
WP167 (v1.0) December 10, 2002 www.xilinx.com 1
1-800-255-7778

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

Staying ahead of the competition is getting tougher
everyday. Cost pressures, changing standards, and
device obsolescence are just a few of the challenges.
To stay ahead, you need a low cost, competitive
processing solution that’s customizable throughout
the entire design cycle and can quickly be brought
into high-volume production.

The Xilinx Field Programmable Controller (FPC)
solution allows you to create low-cost, customized
processors with peripherals, memory, and logic —
all on a single cost-optimized Spartan™-IIE FPGA.
The FPC solution is ideal for applications in which
cost and integration within a system is critical. With
the flexibility to allow integration of other IP on the
FPGA fabric, the Spartan-IIE family presents an ideal
embedded solution. This white paper presents the
end markets, FPC solution, and its associated tools,
end applications, and the Spartan-IIE performance
advantage.

White Paper: MicroBlaze

WP167 (v1.0) December 10, 2002

Field Programmable Controllers
for Cost Sensitive Applications

By: Richard Griffin

R

2 www.xilinx.com WP167 (v1.0) December 10, 2002
1-800-255-7778

White Paper: Field Programmable Controllers for Cost Sensitive Applications
R

Introduction The introduction of embedded soft processors has offered substantial benefits to the
world of digital electronics. The worldʹs huge appetite for increasingly intelligent and
sophisticated control systems has dictated the rapid advancement of processor
technology. Perhaps most prevalent of all is the huge leap in demand of embedded
microcontrollers. These processor-based devices can now be found in a colossal
number of modern electronic devices. Microprocessors and microcontrollers are
frequently confused; indeed the two terms are often incorrectly equated. For the
purposes of this paper, it is first necessary to clearly define the two terms and establish
some important yet subtle differences.

Microprocessors
Microprocessors are single chip devices containing typically the core processor
technology. This includes the execution units, the register file, program counter,
memory interface, interrupt controller, and in some higher performance examples, the
cache units and a larger peripheral set. In order to correctly function, the
microprocessor requires a plethora of external components. Blocks of RAM and ROM
are typical examples whether they exist to store executable code or provide a
scratchpad memory area. Other examples include input / output (I/O) ports, timers,
and serial communication ports. Figure 1 shows the typical layout of a microprocessor
system.

Microcontrollers
Microcontrollers, on the other hand, offer a considerably more integrated solution.
Rather than enforcing a building-block platform upon the user, a microcontroller
system is comprised of blocks within the boundaries of the device package. The CPU,
RAM, ROM, I/Os, and peripherals are all contained within the device, closely
integrated using localized internal connections. The inputs and outputs of the
microcontroller system are coupled to the other hardware blocks within the design via
the pins on the microcontroller device. Microcontrollers present the designer with a
solution that is far easier and faster to use. Figure 2 shows a microcontroller
implementation. A single device prevents the user from making any mistakes
connecting the CPU to the memory and other peripherals, while affording them rapid
development time and ease of implementation. In essence, a microcontroller provides

Figure 1: A Typical Microprocessor System

CPU

General
Purpose
Micro-

processor

RAM

Single Chip

Data Bus

Address Bus

WP167_01_100202

ROM I/O
Port

Timer
Serial
COM
Port

White Paper: Field Programmable Controllers for Cost Sensitive Applications

WP167 (v1.0) December 10, 2002 www.xilinx.com 3
1-800-255-7778

R

a solution to which only I/O signals need be connected and executable code be written.
The flexibility of the microcontroller is reduced when compared to the use of a full
microprocessor, but this is quite often an acceptable loss for the application in
question. The primary issue of importance is one of cost per unit, which often sways
the decision in favor of the microcontroller solution.

End Markets Microcontrollers are used extensively in three major market areas: automotive,
industrial, and consumer products. The modern automobile is replete with
microcontroller-based systems providing automated control for just about every
conceivable part of the car. Braking systems use microcontrollers to deliver advanced
safety features like ABS and traction control to the driver. Windshield wipers are
controlled to bring us timed interval wipes and even rain sensitive automatic wiper
activation. Heating controls for the vehicle interior are frequently found monitoring
multiple zones within the passenger compartment, adjusting the supply of air to the
interior to maintain a user chosen ideal temperature. Seats even adjust electrically to
remember the favored positions for different drivers of the car! All of this
technological wizardry is achieved and implemented under the watchful eyes of a
collection of microcontrollers.
The industrial world has been a changing place in recent years. Gone are the days of a
large workforce all trained to monitor a specific area of a production plant. They have
now been replaced by a series of microcontroller based monitoring modules, often
linked to a central station, which is monitored by a supervisor. The reduction in cost in
microcontroller technology has permitted these modules to replace their human
counterparts who were ultimately prone to lapses of concentration and the potential
dangers of human error. Microcontrollers can work tirelessly around the clock
without lapses in concentration, requiring only the most minimal maintenance and
supervision.
The consumer market is also the home of a heavy concentration of microcontrollers.
Walk into any electronic store and you will be hard pushed to find a product that does
not have some kind of microcontroller lurking beneath its covers: video recorders,
televisions, dishwashers, video games, set-top boxes, refrigerators, washing machines,
remotely controlled lighting dimmers, telephones, answering machines, ovens,
toasters, printers, scanners, even children’s toys are microcontroller equipped. So
huge is the demand that microcontrollers are now outselling the more conventional

Figure 2: Microcontroller

CPU RAM ROM

Single Chip

WP167_02_100202

I/O Timer
Serial
COM
Port

4 www.xilinx.com WP167 (v1.0) December 10, 2002
1-800-255-7778

White Paper: Field Programmable Controllers for Cost Sensitive Applications
R

microprocessor by around six units to one as shown in Figure 3. By the year 2005, it is
expected that over eight thousand million microcontroller units will be shipped in
electronic products around the world. Microcontrollers are here to stay, it is therefore
important that they are able to meet our ever increasing demands for the future. With
these quantities in mind, the cost of microcontrollers becomes a very big issue indeed.
The only way to keep up with the demands on lower costs is to incorporate the
microcontroller into existing hardware devices to form system-on-a-chip platforms.
For this to succeed, a flexible platform is needed into which the microcontroller can be
embedded.

The FPC
Solution

The Spartan-IIE family of FPGAs have a regular, flexible, programmable architecture
of Configurable Logic Blocks (CLBs), surrounded by a perimeter of programmable
Input / Output Blocks (IOBs). Two columns of block RAM lie on opposite sides of the
die between the CLBs and the IOB columns. A powerful hierarchy of versatile routing
channels interconnects these functional elements. Spartan-IIE FPGAs are customized
by loading configuration data into internal static memory cells while permitting
unlimited reprogramming cycles to become a viable upgrade path for future product
enhancements. Therefore, Spartan-IIE FPGAs are ideal for shortening product
development cycles while offering a cost-effective solution for high-volume
production. Spartan-IIE FPGAs achieve high-performance, low-cost operation
through advanced architecture and semiconductor technology. Spartan-IIE devices
provide system clock rates beyond 200 MHz and offer the most cost-effective solution
while maintaining leading edge performance. In addition to the conventional benefits
of high-volume programmable logic solutions, Spartan-IIE FPGAs also offer on-chip
synchronous single-port and dual-port RAM (block and distributed form), DLL clock

Figure 3: Worldwide Microcomponent Unit Shipment Forecast
Source: Gartner Dataquest (January 2002)

White Paper: Field Programmable Controllers for Cost Sensitive Applications

WP167 (v1.0) December 10, 2002 www.xilinx.com 5
1-800-255-7778

R

drivers, programmable set and reset on all flip-flops, fast carry logic, and many other
features. Figure 4 shows a block diagram of the Spartan-IIE FPGA device.

This flexible platform is an ideal base upon which to implement a microcontroller
system. We previously looked at the way in which microprocessor systems and their
peripherals and memory were all integrated onto one device, providing huge cost
savings to many modern electronics products. An embedded microcontroller takes the
concept of integration one stage further by permitting the designer to embed the
microcontroller system into a small section of a programmable device. No longer does
the microcontroller have to exist in a stand-alone package; it can now be embedded
deep within custom hardware. This technology offers colossal advantages to the
designer in terms of functionality, cost, performance, circuit board area, and most
importantly, flexibility. The MicroBlaze soft processor core has taken this concept and
pushed back the boundaries of what can be achieved in a programmable logic device.
The introduction of customized soft processor systems for Field Programmable Gate
Arrays (FPGAs) has offered huge flexibility, but with this flexibility comes some new
challenges for the designer. Traditionally the designer has approached the task of
processor selection by comparing the needs of their system specification to the
features listed on the processor datasheet. While this may often sometimes be a trivial
task, there are times when unusual processor configurations are desired by the system
specification.

Figure 4: Spartan-IIE FPGA Block Diagram

DLL DLL

DLLDLL

B
LO

C
K

 R
A

M
B

LO
C

K
 R

A
M

B
LO

C
K

 R
A

M
B

LO
C

K
 R

A
M

I/O LOGIC
DS077_01_052102

6 www.xilinx.com WP167 (v1.0) December 10, 2002
1-800-255-7778

White Paper: Field Programmable Controllers for Cost Sensitive Applications
R

For example, the designer may desire a processor with 10 UARTs, an interrupt
controller, and access to a block of external FLASH. Although many off-the-shelf
processors offer multiple UARTs and the other desired peripherals, they would
typically be of sufficient complexity to have numerous other peripherals that would
be unused in this system. Not only is the designer paying for the additional
peripherals, it is often necessary that unused peripherals in this type of processor have
to be placed into a safe mode or otherwise disabled via software.
An additional burden now exists on the software design team. Not only do they have
to make the used processor peripherals operate correctly; they also have to write code
for the parts of the processor which are not being used. It is clear that purchasing an
off the shelf solution for this scenario would be highly wasteful not only in terms of
initial cost, but also in wasted engineering time during the design process.
With the MicroBlaze soft processor, the designer has the luxury of a different
approach. They can now start with a processor core and build the peripheral set to
meet their exact requirements. Silicon wastage is reduced to zero since the designer
will only implement what they need. Software design complexity is reduced because
no code needs to be written to disable unwanted processor functionality. The creation
of unusual processor configurations, which can be changed at any time to suit changes
in the specification, is reduced to a simple task.
Customized processors, from their very name, requires that someone performs the
customization! This is where design automation tools and intellectual property play a
key role (Figure 5). The processor core is placed at the heart of the system, and the
required peripherals are then added to the system from a catalog of Intellectual
Property (IP) cores. As each block of IP is added, the customization process deepens
by allowing the user to select the behavior and functionality of each peripheral.
UARTs can be configured to operate at the correct baud rate, communicate using the
desired number of data and stop bits, and employ the required parity checking.
External memory controllers can be customized to insert sufficient wait states for
correct and efficient memory device access; multiple (independently configurable)
banks of memory are supported from a single controller giving the designer access to
SRAM, FLASH, and EPROM memory. Interrupt controllers can be configured to
respond to rising or falling edge inputs, or indeed to adopt a level triggered response.

White Paper: Field Programmable Controllers for Cost Sensitive Applications

WP167 (v1.0) December 10, 2002 www.xilinx.com 7
1-800-255-7778

R

Bus structures are added to connect the entire system, which are again configurable to
meet the needs of system clock speed or silicon area.

Adding System Level Parameters
Once the basic structure of the processor system is in place, the designer can enter
phase 2 of the design process and begin to allocate system level parameters to the
processor design (Figure 6). These include the desired address map for the processor

Figure 5: Xilinx Platform Studio (XPS) Tool

8 www.xilinx.com WP167 (v1.0) December 10, 2002
1-800-255-7778

White Paper: Field Programmable Controllers for Cost Sensitive Applications
R

system, the selection of interrupt priorities, the allocation of the standard input and
standard output devices from the included peripheral set, and so on.

The tools can now be used to configure the memory in the system to contain the
executable software code taken from the supplied C compiler. Memory values are
allocated to the internal block RAM memory, located within the core of the FPGA.
External memory can also be configured using the various utilities supplied with the
Embedded Development Kit (EDK).
Once the designer has completed configuring their processor system with the the
Xilinx Platform Studio (XPS) tool, the hard work is performed by the tool and in a
matter of seconds the hardware side of the design will be constructed and made
available to the designer as a black box module. This module is then ready to be
instantiated into the FPGA design; the tool also assists the designer with this task by
creating a Hardware Description Language (HDL) template. The driving force behind
all of this hard work are the Xilinx ʺPlatform Generatorʺ (PlatGen) and ʺLibrary
Generatorʺ (LibGen) tools. Working from the text-based Microprocessor Hardware
Specification file (MHS) and the Microprocessor Software Specification file (MSS), XPS
will customize and synthesize each peripheral to meet the needs of the designer. Bus
structures and banks of internal block RAM are also customized and synthesized in
the same way before PlatGen connects all of the system components together. This
task is transparent to the user, who no longer needs to observe the complicated but
often essential design / protocol rules for the supported CoreConnect® bus structures.
However, the design automation does not stop here. In the background the LibGen
will also have created software libraries customized to the processor design,
containing no more and no less than the software functions which can be accessed
given the chosen peripheral set. Inaccessible software routines are removed from the
libraries to prevent wastage of valuable block RAMs within the FPGA. The

Figure 6: System Settings Window

White Paper: Field Programmable Controllers for Cost Sensitive Applications

WP167 (v1.0) December 10, 2002 www.xilinx.com 9
1-800-255-7778

R

aforementioned user selection of the standard input and output peripherals are used
to tailor commonly used C software functions like ʺprintfʺ and ʺscanfʺ, offering the
software design team ease of use. Device drivers are also created in C for each of the
selected peripherals, using their previously determined instance names to create a
selection of appropriately named C functions, each customized to the peripheral in
question. Interrupt control and its associated housekeeping is also handled
automatically, the user simply supplies the name of the C function that should be
executed when the interrupt occurs. Interrupt handler routines can be assigned to
each peripheral individually; interrupt priority is encoded automatically in the
Interrupt Service Routine by the LibGen tool.

MicroBlaze Flexibility
The finished processor system, although complete, remains totally flexible. Any
change in the system specification can be quickly reflected by the designer using the
automated toolset, allowing maximum flexibility with zero wastage.
The MicroBlaze soft processor is based upon the successful RISC / Harvard
architecture combination (Figure 7).

While remaining extremely compact, consuming just 1,050 logic cells in the
Spartan-IIE FPGA, it delivers astonishing performance (49 Dhrystone MIPs at 75

Figure 7: MicroBlaze Block Diagram

10 www.xilinx.com WP167 (v1.0) December 10, 2002
1-800-255-7778

White Paper: Field Programmable Controllers for Cost Sensitive Applications
R

MHz) to meet the needs of a huge variety of embedded processor applications.
Performance of the processor core is guaranteed thanks to the use of the Xilinx
Relationally Placed Macro (RPM) technology. Placement of the logic elements in the
FPGA is predetermined guaranteeing effortless and repeatable performance figures.
The completed system can be implemented in a wide range of the Xilinx FPGA
devices, indeed any member of the Virtex™ / Spartan-IIE family is a valid target for a
MicroBlaze system. The use of multiple MicroBlaze processors sharing the same bus
structure is possible, allowing the concepts of scalable distributed processing to
become an effortless reality. Use of the Spartan-IIE device family permits low cost and
high volume applications to be an ideal choice for systems under MicroBlaze control.
Compatibility with the On Chip Peripheral Bus (OPB) from the IBM CoreConnect bus
family permits the designer to include a vast range of existing IP into their MicroBlaze
designs with little effort. CoreConnect compatibility also offers a simplified upgrade
path should the designer wish to migrate their processor design to the industry
leading Virtex-II Pro™ FPGAs containing the ultra high-performance embedded
PowerPC processor cores.

Conclusion The MicroBlaze soft processor core and its associated toolkit offers a new and
powerful approach to embedded processor system design. Never before has this level
of flexibility been available to the digital electronics industry. The combination of the
high-performance MicroBlaze processor and low cost Spartan-IIE Field
Programmable Gate Arrays make this solution invaluable to the modern digital
designer.
Information on this subject can be found on the Xilinx Field Programmable Controller
page at:

http://www.xilinx.com/fpc

Further information on the MicroBlaze product can be found in the Xilinx MicroBlaze
lounge at:

http://www.xilinx.com/microblaze

Information on the Xilinx Virtex and Spartan-IIE FPGA products can also be found at:
http://www.xilinx.com

Revision
History

The following table shows the revision history for this document.

Date Version Revision

12/10/02 1.0 Initial Xilinx release.

http://www.xilinx.com/fpc
http://www.xilinx.com/microblaze
http://www.xilinx.com

	Field Programmable Controllers for Cost Sensitive Applications
	Introduction
	Microprocessors
	Microcontrollers

	End Markets
	The FPC Solution
	Adding System Level Parameters
	MicroBlaze Flexibility

	Conclusion
	Revision History

