Foundation
Series ISE 3.11
User Guide

Foundation Series ISE 3.1i User Guide — Online

Introduction

Design Environment
Creating a Project
Project Navigator
HDL Sources
Schematic Sources
State Diagrams
LogiBLOX

CORE Generator

HDL Library Mapping
Design Constraints
Simulation

Synthesis
Implementing the Design

Snapshots

Programming the Device

Printed in U.S.A.

Foundation Series ISE 3.1i User Guide

Foundation Series ISE 3.1i User Guide

X o

The Xilinx logo shown above is a registered trademark of Xilinx, Inc.

ASYL, FPGA Architect, FPGA Foundry, NeoCAD, NeoCAD EPIC, NeoCAD PRISM, NeoROUTE, Timing Wizard,
TRACE, XACT, XILINX, XC2064, XC3090, XC4005, XC5210, and XC-DS501 are registered trademarks of Xilinx,
Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

All XC-prefix product designations, A.K.A Speed, Alliance Series, AllianceCORE, BITA, CLC, Configurable Logic
Cell, CoolRunner, CORE Generator, CoreLINX, Dual Block, EZTag, FastCLK, FastCONNECT, FastFLASH,
FastMap, Fast Zero Power, Foundation, HardWire, IRL, LCA, LogiBLOX, Logic Cell, LogiCORE, LogicProfessor,
MicroVia, MultiLINX, PLUSASM, PowerGuide, PowerMaze, QPro, RealPCl, RealPCl 64/66, Selectl/O,
SelectRAM, SelectRAM+, Silicon Xpresso, Smartguide, Smart-IP, SmartSearch, Smartspec, SMARTSwitch,
Spartan, TrueMap, UIM, VectorMaze, VersaBlock, VersaRing, Virtex, WebFitter, WebLINX, WebPACK, XABEL,
XACTstep, XACTstep Advanced, XACTstep Foundry, XACT-Floorplanner, XACT-Performance, XAM, XAPP, X-
BLOX, X-BLOX plus, XChecker, XDM, XDS, XEPLD, Xilinx Foundation Series, XPP, XSI, and ZERO+ are
trademarks of Xilinx, Inc. The Programmable Logic Company and The Programmable Gate Array Company are
service marks of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown
herein; nor does it convey any license under its patents, copyrights, or maskwork rights or any rights of others.
Xilinx, Inc. reserves the right to make changes, at any time, in order to improve reliability, function or design and
to supply the best product possible. Xilinx, Inc. will not assume responsibility for the use of any circuitry described
herein other than circuitry entirely embodied in its products. Xilinx, Inc. devices and products are protected under
one or more of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216; 4,713,557, 4,746,822; 4,750,155;
4,758,985; 4,820,937; 4,821,233; 4,835,418; 4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135;
5,023,606; 5,028,821; 5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056; 5,243,238;
5,245,277, 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704, 5,329,174, 5,329,181,
5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248, 5,349,249; 5,349,250; 5,349,691, 5,357,153;
5,360,747; 5,361,229; 5,362,999; 5,365,125; 5,367,207, 5,386,154, 5,394,104; 5,399,924; 5,399,925; 5,410,189;
5,410,194; 5,414,377, 5,422,833; 5,426,378; 5,426,379; 5,430,687, 5,432,719; 5,448,181, 5,448,493; 5,450,021,
5,450,022; 5,453,706; 5,455,525; 5,466,117; 5,469,003; 5,475,253, 5,477,414, 5,481,206, 5,483,478; 5,486,707
5,486,776; 5,488,316; 5,489,858; 5,489,866; 5,491,353; 5,495,196, 5,498,979; 5,498,989; 5,499,192; 5,500,608;
5,500,609; 5,502,000; 5,502,440; 5,504,439; 5,506,518; 5,506,523; 5,506,878; 5,513,124; 5,517,135; 5,521,835;
5,521,837; 5,523,963; 5,523,971; 5,524,097, 5,526,322; 5,528,169; 5,528,176; 5,530,378; 5,530,384; 5,546,018;
5,550,839; 5,550,843; 5,552,722; 5,553,001, 5,559,751, 5,561,367; 5,561,629; 5,561,631; 5,563,527; 5,563,528;
5,5663,529; 5,563,827; 5,565,792; 5,566,123; 5,570,051, 5,574,634, 5,574,655; 5,578,946; 5,581,198; 5,581,199;
5,581,738; 5,583,450; 5,583,452; 5,592,105; 5,594,367; 5,598,424, 5,600,263; 5,600,264; 5,600,271; 5,600,597;
5,608,342; 5,610,536; 5,610,790; 5,610,829; 5,612,633; 5,617,021, 5,617,041; 5,617,327; 5,617,573; 5,623,387,
5,627,480; 5,629,637; 5,629,886; 5,631,577; 5,631,583; 5,635,851, 5,636,368; 5,640,106; 5,642,058; 5,646,545;
5,646,547; 5,646,564; 5,646,903; 5,648,732; 5,648,913; 5,650,672; 5,650,946; 5,652,904; 5,654,631, 5,656,950;
5,657,290; 5,659,484; 5,661,660; 5,661,685; 5,670,896, 5,670,897, 5,672,966; 5,673,198; 5,675,262; 5,675,270;
5,675,589; 5,677,638; 5,682,107; 5,689,133; 5,689,516, 5,691,907, 5,691,912; 5,694,047; 5,694,056; 5,724,276;
5,694,399; 5,696,454; 5,701,091; 5,701,441, 5,703,759; 5,705,932; 5,705,938; 5,708,597; 5,712,579; 5,715,197,
5,717,340; 5,719,506; 5,719,507; 5,724,276; 5,726,484, 5,726,584; 5,734,866; 5,734,868; 5,737,234, 5,737,235;

Xilinx Development System

5,737,631;5,742,178; 5,742,531, 5,744,974, 5,744,979; 5,744,995; 5,748,942; 5,748,979; 5,752,006; 5,752,035;
5,754,459; 5,758,192; 5,760,603; 5,760,604; 5,760,607; 5,761,483; 5,764,076; 5,764,534; 5,764,564 5,768,179;
5,770,951;5,773,993; 5,778,439; 5,781,756; 5,784,313; 5,784,577, 5,786,240; 5,787,007; 5,789,938; 5,790,479;
5,790,882; 5,795,068; 5,796,269; 5,798,656; 5,801,546; 5,801,547; 5,801,548; 5,811,985; 5,815,004; 5,815,016;
5,815,404; 5,815,405; 5,818,255; 5,818,730; 5,821,772; 5,821,774, 5,825,202; 5,825,662; 5,825,787; 5,828,230;
5,828,231; 5,828,236; 5,828,608; 5,831,448; 5,831,460; 5,831,845; 5,831,907; 5,835,402; 5,838,167; 5,838,901;
5,838,954; 5,841,296; 5,841,867; 5,844,422; 5,844,424; 5,844,829; 5,844,844, 5,847,577, 5,847,579; 5,847,580;
5,847,993; 5,852,323; 5,861,761, 5,862,082; 5,867,396, 5,870,309; 5,870,327, 5,870,586; 5,874,834; 5,875,111,
5,877,632;5,877,979; 5,880,492; 5,880,598; 5,880,620; 5,883,525; 5,886,538; 5,889,411; 5,889,413; 5,889,701,
5,892,681; 5,892,961, 5,894,420; 5,896,047; 5,896,329; 5,898,319; 5,898,320; 5,898,602; 5,898,618; 5,898,893;
5,907,245; 5,907,248; 5,909,125; 5,909,453; 5,910,732; 5,912,937; 5,914,514, 5,914,616; 5,920,201, 5,920,202;
5,920,223; 5,923,185; 5,923,602; 5,923,614; 5,928,338; 5,931,962; 5,933,023; 5,933,025; 5,933,369; 5,936,415;
5,936,424; 5,939,930; 5,942,913; 5,944,813; 5,945,837, 5,946,478; 5,949,690; 5,949,712; 5,949,983; 5,949,987,
5,952,839; 5,952,846; 5,955,888; 5,956,748; 5,958,026; 5,959,821; 5,959,881, 5,959,885; 5,961,576; 5,962,881;
5,963,048; 5,963,050; 5,969,539; 5,969,543; 5,970,142; 5,970,372; 5,971,595; 5,973,506; 5,978,260; 5,986,958;
5,990,704; 5,991,523; 5,991,788; 5,991,880; 5,991,908; 5,995,419; 5,995,744, 5,995,988; 5,999,014; 5,999,025;
6,002,282; and 6,002,991; Re. 34,363, Re. 34,444, and Re. 34,808. Other U.S. and foreign patents pending.
Xilinx, Inc. does not represent that devices shown or products described herein are free from patent infringement
or from any other third party right. Xilinx, Inc. assumes no obligation to correct any errors contained herein or to
advise any user of this text of any correction if such be made. Xilinx, Inc. will not assume any liability for the
accuracy or correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in
such applications without the written consent of the appropriate Xilinx officer is prohibited.

Copyright 1991-2000 Xilinx, Inc. All Rights Reserved.

Foundation Series ISE 3.1i User Guide

About This Manual

The Xilinx Foundation Series Integrated Synthesis Environment (ISE)
3.1i consists of an integrated tool suite that helps you produce, test,
and implement designs for Xilinx FFGAs or CPLDs. The available
tools cover all aspects of the work flow from design entry to bitstream
generation and downloading. You can directly access the internet
from many of its applications for user support and tool updates. This
Foundation Series ISE 3.1i User Guide provides a detailed description of
the ISE design environment and tools.

Note This Xilinx software release is certified as Year 2000 compliant.

Manual Contents

This guide contents the following chapters:
* “Introduction”

e “Design Environment”

e “Creating a Project”

e “Project Navigator”

* “HDL Sources”

* “Schematic Sources”

e “State Diagrams”

e “LogiBLOX”

* “CORE Generator”

e “HDL Library Mapping”

Foundation Series ISE 3.1i User Guide — Online i

Foundation Series ISE 3.1i User Guide

« “Design Constraints/UCF File”
e “Simulation”

e “Synthesis”

e “Implementing the Design”

e “Snapshots”

e “Programming the Device”

Additional Resources

For additional information, goto ht t p: / / support. xi | i nx. com
The following table lists some of the resources you can access from
this Web site. You can also directly access these resources using the
provided URLs.

Resource Description/URL

Tutorials Tutorials covering Xilinx design flows, from design entry to verification
and debugging
http://support.xilinx.con support/techsup/tutorials/
i ndex. htm

Answers Current listing of solution records for the Xilinx software tools

Database Search this database using the search function at
http://support.xilinx.con support/searchtd. htm

Application Descriptions of device-specific design techniques and approaches

Notes http://support.xilinx.conf apps/appsweb. ht m

Data Book Pages from The Programmable Logic Data Book, which contain device-

specific information on Xilinx device characteristics, including readback,
boundary scan, configuration, length count, and debugging
http://support.xilinx.con partinfo/databook. htm

Xcell Journals

Quarterly journals for Xilinx programmable logic users
http://support.xilinx.con xcell/xcell.htm

Technical Tips

Latest news, design tips, and patch information for the Xilinx design
environment
http://support.xilinx.conl support/techsup/journals/
i ndex. htm

Xilinx Development System

Conventions

This manual uses the following conventions. An example illustrates
each convention.

Typographical
The following conventions are used for all documents.

e« Courier font indicates messages, prompts, and program files
that the system displays.

speed grade: - 100

« Courier bol dindicates literal commands that you enter in a
syntactical statement. However, braces “{ }” in Courier bold are
not literal and square brackets “[]” in Courier bold are literal
only in the case of bus specifications, such as bus [7:0].

rpt_del _net=

Couri er bol d also indicates commands that you select from a
menu.

File - Open
« Italic font denotes the following items.

¢ Variables in a syntax statement for which you must supply
values

edi f 2ngd desi gn_nane

+ References to other manuals

Foundation Series ISE 3.1i User Guide — Online iii

Foundation Series ISE 3.1i User Guide

See the Development System Reference Guide for more informa-
tion.

+ Emphasis in text

If a wire is drawn so that it overlaps the pin of a symbol, the
two nets are not connected.

e Square brackets “[]” indicate an optional entry or parameter.
However, in bus specifications, such as bus [7:0], they are
required.

edi f2ngd [option_nane] design_nane

e Braces “{}” enclose a list of items from which you must choose
one or more.

| owpwr ={on| of f}
e A vertical bar “|” separates items in a list of choices.
| owpwr ={on| of f}

« A vertical ellipsis indicates repetitive material that has been
omitted.

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’

e Ahorizontal ellipsis “....” indicates that an item can be repeated
one or more times.

al I ow bl ock block_name locl loc2locn;

Online Document

The following conventions are used for online documents.

« Red-underlined text indicates an interbook link, which is a cross-
reference to another book. Click the red-underlined text to open
the specified cross-reference.

iv Xilinx Development System

* Blue-underlined text indicates an intrabook link, which is a cross-
reference within a book. Click the blue-underlined text to open
the specified cross-reference.

Foundation Series ISE 3.1i User Guide v

Foundation Series ISE 3.1i User Guide

Vi

Xilinx Development System

Contents

About This Manual

Conventions

Chapter 1

Chapter 2

ManuUal CONEENEScievivieeiiiiiit et e e e e e e e e e e e e e e e e eeeeeeesrarana i
AdditioNal RESOUICEScoevvveiiieieiiiiitie e eiie e e e e e e e eeeeeeeeeeeees ii
TYPOGraphiCal.........cocoieiiiieeiiie e iii
ONlNE DOCUMENT ... iv
Introduction
Platform SUPPOItcoe it 1-1
Xilinx ArchiteCture SUPPOIt.........ccccviiiiiieiie e e e 1-1
Partner TOOIS........cooiiiiiiiieeeeee et e e e e e e e e e e e e eeeeeeaaaaaens 1-2
Foundation Series ISE DEMO.....cccceeiiiiiiiieiiiieeeieeeeeeeeeeeeeeaeen 1-2
TULOKIAIS wvveiee e 1-2
1O] 11 L= 1= o SRR 1-3
BOOKS ...ttt ————— 1-4
Printed BOOKS.....uuuutieieieieiiiee ettt 1-4
PDF FlES ...ttt e e e 1-4
Online Book CollECtiON.......uviiiieiiiiiieeeeeeeeeeeeeeeeeeee e 1-4
DOCUMENT VIBWEN ...t ieieie e 1-4
Xilinx Foundation Series ISE 3.1i Book List...........cccccevvvevvvennes 1-5

Design Environment

PrOJECES et e 2-1
Project Managementcc.uuiiiiiiiiiieeee e 2-2
DESIGN FIOW .ot 2-5
DeSign ENLIY ..o 2-6
Design ENtry TOOISuviiiiiiiiiaieeeeiieeie e 2-6
Functional SIimulationccccceiiiiiiiiii e 2-7

Foundation Series ISE 3.1i User Guide — Online

Vii

Foundation Series ISE 3.1i User Guide

SYNNESIS ...ttt 2-8
SYNNESIS TOOIS ...t 2-8
IMPIEMENTALION ... 2-9
Post-Route SImulationccceeiiieiiiiiiiiiiee e 2-9
Programming File Creation ... 2-9

Chapter 3 Creating a Project

Specifying a Project Name and Locationcccceveveeeeeiiiiicnnns 3-1
Selecting a Device and Synthesis TOOI...........cocevccviiiiieriee e, 3-5
XST VHDL ittt 3-6
DS 3 I =1 1] oo SRR 3-6
FPGA EXPress VHDL......ooooo i 3-7
FPGA EXPress VEriloguueeveii i 3-7
ABEL XST .. ittt ittt ettt ettt e e aee 3-8
ABEL BLIF ...ttt 3-8
Changing the Targeted DEVICEccceveveieeeiiiiiiiieiieeee e 3-9
Changing the Synthesis ToOolccccceveiiieeei e 3-11
Creating/Adding Source Filesccccveviiiiee e 3-13
Creating @ NEW SOUICEuuiiiiiiiieee e et ee e e e e e e s s s sneenaeee e 3-13
Adding an Existing Source to the Project..........ccccceeeveviinnnneee. 3-15
Adding a Copy of an Existing Source to the Project.................. 3-17
Yo 10 o =T Y/ o L= R 3-19
Source Type DeSCrPLiONS.......uviiiiieee i 3-20
0] [=Tox A 1 = EERR 3-20
USEr DOCUMENTS ...ttt 3-21
Device/Synthesis TOOIceueviieeeeiiiiiiiieeeee e 3-21
State Diagramccccvviiiiiiee e 3-23
SCREMALIC ... 3-23
VHDL MOGUIE ..eeiiiiiiiiiee e 3-24
VHDL Test bench ... 3-24
VHDL Packagecoccvviiiiiiiiiee e 3-24
VHDL LIBIAIY ..oceiiiiiiiieee e 3-24
Verilog ModUIE.........oociiieee e 3-25
Verilog TeSt FiIXtUIE......uuuviiieiiee e 3-25
ABEL-HDL Module (CPLDS ONlY)cocvveeiiiiiiieeeeiiieeee s 3-25
ABEL Test Vector (CPLDS ONly)cccccvvviviiiiieeee e 3-25
CORE Generator Modulec..eeeveviiiiieeiiieeeeee e 3-25
LOGIBLOX MOdUIE..........cco i 3-25

viii Xilinx Development System

Contents

Chapter 4

Chapter 5

Project Navigator

Starting the Project Navigatorccccvvveeeeeiiicciiiiecieee e e 4-2
Project Navigator WiNAOWSceveeeeiiiiiiiiiiiiiereeeee e s sinveee e eee s 4-3
SOUICE WINAOW ...ttt 4-5
MOAUIE VIBW ...eeiiiiiiiiie ittt 4-6
FIlE VIBW oottt 4-8
SNAPSNOt VIEW ...ttt 4-8
o] = UV VA 1= SRR 4-9
Yo U] (ot o] o 1= T4 1= 4-10
Process WINAOWcuueiiiiiiiiiieiiiiiiee ettt 4-10
AULO-MAKE.....coiiiiiiiiie e 4-11
Setting Properties for ProCESSESoccvvuvvviiiiieeeee e 4-11
VIEWING REPOIMS ...uviiiiieeee it 4-12
HDL Editor WOrKSPaCEe........ccvvviiiiiiiieeeie e ceeieeee e e e e e e e s e snvnnveeee e 4-12
Error Navigation from the Transcript Windowccccccvveeeeeennn, 4-14
Integrated TOOISccoii i 4-16
Customizing the Project Navigatorcccccceevvveiviiiiiieeeiee e 4-17
Setting Display Preferences.......ccccccceeviiiicciiiiieiiiece e 4-17
General Preferences.......ocvvev i 4-17
Editor Preferences ... 4-17
Standard/Advanced Process Properties Preference............ 4-18
Displaying/Hiding Windows and Toolbars...........ccccccccvvveeiiinnns 4-19
Docking/Undocking Project Navigator Windows................ccccuvvveee. 4-19
HDL Sources
SUPPOIEd LANQUAGESceviiiaaeiiiaiitiiiieee e e e e e e e ettt ee e e e e e e anneees 5-1
LY | SRR PRR 5-1
RV /=T 1[0 F PP PPRPPPRR 5-2
ABEL-HDL ...oviiiiiiiiiiie ettt 5-2
Creating HDL Source Filesoccuvuiiiiiiiiiiiiiiiiieeee e 5-3
New HDL Source Wizard..........cccoeeeeeeeiiiiiiiieeee e, 5-3
Skeleton Code for New VHDL Testbenches, VHDL
Packages, or Verilog Templates ... 5-7
Opening HDL Source Filesooocuuiiiiiiiiiieieiiiieeeeee e 5-9
HDL EditOr ueiieiiiieiie ettt et e et e e staae e e et e e e e s snnnaeae e 5-9
HDL Editor Onling Help........oooiiiiiiii e, 5-9
File/WiINndow OperationsS...........ccoiuuiiiiiiiieieeee it 5-10
Editing FUNCHIONS ...t 5-11
Search FUNCHIONSoovviiicccccec e, 5-12
MacCro FUNCLIONSvuiiiiiiiii e 5-13

Foundation Series ISE 3.1i User Guide

Foundation Series ISE 3.1i User Guide

Customizing Tabs and FONtSoooiiiiiiiiiiiiiieieeee, 5-14
Language Specific FEaturescoceveeeiiiieiiiiiiiiieeeeeeee e 5-14
Language TeMPIAtESc..uviiiiiiiiieeee e 5-15
Accessing the Language Templatesccccoeeeeeeiieeninniinnns 5-15
Selecting an Existing Template..........cooooiiiiiiiiee 5-16
Inserting Templates in HDL SOUICESccccivviiieiieiieeenniiins 5-19
Creating a User Template..........ccooiiiiiiiiiiiiiiiieee i 5-19
Creating a Schematic Symbol from an HDL Source...................... 5-21

Chapter 6 Schematic Sources

Schematic SoUrce Fles ... 6-1
Creating a Schematic Source Fileccccovvvvieiiieeei e, 6-2
Opening a Schematic Source Filecccccveevieeeeeieccceeee, 6-5
Updating Schematic Filescccovviiiiivee e, 6-5
Xilinx Implementation Attributes/Constraintsccccvvvveeee. 6-6

Instantiating HDL SOUICESuvviiiiiiieeeeeiiciiiiiieieeee e e e e e e e 6-7
Creating a Schematic Symbolccooocciii e, 6-7
Symbol Generator OPLioNSevveeeeeiriiiiiiiiiiie e e e ee e s e 6-7
Opening the HDL SOUICEuuuviiieeei ettt e e 6-7
Creating a Top-Level Schematic...........cccccvvviieeiii e, 6-8

Simulating and Synthesizing Schematic Sources.........cccccccoeeeues 6-9

VHDL Functional Modelcooiiiiiiiiiiieneiieeee e 6-9
Viewing the VHDL Functional Modelccccoovvvveeeeiiiiiiinns 6-10
Setting VHDL Netlister Options...........ccccvvveveiieeee e 6-12

VErlog NEtliSt.....cccieiii i 6-14

ECS Schematic EditOr.........coouieiiiiiiiiie e 6-16
Schematic Editor Windowccceeiiiiiieee e 6-17
Action-Object Interface EXamples..........ooccvvvveeieeeeeeeceeciivnnee, 6-20

Adding @ SYMbBOL........ccuiiiiiiiieee e 6-20

WX (o 10T o = VAT = T U 6-22
Dragging @ Wir€.......ccoeiiiiiciiiieiiieeee e e s esieee e e e e e e e s enees 6-22
Removing a SymbOol.........ccccuiiiiiieie e 6-23
Panning, Zooming, Full Fit Operationscccccccceevviiinnnns 6-23
Concepts Required to Use the Schematic Editor...................... 6-24
SYMDBOIS .o —————— 6-24
ALHDULES ..o 6-26
Wires (Nets and BUSES)cvvvveeeiiiiiciiiiiiieiiee et 6-26
/O MAFKEIS ..ottt 6-28
GraphiCs ..oocvveieii i —————— 6-29
12 U ROUT 6-30
VHDLgeneric Attribute EXample ... 6-30

X Xilinx Development System

Contents

Chapter 7

Chapter 8

SYMDBOI EAItOr ... 6-35
Symbol Editor WINdOWeceeiiiiiiiiiiiiiee e 6-35
SYMDBDOI TYPES ettt 6-37

BIOCK SYMDOIScoeiiiiiiiiie e 6-37
Graphic SYmMDOIS ... 6-37
Master SYMDOIScooiiiiiiiie e 6-37

SymbOl LIDraries ..o 6-38
Modifying an EXisting Symbol ..., 6-39
Creating a New Block Symbolcoooovviiiiiie e 6-39
Creating a Block Symbol from a Schematic................ccccuvuveee. 6-40
Creating a Symbol from an HDL Source.........cccccceeeveeviiennvnnen. 6-41
Using Symbols from Other Projects......ccccccceevvvicvvivieeeeeeeeennn, 6-41

DEVICE BASISvvviieeiiiiiiie ettt 6-42
All Projects BasiScccvvriiiiiiiieee s isrtieie e e e e seeenvneee e 6-46
Guidelines for Creating SChematiCS.............covvvvviiieiiieeeee e, 6-48

State Diagrams

StateCAD/StateBench..........coooiiiiii 7-1
Acquiring StateCAD/StateBench TOOIS........ccccceeeevviiicciiiiiineeceeen, 7-2
XilINX EAItION oottt 7-2
Pre-Existing or Upgraded StateCAD TOOIS.......ccccccvveveeeeeiiinnns 7-3
Complete EditioN........c.ooovciiiiiiirieee e 7-4
Sales and Support of StateCAD and StateBench..................... 7-4
Launching Stat@CAD ..o 7-4
Creating a New State Diagramccoceevveereieeeeeeenesssseeninennens 7-5
Updating an Existing State Diagramccccccccovvvvvvvvvvnieeneenennn, 7-10
Using StateBenChooooiiiiii e 7-11
Adding State Diagram Sources to Your Project.........ccccccvveeeeinnns 7-12
User-Entered State Machine Diagram............cccccvvveeereeeneieennnns 7-12
StateCAD-Generated HDL File.......c...cooviiiiiieiiiiiieeeeee e 7-12
Instantiating State Diagram Modules in HDL Designs 7-13
Instantiating State Diagram Modules in Schematic Designs.......... 7-14
Using Foundation Series 2.1i State Diagramsccccccvvvvveernnn. 7-14
LogiBLOX
ACCESSING LOGIBLOX ...ttt 8-1
LOGIBLOX SELUD ..eteeiiieeeiiie ittt ettt a e 8-5
Creating LOGIBLOX MOAUIES.........uuuiiiiiiiiiiieaiiiiiieeee e 8-6
Using LogiBLOX Modules in ISE Projectsccccceveeeeeeeniiiiiiinnns 8-8
Editing LOGIBLOX MOQUIESccoiiiiiiiiiiieeeeeeee e 8-9
Using LogiBLOX Modules in Schematic Sources..................... 8-9

Foundation Series ISE 3.1i User Guide

Xi

Foundation Series ISE 3.1i User Guide

Instantiating LogiBLOX Modules in an HDL Source.................. 8-10
VHDL INStantiationeceviiiiiiiiiiiiiiieieee e 8-10
Verilog InStantiation ... 8-15

Simulating LogiBLOX COMPONENTS.........uuiiiiiiaaaeaeiiiiiiiieeeaeaaaaeenns 8-20
Constraining LogiBLOX RAM/ROM with FPGA Express............... 8-20

Estimating the Number of Primitives Usedccccocceeieennn. 8-20

How the RAM Primitives are Namedccccuvvieeeieeennnnnnnn. 8-21

Referencing a LogiBLOX Module/Component in an

HDL SOUICE ...ttt e e 8-21

Referencing the Primitives of a LogiBLOX Module in

AN HDL SOUICE .coeeieiiiiiie ettt 8-22

Verilog EXamPIe.......ueveiieeeiiiiiciiieee e a e 8-23
(L] RO PR TP PP RRPPPP 8-23
INSIAE.V: ittt 8-23
EESEUCT . 8-24

VHDL EXAMPIE ...ooviiiiiiiiieec et 8-24
TESEVNA .o 8-24
INSIAE.VNG. ... 8-25
EESEUCT . 8-26

DOCUMENTALIONeeieeieiiiie ettt e e e e e snbeeeee e 8-26
Chapter 9 CORE Generator

Accessing the CORE Generator Systemcooovvcvvvvvvieeeeeeeeeinnnn 9-1

Creating @ CORE COMPONENL.........uuviiiiiiieereeiiiiiinieeeeese e e e e s seneens 9-3

Using COREs in Foundation Series ISE Projects..........cccccvvveeeen.. 9-7

Editing CORES......co ittt e e 9-7

Using CORES in Schematic SOUICEeS.............coovcvvvvvvvrereeeeennnnnn 9-8

Instantiating CORES in an HDL SOUICe..........cccccvvvvvieeeeeeeenenn, 9-9
VHDL Instantiation Template Example.......cccccccoeviviinvinnnen. 9-10
Verilog Instantiation Template Examplecccccccooeevvvnvnneee. 9-14

Simulation and Synthesis of CORE Modules...........cccccccvveeeiiinnnns 9-17
Simulating CORES in @ SChematiC..........ccveeeeviiiiiiiiiiiieeeeeee e 9-17
VHDL SIMUIALION.coiiiiiiiie e 9-17
Verilog Simulationeeeei i 9-18
Chapter 10 HDL Library Mapping
Design Sources and Libraries ... 10-1
VHDL ottt 10-1
AV /=T 10T F PP PPRPPPRR 10-2
Project Navigator Source Librariesccoccevieeeiiieieniiniiiiiieeee 10-3

xii Xilinx Development System

Contents

Named VHDL Librariescocuiiiiiiiiiii e 10-4
Renaming VHDL Librariescccoueeiiiiiiiiiiniiiiiieceeeee e 10-6
Removing VHDL Libraries ... 10-6

Moving Files to a Library ... 10-7

Removing Files from a Library ..., 10-7

Chapter 11 Design Constraints/UCF File

Setting Synthesis CONSLraintSccccveeeveieeeeie e 111
XST CONSIFAINTS ..eeviiiiiiiiie it 11-2
FPGA EXPress COoNStraintSccccvveeevieeeeeiiiiiiiiiiineneeeeeesesesnnnns 11-2

Setting Implementation Constraintsccovvvviiiieieeee e 11-3

Constraints Processing OVEIVIEWccuveeeeeeieiiiiiniiiineereeensssannnens 11-4
Constraint Entry Mechanismscooveevvvieeiieeie e 114
Translating and Merging Logical Designs.........ccccccvvvveeeeesiinnnns 11-6

Constraints File OVEIVIEWcvuviiiiiiiiiieeiiie e 11-6
Netlist Constraints File (NCF)ovvvvveeiiiiiieeceece e 11-6
User Constraints File (UCF).......ccuuiiiierer e 11-6
Physical Constraints File (PCF)ccccccvvviiiireie i, 11-7
CaSE SENSItIVILY wevvveeeeeii i 11-8

ISE User Constraints File (UCF)ccccociiiiiiieee e, 11-8

The Xilinx Constraints EAItOr............eviiiiiiieeiiiiie e 11-12

TiMING CONSITAINTSvvviiiiiiiiee e e e e e e e e e e e e s eenes 11-13
The “From:To” Style TIMESPEC ...cvvveeeeviiiiiiieiieeee e 11-13
USING TPSYNC ...ttt 11-15
The Period Style TIMESPEC......uuuuiiieeieeiiie e 11-17
The Offset CONSIraINt.......ccooiiiiiieiiiie e 11-19
IgNOriNg Paths.........ouviiiiiiiee e 11-21
ControlliNng SKEWcccoveiieiie e 11-22
Constraint PreCedENCEocvvviiiiiiiiiee e 11-22

ACross CONSLraint SOUMCESocvvveeeeiiiiiee e 11-22
Within Constraint SOUICESccvveeeiiiiiee e 11-23

Layout CONSLIAINTScccoeiiiiiieec e e e e e e e e e e e e e e e e e 11-24
Converting a Logical Design to a Physical Design 11-24
“Last One WINS” ReSOIULIONcovcuvviieiiiiiie e 11-25

Efficient Use of Timespecs and Layout Constraints....................... 11-25
The “Starter Set” of Timing Constraintscccceeevevviicvvinnnnen. 11-26

Standard Block Delay Symbols..........ccccovvieieeiiiiiiieeeee e 11-28

Table of Supported CONSLraintsccccvvveveeeeeiiiicieer e 11-30

Basic UCF Syntax EXamplescccoooviiiiiiiiiieiee e ccccciieieee e e 11-33
PERIOD TIMESPEC...utiiiiiiieeieiiiciiiiieeeeeeeeeesssssinananeeeeeaeesesannnens 11-33
FROM:TO TIMESPECS ..ceeeeeeiiciieiiiieieeee e e s e s sititreeeeeea e e e s e snnnnnenees 11-34
OFFSET TIMESPEC .cceeeeeieceiiieieee e e e e e e e e s s eintnenee e e e e e e e s s snnnnnaee s 11-34

Foundation Series ISE 3.1i User Guide Xiii

Foundation Series ISE 3.1i User Guide

TIMING IgNOTE ... 11-34
Path EXCEPLIONS ...ttt 11-35
Miscellaneous EXamples ... 11-36

Chapter 12 Simulation

MOEISIM ... 12-1
Acquiring ModelSim TOOISuevvvvieeeeiciicee e 12-2
ModelSim XE SEarterc.eeeiiiiiiiiieiiiieee e 12-2
MOEISIM XE ...oeiiiiiiiiie et 12-3
Additional ModelSim EditionsSccccceeiiiiiiiiiiiiiee e 12-4
Previously Installed ModelSim Toolscccccovvveeeeeeeeiiiiinne 12-4
Sources for Learning to use ModelSim........ccccccevevvvciviienennenn, 12-5
Launching ModelSim..........oocciiiiiiiiiee e 12-5
ModelSim Integration OVEIVIEWuvveeieeeeeeiiiiiiiiiiiiieeeeeeeenn 12-6
Simulator Initialization and VHDL Package Sources 12-7
Xilinx Simulation Libraries........ccccoovveieiiiiie e 12-8
Functional SImUulation...........ccueeiiiiii e 12-8
Functional Simulation with a Testbench/Test Fixture 12-9
Interactive Functional Simulationccccoceiiiiieniie e 12-9
Simulating with ModelSim’s Command Console 12-10
Simulating with DO Fil€Scvvvvieiiiiiiieeee e 12-11
Functional Simulation Process Properties...........ccccccvvvveeeeeennn. 12-11
HDL Source Modulecoocveiieiiiiiiieeiiiiiee e 12-11
Testbench/Test FIXIUrecoooviieeeiiiiiiee e 12-11
VHDL/Verilog Simulation Options Tab............cccccccvvveeeeeennn. 12-12
Display Options Tabccccuvvviiiiieeeeec e 12-15
Timing Simulation (POSt-ROULE)ceevviiieeee e 12-17
Automatic Macro File Generation and Post-Route Simulation.. 12-17
Disabling Automatic Macro File Generation.............ccccccveveeennn. 12-18
Simulating with @ Testbenchcccccoveiiiiiii e, 12-18
Timing Simulation Process Properties..........ccccovvvveeeeeeiiiiicnnnns 12-19
Timing Simulation OPtioNS........ccccovvciiiiieiiee e 12-19
Creating a Testbench/Test FiXture........ccccccoovvecviiiiieiiee e 12-20
HDL BENCNET ..ceiiiiiiiiiie et 12-20
Acquiring HDL BENCNETuvvviieieeeiiii e 12-20
Launching HDL BENChEr..........ccovciiiiiiiiiieee e e 12-22
Testbench/Test Fixture Template Generator..........c..cccceeevunneee 12-24
Adding the Testbench/Test Fixture File to the Project.............. 12-25
(0701 1177=T 011 o] o RPN 12-26
Testbench Naming Conventions..........cccccccveeeeeeeececcinvnnnen, 12-26
Port Type ReqUIreMeNtS.........uuvveereeereiiiiiiiieeeee e e e e e e 12-26

Xiv Xilinx Development System

Contents

Testbench Design OVEIVIEWooccvviieiiieieeee e 12-26
Example Testbench for an 8-bit Addercccccooiviinnnnen. 12-27
Chapter 13 Synthesis
OVEIVIEW ..ottt ettt ettt ettt ettt e e e ettt e e s nbee e e e e e 13-1
Changing Synthesis TOOIScccooo v 13-3
ABEL Synthesis (CPLDS ONIY)cccoevviiiiiiiiieeece e 13-6
ABEL-XST ..ttt ettt ettt e e 13-6
ABEL-BLIF ...ttt 13-7
XST SYNENESIS...cci it e e enens 13-9
XST VHDL ittt 13-9
DS 3 I =1 1] oo SR 13-10
Selecting a Top-Level Source for Synthesis...........cccccvvvveeennn. 13-10
XST Synthesis ProCESSES.....uuuuiiiiieii it 13-11
Viewing Synthesis ReSUILS.........ccccvveveeer i 13-11
Constraining the DeSIgN..........cuvvveeeiiiiiic e 13-12
Changing Speed Gradesccccceeeeviiviinviiiiiiee e seeesreeaeee e 13-12
Setting XST Synthesis OptioNS..........ccooovvcvviiiieeeeee e 13-13
SYNthESIS OPLIONSuuviiiiiiieeee e 13-14
HDL OPLONS ..eeiiiiieeeee ettt e e a e e e 13-16
Xilinx Specific Options (FPGAS)cccccvveeeiieeeee e 13-20
Xilinx Specific Options (CPLDS)uvvvvveeeeiiiiiiiiieieeee e e e 13-22
Detailed Information 0N XST........eeviiiiiiiiiiiiiiiee e 13-25
FPGA EXPress SYNtheSIS.......uuuuiiiiieeiiiiiiiiiiiieece e 13-26
FPGA EXPress VHDL.....coooii i 13-26
FPGA EXPress VErilogcuveeveeiii i 13-26
Selecting a Top-Level SOUICe.........cccovveiviiiiiieee e, 13-27
FPGA Express Synthesis ProCeSSES.......ccccovvvvcvvvviiviereeeeeennnnn, 13-27
Constraining the DeSIgN..........cuvvveeiiiiiciiee e 13-29
Setting Constraints Prior to Synthesisccccccccoevvvcvvvvinnen. 13-29
UCF File CONSIIAINTSc.cciiiiiieeiiiiiee et sieeeee e 13-31
Viewing Synthesis ReSUILS.........ccccevvveeee i 13-32
REPOIM VIBWET ..cceiie ettt 13-33
FPGA Express Time TracCker.......cccocovvvvviieeeeieee e 13-33
SChematiC VIBWETccooiiiiiii et 13-34
Changing Speed Gradesccccceeeevieiiiiiiiiiiieee e 13-34
Setting FPGA Express Synthesis Optionsccccccooevvcvvvvvnnen. 13-35
Detailed Information on FPGA EXPress.........cccccvvvvvrereeeeeennnnnns 13-37

Foundation Series ISE 3.1i User Guide XV

Foundation Series ISE 3.1i User Guide

Chapter 14 Implementing the Design

Using the Process Window to Implement the Design 14-2
Implementation Errors/Warnings..........cocccvvvvveereeeeeeesinscinveeeeeeeeens 14-6
Saving Implementation ReSUltS..........ccccvveeeeii i 14-6
Deleting Implementation ReSUItSccccvviiiiiieee e 14-6
Changing DEVICESuuiiiiiiiiee et e e e e e e e ennnees 14-6
Viewing Implementation REPOItScccvvvvveeeeeieiiiiciiieieeeee e 14-7
ISE REPOIM VIBWET ..vvveeiieieee s ittt e e et e e e e e e e e 14-7
RepPOrt DESCHPLIONS ...cvvviieeei it e e 14-10
USEI CONSIFAINTS ..eeiiiiiiiieei it ettt e ee et e e e seaee e e 14-10
Editing the UCF Fil€....cccvvviiiiiiieeee e 14-10
Accessing the Constraints EAitOr............ccoovccivvieiiineiie e 14-11
Accessing the Chip Viewer (CPLDS)ccccccvvivvieeeeieeeien i 14-12
FPGA Implementation FIOWcccooviiiiiiiiiiiiriicee e 14-14
TrANSIALE ... 14-15
IMAP e aee e 14-16
Pre-Route Static Timing (Optional)ccccccovvciiiviiiieeee e 14-18
Place and ROULEcooiiiiiiiiiiiiiiie e 14-19
Post-Route Timing (Optional)ccccvvvvvviiieeee e, 14-21
Multi Pass Place and Route (Optional)..........cccccvvvveeeeenicinnnnnne, 14-22
Backannotate Pin Locations (Optional)...........cccccevveeeeiiininnnen, 14-23
Backannotate Pin LOCS REPOIt...........ccccvvviiiieiiieeee i 14-24
Pin Loc Constraints in the UCFcccocoeveiiiiieie e 14-25
FPGA Implementation REPOIScccovviiiiiiiiiiiriiiee e cvniieeeees 14-26
Translation REPOITccccov i 14-26
MaP REPOI ... e 14-26
Pre-Route Static Timing REPOIt........ccccvvveeeeeiviiiiiieieieeeeeeeenn 14-27
Place and ROUtE REPOIt..........ccccuviiiiiiiieee e r e e e 14-28
Pad REPOI ..ot 14-28
Asynchronous Delay REPOrtcccveeveiiiiiiciiiiieiieeee e 14-29
MPPR REPOI ...ttt e eee 14-29
Post-Route Timing REPOItccccvviiiiiiieeeee e 14-29
FPGA Implementation OPtionSccceeveiiiiiiiiiiieireeee e 14-30
Accessing the Implementation Process Properties Dialog Box. 14-30
Accessing Advanced Propertiesccccceevvevcevvvveeeeeeeeeesesssinnns 14-31
Translate OPLONScceeeeiiiiiiiieee e 14-32
Standard Translate OptioNS..........cccccvvieveeeeeee e 14-32
Advanced Translate Optionscccccvvveeeeeeeei e, 14-34
Y F= 1o @ o] 1] 1 PPRRUSR 14-36
Standard Map OPtioNS......ccccvviiiiiiiiciee e 14-37
Advanced Map OPLiONScceeveeeeeiiiiiiiiiieie e 14-39

XVi Xilinx Development System

Contents

Pre-Route Static Timing OPLioNScccooveiiiiiiiiiiiiiiiiieeeeee e 14-43
Standard Pre-Route Static Timing Options.............cccvveeee.e. 14-43
Advanced Pre-Route Static Timing Optionsc..ccc.... 14-45

Place and Route OPtioNSooviiiiiiiiiiiiieee e 14-46
Standard Place and Route Optionscccccceeeeiiiiiiiiniennenn. 14-47
Advanced Place and Route OptionsS.........ccccoeevviiiiiieeeeennn. 14-51

Multi-Pass Place & Route OptioNnS........cccveeiieiiiiiiiiiiiiieeeeeeen, 14-56
Place & Route Effort Level........cccccciiiiiiiiiiiiiies 14-57
Starting Placer Cost Table (0 - 100)ccccoovvvevvvviinneeeeeennn. 14-57
Number of PAR Iterations (0 - 100)cceveveeeeeeveiiiiiveninnnnn 14-58
Number of Results to Save (0 - 100)cccccvveeeeevrriiivnninennnn, 14-58
Save Results in Directory (.dir will be appended)................. 14-58
Number of Router Iterations (0 - 2000).......cccceeeveiiiiivvrnnnnn 14-58
GUIAE FlE e 14-59
GUIAE MOUE ...t 14-59

Post Route Timing OPtioNSccccvvviiiriiie e 14-59
Standard Post Route Timing OptioNsScccceeeevvevveivvvveennn. 14-60
Advanced Post Route Timing OptionS.......cc.ccceveevvvveveeeennn. 14-62

FPGA Implementation TOOISccceevviiiiiiiiiiieiie e 14-64

Floorplanner (FPGAS)ccooi it e e e e e e 14-64

[S €Y N o 1) (o] PP 14-66

TiMING ANAIYZEL ..vvvviiiieiie e e e e 14-67

CPLD Implementation FIOWcccuvviviiiiee e 14-69

TrANSIALION ..eeeeiie e 14-69

=] PR PPRROPPSR 14-71

LOCK PiNS (OPtioNal)......uueireeieeeieiiciiiiiiee e esveeree e e e e 14-72
Backannotate Pin LOCS REPOItccccvvviiiiiiiieeee s 14-73
Pin Loc Constraints in the UCFccocoieeiiiiiieeeniiieeee 14-73

1] 01 o SRR 14-74

CPLD Implementation REPOIScccuvvviiiieeeee e cciiiiireeeee e e e e 14-74

Translation REPOITcccovviiiiiieeeee e 14-74

Fitting REPOrt (CPLDS).....cccciiiiiiitiiieieeee e et e e e e e e e 14-75

TIMING REPOIT ...vvviieiiee et e e e e e e e 14-75

CPLD Implementation OptionS.........ccceveeeveeeeiiiiiiiieiieeeeee e e e e s eeeeens 14-75

Accessing the Implementation Process Properties Dialog Box. 14-75

Standard and Advanced Properties.........cccccccveeeeeviiciviieneneenn, 14-76

DT Lo [T d o] o= (=T EERRRR 14-76
User Constraints File (UCF Fil€)........cccccvvveeeeeiiiiiiiiieieeee, 14-77
Speed Gradecccviiiiiiiiie e ————————— 14-77
Implementation TeMPIatecceveeeiviiiiiiiiieeeee e 14-78

Foundation Series ISE 3.1i User Guide xvii

Foundation Series ISE 3.1i User Guide

BasiC Properties.........uueiiiiiiiieeiie e 14-78
Use Global CIOCK(S)ciiiiiiieiiiiiieeeie et 14-78
Use Global Output ENable(S)ccooeviiiiiiiiiiiiiieeeeies 14-79
Use Global Set/ReSeteueiiiiiiiiiiiiiiieee e 14-79
Use Timing CONSLIAINTSeeeiiiiiiniiiiiiiiieeee e 14-79
Use Design Location Constraintscceeeeeeeieeeeeniniininnnns 14-79
Create Programmable GND Pins on Unused I/O 14-80
Macrocell POWer Settingeeeeeiieiieiiiiiiieieieee e 14-80
OULPUL SIEW RALE....cuiiieiiiiee e 14-80

User-Customized Properties.......cccocvveveeeeeiviessciiiiieneeee e e 14-81
Use Timing Optimization..........ccccvveeeeeiiiiiiiiiiiiireeeee e e e 14-81
Use Multi-level Logic Optimization...........ccccccvvvevereeeeneniiiinnns 14-81
Use Advanced Fitting.........cccccvveeeeeniiiiiiiieeccce e 14-82
Enable D <--> T Type Transform Optimization.................... 14-83
Collapsing Pterm Limit........cccccooviiiiiiiiiiiieieee e 14-83
Use Local Macrocell FeedbackK...........cccocuveviiiiiiiiiniiinnnn, 14-83
Use Pin Feedbackcccoviiiiiiiiiiiiie e 14-83
Collapsing INput Limitccoeeeeiiiiiiiiiee e 14-84

Translation OPtiONS.......ccveeiii i 14-84

110 G @] o] i o] o 1= EERRRR 14-85

o Tod (o1 4 TS @7 o] 1o = PSR 14-85

TiMING OPLIONSuuiiiiiiiiiee e e e e e e e e e eneees 14-86

CPLD Implementation TOOIScccuvviiiiiieee et e e e e 14-87

TiMING ANAIYZEL ..ot a e 14-87

CPLD ChipVIBWET ..ottt 14-88

Chapter 15 Snapshots

Archives vs. SNapPShOLS........covviiiiiiiiic e 15-1
Taking @ SNAaPShOtuuviiiiiiee e 15-2
Renaming a SNapshot..........ccceevviiiiiieis e 15-3
Deleting @ SNapshot.........ccccviiiiiiiiecce e 15-3
Viewing Snapshot CoNteNntS.........cccoovvcviiiiiiiieee e 154

Viewing Source File CONtENtS........ceviveeeeeiiiiciiieieie e e ees s 15-5

Viewing Report CONtENESccvvvvivieeeeeei e e e e e e s 15-5
Replacing the Current Project with a Snapshotcccccceeeens 15-5

Chapter 16 Programming the Device

Creating FPGA Programming FilesS.............oooviiiiiiiiiiiieiens 16-1
Launching Programming TOOISccccoiiiiiiiiiiiiiieiieeeeeen 16-2
Setting Programming File Creation Optionscoccvvvieeeeen. 16-2

Xviii Xilinx Development System

Contents

Spartan2, Virtex, VirtexE, Virtex2 OptionSccccoevvevvvvieneen. 16-3
General OPtioNS. ... 16-3
Configuration OPLIONScccoviiiiiiiiiiiiiii e 16-5
Startup OPLIONSeeiiiiiiiiieeee e 16-7
Readback OptioNScccuveiiiiiiieieiie e 16-11

Spartan, SpartanXL, XC4000 OpPtioNScceeeeeeeeeriiiiiiiiiiieeeenn. 16-13
General OPtioNS. ... 16-13
Configuration OPLIONScccoviiiiiiiiiiiiii e 16-16
)= 13 (0] o @ o] 1T0] o 1= P 16-21
Readback OptionScccccvvvviiiieeee e 16-24

Creating CPLD Programming Fil€S........cccceveviiiiiiiiiieirieeee e, 16-25
Launching the JTAG Programmercccccceeeevviiiiivnnieneeeeeennennn 16-25
Setting Programming File Creation Optionsccccvvvvveeen. 16-25

Programming TOOIS........cccuuuiiiiiiiie e 16-27

NN e (oTo] =0 10 1= 16-27

PROM File FOrmMAatter........cceiiiiiiiieiiiiiieee e 16-27

Hardware DEeDUQQET........cceeiiiiiiiiiee e e e e 16-28

Foundation Series ISE 3.1i User Guide XiX

Foundation Series ISE 3.1i User Guide

XX

Xilinx Development System

Chapter 1

Introduction

This chapter contains the following sections:
e “Platform Support”

e “Xilinx Architecture Support”

e “Partner Tools”

* “Foundation Series ISE Demo”

e “Tutorials”

e “Online Help”

e “Books”

Platform Support

Foundation Series ISE 3.1i is designed for use on PCs running
Windows 98, Windows NT 4.0 with SP4, SP5, or SP6, and Windows
2000.

Foundation Series ISE is supported on the following networks:
e Windows NT shares (server or workstation)

* PC NFS (e.g., Hummingbird and Intergraph/Maestro)

* Samba on Unix Servers

Note Foundation Series ISE is not supported on Novell networks.

Xilinx Architecture Support

The software supports the following Xilinx architecture families in
this release.

« Spartan"/XL/-1l

Foundation Series ISE 3.1i User Guide — Online 1-1

Foundation Series ISE 3.1i User Guide

e Virtex " /-E/-lI
e XC9500™/XL/XV
e XC4000™E/L/EX/XL/XLA

Note The devices available for your design depend upon the product
configuration you purchased and on the synthesis tool you select for
your project.

Partner Tools

Foundation Series ISE 3.1i includes the partner tools listed below to
provide a complete design environment.
. Synopsys® : FPGAEXpress

FPGA Express is integrated into the design flows of Foundation
Series ISE to provide synthesis functions as it has in earlier Foun-
dation Series products.

« Visual Software Solutions (VSS): StateCAD® , StateBench™, HDL
Bencher ™

StateCAD and StateBench add state diagram creation and testing
as a design entry option for Foundation Series ISE. The HDL
Bencher provides automatic testbench/test fixture creation.

« Model Technology Incorporated (MTI): ModelSIM™

ModelSIM simulators provide the simulation functions for Foun-
dation Series ISE.

Foundation Series ISE Demo

Tutorials

1-2

You can run a QuickStart presentation after you install Foundation
Series ISE. To run the demo, select St art — Pr ograns - Founda-
tion Series | SE v3.1li - Documentation - Miltimedia
QuickStart Presentation.

The Foundation Series ISE 3.1i Quick Start Guide contains a basic tuto-
rial that describes the creation of a 4-bit counter module. The tutorial
includes creating HDL and schematic source files for the design,
functionally simulating the design’s logic, processing the design for

Xilinx Development System

Introduction

device implementation, and using basic timing simulation to test the
design in the device.

An in-depth tutorial, the Watch tutorial, is available from the Educa-
tion tab on the Xilinx support website (ht t p: / /

support.xilinx.com support/techsup/tutorials/
i ndex. ht m)

Online Help

Context sensitive help (press F1) is available for all Foundation Series

ISE’s tools. In addition, you can access Foundation Series ISE’s
umbrella help by selecting Hel p —» Foundati on | SE Hel p

Cont ent s. The umbrella help menu is shown in the following figure.

@Xilinx Foundation Series ISE Online Help System
File Edit Bookmark Options Help

=0l x|

Helplopicsl Bach |

Frint

[« |

e |

Xilinx Foundation Series |SE On-Line Help System

Design Entry

Project Mavigator

HOL Editor

StateCAD State
Machine Editor

(ECS)
LogiBLOkx

M CORE Generator

Hilinx Constraints
Editor

2

Synthesis

Schernatic Editor

Simulation

HOL Bencher

ModelSim
Sirnulator

Implementation

Lk Floorplanner

Loy | FPGA Editor

Programming

Techniques

B
B

Tutorials

g Basic Tutarial

In-Depth Tutorial
{at Xilinx WWeh
site]

CPLD Design
Flows

CPLD Design
Technigues

Entering
Constraints

B

Application Notes

Foundation |1SE

Reference

E% Key Features
Device Support

Product Licensing

ABEL Ref Guide

E;E CPLD Schernatic
= Library

CPLD Attributes

Foundation ISE 3.1i

ST (iliny EROM File] Technical Support

Synthesis Wt Eormatter g FPGA Express 58

Technology) {% Hardware Application Motes

% FPGA Express Debugger
e JTAG
Programrmer
=
Foundation Series ISE 3.1i User Guide 1-3

Foundation Series ISE 3.1i User Guide

Books

1-4

Multiple printed and online books are available for the tools included
and integrated with Foundation Series ISE 3.1i.

Printed Books

The Foundation Series ISE 3.1i Installation Guide and Release Notes
describes installation procedures, key features, supported devices,
and the most critical known issues.

The Foundation Series ISE 3.1i Quick Start Guide provides an overview
of the key features of the Foundation Series ISE software. It also
contains a tutorial that demonstrates the basic design process.

PDF Files

Adobe Acrobat PDF files are included in this release for viewing and
printing all of the books in the Foundation Series ISE 3.1i online book
collection. They can be found on the Documentation CD or accessed

from the Xilinx support page onthe web athttp://

support. xilinx.com

Online Book Collection

The online book collection for Foundation Series ISE is available on
the Foundation Series ISE 3.1i Documentation CD or from the Xilinx
support page ontheweb atht t p: // support. xi | i nx. com You
must use a Java-enabled HTML browser to the view the Xilinx online
books.

Document Viewer

The Document Viewer provided with Foundation Series ISE 3.1i is
powered by the Docsan™ indexing tool. This tool provides your
HTML browser with optimal searching capabilities within the online
book collection. Refer to the online help provided with the Document
Viewer for detailed instructions on using this tool.

Xilinx Development System

Introduction

Xilinx Foundation Series ISE 3.1i Book List

The following table identifies and describes the books in the Founda-
tion Series ISE online book collection. These are available from the
Documentation CD or from the Web.

Table 1-1 Foundation Series ISE 3.1i Online Book Collection

Title

Description

General Information:

Foundation Series ISE 3.1i Quick
Start Guide

This guide gives an overview of Foundation Series ISE’s
tools and features. It includes a tutorial that demon-
strates the basic Foundation Series ISE design process.

Foundation Series ISE 3.1i User
Guide

This guide provides a detailed description of the Foun-
dation Series ISE design environment.

Design Entry Online Reference Books:

Libraries Guide

This book describes the logic elements (primitives or
macros), that you use to create your designs as well as
the attributes and constraints used to process elements
during logic implementation. It also discusses relation-
ally placed macros (RPMs). RPMs are macros that
contain relative location constraints (RLOC) informa-
tion. The Xilinx libraries enable you to convert designs
easily from one family to another.

LogiBLOX Guide

This guide describes the high-level modules you can
use to speed up design entry and the attributes that
support logic synthesis, primarily for XC4000, Spartan,
SpartanXL, and CPLD architectures. It also explains
how to use the LogiBLOX program to create designs
and the different types of logic synthesis completed by
the LogiBLOX program.

StateCAD Reference Guide

(PDF file only) This book provides details on using the
StateCAD and StateBench tools provided by VSS.
(NOTE: This book is on the ALLSTAR VSS CD only.)

Foundation Series ISE 3.1i User Guide 1-5

Foundation Series ISE 3.1i User Guide

Table 1-1 F

oundation Series ISE 3.1i Online Book Collection

Title

Description

Synthesis and Simulation Refe

rence Books:

Synthesis and Simulation Design
Guide

This manual provides a general overview of designing
FPGAs with Hardware Description Languages (HDLS).
It includes design hints for the novice HDL user, as well
as for the experienced user who is designing FPGAs for
the first time.

ModeSIM XE User Guide

(PDF file only.) This guide describes using the Xilinx
Version of MTI’s ModelSIM.
(NOTE: This book is on the MTI CD only.)

Xilinx Synthesis Technology
(XST) User Guide

This guide describes XST support for Xilinx devices,
HDL languages, and design constraints. The manual
explains how to use various design optimization and
coding techniques when creating designs for use with
XST.

(Synopsys) Verilog Reference
Guide

(PDF file only) This guide describes doing Verilog
designs and synthesizing them with Synopsis’ FPGA
Express. (Can be accessed from Hel p —» Foundati on
| SE Hel p Cont ent s in the Project Navigator.)

(Synopsys) VHDL Reference
Guide

(PDF file only) This guide describes doing VHDL
designs and synthesizing them with Synopsis’ FPGA
Express. (Can be accessed from Hel p —» Foundati on
| SE Hel p Cont ent s in the Project Navigator.)

ABEL Reference Guide

(PDF file only) This guide contains general information
on ABEL as well as CPLD-specific information on
ABEL. (Can be accessed from Hel p - Foundati on

| SE Hel p Cont ent s in the Project Navigator.)

1-6

Xilinx Development System

Introduction

Table 1-1 Foundation Series ISE 3.1i Online Book Collection

Title

Description

Implementation-Related Books:

Constraints Editor Guide

This manual describes the Xilinx Constraints Editor
GUI that can be used after the design has been imple-
mented to modify or delete existing constraints or add
new constraints to a design.

Development System Reference
Guide

This book describes the Xilinx design implementation
software. This includes detailed informaiton on the
programs that generate EDIF files, LCA files, and BIT
files. The book covers all the command line program
options and files that are generated by these programs.
This is the processing information you see in the Tran-
script window as a Foundation Series ISE design is
being implemented. It also contains in-depth informa-
tion on timing constraints, including examples.

FPGA Editor Guide

The FPGA Editor is a graphical editor used to display
and configure FPGAs. The FPGA Editor enables you to
place and route critical components before running
automatic place and route tools on an entire design,
modify placement and routing manually, interact with
the physical constraints file (PCF) to create and modify
constraints, and verify timing against constraints.

Floorplanner Guide

This book describes the Floorplanner, a graphical inter-
face tool to help you improve performance and density
of your design.

Hardware User Guide

This manual describes the Xilinx Demonstration hard-
ware and its associated software interfaces. The hard-
ware includes the FPGA and CPLD demonstration
boards, which are used for design verification.

Timing Analyzer Guide

This manual describes Xilinx’s Timing Analyzer
program, a graphical user interface tool that performs
static analysis of a mapped FPGA or CPLD design. The
mapped design can be partially or completely placed,
routed, or both.

Foundation Series ISE 3.1i User Guide 1-7

Foundation Series ISE 3.1i User Guide

Table 1-1 Foundation Series ISE 3.1i Online Book Collection

Title

Description

Device Programming Books:

JTAG Programmer Guide

This guide documents the graphical interface used for
in-system programming and verification of CPLD and
FPGA parts. The guide also describes how to set up and
use JTAG download cables.

Hardware Debugger Guide

(FPGAs only) This manual describes how to program,
verify, and debug FPGA devices. It describes the
XChecker, MultiLINX, and Parallel 111 cables and
explains how to connect the cable pins to your target
device for various functions: downloading, verification,
and debugging. It also includes a tutorial for debugging
a design using the demonstration boards as target
devices.

PROM File Formatter Guide

(FPGAs only) This manual explains how to use a
Windows-based tool to format bitstream files into HEX
format files compatible with Xilinx and third-party
PROM programmers. You use the PROM files to
program a PROM device, which is then used to
configure daisy chains of one or more FPGAs for one
application (configuration) or several applications
(reconfiguration).

1-8

Xilinx Development System

Chapter 2

Design Environment

Projects

This chapter provides an overview of the Foundation Series ISE 3.1i
concepts, tools, and features that comprise the Foundation Series ISE
3.1i design environment. It contains the following sections:

e “Projects”
e “Project Management”

e “Design Flow”

With Foundation Series ISE, your FPGA or CPLD design is organized
and tracked as a project. When you create a new project, you must
specify the following:

* Project directory

Each project should have a unique directory to store its source
files, intermediate data files, and resulting files.

» Targeted Xilinx device family (architecture)
Virtex, Spartan, XC9500 are examples of device families.
» Targeted Xilinx device in the specified device family

An example device is “S05 PC844-4” where S05 designates a
specific Spartan device, PC844 specifies the package, and -4 indi-
cates the speed grade.

e Synthesis tool

Every project includes synthesis. FPGA Express and XST (Xilinx
Synthesis Technology) are the synthesis tools. VHDL/ Verilog/
ABEL versions are available for these tools.

Foundation Series ISE 3.1i User Guide — Online 2-1

Foundation Series ISE 3.1i User Guide

The preceding items become associated with the project as project
properties. They enable the Project Navigator, the main user interface
for Foundation Series ISE (see Figure 4-1 in the “Project Navigator”
chapter), to display and run only those processes appropriate for the
targeted device and synthesis flow.

Your Foundation Series ISE project contains all the logical descrip-
tions (HDL files, state diagrams, and/or schematics) for program-
ming the specified Xilinx device as well as any documentation files,
simulation models, and test files. All these are the sources for the
project. You create and add the sources to your project.

To perform an action on a source in your project, you select the source
and then select the process you want to perform on that source. The
processes you can perform on a particular source to test and imple-
ment your design are kept track of for you and run by the Foundation
Series ISE Project Navigator.

You can archive or take a snapshot of a project at anytime to preserve
that version/revision of the project.

Project Management

2-2

The Project Navigator is the primary interface for Foundation Series
ISE. It provides project management, tool integration, and flow
control. From the Project Navigator, you identify all the sources for
the project. Sources include schematics and HDL design files, as well
as specification documents and test files. You also identify the target
device and select a project flow.

Based on the selected target device and project flow, the Project Navi-
gator organizes all the parts of your design. It keeps track of the
processes necessary to move the design from the conceptual stage
through to implementation in the targeted Xilinx device. You can
launch text and schematic editors, navigate through the hierarchy of
the design, simulate your design, place-and-route your design, and
much more from the Project Navigator.

Project Navigator’s auto-make feature monitors dependencies
between process steps and automatically runs and updates the inter-
mediate processes when necessary.

The following figure shows an example of the Project Navigator
windows for a project (Project.npl).

Xilinx Development System

Design Environment

|-Q ilinx - Project Navigator - D:\xdc_proj\Tutorial\Project.npl

File Edt Yew Project Souce Process Maca Window Help

=10l]

[oemewwE &o®a

EER R - S 20
B

Sources in Project: |

|4 my_and2 vhd

=10 %]

E| Bl Tutarial
B proi_notes.tst
E £3 VB0 BG25EE - FPGA Express VHDL

] myiandZ (ry_and2. vhd)

i B odule .. File Viewy I Im Snapsho... I Library... I

library IEEE;

uze IEEE.5TD_LOGIC_l164.ALL:

entity wy andZ is

Port |

ar in STD_LOGIC:
b: in STD_LOGIC:
¥:oout STD_LOGIC
1:

end my and2:

architecture wy and2 arch of my_ahdZ is

L

X

Processes for Current Source: -
B

e

User Constraints

Constraints Editor
Check Design Rules
(f Wiew YHDL Functional Model
Wiew VHDL Test Bench Template
Wigw VHDL Instantiation Template
Launch HOL Bencher Tool
Creale Schematic Symbol
Launch ModelSim Simulator
nthesize
“iew Repartz
@ Pre-0ptimization Repart
Post-Optimization Repart
Analyze All
D U(f Create Functional Stucture
~¥3 Edit Constraints
O Wiew Schematic [Func.)
- O(f Create Dptimized Structure

e Wiew Synthesis Results
DN i Cbneetin rn-.i

mod@ﬁmb_

g
<

i}
R

xb B

J o
" Process Yiew ™M

1 ﬁc h ic Editor - top - Sheet 1
File Edit View gdd Template Tools

=

DRC Options Help

=1o1x|

Dlslw| &) 1% | of plolp CleE o[E] ul o 2
Dl=le| & 4% 2| Al Clniml 2[5 »l 4 2]

Edit UCF file LL

m

—

=l Done:

completed successfully.

Copy - Select ltem or Box to Copy

o

il

=

o
B
z
)

&

i

= 07T |

&8 | %

B
=

(R REEE

el
| S RN

4
Mh\cnnsnlgﬂ Find In Files /1

Process '"Synthesize'' iz up ta date,

|Lnd, Cald

Figure 2-1 Foundation Series ISE Project Navigator - Virtex
Design with XST VHDL Synthesis

The project in Figure 2-1 is titled “Tutorial” in the Source window.

Foundation Series ISE 3.1i User Guide

The Source window contains all the design files associated with your
project; icons indicate the source type. In Figure 2-1, the information
in the Source window indicates that this design, described as “Tuto-
rial,” is for a Virtex device (V50 BG 256-6) and is using the XST VHDL
tool. It has a top level schematic t op. sch (its source is shown in the
Schematic Editor window) and an underlying VHDL module
my_and2. vhd (shown in the HDL Editor window behind the Sche-
matic Editor window).

2-3

Foundation Series ISE 3.1i User Guide

2-4

The Process window (below the Source window) displays the available
processes for the selected source. Icons indicate what kind of process
it is. The current state of each process is also indicated. A green check
mark indicates a successfully completed, up-to-date process. A red X
indicates an error. An exclamation point indicates a warning. In
Figure 2-1, a green check mark precedes the processes that have been
successfully performed on the top.sch module.

There is a Transcript window at the bottom of the Project Navigator
that logs project processing and reports errors. Red icons indicate
navigable errors. Yellow icons indicate navigable warnings. You can
navigate to the source of the error/warning or to solution records on
the Xilinx support website pertaining to the problem.

One of the most powerful features of the Project Navigator is that it is
context sensitive in regards to source file types, device types, and
synthesis tool selection. The steps in the Process window reflect this
context sensitivity. For example, if you highlight a text file describing
the project, as shown in Figure 2-2, there is no processing to perform.
Therefore, the Process window contains no processes. Contrast that
Process window to the one in Figure 2-1 in which the top level
module of the design is highlighted and all the processes that can be
performed from that point in the design hierarchy are listed.

Xilinx Development System

Design Environment

|n® Xilinx - Project Mavigator - D:Axdc_proj\Tutorial\Project. npl - EI|£|
File Edit “iew Project Souce Process Maco Window Help

[oeraprEPEFE[EEE 2 e||smelss mfm CsSan
2l

Sources in Project: I
E E:.“Tutnmal

B-£3 V
=-[F] top ltop.sch)
o[my_and2 [my_andZ.vhd)

& Express VHDL

N B fodule . File Wiew J X Snapsho...] Library ... I

2l
Processes for Curent Source: I
[Mo Processes Available)

B Process View

X[Done: completed successfully. B

:'h‘ : . ;lj
A TEEConsoledFindin Files

Process "Synthesize” is up to date. | | H A

Figure 2-2 Processes for a Project Documentation Text File

Design Flow

The design flow is a multi-step, iterative process that includes the
following stages: design entry, synthesis, implementation, program-
ming file creation, and bitstream downloading. Two simulation
points are available to test your design. The first is a functional simu-
lation to check the logic prior to synthesis. The second is post-route
simulation to verify that the design meets the timing requirements
you set for your design in the targeted device. By using the same test-
bench and comparing the results at each of the simulation stages, you

Foundation Series ISE 3.1i User Guide 2-5

Foundation Series ISE 3.1i User Guide

2-6

can be confident that what was synthesized and optimized is what
was desired for your design.

Design Entry

You can create your design using schematics, text-based entry (HDL
code), and/or state diagrams. You can create new sources or add
remote sources (existing sources from other projects) for your project.
Behavioral simulators are available to test the logic of your designs
before continuing to the next stages.

Design Entry Tools

Foundation Series ISE includes the following design entry tools.

HDL Editor

The HDL Editor is integrated into the Project Navigator. The HDL
Editor is a language sensitive text editor for VHDL, Verilog, and
ABEL- HDL. (ABEL-HDL is supported for CPLDs only). The editor
includes color coding and context sensitive help for reserved words.
The editor’s “New source” wizard can build the initial text structure
for your HDL file. The Project Navigator also includes a Language
Template feature with pre-built language and synthesis templates to
assist with HDL entry.

ECS Schematic Editor and Symbol Editor

For schematic designs, the Project Navigator launches the Engi-
neering Capture System (ECS). ECS includes both a schematic editor
and a symbol editor. The Schematic Editor provides a graphical entry
method to capture designs. The Symbol Editor is included within the
Schematic Editor for creating or customizing a variety of electrical
symbol types.

StateCAD (State Diagrams)

You can use StateCAD® and StateBench® from Visual Software Solu-
tions, Inc. (VSS) with the Project Navigator if you want to create state
diagrams for state machine designs. The Xilinx Limited Edition of
StateCAD/StateBench is available on the Star Partner CD included in
the Foundation Series ISE package. Or, you can point the Project
Navigator to your existing VSS tools. The Project Navigator launches
StateCAD for source creation or modification. You can add State

Xilinx Development System

Design Environment

diagrams (as user documents) and/or their corresponding StateCAD
generated HDL source modules to your project. Once added, they are
updated automatically in the Project Navigator whenever they are
modified within StateCAD. You can use the StateBench simulator to
verify the behavior of your state diagram.

LogiBLOX

Foundation Series ISE includes access to LogiBLOX to aid in the
creation of high-level modules, such as shift registers, and multi-
pliers. LogiBLOX supports XC4000, Spartan, SpartanXL, and CPLD
devices only.

CORE Generator System

Access to the Xilinx CORE Generator System is available through
Foundation Series ISE. The Xilinx CORE Generator System is a
graphical interactive tool that generates and delivers parameterizable
cores optimized for the following Xilinx FPGA device families:
XC4000, Spartan, Spartan2, Virtex, and Virtex2.

Functional Simulation

ModelSIM simulators are supported in the Project Navigator for
functional simulation with or without a testbench/test fixture. A test-
bench/test fixture template generating tool is available in the Project
Navigator. For automated testbench/test fixture creation, you can use
the HDL Bencher from VSS.

HDL Bencher (Test Bench/Test Fixture Creation)

HDL Bencher is an automated testbench/test fixture creation tool
from VSS. The Xilinx Edition of the HDL Bencher is included on the
Star Partner CD included in your Foundation Series ISE package. Or,
you can point the Project Navigator to an existing HDL Bencher
installation. All editions of the HDL Bencher are fully integrated with
the Project Navigator.

ModelSIM (Functional Simulation)

ModelSIM from Model Technology, Inc. is integrated in the Project
Navigator for functional (RTL) simulation of your HDL source
modules. ModelSIM XE, the Xilinx Edition of Model Technology,

Foundation Series ISE 3.1i User Guide 2-7

Foundation Series ISE 3.1i User Guide

2-8

Inc.’s ModelSIM application, can be installed from the MTI CD
included in your Foundation Series ISE package.

Synthesis

After your design has been successfully analyzed, the next step is to
translate the design into gates and optimize it for the target architec-
ture. This is the synthesis phase. Two synthesis tools are incorporated
with Foundation Series ISE: XST and FPGA Express. You select the
synthesis tool when you create a project. The synthesis flow for your
project is different for each tool.

Synthesis Tools

Foundation Series ISE includes two synthesis tools: XST and FPGA
Express

XST (Xilinx Synthesis Technology)

XST is a Xilinx tool that synthesizes HDL designs to create EDIF
netlists. The Project Navigator invokes XST processing when you
select a source and then select a synthesis process for a project that
has an XST synthesis tool associated with it. An XST flow project can
contain either VHDL (XST VHDL) or Verilog (XST Verilog) modules
but not a mix of both. A functional VHDL model (XST VHDL) or
Verilog model (XST Verilog) is created for schematics prior to
synthesis. Process properties can be set to control XST synthesis.

FPGA Express

FPGA Express from Synopsys can synthesize VHDL, Verilog, or
mixed HDL designs to create EDIF netlists. The Project Navigator
invokes FPGA Express processing when you select a source and then
select a synthesis process for a project that has an FPGA Express
synthesis tool associated with it. Depending on the Foundation Series
ISE product you purchased, the Express Constraints Editor (pre-opti-
mization), Time Tracker (post-optimization), and Library Viewer
GUIs may also be available to you. A functional VHDL model (FPGA
Express VHDL) or Verilog module (FPGA Express Verilog) is created
for schematics prior to synthesis. Process properties can be set to
control FPGA Express synthesis.

Note Both FPGA Express VHDL and FPGA Express Verilog support
mixed HDL designs. The designation VHDL or Verilog when you

Xilinx Development System

Design Environment

select an FPGA Express synthesis tool refers to whether Verilog or
VHDL functional models are created for schematics.

Implementation

The implementation stage consists of converting the logical design
file format, EDIF, created in the design entry stage into a physical file
format for a specific Xilinx architecture. Foundation Series ISE
includes the Xilinx implementation tools to perform the necessary
translate to bitstream generation functions for your design.

To check your design as it is implemented, reports are available for
each stage in the implementation process.

You can invoke the Xilinx Constraints Editor to add timing and loca-
tion constraints for the implementation of your design. You can also
invoke the Xilinx Floorplanner, FPGA Editor, and ChipViewer as
necessary.

To check that your design meets timing requirements, Static Timing
reports and the Xilinx Timing Analyzer are available.

Post-Route Simulation

You can perform post-route simulation on your design using
ModelSIM (from MTI) and a testbench/test fixture. This allows you
to check and correct your design before implementing it. For post-
route simulation, you can use the same testbench/test fixture you
used for functional simulation. The post-route simulation includes
timing information for the targeted device.

Programming File Creation

When your design meets all your requirements, you can create a
programming file that can be downloaded to the project’s target
device. The Xilinx Hardware Debugger, JTAG Programmer, and
PROM File Formatter can be invoked from the Project Navigator.

Foundation Series ISE 3.1i User Guide 2-9

Foundation Series ISE 3.1i User Guide

2-10 Xilinx Development System

Chapter 3

Creating a Project

To start a design, you must first create a project that represents your
design. The project creation process includes specifying a directory
for the project, identifying the Xilinx device you want to target for
your design, choosing a project flow, and adding/creating source
files to the project.

This chapter contains the following sections that describe the project
creation process:

« “Specifying a Project Name and Location”
« “Selecting a Device and Synthesis Tool”

e “Changing the Targeted Device”

e “Changing the Synthesis Tool”

e “Creating/Adding Source Files”

e “Source Types”

Specifying a Project Name and Location

The first step in creating a new project is to specify a project name and
to identify a directory to hold all of the project’s files.

Note Each project must have a separate, unique directory containing
only one project file (project_name.npl).

1. Open the Project Navigator.

To open the Project Navigator, select St art — Prograns -
Foundation Series ISE 3.1li - Project Navigator.
Or, click on the Foundation Series ISE 3.1i icon on your PC
desktop.

Foundation Series ISE 3.1i User Guide — Online 3-1

Foundation Series ISE 3.1i User Guide

3-2

2. SelectFile - New Project from the Project Navigator menu
bar.
3. The New Project dialog box appears. An example is shown in the
following figure.
New Project
Froject name: Project Location:

Froject Device Options:

ID:'\ExampIes\ J

Property Hame Value
Device Family Spartan
Device 505 PCE4-4
Synthesis Tool FRGA Express WHOL
I Cancel

Figure 3-1 New Project Dialog Box

4.

Enter a name for the project in the Project Name field. The Project
Navigator uses the name entered here to create the project file
(project_name.npl).

As you type in the Project Name field, what you type is also
entered in the Project Location field. It is added at the end of the
currently displayed path name to create a subdirectory for the
project.

For example, if the Project Location box currently has D: \ Exam
pl es and you type NewPr oj ect as the Project Name, the Project
Location then becomes D: \ Exanpl es\ NewPr oj ect . In this
case, the project file NewPr oj ect . npl is created and placed in
D: \ Exanpl es\ NewPr oj ect .

To select a different location for the project such as

D: \ Pr oj ect 1 instead of D: \ Exanpl es\ NewPr oj ect, you can
modify the path in the Project Location field directly. Or, if the
directory already exists, you can click in the Project Location field
and use the browse button that appears to select the directory.
Then, if NewPr oj ect is in the Project Name field, the project file
NewPr oj ect . npl is created and placed in the D: \ Proj ect 1
directory:.

Xilinx Development System

Creating a Project

If you modify anything in the Project Name field after selecting
the Project Location directory, the path in the Project Location
field is updated to reflect the changes you made to the Project
Name. For example, if D: \ Pr oj ect 1 is in the Project Location
field and then you type MyPr oj ect in the Project Name field, the
Project Location field becomes D: \ Pr oj ect 1\ MyPr oj ect .

Note If the directory shown in the Project Location field does not
currently exist, it is created. If the directory exists and it already
contains a project file with the same name as the one you entered
in the Project Name field, you are prompted as to whether you
want to overwrite the existing project file.

6. After you enter the desired project name and location, you can
click OK to create the project. The project will target the default
device and use the default synthesis tool identified in the Project
Device and Synthesis Tool selection area of the New Project
dialog box.

You can click in the Value fields for the Device Family, Device,
and Synthesis Tool properties and select different values from the
pull-down lists that appear before clicking OK to create the
project. For example, if you want to target a device in the Virtex
device family, select Vi r t ex from the Device Family pull-down
menu. Then select the specific Virtex device you want from the
Device pull-down menu. For example, if you want to use the
Virtex V50 device, BG256 package, and -6 speed grade, select V50
B&256- 6. Finally, select the synthesis tool you want to use from
the Synthesis tool pull-down menu, for example, XST VHDL.

Refer to the “Selecting a Device and Synthesis Tool” section for
information on the inter-relationship of the device and synthesis
tool selection for your project.

Figure 3-2 shows the Project Navigator’s windows for a newly
created project.

Foundation Series ISE 3.1i User Guide 3-3

Foundation Series ISE 3.1i User Guide

Digplay Device Information
HDL Corwerter

Done: completed successfully.

Figure 3-2 Project Navigator Windows for a Newly Created
Project

3-4 Xilinx Development System

Creating a Project

Selecting a Device and Synthesis Tool

Whenever you create a new project, a default device and synthesis
tool is assumed for the project. The default device and synthesis tool
appear in the Device Family, Device, and Synthesis tool fields of the
New Project dialog box (see the “Specifying a Project Name and
Location” section). The first time you create a new project a default
device and synthesis tool are shown, for example, the Spartan S05
PCB84-4 device and FPGA Express VHDL. After that, the device and
synthesis tool you used for your last project are used as the default
for the new project.

You can change the device and synthesis tool in the New Project
dialog box when you create the project. Or, you can change them later
as described in the “Changing the Targeted Device” section and the
“Changing the Synthesis Tool” section.

Table 3-1 shows the available synthesis tools for each device. The
sections after the table briefly describe the project flow characteristics
for each synthesis tool.

Table 3-1 Available Synthesis Tools for Each Device Family

Synthesis Tool

Device Family XST XST Eipfei\s E'):(P:i'i‘s ABEL | ABEL
VHDL | Verilog VEDL Ve‘;ilog XST | BLIF

FPGAs:

Spartan X X

Spartan2 X X X X

SpartanXL X X

Virtex X X X X

Virtex2 X X X X

VirtexE X X X X

XC4000E X X

XC4000EX X X

XC4000L X X

XC4000XL X X

XC4000XLA X X

Foundation Series ISE 3.1i User Guide 35

Foundation Series ISE 3.1i User Guide

Table 3-1 Available Synthesis Tools for Each Device Family

Synthesis Tool

Device Family XST XST EI;(ESQS E';';?e'i‘s ABEL | ABEL

VHDL Verilog VHDL Verilog XST BLIF
CPLDs:
XC9500 X X X X X X
XC9500XL X X X X X X
XC9500XV X X X X X X

XST VHDL

The XST VHDL project flow has the following characteristics:
» Uses Xilinx Synthesis Technology (XST) for synthesis
e Can contain VHDL code only. No ABEL-HDL is allowed.

e Creates a functional VHDL model for schematics prior to

synthesis
e Supports Virtex, Virtex2, VirtexE, Spartan2, and XC9500/XL/XV
devices
XST Verilog

The XST Verilog project flow has the following characteristics:
e Uses Xilinx Synthesis Technology (XST) for synthesis
e Can contain Verilog code only. No ABEL-HDL is allowed.

e Creates a functional Verilog model for schematics prior to
synthesis

e Supports Virtex, Virtex2, VirtexE, Spartan2, and XC9500/XL/XV
devices only.

3-6 Xilinx Development System

Creating a Project

FPGA Express VHDL

The FPGA Express VHDL project flow has the following characteris-
tics:

e Uses FPGA Express from Synopsys for synthesis

e Can contain mixed VHDL and Verilog code. No ABEL-HDL is
allowed.

e Creates a functional VHDL model for schematics prior to
synthesis

e Supports Virtex, Virtex2, VirtexE, Spartan2, Spartan, SpartanXL,
XCA4000E/L/EX/XL/XLA, and XC9500/ XL/ XV devices

« Certain configurations include the Express Constraints Editor,
Express Time Tracker, and Schematic Viewer tools from Synopsys

FPGA Express Verilog

The FPGA Express Verilog project flow has the following characteris-
tics:

e Uses FPGA Express from Synopsys for synthesis

e Can contain mixed VHDL and Verilog code. No ABEL-HDL is
allowed.

e Creates a functional Verilog model for schematics prior to
synthesis

e Supports Virtex, Virtex2, VirtexE, Spartan2, Spartan, SpartanXL,
XC4000E/L/EX/XL/XLA, and XC9500/ XL/ XV devices

e Certain configurations include the Express Constraints Editor,
Express Time Tracker, and Schematic Viewer tools from Synopsys

Foundation Series ISE 3.1i User Guide 3-7

Foundation Series ISE 3.1i User Guide

ABEL XST

The ABEL XST project flow has the following characteristics:
e Uses Xilinx Synthesis Technology (XST) for synthesis

e Can contain only ABEL-HDL code. No VHDL or Verilog is
allowed.

e Creates a functional VHDL model for ABEL-HDL code prior to
synthesis

e Creates a functional VHDL model for schematics prior to
synthesis

e Issupported for CPLD (XC9500/XL/XV) designs only.

ABEL BLIF

The ABEL BLIF project flow has the following characteristics:
e Uses the ABEL-HDL compiler engine for synthesis

e Can contain only ABEL-HDL code. No VHDL or Verilog is
allowed.

e Creates a BLIF-based netlist for ABEL-HDL code prior to
synthesis

e Creates a functional VHDL model for schematics prior to
synthesis

e Issupported for CPLD (XC9500/XL/XV) designs only.

3-8 Xilinx Development System

Creating a Project

Changing the Targeted Device
You can change the device you want your design to target at anytime.
Use the following procedure to select a new Xilinx device for an
existing project.
1. Click on the Device/Synthesis Tool line in the Sources Project
window to highlight that source.

|1® Xilinx - Project Havigator - D:A\New_project\Project.npl - |D|ﬂ
File Edit “iew Project Source Process Macro ‘Window Help
neeerrEpe® E|ERkE|2w ||v bR e |m| =

=]

Sources in Project: |

.3 5005 PLA44 - FPGA Express WHOL:

] B Module .. l File: Wign J 0N Shapsho... J Libtaty ... I
A=

Processes for Curment Source:
----- Jesign E ntry Utilities
Digplay Device Information
HOL Converter

B Process Vien I

2] isSE huto-Make Log File i’

= . _ _
. _'l_l
A TF M onsolef Findn Files [

B

Far Help. press F1

2. Select Source - Properti es from the Project Navigator
menu. (You can also right-click on the Device/Synthesis Tool line
and then select Pr oper t i es from the box that appears.)

3. A Project Properties dialog box appears with the current values
identified in the Value fields.

Foundation Series ISE 3.1i User Guide 3-9

Foundation Series ISE 3.1i User Guide

Project Properties =]

Project Properties

Property Hame Value
Device Family Spartan| ;I
Device 505 PCE4-4
Synthesis Tool FPG4 Express WHOL

QK I Cancel | Default |

4. Click on the scroll button on the right side of the Device Family
Value field to display the device family list.

Project Properties ll
Froject Properties |
Property Hame Value
Device Family Spartan J&[
Device Spartan_ L Af
Synthesis Tool Spartan2
SpartanXlL
Wirtex e
Wirtex2
WirtexE
HCA000E hd
QK | Cancel | Default |

5. Scroll through the device family list and select the desired device
by clicking on its name.

6. Assoon as you select a device family, the Project Properties
dialog box automatically updates with a default device and
appropriate synthesis tool for that device family.

For example, if you select Spartan for the Device Family, the
default Spartan device (S05 PC84-4) appears in the Device Value
field. (The device information includes the device name (S05),
device package (PC84), and speed (-4).) FPGA Express VHDL
appears as the default Synthesis Tool for Spartan devices.

3-10 Xilinx Development System

Creating a Project

Project Properties =]
Project Properties
Property Hame Value
Device Family Spartan ;I
Device 505 PCE4-4
Synthesis Tool FPG4 Express WHOL

QK I Cancel | Default |

7. Modify the defaults as desired by placing the cursor on the right
side of a Value field and scrolling through the list that appears.

Changing the Synthesis Tool

The selection of a synthesis tool is closely linked to the Xilinx device
family and the type of design (VHDL or Verilog) you want for your
project. Be aware that changing the synthesis tool may require
changing the targeted device. You can change the synthesis tool at
anytime using the following procedure:

1. Click on the Device/Synthesis Tool line in the Source window to
highlight that source (indicated by the arrow in the following
figure).

Foundation Series ISE 3.1i User Guide 3-11

Foundation Series ISE 3.1i User Guide

|)® Xilinx - Project Havigator - D:\New_project\Project_npl - |EI|1|
File Edit “iew Project Source Process Macro Window Help

PR e A e N P . |
2l
Sources in Project: |

B Urtitled
£3 505 PCA4-4 - FPGA Express VHDL.

N B Madule .. File: Wiew I X Shapsho... I Library ... I

2l

Processes for Curent Source:

Dizplay Device Information
HOL Converter

B3 Process View I
Z[l isE Auto-Make Log File f’
-
4 »
[4 F PP consolef Findin Files [/

2. Select Source - Properti es from the Project Navigator
menu. (You can also right-click on the Device/Synthesis Tool line
and then select Pr oper t i es from the box that appears.)

3. A Project Properties dialog box appears with the current values
shown in the Value fields.

Project Properties =]

Project Properties |

Property Hame Value
Device Family \u"irtex| ;I
Device W50 BG256-6
Synthesis Tool FPG4 Express WHOL

QK I Cancel | Default |

4. Click on the right side of the Synthesis Tool Value field to display
a list of the synthesis tools supported for the selected Device
Family.

3-12 Xilinx Development System

Creating a Project

Project Properties =]

Project Properties

Property Hame Value

Device Family Wirtex

Device W50 BG256-6

Synthesis Tool FPGA Express YHDL J&[
¥ST VHOL s
KET Werilog
FPGA Express WHOL
FPGA Express Yerilog

QK | Cancel | Default |

5. Scroll through the synthesis tool list and select the desired tool by
clicking on its name. Only synthesis tools appropriate for the
selected device family are listed

Creating/Adding Source Files

After you create your project and select a Xilinx device and synthesis
tool, you can begin creating and/or adding source files for your
project. A source is any element that contains information about a
design. Sources include the files necessary to describe the behavior of
your design (schematics or HDL files), files needed to test your
design (testbenches or test fixtures), and other design documentation.
The types of sources (schematic, VHDL, Verilog, ABEL) available in a
project vary depending on the selected device and synthesis tool.
Refer to the “Source Types” section for information on the types of
sources supported for Foundation Series ISE projects.

You can add existing files or create new files for your project using
the procedures described in the following sections.

Creating a New Source
To create a new source file for a project, do the following:

1. Open a project and click on any line in the Sources window to
highlight it.

2. Select Proj ect -» New Sour ce from the Project Navigator’s
Menu. (Or, you can right click on any source in the Sources
window and select New Sour ce from the pull-down menu that
appears.)

Foundation Series ISE 3.1i User Guide 3-13

Foundation Series ISE 3.1i User Guide

3-14

3.

New

The New dialog box appears with a list of appropriate sources for
the project’s target device and synthesis tool. The following
figure shows the available sources for a Virtex XST VHDL project.

Uszer Diocument
Schematic

WHOL Module
WHDL Package
WHOL Test Bench

C IP
Whdl Library

File M ame:

Location:

[ddclab _|

V' Add to project

< Back | dEwt | Cancel I

Select the type of source you want to create from the list by
clicking on it.

Enter a name for the new source file in the File Name field. Do
not add an extension to the file name. Foundation Series ISE adds
the appropriate extension for the selected source type.

Sources cannot have spaces or periods in their names.

Note State diagram names can only be eight characters and must
start with an alphabetic character.

Check the “Add to Project” box to add this source to the project
automatically after it is created.

Note The “Add to Project” box does not apply to all source types.
You must add certain sources, such as state diagrams and test-
benches/text fixtures, to the project manually as described in the
“Adding an Existing Source to the Project” section.

Click Next to continue.

The “New Source Information” window usually appears at this
point to summarize the requested new source.

Xilinx Development System

Creating a Project

If you are adding a VHDL Module or Verilog Module, the Define
VHDL Source or Define Verilog source wizard appears before the
“New Source Information” window. Refer to “Creating HDL
Source Files” section of the “HDL Sources” chapter for informa-
tion on using the HDL source wizard. Click Next in the Define
Source window to continue.

Click Fi ni sh in the New Source Information window to
continue.

9. The type of source you select determines what happens next. For
example, if you are creating a schematic, the Schematic Editor
opens. If you are creating a User Document, a Notepad window
(or your usual text editor) opens for text entry.

A source file named as specified in the File Name field is loaded

in the selected source-creation application ready for you to create
the source. If the “Add to Project” box was checked, the source is
automatically added to the project and is listed appropriately in

the source window.

10. Create the source.

Adding an Existing Source to the Project

Use the following procedure to add an existing source to a project.
The source can be in the project directory or in a remote directory (a
directory other than the project directory). The source is not moved or
copied from its current directory.

1. Open a project and click on any line in the Sources window to
highlight it.

2. Select Proj ect -» Add Sour ce from the Project Navigator’s
Menu. (Or, you can right click on any source in the Sources
window and select Add Sour ce from the pull-down menu that
appears.)

3. Use the Add Existing Sources window to browse to the source
you want to add to the project.

You can click on the right side of the “Files of type” box and select
a source type from the drop-down list that appears. This limits
the display to the specified type of source.

Foundation Series ISE 3.1i User Guide 3-15

Foundation Series ISE 3.1i User Guide

3-16

Add Ezisting Sources
Lookjn: | &= %DCLab =l g' B
I __hgo @ my_and2 [0 work
) _hgo (23 Mew Falder 2] aaaatest.txt
|23 counter (23 Mew Falder [2] abel.vhd
|20 Designi (3 New Folder (3] Alower dia
121 genf [statedg? ALOWER, vhd
) mppr_res. dir @ top counter vhd
4] |
File name: I Iﬂl
Files of type: | Caregen IP [%.xc0) j Cancel |
Sources [*txt7 sch; vhd vhd;® vhd; dia; xoo]

Note The source you select here remains in its current directory.
It is not moved or copied to the project’s directory if it is not
already there.

Uszer Document [tat]
Schematic [*.sch)

WHOL Module [*.vhd)
WHOL Package [*.vhd]
WHOL Test Bench [*.vhd)]
S * di

4. After selecting the file, the Choose Source Type dialog box may

appear. If it does, you need to identify the file type you are
adding. For example, a file with the .vhd extension could be a
VHDL Module, testbench, or package.

Choose Source Type ﬂ

newl.vhd iz which source type?
The suffix iz ambiguous as to type.

WHOL Module
WHDL Package
WHOL Test Bench

Cancel |

5. Assoon as you click Open to select a file in the Add Existing
Sources window or OK in the Choose Source type window, the
file appears in the Sources window for the current project.

The directory path appears along with the filename for all remote
sources (sources not in the current project directory). You can truncate
or expand the path information that appears by selecting Pr oj ect -
Toggl e Pat hs from the Project Navigator menu.

If the added source references other sources that are not currently in
the project, a red question mark appears beside the undefined source.

Xilinx Development System

Creating a Project

Sources in Project: |
=[] Tutorial

[prof_notes. kxt

B £3 VG0 BG256-4 - X5T WHDL

" B nodle View File triow | [Srapshot iew | E] Library view |

Adding a Copy of an Existing Source to the Project

Use the following procedure to add a copy of an existing source to a
project. The source can be in the project directory or in a remote direc-
tory (a directory other than the project directory). If the source is in
the project directory, a second copy is not made. The original is added
to the project. If the source is in a remote directory, a copy of the
source is created and placed in the project directory. The copy in the
project directory is added to the project.

1. Open a project and click on any line in the Sources window to
highlight it.

2. SelectProj ect - Add Copy of Sour ce from the Project
Navigator menu. (Or, you can right click on any source in the
Sources window and select Add Copy of Sour ce from the
pull-down menu that appears.)

3. Use the Add Existing Sources window to browse to the source
file you want to add to the project.

You can click on the right side of the “File of type” box and select
a source type from the drop-down list that appears. This limits
the display to the desired type of source.

Foundation Series ISE 3.1i User Guide 3-17

Foundation Series ISE 3.1i User Guide

Add Ezisting Sources
Lookjn: | &= %DCLab

I __hgo @ my_and2

) _hgo [AMewFalder [E]

|23 counter (23 Mew Falder [2] abel.vhd

|20 Designi (3 New Folder (3] Alower dia

121 genf [statedg? ALOWER, vhd

) mppr_res. dir @ top counter vhd
4] |

b
Files of type: | Coregen IP [*.xco) j Cancel |

Sources [*txt7 sch; vhd vhd;® vhd; dia; xoo]
Uszer Document [tat]

Schematic [*.sch)

WHOL Module [*.vhd)

WHOL Package [*.vhd]

WHOL Test Bench [*.vhd)]

Al files [%.%]

4. After selecting the file, the Choose Source Type dialog box may
appear. If it does, you need to identify the file type you are
adding. For example, a file with the .vhd extension could be a
VHDL Module, testbench, or package.

Choose Source Type ﬂ

newl.vhd iz which source type?
The suffix iz ambiguous as to type.

WHOL Module
WHDL Package

WHOL Test Bench
Cancel |

5. Assoon as you click Open to select a file in the Add Existing
Sources window or K in the Choose Source type window, a copy
of the file is created and placed in the project directory (if the file
is not already in the project directory). The file is added to the
project and appears in the Sources window.

3-18 Xilinx Development System

Creating a Project

If the added source references other sources that are not currently in
the project, a red question mark appears beside the undefined source.

Sources in Project:

=] E Tutarial
HE. prof_notes. bt

T R o File V... | o Snapsh... | E Librar... |

Source Types

As described in this chapter, a source is any element that contains
information about a design. Sources include the files necessary to
describe the behavior of your design (schematics or HDL source
files), files needed to test your design (test benches, test fixtures,
waveforms for simulation), and general project design documenta-
tion. Sources are listed in the Source window. Refer to the “Source
Window” section of the “Project Navigator” chapter for information
on the Source window. Icons to the left of the source filename identify
the type of design source. Refer to the online Help for a list of icons
that identify each design source type.

Your projects could consist of the types of sources listed in the

following table.

Table 3-2 Project Navigator Source Types and File Extensions

Source Type

File Extension

Project file

.npl

User document (such as a specification)

Axt, .wri, .doc, .xls, .hlp
(or any extension not recognized by the
Project Navigator)

Schematic .sch
State diagram dia
(currently a “user document”)

VHDL module .vhd
(includes VHDL logic description for state
diagrams, schematics, etc.)

VHDL package .vhd

Foundation Series ISE 3.1i User Guide

3-19

Foundation Series ISE 3.1i User Guide

Table 3-2 Project Navigator Source Types and File Extensions

Source Type File Extension
VHDL testbench .vhd
Waveform stimulus wdl

Verilog module v

(includes Verilog logic description for state

diagrams, schematics, etc.)

Verilog test fixture tf
ABEL-HDL logic description .abl
ABEL-HDL test vectors .abv (or .abl)
Coregen IP .XCO
LogiBLOX module .mod

Source Type Descriptions

3-20

The various source types you can add to your project are described in
the following sections. All sources appear in the Project Navigator’s
Source window (see Figure 3-3 for an example Source window). Refer
to the “Source Window” section of the “Project Navigator” chapter
for detailed information on how to access and display source data.

2lx]
|

Sources in Project:

E freqm
: readme. bt

@ freqm_th.vhd
@ cnt_bed [bed_cnt.vhd)
@ control [control. vhd)

@ hexZled [hexZled. vhd)

B hode v File tiow | [Srapsho... | E] Library... |

Figure 3-3 Example Source Window for a Virtex XST VHDL
Project

Project Title

The project title is in the first line of the Source window (“freqm” in
Figure 3-3). By default, the project title is “untitled.”

Xilinx Development System

Creating a Project

To change the project title, click on the first line in the Source window
and then select Sour ce — Properti es to access the Properties
dialog box shown in the following figure.

Project Properties =]

Project Properties |

| Property Hame I Value I
|Praject Title urtitiec] |

QK I Cancel Default

User Documents

User documents are listed beneath the project title. User document is a
catch-all source type used for any file that you want to have associ-
ated with a design project but that should not be or cannot be
processed by Foundation Series ISE. The most common use of this
source type is for text documents (.txt, .wri, .doc, etc.) that describe
the project. Currently, state diagrams (.dia) are also “user documents”
because they are not processed by the Project Navigator.

You can select Pr oj ect - New Source - User Document to use
the Project Navigator’s New source wizard to create a new, blank text
file and open it in your usual Window 98/NT/2000 text editing tool.
Refer to the “Creating/Adding Source Files” section for detailed
information on creating new sources and adding existing sources to
your project. Whenever you create or add a file and designate it as a
user document, it is listed under the project title when it is added to the
project. It is not processed by the Project Navigator.

Device/Synthesis Tool

The device/synthesis tool line is identified in the Source window by
the “chip” icon that appears in front of it. The relationship between
the device and synthesis tool is discussed in the “Selecting a Device
and Synthesis Tool” section. The type of sources available for your
project vary depending on the device you are targeting for the design

Foundation Series ISE 3.1i User Guide 3-21

Foundation Series ISE 3.1i User Guide

and on the synthesis tool you selected for the target device as shown
in the following table.

Table 3-3 Source Type vs. Synthesis Tool

Synthesis Tool
Source Type XST FPGA | FPGA 1 \BEL | ABEL
XST VHDL Verilo Express | Express HDL BLIE
9 | VHDL | Verilog
Project Title! X X X X X X
User document X X X X X X
Device/Synthesis X X X X X X
Tool!
Schematic X X X X X X
VHDL Module X X X
VHDL Test Bench X X X
VHDL Package X X X
VHDL Library X X X X X
Verilog Module X X X
Verilog Test Fixture X X X
ABLE HDL Module X X
(CPLDs only)
ABEL Test Vector X X
(CPLDs only)
State Diagram X X X X X X
Coregen IP X X X X
(FPGAs only)
LogiBlox Module X X X X X X
(XC4000s, Spartan,
SpartanXL, and
CPLDs only)

These are required “sources” in all projects and are added automatically. Their values
are set as Project Properties. To modify either, right-click on its line in the Source window
and select Sour ce - Properti es.

3-22 Xilinx Development System

Creating a Project

To change the device and/or synthesis tool, click the Device/
Synthesis Tool line and then select Sour ce — Properti es from the
Project Navigator menu. When the Properties dialog box appears, use
the pull-down menus in the Values field to select the desired device
family, device, and/or synthesis tool. Refer to the “Changing the
Targeted Device” section and the “Changing the Synthesis Tool”
section for illustrated instructions.

The Project Navigator associates the device/synthesis tool and all
sources listed under it with processes it can perform on them. To view
the available processes for a source, click on the Device/Synthesis
Tool line or any source listed under it and then check the Process
window for the list of available processes.

State Diagram

Drawing a state diagram is one method you can use to define your
design. A state diagram is a graphical representation of a finite state
machine. The state diagram source file (.dia) can be added to the
project as a user document. You can add the optimized HDL module
(.vhd or .v) translated from the state machine to the project as a
VHDL or Verilog source file. After the state diagram file and/or its
corresponding HDL file are added, they are updated whenever modi-
fications are made to either of them using the state diagram tool.

Foundation Series ISE includes support for StateCAD from Visual
Software Solutions, Inc. for the creation and development of state
machines and their translation to HDL code.

Schematic

Schematics (.sch) are another form of design entry. Schematics are
created in the ECS Schematic Editor and automatically added to your
project. Schematic sources are automatically translated into VHDL or
Verilog modules for simulation and synthesis. The VHDL or Verilog
functional modules are not shown in the Source window. You can
view the functional module by clicking on a schematic source and
then clicking View VHDL (or Verilog) Functional Model in the
Process window.

Foundation Series ISE 3.1i User Guide 3-23

Foundation Series ISE 3.1i User Guide

3-24

VHDL Module

A VHDL module (.vhd) is a source file that contains a single VHDL
entity/architecture pair. The architecture should be synthesizable
VHDL. You can create a VHDL module using the HDL Editor. Refer
to the “HDL Sources” chapter for information on creating VHDL
source files for your project.

VHDL Test bench

A VHDL Test bench (<vhdl_modulename>_th.vhd) is a source file
containing a single entity/architecture pair that provides the stim-
ulus for another VHDL design unit during simulation. In Foundation
Series ISE, VHDL Test bench sources are associated with the source
file that they instantiate. To enable Foundation Series ISE to automat-
ically launch a simulation using the installed simulator, the entity
name of any test bench source must be “testbench.”

A VHDL test bench is easy to recognize because the entity declaration
has no ports. It is the “entire universe” to the unit under test. Nothing
may enter or leave it.

Refer to the “Creating a Testbench/Test Fixture” section of the “Simu-
lation” chapter for information on creating VHDL test benches for
your project.

VHDL Package

VHDL models may be defined using packages. Packages contain
type and subtype declarations, constant definitions, function and
procedure definitions, and component declarations.

XST also supports predefined packages; these packages are pre-
compiled and can be included in VHDL designs. These packages are
intended for use during synthesis, but may also be used for simula-
tion. Refer to the XST User Guide for a list and description of
supported predefined packages.

VHDL Library

VHDL requires all design sources to be in a library. Refer to the “HDL
Library Mapping” chapter for information on creating and naming
VHDL libraries for use in your project.

Xilinx Development System

Creating a Project

Verilog Module

A Verilog module (.v) is a file that contains code for a single Verilog
module. Refer to the “HDL Sources” chapter for information on
creating Verilog source files for your project.

Verilog Test Fixture

A Verilog test fixture (.tf) is a file containing a single module that
provides the stimulus for another Verilog design unit during simula-
tion. In Foundation Series ISE, Verilog test fixture sources are associ-
ated with the source file that they instantiate.

Refer to the “Creating a Testbench/Test Fixture” section of the “Simu-
lation” chapter for information on creating Verilog test fixtures for
your project.

ABEL-HDL Module (CPLDs Only)

An ABEL-HDL modaule (.abl) is a file containing ABEL code. Refer to
the “HDL Sources” chapter for information on creating HDL source
files for your project.

ABEL Test Vector (CPLDs Only)

An ABEL test vector (.abv or .abl) is a file containing a single module
that provides the test vectors necessary to simulate your design.

CORE Generator Module

A CORE Generator module is a module from the CORE Generator
library or one customized with the CORE Generator tool. The CORE
Generator delivers parameterizable COREs optimized for Xilinx
FPGAs. It provides a catalog or ready-made functions ranging in
complexity from simple arithmetic operators such as adders to
system-level building blocks that include filters and memories.

Refer to the “CORE Generator” chapter for information on using
COREs in your project.
LogiBLOX Module

A LogiBLOX module is a module from the LogiBLOX library of
generic modules or one customized with the LogiBLOX tool. Logi-
BLOX modules are high-level modules such a counters, shift regis-

Foundation Series ISE 3.1i User Guide 3-25

Foundation Series ISE 3.1i User Guide

ters, and multiplexers that are pre-optimized for XC4000, Spartan,
SpartanXL, and CPLD devices.

Refer to the “LogiBLOX” chapter for information on using Logi-
BLOXs in your project.

3-26 Xilinx Development System

Chapter 4

Project Navigator

The Project Navigator is the primary user interface for Foundation
Series ISE. It integrates the design entry, implementation, synthesis,
and simulation tools and processes to facilitate design production.

This chapter contains the following sections that describe the Project
Navigator functions and windows:

e “Starting the Project Navigator”

* “Project Navigator Windows”

e “Source Window”

e “Process Window”

e “HDL Editor Workspace”

e “Error Navigation from the Transcript Window”
e “Integrated Tools”

e “Customizing the Project Navigator”

* “Docking/Undocking Project Navigator Windows”

Foundation Series ISE 3.1i User Guide — Online 4-1

Foundation Series ISE 3.1i User Guide

Starting the Project Navigator

4-2

You can use any of the following methods to open the Project Navi-
gator:

e Click on the Project Navigator icon (shown below) on your
desktop.

e SelectStart - Programs -Foundation Series |ISE
3.1li - Project Navigator fromyour PC desktop.

« For existing projects, you can start from Windows Explorer. Go to
the project directory and double-click on the project’s .npl file.
This opens the Project Navigator and loads the project.

The very first time you open the Project Navigator all of its windows
are blank. After that, the Project Navigator opens with the last project
you worked on.

|)® Xilinx - Project Navigator - No Project] 54
File Edit “iew Project Sowce Process Macra Window Help

R R S P I e

2%
Sources in Project: |
[Mao Project Open)

N B hiocdule .. File /...] 3 Stapsho. . I Library... I

2%
Processes for Curent Souce: |
[Mo Proceszes Available]

B Process iiew I
ZIJ (Empty Log) =l
[lIx i
[AR [EConsolef Findn Files
For Help, press F1 H 4

Xilinx Development System

Project Navigator

To begin using the Project Navigator, you must first create a project
and then create and/or add source files for the project. To create a
project, select Fi | e -~ New Pr oj ect from the Project Navigator
menu. The steps necessary to create a new project and to add sources
are described in the “Creating a Project” chapter.

Project Navigator Windows

The following figure identifies the various windows/areas included
in the Project Navigator.

Title bar Menu bar
\Rmr-ﬁﬁm Navigator - oies_projectseain_pchiespmi. npl AQI%,
File Edit Vimw FPromci Sessce Poocess Maowm Windos Help
DFHA B2FEEEAF RER B (500 oo HDL Edito
5l itor
Toolbars e T2l | [countar.vna o= workspace
o3 9N BGIE R5T VHDL Librery TIEE; fl
=@ teneasn a3 TEEE. STO_LOGIC_LLG4. 41L: I
p M mae TEKE. FTD_LOGIC_ARTTH, ALL]
4 E canri_] = 12w TEEE. STR_LOGEC_UMSTGHED ,
Source /"Gunn-.. T sncicy comcer § -‘H“"‘“—""‘“—-—..
window — L -~ HDL Editor
FEET; in A0 LIGICS window
F vesvas for L unent: §ouroe: = ﬂ_l LIJ\‘
D =
Ve \HIL Tex! Banch Tenpl
L~ B Lanch HIL Bercher ool
e B oot | | Transcript
Process P em B sounimb | window
window j /
A tone: compleced successfully //ﬁ’
- Status bar
i "j |-
0 E1 [l:‘cunull‘(ml,.l /
For Help, press P Ln, Call [P

Figure 4-1 Project Navigator Windows
The Project Navigator GUI contains the following sections:
* Source Window

This window shows all the design files associated with a project.
It includes tabs to display the project hierarchy view, files view,
snapshot view, and library view.

In the Source window, user documents are listed above the
Device/Synthesis Tool line. Project sources that are processed by
the Project Navigator are shown below the Device/Synthesis
Tool line.

Foundation Series ISE 3.1i User Guide 4-3

Foundation Series ISE 3.1i User Guide

4-4

* Process Window

This window is in the middle left portion of the Project Navigator
and shows the available processes for the selected source. No
processes are available for user documents. The processes avail-
able for other sources are dependent upon the device and
synthesis tool selected for the project as well as the type of source
it is.

» Project Workspace

The Project Workspace consists of the Source window and the
Process window. These windows are grouped together for
viewing purposes. You can use the Pr oj ect Wor kspace selec-
tion on the Project Navigator Vi ew menu to quickly toggle the
display of both the Source and Process window together as one
item.

« HDL Editor Workspace

The area on the right side of the Project Manager is the HDL
Editor workspace. HDL files are created and edited in this area.
Text files can also be created and edited in this area.

e Transcript Window

The Transcript window at the bottom of the Project Navigator
displays informational, warning, and error messages. An error/
warning Navigation feature is included within this window to
help debug your design.

Note The Schematic Editor and Report Viewer appear in their own
windows separate from the Project Navigator window configuration.

Xilinx Development System

Project Navigator

Source Window

The Project Navigator Source window (labeled “Sources in Project™)
shows all the design files associated with a project. A source is any
element that contains information about a design. Sources include the
files necessary to describe the behavior of your design (schematics or
HDL source files), files needed to test your design (test benches, test
fixtures, waveforms for simulation), and general project design docu-
mentation. Icons to the left of the source filename identify the type of
design source.

Use the Pr 0j ect menu in the Project Navigator menu bar to create,
add, and copy project sources for your project. The Sources are
created and/or added to the project as described in the “Creating/
Adding Source Files” section of the “Creating a Project” chapter.
Only after a source is added to the project does it appear in the Source
window.

Use the Sour ce menu in the Project Navigator menu bar to manipu-
late the sources shown in the Source window. Click on a source to
select it before accessing the Source menu. The Source menu includes
the following selections: Open, Close, Rename (snapshots and VHDL
libraries only), Remove, or Move to Library (HDL design files only).
You can access the Project Properties dialog box to modify the project
title and device/synthesis tool by clicking on the title or device/
synthesis tool line in the Source window and then selecting Pr oper -
ti es from the Source menu.

All source editors are “linked” with the Project Navigator. If a source
is modified and the modification changes the hierarchy of the design,
the Source window automatically updates to reflect the change.

Tabs at the bottom of the Source window select four different views of
the source data for your project: Module View, File View, Snapshot
View, or Library View.

Foundation Series ISE 3.1i User Guide 4-5

Foundation Series ISE 3.1i User Guide

Module View

Select the Modul e Vi ewtab in the Source window to get a hierar-
chical representation of the design files associated with a project.
These are divided into two groups in the window: user documents
and project sources.

User documents are listed above the Device/Synthesis Tool line. User
documents do not have any processes associated with them. The
Process window is blank when a user document is selected in the
Source window. An example is shown in the following figure.

|@ Xilinx - Project Navigator - D-\M5SE\SEexamplesi\freqmifreqm.npl -1al =]
File Edit Wiew Poject Souce Piocess Maco Window Help
PR E S R P |

2l

Sources in Project: |

B E fregm
R

5-£3 V5
= @ freqm [fregm.sch)

] B Wtodule... File V...] X Srapsh..] Libiat... I

t
LKST WHDL

o] fregm_tb.vhd

~[¥ ent_bed (bed_cnt. vhd)
@ contral [control.vhd]
LA hexled (hexZled vhd]

2l

Processes for Current Source: I

B8 Process View I

[Mo Processes Availabls]

=
|

|

Done: completed successfully. =
4 13
AT E [onsolef FindIn Files

Hierarchy iz up to date. H A

Figure 4-2 User Document Source

Project sources are listed below the Device/Synthesis Tool line in a
manner that depicts the relationship of these sources to each other. If
you select the Device/Synthesis Tool line or any of the sources below
it, the processes the Project Navigator associates with the selected
source type are listed in the Process window. The following figure
shows an example of processes that may appear for a project source.

Xilinx Development System

Project Navigator

Xilinx - Project Navigator - D:\SEASEexamples\fregm\freqgm.npl

File Edt “iew Pioject Source Process Maco ‘Window Help

R EE N D e |
=E|
Sources in Project: |;|
B[freqm
b readme. bt
El-E3 W50 BG256E-6 - X5T WHOL
BB fream (freqm.sch)
A freqm_th.vhd
cnt_bed [bed_cnt.vhd)]
@ contral [contral.vhd)
L O bawTlad fhawdlad whdl ﬂ

N B blodule .. File: Wiew I X Shapsho.... I Libtany ... I

2=

Processes for Curment Source:
ER 7l O c:ion Entry Utilties
EIW Uszer Constraints
¥} EdtUCF file

Constraints Editor

L] Check Design Rules

iew YHDL Functional Model

iew WHDL Test Bench Template
------ B Launch HDL Bencher Taol

G

8

Wiew WHOL Ingtantiation Template =
Create Schematic Symbol

Launch ModelSim Sirulator

= Synthesize

Wiew Spnthesiz Report

Analyze Hierarchy

Check Syntax

= Implement Diesign
Tranglate
i : Translation Feport
- Map
| Mano Reoort =
| | 3
B Process iew I
x| =
e
-
4 L4
AT ¥z onsoled, Findin Files
Hierarchy iz up ta date n £

Figure 4-3 Project Source

Both groups (project sources and user documents) fundamentally
behave in a consistent manner within the Source window. Double
clicking on a source or user document invokes the appropriate editor
to view and edit the source or user document. If the source is a sche-
matic, the associated editor is the ECS schematic editor. If a VHDL
source file is selected, the appropriate editor is the HDL Editor, the
Project Navigator’s language sensitive text editor. If the user docu-
ment is a text file, the associated text editor is opened.

Foundation Series ISE 3.1i User Guide 4-7

Foundation Series ISE 3.1i User Guide

4-8

File View

Select the Fi | e Vi ewtab in the Source window to get a file view of
the project’s sources. The File View displays all of the files in the
project so you can manipulate the sources as files rather than as indi-
vidual modules. The sources are divided by type and listed alphabet-
ically under each type. The following figure shows an example File
view.

2l
Sources in Project: I:
E| {:I ocuments:
: -[8] readme.tst
- [Module Files
ie[2] hesZled vhd
-[E] bed_cntvhd
-& freqmusch
] contral. vhd
D Simulation Stirmulus
------ B4 fregm_th.vhd

B hfodule .. . File ‘Wiewu l 2 Shapsho. . ‘ . Librar... I

Snapshot View

Select the Snapshot Vi ewtab in the Source window to view a list of
the snapshots you took to preserve versions of your design. Use
selections in the Source menu to open, rename, or remove a snapshot.
The following figure shows an example Snapshot view.

==

Sources in Project: I

B hiodule .. I File Wiew ‘ K Snapzho. . I Librar ... |

The Snapshot View allows you to see the contents of each snapshot.
To view the contents of the snapshot, click on a snapshot in the
Source window and then select Sour ce —» Open from the Project
Navigator menu bar.

Xilinx Development System

Project Navigator

2=

Sources in F'roiec:t' |

El-E freqm

N readme: bt

E| €3 VB0 BG25EE - =5TWVHDL
== @ fregm (fregm. sch)

@ fregm_th.vhd

@ cnt_bed [bod_cnt,vhd)

i @ control [contral, vhd)

L[# hexZled [hex2led vhd)

shap?2

& hodue | E] Fle | o Snapsh.. | (=) Liber_ |

When a snapshot is opened, it is read-only. You can view its elements
including generated reports. For example, to view report contents for
a source, open the snapshot, click on a design source in the Source
window, and then click on a report in the Process window to open it
in the Report Viewer.

If you want to perform an operation on a snapshot’s elements, you
must replace the current project with the snapshot project. Click on a
snapshot in the Snapshot view and then select Pr oj ect — Repl ace
wi t h Snapshot from the Project Navigator menu bar. You are
prompted to save the current project as a snapshot before the selected
snapshot replaces it as the current project.

Refer to the “Snapshots” chapter for complete information on taking
and using snapshots.

Library View

Select the Li brary Vi ewtab in the Source window to view a list of
the Libraries associated with the project and the sources included in
each one. VHDL projects can include multiple libraries. Refer to the
“HDL Library Mapping” chapter for information on creating named
VHDL libraries and moving modules to a library. The following
figure shows an example Library view.

Foundation Series ISE 3.1i User Guide 4-9

Foundation Series ISE 3.1i User Guide

=
Sources in Project: |
El- Tk
henZled.vhd
[2] bed_cnt.vhd
2] fregm.sch

[Z] contral.vhd

B2 htoctule ... I File: Wiewn ‘ DN Shapzho... I Librar... I-

Source Properties

In the Source window, only the project title and device/synthesis tool
sources have properties associated with them. You can change the
project title or device/flow selection for a project by highlighting the
title or the device/flow icon in the Source window and then selecting
Source - Properti es from the Project Navigator menu bar.

Process Window

The Process window (labeled “Processes for Current Source”) in the
middle of the left side of the Project Navigator shows all the
processing tasks that apply to whatever object or file is highlighted in
the Source window. Processing tasks include such functions as:
netlisting, compiling, logic reduction, logic synthesis, place and
route, simulation and model-building. In other words, it includes any
step along the way from design entry to downloading the design to
the device.

The context sensitive capability of the Project Navigator automati-
cally determines the design flow options for a source based on the
targeted device and synthesis tool. The Project Navigator displays
only those processes that can be performed on a specific source. This
reduces the complexity of the user interface by reducing the number
of available design process options. In general, the design flows are
organized (top to bottom in the Processes window) in logical design
sequence.

When you click on a source in the Source window, a list of processing
tasks applicable to that source appear in the Process window. In

4-10 Xilinx Development System

Project Navigator

general, the tasks are listed (top to bottom) in logical design
sequence.

Auto-Make

Project Navigator includes an auto-make feature that provides
“results-oriented processing.” You determine the end result of the
processing by selecting an available option in the Processes window.
When you click on a process, the auto-make feature checks for depen-
dencies between the process you selected and any predecessor
processes that may be out of date or that may not have been run.
Auto-make automatically runs the necessary processes to bring your
design up-to-date so that it can complete the process you requested.
This feature reduces design errors by ensuring that each process step
operates on the most current process results and design data.

Setting Properties for Processes

Design processes basically execute other programs or sets of
programs. Very often you can set parameters to be passed into these
programs. For example, you can set a parameter to insert 1/0 buffers
during synthesis or one to use zero or maximum delays for a simula-
tion. The most common properties for a given process are selected as
the defaults. You do not need to set the process properties to run a
process.

To specify properties for a process, highlight the process and then
select Process - Properti es. (If no properties can be set for that
process, the Properties selection is grayed out.) A Process Properties
dialog box appears containing parameters appropriate for the
process. The Process Properties dialog box for the Synthesis process
in an XST-VHDL flow is shown in the following figure.

Foundation Series ISE 3.1i User Guide 4-11

Foundation Series ISE 3.1i User Guide

Process Properties x|

Syrthesis Options | HOL Options | i Specific Options |

Property Name Yalue
Optirization Goal Speed -
Cptirnization Effort MHormal
Flatten Hierarchy -

Constraints File

QK I Cancel | [efatl Help

Viewing Reports

In many cases, a report is the output of a process. You can view a
report by double clicking on its name in the “Processes” window or
by clicking on its name and then selecting Pr ocess - Vi ew.

If the report does not currently exist, it is generated. If a green check
mark is in front of the report name, the report is up-to-date and no
processing is performed. If the desired report is not up-to-date, you
can click on the report name and then select Process - Runto
update the report before you view it. The auto-make process auto-
matically runs only the necessary processes to update the report
before displaying it. Or, you can select Process — Run Al | tore-
run all processes—even those processes that are currently up-to-
date—from the top of the design to the stage where the report would
be generated before displaying the report.

Reports on the synthesis process vary depending on the synthesis
tool you are using. Reports for the Implement Design process vary
depending on whether the target device is an FPGA or a CPLD. Refer
to “Implementing the Design” chapter for descriptions of the imple-
mentation reports.

HDL Editor Workspace

4-12

The HDL Editor workspace (shown in Figure 4-4) is the main text
editing area for HDL code. It is the only window of the Project Navi-
gator that cannot be hidden or undocked (refer to the “Docking/
Undocking Project Navigator Windows” section).

Xilinx Development System

Project Navigator

| Rilinx - Project Navigator - D:\XDCLab\Lab1.npl
File Edit Yiew Project Source Process Macro “Window Help

I = 3]

I T e e el e el R —— %)

|4 Untitled =
' |4 counter_tb.vhd
|4 counter.vhd

library IEEE:

entity counter is
Fort ||

1

end counter;

K]

use IEEE.3TD_LOGIC_ARITH.ALL:
usze IEEE.STD_LOGIC_L164.ALL;

CLE: in 3TD LOGIC;

BESET: in STD_LOGIC:

CE, LOAD, DIR: in STD_LOGIC:

DIN: in INTEGER range 0 to 157
COUNT: inout INTEGER range 0 to 15

‘@ counter.vhd |@ counter_tb. I|$ Unlitled *

For Help, press F1

[Ln7, Eal 1 [

Foundation Series ISE 3.1i User Guide

Figure 4-4 Project Navigator HDL Editor Workspace

Tabs at the bottom of the HDL Editor workspace allow easy naviga-
tion to the file you want to view or edit. The Window menu on the
Project Navigator provides the usual window functions to manage
the various windows open within the HDL Editor Workspace.

The File, Edit, and Macro menu on the Project Navigator are used
with the HDL Editor workspace. Selections on these menus are
discussed more fully in the “HDL Sources” chapter.

Two toolbars are available in the Project Navigator: the Standard
toolbar (left side of toolbar area) and the Editor toolbar (right side of
the toolbar area). The Editor toolbar (shown undocked below) is used
exclusively with the files in the HDL Editor workspace. Refer to the
online help for information on using the toolbars.

Editor

P EBRE| o | H

x|
| A% %% |Q

4-13

Foundation Series ISE 3.1i User Guide

Error Navigation from the Transcript Window

The Transcript window at the bottom of the Project Navigator main
window contains a project log. The output of all programs is captured
here, including all error/warning messages from the synthesis and
implementation tools. These errors and warnings are “navigable.”
That is, you can navigate to a line in the source file containing the
error or to a Solution Record for the problem.

Lol

An example of a Transcript window with the red error icons that
represent source/solution record navigable errors is shown in the
following figure. (The icon representing errors that are navigable to a
solution record only is similar; it does not have the two lines above
the word “WEB.” The corresponding warning icons are yellow

instead of red.)

Continuing compilation of
Cowpiling included source
Continuing compilation of
Compiling included source file 'cntéd.w!
=ERROR : (VLG 5002 . entél.v Line 4. parse
ERRCER (VLG 5002) . enteéld.v Line ZZ. Port

file 'swallentr.v!

source file 'cntél.

source file 'cntal.

Continuing compilation of source file 'cnte0.
Corpiling included source file 'D:%ViSE\verilochsred iSES\unisim comp.w!

=

prj'

pr3’

error, expecting “error' or “','!' or "';!

'CLE' not declared
pri’

.
== |
_>lJ

4
[4 F[H:Consolet Findn Fies

If the error or warning was generated by the synthesis tool (XST or

FPGA Express), you can go to the line in the VHDL or Verilog source
file containing the error. To navigate to a source file, do the following:

1. Place your cursor in the Transcript window.

2. Scroll to a line of text containing an error or warning message

3. Double-click on the error/warning icon in the Transcript
window. (Or, right-click on the error/warning icon and then
select Cot o Sour ce from the menu that appears.)

The source file opens to the line containing the error. See the

following figure for an example.

4-14

Xilinx Development System

Project Navigator

|$ Xilinx - Project Navigator - D:%\SE%SE examplesiwatchver\watchyer npl

File Edit “iew Project Source Process Maco Window Help

=loix]

= B

[o=ea|mwE @@ E ek e |[yoa o=
21zl
Snurces in Project u
o [B] readme tet
EI E,',E WEO BGZEEE - X5 T Veriog
topwatch [stopwatch.v) |@ entB0.y - Dlﬂ
stopwatch_th i
£_COUNTER_EINARY W1_0 Tﬁgﬁtecgr}tsﬂ(CE,CLK,CLR,LSBSEC,MSBSE_
input CLK
smallchtr [smallcntr.] @ inpuc CLE;
-[]_decade [decode.] =l output [3:0] LSBSEC:

'I‘:Module l_. File ... I X Shapsh... J . Librar.. I

v
[

Processes for Current Source:

=8 W’ Deesign Entry Utilities

“iew Yerilog Test Fisture Declarati
i

-

Launch HDL Bencher Tool

L] Create Schematic Symbal
LB Launch ModelSim Simulatar
Synthesize

»

«[B Wiew Synthesis Report
3 Anaze
X% Check Syrtax
=5 mplemert D esigh

E| W GenerateMiew Reports
@ Translation Aeport
Map report -

-
-

B Process View I chtBly

output [3:0] M3B5EC:

wire mshcoe;
wire wsheclr;
wire 1shtc:
wire wshtc;

smallentr lsheount(.CE(CE),.CLE{CLE) _ |
smallcntr msbeount(.CEinsbcoe),.CLE(C

assign lsbtc
azsimm msbtc

(LSBSEC==4'b1001) #
(MIB3SEC==4'b0110) 7
Al

Compiling included source file 'smallentr.v'

Camplllng 1ncluded source file 'cnte0.w!
- cnt60.v Line 4. parse

ERROR (VLG_ cntél.v Line 2ZZ. Port

Compiling included source file 'D:YiSE‘Vwveril

x| Continuing cowpilation of source file 'enced.

Continuing compilation of source file 'ent60.

Continuing compilation of source file 'ent60.

prj’

prj'

Berror, e ng “error' or LU o Tt

'CLR' not declared
pri’
oot sreh i5E unisim comp . v!

4
AR s onsoled Findin Files

Far Help, press F1

|Ln4, Cal1 |

Figure 4-5 Example of Error Navigation from the Transcript

Window to the Source File

For all errors and warnings, you can go to the Xilinx website where
you can use the Solution Record search engine to find a Solution
Record pertaining to your problem. To navigate to a Solution Record
on the Xilinx website, do the following:

1. Place your cursor in the Transcript window.

2. Scroll to a line of text containing an error or warning message.

3. Right-click on the icon in front of the line containing the warning

or error.

4. Select Got o Sol uti on Recor d from the menu that appears.

Foundation Series ISE 3.1i User Guide

4-15

Foundation Series ISE 3.1i User Guide

5. Selecting this option, takes you to the Solution Record search

engine on the Xilinx website.

Error navigation is available as processes are running. You do not
need to wait for a process to stop to navigate to displayed errors in
the Transcript window.

Note Errors and warnings that appear in the report files are not
captured in the Transcript window and, therefore, are not navigable.

Integrated Tools

The Project Navigator includes integrated support for the following
tools so that you can use them with your Foundation Series ISE
projects:

4-16

StateCAD and StateBench from Visual Software Solutions, Inc.
for state machine creation

Refer to “State Diagrams” chapter for information on using these
tools with Foundation Series ISE.

ECS Schematic Editor from Xilinx for schematic and symbol
creation and editing

Refer to the “Schematic Sources” chapter for information on the
Schematic and Symbol editors.

ModelSim XE/PE/SE from Model Technology Inc. for simulation

The “Simulation” chapter describes the integration of ModelSim
within the Project Navigator.

HDL Bencher from Visual Software Solutions, Inc. for automated
testbench/test fixture creation

The “Simulation” chapter also describes the integration of the
HDL Bencher within the Project Navigator.

XST for synthesis

Refer to the “Synthesis” chapter for information on how XST is
used with Foundation Series ISE.

FPGA Editor from Synopsys for synthesis

Refer to the “Synthesis” chapter for information on how FPGA
Express is used with Foundation Series ISE.

Xilinx Development System

Project Navigator

e ISE Report Viewer for viewing implementation reports and other
reports. Refer to the “ISE Report Viewer” section of the “Imple-
menting the Design” chapter for information on this tool.

Customizing the Project Navigator

You can set many environment variables and change settings for the
Project Navigator. Changes can be made as described in the following
sections.

Setting Display Preferences

SelectEdit - Preferences from the Project Navigator menu to
access the Preference dialog box (shown below).

Preferences |

General I Editar I Proceszes PartnerTooIsI

— Window 5 etting:

F £E [Clle Azsz0CIalons on Uszer Documents

— Default Path Type for Mew Sources
" Relative Paths

' Ahsolute Paths

— Font

Change the Project Font Fant... |
,TI Cancel | Appli |

Figure 4-6 Project Navigator Preferences Dialog Box

General Preferences

From the General tab (see Figure 4-6) you can set general window
settings, the default path for new sources, and the project font (the
font used in the Source and Process window).

Editor Preferences

From the Editor tab, you can select attributes for tabs and the font
used in HDL Editor windows.

Foundation Series ISE 3.1i User Guide 4-17

Foundation Series ISE 3.1i User Guide

4-18

Preferences |

General I Editar I Proceszes PartnerTooIsI

v Use File Azzociations on Uzer Documents

— Default Path Type for Mew Sources
" Relative Paths

' Ahsolute Paths

— Font

Change the Project Font Fant... |
oK I Cancel | Appli |

Standard/Advanced Process Properties Preference

In the Project Navigator, you may set process properties for processes
such as simulation, synthesis, or implementation. The available prop-
erties are displayed in a Process Properties dialog box. You control
whether to include additional “advanced” properties in the Process
Properties list. By default, only the “standard” properties are listed.

Use the following procedure to include advanced properties in the
Process Properties lists.

1. SelectEdit - Preferences from the Project Navigator menu.
2. Click the Pr ocesses tab (shown in the following figure).

Preferences |

General | Editor ~ Processes | Partrer Tools

Process Setting:

Froperty Display Level

0K I Cancel Appli

Xilinx Development System

Project Navigator

3. Click in the Property Display Level box and select Advanced
from the pull-down menu that appears.

Displaying/Hiding Windows and Toolbars

Click Vi ewon the Project Navigator to display a list of items (shown
below) that you can use to control which windows you want
displayed in the Project Navigator.

Wiew Source Process Macr
Toolbar

v Project Work space

v Sources

v Proceszes

w Tranzcript

v File Mames
BRefresh F&

Minimize Al 'Windows

Docking/Undocking Project Navigator Windows

Project Navigator includes a docking/Zundocking feature for most of
its windows and toolbars. This allows you to “remove” windows and
toolbars from the default Project Manager window and place and size
them separately for convenience of use. For example, Figure 4-7
represents the default configuration for the various Project Navigator
windows/toolbars.

Foundation Series ISE 3.1i User Guide 4-19

Foundation Series ISE 3.1i User Guide

4-20

|4 Xilinx - Project Navigator - D:\XDCLab\Lab1.npl (=]
File Edit “iew Project Source Process Macro Window Help
PR e T e R P e
, Ix
Sources in Project. |;|
[statedg2. dia =
El-£ VH0BG256-6 - ®5T WHOL
] B2 Module...

Processes for Curent Source:
Design Entry Utilities

B Wiew WHOL Test Banch Template

‘B Launch HDL Bencher Taal

Bl view WHOL Instartiation Template

A% Create Schematic Symbal

8

Launch bodelSim Simulator
@# Syrithesize

Bl view Syrthesiz Report
A3 Analze
-------- 3 Check Syntax
e [P Y o P hd
1| | 3
B Process Wiew I

2

;I 4
JJ I4l4I>I>II\Conso|g& Firud In Files §

Faor Help, press F1

A

Figure 4-7 Default Project Navigator Window Configuration

You use “grabber” bars to undock a window or toolbar from the
Project Navigator. The grabber bars are the two parallel bars on the
top or side of the window or toolbar. The arrow in Figure 4-7 points

to the grabber bars for the Source window.

You can use any of the following methods to undock toolbars or

windows from the Project Navigator.

e Double-click on the grabber bars at the top or side of a window or
toolbar. The window or toolbar is immediately undocked from
Project Navigator. You can now move and place it as desired.

« Hold down the left mouse button over the grabber bars and drag

the window or toolbar to the desired position.

e Right-click on the grabber bar and uncheck Al | ow Docki ng on

the menu that appears.

Xilinx Development System

Project Navigator

Figure 4-8 shows an example of the Source window and Process
window undocked from the Project Navigator. The Source and
Process windows are shown below the Project Navigator, but they

can be moved anywhere.

|l® Kilinx - Project Navigator - D:%<XDCLab\Lab1.npl
File Edit ‘“iew Project Source Process Macio ‘window Help

=1oix|

PR R R N I e

x|
|

|

4
[A[EHIkConsolef Find In Files

Far Help, press F1

Project Workspace h

=

Process Workspace

Sources in Project:

Processes for Current Source:

=]
E-[Unlited
neware.xea

statedg2.dia

£ £ VA0 BE2EEE - 5T WHOL
SR counter [counter vhd]
i B counter_tb.vhd
R testt] vhd =

~ o [rie. | msnapsh... | Bl Librar... |

ign Entry Ltilities
@ View WHDL Test Bench Templ:
B Launch HOL Bencher Toal
@ Wiew WHDL Instartiation Templ.
¥ Create Schematic Symbol

M1 Launch ModelSim Simulator
| [n »

B Process View I

Figure 4-8 Example Project Navigator Window Configuration
with Undocked Source and Process Windows

Foundation Series ISE 3.1i User Guide

4-21

Foundation Series ISE 3.1i User Guide

The window can be redocked using either of the following methods.

Double-click on the window title bar (indicated by the arrow in

the following figure.) The window is immediately redocked to
the Project Navigator.

Project Workzpace m

Sources in Project:

Lo [E] stateda2 dia
EE_'_E W50 BG256-6 - =S5T WHDL J

] testt] vhd
new_ver2 [hew_wver2.yv]
|- e [statedn? Tstatedn? vidl ﬂ

B hociul... Fiie .. | I Srpsh... |] Librar... |

Drag the window to the bottom area of the Project Navigator

main window until you see the drag shape change to the docked
shape.

Figure 4-9 shows the Source window redocked to the Project Navi-
gator.

4-22

Xilinx Development System

Project Navigator

|4 Xilinx - Project Mavigator - D:\XDCLab\Lab1.npl -1o] =]
File Edit \iew Project Source Process Macro Window Help

[cedapREEBERE[ERR|[2Y [2e[oc|a
x|
Sources in Project: I
E-[Urtited
newoale. oo
E statedg2 dia
E-fd Y50BG2566 - ¥5T WHDL
SR counter [hd)

[counter_tb.vhd

[testtl.vhd
new_wer? [new_wer2.v]
Fo[A statedg? (statedg2 vhd)
=[] top[top.sch)
E--@ my_and2 [my_and2.vhd)
H @ my_andz_th.vhd
verl_1 [ver_1.%]
[vl 14

N B nodule... File ..] 0N Shapsh...] Libiar... I

e =
| b
JJ AT TR ons olef Find In Files

For Help, press F1 [n A

Process Workspace x|

Processes for Curent Source

@ View VHDL Test Bench Templ:
B Launch HDL Bencher Tool

------ @ View YHOL Instantiation Templ.
------ ¥4 Create Schematic Symbol

------ il Laurch ModelSim Simulator X
< im D
B Process View

Figure 4-9 Example Project Navigator Window Configuration
with Redocked Source Window and Undocked Process Windows

By default, all windows with grabber bars allow docking to the
Project Navigator. If you want to be able to move a window or toolbar
around without having the Project Navigator redock whenever it
moves over it, you can disallow docking for that window or toolbar
using one of the following procedures.

If the window or toolbar is currently docked to the Project Navigator,
right-click the “grabber” bars. Then click on the Al | ow Docki ng
selection in the menu that appears until the check mark is removed.

Foundation Series ISE 3.1i User Guide 4-23

Foundation Series ISE 3.1i User Guide

4-24

If the window is already undocked from the Project Manager, right-
click in its right, left, or bottom window border (not on the title bar).
Then click on the Al | ow Docki ng selection in the menu that
appears (shown in the following figure) until the check mark is

removed.

Project Workspace

Sources in Project:

- [3 statedg2.dia

=3 W50 BE296-6 - ¥5T VHDL
=R counter [counter vhd)

© B counter_th.vhd

< [E] testt] vhd

: new_wer? [new ver v

[stabedn? [ztatedn? whdl

1

LT | B Fie ... | msnapsh...| El Lbrar.., |

v Allow Docking
Hide

Note You can use the Hi de selection (below the Al | ow Docki ng
selection) to hide the window or toolbar. To redisplay it, select the
appropriate window or toolbar from the Project Navigator Vi ew

menu.

Xilinx Development System

Chapter 5

HDL Sources

You can create your design using HDL code only or a combination of
HDL code, schematics, and state diagrams. This chapter describes the
creation of HDL design sources and contains the following sections:

e “Supported Languages”

e “Creating HDL Source Files”
e “Opening HDL Source Files”
e “HDL Editor”

e “Language Templates”

e “Creating a Schematic Symbol from an HDL Source”

Supported Languages

VHDL

ISE supports the following languages for the creation of HDL source
files: VHDL, Verilog, and ABEL-HDL. The ABEL-HDL language is
only supported for CPLD designs. The languages that can be
included in your project depend on the targeted device and the
synthesis tool selection.

VHSIC (VHSIC is an acronym for Very High-Speed Integrated
Circuits) Hardware Description Language. An industry-standard
(IEEE 1076.1) HDL. Recognizable as a file with a .vhd or .vhdl exten-
sion.

VHDL can be used to model a digital system at many levels of
abstraction ranging from the algorithmic level to the gate level. It is
IEEE standard 1076-1993.

Foundation Series ISE 3.1i User Guide — Online 5-1

Foundation Series ISE 3.1i User Guide

5-2

VHDL is capable of describing the concurrent and sequential
behavior of a digital system with or without timing.

Refer to the XST User Guide for specific information on using VHDL
in projects with the XST synthesis tool. Refer to the Synthesis and
Simulation Design Guide for specific information on using VHDL in
projects with the FPGA Express synthesis tool.

Verilog

Verilog is an industry-standard HDL (IEEE Std 1364) originally devel-
oped by Cadence Design Systems, now maintained by OVI. Recog-
nizable as a file with a .v extension.

Verilog is a commonly used Hardware Description Language (HDL)
that can be used to model a digital system at many levels of abstrac-
tion ranging from the algorithmic level to the gate level. It is IEEE
standard 1364-1995.

Refer to the XST User Guide for specific information on using Verilog
in projects with the XST synthesis tool. Refer to the Synthesis and
Simulation Design Guide for specific information on using Verilog in
projects with the FPGA Express synthesis tool.

ABEL-HDL

ABEL is a high-level language (HDL) and compilation system.

In Foundation Series ISE, ABEL-HDL is supported for CPLD devices
only and only with the ABEL XST and ABEL BLIF synthesis tools. It
is not supported for FPGA devices or for CPLDs devices used with a
synthesis tool other than ABEL XST or ABEL BLIF.

You can convert existing ABEL-HDL designs into VHDL or Verilog
design for use with other devices or synthesis tools. You can access an
HDL Converter by selecting the Device/Synthesis Tool line in the
Source window. Right-click on HDL Converter (under Design Utili-
ties) in the Process window. In the Project Properties dialog, enter the
name of the ABEL file you want to convert and select whether to
convert it to VHDL or Verilog.

Xilinx Development System

HDL Sources

Creating HDL Source Files

You can use the text editor of your choice to create an HDL source file
and then add that file to your project. Or, you can use Project Navi-
gator’s New source wizard and HDL Editor. With the New source
wizard, you are presented with a series of dialog boxes where you
enter information about the new source. The Project Navigator uses
this information to create and open a skeleton file in the selected
language in its HDL Editor. You select whether you want the file
added to the project.

New HDL Source Wizard

Following is the procedure used to create an HDL module with the
New source wizard. The procedure described below is for creating a
VHDL file. The procedure for creating Verilog or ABEL-HDL files is
similar to this procedure.

1. Open or create your project (see the “Creating a Project” chapter).

2. Select Proj ect -» New Sour ce from the Project Navigator to
access the New source window.

3. Select the HDL file type you want to create from the list of avail-
able source types displayed in the New source window. The HDL
source types included in the list depend on the device and
synthesis tool you selected for your project. The following figure
represents the available sources for a Virtex FPGA Express flow.
An XST flow would not include both VHDL and Verilog choices.

New

Uszer Diocument
Schematic

WHOL Module
Werilog Module
WHDL Package
WHOL Test Bench INew1|
Werilog Test Fisture

State Diagram .
Coregen IP Location:

Whdl Library Id:\ise\iseexamples\my_tests |

File M ame:

V' Add to project

Foundation Series ISE 3.1i User Guide 5-3

Foundation Series ISE 3.1i User Guide

4. Enter a name for the new HDL file in the File Name box. Refer to
the “Creating/Adding Source Files” section of the “Creating a
Project” chapter for detailed information on the New source
screen.

5. Click Next when you are ready to proceed.

6. For new VHDL modules, the Define VHDL Source window
appears. (Similarly, the Define Verilog Source window or Define
ABEL-HDL source window appears if you selected to create a
Verilog or ABEL-HDL module, respectively.) You can use this
window to create skeleton code for the VHDL module you are
describing.

Define YHDL Source

Entity Mame INew‘I

Architecture M ame Ibehavioral

Port Hame Direction MSB LSE i’

in
in
in
in
in
in
in
in
in

in LI
< Back I Mest » I Cancel |
Figure 5-1 Define VHDL Source Dialog

7. Enter a Port Name. Click in the right side of the Direction box.
Then use the pull down menu that appears to select a direction
(in, out, inout).

5-4 Xilinx Development System

HDL Sources

Define YHDL Source
Entity Mame INewT
Architecture Name Ihehavinral
Port Name Direction MSB LSB -
A in =0 4
aut
inout
in
n
in
in
in
in
in =
< Back | Mext » I Cancel I

Mew Source Information

Click in the right side of the Most Significant Bit (MSB) box and
Least Significant Bit (LSB) box to access their selector arrows. Use
the up and down arrows to select the desired value.

Note The MSB and LSB fields define the signal on the pin name
as a bus. For example, for a pin named DATA with an MSB of 7
and an LSB of 0, the bus would be DATA[7:0]. If the signal on the
pin is not a bus (for example, a clock), leave the MSB and LSB
fields blank

Click Next when you are ready to continue.

The New Source Information window appears with a summary
of the specifications made in the Define VHDL Source window.

Project Mavigator will create a new skelston source with the
following specifications:

Source Type: YHOL Module
File Mame: Newl

Entity Mame: Mewl
Architecture Name: behavioral
Fort Definitiors:

vector, 004 in
B scalar in
u] soalar oLt

Source Directary. d\xde_projstutorial |

< Back I Finish I Cancel |

Click Fi ni sh to proceed.

Foundation Series ISE 3.1i User Guide 5-5

Foundation Series ISE 3.1i User Guide

9. The HDL Editor opens in the Project Navigator’s workspace with
the newly created skeleton code displayed in it.

If you selected to have this file added to the project, the new file is
automatically added to the project as indicated in the Source in

Project window.
| Xilinx - Project Navig%m - D:AISENSE examplesifreqmifraqm.npl =1o] %]
File Edt View Project Sowce Frocess Macio Windaw Help
[ceeoFRE DR EFk(2 R me|s e (@mfr SesdR]e
= x|
Sources in Project |
=B freqm | New1.vhd
readme ! library IEEE:

= £ VB0 BE2566 - FPGA Express VHDL
= [B) freqm lfeam.sch)
[freqm_tb.vhd
[A eni_bed [bed_ent.vhdl
[A) control [cantiolvhd)
hex2led [hexZled.vhd)

use IEEE.STD LOGIC 1164.ALL:
use IEEE.STD_LOGIC_ARTTH.ALL;
use IEEE.STD LOGIC UNSIGNED.ALL:

entity Newl iz
Forc { A :

B : in std logic:
0 : out std_logic];

B e Yiew File iew | [0 Snapshot...| B Liwary .. |

end Newl;

= x| architecture behavioral of Newl iz

Processes for Cunert Source:
B
Create Schematic Symbol
Wiew VHOL Test Bench Template
Launch HOL Bencher Tool
Wigw VHDL Instantiation Template
Launch ModelSim Simulator
nthesize
View Reports
[B Pre-Dptimization Report
[B PostOptimization Report
Check Spntax
Analyze Al
Create Functional Structure
3 Edit Constraints

€ OmmCy

m
OO0

begin

end bhehawioral;

L1l

inout std_logic_vector{D to 4):

B Proess View

[A Newl.vhd

For Help, press F1

2l scanning Newl.vhd Al
4l wWriting Newl.jhd.
JHDPARSE complete - 0 errors, 0 warnings.
Done: completed successfully.
4 *
M A]EIFConsoleh Findn Files
[Ln1. Cal1 | 4

Figure 5-2 HDL Editor with New1.vhd File

10. You can now use the HDL Editor to continue coding from the

new module.

5-6

Xilinx Development System

HDL Sources

Skeleton Code for New VHDL Testbenches, VHDL
Packages, or Verilog Templates

Following is the procedure used to create skeleton code for a new
VHDL package. The procedure to create skeleton code for a new
VHDL testbench or Verilog test fixture is similar. The difference is
that you would select VHDL Test bench or Veri | og Test

Fi xt ur e and the skeleton code produced would be for a VHDL test-
bench or Verilog test Fixture.

1. Open or create your project (see the “Creating a Project” chapter).

2. Select Proj ect - New Sour ce from the Project Navigator to
access the New source window.

3. Select VHDL Package from the list of available source types
displayed in the New source window.

New

Uszer Diocument
Schematic
WHOL Module
Yerilog Module
WHDL Package
WHOL Test Bench INew_Packagel
Werilog Test Fisture

State Diagram .

Coregen IP Location:

Whdl Library Id:\ise\iseexamples\my_tests |

File M ame:

V' Add to project

< Back I Mest » I Cancel |

4. Enter a name for the new VHDL package in the File Name box.
Refer to the “Creating/Adding Source Files” section of the
“Creating a Project” chapter for detailed information on the New
source screen.

Click Next when you are ready to proceed.

5. The New Source Information window appears with a summary
of your request. Click Fi ni sh to continue.

Foundation Series ISE 3.1i User Guide 5-7

Foundation Series ISE 3.1i User Guide

5-8

New Source Information

Project Mavigatar will create a new skeleton source with the
following specifications;

Source Type: WHDL Package
Source Mame: Mew_Package

Source Directony: d:hise\isesxampleshmy_tests

¢ Back I Finizh I

Cancel |

6. The HDL Editor opens in the Project Navigator’s workspace with
skeleton code for a new VHDL package.

If you selected to have this file added to the project, the new file is
automatically added to the project as indicated in the Source in

Project window.
‘1@ Mew_Package.vhd =10l x|
|—— Package File Template =

-- Purpose: This package defines supplement
-- constants, and functions

library IEEE;
use IEEE.STD_LOGIC_1l64.all:

package <Package Name> is

type <new_typer is

record
<type_namex : otd_logic_wect
<type_names : std_logicy

end record;
-- Declare constants

constant <constant_namex : time ;= <ti
constant <constant names : integer ;=

-- Declare functions and procedure

function <function name> (sigmal <sigmal
procedure <procedure_name> [(<type_declar

-

A ~Dackaca WMamas -
4 I I » 2

7. You can now use the HDL Editor to complete the VHDL package.

Xilinx Development System

HDL Sources

Opening HDL Source Files

HDL Editor

To open any HDL source file listed in the Sources in Project window,
simply double click on its name. The file then appears in the HDL
Editor window in the Project Navigator. The HDL Editor is language
sensitive and identifies the language in the file by the file extension.

Foundation Series ISE provides a general purpose text editor that is
HDL language sensitive. You can invoke the HDL Editor in any of the
following ways:

e SelectProj ect -~ New Sour ce from the Project Navigator
menu. Follow the new source creation sequence. At the end of the
sequence, the newly created HDL file opens in the HDL Editor.

e Double click on any HDL file listed in the Source window.
e SelectFi | e -~ Newfrom the Project Navigator menu.

Note Fi | e —~ Newdoes not add the new file to the project. You
must use Proj ect - Add Sour ce ifyouuse Fi | e - Newto
create a new HDL source.

HDL Editor Online Help

Detailed procedures and commands for using the HDL editor can be
found in the HDL Editor online help. Context sensitive online help,
especially for reserved words, is available in open HDL files by high-
lighting a word or phrase and then pressing F1.

Use the following procedure to access comprehensive HDL Editor
online help:

1. Inthe Project Navigator menu, click Hel p - Foundati on | SE
Hel p Cont ent s to display the Xilinx Foundation Series ISE
On-line Help System menu (umbrella help menu).

2. Click HDL Edi t or under Design Entry in the Xilinx Foundation
Series ISE On-line Help System menu to open the HDL Editor
help topics window.

Foundation Series ISE 3.1i User Guide 5-9

Foundation Series ISE 3.1i User Guide

File/Window Operations

Use the second group of selections in the Project Navigator Fi | e
menu (shown in the following figure) for opening, closing, printing,
and saving files in the HDL Editor workspace. The File menu also
includes the Recent Files list.

Mew Project...
Open Project...
Open Example...
Cloze Project
Save Project As...

Hew Clrl+h
Open... Chl+0
Cloze

Save Chrl+5
Save As.

Frirt... Clil+P

Save All

Fiecent Projects 3
Fecent Files 3

E zit

You can have multiple files open at one time. Tabs at the bottom of
the HDL Editor window help you move between files.

The easiest way to maximize the HDL Editor workspace is to click the
Toggle Workspace Window toolbar button to hide the Source and
Process windows. Click on the Tool Transcript View toolbar button to
hide the Transcript view. Refer to the “Docking/Undocking Project
Navigator Windows” section of the “Project Navigator” chapter for
additional information on how to maximize the HDL Editor work-
space.

5-10 Xilinx Development System

HDL Sources

|4 Xilin - Project Mavigator - D:XXDCLab\Lab1.npl =1
Fle Edt View Poct Souce Process Macio Window Help
EEEEEEEN L L o | 20

|4 counter.vhd
|e counter_tb.vhd
| my_and2.vhd

|4 my_and2_th.vhd —[of x|
|- povepcLasyiy_anpz_TE. viD -
-~ VHDL Test Bench created by

-- Visual Software Solution's HDL Benche
-- Product info/updates: wmw. testhench. o
-- Support: supportfitestbench.com

-- Gales: salesftesthench.com / call (85
-- Mon Jan 10 15:31:11 2000

LIBRARY IEEE;
USE IEEE.STD LOGIC 1164.ALL:

LIBRARY ieee;
USE IEEE.STD LOGIC TEXTIO.ALL:
USE STD.TEXTIO.ALL;

ENTITY testbench IS
END testhench;

ARCHITECTURE testbench_arch OF testhench
-- If you get a compiler error on the fo
-- from the menu do Options->Configurati
FILE FESULTS: TEXT OFEN WRITE_MODE IS "r
COMPONENT my_and2
FORT |

a:in std logics

Boroin std logics

¥ 1 out std logic

1:
END COMPONENT: -
Ll »

[l countervhd [[A) counter tb_ | [my_and2 vid [A my_andz_te..|

For Help, press F1

[Ln 1, Cell

Editing Functions

The Project Navigator Edit menu (shown in the following figure)

contains the cursor movement, selection, copy, cut, paste, and insert
file functions that you use with the HDL Editor. Icons on the Project
Navigator Tool Bar are also available for the basic functions. Refer to

the HDL Editor’s online help for details.

Undao Chil+2

Cut Chrl+
Paste Chil+f
GoTo 3
Calurnn 3
Select 3
Inzert File...

Find... Chil+F

Find Mext Chrl+alt+F
Beplace... Chrl+H

Find In Filez

Language Templates. ..
Preferences...

Foundation Series ISE 3.1i User Guide

5-11

Foundation Series ISE 3.1i User Guide

5-12

When the Language Template window is active, the Project Navi-
gator Edit menu changes as shown in the following figure to reflect
the edit functions available with the Language Templates tool. A
separate toolbar on the Language Template window is also available
for these functions.

Mew Folder
Mew Template
Delete

Copy Chl+C

Uz in File

Search Functions

A portion of the Project Navigator’s Edit menu is dedicated to search
functions for the files in the HDL Editor workspace. The Find in File
function is particularly useful for searching across multiple files. You
can initiate the search from the Project Navigator Edit menu or from
the search input field of the Editor tool bar. The Find in Files function
searches all files currently open in the HDL Editor workspace for the
specified target. The results appear in the Transcript window. The
input field on the Editor toolbar includes a list of previous search
targets. The following figures illustrates a search for the word
“RESET” in two open files.

Xilinx Development System

HDL Sources

| Xilinx - Project Mavigator - D:\iSEASE examples\freqmifreqm. npl
File Edt Wiew Pioect Souce Process Maco Window Help

=lolx|

EEE I EEEE S EE R PRI
]

Sources in Frojest

=B

fream

[readme.tzt

=+ €3 W50 BG256-6 - FPGA Express VHDL
5[fream (freqm.sch)
B treqm_th.vhd

[A control [cantral.vha]
[hexZled thex2led vhd)

R Mo iew File View | g Snspshot.. | B Liary . |

x

Processes for Curent Source;

|4 control.vhd

library IEEE:
use IEEE.std_logic_lléd.all;
ups

. |4 bed_cnt.vhd

TRFR atd lamin arith alls

library IEEE;
use IEEE.std logic 1164.all;

use IEEE.STD_LOGIC_ARTTH.all:
use IEEE.STD LOGIC UNSIGNED.=2ll:

entity CHT BCD is
porc |
CLE: in 3D LOGIC:
FESET: in $TD_LOGIC:
ENAELE: in 5TD LOGIC:

El
[ATETFI, Console AFind In File:

1=
@@ DesionEntry Utiities FULL: out §TD LOGIC:
G Create Schemalic Symbal BCD_U: out STD_LOGIC_VECTOR (3 downto
~~[E ViewVHDL Test Bench Template BCD_D: out STD_LOGIC_VECTOR (3 dewmto
[Launch HDL Bencher Tool ECD_H: out 3T0_LOGIC_VECTOR (3 dowmto
[ViewVHDL Instantiation Templatz BCD_T: out STD_LOGIC_VECTOR {3 downto
B Launch ModelSim Simulator 1
-G Synthesize end CNT_BCD;
E View Reports
@ Pre-Optimization Fieport architecture CNT_BCD of CNT_BCD iz
Post-Optimization Report I,
o B g i
S bndyzz
2§ Create Functional Stucture
3 Edit Constraints
£ View Schemalic [Func |]
B process Wiew [contiolvhd [bed_cntwhd
2l a:yise\iseexemples\fregqmicontrol.vhd (8): RESET: in 3TD_LOGIC: 1=l
d:\iseliseexamples)freemicontrol.vhd(21) : Sregl_machine: process (CLK, reset)
d:Yisel iseexamples) frecm' control.vhd (25): if RESET='1' then
d:Viseliseexamples| fregmibed ent.vhd (10): RESET: in STD_LOGIC:
d:Yiselisesxamples)frequibed cnt.vhd(30): process (CLE, RESET)
d:\iseliseexamples|fregmibed ent.vhd(33): if RESET='1' then

For Help,

press F1

Ln1, Col1 =

Macro Functions

The Project Navigator Macro menu (shown below) contains functions
you can use for keyboard recording and playback.

Begin Recording Shift+Alk+R

EndRecording Shift+4lt+E
Flay Lazt Shift-+al+F
Select Shift+Alt+5
InzertVariable Shift+dlt+]l

Save Macros
Load Macroz

The HDL Editor will allow the user to record his own macros for use
in the active document. Macros can be filed in user created folders
and recalled in future documents.

Note You are not prompted to save your macros when closing the
Project Navigator. If you do not select Save Macros, your recorded
macros will not be available for future projects.

Foundation Series ISE 3.1i User Guide

5-13

Foundation Series ISE 3.1i User Guide

5-14

Customizing Tabs and Fonts

To customize the tab settings and/or fonts used with the HDL Editor,
do the following:

1. SelectEdit - Preferences from the Project Navigator main
menu.

2. When the Preferences menu appears, click the Edi t or tab.

Preferences =]
General Editar |Processes| PartnerTooIsI

— Tab:
Tab size: |3_ Insert spaces
™ Show tabs & Keeptabs

— Font

Change the Text Editar font Fant... |

QK I Cancel | Lol |

3. Use the Tabs and Font areas on the Editor Preferences menu to
modify these items as desired.

Note The background color of the HDL Editor workspace is
controlled by your PC’s Application Background display setting.

Language Specific Features

The HDL Editor identifies the coding language in a file based on the
extension added to the file name. Refer to Table 3-2 in the “Creating a
Project” chapter for source type and file extension information.

The HDL Editor includes color coding of strings, comment,
keywords, and directives as well as context-sensitive help for
reserved words. The HDL editor adjusts its color-coding, help, and
keyword/reserved word identification as appropriate for the
language contained in the file. You can check whether a word in a
open HDL file is a reserved word by highlighting it and then pressing
F1. This opens the HDL Editor help contents which contains informa-
tion on reserved words.

Xilinx Development System

HDL Sources

A Language Templates tool is included to aid VHDL, Verilog and
ABEL source code entry. Refer to the “Language Templates” section
for information on this tool.

Language Templates

Multiple language and synthesis templates with prepared pieces of
code are available in Foundation Series ISE. These enable easy inser-
tion of pre-built text structures such as common language structures
or instantiation templates for synthesis into your HDL source file.

Accessing the Language Templates

You can access the Language Templates tool using either of the
following methods:

e« SelectEdit - Language Tenpl at es from the Project Navi-
gator menu

e Click the Language Template icon (shown in the following
figure) in the Editor toolbar

9]

The Language Template window (shown in the following figure)
opens in the HDL Editor window.

Foundation Series ISE 3.1i User Guide 5-15

Foundation Series ISE 3.1i User Guide

5-16

u Language Templates ;IEILI
| B e
Templates: ;I
=0 ABEL

D Language Templates
D Synthesis Templates

[{0 User Templates

=] COREGEN

D YERILOG Component Instant
D WHOL Component |nstantiatic
{1 Werilog

{1 Compaonent Instantiation

[Language Templates

e [0 Synthesis Templates

[{0 User Templates

=0 vHDL

D Component Instantiation
D Language Templates
D Synthesis Templates

[{0 User Templates

=]

¥

4] (IO | oz

The Language Templates window consists of two sections. The left
side allows you to list the available code templates for ABEL, Verilog,
VHDL, and the CORE Generator components. The window on the
right displays the template information (text) when you select a
template.

Selecting an Existing Template

To select a template for use in your HDL code, do the following:

1. Open the Language Templates window as described in the
“Accessing the Language Templates™ section

2. Click on the “+” symbol in front of ABEL, CORECEN, Ver i | og, or
VHDL to display the folders under each selection (see the figure in
the “Accessing the Language Templates” section).

There are four groups of templates for VHDL and Verilog, three
for ABEL, and two for COREGEN. Language templates contain
basic language constructs. Synthesis templates have code frag-
ments for synthesis-oriented implementation of basic functional
blocks, such as multiplexers, flip-flops, counters, etc. Component
instantiation templates are templates for instantiating Xilinx library
components and CORE Generator cores into your VHDL and
Verilog source code. User templates are user created templates for
specific constructs.

Xilinx Development System

HDL Sources

3. Click on the folder under the selected language or COREGEN
that represents the type of template you want. Browse through
the underlying folders and files to select the desired template.

4. Click on a template name to display the template (and example
code for Language Templates) in the window on the right. The
following figures show examples of the three main types of
templates: component instantiation templates, language
templates, and synthesis templates.

gLanguage Templates - |EI|1|
H B &
Templates: |;| 155
-1 wHDL
,_:_|C‘:| Companent Instantiation --3pecial Virtex output buffers
F-{20 Block FiéM --Replace the XX with the appropriate I/0 standar
-2 Boundary Scan --%ee HAPP 133 for more details
B+ Clack DLL
E -- OUTPUT_FORET : t 3TD_LOGIC:
----- Global Clack Buffer — o —
-0 LT —-**Insert the following between the
B0 MU -- tarchitecture' and 'begin' keyworda®¥
- M
""" Readback signal INT_SIG, T ENABLE: std logic:
-] ROM couponent OBUFT_X03(
= Selectl] port (I, T: in std logicy 0@ out std logic):
" Selectl] bidirectional bu end component;
SelectlD clock buffers
SelectD input buffers —=**Insert the following after the 'begin' keyword
SelectD output buffers e
Ul: OBUFT_XXX port map (I => INT 3IG,
E-0 Startup - T =» T_ENAELE, 0 => OUTPUT_FORT): |w
| | 3) KN B Hz

Figure 5-3 Component Instantiation Template Example

Foundation Series ISE 3.1i User Guide 5-17

Foundation Series ISE 3.1i User Guide

5-18

gLanguage Templates - |EI|1|
H B &
Templates: |;| 155
=3 WHDL))
D Compaonent Instantiation case <expressions 1s
=1 Language Templates when <choicesk =>
----- ﬁ architecture body " <sta}tleylent,s>_
----- [T block statement when <choloes: =
3 <Statenents:
j" . when others =>
""" T P ! an.atlgn <statementss
----- ﬁ compgnent |r13tant|at|.on end casze:
----- ﬁ conditional zignal assignmer —— exauple:
----- [f] constant declaration ——caze SFL is
----- ﬁ deszign library specification —— when O | 1| 2 =»
----- ﬁ entity declaration - Z <= B:
----- [T esit statement -- when 3 to 10 =
----- [f forloop statement - I <= 0;
----- [f] function declaration -- when others =
----- [f] generate statement - mall; =
..... [f1 if statement --end casze;
----- ﬁ library, packages - =
| I3) K A
Figure 5-4 Language Template Example
gLanguage Templates - |EI|1|
|| Ex |l
Templates: |;| ;I
-1 wHDL

{1 Component Instantiation
[Language Templates
-2 Synthesis Templates

Barrel Shifter
Comparator
Counter
Debounce circuit
Decoder
- |T] Encoder
-2 Flip Flops
..... HEX2LED Corrverter
-2 Latches
- Multiplexers
E o
-2 Shift Fegisters
-2 State Machines hd|

KXl v

-- Instantiating PULLUP resistor

-- Pullups can be used in I0Es or with
-- Tri-state components (BEUFT or EUFE) o
-- Open-Drain components (DECODE, WaND, 1
- TRI_3IG: =std logic:

—-—**Insert the following between the 'ar:
-—='begin' keywords*+*

component PULLUP
port (0: out std logic):
end component;

—=**Insert the following after the 'begil

Tl: PULLUP port map (0=>TRI_SIG);

Figure 5-5 Synthesis Template Example

You cannot edit component instantiation templates, language
templates, or synthesis templates from the Language Templates
window. You must copy them to an open file in the HDL Editor
workspace to modify template contents. After you modify the

contents or create a new template, you can add the template as a user

template for future use.

Xilinx Development System

HDL Sources

Inserting Templates in HDL Sources

Use one of the following methods to insert a template into an open
source file in the HDL Editor workspace.

» Select a template from the Template area and drag (hold the left
mouse button down) and drop it into the HDL code. You can
scroll within the HDL Editor to the correct line by continuing to
hold the left mouse button down and moving to the top or
bottom of the Edit window. A special cursor indicates where the
text is going to be dropped.

« Highlight the template text. Select Use i n Fi | e from the Edit
menu in the Project Navigator. Place your cursor where you want
to insert the text. Right click and then select Past e from the
menu that appears.

* Highlight the template text. Click on the Use i n Fil e iconon
the Language Templates toolbar. Place your cursor where you
want to insert the text. Right click and then select Past e from the
menu that appears.

« Highlight the text you want to insert and “drag-and-drop” it into
your document.

Creating a User Template
To create a new User Template, do the following:

1. Open the Language Templates window as described in the
“Accessing the Language Templates” section

2. Select ABEL, Veri | og, or VHDL from the Templates window of
the Template Assistant.

3. Highlight the User Templates folder under the selected language.

4. Click the New Tenpl at e icon on the Template Assistant toolbar.
Or, select New Tenpl at e from the Project Navigator Edit menu.

Foundation Series ISE 3.1i User Guide 5-19

Foundation Series ISE 3.1i User Guide

uLanguage Templates =0 x|
= BRewi i
Templates: I d
#- 7] ABEL
-7 COREGEM
-7 Werlog
-3 wHDL
{:I Carmpanent Instantiation
{:l Language Templates
D Synthesiz Templates
=23 User Templates
M_Template
- e

EAN ay

Figure 5-6 New User Template Creation

5. Enter a name for the new template in the “New Template” name
edit field that appears in the Language Templates window.

6. Move the cursor to the window on the right side of the Template
Assistant and use the HDL Editor to enter the template text.

7. Click the “Save Templates” icon on the Template Assistant
toolbar when you are ready to save the newly entered template
information.

Use the methods described in the*“Inserting Templates in HDL
Sources” section to place the template in your HDL code.

5-20 Xilinx Development System

HDL Sources

Creating a Schematic Symbol from an HDL Source

To create a schematic symbol from an HDL file for use on a schematic,
use the following procedure.

1. Inthe Sources in Project window, highlight the desired HDL file.
The file can contain underlying schematics or other HDL
modules.

2. Inthe Process window, double click the Cr eat e Schenati c
Synbol process.

The symbol is created and placed in the project directory. It is named
the same as the HDL file except that it has .sym as its extension. It is
also automatically included in the Local Symbol directory of the
Schematic Editor’s Symbol libraries.

To use the symbol in a schematic, open a schematic and then select
Add - Synbol from the Schematic Editor menu. Select the symbol
from the Local Symbol directory (shown in the following figure) for
placement on the schematic. Refer to the “Schematic Sources” chapter
for information on the ECS Schematic Editor.

#l Symbaol Libraries x|

Libraries/Directories

(&l Symbals) -
[Local Symbolz)

DS Ebwirtextdatahsymbolhdrithretic. ib
[:MISESwirtextdatahsyrmbalyBuffer lib
DeMSENvirtewhdataspmbolhCarmy_Logic lib
D:MISENvirteshdatatsymbolyComparator.ib

[:ISE witerhdatahaymbolsCounter. ib

DS ESwirtewtdatahsymbolhDecoder lib
[:MSEbwitexhdatahsymbolsDrawing_sheet ib
D:MSENvirtewhdataspmbolyFlip_Flop.lib
D:MISENvirteshdatatsymbolhGeneral ib ;I

Symbals

cnt_bed
control
hex2led

Symbol Mame Filter

Foundation Series ISE 3.1i User Guide 5-21

Foundation Series ISE 3.1i User Guide

After you add a symbol created from a HDL source, you can view
and modify the HDL text by selecting Vi ew — Push/ Pop from the
Schematic Editor menu and then selecting the HDL source’s symbol
on the schematic. The HDL source file opens in the HDL Editor work-
space.

5-22 Xilinx Development System

Chapter 6

Schematic Sources

This chapter describes how schematic sources are used in Foundation
Series ISE projects. It also contains an overview of the basic concepts
you need to use the ECS Schematic Editor and Symbol Editor tools. It
contains the following sections:

e “Schematic Source Files”

* “Instantiating HDL Sources”

e “Simulating and Synthesizing Schematic Sources”
e “VHDL Functional Model”

e “Verilog Netlist”

* “ECS Schematic Editor”

e “VHDLgeneric Attribute Example”

e “Symbol Editor”

e “Symbol Libraries”

e “Guidelines for Creating Schematics”

Schematic Source Files

Your Foundation Series ISE project can include schematics as well as
HDL sources to define your design. You initiate the creation of a sche-
matic source from the Project Navigator. After the source file is
created, the Project Navigator invokes the Engineering Capture
System (ECS) tool for you to create and modify the schematic design.
Only schematics created with the ECS tool can be used with Founda-
tion Series ISE projects.

There are three principle components to ECS: the Schematic Editor,
the Symbol Editor, and HDL netlisters. The Schematic Editor is the

Foundation Series ISE 3.1i User Guide — Online 6-1

Foundation Series ISE 3.1i User Guide

main schematic-creation interface. The Symbol Editor allows you to
create and modify symbols that are used in the Schematic Editor. The
netlister program translates a schematic into an HDL model that is
used for synthesis and simulation of the design.

This section contains information on the Project Navigator’s interac-
tion with schematic source files. Refer to the “ECS Schematic Editor”
section for information on the using the Schematic Editor and its
interaction with the Symbol Editor. The most detailed information on
using the ECS tools is in the Schematic Editor and Symbol Editor
online help (from the Hel p menu and F1 context sensitive help).

Creating a Schematic Source File

Use the following procedure to create and add a schematic source
(.sch) to your project.

1. Open or create your project as described in the “Creating a
Project” chapter.

2. Select Proj ect - New Sour ce from the Project Navigator
menu to access the New source window.

3. Select Schemat i ¢ in the New source window. An example New
source window for an XST VHDL project is shown in the
following figure.

New

Uszer Diocument
Schematic
WHOL Module
Werilog Module
WHDL Package
WHOL Test Bench INEW']
Werilog Test Fisture

State Diagram .
Coregen IP Location:

hdl Library ID:\E wamplesiMewProject’,

File M ame:

V' Add to project

< Back | Mest » Cancel

6-2 Xilinx Development System

Schematic Sources

4. Enter a name for the new schematic in the File Name box. The
project location is automatically entered in the Location box.

Ensure that the Add to project box is checked if you want the
schematic file added automatically to the project.

Click Next when you are ready to proceed.

5. The New Source Information window appears.

New Source Information

Froject Mavigator will create a new skeleton source with the
following specifications:

Source Type: Schematic
Source Mame: Mewl

Source Directory: D:AE xamplesiMewProject’, |

< Back I Finizh I Cancel |

Click Fi ni sh to proceed.

6. The Project Navigator invokes the ECS Schematic Editor shown
in the following figure. The Schematic Editor opens with a new
schematic sheet for the newly created schematic source file. The
schematic source file containing the schematic is named as speci-
fied in the New source dialog box plus an .sch extension.

Foundation Series ISE 3.1i User Guide 6-3

Foundation Series ISE 3.1i User Guide

% Schematic Editor - Newl - Sheet 1 i] B3
File Edit “iew aAdd Template Tools CRC Options Help

DisiE| o] il of 2P0 RielR 218) 4] «] 2]

" Drawing x|
=]]|
et e 1 |
=y G iy |
R ED
o2 P RE
ANO|.
O]

+ + + + + + + + + + + + + + +
-
4 | I 3

Copy - Select ltem or Box to Copy

Figure 6-1 Schematic Editor Window with Drawing Toolbar

7. You can now use the Schematic Editor to enter the desired sche-
matic module. Refer to the online help for details on using the
Schematic Editor. Refer to the “Guidelines for Creating Sche-
matics” section for important information on creating schematics
for use with the synthesis tools.

If you selected to have this file added to the project, the new sche-
matic file is automatically added to the project and shown in the
Project Navigator Source window as shown in the following figure.

6-4 Xilinx Development System

Schematic Sources

A=
Sources in Project: |
B Untitled
ElE,'E WEO BG2GEE - 5T WHDL
-

N 2 hodule l File Wi ‘ 08 Snapsho... I Library ... I

Opening a Schematic Source File

To open an existing schematic source (.sch) from the Project Navi-
gator, double click on its name in the Source window. Or, select a
schematic source in the Source window and then select Sour ce -
Open from the Project Navigator menu. The Schematic Editor opens
with the schematic you selected.

Updating Schematic Files

<pr ogr an®

<pr ogr ane
Schemati ¢

<pr ogr anp

The schematic file database tracks dates of symbol files used in sche-
matics. Schematics can become out of date when symbols are edited
or updated (newer dates than those saved in the schematic). When-
ever you modify symbols used in a your schematic source files, you
need torunthe Updat e all Schematic Fil es processto update
all the schematics in your design with the current symbols in your
symbol directories. You invoke this process by clicking on the
Device/Synthesis Tool line in the Source window and then double
clickingon Updat e all Schematic Fil es inthe Process
window.

The following types of errors when you open a schematic source indi-
cate that you should run this process.

(schematicnane.sch) ERROR Synbol SYMBOLNAME is CQut of Date

(schematicnane.sch) ERROR Check Library Paths or Update

(schematicnane.sch) ERROR Unable to Load Synbols for

schemat i cnane. sch

Foundation Series ISE 3.1i User Guide 6-5

Foundation Series ISE 3.1i User Guide

6-6

Xilinx Implementation Attributes/Constraints

It is possible to use the attribute function in ECS to pass constraint
information from your schematic to the Xilinx implementation tools.
Refer to Table 11-2 of the “Design Constraints/UCF File” chapter for
a list of the implement constraints that can be used on ECS sche-
matics. Refer to the ECS online help for detailed information on ECS
schematic attributes.

Note Xilinx recommends that you enter the Xilinx implementation
attributes that use the ECS PlaceAndRoute and PlaceAndRoute?2
attributes (see Table 11-2 of the “Design Constraints/UCF File”
chapter) only in the UCF and not on the ECS schematic.

Certain Xilinx implementation attributes, such as the INIT attribute,
must be set on the component in the schematic for correct simulation
results. The basic procedure to set an INIT attribute on a block RAM
component (Virtex), for example, in an ECS schematic is as follows.

1. Create a new schematic.
2. Add the block RAM components.

3. SelectEdit - Attribute - Synbol Attri bute fromthe
Schematic Editor menu.

4. Click on a block RAM symbol in the schematic.

5. Select the I NI T= attribute from the Symbol Attribute Editor and
enter the desired value in the input field as shown in the
following figure. (You may need to click the List all Attributes
check box to see the attribute list.)

#E Symbol Attribute Editor x|
INIT o002
GoTo | Find... |
Instances ¥ List All Attributes
-------- INIT= =

Device=
Level==ILINx
PlacesndR outa2=
WhdlGenencl=
WhdlG enernic2=
VhdlGeneric3= =

6. Close the Symbol Attribute Editor dialog box. The INIT value is
then set for the selected schematic component.

Xilinx Development System

Schematic Sources

Instantiating HDL Sources

You can instantiate HDL code sources into a schematic by first
creating a schematic symbol for the HDL source. The HDL sources
must be in the project directory.

Creating a Schematic Symbol

To create a schematic symbol for an HDL source, select an HDL
source file in the Source window and the double click Cr eat e
Schemati ¢ Synbol in the Process window. Symbols (.sym) created
in this manner are automatically added to the Local symbol library
and are available for use in the Schematic Editor.

Note Symbols are not allowed to have pin names beginning with the
characters “B_" or “N_". If the HDL module contains pin names
beginning with this sequence, an error is reported and the generated
symbol is incomplete.

Symbol Generator Options

By default, the Create Schematic Symbol process does not automati-
cally overwrite an existing symbol of the same name as the symbol
being generated. A process property allows you to specify whether or
not to overwrite the existing symbol. Use the following procedure to
set this property.

1. Select an HDL source file in the Source window.

2. Rightclickon Create Schematic Synbol in the Process
window.

3. SelectProperties.

4. Click in the Value box for the Overwrite Exi sting Synbol
option to toggle this property on and off.

Opening the HDL Source

If you have instantiated HDL sources in a schematic, you can access
the HDL sources from within the Schematic Editor. From the Sche-
matic Editor window, select Vi ew - Push/ Pop. Then click on a
symbol representing an instantiated HDL source in the schematic.
The HDL source file opens in the HDL Editor window of the Project
Navigator.

Foundation Series ISE 3.1i User Guide 6-7

Foundation Series ISE 3.1i User Guide

6-8

If you modify and save the HDL source in the HDL Editor, you must
select Cr eat e Schemati ¢ Synbol inthe Project Navigator Process
window to replace the symbol used in the schematic with the
updated source. If the ports change, you must also reconnect the
“updated” symbol to the schematic.

Creating a Top-Level Schematic

A typical way to use schematics in your Foundation Series ISE project
is to create a top-level schematic and instantiate your HDL design
sources into the schematic. The procedure to do this is as follows.

1. Create the HDL design sources and add them to the project.

2. Create a symbol for each HDL source by selecting that source in
the Source window and clicking Cr eat e Schemati c Symnbol
in the Process window. Symbols (.sym) created in this manner are
automatically added to the Local symbol library used in the Sche-
matic Editor.

3. Create a schematic source (.sch) for your project by selecting
Proj ect — New Sour ce and picking “schematic” as the source

type.

4. Inthe Schematic Editor, select Synbol - Add. Select each of the
symbols created for your HDL sources from the Libraries/Direc-
tories window of the Symbol Libraries dialog box and place them
on the schematic.

5. Select Add — W r e from the Schematic Editor menu and connect
the HDL source symbols as appropriate. Save the schematic (.sch)
and exit the Schematic Editor when you are finished.

6. The Project Navigator automatically recognizes the design hier-
archy and moves the top-level schematic source (.sch) to the top
of the Source window’s design tree with the HDL sources listed
under it.

Note The tutorial in the Foundation Series 3.1i ISE Quick Start Guide
includes an example of using this procedure. The F1 online help for
the Schematic Editor also includes detailed instructions on adding
wires, naming nets and buses, adding 1/0 markers, etc. to complete
the top-level schematic.

Xilinx Development System

Schematic Sources

Simulating and Synthesizing Schematic Sources

An HDL netlist is created from all schematic sources and used for
simulation and synthesis. For projects that use the XST VHDL or
FPGA Express VHDL synthesis tools, the VHDL netlister program
automatically generates a VHDL functional model for any schematic
source in a project. Refer to the “VVHDL Functional Model” section for
more information on the generated model. For projects that use the
XST Verilog and FPGA Express Verilog synthesis tools, the Verilog
netlister program generates a Verilog netlist for schematics. Refer to
the “Verilog Netlist” section for more information on the generated
netlist.

Simulation of schematic sources requires a testbench (VHDL) or test
fixture (Verilog). You can use the HDL Bencher and the netlist gener-
ated from the schematic to create the testbench or test fixture. Refer to
the “Creating a Testbench/Test Fixture” section of the “Simulation”
chapter for information.

Refer to the “Simulation” chapter and the “Synthesis” chapter for
information on simulating and synthesizing designs.

VHDL Functional Model

The VHDL netlister program automatically generates a VHDL model
for any schematic source in a project when a VHDL simulation
process is run. The VHDL model consists of an entity declaration and
an architecture.

The VHDL netlister uses the following set of conventions when
generating the VHDL functional model for a schematic:

e The name of the schematic becomes the name of the entity.

e Each net name flagged with an I/0 marker is declared as a port
in the entity declaration.

e The architecture name is always "schematic".
e Scalar nets become VHDL signals of type std_logic.
e Busses become VHDL signals of type std_logic_vector.

e Component declarations are generated in the architecture for
each type of symbol instantiated in the schematic.

Foundation Series ISE 3.1i User Guide 6-9

Foundation Series ISE 3.1i User Guide

e A component instance statement is created for each symbol
instance on the schematic. The symbol instance name becomes
the statement label.

« Each symbol pin becomes a port on the corresponding compo-
nent.

Viewing the VHDL Functional Model

After you create the schematic in the ECS Schematic Editor, the
Project Navigator uses the VHDL functional models for all further
processing of the design.

You can view the VHDL functional model for a schematic by
selecting the schematic in the Source window and then double-
clickingon Vi ew VHDL Functi onal Mbodel inthe Process
window. The VHDL model displays in the ISE Report Viewer. An
example is shown in the following figure.

Note A separate error report (schematic_name.err) is generated for
errors and messages concerning the functional model when it is
opened in the Report Viewer. If the VHDL functional model file is
maximized in the Report Viewer, the error report is not visible behind
it. Minimize the VHDL functional model window (or reduce its size)
to view the error report.

6-10 Xilinx Development System

Schematic Sources

53
E File Edit “iew Qptionz ‘Window

EEREE

Al
lngCoi2s | %5 | wWR| |RecOff Nowiap[DOSINS [|

Figure 6-2 VHDL Functional Model Example

Foundation Series ISE 3.1i User Guide 6-11

Foundation Series ISE 3.1i User Guide

Setting VHDL Netlister Options

The VHDL model generated by the tools contains LIBRARY and USE
statements based on the target architecture. For example:

[Generi c]

LI BRARY i eee;

LI BRARY generi cs;

USE i eee.std_| ogic_1164. ALL,;
USE i eee. nuneric_std. ALL;
USE generi cs. component s. ALL;

You may specify additional libraries to be added to the VHDL model
through a VHDL Context Clause File. This would be necessary, for
example, if you have user-defined types, attributes, or component
declarations in a package.

Use the following procedure to specify a VHDL Context Clause File
to be used with VHDL netlist creation.

1. Select a schematic source (.sch) in the Project Navigator Source
window.

2. Right-click on Vi ew VHDL Functi onal Mbdel in the Process
window.

3. Click Properti es.

4. Enter the name and path of the VHDL Context Clause File in the
Value field of the Process Properties dialog box (shown in the
following figure. Click OK.

Process Properties |

WHDL Metlister Optiores |

Property Hame Value
“HOL Context Clause File

Ok I Cancel [Default

6-12 Xilinx Development System

Schematic Sources

The following is an example of a VHDL Context Clause file:

[UTILITY]

LI BRARY utility;

USE utility.utility.all;

[SCH_FPGA]

LI BRARY sch_f pga;

USE sch_f pga. conponents. al | ;
[ALL_BDS]

LI BRARY | _hdl _bd;

USE | _hdl _bd. conponents. all;
LI BRARY | _m x_bd;

USE | _m x_bd. conponents. al | ;
LI BRARY | _sch_bd;

USE | _sch_bd. conponents. al | ;

The identifiers in brackets ([]) are section names. Following each
section name should be a series of one or more LIBRARY and USE
statements.

To select which LIBRARY and USE statements are added to a partic-
ular VHDL model, use the VHDLUse/Lib symbol attribute on the
schematic’s parent symbol. For example, assume that you needed the
following context clauses in the VHDL model for a schematic named
sample.sch:

LI BRARY i eee;

LI BRARY generi cs;

USE i eee.std |l ogic_1164. ALL;
USE i eee. nuneric_std. ALL;
USE generi cs. conponents. ALL;
LI BRARY utility;

USE utility.utility.all;

LI BRARY sch_fpga;

USE sch_f pga. conponents. al | ;

To get this set of context clauses, you would set the VHDLUse/Lib
attribute for the symbol sample.sym to:

GENERI C, UTI LI TY, SCH_FPGA

Each section name listed in the attribute value will be searched for,
starting with the Context Clause File named in this property, and if it
not found there, then in vhdl.ini.

Foundation Series ISE 3.1i User Guide 6-13

Foundation Series ISE 3.1i User Guide

Verilog Netlist

6-14

The Verilog Netlister program automatically generates a Verilog
netlist for any schematic source in a project. After you create the sche-
matic in the ECS Schematic Editor, the Project Navigator uses the
Verilog netlist for all further processing of the design.

You can view the Verilog netlist for a schematic by selecting the sche-
matic in the Source window and then double-clicking on Vi ew
Veril og Netli st inthe Process window. The Verilog netlist
displays in the ISE Report Viewer. An example is shown in the
following figure.

Note A separate error report (schematic_name.err) is generated for
errors and messages concerning the netlist when it is opened in the
Report Viewer. If the Verilog Netlist file is maximized in the Report
Viewer, the error report is not visible behind it. Minimize the Verilog
netlist window (or reduce its size) to view the error report.

Xilinx Development System

Schematic Sources

53
E File Edit “iew Options ‘wWindow

nfColl [50 | wR| |RecOff Nowiap[DOSINS [|

Figure 6-3 Verilog Netlist Example

Foundation Series ISE 3.1i User Guide 6-15

Foundation Series ISE 3.1i User Guide

ECS Schematic Editor

The ECS Schematic Editor is the design entry and analysis tool for
schematic sources in Foundation Series ISE projects. It includes the
following features:

6-16

Schematic Capture

The Schematic Editor captures your design logic in schematic
form. The schematic file is continuously updated as you draw
and is always ready for analysis.

Libraries

Xilinx device-specific symbol libraries are provided for schematic
creation. You can create local symbols using the Symbol Editor as
needed. Or, you can access ECS symbols from other projects.

Symbol creation

The Schematic Editor accesses the Symbol Editor where you can
create your own symbols and give them whatever characteristics
you want. Or, you can convert a schematic into a Block symbol to
make your design easier to understand or for reuse in other
projects.

Consistency Check

You can check your schematics at any time for such errors as
unconnected wires or shorted nets.

Electrical Check

Electrical checks flag errors in connectivity and current loading
on a completed design. It catches such errors as having too many
loads connected to one output. This checking prevents electrical
incompatibilities that would keep your design from working.

Netlist Generation

For use in Foundation Series ISE project, all schematics are
converted into a VHDL or Verilog netlist depending on the
synthesis tool selection for your project (see “Selecting a Device
and Synthesis Tool” section of the “Creating a Project” chapter).
When you select a schematic source in the Source window, you
can select the Vi ew VHDL (or Verilog) Functional
Model process in the Process window to see how the schematic
was converted.

Xilinx Development System

Schematic Sources

* Simulator Interface

Testbenches and the ModelSIM simulators can be used to verify
schematic designs. A testbench is required for simulation of the
schematic’s HDL functional model.

Note Detailed information on using the ECS Schematic Editor and
Symbol Editor can be found in the ECS online help.

Schematic Editor Window

The Schematic Editor window is the main interface for the ECS tools.
You access the Schematic Editor from the Project Navigator when you
create a new schematic source for the project (see the “Creating a
Schematic Source File” section) or when you double click on an
existing schematic source file (.sch) in the Source window. The Sche-
matic Editor window and an example design representing a sche-
matic source named “freqm” are shown in the following figure.

Foundation Series ISE 3.1i User Guide 6-17

Foundation Series ISE 3.1i User Guide

ﬁﬁchemalic Editor - freqm - Sheet 1] 5
File Edit View Add Template Tools DRC Options Help

1 =l
i N [ress—y
I e M E =T A :
...... | S eweant DS SN

Drawing x||

4|8 ||

=
=

b] N e e

Il
llo]~

Full Fit - Pick Center Point or Corner of Zoom Window

Figure 6-4 Schematic Editor Window with “freqm” Schematic

The top part of the window contains the Title bar with the name of the
schematic and sheet number, the Menu bar with the main menu
commands, and the Toolbar with icons for the commands. In Figure 6-
4, the Drawing Toolbar is shown in the Schematic Editor window, but
it can be positioned anywhere on your PC desktop.

The bottom section of the Schematic Editor window contains the
Prompt Line. Messages and prompts in the Prompt Line (the very
bottom line) guide you through the actions required to execute any
command you select from the Schematic Editor Menu bar or Toolbar.
You also enter text in the prompt line for such things as net names.

6-18 Xilinx Development System

Schematic Sources

When minor errors occur (such as those that prevent a command
from completing its action), the Schematic Editor replaces the scroll
bar area above the Prompt Line with an error window that describes
the error. Major errors are reported in pop-up message boxes.

The following list provides a functional overview for each command
group on the Schematic Editor menu. Use the context sensitive online
help command F1 to view more detailed help information for each
main menu command group.

File Menu

Commands on the Fi | e menu create, open, and save schematics;
create and manipulate schematic sheets; print schematic sheets
and images; view design database statistics; and exit the Sche-
matic Editor.

Edit Menu

You use the commands on the Edi t menu to perform standard
editing functions on schematic objects; move the location of
symbol attributes; define, edit, and view attributes for pins,
symbols and nets; edit tables; and launch the Symbol Editor.

View Menu

With commands on the Vi ewmenu you can alter the viewing
scale and location of the displayed schematic sheet within the
Schematic Editor window. Commands include: Zoom In, Zoom
Out, Full Fit, Pan, Push/Pop, and Redraw. You can also enable
command shortcut toolbars from the View menu.

Add Menu

The Add menu commands are used to add wires, net names, bus
taps, and 1/0 markers; add/modify symbols and symbol
instances; assign/modify symbols, pins, and net attributes; add
graphics to a schematic; and to add a table to a schematic.

Template Menu

You can use the Block Symbol command on the Tenpl at e menu
to generate a block symbol for hierarchical blocks without
leaving the Schematic Editor. The Custom command is used to
add a custom application program to the Template Menu.

Foundation Series ISE 3.1i User Guide 6-19

Foundation Series ISE 3.1i User Guide

6-20

Tools Menu

You can add custom application programs to the Tool s Menu
for use with your schematic designs.

DRC Menu

The Design Rules Check (DRC) menu contains commands to
highlight a drawing object (e.g. pin, net, bus, or symbol); query
the attributes of a drawing object; perform consistency and elec-
trical checks; and add an application program to the DRC Menu.

Options Menu

Menus accessed from the Opt i ons menu contain items to
customize the display of the items you place on the schematic
sheet.

Help Menu

The Hel p Menu commands are used to access online help infor-
mation about the product. The commands are used to view help
contents, search for help on a topic, and view application specific
help.

Action-Object Interface Examples

The Schematic Editor uses an action-object command structure. You
must first select the action (usually from a menu or the drawing
toolbar) then you select the object you want to act on.

Note Be sure to check the Prompt Line at the bottom of the Schematic
window for information on what action is required next as you create
or modify your design.

The following sections provide examples of how the action-object
interface works for some basic schematic entry tasks.

Adding a Symbol

Use the following action-object procedure to add an existing symbol
to your schematic.

1.

Select Add — Synbol from the Schematic Editor menu. Or, click
on the Add Symbol icon in the drawing toolbar.

The Symbol Libraries dialog appears. An example is shown in the
following figure.

Xilinx Development System

Schematic Sources

%l Symbol Libraries |

Libraries/Directories

D:4ISE spartan2idatahsymbol\Arithmetic.ib
D:4ISENspartandidatahsymbol\Buffer. lib

D:4SE spartan2idatahsymbol\Carry_Logic. ib
D:4SENspartan2idatahsymbal\Caormparator. ik
D:AISEAgpartandtdataseymboliCounter lib
D:AISE\spartan2hdatasymboliDecoder lib
D:AISEAspartan2tdatatsymboliDrawing_sheet ib
D:4ISENspartan2idatahsymbol \Flip_Flop.ib
D:4ISENspartan2idatahsymbol\General ib LI

Sumbolz
acclB
cnt_bed
cantral
hexZled

Symbol Mame Filtker

3. Click on alibrary in the Libraries/Directories window to display
its symbol list in the Symbol window. The local library contains
the symbols you created in the Symbol Editor for the project. The
Xilinx supplied libraries are divided into component categories.
You can select Al | Symnbol s to view an alphabetical list of all
available symbols; this includes the Xilinx-supplied libraries and
the local library. Refer to the “Using Symbols from Other
Projects” section for information on making more symbols avail-
able in the Symbol Library selection window.

4. Click on the desired symbol in the Symbol window and drag it to
the schematic for placement.

5. Click to place the symbol.

You can continue to select and place symbols or press Esc to exit
the Add - Symbol action.

As you place each symbol, the Schematic Editor automatically gives
the symbol a unique instance name of the form |I_nn (where nn is an
integer). The instance name identifies the symbol to the Schematic
Editor and netlister programs. You can change the instance name
using Add - | nst ance Nane. The Editor does not allow you to
repeat an existing name.

Foundation Series ISE 3.1i User Guide 6-21

Foundation Series ISE 3.1i User Guide

6-22

The Schematic Editor lets you define an iterated instance in which a
single symbol represents many instances of that symbol. An iterated
instance is created simply by giving a symbol instance an instance
name that includes a [numberlist]. For example, the instance name
11[7:0] would create eight instances of the corresponding symbol.

Adding a Wire
The action-object procedure to add a wire is as follows:

1. Select the action: Add — W r e from the Schematic Editor menu.
Or, click on the Add Wire icon in the drawing toolbar.

2. Position the cursor in the schematic at the point you want to add
the wire.

3. Click at the point where the wire should start.

4. Move the cursor to the point in the schematic and click at the
desired end point.

You can continue to add wires or press Esc to exit the Add - Wire
action.
Dragging a Wire

The action-object procedure to drag (move but not discount) a wire is
as follows:

1. Selectthe action: Edi t — Dr ag from the Schematic Editor menu.
Or, click on the Drag icon in the drawing toolbar.

2. Position the cursor in the schematic on the wire you want to drag
to a different position.

3. Click on the wire. The wire attaches to the cursor.
4. Drag the wire to its new location and click to reposition the wire.

You can continue to add wires or press Esc to exit the Edit - Drag
action.

Note Dragging a wire repositions the wire without removing its
connections. Moving a wire (Edi t - Move) disconnects the wire
when it is repositioned.

Xilinx Development System

Schematic Sources

Removing a Symbol

Use the following action-object procedure to remove a symbol (or any
item) from the schematic.

1. Select the action: Edi t — Renpve from the Schematic Editor
menu.

2. Position the cursor in the schematic on the symbol you want to
remove.

3. Click to remove the selected symbol from the schematic.

You can continue to remove items (symbols, wires, I/0 markers, etc.)
from the schematic or press Esc to exit the Edit - Remove action.

Panning, Zooming, Full Fit Operations

The action-object interface also applies to the basic schematic
viewing/navigation processes such as panning, zooming, and fitting
the schematic in the Schematic Editor window. For example, the
action-object procedure to zoom in and pan in a schematic is as
follows.

1. With a schematic open in the Schematic Editor window, select
Vi ew — Zoom | n from the Schematic Editor menu. The cursor
becomes a “Z.”

2. Position the Z cursor over the center point in the schematic where
you want to zoom in.

3. Click to zoom in on the selected area. You can click as many times
as necessary to get the desired size. (Selecting a different action or
using Esc cancels the View — Zoom In action.)

4. Select Vi ew - Pan from the Schematic Editor menu.

5. Place the Z cursor in the schematic and click. The area where you
clicked is moved to the center of the window.

6. You can move the cursor and click as many times as necessary to
get the desired view. (Selecting a different action or using Esc
cancels the View - Pan action.)

The Full Fit action works in the same manner as described above for
zooming and panning. First select Vi ew - Ful I Fit then move the
Z cursor over the schematic in the Schematic window and click.

Foundation Series ISE 3.1i User Guide 6-23

Foundation Series ISE 3.1i User Guide

6-24

Concepts Required to Use the Schematic Editor

A schematic created in the ECS Schematic Editor is composed of the
following items:

Symbols These can be symbols from the standard
Symbol libraries, symbols representing
other schematics you have drawn (Block
symbols), or symbols you have created
from scratch.

Wires Wires connect the symbols. They can be
single-signal ("nets") or multiple-signal
("buses").

1/0 Markers 1/0 markers show where signals enter or

exit the schematic, and the direction
("polarity") of the signal (that is, whether
it'’s an input, output, or bidirectional).

Graphics & Text Graphics and text are usually added to
display explanatory data. They are
optional and have no electrical meaning.

A valid schematic must contain at least the first three components:
symbols, wires, and I/0 markers. For instance, a single, isolated
component symbol cannot be the only element in a schematic. The
schematic must include 170 markers for the external connections to
the schematic, and these markers must be connected to the symbol
with wires.

Note HDL keywords cannot be used for names of items on a sche-
matic.
Symbols

Symbols are graphic representations of components. The term
"symbol" usually refers to an electrical symbol, such as a gate or a
subcircuit. You can also create graphic-only symbols (such as title
blocks) with the Symbol Editor, but these have no electrical meaning.

Each schematic symbol is stored in a file ending with a. symexten-
sion, or may be included in a library file witha . | i b extension. The

Xilinx Development System

Schematic Sources

symbol contains four types of information: graphics, text, pins, and
attributes.

« Graphics are instructions that tell the Symbol Editor, Schematic
Editor, and Hierarchy Navigator how to draw the symbol.

« Text labels the symbol, or adds supplemental information.

« Pins provide electrical connection between the symbol and the
schematic’s wiring.

e Attributes are parameters that describe the symbol’s electrical
behavior, the symbol’s component parts (for example, its pins),
and a number of other useful characteristics.

The following sections explain graphics, pins, and attributes in more
detail

Graphics

Graphics are pictures of the symbols. Symbol graphics have no elec-
trical meaning, showing only the position of the component in the
circuit. The electrical behavior of a symbol is defined by its attributes
and pins, not the graphics that represent it. Explanatory or descrip-
tive text displayed with a symbol is also considered "graphic"” infor-
mation without electrical meaning.

Pins

Symbol pins are the connecting points between the symbol and the
schematic wiring. If the symbol represents an individual component,
the symbol pin represents the physical pin where a conductor can be
attached. If the symbol is a block symbol, then the symbol pin repre-
sents a connection to an internal net of the design unit represented by
the block symbol.

Pins can either represent a single electrical connect point (a scalar pin)
or multiple electrical connect points (a bus pin).

Note There is only one kind of pin you can add (using Add - Pi nin
the Symbol Editor). Whether it is a scalar pin or a bus pin depends on
the name you give the pin using the pin name attribute. Bus pins are
named as busnane[nunber | i st] where busname is the name of the
bus and numberlist is a list of numbers separated by commas
(example: [1,3,5]), or a range of numbers separated by a : (example:
[8:15]), or both (example: [1,3,5,8:15]).

Foundation Series ISE 3.1i User Guide 6-25

Foundation Series ISE 3.1i User Guide

6-26

Attributes

Each symbol has a number of predefined attributes that describe its
part number, component type, and other unchanging characteristics.
Other attributes can be given values after the symbol is placed in the
schematic. These attributes can have different values for each symbol
instance. This permits detailed customization of a design.

A symbol’s attribute set is the most important part of the Symbol.
Without attributes, simulation and modeling programs would know
nothing about the electrical behavior of the symbol.

Attributes associate data with symbols, pins, and nets. (“"Nets" are
schematic wiring.) The data describe the electrical characteristics (or
other properties) of the symbols and their pins.

An attribute has a name and a value. You can assign or change the
values of most attributes at any point in the development process.
You can assign some attributes fixed values that cannot change. You
can assign, change, or override other attributes later in development.
If an attribute value is assigned in the Symbol Editor, it becomes the
default value and is used with every instance of that symbol.

Refer to the “VHDLgeneric Attribute Example” section for an
example of setting and using an ECS attribute.

ECS attributes can also be set on schematic components for imple-
mentation processing. Refer to the “Xilinx Implementation
Attributes/Constraints” section for information.

Wires (Nets and Buses)

Wires are the lines that electrically connect the symbol pins. Symbol
pins are the only connection points for wires. You cannot connect
wires to the symbol body itself.

There are two types of wires: scalar, which represent a single elec-
trical connection, and buses, which represent multiple electrical
connections.

Wires are added to schematics using Add — W r e or Add - Net nane
in the Schematic Editor.

Bus taps can be added using the Add - Bus Tap command. A bus
tap allows you to extract an individual net of a bus and connect it to a
scalar pin on a symbol. Alternatively, you can connect an entire bus to

Xilinx Development System

Schematic Sources

a bus pin on a symbol, assuming that the size of the bus and the size
of the bus pin (i.e., the number of nets that they contain) is the same.

Buses are most often used to group related signals. However, a bus
can be any combination of signals, related or not. Buses are especially
useful when you need to route a large number of signals from one
side of the schematic to the other.

Buses also make it possible for a single 1/0 marker to connect more
than one signal to a Block symbol. The signal names don’t have to
match, but both pins must carry the same number of signals.

There is only one kind of wire you can add (using Add - Wre).
Whether it is a net or a bus depends on how you name the wire
(using the Add — Net nane). Buses are named as

busnane[nunmber | i st] where busname is the name of the bus and
numberlist is a list of numbers separated by commas (example:
[1,3,5]), or a range of numbers separated by a : (example: [8:15]), or
both (example: [1,3,5,8:15]).

You can also draw and name a net or bus by selecting Add -
Net nane and dragging on the schematic to draw the wire.

Wires and Net Names

Wires are used to connect symbol pins on a schematic. Every wire
must have a net name, which serves to identify the wire to the Sche-
matic Editor and netlister programs. Two or more wires may have the
same net name. Each wire that shares a common net name becomes
part of a single net, and all symbol pins connected to these wires will
be electrically connected.

To illustrate this concept, consider the following schematic fragment.

Foundation Series ISE 3.1i User Guide 6-27

Foundation Series ISE 3.1i User Guide

RS I REGE: .00
I 2 & e (S —— CLK: o
DA s gy s S
SEETEEEEIEEEEEEEEE] IEFETTETH IR SEs] SR
[REGB)
e GLK: e feeee e
L DATAGT)——————————oizaj T
I EEFEEEEFEE FEEEH EERIT ShH] FEHE

..

In this example, a single wire, with the net name of CLK, is
connecting the pins CLK of symbol instances U1 and U2. And two
wires, with the common name of DATA[7:0], are being used to
connect the bus pins named D[7:0] on Ul and U2 (this is also an
example of buses and bus pins).

You would normally name all wires that connect to inputs or outputs
and any "internal” nets with signals you want to view during simula-
tion. You can use any name you like, but you usually choose a name
that suggests the name or function of the signal carried by that wire.
If you don’t give a wire a name, the Schematic Editor automatically
supplies one, of the form N_n (where n is an integer).

Net Attributes

Like symbols and symbol pins, nets (the wiring that connects
symbols to each other and makes external connections) can also have
attributes. Net attributes can describe characteristics associated with
nets. Good examples are the KEEP and SAVE attributes.

/O Markers

1/0 markers are used to flag the nets that are inputs, outputs, or bidi-
rectional signals in the schematic. If a net name appears multiple
times on a schematic, then only one instance of the net name needs to
be flagged with an 1/0 marker.

6-28 Xilinx Development System

Schematic Sources

I/0 markers are added to schematics using the Add - |1 / OMarker
command the Schematic Editor. When you execute the Add - | O
Marker command, the following dialog box appears:

Check the radio button corresponding to the type of 1/0 marker you
wish to add. You can then add 1/0 markers by:

e Clicking on the individual net name(s) that you wish to flag.

e Dragging a box around the net ends.

I/0 Markers and Block Symbols

If the schematic has a corresponding block symbol, then each net
flagged with an 170 marker should also have a corresponding pin on
the block symbol for the schematic.

The following conditions would cause errors when you try to create
an HDL model for the schematic:

e The block symbol has a pin with a given name but the schematic
for that symbol does not have a net with that same name

e The schematic has a net with the appropriate name but the net is
not flagged with an 1/0 marker

Graphics

Although symbols, wires, and 1/0 markers are visible, graphical
items, they also have a functional or electrical meaning. In this
context, "graphics" refers to the non-functional graphical parts of the
schematic.

For example, you might add graphics showing the expected wave-
forms at different points in the circuit. Or, you could draw the
company’s logo and add it to each schematic for identification.

The most common use of graphics is to create a title block. The block
shows the name and address of your company, and can include the

Foundation Series ISE 3.1i User Guide 6-29

Foundation Series ISE 3.1i User Guide

company logo and blank spaces for the project name, schematic sheet
number, and so on.

The title block is a symbol. The title block template (the “tblock”
symbol) is located in the General symbol library. Refer to the online
Help for detailed information on title blocks.

Text

Text, like graphics, can provide additional information about the
schematic or its project. Text can be placed anywhere on a schematic,
even if it overlaps symbols or wires.

Text is added to schematics using Add - Text in the Schematic
Editor.

VHDLgeneric Attribute Example

6-30

A common use of ECS attributes is to define generic parameter decla-
rations for instantiated VHDL macros. A series of VHDLGeneric
attributes are provided for this purpose. An example of using a
VHDLGeneric attribute to assign a generic map statement to an
instantiated VHDL macro on an ECS schematic is as follows.

Consider the following generic parameter declaration for entity
FDC_18:

entity FDC 18 is
generic (N : integer := 18);
port (C,CLR: in std_|logic;
D: in std logic vector((N1) downto 0);
Q: out std logic_vector((N-1) downto 0);
end FDC 18;

To set an attribute for the generic parameter declaration for FDC_18
symbols on the schematic, you would use the following procedure:

1. SelectEdit - Synbol from the Schematic Editor.

2. Click onan FDC_18 instance in the schematic to access the
Symbol Editor.

3. Inthe Symbol Editor, select Edit - Attri butes — Synbol
Attributes.

4. Inthe Symbol Attributes dialog box, set the Vhdl Generi cl
attributeto N : I nt eger as shown in the following figure.

Xilinx Development System

Schematic Sources

#E Symbol Attributes X|

YhdGenericl |M @ integer

INIT= -
Device=

Level=

SynaroSrcType=

PlacesndRoute1=

PlacesndRoute2=

WhdlCfg=

Yhdllsed/Lib=

Whdlk odel=

YhdlGernenc =M : integer
WhilG eneric2= =l

5. Close the Symbol Attributes dialog box. Then close the Symbol
Editor.

The VHDLGeneric attribute must also be defined on the symbol
instance for those instances where you want to override the default
value. In this case, you use the syntax that should appear in the
generic map statement directly.

1. Inthe Schematic Editor, select Edit — Attri butes - Symnbol
Attributes.

2. In the Symbol Attributes dialog box, set the Vhdl Genericl
attribute to N=>18 as shown in the following figure.

#H Symbol Attribute Editor x|
YhdGenericl [N=>18

GoTao | Find... |

Instances [List &I Attributes
12 WhdlGeneric]=h=>18

3. Close the Symbol Attributes dialog box.

The following VHDL functional model for a top-level schematic
(test.sch) containing the FDC_18 entity illustrates the results of
setting the VHDLGenericl attribute.

Foundation Series ISE 3.1i User Guide 6-31

Foundation Series ISE 3.1i User Guide

-- VHDL nodel created fromschematic test.sch --Apr 07 12:32:12 2000

LI BRARY i eee;

LI BRARY UNI SI M

LI BRARY Virtex2_Macro;

USE i eee.std_| ogic_1164. ALL;

USE i eee. nuneric_std. ALL;

USE UNI SI M Vconponents. ALL,;

USE Virtex2_Macro. Components. ALL;

entity TEST is
Port (clk : In std_l ogi c;

clr : In std_l ogi c;

a :In std_l ogi c_vector (17 downto 0);
b In std_l ogi c_vector (17 downto 0);
q : Qut std_logic_vector (35 downto 0))

end TEST;

architecture SCHEMATIC of TEST is
signal a_tenp : std_logic_vector (17 downto 0);
signal c_tenp : std_logic_vector (17 downto 0);
signal g_tenp : std_logic_vector (35 downto 0);

conmponent FDC_36
Generic (N : integer);

Port (C : In std_l ogi c;
CLR: In std_|l ogi c;
D : In std_l ogi c_vector (35 downto 0);
Q : Qut std_logic_vector (35 downto 0));

end conponent;

conmponent FDC_18
CGeneric (N : integer);

Port (C : In std_l ogi c;
CLR : In std_l ogi c;
D : In std_l ogi c_vector (17 downto 0);
Q : Qut std_logic_vector (17 downto 0));

end conponent;

attribute fpga_dont_touch : string;
attribute fpga_dont_touch of 11 : label is "true";

begin

6-32 Xilinx Development System

Schematic Sources

14 : FDC 36
Generic Map (N => 36

)
Port Map (C=>cl k, CLR=>cl r, D(35) =>q_t enp(35), D(34) =>q_t enp(34),
D(31) =>q_tenp(31),
D(28) =>q_t enp(28) ,
D(25) =>q_t enp(25) ,
D(22) =>q_t enp(22),
D(19) =>q_t enp(19),
D(16) =>q_t enp(16) ,
D(13) =>q_tenp(13),
D(10) =>q_t enp(10) ,

D(33) =>q_tenp(33),
D(30) =>q_t enp(30),
D(27) =>q_tenp(27),
D(24) =>q_tenp(24),
D(21) =>q_tenp(21),
D(18) =>q_tenp(18),
D(15) =>q_tenp(15),
D(12) =>q_tenp(12),

D(32) =>q_tenp(32),
D(29) =>q_tenp(29),
D(26) =>q_t enp(26) ,
D(23) =>q_tenp(23),
D(20) =>q_t enp(20),
D(17) =>q_tenp(17),
D(14) =>q_tenp(14),
D(11) =>q_tenp(11),

D(9) =>q_tenp(9),
D(6) =>q_tenp(6),
D(3) =>q_tenp(3),
D(0) =>q_tenp(0),
Q(33) =>q(33),
Q(29) =>q(29),
Q(25) =>q(25)
Q(21) =>q(21),
Q17) =>q(17),
Q(13) =>q(13),

D(8) =>q_tenp(8),
D(5) =>q_tenp(5),
D(2) =>q_tenp(2),
Q(35) =>q(35),
Q(32) =>q(32),
Q(28) =>q(28),
Q(24) =>q(24)
Q(20) =>q(20),
Q(16) =>q(16),
Q(12) =>q(12),

D(7) =>q_temp(7),
D(4) =>q_tenp(4),
D(1)=>q_temp(1),
Q(34) =>q(34),

Q(31) =>q(31),
Q27) =>q(27),
Q(23) =>q(23),
Q(19) =>q(19),
Q(15) =>q(15),
Q11) =>q(11),

Q(30) =>q(30),
Q(26) =>q(26)
Q(22) =>q(22),
Q(18) =>q(18),
Q(14) =>q(14),
Q(10) =>q(10),

Q9)=>q(9), A8)=>q(8), A7)=>q(7), QA6)=>q(6),
Q5)=>q(5), A4)=>q(4), QA3)=>q(3), A2)=>q(2),
Q1)=>q(1), Q0)=>q(0));

12 : FDC_18

Generic Map (N=>18
Port Map (C=>cl k, CLR=>clr,

D(15) =>a(15),

D(14) =>a(14)

)

D(17) =>a(17),
D(13) =>a(13),

(16) =>a(16) ,
D(12) =>a(12),

D(11)=>a(11), D(10)=>a(10), D(9)=>a(9), D(8)=>a(8),
X 7)=>a(7), D(6)=>a(6), D(5)=>a(5), D(4)=>a(4),
(3)=>a(3), D(2)=>a(2), D(1)=>a(l), D(0)=>a(0),

Q 17)=>a_tenmp(17),
Q 14) =>a_t enp(14),
Q 11)=>a_tenp(11),
Q8)=>a_tenp(8),
Q5) =>a_tenp(3),
QA 2)=>a_tenp(2),

13 : FDC_18

Generic Map (N => 18
Port Map (C=>clk, CLR=>clr,

D(15) =>b(15),

D(14) =>b(14)

Q 16) =>a_t enp(16),
Q 13)=>a_tenp(13),
Q10) =>a_t enp(10),
Q7)=>a_tenp(7),
Q4) =>a_tenp(4),
Q1)=>a_tenp(1),

)

D(17) =>b(17),
D(13) =>b(13),

Q 15)=>a_tenp(15),
Q 12)=>a_tenp(12),
Q9)=>a_tenp(9),
Q6) =>a_tenp(6),
Q3)=>a_tenp(3),
Q0)=>a_tenp(0));

D(16) =>b(16)
D(12) =>b(12),

D(11)=>b(11), D(10)=>b(10), D(9)=>b(9), D(8)=>b(8),
(7)=>b(7), D(6)=>b(6), D(5)=>b(5), D(4)=>b(4),
D(3)=>b(3), D(2)=>b(2), D(1)=>b(1l), D(0)=>b(0),

Foundation Series ISE 3.1i User Guide

6-33

Foundation Series ISE 3.1i User Guide

Q 17)=>c_tenp(17),
Q 14) =>c_tenp(14),
Q 11) =>c_tenp(11),

Q(8)=>c_tenp(8),

Q(5) =>c_tenp(5),

Q2)=>c_tenp(2),
11 : MILT18X18

A(8)=>a_tenp(8),
A(5) =>a_tenp(5),
A(2)=>a_tenp(2),

B(17)=>c_temp(17),
B(14) =>c_t enmp(14),
B(11) =>c_tenmp(11),

B(8)=>c_tenp(8),
B(5) =>c_t enp(5),
B(2)=>c_tenp(2),

P(35) =>q_t emp(35),
P(32) =>q_t enp(32),
P(29) =>q_t enp(29),
P(26) =>q_t enp(26) ,
P(23) =>q_t emp(23),
P(20) =>q_t enp(20),
P(17)=>q_temp(17),
P(14) =>q_t enp(14),
P(11) =>q_t enp(11),

P(8)=>q_tenp(8),
P(5) =>q_tenp(5),
P(2)=>q_temp(2),

end SCHEMATI C;

6-34

Q 16) =>c_tenp(16),
Q 13)=>c_tenp(13),
Q10) =>c_t enp(10),
Q7)=>c_tenp(7),
Q4) =>c_tenp(4),
Q1)=>c_tenp(1),

A(13) =>a_t enp(13),
A(10) =>a_t enp(10),
A(7)=>a_tenmp(7),
A(4)=>a_tenp(4),
A(1)=>a_tenp(1),
B(16) =>c_t enp(16),
B(13) =>c_t enp(13),
B(10) =>c_t enp(10),
B(7)=>c_tenp(7),
B(4) =>c_tenp(4),
B(1)=>c_tenp(1),
P(34) =>q_tenp(34),
P(31) =>q_t enp(31),
P(28) =>q_t enp(28),
P(25) =>q_t enp(25),
P(22) =>q_t enp(22),
P(19) =>q_tenp(19),
P(16) =>q_t enp(16),
P(13) =>q_t enp(13),
P(10) =>q_t enp(10),
P(7)=>q_tenp(7),
P(4) =>q_tenp(4),
P(1)=>q_tenp(1),

Q 15) =>c_t enp(15),
Q 12)=>c_tenp(12),
Q9)=>c_tenp(9),

Q(6) =>c_tenp(6),
Q3) =>c_tenp(3),
Q0)=>c_tenp(0));

Port Map (A(17)=>a_tenp(17), A(16)=>a_tenp(16),
A(14) =>a_t enp(14),
A(11) =>a_t enp(11),

A(15) =>a_tenp(15),
A(12)=>a_tenp(12),
A(9)=>a_tenp(9),

A(6) =>a_tenp(6),
A(3)=>a_temp(3),
A(0) =>a_tenp(0),

B(15) =>c_t enp(15),
B(12) =>c_tenp(12),
B(9) =>c_tenp(9),

B(6) =>c_tenp(6),
B(3) =>c_tenp(3),
B(0) =>c_t enp(0),

P(33) =>qg_t enp(33),
P(30) =>q_t enp(30),
P(27) =>q_t enp(27),
P(24) =>q_t enp(24),
P(21) =>qg_tenmp(21),
P(18) =>q_t enp(18),
P(15) =>g_t enp(15),
P(12) =>q_tenp(12),
P(9) =>q_tenp(9),

P(6) =>q_tenp(6),
P(3)=>q_temp(3),
P(0) =>q_tenp(0));

Xilinx Development System

Schematic Sources

Symbol Editor

The Symbol Editor is used to create and edit symbols and symbol
attributes. The Symbol Editor is accessed only from the Schematic
Editor. Therefore, many of the Symbol Editor operations are initiated
in the Schematic Editor.

Symbol Editor Window

You can open the Symbol Editor from the Schematic Editor by
selecting Edi t — Symbol and then either entering the name of the
symbol you want to edit in the Prompt Line or clicking on the symbol
in the schematic. To open the Symbol Editor to create a new block
symbol, select Tenpl at e - Bl ock Synbol from the Schematic
Editor menu. An example of the ECS Symbol Editor window is
shown in Figure 6-5.

ﬁSymbnl Editor - accl16 - BLOCK — |EI EI
File Edt View Add Templste Tools DRC Options Help

DI#IQ@IEI‘_QI £leld &l =l =l v] 2

B viacets T

SIS @[1501

—— BUSO) B e
EF EEHERE R I

L . PRNE I Ll Dl PR ol
Ce ARD

R [R HEHE
o d o

Copy - Select ltem or Box to Copy

Figure 6-5 ECS Symbol Editor

Foundation Series ISE 3.1i User Guide 6-35

Foundation Series ISE 3.1i User Guide

6-36

The following list provides a functional overview for each main
menu command group. Use the context sensitive online help
command F1 to view more detailed help information for each main
menu command group.

File Menu

Used to create, open, and save symbols; print symbol sheets and
images; and exit the Symbol Editor.

Edit Menu

Used to perform standard editing functions on symbol objects;
define, edit, and view symbol and pin attributes; move the loca-
tion of pin attributes; set the symbol origin; expand the symbol
page size; change the symbol type; and launch the Schematic
Editor.

View Menu

Used to alter the viewing scale and location within the Symbol
Editor window (Zoom In, Zoom Out, Full Fit, Pan, and Redraw
commands); and to enable command shortcut toolbars.

Add Menu

Used to add pins and graphics to a symbol.

Template Menu

Used to add an application program to the Template Menu.
Tools Menu

Used to add application programs to the Tool Menu.

DRC Menu

Used to perform a design consistency check and add an applica-
tion program to the DRC Menu.

Options Menu
Used to set design configuration preferences.
Help Menu

The Help Menu commands are used to access online help infor-
mation about the product. The commands are used to view help
contents, search for help on, and view domain specific help.

Xilinx Development System

Schematic Sources

Symbol Types

The Symbol Editor creates three different kinds of symbols: block
symbols, master symbols, and graphic symbols.

Block Symbols

Block symbols are the basic symbols you use to build your design.
The symbols in the Xilinx-provided libraries are mainly block
symbols. A Block symbol represents both primitives and macros
(schematics at the next-lower level of the hierarchy). Pins are
permitted only on Block symbols.

All block symbols have the same basic design: a rectangle with pin
leads extending outward. The rectangle’s height and width are auto-
matically scaled according to the number of pins and the length of
their names. The input pins are placed on the left side and the output
pins are placed on the right side.

A Block symbol has an attribute window near the top for displaying
the name, and a window near the bottom for displaying the instance
name

Graphic Symbols

Graphic symbols add information that is not part of the circuitry.
Graphic symbols are typically used for tables and notes. Pins are not
associated with Graphic symbols. They are never included in the
design hierarchy or netlists.

Master Symbols

Master symbols are used for title blocks, logos, revision blocks, and
other standardized graphic symbols. You can add text to a Master
symbol to display the company name, address, and project descrip-
tion, date, and so on.

Master symbols cannot be freely placed on a schematic sheet. Instead,
they are automatically positioned at one of the corners. This permits
resizing the sheet without having to move the title block (or other
annotations). The sheet corner is determined by the location of the
symbol’s origin. If the origin is placed at the upper-right corner of the
Master symbol (for example), the symbol will be positioned at the
upper-right corner of the sheet.

Foundation Series ISE 3.1i User Guide 6-37

Foundation Series ISE 3.1i User Guide

Master symbols do not have pins. They are never included in the
design hierarchy or netlists.

Symbol Libraries

The Schematic Editor automatically includes the symbol libraries
specific to the Xilinx device targeted in your project. Symbols that
you created in your project are added to the project’s Local symbol
library. You an also access the Local symbol libraries from other
projects to use those symbols in your project.

All libraries and symbols available for schematic entry are listed in
the Symbol Libraries dialog box accessed from Add - Synbol inthe
Schematic Editor. The following figure shows an example Symbol
Library selection window.

4@ Symbol Libraries x|

Libraries/Directories

[&ll Sprbolz)

ILacal Symbals|
D:WSENspartan2idataispmbaltArithmetic. lib
D:WSENspartan2tdatatsymbalyBuffer lib
[D:AISENspartan2sdatahsymbolCary_Logic.lib
D:AISESspartan2tdatatzpmboli Comparator.ib
D:AISESspartan2tdatahsvmbol\Counter. lib
D:WSENspartan2idatatspmbolhDecoder.lib
D:WSENspartan2tdatatsymbaoliDrawing_sheet ib
[:AISENspartan2tdatatsymbol'Flip_Flop.lib
D:AISEbspartan2tdatahzymbolGeneral lib LI

Symbols

acc1b
chit_bcd
contral
hexzZled

Syrbal Mame Filker

6-38 Xilinx Development System

Schematic Sources

Modifying an Existing Symbol

You can modify symbols in the Symbol libraries only if they are in the
Local directory.

Use the following procedure to modify a symbol in the Local direc-
tory.

1. Select Synmbol - Edit from the Schematic Editor menu.

2. You can do either of the following to specify the symbol to be
edited:

+ If the symbol has been placed on the schematic, click on the
symbol to be modified.

+ Ifthe symbol is not currently on the schematic, enter its name
in the Prompt Line.

3. The Symbol Editor opens with the selected symbol. Edit the
symbol as desired.

Note If you selected a symbol from the read-only Xilinx-supplied
libraries, a dialog box appears before the Symbol Editor opens to
allow you to confirm copying the symbol to the Local library for
modification.

4. Save the symbol and exit the Symbol Editor. If the symbol was
already on the schematic, it is immediately updated to reflect the
changes. If it was not on the schematic, you can select the modi-
fied symbol from the Local library for use in your schematic.

Creating a New Block Symbol

A template is available in the Schematic Editor for block symbol
creation using the following procedure.

1. Select Tenpl ate - Bl ock Synbol from the Schematic Editor.
The

2. Enter aBlock Name and Pin names (separated by commas). You
can use bus notation ([7:0], for example) when entering a pin
name. To have a single bus pin created, you need to use equal
signs (=) around the input pin name as shown in the following
figure.

Foundation Series ISE 3.1i User Guide 6-39

Foundation Series ISE 3.1i User Guide

Mew Block Symbol

Block Mame: |NewBlock

Usge Data From This Block

Input Fins: |CLK, =D[7:0]=

Output Ping: |=|J[?:D]=

Bidir Pins: |

Run | Cancell Edit |

3. Click Run to create the new symbol.

For bus pin names enclosed with equal signs (=), a single bus pin
is generated as illustrated by the NEWBLOCK symbol in the
following figure. For bus pin names not enclosed with equal
signs, the bus is expanded into individual pins as illustrated in
the NEWBLOCK?2 symbol.

NEWBLOCK | - . [NEWBLOCKZ| - - -
K -

4. The symbol is created and attached to the cursor ready for place-
ment. The symbol is automatically added to the Local library.

Creating a Block Symbol from a Schematic

Use the following procedure to create a new block symbol from an
existing schematic.

1. Select Tenpl ate - Bl ock Synbol from the Schematic Editor
menu.

2. Click Use Data Fromthis Bl ock.

6-40 Xilinx Development System

Schematic Sources

As shown in the following figure. The schematic hame is auto-
matically placed in the Block Name field. The pins created in the
schematic are automatically entered in the appropriate Pins
fields.

Mew Block Symbol

Block Mame: |freqm

| e Drata From Thiz Block I

Iriput Fins: IF_INF'LIT,F_PATTEHN,HESET,STAHT

Dutput Fing: IFULL,=LED_A[E:D]=,=LED_B [6:0)==LED_C

Bidit Fins: |

Fiun | Eancell Edit |

3. Click Run to create the new symbol and add it to the Local
library.

Creating a Symbol from an HDL Source

To create a schematic symbol for an HDL source, select the HDL
module in the Source window of the Project Navigator and then
double-click the Creat e Schemati ¢ Symbol process in the
Process window. The symbol file (.sym) is automatically created and
added to the Local symbol library for placement on a schematic.

Using Symbols from Other Projects

You can add a search path to another project to have the local
symbols in that project added to the Symbol Libraries selection
window. You can include the project’s symbols in the Symbol
Libraries selection window on a device basis or on an all projects
basis. When added on a device basis, the symbols are available only
for projects that target a specified device. When added on an all-
projects basis, the symbols become available to all projects regardless
of the device targeted. In both cases, only symbols created in the ECS
Schematic Editor are available for use in other projects.

Note The procedure to add symbol libraries uses the “inieditor.” Use
of this tool is currently supported only on a limited basis. For more

Foundation Series ISE 3.1i User Guide 6-41

Foundation Series ISE 3.1i User Guide

information on using the inieditor, please see Solution Record #8533
(http://support.xilinx.comtechdocs/8533. ht m.

Device Basis

Use the following procedure to add the local symbols created in an
ISE project to the Symbol Libraries selection window for all projects
that target a specified device family.

1.

6-42

Open an MSDOS command window (St art — Prograns -
Command Pronpt).

Typeiniedit $Xl LINX\ data\device fanily.ini
where

$XILINX is the path to where ISE is installed.
device_family can be any of the following device families.
spartan

spartan2

spartanXL

virtex

virtex2

virtexe

xc4000

xc9000

Press Ent er to access a schematic environment dialog box for the
specified device. For example, if you typed iniedit
D:\ISE\data\virtex.ini, the following dialog box appears. If you
typed spart an. i ni instead ofvi rt ex. i ni , the spartan dialog
box would appear.

Xilinx Development System

Schematic Sources

I 0 InstMame
' 1 Type
I 2 RefMame
I3 Walue

4. Click the Symbol Paths tab. The Symbol Paths tab for virtex.ini is
shown in the following figure. (The path to the currently open
project “freqm” appears in the Path field.)

Foundation Series ISE 3.1i User Guide 6-43

Foundation Series ISE 3.1i User Guide

Schematic Environment - virtex.ini x|

Sources | System I Deszign | Sheet Lapout I Sheet Sizes
Syrnbal Attributes I Pirn Attributes I Met Attributes
Symbol Paths | Model Paths | Project Paths | Global Mets | Global Constants

Path: |D:\ISE\ISEe:-:amples'\freqm

[¥ Enabled
add
+3[ilins]veirtex\databsymbolanthmetic. lib _I

+3[ilirhirtextdatab symbolhBuffer lib
+$[¥ilinsvirextdatatsmbalCarry_Logic.lib Delete |
+§ilinahvirtexhdatab spmbo\Comparatar. i

+3linehirtextdatahsymbo\Counter lib] 0]
+3diinslvirtestdatabepmbolD ecader i FEEEY

+3[ilinhirtextdatab symbolhDrawing_sheet lib

LI

+§[Filins]hvirtexhdatahsymbal\Flip_Flop.lib j Move Dc-wnl
Other Defined Paths:

+3ilinahitexZb data smbolhanithmetic. ik -

+3[lirhviren2' datahayrmbol\Buffer. ib

+3ilinahvirtex2\ data\spymbolhCamy_Logic ib

+3[ilir]eirtex2t datasapmbolsComparator. ib

+3[ilireeirtew2t dataaymbol Counter lib

+3lihvirten2' datahzymbol\D ecoder. ib ﬂ

Ok, | Cancel | Help |

5. Enter the path to the project whose Local symbols are be added to
the Symbol Library selection window in the Path field. Or, click
Br owse and use the dialog box that appears to browse to the
project containing the symbols you want to make available to
other projects targeting the same device. In the Browse dialog,
change the Files of Type field to Synbol Dirs (*.syn) files.
Click on any .sym file for the selected project and then click Open

to return to the Schematic Environment dialog box.

The full path to the selected project (for example, the “flash”
project) appears in the Path field of the Schematic Environment

dialog box as shown in the following figure.

6-44 Xilinx Development System

Schematic Sources

Schematic Environment - virtex.ini x|

Sources I System I Deesign I Sheet Lapaut | Sheet Sizes
Syrbol Attributes | Pin Attributes | et Attributes
Symbal Paths | Model Paths I Project Paths I Global Mets | Global Conztants

Fath: ID:\ISE\ISEexamples\flash Browse. ..
¥ Enabled

+D:AISENSEexamplesifash

+§ [l vwirtewdatahsymbolanithmetic. ib
+§(ilir] wirbe st databsumbolhB uffer. lib

+ il bvirkest databsymbolCamy_Logic ib
+3[ilins]swirtexdatatsymbol\Comparator. lib

+3[=iline wirtextdatatepmbol Counter lib
+§[=iline] ke datahsymbolhD ecoder. lib
+§ilir] bwirbestdatabsymbolhDrawing_sheet. ik

i

Add

Delete

-

Ll

tove Down

Other Defined Paths:

[|
+ il bvirkes 24databsymbolhdnithmetic. ik a
+E[=iline) sertex2tdatatspmbolBuffer lib

+3=iline wirtex2tdatatbepmbolhCarry_Logic.lib

+F [l irtew2datah spmbohCarmparator. lib

+§(eilir) wirbes 2hdatat symbalhCounter. i

+ il virkes 2datatsymbolhD ecoder. ib LI

oK | Cancel | Help |

6. Click Add and then OK on the Symbol Paths tab to add the local
symbols for the selected project (specified in the Path field) to the
search path for all projects that use the specified device (for
example, Virtex).

7. The symbols in the selected project are now available in the Sche-
matic Editor’s Symbol Library selection box (accessed by Add -
Synbol) for all projects that use the selected device.

For example, all projects targeting a Virtex device would now
have access to the symbols created in the “flash” project as shown
in the following figure.

Foundation Series ISE 3.1i User Guide 6-45

Foundation Series ISE 3.1i User Guide

4@ Symbol Libraries

x

Libraries/Directories

[&ll Spmbols) -
Local Surmbalz)
D:WSEMSE exampleshflash
D145 E virtewhdatatsymbolvarithmetic. lib

D:AISE viterhdatahaymbolhB ulfer lib

D:AISE witerbdataheymbolCarry_Logic. lib
D:AISESwirtexhdatahsymbalhCarmparatar. lib

D:WSE virtewhdata' symbolhCourter. ib

D:WSE virtexhdatasymbolhDecoder. lib

[:AISE viterhdatahaymbolhDrawing_sheet lib

D AISEwirtexdatahaymbolhFlip_Flop.lib LI

Symbols

bounced
c2ar
cnt_bcd
hexzZled
Izrall?

Syrbal Mame Filker

Note When you use symbols from other projects, be sure to edit the
symbol and use the “Save As” command to place it in the Local
library of the current project.

All Projects Basis

Use the following procedure to add the local symbols created in an
ISE project to the Symbol Libraries selection window for all projects
regardless of the targeted device for the project.

1. Open an MSDOS command window (St art — Prograns -
Command Pronpt).

2. Typeiniedit -master

3. Press Ent er to access the master Schematic Environment (scs.ini)
dialog box for the Schematic Editor.

4. Click the Synbol Pat hs tab (shown in the following figure).

6-46 Xilinx Development System

Schematic Sources

Schematic Environment - scs.ini |
Sources | System I Design | Sheet Layout I Sheet Sizesz
Symbol Attributes I Fin Attributes I Met Attributes

Symbal Paths | todel Paths | Project Paths I Global Mets I Global Congtants

Path: | Browsze...

I=| Enabled pio_|
oeEE |

HEvEE |

HEvE DB

0K I Cancel | Help |

5. Enter the path to the desired project in the Path field. Or, click
Br ows e and use the dialog box that appears to browse to the
project containing the symbols you want to make available to
other projects targeting the same device. Change the Files of Type
field to Synbol Dirs (*.syn) files. Inthe Browse dialog box,
click on any .sym file for the selected project and then click Open
to return to the Schematic Environment dialog box.

6. Click Add and then OK on the Symbol Paths tab to add local
symbols for the selected project (specified in the Path field) to the
Symbol Libraries for all projects.

7. The symbols in the selected project are now available in the Sche-
matic Editor’s Symbol Library selection box (accessed by Add -
Synbol) for all projects regardless of the targeted device.

Note When you use symbols from other projects, be sure to edit the
symbol and use the “Save As” command to place it in the Local
library of the current project.

Foundation Series ISE 3.1i User Guide 6-47

Foundation Series ISE 3.1i User Guide

Guidelines for Creating Schematics

All schematics are netlisted to VHDL or Verilog structural netlists
and then processed by either the XST or FPGA Express synthesis
engine. Because of this, the following guidelines must be followed
when creating schematic sources.

« Do not use HDL keywords for net or instance names.
e Use I/0 primitives only.

Use I/0 primitives such as IBUF, OBUF, IFD, IFDX, OFD, OFDX,
etc. only. Do not use 1/0 macros such as IBUF4, IFD_1, etc. If /0
macros are used, the synthesis engine inserts an additional IBUF
or OBUF at the port causing errors in the MAP process.

e (For VHDL Only) All input pins of the Xilinx unified library
components must be connected.

Failure to connect all inputs pins of library components results in
errors during synthesis due to the discrepancy between the
library component declaration and the actual use.

e (For FPGA Express Only) Do not use Carry Logic primitives on
schematics in the FPGA Express flow

Carry Logic will be re-optimized by FPGA Express. This may
result in different logic than intended for the design.

e (For FPGA Express Only) Specify global buffers pins via Express
Constraints Editor rather than via the schematic.

Use a generic IBUF on clock pins. Then use the Express
Constraints Editor to select a global buffer for the desired ports.
Failure to use this method will result in errors in MAP due to the
clock pin being left unconnected.

To access the Express Constraints Editor, select Edit Constraints
(shown in the following figure) under Synthesis in the Process
window.

6-48 Xilinx Development System

Schematic Sources

Processes for Cumrent Source: | -

5@

=y
A
=6

A

B3 Syrthesize
View Reports
Analyze All

Create Functional Structure

L3 iew Schematic (Func.)

=43 Create Optimized Structure

LT Wiew Synthesis Results

¥ Wiew Schematic [Dpt)
233 Implement Design

O3 Translate
Translation Fepart
=8

LBl PreRoute Static Timing |+
| e

Pre-Optimization Repart
Post-0ptimization Feport

Map Report
Pre-Route Static Timing

B2 Process ien I

Foundation Series ISE 3.1i User Guide

6-49

Foundation Series ISE 3.1i User Guide

6-50 Xilinx Development System

Chapter 7

State Diagrams

For state machine design entry, Foundation Series ISE includes inte-
grated support for StateCAD® and StateBench™ from Visual Soft-
ware Solutions, Inc. (VSS). This chapter describes the integration of
the supported state diagram entry tools with Foundation Series ISE.
It contains the following sections:

o “StateCAD/StateBench”

e “Acquiring StateCAD/StateBench Tools”

e “Launching StateCAD”

e “Using StateBench”

e “Adding State Diagram Sources to Your Project”

e “Instantiating State Diagram Modules in HDL Designs”

« “Instantiating State Diagram Modules in Schematic Designs”

e “Using Foundation Series 2.1i State Diagrams”

StateCAD/StateBench

StateCAD automates the creation and development of state machines
and their translation to HDL code. StateCAD includes a State
Machine Wizard to help you develop the initial state machine, a Logic
Wizard to create data flow structures, and an Optimization Wizard to
maximize performance for the target device. StateCAD also identifies
many kinds of design logic problems for you. When your design is
error free, StateCAD translates it into synthesizable VHDL, Verilog,
or ABEL-HDL code that can be used in your Foundation Series ISE
project.

The StateBench tool automatically creates VHDL test benches and
Verilog test fixtures from StateCAD designs. You can use these to

Foundation Series ISE 3.1i User Guide — Online 7-1

Foundation Series ISE 3.1i User Guide

verify the behavior of the StateCAD design. You can also add them to
your project and use them as testbenches.

The basic procedure for creating and using state diagrams with Foun-
dation Series ISE projects is as follows:

1. Create the state diagram as a new source for your project.

2. Create/modify the state diagram in StateCAD.

3. Verify the state diagram in StateCAD. Use StateBench, if desired.
4

StateCAD creates a synthesizable HDL file from the verified state
diagram.

5. Add state diagram source files to your project. Add the state
diagram (.dia file) to the project as a user document. Add the
StateCAD-generated HDL file (.vhd, .v, or .abl) to the project as a
source module/entity.

Acquiring StateCAD/StateBench Tools

7-2

The Foundation Series ISE 3.1i installation does not automatically
install the StateCAD and StateBench tools. You can acquire and/or
access these tools as described in the following sections.

Xilinx Edition

You can install a limited version of StateCAD/StateBench, called the
Xilinx Edition, from the ALLSTAR CD included in your Foundation
Series ISE 3.1i software package. The Xilinx Edition is provided free
of charge and requires no licensing.

The Xilinx Edition of StateCAD is limited to 6 states, 16 transitions,
and 2 equations per state diagram. If you register with VSS when you
install the Xilinx Edition, the limits for the Xilinx Edition of StateCAD
are increased to 10 states, 20 transitions, and 8 equations per state
diagram. (An upgrade path is available from the Xilinx Edition to the
complete edition.)

Use the following procedure to install the Xilinx Edition of
StateCAD/StateBench:

1. Insert your ALLSTAR CD into your PC’s CD-ROM drive.

2. Inyour Windows Start menu, select, St art — Prograns -
Xi linx Foundation Series |ISE 3.1i - Partner

Xilinx Development System

State Diagrams

Products - Install StateCAD Xilinx Edition (CD
Requi r ed) .

3. Follow the directions in the installation screens.

Pre-Existing or Upgraded StateCAD Tools

You do not need to install the Xilinx limited edition of StateCAD/
StateBench to add State Machine Editor tools to Foundation Series
ISE. If you currently have a fully functional version of StateCAD/
StateBench or if you obtain it from VSS later, you can instruct Foun-
dation Series ISE to use those tools with your project.

Use the following procedure to identify the StateCAD/StateBench
installation you want to use with Foundation Series ISE:

1. From the Project Navigator Menu bar, select Edi t - Prefer -
ences.

2. In the Preferences window, select the Partner Tools tab.

Preferences =]

Generall Editor I Processes Partner Tools |

— Locations of Partner Executable:

Model Tech Simulatar:
I\M odeltech_xe_5 3atwind2xoem'ModelSim Browse...

W55 Test Bencher

Id:\HB1D2><2\tb.exe Browse. . |
W55 State Machine E ditar:
Id:\sc:502x2\8c:.exe Browse... |

QK I Cancel | Lol |

3. IntheVSS State Machi ne Editor field on the Partner Tools
tab, enter the path to the program executable for an existing
installation of StateCAD/StateBench. Or, click Br owse to select
the path.

Foundation Series ISE 3.1i User Guide 7-3

Foundation Series ISE 3.1i User Guide

Complete Edition

You can obtain the unlimited, fully-functional version of StateCAD/
StateBench from VSS. You can go the StateCAD website at ht t p: / /
www. st at ecad. comor product and licensing information.

All Foundation Series ISE users qualify for a $500 discount on the
purchase of the StateCAD Complete Edition. To receive the discount,
you need to provide your Host ID, which is located in StateCAD’s
Hel p — About dialog box. To purchase the StateCAD Complete
Edition, contact Visual Software Solutions at (954) 370-9030 or e-mail
sales@statecad.com.

Sales and Support of StateCAD and StateBench

All sales, support, and licensing of StateCAD and StateBench are
done through Visual Software Solutions, Inc. This includes support
for the Xilinx Edition.

If you have questions regarding your StateCAD/StateBench software
installation, contact VSS using the phone numbers or e-mail
addresses that are shown during the installation process. You can also
go to the product’s website: htt p: // www. st at ecad. com

For the latest sales and support information, select Hel p -
Support/ Sal es | nf o from on the StateCAD menu. Or, click the
Sales/Support icon (shown below) on the StateCAD toolbar.

!ﬂilSahs

Support

Launching StateCAD

7-4

After you install StateCAD as described in the “Acquiring
StateCAD/ StateBench Tools” section, you can launch it from within
the Project Navigator.

Note The procedures described in this section are the same for both
the Xilinx Edition and the complete edition of StateCAD/ StateBench,
assuming the Project Navigator has been directed to the installed
edition.

Xilinx Development System

State Diagrams

Creating a New State Diagram

To create a new state diagram source for use with your project, use

the following procedure:

1. Select Proj ect — New Sour ce from the Project Navigator to

display the New source dialog box.

2. Click St at e Di agr amto select it from the list of source
displayed in the New source dialog box.

New

Uszer Diocument
Schematic
ABEL-HDL Module
WHOL Module
WHDL Package
WHOL Test Bench
State Diagram

File M ame:

Istated1|

Location:

Id:\xdc_proi\tutorial

V' Add to project

|

< Back I Mest » I

Cancel |

3. Enter a name for the state diagram in the File Name field.

A StateCAD state diagram name has the following requirements;

¢+ The name must begin with an alphabetic character only.

+ StateCAD is not case sensitive. Filenames are recognized
independent of case.

+ The name can contain up to eight alphanumeric characters. It
must follow the DOS 8.3 convention. However, do not add
the three character extension. The appropriate extension

(.dia) is automatically generated.

¢ The name defaults to UNTITLED.DIA in StateCAD if the

above rules are not followed.

Foundation Series ISE 3.1i User Guide

7-5

Foundation Series ISE 3.1i User Guide

7-6

Note The name entered here is used by StateCAD in the module/
entity definition in the HDL code it creates from the state
diagram.

By default, StateCAD saves the new source in the project direc-
tory. Specify a different directory in the Location field on the New
source window, if desired.

The “Add to Project” check box on the New source window has
no effect for state diagrams. State Diagrams currently cannot be
automatically added to a Foundation Series ISE project. Refer to
the “Adding State Diagram Sources to Your Project” section for
information on adding state diagram source files to your project.

Press Next when you are ready to continue. The New Source
Information window, which summarizes the requested informa-
tion for the new source, appears.

Press Fi ni sh at the New Source Information screen to invoke
StateCAD.

When StateCAD is invoked, Foundation Series ISE passes
project-specific information to StateCAD, such as the project
directory, synthesis tool selection, targeted device, and encoding
setting.

The StateCAD main window appears (see the following figure)
with the newly specified state diagram loaded and ready for you
to begin designing the state machine.

Xilinx Development System

State Diagrams

';:J_} STATED1.DIA - Xilink Limited Edition - StateCAD(r) ;|g|5|
File Edit iew Options Window Help

O | & |28 2 8 A N A
Open File Saue File Machines Lagic Optimize O State Bench Ereiens Erinit: Zoomln | Zoom Out Suppart
B -
S
=
—
El
B
B
El
>
=
A
IS
T
=
=
=
=
=
=
=
=]

1 o
__ FReady |

9. Create the state diagram. The state diagram (.dia file) is written to
the source directory for your project by default.You can add the
state diagram to the project as a user document, if desired; refer
to the “Adding State Diagram Sources to Your Project” section for

details.

Foundation Series ISE 3.1i User Guide

7-7

Foundation Series ISE 3.1i User Guide

7-8

‘_{J_; TEST1.DIA - Xilink Limited Edition - StateCAD(r]) =10] x|
File Edit “iew Options ‘'window Help
> LRI [F==] Sales
NI R EERERIRE
OpenFiie | Saverie | prvotale | Fandem | opimiee | BNEEE |sitemench| Preview | Pint zoomin | ZoomOut | g
TEST1.DLA j

STATEL

] T e e o E e A e R T

STATE3 STATE2

a1 o

Feady |cap A

Following are some references and resources available to you for
learning how to use the StateCAD state diagram editor:

+ StateCAD online help

If you need help using StateCAD, refer to the StateCAD
online help.

¢+ StateCAD tutorial

A StateCAD tutorial is available from the online help. Select
Hel p — Tutori al .

+ Design Wizards

SelectFil e - Design W zard from the StateCAD menu
to initiate the Design Wizard.

Xilinx Development System

State Diagrams

If you use this option, a dialog box appears to have you
verify whether you want to use the currently opened state
diagram or a new one. Click Yes.

StateCAD x|

Usze the curnrent diagram [Y'es) or create a new diagram [Na]?

Mo | Eancell

The StateCAD Design Wizard leads you through the design
process. Project information (such as synthesis tool, targeted
device) is reflected in the Design Wizard dialog boxes.

Design Wizard x|

Thiz wizard automates the design and optimization of & single state machine.
StateCAD supports concurrent [multiple] state machines, different state assignment
modez, and optimizations. The wizard will tale you through the following steps:

1] & basic state machine is created from templates

2] Reset logic is updated

3] The deszign iz optimized with the Dptimization Wizard
4] The dezign iz tranzlated to eynthesizable HODL

ext>| Cancel |

10. When the state diagram and its logic is valid, StateCAD automat-
ically generates an HDL file (VHDL, Verilog, or ABEL-HDL as
appropriate for your project) with the same name as the state
diagram file except the file extension will be one of the following:
.vhd for VHDL, .v for Verilog, or .abl for ABEL-HDL.

Help | < Back |

For example, for a VHDL project and a state diagram file named
testl.dia, StateCAD produces the VHDL file named TEST1.vhd.
Within the VHDL file, the entity is defined as TEST1.

Foundation Series ISE 3.1i User Guide 7-9

Foundation Series ISE 3.1i User Guide

7-10

2 StateCAD HDL Browser - D:\XDCLab\TEST1.vhd
File “iew

=10l x|

S(E| 42|

I This code is to be used for evaluation purposes only

— D:XDCLABYTEST1.vhd

— VHDL code created by Visual Software Solution's StateCAD 5.02
— Wed Jan 26 08:39:49 2000

- This YHDL code [for use with Xilinx] was generated using:
= ated state ig with structured code format.
- Minimization is bled, implied else is bled

- and outputs are speed optimized.

LIBRARY icee;
USE ieee.std_logic_1164.all;

ENTITY TESTI IS
PORT [CLK.RESET: IN std_logic):
END;

IWRCHITECTURE BEHAYIOR OF TEST1 IS
TYPE type_sreg IS [STATED,STATE1,STATE2,STATE3,STATE4):
SIGNAL sreg, next_sreg : type_sreg:
BEGIN
PROCESS [CLK, next_sreq)
BEGIN
IF CLK="1' AND CLK'event THEN
sreg <= next_sreg;
END IF;
END PROCESS;

PROCESS [sreq.RESET)
BEGIN

next_sreg<=STATED;

IF [RESET="1") THEN
Ready

-

lear [

The HDL file is written to the source directory for your project.
You can add the HDL file to the project as a source, if desired.
Refer to the “Adding State Diagram Sources to Your Project”

section for details.

Updating an Existing State Diagram

Existing StateCAD state diagrams (.dia files) can be opened in
StateCAD from the Project Navigator using either of the following

methods:

e Select Proj ect -» New Sour ce from the Project Navigator.
When the New screen dialog box appears, select St at e
Di agr amand enter the name of the desired state diagram
(without the extension). Press Next . Then press Fi ni sh at the
New Source Information window to open StateCAD with the

specified state diagram.

Xilinx Development System

State Diagrams

» If the state diagram is added to the project, double-click on its
name in the Project Navigator’s Source window. The state
diagram is opened in StateCAD immediately.

Refer to “Adding State Diagram Sources to Your Project” section
for information on adding the .dia file to a project.

When you modify and save a valid state diagram, StateCAD prompts
you that the HDL file needs to be updated. If you select to update the
HDL file, the HDL file is regenerated automatically based on the
entered changes. If the corresponding HDL source file has been
added to the project, it is automatically overwritten with the updated
version.

Using StateBench

Within StateCAD, you may also invoke StateBench by selecting
Options - StateBench (Create Test Bench). You can use
StateBench to create test benches (VHDL) and test fixtures (Verilog) to
verify the StateCAD design’s behavior and validate its timing.

#H STATEDG2.DIA - [VHDL] - StateBench(tm) o]|
File Options Wiew Help

EL- IR =] ﬁm%%;mmmﬁaqsﬂ
erify R " 5 Signal SaveTest Run Cawerage || Constrain | Automatic e
Eehavior festiziid Reset Cycle Find P Editor Bench | TestBench| |Statistics | Timing | Testhench Zoom In || Zoom Out Support
Execute||| j Sim time: 0 nis Time: 102 ns Covered: 0% Radie: © Hex & Decimal

CLK 0 !

FEM1 |

bsreg Hot it

IRESET

=
You can also add and use StateBench testbenches in your project.
If you need help using StateBench, refer to the StateBench online
help. A StateBench tutorial is also available from the online help
(Hel p - Tutori al).
Foundation Series ISE 3.1i User Guide 7-11

Foundation Series ISE 3.1i User Guide

Adding State Diagram Sources to Your Project

7-12

You must manually add files created by StateCAD to your Founda-
tion Series ISE project. Only the StateCAD-generated synthesizable
HDL file can be added as a source in your project. The user-generated
state diagram can be added to the project as a user document to
provide quick access to StateCAD for modification.

After the StateCAD-generated HDL file has been added to your
project, it can be updated automatically when changes are made in
StateCAD to the state diagram from which it was produced.

If you modify the HDL file directly, the state diagram and HDL file
become out of sync. If you then modify the state diagram in
StateCAD, the changes you make the to HDL file are overwritten by
the new StateCAD-generated HDL file.

User-Entered State Machine Diagram

StateCAD produces a .dia file for user-created state diagrams. You
can add the .dia file to your project as a user document as follows:

1. Create and save the state diagram (.dia file) in StateCAD. By
default, StateCAD saves state diagram files to the source direc-
tory for the project.

2. From the Project Navigator menu select Pr oj ect - Add
Sour ce.

3. Select “State Diagram” from the “Files of type” pull down menu
to access the .dia file.

4. Click on the desired .dia file to select it.
5. Click Open to add the file to the project as a user document.

6. The file appears in the user document section of the Source
window (above the device/synthesis tool line).

StateCAD-Generated HDL File

When the state diagram and its logic is valid, StateCAD generates an
HDL file (VHDL, Verilog, or ABEL-HDL as appropriate for your
project) with the same name as the state diagram file. The file exten-
sion will be one of the following: .vhd for VHDL, .v for \erilog or .abl
for ABEL-HDL. For example, for a VHDL project and a state diagram

Xilinx Development System

State Diagrams

file named statem1.dia, StateCAD produces a VHDL file named
STATEM1.vhd.

By default, the StateCAD-generated HDL file is written to the source
directory for your project. You can add the HDL file to your project as
a source as follows:

1. From the Project Navigator menu, select Pr oj ect — Add
Sour ce.

2. Select “Sources” from the “Files of type” pull down menu to
access the StateCAD-generated HDL file.

3. Click on the desired HDL file to select it.
4. Click Open to add the file to the project as a source.

5. The file appears in the Source window (below the device/
synthesis tool line).

Note After you add a state diagram HDL file to your project, you
should use StateCAD if you want to make changes to it and keep it in
sync with the state diagram .dia file. StateCAD automatically updates
the HDL file when you make changes to the state diagram (.dia file).
If you use Project Navigator’s HDL Editor to edit the HDL file,
changes you make there are unknown to StateCAD.

Instantiating State Diagram Modules in HDL
Designs

You instantiate the generated HDL fils as you would any HDL
program.

StateCAD generates two module/entities. The first entity is a bit-wise
description with the entity name SHELL_FILENAME. The second
entity called FILENAME is the one to use. FILENAME is the name of
the .dia source file. The FILENAME entity maps all bits into the
vectors used within the design.

Foundation Series ISE 3.1i User Guide 7-13

Foundation Series ISE 3.1i User Guide

Instantiating State Diagram Modules in Schematic
Designs

You instantiate the generated HDL fils as you would any HDL
component.

StateCAD generates two module/entities. The first entity is a bit-wise
description with the entity name SHELL_FILENAME. The second
entity called FILENAME is the one to use. FILENAME is the name of
the .dia source file. The FILENAME entity maps all bits into the
vectors used within the design.

Using Foundation Series 2.1i State Diagrams

To use state diagrams created in Foundation Series 2.1i projects in
Foundation Series ISE 3.1i projects, you must first convert them for
StateCAD. StateCAD has an import function for this purpose.

Use the following procedure to import Foundation Series 2.1i state
diagrams into StateCAD:

1. Open StateCAD.

2. SelectFile - I nport Foundation Di agram (.ASF) from
the StateCAD main menu.

3. StateCAD displays dialog boxes containing choices you need to
make for the conversion.

For the latest support information on importing Foundation Series
2.1i Finite State Machines into StateCAD, go to the StateCAD website
htt p: / ww. st at ecad. comand choose the Support option.

7-14 Xilinx Development System

Chapter 8

LogiBLOX

LogiBLOX is an on-screen design tool for creating high-level modules
such as counters, shift registers, and multiplexers for XC4000,
Spartan, and SpartanXL FPGA designs and any CPLD designs. Logi-
BLOX includes both a library of generic modules and a set of tools for
customizing these modules. LogiBLOX modules are pre-optimized to
take advantage of Xilinx architectural features such as Fast Carry
Logic for arithmetic functions and on-chip RAM for dual-port and
synchronous RAM. With LogiBLOX, high-level LogiBLOX modules
that will fit into your schematic-based design or HDL-based design
can be created and processed.

This chapter contains the following sections.

e *“Accessing LogiBLOX”

e “LogiBLOX Setup”

e “Creating LogiBLOX Modules”

e “Using LogiBLOX Modules in ISE Projects”

e “Simulating LogiBLOX Components”

e “Constraining LogiBLOX RAM/ROM with FPGA Express”
e “Documentation”

Note LogiBLOX is not available for use with Virtex, VirtexE, Virtex2,
and Spartan2 devices. The CORE Generator supports those devices.

Accessing LogiBLOX

In Foundation Series ISE, you can access LogiBLOX in two ways: as a
standalone tool or as an integrated design entry tool in the Project
Navigator.

Foundation Series ISE 3.1i User Guide — Online 8-1

Foundation Series ISE 3.1i User Guide

8-2

You can access LogiBLOX as a standalone tool by selecting St art —
Foundation Series ISE 3.1li - Accessories - Logi BLOX

from your PC’s desktop.

Within a Foundation Series ISE project, LogiBLOX is an integrated
design entry tool for projects targeting XC4000, Spartan, SpartanXL,
or CPLD devices. You can access it to create a CORE for use in a

design as follows.

1. Select Proj ect —» New Sour ce from the Project Navigator
menu.
2. Select Logi Bl ox Modul e from the New source window.
Hew
Uszer Document
Schematic
WHDOL Module
Werilog Module ! .
YHDL Packags File Hame:
YHDL Test Bench IIc-giB‘I
Yerilog Test Fisture
State Diagram .
Caregen IP Logation:
I\}a%l|8|_|i0;::;dUIe Id:'\ise\iseexamples'\heqm |
v Add ta project
< Back I Mest » I Cancel |
3. Enter a File Name for the new module. Then click Next to

continue.

Xilinx Development System

LogiBLOX

4. At the New Source Information window, click Fi ni sh.

o e

Foundation Series ISE 3.1i User Guide 8-3

8-4

Foundation Series ISE 3.1i User Guide

5. The LogiBLOX tool is invoked and opens. Its initial screen is
shown in the following figure.

{r poumidos =l [t

Add/Subtract Ed
Masimum Speed 7]
Ursigred 7]

Feleaze 311 - LogBLOX Gui D17

Copyright [c] 1995-2000 Xiline, Inc. All rights reserved.

Figure 8-1 LogiBlox Module Selector - Accumulators

Xilinx Development System

LogiBLOX

LogiBLOX Setup

When you access LogiBLOX from a Foundation Series ISE project, the
project information is automatically entered in the LogiBLOX Setup
menu. The Vendor Name, Project Directory, and Device Family infor-
mation are all entered based on that project. To access the LogiBLOX
Setup dialog box (shown in the following figure), click Set up on the
LogiBLOX Module Selector dialog box.

Setup |

Wendar |F'rc-ie-:t Directory | Device Family | Options |

YWendor Mame: Buz Motation:
fother |B<I> =]
where
B iz Bus Mame
| iz Bus Index

Ok I Cancel | Apply | Help |

You can instantiate a LogiBLOX module in VHDL or Verilog code. By
default, the language designated in the project’s synthesis tool deter-
mines which template (VHDL or Verilog) LogiBLOX creates for the
project. You can change this by using the Options tab to select the
type of simulation netlist and component declaration template
(VHDL or Verilog) you need. For VHDL, select VHDL t enpl at e and
Behavi oral VHDL netli st (shown below). For Verilog, select
Verilog tenplateandStructural Verilog netlist.

Foundation Series ISE 3.1i User Guide 8-5

Foundation Series ISE 3.1i User Guide

Setup x|
\-"endorl Project Directory | Device Family Options |

— Simulation Metligt——— Component Declaration——

li ¥ WHOL template
[Gate level EDIF netlist [Werilog template

[Stuctural Yerilog netlist

¥ WBGE File ¥ Stop Process on Warning

— Implementation Netlist—‘ "LogiBLDX DRC———

QK I Cancel | Apnlr Help

Creating LogiBLOX Modules

8-6

This section contains a very brief overview of the LogiBLOX tool.
Refer to the LogiBLOX Guide and LogiBLOX’s online Help for
detailed information on LogiBLOX.

After you have opened LogiBLOX from your Foundation Series ISE
project, create a new module as follows:

1. The name you entered in the Project Navigator’s New source
appears in the Module Name field. You need not enter a name.

The Module Name shown here is used as the name of the instan-
tiation in the HDL code.

2. Select the type of module from the Module Type list box. The

initial LogiBLOX window shows the fields necessary for creating
an accumulator module (see Figure 8-1). Click on the down arrow
in the Module type field to display the list of modules types you

can create. Following is a list of the LogiBLOX modules.

Accumulator Adder/Subtracter Clock Divider

Comparator Constant Counter

Data Register Decoder Input/Output
(schematic only)

Memory Multiplexer Pad (schematic only)

Shift Register Simple Gates Tristate Buffers

Xilinx Development System

LogiBLOX

3. Select a module type and define its attributes. The following
figure shows the LogiBLOX dialog boxes for Module Type =

Memories.
i Xilinx LogiBLOX Module Selector — =] =]
— Selection
Ok
Module Mame: Module Type: Data Bus Wwidth: 4|
IIUgib'I j IMemories j |4 j Cancel |
— Details Setup |
= e —_— ﬂ- e o User Prefs |
WR_CLE WR_CLE
g DPR: Help |
= ROM & SYNC_RaM DP_RAM

Mermary Depth = |48

tem File = |

Multipleser Style = IMaHimum Speed i

Usze RPMs = IFaIse

L Lo Ly

irim= IFaIse

4. Select the bus width for the module from the Bus width list box.

5. Select or deselect optional pins of the module symbol displayed
in the Details box by clicking the appropriate check boxes.

6. Click K.

When you click OK, the LogiBLOX module and its related files are
created. The LogiBLOX .mod file is automatically added to the Foun-
dation Series ISE project as a user document.

The LogiBLOX module is a collection of several files including those
listed below. The files are located in your Foundation Series ISE
project directory.

Foundation Series ISE 3.1i User Guide 8-7

Foundation Series ISE 3.1i User Guide

Note Whether the VHDL files (.vhi, .vhd) and/or Verilog files (.vei,
.v) are created depends on the setting in the LogiBLOX Setup Options
tab.

component_name.ngc Netlist used during the Translate
phase of Implementation

component_name.vei Instantiation template used to add a
LogiBLOX module into your
Verilog source code

component_name.v Verilog file used for functional
simulation
component_name.vhi Instantiation template used to add a

LogiBLOX module into your VHDL
source code

component_name.vhd VHDL file used for functional simu-
lation

component_name.mod Configuration information for the
module

logiblox.ini LogiBLOX configuration for the
project

The component name is the name given to the LogiBLOX module in
the LogiBLOX Module Selector GUI. The port hames are the names
provided in the instantiation template file.

Using LogiBLOX Modules in ISE Projects

If you initiated LogiBLOX from the Project Navigator New source
window, the LogiBLOX module and its related files are placed in the
current Foundation Series ISE project directory. The related files
include schematic, VHDL, and Verilog templates that can be used in
your project. The LogiBLOX module file ((mod) is added to the
project as a user document and appears in the Source window
(logibl.mod in the following figure).

Xilinx Development System

LogiBLOX

|n® Xilinx - Project Mavigator - D:\iSEASEexamples\freqm\freqm.npl
File Edit “iew Project Source Process Macio Window Help

oo B E(lemE 2|t ae|o (s
=] x|

=1l x|

Sources in Project: I
ER =
[logiE1.mod’

readme. bt
- £ 505 PCAd-4 - FPGA Express VHDL
B[fream (freqm.zch)
@ Fregm_th.vhd
S ont_bed (bed_cnt vhd)
m control [contralvhd]
“ A hexled (hes2led vhd)

B hiod File | ICW Snap Litr.

1=l
Frocesses for Current Source: |
[Mo Processes Available)

B Process View

X[iSE Auto-Make Log File

P W,

-
. TN AT Al et ama e mtn T amscmaee S
g _'l_I
M ATEFConsoledFindin Files

For Help. presz F1

Editing LogiBLOX Modules

If you want to edit a LogiBLOX module in a Foundation Series ISE
project, double-click on its name in the Source window. This opens

the LogiBLOX Module Selection window and loads it with the
selected module.

Using LogiBLOX Modules in Schematic Sources

You can use LogiBLOX components in schematics as well as HDL
designs for FPGAs and CPLDs. Once you are in the LogiBLOX GUI,

you can customize standard modules and process them for insertion
into your design.

The following procedure describes how to use LogiBLOX in sche-
matic sources.

1. Add the logiblox_module.v (\Verilog) or .vhd (VHDL) file to the
project using Pr oj ect - Add Source.

Foundation Series ISE 3.1i User Guide 8-9

Foundation Series ISE 3.1i User Guide

8-10

2. Click on the newly added logiblox_module.v or .vhd file in the
Source window.

3. ClickonCreate Schematic Synbol inthe Process window.

4. A symbol (logiblox_module.sym) is created for the logiblox_module.
v or .vhd module.

5. The logiblox_module symbol is added to the local Symbol Library
of the Schematic Editor for use in schematic sources.

6. For synthesis, FPGA Express treats the LogiBLOX modules in
schematic sources as black boxes because of the synopsys
transl at e of f directive in the .v and .vhd files generated by
LogiBLOX.

Note Once a LogiBLOX module is created, do not change parameters
for the module on the schematic. Any changes to the module parame-
ters must be made through the LogiBLOX GUI and a new module
created.

Instantiating LogiBLOX Modules in an HDL Source

You can instantiate the LogiBLOX components in your HDL code to
take advantage of their high-level functionality. Define each Logi-
BLOX module in HDL code with a component declaration, which
describes the module type, and a component instantiation, which
describes how the module is connected to the other design elements.

LogiBLOX modules may be generated in Foundation and then
instantiated in the VHDL or Verilog code. This flow may be used for
any LogiBLOX component, but it is especially useful for memory
components such as RAM. Never describe RAM behaviorally in the
HDL code, because combinatorial feedback paths will be inferred.

VHDL Instantiation

When you instruct LogiBLOX to create a VHDL component in a
Foundation Series ISE project, a VHDL instantiation template file is
automatically placed in the project directory when the LogiBLOX
module is saved. The template (.vhi file) is then available to use to
instantiate the LogiBLOX module into a VHDL source for the project.

Use the following procedure to instantiate a LogiBLOX module into a
VHDL source in a Foundation Series ISE project. The example used in

Xilinx Development System

LogiBLOX

this section is for a LogiBLox RAM48X4S memory component named

“logiB1.”

1. SelectFi | e — Open from the Project Navigator menu.

2. When the Open dialog box appears, select the VHDL instantia-
tion template (.vhi file) for the desired LogiBLOX module from
the project directory.

3. The VHDL instantiation template opens in the HDL Editor work-
space. An example for a LogiBLOX memory module named
“logibl1” is shown in the following figure.

|n® Xilinx - Project Mavigator - D:\ISEMSEexamples\freqm\freqm.npl _|EI il
File Edit “iew Project Source Process Macio Window Help
BN el e A R AR T =—
=ES
Sources in Project: I;l |4 logiB1.vhi = -0l x|
E\--E fregm =
] logi1.mod -- LogiBLOX SYNC_RAM Module “logibl™ I
i Bl readme.ts -- Created by LogiBLOX wersion D.17
=3 505PCB4-4 - FPGA Express VHOL - or Fri Mar 03 13:08:10 2000
E---@ fream [freqm. sch) -- Attributes
@ freqm_th.vhd -- MODTYPE = SYNC_RAM
“[A ent_bed (bed_cnt vhd) - EUS_WIDTH = 4
m control [contral. vhd] E - DEPTH = 45
L S R -- STYLE = MAX_SPEED
B hfod .. File... | W Snap. Lihr.. - USE_RPM = FALSE
S
Frocesses for Current 5ource: = -~ Component Declaration
ER} sign E ity Ltz component logibl
- O Check Design Rules FORT(
~-[E] - View YHDL Functional Mg A: IN std_logic_vector(5 DOWNTO 0):
--[F ViewYHDL TestBench T DI: IN std_logic_wvector(3 DOWNTD 0); I
] Wiew WHDL Instantiation T. WE_EN: IN std_logic:
B Launch HOL Bencher Toc WR_CLK: IN std logic:
G Create Schematic Symbol DO: OUT std logic_wector(3 DOWNTO 0));
8 Launch MadelSim Simulat end component;
= O Senthesize
- W Wiew Reports K
n Pre-Optimization R -- Component Attributes
b Post-Optimization A
y
?—: Ehelck Si“lax -- FPGAL Express / FPGA Compiler II hlack hox attribute definitions
S napze Al fritute fnoa dont touch: strine:
2 '_E\reata Fu.nctlnna\snu:lur' 4| oz
H E it Concteainte
e ’
B Process Wiew logiB1. vhi * I
Ml i3 sutoc-Make Log File =
Launching: 'D:%iSE\bininthcoresupt.exe -h _coresupt.ini'
-
4 *
HATE I Consoled Find in Files
Far Help. press F1 |Ln 4, Col 32 [=

Foundation Series ISE 3.1i User Guide

8-11

Foundation Series ISE 3.1i User Guide

The complete text of the LogiBLOX VHDL instantiation template
for logibl.vhi is as follows.

-- Logi BLOX SYNC_RAM Mbdul e "I ogi b1"
-- Created by Logi BLOX version D. 17
-- on Fri Mar 03 13:08:10 2000
-- Attributes

-- MODTYPE = SYNC_RAM

-- BUS_WDTH = 4

-- DEPTH = 48

-- STYLE = MAX_SPEED

-- USE_RPM = FALSE

-- Conponent Decl aration
conponent | ogi bl
PORT(
A: IN std | ogic _vector(5 DOANTO 0);
D: IN std | ogic_vector(3 DOANNTO 0);
WR EN: I N std_| ogic;
WR CLK: IN std_|ogic;
DO OUT std_|ogic _vector(3 DOANTO 0));

end conponent;

8-12 Xilinx Development System

LogiBLOX

-- FPGA Express / FPGA Conpiler Il black box
-- attribute definitions
attribute fpga_dont_touch: string;

attribute fpga_dont _touch of |ogibl: conponent is
"true";

-- XST black box attribute definitions
attribute box type: string;

attribute box type of |ogibl:conponent is
"bl ack_box";

-- Conponent Instantiation

i nstance_nane : |ogi bl port map
(A =>,

D=,

WR EN => |

WR CLK => |

DO =>);

4. UseFil e - Open on the Project Navigator menu to open the
VHDL file in which the LogiBLOX component is to be instanti-
ated.

5. Cut and paste the Component Declaration from the LogiBLOX
component’s .vhi file to your project’s VHDL source, placing it
after the architecture statement in the VHDL code.

6. Cutand past the Component Instantiation from the LogiBLOX
component’s .vhi file to your VHDL source code after the “begin”
line. Give the inserted code an instance name. Edit the code to
connect the signals in the design to the ports of the LogiBLOX
module.

Foundation Series ISE 3.1i User Guide 8-13

Foundation Series ISE 3.1i User Guide

8-14

An example of VHDL source code with the LogiBLOX instantia-
tion for the component named logibl is shown below. For each
.ngc file from LogiBLOX, you may have one or more VHDL files
with the .ngc file instantiated. In this example, there is only one
black box instantiation of memory, but multiple calls to the same
module may be done.

l'ibrary |EEE;
use | EEE. std | ogic_1164.all;
use |EEE. std logic_arith.all;

entity top is
port (D: in STDLOGAC CE in STD LCGE C
CLK: in STD LOAC, Q out STD LOG C
Atop: in STD LOG C VECTOR (5 downto 0);
DO op: out STD LOG C VECTOR (3 downto 0);
Ditop: in STD LOd C VECTOR (3 downto 0);
WR ENtop: in STD LQOd C;
WR CLKtop: in STD LCQ C);
end top;

architecture inside of top is

conponent userff
port (D in STDLOAJC, CE in STD LOGQ G
CLK: in STDLOAC Q out STD LOA C);

end conponent;
conponent nenory

port (A- in STD LOd C VECTOR (5 downto 0);
D: in STD LOG C_VECTOR (3 downto 0);

Xilinx Development System

LogiBLOX

WR_EN: in STD LOA C;
WR_CLK: in STD_LOG G
DO out STD LOG C VECTOR (3 downto 0));

end conponent;

begi n

UO userff port map (D=>D, CE=>CE, CLK=>CLK,
Q>Q;

Ul: menory port
map(A=>At op, DI =>DI t op, WR_EN=>WR_ENt op,

WR_CLK=>WR_CLKtop, DO=>DOtop);
end inside;

7. Save the VHDL source file. The design with the instantiated Logi-
BLOX module can now be checked for syntax errors and synthe-
sized.

Note When the design is synthesized, a warning is generated that
the LogiBLOX module is unlinked. Modules instantiated as black
boxes are not elaborated and optimized. The warning message is
just reflecting the black box instantiation.

Verilog Instantiation

When you instruct LogiBLOX to create a Verilog component in a
Foundation Series ISE project, a Verilog instantiation template file is
automatically placed in the project directory when the LogiBLOX
module is saved. The template (.vei file) is then available to use to
instantiate the LogiBLOX module into a Verilog source for the project.

Use the following procedure to instantiate a LogiBLOX module into a
Verilog source in a Foundation Series ISE project. The example used
in this section is for a LogiBLOX RAM48X4S memory component
named “logibl.”

1. SelectFi | e — Open from the Project Navigator menu.

Foundation Series ISE 3.1i User Guide 8-15

Foundation Series ISE 3.1i User Guide

2. When the Open dialog box appears, select the Verilog instantia-
tion template (.vei file) for the desired LogiBLOX module from
the project directory.

3. The VHDL instantiation template opens in the HDL Editor work-
space. An example for a LogiBLOX memory module named
“logibl1” is shown in the following figure.

|n® Xilinx - Project Mavigator - D:\ISEMSEexamples\freqm\freqm.npl _|EI il
File Edit “iew Project Source Process Macio Window Help
oere =B E(eme 20 |[Fbe o e mFEr | essA
=] x]
Sources in Project: |;| - = R
logib1.
E‘"E = |n@ ogibl.vei
B loaiti 1 mod
. readme.bxt LogiBLOX SYNC_ERAMN Module "logibl™
o ™ Created by LogiBLOX wersion D.17
E EE 505 PCA4-4 - FPGA Express VHOL on Fri Mar 03 14:26:15 2000
E@ fregm [fregm. sch)
T Attributes
B freom_th vhd MODTYPE = 5YNC_ AN
[ent_bed (bed_cntvhd] BUS WIDTH - 4
m control [contral.vhd] ﬂ DEFTH = 48
5 N ST P STYLE = MAX_SPEED
B bfodul... File ... | I Snap... Llhr...l USE_RPIL - FALSE
= logibl instance_name
Frocesses for Current Source: I LA,
[Mo Processes Available) -DOt,

LDI(),
JUF_EN(),
JUR_CLE()) :

// FPGA Express / FPGA Compiler IT black box attribute defini
/4 s¥ynopays attribute fpga dont touch "true”
f/ synthesis attribute fpga dont_touch of instance hame is "t

/7 ®3T black box attribute definitions —
£/ box_type "black _box™
/4 synthesis attribute box_type of instance name is "hlack ho

module logibl({k, DO, DI, WR_EN, WR_CLE]: /7 ayntheziz "hlac

A Synplicity black box declaration

<11
B Process Wiew logibl.vei I

X[iSE Auto-Make Log File

Launching: 'D:\iSE\bin\nt\coresupt.exe -b _coresupt.ini’

:'h‘ ; . _'l_I
H[ATEFRConsoled FindIn Files

For Help. press F1 [Ln1.Cal1 | *

The complete text of the LogiBLOX Verilog instantiation template
for logibl.vei is as follows.

/1 Logi BLOX SYNC_RAM Mbdul e "1 ogi b1"
/1l Created by Logi BLOX version D.17

8-16 Xilinx Development System

LogiBLOX

11
11
11
11
/11
11
11

on Fri Mar 03 14:26: 15 2000
Attributes

MODTYPE = SYNC_RAM

BUS_WDTH = 4

DEPTH = 48

STYLE = MAX_SPEED

USE_RPM = FALSE

| ogi bl instance_name

(

11
11
11
11

11
11
11

-AQ)
.DAX() .
D),

VR EN(),

- WR_CLK());

FPGA Express / FPGA Conpiler Il black box
attribute definitions
synopsys attribute fpga_dont _touch "true"

synthesis attribute fpga _dont touch of
i nstance_nane is "true"

XST bl ack box attribute definitions
box_type "bl ack_box"

synthesis attribute box_type of instance_nane
is "black_box"

nodul e | ogi b1(A, DO, D, WR EN, WR CLK)

/1
/1

synt hesi s "bl ack_box"

Synplicity black box declaration

Foundation Series ISE 3.1i User Guide 8-17

Foundation Series ISE 3.1i User Guide

8-18

i nput [5:0] A
out put [3:0] DO
i nput [3:0] DI;
i nput WWR_EN;

i nput WR_CLK;
endnmodul e

Use Fi | e » Open on the Project Navigator menu to open the
Verilog file in which the LogiBLOX component is to be instanti-
ated.

Cut and paste the module declaration from the LogiBLOX
component’s .vei file into the Verilog design code, placing it after
the “endmodule” line within the architecture section or the
Verilog design code.

Cut and paste the component instantiation from the .vei file into
the design code. Give the added code an instance name and edit
it to connect the ports to the signals.

An example of Verilog source code with the LogiBLOX instantia-
tion for the component named logibl is shown below. For each
.ngc file from LogiBLOX, you may have one or more Verilog files
with the .ngc file instantiated. In this example, there is only one
black box instantiation of memory, but multiple calls to the same
module may be done.

nmodul e top (D, CE, CLK, Q
Atop, DQtop, Ditop, WR ENtop, WR CLKtop);

i nput D

i nput CE;
i nput CLK;
out put Q

i nput [5:0] Atop;
output [3:0] DO op;

Xilinx Development System

LogiBLOX

input [3:0] Ditop;
i nput WWR_ENt op;
i nput WR_CLKt op;

userff U0 (.D(D),.CE(CE),.CLK(CLK),. QQ);

menory Ul (. A(Atop),
. DO (DX op),
.DI (Ditop),
.WR_EN (WR_ENt op),
.VWR _CLK (WR _CLKtop));
endnmodul e

Note An alternate method is to place the module declaration
from the .vei file into a new, empty Verilog file (MEMORY.V) and
add the new file (shown below) to the project.

/1 Logi BLOX SYNC_RAM Modul e "nmenory"
/'l Created by Logi BLOX version C. 16
11 on Wed Jun 01 10:40: 25 1999
Il Attributes

11 MODTYPE = SYNC_RAM

/1 BUS W DTH = 4

I DEPTH = 48

11 STYLE = MAX_SPEED

11 USE_RPM = FALSE

R e
nodul e MEMORY (A, DO, DI, WR EN, WR CLK);
i nput [5:0] A

out put [3:0] DO

Foundation Series ISE 3.1i User Guide 8-19

Foundation Series ISE 3.1i User Guide

i nput [3:0] DI;
i nput WWR_EN;

i nput WR_CLK;
endnodul e

7. Save the Verilog source file. The design with the instantiated
LogiBLOX module can now be checked for syntax errors and
synthesized.

Note When the design is synthesized, a warning is generated that
the LogiBLOX module is unlinked. Modules instantiated as black
boxes are not elaborated and optimized. The warning message is
just reflecting the black box instantiation.

Simulating LogiBLOX Components

For simulation of LogiBLOX-created VHDL components, you need
to add the component_name.vhd file created by LogiBLOX to the
project. For Verilog components, this step is not necessary.

Constraining LogiBLOX RAM/ROM with FPGA

Express

In the XSI (Xilinx Synopsys Interface) HDL methodology, whenever
large blocks of RAM/ROM are needed, LogiBLOX RAM/ROM
modaules are instantiated in the HDL code. With LogiBLOX RAM/
ROM modules instantiated in the HDL code, timing and/or place-
ment constraints on these RAM/ROM modules, and the RAM/ROM
primitives that comprise these modules, can be specified in a UCF
file. To create timing and/or placement constraints for RAM/ROM
LogiBLOX modules, knowledge of how many primitives will be used
and how the primitives, and/or how the RAM/ROM LogiBLOX
modules are named is needed.

Estimating the Number of Primitives Used

8-20

When a RAM/ROM is specified with LogiBLOX, the RAM/ROM
depth and width are specified. If the RAM/ROM depth is divisible
by 32, then 32x1 primitives are used. If the RAM/ROM depth is not
divisible by 32, then 16x1 primitives are used instead. In the case of
dual-port RAMs, 16x1 primitives are always used. Based on whether

Xilinx Development System

LogiBLOX

32x1 or 16x1 primitives are used, the number of RAM/ROM can be
calculated.

For example, if a RAM48x4 was required for a design, RAM16x1
primitives would be used. Based on the width, there would be four
banks of RAM16x1s. Based on the depth, each bank would have three
RAM16x1s.

How the RAM Primitives are Named

Using the example of a RAMA48x4, the RAM primitives inside the
LogiBLOX are named as follows.

MEMO O MEML0 MEM20 MEM3_0
MEMO 1 MEML11 MEM21 MEM3_1
MEMO 2 MEML1 2 MEM22 MEM3_2

Each primitive in a LogiBLOX RAM/ROM module has an instance
name of MEMX_y, where y represents the primitive position in the
bank of memory and where x represents the bit position of the RAM/
ROM output.

For the next two items, refer to the Verilog/VHDL examples included
at the end of this section. The Verilog/VHDL example instantiates a
RAM32x2S, which is in the bottom of the hierarchy. The RAM32x2S
was implemented with LogiBLOX. The next two items are written
within the context of the Verilog examples but also apply to the
VHDL examples as well.

Referencing a LogiBLOX Module/Component in an
HDL Source

LogiBLOX RAM/ROM modules in the HDL Flow are constrained via
a UCF file. LogiBLOX RAM/ROM modaules instantiated in the HDL
code can be referenced by the full-hierarchical instance name. If a
LogiBLOX RAM/ROM module is at the top-level of the HDL code,
then the instance name of the LogiBLOX RAM/ROM module is just
the instantiated instance name.

In the case of a LogiBLOX RAM/ROM, which is instantiated within
the hierarchy of the design, the instance name of the LogiBLOX
RAM/ROM module is the concatenation of all instances which
contain the LogiBLOX RAM/ROM. The concatenated instance names

Foundation Series ISE 3.1i User Guide 8-21

Foundation Series ISE 3.1i User Guide

are separated by a “_”. In the example, the RAM32X1S is named
nmenor y. The module menor y is instantiated in Verilog module

i nsi de with an instance name UO. The module i nsi de is instanti-
ated in the top-level module test. Therefore, the RAM32X1S can be
referenced in a .ucf file as U0/UO. For example, to attach a TNM to
this block of RAM, the following line could be used in the UCF file.

I NST UO_UO0 TNM=bl ockl ;

Since U0/UQ is composed of two primitives, a Timegroup called
blockl would be created; blockl TNM could be used throughout the
.ucf file as a Timespec end/start point, and/or U0/UO could have a
LOC area constraint applied to it. If the RAM32X1S has been instanti-
ated in the top-level file, and the instance name used in the instantia-
tion was UO, then this block of RAM could just be referenced by UO.

Referencing the Primitives of a LogiBLOX Module in
an HDL Source

Sometimes it is necessary to apply constraints to the primitives that
compose the LogiBLOX RAM/ROM module. For example, if you
choose a floorplanning strategy to implement your design, it may be
necessary to apply LOC constraints to one or more primitives inside a
LogiBLOX RAM/ROM module.

Returning to the RAM32x2S example above, suppose that the each of
the RAM primitives had to be constrained to a particular CLB loca-
tion. Based on the rules for determining the MEMXx_y instance hames
and using the example from above, each of the RAM primitives could
be referenced by concatenating the full-hierarchical name to each of
the MEMXx_y names. The RAM32x2S created by LogiBLOX would
have primitives named MEMO_0 and MEML1_0. So, for an HDL Flow
project, CLB constraints in a UCF file for each of these two items
would be.

I NST U0_U0/ MEMD_O LOC=CLB_R10C10 ;
I NST U0_U0/ MEMD_1 LOC=CLB_R11Cl1 ;

8-22 Xilinx Development System

LogiBLOX

Verilog Example

Following is a Verilog example.

test.v:

nodul e test (DATA, DATAQUT, ADDR, C, ENB) ;

i nput [1:0] DATA

out put [1:0] DATAQUT;
i nput [4:0] ADDR,

i nput G

i nput ENB;

wire [1:0] dataoutreg;
reg [1: 0] datareg;
reg [1: 0] DATAQUT;
reg [4:0] addrreg;

i nside U0 (.MDATA(dat areg), . MDATAQUT(dat aout r eg) ,
. MADDR(addrreg),.C(C), . WE(ENB)) ;

al ways@ posedge C) datareg = DATA;
al ways@ posedge C) DATAQUT = dat aoutr eg;
al ways@ posedge C) addrreg = ADDR;
endnodul e

inside.v:

nmodul e i nsi de(MDATA, MDATACUT, MADDR, C, V\E) ;

i nput [1:0] NMDATA

out put [1:0] MDATAQUT,;
i nput [4:0] MADDR;

i nput G

i nput W

menory WO (. A(MADDR), . DQ(MDATAQUT),
. DI (MDATA), .WR_EN(VE), .WR CLK(Q));

Foundation Series ISE 3.1i User Guide 8-23

Foundation Series ISE 3.1i User Guide

endnodul e

test.ucf

INST “U0_UO” TNM = usermem;
TIMESPEC TS_6= FROM : FFS :TO: usermem: 50;
INST “U0_U0O/mem0_0" LOC=CLB_R7C2;

VHDL Example

Following is a VHDL example.

test.vhd

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;

entity test is
port(
DATA: in STD_LOGIC_VECTOR(1 downto 0);
DATAOUT: out STD_LOGIC_VECTOR(1 downto 0);
ADDR: in STD_LOGIC_VECTOR(4 downto 0);
C, ENB: in STD_LOGIC);
end test;

architecture details of test is
signal dataoutreg,datareg: STD_LOGIC_VECTOR(1 downto 0);
signal addrreg: STD_LOGIC_VECTOR(4 downto 0);

component inside
port(
MDATA: in STD_LOGIC_VECTOR(1 downto 0);
MDATAOUT: out STD_LOGIC_VECTOR(1 downto 0);
MADDR: in STD_LOGIC_VECTOR(4 downto 0);
C,WE: in STD_LOGIC);
end component;

8-24 Xilinx Development System

LogiBLOX

begi n

U0: inside port

map(MDATA=>dat ar eg. , MDATAQUT=>dat aout r eg. , MADDR=>addr r eg, C=>C, \E=>

ENB) ;

process(C)
begi n
i f(Cevent and C=1) then
dat areg <= DATA;
end if;
end process;

process(C)
begi n
i f(Cevent and C=1) then
DATAQUT <= dat aoutreg;
end if;
end process;

process(C)
begi n
i f(Cevent and C=1) then
addrreg <= ADDR,
end if;
end process;

end detail s;
inside.vhd

entity inside is
port (

MDATA: in STD LOG C VECTOR(1 downto 0);
MDATAQUT: out STD LOd C VECTOR(1 downto 0);
MADDR: in STD LOG C VECTOR(4 downto 0);

C,VWE in STD LOG C);
end i nsi de;

Foundation Series ISE 3.1i User Guide

8-25

Foundation Series ISE 3.1i User Guide

architecture details of inside is conponent nenory
port (
A: in STD LOG C VECTOR(4 downto O);
DO out STD LOG C VECTOR(1 downto O);
D: in STD LOE C VECTOR(1 downto 0);
WR_EN, WVR_CLK: in STD LOG O);
end conponent;

begi n
U0: nenory port nap(A=>MADDR, DO=>MDATAQUT,
DI =>MDATA, W\R_EN=>WE, WVR_CLK=>C) ;

end detail s;

test.ucf

INST “U0_UQO” TNM = usermem;
TIMESPEC TS_6= FROM : FFS :TO: usermem: 50;
INST “U0_U0O/mem0_0" LOC=CLB_R7C2;

Documentation

The following documentation is available for the LogiBLOX program:

e The LogiBLOX Guide is available with the Xilinx online book
collection on the CD-ROM supplied with your software or from
the Xilinx web site at http://support.xilinx.com

e You can access LogiBLOX online help from LogiBLOX or from
the Foundation online help system.

e The Xilinx Software Conversion Guide from XACTstep v5.X.X to
XACTstep vM1.X. X compares XBLOX and LogiBLOX. It describes
how to convert an XBLOX design to LogiBLOX. This document is
available on the Xilinx web site at http://
support.xilinx.com.

8-26 Xilinx Development System

Chapter 9

CORE Generator

The Xilinx CORE Generator System is a design tool that delivers
parameterizable COREs optimized for Xilinx FPGAs. It provides the
user with a catalog of ready-made functions ranging in complexity
from simple arithmetic operators such as adders, accumulators, and
multipliers, to system-level building blocks including filters, trans-
forms, memories.

New COREs can be downloaded from the Xilinx web site and added
to the CORE Generator System. The URL for downloading CORES is
http://ww. xi | i nx. com i pcent er. You can check this web site
to verify you have the latest version of each CORE and CORE data
sheet.

This chapter contains the following sections:

e “Accessing the CORE Generator System”

e “Creating a CORE Component”

e “Using COREs in Foundation Series ISE Projects”
e “Simulation and Synthesis of CORE Modules”

e “Simulating COREs in a Schematic”

Accessing the CORE Generator System

In Foundation Series ISE, you can access the CORE Generator System
in two ways: as a standalone tool or as an integrated design entry tool
in the Project Navigator.

You can access the CORE Generator as a standalone tool by selecting
Start — Foundation Series |ISE 3.1i - Accessories -
CORE Gener at or from your PC’s desktop.

Foundation Series ISE User Guide 3.1i — Online 9-1

Foundation Series ISE User Guide 3.1i

9-2

Within a Foundation Series ISE project, the CORE Generator is an
integrated design entry tool. You can access it to create a CORE for
use in a design as follows.

1. Select Proj ect — New Sour ce from the Project Navigator
menu.

2. Select Cor egen | P from the New source window.

Uszer Diocument
Schematic
WHOL Module
Werilog Module
WHDL Package

Werilog Test Fisture

State Diagram

Whdl Library d:hisetizeexamplestfreqm

3. Enter a File Name for the new CORE. Then click Next to
continue.

Note Currently, the file name entered here is not passed to the
CORE Generator.

4, At the New Source Information window, click Fi ni sh.

e

[ocliny sutmbn |

Xilinx Development System

CORE Generator

5. The CORE Generator tool is invoked and opens. Its initial screen
is shown in the following figure.

Ef xilinx CORE Generator 3.1i
File Project Core Help

=10l]

[ﬁ‘ Current Project: [D\NSEVSEexamplesireqm =] |ﬁ§(

wigw Catalog: [y Function -1

Target Family, Wy vittex Contents of.

1 Basic Elements Mame | Type | version |E|¢I\'I%_¥I wendor
] Communication & Metworking

| Digital Sighal Processing

) Math Functions

I Microprocessors, Contrallers & Petiphetals
) ProfoType & Development Hardware Products
) Standard Bus Interfaces

) Storage Elemnents & Mermories

Set current Project to DXSEUSEexamplesifreqm ‘

LSRR N 4

Creating a CORE Component

This section contains a very brief overview of the CORE Generator
tool. You can access detailed documentation and CORE Generator
support websites from the CORE Generator Hel p menu.

The initial Xilinx CORE Generator window allows selection of the
available COREs. The COREs are categorized on the left side of the
window. The specific COREs are selected in the “Contents of” section
of the window as shown in the following figure.

Foundation Series ISE User Guide 3.1i 9-3

Foundation Series ISE User Guide 3.1i

9-4

B xilinx CORE Generator 3.1
File Project Core Help

=loix]

0 @| Current Project: [D:NSEVSEsxamplesireqm <] |Wﬁf

Wiew Catalog: |by Function -

Target Family, Wy vitex

Contents oft Math Functions = Accumulators

| Basic Elements
) Communication & Metworking
) Digital Signal Processing
) Math Functions
e Accumulatars
I Adders & Subtracters
) Comparatars
[Complementers
| Dividers
1 Integratar
1 Multipliers
] Sine-Cogine Look-Up Table
] Bquare Root
1 Micraprocessors, Cantrallers & Peripherals
) ProtoType & Development Hardware Products
] Standard Bus Interfaces
| Storage Elements & Memories

Mame

Scale by half Accumulator

| Time || version |4K|%| N |FR|NE| vendor
+

ool
HAICTFE 1.0

+
LA Hilin, Ine.

Set current Project to DASEVSEexamplesiredm

LSRN N

You can select Pr oj ect — Proj ect Options from the CORE
Generator menu to access the project setup options. However, if you
accessed the CORE Generator from a Foundation Series ISE project,
the Project Options are automatically set to the appropriate values for
the project. You do not need to set them manually—except for the
new component name entered in the New source dialog box in the
Project Navigator.

Project Options
Target Archi 3
’VFam\Iy' \irtes =
~Design Entry
 Schematic | ¢ Exemplar
+ yHDOL = Foundation
 Verilog & Foundation iSE

© Synopsys
© Synplicity
 Other
I EtlistBus Form=n [Bsl= 2

Active Bus Format |B=l=

cancel |

Xilinx Development System

CORE Generator

You select a CORE by double-clicking on its name in the “Contents
of” section of the CORE Generator window. This opens a new
window where you can customize the CORE for your use, view its
data sheet, and get other information concerning the CORE. The
items that can be customized for a particular CORE depend on what
the CORE is. The following figure shows the CORE Generator
window that appears when you select the accumulator CORE for a
Virtex project from the initial screen.

Note The Component Name field is blank on the CORE Generator
customization screens.The name entered in the Foundation Series ISE
Project Navigator New source window is not passed to the CORE
Generator tool.

Foundation Series ISE User Guide 3.1i 9-5

Foundation Series ISE User Guide 3.1i

9-6

You must manually enter a name in the Component Name field.
CORE component names have the following requirements:

e The name must begin with an alpha character.
* No extensions or uppercase letters are allowed.

» After the first character, the name may include numbers and/or
the underscore character.

Click the Data Sheet button to view detailed information on the
CORE. You must have the Adobe Acrobat Reader installed on your
PC to view the data sheet.

After you customize the CORE for your needs, you need to generate
the new CORE (click the Gener at e button). After the CORE has
been successfully generated, the new CORE and its related files are
placed in the project directory. When finished, close the CORE Gener-
ator windows.

The customized CORE component is a collection of several files
including those listed below. The files are located in your Foundation
Series ISE project directory.

component_name.coe ASCII data file defining the coeffi-
cient values for FIR filters and
initialization values for memory
modules

component_name.xco CORE Generator file containing the
parameters used to generate the
customized CORE

component_name.edn EDIF implementation netlist for the
CORE

component_name.veo Verilog template file

component_name.vho VHDL template file

component_name.mif Memory Initialization Module for

Virtex Block RAM modules

The component name is the name given to the CORE in the customi-
zation window. The port names are the names provided in the
template (.veo or .vho) files.

Xilinx Development System

CORE Generator

Using COREs in Foundation Series ISE Projects

If you initiated the CORE Generator tool from the Project Navigator
New source window, the new CORE and its related files are placed in
the current Foundation Series ISE project directory. The related files
include schematic, VHDL, and Verilog templates that can be used in
your project. The CORE is added to the project as a user document
and appears in the Source window (new_corel.xco in the following

figure).

|)® Xilinx - Project Havigator - D:\SEMSE examplesifreqmifregm.npl
File Edit “iew Project Source Process Macro Window Help

=0l x|

PR e N e N P A e |

2l
Sources in Project: |;|
= ‘£ VB0 BG2GEE - FPGA Express WHOL
= @ freqm [fregm.sch)
; @ freqm_th.vhd
@ cnt_bed [bed_cnt.vhd)
------ @ control [control vhd] ﬂ
.T:Module Wiew l_. File: Wiew I tl Snapshat... I . Library .. I
2l
Processes for Curent Source: |
[Mao Processes Available)

B Process Wiew I

ZJI iSE Auto-Make Log File

Launching: 'D:yiSE\binintixilperl.exe _

coreed.pl!

4
I4l4| b Bl Consolef Findin Files /.

Faor Help, press F1

Editing COREs

If you want to edit a CORE in a Foundation Series ISE project,
double-click on its name in the Source window. This opens the CORE
Generator’s customization window for that CORE. When you regen-
erate it, the files related to that CORE are updated. The following five
file types are related to COREs: .sym, .veo, .vho, .xco, .edn.

Foundation Series ISE User Guide 3.1i

9-7

Foundation Series ISE User Guide 3.1i

Using COREs in Schematic Sources

The CORE Generator automatically creates a schematic symbol for
any CORE component. When you create a CORE in a Foundation
Series ISE project, its schematic symbol is automatically added to the
ECS Schematic Editor’s local symbol library for use in schematic
designs for that project.

Use the following procedure from your Foundation Series ISE project
to select a CORE for use in a schematic in that project.

1. Open the ECS Schematic Editor either by double-clicking on an
existing schematic source in the Source window. Or, select
Proj ect — New sour ce and then Schemat i c to create a new
schematic source.

2. When the Schematic Editor is open, select Add - Synbol from
the Schematic Editor menu.

3. Then select the desired CORE from the Local Symbol library for
placement on the open schematic. An example (new_corel) is
shown in the following figure.

#H Symbol Libraries x|

Libraries/Directories

[l Symbolz) -
[Local Symbolz)

[r:MISE hwirteshdatahsymbol\drithmetic. b

[:4ISE Swirteshdataheymbol\B uffer. lib

[:MISE hwirteshdatahsymbol\Cary_Logic. b

[:MISE Swirteshdatahsymbol\Comparator. ib

[r:MISE Swirteshdatahspmbol\Counter. lib

[:MISE hwirteshdatahsymbol\Decoder. ib

[:MISE hwirteshdatahsymbol\Drawing_sheet. lib
[:MISESwirteshdatabspmbolsFlip_Flop.lib

[r:MISE SwirteshdatahspmboliGeneral lib LI

Sumbols

cht_bed
control
hex2led

new_cor&‘l

Symbol Mame Filter

9-8 Xilinx Development System

CORE Generator

Instantiating COREs in an HDL Source

The CORE Generator automatically creates a VHDL template and
Verilog template for each CORE component. When you create a
CORE in a Foundation Series ISE project, the HDL templates are
automatically added to the Language Templates tool. These
templates are then available for instantiation in VHDL or Verilog
sources for the project.

Use the following procedure to access the CORE component HDL
instantiation templates for a project.

1. SelectEdit - Language Tenpl at es from the Project Navi-
gator menu.

2. The Language Template window opens in the HDL Editor work-
space as shown in the following figure.

|.® Xilinx - Project Navigator - D:\SEAISE examples\freqmifreqm_npl -0 5'

File Edt “iew Pmoject Souwce Process Macwo ‘Window Help

FEE I EEEE R R e

g Language Templates

I |)l

Templates:

u Language TI
For Help, press F1 | ‘ n £

3. Clickonthe “+” icon beside COREGEN in the Language Templates
window to access the folders under COREGEN.

Foundation Series ISE User Guide 3.1i 9-9

Foundation Series ISE User Guide 3.1i

For VHDL projects, click on the “+” icon beside VHDL Conpo-
nent I nstantiation folderto display the list of available
VHDL instantiation templates. For Verilog projects, click on the
“+” icon beside Veri | og Conponent Instantiation.

Double click on the desired CORE to display its instantiation
template in the right pane of the Language Templates window.

An example is shown in the following figure.

E Language Templates

el Bm | &

Templates: |

-] ABEL

-] COREGEN Iy

i D YERILOG Component [nstanl
-3 YHDL Comporent Instantiatic

[new_corel

new_coreB

D Yerilog

-] WHOL

< i

—- Thisz file was created by the Xilinx CORE Generator tool, and -
—- is (o) Xilimx, Inc. 1998, 1999, No part of this file may be -
—- transmitted to any third party [other than intended by Xilinx) -
—- or used without a ¥ilin¥ programmable or hardwire dewice without --
—- ¥ilinx®'s prior written permission. -

—- The following code must appear in the VYHDL architecture header:

————————————— Begin Cut here for COMPONENT Declaration ------
component new_corel

port |

B: IN std_logic VECTOR (1% dowmta 0);

0: 00T std_logic_VECTOR(lS dowmto 0);

CLE: IN std_logic:

C_IN: IN std logic):
end component;

COMP_TAG

—- FPGA Express EBElack Eox declaration
attribute fpga_dont_touch: string:
attribute fpga dont touch of your_instance_name: component is "true’;

—-- X3T black box declaration
attribute box_type : string:

attribute bo¥_type of Your_ instance name: cowponent is "black _box™:

COMD ThT R

N [

6. To use the template, cut and paste the template text from the
Language Templates window to a new or open HDL file.

VHDL Instantiation Template Example

Each COREGEN VHDL instantiation template in the Language
Templates tool contains complete instructions on how to instantiate it
in VHDL code. The components are instantiated as black boxes.

Note When the design is synthesized with FPGA Express, a warning
is generated that the CORE module is unexpanded. (Modules instan-

9-10

Xilinx Development System

CORE Generator

tiated as black boxes are not elaborated and optimized. The warning
message is just reflecting the black box instantiation.

The following code is an example of a VHDL instantiation template
for a CORE accumulator component.

-- This file was created by the Xilinx CORE Generator tool, and --
--is (c) Xilinx, Inc. 1998, 1999. No part of this file may be --
-- transmitted to any third party (other than i ntended by Xilinx) --
-- or used without a Xilinx programmabl e or hardw re devi ce w t hout -
-- Xilinx"s prior witten pernission. --

-- The followi ng code nust appear in the VHDL architecture header:

--------- Begin Cut here for COWPONENT Decl aration ------ COW_TAG
conponent new corel

port (

B: IN std_|ogic_VECTOR(15 downto 0);

Q OQUT std_| ogi c_VECTOR(15 downto 0);

CLK: IN std_| ogic;

CIN IN std_logic);
end conponent;

-- FPGA Express Bl ack Box declaration

attribute fpga dont _touch: string;

attribute fpga dont touch of your_instance_nanme: conponent is
"true";

-- XST bl ack box decl arati on

attribute box type : string;
attribute box type of your _instance _nane: conponent is "black box";

-- COW_TAG END ------ End COVMPONENT Decl aration ------------

-- The followi ng code nust appear in the VHDL architecture
-- body. Substitute your own instance name and net nanes.

----------- Begi n Cut here for | NSTANTI ATI ON Tenpl ate ----- | NST_TAG

your _i nstance_nane : new_corel
port nmap (

Foundation Series ISE User Guide 3.1i 9-11

Foundation Series ISE User Guide 3.1i

B => B,
Q=>0Q
CLK => CLK,
CIN=>CIN;

-- INST_TAGEND ------ End | NSTANTI ATI ON Tenpl ate ----==------

-- The followi ng code nust appear above the VHDL configuration
-- declaration. An exanple is given at the end of this file.

------------ Begi n Cut here for LIBRARY Declaration-------- LIB TAG
-- synopsys transl ate off

Li brary XilinxCorelLi b;

-- synopsys translate_on

-- LIB. TAGEND ------- End LI BRARY Declaration ------------

-- The followi ng code nust appear within the VHDL top-I|evel
-- configuration declaration. Ensure that the translate_off/on
-- conpiler directives are correct for your synthesis tool (s).

----------- Begi n Cut here for CONFI GURATI ON sni ppet ------ CONF_TAG
-- synopsys transl ate_ off

for all : new corel use entity XilinxCoreLib.C ACCUM V1 0

(behavi oral) generic map(
c_sinit_val => "0",
c_sync_enable => 0,
c_has_ainit => 0,
c_sync_priority => 1,
c_b type => 1,
c_has_c_out => 0,
c_scale => 0,
c_has_sinit => 0,
c_has c in => 1,
c_has_b_out => 0,
c_ainit_val => "0000",

9-12 Xilinx Development System

CORE Generator

c_b width => 16,
c_add_node => 0,
c_has_sset => 0,
c_bypass_| ow => 0,
c_has_q_ovfl => 0,
c_bypass_enable => 0,
c_has_ovfl => 0,
c_has s => 0,
c_has_aset => 0,
¢c_has_add => 0,
c_has_sclr => 0,
c_has _gq c_out => 0,
C_pi pe_stages => 0,
c_b value => "0",
c_out_width => 16,
c_has_gq b _out => 0,
c_has b in => 0,
c_b constant => 0,
c_has_ce => 0,
c lowbit => 0,
c_has_b_signed => 0,
c_saturate => 0,
c_has_bypass => 0,
c_has_aclr => 0,
c_high bit => 15,
c_enable rlocs => 1);
end for;

-- synopsys translate_on

-- CONF_TAG END ------ End CONFI GURATI ON sni ppet ------------

-- <Insert LIBRARY Declaration here>
-- configuration <cfg ny design> of <ny_design>is

-- for <nmy_arch_nanme>
-- <l nsert CONFI GURATI ON Decl arati on here>

Foundation Series ISE User Guide 3.1i 9-13

Foundation Series ISE User Guide 3.1i

-- end for;
-- end <cfg_ny_design>;

-- If this is not the top-level design then in the next |evel up,
-- the followi ng text should appear at the end of that file:

-- configuration <cfg> of <next_level>is

- - for <arch_nane>

-- for all : <my_design> use configuration <cfg ny_ design>;
-- end for;

-- end for;

-- end <cfg>;

Verilog Instantiation Template Example

Each COREGEN Verilog instantiation template in the Language
Templates tool contains complete instructions on how to instantiate it
in Verilog code. The components are instantiated as black boxes.

Note When the design is synthesized with FPGA Express, a warning
is generated that the CORE module is unexpanded. Modules instanti-
ated as black boxes are not elaborated and optimized. The warning
message is just reflecting the black box instantiation.

The following code is an example of a Verilog instantiation template
for a CORE accumulator component.

/***

* This file was created by the Xilinx CORE Generator tool, and

* is (c) Xilinx, Inc. 1998, 1999. No part of this file nmay be

* transnmitted to any third party (other than i ntended by Xilinx)
* or used without a Xilinx progranmabl e or hardw re device w t hout
* Xilinx's prior witten perm ssion.

ERE R R R R R R R R R R R R R EE R R R EEE R EEEEEERE R R R R R R R R

S~ % ¥ ¥ * ¥

/1 The following |ine nust appear at the top of the file in which
/'l the core instantiation will be nade. Ensure that the

/1 translate_off/_on conpiler directives are correct for your

/'l synthesis tool (s)

R Begi n Cut here for LIBRARY inclusion -------- /1 LI B TAG

9-14 Xilinx Development System

CORE Generator

/'l synopsys transl ate_off
“include "D:\i SE/verilog/ XilinxCorelLib/src/C ACCUM V1 0.v"

/'l synopsys translate_on
/1l LIB. TAGEND ------- End LIBRARY inclusion --------------

/1l The follow ng code nust appear after the nodule in which it
/Il isto beinstantiated. Ensure that the translate _off/_on conpiler
/1 directives are correct for your synthesis tool (s).

N Begin Cut here for MODULE Declaration ------- /1
MOD_TAG
nodul e new core2 (

B,

Q

CLK,

C_IN;

input [15 : 0] B;
output [15 : 0] Q
i nput CLK;

i nput C IN;

/1l synopsys transl ate_ off
C_ACCUM V1_0 #(
0

"0000",
0:

Foundation Series ISE User Guide 3.1i 9-15

Foundation Series ISE User Guide 3.1i

o -

T o

OCO0OO0ORrORrPRO0OO0OO0OO0O0O0OO0O0OOORrOOOO

0"
0,
1)
i nst (
.B(B),
- XQ,
. CLK(CLK)
.CINC.IN);
/1 synopsys transl ate_on
endnodul e
/1 MOD_TAG END ------- End MODULE Declaration -------------

/1 The follow ng nmust be inserted into your Verilog file for this
/1 core to be instantiated. Change the instance nane and port
/1l connections (in parentheses) to your own signal nanes.

[--eeeeem- Begi n Cut here for | NSTANTI ATI ON Tenpl ate ---// | NST_TAG
new _core2 Yourl nstanceNane (

. B(B),

- AQ,

. CLK(CLK)

.CINCIN));

9-16 Xilinx Development System

CORE Generator

11
11
11
11
11
11

11

FPGA Express bl ack box declaration

synopsys attribute fpga_dont _touch "true"

synthesis attribute fpga _dont _touch of YourlnstanceNane is"true"
XST bl ack box decl aration

box_type "bl ack_box"

synthesis attribute box_type of YourlnstanceNane is "black box"

I NST_TAG END ------ End | NSTANTI ATI ON Tenpl ate ---------

Simulation and Synthesis of CORE Modules

Refer to the CORE Generator Guide accessed from the CORE Gener-
ator Hel p -~ Onl i ne Document at i on for detailed information on
simulation and synthesis of CORE modules. Refer to the “Simulating
COREs in a Schematic” section for ISE project specific information on
simulating schematics that include CORE modules.

Simulating COREs in a Schematic

In order to perform functional simulation on schematics containing
CORE Generator macros in a Foundation Series ISE project, you must
first make some modifications to the testbench for VHDL simulation
or to the symbol itself for Verilog simulation. The procedures to do
this are described in the following sections.

VHDL Simulation

CORE Generator VHDL simulation models are linked to the design
using configuration statements. When a CORE is created, an instanti-
ation template, core_name.vho, is generated in the project directory
that includes the majority of the configuration information.

In a schematic design containing a CORE Generator created macro,
you must add a hierarchical configuration statement to the bottom of
the testbench that provides the stimulus for the schematic. Following
is the template for the configuration information to add to the bottom
of the testbench:

CONFI GURATI ON cfg nanme OF testbench_entity IS

FOR testbench_arch
for all : instantiated conp use entity

Foundation Series ISE User Guide 3.1i 9-17

Foundation Series ISE User Guide 3.1i

wor k. entity(architecture);

for architecture
for all : core_nane use entity

Xi I'i nxCor eLi b. C DECODE_BI NARY_V1_0(behavi or al)

<<configuration information
provided in the CORE instantiation tenplate
core_nane. vho>>
end for;
end for;
end for;
END FOR;

END TOP cfg;

Verilog Simulation

CORE Generator Verilog simulation models are linked to the design
using “include” statements. When a CORE is created, an instantiation
template, core_name.veo, is generated in the project directory that
contains the necessary information. For successful simulation in ISE
projects, this information must be included in the CORE Generator
symbol.

For schematic designs in Foundation Series ISE projects that contain
CORE Generator created macros, you must use the following proce-
dure to incorporate the necessary information in the CORE Generator
symbol before using the symbol in a schematic:

1.

2
3.
4

9-18

Rename the core_name.veo file to core_nane. v.
Add the core_name.v file to the project.
In the Source window, click on the cor e_nane. v file.

Double click Creat e Schemati c Symnbol inthe Process
window.

When asked if you should overwrite the existing symbol, click
Yes.

Add the symbol to the schematic.

Xilinx Development System

Chapter 10

HDL Library Mapping

Foundation Series ISE includes an HDL library mapping feature that
provides a method to include HDL files as part of a library. This
chapter contains the following sections.

* “Design Sources and Libraries”

* “Project Navigator Source Libraries”
e “Named VHDL Libraries”

e “Moving Files to a Library”

* “Removing Files from a Library”

Design Sources and Libraries

VHDL

Libraries allow sharing of design elements between sources in a
design and between designs. This makes designs easier to manage
and allows for design reuse. The HDL library mapping feature
provides a method for you to tell the Project Navigator which files are
library files, and depending on the language, what named library
they are part of. This information is passed to the various tools that
need it, such as synthesis tools and simulators.

VHDL requires all design sources to be in a library. VHDL also allows
for named libraries that can contain one or more files. VHDL design

units can access other design units in the same and different libraries
by declaring the name of the library and design unit to make visible.

For example, take an entity called “foo” that wants to access a func-
tion called “foofunc” that is declared in a package named “foopack”
that is in a library named “foolib”. The following declaration for

Foundation Series ISE 3.1i User Guide — Online 10-1

Foundation Series ISE 3.1i User Guide

“foo” would allow it to access anything that is declared in the
package “foopack”.

library foolib,;
use foolib. foopack.all;
entity foo is

end entity;

In all VHDL tools there is a compile order dependency between
libraries. Libraries must be created and compiled before design units
that use them can be compiled. In the above example, the library

“foolib” must be created and the package "foopack"” compiled into it
before the entity "foo" can be compiled.

Currently you must compile the libraries manually for simulation
and synthesis.

Verilog

Verilog does not support named libraries. All modules are global and
are visible to all other modules. However, most Verilog tools support
the idea of a library as either a directory of files that each contain a
single module, or single files that contain many modules. In either
case, when a tool is compiling the design and encounters a module
instantiation that isn't resolved in the set of input files, it will look in
the specified library files and/or in the library directories to find the
module definition.

There is a distinction between design files that are part of a project
and library files. Design files are always compiled completely by the
simulator or synthesis tool. Libraries are only compiled as they are
needed, and then only the required module is compiled. For example,
if the synthesis tool needs a module called "foomod" from a library
file that contains many modules, it will only compile and use
"foomod" and ignore the rest of the modules.

10-2 Xilinx Development System

HDL Library Mapping

Project Navigator Source Libraries

In Foundation Series ISE, the default library where the current design
sources are placed is called "work." Depending on the synthesis tool
for the project, a VHDL and/or Verilog library is also provided. The
libraries and elements included in them are listed in the Library View
of the Source window. An example Library View is shown in the
following figure.

Sources in Project: |

bed_cnt.vhd
freqrm.zch
~[2] contralvhd

0y vhd
ATy verilog

B2 vocie .. |] File view | |0 Snapshot... | E] Lirary... I_

The “work” library contains all of the design sources in the project. It
corresponds to the sources in the Module View. This library cannot be
deleted. Files in the work directory cannot be in other libraries at the
same time. When you use the New Source, Add Source, or Add Copy
of Source options in the Project menu, the files created or added
through these options appear in the “work” library but can be moved
to other libraries (see the “Moving Files to a Library” section).

If you are using FPGA Express, XST VHDL, or ABEL XST, the “vhdl”
library is included in the Library View. The VHDL library cannot be
deleted. The VHDL library contains named VHDL libraries. You can
create named libraries within the VHDL library as described in the
“Named VHDL Libraries” section and add any number of files to
those libraries.

If you are using FPGA Express or XST Verilog, the “verilog” library is
included in the Library View. The Verilog library contains Verilog
files. This library cannot be deleted.

The Add, Add Copy, removing files from this library is the same as
adding or removing them from the project.

Foundation Series ISE 3.1i User Guide 10-3

Foundation Series ISE 3.1i User Guide

Named VHDL Libraries

A file cannot be added directly to the “vhdl” library displayed in the
Library View. You must first create a named directory to hold the file.
Use the following procedure to create named VHDL directories.

1. Open or create your project (see the “Creating a Project” chapter).

2. Select Proj ect - New Sour ce from the Project Navigator to
access the New source window.

3. Selectvhdl Li brary from the list of available source types
displayed in the New source window. The VVhdl Library selection
is only available with projects that use the XST VHDL, ABEL XST,
or FPGA Express synthesis tools.

Uszer Docurment
Schematic
WHOL Madule
Werilog Module ! .
VHDL Package Aol
WHDL Test Bench INew1|
Yerilog Test Fisture

State Diagram .
Coregen IP Logation:

e [e Id:'\ise\iseexamples'\heqm . |

v Add ta project

< Back I Mest » I Cancel |

4. Enter a name for the new Vhdl library in the File Name box.
5. Click Next .

6. Click Fi ni sh in the New Source Information window to
proceed.

10-4 Xilinx Development System

HDL Library Mapping

o

T
?

7. Select the Library View tab on the Source window. As shown in
the following figure, the newly created VHDL library appears
under “vhdl.”

hexZled. vhd
] bcd_cnt.whd
fregm.ach
cottral whd

8. To add afile to the library, the file must be first added to the
project and then moved (see the “Moving Files to a Library”
section) from the Work directory to the desired library.

Foundation Series ISE 3.1i User Guide 10-5

Foundation Series ISE 3.1i User Guide

Renaming VHDL Libraries

Use the following procedure to rename a VHDL library.

1. Inthe Library View of the Source window, click on the name of
the VHDL library you want to rename.

2. Select Sour ce —» Renane from the Project Navigator menu.

3. Modify the library name as desired.

Removing VHDL Libraries
Use the following procedure to remove a VHDL library.

1. Inthe Library View of the Source window, click on the name of
the VHDL library you want to remove.

2. Select Sour ce - Renpve from the Project Navigator menu.

3. A message box appears to remind you that removing a library
may cause the implementation data to be out of sync. Click Yes
to remove the library and all of its files from the project. (The
library is deleted. Its files are not deleted, just removed from the
project.)

Yes or No? x|

may cauze your implementation data to be out of syne, To fix thiz,
chooze 'Delete Implementation Data' from the Project menu after you
remove the library.

Continue operation?

@ Remaoving thiz library and the files it containg from the project

4. SelectProject - Delete Inplenmentation Dat a after you
remove the library.

Note After a library has been deleted there is no way to bring it back
except to recreate it.

10-6 Xilinx Development System

HDL Library Mapping

Moving Files to a Library

Files that have been added to the project can be moved from one
library to another. A file may not be moved to a library that does not
support its file type. For example, you cannot move a Verilog file to a
VHDL library. Any file may be moved to the “work” library.

Use the following procedure to move files between libraries.

1. Inthe Library View tab, click on the name of the file you want to
move.

2. Select Source - Move to Library.

3. Select the library from the Choose Library dialog box and then
click OK.

Choose Library |

tove file bed_cntwhd to which libran?

work.
R

Cancel |

The selected file is moved to the chosen library. The Library View
reflects the move.

Removing Files from a Library

When you click on a file name in any library in the Library View and
then select Sour ce - Renove, the file is removed from the library
and the project. The file is not deleted.

Foundation Series ISE 3.1i User Guide 10-7

Foundation Series ISE 3.1i User Guide

10-8 Xilinx Development System

Chapter 11

Design Constraints/UCF File

You can enter constraints to control the synthesis and implementation
of your design. This chapter gives an overview of the various ways
you can enter constraints on your design. It also provides information
on the User Constraints File (UCF) and the types of constraints that
can be entered in it. This chapter contains the following sections.

e “Setting Synthesis Constraints”

o “Setting Implementation Constraints”
e “Constraints Processing Overview”

e “Constraints File Overview”

e “ISE User Constraints File (UCF)”

* “The Xilinx Constraints Editor”

e “Timing Constraints”

e ‘“Layout Constraints”

« “Efficient Use of Timespecs and Layout Constraints”
« “Standard Block Delay Symbols”

e “Table of Supported Constraints”

e “Basic UCF Syntax Examples”

Setting Synthesis Constraints

Before you start synthesis to optimize your design for the targeted
device, you can optionally set performance constraints, attributes,
and optimization controls. Entering your design requirements as

constraints can improve the placement and routing results of your
design. You can control the synthesizing of your design by setting

Foundation Series ISE 3.1i User Guide — Online 11-1

Foundation Series ISE 3.1i User Guide

11-2

process properties in the Project Navigator or in the User Constraints
File. Each synthesis tool also has additional methods for entering
synthesis constraints.

XST Constraints

For projects that use the XST synthesis tool, you can set synthesis
constraints in the following ways:

Using the Project Navigator’s Synthesis process properties
described in the “Setting XST Synthesis Options” section of the
“Synthesis” chapter.

Entering XST-specific constraints and attributes directly into the
HDL code. Refer the XST User Guide for information on XST-
specific constraints.

Entering constraints in a UCF file. XST cannot apply certain
constraints from the UCF file. Constraints that cannot be applied
are passed through to the implementation tools for processing.
Refer to the XST User Guide for information on XST and UCF
constraints.

Using the Xilinx Constraints Editor to automate entry of
constraints in the UCF file. Refer to the Xilinx Constraints Editor
Guide for detailed information on using the Constraints Editor.

Entering constraints in the XST constraints file. Refer to the XST
User Guide for detailed information on the XST constraints file.

FPGA Express Constraints

For projects that use FPGA Express as the synthesis tool, you can set
synthesis constraints in the following ways:

Using the Project Navigator’s Synthesis process properties
described in the “Setting FPGA Express Synthesis Options”
section of the “Synthesis” chapter.

Using the Express Constraints Editor. There is an overview of the
Express Constraints Editor in the “Detailed Information on XST”
section of the “Synthesis” chapter. For detailed information on
the Express Constraints Editor refer to the FPGA Express online
help.

Xilinx Development System

Design Constraints/UCF File

Entering constraints in a UCF file. FPGA Express cannot apply
certain constraints from the UCF file. Constraints that cannot be
applied are passed through to the implementation tools for
processing. Refer to the XSI Guide for information on FPGA
Express and UCF constraints.

Using the Xilinx Constraints Editor to automate entry of
constraints in the UCF file. Refer to the Xilinx Constraints Editor
Guide for detailed information on using the Constraints Editor.

Setting Implementation Constraints

You can set multiple properties to control the implementation
processes for the design. For FPGAs, the implementation process
properties specify how a design is translated, mapped, placed, and
routed. You can set multiple properties to control the implementation
processes for the design. For CPLDs, they control how a design is
translated and fit.

You set implementation constraints in the following ways.

Using the Project Navigator’s implementation Process Properties
described in the “FPGA Implementation Options” section of the

“Implementing the Design” chapter and the “CPLD Implementa-
tion Options” section of the “Implementing the Design” chapter.

Entering constraints in a UCF file as described in the “ISE User
Constraints File (UCF)” section.

Using the Xilinx Constraints Editor to automate entry of
constraints in the UCF file. Refer to the Xilinx Constraints Editor
Guide for detailed information on using the Constraints Editor.

Entering attributes directly on a schematic. Refer to the ECS Sche-
matic Editor online help for detailed information on this option.

Entering constraints directly in HDL design code. Refer to the
XST User Guide and XSI Guide for detailed information on this
method.

You can also enter design constraints in the Floorplanner. Refer to
the Floorplanner Guide for details.

Foundation Series ISE 3.1i User Guide 11-3

Foundation Series ISE 3.1i User Guide

Constraints Processing Overview

11-4

You control the synthesis and/or implementation of a design by
entering constraints. There are two basic types of constraints that you
can apply to a design: location constraints and timing constraints.

Location constraints control the mapping and positioning of the logic
elements in the target device. The most common location constraints
are pad constraints. They are used to lock the pins of the design to
specific 1/0 locations so that the pin placement is consistent from
revision to revision.

Timing constraints tell the software which paths are critical, and
therefore, need closer placement and faster routing. Conversely,
timing constraints also tell the software which paths are not critical
and, therefore, do not need closer placement or faster routing. Both
the placer and the router can be timing constraint driven.

For a complete listing of all supported constraints, refer to the
Libraries Guide (Chapter 12, “Attributes, Constraints, and Carry
Logic,”). For a more complete discussion of how timing constraints
work in Foundation, refer to the Development System Reference Guide
(“Using Timing Constraints,”). For information on all attributes,
including timing constraints, used in CPLD designs, refer to the
Foundation Series ISE online help.

Constraint Entry Mechanisms

With the Xilinx implementation tools, you control the implementa-
tion of a design by defining constraints that affect the mapping and
layout of the physical circuit. Additionally, you can specify the
“path” timing requirements of the circuit to obtain the best results
and allow the implementation tools to choose the layout which best
satisfies these requirements.

The various design constraints available within ISE can be entered at
the time you create the design (i.e., the logical domain) or after the
design is mapped (that is, the physical domain).

Constraints entered in the logical domain are created in the following
ways

+ Entered into the schematic

Xilinx Development System

Design Constraints/UCF File

« Applied to a synthesis process and then forward-annotated
through a netlist constraints file (NCF)

e Created with the Constraints Editor (see “Case Sensitivity”
section)

Constraints entered in the physical domain are entered directly into
the Physical Constraints File (PCF). These constraints are conceptu-
ally the same as those entered during design creation; however, they
are directly related to objects within the physical design database and
are therefore applied using the PCF syntax.

The following figure illustrates the constraints entry approach for the
Xilinx implementation tools.

Schematic Entry
or HDL Tool

Entry Tool

Netlist

User
Constraints File

NGDBuild

Constraints Editor

Physical
Constraints
File

To Physical Implementation Tools
X8085

Figure 11-1 Constraint Entry Flow

Foundation Series ISE 3.1i User Guide 11-5

Foundation Series ISE 3.1i User Guide

Translating and Merging Logical Designs

The process of implementing a design starts with a logical design file
(NGD) that represents the design created by the Translate process
(NGDBuild) as shown in the Figure 11-1.

The NGD file contains all of the design’s logic structures (gates) and

constraints. The NGD file is produced through the NGDBuild process
which controls the translation and merging of all of the related logic

design files.

All design files are translated from industry standard netlists into
intermediate NGO files by a netlist translation program EDIF2NGD.
The exception to this rule is logic, which is created through the use of
LogiBLOX components. LogiBLOX components may be compiled
directly in memory, and are, therefore never written to disk as a sepa-
rate intermediate NGO file.

Constraints File Overview

11-6

The following subsections describe the Netlist Constraints File, User
Constraints File, and the Physical Constraints File.

Netlist Constraints File (NCF)

The Netlist Constraints File (NCF) is an ASCII file generated by the
synthesis program. It contains the logical constraints entered in the
design.

User Constraints File (UCF)

The User Constraint File was developed to provide a convenient
mechanism for constraining a logical design without returning to the
design entry tools. UCF constraints intentionally overwrite
constraints that are present in the netlist.

UCF constraints override any constraints contained within the netlist
created by the schematic or synthesis tools. A constraint that is being
applied via the UCF file must specify the complete hierarchical path
name for the instance or net being constrained.

UCF constraints are considered more significant because they appear
later in the design flow and provide a mechanism for establishing or

Xilinx Development System

Design Constraints/UCF File

modifying logical design constraints without requiring you to re-
enter a schematic or synthesis tool.

The process of building the complete logical design representation
(NGD files) is the job of NGDBuild. In developing this complete
design database, NGDBuild annotates design constraints with those
it finds in a UCF file. If a UCF file exists with the same name as the
top-level netlist then it will automatically be read. Otherwise, you
must indicate a specific file for User Constraints in the Options dialog
box. The syntax for the UCF constraints file is explained (on a per-
constraint basis) in the “Timing Constraints” section.

Physical Constraints File (PCF)

(FPGA only) The layout tools work on the physical design, so the
PCF file is written in terms that these tools can readily interpret.
Layout and timing constraints are written in terms of the physical
design’s components (COMPs), fractions of COMPs (BELSs), and
collections of COMPs (macros).

Because of this different design viewpoint, the PCF syntax is not
necessarily the same as that used in the logical design constraint files
(UCF/NCF). Furthermore, because the PCF file is written for the
physical design implementation tools, its syntax may not be as intui-
tive as the UCF file. Regardless of the syntactical challenges associ-
ated with using a PCF file, many designers will choose to work at the
physical level of design abstraction for the following reasons.

« Itisreadily modified and immediately applicable to the present
task —implementing an FPGA (that is, there is no need to re-run
NGDBuild or MAP in order to run layout or analysis tools).

« The implications of logical design structures on the physical
design’s implementation only become obvious once the design is
evaluated using the physical tools. Altering the PCF file for
“what-if” analysis can be desirable.

e Certain constraints are only available within the PCF file.

Note If you modify the PCF file, you should be certain that you enter
your constraints after the line “SCHEMATIC END ;”. Otherwise,
your constraints will be overwritten every time MAP is re-executed.

Foundation Series ISE 3.1i User Guide 11-7

Foundation Series ISE 3.1i User Guide

Case Sensitivity

Since EDIF is a case-sensitive format, the Foundation constraints are
case sensitive as well. Always specify the net names and instance
names exactly as they are in your schematic or code. Be consistent
when using TNMs and other user-defined names in your constraints
file; always use the same case throughout. For site names (such as
“CLB_R2C8” or “P2”), you should use only upper case letters, since
site names within Xilinx devices are all upper case.

ISE User Constraints File (UCF)

11-8

The user constraints file (.ucf) is an ASCII file that holds timing and
location constraints. It is read by NGDBuild during the translate
process and is combined with an EDIF netlist into an NGD file (see
the “Implementing the Design” chapter). By default, each ISE project
has a UCF file with the same name as the top-level netlist. The default
UCF file is created automatically when the project is created.

You can access the UCF file for a project by double-clicking on Edi t
UCF Fi | e in the Process section of the Process window. The UCF file
is opened in Notepad (or your usual text editor). Or, you can click
Constrai nts Editor toaccessaGUIto automate constraint entry
into the UCF file. You can change the UCF file to use for the project
using implementation Process Properties (see “FPGA Implementa-
tion Options” section or the “CPLD Implementation Options” section
of the “Implementing the Design” chapter for details).

Note Whenever you modify a UCF file, you must rerun the imple-
mentation processes for the changes to be reflected. A Notice dialog
box appears when you save the file. You can choose to Reset the
implementation processing or Retain the current implementation
results.

Two examples are included here to introduce you to UCF files.

Xilinx Development System

Design Constraints/UCF File

The following example shows how to lock 1/0s to pin locations and
how to write Timespec and Timegroup constraints in the UCF.

Note You can also lock pin locations within the Project Navigator by
selecting the Backannotate Pin Locs (FPGAS) or Lock Pin (CPLDs)
process. See the “FPGA Implementation Flow” section of the “Imple-
menting the Design” chapter for details.

FRED |~ TED |~_ NED
- > > -
IPAD IBUF OBUF OPAD
Hierarchy Block
JIM[7:0] M~ JACK([7:0]
LOU[7:0
> > (7:0]
IPADE IBUF8
LOU[7:0] IT[7:0]
IBUF8 OPADS8
Schematic of Hierarchy Block X8076

Figure 11-2 Locking I/Os to Pin Locations

This is a UCF coment

The constraints below lock the I1/O signals to
pads.

The net nanme that connects to the pad is used to
constrain the I/0O

The pin grid array packages use pin nanes |ike
B3 or
T1, instead of P<Pin Number>.

Foundation Series ISE 3.1i User Guide 11-9

Foundation Series ISE 3.1i User Guide

11-10

Lock the input pins

NET
NET
NET
NET
NET
NET
NET
NET
NET

FRED LOC = P18;

JI k0> LCC = P20;
JI 1> LOC = P23;
JI k2> LOC = P24,
JI k3> LOC = P25;
JI 4> LOC = P26;
JI k5> LOC = P27,
JI k6> LOC = P28;
JI 7> LOC = P38;

Lock the output pins

NET
NET
NET
NET
NET
NET
NET
NET
NET

NED LOC = P19;

H ERARCHY_BLOCK/ <I TO>
H ERARCHY_BLOCK/ <I T1>
H ERARCHY_BLOCK/ <I T2>
H ERARCHY_BLOCK/ <I T3>
H ERARCHY_BLOCK/ <I T4>
H ERARCHY_BLOCK/ <I T5>
H ERARCHY_BLOCK/ <I T6>
H ERARCHY_BLOCK/ <I T7>

LCC
LCC
LCC
LCC
LCC
LCC
LCC
LCC

P44
P45
P46
P47
P48
P49
P50
P462

For more information on constraint precedence, refer to the “Using
Timing Constraints” chapter in the Development System Reference

Guide.

Xilinx Development System

Design Constraints/UCF File

The following example shows how to specify timing constraints.

MAY TOM TIM JIM JOE
— > D 0 D Q > <
IPAD IBUF OBUF OPAD
C C
CLK_PD ~_ CLK
> >
IPAD BUFG
SYNCHRONOUS
IFD RAM OFD
JEN BOB VAL AL
> D Q D Q D QfF—<]
IPAD * . OPAD
c A[3:0] c
* WE
C
CLK2_PD N CLK2_I ~_ CLK2
L > | > | >
IPAD IBUF BUFG
* Nets not used in timing constraints. X8075

Figure 11-3 Specifying Timing Constraints
---User Constraint File (UCF):

This is a coment

Period specifies mninumPERI OD of CLK net. Ofset specifies that
data on MAY can arrive up to 6 ns before the clock edge arrives
on CLK

NOTE: Period constraints do not apply to elenents in input or
out put pads.

Foundation Series ISE 3.1i User Guide 11-11

Foundation Series ISE 3.1i User Guide

NET CLK PERI GD
NET MAY OFFSET

20 ns ;
IN 6ns before CLK PD ;

Groups all clocked |oads of CLK2 into CLK2_ LOADS ti negroup
Groups all clocked |oads of VAL into VAL _LQADS
timegroup TNM # => Ti negroup NaMe

NET CLK2 TNM=CLK2_LOADS ;
NET VAL TNMEVAL_LOAD ;

Specifies worst case speed of path from IPAD to CLK2 # | oads.
I ncl udes

pad, buffer, and net delays. TSOl is a Tinespec identifier; it can
have nanes of the form TS<string> PADS (CLK2 _PD) is a Ti negroup
name

specified inside of a Tinespec.

TI MESPEC TS01=FROM PADS (CLK2_PD) TO CLK2_LOADS=15ns ;
Specifies the maxi rum frequency for all |oads clocked by CLK2.
TI MESPEC TS02=FROM CLK2_LOADS TO CLK2_LOADS=30Mz;

Specifies the mininumdelay on the path from Synchronous RAM to
OFD.
I ncludes cl ock-to-out delay, net delay, and setup tine.

TI MESPEC TS03=FROM CLK2_LOADS TO VAL_LOAD=15000ps ;

The Xilinx Constraints Editor

The Xilinx Constraints Editor is a Graphical User Interface (GUI) that
provides a convenient way for you to create certain new constraints.
Constraints created with the Constraints Editor are written to the
UCF (User Constraints File). See the “Constraints File Overview”
section.

For more information on the Constraints Editor, see the Constraints
Editor Guide, an online book.

11-12 Xilinx Development System

Design Constraints/UCF File

Timing Constraints

The following subsections discuss timing constraints. Many timing
constraints can be created using the Constraints Editor. If a constraint
can be created with the Constraints Editor, it will be noted in the
sections that follow.

The “From:To” Style Timespec

When using the From:To style of constraint, the path(s) that are
constrained are specified by declaring the start point and end point,
which must be a pad, flip-flop, latch, RAM, or user-specified sync
point (see TPSYNC). To group a set of endpoints together, you may
attach a TNM attribute to the object (or to a net that is an input to the
object). With a macro, the TNM traverses the hierarchy to tag all rele-
vant objects. A TIMEGRP is a method for combining two or more sets
of TNMs or other TIMEGRPS together, or alternatively, to create a
new group by pattern matching (grouping a set of objects that all
have output nets that begin with a given string)

You can create a From:To timespec with the Constraints Editor.

You use TNMs to identify a group of design objects which are to be
referenced within a Timespec. If a TNM is placed on a net, the Foun-
dation tools determine TNM membership by tracing forward from
the specified net to all the valid endpoints of the net. Refer to the
Development System Reference Guide (“Using Timing Constraints”) for
more information on this subject. The following schematic shows an
example of TNM, TIMESPEC, and TIMEGRP statements.

Foundation Series ISE 3.1i User Guide 11-13

Foundation Series ISE 3.1i User Guide

D BUSO D D . 5 Q&
EN
D
D BUS1 D
N 5 ol <2
o= D "
D

B4 E DATA_EN
TNM=PIPEA

TIMESPEC TIMESPEC
BUSPADS=PADS(BUS*) TS01=FROM:BUSPADS:TO:PIPEA:20
TS02=FROM FFS TO RAMS 15

X8572
The following file corresponds to the preceding figure.

This is a comment |ine
UCF FROM TO styl e Ti nespecs

NET DATA_EN TNM = PI PEA ;
TI MEGRP BUSPADS = PADS(BUS*) ;
TI MESPEC TS01 = FROM BUSPADS: TO. Pl PEA: 20 ;

Spaces or colons (:) may be used as field
separators

TI MESPEC TS02 = FROM FFS TO RAMS 15

The first line of the above example illustrates the application of the
TNM (Timing Name) PIPEA to the net named DATA_EN. The second
line illustrates the TIMEGRP design object formed using a pattern
matching mechanism in conjunction with the predefined TIMEGRP
“PADS”. In this example, the TIMEGRP named BUSPADS will
include only those PADs with names that start with BUS.

11-14 Xilinx Development System

Design Constraints/UCF File

Each of the user-defined Timegroups is then used to define the object
space constrained by the timing specification (Timespec) named
TS01. This timing specification states that all paths from each member
of the BUSPADS group to each member of the PIPEA group need to
have a path delay that does not exceed 20 nanoseconds (ns are the
default units for time). The TIMESPEC TS02 constraint illustrates a
similar type of timing constraint using the predefined groups FFS
and RAMS.

Note All From:To Timespecs must be relative to a Timegroup. The
above example illustrates that you can define Timegroups either
explicitly (TIMEGRPS) or implicitly (TNMs), or they may be
predefined groups (PADS, LATCHES, FFS, RAMS).

There is an additional keyword that you can add to the From:To spec-
ification that allows the user to narrow the set of paths that are
covered—THRU. By using the From:Thru:To form of a Timespec, you
are able to constrain only those paths that go through a certain set of
nets, defined by the TPTHRU keyword, as shown in the following
example.

UCF exanpl e of FROM TO Ti nespec using THRU

NET $116/thi snet TPTHRU=t hese ;
NET $11 6/t hat net TPTHRU=t hese ;

TI MEGRP sf| ops=FFS(DATA*)
TI MEGRP df | ops=FFS(OUTREG') ;

Tl MESPEC TS23=FROM sf | ops: THRU: t hese: TO df | ops: 20

Here, only those paths that go from the Q pin of the sflops through the
nets $11 6/ t hi snet and $11 6/ t hat net and on to the D pin of
dflops will be controlled by TS23.

Using TPSYNC

(FPGA only.) You can define any node as a source or destination for a
Timespec with the TPSYNC keyword. The use of TPSYNC is similar
to TPTHRU—it is a label that is attached to a set of nets, pins, or
instances in the design.

Foundation Series ISE 3.1i User Guide 11-15

Foundation Series ISE 3.1i User Guide

For example, suppose a design has a PAD ENABLE_BUS that must
arrive at the enable pin of several different 3-state buffers in less than
a specified time. You can define that 3-state buffer as an endpoint for
a timing spec. The following figure illustrates TPSYNC.

BUSO N,
= L2 D
ENABLE_BUS N_ TPSYNC=BUS3
— [> |~ BUSSSTATE
D Q
— B3 l|> N
D

TIMESPEC
TSNewSpa3=FROM:PAD(ENABLE_BUS):TO:bus3:20ns

X8569

The following UCF file corresponds to the above example.

TPSYNC exanple; pad to a 3-state buffer enable
pin

Note TPSYNC attached to 3-state buffer’'s output
NET

NET BUS3STATE TPSYNC=bus3;
TIMESPEC
TSNewSpc3=FROM:PAD(ENABLE_BUS):TO:bus3:20ns;

In the NET statement shown above, the TPSYNC is attached to the
output net of a 3-state buffer called BUS3STATE. If a TPSYNC is
attached to a net, then the source of the net is considered to be the
endpoint (in this case, the 3-state buffer itself). The subsequent

11-16 Xilinx Development System

Design Constraints/UCF File

TIMESPEC statement can use the TPSYNC name just as it uses a
TNM name.

The next TPSYNC UCEF file example shows you how to use the
keyword PIN instead of NET if you want to attach an attribute to a
pin.
Note TPSYNC attached to 3-state buffer’s enable
PIN

PIN $116/BUSMACRO1/TRIBUF34.T TPSYNC=bus1;
TIMESPEC
TSNewSpc1=FROM:PAD(ENABLE_BUS):TO:bus1:20ns;

In this example, the instance name of the 3-state buffer is stated
followed by the pin name of the enable (.T). If a TPSYNC is attached
to a primitive input pin, then the primitive’s input is considered the
startpoint or endpoint for a timing specification. If it is attached to a
output pin, then the output of the primitive is used.

The last TPSYNC example shows you how to use the keyword INST
if you want to attach an attribute to a instance:

Note TPSYNC attached to 3-state buffer | NSTANCE
(UCF
file)

I NST $11 6/ BUSMACRCOR/ BUFFER_2 TPSYNC=bus?2;
TI MESPEC
TSNewSpc2=FROM PAD(ENABLE_BUS) : TO. bus?2: 20ns;

If a TPSYNC is attached to an instance, then the output of the instance
is considered the startpoint or endpoint for a timing specification.
The Period Style Timespec

The TIMESPEC form of the PERIOD constraint allows flexibility in
group definitions and allows you to define clock timing relative to
another TIMESPEC.

You can create a Period constraint with the Constraints Editor.

Foundation Series ISE 3.1i User Guide 11-17

Foundation Series ISE 3.1i User Guide

The following schematic example illustrates the use of the PERIOD
Timespec referenced to timegroups CLK2_GRP and CLK3.

D—D—D D Q'"'!é D Q4[>—<:I

TNM=CLK2_GRP
|:>—| > . :
CLK2 L LTI D Q

TNM=CLK3

J
v

|
2
~
w

TIMESPEC
TS03=PERIOD CLK2_GRP 50
TS04=PERIOD CLK3 TSO3 * 2

TNM=CLK2_GRP Paths

lllllll TNM=CLK3 Path

X8570
The following syntax is the corresponding UCF file.
UCF PERI OD styl e Tinespecs

NET CLK2 TNM = CLK2_GRP ;
NET CLK3 TNM = CLK3 ;

TI MESPEC TS03
TI MESPEC TS04

PERI CD CLK2_CGRP 50 ;
PERI OD CLK3 TS03 * 2 ;

Furthermore, the example shows how constraints and nets may be
given the same name because they occupy separate name-spaces.
Also, it shows the constraint syntax whereby one Timespec is defined
relative to another (the value of TS04 is declared to be two times that
of TS03).

The PERIOD constraint covers all timing paths which start or end at a
register, latch, or synchronous RAM that is clocked by the referenced
net. The only exception to this rule are paths to output pads, which
are not covered by the PERIOD constraint. (Input pads, which are the
source of a “pad-to-setup” timing path for one of the specified
synchronous elements, are covered by the PERIOD constraint.)

11-18 Xilinx Development System

Design Constraints/UCF File

The flexibility of the TIMESPEC form of the PERIOD constraint arises
from being able to modify the contents of the TIMEGRP once the
design has been mapped. By adding or removing objects from the
TIMEGRP, which are listed in the PCF file, you can alter the paths
that are covered by the PERIOD constraint.

If you do not need the flexibility offered by the TIMESPEC form, you
can use the NET form of the PERIOD constraint may be used. The
syntax for the NET form of the PERIOD constraint is simpler than the
TIMESPEC form, while continuing to provide the same path
coverage. The following example illustrates the syntax of the NET
form of the PERIOD constraint.

NET formof the PERIOD timng constraint
(no TSidentifier)

NET CLK PERI OD = 40 ;

This is the recommendation of using PERIOD on a single clock design
in which data does not pass between the clock domains.

With the Foundation 1.5 release, PERIOD will now include clock
skew in the path analysis.

The Offset Constraint

Use offsets to define the timing relationship between an external
clock and its associated data-in or data-out-pin. Using this option,
you can do the following.

e Calculate whether a setup time is being violated at a flip-flop
whose data and clock inputs are derived from external nets.

« Specify the delay of an external output net derived from the Q
output of an internal flip-flop being clocked from an external
device pin.

You can create a Pad to Setup or Clock to Pad offset constraint with
the Constraints Editor.

There are basically three types of offset specifications.
e Global
e Specific

Foundation Series ISE 3.1i User Guide 11-19

Foundation Series ISE 3.1i User Guide

11-20

e Group

Since the global and group OFFSET constraints are not associated
with a single data net or component, these two types can also be
entered on a TIMESPEC symbol in the design netlist with Tsid. See
the “Using Timing Constraints” chapter in the Development System
Reference Guide for details.

In the following example, the OFFSET constraint is applied to a net
that connects with a PAD (as shown in the figure later in this section).
It defines the delay of a signal relative to a clock and is only valid for
registered data paths. The OFFSET constraint specifies the signal
delay external to the chip, allowing the implementation tools to auto-
matically adjust relevant internal delays (CLK buffer and distribution
delays) to accommodate the external delay specified with the
following.

Net formof the OFFSET timng constraint

NET ADDO_I N OFFSET = IN 14 AFTER CLK ;

In analyzing OFFSET paths, the Xilinx timing tools adjust the
PERIOD associated with the constrained synchronous element based
on both the timing specified in the OFFSET constraint and the delay
of the referenced clock signal. In the following figure, assume a delay
of 8ns for the signal CLK to arrive at the CLB, a 5ns setup time for
ADDO, and a 14ns OFFSET delay for the signal ADDO. Assume a
period of 40ns is specified. The Foundation tools allocate 29ns for the
signal ADDO to arrive at the CLB input pin (40ns - 14ns + 8ns - 5ns =
29ns).

10B
N/ ADDO IN ADDO
D Q—
OFFSET of ADDO =
with respect to CLK o
CLK IN CLK
CLK I0OB p/o CLB
X8086

Xilinx Development System

Design Constraints/UCF File

This same timing constraint could be applied using the
FROM:PADS:TO:FFS timing constraint. However, using a From:To
methodology would require you to know the intrinsic CLK net delay,
and you would have to adjust the value assigned to the From:To
Timespec. The internal CLK net delay is implicit in the OFFSET/
PERIOD constraint. Furthermore, migrating the design to another
speed grade or device would require modification of the From:To
Timespec to accommodate the new intrinsic CLK net delay. An alter-
native solution is to use the flip-flop in the 10B of certain FPGA archi-
tectures (XC4000E/EX, for instance), as the clock-to-setup time is
specified in the Programmable Logic Data Book.

Note Relative Timespecs can only be applied to similar Timespecs.
For example, a PERIOD Timespec may be defined in terms of another
PERIOD Timespec, but not a FROM:TO Timespec.

Ignoring Paths

(FPGA only.) When you declare a a Timespec that includes paths
where the timing is not important, the tools may create a less optimal
route since there is more competition for routing resources. This
problem can be alleviated by using a TIG (timing ignore) attribute on
the non-critical nets. TIG causes all paths that fan out from the net or
pin where it is applied to be “ignored” during timing simulation.

You can create a Timing Ignore constraint with the Constraints Editor.

The following syntax indicates that $11 456/ sl ow_net should not
have the Timespec TS01 or TS04 applied to it.

#Ti mespec-specific TIG exanple (UCF file)

NET $11 456/ sl ow_net Tl G=TS01, TS04 ;

On the other hand, the following syntax indicates that the layout
tools should ignore paths through the $11 456/ sl ow_net net for all
known Timespecs.

#d obal TI G example (UCF file)

NET $11456/slow net TIG

Foundation Series ISE 3.1i User Guide 11-21

Foundation Series ISE 3.1i User Guide

11-22

Controlling Skew

(FPGA only.) Skew is the difference between the minimum and
maximum of the maximum load delays on a net. You can control the
maximum allowable skew on a net by attaching the MAXSKEW
attribute directly to the net.

#MAXSKEW exanpl e (UCF file)

NET $11 345/ net _a MAXSKEWE3 ;

The above example indicates that 3 ns is the maximum skew allowed
on $11345/net_a. For a detailed example of how MAXSKEW works,
see the “Additional Timing Constraints” section in the Development
System Reference Guide.

Constraint Precedence

A design may assign a precedence to Timespecs only within a certain
class of constraints. For example, you may specify a priority for a
particular From:To specification to be greater than another, but you
may not specify a From:To constraint to have priority over a TIG
constraint. The following example illustrates the explicit assignment
of priorities between two same-class timing constraints, the lowest
number having the highest priority.

Priority UCF exanpl e

TI MESPEC TS01
PRI ORI TY 4;
TI MESPEC TS02
PRICRITY 2;

The following sections illustrate the order of precedence for the
various types (and various sources) of timing constraints.

FROM GROUPA TO GROUPB 40

FROM GROUP1 TO GROUP2 35

Across Constraint Sources

Across constraint sources, the following priorities apply

» Physical Constraint File (PCF)—the highest priority

e User Constraint File (UCF)

* Input Netlist / Netlist Constraint File (NCF)—the lowest priority

Xilinx Development System

Design Constraints/UCF File

Within Constraint Sources

Within constraint sources, the following priorities apply.

e TIG (Timing Ignore)—the highest priority

e FROM:source: THRU:point: TO:destination specification

The priority of each type of FROM:THRU:TO specification is as
follows (highest priority is listed first).

FROM:USER1: THRU:USER_T:TO:USER?2 specification(USER1
and USER?2 are user-defined groups)

FROM:USER1:THRU:USER_T:TO:FFS specification

or

FROM:FFS:THRU:USER_T:TO:USER?2 specification (FFS is any
pre-defined group)

FROM:FFS:THRU:USER_T:TO:FFS specification
e FROM:source:TO:destination specification

The priority of each type of FROM:TO specification is as follows
(highest priority is listed first).

FROM:USER1:TO:USER2 specification

FROM:USER1:TO:FFS specification
or
FROM:FFS:TO:USER?2 specification

FROM:FFS:TO:FFS specification
e PERIOD specification
« “Allpaths” type constraints—the lowest priority

Layout constraints also have an inherent precedence which is based
on the type of constraint and the site description provided to the
tools. If two constraints have the same priority and cover the same
path, then the last constraint in the constraint file will override any
other constraints that overlap.

Foundation Series ISE 3.1i User Guide 11-23

Foundation Series ISE 3.1i User Guide

Layout Constraints

11-24

(FPGA only.) The mapping constraints in the example below illus-
trate some of the capabilities to control the implementation process
for a design. The OPTIMIZE attribute is attached to the block of logic
associated with the instance “GLUE.” All of the combinatorial logic
within the block GLUE will be optimized for speed (minimizing
levels of logic) while other aspects of the design will be processed by
the default mapping algorithms (assuming the design-based optimi-
zation switches are not issued).

Mappi ng constrai nt
I NST GLUE OPTI M ZE = SPEED ;
Layout constraint

NET | OBLOCK/ DATAO_IN LOC = P12 ;

The layout constraint in the example above illustrates the use of a full
hierarchical path name for the net named DATAO_IN in the applica-
tion of the 1/0 location constraint. In this example, IOBLOCK is a
hierarchical boundary that contains the net DATAO_IN. Location
constraints applied to “pad nets” are used to constrain the location of
the PAD itself, in this case to site P12.

Note If the design contains a PAD, the constraint could have been just
as easily applied to it directly (some design flows do not provide
explicit /0 pads in the design netlist).

Converting a Logical Design to a Physical Design

The process of mapping translates a design from the logical design
domain to the physical design domain. The MAP process creates both
the physical design components (CLBs, 10Bs, and so forth) and the
physical design constraints (layout and timing). The physical design
components are written into a Native Circuit Description (NCD) file.
The physical design constraints are written into a Physical
Constraints File (PCF).

As the design flow of the Figure 11-1 shows, MAP not only writes a
PCF file, but also reads a specified pre-existing PCF file. MAP reads
an existing PCF file in order to facilitate the overriding of constraints

Xilinx Development System

Design Constraints/UCF File

that are contained within another logic design using the “last one
wins” resolution mechanism provided by the PCF file. The following
subsection briefly describes this approach.

“Last One Wins” Resolution

MAP creates new physical design constraints each time it converts a
logical design into a physical design. The constraints that are created
during this process are written into the “Schematic” section of the
PCEF file. This section is recreated each time MAP is run based on the
constraints that are contained within the NGD file. The schematic
section is always written at the top of the PCF file, and constraints
that are in the PCF file but outside of the Schematic section (after the
line “SCHEMATIC END”) are considered to be in the “User” section
of the PCF file. The user section is read, syntactically checked, and
rewritten each time MAP is run. Since these constraints always follow
those written into the schematic section, they will always take prece-
dence (following the “last-one-wins” rule).

Note If the design contains a PAD, the constraint could have been just
as easily applied to it directly (some design flows do not provide
explicit /0 pads in the design netlist).

Efficient Use of Timespecs and Layout Constraints

The previous section described the mechanisms available for
constraining a design’s timing within the Foundation tools. The
sections that follow summarize each of the constraints that are avail-
able.

The robust nature of the language enables you to define your design
requirements at the highest level of abstraction first, and then fine
tune the timing requirements by using more specific Timespecs, if
needed. This is the methodology that will best describe your require-
ments to the tools.

The following observations help to illustrate the reasons why this
methodology should be followed (from a tool runtime perspective).

« Using explicit Timegroups causes slower runtimes than using
implicit timegroups arising from the use of constraints such as
PERIOD.

Foundation Series ISE 3.1i User Guide 11-25

Foundation Series ISE 3.1i User Guide

11-26

« Processing larger Timegroups takes longer than processing
smaller Timegroups.

« Using many specific Timespecs results in slower runtimes than
using a smaller set of more general Timespecs.

In conclusion, overall design runtime is improved when a “qualified
global” timing methodology is employed instead of a “thorough-
detailed” timing methodology.

The “Starter Set” of Timing Constraints

The following examples clearly identify the “preferred” mechanism
for controlling the timing of your design. The preferred method
assumes a goal of getting the required results in the fastest run time
possible. If the design has a single clock and required 1/0 timing that
equals the clock period, all that you need are the three constraints
shown in the following example.

d obal UCF exanpl e

NET CLK1 PERI OGD
NET OUT* OFFSET

40 ;
QUT 13 AFTER CLK ;

TI MESPEC TS01 = FROM PADS TO PADS 40 ;

Note When you use net name wild cards in OFFSETS, make sure that
the name is unique to valid nets; otherwise processing errors will
occur.

If you need to account for extra delay external to the FPGA, then you
could add the following.

NET | NPUT* OFFSET = IN 8 BEFORE CLK ;

The PERIOD constraint covers all pad-to-setup and clock-to-setup
timing paths. The OFFSET constraint covers the clock-to-pad timing
for each of the output nets beginning with OUT. Both the OFFSET
and PERIOD constraints account for the delay of the Clock Buffer/
Net in the 170 timing calculations.

The following PCF fragment illustrates the differences in syntax
between the UCF and PCF languages. In addition to the syntactical
changes, remember that net and instance names may change. As an
example, one of the net matches resulting from the UCF “NET OUT*”
constraint is now applied to “COMP OUT1_PAD”. The name

Xilinx Development System

Design Constraints/UCF File

OUT1_PAD is the name assigned to the pad instance. In addition to
name changes, another difference is the verbosity of the PCF. In the
PCF there is additional syntax for “MAXDELAY,” “TIMEGRP,” and
“PRIORITY.” These are all optional qualifications of the Timespec
within the UCF, but written explicitly to the PCF file illustrating the
full flexibility of the language.

d obal PCF exanpl e
SCHEMATI C START;

NET PERIOD “CLK_IN" = 40 nS HIGH 50.00% ;

COMP “OUT1_PAD” OFFSET = OUT 40 ns AFTER COMP
“CLK?;

COMP “OUT2_PAD” OFFSET = OUT 40 ns AFTER COMP

“CLK”;COMP “INPUT1_PAD” OFFSET = IN 28 ns BEFORE
COMP

“CLK?;

TS01 = MAXDELAY FROM TIMEGRP “PADS” TO TIMEGRP
“PADS”

40000 pS PRIORITY 0;

SCHEMATIC END;

The next UCF example illustrates the use of both global constraints
(PERIOD, OFFSET) to generally constrain the design and detailed
Timespecs (FROM:THRU:TO) to provide fast and slow exceptions to
the general timing requirements. Because the amount of constraints
placed on a design directly impact runtime, Xilinx recommends that
you first apply global constraints, then apply individual constraints
only to those elements of the design that require additional
constraints (or an exception to a constraint). The more global the
constraints, the better the runtime performance of the tools.

Sample UCF file
Specify target device and package

CONFIG PART = XC4010e-PQ208-3 ;
Global constraints

NET CLK1 PERIOD =40
NET DATA_OUT* OFFSET = OUT 15 AFTER DCLK;
TIMESPEC TS01 = FROM PADS TO PADS 40 ;

Foundation Series ISE 3.1i User Guide 11-27

Foundation Series ISE 3.1i User Guide

Layout constraints
NET SCLINF LOC = P125 ;

Detailed constraints
Exception to cover X DAT and Y_DAT buses

lgnore timng on reset net

NET RESET_N TIG ;

Sl ow exception for data |eaving | NA FFs

TI MESPEC TS02 = FROM FFS(1 NA*) TO FFS 80 ;

Faster timng required for data | eaving RAM
TI MESPEC TS03 = FROM RAMS TO FFS 20 ;

Form special tinegroups related to RAMs
I NST $11 64 TNM = SPDRAM ;

NET RAMBUSO TPTHRU = RAMVI A ;

NET RAMBUSL1 TPTHRU = RAMVI A ;

Specify tinming for this special tining path

TI MESPEC TS04 = FROM SPDRAM THRU RAWI A TO FFS 45

Standard Block Delay Symbols

The Table 11-1 lists the block delay symbols, each with their corre-
sponding description. There is a one-to-many correspondence
between these symbol names and the Programmable Logic Data Book
symbol names. For those symbols listed with a disabled default, no
timing analysis is performed on paths that have a segment composed
of symbol path. For example, paths which have a set/reset to output
path will not be analyzed. Any of the block delays (Symbol) listed in
the table may be explicitly enabled or disabled using the PCF file.

11-28 Xilinx Development System

Design Constraints/UCF File

The following example shows the PCF syntax that enables the path
tracing for all paths that contain RAM data to out paths. This PCF
directive is placed in the user section of the PCF.

SCHENATI C END,

/[l This is a PCF comment

i ne

/1 Enable RAM data to out path tracing

ENABLE = ram d_o;

Table 11-1 Timing Symbols and Their Default Values

Symbol Default Description

reg_sr_q Disabled Set/reset to output propagation delay

lat_d q Disabled Data to output transparent latch delay

ram_d o Disabled RAM data to output propagation delay

ram_we 0 |Enabled RAM write enable to output propaga-
tion delay

tbuf t o Enabled TBUF tristate to output propagation
delay

tbuf_ i o Enabled TBUF input to output propagation
delay

io_pad_I Enabled 10 pad to input propagation delay

io_t pad Enabled 10 tristate to pad propagation delay

reg_sr_clk |Disabled Set/Reset to clock setup and hold
checks

io o | Enabled 10 output to input propagation delay
(Disabled for tristated 10Bs.)

io_o_pad Enabled 10 output to pad propagation delay

Foundation Series ISE 3.1i User Guide

11-29

Foundation Series ISE 3.1i User Guide

Table of Supported Constraints

The following table summarizes all supported constraints; it also
shows whether the constraint must be entered at the schematic level
or whether it can be specified in one or more of the valid constraint
file types (NCF, UCF, or PCF). For further explanation and examples
of each of the constraints, see the online Libraries Guide (Chapter 12,
“Attributes, Constraints, and Carry Logic”).

Certain constraints can only be defined at the design level, whereas
other constraints can be defined in the various configuration files.
The following table lists the constraints and their applicability to the
design, and the NCF, UCF, and PCF files.

The CE column indicates which constraints can be entered using the
Xilinx Constraints Editor, a GUI tool in the Xilinx Development
System. The Constraints Editor passes these constraints to the imple-
mentation tools through a UCF file.

An X indicates that the constraint applies to the item for that column.

Note Although the ECS PlaceAndRoute and PlaceAndRoute?2
attributes can be entered on the ECS schematic, Xilinx recommends
that you enter these attributes in the UCF file instead.

Table 11-2 Constraint Applicability Table

(A:g:]'ft‘;;% t ECS Attribute? | Design | NCF | UCF | CE | PCF
BLKNM PlaceAndRoute2 X X X

BUFG PlaceAndRoute X X X

CLKDV_DIVIDE PlaceAndRoute2 X X X

COLLAPSE PlaceAndRoute X X X

COMPGRP X
DECODE PlaceAndRoute2 X X X

DOUBLE PlaceAndRoute2 X

DRIVE PlaceAndRoute X X X X
DROP_SPEC X X X2
11-30 Xilinx Development System

Design Constraints/UCF File

Table 11-2 Constraint Applicability Table

ég:st‘:;% t ECS Attribute! | Design | NCF | UCF | CE | PCF
DUTY_CYCLE_ PlaceAndRoute2 X X X

CORRECTION

FAST PlaceAndRoute X X X X

FILE X

FREQUENCY X

HBLKNM PlaceAndRoute2 X X X

HU_SET PlaceAndRoute?2 X X X

INIT INIT X X x3

INIT_Ox INIT xx X X X

INITP_xx INITP_xx X X X

10B PlaceAndRoute2 X X X

IOSTANDARD PlaceAndRoute X X X X

KEEP PlaceAndRoute X X X

KEEPER PlaceAndRoute X X X X

LOC PlaceAndRoute2 X X X X X ?
LOCATE X

LOCK X

MAP PlaceAndRoute2 X X X

MAXDELAY PlaceAndRoute X X X X2
MAXSKEW PlaceAndRoute X X X X 2
MEDDELAY PlaceAndRoute X X X

NODELAY PlaceAndRoute X X X

NOREDUCE PlaceAndRoute X X X

OFFSET PlaceAndRoute X X X X ?
ONESHOT X

OPT_EFFORT PlaceAndRoute2 X X X

OPTIMIZE PlaceAndRoute?2 X X X

PATH X

Foundation Series ISE 3.1i User Guide

11-31

Foundation Series ISE 3.1i User Guide

Table 11-2 Constraint Applicability Table

ég:st‘:;% t ECS Attribute! | Design | NCF | UCF | CE | PCF
PART X X X

PENALIZE TILDE X
PERIOD PlaceAndRoute X X X X X 2
PIN X
PRIORITIZE X
PROHIBIT X X X X X2
PULLDOWN PlaceAndRoute X X X X

PULLUP PlaceAndRoute X X X X
PWR_MODE PlaceAndRoute X X X

REG PlaceAndRoute2 X X X

RLOC PlaceAndRoute2 X X X

RLOC_ORIGIN PlaceAndRoute2 X X X X
RLOC_RANGE PlaceAndRoute2 X X X X
S(ave) - Net Flag PlaceAndRoute X X X

attribute

SITEGRP X
SLOW PlaceAndRoute X X X X
STARTUP_WAIT PlaceAndRoute2 X X X

TEMPERATURE X X X X X
TIG PlaceAndRoute X X X X X2
Time group X X X X X
attributes

TNM PlaceAndRoute X X X X
TNM_NET PlaceAndRoute X X X X

TPSYNC PlaceAndRoute X X X

TPTHRU PlaceAndRoute X X X X
TSidentifier X X X X X2
U SET PlaceAndRoute?2 X X X

USE_RLOC PlaceAndRoute?2 X X X

11-32 Xilinx Development System

Design Constraints/UCF File

Table 11-2 Constraint Applicability Table

ég;'st‘i;% t ECS Attribute! | Design | NCF | UCF | CE | PCF
VOLTAGE X X X X X
WIREAND PlaceAndRoute2 X X X

XBLKNM PlaceAndRoute2 X X X

NOTES:

1ECS attributes can be applied to symbols or nets as follows: The PlaceAndRoute2
attribute is set on a symbol via the Symbol Editor. The PlaceAndRoute attribute is set on
nets via the Schematic Editor for projects that use XST synthesis tools. (Although the ECS
PlaceAndRoute and PlaceAndRoute?2 attributes can be entered on the ECS schematic,
Xilinx recommends that you enter these attributes in the UCF file instead.)

2Use cautiously — although the constraint is available, there are differences between the
UCF/NCF and PCF syntax.

3INIT is allowed in the UCF for CPLDs only.

Basic UCF Syntax Examples

The following sections summarize the functions of timespecs.

PERIOD Timespec

The PERIOD spec covers all timing paths that start or end at a
register, latch, or synchronous RAM which are clocked by the refer-
ence net (excluding pad destinations). Also covered is the setup
requirement of the synchronous element relative to other elements
(for example, flip flops, pads, and so forth).

Note The default unit for time is nanoseconds.

NET cl k20MHz PERI OD = 50 ;
NET cl kb0nmhz TNM = cl k50nmhz ;
TI MESPEC TS01 = PERIOD : cl k50nmhz : 20 ;

Foundation Series ISE 3.1i User Guide 11-33

Foundation Series ISE 3.1i User Guide

11-34

FROM:TO Timespecs

FROM:TO style timespecs can be used to constrain paths between
time groups.

Note Keywords: RAMS, FFS, PADS, and LATCHES are predefined
time groups used to specify all elements of each type in a design.

TI MESPEC TS02 FROM: PADS : TO: FFS : 36 ;

TI MESPEC TS03 FROM: FFS : TO : PADS : 36 ns ;
TI MESPEC TS04 FROM : PADS : TO : PADS : 66 ;
TI MESPEC TS05 FROM : PADS : TO: RAMS : 36 ;
TI MESPEC TS06 FROM : RAMS : TO: PADS : 35.5 ;

OFFSET Timespec

To automatically include clock buffer/routing delay in your
“PADS:TO: synchronous element or synchronous element :TO:PADS
timing specifications, use OFFSET constraints instead of FROM:TO
constraints.

e For an input where the maximum clock-to-out (Tco) of the
driving device is 10 ns.

NET i n_net_nane OFFSET=I N: 10: AFTER: cl k_net ;

e For an output where the minimum setup time (Tsu) of the device
being driven is 5 ns.

NET out net name OFFSET=QUT: 5: BEFORE: cl k_net ;

Timing Ignore

If you can ignore timing of paths, use Timing Ignore (TI1G).

Note The “*” character is a wild-card which can be used for bus
names. A “?” character can be used to wild-card one character.

e Ignore timing of net reset_n:
NET :reset_ n: TIG;
e Ignore data_reg(7:0) net in instance mux_mem:

NET : mux_mem/data_reg*: TIG ;

Xilinx Development System

Design Constraints/UCF File

e Ignore data_reg(7:0) net in instance mux_mem as related to a
TIMESPEC named TSO01 only:

NET : mux_mem/data_reg*: TIG =TS01;

e Ignore datal sig and data2_sig nets:

Path Exceptions

If your design has outputs that can be slower than others, you can
create specific timespecs similar to this example for output nets
named out_data(7:0) and irg_n.

TI MEGRP sl ow outs = PADS(out _data* : irq_n) ;

TI MEGRP fast _outs = PADS : EXCEPT : slow outs ;
TI MESPEC TS08 FROM: FFS : TO: fast _outs : 22 ;
TI MESPEC TS09 FROM: FFS : TO: slow outs : 75 ;

If you have multi-cycle FF to FF paths, you can create a time group
using either the TIMEGRP or TNM statements.

<AWarning
Many VHDL/verilog synthesizers do not predictably name flip

flop Q output nets. Most synthesizers do assign predictable
instance names to flip flops, however.

 TIMEGRP example.

TI MEGRP sl owffs = FFS(inst_path/
ff_q_output_netl* : inst_path/
ff_q_out put _net 2*);

e TNM attached to instance example.

I NST inst_path/ff_instance_nanel reg* TNM =
slowffs ;

I NST inst_path/ff_instance_nanme2_reg* TNM =
slowffs ;

« If a FF clock-enable is used on all flip flops of a multi-cycle path,
you can attach TNM to the clock enable net.

Note TNM attached to a net “forward traces” to any FF, LATCH,
RAM, or PAD attached to the net.

Foundation Series ISE 3.1i User Guide 11-35

Foundation Series ISE 3.1i User Guide

NET ff _cl ock _enable net TNM = sl owffs ;

« Example of using “slowffs” timegroup, in a FROM:TO timespec,
with either of the three timegroup methods previously shown.

TI MESPEC TS10 = FROM: slowffs : TO: FFS : 100 ;

’

Miscellaneous Examples

e Assign an 10 pin number or place a basic element (BEL) in a
specific CLB. BEL = FF, LUT, RAM, etc...

I NST i o_buf instance name LOC = P110 ;
NET i o_net_nane LOC = P111 ;

I NST i nstance_pat h/ BEL_i nst _nanme LCC =
CLB _R17C36 ;

e Prohibit 10 pin C26 or CLB_R5C3 from being used.
CONFI G PROHI BI T = C26 ;
CONFI G PROHI BI T = CLB_R5C3 ;
e Assign an OBUF to be FAST or SLOW.
I NST obuf instance nane FAST ;
I NST obuf instance nane SLOW;
e Constrain the skew or delay associate with a net.
NET any_net _name MAXSKEW = 7 ;
NET any_net _nanme MAXDELAY = 20 ns;
* Declare an OB input FF delay (default = MAXDELAY).

Note MEDDELAY/NODELAY can be attached to a CLB FF that
is pushed into an IOB by the “map -pr i” option.

I NST i nput _ff_instance_name MEDDELAY ;
I NST i nput _ff_instance_name NODELAY ;

11-36 Xilinx Development System

Design Constraints/UCF File

e Also, constraint priority in your .ucf file is as follows:
Highest
1. Timing Ignore (TIG)
2. FROM : THRU : TO specs
3. FROM : TO specs lowest
4. OFFSET
5. PERIOD specs
Lowest

See the on-line documentation set for additional timespec features or
additional information.

Foundation Series ISE 3.1i User Guide 11-37

Foundation Series ISE 3.1i User Guide

11-38 Xilinx Development System

Simulation

Chapter 12

ModelSim

Simulation verifies the operation of your design before you imple-
ment it as hardware. It allows you to observe the circuit’s behavior at
its inputs and outputs as well as the behavior of internal nodes. You
can use testbenches (VHDL) or test fixtures (Verilog) to specify circuit
input stimuli and output responses and then test to those specifica-
tions at various points in the design flow. For simulation functions,
Foundation Series ISE includes integrated support for ModelSim
simulators from Model Technology Incorporated (MTI) and for HDL
Bencher, a testbench/test fixture generating tool from Visual Soft-
ware Solutions (VSS). This chapter describes the integration of the
ModelSim simulators and HDL Bencher with Foundation Series ISE.
It contains the following sections:

e “ModelSim”

e “Acquiring ModelSim Tools”

e “Launching ModelSim”

e “Functional Simulation”

e “Timing Simulation (Post-Route)”

e “Creating a Testbench/Test Fixture”

The ModelSim simulation tools from Model Technology Incorporated
(MTI) provide a complete HDL simulation and debugging environ-
ment for your Foundation Series ISE project. ModelSim simulators
support simulation of VHDL and Verilog HDL designs. Some
editions (SE) support mixed-HDL designs (Verilog and VHDL).
Source code debugging, functional simulation, and back-annotated
timing simulation are supported in all editions.

Foundation Series ISE 3.1i User Guide — Online 12-1

Foundation Series ISE 3.1i User Guide

ModelSim provides 100 percent VHDL and Verilog language
coverage, a source code viewer/editor, waveform viewer, design
structure browser, list window and many other features designed to
enhance productivity.

ModelSim VHDL supports both the IEEE 1076-1987 and 1076-1993
VHDL, 1164-1993 Standard Multivalue Logic System for VHDL
Interoperability, and the 1076.2-1996 Standard VHDL Mathematical
Packages standards.

ModelSim Verilog is based on the IEEE Std 1364-1995 Standard Hard-
ware Description Language Based on the Verilog Hardware Descrip-
tion Language. The Open Verilog International Verilog LRM version
2.0 is also applicable to a large extent. Both PLI (Programming
Language Interface) and VCD (Value Change Dump) are supported
for ModelSim PE and EE users.

In addition, all products support SDF 1.0 through 3.0, VITAL 2.2b,
and VITAL’95 - IEEE 1076.4-1995.

Acquiring ModelSim Tools

12-2

The Foundation Series ISE 3.1i installation does not automatically
install the ModelSim tools. You can acquire and/or access these tools
as described in the following sections.

ModelSim XE Starter

The Starter version of ModelSim XE (ModelSim XE Starter) is
included free on the MTI CD you received with your Foundation
Series ISE 3.1i software package. You can license it through the Xilinx
support website by using the link on the installation screen.

ModelSim XE Starter supports both VHDL and Verilog but can only
simulate one language at a time. It features pre-compiled Xilinx
libraries and can handle up to 500 lines of code, including the test-
bench or test fixture. If you are new to HDL design, ModelSim XE
Starter enables you to experiment with and create small VHDL
designs and testbenches or Verilog designs and test fixtures.

Xilinx Development System

Simulation

ModelSim XE

The Xilinx Edition of ModelSim (ModelSim XE) is a limited version of
MTI’s ModelSim tools. ModelSim XE is available in a VHDL or
Verilog version. Mixed HDL designs are not supported. It features
pre-compiled Xilinx libraries and can handle about 100,000 system
gates depending on the size of the design’s testbench or test fixture.
This is usually sufficient for designs targeting Xilinx XC9500 CPLDs
and Spartan FPGAs as well as the medium-density XC4000 and
Virtex FPGAs.

An evaluation version of ModelSim XE is included on the MTI CD
you received with your Foundation Series ISE 3.1i software package.
It does require licensing. Use the following procedure to install the
Xilinx Edition of ModelSim:

1. Insert your ModelSim Xilinx Edition CD into your PC’s CD-ROM
drive.

2. Inyour Windows Start menu, select, St art — Prograns —
Xil'i nx Foundation Series |ISE 3.1i - Partner
Products - Install Mdel SimXilinx Edition (CD
Requi r ed) .

3. Follow the directions in the installation screens. You are asked
whether you want to install the Evaluation or Full version of XE.

The Evaluation version installer installs the software and allows
you to apply for a one-time, 30-day evaluation license on the
Web. The Full version installer performs a similar installation,
and allows you to apply for a permanent license through the
Web, but you must have already purchased the software from
Xilinx for the license application to succeed.

4. Because ModelSim XE supports either VHDL or Verilog simula-
tion, you must choose one language to install.

You can contact Xilinx Customer Service for purchase and licensing
of the ModelSim XE product. Call the Xilinx hotline for ModelSim XE
support.

Foundation Series ISE 3.1i User Guide 12-3

Foundation Series ISE 3.1i User Guide

Additional ModelSim Editions

The following products are also supported in Foundation Series ISE:
e ModelSim PE (Personal Edition)
e ModelSim SE (Special Edition)

Evaluation version of ModelSim PE and SE are included on the MTI
CD you received with your Foundation Series ISE 3.1i software
package. You can license these products through MTI for free evalua-
tion for up to 30 days.

Contact MTI for information on the ModelSim PE and SE configura-
tions. All product sales and licensing for these products are handled
directly by MTI and its authorized sales affiliates (e-mail
sales@model.com). Customer support is also provided directly by
MTI (e-mail support@model.com or call the main number at (503)
641-1340).

Previously Installed ModelSim Tools

If you were using ModelSim tools before you installed Foundation
Series ISE, you can direct the Project Navigator to that ModelSim
installation. Use the following procedure to designate any pre-
existing ModelSim tools you want to use with Foundation Series ISE:

1. From the Project Navigator Main Menu, select Edi t - Prefer -
ences.

2. Inthe Preferences window, select the Part ner Tool s tab.

Preferences =]

Generall Editor I Processes Partner Tools |

— Locations of Partner Executable:

Model Tech Simulatar:
I\M odeltech_xe_5 3atwind2xoem'ModelSim Browse...

W55 Test Bencher

Id:\HB1D2><2\tb.exe Browse. . |
W55 State Machine E ditar:
Id:\sc:502x2\8c:.exe Browse... |

QK I Cancel | Lol |

12-4 Xilinx Development System

Simulation

3. Inthe Model Tech Sinul at or field on the Partner Tools tab,
enter the path to the program executable for an existing installa-
tion of ModelSim. Or, click Br owse to select the path.

Sources for Learning to use ModelSim

The ModelSim online help (Hel p in the ModelSim main window)
contains the following resources to help you learn how to use the
ModelSim simulators:

e User’s Manual
« Command Reference
e Quick Start Menu

Note The Xilinx support website also contains useful information on
using ModelSim with Xilinx products. The URL for this website is
http://ww. support.xilinx.com support/techsup/jour-
nal s/ nti .

Launching ModelSim

After you install one of the ModelSim tools as described in the
“Acquiring ModelSim Tools” section, you can launch it from within
the Project Navigator.

Foundation Series ISE supports two simulation points in its design
process: functional simulation and timing simulation.

e Functional Simulation (RTL Level)

The first simulation point is functional simulation at the Register
Transfer Level (RTL). Functional simulation at this point is used
to verify that the logic of your design functions as intended. RTL
functional simulation is performed after design entry but prior to
synthesis.

Use one of the following methods to launch ModelSim from the
Project Navigator for functional simulation:

+ Highlight the desired source file in the Sources window and
then select Launch Model Si m Si nul at or in the Processes
window.

Foundation Series ISE 3.1i User Guide 12-5

Foundation Series ISE 3.1i User Guide

12-6

+ Highlight a testbench/test fixture file in the Sources window
and then double-click on Si nul at e Functi onal VHDL/
Veril og Mbdul e in the Processes window.

Refer to the “Functional Simulation” section for more informa-
tion on functional simulation with ModelSim.

Post -Route Timing Simulation

The second simulation point is timing simulation. Timing simula-
tion includes detailed timing information for the targeted device.
Timing simulation is performed after synthesis and place and
route. It always requires a a testbench or test fixture.

To launch ModelSim from the Project Navigator for timing simu-
lation, highlight a testbench/test fixture file in the Sources
window and then double-click Si nul at e Post - Rout e VHDL/
Veril og Modul e in the Processes window.

Refer to the “Timing Simulation (Post-Route)” section for more
information on timing simulation with ModelSim.

ModelSim Integration Overview

The Project Navigator creates a ModelSim Do file (a macro file) that
performs the following functions automatically when you invoke
ModelSim simulation for your project:

Launch ModelSim with default or user-specified controls.

You can set simulation Process Properties for launching
ModelSim in the Project Navigator, if desired. These include
properties for simulation runtime, ModelSim windows to
display, whether to use a user-supplied Do file, etc. Refer to the
“Functional Simulation Process Properties” section and “Timing
Simulation Process Properties” section for simulation Process
Properties information.

Create and map a working library (wor k) that ModelSim can use
to run a simulation.

Map the required simulation libraries (depending on the type of
simulation being run and device being used).

Generate an HDL model for all non-HDL source files. For sche-
matic sources, this means netlisting them. ABEL sources are
translated into structural HDL.

Xilinx Development System

Simulation

e Compile all of the HDL source files comprising the design
selected for simulation into the working library

e Run asimulation for 1000 time units (or as specified in the simu-
lation Process Properties) and displays the results in ModelSim’s
Wave and List windows.

ModelSim opens with the specified design loaded and ready for you
to take control of the simulation to debug and verify your design. You
can edit any of the HDL source files using ModelSim’s source editor.
You can exit ModelSim whenever you want.

If you do not want Foundation Series ISe to initialize ModelSim as
described in this section, you can “turn off” the automatic initializa-
tion by unchecking the Use Aut omatic Do Fil e boxin the
synthesis Process Properties dialog box for Simulate Functional
VHDL Model or Simulate Post-Route VHDL Model. Refer to the
“Functional Simulation Process Properties” section for information
on setting synthesis properties.

Simulator Initialization and VHDL Package Sources

VHDL Packages are treated differently than other VHDL files. Pack-
ages (ieee.std_logic_1164, for example) are often used by many other
VHDL design units. Each time a package is recompiled, all other
design units that use it must also be recompiled. Needless to say;, it is
not desirable for packages to be constantly recompiled. Therefore, the
Do files generated by Foundation Series ISE do not attempt to
compile VHDL Package sources in the installed simulator when func-
tional or post-route simulation is performed.

Use the following procedure to compile a VHDL Package source for
simulation:

1. Selecta VHDL package in the Sources window.

2. Select Conpil e For Simul ati on in the Processes window.

Foundation Series ISE 3.1i User Guide 12-7

Foundation Series ISE 3.1i User Guide

Xilinx Simulation Libraries

Xilinx provides the following libraries for ModelSim simulation
flows.

e unisim (UNISIM, UNISIM5K for VHDL; UNISIM_VER,
UNI3000, UNI15200, UNI9000 for Verilog)

e simprim (SIMPRIM for VHDL and SIMPRIM_VER for Verilog)
* logiblox

« corelib (xilinxcorelib for VHDL; xilinxcorelib_ver for \erilog)

e Virtex_Macro

e Virtex2_macro

e Spartan2_macro

e XC9000_macro

e XC4000_macro

For ModelSim XE, these libraries are pre-compiled and ready for use.
For other ModelSim editions, these libraries need to be compiled.
Please refer to Solution 2561 on the Xilinx support website ht t p: //
www. support. xi |l i nx. comfor information on compiling these
Xilinx libraries for use with Foundation Series ISE.

Functional Simulation

12-8

Functional simulation is the first simulation point in the Foundation
Series ISE design flow. It is performed at the Register Transfer Level
(RTL). The main purpose of RTL simulation is to verify the HDL
syntax and determine if the behavior of the HDL code is what is
expected.

Functional simulation is run after design entry and prior to synthesis.
Simulation is done using the HDL code that describes the function of
the design or a testbench/test fixture. The design at this point is
device and implementation independent. Therefore, no timing infor-
mation is available.

Most design development is usually done through iterative RTL
simulation until the final functionality is achieved. The simulation
can be either started from a testbench/test fixture or from an indi-
vidual HDL source module.

Xilinx Development System

Simulation

For testbench/test fixture simulation, the testbench/test fixture may
be automatically generated. You then supply the test stimuli.

For simulations without a testbench/test fixture, you may drive the
simulation using ModelSim’s command console or write a simulator
control file (do file).

Functional Simulation with a Testbench/Test Fixture

You can create a testbench or test fixture to use for stimuli in your
design as follows:

1. Create a testbench/test fixture as described in “Creating a Test-
bench/Test Fixture” section

2. Add the testbench/test fixture file to the project as described in
the “Adding the Testbench/Test Fixture File to the Project”
section.

3. Click on the testbench/test fixture file in the “Sources in Project”
window.

4. In the “Processes for Current Source” window, double-click on
Si nul at e Functional VHDL Modul e under the ModelSim
Simulator.

5. The ModelSim simulator opens with the files compiled and the
design loaded.

By default, the ModelSim simulator opens with its command
window, Display Signals window, Display Structures window, and
Display Wave window. You can control which ModelSim windows
open initially by setting simulation process properties in the Project
Navigator. Refer to the “Functional Simulation Process Properties”
section for information on setting simulation process properties.

Interactive Functional Simulation

For simulations without a testbench/test fixture, you can drive the
simulation using ModelSim’s command console or a user generated
simulator control (.do) file.

Foundation Series ISE 3.1i User Guide 12-9

Foundation Series ISE 3.1i User Guide

12-10

Simulating with ModelSim’s Command Console

Use the following procedure to simulate the design interactively:

1.
2.

Click on a source file (not a testbench file) in the Sources window.

Select Launch M1 Si mul at or under Design Entry Utilities in
the Processes window.

The ModelSim simulator opens with source files compiled and
loaded. The libraries must be compiled separately.

By default, the ModelSim simulator opens with its command
window, Display Signals window, Display Structures window,
and Display Wave window as shown in the following figure. You
can control which ModelSim windows open initially by setting
simulation process properties in the Project Navigator. Refer to
the “Functional Simulation Process Properties” section for infor-
mation on setting simulation process properties.

ModelSim XE 5.3a [_[o]x]
File Edt Design ¥iew Run Macro Options window Help
S BB IEF[EEEE B |
1 - Compiling architecture testbench_arch of testbench =l
- Loading entity jc2_top
- Compiing configuration jc2_top_cfg
4 - Loading entlty testbench
- Loading architecture testbench_arch of testbench
4 wsim - work. -L XC3000_macio L dlinscoreli testbench
4 Loading o Modeltech_we_5 3afwin32xoem/../std standard
1 Loading . Modelech_we_5 3afwin32xoem/. /iees std_logic_1164(bady)
4 Loading work testbenchitestbench_arch]
Loading work.jc2_toplic2_top_arch]
4 wave
shucture
4 signals
SIM 25 | =
[Mow: Tus Delta: 0 [sim:ftestbench 4
| n
= structure (sim) 1SN [=T 5 | W signals fsim) _ofx]| EEEEET Ol x]
File Edt ‘window File View Window Fle Edt Cusor Zoom Fomnat indow

estbench: testbanchi

<

testbench_aich) | |

hE o Q@ ELEIEE

el

4

(D5 I
sim:ftestbench 4 0 ps to 437 ps

s L

sim:ftesthench

Figure 12-1 ModelSIM Default Windows

Xilinx Development System

Simulation

Simulating with Do Files

Two types of do files are available. You can enter simulation
commands in the testbench_file_name.zdo file and compilation
commands in the testbench_file_name.udo file. These files are automat-
ically created the first time the test bench is simulated.

Functional Simulation Process Properties

You can specify process properties for functional simulation. Once
selected, the process properties apply whenever ModelSim is
launched for functional simulation by the Project Navigator.

HDL Source Module

To set properties for functional simulation of an HDL source module,
use the following procedure:

1. Click on an HDL source module in the Sources Window.

2. Right-click on Launch Ml Si rmul at or under Design Entry
Utilities in the Processes window.

3. Select Properti es from the list box that appears.

4. For VHDL sources, a Process Properties dialog box with the
VHDL Simulation Options tab appears. For Verilog, the Verilog
Simulation Options tab appears. Both tabs contain the same
options.

Testbench/Test Fixture

To set properties for functional simulation of an HDL testbench/test
fixture, use the following procedure:

1. Click on an HDL testbench/test fixture in the Sources Window.

2. Right-click on Si mul at e Functi onal VHDL Model under
ModelSim Simulator in the Processes window.

3. Select Properti es from the list box that appears.

4. For VHDL sources, a Process Properties dialog box with the
VHDL Simulation Options tab appears. For Verilog, the Verilog
Simulation Options tab appears. Both tabs contain the same
options.

Foundation Series ISE 3.1i User Guide 12-11

Foundation Series ISE 3.1i User Guide

VHDL/Verilog Simulation Options Tab

The properties you can set on the VHDL or Verilog Simulation
Options tab (shown in the following figure) are listed and described

in the following sections.

Process Properties

x|

YHOL Functional Simulation Options | Display Options |

Property Hame

Value

Pre %'Sim Do File

Uz Automatic Do File

¥

Simulation Run time

1000 n=

Design Unit Mame

testhench

0K I Cancel [efault

Pre VSim do File

This option allows you to enter the name of a do file to be run before
the VSIM command in ModelSim. The do file specified here can only
contain VCOM commands for VHDL designs or VLOG commands
for Verilog designs. Refer to Table 12-1 and Table 12-2 for the VCOM
and VLOG command that can be included in a Pre VSim do File.

Table 12-1 Valid VCOM Commands for Pre VSim do File (VHDL)

Key Argument

Description

[-help]

Displays vcomsyntax help

[-version]

Returns vcomversion

[-93][-87]

Selects VHDL 1993 or 1987

[-explicit]

Resolves ambiguous overloads

[-f <filename>]

Passes in arguments from file
<filename>

[-nocheck]

Disables run time range checks

12-12

Xilinx Development System

Simulation

Table 12-1 Valid VCOM Commands for Pre VSim do File (VHDL)

Key Argument

Description

[-nowarn <#>]

Disables individual warning
message (<#>)

[-O0] Disables optimization
[-quiet] Disables loading messages
[-refresh] Regenerates library image

[-work <libname>]

Specifies wor k library

<filename(s)>

Specifies VHDL file(s) (<file-
name(s)>) to be compiled

Examples:

vcom -refresh

vcom MyDesign.vhd
vcom -93 -work /lib/mylib util.vhd

Table 12-2 Valid VLOG Commands for Pre VSim do File (Verilog)

Key Argument

Description

[-help]

Displays vl og syntax help

[-version]

Returns vl og version

[-f <filename>]

Passes in arguments from file
<filename>

[-hazards] Enables runtime hazard checking

[-nodebug] Hides internal variables and
structure

[-quiet] Disables loading messages

[-R <simargs>] Invokes VSIM after compile

[-refresh] Regenerates lib to current

version

[-work <libname>]

Specifies wor k library

[-v <library_file>]

Specifies Verilog source library

Foundation Series ISE 3.1i User Guide

12-13

Foundation Series ISE 3.1i User Guide

Table 12-2 Valid VLOG Commands for Pre VSim do File (Verilog)

Key Argument Description

<filename(s)> Specifies Verilog file(s) (<file-
name(s)>) to be compiled

Examples:

vlog top.v

vlog -work mylib -refresh

Use Automatic do File

When enabled (a check mark in the Value box), the Use Automatic Do
File property automatically generates a macro file that compiles all
VHDL files in your project, starts the simulation process, and initial-
izes the waveform display.

If desired, you may add additional initialization commands in the file

called testhench_file_name.udo. The file is automatically created the
first time the test bench is simulated.

Simulation Run Time

The Simulation Run Time option appears for testbenches/test
fixtures only. Specify how long the simulation should run. The
default is 1000 ns. At the end of the runtime, the wave window
displays the results of the simulation.

12-14 Xilinx Development System

Simulation

Display Options Tab

You can control which ModelSim windows appear when the
ModelSim simulator opens using the selections on the Options tab
(shown in the following figure).

Process Properties x|

WHOL Simulation Options DSDHPDNDM|

Property Hame Value
Display Signal window
Dizplay Wiave window
Display Structure window
Display Source window
Dizplay List window
Dizplay Variahles window
Dizplay Process window
Dizplay Data Flowy window

o | X

(] I Caticel | [Derault

Display Signals Window

Place a check mark (by clicking in the box) in the Value field to have
the ModelSim Signals window display when ModelSim is invoked
by the Project Navigator. The default is to display the Signals
window, which shows the names and current values of signals.

Display Wave Window

Place a check mark (by clicking in the box) in the Value field to have
the ModelSim Wave window display when ModelSim is invoked by
the Project Navigator. The default is to display the Wave window,
which shows a graphical view of the simulation results.

Display Structure Window

Place a check mark (by clicking in the box) in the Value field to have
the ModelSim Structure window display when ModelSim is invoked
by the Project Navigator. The default is to display the Structure
window, which shows a hierarchical view of the design.

Foundation Series ISE 3.1i User Guide 12-15

Foundation Series ISE 3.1i User Guide

Display Source Window

Place a check mark (by clicking in the box) in the Value field to have
the ModelSim Source window display when ModelSim is invoked by
the Project Navigator. By default, the Source window, which contains
the VHDL or Verilog source code, is not displayed.

Display List Window

Place a check mark (by clicking in the box) in the Value field to have
the ModelSim List window display when ModelSim is invoked by
the Project Navigator. By default, the List window, which displays
simulation results in table form, is not displayed.

Display Variables Window

Place a check mark (by clicking in the box) in the Value field to have
the ModelSim Variables window display when ModelSim is invoked
by the Project Navigator. By default, the Variables window, which
shows generics, constants, and variables for VHDL and shows regis-
ters for Verilog, is not displayed.

Display Process Window

Place a check mark (by clicking in the box) in the Value field to have
the ModelSim Process window display when ModelSim is invoked
by the Project Navigator. By default, the Process window, which
shows the run schedule for VHDL and Verilog processes, is not
displayed.

Display Data Flow Window

Place a check mark (by clicking in the box) in the Value field to have
the ModelSim Data Flow window display when ModelSim is
invoked by the Project Navigator. By default, the Data Flow window,
which allows design tracing of VHDL signals and design tracing of
Verilog nets or registers, is not displayed.

12-16 Xilinx Development System

Simulation

Timing Simulation (Post-Route)

Timing simulation is performed after synthesis and Place and Route,
using back-annotation information. The back annotation processes
generate a netlist of library components annotated in a Standard
Delay Format (SDF) file.

Timing simulation verifies that your design runs at the desired speed
for your device under worst-case conditions. It can verify timing rela-
tionships and determine the critical paths for the design under worst-
case conditions. It can also determine whether the design contains
set-up or hold violations.

The procedures for functional and timing simulation are nearly iden-
tical. Functional simulation is performed before the design is placed
and routed and simulates only the functionality of the logic in the
design. Timing simulation is performed after the design is placed and
routed and uses timing information based on the delays in the placed
and routed design. Timing simulation describes the circuit behavior
far more accurately than functional simulation.

Like functional simulation, you must use input stimulus to run the
simulation.

Note For schematic designs, naming the nets during your design
entry is very important for both functional and timing simulation.
This allows you to find the nets in the simulations more easily than
looking for a machine-generated name.

For timing simulation, all logic in the design is converted to simula-
tion primitives (SIMPRIMS). Logic converted to simprims can be
simulated by the Xilinx Verilog or VITAL simulation libraries.

Automatic Macro File Generation and Post-Route
Simulation
To initialize the simulator for post-route simulation, ISE creates a
macro file called testbench_file_name.tdo. This file is similar to the .fdo

file, except that it compiles the post-route VHDL netlist prior to
compiling the testbench. Do not edit the .tdo file.

Foundation Series ISE 3.1i User Guide 12-17

Foundation Series ISE 3.1i User Guide

Disabling Automatic Macro File Generation

If you do not wish to use the automatic macro file generation process
and automatic initialization of the simulator, then uncheck the Use
Automatic Do File property for Simulate Functional VHDL Model or
Simulate Post-Route VHDL Model.

Simulating with a Testbench

Timing simulation is started from a testbench (ideally the same one
used for functional simulation). To run a gate-level simulation from a
testbench, do the following:

1.

12-18

If you do not have an existing testbench/test fixture, create one
using one of the methods described in “Creating a Testbench/
Test Fixture” section. Add the testbench/test fixture file to the
project as described in the “Adding the Testbench/Test Fixture
File to the Project” section.

Click on the testbench/test fixture file in the “Sources in Project”
window.

Under “ModelSim Simulator” in the “Processes for Current
Source” window, select Si nul at e Post Route VHDL

Modul e or Simul ate Post Route Veril og Mdul e.(The
appropriate selection appears depending on whether a VHDL or
Verilog source module is selected.)

The ModelSim simulator opens with the source files compiled
and the design loaded. The testbench or test fixture is also
compiled and loaded.

By default, the ModelSim simulator opens with its command
window, Display Signals window, Display Structures window,
and Display Wave window. You can control which ModelSim
windows open initially by setting ModelSim process properties.
Refer to the “Functional Simulation Process Properties” section
for information on setting ModelSim process properties.

Xilinx Development System

Simulation

Timing Simulation Process Properties

To set properties for Timing simulation of an HDL testbench/test
fixture, use the following procedure:

1. Click on an HDL testbench/test fixture in the Sources Window.

2. Right-click on Si mul at e Post - Rout e VHDL Model under
ModelSim Simulator in the Processes window.

3. Select Properties from the list box that appears.

4. For VHDL sources, the VHDL Process Properties dialog box
appears. For Verilog, the Verilog Simulation Options dialog box
appears. Both dialog boxes contain the same options.

Process Properties x|

YHDL Sirnulation Dptions |

Property Hame Value -
Frevsim Do File
Use Automatic Do File v
Delay Factar Maxirmum
Simulation Run time 1000 ns

Display Signal window
Display Wyave window
Display Structure window
Dizplay Source window

RUIE R eS|

|

Qg I Cancel | Default |

Timing Simulation Options

The properties you can set for the Timing simulation process are the
same as those listed for functional simulation (see the “Functional
Simulation Process Properties” section) plus one additional property:
Design Unit Name.

Design Unit Name

The Design Unit Name property allows you to specify the name of
the design unit you want to simulate. By default, this field is set to
“testbench”.

Foundation Series ISE 3.1i User Guide 12-19

Foundation Series ISE 3.1i User Guide

Creating a Testbench/Test Fixture

12-20

A testbench/test fixture is a separate file with VHDL or Verilog code
that connects to the inputs and outputs of a design under test. In a
testbench/test fixture, you can provide stimuli and response informa-
tion that can be used for running ModelSim simulation.

There are three ways you can create a testbench (VHDL) or test
fixture (Verilog) for simulation:

1. Use the provided testbench generator tool HDL Bencher ™ from
Visual Software Solutions (VSS). (Refer to the “Using StateBench”
section of the “State Diagrams” chapter for information.)

2. Write it from scratch.

3. Use the Testbench/Test Fixture template generator provided in
the ISE Project Navigator.

HDL Bencher

HDL Bencher is a testbench/test fixture creation tool from Visual
Software Solutions (VSS).

Acquiring HDL Bencher

The Foundation Series ISE 3.1i installation does not automatically
install the HDL Bencher. You can acquire and/or access these tools as
described in the following sections.

All sales, support, and licensing of HDL Bencher is done through
VSS, Inc. This includes support for the Xilinx Edition. Go to their
website at ht t p: / / www. t est bench. com or der . ht mor contact
them at (800) 208-1051.

All Foundation Series ISE users qualify for a $500 discount on the
purchase of the HDL Bencher Complete Edition. To receive the
discount, you need to provide your Host ID, which is located in HDL
Bencher’s Hel p — About dialog box. To purchase the HDL Bencher
Complete Edition, contact Visual Software Solutions at (954) 370-9030
or e-mail sales@testbench.com.

Xilinx Development System

Simulation

Xilinx Edition

The Xilinx Edition of HDL Bencher is provided free with your Foun-
dation Series ISE software. You must install it from the VSS CD to
make it available from the Project Navigator.

The Xilinx Edition of HDL Bencher can handle 12 signal assign-
ments, 6 port signals, and 8-bit maximum bus width. If you register
with VSS when you install the Xilinx Edition, the limits for the Xilinx
Edition of HDL Bencher are increased to 21 signal assignments, 7 port
signals, and 8-bit maximum bus width.

Signal assignments are counted any time a signal explicitly gets
assigned after the initial (clock cycle 0) assignment. Clock transitions
are not counted. A bus changing state counts as one signal assign-
ment. Port signals are each port declared in the top level entity of the
design. A std_logic_vector port type counts as one port signal.

Use the following procedure to install the Xilinx Edition of HDL
Bencher:

1. Insert your ALLSTAR VSS CD into your PC’s CD-ROM drive.

2. Inyour Windows Start menu, select, Start — Prograns —
Xil'inx Foundation Series |SE 3.1i - Partner
Products - Install HDL Bencher Xilinx Edition (CD
Requi red) .

3. Follow the directions in the installation screens.

Pre-Existing or Upgraded HDL Bencher Tool

You do not need to install the Xilinx limited edition of HDL Bencher

to add automated testbench/test fixture creation to Foundation Series
ISE. If you currently have a fully functional version of HDL Bencher

or if you obtain it from VSS later, you can instruct Foundation Series

ISE to use it with your project.

Use the following procedure to identify the HDL Bencher installation
you want to use with Foundation Series ISE:

1. From the Project Navigator Menu bar, select Edi t - Prefer -
ences.

2. Inthe Preferences window, select the Partner Tools tab.

Foundation Series ISE 3.1i User Guide 12-21

Foundation Series ISE 3.1i User Guide

Preferences =]

Generall Editor I Processes Partner Tools |

— Locations of Partner Executable:

Model Tech Simulatar:
I\M odeltech_xe_5 3atwind2xoem'ModelSim Browse...

W55 Test Bencher

Id:\HB1D2><2\tb.exe Browse. . |
W55 State Machine E ditar:
Id:\sc:502x2\8c:.exe Browse... |

QK I Cancel | Lol |

3. IntheVSS Test Bencher field on the Partner Tools tab, enter
the path to the program executable for an existing installation of
StateCAD/ StateBench. Or, click Br owse to select the path.

Complete Edition

You can obtain the unlimited, fully-functional version of HDL
Bencher from VSS. Contact them directly for information concerning
purchasing and licensing.

All Foundation Series ISE users qualify for a $500 discount on the
purchase of the HDL Bencher Complete Edition. To receive the
discount, you need to provide your Host ID, which is located in HDL
Bencher’s Hel p — About dialog box. To purchase the HDL Bencher
Complete Edition, contact Visual Software Solutions at (954) 370-9030
or e-mail sales@testbench.com.

Launching HDL Bencher

Use the following procedure to create a testbench/test fixture with
HDL Bencher:

1. Click on a Verilog, VHDL, or schematic source module in the
Sources window.

2. Double-click on Launch HDL Bencher Tool under Design
Entry Utilities in the Processes window.

3. HDL Bencher opens with the selected source file already loaded
as shown in the following figure. Just update the waveform and
export it to create a complete, simulatable testbench.

12-22 Xilinx Development System

Simulation

COUNTER_TB.TBEW - HDL Bencher{tm]

File Edit “iew DOptions Help
=,) [z al
=1 E B o | ol) 16 d0) 2 & & | Bt |
E] 5 Edit HDL Bescale | = i iy 0jspl 9
Inrgieire I Tes’:gglgtch i || st Sclvturce Teirfwci:r‘?ge Gtatistite D||!|S I::? T | Eﬁ;:?y Zoomin | Zoom D SRR
Tire fng)
CLK M 2 3 4 i f T g 9 i1 il 12 13 it f
IRESET — 6 d | | | | | | | | | | | |
i t t t t t t t t t t t .
IcE oy : ' 1 | | | | | | | | | |
ILoap = | M \a | | | | | | | | | | |
IDIR]| I I 1 I I [I I I I I I I |
JDIND:3] |k I & & I I I I I I I I I I I
IcounTp3] <21 | i M o HE o e e e A & T e '
4 »
For Help, press F1 i
& Counter.vhd - Edit HDL Source [=1 |{§ & CATEENCHAVHDLAMTI_OKACOUNTER_TB.VHD - Ed... M=l E3 I
Save Find/Heplace.. Egit Save Find/Heplace.. Egit
process (CLE, RESET) =il F- c:vTeENCH:VHDL\NTI_OK) COUNTEE_TE. VHD ﬂ
begin -— WHDL Test Eench created by
if FEESET='l' then -- ¥isual Zoftware Solution's HDL Bencher 1.0Z.x1
COUNT <= "0000"; -- Product infojfupdates: . testhench. com
elzif CLE='1l' and CLE'event then —— 3upport: supportftesthench. com
if LOAD='l' then -- Zales: salesftestbench.cow / call (954) 370-9030
COUNT <= DIN: -— Tue Feb 15 19:39:12 zZ000
else
if CE='l' then LIERLRY IEEE:
if DIR='l' then TZE IEEE.ztd logic_ll6d.all:
COUNT <= COUNT + 1: TSE IEEE.std_logic_arith.all;
else USE IEEE.std logic_unsigned.all:
COUNT <= COUNT - 1;
end if; LIERALRY ieee:;
end if; TZE IEEE.3TD_LOGIC_TEXTIO.ALL:
end if; ~ USE STD.TEXTIO.ALL: ~
KNl 37| K10 o

Figure 12-2 HDL Bencher Waveform

Refer to the content-sensitive help and basic tutorial available
from the HDL Bencher Help menu to get you started using the
HDL Bencher tool.

4. Upon completion of the testbench/test fixture, HDL Bencher
writes the testbench/test fixture file into the ISE project directory.

HDL Bencher also writes a waveform stimulus/response file
(.tbw) into the project directory.

5. You must add the testbench/test fixture file to your project as a
testbench/test fixture source (see the*Adding the Testbench/Test
Fixture File to the Project” section for instructions). You can add
the waveform file as a user document.

Foundation Series ISE 3.1i User Guide 12-23

Foundation Series ISE 3.1i User Guide

12-24

Testbench/test fixture files written by HDL Bencher work with the
ModelSim simulator as described in the “Functional Simulation”
section section.

After the testbench/test fixture has been added to the project, it will
appear in the Sources window immediately below its associated
source file. You can double-click on the testbench/test fixture file to
re-open HDL Bencher.

Testbench/Test Fixture Template Generator

Foundation Series ISE includes an automatic testbench generator for
VHDL modules and an automatic test fixture generator for Verilog
modules. Use the following procedure to generate a testbench or test
fixture:

1. Click on a VHDL, Verilog, or schematic source module in the
Sources window.

2. ForaVHDL testbench, double click on Vi ew VHDL Test bench
Tenpl at e under Design Entry Utilities in the Processes window.

For a Verilog test fixture, double click on Vi ew Veril og Test
Fi xt ure Decl ar ati on under Design Entry Utilities in the
Processes window.

3. Atestbench template or test fixture declaration immediately
appears in the Report Viewer for the selected source module.
Because the Report Viewer window is read-only, you must do the
following to use the template/declaration in your project:

a) SelectFil e - Save As from the Report Viewer menu.

b) Save the file with any name you choose with the extension
.vhd for a VHDL testbench or .v for a Verilog test fixture.

c) Add the necessary code to complete the testbench/test
fixture.

d) Add the testbench or test fixture to your project (see the
“Adding the Testbench/Test Fixture File to the Project”
section for instructions).

Xilinx Development System

Simulation

Adding the Testbench/Test Fixture File to the Project

To use a testbench or test fixture for simulation, you must add it to
the project after you create it. Use the following procedure to add a
testbench/test fixture file to your project.

1. SelectProject - Add Sour ce from the Project Navigator
menu bar.

2. Browse to the testbench/test fixture file to select the testbench/
test fixture to be added. Then click Open.

3. Select VHDL Test Bench orVerilog Test Fixture,as
appropriate, from the Choose Source Type dialog box. Then click
K

Choose Source Type x|

counter_th.vhd is which source bype?
The suffix iz ambiguous as to ype.

WHOL Madule
WHDL Package o]
WHDL Test Bench

Caticel |

4. Select the source module from the list in the Associate with
Source dialog box to associate the testbench/test fixture with that
source. Then click OK.

Associate with Source x|

zzociate counter_th.vhd with the zource that it
affects.

abel -
azdf j oK. I
CoLnker :

my_andZ :;I Cancel |

5. The testbench/test fixture is added to the Sources in Project
window under the associated source file.

Foundation Series ISE 3.1i User Guide 12-25

Foundation Series ISE 3.1i User Guide

12-26

Conventions

Whichever method you use to create a testbench or test fixture for
simulation, there are certain conventions that should be followed to
ensure that it works properly with Foundation Series ISE.

Testbench Naming Conventions

ISE relies on the following testbench naming conventions:

e The entity name of a testbench should be t est bench.

* The architecture name of a testbench should be behavi or .

e The instance name of the component instance for the unit under
test (the design being simulated) should be uut .

All testbench templates generated by ISE follow these naming
conventions. You are free to ignore these conventions if you want.
However, if you do, ISE will not automatically initialize the simu-
lator. (See the next section for details on this feature). Also, post-route
simulation may be restricted.

Port Type Requirements

With ISE, you should use the IEEE 1164 types std_logic and
std_logic_vector for the top-level 1/0 ports for any design. Place and
route tools that generate post-route VHDL models are usually hard-
coded to use these data types. If you do not follow this convention, it
is likely that your testbench will not "bind" to the design when post-
route simulation is performed.

Testbench Design Overview

A VHDL testbench is just another VHDL entity. One that instantiates
the design that you are creating and provides stimulus to it. A test-
bench can also verify that the correct outputs are generated by your
design.

Broadly speaking, VHDL testbenches are either self-contained or non
self-contained. Self-contained testbenches generate the entire stim-
ulus using VHDL constructs, whereas non self-contained testbenches
use VHDL textio functions to perform file input/output. Non self-
contained testbenches read stimulus from a text file, apply it to the

Xilinx Development System

Simulation

inputs of the design, and then read the expected outputs of the design
from a file, comparing them to the actual outputs.

The following section provides an example of a self-contained test-
bench for an 8-bit Adder.

Example Testbench for an 8-bit Adder

As an example of a fully self-contained testbench, consider the test-
bench shown below. This testbench is a simple design that performs
unsigned addition on two 8-bit operands: din0 and dinl, producing
the output named dout.

library ieee;

use ieee.std logic_1164.all;

library dataio;

use dataio.std |ogic ops.all;

entity testbench is

end testbench;

architecture behavior of testbench is
conponent add8

port (
din0 : in std |logic _vector(7 downto 0);
dinl : in std |logic_vector(7 downto 0);

dout : out std _logic_vector(7 downto 0));
end conponent;

constant vector_period : time := 100 ns;
signal dinO: std logic vector(7 downto 0) := (others =>"'0");
signal dinl: std logic vector(7 downto 0) := (others =>"'0");
signal dout : std_|logic vector(7 dowmto 0);

begin

uut: add8 port nap(din0O, dinl, dout);

p_stim process

begin

for i in O to 255 |oop
for j in O to 255 |oop
if (i +j <= 255) then

din0 <= to_vector(8, 1);
dinl <= to_vector(8, j);
wait for vector_ period;
assert (dout = to_vector(8, i+j))
report "Expected dout = "& integer’inmage(i+j)&
" Actual dout =" &

Foundation Series ISE 3.1i User Guide 12-27

Foundation Series ISE 3.1i User Guide

end;

12-28

i nteger’image(to_integer(dout)) severity error;

end if;
end | oop;
end | oop;
end process;

Looking at the entity declaration, you can tell you are looking a test-
bench, since this entity has no inputs and no outputs. In essence, a
testbench always acts as the whole “outside world” to the design
being tested.

The architecture declaration section declares a constant called
vector_period, which is used to time the testbench. Explicit time
values could have been spread throughout the testbench, but using
constant(s) makes it much easier to modify the testbench later if the
timing characteristics of the design change significantly. Also in the
architecture declaration is a component declaration for the design
and signal declarations for all input and output signals. Initial values
are provided for the inputs.

It is good practice to provide initial values for signals. If you do not
and then forget to make sure that the signal has a valid value at time
0, the signal defaults to the value 'U' (assuming std_ulogic or
std_logic types). This in turn may cause one or more outputs of your
design to become fixed at the value 'X'. Since testbenches can often
grow to have more lines of code than the design you are testing, it is
important to follow good coding practices.

In the architecture body of the testbench, the add8 design is instanti-
ated and then the stimulus is provided using a single process. Note
that VHDL allows you to create the loop variables i and j simply by
using them. This represents a rare violation of VHDL style of strong
type checking and self-documenting code. A subtle point to notice
here is that i and j are created implicitly as unbounded integers, even
though they are used for values in the range of 0 to 255 only. If the
expected declarations for i and j had been used:

variable i, j : integer range 0 to 255;

the testbench would generate a fatal error during simulation as soon
as the sum of the two values exceeded 255. This would occur during
execution of the line:

if (i +] <= 255) then

Xilinx Development System

Simulation

which is intended to limit the range of input combinations applied to
the design. Since the inputs and output of the design are
std_logic_vectors, the conversion functions to_vector and to_integer
are used to convert back and forth to integer values. These functions
are in the package dataio.std_logic_ops.

An assertion is used to check the output of the adder. The assert state-
ment does what it implies. It asserts that the given condition must be
true. If the condition is not true, the text string that follows the report
keyword is output in the console window of the simulator. A severity
level is normally displayed along with the report string. You can use
the severity level of your choice. Valid choices are note, warning,
error, or fatal. VHDL simulators usually allow you to set the simu-
lator to stop when an assertion at a certain severity level occurs.
Integer’image is a construct that converts an integer value into a
string representation. An example of what this would display if the
assertion failed is:

** Error: Expected dout = 27 Actual dout = 31
Tinme: 28000 ns Iteration: 2 Instance:/

Foundation Series ISE 3.1i User Guide 12-29

Foundation Series ISE 3.1i User Guide

12-30 Xilinx Development System

Synthesis

Chapter 13

Overview

All design flows in Foundation Series ISE include synthesis. The
synthesis stage creates optimized EDIF netlists used for placement
and routing into Xilinx devices.

This chapter contains the following sections:
o “Overview”

e “Changing Synthesis Tools”

e “ABEL Synthesis (CPLDs Only)”

e “XST Synthesis”

e “FPGA Express Synthesis”

Three synthesis tools are available in Foundation Series ISE: ABEL,
XST (Xilinx Synthesis Technology), and FPGA Express from
Synopsys. The targeted device and intended sources (VHDL/
Verilog/ABEL code or schematics) for the design are main consider-
ations in choosing a synthesis tool for your project. If your project
targets a Virtex, VirtexE, Virtex2, Spartan2, or any Xilinx CPLD device
and does not mix VHDL and Verilog sources, you can use either the
XST or FPGA Express tool. If you want to target any Xilinx XC4000
family, Spartan, or SpartanXL device or mix VHDL and Verilog code
in your project, you must use FPGA Express.

Regardless of the synthesis tool, the overall synthesis procedure is the
same. First, you select a source in the Source window and then select
a synthesis process in the Process window.

If desired, you can allow the automake feature of Foundation Series
ISE to handle all the synthesis for your design. Just select a source in

Foundation Series ISE 3.1i User Guide — Online 13-1

Foundation Series ISE 3.1i User Guide

the Source window and then click any of the Synthesize process in
the Process window. All the necessary synthesis processes are then
automatically run to get the design source to the requested stage.

You may want to add timing constraints and view synthesis results to
fine-tune your design for the targeted device before you implement it
in that device. To do this, Foundation Series ISE includes support for
setting synthesis process properties, using constraints files, and
viewing synthesis reports. The available synthesis processes (listed
under Synt hesi ze in the Process window) and the process proper-
ties available for the Synthesize process vary based on the synthesis
tool and device you select for your project. The “XST Synthesis”
section describes the XST processes and the “FPGA Express
Synthesis” section describes the FPGA Express processes.

For both tools, the Synthesize process performs the following tasks:
e Creates a VHDL or Verilog netlist for schematic sources
e Analyzes and Verifies source code

e Synthesizes logic from VHDL, Verilog, and ABEL source code
and from schematic netlists to target a specific Xilinx device

e Generates a VHDL or Verilog netlist for functional simulation
(FPGA Express only)

e Optimizes logic for speed/area, etc. as directed by design
constraints

e Creates and exports an EDIF netlist optimized for the targeted
device

e Analyzes and reports on timing for the design

13-2 Xilinx Development System

Synthesis

Changing Synthesis Tools

You select a synthesis tool when you create your project as described
in “Selecting a Device and Synthesis Tool” section. At any point in the
design process, you can change the synthesis tool designated for the
project using the procedure described in this section. Before you
change to a different synthesis tool, you need to be aware of the
following consequences:

* You should archive your project or take a snapshot of it before
you change synthesis tools if you want to retain the data gener-
ated by the initial synthesis tool. Refer to the “Snapshots” chapter
for information on archives and snapshots.

« No automatic processing is done when a different synthesis tool
is selected. You must re-run synthesis on your design to have the
design processed with the new synthesis tool.

e Be aware that when you change from one synthesis tool to
another, you may need to make other changes to your design. For
example, if you change from XST VHDL to XST Verilog, all your
VHDL source modules become invalid for the XST Verilog flow.
Or, if you want to change from a Virtex device to a Spartan device
and are currently using the XST synthesis tool. You would need
to change to the FPGA Express tool because Spartan devices are
not supported in XST.

Use the following procedure to change synthesis tools after you
create your project:

1. Click on the Device/Synthesis Tool line in the Source window to
highlight it.

= 2=
Sources in Praject: |
~~[B] Unlitled

e (3 B0 BE25E-G - ¥5T WHDL:

TR e | Bl Fiev... | g snapsh... | El Librar.. |

Foundation Series ISE 3.1i User Guide 13-3

Foundation Series ISE 3.1i User Guide

2. Select Sour ce - Properti es from the Project Navigator menu
to display the Device Properties dialog box. (Or, you can double-

click on the Device/Synthesis Tool line to display this dialog
box.)

,7—’—
4

Device Family
Device
Synthesizs Tool

W0 BG2SE-6
RET WHDOL

3. When the Device Properties dialog box appears, click in the right
side of the Value field for the Synthesis Tool property to enable a
pull-down menu to make the selection.

Device Family =l
Device

Y50 B256-6
FPGA Express WHDL

Synthesis Tool

13-4 Xilinx Development System

Synthesis

4. Select a synthesis tool from the Value pull-down menu.

Device Properties |

Froject Properties |

Property Hame Value
Device Family Wirtex
Device W50 BG256-6
Synthesizs Tool HST WHDL -TJ}

HET WHOL

HET Werilog

FPGA Express WHDOL
FPGA Express YWerilog

0K | Cancel | Default |

The selection of a synthesis tool is closely linked to the Xilinx device
family and sources (VHDL, Verilog, schematic, ABEL-HDL) you
want to include in your project. For more information on the relation-
ship between the device, synthesis tool, and design entry tools refer
to “Selecting a Device and Synthesis Tool” section.

Schematics are supported in all tools. Schematics are first netlisted to
HDL and then synthesized. The tools create an HDL functional
model (netlist) of the schematic for synthesis as follows:

e ABEL, XST VHDL, and FPGA Express VHDL create VHDL func-
tional models for schematics

e XST Verilog and FPGA Express Verilog create Verilog functional
models for schematics

Note Both FPGA Express VHDL and FPGA Express Verilog support
mixed VHDL and Verilog designs. For FPGA Express, the designation
“VHDL” or “Verilog” refers only to how any schematic netlists in the
project are compiled.

Foundation Series ISE 3.1i User Guide 13-5

Foundation Series ISE 3.1i User Guide

ABEL Synthesis (CPLDs Only)

ABEL synthesis applies only to ABEL-HDL modules in CPLD
designs. The ABEL-XST and ABEL-BLIF synthesis tools are described
in the following sections.

ABEL-XST

The ABEL-XST synthesis flow is provided as a higher-performance
ABEL flow. The optimization and processing tools used in the ABEL-
XST flow are generally more efficient, modern, and robust than the
tools that have long been provided in the traditional ABEL-BLIF flow.
Additionally, the ABEL-XST flow allows users greater control over
the synthesis of their ABEL-HDL designs. This includes a special
WYSIWYG feature designed to preserve the original logic equation
structure in an ABEL design throughout implementation into the
CPLD device.

Projects that use the ABEL-XST synthesis tool must target a CPLD
device. They can include the following design entry sources:

e+ ABEL-HDL

* Schematics

e State Machines

e LogiBLOX Modules

ABEL-HDL and schematic sources are netlisted to VHDL and are
synthesized using XST.

The following figure shows the Process window for an ABEL source
in an ABEL-XST flow. You can right click on many of the processes to
access a Process Properties dialog box containing the options you can
set for the selected process. Within the Process Properties dialog box,
you can use the F1 help function to display detailed help information
on the options.

13-6 Xilinx Development System

Synthesis

2=

User Conztraints
3 EdtUCFfile
- Canstraints Editar
Create Schematic Symbol
=243 Compile Design
=] Check Sprtax
Compiler Listing
Carmpile Logic
=[] Compiled Equations
Interpret Feedbacks
Interpreted E quations
Reformat Logic
WHOL Formatted Listing
5] Optimize Hierarchy
‘Wiew Synthesis Report
= G Imnplernent Design
=]

o

.
0000

9

Translation
Tranzlation Report
Fitter
Fitter Report
i O Lock Fing
E| ----- O Timing
Tirming Feport
= &F LaunchTools
B Timing Analyzer
B3 Post Fit ChipWiewer
EIG Create Programming File
i] LaunchJTAG Programmer

B2 Process View I

Figure 13-1 Process Window for an ABEL Source in the ABEL-
XST Flow

O

ABEL-BLIF

The ABEL-BLIF flow provides access to traditional ABEL compilation
tools intended to produce compatible results for existing ABEL
designs. Projects that use the ABEL-BLIF synthesis tool must target a
CPLD device. They can include the following design entry sources:

e ABEL-HDL
* Schematics

* State Machines

Foundation Series ISE 3.1i User Guide 13-7

Foundation Series ISE 3.1i User Guide

13-8

e LogiBLOX Modules

ABEL-HDL sources are translated to BLIF before synthesis where
they are optimized and directly netlisted for implementation without

further synthesis.

Schematic sources are netlisted to VHDL and synthesized using XST.

The following figure shows the Process window for an ABEL source
in an ABEL-BLIF flow. You can right click on many of the processes to
access a Process Properties dialog box containing the options you can
set for the selected process. Within the Process Properties dialog box,
you can use the F1 help function to display detailed help information

on the options.

2=

Processes for Current Source:

in Entry Utilties:
User Conztraints

Edit LICF file

Constraints Editor

o

Create Schematic Symbal
[—:IG Compile Design
E-%3 Check Syntax
Compiler Listing
=-¥3 Compile Logic
] Compiled Equations
----- Reduce Logic

O

B
Reduced Equations
=43 Implement Design
= Transzlation

O

: Translation Repart
%3 Fitter
‘ Fitter Report
Lock Pins

=-¥3 Timing
w[2] Timing Report
Launch Tools
8 Timing &nalyzer
| Post Fit Chiptiewer
[y Create Programming File

B2 Process View I

Figure 13-2 Process Window for an ABEL Source in the ABEL-

BLIF Flow

Xilinx Development System

Synthesis

XST Synthesis

The Xilinx Synthesis Technology (XST) tool synthesizes HDL designs
to create EDIF netlists optimized for the targeted Xilinx device. You
can control the synthesizing of your design by setting process proper-
ties and using constraints files prior to synthesis.

XST supports two flows: XST VHDL and XST Verilog.

XST VHDL

Projects that use the XST VHDL synthesis flow must contain only
VHDL sources. Schematics are netlisted to VHDL prior to synthesis.
The Synthesize processes for XST VHDL are shown in Figure 13-3.

x|

Processes for C

Usger Constraints

i O Edit UCF file
3 Conshrairts E ditor

[F WiewYHDL Test Berch Template

] Launch HDL Bencher Tool

Yiew YHOL Instantiabion Template

¥4 Create Schematic Symbol

- Launch ModelSim Simulator
S-¥3 Synthesize

Wi Synthesis Feport

¥% Analyze Hierarchy -

% Check Syntax
23 Implement D esian

S

E-¥A Translate
: Translation Report
T Map
2Bl tdap Report
a4 Pre-Route Static Timing
i wo[E] Pre-Route Static Timing |
E| ----- A Place-and-Route

~[E] Place-and-Route Report =
- . Ll_‘
B Process iew I

Figure 13-3 XST VHDL Synthesis Processes

Foundation Series ISE 3.1i User Guide 13-9

Foundation Series ISE 3.1i User Guide

13-10

XST Verilog

Projects that use the XST Verilog synthesis flow must contain only
Verilog sources. Schematics are netlisted to Verilog prior to synthesis.
The Synthesize processes are shown in Figure 13-4.

x|

Processes for Curent Sounce:

El@ 1Entry |

' ger Constraints

Desig
e
Loy EditUCF file

Conztraints Editar

: Wiew Werlog Test Fisture Declarations
| Launch HOL Bencher Tool
X% Create Schematic Symbal
.| Launch ModelSim Simulator
= Synthesize
~[F Wiew Sprthesis Feport
T Analyze Hierarchy
3 Check Syntax
E--¥3 Implement Design
EG Translate
Translation Report
-5 Map
it ap Report
=-¥3 Pre-Route Static Timing
Pre-Route Static Timing |
-3 Place-and-Foute
‘ | B

-

B Process Wiew I

Figure 13-4 XST Verilog Synthesis Processes

Selecting a Top-Level Source for Synthesis

To select a top-level source for synthesis, simply click on the desired
source in the Source window. That source and all sources below it in
the design hierarchy are then processed when a synthesis process is

invoked in the Process windowv.

To synthesize the entire design, select the top-level design source.
Running synthesis on lower-level design sources is useful for
checking whether the source is synthesizable and for checking
inferred macros. You can also get timing and size estimations from

running these partial designs.

Xilinx Development System

Synthesis

XST Synthesis Processes

You can invoke a synthesis process within the Project Navigator as
follows:

1. Select a top-level source in the Sources window. Refer to
“Selecting a Top-Level Source for Synthesis” section for informa-
tion on top-level sources.

2. Double-click a synthesis process. (Synt hesi ze or any process or
report listed under it) in the Processes window.

Prior to creating the optimized EDIF netlist for the use by the imple-
mentation tools, you can optionally do the following to check/verify
your design:

e Check the syntax of the HDL code.

Double-click Check Synt ax under the Synthesis process in the
Process window. Errors are reported in the Transcript window.

« Analyze the HDL code for correct syntax and verify that it
follows the correct HDL policy for the selected synthesis tool.
Verify the port connections between files.

Double-click Anal yze under the Synthesis process in the Process
window. Errors are reported in the Transcript window.

» Set synthesis options that specify design-specific constraints to
produce the desired performance in the targeted device.

If the default constraints are not sufficient for your requirements,
you can set performance constraints, attributes, and optimization
controls before synthesizing the design. Refer to “Setting XST
Synthesis Options” section for information. You may need to try
different values multiple times before you find the right value to
meet your design requirements.

Viewing Synthesis Results

A summary of the synthesis results is printed in the Project Navi-
gator’s transcript window as synthesis is performed. You can view a
report on the synthesis results in the Reports Viewer using the
following procedure:

1. Select a source in the Source window.

Foundation Series ISE 3.1i User Guide 13-11

Foundation Series ISE 3.1i User Guide

13-12

2. Double-click on Vi ew Synt hesi s Report in the Process
window.

If synthesis had not been previously run or if the previous results are
out-of-date, the necessary processes are automatically run before the
report is opened in the Reports Viewer.

The XST Synthesis Report includes sections that list the current
synthesis property settings, processing status, the HDL synthesis
report, and a Timing Report.

Constraining the Design

Before you start synthesis to optimize your design for the targeted
device, you can optionally set performance constraints, attributes,
and optimization controls. Entering your design requirements as
constraints can improve the placement and routing results of your
design.

With XST you can control synthesis in the following ways:

» Using the Synthesis process properties described in the “Setting
XST Synthesis Options” section.

« Entering XST-specific constraints and attributes directly into the
HDL code. Refer the XST User Guide for information on XST-
specific constraints.

e Entering constraints in a UCF file. Refer to the XST User Guide for
information on XST and UCF constraints.

« Entering constraints in the XST constraints file. Refer to the XST
User Guide for detailed information on the XST constraints file.

Changing Speed Grades

A typical method to get your design to meet timing requirements is to
try various speed grades for the targeted device. For FPGAs you can
change the speed grade prior to XST synthesis in either of the
following ways:

« Right-click on the Device/Synthesis Flow line in the Source
window. Select Pr oper ti es from the pull-down menu. When
the Device Properties dialog box appears, use the pull-down
menu in the Device field to change the speed grade for the

Xilinx Development System

Synthesis

device. (The last two characters of the device name identify the
speed grade.)

* Select a source in the Source window. Right-click on Synt he-
si ze in the Process window. When the synthesis Process Proper-
ties dialog box appears, selectthe Xi | i nx Specific Options
tab. Enter a new speed grade in the Value field for the Speed
Grade for Timng Anal ysis option.

Note You can only make speed grade selections/changes for CPLD
devices after synthesis. For CPLDs, the speed grade is set as an imple-
mentation property. (Select a source in the Source window. Right-
clickon | npl ement Desi gn in the Process window. Enter the speed
grade in the Speed G ade field of the Desi gn tab.)

To determine the devices and corresponding speed grades installed
on your PC, do the following:

1. Select the Device/Synthesis Tool line in the Source window.
2. SelectDi spl ay Device Information inthe Process window.

3. The Report Viewer opens with the list of installed devices.

Setting XST Synthesis Options

You can set synthesis process options to control XST synthesis. To
access the XST synthesis process properties, do the following:

1. Select the desired top-level source in the Source window.

2. Right-click on Synt hesi ze (or Opti m ze Hi erarchy with
ABEL-XST for ABEL-HDL sources) in the Process window.

3. Select Properti es to display the Process Properties dialog box.

The synthesis Process Properties dialog box for XST contains three

tabs: Synthesis Options, HDL Options, Xilinx Specific Options. You
can use the F1 help function to display detailed descriptions of the
options on each tab.

Note The options set in the synthesis Process Properties dialog box
are global properties for your design. If you want to set source-specific
properties, you need to enter them in an XST constraints file. Refer to
the XST User Guide for information on XST constraints files.

Foundation Series ISE 3.1i User Guide 13-13

Foundation Series ISE 3.1i User Guide

Synthesis Options

The available Synthesis Options depend on the targeted device and
whether VHDL or Verilog is used. An example list of options (for a
Virtex XST VHDL project) is shown in the following figure.

Process Properties |
Synthesis Options | HDL Diptions | Xilins Specific Options |
Property Hame Value
Optimization Goal Speed] x
Optimization Effort Lo
Constraints File
Inference Report Detail Marmal
Caticel | [Derault

Figure 13-5 XST Synthesis Properties (Virtex)

You can set the following global synthesis options for XST processing:

e Optimization Goal

Value: Speed (default) /7 Area

The option defines the synthesis optimization strategy. By
default, XST optimizations are speed-oriented.

e Optimization Effort

Value: Low (default) / High

This option defines the synthesis optimization effort level.
Allowed values are Low (hormal optimization) and High (higher
optimization).

13-14

Xilinx Development System

Synthesis

e (CPLDs only) Flatten Hierarchy
Value: Disabled (default) / Enabled

For CPLDs, to obtain a completely flattened design, enable the
following options:

+ Flatten Hierarchy enabled (Synthesis Options)
¢+ Macro Preserve disabled (Xilinx Specific Options)
¢+ XOR Preserve disabled (Xilinx Specific Options)
e Constraints File path
Value: filename and path

You can optionally enter the name of a constraints file (an XST
constraints file) containing XST-specific constraints. These
constraints are used by XST processing and can include module/
entity-specific constraints.

e Inference Report Detail
Value: Normal (default) /7 Low 7/ Verbose).

This option controls the amount of detail reported on inferred
macros in the Synthesis Report.

e (Verilog Only) Case Implementation Style
Value: Full (default) / Parallel / Full-Parallel

This option sets the case implementation style directive for
synthesis.

Refer to the XST User Guide for detailed information on and examples
of these properties.

Foundation Series ISE 3.1i User Guide 13-15

Foundation Series ISE 3.1i User Guide

HDL Options

The available HDL Options depend on the targeted device and
whether VHDL or Verilog is used. An example list of options (for a
Virtex XST VHDL project) is shown in the following figure.

Note A check mark in a Value check box enables the property. A
blank check box indicates that the property is disabled. Click in the
Value box to enable/disable the property.

Process Properties il
Sunthesiz Options HOL Options | iling 5 pecific Options I
Property Hame Value =
Fa Encading Algorithm Auta] -
FSM Flip-Flop Type]
Extract RAM YWes
RAM Style Auto
Extract Muxes YES
Mz Style Auto
Decoder Extraction I
Priority Encader Extraction YES
Shift Register Extraction I
Logical Shifter Extraction |
¥OR Collapsing] Ad
0K I Cancel | [efaut |

You can set the following HDL Options for XST synthesis:
e FSM Encoding Algorithm

Values: Auto (default) / One-hot / Compact / Sequential /7 Gray
/ Johnson / User / none)

This option selects the finite state machine (FSM) encoding tech-
nique to be used. The default is Aut 0, meaning that the best
coding technique is automatically selected for each individual
state machine. User indicates a user-customized technique. Refer
to Table 13-1 for descriptions of the standard FSM encoding tech-

niques.

13-16

Xilinx Development System

Synthesis

Table 13-1 State Encoding Techniques

Technique

Description

One-Hot

One-hot encoding associates one code bit, and also one flip-flop, to
each state. At a given clock cycle during operation, one and only
state variable is asserted. Only two state variables toggle during a
transition between two states. One-hot encoding is very appropriate
with most FPGA targets where a large number of flip-flops are
available. It is also a good alternative when trying to optimize speed
or to reduce power dissipation.

Gray

Gray encoding guarantees that only one state variable switches
between two consecutive states. It is appropriate for controllers
exhibiting long paths without branching. In addition, this coding
technique minimizes hazards and glitches. Very good results can be
obtained when implementing the state register with T or JK flip-
flops.

Compact

Compact encoding consists of minimizing the number of state vari-
ables and flip-flops. This technique is based on hypercube immer-
sion. Compact encoding is appropriate when trying to optimize
area.

Johnson

Like Gray, Johnson encoding shows benefits with state machines
containing long paths with no branching.

Sequential

Sequential encoding consists of identifying long paths and applying
successive radix two codes to the states on these paths. Next state
equations are minimized.

e FSM flip-Flop Type
Value: D (default) / T /7 JK

This option specifies whether a state register in a FSM should be
implemented as a D, T, or JK flip-flop.

e Extract RAM
Value: Yes (default) / No

The Extract RAM property allows you to enable (Yes) or disable
(No) RAM macro inference.

Foundation Series ISE 3.1i User Guide 13-17

Foundation Series ISE 3.1i User Guide

13-18

RAM Style
Value: Auto (default) / Distributed / Block

The RAM Style property controls the way the macrogenerator
implements the RAM macros. When set to Auto (the default),
XST looks for the best implementation for each considered
macro. When set to Distributed, RAM macros are specified as
Distributed RAM. When set to Block, RAM macros are specified
as Block RAM.

Extract Muxes
Value: Enabled (default) / Disabled

This option enables or disables multiplexer macro inference.
When enabled, for each identified multiplexer description, XST
creates a macro or optimizes it with the rest of the logic, based on
internal decision rules.

Mux Style
Value: Auto (default) / MUXF / MUXCY)

This option controls the way the macrogenerator implements the
multiplexer macros. The default value is Auto, meaning that XST
looks for the best implementation for each considered macro.
Available implementation styles for the Virtex and Spartan2
series are based on either MUXF5/F6 resources or MUXCY
resources.

Decoder Extraction

Value: Enabled (default) / Disabled

This option enables or disables decoder macro inference.
Priority Encoder Extraction

Value: Enabled (default) / Disabled

This option enables or disables priority encoder macro inference.
When enabled, for each identified priority encoder description,
based on internal decision rules, XST creates a macro or opti-
mizes it with the rest of the logic.

Xilinx Development System

Synthesis

« Shift Register Extraction

Value: Enabled (default) / Disabled

This option enables or disables shift register macro inference.
* Logical Shifter Extraction

Value: Enabled (default) / Disabled

This option enables or disables logical shifter macro inference.
* XOR Collapsing

Value: Enabled (default) / Disabled

This option controls whether cascaded XORs should be collapsed
into a single XOR.

e Resource Sharing
Value: Enabled (default) / Disabled

This option enables or disables resource sharing of arithmetic
operators.

e Complex Clock Extraction
Value: Enabled (default) / Disabled

Sequential macro inference in XST generates macros with clock
enable functionality whenever possible. This option instructs or
prevents the inference engine to not only consider basic clock
enable templates, but also look for less obvious descriptions
where the clock enable can be used.

e Resolution Style
Value: WIRE-MS (default) / WIRE-OR / WIRE-AND

The resolution style option controls how multi-source situations
not protected by tri-state logic are handled. The WIRE-MS value
is assumed by default and instructs XST to exit with an error
condition whenever such a multisource situation is found. With
the WIRE_OR and WIRE_AND resolution styles, all detected
situations are replaced by respectively OR-based logic or
AND_based logic, and synthesis continues.

Refer to the XST User Guide for detailed information on and examples
of these properties.

Foundation Series ISE 3.1i User Guide 13-19

Foundation Series ISE 3.1i User Guide

13-20

Xilinx Specific Options (FPGAS)

The available Xilinx Specific Options depend on the targeted device
and whether VHDL or Verilog is used. An example list of options for
FPGA devices (for a Virtex XST VHDL project) is shown in the
following figure.

Note A check mark in a Value check box enables the property. A
blank check box indicates that the property is disabled. Click in the
Value box to enable/disable the property.

Proceszs Properties x|
Synthesis Options I HOL Optiong #iline Specific Options |
Property Hame Value
Add 1D Butfers |
bz Fanout 100
Global Optimizstion Goal AlClockhets
Incremental Syrthesis |
Keep Higrarchy |
Speed Grade for Timing Analysis
Maimum Glokal Butfers (BUFG) 4

QK I Cancel I [0efaut |

You can set the following global HDL Options for XST synthesis:
* Add I/0 Buffers
Value: Enabled (default) / Disabled

When this option is enabled, XST automatically inserts Input/
Output buffers into the design for 1/0s that do not have manu-
ally instantiated 1/0 buffers. This option is useful to synthesize a
part of a design to be instantiated later on.

* Max Fanout
Value: 100 (default)

This option can be used to limit the fanout of nets in the whole
design by specifying the maximum fanout.

e Global Optimization Goal

Value: Clock Frequency (default) / Inpad to Outpad 7/ Inpad to
Setup / Clock to Outpad 7/ All to Setup / All to Outpad /
Maxdelay)

Xilinx Development System

Synthesis

XST optimizes the region of the design specified in this option.
By default, global optimization is tuned for clock frequency mini-
mization.

e Incremental Synthesis
Value: Disabled (default) / Enabled

If the Incremental Synthesis option is enabled, each entity/
modaule of the design is synthesized to a single, separate netlist.

e Keep Hierarchy
Value: Disabled (default) /7 Enabled

XST may automatically flatten the design to get better results by
optimizing across entity/module boundaries. You can enable the
Keep Hierarchy option so that the generated netlist is hierarchical
and respects the hierarchy and interface of any entity/module of
your design.

e Speed Grade for Timing Analysis
Value: same as targeted device (default)

For the timing analysis, XST take into account the speed grade.
By specifying a different speed grade, XST will perform a
different optimization due to different timing information.

e (Advanced Option) Maximum Global Buffers (BUFG)
Value: 4 (default)

XST automatically inserts BUFGs for clock signals. If you want
XST to use less than the maximum number of BUFGs available,
then specify a lower number. This option is useful if the design to
be synthesized is not complete and if the missing part contains
BUFGs.

Note You must have Advanced options selected for the Property
display level inthe Edi t — Pref erences - Processes
dialog box to access the Maximum Global Buffers option.

Refer to the XST User Guide for detailed information on and examples
of these properties.

Foundation Series ISE 3.1i User Guide 13-21

Foundation Series ISE 3.1i User Guide

Xilinx Specific Options (CPLDs)

The available Xilinx Specific Options depend on the targeted device
and whether VHDL or Verilog is used. An example list of options for
CPLD devices (for a XC9500XL XST VHDL project) is shown in the
following figure.

Note A check mark in a Value box enables the property. A blank
Value box indicates that the property is disabled. Click in the Value
box to enable/disable the property.

Process Properties x|

Synthesis Options I HOL Options ~ Ailing Specific Options |

Property Hame Value

Add /0 Butfers
Uze Fast Output Buffers

<l

Macro Generator LogiBlo:x
Macro Preserve I
XOR Preserve |
FF Optitmization I
Clock Enable =

Qg I Cancel | Wefault |

You can set the following global HDL Options for XST synthesis:
* Add I/0 Buffers
Value: Enabled (default) / Disabled

When this option is enabled, XST automatically inserts Input/
Output buffers into the design for 1/0s that do not have manu-
ally instantiated 1/0 buffers. This option is useful to synthesize a
part of a design to be instantiated later on.

e Use Fast Output Buffers
Value: Disabled (default) / Enabled

The Use Fast Output Buffers property allows you to enable or
disable the use of fast output buffers.

13-22 Xilinx Development System

Synthesis

e Macro Generator
Value: LogiBlox (default) / Macro+

A macro inferred by the HDL synthesizer is passed to a CPLD
low-level synthesizer which calls a macrogenerator to create its
implementation. Two macrogenerators are available:

¢ Macro+ (XST’s internal macrogenerator)
¢+ LogiBlox macrogenerator

A macro submitted by the HDL synthesizer may be accepted or
rejected by the CPLD synthesizer. An accepted macro becomes a
hierarchical block in the final netlist, its logic being generated by
Macro+ or by the CPLD fitter (LogiBlox macro).

The Macro Generator option is tightly related to the Macro
Preserve option: the macros are generated only if Macro Preserve
is yes. Otherwise, the macros are replaced by equivalent logic
units generated by HDL synthesizer.

e Macro Preserve
Value: Enabled (default) / Disabled

This option is useful for making the macro handling independent
of design hierarchy processing (see Flatten Hierarchy, a Synthesis
Option). So you can merge all hierarchical blocks in the top
module, but you can still keep the macros as hierarchical
modules. When the Macro Preserve option is enabled, macros are
preserved and generated by Macro+ or LogiBlox. When disabled,
macros are rejected and generated by the HDL synthesizer.

Depending on the Flatten Hierarchy value, a rejected macro
becomes a hierarchical block (Flatten Hierarchy is disabled) or is
merged in the design logic (Flatten Hierarchy is enabled). Please
note that very small macros (2-bit adders, 4-bit multiplexers) are
always merged, independently of the Macro Preserve or Flatten
Hierarchy options.

* XOR Preserve
Value: Enabled (default) / Disabled

The XORs inferred by HDL synthesis are also considered as
macro blocks in the CPLD flow. They are processed separately to
give more flexibility for the use of device macrocells XOR gates.

Foundation Series ISE 3.1i User Guide 13-23

Foundation Series ISE 3.1i User Guide

13-24

Therefore, you can decide to flatten the design (enable Flatten
Hierarchy and disable Macro Preserve) but to preserve the XORs.

Preserving XORs has a great impact on reducing design
complexity. Preserving the XORs, generally, gives better results;
the number of PTerms is lower. The preserved XORs appear in
the EDIF netlist as LogiBlox XOR macros and are expanded by
the CPLD fitter.

When the XOR Preserve option is disabled, XOR macros are
merged with surrounded logic. This is useful to obtain
completely flat netlists. Applying the global optimization on a
completely flat design can improve the design fitting.

Note Disabling this option does not guarantee the elimination of
the XOR operator from the EDIF netlist. During the netlist gener-
ation, the netlist mapper tries to recognize and infer XOR gates in
order to decrease the logic complexity. This process is indepen-
dent of the XOR preservation done by HDL synthesis and is
guided only by the goal of complexity reduction.

FF Optimization
Value: Enabled (default) / Disabled

When this option is enabled, XST removes the following flip-
flops to increase fitting success:

+ Equivalent flip-flops, having the same inputs and control
signals

+ Flip-flops with constant input/control signals

Note The flip-flop optimization algorithm is time consuming. If
fast processing is desired, this option should be disabled.

(XC9500XL, XC9500XV Only) Clock Enable
Value: Enabled (default) / Disabled

The macrocells of the XC9500XL and XC9500XV families support
the Clock Enable signal. When the Clock Enable option is
enabled, the CPLD synthesizer implements the use of the clock
enable signal of the device. When disabled, the clock enable func-
tion is implemented through equivalent logic.

Keeping or not keeping the clock enable signal depends on the
design logic. Sometimes, when the clock enable is the result of a

Xilinx Development System

Synthesis

Boolean expression, disabling this option may improve the fitting
result because the input data of the flip-flop is simplified when it
is merged with the clock enable expression.

Refer to the XST User Guide for detailed information on and examples
of these properties.

Detailed Information on XST

Detailed information on using XST can be found in the following
sources:

e XST User Guide

The XST User Guide contains complete information on XST
support for Xilinx devices, HDL languages, and design
constraints. It also explains how to use various design optimiza-
tion and coding techniques when creating HDL designs for use
with XST.

e Online help

You can access XST’s online help from the Project Navigator
Help menu as follows.

¢ SelectHel p - Foundation Series |ISE Help
Cont ent s from the Project Navigator.

¢ Then select XST (under Synthesis) in the Xilinx Foundation
Series ISE On-Line Help System menu.

e Synthesis and Simulation Design Guide

This manual provides a general overview of designing Field
Programmable Gate Arrays (FPGAs) with Hardware Description
Languages (HDLs). It includes design hints for the novice HDL
user, as well as for the experienced user who is designing FPGAs
for the first time.

Note The XST User Guide and Synthesis and Simulation Design Guide
are available in the DocSan-searchable online book collection as well
as a .pdf file. Both formats are available on the Documentation CD
included with this release. Or, you can select Hel p - Onl i ne
Books to access the online books.

Foundation Series ISE 3.1i User Guide 13-25

Foundation Series ISE 3.1i User Guide

FPGA Express Synthesis

FPGA Express is a logic-synthesis optimization tool from Synopsys. It
includes functions to analyze source code, synthesize, optimize,
generate EDIF netlists, and analyze timing. FPGA Express has two
flows in ISE: FPGA Express VHDL and FPGA Express Verilog.

FPGA Express VHDL

Projects that use the FPGA Express VHDL flow can contain VHDL or
Verilog sources. Schematics are netlisted to VHDL prior to synthesis.
The FPGA Express processes are shown in Figure 13-6.

2=l
Processes for Current Source: I;
E@ Design Entry Utilities
=@ User Constraints

O Edit LUCF file
3 Constraints Editor

Y3 Create Schematic Symbol
[WiewWHDL Test Bench Template
| Launch HDL Bencher Toal
|

Wiew YHDL Instantiabion Template
Launch MadelSim Simulator

Pre-Optimization Feport
Post-Optimization B eport
Check Syntax

Analyze Al

Create Functional Stucture

¥y EditConstraints

O Wiew Schematic [Func.)
Create Ophimized Structurs

3 View Syrthesis Results

¥ Wiew Schematic [Opt.)

=-¥3 Implement Design hd
1] I E
B Process Wisu I

Figure 13-6 FPGA Express Synthesis Processes

FPGA Express Verilog

Projects that use the FPGA Express Verilog flow can contain VHDL or
Verilog sources. Schematics are netlisted to Verilog prior to synthesis.

13-26 Xilinx Development System

Synthesis

The synthesize processes for FPGA Express Verilog are the same as
those shown in Figure 13-6 for FPGA Express VHDL.

Selecting a Top-Level Source

To select a top-level source, simply click on the desired source in the
Source window. That source and all sources below it in the design
hierarchy are then synthesized when a synthesis process is invoked in
the Process window.

To synthesize the entire design, select the top-level design source.
Running synthesis on lower-level design sources is useful for
checking whether the source is synthesizable and for checking
inferred macros. You can also get timing and size estimations from
running these partial designs.

FPGA Express Synthesis Processes

You can invoke an FPGA Express synthesis process within the Project
Navigator as follows:

1. Select a top-level module in the Sources window. Refer to
“Selecting a Top-Level Source for Synthesis” section for informa-
tion on top sources.

2. Double-click a synthesis process. (Synt hesi ze or any process
listed under it) in the Processes window.

Prior to creating the optimized EDIF netlist for the use by the imple-
mentation tools, you can optionally do the following to check that
your design meets your project requirements:

e Check the syntax of the HDL code.

Click Check Synt ax under the Synthesis process in the Process
window.

e Analyze the HDL code for correct syntax and verify that it
follows the correct HDL policy for the selected synthesis tool.

Click Anal yze under the Synthesis process in the Process
window.

Foundation Series ISE 3.1i User Guide 13-27

Foundation Series ISE 3.1i User Guide

13-28

The following processes (Create Functional Structure and Create
Optimized Structure) makeup the overall synthesis process. You can
run each process manually rather than automatically as part of the
synthesize process if desired.

Create a functional structure

The Create Functional Structure performs the design elaboration.
To run the Create Functional Structure process, do the following.

+ Select the design module or file you have updated.

¢+ Rightclickon Create Functional Structureinthe
Process window.

¢ Click Run. (Or, you can double-click on the Create Functional
Structure Process to initiate the Run process.)

You can view the new functional structure with the View Sche-
matic (Func) process.

Create an optimized structure

The Create Optimized Structure process performs architecture-
specific optimization on the design. To run the Create Optimized
Structure process, do the following.

+ Select the design module or file you have updated.

¢+ Rightclickon Create Optim zed Structureinthe
Process window.

¢ Click Run. (Or, you can double-click on the Create Opti-
mized Structure Process to initiate the Run process.)

You can view the optimized structure with the View Schematic
(Opt) process.

Set synthesis options that specify design-specific constraints to
produce the desired performance in the targeted device.

If the default constraints are not sufficient for your requirements,
you can set performance constraints, attributes, and optimization
controls before synthesizing the design. Refer to the “Setting
FPGA Express Synthesis Options” section for information.

In the FPGA Express flow, you can also optionally set timing
constraints, create a functional model to test the constraints, and
view the results of the specified constraints. Refer to the

Xilinx Development System

Synthesis

“Constraining the Design” sectionfor more information on this
option.

Constraining the Design

Before you start synthesis to optimize your design for the targeted
device, you can optionally set performance constraints, attributes,
and optimization controls. Entering your design requirements as
constraints can improve the placement and routing results of your
design.

Setting Constraints Prior to Synthesis

Global synthesis optimization goals and other constraints can be set
in the Synthesis Process Properties dialog box.

You can set performance constraints and attributes to guide the opti-
mization process on a module-by-module basis. This means that you
have the ability to, for example, optimize certain modules of your
design for speed and some for area. In addition, an effort level for the
optimization engine can be set to either high or low.

To set constraints in FPGA Express on a module-by-module basis, do
the following:

1. Select the desired top-level module.

2. SelectEdit Constrai nts inthe Synthesize section of the
Process window.

3. The Express Constraints Editor opens. Set the desired constraints
in the Express Constraints Editor GUI.

The Express Constraints Editor window contains five different tabs.
The spreadsheets and dialog boxes on the tabs are specific to the
target architecture.

Optimization goals are set for individual modules in the Module tab
of the Express Constraints Editor. The Module tab is shown in the
following figure.

Foundation Series ISE 3.1i User Guide 13-29

Foundation Series ISE 3.1i User Guide

13-30

Constraints

Import Constraints | |;"'"E'{-EiﬁE'r't"EEHé’fi’é’i’h’t’é""él

Clocksl Paths I Ports Modules |><i|inH Dptionsl

Hame

Hierarchy

Primitives

Jperator
Sharing

Optimize—
for

[ER =cletault=

Eliminate

Preserve

on

Speed

EHER TOP

B my_and2 -

EH my_and? -

12

B my_and2 -

13

[my_and2 -

14

EX my_and2 -

I3

el Il ol AL I S VR SRR e

B8 my and?2 -

16

o

The following three tabs contain constraints that can be applied to the
design prior to synthesis: Clock, Paths, and Ports. These constraints
are passed to the Place and Route tools via the design netlist and NCF

constraints file.

« The Clocks tab allows you to specify overall speeds for the clocks

in a design.

e The Paths tab allows you precise control of point-to-point timing

in a design.

locations to be specified in a design.

Xilinx Development System

The Ports tab allows OFFSETS, pull ups/pull downs, and pin

Synthesis

Constraints

Import Constraints | Export Congtraints | Ok I
Clocks | Paths Ports | Modules | Hiling Options |
Qutput
_ - |Input Delay| Pad Use Slew
Hame |Direction tns) Dtﬁlsag.t Global Buffer Dir| 110 Reg Rate Pad Loc

1 =default= AUTOMATIC TRUE 512

2 a inpt [Ere)]

3 2} ingpt da)

4 [inpt [y u)]

5 d input gy

5] e inpt a2

7 f inpt a0y

g q inpt [Lre)]

a h inpaLt &)

10 o autput N

The timing constraints specified in the Express Constraints Editor
tabs are translated into FROM:TO or PERIOD timespecs and placed
in an NCF file. Following is an example:

TIMESPEC TS_CLK = PERIOD “CLK” 20 ns HIGH 10;

UCF File Constraints

Currently, FPGA Express cannot apply all Xilinx constraints that may
be entered in a UCF file. It can apply the following constraints:

« PERIOD

« FROM:TO timespecs which use FFS, LATCHES, and PADS
* Pin location constraints

e Slew rate

« TNM_NET

e PULLUP/ PULLDOWN

* OFFSET:IN:BEFORE

e OFFSET:OUT:AFTER

Foundation Series ISE 3.1i User Guide 13-31

Foundation Series ISE 3.1i User Guide

Express cannot apply the constraints listed below. To enter these
constraints, use the Xilinx Constraints Editor:

« TPSYNC
« TPTHRU
. TIG

e user-RLOCs, RLOC_ORIGIN, RLOC_RANGE
* non-1/0 LOCs

« KEEP

e U_SET,H_SET, HU_SET

* user-BLKNM and user-HBLKNM

« PROHIBIT

Express creates its own timegroups by grouping logic with common
clocks and clock enables. In addition, you can form user-created
timing subgroups by right clicking on an existing timing path and
choosing New Sub Path in the Express Constraints Editor’s Paths tab.

Viewing Synthesis Results

A summary of the synthesis results is printed in the Project Navi-
gator’s transcript window as synthesis is performed. You can check
the synthesis results prior to implementing the design by viewing the
Post-Optimization Report (select Post - Opt i mi zati on Report in
the Synthesize section of the Process window). FPGA Express
supplies two other methods of verifying your design prior to imple-
mentation: the FPGA Express Time Tracker and the Schematic
Viewer. All these tools enable you to view synthesis results prior to
implementation. This allows you to adjust constraints or try different
devices, for example, multiple times until you find the right combina-
tion to meet your design’s timing requirements.

13-32 Xilinx Development System

Synthesis

Report Viewer

In FPGA Express flows, you can view synthesis results at two
different points in synthesis processing:
e At the pre-optimized (RTL) stage

To view a report (the Synopsys Chip-Top report) on the pre-opti-
mized design, select the top-level module/source in the Source
window and then double click on Pre- Opti mi zati on Report
under View Reports in the Process window.

e At the optimized stage

Double-click on Post - Opti m zati on Report inthe Process
window to view the report (the Synopsys Chip-Top Optimized
report) in the Project Navigator’s Report Viewer.

If synthesis had not been previously run or if the previous results are
out-of-date, the necessary processes are automatically run before the
report is opened in the Reports Viewer.

FPGA Express Time Tracker

You can check the post-synthesis timing results in the Express
Constraints Editor, as follows:

1. Select the desired top-level source module.

2. SelectVi ew Synt hesi s Resul t s in the Synthesize section of
the Process window.

3. The Express Time Tracker opens. The Time Tracker displays the
estimated results for the design.

The timing data is displayed in the same format as used to set the
constraints. An example Time Tracker window for the Ports tab is
shown in the following figure.

Foundation Series ISE 3.1i User Guide 13-33

Foundation Series ISE 3.1i User Guide

13-34

Constraints

Import Eanstraits: | Erpart Eanstiamts | Ok, I

Clacks | Paths Parts |Modules|><i|inxDptic-ns|

— linput Detay| nput| ®"P*t loutput| Global |Pad| Use |Stew =
CEIS | MIEET p(ns) ~ SI:ck ':ﬁ::;’ SIaI:k Buffer | Dir |10 Reg| Rate |"29 10¢
1 =defauit= AUTOMATICE | TRUE |5 12
2 a input (o) 43
3 b input o) 17
1 G input (o) 13
5 d input (o) 18
B e input () 48 1
7 f input (o) 18
B g input o) 17
g h it (0] 43 hd

Schematic Viewer

FPGA Express provides a Schematic Viewer tool that allows you to
view and analyze your design graphically.

To open an RTL view of the design, select a source module/entity in
the Source window and then click Vi ew Schemati c (Func.) in
the Process window. Viewing the pre-optimized design allows you to
evaluate the connectivity of a circuit and to get a feel for how FPGA
Express interpreted the RTL being processed.

To evaluate how the design was mapped to the targeted device, you
can view a gate-level representation. To open a gate-level (mapped/
optimized) view of the design, select a source module/entity in the
Source window and then click Vi ew Schematic (Opt.) inthe
Process window. The Schematic Viewer can be used with the Time
Tracker to view the timing results graphically.

Changing Speed Grades

A typical method to get your design to meet timing requirements is to
try various speed grades for the targeted device. For FPGAs, you can
change the speed grade prior to FPGA Express synthesis as follows;

1. Right-click on the Device/Synthesis Flow line in the Source
window.

2. Select Properti es from the pull-down menu.

Xilinx Development System

Synthesis

3. When the Device Properties dialog box appears, use the pull-
down menu in the Device field to change the speed grade for the
device. (The last two characters of the device name identify the
speed grade.)

Note You can only make speed grade selections/changes for CPLD
devices after synthesis. For CPLDs, the speed grade is set as an imple-
mentation property. (Select a source in the Source window. Right-
clickon | npl enent Desi gn in the Process window. Enter the speed
grade in the Speed G ade field of the Desi gn tab.)

To determine the devices and corresponding speed grades installed
on your PC, do the following:

1. Select the Device/Synthesis Tool line in the Source window.
2. SelectDi spl ay Device Information inthe Process window.

3. The Report Viewer opens with the list of installed devices.

Setting FPGA Express Synthesis Options

You can control FPGA Express synthesis by setting synthesis process
properties. To set synthesis properties, do the following:

1. Select the desired top-level source in the Source window.
2. Right-click on Synt hesi ze in the Process window

3. Select Properti es to display the synthesis Process Properties
dialog box.

Note A check mark in a Value check box enables the property. A
blank check box indicates that the property is disabled. Click in the
Value box to enable/disable the property.

Foundation Series ISE 3.1i User Guide 13-35

Foundation Series ISE 3.1i User Guide

Process Properties x|

FPGA Express Synthesiz Options

Property Hame Value
Optimization Goal Speed -
Optimization Effort Mormal
Clock Frequency (MHZ) =0
Export Timing Constraints |l
Preserve Hierarchy |
Inzert W0 Pads =
FSM Encoding Algorithm One-Hot
Enable ‘Yerilog Preprocessor |l

Qg I Cancel | Wiefault |

You can set the following HDL Options for FPGA Express synthesis:

13-36

Optimization Goal
Value: Speed (default) /7 Area

“Speed” specifies that the design be optimized for faster speed.
Area specifies that the design be optimized for a smaller area.

Optimization Effort
Value: Low (default) / High

“Low” selects the quickest mapping method. “High” selects
longer compilation resulting in better design mapping; mapping
proceeds until all strategies have been tried.

Clock Frequency (MHz)
Value: 50 MHz (default)

This property specifies the desired general clock frequency for a
design implementation.

Export Timing Constraints
Value: Disabled (default) / Enabled

Enable this option to export timing constraints to an NCF file
when exporting a netlist.

Xilinx Development System

Synthesis

e Preserve Hierarchy
Value: Disabled (default) / Enabled

Enable this option to preserve design hierarchy and output hier-
archical netlists.

e Insert1/0 pads
Value: Enabled (default) / Disabled

When enabled, specifies that 1/0 pads should be inserted. If this
option is disabled, global buffers and global set/reset signals are
not inferred or implemented and timing constraints are not
exported with the netlist file.

e FSM Encoding Algorithm

Value: Auto (default) / one-hot / compact / sequential / Gray /
Johnson / user / none

This option selects the finite state machine (FSM) encoding tech-
nique to be used. The default is auto, meaning that the best
coding technique is automatically selected for each individual
state machine. Refer to Table 13-1 for a description of the various
techniques.

e Enable Verilog Preprocessor
Value: Disabled (default) /7 Enabled

This property controls whether the Verilog preprocessor is run or
not.

Detailed Information on FPGA Express

Detailed information on using FPGA Express can be found in the
following sources:

e Online help

You can access FPGA Express’s online help from the Project
Navigator Help menu as follows. This help also includes a tuto-
rial on using FPGA Express.

¢ SelectHel p - Foundation Series |ISE Help
Cont ent s from the Project Navigator.

Foundation Series ISE 3.1i User Guide 13-37

Foundation Series ISE 3.1i User Guide

13-38

¢+ Then select FPGA Expr ess (under Synthesis) in the Xilinx
Foundation Series ISE On-Line Help System menu.

e Synopsys VHDL Reference Guide

The Synopsys VHDL Reference Guide describes how to use FPGA
Express to translate and optimize a VHDL description into an
internal gate-level equivalent. (This book is available in the
online book collection as a PDF file only.)

e Synopsys Verilog Reference Guide

The Synopsys Verilog Reference Guide describes how to use FPGA
Express to translate and optimize a \Verilog description into an
internal gate-level equivalent. (This book is available in the
online book collection as a PDF file only.)

e Synthesis and Simulation Design Guide.

This manual provides a general overview of designing Field
Programmable Gate Arrays (FPGASs) with Hardware Description
Languages (HDLs). It includes design hints for the novice HDL
user, as well as for the experienced user who is designing FPGAs
for the first time.

Note The books mentioned in this section are available on the Docu-
mentation CD included with this release. Or, you can select Hel p -
Onl i ne Books to access the online books.

Xilinx Development System

Chapter 14

Implementing the Design

After you have created a design source, the Implement Design
processes convert the logical design represented in that source (and
all sources in the hierarchy from that source down) into a physical file
format that can be implemented in the selected target device. You can
implement the design multiple times using different implementation
process properties or target devices in order to achieve your design
objectives.

This chapter contains the following sections:
e “Using the Process Window to Implement the Design”
e “Implementation Errors/Warnings”

e “Saving Implementation Results”

e “Deleting Implementation Results”

e “Changing Devices”

* “Viewing Implementation Reports”

e “User Constraints”

e “FPGA Implementation Flow”

* “FPGA Implementation Reports”

* “FPGA Implementation Options”

* “FPGA Implementation Tools”

e “CPLD Implementation Flow”

e “CPLD Implementation Reports”

e “CPLD Implementation Options”

e “CPLD Implementation Tools”

Foundation Series ISE 3.1i User Guide — Online 14-1

Foundation Series ISE 3.1i User Guide

Using the Process Window to Implement the Design

14-2

Checking the implementation of your design in the targeted device
before you implement it is not a required step. For large designs,
however, this step can help you to find problems and correct them or
to fine tune the implementation to meet your design requirements.
For instance, you can set implementation process options to reduce
area, increase speed, and vary placement effort. Or, you can try
targeting various devices to determine the most suitable fit for your
design. If a particular device proves to be too large or too slow for
your needs, you can select a smaller or faster target device from a
different family.

The Implement Design processes for your design depend on whether
your design is for an FPGA (see Figure 14-3) or CPLD device (see
Figure 14-18). The synthesis tool selection does not affect the imple-
mentation flow. After design entry, you can use the Implement
Design section in the Process window for a selected source to perform
the following operations on that source:

e Implementation of the design for a specific target device

e Report generation showing the status of the design

e Timing analysis for design verification

e Export of the design for timing simulation and programming

You can implement your design completely or request that only the
necessary processing be done to produce a specific implementation

report that you want to check before continuing with the implemen-
tation. Use the following procedure to implement your design.

1. Click on a source file (an HDL file or schematic) in the Source
window representing the design that you want to implement in
the device (shown by the arrow in the following figure). That
source and all sources in the design hierarchy below that source
are included in the implementation processing.

Xilinx Development System

Implementing the Design

|;®Xilinx-Pmiecl" ig - d:hise\d Afregmifreqm.npl - EI|1|
File Edit “iew Project Source Process Maco Window Help

PR R R D e R O,

21

Sources in Project |

=B freqm

L[readmetst

€3 V50 BG25EE - 25T YHDL
BN

B fregm_tb.vh

[ont_bed (bed_ont.vhd]

i @ control [contiol. vhd]

L[hexled (hex2led.vhd)

N .ﬁModule File View I I Shapsho.. I Libtary ... I

B
Processes for Current Source: |
&F Desion Entry Utilties
3 Synthesize
=
G

mplement Design

Create Programming File

B Process iew I

x| Done: completed successfully. d

[T ETH sz onsoled FindIn Files

Hierarchy is up to date: [[ﬂ %

2. Implementation processing is automatically customized for the
targeted device. You can, however, try different processing
options as necessary to meet your design requirements by setting
processing properties. See the “FPGA Implementation Options”
section or the “CPLD Implementation Options” section for infor-
mation on Setting Implementation Properties.

Note Implementation process properties affect all sources in the

project. They can not be set for (or associated with) only certain
sources.

3. Use the Implement Design processes in the Process window to
select the implementation processing you want performed on the
selected source (from that source down through the design hier-
archy). You can implement your design completely or request
that only necessary processing be done to produce a specific
implementation report.

Foundation Series ISE 3.1i User Guide 14-3

Foundation Series ISE 3.1i User Guide

14-4

Complete implementation

For complete implementation processing, double click

| mpl enent Desi gn in the Process window. The Project
Navigator checks the state of your project. It automatically
initiates the processing necessary to completely implement
the selected source. For example, it synthesizes your design,
if necessary, before it starts the implementation process. At
the completion of the processing, an icon appears to indicate
the results. A green check mark indicates the design imple-
mented without errors.

Partial implementation to run a process or produce a report

For example, if you want to view a report on the design only
through a certain implementation stage, double click on the
name of a report listed under the various processes in the
Implement Design section of the Process window (Map
Repor t , for example). You may need to click the “+” box
beside the Implement Design process to expand the Imple-
ment Design process list as shown in the following figure. If
the report does not currently exist, the necessary processing
is done to produce the report for you to view. If the report
exists, it is opened immediately.

Xilinx Development System

Implementing the Design

|;$Xilinx-Fmiecl” g - d:\isehn Afreqmifreqgm_npl - Ellﬂ
File Edit View Project Sowce Process Macro Window Help

peearrEps®EEFe e ||raalocm Hsasne

B

Sources in Project: |

@ freqm_th,vhd

[ent_bed [bed_entvhd)
[contral [control.vhd)
@ hex2led [hex2led. vhd]

B hocile File View | |0 Snapsho... |] Library... |

Frocesses for Cunent Source:
- 0 Implement Design
SR 2] Trarislate
L Translation Feport

E‘O Map)

=) O Pre-Route S{&\c Timing
“F] Pre-Route Static Timing

‘e b=

= Place-and-Foute
B Flace-and-Route Report
Agynchionous Delay Report
Fad Repart
E| = O bfulti Pass Place & Route ﬁ
] | »

B Process Wiaw I

| Done: cowpleted successfully.

[4 F[FIzonsoled Findin Files

Hierarchy is up to date. B

¢ Specialized processing

Click on any of the Implement Design specialized processes
to access them. These processes include: locking pins, multi-
pass Place and Route, and launching advanced implementa-
tion tools. The User Constraint tools listed in the Design
Entry Utilities section can be used for editing the UCF file or
accessing the Constraints Editor GUI to add constraints to
your design.

Foundation Series ISE 3.1i User Guide 14-5

Foundation Series ISE 3.1i User Guide

Implementation Errors/Warnings

As a source is implemented, the processes being run and their status
are indicated in the Transcript window. Refer to the “Error Naviga-
tion from the Transcript Window” section of the “Project Navigator”
chapter for information on navigating to errors or warnings that
appear in the Transcript window.

The processing status is also indicated by icons beside the process or
report name in the Process window. At the completion of the
processing, an icon appears to the left of the Implement Design
process (and to the left of any other processing it did). A green check
mark indicates “successfully processed.” A red X indicates that errors
were detected preventing successful completion of the process. A
yellow ! (exclamation point) indicates a warning.

Saving Implementation Results

Two functions are available to preserve a specific version of the
implementation. You can archive a version of the project as a .zip file.
You can take a snapshot to preserve a project version for later refer-
ence and easy reactivation. The Snapshot View tab in the Source
window lists the snapshots taken of the project. From the Snapshot
View tab you can view a hierarchical listing of the files in a snapshot.
You can also select reports in a snapshot for viewing. Refer to the
“Snapshots” chapter for detailed information on snapshots.

Deleting Implementation Results

You can delete the implementation results by selecting Pr oj ect -
Del et e | npl enrent ati on Dat a from the Project Navigator menu.
This removes all the files produced for all implementation processing
done on the design. The files are deleted from the project directory.

Changing Devices

14-6

You may want to change device families to get the desired results
from your design. Implementation is automatically performed on the
device set for the project in the Project Properties dialog box. To
change the device, double-click on the device/synthesis tool line in
the Source window to display the Project Properties dialog box. Select
a new device or device family from the Project Properties dialog box.

Xilinx Development System

Implementing the Design

If you select a new device family, you will notice that the implemen-
tation results (and synthesis results) become “out-of-date.” Select

| mpl enent Desi gn or the report you want to view to implement
the design with the new device.

Note If you change devices, you may need to use a different synthesis
tool. Refer to the “Creating a Project” chapter for detailed information
on changing devices and synthesis tools.

Viewing Implementation Reports

The implementation reports provide information on logic trimming,
logic optimization, timing constraint performance, and 1/0 pin
assignment for your design.

To generate and/or view a report, select a design source in the Source
window and then double-click on the name of the desired report in
the Process window Implement Design section. If the report currently
exists (from previous processing), it is immediately opened in the ISE
Report Viewer. If the report does not currently exist, ISE runs the
necessary processes to produce an up-to-date report and then
displays it in the ISE Report Viewer. If the existing report is out-of-
date (no green check mark beside it), you can click on the report name
and then select Process — Run (or Process — Rerun Al l)to
update it before viewing it.

The reports produced depend on whether your design targets a
CPLD or FPGA device.

ISE Report Viewer

The ISE Report Viewer is a separate window from the Project Navi-
gator windows. When you select a report from the Implement Design
section of the Process window, the report opens in the ISE Report
Viewer. Figure 14-1shows an example of the Report Viewer window.

Foundation Series ISE 3.1i User Guide 14-7

Foundation Series ISE 3.1i User Guide

14-8

ilinx - Project il - d:\ise’ \freqm\freqm_npl - X
il Project Navi d:Aiseli les\h \f | m]

File Edit “iew Project Souce Process Maco Window Help

Deda =05 = EE DEE| 2 e —
dﬂ. | r |

ioucesnloe: EiSE Report Viewer - [freqgm.mrp] gl

T qr:aadme t] File Edt View Options Window _|_|_ 5

- g w0 BGREE-G - 5T VHDL

£

li
B8 fegm_th.vhd Hilinx Mapping Repert Fils for Design 'freom’
[crt_bed (bed_crtvhd) SePyright (o) 1895-2000 Hilinx, Inc. ALl righte reserved. L

control [contiol. vhd) EBomimm TEssmatacs
hexZled [hexZled.vhd) | =
Command Line

map -p WSO0-BCOR25E-6 -—om arei —gm exact freqgm. ngd

- Target Dewice : v
B Woclule View Gnap Target Dackags : lkglSE
— Target Speed : -6
Mapper Versien : wvirtex —— D.1&
Mapped Dakbe . Tue Bpr 04 0O7:56:5& 2000
Processes for Current Source: Demign Summazy

¥y CreateSchematic S ——-=——==-=---=—-—

Mumber of errers: o
] L?“”Ch ModelSim % Mumber of warnings: 1
=¥ Syrthesize Mumber of =2lices: 4% cukt of TEE 5%
‘Wiew Synthesis Rep HMumber of Slices conbtaining
E analyse Hisarch unrelated logic: O oub of 43 0%
R nalze Risrarchy Mumber of Slice Flip Flope: 21 out of 1,536 1%
Y3 Check Syntax Toetal Mumber 4 input LOTs: 55 oub of 1,536 4%
Sk Implemert Design Mumkar used as LUTE: 57
5 e Trandata Numker used az a route-thru: &
A Mumber of boended IOEs: 21 cut of 180 173
@ Tranglation F Mumkber of SCLES: 2 out of 4 S0%
Mumber of GCLEIOE=: 2 oubt of 4 50%
Total equivalent gabe count for design: 660
2dditicnal JTAE gate count for IOBs: 1,584

Eaction 1 - Errasrs
Secticn 2 - Warnings
Baction 2 - Design Atbtrikbutes
X[EYEWRAP detected that Sectien 4 - Removed Logic Summarsy
| Saction 5 - Remewad Logic
Secticen © - Added Logic
Done: completed SUCCEgocticn 7 - Expanded Logic
Eaection 2 - Eignal Cross-Reference
4 Zacticn % - Symbol Crass-Reference
gaction 10 - IOE Properties
hConsolef Find n Files Section 11 - RDMe
Sacticon 12 - Cuide Report
Process "Map Report" is up to date. Section 13 - Area CGroup Summary
4 »
Ln1 Cal1 134 iR Rec Off [No'wrap |DOS [INS

Figure 14-1 ISE Report Viewer Window

Initially, the report files are maximized when they are opened in the
Reports Viewer. You can use the Tile or Cascade selections on the
Window menu if you want to view two or more reports at once as
shown in the following figure.

Xilinx Development System

Implementing the Design

WiSE Report Yiewer - O] x|

File Edit ‘“iew Option: ‘wWindow

BONEE e,
Tile Haorizontal Shift+F4
[£] vtimer.bid Tile Vertical - o] =] |
E = .
Ci mvhmel_mrp Cazcade Shift+F5 _Inlﬂl
= Minimize All

Co Ai Evhmer.par Amange lcons =10l x|
s Co Releasa 3.0 7 ﬂ
I D= Wed Max 08 Hext
Fa —— Cloze
0o Cobar —-F B widen ~rhimer . pof
Re Ta
e Ta i
Ee Ta Consbraint: 1Vt!mer'b|d £
Fo Ma 2 whimer.mip

Mz Lasading de‘vatimer.par applicatian par from file
e "rbimer ion 2.32, device xow30, pacs

e Loading dewvice for applicaticon par from £ile 'wwE0.nph
O} —— Device =pesed dabta wersicn: PREELIMIMARY 1.%9% Z2000-03—1
Ch

Desrice utilisaticn summmaras:
i e
Mumlker of External CGCLEIOE= 2 ocubt of 4

J_ umker of External ICEsS 26 ocut of 1580
4
| Mumker of SLICE=S A28 ocuk of Ta&

Il -

Al] [

Reports displayed in the Reports Viewer are read-only. You can print
the report or save it under another name, if desired. Print options
included line numbering, line wrapping, page headers, and font
selections.

The Report Viewer Edit menu contains search functions to search the
current report. The View menu allows you to customize the display
of the toolbar and status bar. You can set window and file modes in
the Options menu as well as the screen font and keymappings for the
Report Viewer.

You can view other files is the Report Viewer window by selecting
Vi ew from the ISE Report Viewer menu and then browsing to a file.
All files opened in the Report Viewer are opened read-only.

Foundation Series ISE 3.1i User Guide 14-9

Foundation Series ISE 3.1i User Guide

Report Descriptions

For descriptions of each of the reports listed in the Implement Design
section of the Process window, refer to the “FPGA Implementation
Reports” section and “CPLD Implementation Reports” section.

User Constraints

14-10

You can control the implementation of a design by defining
constraints that affect the mapping and layout of the physical circuit.
The User Constraints section under Design Entry Utilities in the
Process window provides access to the mechanisms you can use to
enter or modify constraints on the implementation of your design.

Editing the UCF File

The User Constraints File (UCF) is an ASCII file specifying
constraints on the logical design. You can enter constraints in the file
with a text editor. These constraints affect how the logical design is
implemented in the target device. The file can also be used to over-
ride constraints specified during design entry, earlier in the design
flow.

A default, blank UCF file is produced automatically when you create
the project. This default UCF is named top_source_name.ucf where
project_name is the name entered to create the project. If you want to
create or use a different UCF file, you can identify the UCF file to use
for your project in the Translate Options tab of the implementation
Process Properties for FPGA designs (see the “FPGA Implementation
Options” section). For CPLDs, the UCF file for the project is specified
in the Design tab (see the “CPLD Implementation Options” section).

To edit the current UCF file for the project, select a source in the
Source window and then double-click Edi t UCF Fi | e inthe
Design Entry Utilities section of the Process window. The current
UCF file is immediately opened in Notepad (or your usual text
editor) for viewing, printing, or modification. Refer to the
“Attributes, Constraints, and Carry Logic” chapter of the Libraries
Guide for information on constraints that can be entered in the UCF
file.

Whenever the UCF file is modified and saved, the following Notice
window appears to notify you that the implementation processes are
not automatically updated when the UCF is changed.

Xilinx Development System

Implementing the Design

Motice

Reszet the Implement Design proces: o that wour UCF chanass will
be read?

The User Constraint File [UCF] haz chanaed. Az a result, it may not
be pozsible ko reproduce the game implementation results uzing the
riews LICF.

Toincorporate the new LICF at this time, choose RESET
to mark the Implement Design process out of date. Then re-run the
Implement Design process. Othenwise, choose RETAIN to keep the
current implementation results intact and not incorporate the new
LUCF at this time.

Retain |

You must indicate (by clicking Reset) that you want to have the
implementation processing rerun with the new design source netlist
and UCF file.

Accessing the Constraints Editor

You can use the Constraints Editor program to place constraints
(instructions) on symbols or nets in an FPGA or CPLD schematic or
textual entry file such as VHDL or Verilog. Changes or additions to
constraints through the Constraints Editor are automatically added
into the User Constraints File (UCF).

To access the Constraints Editor, select a source in the Source window
and then double-click Constraints Editor in the Implement Design
section of the Process window. The Constraints Editor opens with the
design loaded. An example of the Constraints Editor initial window
is shown in the following figure.

Foundation Series ISE 3.1i User Guide 14-11

Foundation Series ISE 3.1i User Guide

14-12

axilinx Constraints Editor - [Global - vtimer.ngd / vtimer.ucf] - 1ol =]
File Edit “iew “Window Help

D@ x| =[=|alz| 2]l

Clock Het Hame Period Pad to Setup Clock to Pad

T16khz
1490hz
tm_t10hz Mis, i,

PadtoPad... | I

Global | Fuorts | Advanced |

MET "digpac:" LOC = "WE"; ;I
MET "digpachs" LOC = "48";

MET “lede0s" LOC = "wg";

MET "dispacds" LOC = "CT";

MET “lededs" LOC ="v3"; J
MET "dispheBs" LOC = "BY";

MET “lede3:" LOC = "wA0";

MET "dispheds” LOC = "A5";

MET "f490hz" LOC = "10"; LI

UCF Conzftraints [read-write) [UCF Constrainits (read-only) Source Congtraints (read-only] I

For Help, press F1 4

Figure 14-2 Xilinx Constraints Editor

The UCF file is changed when constraints are added or edited
through the Constraints Editor. You must run the implementation
process (click Reset in the Notice window that appears) using the
new UCF file and design source netlist to have the Implement Design
process reflect the change.

Refer to the Constraints Editor online help or to the Constraints Editor
User Guide, an online book for detailed information on using the
Constraints Editor.

Accessing the Chip Viewer (CPLDs)

You can access the ChipViewer before implementation and after
implementation. Before running the Fitter, you can use the Chip-
Viewer to control pin assignments for implementation. To access the
ChipViewer for pin assignment, select the top-level design source in
the Source window and then double-click on Pi n Assi gnmrent

Chi pVi ewer in the User Constraint section under Design Entry Util-

Xilinx Development System

Implementing the Design

ities. The ChipViewer opens with the complete netlisted source
design loaded. The Pin Assignment ChipViewer process is only avail-
able if you have a specific CPLD device and package selected for your
project.

After implementation is complete, you can use the ChipViewer to
examine the physical mapping resulting from the Fitter. To access the
ChipViewer to examine Fitter results, select your top-level design
source and double-click on Post Fit Chi pVi ewer inthe Launch
Tools section under Implement Design. The ChipViewer opens with
the completely mapped design loaded.

More information on using the CPLD ChipViewer is available in that
tool’s online help (Tool s — I nplementation - CPLD Chi p-
Vi ewer - Hel p) or from the Foundation Series ISE Help menu
accessed by Hel p - Foundation |ISE Hel p Contents -
Advanced Tools - ChipViewer.

Foundation Series ISE 3.1i User Guide 14-13

Foundation Series ISE 3.1i User Guide

FPGA Implementation Flow

14-14

The following figure shows the implementation portion of the
Process window for a design that targets an FPGA device. The imple-
mentation processes are under “Implement Design.”

B
Proceszes for Cumrent Saource: |;|
SRS Implement Design
-3 Translate

(e Translation Report
G Map

Map Report

Pre-Route Static Timing

b] Pre-Foute Static Tim
Place-and-Foute
Place-and-Floute Fepart
Asynchronous Delay Feporl
G

™y

Pad Report
Multi Pass Place & Foute
: ‘w[2] MPPR Repat
E-¥3% Back-annotats Pin Locatior
Back-annotate Pin R
=--¥3 Post-Route Timing
‘2] Post-Poute Timing Report
Launch Tools |
| FlaarPlanner
1 FPGA Editar
B Timing &nalyzer

-2 Create Proaramming Fils >
1| | D
B Process Wiew I

Figure 14-3 FPGA implement Design Processes

When you select a source and then click | npl ement Desi gn, the
necessary processing to implement the design in the targeted device
is performed. Default implementation processing properties are used
unless you modify them as described in the “FPGA Implementation
Options” section.

Xilinx implementation tools are used to process your design. If you
are familiar with the Xilinx Alliance product, you will notice that the
command line entries that appear in the Transcript window as each
function is run correspond to the Alliance development system
commands.

During the implementation, the design is converted from the logical
design file format created in the design entry stage into a physical file

Xilinx Development System

Implementing the Design

format contained in an NCD (Native Circuit Description) file. Imple-
mentation processing for FPGAs involves three basic phases: Trans-
late, Map, and Place and Route. Processes to check and verify timing
requirements are also included. At the end of these phases, a
programming file can be created. With the programming file you can
optionally program a PROM or EPROM for subsequent program-
ming of your Xilinx device.

Translate

During the first step of design implementation, the translate process
merges all of the input netlists and design constraint information and
outputs a Xilinx NGD (Native Generic Database) file. The output
NGD file can then be mapped to the targeted device family.

The following types of files are input files for the translation process.
» Design file netlists (EDN files)
e User Constraints File (UCF File)

The User Constraints File (default name is project_name.ucf) is an
ASCII file that you create with a text editor or using the Xilinx
Constraints Editor. The file contains timing and layout
constraints that affect how the logical design is implemented in
the target device. The constraints in the file are added to the
information in the output NGD file.

e Netlist Constraints File (NCF file)

The Netlist Constraints File (top_source_name.ncf) contains
constraints specified within the schematic editor tool and
synthesis tool. The netlist reader invoked by the Translate process
adds the constraints to an intermediate NGO file and the output
NGD file.

e Physical Macros (NMC files)

The NMC files are binary files containing the implementation of a
physical macro instantiated in the design. The Translate process
reads the NMC file to create a behavioral simulation model for
the macro.

Foundation Series ISE 3.1i User Guide 14-15

Foundation Series ISE 3.1i User Guide

14-16

MAP

¢ Module definition files (NGC files)

NGC files are binary file containing the implementation of a
module in the design. LogiBLOX creates an NGC file to define
each module.

The following types of files are output files for the translate process.
e Xilinx Native Generic Database (NGD file)

The NGD file (top_source_name.ngd) is a binary file containing a
logical description of the design expressed both in terms of the
hierarchy used when the design was first created and in terms of
lower-level Xilinx primitives to which the hierarchy resolves. The
file also contains all of the constraints applied to the design
during design entry or entered in a UCF (User Constraints File).

e Translation Report (BLD file)

The Translation Report (top_source_name.bld file) contains infor-
mation about the Translate (NGDBuild) run and its subprocesses.
Refer to the “Viewing Implementation Reports” section for infor-
mation on this report.

For a complete description of Translate process, refer to the
“NGDBuild” chapter of the Development System Reference Guide.

The MAP process first performs a logical DRC (Design Rule Check)
on the design in the NGD file produced by the Translate process.
MAP then maps the logic to the components (logic cells, 170 cells,
and other components) in the target Xilinx FPGA. The output design
is an NCD (Native Circuit Description) file physically representing
the design mapped to the components in the Xilinx FPFGA. The NCD
file can then be placed and routed.

The following file types are input files for the mapping process:
* Native Generic Database (NGD) file

The Translate process outputs the NGD file (top_source_name.ngd)
for mapping to the target device during the map process.

e Physical Macros (NMC files)

The NMC files are binary files containing the implementation of a
physical macro instantiated in the design. The Translate process

Xilinx Development System

Implementing the Design

reads the NMC file to create a behavioral simulation model for
the macro.

e (Optional) Guide Design File (NCD file)

A Guide Design File is an output NCD file from a previous MAP
run that is used as an input to guide a later MAP run. You must
identify the NCD file to be used in the Use Guide Design File
(.ncd) option on the Map Options tab of the implementation
Process Properties dialog box (see the“FPGA Implementation
Options” section) prior to implementing the design.

Note Virtex, VirtexE, Virtex2, and Spartan2 do not support guide
files.

e (Optional) Map Floorplanner File (MFP file) - Optional

A Map Floorplanner File, previously generated by the Floor-
planner, can be specified as an input file. The MFP file is essen-
tially used as a guide file for mapping. You must identify the
MFP file to be used in the Use Floorplanner File option on the
Map Options tab of the implementation Process Properties dialog
box (see the“FPGA Implementation Options” section) prior to
implementing the design.

e (Optional) MAP Directive File (MDF file) -- Optional

The MAP Directive File (MDF) is an optional input file used for
guided mapping. The MDF file describes how logic was decom-
posed when the guide design was mapped. MAP uses the hints
in the MDF as a guide for logic decomposition in the guided
mapping run.

The following file types are output files for the mapping process:
e Native Circuit Description (NCD file)

The NCD file (top_source_name.ncd) contains a physical descrip-
tion of the design in terms of the components in the target Xilinx
device.

e Physical Constraints File (PCF)

The PCF file (top_source_name.pcf) is an ASCII text file containing
the constraints specified during design entry expressed in terms
of physical elements. The physical constraints in the PCF file are
expressed in Xilinx's constraint language. Refer to the Xilinx
Libraries Guide for a description of this file.

Foundation Series ISE 3.1i User Guide 14-17

Foundation Series ISE 3.1i User Guide

14-18

Native Generic Map File (NGM file)

An NGM file (top_source_name.ngm) is a binary design file
containing all of the data in the input NGD file as well as infor-
mation on the physical design produced by the mapping. The
NGM file is used to correlate the back-annotated design netlist to
the structure and naming of the source design.

MAP Directive File (MDF file)

The MDF file describes how logic was decomposed when the
design was mapped. In guided mapping, MAP uses the hints in
the MDF as a guide for logic decomposition.

MAP Report (MRP file)

The Map Report (top_source_name.mrp) contains information
about the Map run and its subprocesses. Refer to the “Viewing
Implementation Reports” section for information on this report.

For a detailed description of the MAP process, see the Development
System Reference Guide.

Pre-Route Static Timing (Optional)

The Pre-Route Static Timing process (the Xilinx TRACE program)
creates timing simulation data from which you can ascertain if the
timing requirements and functionality of your design are correct
before the place and route process is implemented.

The following file are input files for the Pre-Route Static Timing
process:

A mapped design file (NCD file)

The NCD file (top_source_name.ncd) contains a physical descrip-
tion of the design in terms of the components in the target Xilinx
device.

(Optional) Physical Constraints file (PCF file)

The PCF file (top_source_name.pcf) is an ASCII text file containing
the constraints specified during design entry expressed in terms
of physical elements. The physical constraints in the PCF file are
expressed in Xilinx's constraint language. Refer to the Xilinx
Libraries Guide for a description of this file.

Xilinx Development System

Implementing the Design

Constraints can indicate such things as clock speed for input
signals, the external timing relationship between two or more
signals, absolute maximum delay on a design path, or a general
timing requirement for a class of pins.

The pre-route static timing process outputs the Pre-Route Static
Timing Report. The Pre-Route Static Timing Report
(top_source_name.tw1) contains information about how well the
timing constraints for the design have been met. Refer to the
“Viewing Implementation Reports” section for information on this
report.

For a complete description of the timing processes, refer to the
“TRACE” chapter of the Development System Reference Guide.

Place and Route

After an FPGA design has undergone the necessary processing to
bring it into the mapped NCD format, it is ready to place and route.
This phase is done by PAR (Xilinx's Place and Route program). PAR
takes a mapped NCD file, places and routes the design, and produces
an NCD file to be used by the programming file generator (BitGen).
The output NCD file can also act as a guide file when you place and
route the design again after you make minor changes to it.

In the Xilinx Development System, PAR places and routes a design
using a combination of two methods as follows.

» Cost-based placement and routing are performed using various
cost tables which assign weighted values to relevant factors such
as constraints, length of connection and available routing
resources.

e Timing-driven PAR places and routes a design based upon your
timing constraints.

The following file types are input files for the Place and Route process:
e A mapped design file (NCD file)

The mapped NCD file (top_source_name.ncd) contains a physical
description of the design in terms of the components in the target
Xilinx device.

Foundation Series ISE 3.1i User Guide 14-19

Foundation Series ISE 3.1i User Guide

Physical Constraints File (PCF)

The Physical Constraints File (top_source_name.pcf) is an ASCII
file containing constraints specified during design entry
expressed in terms of physical elements. The physical constraints
in the PCF file are expressed in Xilinx’s constraint language. Refer
to the Xilinx Libraries Guide for a description of this file.

(Optional) Native Circuit Description Guide file (NCD file)

You can optionally specify a template NCD file for placing and
routing the design. You must identify the template file in the
“Use Guide Design File” field of the Place and Route Options tab
on the implementation Process Properties dialog box.

The following file types are output files for the Place and Route
process:

14-20

Placed and Routed Design File (NCD file)

The NCD file (top_source_name.ncd) is a placed and routed design
file. It may contain placement and routing information in varying
degrees of completion. This file can be used by the programming
file creation program (BitGen) to produce a bitstream file for
downloading.

Place-and-Route Report (PAR file)

The Place-and-Route Report (top_source_name.par) includes
summary information of all placement and routing iterations.
Refer to the “Viewing Implementation Reports” section for infor-
mation on this report.

Asynchronous Delay Report (DLY file)

The Delay File (top_source_name.dly) contains delay information
for each net in the design. Refer to the “Viewing Implementation
Reports” section for information on this report.

Pad Report (PAD file)

The PAD Report (top_source_name.pad) contains I/0 pin assign-
ments. Refer to the “Viewing Implementation Reports” section
for information on this report.

Xilinx Development System

Implementing the Design

e Guide Report File

A Guide Report File is created if you identified a guide file in the
“Use Guide Design File” field on the Place and Route Options
tab.

e Intermediate Failing Timespec Summary (XPI file)

The Intermediate Failing Timespec Summary is a report gener-
ated for failing timing specifications Xilinx Par Information. This
report appears regardless whether the design was routed and the
timing specifications were met.

For a complete description of PAR, see the “PAR—PIlace and Route”
chapter in the Development System Reference Guide.

Post-Route Timing (Optional)

The Post-Route Timing process (the Xilinx TRACE program) can be
run after Place and Route to create timing simulation data from
which you can ascertain if the timing requirements and functionality
of your design have been met after routing.

The following files are input files for the post-route timing process:
* A placed and routed design file (NCD file)

The NCD file (top_source_name.ncd) contains a physical descrip-
tion of the design in terms of the components in the target Xilinx
device.

e (Optional) Physical Constraints file (PCF file)

The PCF file (top_source_name.pcf) is an ASCII text file containing
the constraints specified during design entry expressed in terms
of physical elements. The physical constraints in the PCF file are
expressed in Xilinx's constraint language. Refer to the Xilinx
Libraries Guide for a description of this file.

Constraints can indicate such things as clock speed for input
signals, the external timing relationship between two or more
signals, absolute maximum delay on a design path, or a general
timing requirement for a class of pins.

Output from the post-route timing process is the Post-Route Timing
Report (top_source_name .twr). The Post-Route Static Timing Report
contains information about how well the timing constraints for the

Foundation Series ISE 3.1i User Guide 14-21

Foundation Series ISE 3.1i User Guide

14-22

design have been met. There are two different types of timing reports:
the error report and verbose report. Refer to the “Post-Route Timing
Report” section for information on this report.

For a complete description of the pre-Route Static Timing process,
refer to the “TRACE” chapter of the Development System Reference
Guide.

Multi Pass Place and Route (Optional)

Running multiple place and route passes allows you to automatically
generate multiple place and route solutions for a design to find the
best possible placement for the design. Optimal placement results in
shorter routing delays and faster designs. The Multi-Pass Place and
Route process offers both the ability to generate a determinate,
repeatable solution by using the same starting point, or cost table.
The Multi-Pass Place and Route process also has the ability to
generate a range of unique solutions by using different cost tables.

Multiple iterations of placement and routing produce an output
design file, a PAR file, a DLY file, and a PAD file for each iteration.
When multiple iterations are run they are placed in mppr_results.dir
under the project directory. When the Multi Pass Place and Route
process is performed, PAR records a summary of all placement and
routing iterations in one PAR file in the mppr_results directory, then
places the output files (in NCD format) in that directory. The output
NCD files are named based on the placer level, router level, and cost
table used. For example, the NCD file mppr_results.dir/5_5 1.ncd
indicates placer level 5, router level 5, cost table 1 were used.

The Multi-Pass Place and Route process scores each place and route
pass and uses the score to determine the best passes to save. Scores
are based on factors such as the number of unrouted nets, the delays
on nets, and conformity to your timing constraints.

On average, design speed from an arbitrary multiple pass place and
route will vary plus or minus 5 to 10% from the median design speed
across all cost tables. About 1/3 of the cost tables will result in speeds
within 5% of the median, 1/3 in the 5 to 10% range, and 1/3 in the 10
to 15% range. When comparing performance from the absolute worst
cost table to the absolute best, a spread of 25 to 30% is possible.

Note Ranges are narrower for Virtex devices and higher for XC4000
devices.

Xilinx Development System

Implementing the Design

Use the Multi-Pass Place & Route process in the following situations.

e You want to evaluate whether worse than expected results are
due to a poor starting point or cost table.

In this case, run multiple place and route passes at any time
during the design cycle by running 3 or 4 cost tables.

* You made small changes to a design at the end of the design cycle
and performance falls 5 to 10% as a result of these changes.

In this case, run 5 to 10 cost tables.

Note Using the Multi-Pass Place & Route process is not recom-
mended for every design iteration. If you need the top performing
cost tables to meet design performance, your design should be modi-
fied to remove one or more logic levels.

To run Multi Pass Place & Route on an FPGA design, select a top-
level source in the Source window and then double-click on Mul t i
Pass Pl ace & Rout e in the Process window.

You can elect to use the Multi Pass Place & Route defaults or set your
own property values in the Multi Pass Place & Route Options dialog
box described in the “Multi-Pass Place & Route Options” section.

Refer to the “MPPR Report” section for information on the report
produced by this Multi Pass Place and Route process.

Backannotate Pin Locations (Optional)

Each time you implement a design, a file is created which contains
the pin locations and logical pad names information. For FPGAs, pin
locations and logical pad names are read from a placed NCD file
(top_source_name.ncd).

When you are ready to commit the pinout of a design, select the top-
level source file in the Source window and then double-click the
Backannot at e Pi n Locs process for FPGA designs. If no conflicts
are found, the pinout information stored in the .ncd file (FPGAS) is
appended to the end of the User Constraint File for your design
(top_source_name.ucf or the .ucf file specified in the implementation
Process Properties). This pinout will then be applied to all subsequent
design implementations that you run.

The Notice informational window shown in the following appears
whenever the pin locking process is successful.

Foundation Series ISE 3.1i User Guide 14-23

Foundation Series ISE 3.1i User Guide

14-24

Naotice

Fieset the Implement Design process so that your UCF changes will
be read?
The Uzer Constraint File [UCF] has changed. Az a result, it may not
be pozzible to reproduce the zame implementation results uging the
new LICF.

To incorporate the new LICF at this time, chooze RESET
to mark the Implement Design process out of date. Then re-run the
Implement Design process. Otherwise, choose RETAIM ta keep the

current implementation results intact and not incorporate the new
UICF at this time.

Retain |

Whenever changes are made to a UCF file, implementation needs to
rerun beginning with the translate process to incorporate the changes
into the project. Click Reset in the Notice window if you want to
rerun implementation to read to new UCF file. However, if you want
to keep the current implementation report files valid and available
for viewing and also keep any post-implementation processes valid
so that you can proceed without rerunning implementation, click
Ret ai n.

Backannotate Pin Locs Report

For FPGAs, double-click on Backannotate Pin Locs Report in
the Process window to generate and view this report. The Backanno-
tate Pin Locs Report (top_source_name.lck for FPGAS) is displayed in
the ISE Report Viewer.

The Backannotate Pin Locs Report has two sections: Constraint
Conflicts Information and List of Errors and Warnings.

The Constraints Conflicts Information section does not display if
there are fatal input errors, for example, missing inputs or invalid
inputs. However, the created report file contains the List of Errors
and Warnings. The Constraints Conflicts Information section has two
subsections: Net name conflicts on the pin and Pin name conflicts on
the nets.If there are no conflicting constraints, both subsections under
the Constraint Conflicts Information section contain a single line indi-
cating that there are no conflicts.

The List of Errors and Warnings displays only if there are errors or
warnings.

Xilinx Development System

Implementing the Design

Pin Loc Constraints in the UCF

Pin locking constraints are written to a PINLOCK section in the UCF
file. The PINLOCK section begins with the statement #PINLOCK
BEGIN and ends with the statement #PINLOCK END. By default,
conflicting constraints are not written to the UCF file. Prior to
creating a PINLOCK section in the UCF, if the conflicting constraints
are discovered, this information is reported.

User-specified pin locking constraints are never overwritten in a UCF
file. However, if the user-specified constraints are exact matches of
pin-locked generated constraints, a pound sign (#) is added in front of
all matching user-specified location constraint statements. The pound
sign indicates that a statement is a comment. To restore the original
UCF file (the file without the PINLOCK section), remove the
PINLOCK section and delete the pound sign from each of the user-
specified statements.

The pin locking process does not check if existing constraints in the
UCF file are valid pin locking constraints. Comments inside an
existing PINLOCK section are never preserved by a new run of the
pin locking process. If the pin locking process finds a CSTTRANS
comment, it equates “INST name” to “NET name” and then checks
for comments.

The pin locking process writes to an existing UCF file under the
following conditions.

e The contents in the PINLOCK section are all pin lock matches
and there are no conflicts between the PINLOCK section and the
rest of the UCF file.

* The PINLOCK section contents are all comments and there are no
conflicts outside the PINLOCK section.

* There is no PINLOCK section and no other conflicts in the UCF
file.

Foundation Series ISE 3.1i User Guide 14-25

Foundation Series ISE 3.1i User Guide

FPGA Implementation Reports

14-26

This section contains descriptions of the reports available for infor-
mation on the implementation processing of your FPGA design.

Translation Report

The Translation Report (top_source_name.bld) contains warning and
error messages from the three translation processes: conversion of the
EDIF netlist to the Xilinx NGD netlist format, timing specification
checks, and logical design rule checks. The report lists the following:

« Missing or untranslatable hierarchical blocks
e Invalid or incomplete timing constraints

e Output contention, loadless outputs, and sourceless inputs

Map Report

The Map Report (top_source_name.mrp) contains warning and error
messages detailing logic optimization and problems in mapping logic
to physical resources. The report lists the following information:

< Removed logic. Sourceless and loadless signals can cause a whole
chain of logic to be removed. Each deleted element is listed with
progressive indentation, so the origins of removed logic sections
are easily identifiable; their deletion statements are not indented.

e Logic that has been added or expanded to optimize speed.

e Component information. The Design Summary section lists the
number and percentage of used CLBs, 10Bs, flip-flops, and
latches. It also lists occurrences of architecturally-specific
resources like global buffers and boundary scan logic.

To get the complete (detailed) Map Report, you need to enable the
“Generate Detailed MAP Report” option in the Map Options tab of
the implementation Process Properties dialog box (see the “FPGA
Implementation Options™ section).

Note The Map Report can be very large. To find information, use key
word searches. To quickly locate major sections, search for the string
‘---* | because each section heading is underlined with dashes.

Xilinx Development System

Implementing the Design

Pre-Route Static Timing Report

The Pre-Route Static Timing Report (top_source_name_preroute. twr)
shows a summary report of worst-case timing for all paths in the
design. It optionally includes a complete listing of all delays on each
individual path in the design.

Pre-route static timing reports can be very useful in evaluating timing
performance. Although route delays are not accounted for, the logic
delays can provide valuable information about the design.

If logic delays account for a significant portion (> 50%) of the total
allowable delay of a path, the path may not be able to meet your
timing requirements when routing delays are added.

Routing delays typically account for 40% to 60% of the total path
delays. By identifying problem paths, you can mitigate potential
problems before investing time in place and route. You can redesign
the logic paths to use less levels of logic, tag the paths for specialized
routing resources, move to a faster device, or allocate more time for
the path.

If logic-only-delays account for much less (<35%) than the total
allowable delay for a path or timing constraint, then the place-and-
route software can use very low placement effort levels. In these
cases, reducing effort levels allow you to decrease runtimes while still
meeting performance requirements.

The timing report lists statistics on the design, any detected timing
errors, and a number of warning conditions. Timing errors indicate
absolute or relative timing constraint violations. These include the

following.

« Path delay errors - where the path delay exceeds the maximum
delay constraint for a path.

* Net delay errors - where a net connection delay exceeds the
maximum delay constraint for the net.

» Offset errors - where either the delay offset between an external
clock and its associated data-in pin is insufficient to meet the
internal logic’s timing requirements or the delay offset between
an external clock and its associated data-out pin exceeds the
external logic’s timing requirements.

Foundation Series ISE 3.1i User Guide 14-27

Foundation Series ISE 3.1i User Guide

14-28

Net skew errors - where skew between net connections exceeds
the maximum skew constraint for the net.

Timing errors may require design modifications, running PAR, or
both.

Warnings point out potential problems such as circuit cycles or a
constraint that does not define any paths.

Different types of reports are available. Refer to the “Pre-Route Static
Timing Options” section for information on the report types and
other options you can for this report.

Place and Route Report

The Place and Route Report (top_source_name.par) contains the
following information.

The overall placer score which measures the “goodness” of the
placement. Lower is better. The score is strongly dependent on
the nature of the design and the physical part that is being
targeted, so meaningful score comparisons can only be made
between iterations of the same design targeted for the same part.

The Number of Signals Not Completely Routed should be zero
for a completely implemented design. If non-zero, you may be
able to improve results by using re-entrant routing or the multi-
pass place and route flow.

The timing summary at the end of the report details the design’s
asynchronous delays.

Pad Report

The Pad Report (top_source_name.pad) lists the design’s pinout in
three ways.

Signals are referenced according to pad numbers.
Pad numbers are referenced according to signal hames.

PCF file constraints are listed. This section of the Pad Report can
be cut and pasted into the .pcf file after the SCHEMATIC END;
statement to preserve the pinout for future design iterations.

Xilinx Development System

Implementing the Design

Asynchronous Delay Report

The Asynchronous Delay Report (top_source_name.dly) lists all nets in
the design and the delays of all loads on the net. The worst net delays
are listed at the top of the report.

MPPR Report

The Multi-pass Place and Route Report (MPPR) Report
(top_source_name.mppr) is displayed in the ISE Report Viewer. The
MPPR Report lists the design scores and timing scores for the design.

Post-Route Timing Report

The Post-Route Timing Report (top_source_name.twr) is an evaluation
of the design’s timing constraints, clock frequencies, and path delays.
Both the logic and routing delays are incorporated to generate this
report.

Post-Route timing reports incorporate all delays to provide a compre-
hensive timing summary. If a placed and routed design has met all of
your timing constraints, then you can proceed by creating program-
ming data and downloading to a device. On the other hand, if you
identify problems in the timing reports, you can try fixing the prob-
lems by increasing the placer effort level, using re-entrant routing, or
using multi-pass place and route. You can also redesign the logic
paths to use fewer levels of logic, tag the paths for specialized routing
resources, move to a faster device, or allocate more time for the paths.

Foundation Series ISE 3.1i User Guide 14-29

Foundation Series ISE 3.1i User Guide

FPGA Implementation Options

You can set multiple properties to control the implementation
processes for the design. For FPGAs, the implementation process
properties specify how a design is translated, mapped, placed, and
routed. Reporting options are also available. The options you can set
for each of these processes are described in this section.

Accessing the Implementation Process Properties

Dialog Box.

Use the following procedure to access the implementation Process
Properties dialog box to modify implementation options.

1. Click on a design source file in the Source window for a project
that targets an FPGA device.

Note Implementation properties are set for the whole design. Not
for the selected source file only.

2. Rightclickon | npl enent Desi gn in the Process window.

3. Select Properti es from the pull-down menu that appears.

4. The Process Properties dialog box for the Implement Design
processes appears. An example is shown in the following figure.

Process Properties x|
Fre-Route Static Timing Beport O ptions | Fozt-RBoute Timing Report Options
Tranzlate Options Map Options I Place and Route Optians

Property Hame Yalue

Uszer Constraints File

Macro Search Path

o]

Cancel | [efault |

Figure 14-4 Implementation Process Properties - Standard

Display

14-30

Xilinx Development System

Implementing the Design

5. Click on the tab corresponding to the type of options you want to
set to display the available properties. You can set properties for
the following implementation option groups: Translate Options,
Map Options, and Place and Route Options, Pre-Route Static
Timing Report Options, and Post Route Timing Report Options.
You can use the F1 help function to display detailed descriptions
of the options on each tab

Note You can also right-click on the following processes listed
under the Implement Design process to display the Process Prop-
erties dialog box for that process only: Translate, Map, Place and
Route, Pre-Route Static Timing, Post Route Timing, or Multi Pass
Place and Route. Multi Pass Place and Route options can only be
accessed from that process.

You can customize whether you want to display the Standard or
Advanced list of properties in the Process Properties dialog boxes.
Use the procedure described in the following section to display the
Advanced properties.

Accessing Advanced Properties

The options listed in the Process Properties dialog boxes depend on
whether you are using the “Standard” or “Advanced” display level.
By default, only the “Standard” options are listed on each Process
Property tab. If you want to access the “Advanced” options, you need
to do the following before you access the Implementation Process
properties dialog box.

1. SelectEdit - Preferences from Project Navigator menu.
2. Click the Processes tab in the Preference dialog box.

3. Select Advanced for the Property Display Level. An example
Advanced display is shown in the following figure.

Foundation Series ISE 3.1i User Guide 14-31

Foundation Series ISE 3.1i User Guide

14-32

Process Properties x|
Fre-Route Static Timing Beport O ptions | Fozt-RBoute Timing Report Options
Tranzlate Options | Map Options I Place and Route Optians
Property Hame Yalue
lgnore LOC Constraints [l
Metlizt Tranzlation Type Timeztamg
Uszer Constraints File
Don't Use Defautt UCF [l
Macro Search Path
Create W0 Pads from Ports -
Allowy Unexpanded Blocks [l
Uszer Rules File for Metlister Launcher
0K I Cancel | [efault |

Figure 14-5 Implementation Process Properties - Advanced
Display

Translate Options

Select a top-level source in the Source window, then use either of the
following methods to access the list of available options for translate
processing.

* Right-click on | npl ement Desi gn in the Process window.
Select Pr oper ti es from the menu that appears. Then select the
Transl at e Opti ons tab from the Process Properties dialog
box.

« Right-click on Tr ansl at e in the Process window. Select Pr op-
erti es from the menu that appears to display a Process Proper-
ties dialog box with the Translate Options tab only.

As with all implementation properties, the translate options listed
depend on whether the Standard or Advanced “property display
level” is set in the Project Navigator (Edi t — Pref erences -
Processes).

Standard Translate Options

An example of the standard Translate Options dialog box for Virtex is
shown in the following figure. All the possible properties that can
appear are described in the following sections.

Xilinx Development System

Implementing the Design

Process Properties x|

Tranglate Dptions

Property Hame Value
Uszer Constraints File
Macto Search Path

oK I Cancel | [efault

Figure 14-6 Translate Tab - Standard Display

User Constraints File
Value: Blank (default, use project_name.ucf) / path to a .ucf file

If the value field for this property is blank and a UCF file exists with
the same base name as the project file (project_name, the constraints in
that default UCF file (project_name.ucf) are automatically read. If you
enter a filename with an .ucf extension here, the constraints in that
file are read instead of the default UCF file. Entering a filename with
an extension other than .ucf generates an error and halts processing.

Macro Search Path
Value: Blank (default) / file path

The Macro Search Path property adds the specified search path to the
list of directories to search when resolving file references (that is, files
specified in a schematic with a FILE=filename property). This option
also supplies paths for macros (project_name.nmc) or other directories
containing NGO files.

To specify multiple search paths, type in each directory name sepa-
rated by a semicolon (;). A semicolon is automatically appended
when you use the Browse button to select multiple search paths.

Foundation Series ISE 3.1i User Guide 14-33

Foundation Series ISE 3.1i User Guide

14-34

Advanced Translate Options

An example of the advanced Translate Options dialog box for Virtex
is shown in the following figure. All the possible properties that can
appear are described in the following sections.

Process Properties

Tranglate Options |

Property Hame Value
lgnore LOC Constraints [l
Metlist Translation Type Timestatmg
Uszer Caonstraints File
Dont Use Default LICF [l
lacra Search Path
Create i0 Pads from Ports [l
Allowy Unespanded Blocks [l
Uszer Rules File for Metlister Launcher

Ok I Cancel | [efault |

Figure 14-7 Translate Options Tab - Advanced Display

The Advanced options include all options described in the “Standard
Translate Options” section plus the options described in the
following sections.

Ignore LOC Constraints
Value: Disabled (default) /7 Enabled

If enabled (checked), this option eliminates all location constraints
(LOC=) found in the input netlist or UCF file. Use this option when
you migrate to a different device or architecture, because locations in
one architecture may not match locations in another.

Netlist Translation Type

Value: Timestamp (default) /7 On / Off

The Netlist Translation Type property determines how timestamps in
NGO files are treated. A timestamp is information in a file that indi-

cates the date and time the file was created. When the “Timestamp”

value is set, normal timestamp checks are done and NGO files are

Xilinx Development System

Implementing the Design

updated according to their timestamps. The “On” option translates
netlists regardless of timestamps (rebuilding all NGO files). The
“Off” option does not rebuild an existing NGO file regardless of its
timestamp.

User Constraints File

Value: Blank (default, use project_name.ucf) / path to a .ucf file

See the “Standard Translate Options” section for a description of this
property.

Don’'t Use Default UCF

Value: Disabled (default) / Enabled

The Don’t Use Default UCF property controls whether the default
user constraints file (project_name.ucf) is used during implementation.
This option is provided to allow you to disable UCF file use
completely. If you select this option and do not designate a UCF file
in the User Constraints File property, neither the default UCF nor any
other UCF file is used for implementation processing.

Note If you specify any UCF file in the User Constraints File property
and check this switch, the UCF file entered there is used.

Macro Search Path

Value: Blank (default) / file path

See the “Standard Translate Options” section for a description of this
property.

Create I/0O Pads from Ports

Value: Disabled (default) / Enabled

When enabled, the Create I/0 Pads from Ports option adds PAD
properties to all top level port signals. Select this option if your simu-
lation netlist format is an EDIF file in which PAD symbols were trans-
lated into ports.

Foundation Series ISE 3.1i User Guide 14-35

Foundation Series ISE 3.1i User Guide

14-36

Allow Unexpanded Blocks
Value: Disabled (default) /7 Enabled

By default, the Translate process generates an error if a block in the
design cannot be expanded to NGD primitives. If this error occurs, an
NGD file is not written. You can enable the Allow Unexpanded
Blocks option to have the Translate process generate a warning
instead of an error. In this case, it writes the NGD file containing the
unexpanded blocks. This option allows you to perform preliminary
mapping, placement and routing, timing analysis, or simulation on a
design even though the design is nhot complete.

User Rules for Netlister Launcher
Value: Blank (default) /7 Path to .urf file

The User Rules File for Netlister Launcher property allows you to
control how the translate process parses files. The User Rules File
specifies the acceptable netlist input files, the netlist readers that read
these files, and the default netlist reader options. This file also allows
you to specify third party tool commands for processing designs.

Note Note: The user rules file must have a .urf extension. If you
specify a user rules file with no extension, the .urf extension is auto-
matically added to the file name. If you specify a file name with an
extension other than .urf, you get an error message and the translate
process does not run.

Map Options

Select a top-level source in the Source window, then use either of the
following methods to access the list of available options for map
processing.

* Right-click on I npl emrent Desi gn in the Process window.
Select Pr oper ti es from the menu that appears. Then select the
Map Opti ons tab from the Process Properties dialog box.

« Right-click on Map in the Process window. Select Pr operti es
from the menu that appears to display a Process Properties
dialog box with the Map Options tab only.

As with all implementation properties, the options listed depend on
whether the Standard or Advanced “property display level” is set in
the Project Navigator (Edit — Pref erences - Processes).

Xilinx Development System

Implementing the Design

Standard Map Options

An example of the standard Map Options dialog box for Virtex is
shown in the following figure. All the possible properties that can
appear are described in the following sections.

Process Properties x|

Map Options |

Property Hame Value
Trim Unconnected Signals
Generate Detailed MAP Report
Usze FloorPlanner File
Use Guide Design File { .ncd)
Guide Mocke Exact
Pack WO RegistersilLatches into 1I2Bs Off

<

Ok I Cancel | [efault

Figure 14-8 Map Options - Standard Display

Trim Unconnected Signals
Value: Enabled (default) / Disabled

When the Trim Unconnected Signals option is enabled, unconnected
components and nets are trimmed from the design before mapping
occurs. When disabled, unconnected components and nets. Disabling
this option is useful for estimating the logic resources required for a
design and for obtaining timing information on partially finished
designs. When implementing an unfinished design, disable this
option to prevent partial logic from being trimmed.

Generate Detailed Map Report

Value: Disabled (default) / Enabled

Enable the Generate Detailed Map Report option if you want to have
the Map Report include the following information on the mapping
process: signal and symbol cross-references, expanded logic, redun-
dant blocks removed, and signals merged.

Foundation Series ISE 3.1i User Guide 14-37

Foundation Series ISE 3.1i User Guide

14-38

Use FloorPlanner File
Value: Blank (default) / Path to .mfp file

The User Floorplanner File property controls whether a Map Floor-
planner File (MFP), which is generated by the Floorplanner, is used
during the mapping process. This property requires the specification
of an existing MFP file created by the Floorplanner. The MFP file is
essentially used as a guide file for mapping. To create an MFP, you
must first have generated an NGD file and a mapped NCD file. When
you have run MAP to generate an NCD file, you can open the
mapped NCD file in the Floorplanner, modify the placement of
components, and then generate an MFP file. You can then use the
MFP file as an input file. For more information about the Floor-
planner, see the Floorplanner Reference/User Guide.

Note If you use the Use FloorPlanner File property, you cannot use
the Use Guide Design File property.

Use Guide Design File (.ncd)
Value: Blank (default) /7 Path to .ncd file

The Use Guide Design File property allows you to specify an optional
guide design file to be fed into the place and route process. The guide
file is an NCD file that is used as a template for placing and routing
the input design. This is useful if minor incremental changes have
been made to create a new design. To increase productivity, you can
use your last design iteration as a guide design for the next design
iteration; that is, your output NCD file becomes the guide design file
for your next iteration of the design. If you do not specify a guide file,
the implementation process is guided by the placement and routing
information in the input NCD file.

Guide Mode
Value: Exact (default) / Leverage

The Guide Mode property allows you to specify the form of guided
placement and routing. Exact mode locks the placement and routing
of matching logic. Neither placement nor routing can be changed to
accommodate the additional logic. Leverage mode specifies that PAR
should try to maintain the placement and routing of the matching
logic, but can change placement or routing if it is necessary in order

Xilinx Development System

Implementing the Design

to place and route to completion and achieve your timing constraints
(if possible).

You specify the NCD to use as a guide file in the Use Guide Design
File property. If you do not specify a guide file, PAR is guided by the
placement and routing information in the input NCD file.

Pack 1/0 Registers/Latches into the IOBs

Value: Off (default) / For Inputs Only / For Outputs Only / For
Inputs and Outputs

Normally, the mapper packs flip-flops or latches within an 170 cell
only if such packing is specified by your design entry method. The
Pack 1/0 Registers/Latches into the I0OBs property allows you to
control the packing of flip-flops or latches within an 1/0 cell as
follows:

e Off (the default)

Select Off to pack flip-flops or latches as specified by your design
entry method.

e Inputs Only
Use this value to pack flip-flops or latches into input 170 cells.
e Outputs Only
Use this value to pack flip-flops or latches into output 1/0 cells.
e Inputs and Outputs
Use this value to pack flip-flops or latches into both input and
output 170 cells.
Use Generic Clock Buffers (BUFGS) in Place of BUFGPs
Value: Disabled (default) / Enabled

For Spartan, SpartanXL, and XC4000 architectures, the Use Generic
Clock Buffers (BUFGS) in Place of BUFGP/BUFGS property enables
the use of BUFGs instead of BUFGPs and BUFGSs.

Advanced Map Options

An example of the advanced Map Options dialog box for Virtex is
shown in the following figure. All the possible properties that can
appear are described in the following sections.

Foundation Series ISE 3.1i User Guide 14-39

Foundation Series ISE 3.1i User Guide

14-40

Process Properties x|
Map Options
Property Hame Value =
Trim Unconnected Signals [
Replicate Logic to Allow Logic Level Reduction =
Map to Input Functions 4
Optimization Strategy (Cover Mode) Area
Generate Detailed MAP Report |l
Uze FloorPlanner File
Use Guide Design File (.ncd)
Guide haode Exact -
Ignore RLOC Constrairts |l
Pack 1120 RegistersLatches into 0Bz Off
Dizakle Register Ordering [;I
akK I Cancel | Wefault |

Figure 14-9 Map Options - Advanced Display

Trim Unconnected Signals

Value: Enabled (default) / Disabled

Refer to the “Standard Map Options” section for information on this

option.

Replicate Logic to Allow Logic Level Reduction

Value: Enabled (default) / Disabled

When the Replicate Logic to Allow Logic Level Reduction option is
enabled, single drivers that drive multiple loads are replicated and
mapped as separate components that drive individual loads. This
option is useful for creating a mapping strategy that may more
readily meet your timing constraints. It reduces the number of logic
elements through which a signal must pass, thereby eliminating path

delays.

Map to Input Functions
Value: 4 (default) /57 6

For Spartan2, Virtex, Virtexg, and Virtex2 architectures, you can
specify the maximum size function that is covered. The default is 4.
Covering to 5 or 6 input functions results in the use of FEMUX and

F6MUX.

Xilinx Development System

Implementing the Design

Map to 5-Input Functions
Value: Disabled (default) /7 Enabled

For Spartan, SpartanXL, and XC4000 architectures, you can enable
the Map to 5-input Functions option to map each five-input logic
function to a single CLB. This can sometimes reduce the number of
cell-to-cell delays at the expense of increased CLB count.

Optimization Strategy (Cover Mode)
Value: Area (default) / Speed / Balanced / Off

The Optimization Strategy property allows you to specify criteria
used during the “cover” phase of MAP. In the “cover” phase, MAP
assigns the logic to CLB function generators (LUTs). The available
values are as follows.

e The Area setting, the default) makes reducing the number of
LUTs (and therefore the number of CLBs) the highest priority.

e The Speed setting makes reducing the number of levels of LUTS
(the number of LUTs a path passes through) the highest priority.
This setting makes it easiest to achieve your timing constraints
after the design is placed and routed. For most designs there is a
small increase in the number of LUTs (compared to the area
setting), but in some cases the increase may be large.

e The Balanced setting balances two priorities: reducing the
number of LUTs and reducing the number of levels of LUTs. The
Balanced option produces results similar to the Speed setting but
avoids the possibility of a large increase in the number of LUTSs.

e The Off setting disables optimization.

Generate Detailed Map Report

Value: Disabled (default) / Enabled

Refer to the “Standard Map Options” section for a description of this
property.

Use FloorPlanner File

Value: Blank (default) / Path to .mfp file

Refer to the “Standard Map Options” section for a description of this
property.

Foundation Series ISE 3.1i User Guide 14-41

Foundation Series ISE 3.1i User Guide

14-42

Use Guide Design File (.ncd)

Value: Blank (default) / Path to .ncd file

Refer to the “Standard Map Options” section for a description of this
property.

Guide Mode

Value: Exact (default) / Leverage

Refer to the “Standard Map Options” section for a description of this
property.

Ignore RLOC Constraints

Value: Disabled (default) /7 Enabled

You can enable the Ignore RLOC Constraints property to instruct the
Map process to ignore RLOC information, which contains the relative
placement of one CLB to another. When enabled, this option also
instructs Map to ignore any invalid RLOC information that would
result in a Map error.

Pack I/0 Registers/Latches into the IOBs

Value: Off (default) / For Inputs Only / For Outputs Only / For
Inputs and Outputs

Refer to the “Standard Map Options” section for a description of this
property.

Disable Register Ordering

Value: Disabled (default) /7 Enabled

The Disable Register Ordering property allows to enable or disable
register ordering. When you map a design containing registers, the
mapper can optimize the way the registers are grouped into CLBs.
This optimized mapping is called register ordering.

CLB Pack Factor Percentage

Value: 97 (default) / Numeric value

The CLB Pack Factor Percentage property allows you to set the
percent of CLBs that are packed. Enter a numeric value in this field.
By default for XC4000, Spartan, and SpartanXL devices, this field is

Xilinx Development System

Implementing the Design

set to 97(%). By default for Virtex, VirtexE, Virtex2, and Spartan2
devices, this field is set to 100(%).

Tri-state Buffer Transformation Mode
Value: Off (default) / On / Aggressive / Limit

For Virtex, VirtexE, Virtex2, and Spartan2 architectures, the Tri-state
Buffer Transformation Mode allows you to specify the type of bus
transformation that MAP should perform. When this option is set to
Aggressive, Map transforms the entire bus. When set to Limit, Map
transforms only the portion of the bus that exceeds the device limit.

Use Generic Clock Buffers (BUFGS) in Place of BUFGPs
Value: Disabled (default) / Enabled

For Spartan, SpartanXL, and XC4000 architectures, refer to the “Stan-
dard Map Options” section for a description of this property.

Pre-Route Static Timing Options

Select a top-level source in the Source window, then use either of the
following methods to access the list of available options for pre-route
static timing processing.

e Right-click on | npl ement Desi gn in the Process window.
Select Pr oper ti es from the menu that appears. Then select the
Pre-Route Static Timng Options tab from the Process
Properties dialog box.

e Right-clickon Pre- Route Static Ti m ng inthe Process
window. Select Pr oper ti es from the menu that appears to
display a Process Properties dialog box with the Pre-Route Static
Timing Options tab only.

As with all implementation properties, the options listed depend on
whether the Standard or Advanced “property display level” is set in
the Project Navigator (Edit — Preferences - Processes).

Standard Pre-Route Static Timing Options

An example of the standard Pre-Route Static Timing Options dialog
box for Virtex is shown in the following figure. All the possible prop-
erties that can appear are described in the following sections.

Foundation Series ISE 3.1i User Guide 14-43

Foundation Series ISE 3.1i User Guide

14-44

Process Properties x|

Fre-Route Static Timing Report Options

Property Hame Value
Report Type Error Repor‘(l -
Mumber of kems in ErrorAerbose Repaort (0-32000) 3
Timing Report (Mumber of items) 3

oK I Cancel | [efault |

Figure 14-10 Pre-Route Static Timing Options - Standard Display

Report Type
Value: Error Report (default) /7 Verbose Report

The Report Type property specifies the type of report you want to
run. By default, this option is set to Error Report. The Error Report
lists timing errors and associated net/path delay information. Failed
paths appear listed from worst-case to best-case. The Verbose Report
provides more details on delays for all constrained paths and nets in
the design. Entries are ordered by constraint and, within constraints,
by slack.

Number of Items in Error/Verbose Report (0-32000)
Value: 3 (default) / Number from 0 through 32000

The Number of items in Error/\erbose Report property allows you to
specify the number of items you want reported in those reports. The
default is 3.

Timing Report (Number of Items)

Value: 3 (default) / Number from 0 through 32000

The Timing Report (Number of Items) property allows you to specify
the number of items you want reported in the timing report. The
default is 3.

Xilinx Development System

Implementing the Design

Advanced Pre-Route Static Timing Options

An example of the advanced Pre-Route Static Timing Options dialog
box for Virtex is shown in the following figure. All the possible prop-
erties that can appear are described in the following sections.

Process Properties x|

Fre-Route Static Timing Report Options

Property Hame Value
Report Type Errar Repor‘tl -
Mumber of tems in Errorfverbose Report (0-320007 3
Timing Report (Mumber of tems) 3
Perfarm Advanced Analysis |l
Change Device Speed To
Report Uncovered Paths (Mumber of kems)

Qg I Cancel | Wiefault |

Figure 14-11 Pre-Route Static Timing Options - Advanced
Display

Report Type

Value: Error Report (default) /7 Verbose Report

Refer to the “Standard Pre-Route Static Timing Options” section for a
description of this property.

Number of Items in Error/Verbose Report (0-32000)

Value: 3 (default) / Number from 0 through 32000

Refer to the “Standard Pre-Route Static Timing Options” section for a
description of this property.

Timing Report (Number of Items)

Value: 3 (default) / Number from 0 through 32000

Refer to the “Standard Pre-Route Static Timing Options” section for a
description of this property.

Foundation Series ISE 3.1i User Guide 14-45

Foundation Series ISE 3.1i User Guide

14-46

Perform Advanced Analysis
Value: Disabled (default) /7 Enabled

You can enable the Perform Advanced Analysis property to generate
an advanced analysis of your timing constraints. An advanced anal-
ysis enumerates all clocks and the required OFFSETSs for each clock. It
also contains an analysis of paths having only combinatorial logic,
ordered by delay. Select this option only if you are not supplying any
timing constraints in a PCF file. By default, an advanced analysis is
not performed (check box is blank).

Change Device Speed to
Value: Blank (default) / Valid speed grade for the targeted device

The Change Device Speed to property allows you specify a new
speed grade for your design. Changing the speed grade helps you
determine if you need to target a faster device to meet your timing
requirements, or if using a slower speed grade still meets timing
constraints. By default, this field is blank

For more information on setting speed grades, see the TRACE
chapter in the “Development System Reference Manual”.
Report Uncovered Paths (Number of Iltems)

Value: Blank (default) /Number

The Report Uncovered Paths (Number of Items) property reports
paths not affected by timing constraints. The number of paths
reported depends on the value entered for this property. By default,
uncovered paths are not reported.

Place and Route Options

Select a top-level source in the Source window, then use either of the
following methods to access the list of available options for place and
route processing.

* Right-click on I npl ement Desi gn in the Process window.
Select Pr oper ti es from the menu that appears. Then select the
Pl ace and Route Opti ons tab from the Process Properties
dialog box.

Xilinx Development System

Implementing the Design

* Right-click on Pl ace and Rout e in the Process window. Select
Pr operti es from the menu that appears to display a Process
Properties dialog box with the Place and Route Options tab only.

As with all implementation properties, the options listed depend on
whether the Standard or Advanced “property display level” is set in
the Project Navigator (Edit — Pref erences - Processes).

Standard Place and Route Options

An example of the standard Place and Route Options dialog box for
Virtex is shown in the following figure. All the possible properties
that can appear are described in the following sections.

Process Properties |

Flace and Route Options |

Property Hame Yalue
Place & Route effort Level (Cwerall) Default (Low) hd
Starting Placer Cost Table (1-100) 1
Mumber of Routing Pas=es (0-2000)
Flace And Route Mode Maormal Place and Route
Use Guide Design File
Guiche Maode Maorne
Use Timing Constraints 2
r
r

Usze Bonded 0=
Generate Detailed PAR Repart

Ok, I Cancel | DErault |

Figure 14-12 Place and Route Options - Standard Display

Place & Route Effort Level (Overall)

Value: Default (Low) (default) / Lowest / Low / Normal /High /
Highest

The Place and Route Effort Level property allows you to control the
placement times by selecting a less CPU-intensive algorithm for
placement. You can set the placement level from Lowest (fastest run
time) to Highest (best results) as defined below.

* Lowest gives the fastest runtime with lowest place and route
effort. (Least complex design)

Foundation Series ISE 3.1i User Guide 14-47

Foundation Series ISE 3.1i User Guide

14-48

e Low (default) gives a fast runtime with some place and route
optimization.

* Normal gives nominal runtime with equal place and route opti-
mization.

« High gives a better place and route results at the expense of
longer run times.

» Highest gives the best place and route results, but will incur the
longest run time. (Most complex design)

If you place and route a simple design at a high level, the design is
placed and routed properly, but the process takes more time than
placing and routing at a lower level. If you place and route a complex
design at a lower level, the design may not route to completion or
may route less completely (or with worse delay characteristics) than
at a higher level.

Starting Placer Cost Table (1-100)
Value: 1 (default) / Integer from 1 through 100

The Starting Placer Cost Table property allows you to specify a place-
ment initialization value with which to begin the place and route
attempts. Each subsequent attempt is assigned an incremental value
based on the placement initialization value.

The number you choose corresponds to a cost table index and results
in different place and route strategies. Cost tables assign weighted
values to relevant factors such as constraints specified in the input file
(for example, certain components must be in certain locations), the
length of connections, and the available routing resources.

If cost table 100 is reached, placement does not begin at 1 again, even
if command options specify that more placements should be
performed. Cost tables are not an ordered set. There is no correlation
between a cost table’s number and its relative value.

Number of Routing Passes (0-2000)

Value: Blank (default) / Integer from 0 through 2000

The Routing Passes property allows you to set the maximum number
of routing passes that the router runs in a design. The router attempts
to completely route a placement with each pass during the imple-

mentation process. You can set the number of passes to a value from 0

Xilinx Development System

Implementing the Design

to 2000. By default, this field is blank. You must enter a number from
0 to 2000 to incur routing passes.

If this field is left blank, the router runs until specific exit conditions
are met. At Place & Route effort levels of Normal, High, or Highest,
the router runs until it routes to 100% completion and meets all
timing constraints or until it determines it cannot complete the
routing. At the Lowest or Low levels, the router stops after a prede-
termined number of passes. With all settings, the router exits immedi-
ately after it routes all connections and meets all timing constraints. A
higher number of passes provides better routing results at the
expense of longer run times.

If you enter 0, the software continues to place and route, stopping
either after the design is fully routed or after completing the iteration
at cost table 100 and meeting all timing constraints.

Place and Route Mode

Value: Normal Place and Route (default) / Quick Place and Route /
Quick Place and No Route / Route Only / Reentrant Route

The Place and Route Mode property allows you to specify the type of
place and route you want implemented on your design. You can
specify one of six options;

« Normal Place and Route (default)

This option runs PAR with effort levels specified by the user or
with the default options

* Quick Place and Route

This option runs PAR without any timing constraints, with the
lowest effort level.

e Quick Place and No Route

This option runs the PAR process without any timing constraints,
with the lowest effort level. The router will not run.

« Route Only

This option runs PAR with effort levels you specify or with
default options. The placer will not run (current placement is
kept). PAR must have been run at least once to use this option.

Foundation Series ISE 3.1i User Guide 14-49

Foundation Series ISE 3.1i User Guide

14-50

* Reentrant Route

This option keeps the current placement and runs the router
multiple times to improve results. PAR must have been run at
least once to use this option. Re-entrant (also called incremental)
routing is useful if you want to manually route parts of the
design and then continue automatic routing, if you halted the
route prematurely (for example, with a Control-C) and want to
resume, or if you want to run additional route or delay reduction
passes.

Use Guide Design File
Value: Blank (default) /7 Path for .ncd file

The Use Guide Design File property allows you to specify an optional
guide design file to be fed into the place and route process. The guide
file is an NCD file that is used as a template for placing and routing
the input design. This is useful if minor incremental changes have
been made to create a new design. To increase productivity, you can
use your last design iteration as a guide design for the next design
iteration; that is, your output NCD file becomes the guide design file
for your next iteration of the design.

If you do not specify a guide file, the implementation process is
guided by the placement and routing information in the input NCD
file.

Guide Mode

Value: None (default) /7 Exact / Leverage

The Guide Mode property allows you to specify the form of guided
placement and routing. You can specify one of the following options:

The None (default) setting specifies that the placement and routing
are not guided

Exact mode specifies that the placement and routing of the matching
logic are locked. Neither placement nor routing can be changed to
accommodate the additional logic

Leverage mode specifies that the implementation process tries to
maintain the placement and routing of the matching logic, but
changes placement or routing if it is necessary in order to place and
route to completion and achieve timing objectives.

Xilinx Development System

Implementing the Design

Use Timing Constraints
Value: Enabled (default) / Disabled

Select this option to produce a high-performance implementation of
the design. The router uses the timing constraints in the design file to
place and route the design within the specified constraints. Deselect
this option to ignore timing constraints. This reduces implementation
time at the expense of timing performance. By default, this option is
on.

The Use Timing Constraints property allows you to specify the use of
timing constraints during place and route. One method of specifying
timing requirements is by entering them on the schematic. You can
also specify timing requirements in constraints files (UCF and PCF).
For detailed information on using Timing Constraints refer to the
“Timing” chapter of the Development System Reference Guide.

Use Bonded I/Os

Value: Disabled (default) /7 Enabled

When the Use Bonded I/0Os property is disabled, 170 logic that MAP
has identified as internal can only be placed in unbonded I /O sites.
When the option is enabled, PAR can place this internal 1/0 logic into
bonded 170 sites in which the 1/0 pad is not used. The option also
allows PAR to route through bonded 170 sites.

If you enable this option, you must make sure this logic is not placed
in bonded sites connected to external signals, power, or ground. You
can prevent this condition by placing PROHIBIT constraints on the
appropriate bonded 1/0 sites.

Generate Detailed PAR Report

Value: Disabled (default) /7 Enabled

The Generate Detailed PAR Report property allows you to enable or
disable the more verbose PAR Report.
Advanced Place and Route Options

An example of the advance Place and Route Options dialog box for
Virtex is shown in the following figure. All the possible properties
that can appear are described in the following sections.

Foundation Series ISE 3.1i User Guide 14-51

Foundation Series ISE 3.1i User Guide

Process Properties x|

Flace and Raoute Options

Property Hame Yalue o
Place & Route effart Level (Crverall) Default (Low) -
Placer Effort Level (Owerrides Overall Level Default (Mone)
Router Effort Level (Overrides Overall Level) Default (Mone)
Starting Placer Cost Table (1-100) 1
Do Mot Run Placer |l
Do Mot Run Router |
Muimber of Routing Passes (0-2000)
Cost-bazed Clean-up Passes 1
Delay-bazed Clean-up Paszes (0-5)
Delay-hased Clean-up Passes (Completely Routed Desig
Place And Route Mode Mormal Place and Ro ;I

oK I Cancel | [efault |

Figure 14-13 Place and Route Options - Advanced Display

Place & Route Effort Level (Overall)

Value: Default (Low) (default) / Lowest / Low / Normal /High /
Highest

Refer to the “Standard Place and Route Options” section for a
description of this property.

Placer Effort Level (Overrides Overall Level)

Value: Default (None) (default) /7 Lowest / Low / Normal /7High /
Highest

The Placer Effort Level property allows you to specify the placer
effort separate from the router effort. The Place & Route Effort Level
(Overall) property must be set to None for the Placer Effort Level
Property to be in effect. If the Place & Route Effort Level (Overall)
property is set to anything other than None, the value set there over-
rides the Placer Effort Level property.

Refer to the “Standard Place and Route Options” section for a
description of the effort levels.

14-52 Xilinx Development System

Implementing the Design

Router Effort Level (Overrides Overall Level)

Value: Default (None) (default) /7 Lowest / Low / Normal /7High /
Highest

The Router Effort Level property allows you to specify the router
effort separate from the placer effort. The Place & Route Effort Level
(Overall) property must be set to None for the Router Effort Level
Property to be in effect. If the Place & Route Effort Level (Overall)
property is set to anything other than None, the value set there over-
rides the Router Effort Level property.

Starting Placer Cost Table (1-100)

Value: 1 (default) / Integer from 1 through 100

See the “Standard Place and Route Options” section for a description
of this property

Do Not Run Placer

Value: Disabled (default) /7 Enabled

If you enable (check) the Do Not Run Placer property, the placer does
not run at all.

Do Not Run Router

Value: Disabled (default) / Enabled

If you enable (check) the Do Not Run Router property, the router does
not run at all.

Number of Routing Passes (0-2000)

Value: Blank (default) / Integer from 0 through 2000

See the “Standard Place and Route Options” section for a description
of this property.

Cost-Based Clean-Up Passes

Value: Device dependent (default) / Integer value from 0 through 5

The Cost-based Clean-up Passes property allows you to specify the
number of time PAR should attempt to clean up any errant signals
based on area availability.

Foundation Series ISE 3.1i User Guide 14-53

Foundation Series ISE 3.1i User Guide

14-54

If you run both cost-based cleanup passes and delay-based cleanup
passes, the cost-based passes run before the delay-based passes. The
valid range of cost-based cleanup passes is 0-5. The default setting is
1 for all XC4000, Spartan, and SpartanXL devices and 0 for the
Spartan2, Virtex, VirtexE, and Virtex2 devices.

Following are some strategies for using the cleanup routers (either
cost or delay based).

e On non-timing driven runs, cleanup routing can significantly
improve delays.

e Ifcost-based cleanup does not yield the desired performance on a
non-timing driven run, running a delay-based cleanup pass may
often significantly improve circuit performance.

e For timing-driven runs, the cleanup passes can improve timing
on those elements of the design that are not covered by timing
constraints.

e Also, for designs in which normal iterative routing is not quite
making the timing goal (but is somewhat close, say 3 - 5%) a
delay-based cleanup pass can sometimes reorganize the routing
enough such that follow-up re-entrant iterative routing passes
are then able to meet timing.

Note This property is not recommended for use with Virtex, VirtexE,
Virtex2, or Spartan2 devices. The evaluation of this option with these
architectures indicates that the option creates much longer runtimes
with hardly any improvement.

Delay-Based Clean-Up Passes (0-5)
Value: Blank (default) / Integer value from 0 through 5

The Delay-based Clean-up Passes property allows you to specify the
number of times PAR will attempt to place any errant signals based
on timing in the design.

By default, this property is blank and the router does not run any
delay-based cleanup passes. If you run both delay-based cleanup
passes and cost-based cleanup passes, the cost-based passes run
before the delay-based passes. Typically, the first delay-based cleanup
pass produces the greatest improvement, with less improvement on
each successive pass. It is also possible that delay passes do not show
any improvement.

Xilinx Development System

Implementing the Design

If you want to run delay-based cleanup passes only on designs that
have been routed to completion (100% routed), use the “Delay-based
Clean-up Passes (Completely Routed Designs)” property (described
below) instead of the “Delay-Based Clean-Up Passes” property.

Note The Delay-Based Clean-Up Passes property is not recom-
mended for use with Virtex, VirtexE, Virtex2, or Spartan2. The evalu-
ation of this option with these architectures indicates that the option
creates much longer runtimes with little improvement.

Delay-Based Clean-Up Passes (Completely Routed Designs)
Value: Blank (default) / Integer value from 0 through 5

The Delay-based Clean-up Passes (Completely Routed Design) prop-
erty allows you to specify the number of times PAR will attempt to
place any errant signals based on timing in the design after the design
has been completely routed.

The Delay-based Clean-up Passes (Completely Routed Designs)
property operates in the same way as the Delay-based Clean-up
Passes property described previously with the following exception.
The the Delay-based Clean-up Passes property runs on all output
designs produced by the PAR run, while the Delay-based Clean-up
Passes (Completely Routed Designs) property only runs on those
output designs which have been routed to completion. The number
of passes is 0-5, and the default is blank.

Note This option is not recommended for use with Virtex, VirtexE,
Virtex2, or Spartan2. The evaluation of this option with these archi-
tectures indicates that the option creates much longer runtimes with
little improvement.

Place and Route Mode

Value: Normal Place and Route (default) / Quick Place and Route /
Quick Place and No Route / Route Only / Reentrant Route

See the “Standard Place and Route Options” section for a description
of this property.

Foundation Series ISE 3.1i User Guide 14-55

Foundation Series ISE 3.1i User Guide

14-56

Use Guide Design File
Value: Blank (default) / Path for .ncd file
See the “Standard Place and Route Options” section for a description
of this property.
Guide Mode
Value: None (default) /7 Exact / Leverage
See the “Standard Place and Route Options” section for a description
of this property.
Use Timing Constraints
Value: Enabled (default) / Disabled
See the “Standard Place and Route Options” section for a description
of this property.
Use Bonded I/0s
Value: Disabled (default) /7 Enabled
See the “Standard Place and Route Options” section for a description
of this property.
Generate Detailed PAR Report
Value: Disabled (default) / Enabled
See the “Standard Place and Route Options” section for a description
of this property.
Multi-Pass Place & Route Options

Use the following procedure to customize Mult-Pass Place & Route
processing prior to initiating the processing.

1. Select a design source in the Source window.

2. Right-clickon Mul ti - Pass Pl ace & Rout e inthe Process
window.

3. Select Properti es for the menu that appears.

4. The Process Properties dialog box for Multi-Pass Place and Route
Options appears.

Xilinx Development System

Implementing the Design

Process Properties x|

tulti Pass Flace Route Options

Property Hame Value
Place & Route effart Level Default (Highest)l -
Starting Placer Cost Takle (0-1007 1
Mumber of PAR tterations (0-1007 3
Mumber of Results to Save (0-100)
Save Rezsults in Directory (.dir will be sppended) mppr_result
Mumber of Router Rerations (0-2000%
Giulicle File
Guide Moce Mone

oK I Cancel | [efault |

The properties you can set on the Multi-Pass Place and Route Options
dialog box are described in the following sections.

Place & Route Effort Level
Value: Highest (default) / Lowest / Low / Normal / High / Highest

The Place and Route Effort Level property allows you to control the
placement times by selecting a less CPU-intensive algorithm for
placement. You can set the placement level from Lowest (fastest run
time) to Highest (best results). Lowest gives the fastest runtime with
lowest place and route effort (Least complex design). Low gives a fast
runtime with some place and route optimization. Normal gives
nominal runtime with equal place and route optimization. High gives
a better place and route result at the expense of longer run times.
Highest gives the best place and route results but will incur the
longest run time.

Starting Placer Cost Table (0 - 100)

Value: 1 (default) / Number from 0 through 100

The Starting Placer Cost Table property allows you to specify a place-
ment initialization value with which to begin the place and route
attempts. Each subsequent attempt is assigned an incremental value
based on the placement initialization value.

The number you choose corresponds to a cost table index and results
in different place and route strategies. Cost tables assign weighted

Foundation Series ISE 3.1i User Guide 14-57

Foundation Series ISE 3.1i User Guide

14-58

values to relevant factors such as constraints specified in the input file
(for example, certain components must be in certain locations), the
length of connections, and the available routing resources.

If cost table 100 is reached, placement does not begin at 1 again, even
if command options specify that more placements should be
performed. Cost tables are not an ordered set. There is no correlation
between a cost table’s number and its relative value.

Number of PAR Iterations (0 - 100)

Value: 1 (default) / Number from 0 through 100

The Number of PAR iterations property allows you to specify the
number of times PAR attempts to place and route signals on your
design.

Number of Results to Save (0 - 100)

Value: 1 (default) / Number from 0 through 100

The Number of Results to Save property allows you to specify the
number of reports that will be saved from the place and route
attempts.

Save Results in Directory (.dir will be appended)

Value: mmpr_result (default) / directory name (to be created under
the project directory)

The Save Results in Directory property allows you to specify the
directory location to which the PAR reports are to be saved.
Number of Router Iterations (0 - 2000)

Value: Blank (default) / Number from 0 through 2000

The Number of Router Iterations property allows you to set the
maximum number of routing passes that the router runs in a design.
The router attempts to completely route a placement with each pass
during the implementation process. By default, this field is blank.
You must enter a number from 0 to 2000 to incur routing passes.

Xilinx Development System

Implementing the Design

Guide File
Value: Blank (default) / NCD file

The Guide File property allows you to specify an optional guide
design file to be fed into the place and route process. The guide file is
an NCD file that is used as a template for placing and routing the
input design. This is useful if minor incremental changes have been
made to create a new design. To increase productivity, you can use
your last design iteration as a guide design for the next design itera-
tion; that is, your output NCD file becomes the guide design file for
your next iteration of the design. If you do not specify a guide file, the
implementation process is guided by the placement and routing
information in the input NCD file.

Guide Mode

Value: None (default) / Exact / Leverage

The Guide Mode property allows you to specify the form of guided
placement and routing. By default, this field is set to None; placement
and routing are not guided. If set to Exact, the placement and routing
of the matching logic are locked. Neither placement nor routing can
be changed to accommodate the additional logic. If set to Leverage,
the implementation process tries to maintain the placement and
routing of the matching logic, but changes placement or routing if it is
necessary in order to place and route to completion and achieve your
timing constraints (if possible).

Post Route Timing Options

Select a top-level source in the Source window, then use either of the
following methods to access the list of available options for pre-route
static timing processing.

e Right-click on | npl ement Desi gn in the Process window.
Select Pr oper ti es from the menu that appears. Then select the
Post Route Tim ng Options tab from the Process Properties
dialog box.

e Right-click on Post Rout e Ti m ng in the Process window.
Select Pr oper ti es from the menu that appears to display a
Process Properties dialog box with the Post Route Options tab
only.

Foundation Series ISE 3.1i User Guide 14-59

Foundation Series ISE 3.1i User Guide

14-60

Select the Post Route Timing Options tab on the Process Properties
window to access the list of available options for mapping a design.
As with all implementation properties, the options listed depend on
whether the Standard or Advanced “property display level” is set in
the Project Navigator (Edit — Pref erences - Processes).

Standard Post Route Timing Options

An example of the standard Post Route Timing Options dialog box
for Virtex is shown in the following figure. All the possible properties
that can appear are described in the following sections.

Process Properties x|

Post-Route Timing Beport Options |

Property Hame Value
Report Type Etror Report -
Mumber of kems in ErrorMYerbose Report (0-32000% 3
Timing Feport (Mumber of items) 3
Analyze Clock Skew for All Clocks |l
Stamp Timing Model Filename
Timing Specification Interaction Report file

ak I Cancel | Wiefault |

Figure 14-14 Post Route Timing Options - Standard Display

Report Type
Value: Error Report (default) / Verbose Report

The Report Type property specifies the type of report you want to
run. By default, this option is set to Error Report. The Error Report
lists timing errors and associated net/path delay information. Failed
paths appear listed from worst-case to best-case. The Verbose Report
provides more details on delays for all constrained paths and nets in
the design. Entries are ordered by constraint and, within constraints,
by slack.

Xilinx Development System

Implementing the Design

Number of Items in Error/Verbose Report (0-32000)
Value: 3 (default) / Number from 0 through 32000

The Number of items in Error/Verbose Report property allows you to
specify the number of items you want reported in those reports. The
default is 3.

Timing Report (Number of ltems)
Value: 3 (default) / Number from 0 through 32000

The Timing Report (Number of Items) property allows you to specify
the number of items you want reported in the timing report. The
default is 3.

Analyze Clock Skew for All Clocks
Value: Disabled (default) / Enabled

You can enable the Analyze Clock Skew for All Clocks property to
generate a clock skew report in which the difference between the time
a clock signal arrives at a source flip-flop in a path and the time it
arrives at the destination flip-flop on the same clock net are analyzed.

Stamp Timing Model Filename
Value: Blank (default) / Stamp Filename

The Stamp Timing Model Filename property allows you to specify
the filename of the stamp file you want to use during post-route
timing. You can enter the name and location of the stamp file or click
in the Value field to access a browse button to select the stamp file
you want to use.

The Xilinx TRACE program generates a pair of STAMP timing model
files stampfile.mod and stampfile.data that characterize the design’s
timing. The STAMP compiler can be used for any board when
performing static timing analysis.

Timing Specification Interaction Report File

Value: Blank (default) /7 Stamp Filename

The Timing Specification Interaction Report File allows you to specify
where the Timing Specification Interaction Report File will be placed
when the post-route timing report is created. You can enter the name

Foundation Series ISE 3.1i User Guide 14-61

Foundation Series ISE 3.1i User Guide

and location of the file or click in the Value field to access a browse
button to select the stamp file you want to use.

Advanced Post Route Timing Options

An example of the advanced Post Route Static Timing Options dialog
box for Virtex is shown in the following figure. All the possible prop-
erties that can appear are described in the following sections.

Process Properties x|

Past-Raoute Timing Report Dphions |

Property Hame Value
Report Type Errar Repor‘(l -
Muimker of tems in ErrorfYerbose Report (0-320007 3
Timing Report (Mumber of tems) 3
Perform Advanced Analysis |l

Change Device Speed To

Report Uncovered Paths (Mumber of kems)
Analyze Clock Skeve for All Clocks |l
Stamp Timing Model Filename

Timing Specification Interaction Report file

oK I Cancel | [efault |

Figure 14-15 Pre-Route Static Timing Options - Advanced
Display

Report Type

Value: Error Report (default) / Verbose Report

Refer to the “Standard Post Route Timing Options” section for a
description of this property.

Number of Items in Error/Verbose Report (0-32000)

Value: 3 (default) / Number from 0 through 32000

Refer to the “Standard Post Route Timing Options” section for a
description of this property.

14-62 Xilinx Development System

Implementing the Design

Timing Report (Number of ltems)
Value: 3 (default) / Number from 0 through 32000

Refer to the “Standard Post Route Timing Options” section for a
description of this property.

Perform Advanced Analysis
Value: Disabled (default) /7 Enabled

You can enable the Perform Advanced Analysis property to generate
an advanced analysis of your timing constraints. An advanced anal-
ysis enumerates all clocks and the required OFFSETs for each clock. It
also contains an analysis of paths having only combinatorial logic,
ordered by delay. Select this option only if you are not supplying any
timing constraints in a PCF file. By default, an advanced analysis is
not performed (check box is blank).

Change Device Speed to

Value: Blank (default) / Valid speed grade for the targeted device

The Change Device Speed to property allows you specify a new
speed grade for your design. Changing the speed grade helps you
determine if you need to target a faster device to meet your timing
requirements, or if using a slower speed grade still meets timing
constraints. By default, this field is blank

For more information on setting speed grades, see the TRACE
chapter in the “Development System Reference Manual”.
Report Uncovered Paths (Number of Iltems)

Value: Blank (default) /Number

The Report Uncovered Paths (Number of Items) property reports
paths not affected by timing constraints. The number of paths
reported depends on the value entered for this property. By default,
uncovered paths are not reported.

Analyze Clock Skew for All Clocks

Value: Disabled (default) / Enabled

Refer to the “Standard Post Route Timing Options” section for a
description of this property.

Foundation Series ISE 3.1i User Guide 14-63

Foundation Series ISE 3.1i User Guide

Stamp Timing Model Filename
Value: Blank (default) / Stamp Filename

Refer to the “Standard Post Route Timing Options” section for a
description of this property.

Timing Specification Interaction Report File
Value: Blank (default) / Stamp Filename

Refer to the “Standard Post Route Timing Options” section for a
description of this property.

FPGA Implementation Tools

Advanced implementation tools are available under the Launch Tools
section of the Implement Design process. These tools are specifically
intended to assist those users who require some degree of hand-
crafting for their designs. The user must understand both the details
of the device architectures and how the tool can be used to refine a
design.

Floorplanner (FPGAS)

The Floorplanner is a graphical placement tool that gives you control
over placing a design into a target FPGA. You “drag and drop”
elements of your design to the target device. The Floorplanner
displays a hierarchical representation of the design in its Design Hier-
archy window using hierarchy structure lines and colors to distin-
guish the different hierarchical levels. The Floorplanner window
displays the floorplan of the target device into which you place logic
from the hierarchy.

You can invoke the Floorplanner by selecting a design source in the
Source window and then double-clicking FI oor Pl anner in the
Process window. The Floorplanner opens and automatically loads the
project’s NGD file. An example of the Floorplanner window is shown
in Figure 14-16.

14-64 Xilinx Development System

Implementing the Design

@Xilinx Floorplanner - ¥timer.ngd
FEile Edit “iew Hierarchy

Pattern Floorplan window Help

(=]

O|=E|E| &2

| afF slzl=| 2]] gal 2]2 % @alajaa]

=lolx|

wtimer_.ngd Design Hieraichy

& vtimer_ngd Editable Floorplan for ¥50BG256-6

=] “wtimer_map" [28 |0Bs, 120 F&s, - =
@ “Primitives” [410Bs, 5FGs]

-
R

tm [103 FGs. 31 Cvs, 55 DFFs |
tm_F10hz [DFF] Q:tm_f10hz
tm_Fhz [DFF | Q:tm_fihz C¥

tm_I30_inst_cy | D "Can
tm/reg2 [4DFFs]
tmiregl [4DFFs]
tm/pb [2DFFs]
tm/pbhécnt [5DFFs]
tmfmode/D [EDFFs]
tm_129_inst_cy |0 ™

tm_I28_inst_cp_| 0 "
tm_127_inst_cy_| 0"
tm_I26_inst_cy_|_0 "
tm_I23_inst_cy_| 0 "

vtimer.ngd Design Hels

dispa_0_OBUF
dispa_1_OBUF
dizpa_2 DBUF
dispa_3_OBUF
dispa_4_OBUF
dispa_5_OBUF
dizpa B _OBUF
dispb_0_OBUF
dispb_1_OBUF
dispb_2_OBUF
dispb_3_OBUF
dispb_4_OBUF
I‘rimnh R RIIE

e
=1

K|

&
[+ 1]

1of"

[EETE I N

Figure 14-16 Floorplanner

Floorplanning is particularly useful on structured designs and data

Foundation Series ISE 3.1i User Guide

path logic. With the Floorplanner, you see where to place logic in the
floorplan for optimal results, placing data paths exactly at the desired
location on the die.

With the Floorplanner, you can floorplan your design prior to or after
Place and Route. Invoking the Floorplanner after the design has been
placed and routed, allows you to view and possibly improve the
results of the automatic implementation. In an iterative floorplan
design flow, you floorplan and place and route, interactively. You can
modify the logic placement in the Floorplan window as often as
necessary to achieve your design goals. You can save the iterations of
your floorplanned design to use later as a constraints file (MFP file)
for PAR.

14-65

Foundation Series ISE 3.1i User Guide

14-66

The Floorplanner tool generates an MFP file that contains mapping
and placement information. You can use this file as a guide for
mapping an implementation revision for FPGA devices.

For detailed information on using the Floorplanner, refer to the
Floorplanner’s online help or to the Floorplanner Guide, an online
manual.

FPGA Editor

The FPGA Editor is a graphical application for displaying and config-
uring FPGAs. The FPGA Editor provides a graphic view of your
placed and routed FPGA design, allowing you to make modifica-
tions. You can use the FPGA Editor to place and route critical compo-
nents before running the automatic place and route tools on your
designs. You can also use the FPGA Editor to manually finish place-
ment and routing if the routing program does not completely route
your design. In addition, the FPGA Editor reads from and writes to
the Physical Constraints File (PCF).

You can invoke the FPGA Editor by selecting a design source in the
Source window and then double-clicking FPGA Edi t or in the
Process window. The FPGA Editor opens and automatically loads the
project’s NCD file. An example of the FPGA Editor is shown in the
following figure.

Xilinx Development System

Implementing the Design

S Xilink FPGA Editor - vtimer.ncd [4
File Edit “iew Tools “Window Help

D|@(uls] +] Bl el Blelm|ES) Eelajalol-) e - W8 4 EEE AL

2t Arrayl _ o] %] | &g List1 (o]] el
add
|A\I Companents j attrib
Ham| Site [Type] #Pin] Hilite] 5e « sutordute
1 M4E1 |CLB_|SLIC |7 Mar cleat
2 W472[CLB_|SLIC |5 o)
3 483 |CLB_|SLIC |9 Mo dje'e
c
4 N4g2|cLE_|sLic |6 Mo -
editblack
5 Maga|cLe_|sLic [a Mo -
= editmade
5 NS06 |[CLB_|SLIC |a Mo =
7 Nst4|cLE |sLic [a ho
........... hilite:
El Ns15[cLB_|SUIC [10 Mo s
- - - | g e P . : g N519 CLEI—SLIC & Ho info
___________ : 10 |mszi|cLe_fsue |7 Mo ErEe
___________ 11 N5 [cLB_|sLic |8 ho oute
_____________ o 12 |wssi|oe_fsuc [g Mo swan
. T) 13 |meos|cLe_|sui |s Mo unioute
e i e e e e ; 14 NE11|CLE_|SLIC |9 Ho
...... ‘ e o 15 |dispalva 0B |1 [k
77777 : 4 »
........ £ World1 =101 %]
Fuilding chip graphics... j
For Help. presz F1 wBlbgZ5E-E | Fead Only

Figure 14-17 FPGA Editor

For detailed information on using the FPGA Editor, see the FPGA
Editor’s online help or the FPGA Editor Guide, an online book.

Timing Analyzer

You can use the Timing Analyzer program to perform static timing
analysis on an FPGA or CPLD design. The Timing Analyzer is used
to verify that the delay along a given path or paths meets your speci-
fied timing requirements. It creates timing analysis reports that you
customize by applying filters. It organizes and displays data that
allows you to analyze the critical paths in your circuit, the cycle time
of the circuit, the delay along any specified paths, and the paths with

Foundation Series ISE 3.1i User Guide 14-67

Foundation Series ISE 3.1i User Guide

the greatest delay. It also provides a quick analysis of the effect of
different speed grades on the same design.

The FPGA design must be mapped and can be partially or
completely placed, routed or both. The CPLD design must be
completely placed and routed. A static timing analysis is a point-to-
point analysis of a design network. It does not include insertion of
stimulus vectors.

The Timing Analyzer works with synchronous systems composed of
flip-flops and combinatorial logic. In synchronous design, the Timing
Analyzer takes into account all path delays, including clock-to-Q and
setup requirements, while calculating the worst-case timing of the
design. However, the Timing Analyzer does not perform setup and
hold checks; you must use a simulation tool to perform these checks.

You can invoke the Timing Analyzer by selecting a design source in

the Source window and then double-clicking Ti m ng Anal yzer in
the Process window. The Timing Analyzer opens and automatically

loads the project’s NGD file.

For a complete description of the Timing Analyzer, see the Timing
Analyzer’s online help or the Timing Analyzer Guide, an online
manual.

14-68 Xilinx Development System

Implementing the Design

CPLD Implementation Flow

The following figures shows the implementation portion of the
Process window for a design that targets a CPLD device. The imple-
mentation processes are under “Implement Design.”

B
Proceszes for Cumrent Saource: |;|
SRS Implement Design
=43 Translation
Translation Repart
=-%3 Fitter
Fitter Report
E L3 LockPins
=43 Timing
Lw[B] Timing Repott
S-§F Launch Tools
E Timing Analyzer
“] Post Fit ChipWiewer
=¥ Create Programming Fil =

B2 Process Wiem I

Figure 14-18 CPLD Implement Design Processes

When you select a source and then click | npl ement Desi gn, the
necessary processing to implement the design in the targeted CPLD
device is performed. Default implementation processing properties
are used unless you modify them as described in the “CPLD Imple-
mentation Options” section.

Xilinx implementation tools are used to process your design. If you
are familiar with the Xilinx Alliance product, you will notice that the
command line entries that appear in the Transcript window as each
function is run correspond to the Alliance development system
commands.

During implementation, the design is converted from the logical
design file format created in the design entry stage into a physical file
format contained in a JED file. Implementation processing for CPLDs
involves two basic phases: Translate and Fit.

Translation

CPLD designs go through the same translate process that FPGA
designs do. During the first step of design implementation, the trans-
late process merges all of the input netlists and design constraint

Foundation Series ISE 3.1i User Guide 14-69

Foundation Series ISE 3.1i User Guide

14-70

information and outputs a Xilinx NGD (Native Generic Database)
file. The output NGD file can then be mapped to the targeted device
family.

The following types of files are input files for the translate process.

Design file EDIF netlists (EDN files)
User Constraints File (UCF File)

The User Constraints File (default name is project_name.ucf) is an
ASCII file that you create with a text editor or using the Xilinx
Constraints Editor. The file contains timing and layout
constraints that affect how the logical design is implemented in
the target device. The constraints in the file are added to the
information in the output NGD file.

Netlist Constraints File (NCF file)

The Netlist Constraints File (top_source_name.ncf) contains
constraints specified within the schematic editor tool and
synthesis tool. The netlist reader invoked by the Translate process
adds the constraints to an intermediate NGO file and the output
NGD file.

Physical Macros (NMC files)

The NMC files are binary files containing the implementation of a
physical macro instantiated in the design. The Translate process
reads the NMC file to create a behavioral simulation model for
the macro.

Module definition files (NGC files)

NGC files are binary file containing the implementation of a
modaule in the design. LogiBLOX creates an NGC file to define
each module.

The following types of files are output files for the translate process.

Xilinx Native Generic Database (NGD file)

The NGD file (top_source_name.ngd) is a binary file containing a
logical description of the design expressed both in terms of the
hierarchy used when the design was first created and in terms of
lower-level Xilinx primitives to which the hierarchy resolves. The
file also contains all of the constraints applied to the design
during design entry or entered in a UCF (User Constraints File).

Xilinx Development System

Implementing the Design

e Translation Report (BLD file)

The Translation Report (top_source_name.bld file) contains infor-
mation about the Translate (NGDBuild) run and its subprocesses.
Refer to the “Viewing Implementation Reports” section for infor-
mation on this report.

For a complete description of Translate process, refer to the
“NGDBuild” chapter of the Development System Reference Guide.

Fitter

The NGD file output by the Translate process is input to the Fit
process. During Fit, the CPLD Fitter minimizes and collapses the
combinational logic of your design so that it requires the least
number of macrocell and product term resources. It also partitions
and maps your design to fit within the architecture of the CPLD. You
can control aspects of this step by setting implementation options
using properties included on the Basic tab in the CPLD implementa-
tion Process Properties dialog box.

The following file types are output files for the Fit process:
» Fitter Report (RPT file)

The Fitter Report (top_source_name.rpt) shows you information
such as the type and quantity of device resources used and the
resulting pinout. Refer to the “Viewing Implementation Reports”
section for information on this report.

e Guide file (GYD file)

The Guide file (top_source_name.gyd) is used to lock signal names
to device pins, allowing you to keep the device pinouts during
subsequent design iterations. The Guide file contains all resulting
pinout information required to reproduce the current pinout if
the “Lock Pins” option is specified during the next invocation of
the implementation processes for the same design name. The
Guide file is written only upon successful completion of the
fitter.)

« Design Database File (VM6 file)

The Design Database file (top_source_name.vm®) is a binary file
containing the physical mapping of your design into the target
CPLD resulting from the Fitter process.

Foundation Series ISE 3.1i User Guide 14-71

Foundation Series ISE 3.1i User Guide

For detailed information about implementing CPLD designs, refer to
CPLD Design Techniques and CPLD Flow Tutorial in the on-line help
(Hel p - Foundation | SE Hel p Cont ent s from the Project
Navigator).

Lock Pins (Optional)

Each time you implement a design, a file is created which contains
the pin locations and logical pad names information. For CPLDs, this
information is read from a fitted GYD file (top_source_name.gyd).

When you are ready to commit the pinout of a design, select the top-
level source file in the Source window and then double-click the
Backannot at e Pi n Locs process. If no conflicts are found, the
pinout information stored in the .gyd file (CPLDs) is appended to the
end of the User Constraint File for your design (top_source_name.ucf
or the .ucf file specified in the implementation Process Properties).
This pinout will then be applied to all subsequent design implemen-
tations that you run.

For CPLDs, you can use an external guide file to lock pins, if desired.
To specify the location of the external guide file, right-click on the
Lock Pi ns process and select Pr operti es. Enter the file path in
the Use External GYD Fil e field in the Process Properties dialog
box that appears and then click OK. Double-click on Lock Pi ns to
run that process with the specified GYD file.

The Notice informational window shown in the following appears
whenever the pin locking process is successful.

Naotice

Fieset the Implement Design process so that your UCF changes will
be read?

The Uzer Constraint File [UCF] has changed. Az a result, it may not
be pozzible to reproduce the zame implementation results uging the
new LICF.

To incorporate the new LICF at this time, chooze RESET
to mark the Implement Design process out of date. Then re-run the
Implement Design process. Otherwise, choose RETAIM ta keep the
current implementation results intact and not incorporate the new
UICF at this time.

Retain |

Whenever changes are made to a UCF file, implementation needs to
rerun beginning with the translate process to incorporate the changes

14-72 Xilinx Development System

Implementing the Design

into the project. Click Reset in the Notice window if you want to
rerun implementation to read to new UCF file. However, if you want
to keep the current implementation report files valid and available
for viewing and also keep any post-implementation processes valid
so that you can proceed without rerunning implementation, click
Ret ai n.

Backannotate Pin Locs Report

The Backannotate Pin Locs Report is displayed automatically upon
completion of the Lock Pins process. The Backannotate Pin Locs
Report (top_source_name.lck for FPGAs, ttop_source_name._lc for
CPLDs) is displayed in the ISE Report Viewer.

The Backannotate Pin Locs Report has two sections: Constraint
Conflicts Information and List of Errors and Warnings.

The Constraints Conflicts Information section does not display if
there are fatal input errors, for example, missing inputs or invalid
inputs. However, the created report file contains the List of Errors
and Warnings. The Constraints Conflicts Information section has two
subsections: Net name conflicts on the pin and Pin name conflicts on
the nets.If there are no conflicting constraints, both subsections under
the Constraint Conflicts Information section contain a single line indi-
cating that there are no conflicts.

The List of Errors and Warnings displays only if there are errors or
warnings.

Pin Loc Constraints in the UCF

For both FPGAs and CPLDs, pin locking constraints are written to a
PINLOCK section in the UCF file. The PINLOCK section begins with
the statement #PINLOCK BEGIN and ends with the statement
#PINLOCK END. By default, conflicting constraints are not written to
the UCF file. Prior to creating a PINLOCK section in the UCF, if the
conflicting constraints are discovered, this information is reported.

User-specified pin locking constraints are never overwritten in a UCF
file. However, if the user-specified constraints are exact matches of
pin-locked generated constraints, a pound sign (#) is added in front of
all matching user-specified location constraint statements. The pound
sign indicates that a statement is a comment. To restore the original
UCF file (the file without the PINLOCK section), remove the

Foundation Series ISE 3.1i User Guide 14-73

Foundation Series ISE 3.1i User Guide

PINLOCK section and delete the pound sign from each of the user-
specified statements.

The pin locking process does not check if existing constraints in the
UCF file are valid pin locking constraints. Comments inside an
existing PINLOCK section are never preserved by a new run of the
pin locking process. If the pin locking process finds a CSTTRANS
comment, it equates “INST name” to “NET name” and then checks
for comments.

The pin locking process writes to an existing UCF file under the
following conditions.

e The contents in the PINLOCK section are all pin lock matches
and there are no conflicts between the PINLOCK section and the
rest of the UCF file.

* The PINLOCK section contents are all comments and there are no
conflicts outside the PINLOCK section.

* There is no PINLOCK section and no other conflicts in the UCF
file.

Timing
You can run the Timing process to verify that your design meets your

timing requirements. A timing report is generated with input
constraint timing violations.

CPLD Implementation Reports

This section contains descriptions of the reports available for infor-
mation on the implementation processing of your CPLD design.

Translation Report

The Translation Report (top_source_name.bld) contains warning and
error messages from the three translation processes: conversion of the
EDIF netlist to the Xilinx NGD netlist format, timing specification
checks, and logical design rule checks. The report lists the following:

e Missing or untranslatable hierarchical blocks
e Invalid or incomplete timing constraints

e Output contention, loadless outputs, and sourceless inputs

14-74 Xilinx Development System

Implementing the Design

Fitting Report (CPLDs)

The Fitting Report (top_source_name.rpt) lists summary and detailed
information about the logic and 1/0 pin resources used by the
design, including the pinout, error and warning messages, and
Boolean equations representing the implemented logic.

Timing Report

The Timing Report (top_source_name.tim) shows a summary report of
worst-case timing for all paths in the design. It optionally includes a
complete listing of all delays on each individual path in the design.

CPLD Implementation Options

You can set multiple properties to control the implementation process
for the design. For CPLDs, they control how a design is translated
and fit. Implementation options are specified in the Process Proper-
ties dialog box.

Accessing the Implementation Process Properties
Dialog Box.
CPLD implementation properties are set as follows.

1. Click on a design source file in the Source window for a project
that targets a CPLD device.

Note Implementation properties are set for the whole design. Not
for the selected source file only.

2. Rightclick on | mpl enent Desi gn in the Process window.

3. Clickon Properti es from the pull-down menu that appears for
Implement Design.

4. The Process Properties dialog box for Implement Design appears
as shown in the following figure.

Foundation Series ISE 3.1i User Guide 14-75

Foundation Series ISE 3.1i User Guide

Process Properties x|

Design | Basic I Llser-customizedl

Property Hame Value
U=er Constraints File |
Speed Grade *
Implementstion Template Optimize Balance
You must select 'User-customized' as the User Mate
Implemertation Template to use the fitter Lizer Mote
zettings in the User-customized tak. Lizer Maote

ak I Cancel | Wiefault |

5. Click on atab to access the list of properties you can set for the
following implementation options: Design, Basic, User-Custom-
ized.

Standard and Advanced Properties

The options listed in the CPLD implementation Process Properties
dialog boxes are the same regardless of whether you are using the
“Standard” or “Advanced” display level. The Display Level is set in
the Processes tab of the Preferences dialog box (Edi t — Prefer-
ences from the Project Navigator menu).

Design Properties

From the Design tab on the CPLD implementation Process Properties
dialog box, you can specify the User Constraint File name, select one
of the available speed grades for the targeted device, and choose
between a preset template or user-customized settings for the fitter
optimization options.

14-76 Xilinx Development System

Implementing the Design

Process Properties x|

Design |Basic I User-customizedl

Property Hame Yalue
=er Constraints File |
Speed Grade *
Implementstion Template Optimize Balance
You must select 'User-customized' as the Uszer Mate
Implementation Template to use the fitter User Mate
zeftings in the User-customized tab. User Mote

0K I Cancel | [efault

User Constraints File (UCF File)
Value: Blank (default) /7 User Constraints File (.ucf file)

The User Constraints File (default name is top_source_name.ucf) is an
ASCII file that you create with a text editor or using the Xilinx
Constraints Editor. The file contains timing and other constraints that
affect how specific design elements are implemented in the target
device. The constraints in the UCF file are added to the information in
the output NGD file.

Speed Grade
Value: Valid speed grade for targeted device

The Speed Grade property allows you to change the speed grade
used during timing analysis. Changing the speed grade helps you
determine if you need to target a faster device to meet your timing
requirements, or if using a slower speed grade still meets timing
constraints. You must specify a valid speed grade for the device you
are targeting. Click the pull-down menu in the Value field for a list of
valid speed grades for the targeted device. If you are currently
targeting a device that is to be selected automatically by the Fitter
(“AUTO” in the targeted device name), an asterisk (*) appears in the
Value field and the Value field cannot be modified. In this case, the
fastest speed grade available for the device selected by the Fitter is
automatically used.

Foundation Series ISE 3.1i User Guide 14-77

Foundation Series ISE 3.1i User Guide

Implementation Template

Value: Optimize Balance (default) / Optimize Speed / Optimize
Density / User Customized

Use the Implementation Template property to set the optimization
style to be used to fit your design. You can optimize the design for
speed or density. The default is to balance the optimization between
speed and density. If you want to use the fitter settings specified in
the User-customized tab, you must select User Customized for the
Implementation Template.

Basic Properties

From the Basic tab on the CPLD implementation Process Properties
dialog box, you can specify various Fitter control options that are
independent of the selected optimization template.

Process Properties =]

Design Basic | User-customized I

Property Hame Value

Use Global Clock(s)

Use Global Output Enableds)

Usze Global SetReset

Use Timing Constraints

Use Design Location Constraints

Create Progr ble GMD Pins on Unused 11O
Macrocell Power Setting

Output Slewy Rate

1[=1[=1{=I{=]}=]]

w
=

_“
@
9

QK I Cancel Werault

Use Global Clock(s)
Value: Enabled (default) / Disabled

The Use Global Clock(s) property controls the option to allow the
fitter to assign input pins used as clocks to dedicated global clock
(GCK) pins of the device. If this option is disabled, only pins identi-
fied with BUFG=CLK property in the design (or UCF file) will be
assigned to GCK device pins.

14-78 Xilinx Development System

Implementing the Design

Use Global Output Enable(s)
Value: Enabled (default) / Disabled

The Use Global Output Enable(s) property controls the option to
allow the fitter to assign input pins used as output enable control to
dedicated global OE (GTS) pins of the device. If this option is
disabled, only pins identified with the BUFG=OE property in the
design (or UCF file) will be assigned to the GTS device pins.

Use Global Set/Reset
Value: Enabled (default) / Disabled

The Use Global Set/Reset property controls the option to allow the
fitter to assign an input pin used as register asynchronous reset or
preset control to the dedicated global set/reset (GSR) pin of the
device. If this option is disabled, only a pin identified with the
BUFG=SR property in the design (or UCF file) will be assigned to the
GSR device pin.

Use Timing Constraints
Value: Enabled (default) / Disabled

The Use Timing Constraints property controls the option to indicate
that you want the software to use your timing constraints file to
perform timing-driven optimization in the fitting of your design.
Disable this option to temporarily ignore all timing constraints in
your design or your user constraints file (UCF).

Use Design Location Constraints

Value: Enabled (default) / Disabled

The Use Design Location Constraints property controls the option to
indicate that you want the fitter to use your pinout or macrocell loca-
tion information in the design file or constraint file. Disable this
option to temporarily ignore all location constraints, allowing the
fitter to place pins and logic anywhere.

Foundation Series ISE 3.1i User Guide 14-79

Foundation Series ISE 3.1i User Guide

14-80

Create Programmable GND Pins on Unused I/O
Value: Disabled (default) / Enabled

The Create Programmable GND Pins on Unused 1/0 property
controls the option to indicate that you want all unused 1/0 pads to
be configured as ground pins. This can reduce ground bounce.

Macrocell Power Setting
Value: Std (default) / Low / Timing Driven

The Macrocell Power Setting property controls the device power
consumption. By default, this option is set to Std (standard). Std sets
the power mode for the macrocells to higher speed and higher power.
Low reduces power consumption and speed.Timing Driven sets the
power consumption based on your timing constraints.

Note Any explicit power control statements in the design or
constraints file have precedence over the Macrocell Power Setting.

Output Slew Rate
Value: Fast (default) / Slow / Timing Driven

The Output Slew Rate property controls the output slew rate. You can
control the transition time of device output pins by setting the slew
rate to Slow or Fast. Fast uses more current and enables faster logic
responses. Slow limits the slew rate to reduce output switching
surges in the device. Timing Driven automatically reduces slew rate
on output pins covered by timing specifications that can meet speed
requirements while operating with slow slew rates.

Note Any explicit slew rate control statements in the design or
constraints file have precedence over the Output Slew Rate.

Xilinx Development System

Implementing the Design

User-Customized Properties

You must select “User-Customized” as the Implementation Template
on the Design tab if you want to use the fitter settings specified in the
“User-customized” tab.

Process Properties x|

Design | Basic User-cu&tomizedl

Property Hame Value =
You must select 'User-customized' as the U=zer Nutel -
Implementation Template' inthe Design tab to User Mote
use the seftings in this tah. User Mote

Use Timing Optimization

Use Multi-level Logic Optimization

Use Advanced Fitting

Enable D=-=T Type Transform Optimization
Collapsing Pterm Limit

Usze Local Macrocell Feedback

Uze Pin Feedhack

Collapsing Input Limit

hd|
oK I Cancel | [efault |

& RR &RERER

Use Timing Optimization
Value: Enabled (default) / Disabled

The Use Timing Optimization property allows you to enable the
global timing optimization performed by the fitter. If this option is
disabled, only paths with T-specs specified in the design are opti-
mized to improve timing. By default, this option is enabled and the
design is optimized using the speed template. Turn this option off to
optimize using the density template.

Use Multi-level Logic Optimization

Value: Enabled (default) / Disabled

The Use Multi-level Logic Optimization property allows you to
specify whether to enable or disable multi-level logic optimization.

Multilevel Logic Optimization seeks to simplify the total number of

logic expressions in a design, and then collapse the logic in order to

meet user objectives such as density, speed and timespecs. This opti-
mization makes it possible to collapse to the macrocell limits, reduce
levels of logic, and minimize the total number of pterms.

Foundation Series ISE 3.1i User Guide 14-81

Foundation Series ISE 3.1i User Guide

14-82

Multi-level Logic Optimization optimizes combinatorial logic from
your design. Combinatorial logic includes the following types of
logic.

* Register-to-register logic
e Pad-to-register logic

* Register-to-pad logic

e Pad-to-pad logic

Multi-level Logic Optimization operates on combinatorial logic
according to the following rules.

e Iftiming constraints are set, the program optimizes for speed to
meet timing constraints.

< Iftiming constraints are not set, the program optimizes either for
speed or density, depending on the user setting for the Use
Timing Optimization option.

+ If Use Timing Optimization is turned on, the combinatorial
logic will be mapped for speed.

+ If Use Timing Optimization is turned off, the combinatorial
logic will be mapped for density. The goal of optimization
will then be to reduce the total number of p-terms.

e Logic marked with the attribute MINIMIZE=OFF will not be
extracted or optimized.

Use Advanced Fitting
Value: Enabled (disabled) / Disabled

The Use Advanced Fitting property allows you to specify whether to
enable or disable advanced fitting. Select this option to enable an
advanced fitting strategy that favors placing signals with common
inputs in the same function block. This usually allows you to pack
more logic into the same device. Disable this option if the software
has trouble fitting a design that used to fit with an older version of
software.

Xilinx Development System

Implementing the Design

Enable D <--> T Type Transform Optimization
Value: Enable (default) / Disable

The Enable D<->T Type Transform Optimization property allows you
to specify whether to enable or disable this optimization. If Dto T
type transform is enabled (checked), the fitter transforms between D-
type and T-type registers.

Collapsing Pterm Limit
Value: 25 (default) / Integer from 2 through 90

The Collapsing Pterm Limit property allows you to specify the
product term (pterm) limit.

When a larger combinatorial logic function consisting of several
levels of AND-OR logic is completely collapsed (flattened), the
number of product terms required to implement the function may
grow considerably. By default, the fitter limits the number of p-terms
used as a result of collapsing to 25. If the collapsing of a logic level
results in a logic function consisting of more than the p-term limit
(after Boolean reduction), then the collapsing of that logic level is not
performed and the function will be implemented using two or more
levels of AND-OR logic.

Use Local Macrocell Feedback
Value: Enabled (default) / Disabled

For XC9500 devices (except XC9536), the Use Local Macrocell Feed-
back property allows you to enable the software to use local feedback
whenever possible. The local feedback path takes less time than the
global feedback path. Using local feedback can speed up your design
but can make it difficult to keep the same timing after a design
change.

Use Pin Feedback

Value: Enabled (default) / Disabled

For XC9500 devices, the Use Pin Feedback property allows you to
enable the software to use local 1/0 pin feedback whenever possible.
The software uses the pin feedback path instead of the FastCON-
NECT path for output pin signals that do not have 3-state control or
slow slew rate (by default).

Foundation Series ISE 3.1i User Guide 14-83

Foundation Series ISE 3.1i User Guide

14-84

Collapsing Input Limit

Value: Device dependent number (default) / device dependent
number (Integer from 2 through 36 or from 2 through 54)

The Collapsing Input Limit property allows you to specify the
maximum number of function block inputs allowed as a result of
logic collapsing.

This option controls the degree to which a design netlist is flattened.
A logic gate can collapse forward into a subsequent gate only if the
number of inputs in the resulting logic function does not exceed the
input limit. If the path delay of a logic function is not acceptable,
increase the input limit to allow the larger functions to be further flat-
tened. For XC9500 devices, choose a number from 2 to 36. The default
is 36. For XC9500XL and XC9500XV devices, choose a number from 2
to 54. The default is 54.

Translation Options

To access a Process Properties dialog box with options specific to the
Translation process, select a top-level source in the Source window,
then right-click on Tr ansl at i on in the Process window. Select

Pr operti es from the pull-down menu that appears to display the
Design tab with only translation-related properties as shown in the
following figure.

Process Properties x|

Deszign |

Property Hame Value
Uszer Constraints File

oK I Cancel [efault

Xilinx Development System

Implementing the Design

Refer to the “Design Properties” section for information on the User
Constraints File option.

Fitter Options

To access a Process Properties dialog box with options specific to the
Fitter process, select a top-level source in the Source window, then
right-click on Fi t t er in the Process window. Select Pr operti es
from the pull-down menu that appears to display the Implement
Design Properties dialog box. Note that the Design tab has only fitter-
related properties as shown in the following figure. The other tabs are
the same as described previously. Refer to the “Design Properties”,
“Basic Properties”, and “User-Customized Properties” sections for
information on the options on those tabs.

Process Properties x|

Design |Basic I User-customizedl

Property Hame Value
Speed Grade *l >
Implementstion Template Optimize Balance
You must select 'User-customized' as the Uszer Mote
Implementation Template to use the fitter User Mote
zeftings inthe User-customized tab. User Mate

oK I Cancel [efault

Lock Pins Options

To access the Lock Pins Process Properties dialog box, select a top-
level source in the Source window, then right-click on Lock Pi ns in
the Process window. Select Pr oper ti es from the pull-down menu
that appears to display the Lock Pins Process Properties dialog box
shown in the following figure.

Foundation Series ISE 3.1i User Guide 14-85

Foundation Series ISE 3.1i User Guide

Use External 3D File T L]

In the Value field, enter the file path of the external guide file to use
with the Lock Pins process. Refer to the “Lock Pins (Optional)”
section for information on the Lock Pins process.

Timing Options

To access the Timing Process Properties dialog box, select a top-level
source in the Source window, then right-click on Ti mi ng in the
Process window. Select Pr oper ti es from the pull-down menu that
appears to display the Timing Report Process Properties dialog box
shown in the following figure.

Timing Repart Format Summary] =]

[l

14-86 Xilinx Development System

Implementing the Design

The Timing Report Format property allows you to select the level of
detail in the Timing Report. By default, a Summary report is
produced containing summary timing information and design statis-
tics. You can set the value to Detail to have the Timing Report include
timing delay information for all nets and paths.

CPLD Implementation Tools

Advanced implementation tools are available under the Launch Tools
section of the Implement Design process. These tools are specifically
intended to assist those users who require some degree of hand-
crafting for their designs. The user must understand both the details
of the device architectures and how the tool can be used to refine a
design.

Timing Analyzer

You can use the Timing Analyzer program to perform static timing
analysis on an FPGA or CPLD design. The Timing Analyzer is used
to verify that the delay along a given path or paths meets your speci-
fied timing requirements. It creates timing analysis reports that you
customize by applying filters. It organizes and displays data that
allows you to analyze the critical paths in your circuit, the cycle time
of the circuit, the delay along any specified paths, and the paths with
the greatest delay. It also provides a quick analysis of the effect of
different speed grades on the same design.

The FPGA design must be mapped and can be partially or
completely placed, routed or both. The CPLD design must be
completely placed and routed. A static timing analysis is a point-to-
point analysis of a design network. It does not include insertion of
stimulus vectors.

The Timing Analyzer works with synchronous systems composed of
flip-flops and combinatorial logic. In synchronous design, the Timing
Analyzer takes into account all path delays, including clock-to-Q and
setup requirements, while calculating the worst-case timing of the
design. However, the Timing Analyzer does not perform setup and
hold checks; you must use a simulation tool to perform these checks.

You can invoke the Timing Analyzer by selecting a design source in
the Source window and then double-clicking Ti m ng Anal yzer in

Foundation Series ISE 3.1i User Guide 14-87

Foundation Series ISE 3.1i User Guide

14-88

the Process window. The Timing Analyzer opens and automatically
loads the project’s NGD file.

For a complete description of the Timing Analyzer, see the Timing
Analyzer’s online help or the Timing Analyzer Guide, an online
manual.

CPLD ChipViewer

The ChipViewer provides a graphical view of the CPLD fitting
report. With this tool you can examine inputs and outputs, macrocell
details, equations, and pin assignments. You can examine both pre-
fitting and post-fitting results.

More information on using the CPLD ChipViewer is available in that
tool’s online help (Tool s — I nplenmentati on - CPLD Chi p-
Vi ewer - Hel p) or from the Foundation Series ISE Help menu
accessed by Hel p — Foundation |ISE Help Contents -
Advanced Tools - ChipVi ewer.

Xilinx Development System

Chapter 15

Snapshots

A snapshot is a picture of the design at a particular stage. It contains
everything that was in the project directory and a copy of all remote
sources used in the design. The project properties are also captured.
A snapshot allows you to preserve a particular state of the design for
later use.

This chapter contains the following sections.
e “Archives vs. Snapshots”

e “Taking a Snapshot”

e “Renaming a Snapshot”

* “Deleting a Snapshot”

e “Viewing Snapshot Contents”

e “Replacing the Current Project with a Snapshot”

Archives vs. Snapshots

To save a specific revision of your project, you can archive it or take a
snapshot of it. When you archive a project (Pr oj ect — Archive
from the Project Navigator menu), you create a .zip file for that
version and place it in a specified directory. To use an archive or see
the files in it, you must unzip it.

When you take a snapshot of the project, however, the snapshot
becomes part of the project. It is accessible from the Snapshot View of
the Source window. You can open it at anytime to view its contents. If
you replace the current project with a snapshot, you can make
changes and reprocess the snapshot version of the project as desired.
You can also replace the current version of a project with one
captured previously as a snapshot.

Foundation Series ISE 3.1i User Guide — Online 15-1

Foundation Series ISE 3.1i User Guide

Taking a Snapshot

Use the following procedure to take a snapshot of the current version
of your project.

1. SelectProject - Take Snapshot from the Project Navigator
menu.

2. When the Take a Snapshot of the Project dialog box appears,
enter a name and any comments to describe the current version.
By default, snapshots are named “snapl,” “snap2,” and so on.
The name appears in the Snapshot View of the Source window.
Comments appear after the name in the Source window if the
Files Names command in the View menu is enabled.

Take a Snapzhot of the Project

x|
Shapshat Mame: ’TI

znap2
I Caticel

Comment: [Optional]
I[This iz version 2 of thiz project]

3. Click &K

The snapshot is saved in a separate directory (specified by the Snap-
shot Name) under the project’s “snapshot” directory to isolate it from
the present working project files. All project’s snapshots are listed on
the Snapshot View tab in the Source window as shown in the
following figure.

2=
Sources in Project: |
snap_l_?___[T hig iz wergion 2 of thiz project.]

B hioul... | [E] File ... | o Snap.. | Libr .. |

15-2 Xilinx Development System

Snapshots

All source files that have been added to the project (including user

documents) are copied for the snapshot. The process files necessary
to recreate the state of the project when you made the snapshot are

also copied.

Renaming a Snapshot

You can rename a snapshot or add a comment for it using the
following procedure.

1.

2
3.
4

Click the Snapshot View tab in the Source window.
Click on a snapshot name to select it.
Select Sour ce - Renane from the Project Navigator menu.

Modify the name or add a comment as desired and then press
Enter.

Note Snapshot names cannot contain spaces. You must keep the
parentheses around the comment.

S|

Sources in Project: |

| snapd [This iz version 2 of this project.)
|sna|:-'| [Thiz iz werzion 1 of thiz project.] |

B2 voc.. | [E] Fie .| uSnap...I Libr...l

Deleting a Snapshot

You can delete a snapshot using the following procedure.

1.
2.
3.
4.

Click the Snapshot View tab in the Source window.
Click on a snapshot name to select it.
Select Sour ce - Renpve from the Project Navigator menu.

Confirm the deletion of all the files.

The snapshot and all its associated files are deleted.

Foundation Series ISE 3.1i User Guide 15-3

Foundation Series ISE 3.1i User Guide

Viewing Snapshot Contents
You can open and view the files contained in a snapshot using the
following procedure.
1. Select the Snapshot View tab in the Source window. The Snapshot
View tab displays the snapshot names.
2. To select a snapshot, click on its name.
3. Select Sour ce - Qpen from the Project Navigator.

4. The sources for the selected snapshot appear in a hierarchical
display under the snapshot name in the Source window. High-
light a source to display the processes for that source (with check
marks status) in the Process window.

|n® Xilinx - Project Navigator - D:A\ISEMSEexamplesivtimerivtimer.npl _|EI il

File Edit “iew Project Source Process Macio Window Help

oere B E(eme (2w ||[fae|oe R O 4% %A
=] x]

Sources in Project: I

[=E - snap2 (Thig iz version 2 of this project.]
£ Untitled
o3 readmett

-] wtimer_tb.vhd

[timer (timer.vhd)
B ol File ... | i Snap... Lihr...l

2] x|

Frocesses for Current 5ource:
Design Entry Utilties
] Wiew WHDL Test Bench Tem
Launch HOL Bencher Tool

View YHDL Instartiation Ten
[Create Schematic Symbol
]

Launch ModelSirn Simulator

Synthesize
Wiew Synthesis Report
3l

T Analyee
ey Check Syntax

=63 Implement Design
EW Generate\iew Feports

Translation Report

M ap report
Pre-Route Static: Tirir

LB Plara. and-Roke Fan T
] T » [
B Process View

= EXEWRAP detected that program 'bitgen' completed successfully. ;I

Done: completed successfully.

B
4 »
HATE I Consoled Find in Files
L

For Help. press F1

15-4 Xilinx Development System

Snapshots

The snapshot is view-only. You can view the files and process status
but you cannot change it unless you make it the current project as
described in the “Replacing the Current Project with a Snapshot”
section.

Viewing Source File Contents

When the hierarchical contents of a snapshot are displayed in the
Source window, simply double-click on a source to open the file in
the HDL Editor workspace or its associated text editor. Snapshot
source files in the HDL Editor workspace are view-only files.

Viewing Report Contents

When the hierarchical contents of a snapshot are displayed in the
Source window, simply click on a source to select it. If any reports
have been run on that source (as indicated in the Process window),
double-click on the desired report to open it in the Report Browser.

Because the Report Browser can have multiple reports open at once,
you can open reports from multiple snapshots for comparison.

Replacing the Current Project with a Snapshot

If you want to make changes to the project version represented by in
a specific snapshot, you can make that snapshot version the current
version of the project.

A Warning
This has the result of replacing the current version of the project
with the version saved in a snapshot. Your current project will no
longer exist unless you take a snapshot of it before you replace it
with a previous snapshot.

Use the following procedure to replace the current version of a
project with a previous snapshot.

1. Click the Snapshot View tab in the Source window.
2. Click on a snapshot name to select it.

3. SelectProj ect - Replace with Snapshot from the Project
Navigator menu.

Foundation Series ISE 3.1i User Guide 15-5

Foundation Series ISE 3.1i User Guide

4. Inthe Yes or No dialog box that appears, select Yes to save your
current project as a snapshot or No to replace your current project
without saving it as a snapshot.

Yes or No? |

Thiz project will be remowved

when the snapshat iz made current.
Do you wish to save the current
project az a snapshot first?

If you select Yes, the “Taking a Snapshot of the Project” dialog
box appears to allow you to enter a Snapshot Name and optional
comments for the snapshot of the current project.

The current project is immediately replaced in the Module View with
the version represented in the selected snapshot. When a snapshot
becomes the current project, the snapshot version remains in the
snapshot directory and is not overridden by changes made to its
“current” project version.

15-6 Xilinx Development System

Chapter 16

Programming the Device

When the design meets your requirements, the last step in its
processing is programming the target device.

e “Creating FPGA Programming Files”
e “Creating CPLD Programming Files”

e “Programming Tools”

Creating FPGA Programming Files

After the design has been completely routed, you must configure the
device so that it can execute the desired function. Xilinx's bitstream
generation program, BitGen, takes a fully routed NCD (Native
Circuit Description) file as its input and produces a configuration
bitstream—a binary file with a .bit extension. The BIT file contains all
of the configuration information from the NCD file defining the
internal logic and interconnections of the FPGA, plus device-specific
information from other files associated with the target device. The
binary data in the BIT file can then be downloaded into the FPGA's
memory cells, or it can be used to create a PROM file.

To create a configuration bitstream file for your design, use the
following procedure.

1. Select the top-level source for the project in the Source window.
2. Click Create Programmi ng Fil e inthe Process window.

3. Click Process - Run in the Project Navigator menu. (An alter-
native method is to double-click on Cr eat i ng Pr ogr amm ng
Fi | e in the Process window.)

4. The programming file creation process runs. If there are no
errors, the top_source_name.bit file is created.

Foundation Series ISE 3.1i User Guide — Online 16-1

Foundation Series ISE 3.1i User Guide

16-2

5. To view the Programming File Report in the ISE Report Viewer,
double-click Vi ew Progranming File Generation
Report in the Process window.

The Programming File Report contains information about the
BitGen run.

For a complete description of BitGen, see the “BitGen” chapter in the
Development System Reference Guide.

Launching Programming Tools

When you are ready to configure the target device, you need to select
a programming tool to use to configure the targeted device. The
“Programming Tools” section contains a short overview of each tool.

To launch a programming tool, select the top-level source file in the
Source window and then double-click on PROM Fi | e Formatter,
Har dwar e Debugger, or JTAG Pr ogr amer in the Process
window. The selected programming tool opens in its own window
with the bitstream file loaded.

Setting Programming File Creation Options

The following sections describe the configuration options you can set
prior to creating the programming file. Use the following procedure
to access the Process Properties dialog box containing these options.

1. Click on a the top-level design source file in the Source window
for a project that targets an FPGA device.

2. Rightclickon Create Progranm ng Fil e inthe Process
window.

3. Select Properti es from the pull-down menu that appears.

4. The Process Properties dialog box for the Create Programming
File process appears. An example is shown in the following
figure.

5. Click on the tab corresponding to the type of options you want to
set to display the available properties. You can set properties for
the following program creation option groups: General Options,
Configuration Options, Startup Options, and Readback Options.

Note You can customize whether you want to display the Stan-
dard or Advanced list of properties in the Process Properties

Xilinx Development System

Programming the Device

dialog boxes. Use the procedure described in the following
section to display the Advanced properties.

Spartan2, Virtex, VirtexE, Virtex2 Options

This section includes descriptions of the available options for the
Spartan2, Virtex, VirtexE, and Virtex2 designs. The options listed in
each tab vary by architecture. The applicable architectures are identi-
fied when an option only applies to certain architectures. In most
cases, the Advanced and Standard displays (Edit — Pref erences
- Processes) are the same. Advanced display options are identi-
fied as appropriate.

General Options

The General Option for Program File processing are described in this
section. An example of the General Options tab for a Virtex design is
shown in the following figure.

Process Properties il

General Ophians | Configuration options I Startup options I Feadback options |
Property Hame Yalue =

Run Design Rules Checker (DRC) [

Create Bit File 2

Create A5CH Configuration File [l

Create Logic Allocation File |l

Creste Mazk File -

Enable BitStream Compression [l

Create ReadBack Data Files |l

Global Clock Delay 0 (Binary String 11111

Global Clack Delay 1 (Binary String) 11111 e

Global Clock Delay 2 (Binary String 11111

Global Clack Delay 3 (Binary Strinc 11111 ;I

Ok, I Cancel | DErault |

Run Design Rules Checker (DRC)
Value: Enabled (default) / Disabled

The Run Design Rules Checker property enables or disables the
design rule checker. Before generating the final bitstream, it is impor-
tant to enable the DRC to evaluate the NCD file for problems that
could prevent the design from functioning properly. By default, the
Run Design Rules Checker option is enabled (checkbox is checked).

Foundation Series ISE 3.1i User Guide 16-3

Foundation Series ISE 3.1i User Guide

16-4

Create Bit File

Value: Enabled (default) / Disabled

The Create Bit File property enables and disables the creation of a
design data or bitstream (.bit) file after you have verified the func-
tionality and timing of your placed and routed design.

Create ASCII Configuration File

Value: Disabled (default) /7 Enabled

The Create ASCII Configuration File property enables and disables
the creation of a rawbits text (RBT) file, which is an ASCII representa-
tion of your configuration bitstream.

Create Logic Allocation File

Value: Disabled (default) / Enabled

The Create Logic Allocation File property disables and enables the
creation of a logic allocation file (top_source_name.ll). The Hardware
Debugger uses the top_source_name.ll file to identify bits in the read-
back bitstream that represent the values of design 1/0s, latches, and
flip-flops.

Create Mask File

Value: Disabled (default) /7 Enabled

The Create Mask File property enables and disables the creation of a
mask file (top_source_name.msk). The mask file is used to compare
relevant bit locations for executing a readback of configuration data
contained in an operating FPGA.

Enable BitStream Compression

Value: Disabled (default) /7 Enabled

The Enable Bitstream Compression property allows you to enable or
disable compression of the bitstream file.

Create Readback Data Files

Value: Disabled (default) / Enabled

The Create Readback Data Files property enables and disables the
creation of a readback data file.

Xilinx Development System

Programming the Device

(Advanced Option) Global Clock Delays (Binary String)
Value: 1111 (default) / Binary String

The Global Clock Delay 0 (Gclkdel0), Global Clock Delay 1
(Gclkdell), Global Clock Delay 2 (Gcelkdel2), and Global Clock
Delay 3 (Gclkdel3) properties allow you to add delays to the global
clocks.

(Advanced Option) Enable Debugging of BitStream

Value: Disabled (default) / Enabled

The Enable Debugging of Bitstream property allows you to enable or
disable debugging of the bitstream file.

Configuration Options

The Configuration Options for Program File processing are described
in this section. An example of the Configuration Options tab for a
Virtex design is shown in the following figure.

Process Properties il
General Options ~ Configuration options | Startup options | Feadback options I
Property Hame Value =
Configuration Rate 4 -
Configuration Clk {Configuration Pins) Pull Up
Configuration Pin k0 Pull Up
Configurstion Pin k1 Pull Up
Configuration Pin M2 Pull Up
Configuration Pin Prograrm Puill Ug
Configuration Pin Done Pull Up
JTAG Pin TCK Pull L
JTAG Pin TDI Pl g fes
JTAG Pin TDO Flost
JTAG Pin TM= Pl g ;I
0K I Cancel | [efaut |

Configuration Rate

Value: 4 (default) /5/7/8/79/10/13/715/720/26/30/ 34741
/45751755760

Use the configuration rate option to select the rate in megahertz
(MHZz) for the internal configuration clock, GCLK, when configuring
in master mode. The default is 4AMHz.

Foundation Series ISE 3.1i User Guide 16-5

Foundation Series ISE 3.1i User Guide

16-6

Configuration Clk (Configuration Pins)
Value: Pull Up (default) / Float

The Configuration CLK property allows you to synchronize to an
internal clock provided in the FPGA device. Pull Up (the default)
enables the pull-up resistor on the Configuration CLK pin. The Float
setting disables the pull-up resistor on the Configuration CLK pin.
Configuration Pins

Value: Pull Up (default) / Float / PullDown*

By default, the following configuration pins are set to Pul | Up to
enable a pull-up on the pin. You can set a configuration pin to Fl oat
to disable both the pull-up and pull-down resistors on the pin or to
Pul | Down, *except where noted otherwise, to enable a pull-down on
the pin.

e Configuration CLK

This pin can be set to Pul | Up or Fl oat only.
e Configuration Pin MO
e Configuration Pin M1
e Configuration Pin M2
e Configuration Pin Program

This pin can be set to Pul | Up or Fl oat only.
e Configuration Pin Done

Select Fl oat to disable the pull-up resistor on the DONE pin. If
you select this option, be sure you have connected an external
pull-up resistor on this pin.

Select Pul | Up to enable an internal pull-up resistor on the DONE
pin. Select this option only if you do not connect an external pull-
up resistor to this pin.

Select Acti ve Pul | Up to drive the DONE pin High with a
CMOS driver.

Xilinx Development System

Programming the Device

JTAG Pins
Value: Pull Up (default) / Float / PullDown

By default, the following JTAG pins are set to Pul | Up to enable a
pull-up on the pin. You can set a JTAG pin to Fl oat to disable both
the pull-up and pull-down resistors on the pin or to Pul | Down to
enable a pull-down on the pin.

JTAG Pin TCK
JTAG Pin TDI

JTAG Pin TDO
JTAG Pin TMS

Code (8 Digit hexadecimal)
Value: Blank (default) / 8-digit hexadecimal number

The Code (8 Digit Hexadecimal) property allows you to assign a code
in the User Identification Register. Enter an eight-digit hexadecimal
ID code in the field. The hexadecimal digits are placed in the User ID
Register.

Startup Options

The Startup Option for Program File processing are described in this
section. An example of the Startup Options tab for a Virtex design is
shown in the following figure.

Process Properties il

General Dptionsl Configuration options ~ Startup options | Readback Dptionsl
Property Hame Value

Start-Up Clock CCLK -

Enable Internal Done Pipe |l

Done (Cutput Events) Default (4

Enable Outputs (Output Events) Default (5

Release SetReset (Output Events) Default (5

Release Write Enable (Output Events) Default [CE)

Relesse DLL (Output Events) Default (Mot

Crive Done Fin High |

oK I Cancel [efault

Foundation Series ISE 3.1i User Guide 16-7

Foundation Series ISE 3.1i User Guide

16-8

Start-up Clock
Value: CCLK (default) /7 User Clock / JTAG Clock

The startup sequence following the configuration of a device can be
synchronized to either CCLK, a User Clock, or the JTAG Clock as
described below.

« CCLK

Select CCLK to synchronize to an internal clock provided in the
FPGA device.

* User Clock

Select User Clock to synchronize to a user-defined signal
connected to the CLK pin of the startup symbol. You must select
this option if your design contains a user clock net that drives the
CLK pin on startup.

 JTAG Clock

Select JTAG Clock to synchronize to the clock provided by JTAG.
This clock sequences the TAP controller which provides the
control logic for JTAG.

Enable Internal Done Pipe

Value: Disable (default) / Enable

You should enable this option when the startup clock is running at
high speeds. If you enable the option, the FPGA waits for the
CFG_DONE signal that is delayed by one clock cycle instead of
waiting for the pin itself.

Output Events

Value: See Table 16-1

There are five major output events which occur during a device
startup.

e Done (CFG_DONE pin going High)
e Enable Outputs (device outputs no longer tri-stated)

¢ Release Set/Reset (Global Set/Reset signal de-asserted)

Xilinx Development System

Programming the Device

Release Write Enable (Global Write Enable signal de-asserted)

Release DLL (DLL allowed to synchronize)

Depending on the settings for Startup Clock, the output events can be
set to occur as shown in the following table. For more information,
see The Programmable Logic Data Book.

Table 16-1 Virtex, VirtexE, Virtex2, Spartan2 Output Events
Options Matrix

CCLK User Clock JTAG Clock
DONE C1-C6 C1, U2-Us6 C1, J2-J6
Enable Outputs | C1-C6, Done, C1, U2-Us, C1, J2-J6, Done,
Keep Done, Keep Keep
Release Set/ C1-C6, Done, C1, U2-U6, C1, J2-J6, Done,
Reset Keep Done, Keep Keep
Release Write | C1-C6, Done, C1, U2-Us, C1, J2-J6, Done,
Enable Keep Done, Keep Keep
Release DLL C0-C6, No Wait | C0-C1, U2-U6, |CO0-C1, J2-J6,
No Wait No Wait

The definitions of the possible output events settings are as follows.

CO0 — before the Cclk rising edge after the length count is met

C1
C2
C3

— first-Cclk rising edge after the length count is met
second-Cclk rising edge after the length count is met

third-Cclk rising edge after the length count is met

C4 — fourth-Cclk rising edge after the length count is met

C5 — fifth-Cclk rising edge after the length count is met

C6 — sixth-Cclk rising edge after the length count is met

U2 — second-valid-user-clock rising edge after C1 (first-Cclk
rising edge after length count is met)

U3 — third-valid-user-clock rising edge after C1 (first-Cclk
rising edge after length count is met)

U4 — fourth-valid-user-clock rising edge after C1 (first-Cclk
rising edge after length count is met)

Foundation Series ISE 3.1i User Guide

16-9

Foundation Series ISE 3.1i User Guide

16-10

U5 — fifth-valid-user-clock rising edge after C1 (first-Cclk rising
edge after length count is met)

U6 — sixth-valid-user-clock rising edge after C1 (first-Cclk
rising edge after length count is met)

J2 — second-valid-JTAG-clock rising edge after C1 (first-Cclk
rising edge after length count is met)

J3 — third-valid-JTAG-clock rising edge after C1 (first-Cclk
rising edge after length count is met)

J4 — fourth-valid-JTAG-clock rising edge after C1 (first-Cclk
rising edge after length count is met)

J5 — fifth-valid-JTAG-clock rising edge after C1 (first-Cclk
rising edge after length count is met)

J6 — sixth-valid-JTAG-clock rising edge after C1 (first-Cclk
rising edge after length count is met)

Done — when the CFG_DONE signal goes High

Keep — holds the pin at whatever level (High or Low) the pin is
when the CFG_DONE signal goes High

No Wait — not synchronized to the startup clock; DLL synchro-
nizes as soon as possible

Drive Done Pin High
Value: Disabled (default) / Enabled

The Drive Done Pin High property allows to control when the Done
Pin goes High.

Xilinx Development System

Programming the Device

Readback Options

The Readback Options for Program File processing are described in
this section. An example of the Readback Options tab for a Virtex
design is shown in the following figure.

Process Properties x|

General Dptionsl Canfiguration Dptionsl Startup optiors ~ Readback optians |

Property Hame Value

Security ack and Reconfigur stion| +
Generate Readback Bit Stream -

Qg I Cancel | Wiefault

Use this tab to set the following Readback options:

Security

Value: Enable Readback and Reconfiguration (default) / Disable
Readback / Disable Readback and Reconfiguration

The Security property allows you to select the readback options. You
can set following Readback options from the Security drop-down list
box.

« Enable Readback and Reconfiguration

This option specifies readback options. After the FPGA design

has been configured, the FPGA configuration data can be read

back and compared with the original configuration data. Read-
back is initiated by a Low-to-High transition on the MO/RTRIG
pin. After this option is run, external logic must drive the Cclk

input to read back each data bit. The readback data appears on

the RDATA pin.

Foundation Series ISE 3.1i User Guide 16-11

Foundation Series ISE 3.1i User Guide

* Disable Readback

This option disables readback. Use this option for design security.
By disabling readback, configuration data is secure from being
read from the FPGA. By default, this option is off.

« Disable Readback and Reconfiguration

This option disables both readback and reconfiguration. Use this
option for design security. By disabling readback and reconfigu-
ration, configuration and reconfiguration data is secure from
being read from the FPGA. By default, this option is off.

Generate Readback Bitstreem
Value: Disabled (default) /7 Enabled

The Generate Readback Bit Stream property allows you to enable the
generation of a bitstream. A bitstream file is a stream of data that
contains location information for logic on a device, that is, the place-
ment of Configurable Logic Blocks (CLBs), Input/Output Blocks
(10Bs), TBUFs, pins, and routing elements. The bitstream also
includes empty placeholders that are filled with the logical states sent
by the device during a readback. Only the memory elements, such as
flip-flops, RAMs, and CLB outputs, are mapped to these place-
holders, because their contents are likely to change from one state to
another. When downloaded to a device, a bitstream configures the
logic of a device and programs the device so that the states of that
device can be read back.

16-12 Xilinx Development System

Programming the Device

Spartan, SpartanXL, XC4000 Options

This section includes descriptions of the available options for the
Spartan, SpartanXL, and XC4000 designs. The options listed in each
tab vary by architecture. The applicable architectures are identified
when an option only applies to certain architectures. In most cases,
the Advanced and Standard displays (Edit — Pref erences -

Pr ocesses) are the same. Advanced display options are identified
as appropriate.

General Options

The General Options for Program File processing are described in this
section. An example of the General Options tab for a Spartan design
is shown in the following figure.

Process Properties x|

General Opticns | Startup Dptionsl Readback Dptionsl Canfiguration options |

Property Hame Value
Run Design Rules Checker (DRC)
Creste Bit File
Create AZCI Configuration File
Create Logic Allocation File
Create Mazk File
Tie Unused Interconnect
Save Tied design (as _=filename=.ncd)
Usze Critical Mets Last
Tie Al Interconnect

o o 3]

0K I Cancel [efault

Run Design Rules Checker (DRC)
Value: Enabled (default) / Disabled

The Run Design Rules Checker property enables or disables the
design rule checker. Before generating the final bitstream, it is impor-
tant to enable the DRC to evaluate the NCD file for problems that
could prevent the design from functioning properly. By default, the
Run Design Rules Checker option is enabled (checkbox is checked).

Foundation Series ISE 3.1i User Guide 16-13

Foundation Series ISE 3.1i User Guide

16-14

Create Bit File
Value: Enabled (default) / Disabled

The Create Bit File property enables and disables the creation of a
design data or bitstream (.bit) file after you have verified the func-
tionality and timing of your placed and routed design.

Create ASCII Configuration File
Value: Disabled (default) /7 Enabled

The Create ASCII Configuration File property enables and disables
the creation of a rawbits text (RBT) file, which is an ASCII representa-
tion of your configuration bitstream.

Create Logic Allocation File
Value: Disabled (default) / Enabled

The Create Logic Allocation File property disables and enables the
creation of a logic allocation file (top_source_name.ll). The Hardware
Debugger uses the top_source_name.ll file to identify bits in the read-
back bitstream that represent the values of design 1/0s, latches, and
flip-flops.

Create Mask File

Value: Disabled (default) /7 Enabled

The Create Mask File property enables and disables the creation of a
mask file (top_source_name.msk). The mask file is used to compare
relevant bit locations for executing a readback of configuration data
contained in an operating FPGA.

Tie Unused Interconnect

Value: Disabled (default) /7 Enabled

The Tie Unused Interconnect property allows you enable or disable
whether all unused interconnects are tied to a logic Low or to a
known level, keeping internal noise and power consumption to a
minimum. When you enable this option, Design Rule Check (DRC)

Xilinx Development System

Programming the Device

runs first. Then, the enabled Tie Unused Interconnect option does the
following.

« Ties all possible unused interconnect to unused CLB outputs and
configures those outputs with a logic Low (F=0 or G=0)

« Attemptsto tie any remaining interconnect to CLB outputs which
have not been designated as critical

- Attempts to tie remaining interconnect to the global primary or
secondary clock buffer outputs

Save Tied design (as _<filename>.ncd)

Value: Disabled (default) / Enabled

Use the Save Tied design property if you want the tied design saved

as _<filename>.ncd.

Use Critical Nets Last

Value: Disabled (default) /7 Enabled

Enable the Use Critical Nets Last option to use the nets marked as
critical to complete the tiedown process if necessary. You should only
enable this option as a last resort after an attempt is made to use nets
not marked critical.

You can only enable this option if you enabled the Tie all Interconnect
option.

Tie All Interconnect

Value: Disabled (default) / Enabled

Enable the Tie All Interconnect option if you want to allow tie down
to implement user signals. Enabling this option also forces tie down
to fail if all nodes are not tied.

You can only enable this option if you also enable the Tie Unused
Interconnect option.

Foundation Series ISE 3.1i User Guide 16-15

Foundation Series ISE 3.1i User Guide

16-16

Configuration Options

The Configuration Options for Program File processing are described
in this section. An example of the Configuration Options tab for a
Spartan design is shown in the following figure.

Process Properties x|

General Dptionsl Startup Dptionsl Feadback options Configuration options |

Property Hame Value

Enable Cyclic Redundancy Checking (CRCY [

Length Count Calculstion Length
Configuration Rate Sloww
Configuration Pin Done Pull Up

T Pin Flost

Input Threshold Level for 10Bs TTL

Output Level for 10Bs TTL

Qg I Cancel | Wiefault

Enable Cyclic Redundancy Checking (CRC)
Value: Enabled (default) / Disabled

This option enables Cyclic Redundancy Checking (CRC) error
checking during configuration. If enabled, the software calculates a
running CRC and inserts a unique four-bit partial check at the end of
each data frame in the configuration bitstream. This option allows the
device to perform a CRC check on the bitstream during the configu-
ration process. If disabled, the device performs a simple check for the
0110 pattern at the end of each frame in the configuration data. By
default, this option is on.

Length Count Calculation

Value: Length (default) / DONE

The Length Count Calculation property controls when the device
changes from configuration to user operation. The Length Count
Alignment and DONE Alignment properties are discussed in The
Programmable Logic Data Book.

Xilinx Development System

Programming the Device

Configuration Rate

Value: Slow (default) / Fast

Use the configuration rate option to select the rate for the internal
configuration clock, GCLK, when configuring in master mode. You
can set the rate to Slow (1MHZz) or Fast (8BMHZz).

Configuration Pin Done

Value: Pull Up (default) / Float

Use the Configuration Pin Done option as follows;

e Select Fl oat to disable the pull-up resistor on the DONE pin. If
you select this option, be sure you have connected an external
pull-up resistor on this pin.

e Select Pul | Up to enable an internal pull-up resistor on the DONE
pin. Select this option only if you do not connect an external pull-
up resistor to this pin.

TDO Pin

Value: Float (default) /7 Pull Up 7/ Pull Down

The TDO Pin option allows you to enable/disable the pull-up and /
or pull down resistor on the TDO pin.The value of the pull-up and
pull-down resistors is 50 to 100 kilohms. The following options are
available.

« Select Float to disable both the pull-up resistor and pull-down
resistor on the TDO pin.

e Select PullUp to enable a pull-up on the TDO pin.

e Select PullDown to enable a pull-down on the TDO pin.

(XC4000 Only) Configuration Pin MO
Value: Float (default) /7 Pull Up 7/ Pull Down

The MO pin is used to determine the configuration mode. The value
of the pull-up and pull-down resistors is 50 to 100 kilohms. The
following options are available.

« Select Float to disable both the pull-up resistor and pull-down
resistor on the MO pin.

Foundation Series ISE 3.1i User Guide 16-17

Foundation Series ISE 3.1i User Guide

16-18

e Select PullUp to enable a pull-up on the MO pin.

e Select PullDown to enable a pull-down on the MO0 pin.

(XC4000 Only) Configuration Pin M1
Value: Float (default) /7 Pull Up / Pull Down

The M1 pin can be used as tri-statable output pin. The value of the
pull-up and pull-down resistors is 50 to 100 kilohms. The following
options are available.

« Select Float to disable both the pull-up resistor and pull-down
resistor on the M1 pin.

e Select PullUp to enable a pull-up on the M1 pin.

e Select PullDown to enable a pull-down on the M1 pin.

(XC4000 Only) Configuration Pin M2
Value: Float (default) /7 Pull Up / Pull Down

The M2 pin is used to determine the configuration mode. The value
of the pull-up and pull-down resistors is 50 to 100 kilohms. The
following options are available.

« Select Float to disable both the pull-up resistor and pull-down
resistor on the M2 pin.

e Select PullUp to enable a pull-up on the M2 pin.

e Select PullDown to enable a pull-down on the M2 pin.

(XC4000XLA only) Enable Express Mode Bitstream
Value: Disabled (default) /7 Enabled

This option enables express mode configuration. In this mode, config-
uration data is presented to the device in parallel format, and each
new byte is clocked into the target device with every rising edge of
the CCLK. This mode is eight times as fast as other configuration
modes because data is processed at the rate of one byte per CCLK
rather than one bit per CCLK.

Xilinx Development System

Programming the Device

(XC4000XLA only) Tolerate 5V I/O in 3.3V Circuitry
Value: On (default) / Off

This option allows a 3.3V device circuitry to tolerate 5V operation.
For any device that operates on a mixed circuit environment with
3.3V and 5V, use this option. For any circuitry that operates exclu-
sively on 3.3V, such as in a laptop computer, turn this option off.
Turning off this option reduces power consumption.

Note Disabling this option allows the device’s clamping diodes to
clamp ringing transients back to the 3.3V supply rail. A clamping
diode is connected from each output to VCC. This option affects all I/
O pins.

(XC4000XLA only) Enable BSCAN-Based Configuration

Value: Enabled (default) / Disabled

This option allows BSCAN-based configuration after the device is
successfully configured. This feature allows board testing without the
risk of reconfiguring XLA devices by toggling the TCK/TMS/TDI/
TDO lines.

(XC4000XLA only) Allow Direct Sensing of DONE Configuration
State (after BSCAN)

Value: Disabled (default) / Enabled

This option allows direct sensing of the DONE configuration state
after performing a BSCAN-based configuration. This allows you to
determine if a BSCAN-based configuration was successful.

Input Threshold Levels for IOBs

Value: TTL (default) / CMOS / Read from Design

Use the Input Threshold Levels for IOBs option to set one of the
following input options:

e Select TTL to specify TTL-compatible inputs.
e Select CMOS to specify CMOS-compatible inputs.

e Select Read from Design to specify the TTL/CMOS input level
included in the physical constraints (PCF) file.

Foundation Series ISE 3.1i User Guide 16-19

Foundation Series ISE 3.1i User Guide

16-20

Output Level for IOBs
Value: TTL (default) / CMOS / Read from Design

Use the Output Threshold Levels for IOBs option to set one of the
following output options:

e Select TTL to specify TTL-compatible inputs.

e Select CMOS to specify CMOS-compatible inputs.

« Select Read from Design to specify the TTL/CMOS input level
included in the physical constraints (PCF) file.

(XC4000 Only) Address Lines

Value: 18 (default) / 22

Use this option to set the number of address lines that will be used by
the FPGA during device configuration. Address lines are used to
address data from a parallel PROM or flash memory device. Select
either 18 or 22. If you choose 22, four extra device pins are activated
as configuration address lines.

This option only applies to master parallel mode configuration. You
must set this option in addition to setting the mode pins. Refer to The
Programmable Logic Data Book for more information on address lines
and master parallel mode configuration.

Xilinx Development System

Programming the Device

Startup Options

The Startup Options for Program File processing are described in this
section. An example of the Startup Options tab for a Spartan design is
shown in the following figure.

Process Properties |

General Options ~ Startup options | Readback options | Configuration options |

Property Hame Yalue
Start-Up Sequence Cclk_NUS\,fncl hd
Start-Up Clack CCLK
Synchronize WO Startup Sequence to External Doneln Sig) [~
Dorez Active Event o]
Enable Cutputs (Output Events)) c2
Release SetReset (Output Events) C3

0K I Cancel [efault

Start-Up Sequence

Value: Cclk_NoSync (default) /7 Cclk_Sync / Uclk_NoSync /
Uclk_Sync

The Start-Up Sequence property allows you to specify the output
events to occur according to the setting. By default, this field is set to
Cclk_NoSynch. For more information regarding these settings, see
The Programmable Logic Data Book.

Start-up Clock

Value: CCLK (default) /7 User Clock / JTAG Clock

The startup sequence following the configuration of a device can be
synchronized to either CCLK, a User Clock, or the JTAG Clock. The
default is CCLK.

+ CCLK

Select CCLK to synchronize to an internal clock provided in the
FPGA device.

Foundation Series ISE 3.1i User Guide 16-21

Foundation Series ISE 3.1i User Guide

¢ User Clock

Select User Clock to synchronize to a user-defined signal
connected to the CLK pin of the startup symbol. You must select
this option if your design contains a user clock net that drives the
CLK pin on startup.

« JTAG Clock

Select JTAG Clock to synchronize to the clock provided by JTAG.
This clock sequences the TAP controller which provides the
control logic for JTAG.

Synchronize I/O Startup Sequence to External Doneln Signal

Value: Disabled (default) /7 Enabled

The startup sequence can be synchronized with the signal on the
DONE pin. Enable this option to begin the startup sequence when the
signal on the DONE pin goes High. Typically, this option is enabled if
the design configures a device connected in a daisy chain. Disable
this option to begin the sequence when the configuration memory is
full.

Output Events

Value: See Table 16-2

There are three major output events which occur during a device
startup.

» Done Active Event (DONE pin going High)
< Enable Outputs (device outputs no longer tristated)
« Release Set/Reset (Global Set/Reset sighal deasserted)

Depending on the settings for Start-Up Clock and Synchronize 1/0
Startup Sequence to External DONE Input Pin, the output events can
be set to occur as shown in the following table. For more information,
see The Programmable Logic Data Book.

16-22 Xilinx Development System

Programming the Device

Table 16-2 Spartan, SpartanXL, XC4000 Output Events Options

Matrix

CCLK CCLK User Clock User Clock

Sync No Sync Sync No Sync
DONE C1-C3 Cl-C4 C1,U2 C1, U2-u4
Enable Outputs C2,C3, C2-C4 U2, DI, DI+1, |U2-U4

DI, DI+1 DI+2
Release Set/Reset C2, C3, C2-C4 U2, DI, DI+1, u2-u4

DI, DI+1 DI+2

The definitions of the possible output events settings are as follows.

C1 — First-Cclk rising edge after the length count is met
C2 — Second-Cclk rising edge after the length count is met
C3 — Third-Cclk rising edge after the length count is met
C4 — Fourth-Cclk rising edge after the length count is met

U2 — Second-valid-user-clock rising edge after C1 (first-Cclk
rising edge after length count is met)

U3 — Third-valid-user-clock rising edge after C1 (first-Cclk
rising edge after length count is met)

U4 — Fourth-valid-user-clock rising edge after C1 (first-Cclk
rising edge after length count is met)

DI — When the Doneln signal goes High

DI+1 — First-Cclk or valid-user-clock rising edge, depending on
the selection of start-upClk, after Doneln goes High

DI+2 — Second-Cclk or valid-user-clock rising edge, depending
on the selection of start-upCIk, after Doneln goes High

Foundation Series ISE 3.1i User Guide 16-23

Foundation Series ISE 3.1i User Guide

16-24

Readback Options

The Readback Options for Program File processing are described in
this section. An example of the Readback Options tab for a Spartan
design is shown in the following figure.

Process Properties x|
General Dpt\onsl Startup options Readback options | Configuration Dpt\onsl
Property Hame Value
Enable Readback of Configuration Bitstream C
Enablz Aborting of Readback Sequence |l
et Readback clock to Celk

0k I Cancel | [efanlt |

Enable Readback of Configuration Bitstream
Value: Disabled (default) /7 Enabled

Use this option to enable or disable the readback capability of the
configuration bitstream. To enable the readback capability, you
enable this option and include the READBACK symbol in your
design. Enabling this option generates a .1l file.

Enable Aborting of Readback Sequence
Value: Disabled (default) / Enabled

Enable this option to abort the readback sequence. You can use this
option to terminate the readback sequence when the device detects a
High-to-Low transition on the TRIG pin of the READBACK symbol.

Set Readback clock to
Value: Cclk (default) / Rdbk

During the readback process, the data is clocked out synchronously.
The source of the readback clock can be either the CCLK or a user
clock. Select the Cclk value to clock out the readback data through an
internal clock provided in the FPGA device. Select the Rdbk value to
out the readback data through a user-defined signal connected to the
CLK pin of the READBACK symbol.

Xilinx Development System

Programming the Device

Creating CPLD Programming Files

At the end of a successful CPLD implementation, a design database
file (top_source_name.vm®) is created. From this, a JEDEC program-
ming file can be generated. The JTAG Programmer uses this JED file
to configure XC9500/XL/XV CPLD devices.

To create a JED programming file for your design, use the following
procedure.

1. Select the top-level source for the project in the Source window.
2. Click Create Programmi ng Fil e inthe Process window.

3. Click Process - Run in the Project Navigator menu. (An alter-
native method is to double-click on Cr eat i ng Pr ogr amm ng
Fi | e in the Process window.)

4. The programming file creation process runs. If there are no
errors, the top_source_name.jed file is created.

Launching the JTAG Programmer

When you are ready to configure the target device, you need to use
the JTAG Programmer to configure the targeted device. The
“Programming Tools” section contains a short overview of the JTAG
Programmer.

To launch the JTAG Programmer, select the top-level source file in the
Source window and then double-click on JTAG Pr ogr ammer in the
Process window. The TAG Programmer opens in its own window
with the JED file loaded.

Setting Programming File Creation Options

This section describes the programming options you can set prior to
creating the programming file. Use the following procedure to access
the Process Properties dialog box containing these options.

1. Click on a the top-level design source file in the Source window
for a project that targets an FPGA device.

2. Rightclickon Create Progranm ng Fil e inthe Process
window.

3. Select Properti es from the pulldown menu that appears.

Foundation Series ISE 3.1i User Guide 16-25

Foundation Series ISE 3.1i User Guide

4. The Process Properties dialog box (shown in the following figure)

Process Properties =]

for the Create Programming File process appears.

Fragramming Options

Property Hame Value

Signature Mser Cade |

Jedec Test Wector File |l

QK I Cancel | Werault |

You can set the following options for CPLD programming file
creation:

16-26

Signature/User Code
Value: Blank (default) / Four-character text string

Enter a unique text string in the Value field to identify the config-
uration data. You can enter a string of up to four alphanumeric
characters. The device programmer can read the signature, and
the person running the device programmer can verify that the
correct configuration data file is loaded. Use the JTAG
Programmer to identify the configuration data signature (user-
code) of a programmed XC9500 or XC9500XL device. The default
is to use the top_source_name.

Jedec Test Vector File
Value: Disabled (default) / Enabled

Enable this option to include a TMV file in your JEDEC file. The
TMV file is a test vector file generated when ABEL compiles a
design containing user test vectors.

Xilinx Development System

Programming the Device

Programming Tools

After the programming file has been successfully created, you can
use one of the programming tools described in this section to
configure your device.

JTAG Programmer

The JTAG Programmer downloads, reads back, and verifies FPGA
and CPLD design configuration data. It can also perform functional
tests on any device and probe the internal logic states of your design.

The JTAG Programmer software can be used to configure both
FPGAs and CPLDs and supports both the XChecker and the Parallel
Cable IlI. This is a GUI based program. See the JTAG Programmer
Guide for details. Also, see the Hardware User Guide for information
about cable compatibility.

PROM File Formatter

A FPGA or daisy chain of FPGASs can be configured from serial or
parallel PROMs. The PROM File Formatter can create MCS, EXO, or
TEK style files. The files are read by a PROM programmer that turns
the image into a PROM.

A HEX file can also be used to configure an FPGA or a daisy chai of
FPGAs through a microprocessor. The file is sotred as a data structure
in the microprocessor boot-up code.

The PROM File Formatter is available for FPGA designs only. The
PROM File Formatter provides a graphical user interface that allows
you to do the following.

e Format BIT files into a PROM file compatible with Xilinx and
third-party PROM programmers

e Concatenate multiple bitstreams into a single PROM file for daisy
chain applications

« Store several applications in the same PROM file

Foundation Series ISE 3.1i User Guide 16-27

Foundation Series ISE 3.1i User Guide

Hardware Debugger

The Hardware Debugger is a graphical interface that allows you to
download an FPGA design to a device, verify the downloaded
configuration, and display the internal states of the programmed
device.

The Hardware debugger can download a BIT file or a PROM file:
MCS, EXO, or TEK file formats. A BIT file contains configuration
information for an FPGA device. Form more information on using the
Hardware Debugger, see the Hardware Debugger Guide.

16-28 Xilinx Development System

	Foundation Series ISE 3.1i User Guide
	About This Manual
	Conventions
	Typographical
	Online Document

	Table of Contents
	Introduction
	Platform Support
	Xilinx Architecture Support
	Partner Tools
	Foundation Series ISE Demo
	Tutorials
	Online Help
	Books
	Printed Books
	PDF Files
	Online Book Collection
	Document Viewer
	Xilinx Foundation Series ISE 3.1i Book List

	Design Environment
	Projects
	Project Management
	Design Flow
	Design Entry
	Design Entry Tools
	HDL Editor
	ECS Schematic Editor and Symbol Editor
	StateCAD (State Diagrams)
	LogiBLOX
	CORE Generator System

	Functional Simulation
	HDL Bencher (Test Bench/Test Fixture Creation)
	ModelSIM (Functional Simulation)

	Synthesis
	Synthesis Tools
	XST (Xilinx Synthesis Technology)
	FPGA Express

	Implementation
	Post-Route Simulation

	Programming File Creation

	Creating a Project
	Specifying a Project Name and Location
	Selecting a Device and Synthesis Tool
	XST VHDL
	XST Verilog
	FPGA Express VHDL
	FPGA Express Verilog
	ABEL XST
	ABEL BLIF

	Changing the Targeted Device
	Changing the Synthesis Tool
	Creating/Adding Source Files
	Creating a New Source
	Adding an Existing Source to the Project
	Adding a Copy of an Existing Source to the Project

	Source Types
	Source Type Descriptions
	Project Title
	User Documents
	Device/Synthesis Tool
	State Diagram
	Schematic
	VHDL Module
	VHDL Test bench
	VHDL Package
	VHDL Library
	Verilog Module
	Verilog Test Fixture
	ABEL-HDL Module (CPLDs Only)
	ABEL Test Vector (CPLDs Only)
	CORE Generator Module
	LogiBLOX Module

	Project Navigator
	Starting the Project Navigator
	Project Navigator Windows
	Source Window
	Module View
	File View
	Snapshot View
	Library View
	Source Properties

	Process Window
	Auto-Make
	Setting Properties for Processes
	Viewing Reports

	HDL Editor Workspace
	Error Navigation from the Transcript Window
	Integrated Tools
	Customizing the Project Navigator
	Setting Display Preferences
	General Preferences
	Editor Preferences
	Standard/Advanced Process Properties Preference

	Displaying/Hiding Windows and Toolbars

	Docking/Undocking Project Navigator Windows

	HDL Sources
	Supported Languages
	VHDL
	Verilog
	ABEL-HDL

	Creating HDL Source Files
	New HDL Source Wizard
	Skeleton Code for New VHDL Testbenches, VHDL Packages, or Verilog Templates

	Opening HDL Source Files
	HDL Editor
	HDL Editor Online Help
	File/Window Operations
	Editing Functions
	Search Functions
	Macro Functions
	Customizing Tabs and Fonts
	Language Specific Features

	Language Templates
	Accessing the Language Templates
	Selecting an Existing Template
	Inserting Templates in HDL Sources
	Creating a User Template

	Creating a Schematic Symbol from an HDL Source

	Schematic Sources
	Schematic Source Files
	Creating a Schematic Source File
	Opening a Schematic Source File
	Updating Schematic Files
	Xilinx Implementation Attributes/Constraints

	Instantiating HDL Sources
	Creating a Schematic Symbol
	Symbol Generator Options
	Opening the HDL Source
	Creating a Top-Level Schematic

	Simulating and Synthesizing Schematic Sources
	VHDL Functional Model
	Viewing the VHDL Functional Model
	Setting VHDL Netlister Options

	Verilog Netlist
	ECS Schematic Editor
	Schematic Editor Window
	Action-Object Interface Examples
	Adding a Symbol
	Adding a Wire
	Dragging a Wire
	Removing a Symbol
	Panning, Zooming, Full Fit Operations

	Concepts Required to Use the Schematic Editor
	Symbols
	Graphics
	Pins

	Attributes
	Wires (Nets and Buses)
	Wires and Net Names
	Net Attributes

	I/O Markers
	I/O Markers and Block Symbols

	Graphics
	Text

	VHDLgeneric Attribute Example
	Symbol Editor
	Symbol Editor Window
	Symbol Types
	Block Symbols
	Graphic Symbols
	Master Symbols

	Symbol Libraries
	Modifying an Existing Symbol
	Creating a New Block Symbol
	Creating a Block Symbol from a Schematic
	Creating a Symbol from an HDL Source
	Using Symbols from Other Projects
	Device Basis
	All Projects Basis

	Guidelines for Creating Schematics

	State Diagrams
	StateCAD/StateBench
	Acquiring StateCAD/StateBench Tools
	Xilinx Edition
	Pre-Existing or Upgraded StateCAD Tools
	Complete Edition
	Sales and Support of StateCAD and StateBench

	Launching StateCAD
	Creating a New State Diagram
	Updating an Existing State Diagram

	Using StateBench
	Adding State Diagram Sources to Your Project
	User-Entered State Machine Diagram
	StateCAD-Generated HDL File

	Instantiating State Diagram Modules in HDL Designs
	Instantiating State Diagram Modules in Schematic Designs
	Using Foundation Series 2.1i State Diagrams

	LogiBLOX
	Accessing LogiBLOX
	LogiBLOX Setup
	Creating LogiBLOX Modules
	Using LogiBLOX Modules in ISE Projects
	Editing LogiBLOX Modules
	Using LogiBLOX Modules in Schematic Sources
	Instantiating LogiBLOX Modules in an HDL Source
	VHDL Instantiation
	Verilog Instantiation

	Simulating LogiBLOX Components
	Constraining LogiBLOX RAM/ROM with FPGA Express
	Estimating the Number of Primitives Used
	How the RAM Primitives are Named
	Referencing a LogiBLOX Module/Component in an HDL Source
	Referencing the Primitives of a LogiBLOX Module in an HDL Source
	Verilog Example
	test.v:
	inside.v:
	test.ucf

	VHDL Example
	test.vhd
	inside.vhd
	test.ucf

	Documentation

	CORE Generator
	Accessing the CORE Generator System
	Creating a CORE Component
	Using COREs in Foundation Series ISE Projects
	Editing COREs
	Using COREs in Schematic Sources
	Instantiating COREs in an HDL Source
	VHDL Instantiation Template Example
	Verilog Instantiation Template Example

	Simulation and Synthesis of CORE Modules
	Simulating COREs in a Schematic
	VHDL Simulation
	Verilog Simulation

	HDL Library Mapping
	Design Sources and Libraries
	VHDL
	Verilog

	Project Navigator Source Libraries
	Named VHDL Libraries
	Renaming VHDL Libraries
	Removing VHDL Libraries

	Moving Files to a Library
	Removing Files from a Library

	Design Constraints/UCF File
	Setting Synthesis Constraints
	XST Constraints
	FPGA Express Constraints

	Setting Implementation Constraints
	Constraints Processing Overview
	Constraint Entry Mechanisms
	Translating and Merging Logical Designs

	Constraints File Overview
	Netlist Constraints File (NCF)
	User Constraints File (UCF)
	Physical Constraints File (PCF)
	Case Sensitivity

	ISE User Constraints File (UCF)
	The Xilinx Constraints Editor
	Timing Constraints
	The “From:To” Style Timespec
	Using TPSYNC
	The Period Style Timespec
	The Offset Constraint
	Ignoring Paths
	Controlling Skew
	Constraint Precedence
	Across Constraint Sources
	Within Constraint Sources

	Layout Constraints
	Converting a Logical Design to a Physical Design
	“Last One Wins” Resolution

	Efficient Use of Timespecs and Layout Constraints
	The “Starter Set” of Timing Constraints

	Standard Block Delay Symbols
	Table of Supported Constraints
	Basic UCF Syntax Examples
	PERIOD Timespec
	FROM:TO Timespecs
	OFFSET Timespec
	Timing Ignore
	Path Exceptions
	Miscellaneous Examples

	Simulation
	ModelSim
	Acquiring ModelSim Tools
	ModelSim XE Starter
	ModelSim XE
	Additional ModelSim Editions
	Previously Installed ModelSim Tools
	Sources for Learning to use ModelSim

	Launching ModelSim
	ModelSim Integration Overview
	Simulator Initialization and VHDL Package Sources
	Xilinx Simulation Libraries

	Functional Simulation
	Functional Simulation with a Testbench/Test Fixture
	Interactive Functional Simulation
	Simulating with ModelSim’s Command Console
	Simulating with Do Files

	Functional Simulation Process Properties
	HDL Source Module
	Testbench/Test Fixture
	VHDL/Verilog Simulation Options Tab
	Pre VSim do File
	Use Automatic do File
	Simulation Run Time

	Display Options Tab
	Display Signals Window
	Display Wave Window
	Display Structure Window
	Display Source Window
	Display List Window
	Display Variables Window
	Display Process Window
	Display Data Flow Window

	Timing Simulation (Post-Route)
	Automatic Macro File Generation and Post-Route Simulation
	Disabling Automatic Macro File Generation
	Simulating with a Testbench
	Timing Simulation Process Properties
	Timing Simulation Options
	Design Unit Name

	Creating a Testbench/Test Fixture
	HDL Bencher
	Acquiring HDL Bencher
	Xilinx Edition
	Pre-Existing or Upgraded HDL Bencher Tool

	Complete Edition
	Launching HDL Bencher
	Testbench/Test Fixture Template Generator
	Adding the Testbench/Test Fixture File to the Project
	Conventions
	Testbench Naming Conventions
	Port Type Requirements
	Testbench Design Overview
	Example Testbench for an 8-bit Adder

	Synthesis
	Overview
	Changing Synthesis Tools
	ABEL Synthesis (CPLDs Only)
	ABEL-XST
	ABEL-BLIF

	XST Synthesis
	XST VHDL
	XST Verilog
	Selecting a Top-Level Source for Synthesis
	XST Synthesis Processes
	Viewing Synthesis Results
	Constraining the Design
	Changing Speed Grades
	Setting XST Synthesis Options
	Synthesis Options
	HDL Options
	Xilinx Specific Options (FPGAs)
	Xilinx Specific Options (CPLDs)

	Detailed Information on XST

	FPGA Express Synthesis
	FPGA Express VHDL
	FPGA Express Verilog
	Selecting a Top-Level Source
	FPGA Express Synthesis Processes
	Constraining the Design
	Setting Constraints Prior to Synthesis
	UCF File Constraints

	Viewing Synthesis Results
	Report Viewer
	FPGA Express Time Tracker
	Schematic Viewer

	Changing Speed Grades
	Setting FPGA Express Synthesis Options
	Detailed Information on FPGA Express

	Implementing the Design
	Using the Process Window to Implement the Design
	Implementation Errors/Warnings
	Saving Implementation Results
	Deleting Implementation Results
	Changing Devices
	Viewing Implementation Reports
	ISE Report Viewer
	Report Descriptions

	User Constraints
	Editing the UCF File
	Accessing the Constraints Editor
	Accessing the Chip Viewer (CPLDs)

	FPGA Implementation Flow
	Translate
	MAP
	Pre-Route Static Timing (Optional)
	Place and Route
	Post-Route Timing (Optional)
	Multi Pass Place and Route (Optional)
	Backannotate Pin Locations (Optional)
	Backannotate Pin Locs Report
	Pin Loc Constraints in the UCF

	FPGA Implementation Reports
	Translation Report
	Map Report
	Pre-Route Static Timing Report
	Place and Route Report
	Pad Report
	Asynchronous Delay Report
	MPPR Report
	Post-Route Timing Report

	FPGA Implementation Options
	Accessing the Implementation Process Properties Dialog Box.
	Accessing Advanced Properties
	Translate Options
	Standard Translate Options
	User Constraints File
	Macro Search Path

	Advanced Translate Options
	Ignore LOC Constraints
	Netlist Translation Type
	User Constraints File
	Don’t Use Default UCF
	Macro Search Path
	Create I/O Pads from Ports
	Allow Unexpanded Blocks
	User Rules for Netlister Launcher

	Map Options
	Standard Map Options
	Trim Unconnected Signals
	Generate Detailed Map Report
	Use FloorPlanner File
	Use Guide Design File (.ncd)
	Guide Mode
	Pack I/O Registers/Latches into the IOBs
	Use Generic Clock Buffers (BUFGS) in Place of BUFGPs

	Advanced Map Options
	Trim Unconnected Signals
	Replicate Logic to Allow Logic Level Reduction
	Map to Input Functions
	Map to 5-Input Functions
	Optimization Strategy (Cover Mode)
	Generate Detailed Map Report
	Use FloorPlanner File
	Use Guide Design File (.ncd)
	Guide Mode
	Ignore RLOC Constraints
	Pack I/O Registers/Latches into the IOBs
	Disable Register Ordering
	CLB Pack Factor Percentage
	Tri-state Buffer Transformation Mode
	Use Generic Clock Buffers (BUFGS) in Place of BUFGPs

	Pre-Route Static Timing Options
	Standard Pre-Route Static Timing Options
	Report Type
	Number of Items in Error/Verbose Report (0-32000)
	Timing Report (Number of Items)

	Advanced Pre-Route Static Timing Options
	Report Type
	Number of Items in Error/Verbose Report (0-32000)
	Timing Report (Number of Items)
	Perform Advanced Analysis
	Change Device Speed to
	Report Uncovered Paths (Number of Items)

	Place and Route Options
	Standard Place and Route Options
	Place & Route Effort Level (Overall)
	Starting Placer Cost Table (1-100)
	Number of Routing Passes (0-2000)
	Place and Route Mode
	Use Guide Design File
	Guide Mode
	Use Timing Constraints
	Use Bonded I/Os
	Generate Detailed PAR Report

	Advanced Place and Route Options
	Place & Route Effort Level (Overall)
	Placer Effort Level (Overrides Overall Level)
	Router Effort Level (Overrides Overall Level)
	Starting Placer Cost Table (1-100)
	Do Not Run Placer
	Do Not Run Router
	Number of Routing Passes (0-2000)
	Cost-Based Clean-Up Passes
	Delay-Based Clean-Up Passes (0-5)
	Delay-Based Clean-Up Passes (Completely Routed Designs)
	Place and Route Mode
	Use Guide Design File
	Guide Mode
	Use Timing Constraints
	Use Bonded I/Os
	Generate Detailed PAR Report

	Multi-Pass Place & Route Options
	Place & Route Effort Level
	Starting Placer Cost Table (0 - 100)
	Number of PAR Iterations (0 - 100)
	Number of Results to Save (0 - 100)
	Save Results in Directory (.dir will be appended)
	Number of Router Iterations (0 - 2000)
	Guide File
	Guide Mode

	Post Route Timing Options
	Standard Post Route Timing Options
	Report Type
	Number of Items in Error/Verbose Report (0-32000)
	Timing Report (Number of Items)
	Analyze Clock Skew for All Clocks
	Stamp Timing Model Filename
	Timing Specification Interaction Report File

	Advanced Post Route Timing Options
	Report Type
	Number of Items in Error/Verbose Report (0-32000)
	Timing Report (Number of Items)
	Perform Advanced Analysis
	Change Device Speed to
	Report Uncovered Paths (Number of Items)
	Analyze Clock Skew for All Clocks
	Stamp Timing Model Filename
	Timing Specification Interaction Report File

	FPGA Implementation Tools
	Floorplanner (FPGAs)
	FPGA Editor
	Timing Analyzer

	CPLD Implementation Flow
	Translation
	Fitter
	Lock Pins (Optional)
	Backannotate Pin Locs Report
	Pin Loc Constraints in the UCF

	Timing

	CPLD Implementation Reports
	Translation Report
	Fitting Report (CPLDs)
	Timing Report

	CPLD Implementation Options
	Accessing the Implementation Process Properties Dialog Box.
	Standard and Advanced Properties
	Design Properties
	User Constraints File (UCF File)
	Speed Grade
	Implementation Template

	Basic Properties
	Use Global Clock(s)
	Use Global Output Enable(s)
	Use Global Set/Reset
	Use Timing Constraints
	Use Design Location Constraints
	Create Programmable GND Pins on Unused I/O
	Macrocell Power Setting
	Output Slew Rate

	User-Customized Properties
	Use Timing Optimization
	Use Multi-level Logic Optimization
	Use Advanced Fitting
	Enable D <--> T Type Transform Optimization
	Collapsing Pterm Limit
	Use Local Macrocell Feedback
	Use Pin Feedback
	Collapsing Input Limit

	Translation Options
	Fitter Options
	Lock Pins Options
	Timing Options

	CPLD Implementation Tools
	Timing Analyzer
	CPLD ChipViewer

	Snapshots
	Archives vs. Snapshots
	Taking a Snapshot
	Renaming a Snapshot
	Deleting a Snapshot
	Viewing Snapshot Contents
	Viewing Source File Contents
	Viewing Report Contents

	Replacing the Current Project with a Snapshot

	Programming the Device
	Creating FPGA Programming Files
	Launching Programming Tools
	Setting Programming File Creation Options
	Spartan2, Virtex, VirtexE, Virtex2 Options
	General Options
	Run Design Rules Checker (DRC)
	Create Bit File
	Create ASCII Configuration File
	Create Logic Allocation File
	Create Mask File
	Enable BitStream Compression
	Create Readback Data Files
	(Advanced Option) Global Clock Delays (Binary String)
	(Advanced Option) Enable Debugging of BitStream

	Configuration Options
	Configuration Rate
	Configuration Clk (Configuration Pins)
	Configuration Pins
	JTAG Pins
	Code (8 Digit hexadecimal)

	Startup Options
	Start-up Clock
	Enable Internal Done Pipe
	Output Events
	Drive Done Pin High

	Readback Options
	Security
	Generate Readback Bitstreem

	Spartan, SpartanXL, XC4000 Options
	General Options
	Run Design Rules Checker (DRC)
	Create Bit File
	Create ASCII Configuration File
	Create Logic Allocation File
	Create Mask File
	Tie Unused Interconnect
	Save Tied design (as _<filename>.ncd)
	Use Critical Nets Last
	Tie All Interconnect

	Configuration Options
	Enable Cyclic Redundancy Checking (CRC)
	Length Count Calculation
	Configuration Rate
	Configuration Pin Done
	TDO Pin
	(XC4000 Only) Configuration Pin M0
	(XC4000 Only) Configuration Pin M1
	(XC4000 Only) Configuration Pin M2
	(XC4000XLA only) Enable Express Mode Bitstream
	(XC4000XLA only) Tolerate 5V I/O in 3.3V Circuitry
	(XC4000XLA only) Enable BSCAN-Based Configuration
	(XC4000XLA only) Allow Direct Sensing of DONE Configuration State (after BSCAN)
	Input Threshold Levels for IOBs
	Output Level for IOBs
	(XC4000 Only) Address Lines

	Startup Options
	Start-Up Sequence
	Start-up Clock
	Synchronize I/O Startup Sequence to External Doneln Signal
	Output Events

	Readback Options
	Enable Readback of Configuration Bitstream
	Enable Aborting of Readback Sequence
	Set Readback clock to

	Creating CPLD Programming Files
	Launching the JTAG Programmer
	Setting Programming File Creation Options

	Programming Tools
	JTAG Programmer
	PROM File Formatter
	Hardware Debugger

