
Summary This application note describes the process to program and reprogram an FPGA through an
intranet or Internet connection. Many variations to this theme are possible. The example
application is a theoretical external controller with the intent on making readers aware of the
capabilities. Modules of the example applications have been hardware and software tested; this
application note is the sum of all tested design parts.

Introduction The most commonly used application on the Internet or intranet is sending and receiving
E-mail. The ability to use this same application to program or reprogram an FPGA is an
advantage when updating and servicing applications using FPGAs. Different solutions are
discussed in this application note. Some solutions need an external Internet/intranet aware
microprocessor. In the reference design example the SX52BD processor from Ubicom is used,
but other components, IP2022, or manufacturers, as Rabbit, Lantronix or Zilog, can also be
used.

Internet
Protocol Stack

Communication over the Internet/intranet is standardized. These standards are Request For
Change (RFC) documents and can be retrieved at http://www.ietf.org. The Internet/intranet
working mechanism is organized as a protocol stack (Figure 1). A bundled stack is a set of
independent programs, called layers, allowing information to flow from the physical interface
(physical layer) to the user application (application layer) and vice versa.

Application Note: Virtex-II Series

XAPP632 (v1.0) May 13, 2002

Programming an FPGA via E-mail
Author: Marc Defossez

R

Figure 1: Internet Layer Protocol

Application layer

Modem UART

EthernetPPP

UDP

ICMP

IP

TCP

FTPHTTPPOP3STMP

Ethernet Physical layer

Network access layer

Internet layer

Transport layer

x632_01_022702
XAPP632 (v1.0) May 13, 2002 www.xilinx.com 1
1-800-255-7778

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

http://www.ietf.org
http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Programming an FPGA via E-mail
R

Each layer is independent of the upper or lower layers and takes only incoming data, processes
it, and passes it through to the upper or lower layer.

• Physical Layer - This is the hardware, such as coaxial, fiber, and telephone or radio waves
or fiber optics used for communication between devices and connected to Modem-UART
combinations or Ethernet controllers.

• Network Access Layer - This layer manages the incoming protocol (such as Ethernet),
encapsulates packets from higher-layer levels, or dismantles the access layer protocol for
the higher-layer protocol. Examples are: PPP (modem and UART) or Ethernet.

• Internet Layer - This layer is also called Internet Protocol (IP). The service protocol,
Internet Control Message Protocol (ICMP) can also be located at this level.

The IP protocol provides packet routing. It does not provide error recovery nor does it
provide flow control. Another activity of this protocol is to break larger data blocks into
fragments at the transmitter side and re-assemble them at the receiver side.

The ICMP protocol is an extension to the IP protocol and is used for diagnostic messages.
The most widely used ICMP command is the ping utility.

The implementation of the entire protocol is not necessary for the functioning of the Internet
Protocol Stack, but ping should be implemented. Ping is implemented in this application
note.

• Transport Layer - The two protocols taking nearly all the Internet/intranet traffic are TCP
and UDP.

- Transmission Control Protocol (TCP) - This is the default and most widely used
standard of Internet data traffic. It is used as the lower layer of other protocols (HTTP,
SMTP, and POP3).

- User Datagram Protocol (UDP) - This is less used in recent applications because it is
not as reliable as TCP.

Figure 2: IP Header Format

x632_02_022802

Version IHL Type Of Service

0

Total Length

8 16 24 32

Identification

Time To Live Protocol

Flags Fragment Offset

Header Checksum

Destination Address

Source Address

Figure 3: ICMP Layer Format
x632_03_022802

Type Code

0

Checksum

8 16 24 32

Identification

Data ………………………………………………………

Sequence Number
2 www.xilinx.com XAPP632 (v1.0) May 13, 2002
1-800-255-7778

http://www.xilinx.com

Programming an FPGA via E-mail
R

• Application Layer - Protocols such as HTTP, FTP, POP3, SMTP are found in the
application layer and are integrated into widely used Internet browser and E-mail client
programs. Note that since this application note is based on E-mail, only E-mail protocols
are discussed.

E-mail
Principles

Two most commonly used client-server protocols for sending and receiving mail messages
across the Internet are SMTP and POP3. The client is usually a desktop E-mail program and
the server is the Internet Service Provider (ISP) SMTP server. Both SMTP and POP3 client-
servers are transaction-oriented around a simple text-based protocol. The reference design is
acting as a POP3 client, only retrieving E-mail from POP3 a server. A POP3 connection is
initiated by the client, after a connection with the server has been established, asking for
E-mail messages. Each step in the ongoing communication must get a reply (action) from the
opposite side (server).

Figure 4: TCP Header Format

Offset

Source Port

0

Destination Port

8 16 24 32

Window

Acknowledgement Number

Sequence Number

Reserved Flags

Checksum Urgent Pointer

Options ………………..

Data ……………………………
XAPP632 (v1.0) May 13, 2002 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

Programming an FPGA via E-mail
R

Figure 5: POP_3 Communication

>

POP3 Client

Open PPP connection

USER Command

+OK

+OK

+OK

+OK xx yy

PASS Command

STAT Command

RETR Command

Message

DELE Command

+OK

QUIT Command

QUIT Reply

An email has been sent to the POP3 client.
It’s waiting at the server side to be retrieved.

When a server–client connection has been
made, the POP3 client attempts to retrieve its
mail.

The USER command is sent to the sever.
When the user is known at the sever side, a

positive acknowledge is replied.

The client then sends its password.
When it’s the correct password, again a positive
acknowledge is the response, else the link is
aborted.

The STAT command is the question for e-mail.

When mail is available, the server responds
with the number of mail messages waiting and
the total byte count.

The client wants to get the messages and send
the RETR command.

After acknowledging to the retrieve command,

the server sends the messages to the client.

The client then can delete the message(s)
available at the server side. Again
acknowledged by the server.

After retrieving the message(s), the client aborts
the link with the server. After the necessary
reply, the link is aborted and all messages
requested to be deleted are deleted.

x632_08_032502

POP3 Server
4 www.xilinx.com XAPP632 (v1.0) May 13, 2002
1-800-255-7778

http://www.xilinx.com

Programming an FPGA via E-mail
R

External
Controller
SX52BD

The Ubicom SX52BD is a small controller based on RISC architecture. High-speed
computation, flexible I/O control, and efficient data manipulation at speeds up to 100 MHz.
Most of the instructions are optimized into single-cycle events. Together with ready-made
software modules (Virtual Peripheral™), there are many Internet/intranet possibilities. A data
sheet of these devices is available on the Ubicom web site:
http://www.ubicom.com/products/sx/index.html. The software module used in this
reference design example is the freely available SX-Stack. With some small modifications and
additions, the module is used to program an FPGA.

Operation
The implementation has been tested with a SXB-TCP01-02 board of Ubicom, containing a
SX52BD processor and two UART ports.

Download the E-mail server Assembler source code, eSXv1_0_4.src, from the Ubicom web
site. Select the POP3 demo and POP3 debug features in the file. The POP3 debug facilities
send the incoming E-mail content on the PPP port unmodified to the debug port. The
modifications to the code are:

• The need exists to implement a mechanism to not take every possible E-mail as an FPGA
bitstream. The mechanism used here gives the mail containing the bitstream a specific
subject header.

• A clock pulse must be made along with each bit of data, emulating a slave serial
download.

• The done pin must be used as input to the microcontroller to abort the intranet/Internet
connection.

Some hints when modifying the Assembler source code include:

• When using Windows 2000 or Linux, set or unset the WIN32 and WIN98 options.

• The second UART, debug UART, is used when PO3DEBUG is uncommented in the
options section of the code.

• The default IP address of the demo can be modified when changing POP3address1,
POP3address2, and POP3address3 in the POP3 constants section.

• The ports used by the second UART can be changed to another location. Search for
"debug_rx_pin" and "debug_tx_pin" and change the pin numbers accordingly.

• The POP3 user and password can be modified. Look for "USER_eSX" and "PASS_eSX"
in the canned ppp section of the code.

• The subroutine used to initialize the POP3 demo can be found from line 2164 of the
source code. It reads:

2164 IFDEF POP3DEMO
2165 ;---
2166 ;Subroutine: AppInit

• The POP3 application starts from line 4439, and reads:
4439 ;===
4440 ; TCP POP3 Demo Functions
4441 ;===

This is the POP3 state machine and its subroutines.

• Here modifications can be made to recognize the E-mail header "Subject: …" and to pass
bits or transfer characters. The bitstream to download into the FPGA can be sent as a
binary attachment to the mail message or can first be converted with the Xilinx tools to
ASCII and then incorporated into the body of the E-mail. Depending on the method used,
the Assembler source code must be modified accordingly.

• To generate along with each data bit a clock pulse the debug UART code can be modified
slightly.

Be aware that this small processor is at its maximum performance when running the TCP/IP,
POP3 application and the data memory is nearly completely used. This small controller can
XAPP632 (v1.0) May 13, 2002 www.xilinx.com 5
1-800-255-7778

http://www.ubicom.com/products/sx/index.html
http://www.xilinx.com

Programming an FPGA via E-mail
R

only work via a UART (PPP) port. A better solution is found in the IP2022 processor of the same
manufacturer Ubicom.

Internal
Controller

It is also possible to configure an FPGA by means of the internal available microcontroller,
whether it is the MicroBlaze™ soft core or PowerPC hard-core controller.

It will be slightly more complex and will need some external logic.

With the use of an internal controller, peripherals must be downloaded. Even the controller
must be downloaded when using the MicroBlaze soft core. Controller and peripherals must
become operational before any hardware operation, such as contacting the Internet/intranet is
possible.

A possible setup to download new configurations from the Internet is shown in Figure 6.

Operation
A basic FPGA design must be made. This basic design can be the processor with its
peripherals, or the complete initial FPGA design.

• In case the initial FPGA design only contains the processor and some peripherals, once
the application is started the real design must be downloaded from the network. When the
FPGA contains an operational design, the connection to the network can be delayed until
it is necessary to download a new bitstream.

In both cases, the controller needs to run a TCP/IP stack and POP3 application. This is
available when an OS is implemented on the processor, or else it must be ported onto the
processor as separate code.

Figure 6: Internal Download

Processor

OPB arbiter

OPB slave
(UART or
Ethernet)

OPB slave
(IRQ ctrl)

OPB slave
(JTAG)

OPB slave
(GPIO)

FPGA

T
C

K
T

D
O

T
D

I
T

M
S

DONE

DIN
CCLK

PROG_B

New Conf

CoolRunner-II
TCK
TDO

TDI
TMS

VCC GND

CEO

DATA

CF
CE

TCK
CLKTDO

TDI
TMS

XC1800
PROM 1

Ethernet PHY RS232

Xtal

Power Status Master Mode

DOUT

OE/Rst

CEO

DATA

CF
CE

TCK
CLKTDO

TDI
TMS

XC1800
PROM 2

OE/Rst

x632_06_032502
6 www.xilinx.com XAPP632 (v1.0) May 13, 2002
1-800-255-7778

http://www.xilinx.com

Programming an FPGA via E-mail
R

At least two possible semi-permanent memory (Flash PROM) banks must be designed. It is
possible that one bank has multiple Flash memory devices, depending the size of the used
FPGA or the number of FPGAs in master-slave configuration mode, for example, a XC2VP20
bank needs two XC18V04 devices. This example uses the FPGA’s JTAG port to configure the
Flash memories (the CPLD can also be configured through the FPGA). However, a processor
peripheral to control the JTAG port must be designed.

The bitstream received at the FPGA must be JTAG prepared; it must contain the necessary
command to generate a pulse onto the CF output once the PROM is programmed. The CF pin
of the PROM allows a JTAG CONFIG instruction to initiate FPGA configuration without
powering down the FPGA. It is an open-drain output that is pulsed Low by the JTAG CONFIG
command 11101110. A download controller device (here a CoolRunner™-II CPLD) is used to
control the source of the data stream to the FPGA or FPGAs. The FPGA must be set in Master
Serial mode; other FPGAs can be connected in Slave Serial mode onto the first FPGA.

Download Controller

An 8-bit register expressing the states of inputs and outputs is the major part of this design. Two
down counters are needed, one for the number of download retry loops and one with the total
bitstream length. The register is shown in Table 1.

Flash PROM(s) and the CoolRunner-II CPLD are factory programmed. PROM 1 contains a
basic FPGA code and PROM 2 is empty. The CPLD has the controller design, with some
registers preset to indicate that PROM 0 contains valid code.

Controller Function

The controller is a state machine. The flowchart of the process is shown in Figure 7.

1. After power-up of the application, the download controller starts in a predefined state and
waits for a valid power status. This is a way to indicate that all power supplies have reached
a valid voltage level and FPGA download can start.

2. Check that "Valid Configuration" is performed. At first use "Valid Conf_1" is factory pre-
programmed.

3. Enable the PROM with the known configuration.

4. Initiate the counters.

a. "LoopCnt" is a small down counter to retry the download operation a few times when
necessary.

b. "DldCnt" counts down at the rate of the bitstream.

5. Give a pulse on the FPGA PROGRAM pin.

6. The FPGA set in Master Serial mode issues a clock waveform on the CCLK pin and
retrieves data from the PROM(s) at the same time the CCLK clock is fed into the CPLD
controller and the CCLK pulses make the "DldCnt" count down:

7. The FPGA when correctly downloaded brings the DONE pin High. This state is latched into
the CPLD controller.

8. A few clock pulses later the "DldCnt" down counter reaches zero and the DONE status can
be controlled.

Table 1: The Register

Valid
Conf_2 Done2 CEN_2

New
Conf_2

Valid
Conf_1 Done1 CEN_1

New
Conf_1

Power
Status

0 0 1 0 1 0 1 1 0

Internal Input Output Input Internal Input Output Input Input
XAPP632 (v1.0) May 13, 2002 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com

Programming an FPGA via E-mail
R

9. When DONE is High:

- The respective "Valid Config" bit is set.

- The "New Config" bit is reset.

- The DONE status is reset to zero.

- The PROM is disabled.

10. The FPGA is operational.

11. When the DONE status bit is not High, the "loopCnt" is decremented and the state machine
returns to state 4b.

12. When unsuccessful in downloading until "LoopCnt" is reaching "0."

- Reset respective "Valid Config" bit.

- Reset respective "New Config" bit.

- Blink an LED to indicate that configuration of the FPGA is not possible.

13. When a new bitstream is loaded into semi-permanent memory devices during (or at the
beginning), the processor handling the download must indicate that a new configuration will
become available by setting the respective "New Config" bit in the CPLD controller.

- The processor reads the "Valid Config" and New Config" bits to know in what Flash
PROM bank the new configuration must be stored.

14. At the end of the JTAG programming, the PROM generates a CF pulse.

15. This pulse triggers the state machine and a download starts.

- When DONE goes High, the new configuration becomes the default one by setting the
"Valid Config" bit.

- When DONE does not go High, a set of trial downloads is executed. The previous
"good" configuration is downloaded when the DONE status is false after the different
retries.
8 www.xilinx.com XAPP632 (v1.0) May 13, 2002
1-800-255-7778

http://www.xilinx.com

Programming an FPGA via E-mail
R

When the state machine arrives at point A, it stops operation. See Figure 7. The FPGA will now
generate CCLK pulses, starting from point B, decrementing the "DldCnt" counter until "0." Now
the controller state machine takes over.

Reference
Design

To obtain the SX52BD Assembler reference code for this design, log into the Ubicom support
portal at: http://support.software911.com/ubicom/login.asp?op=8

Conclusion FPGA programming and reprogramming over the Internet or an intranet system is possible and
quite simple. This application note and accompanying reference design allows designers to use
this protocol today.

Revision
History

The following table shows the revision history for this document.

Figure 7: Controller Flow Chart

On CCLK
Subtract DldCnt

B

DONE = 1

Blink LED

Reset Valid
Conf bit

Set Valid
Conf bit

Reset New
Conf bit

Reset DONE

Disable PROM
CEN = 1

N

Y

Y

N

N

1

New Conf
N

Y

C

Reset New
Conf bit

Y

PwrGood

CF

Valid Conf 0Valid Conf 1 No Valid Conf

Enable PROM
CEN 1 = 0

Enable PROM
CEN 0 = 0

New Conf 1

PROG pulse

A

LoopCnt = Max
LoopCnt = 0

DldCnt = 0

LoopCnt –1

DldCnt = Max

New Conf 0

CEN 1 = 0 CEN 0 = 0

Y

N

1

C

x632_07_022802

Date Version Revision

05/13/02 1.0 Xilinx initial release.
XAPP632 (v1.0) May 13, 2002 www.xilinx.com 9
1-800-255-7778

http://support.software911.com/ubicom/login.asp?op=8
http://www.xilinx.com

	Summary
	Introduction
	Internet Protocol Stack
	E-mail Principles
	External Controller SX52BD
	Operation

	Internal Controller
	Operation
	Download Controller
	Controller Function

	Reference Design
	Conclusion
	Revision History

