
Foundation
Series ISE 3.3i
Quick Start
Guide
Foundation Series 3.3i Quick Start Guide
Introduction

Setting Up the Tools

Software Overview

Basic Tutorial

Glossary
Printed in U.S.A.

Foundation Series 3.3i Quick Start Guide

Foundation Series 3.3i Quick Start Guide
R

The Xilinx logo shown above is a registered trademark of Xilinx, Inc.

ASYL, FPGA Architect, FPGA Foundry, NeoCAD, NeoCAD EPIC, NeoCAD PRISM, NeoROUTE, Timing Wizard,
TRACE, XACT, XILINX, XC2064, XC3090, XC4005, XC5210, and XC-DS501 are registered trademarks of Xilinx,
Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

All XC-prefix product designations, A.K.A Speed, Alliance Series, AllianceCORE, BITA, CLC, Configurable Logic
Cell, CoolRunner, CORE Generator, CoreLINX, Dual Block, EZTag, FastCLK, FastCONNECT, FastFLASH,
FastMap, Fast Zero Power, Foundation, HardWire, IRL, LCA, LogiBLOX, Logic Cell, LogiCORE, LogicProfessor,
MicroVia, MultiLINX, PLUSASM, PowerGuide, PowerMaze, QPro, RealPCI, RealPCI 64/66, SelectI/O,
SelectRAM, SelectRAM+, Silicon Xpresso, Smartguide, Smart-IP, SmartSearch, Smartspec, SMARTSwitch,
Spartan, TrueMap, UIM, VectorMaze, VersaBlock, VersaRing, Virtex, WebFitter, WebLINX, WebPACK, XABEL,
XACTstep, XACTstep Advanced, XACTstep Foundry, XACT-Floorplanner, XACT-Performance, XAM, XAPP, X-
BLOX, X-BLOX plus, XChecker, XDM, XDS, XEPLD, Xilinx Foundation Series, XPP, XSI, and ZERO+ are
trademarks of Xilinx, Inc. The Programmable Logic Company and The Programmable Gate Array Company are
service marks of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown
herein; nor does it convey any license under its patents, copyrights, or maskwork rights or any rights of others.
Xilinx, Inc. reserves the right to make changes, at any time, in order to improve reliability, function or design and
to supply the best product possible. Xilinx, Inc. will not assume responsibility for the use of any circuitry described
herein other than circuitry entirely embodied in its products. Xilinx, Inc. devices and products are protected under
one or more of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216; 4,713,557; 4,746,822; 4,750,155;
4,758,985; 4,820,937; 4,821,233; 4,835,418; 4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135;
5,023,606; 5,028,821; 5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056; 5,243,238;
5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704; 5,329,174; 5,329,181;
5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248; 5,349,249; 5,349,250; 5,349,691; 5,357,153;
5,360,747; 5,361,229; 5,362,999; 5,365,125; 5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925; 5,410,189;
5,410,194; 5,414,377; 5,422,833; 5,426,378; 5,426,379; 5,430,687; 5,432,719; 5,448,181; 5,448,493; 5,450,021;
5,450,022; 5,453,706; 5,455,525; 5,466,117; 5,469,003; 5,475,253; 5,477,414; 5,481,206; 5,483,478; 5,486,707;
5,486,776; 5,488,316; 5,489,858; 5,489,866; 5,491,353; 5,495,196; 5,498,979; 5,498,989; 5,499,192; 5,500,608;
5,500,609; 5,502,000; 5,502,440; 5,504,439; 5,506,518; 5,506,523; 5,506,878; 5,513,124; 5,517,135; 5,521,835;
5,521,837; 5,523,963; 5,523,971; 5,524,097; 5,526,322; 5,528,169; 5,528,176; 5,530,378; 5,530,384; 5,546,018;
5,550,839; 5,550,843; 5,552,722; 5,553,001; 5,559,751; 5,561,367; 5,561,629; 5,561,631; 5,563,527; 5,563,528;
5,563,529; 5,563,827; 5,565,792; 5,566,123; 5,570,051; 5,574,634; 5,574,655; 5,578,946; 5,581,198; 5,581,199;
5,581,738; 5,583,450; 5,583,452; 5,592,105; 5,594,367; 5,598,424; 5,600,263; 5,600,264; 5,600,271; 5,600,597;
5,608,342; 5,610,536; 5,610,790; 5,610,829; 5,612,633; 5,617,021; 5,617,041; 5,617,327; 5,617,573; 5,623,387;
5,627,480; 5,629,637; 5,629,886; 5,631,577; 5,631,583; 5,635,851; 5,636,368; 5,640,106; 5,642,058; 5,646,545;
5,646,547; 5,646,564; 5,646,903; 5,648,732; 5,648,913; 5,650,672; 5,650,946; 5,652,904; 5,654,631; 5,656,950;
5,657,290; 5,659,484; 5,661,660; 5,661,685; 5,670,896; 5,670,897; 5,672,966; 5,673,198; 5,675,262; 5,675,270;
5,675,589; 5,677,638; 5,682,107; 5,689,133; 5,689,516; 5,691,907; 5,691,912; 5,694,047; 5,694,056; 5,724,276;
5,694,399; 5,696,454; 5,701,091; 5,701,441; 5,703,759; 5,705,932; 5,705,938; 5,708,597; 5,712,579; 5,715,197;
5,717,340; 5,719,506; 5,719,507; 5,724,276; 5,726,484; 5,726,584; 5,734,866; 5,734,868; 5,737,234; 5,737,235;
Xilinx Development System

5,737,631; 5,742,178; 5,742,531; 5,744,974; 5,744,979; 5,744,995; 5,748,942; 5,748,979; 5,752,006; 5,752,035;
5,754,459; 5,758,192; 5,760,603; 5,760,604; 5,760,607; 5,761,483; 5,764,076; 5,764,534; 5,764,564; 5,768,179;
5,770,951; 5,773,993; 5,778,439; 5,781,756; 5,784,313; 5,784,577; 5,786,240; 5,787,007; 5,789,938; 5,790,479;
5,790,882; 5,795,068; 5,796,269; 5,798,656; 5,801,546; 5,801,547; 5,801,548; 5,811,985; 5,815,004; 5,815,016;
5,815,404; 5,815,405; 5,818,255; 5,818,730; 5,821,772; 5,821,774; 5,825,202; 5,825,662; 5,825,787; 5,828,230;
5,828,231; 5,828,236; 5,828,608; 5,831,448; 5,831,460; 5,831,845; 5,831,907; 5,835,402; 5,838,167; 5,838,901;
5,838,954; 5,841,296; 5,841,867; 5,844,422; 5,844,424; 5,844,829; 5,844,844; 5,847,577; 5,847,579; 5,847,580;
5,847,993; 5,852,323; 5,861,761; 5,862,082; 5,867,396; 5,870,309; 5,870,327; 5,870,586; 5,874,834; 5,875,111;
5,877,632; 5,877,979; 5,880,492; 5,880,598; 5,880,620; 5,883,525; 5,886,538; 5,889,411; 5,889,413; 5,889,701;
5,892,681; 5,892,961; 5,894,420; 5,896,047; 5,896,329; 5,898,319; 5,898,320; 5,898,602; 5,898,618; 5,898,893;
5,907,245; 5,907,248; 5,909,125; 5,909,453; 5,910,732; 5,912,937; 5,914,514; 5,914,616; 5,920,201; 5,920,202;
5,920,223; 5,923,185; 5,923,602; 5,923,614; 5,928,338; 5,931,962; 5,933,023; 5,933,025; 5,933,369; 5,936,415;
5,936,424; 5,939,930; 5,942,913; 5,944,813; 5,945,837; 5,946,478; 5,949,690; 5,949,712; 5,949,983; 5,949,987;
5,952,839; 5,952,846; 5,955,888; 5,956,748; 5,958,026; 5,959,821; 5,959,881; 5,959,885; 5,961,576; 5,962,881;
5,963,048; 5,963,050; 5,969,539; 5,969,543; 5,970,142; 5,970,372; 5,971,595; 5,973,506; 5,978,260; 5,986,958;
5,990,704; 5,991,523; 5,991,788; 5,991,880; 5,991,908; 5,995,419; 5,995,744; 5,995,988; 5,999,014; 5,999,025;
6,002,282; and 6,002,991; Re. 34,363, Re. 34,444, and Re. 34,808. Other U.S. and foreign patents pending.
Xilinx, Inc. does not represent that devices shown or products described herein are free from patent infringement
or from any other third party right. Xilinx, Inc. assumes no obligation to correct any errors contained herein or to
advise any user of this text of any correction if such be made. Xilinx, Inc. will not assume any liability for the
accuracy or correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in
such applications without the written consent of the appropriate Xilinx officer is prohibited.

Copyright 1991-2000 Xilinx, Inc. All Rights Reserved.
Foundation Series 3.3i Quick Start Guide

About This Manual

This guide should be used as the initial learning tool for designers

who are unfamiliar with the features of the Foundation Series

Integrated Synthesis Environment (ISE) 3.x software.

Note This Xilinx software release is certified as Year 2000 compliant.

Manual Contents
This guide covers the following topics.

• Chapter 1, “Introduction” describes the key features of the ISE

software and lists available documentation.

• Chapter 2, “Setting Up the Tools,” gives instructions for installing

the ISE software and provides you with information about the

type of computer you need to successfully implement your

designs.

• Chapter 3, “Software Overview,” describes the capability and

flexibility of the ISE software.

• Chapter 4, “Basic Tutorial” provides a step-by-step example

explaining how to use the basic ISE tools.

• The “Glossary,” defines some of the commonly used terms in this

Guide.
Foundation Series 3.3i Quick Start Guide i

Foundation Series 3.3i Quick Start Guide
Additional Resources

For additional information, go to http://support.xilinx.com .

The following table lists some of the resources you can access from

this Web site. You can also directly access these resources using the

provided URLs.

Resource Description/URL

Tutorials Tutorials covering Xilinx design flows, from design entry to verification

and debugging

http://support.xilinx.com/support/techsup/tutorials/
index.htm

Answers

Database

Current listing of solution records for the Xilinx software tools

Search this database using the search function at

http://support.xilinx.com/support/searchtd.htm

Application

Notes

Descriptions of device-specific design techniques and approaches

http://support.xilinx.com/apps/appsweb.htm

Data Book Pages from The Programmable Logic Data Book, which contain device-

specific information on Xilinx device characteristics, including readback,

boundary scan, configuration, length count, and debugging

http://support.xilinx.com/partinfo/databook.htm

Xcell Journals Quarterly journals for Xilinx programmable logic users

http://support.xilinx.com/xcell/xcell.htm

Technical Tips Latest news, design tips, and patch information for the Xilinx design

environment

http://support.xilinx.com/support/techsup/journals/
index.htm
ii Xilinx Development System

Conventions

This manual uses the following conventions. An example illustrates

each convention.

Typographical
The following conventions are used for all documents.

• Courier font indicates messages, prompts, and program files

that the system displays.

speed grade: - 100

• Courier bold indicates literal commands that you enter in a

syntactical statement. However, braces “{ }” in Courier bold are

not literal and square brackets “[]” in Courier bold are literal

only in the case of bus specifications, such as bus [7:0].

rpt_del_net=

Courier bold also indicates commands that you select from a

menu.

File → Open

• Italic font denotes the following items.

♦ Variables in a syntax statement for which you must supply

values

edif2ngd design_name

♦ References to other manuals
Foundation Series 3.3i Quick Start Guide iii

Foundation Series 3.3i Quick Start Guide
See the Development System Reference Guide for more informa-

tion.

♦ Emphasis in text

If a wire is drawn so that it overlaps the pin of a symbol, the

two nets are not connected.

• Square brackets “[]” indicate an optional entry or parameter.

However, in bus specifications, such as bus [7:0], they are

required.

edif2ngd [option_name] design_name

• Braces “{ }” enclose a list of items from which you must choose

one or more.

lowpwr = { on | off }

• A vertical bar “|” separates items in a list of choices.

lowpwr = { on | off }

• A vertical ellipsis indicates repetitive material that has been

omitted.

IOB #1: Name = QOUT’

IOB #2: Name = CLKIN’

.

.

.

• A horizontal ellipsis “….” indicates that an item can be repeated

one or more times.

allow block block_name loc1 loc2locn;

Online Document
The following conventions are used for online documents.

• Red-underlined text indicates an interbook link, which is a cross-

reference to another book. Click the red-underlined text to open

the specified cross-reference.
iv Xilinx Development System

• Blue-underlined text indicates an intrabook link, which is a cross-

reference within a book. Click the blue-underlined text to open

the specified cross-reference.
Foundation Series 3.3i Quick Start Guide v

Foundation Series 3.3i Quick Start Guide
vi Xilinx Development System

Contents
About This Manual
Manual Contents ... i
Additional Resources .. ii

Conventions
Typographical.. iii
Online Document .. iv

Chapter 1 Introduction

Key Features... 1-1
Architecture Support ... 1-3
Documentation .. 1-3

Chapter 2 Setting Up the Tools

Product Configurations.. 2-1
Installing Software... 2-2

Installing Xilinx Software .. 2-2
Installing Documentation.. 2-3
Installing Test Bench, Simulation, and State Machine Software 2-3

Installing MXE Software.. 2-4
Installing HDL Bencher and StateCAD Software................ 2-4
Using Other Versions of ModelSim, HDL Bencher,
 and StateCAD... 2-6

Customer Service.. 2-7
Technical Support ... 2-8
Foundation Series 3.3i Quick Start Guide vii

Foundation Series 3.3i Quick Start Guide
Chapter 3 Software Overview

Starting the Foundation Series ISE Software................................ 3-1
Project Navigator... 3-2

Project Navigator Online Help.. 3-3
Source Window.. 3-3
Process Window .. 3-5
Transcript Window ... 3-6

Design Entry.. 3-7
HDL Editor ... 3-7
ECS Schematic Editor ... 3-7
Symbol Editor... 3-8
StateCAD and StateBench .. 3-8
LogiBLOX and CORE Generator Modules 3-8

Design Synthesis .. 3-9
XST .. 3-9
FPGA Express ... 3-10

Design Constraints.. 3-11
Functional Simulation.. 3-11
Design Implementation ... 3-12

Interpreting the Reports ... 3-13
Translation Report .. 3-13
Map Report (FPGAs) .. 3-13
Pre-Route Static Timing Report (FPGAs Only) 3-14
Place and Route Report (FPGAs) 3-14
Pad Report (FPGAs)... 3-15
Asynchronous Delay Report (FPGAs) 3-15
Fitting Report (CPLDs) ... 3-15
Post Route Timing Report (FPGAs Only) 3-15
Timing Report (CPLDs) .. 3-16
Lock Pins Report .. 3-16
MPPR Report (FPGAs Only) .. 3-16

Other Design Implementation Tools .. 3-17
Floorplanner (FPGAs)... 3-17
FPGA Editor.. 3-17
Post Fit ChipViewer (CPLDs) ... 3-18

Timing Simulation.. 3-18
Device Programming... 3-18

Create Programming File (FPGAs).. 3-18
Viewing Programming File Generation Report (FPGAs) 3-19
PROM File Formatter (FPGAs).. 3-19
Hardware Debugger (FPGAs).. 3-19
viii Xilinx Development System

Contents
JTAG Programmer... 3-19

Chapter 4 Basic Tutorial

Introduction ... 4-1
Online Help ... 4-2
Hints .. 4-2

Source and Process Windows ... 4-2
Schematic Editor Tips .. 4-2

General Object-Action vs. Action-Object 4-3
Dragging a Net Name ... 4-3
Adding a Net Name to an I/O Wire 4-3
Adding I/O Markers... 4-4

Design Entry (VHDL)... 4-4
Starting the ISE Software... 4-4
Creating a New Project .. 4-4
Creating a 4-Bit Counter Module ... 4-6

Functional Simulation.. 4-9
Creating a Test Bench with HDL Bencher 4-9
Adding the Test Bench File to the Project................................ 4-12
Simulating with ModelSim.. 4-12

Design Entry (Top-Level Schematic) .. 4-14
Creating a Schematic Symbol for the VHDL Module 4-14
Creating a New Top-Level Schematic 4-15
Instantiating VHDL Modules .. 4-15
Wiring the Schematic ... 4-16
Adding Net Names to Wires... 4-18
Creating Buses .. 4-19
Adding I/O Markers .. 4-20

Design Implementation ... 4-22
Timing Simulation.. 4-24

Glossary
Foundation Series 3.3i Quick Start Guide ix

Foundation Series 3.3i Quick Start Guide
x Xilinx Development System

Chapter 1

Introduction

This Quick Start Guide explains how to install the software, describes

the basic software tools, and provides a basic tutorial.

This chapter contains the following sections.

• “Key Features”

• “Architecture Support”

• “Documentation”

Key Features
Following is a list of the key features supported for this release.

• Project Navigator

The Project Navigator is the primary window interface used to

access all of the Xilinx design tools.

• Design entry tools (Schematic Editor and HDL Editor)

The HDL Editor supports Verilog, VHDL, and ABEL HDL.

Xilinx provides the StateCAD Editor for designing State

machines and HDL Bencher Editor for creating test benches.

• Design Synthesis

The design synthesis tools create an EDIF netlist for HDL

designs. Project Navigator supports three synthesis tools:

♦ Xilinx Synthesis Tool (XST)

♦ FPGA Express

♦ Synplify/Synplify Pro (synthesis tool must be purchased

separately)
Foundation Series 3.3i Quick Start Guide 1-1

Foundation Series 3.3i Quick Start Guide
• Design Implementation tools

These tools place and route FPGAs or run the fitter for CPLDs.

The design implementation tools also create back-annotated files

for use in simulation.

• Design Constraints Graphical User Interfaces (GUIs)

The Project Navigator contains three GUIs for creating

constraints: the Xilinx Constraints Editor, Floorplanner, and the

FPGA Express Constraints Editor.

• Third Party Tools

♦ Model Technology Incorporated (MTI)

The ISE software supports a variety of simulation tools

produced by MTI. Xilinx provides the ModelSim Xilinx

Edition (MXE) on a separate CD. Xilinx also supports the use

of its software with the MTI PE and EE/SE simulation tools.

• Snapshots

When you have successfully run your design through the design

process, you can take a snapshot of the design. A snapshot saves

all of the files that you have created which includes all of the files

that were created during the design processing, that is, design

entry, simulation, implementation, and programming.

Note Snapshots are not compatible with the Design Manager

Flow Engine. Projects created with Foundation ISE software

cannot be opened within the Design Manager Flow Engine.

• Error Navigation to Solution Records via the web

Built into the ISE's Project Navigator is the ability to search

thousands of solution records found on the Xilinx software

support home page from any error. Because the solutions are

maintained on the Xilinx support home page, you are guaranteed

to have the most up-to-date solutions available.

For a detailed description of key features, refer to the Key Features

file by selecting Start → Programs → Xilinx Foundation
Series ISE → Key Features .
1-2 Xilinx Development System

Introduction
Architecture Support
The software supports the following architecture families in this

release.

• Spartan™/XL/-II

• Virtex™/-E/-II

• XC9500™/XL/XV

• XC4000™E/L/EX/XL/XLA

Documentation
Xilinx provides a suite of documentation that includes detailed online

help and online software manuals. The online software manuals are

provided in both an HTML browser and PDF file formats.

The following online help is available:

• Project Navigator

• VHDL, Verilog and ABEL keywords

• Design entry tools (HDL Editor, Schematic Editor, Symbol Editor,

and State Machine Editor)

• Design implementation tools (PROM File Formatter, FPGA

Editor, Floorplanner, Hardware Debugger, JTAG Programmer,

Flow Engine, Timing Analyzer, Constraints Editor, and

LogiBLOX)

• Umbrella help

Online software manuals include the following:

• CORE Generator User Guide

• Constraints Editor Guide

• Development System Reference Guide

• Floorplanner Guide

• FPGA Editor Guide

• Foundation Series ISE 3.1i User Guide

• Foundation Series ISE 3.1i Quick Start Guide
Foundation Series 3.3i Quick Start Guide 1-3

Foundation Series 3.3i Quick Start Guide
• Hardware Debugger Guide

• Hardware User Guide

• JTAG Programmer Guide

• Libraries Guide

• LogiBLOX Guide

• PROM File formatter Guide

• Synthesis and Simulation Design Guide

• Timing Analyzer Guide

• Synopsys VHDL Reference Guide (PDF only)

• Synopsys Verilog Reference Guide (PDF only)

• XST User Guide

All of these manuals are supplied on the Documentation CD as well

as the Design Environment CD. You can also access these manuals

from the Xilinx Web site. The URL is http://
toolbox.xilinx.com/docsan

You can also access the online software manuals from the Xilinx Web

Site home page (http://www.xilinx.com) as follows:

1. Click Service & Support.

2. Click Software Manuals.

In addition to the online version of the software manuals, Xilinx also

provides PDF versions for printing.

Two hard copy books are also shipped with the software: the

Foundation Series ISE 3.1i Quick Start Guide and the Foundation Series
ISE Installation Guide and the Release Notes.

Other manuals include the MTI Reference Guide (which resides on the

CD that contains the MTI simulation software) as well as the

StateCAD, StateBench, and the HDL Bencher User’s Guides.
1-4 Xilinx Development System

Chapter 2

Setting Up the Tools

This chapter includes a list of product configurations, general

instructions for installing the software, customer support contacts,

and licensing information.

For a detailed discussion of installation and licensing, refer to the

Foundation Series ISE Installation Guide and Release Notes.

This chapter contains the following sections:

• “Product Configurations”

• “Installing Software”

• “Customer Service”

• “Technical Support”

Product Configurations
Following is a list of the product configurations for this release.

• Base-Express (DS-FSE-BSX-PC)

• Express (DS-FSE-EXP-PC)

• Elite (DS-FSE-ELI-PC)

All of these configurations contain FPGA Express, StateCAD Xilinx

Edition, HDL Bencher Xilinx Edition, and the Modelsim Xilinx

Edition (MXE) simulator. FPGA Express and Modelsim require

licensing. Licensing for MXE is relatively straight-forward—follow

the installation instructions described in the “Installing MXE

Software” section.

To license FPGA Express, refer to the Foundation Series ISE Installation
Guide and Release Notes.
Foundation Series 3.3i Quick Start Guide 2--1

Foundation Series 3.3i Quick Start Guide
Installing Software
Ensure the optimum use and operation of your new design tools by

installing the software on the recommended hardware with sufficient

memory (RAM and hard disk “swap” space). If you experience

problems with either the installation, operation, or verification of

your installation, contact the Xilinx Technical Support hotline. Refer

to the “Technical Support” section of this chapter for specifics.

Please refer to the Foundation ISE Installation Guide and Release Notes
for complete details on installation and prerequisites for installation.

Installing Xilinx Software
This subsection explains how to install the Xilinx software tools from

the Xilinx Foundation Series ISE 3.3i CD. Note that this CD also

contains the FPGA Express software.

1. Select Start → Run. Type d:setup.exe in the Open field of the

Run window and click OK. (If your CD-ROM drive is not the “d”

drive, substitute the appropriate drive designation.)

2. Follow the instructions on the screen to install the software. You

will be asked to register the product from the Welcome screen

during install. You can register via the web, email, or fax.

In order to register the product, you need to provide the

following information:

♦ Product ID

Your product ID number is located on the back of your

software CD pack.

♦ Your name

♦ Company

♦ Mailing address

♦ Phone number

♦ email address

When you register, Xilinx gives you a Registration ID. You must

have the registration ID in order to complete the installation.
2--2 Xilinx Development System

Setting Up the Tools
The installer first installs all of the Xilinx software and then

invokes the installer for FPGA Express. Make sure that you

install FPGA Express in the default directory indicated. Your

FPGA Express synthesis FlexLM license file will be emailed to

you. When install is complete, remove the CD.

You may need to reboot your PC to allow the environment variables

and path statement to take effect before you can run the design

implementation tools. The Install program will inform you if you

need to reboot.

Installing Documentation
The Documentation CD allows you to either install the documenta-

tion to your local disk or to view them directly from the CD. The

Design Environment CD allows you to install the documentation to

your local disk as part of the main software install procedure. Both

CDs also contains PDF versions of manuals that can be viewed with

the Adobe Acrobat reader.

Installing the documentation is optional, that is, it is not required to

run the software.

To install the Xilinx documentation CD, insert the CD and follow the

instructions. Alternatively, the documentation may be installed from

the Design Environment CD when installing the Xilinx Foundation

Series ISE 3.3i software.

Installing Test Bench, Simulation, and State Machine
Software

HDL Bencher testbench generation software, StateCAD state diagram

editor, and ModelSim Xilinx Edition simulation tools are available

through separate installation programs outside of the main

Foundation Series ISE installer. In order to complete the Basic Tutorial

in Chapter 4, you must install the HDL Bencher and ModelSim

software.

Note If you already have installed MTI and VSS versions of the HDL

Bencher, ModelSim, and StateCAD, refer to the “Using Other

Versions of ModelSim, HDL Bencher, and StateCAD” section.
Foundation Series 3.3i Quick Start Guide 2--3

Foundation Series 3.3i Quick Start Guide
Installing MXE Software

The ModelSim Xilinx Edition CD contains the ModelSim Xilinx

Edition simulator from MTI. You must install a licensed version of

Modelsim to complete the basic tutorial in Chapter 4. To install the

CD, perform the following steps:

1. Insert the ModelSim Xilinx Edition CD.

2. Select Start → Programs → Foundation Series ISE →
Partner Products →Install Modelsim Xilinx
Edition .

When you install this software, you are prompted for licensing.

Follow the instructions on the screen to license and install the

product.

3. Remove the CD when installation is complete.

Installing HDL Bencher and StateCAD Software

The Xilinx Foundation Series ISE 3.3i software includes HDL Bencher

testbench generation software and StateCAD state diagram editor

software.

1. Insert the Design Environment CD.

2. To install the HDL Bencher, select Start → Programs →
Foundation Series ISE → Partner Products →
Install HDL Bencher Xilinx Edition

Follow the instructions on the screen to install the product.

3. The StateCAD software is not required to perform the Tutorial in

Chapter 4. It is included with Foundation ISE to facilitate design

entry, debug, and analysis of state machines. StateCAD includes a

translation tool for importing designs originally created with the

Xilinx Foundation State Editor. StateCAD significantly enhances

state machine design through its FSM, and Logic Wizards.

StateCAD generates FPGA optimized and error-free HDL. It also

detects hundreds of logic errors and warnings up-front, and

provides solutions for them before it generates any HDL.

To install the StateCAD software, select Start → Programs →
Foundation Series ISE → Partner Products →
Install StateCAD Xilinx Edition .
2--4 Xilinx Development System

Setting Up the Tools
Follow the instructions on the screen to install the product.

Using Other Versions of ModelSim, HDL Bencher, and
StateCAD

You can integrate non-Xilinx Editions of ModelSim, HDL Bencher,

and StateCAD with ISE as follows.

1. Within the Project Navigator, select Edit → Preferences and

then select the Partners tab.

The following dialog box displays.

2. Enter the full path name to each of your tools or browse to the

location of the desired executable (that is, ModelSim.exe for the

Modeltec simulator, tb.exe for the VSS Test Bencher, and Sc.exe

for the VSS State Machine Editor).

Customer Service
For software licensing information, warranty status, shipping, and

order management issues, contact Xilinx Customer Service using the

information in the following table.

Country Telephone Facsimile

United States and Canada1 1-800-624-4782 408-559-0115

United Kingdom2 01932-333550 01932-828521
Foundation Series 3.3i Quick Start Guide 2--5

Foundation Series 3.3i Quick Start Guide
1 Mon-Fri, 8:00 am - 5:00 pm Pacific time

2 Monday-Friday, 9:00 a.m. to 5:30 p.m. United Kingdom time—

English speaking only.

If you are an international customer, contact your local sales represen-

tative for customer service issues. Refer to the Xilinx web site at

http://support.xilinx.com/company/sales/int_reps.htm for contact

information.

A complete list of Xilinx worldwide sales offices is at http://

support.xilinx.com/company/sales/offices.htm.

Belgium2 0800 73738

France2 0800 918333

Germany2 0130 816027

Italy2 1677 90403

Netherlands2 0800 0221079

Other European Locations2 (44) 1932-333550 (44) 1932-828521

Japan 81 3 3297 9153 81 3 3297 9189

Country Telephone Facsimile
2--6 Xilinx Development System

Setting Up the Tools
Technical Support
The following section details how to reach the Xilinx Application

Service centers for your area. If you experience problems with the

installation or operation of your software, Xilinx suggests that you

first go to our http://support.xilinx.com website.

You can also contact the Xilinx Technical Support hotline by phone,

email, or fax. When e-mailing or faxing inquiries, provide your

complete name, company name, and phone number. The following

table gives Worldwide contact information for Xilinx Application

Service centers.

Location Telephone Electronic Mail Facsimile (Fax)

North America 1-408-879-5199

1-800-255-7778

hotline@xilinx.com 1-408-879-4442

United Kingdom 44-1932-820821 ukhelp@xilinx.com 44-1932-828522

France 33-1-3463-0100 frhelp@xilinx.com 33-1-3463-0959

Germany 49-89-93088-130 dlhelp@xilinx.com 49-89-93088-188

Japan local distributor jhotline@xilinx.com local distributor

Korea local distributor korea@xilinx.com local distributor

Hong Kong local distributor hongkong@xilinx.com local distributor

Taiwan local distributor taiwan@xilinx.com local distributor

Corporate Switchboard 1-408-559-7778
Foundation Series 3.3i Quick Start Guide 2--7

Foundation Series 3.3i Quick Start Guide
2--8 Xilinx Development System

Chapter 3

Software Overview

This overview describes the basic concepts and tools of the

Foundation Series ISE release. For details on how to use the tools,

refer to the “Basic Tutorial” chapter in this manual or the in-depth

tutorial on the Web (http://www.support.xilinx.com/
support/techsup/tutorials/).

This chapter contains the following sections.

• “Starting the Foundation Series ISE Software”

• “Project Navigator”

• “Design Entry”

• “Design Synthesis”

• “Design Constraints”

• “Functional Simulation”

• “Design Implementation”

• “Timing Simulation”

• “Device Programming”

Starting the Foundation Series ISE Software
To start the software, select Start → Programs → Foundation
Series ISE → Project Navigator .
Foundation Series 3.3i Quick Start Guide 3--1

Foundation Series 3.3i Quick Start Guide
Project Navigator
The Project Navigator—the overall project management tool—

contains the software tools used in the design process. Within the

Project Navigator, you can access the following tools: design entry,

synthesis, design implementation, device programming tools, and

design verification which includes functional and timing simulation

as well as static timing analysis.

Figure 3-1 Project Navigator

The toolbar buttons at the top of the main window provide shortcuts

for commonly used commands.

• The Source window contains the source modules for the project.

• The Process window contains the processes that are associated

with the selected project source.

• The area located on the right side of the Project Manager is the

HDL Editor window.
3--2 Xilinx Development System

Software Overview
• The Transcript window at the bottom of the Project Navigator

displays informational, warning, and error messages.

• The Status bar displays the status of the current process that is

running.

For detailed information about the Project Navigator, refer to the

“Project Navigator” chapter in the Foundation Series ISE 3.1i User
Guide.

Project Navigator Online Help
The Project Navigator contains online help for each of the menu items

located in the pulldown menus. You can access the help for these

menu items by pressing F1.

For example to access help for the New Source menu item from the

Project menu, click the Project menu and then place the cursor on

New Source. Press F1 to display the help.

Online help is also available for Project Navigator processes. To

access, select a process and press F1.

Source Window
The Source window displays all of the design files associated with a

project. A source is any element that contains information about a

design. Sources include any files that are needed to describe the

behavior of your design: schematics or HDL source files, test files,

and design documentation.

The following figure shows an example of a Source window.
Foundation Series 3.3i Quick Start Guide 3--3

Foundation Series 3.3i Quick Start Guide
Icons represent the various types of source files. To view a complete

list of source icons, click the context-sensitive Help icon and then

click an unused area of the source window.

Double clicking a source invokes the editor for that source. For

example, double clicking a schematic source file invokes the

Schematic Editor; the schematic displays within the Schematic Editor

tool. Correspondingly, double clicking an HDL file invokes the HDL

Editor. When a source file’s place in the design hierarchy is modified,

the Source window automatically updates to reflect the change. Use

the Project pulldown menu or toolbar button to perform the

following operations on a source file:

• Create a New Source

• Add a new source to a project

• Copy a source to the current project folder

• Delete Implementation Data

• Archive a project

• Take a snapshot

• Apply Project Properties
3--4 Xilinx Development System

Software Overview
Process Window
The Process window displays all the processes that apply for a

selected source in the Source window. Processes include synthesis,

test bench generation, simulation, implementation, device

programming, report generation, or any other logical design step.

The Project Navigator’s context-sensitivity automatically determines

the design processes for any selected source. The processes are

context-sensitive in two ways:

• The processes that display in the Process window depend on the

source file that is highlighted in the Source window.

• Some of the processes that display in the Process window differ

depending on the device type (FPGA or CPLD).

You run a design process by double clicking a process in the process

window. By default the Project Navigator automatically updates

outdated processes or reports.

A green check mark next to a process indicates that the process is up-

to-date and completed without problems. A yellow exclamation

point indicates that the process is up-to-date and completed with

warnings. A red X indicates that a process failed due to errors.

You can also set properties for many of the processes. To set

properties for a process, right click on the process and then select

Properties from the menu or select the process and then select

Process → Properties . For a description of all of the Implement

Design properties, refer to the “Implementing the Design” chapter in

the Foundation Series ISE 3.1i User Guide

For a description of the Synthesize properties for XST, see the XST
User Guide.
Foundation Series 3.3i Quick Start Guide 3--5

Foundation Series 3.3i Quick Start Guide
Transcript Window
The Transcript window displays all messages, errors, and warnings

that result from running processes. You can view this window or hide

it by clicking the toolbar button.

When you run a process, messages display in the Transcript window

indicating the status of the process. If your design contains synthesis

errors or warnings, you can double-click the error or warning

message that displays in the Transcript window and the source

containing the error is opened. In the source, a red dot displays next

to the line containing the error. Alternatively you can right click on

the error and navigate to a solution record at support.xilinx.com.

Figure 3-2 Transcript Window

In the preceding figure, the Implement Design process has been run

and the Transcript window indicates that the last process that ran was

PAR (Place and Route --par.bat).
3--6 Xilinx Development System

Software Overview
Design Entry
This section describes the design entry tools.

HDL Editor
The ISE language sensitive text editor for HDL includes color coding

and context-sensitive help for reserved words. When color coding is

enabled, different colored text is used for strings, comments,

keywords, and directives. ISE contains language templates so that

you can insert existing text structures into your source files.

The “Basic Tutorial” chapter explains how to use the language

templates.

The HDL Editor supports Verilog, VHDL, and ABEL. You can

customize the Editor’s display, input and formatting options.

For details, see the “HDL Sources” chapter in the Foundation Series
ISE 3.1i User Guide.

ECS Schematic Editor
The ECS (Engineering Capture System) is the Schematic Editor.

The ISE Schematic Editor includes the following features:

• Built-in design rule checking

• VHDL and Verilog structural netlist generation

• Matching symbol generation

For detailed information, refer to the “Schematic Sources” chapter in

the Foundation Series ISE 3.1i User Guide.
Foundation Series 3.3i Quick Start Guide 3--7

Foundation Series 3.3i Quick Start Guide
Symbol Editor
You can use the Symbol Editor to create and edit symbols for the

Schematic Editor.

Types of symbols that can be created include block symbols and

graphic symbols. Block symbols are used to build hierarchical

designs.

For detailed information, refer to the “Schematic Sources” chapter in

the Foundation Series ISE 3.1i User Guide.

StateCAD and StateBench
The Foundation ISE software includes the Xilinx Edition of

StateCAD ® and StateBench® for state machine designs. StateCAD

includes a State Machine Wizard to help you develop the initial state

machine, a Logic Wizard to create data flow structures, and an Opti-

mization Wizard to maximize performance for the target device.

When installed, StateBench can automatically create VHDL test

benches and Verilog test fixtures from StateCAD designs.

Refer to the StateCAD and StateBench online help and

documentation for specific information on using these products. For

installation information, refer to the “Setting Up the Tools” chapter in

this manual or the Foundation Series ISE Installation Guide and Release
Notes.

For information on how to launch the tool, refer to the “State

Diagrams” chapter in the Foundation Series ISE 3.1i User Guide.

LogiBLOX and CORE Generator Modules
LogiBLOX is a design tool for creating high-level modules such as

counters, shift registers, and multiplexers for FPGA and CPLD

designs. LogiBLOX includes both a library of generic modules and a

set of tools for customizing these modules. LogiBLOX modules are

pre-optimized to take advantage of Xilinx architectural features such

as Fast Carry Logic for arithmetic functions and on-chip RAM for

dual-port and synchronous RAM. With LogiBLOX, you can create

high-level LogiBLOX modules that will fit into your schematic-based

design or HDL-based design. For detailed information, refer to the

“LogiBLOX” chapter in the Foundation Series ISE 3.1i User Guide.
3--8 Xilinx Development System

Software Overview
Xilinx CORE Generator is a design tool that creates parameterizable

cores, optimized for Xilinx FPGAs. The CORE Generator library

includes cores as complex as DSP filters and multipliers and as

simple as delay elements. You can use these cores as building blocks

in order to complete your design more quickly.

For details on how to instantiate cores, refer to the “CORE Generator”

chapter in the Foundation Series ISE 3.1i User Guide. For complete

information about CORE Generator, refer to the online manual,

CORE Generator User Guide.

Design Synthesis
The Foundation ISE software contains two synthesis tools—XST and

FPGA Express. Both synthesis engines accept the same types of input

files and then generate the necessary output files so that you can

place and route your design. The main difference is that XST can only

synthesize designs that are either all VHDL or all Verilog. FPGA

Express allows a mixture of both VHDL and Verilog. The following

subsections describe each tool.

XST
You can use XST if designing with the following device families.

• Virtex

• Virtex2

• VirtexE

• Spartan2

• SpartanXL

• XC9500

• XC9500XL

• XC9500XV

All synthesis processes are placed under a process in the Process

window called Synthesize. This process runs the entire synthesis flow

to generate the required files so that you can place and route your

design. The following diagram illustrates the synthesis flow in the

Process window for XST.
Foundation Series 3.3i Quick Start Guide 3--9

Foundation Series 3.3i Quick Start Guide
You can also set various properties for XST synthesis by right clicking

Synthesize and then selecting Properties from the menu. The Process

Properties dialog box displays allowing you to select Synthesis

Options, HDL Options, and Xilinx Specific Options.

For detailed information about XST, refer to the XST User Guide.

FPGA Express
FPGA Express can synthesize all devices supported for this release.

The Synthesize process runs the complete synthesis flow to produce

the necessary files to place and route your design. The following

diagram illustrates the synthesis flow in the process window for

FPGA Express.

You can examine static timing results with the Express Time Tracker

after synthesis and before implementation as follows:

Note You must be licensed

(DS-FSE-EXP-PC or DS-FSE-ELI-PC) to use FPGA Express to access

the Time Tracker and the Express Constraints Editor.

1. Double-click View Synthesis Results in the Process window.

2. Select the Paths tab from the Time Tracker to view estimated

delays.
3--10 Xilinx Development System

Software Overview
Design Constraints
With the design implementation tools, you can control the

implementation of a design by entering constraints. There are two

basic types of constraints that you can apply to a design: location

constraints and timing constraints.

Location constraints control the mapping and positioning of the logic

elements in the target device. The most common location constraints

are pad constraints. They are used to lock the pins of the design to

specific I/O locations so that the pin placement is consistent from

revision to revision.

Timing constraints tell the software which paths are critical, and

therefore, need closer placement and faster routing. Conversely,

timing constraints also tell the software which paths are not critical

and, therefore, do not need closer placement or faster routing. Both

the placer and the router can be timing constraint driven.

You can enter constraints at various phases of the design process:

• Schematic Editor

• HDL Editor

• UCF file

You can enter constraints manually or with the Xilinx Constraints

Editor. Refer to the Constraints Editor Guide.

• FPGA Express

• XST constraints file

• Floorplanner

Refer to the Floorplanner Guide for details.

Functional Simulation
Functional Simulation allows you to verify the logic of your design

before you synthesize it. You can observe the circuit’s behavior at its

inputs and outputs as well as the behavior of internal nodes. You can

use test benches (VHDL) or test fixtures (Verilog) to specify circuit

input stimuli and expected output responses and then test to those

specifications prior to synthesis.
Foundation Series 3.3i Quick Start Guide 3--11

Foundation Series 3.3i Quick Start Guide
Foundation ISE supports RTL (Register Transfer Level) simulation as

its functional simulation. RTL simulation is performed after design

entry but prior to synthesis.

The “Basic Tutorial” chapter has an example of a functional

simulation for a counter.

For more detailed information about functional simulation, refer to

the “Simulation” chapter in the Foundation Series ISE 3.1i User Guide.

Design Implementation
After synthesis is complete, the implementation tools perform the

translate map, place, route, (fit for CPLDs), and programming file

generation phases of the design flow.

The Process window first step, Translate, merges all of the input

netlists. This is accomplished by running NGDBuild. For a complete

description of NGDBuild, refer to the “NGDBuild” chapter in the

Development System Reference Guide.

For FPGAs, the next step is the technology mapper. Map optimizes

the gates and trims unused logic in the merged NGD netlist. This step

also maps the design’s logic resources; logic in the design is mapped

to resources on the silicon, and a physical design rule check is

performed. For more information about MAP, refer to the “MAP—

The Technology Mapper” chapter in the Development System Reference
Guide.

After the FPGA design is mapped, it is placed and routed. In the

place stage, all logic blocks, including the configurable logic blocks

(CLB) and input/output blocks (IOB) structures, are assigned to

specific locations on the die.

If timing constraints have been placed on particular logic

components, the placer tries to meet those constraints by moving the

corresponding logic blocks closer together.

In the routing stage, the logic blocks are assigned specific

interconnect elements on the die. If timing constraints have been

placed on particular logic components, the router tries to meet those

constraints by choosing a faster interconnect. For more information

about PAR, refer to the “PAR—Place and Route” chapter in the online

software document, Development System Reference Guide.
3--12 Xilinx Development System

Software Overview
The CPLD fitter implements designs for the XC9500, XC9500XV, and

XC9500XL devices. The fitter outputs several files: fitting report

(design_name.rpt), static timing report (design_name.tim), guide file

(design_name.gyd, programming file (design_name.jed), and timing

simulation database (design_name.nga).

For detailed information about implementing CPLD designs, refer to

the Foundation online help.

For more detailed information about design implementation, refer to

the “Implementing the Design” chapter in the Foundation Series ISE
3.1i User Guide.

Interpreting the Reports
The reports generated by implementation provide information on

logic trimming, logic optimization, timing constraint performance,

and I/O pin assignment. To access a report, double-click the report in

the Process window after you have run your design through design

implementation.

Translation Report

The translation report (.bld) contains warning and error messages

from the three translation processes: conversion of the EDIF netlist to

the Xilinx NGD netlist format, timing specification checks, and

logical design rule checks. The report lists the following:

• Missing or untranslatable hierarchical blocks

• Invalid or incomplete timing constraints

• Output contention, loadless outputs, and sourceless inputs

Map Report (FPGAs)

The Map Report (.mrp) contains warning and error messages

detailing logic optimization and problems in mapping logic to

physical resources. The report lists the following information:

• Removed logic. Sourceless and loadless signals can cause a whole

chain of logic to be removed. Each deleted element is listed with

progressive indentation, so the origins of removed logic sections

are easily identifiable; their deletion statements are not indented.

• Logic that has been added or expanded to optimize speed.
Foundation Series 3.3i Quick Start Guide 3--13

Foundation Series 3.3i Quick Start Guide
• The Design Summary section lists the number and percentage of

used CLBs, IOBs, flip-flops, and latches. It also lists occurrences

of architecturally-specific resources like global buffers and

boundary scan logic.

Note The Map Report can be very large. To find information, use key

word searches. To quickly locate major sections, search for the string

‘---‘, because each section heading is underlined with dashes.

Pre-Route Static Timing Report (FPGAs Only)

Pre-route static timing reports can be very useful in evaluating timing

performance. Although route delays are not accounted for, the logic

delays can provide valuable information about the design.

If logic delays account for a significant portion (> 50%) of the total

allowable delay of a path, the path may not be able to meet your

timing requirements when routing delays are added.

Routing delays typically account for 40% to 60% of the total path

delays. By identifying problem paths, you can mitigate potential

problems before investing time in place and route. You can redesign

the logic paths to use less levels of logic, tag the paths for specialized

routing resources, move to a faster device, or allocate more time for

the path.

If logic-only-delays account for much less (<35%) than the total

allowable delay for a path or timing constraint, then the place-and-

route software can use very low placement effort levels. In these

cases, reducing effort levels allow you to decrease runtimes while still

meeting performance requirements.

Place and Route Report (FPGAs)

The Place and Route Report (.par) contains the following

information.

• The overall placer score which measures the “goodness” of the

placement. Lower is better. The score is strongly dependent on

the nature of the design and the physical part that is being

targeted, so meaningful score comparisons can only be made

between iterations of the same design targeted for the same part.
3--14 Xilinx Development System

Software Overview
• The Number of Signals Not Completely Routed should be zero

for a completely implemented design. If non-zero, you may be

able to improve results by using re-entrant routing or the multi-

pass place and route flow.

• The timing summary at the end of the report details the design’s

delays.

Pad Report (FPGAs)

The Pad Report lists the design’s pinout in three ways.

• Signals are referenced according to pad numbers.

• Pad numbers are referenced according to signal names.

• PCF file constraints are listed.

Asynchronous Delay Report (FPGAs)

This report shows the 20 worst net delays within the design.

Fitting Report (CPLDs)

The Fitting Report (design_name.rpt) lists summary and detailed

information about the logic and I/O pin resources used by the

design, including the pinout, error and warning messages, and

Boolean equations representing the implemented logic.

Post Route Timing Report (FPGAs Only)

Post-Route timing reports incorporate all delays to provide a

comprehensive timing summary. If a placed and routed design has

met all of your timing constraints, then you can proceed by creating

programming data and downloading to a device. On the other hand,

if you identify problems in the timing reports, you can try fixing the

problems by increasing the placer effort level, using re-entrant

routing, or using multi-pass place and route. You can also redesign

the logic paths to use fewer levels of logic, tag the paths for

specialized routing resources, move to a faster device, or allocate

more time for the paths.
Foundation Series 3.3i Quick Start Guide 3--15

Foundation Series 3.3i Quick Start Guide
Timing Report (CPLDs)

The report is equivalent to the Post Route Timing Report—provides a

comprehensive timing summary of all delays.

Lock Pins Report

The Lock Pins Report is generated by running PIN2UCF. PIN2UCF is

a program that generates pin locking constraints in a UCF file by

reading a placed NCD file for FPGAs or GYD file for CPLDs.

PIN2UCF writes its output to an existing UCF file. If there is no

existing UCF file, PIN2UCF creates a new file.

The Lock Pins Report file has two sections: Constraint Conflicts

Information and List of Errors and Warnings.

• The Constraints Conflicts Information section does not display if

there are fatal input errors, for example, missing inputs or invalid

inputs. However, the created report file contains the List of Errors

and Warnings.

• The Constraints Conflicts Information section has two

subsections:

♦ Net name conflicts on the pins

♦ Pin name conflicts on the nets

If there are no conflicting constraints, both subsections under

the Constraint Conflicts Information section contain a single

line indicating that there are no conflicts.

The List of Errors and Warnings displays only if there are errors or

warnings.

For detailed information about PIN2UCF, refer to the “PIN2UCF”

chapter in the Development System Reference Guide.

MPPR Report (FPGAs Only)

The MPPR (Multi-Pass Place and Route) report is generated for

FPGAs only. MPPR runs iterations of PAR with different cost tables.

MPPR scores each PAR iteration and uses the scores to determine the

best passes to save. Scores are based on the number of unrouted nets,

delays on nets, and timing constraints. For details about MPPR, refer

to the “Output from PAR” section in the Development System Reference
Guide.
3--16 Xilinx Development System

Software Overview
Other Design Implementation Tools
This section briefly discusses other design implementation tools.

Floorplanner (FPGAs)

The Floorplanner is a graphical placement tool that gives you control

over placing a design into a target FPGA using a “drag and drop”

paradigm with the mouse pointer.

The Floorplanner displays a hierarchical representation of the design

in the Design Hierarchy window using hierarchy structure lines and

colors to distinguish the different hierarchical levels. The Floorplan

window displays the floorplan of the target device into which you

place logic from the hierarchy.

Floorplanning is an optional methodology to help you improve

performance and density of a fully, automatically placed and routed

design. Floorplanning is particularly useful on structured designs

and data path logic. With the Floorplanner, you see where to place

logic in the floorplan for optimal results, placing data paths exactly at

the desired location on the die.

With the Floorplanner, you can floorplan your design prior to or after

running PAR. In an iterative design flow, you floorplan and place and

route, interactively. You can modify the logic placement in the

Floorplan window as often as necessary to achieve your design goals.

You can save the iterations of your floorplanned design to use later as

a constraints file for MAP.

For detailed information about the Floorplanner, refer to the

Floorplanner Guide.

FPGA Editor

The FPGA Editor is a graphical application for displaying and

configuring Field Programmable Gate Arrays (FPGAs). You can use

this application to place and route critical components before running

the automatic place and route tools on your design. You can also use

the FPGA Editor to manually finish placement and routing if the

routing program does not completely route your design.
Foundation Series 3.3i Quick Start Guide 3--17

Foundation Series 3.3i Quick Start Guide
The FPGA Editor requires a Native Circuit Description (NCD) file.

This file contains the logic of your design mapped to components

(such as CLBs and IOBs). In addition, the FPGA Editor reads from

and writes to a Physical Constraints File (PCF).

For detailed information about the FPGA Editor, refer to the FPGA
Editor Guide.

Post Fit ChipViewer (CPLDs)

You can use the ChipViewer to display a graphical representation of

how the logic circuitry and I/Os are assigned to the CPLD macrocells

and pins.

Timing Simulation
For Foundation ISE, timing simulation is a gate-level simulation that

includes detailed timing information for the targeted device. Gate-

level simulation is performed after synthesis and place and route.

You can run timing simulation by creating a test bench file with HDL

Bencher graphically (no scripting required) or by modifying a

template file (View VHDL or Verilog Test Bench Template).

Device Programming
This section explains how the bitstream file is created for FPGAs and

CPLDs, and also describes which tools to use for downloading a

bitstream to a device.

Create Programming File (FPGAs)
Double clicking Create Programming File runs BitGen. BitGen

translates the physical implementation into a programming file (bit)

that is used to program the FPGA. The BitGen executable creates the

programming file. To set options, right click Create Programming

Files and then select Properties to display the Process Properties

dialog box.

For more information about the BitGen executable, refer to the

“BitGen” chapter in the online software manual, Development System
Reference Guide.
3--18 Xilinx Development System

Software Overview
Viewing Programming File Generation Report
(FPGAs)

This report contains information about the BitGen run.

PROM File Formatter (FPGAs)
An FPGA or daisy chain of FPGAs can be configured from serial or

parallel PROMs. The PROM File Formatter can create MCS, EXO, or

TEK style files. The files are read by a PROM programmer that turns

the image into a PROM.

A HEX file can also be used to configure an FPGA or a daisy chain of

FPGAs through a microprocessor. The file is stored as a data structure

in the microprocessor boot-up code.

Hardware Debugger (FPGAs)
The Hardware Debugger can download a BIT file or a PROM file:

MCS, EXO, or TEK file formats. A BIT file contains configuration

information for an FPGA device. For more information on using the

Hardware Debugger, see the Hardware Debugger Guide.

JTAG Programmer
For CPLDs, you generate the bitstream file by first highlighting the

Part Number Flow Type line in the Sources window and then double-

click on the JTAG Programmer process. You can then download the

bitstream from your PC using the JTAG Programmer.

The JTAG Programmer software can be used to configure both

FPGAs and CPLDs and supports both the XChecker and the Parallel

Cable III. This is a GUI based program. See the JTAG Programmer
Guide for details. Also, see the Hardware User Guide for information

about cable compatibility.
Foundation Series 3.3i Quick Start Guide 3--19

Foundation Series 3.3i Quick Start Guide
3--20 Xilinx Development System

Chapter 4

Basic Tutorial

This basic tutorial describes how to use the VHDL and schematic

design entry tools, explains how to perform functional and timing

simulation, and describes how to implement a design. For an in-

depth explanation of the ISE design tools, see the in-depth tutorial on

the Xilinx web site (http://www.support.xilinx.com/
support/techsup/tutorials/).

The chapter contains the following sections.

• “Introduction”

• “Online Help”

• “Hints”

• “Design Entry (VHDL)”

• “Functional Simulation”

• “Design Entry (Top-Level Schematic)”

• “Design Implementation”

• “Timing Simulation”

Introduction
This tutorial accomplishes the following:

• Provides some helpful tips on how to use the Schematic Editor

• Describes how to create a VHDL module for a 4-bit counter

• Explains how to use the ISE simulation tools to perform a

functional simulation of the 4-bit counter

• Describes how to create a schematic symbol for the VHDL

module 4-bit counter
Foundation Series 3.3i Quick Start Guide 4-1

Foundation Series 3.3i Quick Start Guide
• Illustrates how to create a top-level schematic and instantiate

VHDL modules into the schematic

• Explains how to use the Schematic Editor to wire the components

together, add net names to the wires, create buses, and add I/O

markers

• Describes how to implement the design and view the placed and

routed design in the Floorplanner

• Explains how to perform a timing simulation of the top-level

design.

Online Help
F1-On-Line Help is available and is context sensitive. For example, if

you are using the Schematic Editor to add wires, press F1 to display

help on adding wires.

Hints
The following subsections provide some useful tips about the Source

and Process windows as well as the Schematic Editor.

Source and Process Windows
The Process window shows the processes that can be performed on

the source selected in the Source window. The list of processes

changes according to the type of source that is selected.

For example, to make a schematic symbol for a VHDL module, select

the VHDL module in the Source window and then double-click the

Create Schematic Symbol process in the Design Entries Utilities

branch in the Process window.

Schematic Editor Tips
The following subsections provide some useful tips for using the

Schematic Editor. To open the Schematic Editor, perform the

following steps.

1. Select Project → New Source... .

2. Select Schematic from the list box. Enter a name in the File Name

box.
4-2 Xilinx Development System

Basic Tutorial
3. Select Next .

4. Select Finish .

General Object-Action vs. Action-Object

The Schematic Editor is designed so that you can select the action you

wish to perform followed by the object the action is to be performed

on (action-object). In general, most Windows applications currently

operate by selecting the object and then the action to be performed on

that object (object-action). The following subsections illustrate how

the action-object model works.

Dragging a Net Name

When dragging a net name, select Edit → Drag and then place the

cursor on the wire associated with the net name in the center of the

net name as shown in the figure below.

Figure 4-1 Dragging a Net Name

Adding a Net Name to an I/O Wire

To add net names to wires that are I/Os, perform the following steps.

1. Extend the length of each I/0 using Add → Wire .

2. Select Add → Net Name and position the cursor at the end of the

wire when placing the net name as shown in the following figure.

Figure 4-2 Adding a Net Name
Foundation Series 3.3i Quick Start Guide 4-3

Foundation Series 3.3i Quick Start Guide
3. Type the net name and press Enter.

4. Click the end of the wire to place the net name.

Adding I/O Markers

To add I/O markers, perform the following steps.

1. Select Add → I/O Marker .

2. Select the type of marker and either click the end of the wire or

click and drag around a number of I/O wires to place the I/O

markers.

Figure 4-3 Adding I/O Markers

Design Entry (VHDL)
This section explains how to create a 4-bit counter module using the

Language Templates.

Starting the ISE Software
To start ISE, select Start → Programs → Foundation Series
ISE 31i → Project Navigator from the Start menu.

Creating a New Project
The following steps explain how to create a new project.

1. Select File → New Project... . The New Project dialog box

displays.
4-4 Xilinx Development System

Basic Tutorial
Figure 4-4 New Project Dialog Box

2. In the Project Location field, browse to the directory under which

you want to create your new project directory. There is a browse

button next to the Project Location field.

3. Create a new project by entering “Tutorial” in the Project Name

field. When you enter “Tutorial” in the Project Name field, a

Tutorial directory is automatically created in the directory path in

the Project Location field. For example, for the directory path

D:\My Projects, entering the Project Name Tutorial modifies the

path to be D:\My Projects\Tutorial.

4. Use the pulldown arrow to enter the Value for each Property

Name.

There is a pulldown arrow in each Value field. However, you

cannot see the arrow until you click in the field.

Change the Values as follows:

♦ Device Family: Virtex

♦ Device: V50 BG256-6

♦ Synthesis Tool: XST VHDL

5. Click OK. Foundation ISE creates a subdirectory and a new

project.
Foundation Series 3.3i Quick Start Guide 4-5

Foundation Series 3.3i Quick Start Guide
Creating a 4-Bit Counter Module
Use the Language Templates to create a VHDL module for a counter

as follows:

1. Select Project → New Source ...

2. Select VHDL Module as the source type and give it a file name

“counter”.

3. Click Next.

4. Click Next.

5. Click Finish to complete the new source file template. An editor

window displays showing the library declaration and use

statements along with the entity and architecture pair for the

counter.

6. Open the Language Templates by selecting Edit → Language
Templates or by clicking the light bulb icon located on the far

right on the toolbar.

7. In the Language Templates window, click the + sign next to

VHDL and then click the + sign next to Synthesis Templates.

8. Click and drag the Counter template from the VHDL→
Synthesis Templates folder to the counter architecture

between the begin and end behavioral statements. Close the

Language Template.
4-6 Xilinx Development System

Basic Tutorial
Figure 4-5 Language Templates

9. Cut and paste the port definitions from the comment section of

the counter.vhd file into the parentheses in the port declaration of

the counter entity. Uncomment the lines. A comment line has two

dashes at the beginning of a line. To uncomment a line, remove

the dashes. Make sure to remove the last semicolon after the

COUNT port definition (that is, 3 downto 0). Following are the

port definition lines to cut and paste:

-- CLK: in STD_LOGIC;
-- RESET: in STD_LOGIC;
-- CE, LOAD, DIR: in STD_LOGIC;
-- DIN: in STD_LOGIC_Vector(3 downto 0);
-- COUNT: inout STD_LOGIC_VECTOR(3 downto 0);

10. Delete the following commented lines.

-- Required Libraries
-- library IEEE;
-- use IEEE.STD_LOGIC_1164.ALL;
-- use IEEE.STD_LOGIC_ARITH.ALL;
-- use IEEE.STD_LOGIC_UNSIGNED.ALL;
Foundation Series 3.3i Quick Start Guide 4-7

Foundation Series 3.3i Quick Start Guide
-- 4-bit synchronous counter with count enable,
-- asynchronous reset and synchronous load

11. Remove “Load,” from the following line underneath the Port

declarations.

CE, LOAD, DIR: in STD_LOGIC;

12. Remove the following line beginning with DIN underneath the

Port declarations.

DIN: in STD_LOGIC_VECTOR(3 downto 0);

13. Remove the following lines underneath the “begin” declaration:

if LOAD=’1’ then
COUNT <= DIN;

else

14. Remove the second to the last “endif” statement. The following

code shows which one to remove:

endif
endif

endif (Remove this one)
endif

Your counter.vhd source should look like the following:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity counter is
Port (

CLK: in STD_LOGIC;
RESET: in STD_LOGIC;
CE,DIR: in STD_LOGIC;
COUNT: inout STD_LOGIC_VECTOR(3 downto 0)

);
end counter;

architecture behavioral of counter is
4-8 Xilinx Development System

Basic Tutorial
begin

process (CLK, RESET)
begin

if RESET=’1’ then
COUNT <= “0000”;

elsif CLK=’1’ and CLK’event then
if CE=’1’ then

if DIR=’1’ then
COUNT <= COUNT + 1;

else
COUNT <= COUNT - 1;

end if;
end if;

end if;
end process;

end behavioral;

15. Save counter.vhd by selecting File → Save and then minimize

the Project Navigator.

Functional Simulation
This section explains how to create a test bench using the HDL

Bencher and then simulate the counter using ModelSim Xilinx

Edition (MXE)

Creating a Test Bench with HDL Bencher
To create a test bench, perform the following steps.

1. Select counter (counter.vhd) in the Source window.

2. Double-click Launch HDL Bencher Tool in the Process window.

3. Click OK to use the default timing constraints for the test bench.

Your screen should look like the following:
Foundation Series 3.3i Quick Start Guide 4-9

Foundation Series 3.3i Quick Start Guide
Figure 4-6 HDL Bencher Default Values

Note The blue areas are for entering input stimulus and the

yellow areas are for entering expected response.

4. Initialize the counter as follows:

a) Click the RESET cell just to the right of the blue cell in CLK

cycle 1 until the cell is set to high.

b) Click the RESET cell just to the right of the blue cell in CLK

cycle 2 until the cell is reset to low.

c) Click the CE cell just to the right of the blue cell in CLK cycle

3 until it is set to high and enable the counter.

d) Click the DIR cell just to the right of the blue cell in CLK cycle

2 until the cell is set to high.

5. Enter the expected response as follows:

a) Click the yellow COUNT[3:0] cell in CLK cycle 2 and click

the Pattern button to launch the Pattern Wizard.

b) Set the pattern wizard parameters so that the expected

output counts from 0 to 7 as follows:
4-10 Xilinx Development System

Basic Tutorial
Figure 4-7 Pattern Wizard Settings

c) Click OK to complete the stimulus and response entry.

Your HDL Bencher window should look like the following:

Figure 4-8 HDL Bencher Stimulus and Response Entries

6. Click the Export Testbench icon to create the test bench.

7. Close the Edit Test Bench window.

8. Maximize Project Navigator.
Foundation Series 3.3i Quick Start Guide 4-11

Foundation Series 3.3i Quick Start Guide
Adding the Test Bench File to the Project
This subsection explains how to add the test bench file to the project.

1. Add the test bench to the project by selecting Project → Add
Source .

2. Select the test bench file COUNTER_TB.VHD and click Open.

3. Select VHDL Test Bench and click OK.

The Project Navigator source window should look like the

following:

Figure 4-9 Test Bench File in Source Window

Simulating with ModelSim
To simulate with ModelSim, perform the following steps.

1. Select counter_tb.vhd in the Project Navigator Source window

and double click Simulate Functional VHDL Model in the process

window. This will bring up the ModelSim screen.

Project Navigator creates a simulation macro file (do file) called

counter_tb.fdo that does the following:
4-12 Xilinx Development System

Basic Tutorial
♦ Creates the design library

♦ Compiles the design and test bench source files

♦ Invokes the simulator

♦ Opens all the viewing windows

♦ Adds all the signals to the Wave window

♦ Adds all the signals to the List window

♦ Runs the simulation for the designated time

2. Click Run ModelSim if the simulation does not run automatically.

3. When the wave window displays, zoom out until the output

waveform looks like the following:

Figure 4-10 Functional Simulation Waveform

You have just created a counter in VHDL, created a test bench for

the counter, and verified its functionality. Next you will

instantiate two of these counter modules into a top-level

schematic.

4. Close ModelSim.
Foundation Series 3.3i Quick Start Guide 4-13

Foundation Series 3.3i Quick Start Guide
Design Entry (Top-Level Schematic)
This section explains how to create a top-level schematic that contains

instantiations of the counter module. Then this section describes how

to wire together the modules, add net names to the wires, and add

I/O markers.

Creating a Schematic Symbol for the VHDL Module
To create a schematic symbol for the VHDL module, perform the

following steps:

1. Select your counter module (counter.vhd) in the Source window.

Notice that the processes in the Process window change

according to the type of source file selected in the Source window.

2. Double-click the Create Schematic Symbol process as shown in

the following figure.

Figure 4-11 Create Symbol Process
4-14 Xilinx Development System

Basic Tutorial
Creating a New Top-Level Schematic
To create a new top-level schematic, perform the following steps.

1. Select Project → New Source... from the Project menu.

2. Select Schematic as the source type and name it “top”.

3. Click Next and then click Finish .

A blank sheet opens in the Schematic Editor.

Instantiating VHDL Modules
Perform the following steps to instantiate VHDL modules into the

top-level schematic.

1. Make the drawing toolbar visible by selecting it in the View

menu.

Figure 4-12 Drawing Toolbar

2. Place two counter modules on the schematic by selecting Add →
Symbol... from the menu or by clicking the Add Symbol

button in the Drawing Toolbar.

3. Select counter from the Symbol Libraries window and place two

counters in the schematic. Your schematic should look like the

following diagram:
Foundation Series 3.3i Quick Start Guide 4-15

Foundation Series 3.3i Quick Start Guide
Figure 4-13 Instantiated VHDL Modules

4. Press Esc to exit the Add Symbols mode.

Wiring the Schematic
To interconnect the VHDL modules, perform the following steps.

1. Select the Add Wire tool from the Drawing Toolbar or select

Add → Wire from the menu.

To add a wire between two schematic symbols, click once on the

symbol pin, once at each vertex and once on the destination pin.

To add a hanging wire, click on the symbol pin to start the wire

and then double-click at the location you want the wire to

terminate. Make sure you add hanging wires for each pin on both

counters.

2. Wire the symbols similar to the following schematic:
4-16 Xilinx Development System

Basic Tutorial
Figure 4-14 Interconnected Modules
Foundation Series 3.3i Quick Start Guide 4-17

Foundation Series 3.3i Quick Start Guide
Adding Net Names to Wires
To add net names to the wires, perform the following steps.

Note If you have not already extended the length of each I/O pin as

explained in Steps 2 and 3, then extend the length of each of these

wires before adding a net name.

1. Select the Add Net Names tool from the Drawing Toolbar.

2. From the keyboard, type the net name followed by the Enter key.

3. Place the net name on the end of the hanging wire as shown

below and then click the left mouse button:

Figure 4-15 Net Name Example for I/Os

4. Finish adding net names so your schematic looks like the

following diagram:
4-18 Xilinx Development System

Basic Tutorial
Figure 4-16 Net Names

Creating Buses
It is important to note that you can only create buses from existing

individual wires. The following procedure explains how to create

buses for Count1[3:0] and Count2[3:0].

1. Select the Add Net Names tool from the Drawing Toolbar.

2. From the keyboard, type the bus name and size (for example,

Count1[3:0]). Press Enter and then place the bus name on the end

of the wire and then click the left mouse button.

3. Repeat Step 2 for the output of the second counter by naming it

Count2[3:0].
Foundation Series 3.3i Quick Start Guide 4-19

Foundation Series 3.3i Quick Start Guide
Adding I/O Markers
To add I/O markers, perform the following steps.

1. Select the Add I/O Marker tool from the Drawing Toolbox.

2. With the Input type selected, click and drag around all the inputs

that you want to add input markers to.

Note To add individual markers click on the end of the hanging

wire as shown below.

Figure 4-17 Adding Individual Markers

3. Change the I/O marker type to bidirectional and add markers to

the counter outputs.
4-20 Xilinx Development System

Basic Tutorial
Your completed schematic should look like the following

drawing:

Figure 4-18 Completed Schematic

4. Exit the schematic editor. When asked to save changes, click Yes.

Note The Project Navigator automatically recognizes the design

hierarchy and moves top.sch to the top of the design tree with

counter.vhd listed as a sub module.
Foundation Series 3.3i Quick Start Guide 4-21

Foundation Series 3.3i Quick Start Guide
Design Implementation
Implement the design and use the Floorplanner to view the Placed

and Routed design as follows:

1. Select top (top.sch) in the Source window.

2. Double-click Implement Design in the Process window.

Note This will run all the processes (synthesis through Place-and

Route) required to view the implemented design in the

Floorplanner.

3. When implementation is finished, double click the Floorplanner

which is located underneath Launch Tools in the Process

window.

4. In the Floorplanner, open the file placed design “top.ngd” by

performing the following steps.

a) Select File → Open.

b) Select the top.ngd file and click Open.

c) In then New Floorplan dialog box, select OK. The top.fnf

Placement window displays the design and its connections.

5. In the top.fnf Design Hierarchy window, select “top” (13 IOBs, 8

FGs, 8 CYS, 8 DFFs, 1 BUFG) and then click the Zoom to Selected

button (the last icon on the far right of the toolbar) in the

Floorplanner toolbar to zoom in.

6. Verify that all the I/Os are accounted for by holding the cursor

over each of the pads and reading the pad name in the lower left

corner of the Floorplanner window. The placement should look

like the following figure.
4-22 Xilinx Development System

Basic Tutorial
Figure 4-19 I/O Connections in Floorplanner
Foundation Series 3.3i Quick Start Guide 4-23

Foundation Series 3.3i Quick Start Guide
Timing Simulation
This section explains how to create a test bench using the HDL

Bencher and then simulate the top-level design (top.sch) using

ModelSim Xilinx Edition (MXE).

Before you can perform the timing simulation in this section, you

must register the HDL Bencher and have a licensed version of MXE.

For instructions on registering the Bencher and licensing MXE, refer

to the “Installing Software” section of the “Setting Up the Tools”

chapter for details.

1. Select top (top.sch) in the Source window.

2. Double-click Launch HDL Bencher Tool from the Process

window.

3. Click OK to use the default timing constraints for the test bench.

Your screen should look like this:

Figure 4-20 HDL Bencher Default Values

Note The blue areas are for entering input stimulus and the

yellow areas are for entering expected response.

4. Initialize the counter as follows:

a) Click the reset cell just to the right of clock cycle 1 until it is

set to high.

b) Click the reset cell just to the right of clock cycle 2 until it is

set low.
4-24 Xilinx Development System

Basic Tutorial
c) Click the ce1 cell just to the right of clock cycle 3 until it is set

high and enable the counter.

d) Click the dir1 cell just to the right of clock cycle 2 until it is set

high.

e) Click the dir2 cell just to the right of clock cycle 1 until it is set

high.

f) Click the dir2 cell just to the right of clock cycle 2 until it is set

low.

5. Enter the expected response as follows:

a) Click the yellow COUNT1[3:0] cell in clock cycle 2 and click

the Pattern button to launch the Pattern Wizard.

b) Set the pattern wizard parameters so that the expected

output counts from 0 to 7 as follows:

Figure 4-21 Pattern Wizard Settings

c) Click OK in the Pattern Wizard dialog box.

d) Click the yellow COUNT2[3:0] cell in clock cycle 2 and enter

a 0 (zero) and press Enter.
Foundation Series 3.3i Quick Start Guide 4-25

Foundation Series 3.3i Quick Start Guide
e) Click the yellow COUNT2[3:0] cell in clock cycle 3 and click

the Pattern button to launch the Pattern Wizard.

f) Set the pattern wizard parameters so that the expected

output counts from 15 to 9 as follows:

Figure 4-22 Pattern Wizard Settings

g) Click OK in the Pattern Wizard dialog box.

The Test Bench waveform should look like the following:

Figure 4-23 Testbench Waveform

6. Click the Export Testbench icon to create the test bench.
4-26 Xilinx Development System

Basic Tutorial
7. Close the Edit Test Bench window.

8. Save the test bench waveform by clicking the Save Waveform

button in the toolbar.

9. Maximize the Project Navigator.

10. Add the test bench to the project by selecting Project → Add
Source... .

11. Select the test bench file TOP_TB.VHD and click Open.

12. Select VHDL Test Bench as the source type and click OK.

13. Select “top” as the source to associate the test bench with and

click OK.

The Project Navigator Source window should look like the

following:

Figure 4-24 Test Bench File in Source Window

14. Select top_tb.vhd in the Project Navigator Source window and

double click Simulate Post-Route VHDL Model in the process

window. This will bring up the ModelSim screen.

15. Click Run ModelSim if the simulation does not run automatically.

16. Zoom out in the wave window until the waveform looks like the

following:
Foundation Series 3.3i Quick Start Guide 4-27

Foundation Series 3.3i Quick Start Guide
Figure 4-25 Timing Simulation Waveform

17. Verify that the timing simulation passes a 10ns clock to out

requirement.
4-28 Xilinx Development System

Glossary

ABEL
ABEL is a high-level language (HDL) and compilation system

produced by Data I/O Corporation.

architecture
Architecture is the common logic structure of a family of

programmable integrated circuits. The same architecture can be

realized in different manufacturing processes. Examples of Xilinx

architectures are the XC4000, Virtex, and XC9500 devices.

attributes
Attributes are instructions placed on symbols or nets in an FPGA

schematic to indicate their placement, implementation, naming,

direction, or other properties.

back-annotation
Back-annotation is the translation of a routed or fitted design to a

timing simulation netlist.

black box Instantiation
Instantiation where the synthesizer is not given the architecture or

modules.
Foundation Series 3.3i Quick Start Guide Glossary-1

Foundation Series 3.3i Quick Start Guide
CLB
The Configurable Logic Block (CLB) constitutes the basic FPGA cell. It

includes two 16-bit function generators (F or G), one 8-bit function

generator (H), two registers (flip-flops or latches), and

reprogrammable routing controls (multiplexers).

CLBs are used to implement macros and other designed functions.

They provide the physical support for an implemented and

downloaded design. CLBs have inputs on each side, and this

versatility makes them flexible for the mapping and partitioning of

logic.

constraints
Constraints are specifications for the implementation process. There

are several categories of constraints: routing, timing, area, mapping,

and placement constraints.

Using constraints, you can force the placement of logic (macros) in

CLBs, the location of CLBs on the chip, and the maximum delay

between flip-flops. CLBs are arranged in columns and rows on the

FPGA device. The goal is to place logic in columns on the device to

attain the best possible placement from the standpoint of both

performance and space.

constraints editor
A GUI tool that you can use to enter design constraints. In ISE, there

are two constraint editors. The Express editor is available only in the

FPGA Express product configuration. The Xilinx Constraints Editor is

integrated with the Design Implementation tools and available in all

product configurations.

constraint file
A constraint file specifies constraints (location and path delay)

information in a textual form. An alternate method is to place

constraints on a schematic.
Glossary-2 Xilinx Development System

CORE Generator tool
A software tool for generating and delivering parameterizable cores

optimized for FPGAs. The library includes cores as complex as DSP

filters and multipliers and cores as simple as delay elements. You can

use these cores as building blocks in order to complete your designs

more quickly.

CPLD
Complex Programmable Logic Device (CPLD) is an erasable

programmable logic device that can be programmed with a schematic

or a behavioral design. CPLDs constitute a type of complex PLD based

on EPROM or EEPROM technology. They are characterized by an

architecture offering high speed, predictable timing, and simple

software.

The basic CPLD cell is called a macrocell, which is the CPLD

implementation of a CLB. It is composed of AND gate arrays and is

surrounded by the interconnect area.

CPLDs consume more power than FPGA devices, are based on a

different architecture, and are primarily used to support behavioral

designs and to implement complex counters, complex state machines,

arithmetic operations, wide inputs, and PAL crunchers.

CPLD fitter
The CPLD Fitter implements designs for the XC9500 devices.

design entry tools
A set of tools accessible from the Project Navigator. These tools

include the Schematic Editor, Symbol Editor, StateCAD and HDL

Editor.

design implementation tools
A set of tools that comprise the mainstream programs offered in the

Xilinx design implementation tools. The tools are NGDBuild, MAP,

PAR, NGDAnno, TRCE, and all the NGD2 translator tools. The GUI-

based implementation tools can be run by double clicking Implement

Design from the Process window.
Foundation Series 3.3i Quick Start Guide Glossary-3

Foundation Series 3.3i Quick Start Guide
EDIF
Electronic Data Interchange Format. An industry standard for netlists.

effort level
Effort level refers to how hard the Xilinx tools try to place a design.

The effort level settings are as follows.

• High, which provides the highest quality placement but requires

the longest execution time. Use high effort on designs that do not

route or do not meet your performance requirements.

• Medium, which is the default effort level. It provides the best

trade-off between execution time and high quality placement for

most designs.

• Low, which provides the fastest execution time and adequate

placement results for prototyping of simple, easy-to-route

designs. Low effort is useful if you are exploring a large design

space and only need estimates of final performance.

fanout
Fanout is the maximum number of specified unit loads that a specified

output can drive.

fitter
The fitter is the software that maps a PLD logic description into the

target CPLD.

floorplanning (Edit Layout)
Floorplanning is the process of choosing the best grouping and

connectivity of logic in a design.

It is also the process of manually placing blocks of logic in an FPGA

where the goal is to increase density, routability, or performance.
Glossary-4 Xilinx Development System

FPGA
Field Programmable Gate Array (FPGA) is a class of integrated

circuits pioneered by Xilinx in which the logic function is defined by

the customer using Xilinx development system software after the IC

has been manufactured and delivered to the end user. Gate arrays are

another type of IC whose logic is defined during the manufacturing

process. Xilinx supplies RAM-based FPGA devices.

FPGA applications include fast counters, fast pipelined designs,

register intensive designs, and battery powered multi-level logic.

FSM
Finite State Machine

functional simulation
Functional simulation is the process of identifying logic errors in your

design before it is implemented in a Xilinx device. Because timing

information for the design is not available, the simulator tests the logic

in the design using unit delays. Functional simulation is usually

performed at the early stages of the design process. For ISE, functional

simulation is performed prior to synthesis.

HDL
Hardware Description Language. A language that describes circuits in

textual code. The two most widely accepted HDLs are VHDL and

Verilog.

An HDL, or hardware description language, describes designs in a

technology-independent manner using a high level of abstraction.

HDL Editor
Foundation ISE editor for ABEL, Verilog, and VHDL. The HDL Editor

also provides a syntax checker, and language templates.

hierarchical design
Designs that are broken into multiple levels to clarify the design’s

function or permit easy reuse of functional blocks
Foundation Series 3.3i Quick Start Guide Glossary-5

Foundation Series 3.3i Quick Start Guide
implementation
Implementation is the mapping, placement, and routing of a design.

A phase in the design process during which the design is placed and

routed. (For CPLDs, the design is fitted.)

instantiation
Incorporating a macro or module into a top-level design. The

instantiated module can be a LogiBLOX module, CORE-generated

module, VHDL module, Verilog module, schematic module, state

machine, or netlist.

I/O
Input/Output

IOB
Input/Output Block

LogiBLOX
Xilinx design tool for creating high-level modules such as counters,

shift registers, and multiplexers.

macro
A macro is a component made of nets and primitives, flip-flops or

latches, that implements high-level functions, such as adders,

subtractors, and dividers. Soft macros and RPMs are types of macros.

A macro can be unplaced, partially placed, or fully placed; it can also

be unrouted, partially routed, or fully routed. See also “physical

macro.”

mapping
Mapping is the process of assigning a design’s logic elements to the

specific physical elements that actually implement logic functions in a

device.
Glossary-6 Xilinx Development System

MRP file
An MRP (mapping report) file is an output of the MAP run. It is an

ASCII file containing information about the MAP run. The

information in this file contains DRC (Design Rule Checking)

warnings and messages, mapper warnings and messages, design

information, schematic attributes, removed logic, expanded logic,

signal cross references, symbol cross references, physical design errors

and warnings, and a design summary.

NCD file
An NCD (netlist circuit description) file is the output design file from

the MAP program, LCA2NCD, PAR, or FPGA Editor. It is a flat

physical design database correlated to the physical side of the NGD in

order to provide coupling back to the user’s original design. The NCD

file is an input file to MAP, PAR, TRCE, BitGen, and NGDAnno.

net
A net is a logical connection between two or more symbol instance

pins. After routing, the abstract concept of a net is transformed to a

physical connection called a wire.

A net is an electrical connection between components or nets. It can

also be a connection from a single component. It is the same as a wire

or a signal.

netlist
A netlist is a text description of the circuit connectivity. It is basically

a list of connectors, a list of instances, and, for each instance, a list of

the signals connected to the instance terminals. In addition, the netlist

contains attribute information.

NGDBuild
The NGDBuild program performs all the steps necessary to read a

netlist file in XNF or EDIF format and create an NGD file describing

the logical design. The GUI equivalent is called Translate.
Foundation Series 3.3i Quick Start Guide Glossary-7

Foundation Series 3.3i Quick Start Guide
NGD file
An NGD (native generic database) file is an output from the

NGDBuild run. An NGD file contains a logical description of the

design expressed both in terms of the hierarchy used when the design

was first created and in terms of lower-level Xilinx primitives to which

the hierarchy resolves.

NGM file
An NGM (native generic mapping) file is an output from the MAP run

and contains mapping information for the design. The NGM file is an

input file to the NGDAnno program.

optimization
Optimization is the process that decreases the area or increases the

speed of a design. Foundation allows you to control optimization of a

design on a module-by-module basis. This means that you have the

ability to, for instance, optimize certain modules of your design for

speed, some for area, and some for a balance of both.

PAR
Place and Route

path delay
A path delay is the time it takes for a signal to propagate through a

path.

PCF file
The PCF file is the “Physical Constraints File” created by the MAP

program. It is an ASCII file containing physical constraints created by

the MAP program as well as physical constraints you enter. You can

edit the PCF file from within the FPGA Editor.

pin
A pin can be a symbol pin or a package pin. A package pin is a

physical connector on an integrated circuit package that carries

signals into and out of an integrated circuit. A symbol pin, also

referred to as an instance pin, is the connection point of an instance to

a net.
Glossary-8 Xilinx Development System

project
A project is a design. Each project has its own directory in which all

source files, intermediate data files, and resulting files are stored.

Project Navigator
The primary GUI for managing an ISE Project. Design entry,

synthesis, simulation, implementation, and programming files can be

launched from the Project Navigator.

PROM File Formatter
The PROM File Formatter is the program used to format one or more

bitstreams into an MC86, TEKHEX, EXORmacs or HEX PROM file

format.

route
The process of assigning logical nets to physical wire segments in the

FPGA that interconnect logic cells.

route-through
A route that can pass through an occupied or an unoccupied CLB site

is called a route-through. You can manually do a route-through in the

FPGA Editor. Route-throughs provide you with routing resources

that would otherwise be unavailable.

static timing analysis
A static timing analysis is a point-to-point delay analysis of a design

network.

static timing analyzer
A static timing analyzer is a tool that analyzes the timing of the design

on the basis of its paths.

synthesis
The HDL design process in which each design module is elaborated

and the design hierarchy is created and linked to form a unique design

implementation. Synthesis starts from a high level of logic abstraction

(typically Verilog or VHDL) and automatically creates a lower level of

logic abstraction using a library containing primitives.
Foundation Series 3.3i Quick Start Guide Glossary-9

Foundation Series 3.3i Quick Start Guide
TRCE
TRCE (Timing Reporter and Circuit Evaluator) “trace” is a program

that will automatically perform a static timing analysis on a design

using the specified timing constraints. The input to TRCE is an NCD

file and, optionally, a PCF file. The output from TRCE is an ASCII

timing report which indicates how well the timing constraints for your

design have been met.

TWR file
A TWR (Timing Wizard Report) file is an output from the TRCE

program. A TWR file contains a logical description of the design

expressed both in terms of the hierarchy used when the design was

first created and in terms of lower-level Xilinx primitives to which the

hierarchy resolves.

UCF file
A UCF (User Constraints File) contains user-specified logical

constraints.

verification
Verification is the process of reading back the configuration data of a

device and comparing it to the original design to ensure that all of the

design was correctly received by the device.

Verilog
An industry-standard HDL (IEEE Std 1364) originally developed by

Cadence Design Systems, now maintained by OVI. Recognizable as a

file with a .v extension.

Verilog is a commonly used Hardware Description Language (HDL)

that can be used to model a digital system at many levels of

abstraction ranging from the algorithmic level to the gate level. It is

IEEE standard 1364-1995.
Glossary-10 Xilinx Development System

VHDL
VHSIC (VHSIC is an acronym for Very High-Speed Integrated

Circuits) Hardware Description Language. An industry-standard

(IEEE 1076.1) HDL. Recognizable as a file with a .vhd or .vhdl

extension.

VHDL can be used to model a digital system at many levels of

abstraction ranging from the algorithmic level to the gate level. It is

IEEE standard 1076-1993.

A language that is capable of describing the concurrent and sequential

behavior of a digital system with or without timing.

XST
A Foundation ISE tool that synthesizes HDL designs.
Foundation Series 3.3i Quick Start Guide Glossary-11

Foundation Series 3.3i Quick Start Guide
Glossary-12 Xilinx Development System

Index
A
ABEL, definition, Glossary-1

Action-Object, 4-3

architectures

definition, Glossary-1

supported, 1-3

Asynchronous Delay Report, 3-15

attributes, definition, Glossary-1

B
back-annotation, definition, Glossary-1

BitGen, 3-18

black box instantiation, definition,
Glossary-1

BLD file, 3-13

buses, creating in schematics, 4-19

C
check mark, 3-5

ChipViewer, 3-18

CLBs

definition, Glossary-2

relationship to constraints, Glossary-2

color coding, 3-7

comment lines, 4-7

configurations

bitstream, 3-19

product, 2-1

constraints

definition, Glossary-2

editor, definition, Glossary-2

file, definition, Glossary-2

files, using, 3-11

location, 3-11

methods of creating, 3-11

timing, 3-11

Constraints Editor, definition, Glossary-2

CORE Generator tool, 3-8, 3-9, Glossary-3

CPLDs

definition, Glossary-3

downloading designs, 3-19

fitter, 3-13

Fitting Report, 3-15

customer support, 2-6

D
daisy chain, of FPGAs, 3-19

delays

logic-only, 3-14

routing, 3-14

routing versus logic, 3-14

design

constraints, 3-11

entry tools, definition, Glossary-3

entry, description, 3-7

entry, top-level schematics, 4-14

implementation tools, definition,
Glossary-3

implementation, example, 4-22

metrics, overall placer score, 3-14

metrics, physical design rule check,
 3-12
Foundation Series 3.3i Quick Start Guide Index-1

Foundation Series 3.3i Quick Start Guide
rule check, performing with MAP, 3-12

synthesis, 3-9

tools, installation, 2-2

designs, downloading, 3-19

documentation

accessing from web, 1-4

description, 1-3

installing, 2-3

E
ECS Schematic Editor, 3-7

effort level, definition, Glossary-4

E-mail, technical support, 2-7

erroneously removed logic, 3-13

error navigation, 1-2, 3-6

EXO file, 3-19

Express Time Tracker, 3-10

F
fanout, definition, Glossary-4

features, key, 1-1, 1-3

files, adding test benches to projects, 4-12

fitter

definition, Glossary-4

description, 3-13

Fitting Report, 3-15

Floorplanner, 3-17, 4-22

floorplanning, definition, Glossary-4

FPGA Editor, 3-17

FPGA Express, 3-10

FPGAs

daisy chaining, 3-19

definition, Glossary-5

functional simulation

definition, Glossary-5

description, 3-11

example, 4-9

with Modelsim, 4-12

G
green check mark, 3-5

H
Hardware Debugger, 3-19

HDL

Bencher, creating test benches, 4-9,
 4-24

Bencher, installation, 2-4

definition, Glossary-5

Editor, 3-7

Editor, definition, Glossary-5

I
I/O

markers, adding, 4-4, 4-20

wires, adding net names, 4-3

implementation

definition, Glossary-6

interpreting reports, 3-13

MAP, 3-12

PAR, 3-12

translate, 3-12

input, netlists (merging), 3-12

installation

design tools, 2-2

documentation, 2-3

getting started, 2-2

HDL Bencher, 2-4

ISE software, 2-2

MXE, 2-4

StateCAD, 2-5

instantiation

definition, Glossary-6

VHDL modules, 4-15

J
JTAG Programmer, 3-19

K
key features, 1-1, 1-3
Index-2 Xilinx Development System

Index
L
Language Templates, 4-6

licensing, MXE, 2-1

location constraints, 3-11

Lock Pins report, 3-16

LogiBLOX, instantiating modules, 3-8

logic, erroneously removed, 3-13

logic-only delays, 3-14

M
macros, definition, Glossary-6

MAP

description, 3-12

timing report, 3-14

trimming unused logic, 3-12

Map report, 3-13

mapping

definition, Glossary-6

report, 3-13

markers

adding, 4-20

I/O, adding, 4-4

MCS file, 3-19

MPPR report, 3-16

MRP file, definition, Glossary-7

MTI, description, 1-2

MXE

installation, 2-4

licensing, 2-1

N
NCD files, definition, Glossary-7

net names

adding to I/O wires, 4-3

adding to wires, 4-18

dragging, 4-3

netlists

definition, Glossary-7

merging, 3-12

nets, definition, Glossary-7

new project, creating, 4-4

NGD files, definition, Glossary-8

NGDBuild

definition, Glossary-7

performing translation, 3-12

NGM file, definition, Glossary-8

O
Object-Action, 4-3

online help

F1, 4-2

Project Navigator, 3-3

optimization, definition, Glossary-8

P
pad report, 3-15

PAR

examining constraints, 3-12

timing report, 3-15

path

delays, controlling with constraints,
 3-11

delays, definition, Glossary-8

PCF file, definition, Glossary-8

physical design rule check, 3-12

pins, definition, Glossary-8

place and route report, 3-14

placer

score, 3-14

timing constraint driven, 3-11

Process window

accessing reports, 3-13

description, 3-5, 4-2

setting properties, 3-5

Translate, 3-12

product configurations, 2-1

programming files, 3-18

Project Location field, 4-5

Project Name field, 4-5

Project Navigator

definition, Glossary-9

description, 3-2
Foundation Series 3.3i Quick Start Guide Index-3

Foundation Series 3.3i Quick Start Guide
online help, 3-3

projects, adding test bench files, 4-12

PROM File Formatter

definition, Glossary-9

description, 3-19

PROM files, downloading, 3-19

properties

setting for XST, 3-10

setting in Process window, 3-5

Property Name field, 4-5

R
red X, 3-5

registration, 2-2

reports

interpreting, 3-13

lock pins, 3-16

mapping, 3-13

MPPR, 3-16

pinout of design, 3-15

place and route report, 3-14

timing summary, 3-15

translation, 3-13

route-through, definition, Glossary-9

routing delays, 3-14

routing, timing constraint driven, 3-11

RTL simulation, 3-12

S
Schematic Editor

description, 3-7

Object-Action, Action-Object, 4-3

tips, 4-2

schematic symbols, creating for VHDL

modules, 4-14

schematics

adding I/O markers, 4-20

creating buses, 4-19

instantiating VHDL modules, 4-15

wiring, 4-16

score, placer, 3-14

simulation

functional, description, 3-11

functional, example, 4-9

RTL, 3-12

timing, 3-18, 4-24

snapshots, 1-2

solution records, 1-2

Source window, 3-3, 4-2

starting, ISE software, 3-1, 4-4

StateBench, 3-8

StateCAD

description, 3-8

installation, 2-5

static timing analysis, 3-10, 3-14

Symbol Editor, 3-8

synthesis

definition, Glossary-9

description, 3-9

Synthesize

FPGA Express, 3-10

XST, 3-9

T
technical support, obtaining, 2-7

TEK file, 3-19

test benches

adding to projects, 4-12

creating with HDL Bencher, 4-24

third party tools, 1-2

Time Tracker, 3-10

timing

analysis, after map, 3-14

analysis, after synthesis, 3-10

analysis, static, after place-and-route,
3-15

constraints, 3-11

constraints, benefit of using, 3-11

delays, minimizing, 3-12

report, post-place-and-route, 3-15

report, post-synthesis, 3-10

report, pre-route, 3-14

simulation, 3-18, 4-24
Index-4 Xilinx Development System

Index
summary, 3-15

tips, Schematic Editor, 4-2

top-level schematics, 4-14, 4-15

Transcript window, 3-6

Translate, 3-12

translation report, 3-13

TRCE, definition, Glossary-10

tutorials, in-depth (accessing from web),
 3-1

TWR file, definition, Glossary-10

U
UCF files, definition, Glossary-10

V
verification, definition, Glossary-10

Verilog, definition, Glossary-10

VHDL

definition, Glossary-11

modules, creating, 4-6

modules, creating schematic symbols,
4-14

modules, instantiating in schematics,
4-15

VSS, 1-2

W
wires

adding net names, 4-3, 4-18

in schematics, 4-16

X
Xilinx technical support, 2-7

XST

description, 3-9

setting properties, 3-10

Y
yellow exclamation point, 3-5
Foundation Series 3.3i Quick Start Guide Index-5

Foundation Series 3.3i Quick Start Guide
Index-6 Xilinx Development System

	Foundation Series ISE 3.3i Quick Start Guide
	About This Manual
	Conventions
	Typographical
	Online Document

	Introduction
	Key Features
	Architecture Support
	Documentation

	Setting Up the Tools
	Product Configurations
	Installing Software
	Installing Xilinx Software
	Installing Documentation
	Installing Test Bench, Simulation, and State Machine Software
	Installing MXE Software
	Installing HDL Bencher and StateCAD Software
	Using Other Versions of ModelSim, HDL Bencher, and StateCAD

	Customer Service
	Technical Support

	Software Overview
	Starting the Foundation Series ISE Software
	Project Navigator
	Project Navigator Online Help
	Source Window

	Design Entry
	HDL Editor
	ECS Schematic Editor
	StateCAD and StateBench
	LogiBLOX and CORE Generator Modules

	Design Synthesis
	XST
	FPGA Express

	Design Constraints
	Functional Simulation
	Design Implementation
	Interpreting the Reports
	Translation Report
	Map Report (FPGAs)
	Pre-Route Static Timing Report (FPGAs Only)
	Place and Route Report (FPGAs)
	Pad Report (FPGAs)
	Asynchronous Delay Report (FPGAs)
	Fitting Report (CPLDs)
	Post Route Timing Report (FPGAs Only)
	Timing Report (CPLDs)
	Lock Pins Report
	MPPR Report (FPGAs Only)
	Floorplanner (FPGAs)
	FPGA Editor
	Post Fit ChipViewer (CPLDs)

	Timing Simulation
	Device Programming
	Create Programming File (FPGAs)
	Viewing Programming File Generation Report (FPGAs)
	PROM File Formatter (FPGAs)
	Hardware Debugger (FPGAs)
	JTAG Programmer

	Basic Tutorial
	Introduction
	Online Help
	Hints
	Source and Process Windows
	Schematic Editor Tips
	General Object-Action vs. Action-Object
	Dragging a Net Name
	Adding a Net Name to an I/O Wire
	Adding I/O Markers

	Design Entry (VHDL)
	Starting the ISE Software
	Creating a New Project

	Functional Simulation
	Creating a Test Bench with HDL Bencher
	Simulating with ModelSim

	Design Entry (Top-Level Schematic)
	Creating a Schematic Symbol for the VHDL Module
	Creating a New Top-Level Schematic
	Instantiating VHDL Modules
	Wiring the Schematic
	Creating Buses
	Adding I/O Markers

	Design Implementation
	Timing Simulation

	Glossary

