
Summary This application note describes a method for building a ROM firmware image residing in one
location of memory and executing from/in another location. The examples given in this
application note use the widely available GNU tools targeted for the PowerPC™ processor.

Introduction Embedded systems and general-purpose computers differ in many ways. One key difference is
how programs are loaded and executed out of memory. Software written on personal
computers are typically compiled into a completely relocatable format with no absolute
addresses embedded in the instructions. This file is archived on a disk. To access the program,
the operating system finds available memory, the loader (an operating system function)
retrieves the program, inserts all of the necessary absolute addresses for the program, and the
program is put into available memory. This process is called dynamic linking, because address
resolution occurs dynamically at runtime.

However, many embedded systems programs are written in a different manner. First, the
program is written on a host machine for a target system. The host machine and the target
system can be very different. Second, the program is not stored on a file system or disk. A code
image is built on the host system containing all the necessary addresses embedded in the
program, and is then downloaded to non-volatile read-only memory (FLASH or EEPROM). In
the end application, the embedded system runs independently. This type of linking is called
static linking because address resolution occurs before the program is ever run.

Embedded programs contain sections that are read/write in nature; however, these sections
are typically initialized and stored in read-only memory (FLASH or EEPROM). At boot time
these items need to be copied to read/write memory before they can be used. Additionally,
executable program code is typically stored in read-only memory, however, it is sometimes
desirable to execute this code from a faster read-write memory e.g., SRAM. Therefore, the
code needs to be copied from ROM to RAM at boot time before it is executed. This process is
generally known as relocation. Figure 1 illustrates this concept.

Application Note: Virtex-II Pro Family

XAPP642 (v1.0) October 21, 2002

Relocating Code and Data for
Embedded Systems
Author: Kraig Lund

R

XAPP642 (v1.0) October 21, 2002 www.xilinx.com 1
1-800-255-7778

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Relocating Code and Data for Embedded Systems
R

This application note describes a method to relocate both code and data from non-volatile
ROM into read-write memory using the widely available GNU tools targeting the PowerPC
processor.

Compilation
and Address
Resolution

This section discusses the compilation and linking process for embedded systems. When
functions are written and compiled there are usually calls within those functions to other
external functions or data entities. Those other functions and data entities can be located in a
location unknown to the compiler during the compilation process. When this happens, the
compiler inserts a placeholder for the unknown memory address. An example would be a C
language "int" variable defined in one file but is accessed in the file being compiled. During
compilation, the compiler will generate a "load from memory" instruction in order to load the
variable from memory into one of the processors registers. This requires the address of the
stored "int" variable. Since the compiler does not yet know the location of the stored variable in
memory, a placeholder is used for the address.

The purpose of the linker is to determine the addresses. This is called address resolution. The
linker takes all of the separately compiled files, locates them in user defined locations in
memory, and then fills in the placeholders. Typically the user defines these locations in a "linker
script" file, sometimes known as a "mapfile". The linker script tells the linker how to build the
executable program.

Figure 1: Memory Map

Unused

(Relocated Initialized Variables)

Other Sections: BSS, Stack,...

Initialized Variables

Read-only Constants
(Not Necessary to Relocate)

Program Code

(Relocated Program Code)

Unused

Flash

SRAM

Necessary to relocated
to SRAM for
Read/Write capability

Can be desireable to
relocate here for
increased execution
speed

x642_01_092002
2 www.xilinx.com XAPP642 (v1.0) October 21, 2002
1-800-255-7778

http://www.xilinx.com

Relocating Code and Data for Embedded Systems
R

During compilation, the GNU compiler GCC creates many different types of code, called
segments. Some segments are built-in types and others are user definable. Some of the
common built-in types of segments are:

BSS: Uninitialized Data (Read/Write) DATA: Initialized Data (Read/Write)

RODATA: Constants (Read Only) TEXT: Program Code (Read Only)

A simple C program shows how different entities can be segmented in the compilation process.

#include <stdio.h>
int array_data[10] = {0,1,2,3,4,5,6,7,8,9}; // DATA
const int array_const[10] = {9,8,7,6,5,4,3,2,1,0};// RODATA

int main(){
int i; //BSS

i = i + 10; //TEXT
printf("%d\n", array_data[0]); //TEXT should print 0 followed by newline
array_data[0] = array_const[0];//TEXT
printf("%d\n",array_data[0]); //TEXT should print 9 followed by newline

return 0;
}

The problem of relocation now becomes obvious. The previous example contains four different
segments; some are Read/Write and some Read only. If the linker locates each initialized
segment in ROM, as is typically necessary in most embedded systems, the program will not
work. The statement "array_data[0] = array_const[0];" breaks the system because
data can not be written to a ROM. A method is needed to have the initialized values of the array
array_data[] initially reside in ROM, and then be relocated to RAM at run time.

Example 1 Relocating Data
Sometimes it is necessary to relocate data, instructions, or both. The simplest case is to
relocate data. This first example relocates a simple initialized piece of data from one location in
memory to another. The following listings are code snippets showing the main functions
necessary to relocated data. The complete code listing is included in the file XAPP642.zip on
the Xilinx FTP site at:

ftp://ftp.xilinx.com/pub/applications/xapp/xapp642.zip

Code Listing for Example 1
The following snippet is from the boot code located in crt0.S. It shows the function calls to copy
data and main.

--snip

/* set up initial stack frame */
addi 1,1,-8/* location of back chain */
lis 0,0
stw 0,0(1)/* set end of back chain */

 bl CopyData /* copy the data from flash to ram */
 bl main

--end snip
XAPP642 (v1.0) October 21, 2002 www.xilinx.com 3
1-800-255-7778

ftp://ftp.xilinx.com/pub/applications/xapp/xapp642.zip
http://www.xilinx.com

Relocating Code and Data for Embedded Systems
R

The function CopyData is located in the copy.c file.

extern int _etext, _data, _edata;
void CopyData(void){

 int *src = &_etext; // pointer to beginning of DATA, end of TEXT
 int *dst = &_data; // pointer to where we want to copy DATA

 while (dst < &_edata) {
 *dst++ = *src++; // copy the data from its physical address
 } // to its logical address
 }

Main() is located in the datarelo.c file.

int myarray[10] = {0,1,2,3,4,5,6,7,8,9}; // create an initialized array
 // which we will relocate
int main()
{

int i;

while(1){ // do something with the array
for(i=0; i<10; i++){
myarray[i] = i + 10;}

}
return 0;

}/*end of main*/
4 www.xilinx.com XAPP642 (v1.0) October 21, 2002
1-800-255-7778

http://www.xilinx.com

Relocating Code and Data for Embedded Systems
R

A simplified version of the linker script, the following file is called mapfile.

STACKSIZE = 4k;
MEMORY
{
 ddr : ORIGIN = 0x00000000, LENGTH = 32m
 sram : ORIGIN = 0x10000000, LENGTH = 2m
 flash : ORIGIN = 0xFE000000, LENGTH = 32m - 4
 boot : ORIGIN = 0xFFFFFFFC, LENGTH = 4
}

ENTRY(_boot)
SECTIONS
{
 .text :
 {
 _text = . ;
 *(.text)
 _etext = . ;
 } > flash

.data :
 AT (ADDR (.text) + SIZEOF (.text))
 {

 /* since the code uses type "int" to copy the data
 make sure that the data section is aligned on an
 integer (4-byte) boundary */

. = ALIGN(4);
_data = . ;
*(.data)
*(.COMMON);

_edata = . ;
. = ALIGN(4);

 } > sram

 .
 .
 .

.boot :
 {
 *(.boot)
 } > boot
}

XAPP642 (v1.0) October 21, 2002 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

Relocating Code and Data for Embedded Systems
R

Explanation of Example 1
To understand the linking step, linker script format is examined here. The MEMORY section
describes the system memory map. In the SECTIONS section, the code segments are linked
and located to different portions of the memory map. The following statement locates all text
(program code) as denoted by the following code snippet into the FLASH memory region. It
also provides a constant, "_etext", for use by the C function CopyData, the address of the end
of the text segment in memory.

.text : /* Name of the "output section */
{
_text = . ;
*(.text)

_etext = . ;
} > flash

The linker script describes where data goes. This segment will be relocated. To understand
how the linker works, two addresses for this piece of code are defined; a physical address and
a logical address. The physical address is the memory address where code is loaded, in this
case it is loaded into a non-volatile memory. A logical address is sometimes known as a virtual
address or a run-time address. This type of virtual address should not be confused with the
PowerPC Memory Management Unit (MMU) and virtual addressing mode. The logical address
is the location where code is executed from, in this case SRAM. The physical address is
defined by using the AT command. The statement AT (ADDR (.text) + SIZEOF (.text))
loads the data segment following the text segment located in the FLASH memory in this
system. The logical address annotated by the "> sram" statement informs the linker that the
.data section will eventually reside in SRAM. Therefore, all references in the program code
should address "data" in the SRAM, not the FLASH.

.data :
AT (ADDR (.text) + SIZEOF (.text))

{

/* since the code uses type "int" to copy the data make sure that the data
section is aligned on an integer (4-byte) boundary*/

. = ALIGN(4);
_data = . ;
*(.data)
*(.COMMON);

_edata = . ;
. = ALIGN(4);

 } > sram
6 www.xilinx.com XAPP642 (v1.0) October 21, 2002
1-800-255-7778

http://www.xilinx.com

Relocating Code and Data for Embedded Systems
R

The programmer ensures that the initial values of the data is copied from the FLASH to the
SRAM before it is ever used. In this example, this is done by calling the function CopyData
before executing the statement array_data[0] = array_const[0]; instruction.

In the following code, the function CopyData is examined to determine how it works.

extern int _etext, _data, _edata;
void CopyData(void){

 int *src = &_etext; // pointer to beginning of DATA, end of TEXT
 int *dst = &_data; // pointer to where we want to copy DATA to
 while (dst < &_edata) {
 *dst++ = *src++; // copy the data from its physical address
 } // to its logical address
 }

Three variables are defined in the linker script used by the function to copy the data from the
FLASH to the SRAM: _etext, _data, and _edata.

_etext

End physical and logical address of the text segment. Also, it is the beginning of the data
section’s physical address. (Note: physical = logical address in the absence of the AT
command)

_data

Beginning logical address of the .data segment.

_edata

End logical address of the .data segment.

Two pointers, src and dst are initialized to point to the addresses _etext and _data respectively.
The following statement dereferences these pointers and copies the data from _etext to _data
until the address _edata is reached.

while (dst < &_edata) {
 *dst++ = *src++; // copy the data from its physical address
 } // to its logical address

Example 2 Relocating Instructions and Data
This example relocates both instructions and data to SRAM. This is a slightly more complicated
procedure than just relocating data. If the program code is to be relocated, how can it be
executed before it is relocated? By having the boot code located in a non-relocated section of
ROM, the boot code relocates the application software.

In this example the boot code calls the function CopyText(), that copies all of the code to RAM
except the boot code. After CopyText is finished copying the application, the boot code calls
CopyData(). After the relocation of text and data is finished, the boot code finally calls main().
The code listing for the boot code and CopyText() is shown below. CopyData() and main() are
the same as in the previous example.
XAPP642 (v1.0) October 21, 2002 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com

Relocating Code and Data for Embedded Systems
R

Code Listing for Example 2
The following snippet is from the boot code located in crt0.S. This snippet shows the function
calls to CopyText, CopyData, and main.

-----------------------------snip
/* set up initial stack frame */
addi 1,1,-8/* location of back chain */
lis 0,0
stw 0,0(1)‘/* set end of back chain */

/* call CopyText to relocate the program code */
bl CopyText

/* call CopyData; must use a long call since CopyData is located in RAM */
lis 30,CopyData@h /* load upper bits of r30 w/ address of CopyData */
ori 30,30,CopyData@l /* load lower bits of r30 w/ address of CopyData */
mtlr 30 /* move address of CopyData to LR */
blrl /* branch to contents of LR and update LR with current instruction */

/* address + 4 */

/* call main; must use a long call since main is located in RAM */
lis 30,main@h
ori 30,30,main@l
mtlr 30
blrl

-----------------------------end snip

The function CopyText is located in the copy.c file called.

void CopyText(void) __attribute__ ((section(".rom")));

extern int _etext, _text, __ltext;

void CopyText(void){
 int *src = &__ltext; // pointer to the physical address of TEXT
 int *dst = &_text; // pointer to the logical address of TEXT

 while (dst < &_etext) {
 *dst++ = *src++;
 }
 main();
}

Explanation of Example 2
The function prototype tells the linker to map the input section to .rom rather than the default
.text using an attribute. Every embedded compiler has a different type of __attribute__ function.
Some compilers use the #pragma keyword to accomplish the same thing.
8 www.xilinx.com XAPP642 (v1.0) October 21, 2002
1-800-255-7778

http://www.xilinx.com

Relocating Code and Data for Embedded Systems
R

A simplified version of the Linker Script for this example follows:

STACKSIZE = 4k;
MEMORY
{
 ddr : ORIGIN = 0x00000000, LENGTH = 32m
 sram : ORIGIN = 0x10000000, LENGTH = 2m
 flash : ORIGIN = 0xFE000000, LENGTH = 32m - 4
 boot : ORIGIN = 0xFFFFFFFC, LENGTH = 4
}
ENTRY(_boot)
SECTIONS
{
.rom :
{
*(.rom)
} > flash
.text :
AT (ADDR(.rom) + SIZEOF(.rom))
{
_text = . ;
*(.text)
_etext = . ;
} > sram

__ltext = LOADADDR(.text);
__letext = LOADADDR(.text) + SIZEOF(.text);
.data :
AT (ADDR (.rom) + SIZEOF (.rom) + SIZEOF(.text))
{

/* since the code uses type "int" to copy the data make sure that the data
section is aligned on an integer (4-byte) boundary */

. = ALIGN(4);
_data = . ;
*(.data)
*(.COMMON)

_edata = . ;
. = ALIGN(4);
} > sram

 .
 .
 .

.boot :
{
*(.boot)

} > boot
}

In Example 2, the AT (ADDR(.rom) + SIZEOF(.rom)) loads the.text section directly after
the.rom section into the FLASH memory. The logical address is, however, located in the SRAM
as indicated by the "> sram" statement. Similarly the data section is loaded directly after
the.rom and.text sections in the FLASH as is indicated by the AT (ADDR (.rom) + SIZEOF
(.rom) + SIZEOF(.text)). Again the logical address is in the SRAM as indicated by the
"> sram" notation.
XAPP642 (v1.0) October 21, 2002 www.xilinx.com 9
1-800-255-7778

http://www.xilinx.com

Relocating Code and Data for Embedded Systems
R

Debugging the
Examples

Another useful tool for the embedded programmer is the "dump" utility. This tool can be used to
extract useful information from object files, both linked and unlinked. For instance, it can be
used to disassemble an object file or to display program header information. The code from
Example 2 and the GNU dump utility (OBJDUMP) is used to display information about the
different sections of code. For each section a VMA and LMA are given. These acronyms
correspond to logical address (VMA) and physical address (LMA). The following listing was
generated using the OBJDUMP tool from the command line:

"powerpc-eabi-objdump -h textrelo.elf".

The "-h" tells OBJDUMP to dump all of the section header information.

Sections:
Idx Name Size VMA LMA File off Algn
 0 .rom 000000f8 fe000000 fe000000 00010000 2**2
 CONTENTS, ALLOC, LOAD, READONLY, CODE
 1 .text 000000e4 10000000 fe0000f8 00020000 2**2
 CONTENTS, ALLOC, LOAD, READONLY, CODE
 2 .data 00000028 100000e4 fe0001dc 000200e4 2**2
 CONTENTS, ALLOC, LOAD, DATA
 3 .fdata 0000003c 1000010c 1000010c 0000010c 2**2
 CONTENTS, ALLOC, LOAD, DATA
 4 .sdata 00000000 10000148 10000148 00000148 2**2
 CONTENTS, ALLOC, LOAD, DATA
 5 .sdata2 00000000 10000148 10000148 00000148 2**2
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 6 .sbss 00000000 10000148 10000148 00030000 2**0
 CONTENTS
 7 .bss 00001008 10000148 10000148 00000148 2**0
 ALLOC
 8 .boot 00000004 fffffffc fffffffc 0002fffc 2**0
 CONTENTS, ALLOC, LOAD, READONLY, CODE
 9 .comment 00000068 00000000 00000000 00030000 2**0
 CONTENTS, READONLY

The previous listing shows the logical address (VMA) of the .text section is 0x10000000 and
the physical address (LMA) is 0xfe0000f8. Likewise for the .data section, the logical address
is 0x100000e4 and the physical address is 0xfe0001dc. The size of each section is also
given for easy verification of linker script instruction completion.

The linker script tells the linker to physically locate .data with the following command:

 AT (ADDR (.rom) + SIZEOF (.rom) + SIZEOF(.text))

From the previous listing it is possible to calculate and verify that the linker physically located
the .data section in the right location.

ADDR(.rom) 0xfe000000

SIZEOF(.rom) + 0x000000f8

SIZEOF(.text) + 0x000000e4

= 0xfe0001dc

The calculated address, 0xfe0001dc is equal to the LMA reported by OBJDUMP for the
.data section.

There are several other methods to verify addresses. One method is to use the
"--print-map" in the linker command line. Another option is to use GNU’s NM tool to provide
the information.
10 www.xilinx.com XAPP642 (v1.0) October 21, 2002
1-800-255-7778

http://www.xilinx.com

Relocating Code and Data for Embedded Systems
R

Conclusion It is usually both desirable and necessary in embedded systems to have program code and
data located physically in one memory-mapped address but run from entirely different
addresses. Embedded tool chains provide this functionality. Embedded linkers allow the
programmer to define two addresses for each section of code. The physical address defines
where the code is physically loaded into the non-volatile memory. The logical address defines
where the code eventually resides. The programmer provides the functionality to copy the code
from it’s a physical to a logical address during the boot sequence. The examples in this
application note show how this is done for the GNU toolset. Other toolsets may differ in syntax,
however, the concepts are the same.

Revision
History

The following table shows the revision history for this document.

Date Version Revision

10/21/02 1.0 Initial Xilinx release.
XAPP642 (v1.0) October 21, 2002 www.xilinx.com 11
1-800-255-7778

http://www.xilinx.com

	Summary
	Introduction
	Compilation and Address Resolution
	Example 1
	Relocating Data
	Code Listing for Example 1
	Explanation of Example 1
	_etext
	_data
	_edata

	Example 2
	Relocating Instructions and Data
	Code Listing for Example 2
	Explanation of Example 2

	Debugging the Examples
	Conclusion
	Revision History

