created by XST

integer (Default 4)

-maxfanout Maximum Fanout integer (Default 100)

-keep_hierarchy Keep Hierarchy YES, NO

-glob_opt Global Optimization Goal AllClockNets,
Inpad_to_Outpad,
Offset_in_Before,
Offset_out_after,
Max_Delay

-incremental_synthesis Incremental Synthesis YES, NO

-register_duplication Register Duplication YES, NO

-ofmt Output Format EDIF
XST User Guide 8-7

XST User Guide
Set Command
In addition to the run command, XST also recognizes the set
command. This command accepts the following options:

Elaborate Command
The goal of this command is to pre-compile VHDL files in a specific
library or to verify Verilog files. Taking into account that the
compilation process is included in the "run", this command remains
optional.

The elaborate command accepts the following options:

Table 8-7 Set Command Options

Set Command
Options

Description Values

-tmpdir Location of all temporary files
generated by XST during a
session

Any valid path to a directory

-dumpdir Location of all files resulting
from VHDL compilation

Any valid path to a directory

-overwrite Overwrite existing files. When
NO, if XST generates a file that
already exists, the previous file
will be saved using .000, .001
suffixes

YES, NO

Table 8-8 Elaborate Command Options

Elaborate
Command Options

Description Values

-ifn VHDL file or project Verilog
file

filename

-ifmt Format VHDL, VERILOG

-work_lib VHDL working library, not
available for Verilog

name
8-8 Xilinx Development System

Command Line Mode
Time Command
The time command displays some information about CPU
utilization.

Use the command time short to enable the CPU information. Use
the command time off to remove reporting of CPU utilization. By
default, CPU utilization is not reported.

Example 1: How to Synthesize VHDL Designs
The goal of this example is to synthesize a hierarchical VHDL design
for a Virtex FPGA.

Following are two main cases:

• Case 1—all design blocks (entity/architecture pairs) are located
in a single VHDL file.

• Case 2—each design block (entity/architecture pair) is located in
a separate VHDL file.

The example uses a VHDL design, called watchvhd. The files for
watchvhd can be found in the ISEexamples\watchvhd directory of
the Foundation ISE installation directory.

This design contains 6entities:

• stopwatch

• statmach

• tenths (a CORE Generator core)

• decode

• cnt60

• hex2led

Case 1
For Case 1, all design blocks will be located in a single VHDL file.

1. Create a new directory called vhdl_s.

2. Copy the following files from the ISEexamples\watchvhd
directory of the Foundation ISE installation directory to the
vhdl_s directory.
XST User Guide 8-9

XST User Guide
♦ stopwatch.vhd

♦ statmach.vhd

♦ decode.vhd

♦ cnt60.vhd

♦ hex2led.vhd

3. Copy and paste the contents of the files into a single file called
’watchvhd.vhd’. Make sure the contents of ’stopwatch.vhd’
appear last in the file.

4. To synthesize this design for Speed with optimization effort 1
(Low), execute the following command:

run -ifn watchvhd.vhd -ifmt VHDL -ofn watchvhd.edn
-ofmt EDIF -family Virtex -opt_mode Speed -
opt_level 1

Please note that all options in this command except the
-opt_mode and -opt_level ones are mandatory. All other options
will be used by default.

This command can be launched in two ways:

• Directly from an XST shell

• Script mode

XST Shell

To use the XST shell, perform the following steps:

1. In the tcsh or other shell type "xst". XST will start and prompt you
with the following message:

XST D-19
Copyright (c) 1995-2000 Xilinx, Inc. All rights
reserved.
-->

2. Enter the following command at the - -> prompt to start
synthesis.

run -ifn watchvhd.vhd -ifmt VHDL -ofn watchvhd.edn
-ofmt EDIF -family Virtex -opt_mode Speed
-opt_level 1
8-10 Xilinx Development System

Command Line Mode
3. When the synthesis is complete, XST shows the prompt -->, you
can type quit to exit the XST shell.

During this run, XST creates the following files:

• watchvhd.edn: an EDIF netlist ready for the implementation
tools

• watchvhd.ncf: a NCF file

Note All messages issued by XST are displayed on the screen only. If
you want to save your messages in a separate log file, then the best
way is to use script mode to launch XST.

In the previous run, XST synthesized entity "stopwatch" as a top level
module of the design. The reason is that this block was placed at the
end of the VHDL file. XST picks up the latest block in the VHDL file
and treats it as a top level one. Suppose you would like to synthesize
just "hex2led" and check its performance independently of the other
blocks. This can be done by specifying the top level entity to
synthesize in the command line using the -ent option (please refer to
Table 8-2 of this chapter or more information):

run -ifn watchvhd.vhd -ifmt VHDL -ofn watchvhd.edn
-ofmt EDIF -family Virtex -opt_mode Speed -opt_level 1
-ent hex2led

Script Mode

It can be very tedious work to enter XST commands directly in the
XST shell, especially when you have to specify several options and
execute the same command several times. You can run XST in a script
mode as follows:

1. Open a new file named xst.cmd in the current directory. Put the
previously executed XST shell command into this file and save it.

run -ifn watchvhd.vhd -ifmt VHDL -ofn watchvhd.edn
-ofmt EDIF -family Virtex -opt_mode Speed
-opt_level 1

2. From the tcsh or other shell, enter the following command to start
synthesis.

xst -ifn xst.cmd
XST User Guide 8-11

XST User Guide
3. Please note that in this case all XST messages will display on the
screen. If you want to save them in a separate log file, for
example, watchvhd.log, you must execute the following
command.

xst -ifn xst.cmd -ofn watchvhd.log

You can improve the readability of the xst.cmd file, especially if you
use many options to run synthesis. You can place each option with its
value on a separate line, respecting the following rules:

• The first line must contain only the run command without any
options.

• There must be no empty lines in the middle of the command.

• Each line (except the first one) must start with a dash (-)

For the previously used command you may have the xst.cmd file in
the following form:

run
-ifn watchvhd.vhd
-ifmt VHDL
-ofn watchvhd.edn
-ofmt EDIF
-family Virtex
-opt_mode Speed
-opt_level 1

Case 2
For Case 2, each design block is located in a separate VHDL file.

1. Create a new directory, named vhdl_m.

2. Copy the following files from the ISEexamples\watchvhd
directory of the Foundation ISE installation directory to the
newly created vhdl_m directory.

♦ stopwatch.vhd

♦ statmach.vhd

♦ decode.vhd

♦ cnt60.vhd

♦ hex2led.vhd
8-12 Xilinx Development System

Command Line Mode
To synthesize the design, which is now represented by three VHDL
files, you can use the project approach supported in XST. A VHDL
project file contains a list of VHDL files from the project. The order of
the files is not important. XST is able to recognize the hierarchy and
compile VHDL files in the correct order. Moreover, XST automatically
detects the top level block for synthesis.

For the example, perform the following steps:

1. Open a new file, called watchvhd.prj

2. Enter the names of the VHDL files in any order into this file and
save the file:

statmach.vhd

decode.vhd

stopwatch.vhd

cnt60.vhd

hex2led.vhd

3. To synthesize the design, execute the following command from
XST shell or via script file:

run -ifn watchvhd.prj -ifmt VHDL -ofn watchvhd.edn
-ofmt EDIF -family Virtex -opt_mode Speed
-opt_level 1

If you want to synthesize just "hex2led" and check its performance
independently of the other blocks, you can specify the top level entity
to synthesize in the command line, using the -ent option (please refer
to Table 8-2 for more details):

run -ifn watchvhd.prj -ifmt VHDL -ofn watchvhd.edn
-ofmt EDIF -family Virtex -opt_mode Speed -opt_level 1
-ent hex2led

 During VHDL compilation, XST uses the library "work" as the
default. If some VHDL files must be compiled to different libraries,
then you can add the name of the library just before the file name.
Suppose that "hexl2led" must be compiled into the library, called
"my_lib", then the project file must be:
XST User Guide 8-13

XST User Guide
statmach.vhd
decode.vhd
stopwatch.vhd
cnt60.vhd
my_lib hex2led.vhd

Sometimes, XST is not able to recognize the order and issues the
following message.

WARNING: (VHDL_3204). The sort of the vhdl files
failed, they will be compiled in the order of
the project file.

In this case you must do the following:

• Put all VHDL files in the correct order.

• Add at the end of the list on a separate line the keyword "nosort".
XST will then use your predefined order during the compilation
step.

statmach.vhd
decode.vhd
cnt60.vhd
hex2led.vhd
stopwatch.vhd
nosort

Example 2: How to Synthesize Verilog Designs
The goal of this example is to synthesize a hierarchical Verilog design
for a Virtex FPGA.

Two main cases are considered:

• All design blocks (modules) are located in a single Verilog file.

• Each design block (modules) is located in a separate Verilog file.

Example 2 uses a Verilog design, called watchver. These files can be
found in the ISEexamples\watchver directory of the Foundation ISE
installation directory.

• stopwatch.v

• statmach.v

• decode.v
8-14 Xilinx Development System

Command Line Mode
• cnt60.v

• hex2led.v

This design contains six modules:

• stopwatch

• statmach

• tenths (a CORE Generator core)

• decode

• cnt60

• HEX2LED

Case 1
All design blocks will be located in a single Verilog file.

1. Create a new directory called vlg_s.

2. Copy the following files from the ISEexamples\watchver
directory of the Foundation ISE installation directory to the
newly created vlg_s directory.

3. Copy and paste the contents of the files into a single file called
’watchver.ver’. Make sure the contents of ’stopwatch.v’ appear
last in the file.

 To synthesize this design for Speed with optimization effort 1 (Low),
execute the following command:

run -ifn watchver.v -ifmt Verilog -ofn watchver.edn
-ofmt EDIF -family Virtex -opt_mode Speed -opt_level 1

Note All options in this command except -opt_mode and -opt_level
ones are mandatory. All other options are used by default.

This command can be launched in two ways:

• Directly from the XST shell

• Script mode
XST User Guide 8-15

XST User Guide
XST Shell

To use the XST shell, perform the following steps.

1. In the tcsh or other shell, enter xst. XST begins and prompts you
with the following message:

XST D-19
Copyright (c) 1995-2000 Xilinx, Inc. All rights

reserved.
-->

2. Enter the following command at the - -> prompt to start
synthesis:

run -ifn watchver.v -ifmt Verilog -ofn
watchver.edn -ofmt EDIF -family Virtex -opt_mode
Speed -opt_level 1

3. When the synthesis is complete, XST displays the - -> prompt.
Enter quit to exit the XST shell.

During this run, XST creates the following files:

• watchver.edn: an EDIF netlist ready for the implementation tools

• watchver.ncf: a NCF file

Note All messages issued by XST are displayed on the screen only. If
you want to save your messages in a separate log file, then the best
way is to use script mode to launch XST.

In the previous run, XST synthesized module, stopwatch, as the top
level module of the design. XST automatically recognizes the
hierarchy and detects the top level module. If you would like to
synthesize just HEX2LED and check its performance independently
of the other blocks, you can specify the top level module to synthesize
in the command line, using the -top option (please refer to Table 8-3)

run -ifn watchver.v -ifmt Verilog -ofn watchver.edn
-ofmt EDIF -family Virtex -opt_mode Speed -opt_level 1
-top HEX2LED
8-16 Xilinx Development System

Command Line Mode
Script Mode

It can be very tedious work entering XST commands directly into the
XST shell, especially when you have to specify several options and
execute the same command several times. You can run XST in a script
mode as follows.:

1. Open a new file called xst.cmd in the current directory. Put the
previously executed XST shell command into this file and save it.

run -ifn watchver.v -ifmt Verilog -ofn
watchver.edn -ofmt EDIF -family Virtex -opt_mode
Speed -opt_level 1

2. From the tcsh or other shell, enter the following command to start
synthesis.

xst -ifn xst.cmd

3. Please note that in this case all XST messages display on the
screen. If you want to save these messages in a separate log file,
for example, watchver.log, execute the following command.

xst -ifn xst.cmd -ofn watchver.log

You can improve the readability of the xst.cmd file, especially if you
use many options to run synthesis. You can place each option with its
value on a separate line, respecting the following rules:

• The first line must contain only the run command without any
options.

• There must be no empty lines in the middle of the command

• Each line (except the first one) must start with a dash (-)

For the previously used command, you may have the xst.cmd file in
the following form:

run
-ifn watchver.v
-ifmt Verilog
-ofn watchver.edn
-ofmt EDIF
-family Virtex
-opt_mode Speed
-opt_level 1
XST User Guide 8-17

XST User Guide
Case 2
Each design block is located in a separate Verilog file.

1. Create a new directory named vlg_m.

2. Copy the watchver design files from the ISEexamples\watchver
directory of the Foundation ISE installation directory to the
newly created vlg_m directory.

To synthesize the design, which is now represented by four Verilog
files, you can use the project approach supported in XST. A Verilog
project file contains a set of "include" Verilog statements (one each per
Verilog module). The order of the files in the project is not important.
XST is able to recognize the hierarchy and compile Verilog files in the
correct order. Moreover, XST automatically detects the top level
module for synthesis.

For our example:

1. Open a new file, called watchver.v

2. Enter the names of the Verilog files in any order into this file and
save it:

‘include "decode.v"
‘include "statmach.v"
‘include "stopwatch.v"
‘include "cnt60.v"
‘include "hex2led.v"

3. To synthesize the design, execute the following command from
the XST shell or via a script file:

run -ifn watchver.v -ifmt Verilog -ofn
watchver.edn -ofmt EDIF -family Virtex -opt_mode
Speed -opt_level 1

If you want to synthesize just HEX2LED and check its performance
independently of the other blocks, you can specify the top level
module to synthesize in the command line, using the -top option
(please refer to Table 8-3 for more information):

run -ifn watchver.v -ifmt Verilog -ofn watchver.edn
-ofmt EDIF -family Virtex -opt_mode Speed -opt_level 1
-top HEX2LED
8-18 Xilinx Development System

Appendix A

XST Naming Conventions

This appendix discusses net naming and instance naming
conventions.

Net Naming Conventions
These rules are listed in order of naming priority.

1. External pin names maintained.

2. Keep hierarchy in signal names, using underscores as hierarchy
designators.

3. Output signal names of registers, including state bits, will be
maintained. Use the hierarchical name from the level where the
register was inferred.

4. Output signals of clock buffers get _clockbuffertype (like _BUFGP
or _IBUFG) following the clock signal name.

5. Input nets to registers and tristates maintain their names.

6. Output net names of IBUFs are named net_name_IBUF. For
example, for an IBUF with an output net name of DIN, the output
IBUF net name is DIN_IBUF.

Input net names to OBUFs are named net_name_OBUF. For
example, for an OBUF with an input net name of DOUT, the
input OBUF net name is DOUT_OBUF.
XST User Guide — 3.1i A-1

XST User Guide
Instance Naming Conventions
 These rules are listed in order of naming priority.

1. Keep hierarchy in instance names, using underscores as
hierarchy designators.

2. Register instances, including state bits, will be named for the
output signal.

3. Clock buffer instances are named _clockbuffertype (like _BUFGP or
_IBUFG) after the output signal.

4. Instantiation instance names of black boxes are maintained.

5. Instantiation instance names of library primitives are maintained.

6. Input and output buffers are named _IBUF or _OBUF after the
pad name.

7. Output instance names of IBUFs are named instance_name_IBUF.

Input instance names to OBUFs are named instance_name_OBUF.
A-2 Xilinx Development System

	Xilinx Synthesis Technology (XST) User Guide
	About This Manual
	Conventions
	Typographical
	Online Document

	Table of Contents
	Introduction
	Architecture Support
	XST Flow

	HDL Coding Techniques
	Introduction
	Signed/Unsigned Support
	Registers
	Log File
	Related Constraints
	DFF with Positive-Edge Clock
	VHDL Code
	Verilog Code

	DFF with Negative-Edge Clock and Asynchronous Clear
	VHDL Code
	Verilog Code

	DFF with Positive-Edge Clock and Synchronous Set
	VHDL Code
	Verilog Code

	DFF with Positive-Edge Clock and Clock Enable
	VHDL Code
	Verilog Code

	Latches
	Log File
	Related Constraints
	Latch with Positive Gate
	VHDL Code
	Verilog Code

	Latch with Positive Gate and Asynchronous Clear
	VHDL Code
	Verilog Code

	4-bit Latch with Inverted Gate and Asynchronous Preset
	VHDL Code
	Verilog Code

	4-bit Register with Positive-Edge Clock, Asynchronous Set and Clock Enable
	VHDL Code
	Verilog Code

	Tristates
	Log File
	Related Constraints
	Description Using Combinatorial Process and Always Block
	VHDL Code
	Verilog Code

	Description Using Concurrent Assignment
	VHDL Code
	Verilog Code

	Counters
	Log File
	4-bit Unsigned Up Counter with Asynchronous Clear
	VHDL Code
	Verilog Code

	4-bit Unsigned Down Counter with Synchronous Set
	VHDL Code
	Verilog Code

	4-bit Unsigned Up Counter with Asynchronous Load from Primary Input
	VHDL Code
	Verilog Code

	4-bit Unsigned Up Counter with Synchronous Load with a Constant
	VHDL Code
	Verilog Code

	4-bit Unsigned Up Counter with Asynchronous Clear and Clock Enable
	VHDL Code
	Verilog Code

	4-bit Unsigned Up/Down counter with Asynchronous Clear
	VHDL Code
	Verilog Code

	4-bit Signed Up Counter with Asynchronous Reset
	VHDL Code
	Verilog Code

	Accumulators
	Log File
	4-bit Unsigned Up Accumulator with Asynchronous Clear
	VHDL Code
	Verilog Code

	Shift Registers
	Log File
	Related Constraints
	8-bit Shift-Left Register with Positive-Edge Clock, Serial In, and Serial Out
	VHDL Code
	Verilog Code

	8-bit Shift-Left Register with Negative-Edge Clock, Clock Enable, Serial In, and Serial Out
	VHDL Code
	Verilog Code

	8-bit Shift-Left Register with Positive-Edge Clock, Asynchronous Clear, Serial In, and Serial Out
	VHDL Code
	Verilog Code

	8-bit Shift-Left Register with Positive-Edge Clock, Synchronous Set, Serial In, and Serial Out
	VHDL Code
	Verilog Code

	8-bit Shift-Left Register with Positive-Edge Clock, Serial In, and Parallel Out
	VHDL Code
	Verilog Code

	8-bit Shift-Left Register with Positive-Edge Clock, Asynchronous Parallel Load, Serial In, and Se...
	VHDL Code
	Verilog Code

	8-bit Shift-Left Register with Positive-Edge Clock, Synchronous Parallel Load, Serial In, and Ser...
	VHDL Code
	Verilog Code

	8-bit Shift-Left/Shift-Right Register with Positive- Edge Clock, Serial In, and Parallel Out
	VHDL Code
	Verilog Code

	Multiplexers
	Log File
	Related Constraints
	4-to-1 1-bit MUX using IF Statement
	VHDL Code
	Verilog Code

	4-to-1 MUX Using CASE Statement
	VHDL Code
	Verilog Code

	4-to-1 MUX Using Tristate Buffers
	VHDL Code
	Verilog Code

	No 4-to-1 MUX
	VHDL Code
	Verilog Code

	Decoders
	Log File
	Related Constraints
	VHDL (One-Hot)
	Verilog (One-Hot)
	VHDL (One-Cold)
	Verilog (One-Cold)
	VHDL
	Verilog
	VHDL
	Verilog

	Priority Encoders
	Log File
	3-Bit 1-of-9 Priority Encoder
	Related Constraint
	VHDL
	Verilog

	Logical Shifters
	Log File
	Related Constraints
	Example 1
	VHDL
	Verilog

	Example 2
	VHDL
	Verilog

	Example 3
	VHDL
	Verilog

	Arithmetic Operations
	Adders, Subtractors, Adders/Subtractors
	Log File
	Unsigned 8-bit Adder
	VHDL
	Verilog

	Unsigned 8-bit Adder with Carry In
	VHDL
	Verilog

	Unsigned 8-bit Adder with Carry Out
	VHDL
	Verilog

	Unsigned 8-bit Adder with Carry In and Carry Out
	VHDL
	Verilog

	Simple Signed 8-bit Adder
	VHDL
	Verilog

	Unsigned 8-bit Subtractor
	VHDL
	Verilog

	Unsigned 8-bit Adder/Subtractor
	VHDL
	Verilog

	Comparators (=, /=,<, <=, >, >=)
	Log File
	Unsigned 8-bit Greater or Equal Comparator
	VHDL
	Verilog

	Multipliers
	Log File
	Unsigned 8x4-bit Multiplier
	VHDL
	Verilog

	Dividers
	Log File
	Division By Constant 2
	VHDL
	Verilog

	Resource Sharing
	Log File
	Related Constraint
	Example
	VHDL
	Verilog

	RAMs
	Log File
	Related Constraints
	Single Port RAM with Asynchronous Read
	VHDL
	Verilog

	Single Port RAM with "false" Synchronous Read
	VHDL
	Verilog
	VHDL
	Verilog

	Single-Port RAM with Synchronous Read (Read Through)
	VHDL
	Verilog

	Dual-port RAM with Asynchronous Read
	VHDL
	Verilog

	Dual-port RAM with False Synchronous Read
	VHDL
	Verilog

	Dual-port RAM with Synchronous Read (Read Through)
	VHDL
	Verilog
	VHDL
	Verilog

	Multiple-Port RAM Descriptions
	VHDL
	Verilog

	State Machines
	Related Constraints
	FSM: 1 Process
	VHDL
	Verilog

	FSM: 2 Processes
	VHDL
	Verilog

	FSM: 3 Processes
	VHDL
	Verilog
	State Registers
	Next State Equations
	FSM Outputs
	FSM Inputs
	State Encoding Techniques
	Auto
	One-Hot
	Gray
	Compact
	Johnson
	Sequential
	User

	Log File

	Black Box Support
	Log File
	Related Constraints
	VHDL
	Verilog

	FPGA Optimization
	Introduction
	Virtex Specific Options
	Timing Constraints
	Definitions
	Examples
	Timing Model
	Priority
	Limitations

	Macro Generation
	Arithmetic Functions
	Loadable Functions
	Multiplexers
	Priority Encoder
	Decoder
	Shift Register
	RAMs

	Log File Analysis
	Design Optimization
	Resource Usage
	Timing Report
	Timing Summary
	Timing Detail

	NCF Generation
	Virtex Primitive Support
	VHDL
	Verilog
	Log File
	Instantiation of MUXF5
	VHDL
	Verilog

	Instantiation of MUXF5 with XST Virtex Libraries
	VHDL
	Verilog

	Related Constraints

	CPLD Optimization
	CPLD Synthesis Options
	Introduction
	Global CPLD Synthesis Options
	Families
	List of Options

	Implementation Details for Macro Generation
	Log File Analysis
	NCF File
	Improving Results
	How to Obtain Better Frequency?
	How to Fit a Large Design?

	Design Constraints
	Introduction
	Setting Constraints and Options
	Synthesis Options
	Constraints File
	Inference Report Detail

	HDL Options
	Xilinx Specific Options
	Command Line Options
	VHDL Attribute Syntax
	Verilog Meta Comment Syntax
	Constraint File Syntax and Utilization

	XST Constraints
	General
	Optimization Goal
	Optimization Effort
	Box Type

	Case Implementation Style
	Translate Off/Translate On (Verilog/VHDL)
	Parallel Case (Verilog)
	Full Case (Verilog)

	Add IO Buffers

	HDL Inference and Optimization
	Automatic FSM Extraction
	FSM Encoding Algorithm
	FSM Flip-Flop Type
	Enumeration Encoding
	Extract RAM
	Extract Muxes
	Decoder Extraction
	Priority Encoder Extraction
	Shift Register Extraction
	Logical Shifter Extraction
	XOR Collapsing
	Resource Sharing
	Complex Clock Enable Extraction
	Resolution Style

	FPGA Options
	Mux Style
	RAM Style
	Speed Grade for Timing Analysis
	Max Fanout
	Add Generic Clock Buffer
	Maximum Number of Clock Buffers Created by XST
	Clock Buffer Type
	Specifying a Port as a Clock
	Packing Flip-Flops and Latches in IOBs

	Sig_isclock
	Register Duplication
	Keep Hierarchy
	Incremental Synthesis
	Resynthesis
	Global Optimization Goal

	CPLD Options
	Macro Generator
	Flatten Hierarchy
	Macro Preserve
	XOR Preserve
	FF Optimization
	Complex Clock Enable Extraction

	Summary
	Implementation Constraints
	Handling by XST
	Examples
	Example 1
	Example 2
	Example 3

	Third Party Constraints
	Constraints Precedence

	VHDL Language Support
	Introduction
	Data Types in VHDL
	Overloaded Data Types
	Bi-dimensional Array Types

	Objects in VHDL
	Operators
	Entity and Architecture Descriptions
	Entity Declaration
	Architecture Declaration
	Component Instantiation
	Component Configuration
	Generic Parameter Declaration

	Combinatorial Circuits
	Concurrent Signal Assignments
	Simple Signal Assignment
	Selected Signal Assignment
	Conditional Signal Assignment
	Generate Statement
	Combinatorial Process
	If .. Else Statement
	Case Statement
	For .. Loop Statement

	Sequential Circuits
	Sequential Process with a Sensitivity List
	Sequential Process without a Sensitivity List
	Examples of Register and Counter Descriptions
	Multiple Wait Statements Descriptions

	Functions and Procedures
	Packages
	STANDARD Package
	IEEE Packages
	IEEE Numeric Packages

	VHDL Language Support
	VHDL Reserved Words

	Verilog Language Support
	Introduction
	Behavioral Features of Verilog
	Variable Declaration
	Data Types
	Legal Statements
	Expressions
	Blocks
	Modules
	Module Declaration
	Verilog Assignments
	Continuous Assignments
	Procedural Assignments
	Combinatorial always blocks
	if ... else statement
	case statement
	for and repeat loops
	Sequential Always Blocks
	Assign and Deassign Statements
	Tasks and Functions
	Blocking Versus Non-Blocking Procedural Assignments

	Constants, Macros, Include Files and Comments
	Constants
	Macros
	Include Files
	Comments

	Structural Verilog Features
	Parameters
	Verilog Limitations in XST
	Case Sensitivity
	Blocking and Nonblocking Assignments

	Verilog Meta Comments
	Language Support Tables
	Primitives
	Verilog Reserved Keywords

	Command Line Mode
	Introduction
	Launching XST
	Setting Up an XST Script
	Run Command
	Set Command
	Elaborate Command
	Time Command
	Example 1: How to Synthesize VHDL Designs
	Case 1
	XST Shell
	Script Mode

	Case 2

	Example 2: How to Synthesize Verilog Designs
	Case 1
	XST Shell
	Script Mode

	Case 2

	XST Naming Conventions
	Net Naming Conventions
	Instance Naming Conventions

