
R

This book provides a snapshot of the Spartan-3 technical documentation at the time of printing. For the
latest information and technical support, see the Xilinx website at http://www.xilinx.com.

• Spartan-3 Product Information

♦ Product overview, links to latest data sheets and application notes

♦ http://www.xilinx.com/spartan3

• Answers Database

♦ Search database of silicon and software questions and answers

♦ http://www.xilinx.com/support/answers.htm

• WebCase Technical Support

♦ Create technical support cases, attach design files, review case updates in real time

♦ http://www.xilinx.com/support/clearexpress/websupport.htm

Spartan™-3
FPGA Handbook

July 11, 2003

ug000.book Page 1 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/spartan3
http://www.xilinx.com/support/answers.htm
http://www.xilinx.com/support/clearexpress/websupport.htm

Spartan™-3 FPGA Handbook www.xilinx.com July 11, 2003
1-800-255-7778

"Xilinx" and the Xilinx logo shown above are registered trademarks of Xilinx, Inc. Any rights not expressly granted herein are reserved.

CoolRunner, RocketChips, Rocket IP, Spartan, StateBENCH, StateCAD, Virtex, XACT, XC2064, XC3090, XC4005, and XC5210 are
registered trademarks of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

ACE Controller, ACE Flash, A.K.A. Speed, Alliance Series, AllianceCORE, Bencher, ChipScope, Configurable Logic Cell, CORE Generator,
CoreLINX, Dual Block, EZTag, Fast CLK, Fast CONNECT, Fast FLASH, FastMap, Fast Zero Power, Foundation, Gigabit Speeds...and
Beyond!, HardWire, HDL Bencher, IRL, J Drive, JBits, LCA, LogiBLOX, Logic Cell, LogiCORE, LogicProfessor, MicroBlaze, MicroVia,
MultiLINX, NanoBlaze, PicoBlaze, PLUSASM, PowerGuide, PowerMaze, QPro, Real-PCI, RocketIO, SelectIO, SelectRAM, SelectRAM+,
Silicon Xpresso, Smartguide, Smart-IP, SmartSearch, SMARTswitch, System ACE, Testbench In A Minute, TrueMap, UIM, VectorMaze,
VersaBlock, VersaRing, Virtex-II Pro, Virtex-II EasyPath, Wave Table, WebFITTER, WebPACK, WebPOWERED, XABEL, XACT-
Floorplanner, XACT-Performance, XACTstep Advanced, XACTstep Foundry, XAM, XAPP, X-BLOX +, XC designated products, XChecker,
XDM, XEPLD, Xilinx Foundation Series, Xilinx XDTV, Xinfo, XSI, XtremeDSP and ZERO+ are trademarks of Xilinx, Inc.

The Programmable Logic Company is a service mark of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown herein; nor does it convey
any license under its patents, copyrights, or maskwork rights or any rights of others. Xilinx, Inc. reserves the right to make changes, at any
time, in order to improve reliability, function or design and to supply the best product possible. Xilinx, Inc. will not assume responsibility for
the use of any circuitry described herein other than circuitry entirely embodied in its products. Xilinx provides any design, code, or
information shown or described herein "as is." By providing the design, code, or information as one possible implementation of a feature,
application, or standard, Xilinx makes no representation that such implementation is free from any claims of infringement. You are
responsible for obtaining any rights you may require for your implementation. Xilinx expressly disclaims any warranty whatsoever with
respect to the adequacy of any such implementation, including but not limited to any warranties or representations that the implementation
is free from claims of infringement, as well as any implied warranties of merchantability or fitness for a particular purpose. Xilinx, Inc. devices
and products are protected under U.S. Patents. Other U.S. and foreign patents pending. Xilinx, Inc. does not represent that devices shown
or products described herein are free from patent infringement or from any other third party right. Xilinx, Inc. assumes no obligation to
correct any errors contained herein or to advise any user of this text of any correction if such be made. Xilinx, Inc. will not assume any liability
for the accuracy or correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in such applications without
the written consent of the appropriate Xilinx officer is prohibited.

The contents of this manual are owned and copyrighted by Xilinx. Copyright 2003 Xilinx, Inc. All Rights Reserved. Except as stated herein,
none of the material may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form or by
any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of
Xilinx. Any unauthorized use of any material contained in this manual may violate copyright laws, trademark laws, the laws of privacy and
publicity, and communications regulations and statutes.

Spartan™-3 FPGA Handbook
July 11, 2003

The following table shows the revision history for this document..

R

Version Revision

07/11/03 1.0 Initial Xilinx release.

ug000.book Page 2 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan™-3 FPGA Handbook www.xilinx.com 3
July 11, 2003 1-800-255-7778

R

Foreword

Xilinx, the leader in programmable logic, redefines the logic landscape with the

Spartan-3 FPGA family. Built on four generations of proven Spartan success in high

volume applications, Spartan-3 FPGAs leverage advanced 90nm technology to give

you up to five million system gates with the lowest cost per gate and per I/O of any

FPGA. This Spartan-3 FPGA Handbook provides a complete collection of technical

documentation for evaluating and using this exciting family. For the latest updates

and technical support, see the Xilinx web site at http://www.xilinx.com.

Kapil Shankar

Sr. Director, General Products Division Marketing and Applications Engineering

ug000.book Page 3 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com

4 www.xilinx.com Spartan™-3 FPGA Handbook
1-800-255-7778 July 11, 2003

Acknowledgments
R

Acknowledgments

The Spartan-3 FPGA Handbook Hoplites

Content Creation/Authors:

• Marc Baker
• Kim Goldblatt
• Steven Knapp

Contributors:

Cover Art:

• Russ Jordan
• Sal Randazzo

Documentation Services:

• Elaine Hadad, Technicalities, Inc.

Special thanks go to these teams at Xilinx for all their support:

• Global Services Division (GSD) Applications Engineering
• Advanced Products Division (APD) Applications Engineering
• General Products Division (GPD) System and Design Engineering

• David Anderson
• Chris Arndt
• Michol Bauer
• Justin Cammon
• Hari Devanath
• Paul Kirk

• Chris Mead
• Stephen Neuhold
• Mark Noble
• Kamal Patel
• Bryan Ramirez
• Shalin Sheth

• Elliot Schei
• Jon Schimeck
• Premduth Vidyanandan
• Roy White
• Derrick Woods
• Henke Yunkins

ug000.book Page 4 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan™-3 FPGA Handbook www.xilinx.com 5
July 11, 2003 1-800-255-7778

R

DS

DS

DS

DS

DS

DS

DS

DS

Spartan-3 Data Sheet

Designing with Spartan-3 FPGAs

Spartan-3 Design Software and IP Cores

Configuration Solutions and Considerations

Printed Circuit Board Design Considerations

Appendices

Index, Sales Office Listing

ug000.book Page 5 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

6 www.xilinx.com Spartan™-3 FPGA Handbook
1-800-255-7778 July 11, 2003

R

ug000.book Page 6 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan™-3 FPGA Handbook www.xilinx.com 7
July 11, 2003 1-800-255-7778

Foreword

Acknowledgments

Spartan-3 Data Sheet
Spartan-3 1.2V FPGA Family: Introduction and Ordering Information 11
Spartan-3 1.2V FPGA Family: Functional Description . 17
Spartan-3 1.2V FPGA Family: DC and Switching Characteristics 57
Spartan-3 1.2V FPGA Family: Pinout Descriptions . 71

Designing with Spartan-3 FPGAs
Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs. 109
Using Block RAM in Spartan-3 FPGAs . 177
Using Look-Up Tables as Distributed RAM in Spartan-3 FPGAs 217
Using Look-Up Tables as Shift Registers (SRL16) in Spartan-3 FPGAs 229
Using Dedicated Multiplexers in Spartan-3 FPGAs . 247
Using Embedded Multipliers in Spartan-3 FPGAs . 267

Spartan-3 Design Software and IP Cores
Using the ISE Design Tools for Spartan-3 FPGAs . 287
Using Spartan-3 IP Cores. 305
Embedded Processing and Control Solutions for Spartan-3 FPGAs 313

Configuration Solutions and Considerations
Platform Flash In-System Programmable Configuration PROMs 321
Bitstream Generator (BitGen) Switches and Options . 337

Printed Circuit Board Design Considerations
Package Drawings . 353
Using IBIS Models for Spartan-3 FPGAs . 363
Using BSDL Files for Spartan-3 FPGAs . 367

Appendices
Appendix A: Xilinx XAPP Application Notes . 375
Appendix B: Glossary. 379

Table of Contents

ug000.book Page 7 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

8 www.xilinx.com Spartan™-3 FPGA Handbook
1-800-255-7778 July 11, 2003

R

Index & Sales Office Listing
Index. 395
Xilinx Sales Offices. 400

ug000.book Page 8 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan™-3 FPGA Handbook www.xilinx.com 9
July 11, 2003 1-800-255-7778

R

DS

DSSpartan-3 Data Sheet

Introduction and Ordering Information

Functional Description

DC and Switching Characteristics

Pinout Descriptions [Abbreviated]

ug000.book Page 9 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

10 www.xilinx.com Spartan™-3 FPGA Handbook
1-800-255-7778 July 11, 2003

R

90 nm technology + 300 mm wafers = The most gates, I/Os, and advanced features at the lowest price

ug000.book Page 10 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

DS099-1 (v1.1) April 24, 2003 www.xilinx.com 11
Advance Product Specification 1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

Introduction
The 1.2V Spartan™-3 family of Field-Programmable Gate
Arrays is specifically designed to meet the needs of high
volume, cost-sensitive consumer electronic applications.
The eight-member family offers densities ranging from
50,000 to five million system gates, as shown in Table 1.

The Spartan-3 family builds on the success of the earlier
Spartan-IIE family by increasing the amount of logic
resources, the capacity of internal RAM, the total number of
I/Os, and the overall level of performance as well as by
improving clock management functions. Numerous
enhancements derive from state-of-the-art Virtex™-II tech-
nology. These Spartan-3 enhancements, combined with
advanced process technology, deliver more functionality
and bandwidth per dollar than was previously possible, set-
ting new standards in the programmable logic industry.

Because of their exceptionally low cost, Spartan-3 FPGAs
are ideally suited to a wide range of consumer electronics
applications, including broadband access, home network-
ing, display/projection and digital television equipment.

The Spartan-3 family is a superior alternative to mask pro-
grammed ASICs. FPGAs avoid the high initial cost, the
lengthy development cycles, and the inherent inflexibility of
conventional ASICs. Also, FPGA programmability permits
design upgrades in the field with no hardware replacement
necessary, an impossibility with ASICs.

Features
• Revolutionary 90-nanometer process technology
• Very low cost, high-performance logic solution for

high-volume, consumer-oriented applications

- Densities as high as 74,880 logic cells
- 326 MHz system clock rate
- Three separate power supplies for the core (1.2V),

I/Os (1.2V to 3.3V), and special functions (2.5V)
• SelectIO™ signaling

- Up to 784 I/O pins
- 622 Mb/s data transfer rate per I/O
- Seventeen single-ended signal standards
- Six differential signal standards including LVDS
- Termination by Digitally Controlled Impedance
- Signal swing ranging from 1.14V to 3.45V
- Double Data Rate (DDR) support

• Logic resources
- Abundant, flexible logic cells with registers
- Wide multiplexers
- Fast look-ahead carry logic
- Dedicated 18 x 18 multipliers
- JTAG logic compatible with IEEE 1149.1/1532

standards
• SelectRAM™ hierarchical memory

- Up to 1,872 Kbits of total block RAM
- Up to 520 Kbits of total distributed RAM

• Digital Clock Manager (up to four DCMs)
- Clock skew elimination
- Frequency synthesis
- High resolution phase shifting

• Eight global clock lines and abundant routing
• Fully supported by Xilinx ISE development system

- Synthesis, mapping, placement and routing

0

Spartan-3 1.2V FPGA Family:
Introduction and Ordering
Information

DS099-1 (v1.1) April 24, 2003 0 0 Advance Product Specification

R

Table 1: Summary of Spartan-3 FPGA Attributes

Device
System
Gates

Logic
Cells

CLB Array
(One CLB = Four Slices) Distributed

RAM (bits1)
Block RAM

(bits1)
Dedicated
Multipliers DCMs

Maximum
User I/O

Maximum
Differential

I/O PairsRows Columns Total CLBs

XC3S50 50K 1,728 16 12 192 12K 72K 4 2 124 56

XC3S200 200K 4,320 24 20 480 30K 216K 12 4 173 76

XC3S400 400K 8,064 32 28 896 56K 288K 16 4 264 116

XC3S1000 1M 17,280 48 40 1,920 120K 432K 24 4 391 175

XC3S1500 1.5M 29,952 64 52 3,328 208K 576K 32 4 487 221

XC3S2000 2M 46,080 80 64 5,120 320K 720K 40 4 565 270

XC3S4000 4M 62,208 96 72 6,912 432K 1,728K 96 4 712 312

XC3S5000 5M 74,880 104 80 8,320 520K 1,872K 104 4 784 344

Notes:
1. By convention, one Kb is equivalent to 1,024 bits.

ug000.book Page 11 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Spartan-3 1.2V FPGA Family: Introduction and Ordering Information

12 www.xilinx.com DS099-1 (v1.1) April 24, 2003
1-800-255-7778 Advance Product Specification

R

Architectural Overview
The Spartan-3 family architecture consists of five funda-
mental programmable functional elements:

• Configurable Logic Blocks (CLBs) contain RAM-based
Look-Up Tables (LUTs) to implement logic and storage
elements that can be used as flip-flops or latches.
CLBs can be programmed to perform a wide variety of
logical functions as well as to store data.

• Input/Output Blocks (IOBs) control the flow of data
between the I/O pins and the internal logic of the
device. Each IOB supports bidirectional data flow plus
3-state operation. Twenty-three different signal
standards, including six high-performance differential
standards, are available as shown in Table 2. Double
Data-Rate (DDR) registers are included. The Digitally
Controlled Impedance (DCI) feature provides
automatic on-chip terminations, simplifying board
designs.

• Block RAM provides data storage in the form of 18-Kbit
dual-port blocks.

• Multiplier blocks accept two 18-bit binary numbers as

inputs and calculate the product.
• Digital Clock Manager (DCM) blocks provide

self-calibrating, fully digital solutions for distributing,
delaying, multiplying, dividing, and phase shifting clock
signals.

These elements are organized as shown in Figure 1. A ring
of IOBs surrounds a regular array of CLBs. The XC3S50
has a single column of block RAM embedded in the array.
Those devices ranging from the XC3S200 to the XC3S2000
have two columns of block RAM. The XC3S4000 and
XC3S5000 devices have four RAM columns. Each column
is made up of several 18K-bit RAM blocks; each block is
associated with a dedicated multiplier. The DCMs are posi-
tioned at the ends of each block RAM column.

The Spartan-3 family features a rich network of traces and
switches that interconnect all five functional elements,
transmitting signals among them. Each functional element
has an associated switch matrix that permits multiple con-
nections to the routing.

Figure 1: Spartan-3 Family Architecture

DS099-1_01_032703

Notes:
1. The two additional block RAM columns of the XC3S4000 and XC3S5000

devices are shown with dashed lines. The XC3S50 has only the block RAM
column on the far left.

ug000.book Page 12 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Introduction and Ordering Information

DS099-1 (v1.1) April 24, 2003 www.xilinx.com 13
Advance Product Specification 1-800-255-7778

R

Configuration
Spartan-3 FPGAs are programmed by loading configuration
data into robust static memory cells that collectively control
all functional elements and routing resources. Before pow-
ering on the FPGA, configuration data is stored externally in
a PROM or some other nonvolatile medium either on or off
the board. After applying power, the configuration data is
written to the FPGA using any of five different modes: Mas-
ter Parallel, Slave Parallel, Master Serial, Slave Serial and
Boundary Scan (JTAG). The Master and Slave Parallel
modes use an 8-bit wide SelectMAP™ Port.

The recommended memory for storing the configuration
data is the low-cost Xilinx Platform Flash PROM family,
which includes XCF00S PROMs for serial configuration and
XCF00P PROMs for parallel configuration.

I/O Capabilities
The SelectIO feature of Spartan-3 devices supports 17 sin-
gle-ended standards and six differential standards as listed
in Table 2. Table 3 shows the number of user I/Os as well as
the number of differential I/O pairs available for each
device/package combination.

Table 2: Signal Standards Supported by the Spartan-3 Family

Standard
Category Description VCCO (V) Class Symbol

Single-Ended

GTL Gunning Transceiver Logic N/A Terminated GTL

Plus GTLP

HSTL High-Speed Transceiver Logic 1.5 I HSTL_I

III HSTL_III

1.8 I HSTL_I_18

II HSTL_II_18

III HSTL_III_18

LVCMOS Low-Voltage CMOS 1.2 N/A LVCMOS12

1.5 N/A LVCMOS15

1.8 N/A LVCMOS18

2.5 N/A LVCMOS25

3.3 N/A LVCMOS33

LVTTL Low-Voltage Transistor-Transistor Logic 3.3 N/A LVTTL

PCI Peripheral Component Interconnect 3.0 33 MHz PCI33_3

SSTL Stub Series Terminated Logic 1.8 N/A SSTL18_I

2.5 I SSTL2_I

II SSTL2_II

Differential

LDT Lightning Data Transport
(HyperTransport™)

2.5 N/A LDT_25

LVDS Low Voltage Differential Signaling Standard LVDS_25

Bus BLVDS_25

Extended Mode LVDSEXT_25

Ultra ULVDS_25

RSDS Reduced-Swing Differential Signaling 2.5 N/A RSDS_25

ug000.book Page 13 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Introduction and Ordering Information

14 www.xilinx.com DS099-1 (v1.1) April 24, 2003
1-800-255-7778 Advance Product Specification

R

Product Ordering and Availability
Table 4 shows all valid device ordering combinations of
device density, speed grade, package, and temperature

range parameters for the Spartan-3 family as well as the
availability status of those combinations.

Table 3: Spartan-3 User I/O Chart

Device

Available User I/Os and Differential (Diff) I/O Pairs

VQ100 TQ144 PQ208 FT256 FG456 FG676 FG900 FG1156

User Diff User Diff User Diff User Diff User Diff User Diff User Diff User Diff

XC3S50 63 29 97 46 124 56 - - - - - - - - - -

XC3S200 63 29 97 46 141 62 173 76 - - - - - - - -

XC3S400 - - 97 46 141 62 173 76 264 116 - - - - - -

XC3S1000 - - - - - - 173 76 333 149 391 175 - - - -

XC3S1500 - - - - - - - - 333 149 487 221 - - - -

XC3S2000 - - - - - - - - - - 489 221 565 270 - -

XC3S4000 - - - - - - - - - - - - 633 300 712 312

XC3S5000 - - - - - - - - - - - - 633 300 784 344

Notes:
1. All device options listed in a given package column are pin-compatible.

Table 4: Spartan-3 Device Availability

Package Type: VQFP TQFP PQFP FTBGA FBGA

No. of Pins: 100 144 208 256 456 676 900 1156

Code: VQ100 TQ144 PQ208 FT256 FG456 FG676 FG900 FG1156

Device(1)

XC3S50 (C, I) (C, I) (C, I) - - - - -

XC3S200 (C, I) (C, I) (C, I) (C, I) - - - -

XC3S400 - (C, I) (C, I) (C, I) (C, I) - - -

XC3S1000 - - - (C, I) (C, I) (C, I) - -

XC3S1500 - - - - (C, I) (C, I) - -

XC3S2000 - - - - - (C, I) (C, I) -

XC3S4000 - - - - - - (C, I) (C, I)

XC3S5000 - - - - - - (C, I) (C, I)

Notes:
1. Commercial devices are offered in the -4 and -5 speed grades; industrial devices are only in the -4 speed grade.
2. C = Commercial, TJ = 0° to +85°C; I = Industrial, TJ = –40°C to +100°C.
3. Parentheses indicate that a given device is not yet released to production. Contact your local sales office for availability information.

ug000.book Page 14 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Introduction and Ordering Information

DS099-1 (v1.1) April 24, 2003 www.xilinx.com 15
Advance Product Specification 1-800-255-7778

R

Ordering Information

Revision History

The Spartan-3 Family Data Sheet
DS099-1, Spartan-3 1.2V FPGA Family: Introduction and Ordering Information (Module 1)

DS099-2, Spartan-3 1.2V FPGA Family: Functional Description (Module 2)

DS099-3, Spartan-3 1.2V FPGA Family: DC and Switching Characteristics (Module 3)

DS099-4, Spartan-3 1.2V FPGA Family: Pinout Tables (Module 4)

Date Version No. Description

04/11/03 1.0 Initial Xilinx release.

04/24/03 1.1 Updated block RAM, DCM, and multiplier counts for the XC3S50.

XC3S50 -4 PQ208 CExample:
Temperature Range

Package Type / Number of Pins

Device Type

Speed Grade

Device Speed Grade Package Type / Number of Pins Temperature Range (TJ)

XC3S50 -4 Standard Performance VQ100 100-pin Very Thin Quad Flat Pack (VQFP) C Commercial (0°C to 85°C)

XC3S200 -5 High Performance TQ144 144-pin Thin Quad Flat Pack (TQFP) I Industrial (–40°C to 100°C)

XC3S400 PQ208 208-pin Plastic Quad Flat Pack (PQFP)

XC3S1000 FT256 256-ball Fine-Pitch Thin Ball Grid Array (FTBGA)

XC3S1500 FG456 456-ball Fine-Pitch Ball Grid Array (FBGA)

XC3S2000 FG676 676-ball Fine-Pitch Ball Grid Array (FBGA)

XC3S4000 FG900 900-ball Fine-Pitch Ball Grid Array (FBGA)

XC3S5000 FG1156 1156-ball Fine-Pitch Ball Grid Array (FBGA)

ug000.book Page 15 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/bvdocs/publications/ds099-2.pdf
http://www.xilinx.com/bvdocs/publications/ds099-3.pdf
http://www.xilinx.com/bvdocs/publications/ds099-4.pdf

Spartan-3 1.2V FPGA Family: Introduction and Ordering Information

16 www.xilinx.com DS099-1 (v1.1) April 24, 2003
1-800-255-7778 Advance Product Specification

R

ug000.book Page 16 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

DS099-2 (v1.2) July 11, 2003 www.xilinx.com 17
Advance Product Specification 1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

IOBs

IOB Overview
The Input/Output Block (IOB) provides a programmable,
bidirectional interface between an I/O pin and the FPGA’s
internal logic.

A simplified diagram of the IOB’s internal structure appears
in Figure 1. There are three main signal paths within the
IOB: the output path, input path, and 3-state path. Each
path has its own pair of storage elements that can act as
either registers or latches. For more information, see the
Storage Element Functions section. The three main signal
paths are as follows:

• The input path carries data from the pad, which is
bonded to a package pin, through an optional
programmable delay element directly to the I line. After
the delay element, there are alternate routes through a
pair of storage elements to the IQ1 and IQ2 lines. The
IOB outputs I, IQ1, and IQ2 all lead to the FPGA’s
internal logic. The delay element can be set to ensure a
hold time of zero.

• The output path, starting with the O1 and O2 lines,
carries data from the FPGA’s internal logic through a
multiplexer and then a three-state driver to the IOB
pad. In addition to this direct path, the multiplexer
provides the option to insert a pair of storage elements.

• The 3-state path determines when the output driver is
high impedance. The T1 and T2 lines carry data from

the FPGA’s internal logic through a multiplexer to the
output driver. In addition to this direct path, the
multiplexer provides the option to insert a pair of
storage elements.

• All signal paths entering the IOB, including those
associated with the storage elements, have an inverter
option. Any inverter placed on these paths is
automatically absorbed into the IOB.

Storage Element Functions
There are three pairs of storage elements in each IOB, one
pair for each of the three paths. It is possible to configure
each of these storage elements as an edge-triggered
D-type flip-flop (FD) or a level-sensitive latch (LD).

The storage-element-pair on either the Output path or the
Three-State path can be used together with a special multi-
plexer to produce Double-Data-Rate (DDR) transmission.
This is accomplished by taking data synchronized to the
clock signal’s rising edge and converting them to bits syn-
chronized on both the rising and the falling edge. The com-
bination of two registers and a multiplexer is referred to as a
Double-Data-Rate D-type flip-flop (FDDR).

See Double-Data-Rate Transmission, page 19 for more
information.

The signal paths associated with the storage element are
described in Table 1.

0

Spartan-3 1.2V FPGA Family:
Functional Description

DS099-2 (v1.2) July 11, 2003 0 0 Advance Product Specification

R

Table 1: Storage Element Signal Description

Storage
Element
Signal Description Function

D Data input Data at this input is stored on the active edge of CK enabled by CE. For latch operation when the
input is enabled, data passes directly to the output Q.

Q Data output The data on this output reflects the state of the storage element. For operation as a latch in
transparent mode, Q will mirror the data at D.

CK Clock input A signal’s active edge on this input with CE asserted, loads data into the storage element.

CE Clock Enable input When asserted, this input enables CK. If not connected, CE defaults to the asserted state.

SR Set/Reset Forces storage element into the state specified by the SRHIGH/SRLOW attributes. The
SYNC/ASYNC attribute setting determines if the SR input is synchronized to the clock or not.

REV Reverse Used together with SR. Forces storage element into the state opposite from what SR does.

ug000.book Page 17 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Spartan-3 1.2V FPGA Family: Functional Description

18 www.xilinx.com DS099-2 (v1.2) July 11, 2003
1-800-255-7778 Advance Product Specification

R

Figure 1: Simplified IOB Diagram

D

CE

CK

TFF1

Three-state Path

T

T1

TCE

T2
TFF2

Q

SR

DDR
MUX

REV

D

CE

CK

Q

SR REV

D

CE

CK

OFF1

Output Path

O1

OCE

O2
OFF2

Q

SR

DDR
MUX

Weak
Keeper
Latch

VCCO

VREF
Pin

I/O Pin
from
Adjacent
IOB

DS099_01_040703

I/O
Pin

Program-
mable
Output
Driver

DCI

ESDWeak
Pull-Up

Weak
Pull-
Down

ESD

REV

D

CE

CK

Q

SR REV

OTCLK1

OTCLK2

D

CE

CK

IFF1

Input Path

I

ICE

IFF2

Q

SR

Fixed
Delay

LVCMOS, LVTTL, PCI

Single-ended Standards
using VREF

Differential Standards

REV

D

CE

CK

Q

SR REV

ICLK1

ICLK2

SR

REV

Note: All IOB signals communicating with the FPGA's internal logic have the option of inverting polarity.

IQ1

IQ2

ug000.book Page 18 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Functional Description

DS099-2 (v1.2) July 11, 2003 www.xilinx.com 19
Advance Product Specification 1-800-255-7778

R

According to Figure 1, the clock line OTCLK1 connects the
CK inputs of the upper registers on the output and
three-state paths. Similarly, OTCLK2 connects the CK
inputs for the lower registers on the output and three-state
paths. The upper and lower registers on the input path have
independent clock lines: ICLK1 and ICLK2.

The enable line OCE connects the CE inputs of the upper
and lower registers on the output path. Similarly, TCE con-
nects the CE inputs for the register pair on the three-state

path and ICE does the same for the register pair on the
input path.

The Set/Reset (SR) line entering the IOB is common to all
six registers, as is the Reverse (REV) line.

Each storage element supports numerous options in addi-
tion to the control over signal polarity described in the IOB
Overview section. These are described in Table 2.

Double-Data-Rate Transmission
Double-Data-Rate (DDR) transmission describes the tech-
nique of synchronizing signals to both the rising and falling
edges of the clock signal. Spartan-3 devices use regis-
ter-pairs in all three IOB paths to perform DDR operations.

The pair of storage elements on the IOB’s Output path
(OFF1 and OFF2), used as registers, combine with a spe-
cial multiplexer to form a DDR D-type flip-flop (FDDR). This
primitive permits DDR transmission where output data bits
are synchronized to both the rising and falling edges of a
clock. It is possible to access this function by placing either
an FDDRRSE or an FDDRCPE component or symbol into
the design. DDR operation requires two clock signals (50%
duty cycle), one the inverted form of the other. These sig-
nals trigger the two registers in alternating fashion, as
shown in Figure 2. Commonly, the Digital Clock Manager
(DCM) generates the two clock signals by mirroring an
incoming signal, then shifting it 180 degrees. This approach
ensures minimal skew between the two signals.

The storage-element-pair on the Three-State path (TFF1
and TFF2) can also be combined with a local multiplexer to
form an FDDR primitive. This permits synchronizing the out-
put enable to both the rising and falling edges of a clock.
This DDR operation is realized in the same way as for the
output path.

The storage-element-pair on the input path (IFF1 and IFF2)
allows an I/O to receive a DDR signal. An incoming DDR
clock signal triggers one register and the inverted clock sig-
nal triggers the other register. In this way, the registers take
turns capturing bits of the incoming DDR data signal.

Aside from high bandwidth data transfers, DDR can also be
used to reproduce, or “mirror”, a clock signal on the output.
This approach is used to transmit clock and data signals
together. A similar approach is used to reproduce a clock
signal at multiple outputs. The advantage for both
approaches is that skew across the outputs will be minimal.

Table 2: Storage Element Options

Option Switch Function Specificity

FF/Latch Chooses between an edge-sensitive flip-flop or
a level-sensitive latch

Independent for each storage element.

SYNC/ASYNC Determines whether SR is synchronous or
asynchronous

Independent for each storage element.

SRHIGH/SRLOW Determines whether SR acts as a Set, which
forces the storage element to a logic “1"
(SRHIGH) or a Reset, which forces a logic “0”
(SRLOW).

Independent for each storage element, except
when using FDDR. In the latter case, the selection
for the upper element (OFF1 or TFF2) will apply to
both elements.

INIT1/INIT0 In the event of a Global Set/Reset, after
configuration or upon activation of the GTS net,
this switch decides whether to set or reset a
storage element. By default, choosing SRLOW
also selects INIT0; choosing SRHIGH also
selects INIT1.

Independent for each storage element, except
when using FDDR. In the latter case, selecting
INIT0 for one element applies to both elements
(even though INIT1 is selected for the other).

ug000.book Page 19 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Functional Description

20 www.xilinx.com DS099-2 (v1.2) July 11, 2003
1-800-255-7778 Advance Product Specification

R

Pull-Up and Pull-Down Resistors
The optional pull-up and pull-down resistors are intended to
establish High and Low levels, respectively, at unused I/Os.
The weak pull-up resistor optionally connects each IOB pad
to VCCO. A weak pull-down resistor optionally connects
each pad to GND. These resistors are placed in a design
using the PULLUP and PULLDOWN symbols in a sche-
matic, respectively. They can also be instantiated as com-
ponents, set as constraints or passed as attributes in HDL
code. These resistors can also be selected for all unused
I/O using the Bitstream Generator (BitGen) option Unused-
Pin. A Low logic level on HSWAP_EN activates the pull-up
resistors on all I/Os during configuration.

Weak-Keeper Circuit
Each I/O has an optional weak-keeper circuit that retains
the last logic level on a line after all drivers have been turned
off. This is useful to keep bus lines from floating when all
connected drivers are in a high-impedance state. This func-
tion is placed in a design using the KEEPER symbol.
Pull-up and pull-down resistors override the weak-keeper
circuit.

ESD Protection
Clamp diodes protect all device pads against damage from
Electro-Static Discharge (ESD) as well as excessive voltage
transients. Each I/O has two clamp diodes: One diode
extends P-to-N from the pad to VCCO and a second diode
extends N-to-P from the pad to GND. During operation,
these diodes are normally biased in the off state. These

clamp diodes are always connected to the pad, regardless
of the signal standard selected. The presence of diodes lim-
its the ability of Spartan-3 I/Os to tolerate high signal volt-
ages. The VIN absolute maximum rating in Table 1, Module 3
specifies the voltage range that I/Os can tolerate.

Slew Rate Control and Drive Strength
Two options, FAST and SLOW, control the output slew rate.
The FAST option supports output switching at a high rate.
The SLOW option reduces bus transients. These options are
only available when using one of the LVCMOS or LVTTL
standards, which also provide up to seven different levels of
current drive strength: 2, 4, 6, 8, 12, 16, and 24 mA. Choos-
ing the appropriate drive strength level is yet another means
to minimize bus transients.

Table 3 shows the drive strengths that the LVCMOS and
LVTTL standards support. The Fast option is indicated by
appending an "F" attribute after the output buffer symbol
OBUF or the bidirectional buffer symbol IOBUF. The Slow
option appends an "S" attribute. The drive strength in milliam-
peres follows the slew rate attribute. For example,
OBUF_LVCMOS18_S_6 or IOBUF_LVCMOS25_F_16.

Boundary-Scan Capability
All Spartan-3 IOBs support boundary-scan testing compat-
ible with IEEE 1149.1 standards. See Boundary-Scan
(JTAG) Mode, page 52 for more information.

SelectIO Signal Standards
The IOBs support 17 different single-ended signal stan-
dards, as listed in Table 4. Furthermore, the majority of
IOBs can be used in specific pairs supporting any of six dif-
ferential signal standards, as shown in Table 5. The desired
standard is selected by placing the appropriate I/O library
symbol or component into the FPGA design. For example,
the symbol named IOBUF_LVCMOS15_F_8 represents a
bidirectional I/O to which the 1.5V LVCMOS signal standard
has been assigned. The slew rate and current drive are set
to Fast and 8 mA, respectively.

Together with placing the appropriate I/O symbol, two exter-
nally applied voltage levels, VCCO and VREF select the
desired signal standard. The VCCO lines provide current to
the output driver. The voltage on these lines determines the

Figure 2: Clocking the DDR Register

D1

CLK1

DDR MUX

DCM

Q1

FDDR

D2

CLK2

Q2

180˚ 0˚

DS099-2_02_070303

Q

Table 3: Programmable Output Drive Current

Signal
Standard

Current Drive (mA)

2 4 6 8 12 16 24

LVCMOS12 - - - -

LVCMOS15 - -

LVCMOS18 -

LVCMOS25

LVCMOS33

LVTTL

ug000.book Page 20 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/bvdocs/publications/ds099-3.pdf

Spartan-3 1.2V FPGA Family: Functional Description

DS099-2 (v1.2) July 11, 2003 www.xilinx.com 21
Advance Product Specification 1-800-255-7778

R

output voltage swing for all standards except GTL and
GTLP.

All single-ended standards except the LVCMOS modes
require a Reference Voltage (VREF) to bias the input-switch-
ing threshold. Once a configuration data file is loaded into
the FPGA that calls for the I/Os of a given bank to use such
a signal standard, a few specifically reserved I/O pins on the
same bank automatically convert to VREF inputs. When
using one of the LVCMOS standards, these pins remain
I/Os because the VCCO voltage biases the input-switching
threshold, so there is no need for VREF. Select the VCCO and
VREF levels to suit the desired single-ended standard
according to Table 4.

Differential standards employ a pair of signals, one the
opposite polarity of the other. The noise canceling (e.g.,
Common-Mode Rejection) properties of these standards
permit exceptionally high data transfer rates. This section
introduces the differential signaling capabilities of Spartan-3
devices.

Each device-package combination designates specific I/O
pairs that are specially optimized to support differential
standards. A unique “L-number”, part of the pin name, iden-
tifies the line-pairs associated with each bank (see Module
4). For each pair, the letters “P” and “N” designate the true
and inverted lines, respectively. For example, the pin names
IO_L43P_7 and IO_L43N_7 indicate the true and inverted
lines comprising the line pair L43 on Bank 7. The differential
Output Voltage (VOD) parameter measures the voltage dif-
ference the High and Low logic levels that a pair of differen-
tial outputs drive. The VOD range for each of the differential
standards is listed in Table 5. The VCCO lines provide cur-
rent to the outputs. The VREF lines are not used. Select the
VCCO level to suit the desired differential standard according
to Table 5.

The need to supply VREF and VCCO imposes constraints on
which standards can be used in the same bank. See The
Organization of IOBs into Banks section for additional
guidelines concerning the use of the VCCO and VREF lines.

Digitally Controlled Impedance (DCI)
When the round-trip delay of an output signal — i.e., from
output to input and back again — exceeds rise and fall
times, it is common practice to add termination resistors to
the line carrying the signal. These resistors effectively
match the impedance of a device’s I/O to the characteristic
impedance of the transmission line, thereby preventing
reflections that adversely affect signal integrity. However,
with the high I/O counts supported by modern devices, add-
ing resistors requires significantly more components and
board area. Furthermore, for some packages — e.g., ball
grid arrays — it may not always be possible to place resis-
tors close to pins.

DCI answers these concerns by providing two kinds of
on-chip terminations: Parallel terminations make use of an
integrated resistor network. Series terminations result from
controlling the impedance of output drivers. DCI actively
adjusts both parallel and series terminations to accurately

Table 4: Single-Ended I/O Standards (Values in Volts)

Signal
Standard

VCCO

VREF for
Inputs(1)

Board
Termination
Voltage (VTT)

For
Outputs

For
Inputs

GTL Note 2 Note 2 0.8 1.2

GTLP Note 2 Note 2 1 1.5

HSTL_I 1.5 - 0.75 0.75

HSTL_III 1.5 - 0.9 1.5

HSTL_I_18 1.8 - 0.9 0.9

HSTL_II_18 1.8 - 0.9 0.9

HSTL_III_18 1.8 - 1.1 1.8

LVCMOS12 1.2 1.2 - -

LVCMOS15 1.5 1.5 - -

LVCMOS18 1.8 1.8 - -

LVCMOS25 2.5 2.5 - -

LVCMOS33 3.3 3.3 - -

LVTTL 3.3 3.3 - -

PCI33_3 3.0 3.0 - -

SSTL18_I 1.8 - 0.9 0.9

SSTL2_I 2.5 - 1.25 1.25

SSTL2_II 2.5 - 1.25 1.25

Notes:
1. Banks 4 and 5 of any Spartan-3 device in a VQ100 package

do not support signal standards using VREF.
2. The VCCO level used for the GTL and GTLP standards must

be no lower than the termination voltage (VTT), nor can it be
lower than the voltage at the I/O pad.

3. See Table 6 for a listing of the single-ended DCI standards.

Table 5: Differential I/O Standards

Signal
Standard

VCCO (Volts) VREF for
Inputs
(Volts)

VOD
(1) (mV)

For
Outputs

For
Inputs Min. Max.

LDT_25 2.5 - - 430 670

LVDS_25 2.5 - - 250 400

BLVDS_25 2.5 - - 250 450

LVDSEXT_25 2.5 - - 330 700

ULVDS_25 2.5 - - 430 670

RSDS_25 2.5 - - 100 400

Notes:
1. Measured with a termination resistor value (RT) of 100

Ohms.
2. See Table 6 for a listing of the differential DCI standards.

Table 4: Single-Ended I/O Standards (Values in Volts)

Signal
Standard

VCCO

VREF for
Inputs(1)

Board
Termination
Voltage (VTT)

For
Outputs

For
Inputs

ug000.book Page 21 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/bvdocs/publications/ds099-4.pdf
http://www.xilinx.com/bvdocs/publications/ds099-4.pdf

Spartan-3 1.2V FPGA Family: Functional Description

22 www.xilinx.com DS099-2 (v1.2) July 11, 2003
1-800-255-7778 Advance Product Specification

R

match the characteristic impedance of the transmission line.
This adjustment process compensates for differences in I/O
impedance that can result from normal variation in the
ambient temperature, the supply voltage and the manufac-
turing process. When the output driver turns off, the series
termination, by definition, approaches a very high imped-
ance; in contrast, parallel termination resistors remain at the
targeted values.

DCI is available only for certain I/O standards, as listed in
Table 6. DCI is selected by applying the appropriate I/O
standard extensions to symbols or components. There are
five basic ways to configure terminations, as shown in
Table 7. The DCI I/O standard determines which of these
terminations is put into effect.

Table 6: DCI I/O Standards

Category of Signal
Standard Signal Standard

VCCO (V)

VREF for
Inputs (V)

Termination Type

For
Outputs

For
Inputs At Output At Input

Single-Ended

Gunning
Transceiver Logic

GTL_DCI 1.2 1.2 0.8 Single Single

GTLP_DCI 1.5 1.5 1.0

High-Speed
Transceiver Logic

HSTL_I_DCI 1.5 1.5 0.75 None Split

HSTL_III_DCI 1.5 1.5 0.9 None Single

HSTL_I_DCI_18 1.8 1.8 0.9 None Split

HSTL_II_DCI_18 1.8 1.8 0.9 Split

HSTL_III_DCI_18 1.8 1.8 1.1 None Single

Low-Voltage CMOS LVDCI_15 1.5 1.5 - Controlled impedance
driver

None

LVDCI_18 1.8 1.8 -

LVDCI_25 2.5 2.5 -

LVDCI_33 3.3 3.3 -

LVDCI_DV2_15 1.5 1.5 - Controlled driver with
half-impedance

LVDCI_DV2_18 1.8 1.8 -

LVDCI_DV2_25 2.5 2.5 -

LVDCI_DV2_33 3.3 3.3 -

Stub Series
Terminated Logic

SSTL18_I_DCI 1.8 1.8 0.9 25-Ohm driver Split

SSTL2_I_DCI 2.5 2.5 1.25 25-Ohm driver

SSTL2_II_DCI 2.5 2.5 1.25 Split with 25-Ohm driver

Differential

Low-Voltage
Differential
Signalling

LVDS_25_DCI 2.5 2.5 - None Split on
each line

of pair
LVDSEXT_25_DCI 2.5 2.5 -

Notes:
1. Bank 5 of any Spartan-3 device in a VQ100 or TQ144 package does not support DCI signal standards.

ug000.book Page 22 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Functional Description

DS099-2 (v1.2) July 11, 2003 www.xilinx.com 23
Advance Product Specification 1-800-255-7778

R

Table 7: DCI Terminations

Termination Schematic(1) I/O Standards

Controlled impedance output driver LVDCI_15
LVDCI_18
LVDCI_25
LVDCI_33

Controlled output driver with half impedance LVDCI_DV2_15
LVDCI_DV2_18
LVDCI_DV2_25
LVDCI_DV2_33

Single resistor GTL_DCI
GTLP_DCI
HSTL_III_DCI(2)

HSTL_III_DCI_18(2)

Split resistors HSTL_I_DCI(2)

HSTL_I_DCI_18(2)

HSTL_II_DCI_18
LVDS_25_DCI
LVDSEXT_25_DCI

Split resistors with output driver impedance
fixed to 25Ω

SSTL18_I_DCI(3)

SSTL2_I_DCI(3)

SSTL2_II_DCI

Notes:
1. The value of R is equivalent to the characteristic impedance of the line connected to the I/O. It is also equal to half the value of RREF

for the DV2 standards and RREF for all other DCI standards.
2. For DCI using HSTL Classes I and III, terminations only go into effect at inputs (not at outputs).
3. For DCI using SSTL Class I, the split termination only goes into effect at inputs (not at outputs).

Z0

IOB

R

Z0

IOB

R/2

R Z0

VCCOIOB

2R

2R Z0

VCCOIOB

25Ω

2R

2R Z0

VCCOIOB

ug000.book Page 23 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Functional Description

24 www.xilinx.com DS099-2 (v1.2) July 11, 2003
1-800-255-7778 Advance Product Specification

R

The DCI feature operates independently for each of the
device’s eight banks. Each bank has an "N" reference pin
(VRN) and a "P" reference pin, (VRP), to calibrate driver
and termination resistance. Only when using a DCI stan-
dard on a given bank do these two pins function as VRN
and VRP. When not using a DCI standard, the two pins func-
tion as user I/Os. As shown in Figure 3, add an external ref-
erence resistor to pull the VRN pin up to VCCO and another
reference resistor to pull the VRP pin down to GND. Both
resistors have the same value — commonly 50 Ohms —
with one-percent tolerance, which is either the characteristic
impedance of the line or twice that, depending on the DCI
standard in use. Standards having a symbol name that con-
tains the letters “DV2” use a reference resistor value that is
twice the line impedance. DCI adjusts the output driver
impedance to match the reference resistors’ value or half
that, according to the standard. DCI always adjusts the
on-chip termination resistors to directly match the reference
resistors’ value.

The rules guiding the use of DCI standards on banks are as
follows:

1. No more than one DCI I/O standard with a Single
Termination is allowed per bank.

2. No more than one DCI I/O standard with a Split
Termination is allowed per bank.

3. Single Termination, Split Termination, Controlled-
Impedance Driver, and Controlled-Impedance Driver
with Half Impedance can co-exist in the same bank.

See also The Organization of IOBs into Banks, page 24.

The Organization of IOBs into Banks
IOBs are allocated among eight banks, so that each side of
the device has two banks, as shown in Figure 4. For all
packages, each bank has independent VREF lines. For
example, VREF Bank 3 lines are separate from the VREF
lines going to all other banks.

For the Very Thin Quad Flat Pack (VQ), Plastic Quad Flat
Pack (PQ), Fine Pitch Thin Ball Grid Array (FT), and Fine
Pitch Ball Grid Array (FG) packages, each bank has dedi-
cated VCCO lines. For example, the VCCO Bank 7 lines are
separate from the VCCO lines going to all other banks. Thus,

Spartan-3 devices in these packages support eight inde-
pendent VCCO supplies.

In contrast, the 144-pin Thin Quad Flat Pack (TQ144) pack-
age ties VCCO together internally for the pair of banks on
each side of the device. For example, the VCCO Bank 0 and
the VCCO Bank 1 lines are tied together. The interconnected
bank-pairs are 0/1, 2/3, 4/5, and 6/7. As a result, Spartan-3
devices in the TQ144 package support four independent
VCCO supplies.

Spartan-3 Compatibility
Within the Spartan-3 family, all devices are pin-compatible
by package. When the need for future logic resources out-
grows the capacity of the Spartan-3 device in current use, a
larger device in the same package can serve as a direct
replacement. Larger devices may add extra VREF and VCCO
lines to support a greater number of I/Os. In the larger
device, more pins can convert from user I/Os to VREF lines.
Also, additional VCCO lines are bonded out to pins that were
“not connected” in the smaller device. Thus, it is important
to plan for future upgrades at the time of the board’s initial
design by laying out connections to the extra pins.

The Spartan-3 family is not pin-compatible with any previ-
ous Xilinx FPGA family.

Rules Concerning Banks
When assigning I/Os to banks, it is important to follow the
following VCCO rules:

1. Leave no VCCO pins unconnected on the FPGA.

2. Set all VCCO lines associated with the (interconnected)
bank to the same voltage level.

3. The VCCO levels used by all standards assigned to the
I/Os of the (interconnected) bank(s) must agree. The
Xilinx development software checks for this. Tables 4,
5, and 6 describe how different standards use the VCCO
supply.

Figure 3: Connection of Reference Resistors (RREF)

DS099-2_04_091602

VCCO

VRN

VRP

One of eight
I/O Banks

RREF (1%)

RREF (1%)

Figure 4: Spartan-3 I/O Banks (top view)

DS099-2_03_060102

Bank 0 Bank 1

Bank 5 Bank 4

B
an

k
7

B
an

k
6

B
an

k
2

B
an

k
3

ug000.book Page 24 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Functional Description

DS099-2 (v1.2) July 11, 2003 www.xilinx.com 25
Advance Product Specification 1-800-255-7778

R

4. If none of the standards assigned to the I/Os of the
(interconnected) bank(s) use VCCO, tie all associated
VCCO lines to 2.5V.

5. In general, apply 2.5V to VCCO Bank 4 from power-on to
the end of configuration. Apply the same voltage to
VCCO Bank 5 during parallel configuration or a
Readback operation. For information on how to
program the FPGA using 3.3V signals and power, see
the 3.3V-Tolerant Configuration Interface section.

If any of the standards assigned to the Inputs of the bank
use VREF, then observe the following additional rules:

1. Leave no VREF pins unconnected on any bank.

2. Set all VREF lines associated with the bank to the same
voltage level.

3. The VREF levels used by all standards assigned to the
Inputs of the bank must agree. The Xilinx development
software checks for this. Tables 4 and 6 describe how
different standards use the VREF supply.

If none of the standards assigned to the Inputs of a bank
use VREF for biasing input switching thresholds, all associ-
ated VREF pins function as User I/Os.

Exceptions to Banks Supporting I/O
Standards
Bank 5 of any Spartan-3 device in a VQ100 or TQ144 pack-
age does not support DCI signal standards. In this case,
bank 5 has neither VRN nor VRP pins.

Furthermore, banks 4 and 5 of any Spartan-3 device in a
VQ100 package do not support signal standards using
VREF (see Table 4). In this case, the two banks do not have
any VREF pins.

Supply Voltages for the IOBs
Three different supplies power the IOBs:

1. The VCCO supplies, one for each of the FPGA’s I/O
banks, power the output drivers, except when using the
GTL and GTLP signal standards. The voltage on the
VCCO pins determines the voltage swing of the output
signal.

2. VCCINT is the main power supply for the FPGA’s internal
logic.

3. The VCCAUX is an auxiliary source of power, primarily to
optimize the performance of various FPGA functions
such as I/O switching.

The I/Os During Power-On, Configuration, and
User Mode
With no power applied to the FPGA, all I/Os are in a
high-impedance state. The VCCINT (1.2V), VCCAUX (2.5V),
and VCCO supplies may be applied in any order. Before
power-on can finish, VCCINT, VCCO Bank 4, and VCCAUX
must have reached their respective minimum recom-
mended operating levels (see Table 2 in Module 3). At this
time, all I/O drivers also will be in a high-impedance state.
VCCO Bank 4, VCCINT, and VCCAUX serve as inputs to the
internal Power-On Reset circuit (POR).

A Low level applied to HSWAP_EN input enables weak
pull-up resistors on User I/Os from power-on throughout
configuration. A High level on HSWAP_EN disables the
pull-up resistors, allowing the I/Os to float. As soon as
power is applied, the FPGA begins initializing its configura-
tion memory. At the same time, the FPGA internally asserts
the Global Set-Reset (GSR), which asynchronously resets
all IOB storage elements to a Low state.

Upon the completion of initialization, INIT_B goes High,
sampling the M0, M1, and M2 inputs to determine the con-
figuration mode. At this point, the configuration data is
loaded into the FPGA. The I/O drivers remain in a
high-impedance state (with or without pull-up resistors, as
determined by the HSWAP_EN input) throughout configura-
tion.

The Global Three State (GTS) net is released during
Start-Up, marking the end of configuration and the begin-
ning of design operation in the User mode. At this point,
those I/Os to which signals have been assigned go active
while all unused I/Os remain in a high-impedance state. The
release of the GSR net, also part of Start-up, leaves the IOB
registers in a Low state by default, unless the loaded design
reverses the polarity of their respective RS inputs.

In User mode, all weak, internal pull-up resistors on the I/Os
are disabled and HSWAP_EN becomes a “don’t care” input.
If it is desirable to have weak pull-up or pull-down resistors
on I/Os carrying signals, the appropriate symbol — e.g.,
PULLUP, PULLDOWN — must be placed at the appropriate
pads in the design. The Bitstream Generator (Bitgen) option
UnusedPin available in the Xilinx development software
determines whether unused I/Os collectively have pull-up
resistors, pull-down resistors, or no resistors in User mode.

ug000.book Page 25 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/bvdocs/publications/ds099-3.pdf

Spartan-3 1.2V FPGA Family: Functional Description

26 www.xilinx.com DS099-2 (v1.2) July 11, 2003
1-800-255-7778 Advance Product Specification

R

.

CLB Overview
The Configurable Logic Blocks (CLBs) constitute the main
logic resource for implementing synchronous as well as
combinatorial circuits. Each CLB comprises four intercon-
nected slices, as shown in Figure 5. These slices are
grouped in pairs. Each pair is organized as a column with
an independent carry chain.

The nomenclature that the FPGA Editor — part of the Xilinx
development software — uses to designate slices is as fol-
lows: The letter "X" followed by a number identifies columns
of slices. The "X" number counts up in sequence from the
left side of the die to the right. The letter "Y" followed by a
number identifies the position of each slice in a pair as well
as indicating the CLB row. The "Y" number counts slices
starting from the bottom of the die according to the
sequence: 0, 1, 0, 1 (the first CLB row); 2, 3, 2, 3 (the sec-
ond CLB row); etc. Figure 5 shows the CLB located in the
lower left-hand corner of the die. Slices X0Y0 and X0Y1
make up the column-pair on the left where as slices X1Y0
and X1Y1 make up the column-pair on the right. For each
CLB, the term “left-hand” (or SLICEM) is used to indicated
the pair of slices labeled with an even "X" number, such as
X0, and the term “right-hand” (or SLICEL) designates the
pair of slices with an odd "X" number, e.g., X1.

Elements Within a Slice
All four slices have the following elements in common: two
logic function generators, two storage elements, wide-func-
tion multiplexers, carry logic, and arithmetic gates, as
shown in Figure 6. Both the left-hand and right-hand slice
pairs use these elements to provide logic, arithmetic, and

ROM functions. Besides these, the left-hand pair supports
two additional functions: storing data using Distributed RAM
and shifting data with 16-bit registers. Figure 6 is a diagram
of the left-hand slice; therefore, it represents a superset of
the elements and connections to be found in all slices. See
Function Generator, page 28 for more information.

The RAM-based function generator — also known as a
Look-Up Table or LUT — is the main resource for imple-
menting logic functions. Furthermore, the LUTs in each
left-hand slice pair can be configured as Distributed RAM or
a 16-bit shift register. For information on the former, see
XAPP464: Using Look-Up Tables as Distributed RAM in
Spartan-3 FPGAs; for information on the latter, refer to
XAPP465: Using Look-Up Tables as Shift Registers (SRL16)
in Spartan-3 FPGAs. The function generators located in the
upper and lower portions of the slice are referred to as the
"G" and "F", respectively.

The storage element, which is programmable as either a
D-type flip-flop or a level-sensitive latch, provides a means
for synchronizing data to a clock signal, among other uses.
The storage elements in the upper and lower portions of the
slice are called FFY and FFX, respectively.

Wide-function multiplexers effectively combine LUTs in
order to permit more complex logic operations. Each slice
has two of these multiplexers with F5MUX in the lower por-
tion of the slice and FXMUX in the upper portion. Depend-
ing on the slice, FXMUX takes on the name F6MUX,
F7MUX, or F8MUX. For more details on the multiplexers,
see XAPP466: Using Dedicated Multiplexers in Spartan-3
FPGAs.

Figure 5: Arrangement of Slices within the CLB

DS099-2_05_040703

Interconnect
to Neighbors

Left-Hand SLICEM
(Logic or Distributed RAM

or Shift Register)

Right-Hand SLICEL
(Logic Only)

CIN

SLICE
X0Y1

SLICE
X0Y0

Switch
Matrix

COUT

CLB

COUT

SHIFTOUT
SHIFTIN

CIN

SLICE
X1Y1

SLICE
X1Y0

ug000.book Page 26 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/xapp/xapp465.pdf
http://www.xilinx.com/xapp/xapp465.pdf
http://www.xilinx.com/xapp/xapp464.pdf
http://www.xilinx.com/xapp/xapp466.pdf

Spartan-3 1.2V FPGA Family: Functional Description

DS099-2 (v1.2) July 11, 2003 www.xilinx.com 27
Advance Product Specification 1-800-255-7778

R

Figure 6: Simplified Diagram of the Left-Hand SLICEM

Notes:
1. Options to invert signal polarity as well as other options that enable lines for various functions are not shown.
2. The index i can be 6, 7, or 8, depending on the slice. In this position, the upper right-hand slice has an F8MUX,

and the upper left-hand slice has an F7MUX. The lower right-hand and left-hand slices both have an F6MUX.

ug000.book Page 27 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Functional Description

28 www.xilinx.com DS099-2 (v1.2) July 11, 2003
1-800-255-7778 Advance Product Specification

R

The carry chain, together with various dedicated arithmetic
logic gates, support fast and efficient implementations of
math operations. The carry chain enters the slice as CIN
and exits as COUT. Five multiplexers control the chain:
CYINIT, CY0F, and CYMUXF in the lower portion as well as
CY0G and CYMUXG in the upper portion. The dedicated
arithmetic logic includes the exclusive-OR gates XORF and
XORG (upper and lower portions of the slice, respectively)
as well as the AND gates GAND and FAND (upper and
lower portions, respectively).

Main Logic Paths
Central to the operation of each slice are two nearly identi-
cal data paths, distinguished using the terms top and bot-
tom. The description that follows uses names associated
with the bottom path. (The top path names appear in paren-
theses.) The basic path originates at an interconnect-switch
matrix outside the CLB. Four lines, F1 through F4 (or G1
through G4 on the upper path), enter the slice and connect
directly to the LUT. Once inside the slice, the lower 4-bit
path passes through a function generator "F" (or "G") that
performs logic operations. The function generator’s Data
output, "D", offers five possible paths:

1. Exit the slice via line "X" (or "Y") and return to
interconnect.

2. Inside the slice, "X" (or "Y") serves as an input to the
DXMUX (DYMUX) which feeds the data input, "D", of
the FFY (FFX) storage element. The "Q" output of the
storage element drives the line XQ (or YQ) which exits
the slice.

3. Control the CYMUXF (or CYMUXG) multiplexer on the
carry chain.

4. With the carry chain, serve as an input to the XORF (or
XORG) exclusive-OR gate that performs arithmetic
operations, producing a result on "X" (or "Y").

5. Drive the multiplexer F5MUX to implement logic
functions wider than four bits. The "D" outputs of both
the F-LUT and G-LUT serve as data inputs to this
multiplexer.

In addition to the main logic paths described above, there
are two bypass paths that enter the slice as BX and BY.
Once inside the FPGA, BX in the bottom half of the slice (or
BY in the top half) can take any of several possible
branches:

1. Bypass both the LUT and the storage element, then exit
the slice as BXOUT (or BYOUT) and return to
interconnect.

2. Bypass the LUT, then pass through a storage element
via the D input before exiting as XQ (or YQ).

3. Control the wide function multiplexer F5MUX (or
F6MUX).

4. Via multiplexers, serve as an input to the carry chain.

5. Drives the DI input of the LUT. See Distributed RAM
section.

6. BY can control the REV inputs of both the FFY and FFX
storage elements. See Storage Element Section.

7. Finally, the DIG_MUX multiplexer can switch BY onto to
the DIG line, which exits the slice.

Other slice signals shown in Figure 6, page 27 are dis-
cussed in the sections that follow.

Function Generator
Each of the two LUTs (F and G) in a slice have four logic
inputs (A1-A4) and a single output (D). This permits any
four-variable Boolean logic operation to be programmed
into them. Furthermore, wide function multiplexers can be
used to effectively combine LUTs within the same CLB or
across different CLBs, making logic functions with still more
input variables possible.

The LUTs in both the right-hand and left-hand slice-pairs
not only support the logic functions described above, but
also can function as ROM that is initialized with data at the
time of configuration.

The LUTs in the left-hand slice-pair (even-numbered col-
umns such as X0 in Figure 5) of each CLB support two
additional functions that the right-hand slice-pair (odd-num-
bered columns such as X1) do not.

First, it is possible to program the “left-hand LUTs” as dis-
tributed RAM. This type of memory affords moderate
amounts of data buffering anywhere along a data path. One
left-hand LUT stores 16 bits. Multiple left-hand LUTs can be
combined in various ways to store larger amounts of data. A
dual port option combines two LUTs so that memory access
is possible from two independent data lines. A Distributed
ROM option permits pre-loading the memory with data dur-
ing FPGA configuration For more information, see the Dis-
tributed RAM section.

Second, it is possible to program each left-hand LUT as a
16-bit shift register. Used in this way, each LUT can delay
serial data anywhere from one to 16 clock cycles. The four
left-hand LUTs of a single CLB can be combined to produce
delays up to 64 clock cycles. The SHIFTIN and SHIFTOUT
lines cascade LUTs to form larger shift registers. It is also
possible to combine shift registers across more than one
CLB. The resulting programmable delays can be used to
balance the timing of data pipelines.

Block RAM Overview
All Spartan-3 devices support block RAM, which is orga-
nized as configurable, synchronous 18Kbit blocks. Block
RAM stores relatively large amounts of data more efficiently
than the distributed RAM feature described earlier. (The lat-
ter is better suited for buffering small amounts of data any-
where along signal paths.) This section describes basic
Block RAM functions. For more information, see XAPP463:
Using Block RAM in Spartan-3 FPGAs.

ug000.book Page 28 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/xapp/xapp463.pdf

Spartan-3 1.2V FPGA Family: Functional Description

DS099-2 (v1.2) July 11, 2003 www.xilinx.com 29
Advance Product Specification 1-800-255-7778

R

The aspect ratio — i.e., width vs. depth — of each block
RAM is configurable. Furthermore, multiple blocks can be
cascaded to create still wider and/or deeper memories.

A choice among primitives determines whether the block
RAM functions as dual- or single-port memory. A name of
the form RAM16_S[wA]_S[wB] calls out the dual-port primi-
tive, where the integers wA and wB specify the total data
path width at ports wA and wB, respectively. Thus, a
RAM16_S9_S18 is a dual-port RAM with a 9-bit-wide Port A
and an 18-bit-wide Port B. A name of the form RAM16_S[w]
identifies the single-port primitive, where the integer w
specifies the total data path width of the lone port. A
RAM16_S18 is a single-port RAM with an 18-bit-wide port.
Other memory functions — e.g., FIFOs, data path width
conversion, ROM, etc. — are readily available using the
CORE Generator™ system, part of the Xilinx development
software.

Arrangement of RAM Blocks on Die
The XC3S50 has one column of block RAM. The Spartan-3
devices ranging from the XC3S200 to XC3S2000 have two
columns of block RAM. The XC3S4000 and XC3S5000
have four columns. The position of the columns on the die is
shown in Figure 1 in Module 1. For a given device, the total
available RAM blocks are distributed equally among the col-
umns. Table 8 shows the number of RAM blocks, the data
storage capacity, and the number of columns for each
device.

The Internal Structure of the Block RAM
The block RAM has a dual port structure. The two identical
data ports called A and B permit independent access to the
common RAM block, which has a maximum capacity of
18,432 bits — or 16,384 bits when no parity lines are used.
Each port has its own dedicated set of data, control and
clock lines for synchronous read and write operations.
There are four basic data paths, as shown in Figure 7: (1)
write to and read from Port A, (2) write to and read from Port
B, (3) data transfer from Port A to Port B, and (4) data trans-
fer from Port B to Port A.

Block RAM Port Signal Definitions
Representations of the dual-port primitive
RAM16_S[wA]_S[wB] and the single-port primitive
RAM16_S[w] with their associated signals are shown in
Figure 8a and Figure 8b, respectively. These signals are
defined in Table 9.

Table 8: Number of RAM Blocks by Device

Device
Total Number

of RAM Blocks

Total
Addressable

Locations (bits)

Number
of

Columns

XC3S50 4 73,728 1

XC3S200 12 221,184 2

XC3S400 16 294,912 2

XC3S1000 24 442,368 2

XC3S1500 32 589,824 2

XC3S2000 40 737,280 2

XC3S4000 96 1,769,472 4

XC3S5000 104 1,916,928 4

Figure 7: Block RAM Data Paths

DS099-2_12_030703

Spartan-3
Dual Port

Block RAM

Read 3

Read

Write

Write

Read

Write

Write

Read

P
or

t A

P
or

t B

21

4

ug000.book Page 29 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/bvdocs/publications/ds099-1.pdf

Spartan-3 1.2V FPGA Family: Functional Description

30 www.xilinx.com DS099-2 (v1.2) July 11, 2003
1-800-255-7778 Advance Product Specification

R

Figure 8: Block RAM Primitives

DS099-2_13_091302

WEA
ENA

SSRA
CLKA

ADDRA[rA–1:0]
DIA[wA–1:0]

DIPA[3:0]

DOPA[pA–1:0]

DOA[wA–1:0]

RAM16_wA_wB

(a) Dual-Port (b) Single-Port

DOPB[pB–1:0]

DOB[wB–1:0]

WEB
ENB

SSRB
CLKB

ADDRB[rB–1:0]
DIB[wB–1:0]

DIPB[3:0]

WE
EN

SSR
CLK

ADDR[r–1:0]
DI[w–1:0]

DIP[p–1:0]

DOP[p–1:0]

DO[w–1:0]

RAM16_Sw

Notes:
1. wA and wB are integers representing the total data path width (i.e., data bits plus parity bits) at ports A and B, respectively.
2. pA and pB are integers that indicate the number of data path lines serving as parity bits.
3. rA and rB are integers representing the address bus width at ports A and B, respectively.
4. The control signals CLK, WE, EN, and SSR on both ports have the option of inverted polarity.

Table 9: Block RAM Port Signals

Signal
Description

Port A
Signal
Name

Port B
Signal
Name Direction Function

Address Bus ADDRA ADDRB Input The Address Bus selects a memory location for read or write
operations. The width (w) of the port’s associated data path
determines the number of available address lines (r).

Data Input Bus DIA DIB Input Data at the DI input bus is written to the addressed memory
location addressed on an enabled active CLK edge.

It is possible to configure a port’s total data path width (w) to be
1, 2, 4, 9, 18, or 36 bits. This selection applies to both the DI and
DO paths of a given port. Each port is independent. For a port
assigned a width (w), the number of addressable locations will
be 16,384/(w-p) where "p" is the number of parity bits. Each
memory location will have a width of "w" (including parity bits).
See the DIP signal description for more information of parity.

Parity Data
Input(s)

DIPA DIPB Input Parity inputs represent additional bits included in the data input
path to support error detection. The number of parity bits "p"
included in the DI (same as for the DO bus) depends on a port’s
total data path width (w). See Table 10.

ug000.book Page 30 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Functional Description

DS099-2 (v1.2) July 11, 2003 www.xilinx.com 31
Advance Product Specification 1-800-255-7778

R

Port Aspect Ratios
On a given port, it is possible to select a number of different
possible widths (w – p) for the DI/DO buses as shown in
Table 10. These two buses always have the same width.
This data bus width selection is independent for each port. If
the data bus width of Port A differs from that of Port B, the

Block RAM automatically performs a bus-matching function.
When data are written to a port with a narrow bus, then read
from a port with a wide bus, the latter port will effectively
combine “narrow” words to form “wide” words. Similarly,
when data are written into a port with a wide bus, then read
from a port with a narrow bus, the latter port will divide

Data Output
Bus

DOA DOB Output Basic data access occurs whenever WE is inactive. The DO
outputs mirror the data stored in the addressed memory
location.

Data access with WE asserted is also possible if one of the
following two attributes is chosen: WRITE_FIRST accesses
data before the write takes place. READ_FIRST accesses data
after the write occurs.

A third attribute, NO_CHANGE, latches the DO outputs upon
the assertion of WE.

It is possible to configure a port’s total data path width (w) to be
1, 2, 4, 9, 18, or 36 bits. This selection applies to both the DI and
DO paths. See the DI signal description.

Parity Data
Output(s)

DOPA DOPB Output Parity inputs represent additional bits included in the data input
path to support error detection. The number of parity bits "p"
included in the DI (same as for the DO bus) depends on a port’s
total data path width (w). See Table 10.

Write Enable WEA WEB Input When asserted together with EN, this input enables the writing
of data to the RAM. In this case, the data access attributes
WRITE_FIRST, READ_FIRST or NO_CHANGE determines if
and how data is updated on the DO outputs. See the DO signal
description.

When WE is inactive with EN asserted, read operations are still
possible. In this case, a transparent latch passes data from the
addressed memory location to the DO outputs.

Clock Enable ENA ENB Input When asserted, this input enables the CLK signal to
synchronize Block RAM functions as follows: the writing of data
to the DI inputs (when WE is also asserted), the updating of data
at the DO outputs as well as the setting/resetting of the DO
output latches.

When de-asserted, the above functions are disabled.

Set/Reset SSRA SSRB Input When asserted, this pin forces the DO output latch to the value
that the SRVAL attribute is set to. A Set/Reset operation on one
port has no effect on the other ports functioning, nor does it
disturb the memory’s data contents. It is synchronized to the
CLK signal.

Clock CLKA CLKB Input This input accepts the clock signal to which read and write
operations are synchronized. All associated port inputs are
required to meet setup times with respect to the clock signal’s
active edge. The data output bus responds after a clock-to-out
delay referenced to the clock signal’s active edge.

Table 9: Block RAM Port Signals (Continued)

Signal
Description

Port A
Signal
Name

Port B
Signal
Name Direction Function

ug000.book Page 31 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Functional Description

32 www.xilinx.com DS099-2 (v1.2) July 11, 2003
1-800-255-7778 Advance Product Specification

R

“wide” words to form “narrow” words. When the data bus
width is eight bits or greater, extra parity bits become avail-
able. The width of the total data path (w) is the sum of the
DI/DO bus width and any parity bits (p).

The width selection made for the DI/DO bus determines the
number of address lines according to the relationship
expressed below:

r = 14 – [log(w–p)/log(2)] (1)

In turn, the number of address lines delimits the total num-
ber (n) of addressable locations or depth according to the
following equation:

n = 2r (2)

The product of w and n yields the total block RAM capacity.
Equations (1) and (2) show that as the data bus width
increases, the number of address lines along with the num-
ber of addressable memory locations decreases. Using the
permissible DI/DO bus widths as inputs to these equations
provides the bus width and memory capacity measures
shown in Table 10.

Block RAM Data Operations
Writing data to and accessing data from the block RAM are
synchronous operations that take place independently on
each of the two ports.

The waveforms for the write operation are shown in the top
half of the Figure 9, Figure 10, and Figure 11. When the WE
and EN signals enable the active edge of CLK, data at the
DI input bus is written to the block RAM location addressed
by the ADDR lines.

There are a number of different conditions under which data
can be accessed at the DO outputs. Basic data access
always occurs when the WE input is inactive. Under this

condition, data stored in the memory location addressed by
the ADDR lines passes through a transparent output latch
to the DO outputs. The timing for basic data access is
shown in the portions of Figure 9, Figure 10, and Figure 11
during which WE is Low.

Data can also be accessed on the DO outputs when assert-
ing the WE input. This is accomplished using two different
attributes:

Choosing the WRITE_FIRST attribute, data is written to the
addressed memory location on an enabled active CLK edge
and is also passed to the DO outputs. WRITE_FIRST timing
is shown in the portion of Figure 9 during which WE is High.

Table 10: Port Aspect Ratios for Port A or B

DI/DO Bus Width
(w – p bits)

DIP/DOP
Bus Width (p bits)

Total Data Path
Width (w bits)

ADDR Bus
Width (r bits)

No. of
Addressable
Locations (n)

Block RAM
Capacity

(bits)

1 0 1 14 16,384 16,384

2 0 2 13 8,192 16,384

4 0 4 12 4,096 16,384

8 1 9 11 2,048 18,432

16 2 18 10 1,024 18,432

32 4 36 9 512 18,432

ug000.book Page 32 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Functional Description

DS099-2 (v1.2) July 11, 2003 www.xilinx.com 33
Advance Product Specification 1-800-255-7778

R

Choosing the READ_FIRST attribute, data already stored in
the addressed location pass to the DO outputs before that
location is over-written with new data from the DI inputs on

an enabled active CLK edge. READ_FIRST timing is shown
in the portion of Figure 10 during which WE is High.

Choosing a third attribute called NO_CHANGE puts the DO
outputs in a latched state when asserting WE. Under this
condition, the DO outputs will retain the data driven just

before WE was asserted. NO_CHANGE timing is shown in
the portion of Figure 11 during which WE is High.

Figure 9: Waveforms of Block RAM Data Operations with WRITE_FIRST Selected

CLK

WE

DI

ADDR

DO

EN

DISABLED READ

XXXX 1111 2222 XXXX

aa bb cc dd

0000 MEM(aa) 1111 2222 MEM(dd)

READWRITE
MEM(bb)=1111

WRITE
MEM(cc)=2222

DS099-2_14_030403

Figure 10: Waveforms of Block RAM Data Operations with READ_FIRST Selected

CLK

WE

DI

ADDR

DO

EN

DISABLED READ

XXXX 1111 2222 XXXX

aa bb cc dd

0000 MEM(aa) old MEM(bb) old MEM(cc) MEM(dd)

READWRITE
MEM(bb)=1111

WRITE
MEM(cc)=2222

DS099-2_15_030403

ug000.book Page 33 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Functional Description

34 www.xilinx.com DS099-2 (v1.2) July 11, 2003
1-800-255-7778 Advance Product Specification

R

Dedicated Multipliers
All Spartan-3 devices provide embedded multipliers that
accept two 18-bit words as inputs to produce a 36-bit prod-
uct. This section provides an introduction to multipliers. For
further details, see XAPP467: Using Embedded Multipliers
in Spartan-3 FPGAs.

The input buses to the multiplier accept data in two’s-com-
plement form (either 18-bit signed or 17-bit unsigned). One
such multiplier is matched to each block RAM on the die.
The close physical proximity of the two ensures efficient

data handling. Cascading multipliers permits multiplicands
more than three in number as well as wider than 18-bits.
The multiplier is placed in a design using one of two primi-
tives: an asynchronous version called MULT18X18 and a
version with a register at the outputs called MULT18X18S,
as shown in Figure 12a and Figure 12b, respectively. The
signals for these primitives are defined in Table 11.

The CORE Generator system produces multipliers based
on these primitives that can be configured to suit a wide
range of requirements.

Figure 11: Waveforms of Block RAM Data Operations with NO_CHANGE Selected

CLK

WE

DI

ADDR

DO

EN

DISABLED READ

XXXX 1111 2222 XXXX

aa bb cc dd

0000 MEM(aa) MEM(dd)

READWRITE
MEM(bb)=1111

WRITE
MEM(cc)=2222

DS099-2_16_030403

Figure 12: Embedded Multiplier Primitives

DS099-2_17_091302

(a) Asynchronous 18-bit Multiplier (b) 18-bit Multiplier with Register at Outputs

A[17:0]

B[17:0]
P[35:0]

MULT18X18

A[17:0]

B[17:0]

CLK

CE

RST

P[35:0]
MULT18X18S

ug000.book Page 34 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/xapp/xapp467.pdf

Spartan-3 1.2V FPGA Family: Functional Description

DS099-2 (v1.2) July 11, 2003 www.xilinx.com 35
Advance Product Specification 1-800-255-7778

R

Digital Clock Manager (DCM)
Spartan-3 devices provide flexible, complete control over
clock frequency, phase shift and skew through the use of
the DCM feature. To accomplish this, the DCM employs a
Delay-Locked Loop (DLL), a fully digital control system that
uses feedback to maintain clock signal characteristics with a
high degree of precision despite normal variations in oper-
ating temperature and voltage. This section provides a fun-
damental description of the DCM. For further information,
see XAPP462: Using Digital Clock Managers (DCMs) in
Spartan-3 FPGAs.

Each member of the Spartan-3 family has four DCMs,
except the smallest, the XC3S50, which has two DCMs.
The DCMs are located at the ends of the outermost Block
RAM column(s). See Figure 1 in Module 1. The Digital Clock
Manager is placed in a design as the “DCM” primitive.

The DCM supports three major functions:

• Clock-skew Elimination: Clock skew describes the
extent to which clock signals may, under normal
circumstances, deviate from zero-phase alignment. It
occurs when slight differences in path delays cause the

clock signal to arrive at different points on the die at
different times. This clock skew can increase set-up
and hold time requirements as well as clock-to-out
time, which may be undesirable in applications
operating at a high frequency, when timing is critical.
The DCM eliminates clock skew by aligning the output
clock signal it generates with another version of the
clock signal that is fed back. As a result, the two clock
signals establish a zero-phase relationship. This
effectively cancels out clock distribution delays that
may lie in the signal path leading from the clock output
of the DCM to its feedback input.

• Frequency Synthesis: Provided with an input clock
signal, the DCM can generate a wide range of different
output clock frequencies. This is accomplished by
either multiplying and/or dividing the frequency of the
input clock signal by any of several different factors.

• Phase Shifting: The DCM provides the ability to shift
the phase of all its output clock signals with respect to
its input clock signal.

Table 11: Embedded Multiplier Primitives Descriptions

Signal
Name Direction Function

A[17:0] Input Apply one 18-bit multiplicand to these inputs. The MULT18X18S primitive requires a setup time
before the enabled rising edge of CLK.

B[17:0] Input Apply the other 18-bit multiplicand to these inputs. The MULT18X18S primitive requires a setup
time before the enabled rising edge of CLK.

P[35:0] Output The output on the P bus is a 36-bit product of the multiplicands A and B. In the case of the
MULT18X18S primitive, an enabled rising CLK edge updates the P bus.

CLK Input CLK is only an input to the MULT18X18S primitive. The clock signal applied to this input when
enabled by CE, updates the output register that drives the P bus.

CE Input CE is only an input to the MULT18X18S primitive. Enable for the CLK signal. Asserting this input
enables the CLK signal to update the P bus.

RST Input RST is only an input to the MULT18X18S primitive. Asserting this input resets the output register
on an enabled, rising CLK edge, forcing the P bus to all zeroes.

Notes:
1. The control signals CLK, CE and RST have the option of inverted polarity.

ug000.book Page 35 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/bvdocs/publications/ds099-1.pdf
http://www.xilinx.com/xapp/xapp462.pdf
http://www.xilinx.com/xapp/xapp462.pdf

Spartan-3 1.2V FPGA Family: Functional Description

36 www.xilinx.com DS099-2 (v1.2) July 11, 2003
1-800-255-7778 Advance Product Specification

R

The DCM has four functional components: the
Delay-Locked Loop (DLL), the Digital Frequency Synthe-
sizer (DFS), the Phase Shifter (PS), and the Status Logic.

Each component has its associated signals, as shown in
Figure 13.

Delay-Locked Loop (DLL)
The most basic function of the DLL component is to elimi-
nate clock skew. The main signal path of the DLL consists of
an input stage, followed by a series of discrete delay ele-
ments or taps, which in turn leads to an output stage. This

path together with logic for phase detection and control
forms a system complete with feedback as shown in
Figure 14.

Figure 13: DCM Functional Blocks and Associated Signals

DS099-2_07_040103

PSINCDEC
PSEN

PSCLK

CLKIN

CLKFB

RST
STATUS [7:0]

LOCKED
8

CLKFX180

CLKFX

CLK0

PSDONE

Clock
Distribution

DelayCLK90
CLK180
CLK270
CLK2X
CLK2X180
CLKDV

Status
Logic

DFS
DLL

Phase
Shifter

D
el

ay
 T

ap
s

O
ut

pu
t S

ta
ge

In
pu

t S
ta

ge

DCM

Figure 14: Simplified Functional Diagram of DLL

DS099-2_08_041103

CLKIN
Delay

n

CLKFB

RST

CLK0

CLK90

CLK180

CLK270

CLK2X

CLK2X180

CLKDV

O
ut

pu
t S

ec
tio

n

Control

Delay
n-1

Phase
Detection

LOCKED

Delay
2

Delay
1

ug000.book Page 36 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Functional Description

DS099-2 (v1.2) July 11, 2003 www.xilinx.com 37
Advance Product Specification 1-800-255-7778

R

The DLL component has two clock inputs, CLKIN and
CLKFB, as well as seven clock outputs, CLK0, CLK90,
CLK180, CLK270, CLK2X, CLK2X180, and CLKDV as
described in Table 12. The clock outputs drive simulta-
neously; however, the High Frequency mode only supports

a subset of the outputs available in the Low Frequency
mode. See DLL Frequency Modes, page 39. Signals that
initialize and report the state of the DLL are discussed in
The Status Logic Component, page 44.

The clock signal supplied to the CLKIN input serves as a
reference waveform, with which the DLL seeks to align the
feedback signal at the CLKFB input. When eliminating clock
skew, the common approach to using the DLL is as follows:
The CLK0 signal is passed through the clock distribution
network to all the registers it synchronizes. These registers
are either internal or external to the FPGA. After passing
through the clock distribution network, the clock signal
returns to the DLL via a feedback line called CLKFB. The
control block inside the DLL measures the phase error
between CLKFB and CLKIN. This phase error is a measure
of the clock skew that the clock distribution network intro-

duces. The control block activates the appropriate number
of delay elements to cancel out the clock skew. Once the
DLL has brought the CLK0 signal in phase with the CLKIN
signal, it asserts the LOCKED output, indicating a “lock” on
to the CLKIN signal.

DLL Attributes and Related Functions
A number of different functional options can be set for the
DLL component through the use of the attributes described
in Table 13. Each attribute is described in detail in the sec-
tions that follow:

Table 12: DLL Signals

Signal Direction Description

Mode Support

Low
Frequency

High
Frequency

CLKIN Input Accepts original clock signal. Yes Yes

CLKFB Input Accepts either CLK0 or CLK2X as feed back signal. (Set
CLK_FEEDBACK attribute accordingly).

Yes Yes

CLK0 Output Generates clock signal with same frequency and phase as CLKIN. Yes Yes

CLK90 Output Generates clock signal with same frequency as CLKIN, only
phase-shifted 90°.

Yes No

CLK180 Output Generates clock signal with same frequency as CLKIN, only
phase-shifted 180°.

Yes Yes

CLK270 Output Generates clock signal with same frequency as CLKIN, only
phase-shifted 270°.

Yes No

CLK2X Output Generates clock signal with same phase as CLKIN, only twice the
frequency.

Yes No

CLK2X180 Output Generates clock signal with twice the frequency of CLKIN,
phase-shifted 180° with respect to CLKIN.

Yes No

CLKDV Output Divides the CLKIN frequency by CLKDV_DIVIDE value to generate
lower frequency clock signal that is phase-aligned to CLKIN.

Yes Yes

ug000.book Page 37 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Functional Description

38 www.xilinx.com DS099-2 (v1.2) July 11, 2003
1-800-255-7778 Advance Product Specification

R

DLL Clock Input Connections

An external clock source enters the FPGA using a Global
Clock Input Buffer (IBUFG), which directly accesses the glo-
bal clock network or an Input Buffer (IBUF). Clock signals
within the FPGA drive a global clock net using a Global
Clock Multiplexer Buffer (BUFGMUX). The global clock net
connects directly to the CLKIN input. The internal and exter-
nal connections are shown in Figure 15a and Figure 15c,
respectively. A differential clock (e.g., LVDS) can serve as
an input to CLKIN.

DLL Clock Output and Feedback Connections
As many as four of the nine DCM clock outputs can simulta-
neously drive the four BUFGMUX buffers on the same die
edge (top or bottom). All DCM clock outputs can simulta-
neously drive general routing resources, including intercon-
nect leading to OBUF buffers.

The feedback loop is essential for DLL operation and is
established by driving the CLKFB input with either the CLK0
or the CLK2X signal so that any undesirable clock distribu-
tion delay is included in the loop. It is possible to use either
of these two signals for synchronizing any of the seven DLL
outputs: CLK0, CLK90, CLK180, CLK270, CLKDV, CLK2X,
or CLK2X180. The value assigned to the CLK_FEEDBACK
attribute must agree with the physical feedback connection:
a value of 1X for the CLK0 case, 2X for the CLK2X case. If
the DCM is used in an application that does not require the
DLL — i.e., only the DFS is used — then there is no feed-
back loop so CLK_FEEDBACK is set to NONE.

There are two basic cases that determine how to connect
the DLL clock outputs and feedback connections: on-chip
synchronization and off-chip synchronization, which are
illustrated in Figure 15a through Figure 15d.

Table 13: DLL Attributes

Attribute Description Values

CLK_FEEDBACK Chooses either the CLK0 or CLK2X output to drive the
CLKFB input

NONE, 1X, 2X

DLL_FREQUENCY_MODE Chooses between High Frequency and Low
Frequency modes

LOW, HIGH

CLKIN_DIVIDE_BY_2 Halves the frequency of the CLKIN signal just as it
enters the DCM

TRUE, FALSE

CLKDV_DIVIDE Selects constant used to divide the CLKIN input
frequency to generate the CLKDV output frequency

1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5,
6.0, 6.5, 7.0, 7.5, 8, 9, 10, 11,
12, 13, 14, 15, and 16.

DUTY_CYCLE_CORRECTION Enables 50% duty cycle correction for the CLK0,
CLK90, CLK180, and CLK270 outputs

TRUE, FALSE

ug000.book Page 38 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Functional Description

DS099-2 (v1.2) July 11, 2003 www.xilinx.com 39
Advance Product Specification 1-800-255-7778

R

In the on-chip synchronization case (Figure 15a and
Figure 15b), it is possible to connect any of the DLL’s seven
output clock signals through general routing resources to
the FPGA’s internal registers. Either a Global Clock Buffer
(BUFG) or a BUFGMUX affords access to the global clock
network. As shown in Figure 15a, the feedback loop is cre-
ated by routing CLK0 (or CLK2X, in Figure 15b) to a global
clock net, which in turn drives the CLKFB input.

In the off-chip synchronization case (Figure 15c and
Figure 15d), CLK0 (or CLK2X) plus any of the DLL’s other
output clock signals exit the FPGA using output buffers
(OBUF) to drive an external clock network plus registers on
the board. As shown in Figure 15c, the feedback loop is
formed by feeding CLK0 (or CLK2X, in Figure 15d) back
into the FPGA using an IBUFG, which directly accesses the
global clock network, or an IBUF. Then, the global clock net
is connected directly to the CLKFB input.

DLL Frequency Modes
The DLL supports two distinct operating modes, High Fre-
quency and Low Frequency, with each specified over a differ-
ent clock frequency range. The DLL_FREQUENCY_MODE

attribute chooses between the two modes. When the
attribute is set to LOW, the Low Frequency mode permits all
seven DLL clock outputs to operate over a low-to-moderate
frequency range. When the attribute is set to HIGH, the High
Frequency mode allows the CLK0, CLK180 and CLKDV out-
puts to operate at the highest possible frequencies. The
remaining DLL clock outputs are not available for use in High
Frequency mode.

Accommodating High Input Frequencies
If the frequency of the CLKIN signal is high such that it
exceeds the maximum permitted, divide it down to an
acceptable value using the CLKIN_DIVIDE_BY_2 attribute.
When this attribute is set to TRUE, the CLKIN frequency is
divided by a factor of two just as it enters the DCM.

Coarse Phase Shift Outputs of the DLL Compo-
nent
In addition to CLK0 for zero-phase alignment to the CLKIN
signal, the DLL also provides the CLK90, CLK180 and
CLK270 outputs for 90°, 180° and 270° phase-shifted sig-
nals, respectively. These signals are described in Table 12.

Figure 15: Input Clock, Output Clock, and Feedback Connections for the DLL

DS099-2_09_071003

CLK90
CLK180
CLK270
CLKDV
CLK2X

CLK2X180

CLK0

CLK0

Clock
Net Delay

BUFGMUX

BUFGMUX

BUFG

FPGA

(a) On-Chip with CLK0 Feedback

CLKIN

DCM

CLKFB

CLK90
CLK180
CLK270
CLKDV
CLK2X

CLK2X180

CLK0

CLK0

Clock
Net Delay

IBUFG

IBUFG

FPGA

(c) Off-Chip with CLK0 Feedback

CLKIN

DCM

CLKFB

OBUFG

OBUFG

CLK2X

CLK2X

IBUFG

IBUFG

FPGA

(d) Off-Chip with CLK2X Feedback

CLKIN

DCM

CLKFB

OBUFG

OBUFG

CLK0
CLK90

CLK180
CLK270
CLKDV

CLK2X180

CLK2X

CLK2X

Clock
Net Delay

Clock
Net Delay

BUFGMUX

BUFGMUX

BUFG

FPGA

(b) On-Chip with CLK2X Feedback

CLKIN

DCM

CLKFB

CLK0
CLK90

CLK180
CLK270
CLKDV

CLK2X180

Notes:
1. In the Low Frequency mode, all seven DLL outputs are available. In the High Frequency mode, only the CLK0, CLK180,

and CLKDV outputs are available.

ug000.book Page 39 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Functional Description

40 www.xilinx.com DS099-2 (v1.2) July 11, 2003
1-800-255-7778 Advance Product Specification

R

Their relative timing in the Low Frequency Mode is shown in
Figure 16. The CLK90, CLK180 and CLK270 outputs are
not available when operating in the High Frequency mode.
(See the description of the DLL_FREQUENCY_MODE
attribute in Table 13.) For control in finer increments than
90°, see the Phase Shifter (PS), page 42 section.

Basic Frequency Synthesis Outputs of the DLL
Component
The DLL component provides basic options for frequency
multiplication and division in addition to the more flexible
synthesis capability of the DFS component, described in a
later section. These operations result in output clock signals
with frequencies that are either a fraction (for division) or a
multiple (for multiplication) of the incoming clock frequency.
The CLK2X output produces an in-phase signal that is twice
the frequency of CLKIN. The CLK2X180 output also dou-
bles the frequency, but is 180° out-of-phase with respect to
CLKIN. The CLKDIV output generates a clock frequency
that is a predetermined fraction of the CLKIN frequency.
The CLKDV_DIVIDE attribute determines the factor used to
divide the CLKIN frequency. The attribute can be set to var-
ious values as described in Table 13. The basic frequency
synthesis outputs are described in Table 12. Their relative
timing in the Low Frequency Mode is shown in Figure 16.

The CLK2X and CLK2X180 outputs are not available when
operating in the High Frequency mode. (See the description
of the DLL_FREQUENCY_MODE attribute in Table 14.)

Duty Cycle Correction of DLL Clock Outputs
The CLK2X(1), CLK2X180, and CLKDV(2) output signals
ordinarily exhibit a 50% duty cycle – even if the incoming
CLKIN signal has a different duty cycle. Fifty-percent duty
cycle means that the High and Low times of each clock
cycle are equal. The DUTY_CYCLE_CORRECTION
attribute determines whether or not duty cycle correction is
applied to the CLK0, CLK90, CLK180 and CLK270 outputs.
If DUTY_CYCLE_CORRECTION is set to TRUE, then the
duty cycle of these four outputs is corrected to 50%. If
DUTY_CYCLE_CORRECTION is set to FALSE, then these
outputs exhibit the same duty cycle as the CLKIN signal.
Figure 16 compares the characteristics of the DLL’s output
signals to those of the CLKIN signal.

1. The CLK2X output generates a 25% duty cycle clock at the same frequency as the CLKIN signal until the DLL has achieved lock.
2. The duty cycle of the CLKDV outputs may differ somewhat from 50% (i.e., the signal will be High for less than 50% of the period) when

the CLKDV_DIVIDE attribute is set to a non-integer value and the DLL is operating in the High Frequency mode.

Figure 16: Characteristics of the DLL Clock Outputs

Output Signal - Duty Cycle is Always Corrected

Output Signal - Attribute Corrects Duty Cycle

Phase:

Input Signal (30% Duty Cycle)

0o 90o 180o 270o 0o 90o 180o 270o 0o

DUTY_CYCLE_CORRECTION = FALSE

DUTY_CYCLE_CORRECTION = TRUE

DS099-2_10_031303

CLK2X

CLK2X180

CLKIN

CLKDV(1)

CLK0

CLK90

CLK180

CLK270

CLK0

CLK90

CLK180

CLK270

t

Notes:
1. The DLL attribute CLKDV_DIVIDE is set to 2.

ug000.book Page 40 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Functional Description

DS099-2 (v1.2) July 11, 2003 www.xilinx.com 41
Advance Product Specification 1-800-255-7778

R

Digital Frequency Synthesizer (DFS)
The DFS component generates clock signals the frequency
of which is a product of the clock frequency at the CLKIN
input and a ratio of two user-determined integers. Because
of the wide range of possible output frequencies such a ratio
permits, the DFS feature provides still further flexibility than
the DLL’s basic synthesis options as described in the pre-
ceding section. The DFS component’s two dedicated out-
puts, CLKFX and CLKFX180, are defined in Table 15.

The signal at the CLKFX180 output is essentially an inver-
sion of the CLKFX signal. These two outputs always exhibit
a 50% duty cycle. This is true even when the CLKIN signal
does not. These DFS clock outputs are driven at the same
time as the DLL’s seven clock outputs.

The numerator of the ratio is the integer value assigned to
the attribute CLKFX_MULTIPLY and the denominator is the
integer value assigned to the attribute CLKFX_DIVIDE.
These attributes are described in Table 14.

The output frequency (fCLKFX) can be expressed as a func-
tion of the incoming clock frequency (fCLKIN) as follows:

fCLKFX = fCLKIN*(CLKFX_MULTIPLY/CLKFX_DIVIDE) (3)

Regarding the two attributes, it is possible to assign any
combination of integer values, provided that two conditions
are met:

1. The two values fall within their corresponding ranges,
as specified in Table 14.

2. The fCLKFX frequency calculated from the above
expression accords with the DCM’s operating frequency
specifications.

For example, if CLKFX_MULTIPLY = 5 and CLKFX_DIVIDE
= 3, then the frequency of the output clock signal would be
5/3 that of the input clock signal.

DFS Frequency Modes
The DFS supports two operating modes, High Frequency
and Low Frequency, with each specified over a different
clock frequency range. The DFS_FREQUENCY_MODE
attribute chooses between the two modes. When the
attribute is set to LOW, the Low Frequency mode permits

the two DFS outputs to operate over a low-to-moderate fre-
quency range. When the attribute is set to HIGH, the High
Frequency mode allows both these outputs to operate at the
highest possible frequencies.

DFS With or Without the DLL

The DFS component can be used with or without the DLL
component:

Without the DLL, the DFS component multiplies or divides
the CLKIN signal frequency according to the respective
CLKFX_MULTIPLY and CLKFX_DIVIDE values, generating
a clock with the new target frequency on the CLKFX and
CLKFX180 outputs. Though classified as belonging to the
DLL component, the CLKIN input is shared with the DFS
component. This case does not employ feedback loop;
therefore, it cannot correct for clock distribution delay.

With the DLL, the DFS operates as described in the preced-
ing case, only with the additional benefit of eliminating the
clock distribution delay. In this case, a feedback loop from
the CLK0 output to the CLKFB input must be present.

The DLL and DFS components work together to achieve
this phase correction as follows: Given values for the
CLKFX_MULTIPLY and CLKFX_DIVIDE attributes, the DLL
selects the delay element for which the output clock edge
coincides with the input clock edge whenever mathemati-
cally possible. For example, when CLKFX_MULTIPLY = 5
and CLKFX_DIVIDE = 3, the input and output clock edges
will coincide every three input periods, which is equivalent in
time to five output periods.

Smaller CLKFX_MULTIPLY and CLKFX_DIVIDE values
achieve faster lock times. With no factors common to the
two attributes, alignment will occur once with every number
of cycles equal to the CLKFX_DIVIDE value. Therefore, it is
recommended that the user reduce these values by factor-
ing wherever possible. For example, given
CLKFX_MULTIPLY = 9 and CLKFX_DIVIDE = 6, removing
a factor of three yields CLKFX_MULTIPLY = 3 and
CLKFX_DIVIDE = 2. While both value-pairs will result in the
multiplication of clock frequency by 3/2, the latter value-pair
will enable the DLL to lock more quickly.

Table 14: DFS Attributes

Attribute Description Values

DFS_FREQUENCY_MODE Chooses between High Frequency and Low Frequency modes Low, High

CLKFX_MULTIPLY Frequency multiplier constant Integer from 2 to 32

CLKFX_DIVIDE Frequency divisor constant Integer from 1 to 32

Table 15: DFS Signals

Signal Direction Description

CLKFX Output Multiplies the CLKIN frequency by the attribute-value ratio
(CLKFX_MULTIPLY/CLKFX_DIVIDE) to generate a clock signal with a new target frequency.

CLKFX180 Output Generates a clock signal with same frequency as CLKFX, only shifted 180° out-of-phase.

ug000.book Page 41 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Functional Description

42 www.xilinx.com DS099-2 (v1.2) July 11, 2003
1-800-255-7778 Advance Product Specification

R

DFS Clock Output Connections

There are two basic cases that determine how to connect
the DFS clock outputs: on-chip and off-chip, which are illus-
trated in Figure 15a and Figure 15c, respectively. This is
similar to what has already been described for the DLL
component. See the DLL Clock Output and Feedback
Connections, page 38 section.

In the on-chip case, it is possible to connect either of the
DFS’s two output clock signals through general routing
resources to the FPGA’s internal registers. Either a Global
Clock Buffer (BUFG) or a BUFGMUX affords access to the
global clock network. The optional feedback loop is formed
in this way, routing CLK0 to a global clock net, which in turn
drives the CLKFB input.

In the off-chip case, the DFS’s two output clock signals, plus
CLK0 for an optional feedback loop, can exit the FPGA
using output buffers (OBUF) to drive a clock network plus
registers on the board. The feedback loop is formed by
feeding the CLK0 signal back into the FPGA using an
IBUFG, which directly accesses the global clock network, or
an IBUF. Then, the global clock net is connected directly to
the CLKFB input.

Phase Shifter (PS)
The DCM provides two approaches to controlling the phase
of a DCM clock output signal relative to the CLKIN signal:
First, there are nine clock outputs that employ the DLL to
achieve a desired phase relationship: CLK0, CLK90,
CLK180, CLK270, CLK2X, CLK2X180, CLKDV CLKFX, and
CLKFX180. These outputs afford “coarse” phase control.

The second approach uses the PS component described in
this section to provide a still finer degree of control. The PS
component accomplishes this by introducing a "fine phase
shift" (TPS) between the CLKFB and CLKIN signals inside
the DLL component. The user can control this fine phase
shift down to a resolution of 1/256 of a CLKIN cycle or one
tap delay (DCM_TAP), whichever is greater. When in use,
the PS component shifts the phase of all nine DCM clock
output signals together. If the PS component is used
together with a DCM clock output such as the CLK90,
CLK180, CLK270, CLK2X180 and CLKFX180, then the fine
phase shift of the former gets added to the coarse phase
shift of the latter.

PS Component Enabling and Mode Selection

The CLKOUT_PHASE_SHIFT attribute enables the PS
component for use in addition to selecting between two
operating modes. As described in Table 16, this attribute
has three possible values: NONE, FIXED and VARIABLE.
When CLKOUT_PHASE_SHIFT is set to NONE, the PS
component is disabled and its inputs, PSEN, PSCLK, and
PSINCDEC, must be tied to GND. The set of waveforms in
Figure 17a shows the disabled case, where the DLL main-
tains a zero-phase alignment of signals CLKFB and CLKIN
upon which the PS component has no effect. The PS com-
ponent is enabled by setting the attribute to either the
FIXED or VARIABLE values, which select the Fixed Phase
mode and the Variable Phase mode, respectively. These
two modes are described in the sections that follow

Determining the Fine Phase Shift
The user controls the phase shift of CLKFB relative to
CLKIN by setting and/or adjusting the value of the
PHASE_SHIFT attribute. This value must be an integer
ranging from –255 to +255. The PS component uses this
value to calculate the desired fine phase shift (TPS) as a
fraction of the CLKIN period (TCLKIN). Given values for
PHASE-SHIFT and TCLKIN, it is possible to calculate TPS as
follows:

TPS = (PHASE_SHIFT/256)*TCLKIN (4)

Both the Fixed Phase and Variable Phase operating modes
employ this calculation. If the PHASE_SHIFT value is zero,
then CLKFB and CLKIN will be in phase, the same as when
the PS component is disabled. When the PHASE_SHIFT
value is positive, the CLKFB signal will be shifted later in
time with respect to CLKIN. If the attribute value is negative,
the CLKFB signal will be shifted earlier in time with respect
to CLKIN.

The Fixed Phase Mode
This mode fixes the desired fine phase shift to a fraction of
the TCLKIN, as determined by Equation (4) and its
user-selected PHASE_SHIFT value P. The set of wave-
forms in Figure 17b illustrates the relationship between
CLKFB and CLKIN in the Fixed Phase mode. In the Fixed
Phase mode, the PSEN, PSCLK and PSINCDEC inputs are
not used and must be tied to GND.

Table 16: PS Attributes

Attribute Description Values

CLKOUT_PHASE_SHIFT Disables PS component or chooses between Fixed Phase
and Variable Phase modes.

NONE, FIXED, VARIABLE

PHASE_SHIFT Determines size and direction of initial fine phase shift. Integers from –255 to +255(1)

Notes:
1. The practical range of values will be less when TCLKIN > FINE_SHIFT_RANGE in the Fixed Phase mode, also when TCLKIN >

(FINE_SHIFT_RANGE)/2 in the Variable Phase mode. the FINE_SHIFT_RANGE represents the sum total delay of all taps.

ug000.book Page 42 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Functional Description

DS099-2 (v1.2) July 11, 2003 www.xilinx.com 43
Advance Product Specification 1-800-255-7778

R

Figure 17: Phase Shifter Waveforms

DS099-2_11_031303

CLKIN

CLKFB

* TCLKIN
P

256

b. CLKOUT_PHASE_SHIFT = FIXED

* TCLKIN
P

256

Shift Range over all P Values: –255 +255

Shift Range over all P Values: 0

0

–255 +255

Shift Range over all N Values: 0–255 +255

CLKIN

CLKFB before
Decrement

c. CLKOUT_PHASE_SHIFT = VARIABLE

CLKFB after
Decrement

* TCLKIN
N

256

CLKIN

CLKFB

a. CLKOUT_PHASE_SHIFT = NONE

Notes:
1. P represents the integer value ranging from –255 to +255 to which the PHASE_SHIFT attribute is assigned.
2. N is an integer value ranging from –255 to +255 that represents the net phase shift effect from a series of increment and/or

decrement operations.
N = {Total number of increments} – {Total number of decrements}

A positive value for N indicates a net increment; a negative value indicates a net decrement.

ug000.book Page 43 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Functional Description

44 www.xilinx.com DS099-2 (v1.2) July 11, 2003
1-800-255-7778 Advance Product Specification

R

The Variable Phase Mode

The “Variable Phase” mode dynamically adjusts the fine
phase shift over time using three inputs to the PS compo-
nent, namely PSEN, PSCLK and PSINCDEC, as defined in
Table 17.

Just following device configuration, the PS component ini-
tially determines TPS by evaluating Equation (4) for the
value assigned to the PHASE_SHIFT attribute. Then to
dynamically adjust that phase shift, use the three PS inputs
to increase or decrease the fine phase shift.

PSINCDEC is synchronized to the PSCLK clock signal,
which is enabled by asserting PSEN. It is possible to drive
the PSCLK input with the CLKIN signal or any other clock
signal. A request for phase adjustment is entered as follows:
For each PSCLK cycle that PSINCDEC is High, the PS
component adds 1/256 of a CLKIN cycle to TPS. Similarly,
for each enabled PSCLK cycle that PSINCDEC is Low, the
PS component subtracts 1/256 of a CLKIN cycle from TPS.
The phase adjustment may require as many as 100 CLKIN
cycles plus three PSCLK cycles to take effect, at which

point the output PSDONE goes High for one PSCLK cycle.
This pulse indicates that the PS component has finished the
present adjustment and is now ready for the next request.
Asserting the Reset (RST) input, returns TPS to its original
shift time, as determined by the PHASE_SHIFT attribute
value. The set of waveforms in Figure 17c illustrates the
relationship between CLKFB and CLKIN in the Variable
Phase mode.

The Status Logic Component
The Status Logic component not only reports on the state of
the DCM but also provides a means of resetting the DCM to
an initial known state. The signals associated with the Sta-
tus Logic component are described in Table 18.

As a rule, the Reset (RST) input is asserted only upon con-
figuring the device or changing the CLKIN frequency. A
DCM reset does not affect attribute values (e.g.,
CLKFX_MULTIPLY and CLKFX_DIVIDE). If not used, RST
must be tied to GND.

The eight bits of the STATUS bus are defined in Table 19.

Table 17: Signals for Variable Phase Mode

Signal Direction Description

PSEN(1) Input Enables PSCLK for variable phase adjustment.

PSCLK(1) Input Clock to synchronize phase shift adjustment.

PSINCDEC(1) Input Chooses between increment and decrement for phase adjustment. It is synchronized to the
PSCLK signal.

PSDONE Output Goes High to indicate that present phase adjustment is complete and PS component is
ready for next phase adjustment request. It is synchronized to the PSCLK signal.

Notes:
1. It is possible to program this input for either a true or inverted polarity

Table 18: Status Logic Signals

Signal Direction Description

RST Input A High resets the entire DCM to its initial power-on state. Initializes the DLL taps for a delay
of zero. Sets the LOCKED output Low. This input is asynchronous.

STATUS[7:0] Output The bit values on the STATUS bus provide information regarding the state of DLL and PS
operation

LOCKED Output Indicates that the CLKIN and CLKFB signals are in phase by going High. The two signals
are out-of-phase when Low.

ug000.book Page 44 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Functional Description

DS099-2 (v1.2) July 11, 2003 www.xilinx.com 45
Advance Product Specification 1-800-255-7778

R

Stabilizing DCM Clocks Before User Mode
It is possible to delay the completion of device configuration
until after the DLL has achieved a lock condition using the
STARTUP_WAIT attribute described in Table 20. This
option ensures that the FPGA does not enter user mode —
i.e., begin functional operation — until all system clocks
generated by the DCM are stable. In order to achieve the
delay, it is necessary to set the attribute to TRUE as well as
set the BitGen option LCK_cycle to one of the six cycles
making up the Startup phase of configuration. The selected
cycle defines the point at which configuration will halt until
the LOCKED output goes High.

Global Clock Network
Spartan-3 devices have eight Global Clock inputs called
GCLK0 - GCLK7. These inputs provide access to a
low-capacitance, low-skew network that is well-suited to
carrying high-frequency signals. The Spartan-3 clock net-
work is shown in Figure 18. GCLK0 through GCLK3 are
placed at the center of the die’s bottom edge. GCLK4
through GCLK7 are placed at the center of the die’s top
edge. It is possible to route each of the eight Global Clock
inputs to any CLB on the die.

Eight Global Clock Multiplexers (also called BUFGMUX ele-
ments) are provided that accept signals from Global Clock
inputs and route them to the internal clock network as well

as DCMs. Four BUFGMUX elements are placed at the cen-
ter of the die’s bottom edge, just above the GCLK0 - GCLK4
inputs. The remaining four BUFGMUX elements are placed
at the center of the die’s top edge, just below the GCLK4 -
GCLK7 inputs.

Each BUFGMUX element is a 2-to-1 multiplexer that can
receive signals from any of the four following sources:

1. One of the four Global Clock inputs on the same side of
the die — top or bottom — as the BUFGMUX element in
use.

2. Any of four nearby horizontal Double lines.

3. Any of four outputs from the DCM in the right-hand
quadrant that is on the same side of the die as the
BUFGMUX element in use.

4. Any of four outputs from the DCM in the left-hand
quadrant that is on the same side of the die as the
BUFGMUX element in use.

Sources 3 and 4 are not available on the XC3S50 die that
lacks DCMs.

Each BUFGMUX can switch incoming clock signals to two
possible destinations:

1. The vertical spine belonging to the same side of the die
— top or bottom — as the BUFGMUX element in use.
The two spines — top and bottom — each comprise
four vertical clock lines, each running from one of the

Table 19: DCM STATUS Bus

Bit Name Description

0 Phase Shift
Overflow

A value of 1 indicates a phase shift overflow when one of two conditions occur:
• Incrementing (or decrementing) TPS beyond 255/256 of a CLKIN cycle.

• The DLL is producing its maximum possible phase shift (i.e., all delay taps are active).(1)

1 CLKIN Activity A value of 1 indicates that the CLKIN signal is not toggling. A value of 0 indicates toggling. This
bit functions only when the CLKFB input is connected.(2)

2 Reserved -

3 Reserved -

4 Reserved -

5 Reserved -

6 Reserved -

7 Reserved -

Notes:
1. The DLL phase shift with all delay taps active is specified as the parameter FINE_SHIFT_RANGE.
2. If only the DFS clock outputs are used, but none of the DLL clock outputs, this bit will not go High when the CLKIN signal stops.

Table 20: Status Attributes

Attribute Description Values

STARTUP_WAIT Delays transition from configuration to user mode until lock condition is achieved. TRUE, FALSE

ug000.book Page 45 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Functional Description

46 www.xilinx.com DS099-2 (v1.2) July 11, 2003
1-800-255-7778 Advance Product Specification

R

BUFGMUX elements on the same side towards the
center of the die. At the center of the die, clock signals
reach the eight-line horizontal spine, which spans the
width of the die. In turn, the horizontal spine branches
out into a subsidiary clock interconnect that accesses
the CLBs.

2. The clock input of either DCM on the same side of the
die — top or bottom — as the BUFGMUX element in
use.

A Global clock input is placed in a design using either a
BUFGMUX element or the BUFG (Global Clock Buffer) ele-
ment. For the purpose of minimizing the dynamic power dis-
sipation of the clock network, the Xilinx development
software automatically disables all clock line segments that
a design does not use.

Figure 18: Spartan-3 Clock Network (Top View)

4

4

4

4

4

4

4

8

8

4

4

88

Horizontal Spine

To
p

S
pi

ne
B

ot
to

m
 S

pi
ne

4

DCM DCM

DCM DCM

Array Dependent

Array Dependent

•

•

•

•

•

•

•

•

•

•

•

•

DS099-2_18_070203

4 BUFGMUX

GCLK2
GCLK3

GCLK0
GCLK1

4 BUFGMUX

GCLK6 GCLK4
GCLK7 GCLK5

ug000.book Page 46 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Functional Description

DS099-2 (v1.2) July 11, 2003 www.xilinx.com 47
Advance Product Specification 1-800-255-7778

R

Interconnect
Interconnect (or routing) passes signals among the various
functional elements of Spartan-3 devices. There are four
kinds of interconnect: Long lines, Hex lines, Double lines,
and Direct lines.

Long lines connect to one out of every six CLBs (see
Figure 19a). Because of their low capacitance, these lines
are well-suited for carrying high-frequency signals with min-
imal loading effects (e.g. skew). If all eight Global Clock
Inputs are already committed and there remain additional
clock signals to be assigned, Long lines serve as a good
alternative.

Hex lines connect one out of every three CLBs (see
Figure 19b). These lines fall between Long lines and Dou-

ble lines in terms of capability: Hex lines approach the
high-frequency characteristics of Long lines at the same
time, offering greater connectivity.

Double lines connect to every other CLB (see Figure 19c).
Compared to the types of lines already discussed, Double
lines provide a higher degree of flexibility when making con-
nections.

Direct lines afford any CLB direct access to neighboring
CLBs (see Figure 19d). These lines are most often used to
conduct a signal from a "source" CLB to a Double, Hex, or
Long line and then from the longer interconnect back to a
Direct line accessing a "destination" CLB.

Figure 19: Types of Interconnect

• • •CLB CLB • • •CLB CLB • • •CLB CLB

6 6 6 6 6

• • •CLB CLB• • •CLB CLB

DS099-2_19_040103

(a) Long Line

CLB CLB CLB CLB CLB CLBCLB

8

DS099-2_20_040103

(b) Hex Line

CLB

2

CLB CLB

DS099-2_21_040103

CLBCLB CLB

CLBCLB CLB

CLBCLB CLB

DS099-2_22_040103

(d) Direct Lines

(c) Double Line

ug000.book Page 47 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Functional Description

48 www.xilinx.com DS099-2 (v1.2) July 11, 2003
1-800-255-7778 Advance Product Specification

R

Configuration
Spartan-3 devices are configured by loading application
specific configuration data into the internal configuration
memory. Configuration is carried out using a subset of the
device pins, some of which are "Dedicated" to one function
only, while others, indicated by the term "Dual-Purpose",

can be re-used as general-purpose User I/Os once configu-
ration is complete.

Depending on the system design, several configuration
modes are supported, selectable via mode pins. The mode
pins M0, M1, and M2 are Dedicated pins. The mode pin set-
tings are shown in Table 21.

An additional pin, HSWAP_EN, is used in conjunction with
the mode pins to select whether user I/O pins have pull-ups
during configuration. By default, HSWAP_EN is tied High
(internal pull-up) which shuts off the pull-ups on the user I/O
pins during configuration. When HSWAP_EN is tied Low,
user I/Os have pull-ups during configuration. Other Dedi-
cated pins are CCLK (the configuration clock pin), DONE,
PROG_B, and the boundary-scan pins: TDI, TDO, TMS,
and TCK. Depending on the configuration mode chosen,
CCLK can be an output generated by the FPGA, or an input
accepting an externally generated clock.

A persist option is available which can be used to force the
configuration pins to retain their configuration function even
after device configuration is complete. If the persist option is
not selected then the configuration pins with the exception
of CCLK, PROG_B, and DONE can be used as user I/O in
normal operation. The persist option does not apply to the
boundary-scan related pins. The persist feature is valuable
in applications that readback configuration data after enter-
ing the User mode.

Table 22 lists the total number of bits required to configure
each FPGA as well as the PROMs suitable for storing those
bits. See DS123: Platform Flash In-System Programmable
Configuration PROMs data sheet for more information.

The Standard Configuration Interface
Configuration signals belong to one of two different catego-
ries: Dedicated or Dual-Purpose. Which category deter-
mines which of the FPGA’s power rails supplies the signal’s
driver and, thus, helps describe the electrical at the pin.

The Dedicated configuration pins include PROG_B,
HSWAP_EN, TDI, TMS, TCK, TDO, CCLK, DONE, and
M0-M2. These pins use the VCCAUX lines for power.

The Dual-Purpose configuration pins comprise INIT_B,
DOUT, BUSY, RDWR_B, CS_B, and DIN/D0-D7. Each of
these pins, according to its bank placement, uses the VCCO
lines for either Bank 4 (VCCO_4) or Bank 5 (VCCO_5). All
the signals used in the serial configuration modes rely on
VCCO_4 power. Signals used in the parallel configuration
modes and Readback require from VCCO_5 as well as from
VCCO_4.

Both the Dedicated and Dual-Purpose signals described
above constitute the configuration interface. In the standard
case, this interface is 2.5V-LVCMOS-compatible. This
means that 2.5V is applied to the VCCAUX, VCCO_4, and
VCCO_5 lines (this last in the parallel or Readback case
only). One need only apply 2.5 Volts to these VCCO lines
from power-on to the end of configuration. Upon entering
the User mode, it is possible to switch to supply voltage per-
mitting signal swings other than 2.5V.

Table 21: Spartan-3 Configuration Mode Pin Settings

Configuration Mode(1) M0 M1 M2 Synchronizing Clock Data Width Serial DOUT(2)

Master Serial 0 0 0 CCLK Output 1 Yes

Slave Serial 1 1 1 CCLK Input 1 Yes

Master Parallel 1 1 0 CCLK Output 8 No

Slave Parallel 0 1 1 CCLK Input 8 No

JTAG 1 0 1 TCK Input 1 No

Notes:
1. The voltage levels on the M0, M1, and M2 pins select the configuration mode.
2. The daisy chain is possible only in the Serial modes when DOUT is used.

Table 22: Spartan-3 Configuration Data

Device File Sizes

Xilinx Platform Flash PROM

Serial
Configuration

Parallel
Configuration

XC3S50 439,264 XCF01S XCF08P

XC3S200 1,047,616 XCF01S XCF08P

XC3S400 1,699,136 XCF02S XCF08P

XC3S1000 3,223,488 XCF04S XCF08P

XC3S1500 5,214,784 XCF08P XCF08P

XC3S2000 7,673,024 XCF08P XCF08P

XC3S4000 11,316,864 XCF16P XCF16P

XC3S5000 13,271,936 XCF16P XCF16P

ug000.book Page 48 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/bvdocs/publications/ds123.pdf

Spartan-3 1.2V FPGA Family: Functional Description

DS099-2 (v1.2) July 11, 2003 www.xilinx.com 49
Advance Product Specification 1-800-255-7778

R

3.3V-Tolerant Configuration Interface
It is possible to achieve 3.3V-tolerance at the configuration
interface simply by adding a few external resistors. This
approach may prove useful when it is undesirable to switch
the VCCO_4 and VCCO_5 voltages from 2.5V to 3.3V after
configuration.

The 3.3V-tolerance is implemented as follows (a similar
approach can be used for other supply voltage levels):

First, to power the Dual-Purpose configuration pins, apply
3.3V to the VCCO_4 and (as needed) the VCCO_5 lines.
This scales the output voltages and input thresholds associ-
ated with these pins so that they become 3.3V-compatible.

Second, to power the Dedicated configuration pins, apply
2.5V to the VCCAUX lines (the same as for the standard
interface). In order to achieve 3.3V-tolerance, the Dedicated
inputs will require series resistors that limit the incoming
current to 10mA or less. The Dedicated outputs will need
pull-up resistors to ensure adequate noise margin when the
FPGA is driving a High logic level into another device’s 3.3V
receiver. Choose a power regulator or supply that can toler-
ate reverse current on the VCCAUX lines.

Configuration Modes
Spartan-3 supports the following five configuration modes:

• Slave Serial mode
• Master Serial mode

• Slave Parallel mode
• Master Parallel mode
• Boundary-Scan (JTAG) mode (IEEE 1532/IEEE

1149.1)

Slave Serial Mode
In Slave Serial mode, the FPGA receives configuration data
in bit-serial form from a serial PROM or other serial source
of configuration data. The FPGA on the far right of
Figure 20 is set for the Slave Serial mode. The CCLK pin on
the FPGA is an input in this mode. The serial bitstream must
be setup at the DIN input pin a short time before each rising
edge of the externally generated CCLK.

Multiple FPGAs can be daisy-chained for configuration from
a single source. After a particular FPGA has been config-
ured, the data for the next device is routed internally to the
DOUT pin. The data on the DOUT pin changes on the rising
edge of CCLK.

Figure 20: Connection Diagram for Master and Slave Serial Configuration

DOUTDIN

CCLK

DONE

INIT_B

Spartan-3
FPGA

Master

PROG_B

DIN

CCLK

DONE

INIT_B

Spartan-3
FPGA

Slave

PROG_B

DS099_23_041103

D0

CLK

CE

OE/RESET

CF

Platform
Flash PROM

XCF0xS
or

XCFxxP

VCCINT

1.2V

VCCAUX

VCCO Bank 4

2.5V

2.5V

4.7KΩ
All

2.5V

VCCAUX VCCINT

VCCO Bank 4
1.2V

3.3V

VCC VCCJ

VCCO

2.5V

2.5V

M0
M1
M2

M0
M1
M2

GNDGND
GND

Notes:
1. There are two ways to use the DONE line. First, one may set the BitGen option DriveDone to "Yes" only for the

last FPGA to be configured in the chain shown above (or for the single FPGA as may be the case). This enables
the DONE pin to drive High; thus, no pull-up resistor is necessary. DriveDone is set to "No" for the remaining
FPGAs in the chain. Second, DriveDone can be set to "No" for all FPGAs. Then all DONE lines are open-drain
and require the pull-up resistor shown in grey. In most cases, a value between 3.3KΩ to 4.7KΩ is sufficient.
However, when using DONE synchronously with a long chain of FPGAs, cumulative capacitance may
necessitate lower resistor values (e.g. down to 330Ω) in order to ensure a rise time within one clock cycle.

2. For information on how to program the FPGA using 3.3V signals and power, see 3.3V-Tolerant Configuration
Interface.

ug000.book Page 49 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Functional Description

50 www.xilinx.com DS099-2 (v1.2) July 11, 2003
1-800-255-7778 Advance Product Specification

R

Slave Serial mode is selected by applying <111> to the
mode pins (M0, M1, and M2). A weak pull-up on the mode
pins makes slave serial the default mode if the pins are left
unconnected.

Master Serial Mode

In Master Serial mode, the CCLK pin is an output pin. The
FPGA just to the right of the PROM in Figure 20 is set for
Master Serial mode. It is the FPGA that drives the configu-
ration clock on the CCLK pin to a Xilinx Serial PROM which
in turn feeds bit-serial data to the DIN input. The FPGA
accepts this data on each rising CCLK edge. After the
FPGA has been loaded, the data for the next device in a
daisy-chain is presented on the DOUT pin after the rising
CCLK edge.

The interface is identical to slave serial except that an inter-
nal oscillator is used to generate the configuration clock
(CCLK). A wide range of frequencies can be selected for
CCLK which always starts at a default frequency of 6 MHz.
Configuration bits then switch CCLK to a higher frequency
for the remainder of the configuration.

Slave Parallel Mode
The Parallel modes support the fastest configuration.
Byte-wide data is written into the FPGA with a BUSY flag

controlling the flow of data. An external source provides
8-bit-wide data, CCLK, an active-Low Chip Select (CS_B)
signal and an active-Low Write signal (RDWR_B). If BUSY
is asserted (High) by the FPGA, the data must be held until
BUSY goes Low. Data can also be read using the Slave
Parallel mode. If RDWR_B is asserted, configuration data is
read out of the FPGA as part of a readback operation.

After configuration, it is possible to use any of the Multipur-
pose pins (DIN/D0-D7, DOUT/BUSY, INITB, CS_B, and
RDWR_B) as User I/Os. To do this, simply set the BitGen
option Persist to No and assign the desired signals to multi-
purpose configuration pins using the Xilinx development
software. Alternatively, it is possible to continue using the
configuration port (e.g. all configuration pins taken together)
when operating in the User mode. This is accomplished by
setting the Persist option to Yes.

Multiple FPGAs can be configured using the Slave Parallel
mode and can be made to start-up simultaneously.
Figure 21 shows the device connections. To configure mul-
tiple devices in this way, wire the individual CCLK, Data,
RDWR_B, and BUSY pins of all the devices in parallel. The
individual devices are loaded separately by deasserting the
CS_B pin of each device in turn and writing the appropriate
data.

ug000.book Page 50 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Functional Description

DS099-2 (v1.2) July 11, 2003 www.xilinx.com 51
Advance Product Specification 1-800-255-7778

R

Figure 21: Connection Diagram for Slave Parallel Configuration

PROG_B

INIT_B

DONE

Spartan-3
Slave

INIT_B

D[0:7]

CCLK

RDWR_B

BUSY

CS_B

PROG_B

DONE

CS_B

Spartan-3
Slave

INIT_B

GND

D[0:7]

CCLK

RDWR_B

BUSY

CS_B

D[0:7]

CCLK

RDWR_B

BUSY

PROG_B

DONE

CS_B

DS099_24_041103

2.5V

M1
M2
M0

2.5V

M1
M2
M0

2.5V

VCCAUX

VCCO Banks 4 & 5

VCCINT

1.2V

4.7KΩ 4.7KΩ

2.5V

VCCAUX

VCCO Banks 4 & 5

VCCINT

1.2V

2.5V

GND

Notes:
1. There are two ways to use the DONE line. First, one may set the BitGen option DriveDone to "Yes" only for the last FPGA

to be configured in the chain shown above (or for the single FPGA as may be the case). This enables the DONE pin to drive
High; thus, no pull-up resistor is necessary. DriveDone is set to "No" for the remaining FPGAs in the chain. Second,
DriveDone can be set to "No" for all FPGAs. Then all DONE lines are open-drain and require the pull-up resistor shown in
grey. In most cases, a value between 3.3KΩ to 4.7KΩ is sufficient. However, when using DONE synchronously with a long
chain of FPGAs, cumulative capacitance may necessitate lower resistor values (e.g. down to 330Ω) in order to ensure a rise
time within one clock cycle.

2. If the FPGAs use different configuration data files, configure them in sequence by first asserting the CS_B of one FPGA then
asserting the CS_B of the other FPGA.

3. For information on how to program the FPGA using 3.3V signals and power, see 3.3V-Tolerant Configuration Interface.

ug000.book Page 51 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Functional Description

52 www.xilinx.com DS099-2 (v1.2) July 11, 2003
1-800-255-7778 Advance Product Specification

R

Master Parallel Mode
In this mode, the device is configured byte-wide on a CCLK
supplied by the FPGA. Timing is similar to the Slave Parallel
mode except that CCLK is supplied by the FPGA. The
device connections are shown in Figure 22.

Boundary-Scan (JTAG) Mode
In Boundary-Scan mode, dedicated pins are used for con-
figuring the FPGA. The configuration is done entirely
through the IEEE 1149.1 Test Access Port (TAP). FPGA
configuration using the Boundary-Scan mode is compliant
with the IEEE 1149.1-1993 standard and the new IEEE
1532 standard for In-System Configurable (ISC) devices.

Configuration through the boundary-scan port is always
available, independent of the mode selection. Selecting the
Boundary-Scan mode simply turns off the other modes.

Configuration Sequence
The configuration of Spartan-3 devices is a three-stage pro-
cess that occurs after Power-On Reset or the assertion of
PROG_B. POR occurs after the VCCINT, VCCAUX, and VCCO
Bank 4 supplies have reached their respective maximum
input threshold levels (see Table 6 in Module 3). After POR,
the three-stage process begins.

First, the configuration memory is cleared. Next, con-
figuration data is loaded into the memory, and finally, the
logic is activated by a start-up process. A flow diagram for
the configuration sequence of the Serial and Parallel modes
is shown in Figure 23. The flow diagram for the Bound-
ary-Scan configuration sequence appears in Figure 24.

Figure 22: Connection Diagram for Master Parallel Configuration

Spartan-3
Master

D[0:7]

CCLK

PROG_B

DONE

INIT_B

DATA[0:7]

CCLK

RDWR_B

CS_B

CF

CE

OE/RESET

Platform Flash
PROM

DS099_25_041103

2.5V

VCCAUX

VCCO Banks 4 & 5

VCCINT

1.2V

GND

GND

3.3V

VCC VCCJ

VCCO

2.5V

XCFxxP

2.5V

All
4.7KΩ

Notes:
1. There are two ways to use the DONE line. First, one may set the BitGen option DriveDone to "Yes"

only for the last FPGA to be configured in the chain shown above (or for the single FPGA as may be
the case). This enables the DONE pin to drive High; thus, no pull-up resistor is necessary. DriveDone
is set to "No" for the remaining FPGAs in the chain. Second, DriveDone can be set to "No" for all
FPGAs. Then all DONE lines are open-drain and require the pull-up resistor shown in grey. In most
cases, a value between 3.3KΩ to 4.7KΩ is sufficient. However, when using DONE synchronously
with a long chain of FPGAs, cumulative capacitance may necessitate lower resistor values (e.g.
down to 330Ω) in order to ensure a rise time within one clock cycle.

ug000.book Page 52 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/bvdocs/publications/ds099-3.pdf

Spartan-3 1.2V FPGA Family: Functional Description

DS099-2 (v1.2) July 11, 2003 www.xilinx.com 53
Advance Product Specification 1-800-255-7778

R

Figure 23: Configuration Flow Diagram for the Serial and Parallel Modes

Sample mode pins

No

No

No

Yes

Yes

YesClear configuration
memory

Power-On Set PROG_B Low
after Power-On

Yes

NoCRC
correct?

YesNo
Reconfigure?

Load configuration
data frames

INIT_B goes Low.
Abort Start-Up

Start-Up
sequence

User mode

INIT_ B = High?

PROG_B = Low

DS099_26_041103

VCCINT >1V
and VCCAUX > 2V

and VCCO Bank 4 > 1V

ug000.book Page 53 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Functional Description

54 www.xilinx.com DS099-2 (v1.2) July 11, 2003
1-800-255-7778 Advance Product Specification

R

Figure 24: Boundary-Scan Configuration Flow Diagram

Sample
mode pins

(JTAG port becomes
available)

Clear
configuration

memory

No

No

No

Yes

Yes

Yes

Yes

No

Yes

Power-On

CRC
correct?

Load CFG_IN
instruction

Shutdown
sequence

Reconfigure?

Load JSTART
instruction

Synchronous
TAP reset

(Clock five 1's
on TMS)

Start-Up
sequence

User mode

INIT_B = High?

PROG_B = Low

Load
JShutdown
instruction

No

DS099_27_041103

Load configuration
data frames

VCCINT >1V
and VCCAUX > 2V

and VCCO Bank 4 > 1V

INIT_B goes Low.
Abort Start-Up

Set PROG_B Low
after Power-On

ug000.book Page 54 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Functional Description

DS099-2 (v1.2) July 11, 2003 www.xilinx.com 55
Advance Product Specification 1-800-255-7778

R

Configuration is automatically initiated after power-on
unless it is delayed by the user. INIT_B is an open-drain line
that the FPGA holds Low during the clearing of the configu-
ration memory. Extending the time that the pin is Low
causes the configuration sequencer to wait. Thus, configu-
ration is delayed by preventing entry into the phase where
data is loaded.

The configuration process can also be initiated by asserting
the PROG_B pin. The end of the memory-clearing phase is
signaled by the INIT_B pin going High. At this point, the con-
figuration data is written to the FPGA. The FPGA holds the
Global Set/Reset (GSR) signal active throughout configura-
tion, keeping all flip-flops on the device in a reset state. The
completion of the entire process is signaled by the DONE
pin going High.

The default start-up sequence, shown in Figure 25, serves
as a transition to the User mode. The default start-up
sequence is that one CCLK cycle after DONE goes High,
the Global Three-State signal (GTS) is released. This per-
mits device outputs to which signals have been assigned to
become active. One CCLK cycle later, the Global Write
Enable (GWE) signal is released. This permits the internal
storage elements to begin changing state in response to the
design logic and the user clock.

The relative timing of configuration events can be changed
via the BitGen options in the Xilinx development software. In
addition, the GTS and GWE events can be made depen-
dent on the DONE pins of multiple devices all going High,
forcing the devices to start synchronously. The sequence
can also be paused at any stage, until lock has been
achieved on any DCM.

Readback
Using Slave Parallel mode, configuration data from the
FPGA can be read back. Readback is supported only in the
Slave Parallel and Boundary-Scan modes.
Along with the configuration data, it is possible to read back
the contents of all registers, distributed SelectRAM, and
block RAM resources. This capability is used for real-time
debugging.

Figure 25: Default Start-Up Sequence

Start-Up Clock

Default Cycles

Sync-to-DONE

0 1 2 3 4 5 6 7

0 1

DONE High

2 3 4 5 6 7

Phase

Start-Up Clock

Phase

DONE

GTS

GSR

GWE

DS099_028_040803

DONE

GTS

GSR

GWE

Notes:
1. The BitGen option StartupClk in the Xilinx

development software selects the CCLK input,
TCK input, or a user-designated global clock input
(the GCLK0 - GCLK7 pins) for receiving the clock
signal that synchronizes Start-Up.

ug000.book Page 55 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Functional Description

56 www.xilinx.com DS099-2 (v1.2) July 11, 2003
1-800-255-7778 Advance Product Specification

R

Revision History

The Spartan-3 Family Data Sheet
DS099-1, Spartan-3 1.2V FPGA Family: Introduction and Ordering Information (Module 1)

DS099-2, Spartan-3 1.2V FPGA Family: Functional Description (Module 2)

DS099-3, Spartan-3 1.2V FPGA Family: DC and Switching Characteristics (Module 3)

DS099-4, Spartan-3 1.2V FPGA Family: Pinout Tables (Module 4)

Date Version No. Description

04/11/03 1.0 Initial Xilinx release

05/19/03 1.1 Added Block RAM column, DCMs, and multipliers to XC3S50 descriptions.

07/11/03 1.2 Explained the configuration port Persist option in Slave Parallel Mode section. Updated
Figure 2 and Double-Data-Rate Transmission section to indicate that DDR clocking for the
XC3S50 is the same as that for all other Spartan-3 devices. Updated description of I/O voltage
tolerance in ESD Protection section. In Table 6, changed input termination type for DCI
version of the LVCMOS standard to None. Added additional flexibility for making DLL
connections in Figure 15 and accompanying text. In the Configuration section, inserted an
explanation of how to choose power supplies for the configuration interface, including
guidelines for achieving 3.3V-tolerance.

ug000.book Page 56 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/bvdocs/publications/ds099-1.pdf
http://www.xilinx.com/bvdocs/publications/ds099-4.pdf
http://www.xilinx.com/bvdocs/publications/ds099-3.pdf

DS099-3 (v1.1) July 11, 2003 www.xilinx.com 57
Advance Product Specification 1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

DC Electrical Characteristics
In this section, some specifications may be designated as
Advance or Preliminary. These terms are defined as fol-
lows:

Advance: Initial estimates based on simulation and/or
extrapolation from the characteristics of other families. Val-
ues are subject to change. Use as estimates, not for pro-
duction.

Preliminary: Based on characterization. Further changes
are not expected.

All specifications are representative of worst-case supply
voltage and junction temperature conditions. All specifica-
tions are subject to change without notice.

DC and AC characteristics are specified using the same
numbers for both commercial and industrial grades unless
otherwise noted.

0

Spartan-3 1.2V FPGA Family:
DC and Switching Characteristics

DS099-3 (v1.1) July 11, 2003 0 0 Advance Product Specification

R

Table 1: Absolute Maximum Ratings(1, 2)

Symbol Description Min Max Units

VCCINT Internal supply voltage –0.5 1.32 V

VCCAUX Auxiliary supply voltage –0.5 3.00 V

VCCO Output driver supply voltage –0.5 3.75 V

VREF Input reference voltage –0.5 VCCO + 0.5 V

VIN Voltage applied to bidirectional I/O
pins as well as unidirectional input
and output pins.(3) If present,
driver is put in a high-impedance
state.

VCCO ≤ 3.0V(4) –0.5 VCCO + 0.5 V

VCCO > 3.0V –0.3 3.75 V

TJ Operating junction temperature VCCO ≤ 3.0V(4) - 125 °C

VCCO > 3.0V - 105 °C

TSOL
(5) Soldering temperature - 220 °C

TSTG Storage temperature –65 150 °C

Notes:
1. Stresses beyond those listed under Absolute Maximum Ratings will cause permanent damage to the device. These are stress

ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended
Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time adversely
affects device reliability.

2. All parameters representing voltages are measured with respect to GND unless otherwise specified.
3. This specification applies to all User I/O, Multi-Function, and Dedicated pins.
4. When VCCO is 3.0 V or less, VIN overshoot may go as high as VCCO + 1.0 V for up to 11 ns provided that the current entering the I/O

pin is limited to 10 mA. Also, when VCCO is 3.0 V or less, VIN undershoot may go as low as –1.0 V for up to 11 ns provided that the
current entering the I/O pin is limited to 10 mA.

5. For soldering guidelines, see the information on "Packaging and Thermal Characteristics" at www.xilinx.com.

ug000.book Page 57 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Spartan-3 1.2V FPGA Family: DC and Switching Characteristics

58 www.xilinx.com DS099-3 (v1.1) July 11, 2003
1-800-255-7778 Advance Product Specification

R

Table 2: Supply Voltage Thresholds for Power-On Reset

Symbol Description Min Max Units

VCCINTT Threshold for the VCCINT supply 0.4 1.0 V

VCCAUXT Threshold for the VCCAUX supply 0.8 2.0 V

VCCO4T Threshold for the VCCO Bank 4 supply 0.4 1.0 V

Notes:
1. VCCINT, VCCAUX, and VCCO supplies may be applied in any order.
2. During power-on, when the VCCINT, VCCO Bank 4, and VCCAUX voltages are rising, none may dip at any point within their respective

threshold-voltage ranges.
3. All parameters representing voltages are measured with respect to GND unless otherwise specified.

Table 3: Power Voltage Levels Necessary for Preserving RAM Contents(1)

Symbol Description Min Units

VDRINT VCCINT level required to retain RAM data 1.0 V

VDRAUX VCCAUX level required to retain RAM data 2.0 V

Notes:
1. RAM contents include configuration data.
2. All parameters representing voltages are measured with respect to GND unless otherwise specified.
3. The level of the VCCO supply has no effect on data retention.

Table 4: General Recommended Operating Conditions

Symbol Description Min Nom Max Units

TJ Junction temperature Commercial 0 - 85 °C

Industrial –40 - 100 °C

VCCINT Internal supply voltage 1.140 1.200 1.260 V

VCCO
(1) Output driver supply voltage 1.140 - 3.450 V

VCCAUX Auxiliary supply voltage 2.375 2.500 2.625 V

Notes:
1. The VCCO range given here spans the lowest and highest operating voltages of all supported I/O standards. The recommended

VCCO range specific to each of the single-ended I/O standards is given in Table 7, and that specific to the differential standards is
given in Table 9.

2. All parameters representing voltages are measured with respect to GND unless otherwise specified.

ug000.book Page 58 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: DC and Switching Characteristics

DS099-3 (v1.1) July 11, 2003 www.xilinx.com 59
Advance Product Specification 1-800-255-7778

R

Table 5: General DC Characteristics of User I/O, Multi-Function, and Dedicated Pins

Symbol Description Test Conditions Min Nom Max Units

IL Leakage current at User
I/O, Multi-Function, and
Dedicated pins

Driver is in a high-impedance
state

–10 - +10 µA

IRPU Current through pull-up
resistor at User I/O,
Multi-Function, and
Dedicated pins

VIN = 0V VCCO = 3.3V 500 1000 2000 µA

VCCO = 3.0V 400 800 1600 µA

VCCO = 2.5V 250 530 1100 µA

VCCO = 1.8V 120 270 770 µA

VCCO = 1.5V 70 180 440 µA

VCCO = 1.2V 40 100 300 µA

IRPD Current through
pull-down resistor at User
I/O, Multi-Function, and
Dedicated pins

VIN = VCCO = 3.3V 250 520 1100 µA

VIN = VCCO = 3.0V 250 520 1100 µA

VIN = VCCO = 2.5V 250 520 1100 µA

VIN = VCCO = 1.8V 250 520 1100 µA

VIN = VCCO = 1.5V 240 510 1100 µA

VIN = VCCO = 1.2V 230 480 1000 µA

IREF VREF current per pin –10 - +10 µA

CIN Input capacitance 5 - 11 pF

Notes:
1. The numbers in this table are guaranteed over the conditions set forth in Table 4.

ug000.book Page 59 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: DC and Switching Characteristics

60 www.xilinx.com DS099-3 (v1.1) July 11, 2003
1-800-255-7778 Advance Product Specification

R

Table 6: Quiescent Supply Current Characteristics

Symbol Description Device

Commercial Industrial

UnitsTyp Max Typ Max

ICCINTQ Quiescent VCCINT supply
current

XC3S50 10 mA

XC3S200 mA

XC3S400 mA

XC3S1000 40 mA

XC3S1500 mA

XC3S2000 mA

XC3S4000 mA

XC3S5000 mA

ICCOQ Quiescent VCCO supply current XC3S50 1.5 mA

XC3S200 mA

XC3S400 mA

XC3S1000 1.5 mA

XC3S1500 mA

XC3S2000 mA

XC3S4000 mA

XC3S5000 mA

ICCAUXQ Quiescent VCCAUX supply
current

XC3S50 7.0 mA

XC3S200 mA

XC3S400 mA

XC3S1000 25.0 mA

XC3S1500 mA

XC3S2000 mA

XC3S4000 mA

XC3S5000 mA

Notes:
1. Quiescent supply current is measured with all I/O drivers in a high-impedance state and with all pull-up/pull-down resistors at the I/O

pads disabled. For typical values, the ambient temperature (TA) is 85 °C with VCCINT = 1.2V, VCCO = 2.5V, and VCCAUX = 2.5V.
2. The numbers in this table are guaranteed over the conditions set forth in Table 4.

ug000.book Page 60 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: DC and Switching Characteristics

DS099-3 (v1.1) July 11, 2003 www.xilinx.com 61
Advance Product Specification 1-800-255-7778

R

Table 7: Recommended Operating Conditions for User I/Os Using Single-Ended Standards

Signal Standard

VCCO VREF VIL VIH

Min (V) Nom (V) Max (V) Min (V) Nom (V) Max (V) Max (V) Min (V)

GTL - - - 0.74 0.8 0.86 VREF - 0.05 VREF + 0.05

GTL_DCI(2) - 1.2 - 0.74 0.8 0.86 VREF - 0.05 VREF + 0.05

GTLP - - - 0.88 1 1.12 VREF - 0.1 VREF + 0.1

GTLP_DCI(2) - 1.5 - 0.88 1 1.12 VREF - 0.1 VREF + 0.1

HSTL_I,
HSTL_I_DCI

1.4 1.5 1.6 0.68 0.75 0.9 VREF - 0.1 VREF + 0.1

HSTL_III,
HSTL_III_DCI

1.4 1.5 1.6 0.68 0.9 0.9 VREF - 0.1 VREF + 0.1

HSTL_I_18,
HSTL_I_DCI_18

1.7 1.8 1.9 - 0.9 - VREF - 0.1 VREF + 0.1

HSTL_II_18,
HSTL_II_DCI_18

1.7 1.8 1.9 - 0.9 - VREF - 0.1 VREF + 0.1

HSTL_III_18,
HSTL_III_DCI_18

1.7 1.8 1.9 - 1.1 - VREF - 0.1 VREF + 0.1

LVCMOS12(3) 1.14 1.2 1.3 - - - 0.20VCCO 0.70VCCO

LVCMOS15,
LVDCI_15(3)

1.4 1.5 1.6 - - - 0.20VCCO 0.70VCCO

LVCMOS18,
LVDCI_18(3)

1.7 1.8 1.9 - - - 0.20VCCO 0.70VCCO

LVCMOS25(4),
LVDCI_25(3)

2.3 2.5 2.7 - - - 0.7 1.7

LVCMOS33,
LVDCI_33(3)

3.0 3.3 3.45 - - - 0.8 2.0

LVTTL 3.0 3.3 3.45 - - - 0.8 2.0

PCI33_3 3.0 3.0 3.0 - - - 0.30VCCO 0.50VCCO

SSTL18_I 1.65 1.8 1.95 0.825 0.9 0.975 VREF - 0.125 VREF + 0.125

SSTL2_I,
SSTL2_I_DCI

2.3 2.5 2.7 1.15 1.25 1.35 VREF - 0.15 VREF + 0.15

SSTL2_II,
SSTL2_II_DCI

2.3 2.5 2.7 1.15 1.25 1.35 VREF - 0.15 VREF + 0.15

Notes:
1. Descriptions of the symbols used in this table are as follows:

VCCO -- the supply voltage for the output drivers.
VREF -- the reference voltage for setting the input switching threshold.
VIL -- the input voltage that indicates a Low logic level
VIH -- the input voltage that indicates a High logic level

2. Because the GTL and GTLP standards employ open-drain output buffers, the VCCO supply does not provide drive current.
Nevertheless, the VCCO level must always be at or above the termination voltage (VTT) and I/O pad voltages.

3. There is approximately 100 mV of hysteresis on inputs using any LVCMOS standard.
4. In the standard case, all Dedicated pins (M0-M2, CCLK, PROG_B, DONE, HSWAP_EN, TCK, TDI, TDO, TMS) use the LVCMOS25

standard and are powered entirely by VCCAUX. The Dual-Purpose configuration pins (DIN/D0, D1-D7, CS_B, RDWR_B, BUSY/DOUT,
and INIT_B) use the LVCMOS25 standard during configuration. For information on how to program the FPGA using 3.3V signals and
power, see the "3.3V-Tolerant Configuration Interface" section in Module 2. The recommended VCCO or VCCAUX levels must be
applied to the Global Clock Inputs (GCLK0 - GCLK7) according to the signal standards assigned to them—the same as for User
Inputs.

5. All parameters representing voltages are measured with respect to GND unless otherwise specified.

ug000.book Page 61 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
message URL http://www.xilinx.com/bvdocs/publications/ds099-2.pdf

Spartan-3 1.2V FPGA Family: DC and Switching Characteristics

62 www.xilinx.com DS099-3 (v1.1) July 11, 2003
1-800-255-7778 Advance Product Specification

R

Table 8: DC Characteristics of User I/Os Using Single-Ended Standards

Signal Standard

Test Conditions Logic Level Characteristics

IOL

(mA)

IOH

(mA)

VOL

Max (V)

VOH

Min (V)

GTL, GTL_DCI 32 - 0.4 -

GTLP, GTLP_DCI 36 - 0.6 -

HSTL_I, HSTL_I_DCI 8 –8 0.4 VCCO - 0.4

HSTL_III,
HSTL_III_DCI

24 –8 0.4 VCCO - 0.4

HSTL_I_18,
HSTL_I_DCI_18

8 –8 0.4 VCCO - 0.4

HSTL_II_18,
HSTL_II_DCI_18

16 –16 0.4 VCCO - 0.4

HSTL_III_18,
HSTL_III_DCI_18

24 –8 0.4 VCCO - 0.4

LVCMOS12 6 –6 0.4 VCCO - 0.4

LVCMOS15,
LVDCI_15

12 –12 0.4 VCCO - 0.4

LVCMOS18,
LVDCI_18

16 –16 0.4 VCCO - 0.4

LVCMOS25(2),
LVDCI_25(3)

24 –24 0.4 VCCO - 0.4

LVCMOS33,
LVDCI_33

24 –24 0.4 VCCO - 0.4

LVTTL 24 –24 0.4 2.4

PCI33_3 Note 5 Note 5 0.10VCCO 0.90VCCO

SSTL18_I 6.7 –6.7 VTT - 0.475 VTT + 0.475

SSTL2_I,
SSTL2_I_DCI

7.5 –7.5 VTT - 0.61 VTT + 0.61

SSTL2_II,
SSTL2_II_DCI

15 –15 VTT - 0.80 VTT + 0.80

Notes:
1. Descriptions of the symbols used in this table are as follows:

 IOL -- the output current condition under which VOL is tested
 IOH -- the output current condition under which VOH is tested
 VOL -- the output voltage that indicates a Low logic level
 VOH -- the output voltage that indicates a High logic level
 VIL -- the input voltage that indicates a Low logic level
 VIH -- the input voltage that indicates a High logic level
 VCCO -- the supply voltage for the output drivers
 VREF -- the reference voltage for setting the input switching threshold
 VTT -- the termination voltage

2. In the standard case, all Dedicated pins (M0-M2, CCLK, PROG_B, DONE, HSWAP_EN, TCK, TDI, TDO, TMS) as well as the
Dual-Purpose configuration pins (DIN/D0, D1-D7, CS_B, RDWR_B, BUSY/DOUT, and INIT_B) exhibit LVCMOS25 output
characteristics. For information on how to program the FPGA using 3.3V signals and power, see the "3.3V-Tolerant Configuration
Interface" section in Module 2.

3. All parameters representing voltages are measured with respect to GND unless otherwise specified.
4. The numbers in this table are guaranteed over the conditions set forth in Table 4 and Table 7.
5. Tested according to relevant PCI specifications.

ug000.book Page 62 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
message URL http://www.xilinx.com/bvdocs/publications/ds099-2.pdf

Spartan-3 1.2V FPGA Family: DC and Switching Characteristics

DS099-3 (v1.1) July 11, 2003 www.xilinx.com 63
Advance Product Specification 1-800-255-7778

R

Figure 1: Differential Input Voltages

DS099-3_01_040703

VINN

VINP

GND level

50%

VICM

VICM = Input common mode voltage =

VID

VINP

Internal
Logic

Differential
I/O Pair Pins

VINN

N
P

2

VINP + VINN

VID = Differential input voltage = VINP - VINN

Table 9: Recommended Operating Conditions for User I/Os Using Differential Signal Standards

Signal Standard

VCCO VID VICM

Min (V) Nom (V) Max (V) Min (mV)
Nom
(mV) Max (mV) Min (V) Nom (V) Max (V)

LDT_25 2.38 2.50 2.63 200 600 1000 0.44 0.60 0.78

LVDS_25,
LVDS_25_DCI

2.38 2.50 2.63 100 350 600 0.30 1.25 2.20

BLVDS_25 2.38 2.50 2.63 - 350 - - 1.25 -

LVDSEXT_25,
LVDSEXT_25_DCI

2.38 2.50 2.63 100 540 1000 0.30 1.20 2.20

ULVDS_25 2.38 2.50 2.63 200 600 1000 0.44 0.60 0.78

RSDS_25 2.38 2.50 2.63 100 200 - - 1.30 -

Notes:
1. The VREF input is not used for any of the differential I/O standards.
2. Of the parameters shown, only VCCO represents a voltage measured with respect to GND. The remaining parameters are differential

measurements. See Figure 1 for parameter definitions.

ug000.book Page 63 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: DC and Switching Characteristics

64 www.xilinx.com DS099-3 (v1.1) July 11, 2003
1-800-255-7778 Advance Product Specification

R

Figure 2: Differential Output Voltages

DS099-3_02_033103

VOUTN

VOUTP

GND level

50%

VOCM

VOCM

VOD

VOL

VOH

VOUTP

Internal
Logic VOUTN

N
P

= Output common mode voltage =
2

VOUTP + VOUTN

VOD = Output differential voltage =

VOH = Output voltage indicating a High logic level

VOL
= Output voltage indicating a Low logic level

VOUTP - VOUTN

Differential
I/O Pair Pins

Table 10: DC Characteristics of User I/Os Using Differential Signal Standards

Signal Standard

VOD ∆VOD VOCM ∆VOCM VOH VOL

Min
(mV)

Typ
(mV)

Max
(mV)

Min
(mV)

Max
(mV)

Min
(V)

Typ
(V)

Max
(V)

Min
(mV)

Max
(mV)

Typ
(V)

Max
(V)

Min
(V)

Typ
(V)

LDT_25 430 600 670 –15 15 0.495 0.600 0.715 -15 15 - - - -

LVDS_25,
LVDS_25_DCI

250 325 400 - - 1.125 1.20 1.375 - - - 1.475 0.925 -

BLVDS_25 250 350 450 - - - 1.20 - - - - - - -

LVDSEXT_25,
LVDSEXT_25_DCI

330 540 700 - - 1.125 1.20 1.375 - - - 1.700 0.705 -

ULVDS_25 430 600 670 - - 0.495 0.600 0.715 - - - - - -

RSDS_25 100 325 400 - - 1.1 1.2 1.5 - - - - - -

Notes:
1. Of the parameters shown, only VOH, VOL, and VOCM represent voltages measured with respect to GND. The remaining parameters are differential

measurements. See Figure 2 for parameter definitions.
2. Output voltage measurements for all differential standards are made with a termination resistor (RT) of 100Ω across the N and P pins of the

differential signal pair.
3. The numbers in this table are guaranteed over the conditions set forth in Table 4 and Table 9.

ug000.book Page 64 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: DC and Switching Characteristics

DS099-3 (v1.1) July 11, 2003 www.xilinx.com 65
Advance Product Specification 1-800-255-7778

R

Switching Characteristics
All Spartan-3 devices are available in two speed grades: –4
and –5. Switching characteristics in this document may be
designated as Advance, Preliminary, or Production. Each
category is defined as follows:

Advance: These speed files are based on simulations only
and are typically available soon after establishing FPGA
specifications. Although speed grades with this designation
are considered relatively stable and conservative, some
under-reporting might still occur.

Preliminary: These speed files are based on complete ES
(engineering sample) silicon characterization. Devices and
speed grades with this designation are intended to give a
better indication of the expected performance of production
silicon. The probability of under-reporting preliminary
delays is greatly reduced compared to Advance data.

Production: These speed files are released once enough
production silicon of a particular device family member has
been characterized to provide full correlation between

speed files and devices over numerous production lots.
There is no under-reporting of delays, and customers
receive formal notification of any subsequent changes. Typ-
ically, the slowest speed grades transition to Production
before faster speed grades.

All specifications are representative of worst-case supply
voltage and junction temperature conditions. Unless other-
wise noted, values apply to all Spartan-3 devices.

Internal timing parameters are derived from measuring
internal test patterns. Timing parameters and their repre-
sentative values are selected for inclusion below either
because they are important as general design requirements
or they indicate fundamental device performance character-
istics. For more complete, more precise, and worst-case
guaranteed data, use the values reported by the Xilinx static
timing analyzer (TRACE in the Xilinx development software)
and back-annotate to the simulation net list.

Table 11: DLL Timing

Symbol Description
Frequency

Mode

Speed Grade

Units

-5 -4

Min Max Min Max

Clock Outputs

F1XCO
Frequency at the CLK0 and

CLK180 pins

High 48 326 MHz

Low 25 180 MHz

Clock Inputs

FCLKIN Frequency at the CLKIN pin
High 48 326 MHz

Low 25 180 MHz

TCLKINJ
Allowable cycle-to-cycle
jitter at the CLKIN pin

High –100 +100 ps

Low ps

Notes:
1. For up-to-date information on DCM timing, see http://www.xilinx.com/bvdocs/publications/ds099-3.pdf.

ug000.book Page 65 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/bvdocs/publications/ds099-3.pdf

Spartan-3 1.2V FPGA Family: DC and Switching Characteristics

66 www.xilinx.com DS099-3 (v1.1) July 11, 2003
1-800-255-7778 Advance Product Specification

R

Figure 3: Waveforms for Power-On and the Beginning of Configuration

VCCINT
(Supply)

(Supply)

(Supply)

VCCAUX

VCCO Bank 4

PROG_B

(Output)

(Open-Drain)

(Input)

INIT_B

CCLK

DS099-3_03_041103

1.2V

2.5V

2.5V

TICCK

TPROG
TPL

TPOR

Notes:
1. The VCCINT, VCCAUX, and VCCO supplies may be applied in any order.
2. The Low-going pulse on PROG_B is optional after power-on but necessary for reconfiguration without a power cycle.
3. The rising edge of INIT_B samples the voltage levels applied to the mode pins (M0 - M2).

Table 12: Power-On Timing and the Beginning of Configuration

Symbol Description Device

All Speed Grades

UnitsMin Max

TPOR The time from the application of VCCINT,
VCCAUX, and VCCO Bank 4 supply voltages
(whichever occurs last) to the rising
transition of the INIT_B pin(1)

XC3S50 - 5 ms

XC3S200 - 5 ms

XC3S400 - 5 ms

XC3S1000 - 5 ms

XC3S1500 - 7 ms

XC3S2000 - 7 ms

XC3S4000 - 7 ms

XC3S5000 - 7 ms

TPROG The width of the low-going pulse on the
PROG_B pin

All 0.3 - µs

TPL The time from the rising edge of the
PROG_B pin to the rising transition on the
INIT_B pin(1)

XC3S50 - 2 ms

XC3S200 - 2 ms

XC3S400 - 2 ms

XC3S1000 - 2 ms

XC3S1500 - 3 ms

XC3S2000 - 3 ms

XC3S4000 - 3 ms

XC3S5000 - 3 ms

TICCK The time from the rising edge of the INIT_B
pin to the generation of the configuration
clock signal at the CCLK output pin(2)

All 0.5 4.0 µs

Notes:
1. Power-on reset and the clearing of configuration memory occurs during this period.
2. This specification applies only for the Master Serial and Master Parallel modes.

ug000.book Page 66 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: DC and Switching Characteristics

DS099-3 (v1.1) July 11, 2003 www.xilinx.com 67
Advance Product Specification 1-800-255-7778

R

Figure 4: Waveforms for Master and Slave Serial Configuration

DS099-3_04_041103

Bit 0 Bit 1 Bit n Bit n+1

Bit n-64 Bit n-63

1/FCCSER

TCCH

TDCC TCCD

TCCL

TCCO

PROG_B
(Input)

DIN
(Input)

DOUT
(Output)

(Open-Drain)
INIT_B

(Input/Output)
CCLK

Notes:
1. The CS_B, WRITE_B, and BUSY signals are not used in the serial modes. Keep the CS_B and WRITE_B inputs inactive (i.e., both

pins High).

Table 13: Timing for the Master and Slave Serial Configuration Modes

Symbol Description Slave/Master

All Speed Grades

UnitsMin Max

Setup Times

TDCC The time from the setup of data at the DIN pin
to the rising transition at the CCLK pin

Both - 5.0 ns

Hold Times

TCCD The time from the rising transition at the
CCLK pin to the point when data is last held
at the DIN pin

Both - 0 ns

Clock-to-Output Times

TCCO The time from the rising transition on the
CCLK pin to data appearing at the DOUT pin

Both - 12.0 ns

Clock Timing

TCCH The High pulse width at the CCLK input pin Slave 5.0 - ns

TCCL The Low pulse width at the CCLK input pin 5.0 - ns

FCCSER Frequency of the clock signal at the CCLK
input pin

- 66 MHz

∆FCCSER Variation from the generated CCLK frequency
set using the ConfigRate BitGen option

Master –50% +50% -

ug000.book Page 67 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: DC and Switching Characteristics

68 www.xilinx.com DS099-3 (v1.1) July 11, 2003
1-800-255-7778 Advance Product Specification

R

Figure 5: Waveforms for Master and Slave Parallel Configuration

DS099-3_05_041103

Byte 0 Byte 1 Byte n

BUSY
High-Z High-Z

Byte n+1

TSMWCC

1/FCCPAR

TSMCCCS

TCCL

TSMCKBYTSMCKBY

TCCH

TSMCCW

TSMCCD

TSMCSCC

TSMDCC

PROG_B
(Input)

(Open-Drain)
INIT_B

(Input)
CS_B

(Output)
BUSY

RDWR_B
(Input)

(Input/Output)
CCLK

(Inputs)
D0 - D7

Notes:
1. In a given CCLK cycle, when RDWR_B transitions High or Low while holding CS_B Low, the next rising edge on the CCLK pin will

abort configuration.

Table 14: Timing for the Master and Slave Parallel Configuration Modes

Symbol Description Slave/Master

All Speed Grades

UnitsMin Max

Setup Times

TSMDCC The time from the setup of data at the D0-D7 pins to the
rising transition at the CCLK pin

Both 5.0 - ns

TSMCSCC The time from the setup of a logic level at the CS_B pin to
the rising transition at the CCLK pin

7.0 - ns

TSMCCW The time from the setup of a logic level at the RDWR_B pin
to the rising transition at the CCLK pin(1)

7.0 - ns

Hold Times

TSMCCD The time from the rising transition at the CCLK pin to the
point when data is last held at the D0-D7 pins

Both 0 - ns

TSMCCCS The time from the rising transition at the CCLK pin to the
point when a logic level is last held at the CS_B pin

0 - ns

TSMWCC The time from the rising transition at the CCLK pin(1) to the
point when a logic level is last held at the RDWR_B pin(1)

0 - ns

ug000.book Page 68 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: DC and Switching Characteristics

DS099-3 (v1.1) July 11, 2003 www.xilinx.com 69
Advance Product Specification 1-800-255-7778

R

Clock-to-Output Times

TSMCKBY The time from the rising transition on the CCLK pin to a
signal transition at the BUSY pin

Slave - 12.0 ns

Clock Timing

TCCH The High pulse width at the CCLK input pin Slave 5 - ns

TCCL The Low pulse width at the CCLK input pin 5 - ns

FCCPAR Frequency of the clock signal
at the CCLK input pin

Not using the BUSY pin(2) - 66 MHz

Using the BUSY pin - 100 MHz

∆FCCPAR Variation from the generated CCLK frequency set using
the BitGen option ConfigRate

Master –50% +50% -

Notes:
1. RDWR_B is synchronized to CCLK for the purpose of performing the Abort operation. The same pin asynchronously controls the

driver impedance of the D0 - D7 pins. To avoid contention when writing configuration data to the D0 - D7 bus, do not bring RDWR_B
High when CS_B is Low.

2. In the Slave Parallel mode, it is necessary to use the BUSY pin when the CCLK frequency exceeds this maximum specification.

Table 14: Timing for the Master and Slave Parallel Configuration Modes (Continued)

Symbol Description Slave/Master

All Speed Grades

UnitsMin Max

Figure 6: JTAG Waveforms

TCK

TTMSTCK

TMS

TDI

TDO

(Input)

(Input)

(Input)

(Output)

TTCKTMS

TTCKTDI

TTCKTDO

TTDITCK

DS099_06_040703

TCCH TCCL

1/FTCK

Table 15: Timing for the JTAG Port

Symbol Description

All Speed Grades

UnitsMin Max

Setup Times

TTDITCK The time from the setup of data at the TDI pin to the
rising transition at the TCK pin

4.0 - ns

TTMSTCK The time from the setup of a logic level at the TMS pin
to the rising transition at the TCK pin

4.0 - ns

Hold Times

TTCKTDI The time from the rising transition at the TCK pin to
the point when data is last held at the TDI pin

0 - ns

ug000.book Page 69 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: DC and Switching Characteristics

70 www.xilinx.com DS099-3 (v1.1) July 11, 2003
1-800-255-7778 Advance Product Specification

R

Revision History

The Spartan-3 Family Data Sheet
DS099-1, Spartan-3 1.2V FPGA Family: Introduction and Ordering Information (Module 1)

DS099-2, Spartan-3 1.2V FPGA Family: Functional Description (Module 2)

DS099-3, Spartan-3 1.2V FPGA Family: DC and Switching Characteristics (Module 3)

DS099-4, Spartan-3 1.2V FPGA Family: Pinout Tables (Module 4)

TTCKTMS The time from the rising transition at the TCK pin to
the point when a logic level is last held at the TMS pin

0 - ns

Clock-to-Output Times

TTCKTDO The time from the falling transition on the TCK pin to
data appearing at the TDO pin

- 11.0 ns

Clock Timing

TCCH The High pulse width at the TCK pin 5.0 - ns

TCCL The Low pulse width at the TCK pin 5.0 - ns

FTCK Frequency of the clock signal at the TCK pin - 33 MHz

Date Version No. Description

04/11/03 1.0 Initial Xilinx release.

07/11/03 1.1 Extended Absolute Maximum Rating for junction temperature in Table 1. Added numbers for
typical quiescent supply current (Table 6) and DLL timing (Table 11) .

Table 15: Timing for the JTAG Port (Continued)

Symbol Description

All Speed Grades

UnitsMin Max

ug000.book Page 70 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com/bvdocs/publications/ds099-1.pdf
http://www.xilinx.com
http://www.xilinx.com/bvdocs/publications/ds099-2.pdf
http://www.xilinx.com/bvdocs/publications/ds099-4.pdf

DS099-4 (v1.1.2) July 11, 2003 www.xilinx.com 71
Advance Product Specification [ABBREVIATED] 1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

Introduction
This data sheet module describes the various pins on a
Spartan™-3 FPGA and how they connect to the supported
component packages.

• The Pin Types section categorizes all of the FPGA
pins by their function type.

• The Pin Definitions section provides a top-level
description for each pin on the device.

• The Detailed, Functional Pin Descriptions section
offers significantly more detail about each pin,
especially for the dual- or special-function pins used
during device configuration.

• Some pins have associated optional behavior,
controlled by settings in the configuration bitstream.
These options are described in the Bitstream Options
section.

• The Package Overview section describes the various
packaging options available for Spartan-3 FPGAs.
Detailed pin list tables and footprint diagrams are
provided for each package solution.

Pin Descriptions

Pin Types
A majority of the pins on a Spartan-3 FPGA are gen-
eral-purpose, user-defined I/O pins. There are, however, up
to 12 different functional types of pins on Spartan-3 pack-
ages, as outlined in Table 1. In the package footprint draw-
ings that follow, the individual pins are color-coded
according to pin type as in the table.

0

Spartan-3 1.2V FPGA Family:
Pinout Descriptions

DS099-4 (v1.1.2) July 11, 2003 0 0 Advance Product Specification [ABBREVIATED]

R

Table 1: Types of Pins on Spartan-3 FPGAs

Type/
Color
Code Description Pin Name(s) in Type

I/O Unrestricted, general-purpose user-I/O pin. Most pins can be
paired together to form differential I/Os.

IO,
IO_Lxxy_#

DUAL Dual-purpose pin used in some configuration modes during the
configuration process and then usually available as a user I/O
after configuration. If the pin is not used during configuration, this
pin behaves as an I/O-type pin. There are 12 dual-purpose
configuration pins on every package.

IO_Lxxy_#/DIN/D0, IO_Lxxy_#/D1,
IO_Lxxy_#/D2, IO_Lxxy_#/D3,
IO_Lxxy_#/D4, IO_Lxxy_#/D5,
IO_Lxxy_#/D6, IO_Lxxy_#/D7,
IO_Lxxy_#/CS_B, IO_Lxxy_#/RDWR_B,
IO_Lxxy_#/BUSY/DOUT,
IO_Lxxy_#/INIT_B

CONFIG Dedicated configuration pin. Not available as a user-I/O pin.
Every package has seven dedicated configuration pins. These
pins are powered by VCCAUX.

CCLK, DONE, M2, M1, M0, PROG_B,
HSWAP_EN

JTAG Dedicated JTAG pin. Not available as a user-I/O pin. Every
package has four dedicated JTAG pins. These pins are powered
by VCCAUX.

TDI, TMS, TCK, TDO

DCI Dual-purpose pin that is either a user-I/O pin or used to calibrate
output buffer impedance for a specific bank using Digital
Controlled Impedance (DCI). There are two DCI pins per I/O
bank.

IO/VRN_#
IO_Lxxy_#/VRN_#
IO/VRP_#
IO_Lxxy_#/VRP_#

VREF Dual-purpose pin that is either a user-I/O pin or, along with all
other VREF pins in the same bank, provides a reference voltage
input for certain I/O standamrds. If used for a reference voltage
within a bank, all VREF pins within the bank must be connected.

IO/VREF_#
IO_Lxxy_#/VREF_#

ug000.book Page 71 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Spartan-3 1.2V FPGA Family: Pinout Descriptions

72 www.xilinx.com DS099-4 (v1.1.2) July 11, 2003
1-800-255-7778 Advance Product Specification [ABBREVIATED]

R

I/Os with Lxxy_# are part of a differential output pair. ‘L’ indi-
cates differential output capability. The “xx” field is a
two-digit integer, unique to each bank that identifies a differ-
ential pin-pair. The ‘y’ field is either ‘P’ for the true signal or
‘N’ for the inverted signal in the differential pair. The ‘#’ field
is the I/O bank number.

Pin Definitions
Table 2 provides a brief description of each pin listed in the
Spartan-3 pinout tables and package footprint diagrams.
Pins are categorized by their pin type, as listed in Table 1.
See Detailed, Functional Pin Descriptions for more infor-
mation.

GND Dedicated ground pin. The number of GND pins depends on the
package used. All must be connected.

GND

VCCAUX Dedicated auxiliary power supply pin. The number of VCCAUX
pins depends on the package used. All must be connected to
+2.5V.

VCCAUX

VCCINT Dedicated internal core logic power supply pin. The number of
VCCINT pins depends on the package used. All must be
connected to +1.2V.

VCCINT

VCCO Dedicated I/O bank, output buffer power supply pin. Along with
other VCCO pins in the same bank, this pin supplies power to the
output buffers within the I/O bank and sets the input threshold
voltage for some I/O standards.

VCCO_#
TQ144 Package Only:
VCCO_LEFT, VCCO_TOP,
VCCO_RIGHT, VCCO_BOTTOM

GCLK Dual-purpose pin that is either a user-I/O pin or an input to a
specific global buffer input. Every package has eight dedicated
GCLK pins.

IO_Lxxy_#/GCLK0, IO_Lxxy_#/GCLK1,
IO_Lxxy_#/GCLK2, IO_Lxxy_#/GCLK3,
IO_Lxxy_#/GCLK4, IO_Lxxy_#/GCLK5,
IO_Lxxy_#/GCLK6, IO_Lxxy_#/GCLK7

N.C. This package pin is not connected in this specific
device/package combination but may be connected in larger
devices in the same package.

N.C.

Notes:
1. # = I/O bank number, an integer between 0 and 7.

Table 1: Types of Pins on Spartan-3 FPGAs (Continued)

Type/
Color
Code Description Pin Name(s) in Type

ug000.book Page 72 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Pinout Descriptions

DS099-4 (v1.1.2) July 11, 2003 www.xilinx.com 73
Advance Product Specification [ABBREVIATED] 1-800-255-7778

R

Table 2: Spartan-3 Pin Definitions

Pin Name Direction Description

I/O: General-purpose I/O pins

I/O User-defined as input,
output, bidirectional,
three-state output,
open-drain output,
open-source output

User I/O:

Unrestricted single-ended user-I/O pin. Supports all I/O standards
except the differential standards.

I/O_Lxxy_# User-defined as input,
output, bidirectional,
three-state output,
open-drain output,
open-source output

User I/O, Half of Differential Pair:

Unrestricted single-ended user-I/O pin or half of a differential pair.
Supports all I/O standards including the differential standards.

DUAL: Dual-purpose configuration pins

IO_Lxxy_#/DIN/D0,
IO_Lxxy_#/D1,
IO_Lxxy_#/D2,
IO_Lxxy_#/D3,
IO_Lxxy_#/D4,
IO_Lxxy_#/D5,
IO_Lxxy_#/D6,
IO_Lxxy_#/D7

Input during configuration

Possible bidirectional I/O
after configuration if
SelectMap port is retained.

Otherwise, user I/O after
configuration

Configuration Data Port:

In Parallel (SelectMAP) modes, D0-D7 are byte-wide configuration
data pins. These pins become user I/Os after configuration unless
the SelectMAP port is retained via the Persist bitstream option.

In Serial modes, DIN (D0) serves as the single configuration data
input. This pin becomes a user I/O after configuration unless
retained by the Persist bitstream option.

IO_Lxxy_#/CS_B Input during Parallel mode
configuration

Possible input after
configuration if SelectMap
port is retained.

Otherwise, user I/O after
configuration

Chip Select for Parallel Mode Configuration:

In Parallel (SelectMAP) modes, this is the active-Low Chip Select
signal. This pin becomes a user I/O after configuration unless the
SelectMAP port is retained via the Persist bitstream option.

IO_Lxxy_#/RDWR_B Input during Parallel mode
configuration

Possible input after
configuration if SelectMap
port is retained.

Otherwise, user I/O after
configuration

Read/Write Control for Parallel Mode Configuration:

In Parallel (SelectMAP) modes, this is the active-Low Write
Enable, active-High Read Enable signal. This pin becomes a user
I/O after configuration unless the SelectMAP port is retained via
the Persist bitstream option.

IO_Lxxy_#/
BUSY/DOUT

Output during configuration

Possible output after
configuration if SelectMap
port is retained.

Otherwise, user I/O after
configuration

Configuration Data Rate Control for Parallel Mode, Serial Data
Output for Serial Mode:

In Parallel (SelectMAP) modes, BUSY throttles the rate at which
configuration data is loaded. This pin becomes a user I/O after
configuration unless the SelectMAP port is retained via the Persist
bitstream option.

In Serial modes, DOUT provides preamble and configuration data
to downstream devices in a multi-FPGA daisy-chain. This pin
becomes a user I/O after configuration.

ug000.book Page 73 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Pinout Descriptions

74 www.xilinx.com DS099-4 (v1.1.2) July 11, 2003
1-800-255-7778 Advance Product Specification [ABBREVIATED]

R

IO_Lxxy_#/INIT_B Bidirectional (open-drain)
during configuration

User I/O after configuration

Initializing Configuration Memory/Detected Configuration Error:

When Low, this pin indicates that configuration memory is being
cleared. When held Low, this pin delays the start of configuration.
After this pin is released or configuration memory is cleared, the
pin goes High. During configuration, a Low on this output indicates
that a configuration data error occurred. This pin becomes a user
I/O after configuration.

DCI: Digitally Controlled Impedance reference resistor input pins

IO_Lxxy_#/VRN_# or
IO/VRN_#

Input when using DCI

Otherwise, same as I/O

DCI Reference Resistor for NMOS I/O Transistor (per bank):

If using DCI, a 1% precision impedance-matching resistor is
connected between this pin and the VCCO supply for this bank.
Otherwise, this pin is a user I/O.

IO_Lxxy_#/VRP_# or
IO/VRP_#

Input when using DCI

Otherwise, same as I/O

DCI Reference Resistor for PMOS I/O Transistor (per bank):

If using DCI, a 1% precision impedance-matching resistor is
connected between this pin and the ground supply. Otherwise, this
pin is a user I/O.

GCLK: Global clock buffer inputs

IO_Lxxy_#/GCLK0,
IO_Lxxy_#/GCLK1,
IO_Lxxy_#/GCLK2,
IO_Lxxy_#/GCLK3,
IO_Lxxy_#/GCLK4,
IO_Lxxy_#/GCLK5,
IO_Lxxy_#/GCLK6,
IO_Lxxy_#/GCLK7

Input if connected to global
clock buffers

Otherwise, same as I/O

Global Buffer Input:

Direct input to a low-skew global clock buffer. If not connected to a
global clock buffer, this pin is a user I/O.

VREF: I/O bank input reference voltage pins

IO_Lxxy_#/VREF_#
or
IO/VREF_#

Voltage supply input when
VREF pins are used within a
bank.

Otherwise, same as I/O

Input Buffer Reference Voltage for Special I/O Standards (per
bank):

If required to support special I/O standards, all the VREF pins
within a bank connect to a input threshold voltage source.

If not used as input reference voltage pins, these pins are available
as individual user-I/O pins.

CONFIG: Dedicated configuration pins

CCLK Input in Slave configuration
modes

Output in Master
configuration modes

Configuration Clock:

The configuration clock signal synchronizes configuration data.

PROG_B Input Program/Configure Device:

Active Low asynchronous reset to configuration logic. Asserting
PROG_B Low for an extended period delays the configuration
process. This pin has an internal weak pull-up resistor during
configuration.

Table 2: Spartan-3 Pin Definitions (Continued)

Pin Name Direction Description

ug000.book Page 74 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Pinout Descriptions

DS099-4 (v1.1.2) July 11, 2003 www.xilinx.com 75
Advance Product Specification [ABBREVIATED] 1-800-255-7778

R

DONE Bidirectional with open-drain
or totem-pole Output

Configuration Done, Delay Start-up Sequence:

A Low-to-High output transition on this bidirectional pin signals the
end of the configuration process.

The FPGA produces a Low-to-High transition on this pin to
indicate that the configuration process is complete. The DriveDone
bitstream generation option defines whether this pin functions as
a totem-pole output that actively drives High or as an open-drain
output. An open-drain output requires a pull-up resistor to produce
a High logic level. The open-drain option permits the DONE lines
of multiple FPGAs to be tied together, so that the common node
transitions High only after all of the FPGAs have completed
configuration. Externally holding the open-drain output Low delays
the start-up sequence, which marks the transition to user mode.

M0, M1, M2 Input Configuration Mode Selection:

These inputs select the configuration mode. The logic levels
applied to the mode pins are sampled on the rising edge of INIT_B.
See Table 7.

HSWAP_EN Input Disable Weak Pull-up Resistors During Configuration:

A Low on this pin enables weak pull-up resistors on all pins that are
not actively involved in the configuration process. A High value
disables all pull-ups, allowing the non-configuration pins to float.

JTAG: JTAG interface pins

TCK Input JTAG Test Clock:

The TCK clock signal synchronizes all JTAG port operations.

TDI Input JTAG Test Data Input:

TDI is the serial data input for all JTAG instruction and data
registers.

TMS Input JTAG Test Mode Select:

The serial TMS input controls the operation of the JTAG port.

TDO Output JTAG Test Data Output:

TDO is the serial data output for all JTAG instruction and data
registers.

VCCO: I/O bank output voltage supply pins

VCCO_# Supply Power Supply for Output Buffer Drivers (per bank):

These pins power the output drivers within a specific I/O bank.

VCCAUX: Auxiliary voltage supply pins

VCCAUX Supply Power Supply for Auxiliary Circuits:

+2.5V power pins for auxiliary circuits, including the Digital Clock
Managers (DCMs), the dedicated configuration pins (CONFIG),
and the dedicated JTAG pins. All VCCAUX pins must be
connected.

VCCINT: Internal core voltage supply pins

VCCINT Supply Power Supply for Internal Core Logic:

+1.2V power pins for the internal logic. All pins must be connected.

Table 2: Spartan-3 Pin Definitions (Continued)

Pin Name Direction Description

ug000.book Page 75 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Pinout Descriptions

76 www.xilinx.com DS099-4 (v1.1.2) July 11, 2003
1-800-255-7778 Advance Product Specification [ABBREVIATED]

R

Detailed, Functional Pin Descriptions

I/O Type: Unrestricted, General-purpose I/O
Pins
After configuration, I/O-type pins are inputs, outputs, bidi-
rectional I/O, three-state outputs, open-drain outputs, or
open-source outputs, as defined in the application

Pins labeled "IO" support all SelectIO™ signal standards
except differential standards. A given device at most only
has a few of these pins.

A majority of the general-purpose I/O pins are labeled in the
format “IO_Lxxy_#”. These pins support all SelectIO signal
standards, including the differential standards such as
LVDS, ULVDS, BLVDS, RSDS, or LDT.

For additional information, see the “IOB” section under Func-
tional Description (Module 2 of the Spartan-3 data sheet).

Differential Pair Labeling

A pin supports differential standards if the pin is labeled in
the format “Lxxy_#”. The pin name suffix has the following
significance. Figure 1 provides a specific example showing
a differential input to and a differential output from Bank 2.

• ‘L’ indicates differential capability.
• "xx" is a two-digit integer, unique for each bank, that

identifies a differential pin-pair.
• ‘y’ is replaced by ‘P’ for the true signal or ‘N’ for the

inverted. These two pins form one differential pin-pair.
• ‘#’ is an integer, 0 through 7, indicating the associated

I/O bank.

If unused, these pins are in a high impedance state. The Bit-
stream generator option UnusedPin enables a weak pull-up
or pull-down resistor on all unused I/O pins.

Behavior from Power-On through End of Configu-
ration

During the configuration process, all pins that are not
actively involved in the configuration process are in a
high-impedance state. The HSWAP_EN input determines
whether or not weak pull-up resistors are enabled during
configuration. HSWAP_EN = 0 enables the weak pull-up
resistors. HSWAP_EN = 1 disables the pull-up resistors
allowing the pins to float, which is the desired state for
hot-swap applications.

GND: Ground supply pins

GND Supply Ground:

Ground pins, which are connected to the power supply’s return
path. All pins must be connected.

N.C.: Unconnected package pins

N.C. Unconnected Package Pin:

These package pins are unconnected.

Notes:
1. All unused inputs and bidirectional pins must be tied either High or Low. For unused enable inputs, apply the level that disables the

associated function. One common approach is to activate internal pull-up or pull-down resistors. An alternative approach is to
externally connect the pin to either VCCO or GND.

2. All outputs are of the totem-pole type — i.e., they can drive High as well as Low logic levels — except for the cases where “Open
Drain” is indicated. The latter can only drive a Low logic level and require a pull-up resistor to produce a High logic level.

Table 2: Spartan-3 Pin Definitions (Continued)

Pin Name Direction Description

Figure 1: Differential Pair Labelling

IO_L38P_2

IO_L38N_2

IO_L39P_2

IO_L39N_2

Bank 0 Bank 1

Bank 4Bank 5

B
a

n
k

 2
B

a
n

k
 3

B
a

n
k

 6
B

a
n

k
 7

Pair Number

Bank Number

Positive Polarity,
True Driver

Negative Polarity,
Inverted Driver

DS099-4_01_042303

ug000.book Page 76 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/bvdocs/publications/ds099-2.pdf
http://www.xilinx.com/bvdocs/publications/ds099-2.pdf

Spartan-3 1.2V FPGA Family: Pinout Descriptions

DS099-4 (v1.1.2) July 11, 2003 www.xilinx.com 77
Advance Product Specification [ABBREVIATED] 1-800-255-7778

R

DUAL Type: Dual-Purpose Configuration and
I/O Pins
These pins serve dual purposes. The user-I/O pins are tem-
porarily borrowed during the configuration process to load
configuration data into the FPGA. After configuration, these
pins are then usually available as a user I/O in the applica-
tion. If a pin is not applicable to the specific configuration
mode—controlled by the mode select pins M2, M1, and
M0—then the pin behaves as an I/O-type pin.

There are 12 dual-purpose configuration pins on every
package, six of which are part of I/O Bank 4, the other six
part of I/O Bank 5. Only a few of the pins in Bank 4 are used
in the Serial configuration modes.

See “Configuration” under Functional Description (Module 2
of the Spartan-3 data sheet).

See “Pin Behavior During Configuration, page 85”.

Serial Configuration Modes

This section describes the dual-purpose pins used during
either Master or Slave Serial mode. See Table 7 for Mode
Select pin settings required for Serial modes. All such pins
are in Bank 4 and powered by VCCO_4.

In both the Master and Slave Serial modes, DIN is the serial
configuration data input. The D1-D7 inputs are unused in
serial mode and behave like general-purpose I/O pins.

In all the cases, the configuration data is synchronized to
the rising edge of the CCLK clock signal.

The DIN, DOUT, and INIT_B pins can be retained in the
application to support reconfiguration by setting the Persist
bitstream generation option. However, the serial modes do
not support device readback.

Table 3: Dual-Purpose Pins Used in Master or Slave Serial Mode

Pin Name Direction Description

DIN Input Serial Data Input:

During the Master or Slave Serial configuration modes, DIN is the serial configuration data
input, and all data is synchronized to the rising CCLK edge. After configuration, this pin is
available as a user I/O.

This signal is located in Bank 4 and its output voltage determined by VCCO_4.

The BitGen option Persist permits this pin to retain its configuration function in the User
mode.

DOUT Output Serial Data Output:

In a multi-FPGA design where all the FPGAs use serial mode, connect the DOUT output of
one FPGA—in either Master or Slave Serial mode—to the DIN input of the next FPGA—in
Slave Serial mode—so that configuration data passes from one to the next, in daisy-chain
fashion. This “daisy chain” permits sequential configuration of multiple FPGAs.

This signal is located in Bank 4 and its output voltage determined by VCCO_4.

The BitGen option Persist permits this pin to retain its configuration function in the User
mode.

INIT_B Bidirectional
(open-drain)

Initializing Configuration Memory/Configuration Error:

Just after power is applied, the FPGA produces a Low-to-High transition on this pin
indicating that initialization (i.e., clearing) of the configuration memory has finished. Before
entering the User mode, this pin functions as an open-drain output, which requires a pull-up
resistor in order to produce a High logic level. In a multi-FPGA design, tie (wire AND) the
INIT_B pins from all FPGAs together so that the common node transitions High only after
all of the FPGAs have been successfully initialized.

Externally holding this pin Low beyond the initialization phase delays the start of
configuration. This action stalls the FPGA at the configuration step just before the mode
select pins are sampled.

During configuration, the FPGA indicates the occurrence of a data (i.e., CRC) error by
asserting INIT_B Low.

This signal is located in Bank 4 and its output voltage determined by VCCO_4.

The BitGen option Persist permits this pin to retain its configuration function in the User
mode.

ug000.book Page 77 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/bvdocs/publications/ds099-2.pdf
http://www.xilinx.com/bvdocs/publications/ds099-2.pdf

Spartan-3 1.2V FPGA Family: Pinout Descriptions

78 www.xilinx.com DS099-4 (v1.1.2) July 11, 2003
1-800-255-7778 Advance Product Specification [ABBREVIATED]

R

Parallel Configuration Modes (SelectMAP)
This section describes the dual-purpose configuration pins
used during the Master and Slave Parallel configuration
modes, sometimes also called the SelectMAP modes. In
both Master and Slave Parallel configuration modes, D0-D7
form the byte-wide configuration data input. See Table 7 for
Mode Select pin settings required for Parallel modes.

As shown in Figure 2, D0 is the most-significant bit while D7
is the least-significant bit. Bits D0-D3 form the high nibble of
the byte and bits D4-D7 form the low nibble.

In the Parallel configuration modes, both the VCCO_4 and
VCCO_5 voltage supplies are required and must both equal
the voltage of the attached configuration device, typically
either 2.5V or 3.3V.

Assert Low both the chip-select pin, CS_B, and the
read/write control pin, RDWR_B, to write the configuration
data byte presented on the D0-D7 pins to the FPGA on a
rising-edge of the configuration clock, CCLK. The order of

CS_B and RDWR_B does not matter, although RDWR_B
must be asserted throughout the configuration process. If
RDWR_B is de-asserted during configuration, the FPGA
aborts the configuration operation.

After configuration, these pins are available as general-pur-
pose user I/O. However, the SelectMAP configuration inter-
face is optionally available for debugging and dynamic
reconfiguration. To use these SelectMAP pins after configu-
ration, set the Persist bitstream generation option.

The Readback debugging option, for example, requires the
Persist bitstream generation option. During Readback
mode, assert CS_B Low, along with RDWR_B High, to read
a configuration data byte from the FPGA to the D0-D7 bus
on a rising CCLK edge. During Readback mode, D0-D7 are
output pins.

In all the cases, the configuration data and control signals
are synchronized to the rising edge of the CCLK clock sig-
nal.

I/O Bank 4 (VCCO_4) I/O Bank 5 (VCCO_5)

High Nibble Low Nibble

Configuration Data Byte D0 D1 D2 D3 D4 D5 D6 D7

0xA5 = 1 0 1 0 0 1 0 1

Figure 2: Configuration Data Byte Mapping to D0-D7 Bits

ug000.book Page 78 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Pinout Descriptions

DS099-4 (v1.1.2) July 11, 2003 www.xilinx.com 79
Advance Product Specification [ABBREVIATED] 1-800-255-7778

R

Table 4: Dual-Purpose Configuration Pins for Parallel (SelectMAP) Configuration Modes

Pin
Name Direction Description

D0,
D1,
D2,
D3

Input during
configuration

Output during
readback

Configuration Data Port (high nibble):

Collectively, the D0-D7 pins are the byte-wide configuration data port for the Parallel
(SelectMAP) configuration modes. Configuration data is synchronized to the rising edge of
CCLK clock signal.

The D0-D3 pins are the high nibble of the configuration data byte and located in Bank 4 and
powered by VCCO_4.

The BitGen option Persist permits this pin to retain its configuration function in the User mode.

D4,
D5,
D6,
D7

Input during
configuration

Output during
readback

Configuration Data Port (low nibble):

The D4-D7 pins are the low nibble of the configuration data byte. However, these signals are
located in Bank 5 and powered by VCCO_5.

The BitGen option Persist permits this pin to retain its configuration function in the User mode.

CS_B Input Chip Select for Parallel Mode Configuration:

Assert this pin Low, together with RDWR_B to write a configuration data byte from the D0-D7
bus to the FPGA on a rising CCLK edge.

During Readback, assert this pin Low, along with RDWR_B High, to read a configuration data
byte from the FPGA to the D0-D7 bus on a rising CCLK edge.

This signal is located in Bank 5 and powered by VCCO_5.

The BitGen option Persist permits this pin to retain its configuration function in the User mode.

CS_B Function

0 FPGA selected. SelectMAP inputs are valid on the next rising edge of CCLK.

1 FPGA deselected. All SelectMAP inputs are ignored.

ug000.book Page 79 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Pinout Descriptions

80 www.xilinx.com DS099-4 (v1.1.2) July 11, 2003
1-800-255-7778 Advance Product Specification [ABBREVIATED]

R

JTAG Configuration Mode
In the JTAG configuration mode all dual-purpose configura-
tion pins are unused and behave exactly like user-I/O pins,
as shown in Table 10. See Table 7 for Mode Select pin set-
tings required for JTAG mode.

Dual-Purpose Pin I/O Standard During Configura-
tion
During configuration, the dual-purpose pins default to
CMOS input and output levels for the associated VCCO
voltage supply pins. For example, in the Parallel configura-
tion modes, both VCCO_4 and VCCO_5 are required. If
connected to +2.5V, then the associated pins conform to the

LVCMOS25 I/O standard. If connected to +3.3V, then the
pins drive LVCMOS output levels and accept either LVTTL
or LVCMOS input levels.

Dual-Purpose Pin Behavior After Configuration
After the configuration process completes, these pins, if
they were borrowed during configuration, become user-I/O
pins available to the application. If a dual-purpose configu-
ration pin is not used during the configuration process—i.e.,
the parallel configuration pins when using serial
mode—then the pin behaves exactly like a general-purpose
I/O. See I/O Type: Unrestricted, General-purpose I/O
Pins section above.

RDWR_B Input Read/Write Control for Parallel Mode Configuration:

In Master and Slave Parallel modes, assert this pin Low together with CS_B to write a
configuration data byte from the D0-D7 bus to the FPGA on a rising CCLK edge. Once
asserted during configuration, RDWR_B must remain asserted until configuration is
complete.

During Readback, assert this pin High with CS_B Low to read a configuration data byte from
the FPGA to the D0-D7 bus on a rising CCLK edge.

This signal is located in Bank 5 and powered by VCCO_5.

The BitGen option Persist permits this pin to retain its configuration function in the User mode.

BUSY Output Configuration Data Rate Control for Parallel Mode:

In the Slave and Master Parallel modes, BUSY throttles the rate at which configuration data
is loaded. BUSY is only necessary if CCLK operates at greater than 50 MHz. Ignore BUSY
for frequencies of 50 MHz and below.

When BUSY is Low, the FPGA accepts the next configuration data byte on the next rising
CCLK edge for which CS_B and RDWR_B are Low. When BUSY is High, the FPGA ignores
the next configuration data byte. The next configuration data value must be held or reloaded
until the next rising CCLK edge when BUSY is Low. When CS_B is High, BUSY is in a high
impedance state.

This signal is located in Bank 4 and its output voltage is determined by VCCO_4. The BitGen
option Persist permits this pin to retain its configuration function in the User mode.

INIT_B Bidirectional
(open-drain)

Initializing Configuration Memory/Configuration Error (active-Low):

See description under Serial Configuration Modes, page 77.

Table 4: Dual-Purpose Configuration Pins for Parallel (SelectMAP) Configuration Modes (Continued)

Pin
Name Direction Description

RDWR_B Function

0 If CS_B is Low, then load (write) configuration data to the FPGA.

1 This option is valid only if the Persist bitstream option is set to Yes. If CS_B is
Low, then read configuration data from the FPGA.

BUSY Function

0 The FPGA is ready to accept the next configuration data byte.

1 The FPGA is busy processing the current configuration data byte and is not
ready to accept the next byte.

Hi-Z If CS_B is High, then BUSY is high impedance.

ug000.book Page 80 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Pinout Descriptions

DS099-4 (v1.1.2) July 11, 2003 www.xilinx.com 81
Advance Product Specification [ABBREVIATED] 1-800-255-7778

R

DCI: User I/O or Digitally Controlled
Impedance Resistor Reference Input
These pins are individual user-I/O pins unless one of the I/O
standards used in the bank requires the Digitally Controlled
Impedance (DCI) feature. If DCI is used, then 1% precision
resistors connected to the VRP_# and VRN_# pins match
the impedance on the input or output buffers of the I/O stan-
dards that use DCI within the bank.

The ‘#’ character in the pin name indicates the associated
I/O bank and is an integer, 0 through 7.

There are two DCI pins per I/O bank, except in the TQ144
package, which does not have any DCI inputs for Bank 5.

VRP and VRN Impedance Resistor Reference
Inputs
The 1% precision impedance-matching resistor attached to
the VRP_# pin controls the pull-up impedance of PMOS
transistor in the input or output buffer. Consequently, the
VRP_# pin must connect to ground. The ‘P’ character in
“VRP” indicates that this pin controls the I/O buffer’s PMOS
transistor impedance. The VRP_# pin is used for both single
and split termination.

The 1% precision impedance-matching resistor attached to
the VRN_# pin controls the pull-down impedance of NMOS
transistor in the input or output buffer. Consequently, the
VRN_# pin must connect to VCCO. The ‘N’ character in
“VRN” indicates that this pin controls the I/O buffer’s NMOS
transistor impedance. The VRN_# pin is only used for split
termination.

Each VRN or VRP reference input requires its own resistor.
A single resistor cannot be shared between VRN or VRP
pins associated with different banks.

During configuration, these pins behave exactly like
user-I/O pins. The associated DCI behavior is not active or
valid until after configuration completes.

See “Digitally Controlled Impedance (DCI)” under Functional
Description (Module 2 of the Spartan-3 data sheet).

DCI Termination Types
If the I/O in an I/O bank do not use the DCI feature, then no
external resistors are required and both the VRP_# and
VRN_# pins are available for user I/O, as shown in
Figure 3a.

If the I/O standards within the associated I/O bank require
single termination—such as GTL_DCI, GTLP_DCI, or
HSTL_III_DCI—then only the VRP_# signal connects to a
1% precision impedance-matching resistor, as shown in
Figure 3b. The VRN_# pin is available for user I/O.

Finally, if the I/O standards with the associated I/O bank
require split termination—such as HSTL_I_DCI,
SSTL2_I_DCI, SSTL2_II_DCI, or LVDS_25_DCI and

LVDSEXT_25_DCI receivers—then both the VRP_# and
VRN_# pins connect to separate 1% precision imped-
ance-matching resistors, as shown in Figure 3c. Neither pin
is available for user I/O.

GCLK: Global Clock Buffer Inputs or
General-Purpose I/O Pins
These pins are user-I/O pins unless they specifically con-
nect to one of the eight low-skew global clock buffers on the
device, specified using the IBUFG primitive.

There are eight GCLK pins per device and two each appear
in the top-edge banks, Bank 0 and 1, and the bottom-edge
banks, Banks 4 and 5. See Figure 1 for a picture of bank
labeling.

During configuration, these pins behave exactly like
user-I/O pins.

CONFIG: Dedicated Configuration Pins
The dedicated configuration pins control the configuration
process and are not available as user-I/O pins. Every pack-
age has seven dedicated configuration pins. All CON-
FIG-type pins are powered by the +2.5V VCCAUX supply.

See “Configuration” under Functional Description (Module 2
of the Spartan-3 data sheet).

CCLK: Configuration Clock
The configuration clock signal on this pin synchronizes the
reading or writing of configuration data. This pin is an input
for the Slave configuration modes, both parallel and serial.

After configuration, the CCLK pin is in a high-impedance,
floating state. By default, CCLK optionally is pulled High to
VCCAUX as defined by the CclkPin bitstream selection. Any
clocks applied to CCLK after configuration are ignored
unless the bitstream option Persist is set to Yes, which
retains the configuration interface. Persist is set to No by
default. However, if Persist is set to Yes, then all clock edges
are potentially active events, depending on the other config-
uration control signals.

The bitstream generator option ConfigRate determines the
frequency of the internally-generated CCLK oscillator
required for the Master configuration modes. The actual fre-
quency is approximate due to the characteristics of the sili-
con oscillator and varies by up to 30% over the temperature
and voltage range. By default, CCLK operates at approxi-
mately 6 MHz. Via the ConfigRate option, the oscillator fre-
quency can be approximately 3, 6, 12, 25, 50, or 100 MHz.
At power-on, CCLK always starts operation at its lowest fre-
quency. The device does not start operating at the higher
frequency until the ConfigRate control bits are loaded dur-
ing the configuration process.

ug000.book Page 81 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/bvdocs/publications/ds099-2.pdf
http://www.xilinx.com/bvdocs/publications/ds099-2.pdf
http://www.xilinx.com/bvdocs/publications/ds099-2.pdf
http://www.xilinx.com/bvdocs/publications/ds099-2.pdf

Spartan-3 1.2V FPGA Family: Pinout Descriptions

82 www.xilinx.com DS099-4 (v1.1.2) July 11, 2003
1-800-255-7778 Advance Product Specification [ABBREVIATED]

R

PROG_B: Program/Configure Device

This asynchronous pin initiates the configuration or re-con-
figuration processes. A Low-going pulse resets the configu-
ration logic, initializing the configuration memory. This
initialization process cannot finish until PROG_B returns
High. Asserting PROG_B Low for an extended period
delays the configuration process. At power-up, there is
always a weak pull-up resistor to VCCAUX on this pin. After
configuration, the bitstream generator option ProgPin deter-
mines whether or not the weak pull-up resistor is present.
By default, the ProgPin option retains the weak pull-up
resistor.

After configuration, hold the PROG_B input High. Any
Low-going pulse on PROG_B restarts the configuration pro-
cess.

DONE: Configuration Done, Delay Start-Up
Sequence
The FPGA produces a Low-to-High transition on this pin
indicating that the configuration process is complete. The
bitstream generator option DriveDone determines whether
this pin functions as a totem-pole output that can drive High
or as an open-drain output. If configured as an open-drain
output—which is the default behavior—then a pull-up resis-
tor is required to produce a High logic level. There is a bit-
stream option that provides an internal weak pull-up
resistor, otherwise an external pull-up resistor is required.

The open-drain option permits the DONE lines of multiple
FPGAs to be tied together, so that the common node transi-
tions High only after all of the FPGAs have completed con-
figuration. Externally holding the open-drain DONE pin Low
delays the start-up sequence, which marks the transition to
user mode.

Once the FPGA enters User mode after completing config-
uration, the DONE pin no longer drives the DONE pin Low.
The bitstream generator option DonePin determines
whether or not a weak pull-up resistor is present on the
DONE pin to pull the pin to VCCAUX. If the weak pull-up
resistor is eliminated, then the DONE pin must be pulled
High using an external pull-up resistor or one of the FPGAs
in the design must actively drive the DONE pin High via the
DriveDone bitstream generator option.

The bitstream generator option DriveDone causes the
FPGA to actively drive the DONE output High after configu-
ration. This option should only be used in single-FPGA
designs or on the last FPGA in a multi-FPGA daisy-chain.

By default, the bitstream generator software retains the
weak pull-up resistor and does not actively drive the DONE
pin as highlighted in Table 6. Table 6 shows the interaction
of these bitstream options in single- and multi-FPGA
designs.

Figure 3: DCI Termination Types

DS099-4_03_042203

VCCO

VRN

VRP

One of eight
I/O Banks

RREF (1%)

RREF (1%)

(c) Split termination

User I/O

VRP

One of eight
I/O Banks

RREF (1%)

(b) Single termination

User I/O

User I/O

One of eight
I/O Banks

(a) No termination

Table 5: PROG_B Operation

PROG_B Input Response

Power-up Automatically initiates configuration
process.

Low-going pulse Initiate (re-)configuration process and
continue to completion.

Extended Low Initiate (re-)configuration process and
stall process at step where
configuration memory is cleared.
Process is stalled until PROG_B
returns High.

1 If the configuration process is started,
continue to completion. If
configuration process is complete,
stay in User mode.

ug000.book Page 82 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Pinout Descriptions

DS099-4 (v1.1.2) July 11, 2003 www.xilinx.com 83
Advance Product Specification [ABBREVIATED] 1-800-255-7778

R

M2, M1, M0: Configuration Mode Selection
These inputs select the mode to configure the FPGA. The
logic levels applied to the mode pins are sampled on the ris-
ing edge of INIT_B.

In user mode, after configuration successfully completes,
any levels applied to these input are ignored. Each of the
bitstream generator options M0Pin, M1Pin, and M2Pin
determines whether a weak pull-up resistor, weak pull-down
resistor, or no resistor is present on its respective mode pin,
M0, M1, or M2.

HSWAP_EN: Disable Weak Pull-up Resistors Dur-
ing Configuration
A Low on this asynchronous pin enables weak pull-up resis-
tors on all user I/Os, although only until device configuration

completes. A High disables the weak pull-up resistors (dur-
ing configuration, which is the desired state for some appli-
cations.

After configuration, HSWAP_EN essentially becomes a
"don’t care" input and any pull-up resistors previously
enabled by HSWAP_EN are disabled. If a user I/O in the
application requires a weak pull-up resistor after configura-
tion, place a PULLUP primitive on the associated I/O pin.

The Bitstream generator option HswapenPin determines
whether a weak pull-up resistor to VCCAUX, a weak
pull-down resistor, or no resistor is present on HSWAP_EN
after configuration.

JTAG: Dedicated JTAG Port Pins
These pins are dedicated connections to the four-wire IEEE
1532/IEEE 1149.1 JTAG port, shown in Figure 4. The JTAG

Table 6: DonePin and DriveDone Bitstream Option Interaction

DonePin DriveDone
Single- or Multi-

FPGA Design Comments

Pullnone No Single External pull-up resistor, with value between 330Ω to 3.3kΩ, required on
DONE.

Pullnone No Multi External pull-up resistor, with value between 330Ω to 3.3kΩ, required on
common node connecting to all DONE pins.

Pullnone Yes Single OK, no external requirements.

Pullnone Yes Multi DriveDone on last device in daisy-chain only. No external requirements.

Pullup No Single OK, but weak pull-up on DONE pin has slow rise time. May require 330 Ω
pull-up resistor for high CCLK frequencies.

Pullup No Multi External pull-up resistor, with value between 330Ω to 3.3kΩ, required on
common node connecting to all DONE pins.

Pullup Yes Single OK, no external requirements.

Pullup Yes Multi DriveDone on last device in daisy-chain only. No external requirements.

Table 7: Spartan-3 Configuration Mode Select Settings

Configuration Mode M2 M1 M0

Master Serial 0 0 0

Slave Serial 1 1 1

Master Parallel 0 1 1

Slave Parallel 1 1 0

JTAG 1 0 1

Reserved 0 0 1

Reserved 0 1 0

Reserved 1 0 0

After Configuration X X X

Notes:
1. X = don’t care, either 0 or 1.

Table 8: HSWAP_EN Encoding

HSWAP_EN Function

During Configuration

0 Enable weak pull-up resistors on all pins
not actively involved in the configuration
process. Pull-ups are only active until
configuration completes. See Table 10.

1 No pull-up resistors during configuration.

After Configuration, User Mode

X This pin has no function except during
device configuration.

Notes:
1. X = don’t care, either 0 or 1.

ug000.book Page 83 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Pinout Descriptions

84 www.xilinx.com DS099-4 (v1.1.2) July 11, 2003
1-800-255-7778 Advance Product Specification [ABBREVIATED]

R

port is used for boundary-scan testing, device configuration,
application debugging, and possibly an additional serial port
for the application. These pins are dedicated and are not
available as user-I/O pins. Every package has four dedi-
cated JTAG pins and these pins are powered by the +2.5V
VCCAUX supply.

Using JTAG Port After Configuration
By default, the JTAG port is disabled after the configuration
process completes. To continue using the JTAG port, after
configuration, place a BSCAN_SPARTAN3 primitive in the
design.

Furthermore, the contents of the User ID register within the
JTAG port can be specified as a Bitstream Generation
option. By default, the 32-bit User ID register contains
0xFFFFFFFF.

Precautions When Using the JTAG Port in 3.3V
Environments
The JTAG port is powered by the +2.5V VCCAUX power
supply. The JTAG pins can tolerate 3.3V interface signals
but inputs will be clamped by the electro-static discharge

(ESD) protection diodes to VCCAUX. Similarly, the TDO pin
is a CMOS output powered from +2.5V. Driving a 3.3V input
from TDO may require a pull-up resistor to +3.3V.

The following interface precautions are recommended when
connecting the JTAG port to a 3.3V interface.

1. Set any inactive JTAG signals, including TCK, Low
when not actively used.

2. Drive the JTAG input pins with no more than 12 mA
drivers.

VREF: User I/O or Input Buffer Reference
Voltage for Special Interface Standards
These pins are individual user-I/O pins unless collectively
they supply an input reference voltage, VREF_#, for any
SSTL, HSTL, GTL, or GTLP I/Os implemented in the asso-
ciated I/O bank.

The ‘#’ character in the pin name represents an integer, 0
through 7, that indicates the associated I/O bank.

The VREF function becomes active for this pin whenever a
signal standard requiring a reference voltage is used in the
associated bank.

If used as a user I/O, then each pin behaves as an indepen-
dent I/O described in the I/O type section. If used for a ref-
erence voltage within a bank, then all VREF pins within the
bank must be connected to the same reference voltage.

Spartan-3 devices are designed and characterized to sup-
port certain I/O standards when VREF is connected to
+1.25V, +1.10V, +1.00V, +0.90V, +0.80V, and +0.75V.

During configuration, these pins behave exactly like
user-I/O pins.

Figure 4: JTAG Port

Data In Data Out

Mode Select

Clock

TDI

TMS

TCK

TDO

JTAG Port

DS099-4_04_042103

Table 9: JTAG Pin Descriptions

Pin Name Direction Description Bitstream Generation Option

TCK Input Test Clock:

The TCK clock signal synchronizes all boundary scan
operations on its rising edge.

The BitGen option TckPin
determines whether a weak pull-up
resistor, weak pull-down resistor or
no resistor is present.

TDI Input Test Data Input:

TDI is the serial data input for all JTAG instruction and
data registers. This input is sampled on the rising edge
of TCK.

The BitGen option TdiPin determines
whether a weak pull-up resistor, weak
pull-down resistor or no resistor is
present.

TMS Input Test Mode Select:

The TMS input controls the sequence of states through
which the JTAG TAP state machine passes. This input
is sampled on the rising edge of TCK.

The BitGen option TmsPin
determines whether a weak pull-up
resistor, weak pull-down resistor or
no resistor is present.

TDO Output Test Data Output:

The TDO pin is the data output for all JTAG instruction
and data registers. This output is sampled on the rising
edge of TCK.

The BitGen option TdoPin
determines whether a weak pull-up
resistor, weak pull-down resistor or
no resistor is present.

ug000.book Page 84 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Pinout Descriptions

DS099-4 (v1.1.2) July 11, 2003 www.xilinx.com 85
Advance Product Specification [ABBREVIATED] 1-800-255-7778

R

If designing for footprint compatibility across the range of
devices in a specific package, and if the VREF_# pins within
a bank connect to an input reference voltage, then also con-
nect any N.C. (not connected) pins on the smaller devices in
that package to the input reference voltage. More details are
provided later for each package type

N.C. Type: Unconnected Package Pins
Pins marked as “N.C.” are unconnected for the specific
device/package combination. For other devices in this same
package, this pin may be used as an I/O or VREF connec-
tion. In both the pinout tables and the footprint diagrams,
unconnected pins are noted with either a black diamond
symbol () or a black square symbol ().

If designing for footprint compatibility across multiple device
densities, check the pin types of the other Spartan-3
devices available in the same footprint. If the N.C. pin
matches to VREF pins in other devices, and the VREF pins
are used in the associated I/O bank, then connect the N.C.
to the VREF voltage source.

VCCO Type: Output Voltage Supply for I/O
Bank
Each I/O bank has its own set of voltage supply pins that
determines the output voltage for the output buffers in the
I/O bank. Furthermore, for some I/O standards such as
LVCMOS, LVCMOS25, LVTTL, etc., VCCO sets the input
threshold voltage on the associated input buffers.

Spartan-3 devices are designed and characterized to sup-
port various I/O standards for VCCO values of +1.2V, +1.5V,
+1.8V, +2.5V, and +3.3V.

Most VCCO pins are labeled as VCCO_# where the ‘#’
symbol represents the associated I/O bank number, an inte-
ger ranging from 0 to 7. In the 144-pin TQFP package
(TQ144) however, the VCCO pins along an edge of the
device are combined into a single VCCO input. For exam-
ple, the VCCO inputs for Bank 0 and Bank 1 along the top
edge of the package are combined and relabeled
VCCO_TOP. The bottom, left, and right edges are similarly
combined.

In Serial configuration mode, VCCO_4 must be at a level
compatible with the attached configuration memory or data
source. In Parallel configuration mode, both VCCO_4 and
VCCO_5 must be at the same compatible voltage level.

All VCCO inputs to a bank must be connected together and
to the voltage supply. Furthermore, there must be sufficient
supply decoupling to guarantee problem-free operation, as
described in XAPP623: Power Distribution System (PDS)
Design: Using Bypass/Decoupling Capacitors.

VCCINT Type: Voltage Supply for Internal
Core Logic
Internal core logic circuits such as the configurable logic
blocks (CLBs) and programmable interconnect operate

from the VCCINT voltage supply inputs. VCCINT must be
+1.2V.

All VCCINT inputs must be connected together and to the
+1.2V voltage supply. Furthermore, there must be sufficient
supply decoupling to guarantee problem-free operation, as
described in XAPP623: Power Distribution System (PDS)
Design: Using Bypass/Decoupling Capacitors.

VCCAUX Type: Voltage Supply for Auxiliary
Logic
The VCCAUX pins supply power to various auxiliary cir-
cuits, such as to the Digital Clock Managers (DCMs), the
JTAG pins, and to the dedicated configuration pins (CON-
FIG type). VCCAUX must be +2.5V.

All VCCAUX inputs must be connected together and to the
+2.5V voltage supply. Furthermore, there must be sufficient
supply decoupling to guarantee problem-free operation, as
described in XAPP623: Power Distribution System (PDS)
Design: Using Bypass/Decoupling Capacitors.

Because VCCAUX connects to the DCMs and the DCMs
are sensitive to voltage changes, be sure that the VCCAUX
supply and the ground return paths are designed for low
noise and low voltage drop, especially that caused by a
large number of simultaneous switching I/Os.

GND Type: Ground
All GND pins must be connected and have a low resistance
path back to the various VCCO, VCCINT, and VCCAUX
supplies.

Pin Behavior During Configuration
Table 10 shows how various pins behave during the FPGA
configuration process. The actual behavior depends on the
values applied to the M2, M1, and M0 mode select pins and
the HSWAP_EN pin. The mode select pins determine which
of the DUAL type pins are active during configuration. In
JTAG configuration mode, none of the DUAL-type pins are
used for configuration and all behave as user-I/O pins.

All DUAL-type pins not actively used during configuration
and all I/O-type, DCI-type, VREF-type, GCLK-type pins are
high impedance (floating, three-stated, Hi-Z) during the
configuration process. These pins are indicated in Table 10
as shaded table entries or cells. These pins have a weak
pull-up resistor to their associated VCCO if the HSWAP_EN
pin is Low.

After configuration completes, some pins have optional
behavior controlled by the configuration bitstream loaded
into the part. For example, via the bitstream, all unused I/O
pins can collectively be configured to have a weak pull-up
resistor, a weak pull-down resistor, or be left in a
high-impedance state.

ug000.book Page 85 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/xapp/xapp623.pdf
http://www.xilinx.com/xapp/xapp623.pdf
http://www.xilinx.com/xapp/xapp623.pdf

Spartan-3 1.2V FPGA Family: Pinout Descriptions

86 www.xilinx.com DS099-4 (v1.1.2) July 11, 2003
1-800-255-7778 Advance Product Specification [ABBREVIATED]

R

Table 10: Pin Behavior After Power-Up, During Configuration

Pin Name

Configuration Mode Settings <M2:M1:M0>

Bitstream
Configuration

Option

Serial Modes SelectMap Parallel Modes

JTAG Mode
<1:0:1>

Master
<0:0:0>

Slave
<1:1:1>

Master
<0:1:1>

Slave
<1:1:0>

I/O: General-purpose I/O pins

IO UnusedPin

IO_Lxxy_# UnusedPin

DUAL: Dual-purpose configuration pins

IO_Lxxy_#/
DIN/D0

DIN (I) DIN (I) D0 (I/O) D0 (I/O) Persist
UnusedPin

IO_Lxxy_#/
D1

D1 (I/O) D1 (I/O) Persist
UnusedPin

IO_Lxxy_#/
D2

D2 (I/O) D2 (I/O) Persist
UnusedPin

IO_Lxxy_#/
D3

D3 (I/O) D3 (I/O) Persist
UnusedPin

IO_Lxxy_#/
D4

D4 (I/O) D4 (I/O) Persist
UnusedPin

IO_Lxxy_#/
D5

D5 (I/O) D5 (I/O) Persist
UnusedPin

IO_Lxxy_#/
D6

D6 (I/O) D6 (I/O) Persist
UnusedPin

IO_Lxxy_#/
D7

D7 (I/O) D7 (I/O) Persist
UnusedPin

IO_Lxxy_#/
CS_B

CS_B (I) CS_B (I) Persist
UnusedPin

IO_Lxxy_#/
RDWR_B

RDWR_B (I) RDWR_B (I) Persist
UnusedPin

IO_Lxxy_#/
BUSY/DOUT

DOUT (O) DOUT (O) BUSY (O) BUSY (O) Persist
UnusedPin

IO_Lxxy_#/
INIT_B

INIT_B (I/OD) INIT_B (I/OD) INIT_B (I/OD) INIT_B (I/OD) UnusedPin

DCI: Digitally Controlled Impedance reference resistor input pins

IO_Lxxy_#/
VRN_#

UnusedPin

IO/VRN_# UnusedPin

IO_Lxxy_#/
VRP_#

UnusedPin

IO/VRP_# UnusedPin

ug000.book Page 86 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Pinout Descriptions

DS099-4 (v1.1.2) July 11, 2003 www.xilinx.com 87
Advance Product Specification [ABBREVIATED] 1-800-255-7778

R

GCLK: Global clock buffer inputs

IO_Lxxy_#/
GCLK0 through
GCLK7

UnusedPin

VREF: I/O bank input reference voltage pins

IO_Lxxy_#/
VREF_#

UnusedPin

IO/VREF_# UnusedPin

CONFIG: Dedicated configuration pins

CCLK CCLK (O) CCLK (I) CCLK (O) CCLK (I) CclkPin
ConfigRate

PROG_B PROG_B (I)
(pull-up)

PROG_B (I)
(pull-up)

PROG_B (I)
(pull-up)

PROG_B (I)
(pull-up)

PROG_B (I),
Via JPROG_B

instruction

ProgPin

DONE DONE (I/OD) DONE (I/OD) DONE (I/OD) DONE (I/OD) DONE (I/OD) DriveDone
DonePin

DonePipe

M2 M2=0 (I) M2=1 (I) M2=0 (I) M2=1 (I) M2=1 (I) M2Pin

M1 M1=0 (I) M1=1 (I) M1=1 (I) M1=1 (I) M1=0 (I) M1Pin

M0 M0=0 (I) M0=1 (I) M0=1 (I) M0=0 (I) M0=1 (I) M0Pin

HSWAP_EN HSWAP_EN
(I)

HSWAP_EN
(I)

HSWAP_EN
(I)

HSWAP_EN
(I)

HSWAP_EN
(I)

HswapenPin

JTAG: JTAG interface pins

TDI TDI (I) TDI (I) TDI (I) TDI (I) TDI (I) TdiPin

TMS TMS (I) TMS (I) TMS (I) TMS (I) TMS (I) TmsPin

TCK TCK (I) TCK (I) TCK (I) TCK (I) TCK (I) TckPin

TDO TDO (O) TDO (O) TDO (O) TDO (O) TDO (O) TdoPin

VCCO: I/O bank output voltage supply pins

VCCO_4
(for DUAL pins)

Same voltage
as external
interface

Same voltage
as external
interface

Same voltage
as external
interface

Same voltage
as external
interface

VCCO_4

VCCO_5
(for DUAL pins)

VCCO_5 VCCO_5 Same voltage
as external
interface

Same voltage
as external
interface

VCCO_5

VCCO_# VCCO_# VCCO_# VCCO_# VCCO_# VCCO_#

VCCAUX: Auxiliary voltage supply pins

VCCAUX +2.5V +2.5V +2.5V +2.5V +2.5V

Table 10: Pin Behavior After Power-Up, During Configuration (Continued)

Pin Name

Configuration Mode Settings <M2:M1:M0>

Bitstream
Configuration

Option

Serial Modes SelectMap Parallel Modes

JTAG Mode
<1:0:1>

Master
<0:0:0>

Slave
<1:1:1>

Master
<0:1:1>

Slave
<1:1:0>

ug000.book Page 87 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Pinout Descriptions

88 www.xilinx.com DS099-4 (v1.1.2) July 11, 2003
1-800-255-7778 Advance Product Specification [ABBREVIATED]

R

Bitstream Options
Table 11 lists the various bitstream options that affect pins
on a Spartan-3 FPGA. The table shows the names of the
affected pins, describes the function of the bitstream option,

the name of the bitstream generator option variable, and the
legal values for each variable. The default option setting for
each variable is indicated with bold, underlined text.

VCCINT: Internal core voltage supply pins

VCCINT +1.2V +1.2V +1.2V +1.2V +1.2V

GND: Ground supply pins

GND GND GND GND GND GND

Notes:
1. #= I/O bank number, an integer from 0 to 7.
2. (I) = input, (O) = output, (OD) = open-drain output, (I/O) = bidirectional, (I/OD) = bidirectional with open-drain output. Open-drain

output requires pull-up to create logic High level.
3. Shaded cell indicates that the pin is high-impedance during configuration. To enable a soft pull-up resistor during configuration,

drive or tie HSWAP_EN Low.

Table 10: Pin Behavior After Power-Up, During Configuration (Continued)

Pin Name

Configuration Mode Settings <M2:M1:M0>

Bitstream
Configuration

Option

Serial Modes SelectMap Parallel Modes

JTAG Mode
<1:0:1>

Master
<0:0:0>

Slave
<1:1:1>

Master
<0:1:1>

Slave
<1:1:0>

Table 11: Bitstream Options Affecting Spartan-3 Pins

Affected Pin
Name(s) Bitstream Generation Function

Option
Variable
Name

Values
(default
value)

All unused I/O pins of
type I/O, DUAL,
GCLK, DCI, VREF

For all I/O pins that are unused after configuration, this option
defines whether the I/Os are individually tied to VCCO via a weak
pull-up resistor, tied ground via a weak pull-down resistor, or left
floating. If left floating, the unused pins should be connected to a
defined logic level, either from a source internal to the FPGA or
external.

UnusedPin • Pulldown
• Pullup
• Pullnone

IO_Lxxy_#/DIN,
IO_Lxxy_#/DOUT,
IO_Lxxy_#/INIT_B

Serial configuration mode: If set to Yes, then these pins retain their
functionality after configuration completes, allowing for device
(re-)configuration. Readback is not supported in with serial mode.

Persist • No
• Yes

IO_Lxxy_#/D0,
IO_Lxxy_#/D1,
IO_Lxxy_#/D2,
IO_Lxxy_#/D3,
IO_Lxxy_#/D4,
IO_Lxxy_#/D5,
IO_Lxxy_#/D6,
IO_Lxxy_#/D7,
IO_Lxxy_#/CS_B,
IO_Lxxy_#/RDWR_B,
IO_Lxxy_#/BUSY,
IO_Lxxy_#/INIT_B

Parallel configuration mode (also called SelectMAP): If set to Yes,
then these pins retain their SelectMAP functionality after
configuration completes, allowing for device readback and for
partial or complete (re-)configuration.

Persist • No
• Yes

CCLK After configuration, this bitstream option either pulls CCLK to
VCCAUX via a weak pull-up resistor, or allows CCLK to float.

CclkPin • Pullup
• Pullnone

CCLK For Master configuration modes, this option sets the approximate
frequency, in MHz, for the internal silicon oscillator.

ConfigRate 3, 6, 12, 25,
50, 100

ug000.book Page 88 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Pinout Descriptions

DS099-4 (v1.1.2) July 11, 2003 www.xilinx.com 89
Advance Product Specification [ABBREVIATED] 1-800-255-7778

R

Setting Options via BitGen Command-Line
Program
To set one or more bitstream generator options using the
BitGen command-line program, enter

bitgen –g <variable_name>:<value>
[<variable_name>:<value> …]

where <variable_name> is one of the entries from
Table 11 and <value> is one of the possible values for the
specified variable. Multiple bitstream options may be
entered in this manner.

For a complete listing of all BitGen options, their possible
settings, and their default settings, enter the following com-
mand.

bitgen -help spartan3

PROG_B A weak pull-up resistor to VCCAUX exists on PROG_B during
configuration. After configuration, this bitstream option either
pulls DONE to VCCAUX via a weak pull-up resistor, or allows
DONE to float.

ProgPin • Pullup
• Pullnone

DONE After configuration, this bitstream option either pulls DONE to
VCCAUX via a weak pull-up resistor, or allows DONE to float. See
also DriveDone option.

DonePin • Pullup
• Pullnone

DONE If set to Yes, this option allows the FPGA’s DONE pin to drive High
when configuration completes. By default, the DONE is an
open-drain output and can only drive Low. Only single FPGAs and
the last FPGA in a multi-FPGA daisy-chain should use this option.

DriveDone • No
• Yes

M2 After configuration, this bitstream option either pulls M2 to
VCCAUX via a weak pull-up resistor, to ground via a weak
pull-down resistor, or allows M2 to float.

M2Pin • Pullup
• Pulldown
• Pullnone

M1 After configuration, this bitstream option either pulls M1 to
VCCAUX via a weak pull-up resistor, to ground via a weak
pull-down resistor, or allows M1 to float.

M1Pin • Pullup
• Pulldown
• Pullnone

M0 After configuration, this bitstream option either pulls M0 to
VCCAUX via a weak pull-up resistor, to ground via a weak
pull-down resistor, or allows M0 to float.

M0Pin • Pullup
• Pulldown
• Pullnone

HSWAP_EN After configuration, this bitstream option either pulls HSWAP_EN
to VCCAUX via a weak pull-up resistor, to ground via a weak
pull-down resistor, or allows HSWAP_EN to float.

HswapenPin • Pullup
• Pulldown
• Pullnone

TDI After configuration, this bitstream option either pulls TDI to
VCCAUX via a weak pull-up resistor, to ground via a weak
pull-down resistor, or allows TDI to float.

TdiPin • Pullup
• Pulldown
• Pullnone

TMS After configuration, this bitstream option either pulls TMS to
VCCAUX via a weak pull-up resistor, to ground via a weak
pull-down resistor, or allows TMS to float.

TmsPin • Pullup
• Pulldown
• Pullnone

TCK After configuration, this bitstream option either pulls TCK to
VCCAUX via a weak pull-up resistor, to ground via a weak
pull-down resistor, or allows TCK to float.

TckPin • Pullup
• Pulldown
• Pullnone

TDO After configuration, this bitstream option either pulls TDO to
VCCAUX via a weak pull-up resistor, to ground via a weak
pull-down resistor, or allows TDO to float.

TdoPin • Pullup
• Pulldown
• Pullnone

Table 11: Bitstream Options Affecting Spartan-3 Pins (Continued)

Affected Pin
Name(s) Bitstream Generation Function

Option
Variable
Name

Values
(default
value)

ug000.book Page 89 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Pinout Descriptions

90 www.xilinx.com DS099-4 (v1.1.2) July 11, 2003
1-800-255-7778 Advance Product Specification [ABBREVIATED]

R

Setting Options in Project Navigator
To set the bitstream generation options in Xilinx ISE Project
Navigator, right-click on the Generate Programming File
step in the Process View and click Properties, as shown in
Figure 5.

Click the Configuration options tab and modify the avail-
able options as required by the application, as shown in
Figure 6.

Figure 5: Setting Properties for Generate Programming File Step
DS099-4_05_030103

Figure 6: Configuration Option Settings

DS099-4_06_030103

ug000.book Page 90 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Pinout Descriptions

DS099-4 (v1.1.2) July 11, 2003 www.xilinx.com 91
Advance Product Specification [ABBREVIATED] 1-800-255-7778

R

To have the DONE pin drive High after successful configu-
ration, click the Startup options tab and check the Drive
Done Pin High box, as shown in Figure 7.

Click OK when finished.

Again, right-click on the Generate Programming File step
in the Process View. This time, choose Run or Rerun to
execute the changes.

Package Overview
Table 12 shows the eight, low-cost, space-saving produc-
tion packages for the Spartan-3 family. Not all Spartan-3
densities are available in all packages. However, for a spe-
cific package there is a common footprint for that supports
the various devices available in that package. See the foot-
print diagrams that follow.

Figure 7: Setting to Drive DONE Pin High after Configuration

DS099-4_07_030103

Table 12: Spartan-3 Family Package Options

Package Leads Type
Maximum

I/O
Pitch
(mm)

Area
(mm)

Height
(mm)

VQ100 100 Very-thin Quad Flat Pack 63 0.5 16 x 16 1.20

TQ144 144 Thin Quad Flat Pack 97 0.5 22 x 22 1.60

PQ208 208 Quad Flat Pack 141 0.5 30.6 x 30.6 4.10

FT256 256 Fine-pitch, Thin Ball Grid Array 173 1.0 17 x 17 1.55

FG456 456 Fine-pitch Ball Grid Array 333 1.0 23 x 23 2.60

FG676 676 Fine-pitch Ball Grid Array 405 1.0 27 x 27 2.60

FG900 900 Fine-pitch Ball Grid Array 549 1.0 31 x 31 2.60

FG1156 1156 Fine-pitch Ball Grid Array 692 1.0 35 x 35 2.60

ug000.book Page 91 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Pinout Descriptions

92 www.xilinx.com DS099-4 (v1.1.2) July 11, 2003
1-800-255-7778 Advance Product Specification [ABBREVIATED]

R

Detailed mechanical drawings for each package type are
available from the Xilinx website at the specified location in
Table 13.

Each package has three separate voltage supply
inputs—VCCINT, VCCAUX, and VCCO—and a common
ground return, GND. The numbers of pins dedicated to
these functions varies by package, as shown in Table 14.

A majority of package pins are user-defined I/O pins. How-
ever, the numbers and characteristics of these I/O depends
on the device type and the package in which it is available,
as shown in Table 15. The table shows the maximum num-
ber of single-ended I/O pins available, assuming that all
I/O-, DUAL-, DCI-, VREF-, and GCLK-type pins are used as
general-purpose I/O. Likewise, the table shows the maxi-
mum number of differential pin-pairs available on the pack-
age. Finally, the table shows how the total maximum user
I/Os are distributed by pin type, including the number of
unconnected—i.e., N.C.—pins on the device.

Table 13: Xilinx Package Mechanical Drawings

Package Web Link (URL)

VQ100 http://www.xilinx.com/bvdocs/packages/vq100.pdf

TQ144 http://www.xilinx.com/bvdocs/packages/tq144.pdf

PQ208 http://www.xilinx.com/bvdocs/packages/pq208.pdf

FT256 http://www.xilinx.com/bvdocs/packages/ft256.pdf

FG456 http://www.xilinx.com/bvdocs/packages/fg456.pdf

FG676 http://www.xilinx.com/bvdocs/packages/fg676.pdf

FG900 http://www.xilinx.com/bvdocs/packages/fg900.pdf

FG1156 http://www.xilinx.com/bvdocs/packages/fg1156.pdf

Table 14: Power and Ground Supply Pins by Package

Package VCCINT VCCAUX VCCO GND

VQ100 4 4 8 10

TQ144 4 4 12 16

PQ208 4 8 12 28

FT256 8 8 24 32

FG456 12 8 40 52

FG676 20 16 64 76

FG900 32 24 80 120

FG1156 40 32 104 184

Table 15: Maximum User I/Os by Package

Device Package
Maximum
User I/Os

Maximum
Differential

Pairs

All Possible I/O Pins by Type

N.C.I/O DUAL DCI VREF GCLK

XC3S50 VQ100 63 29 22 12 14 7 8 0

XC3S200 VQ100 63 29 22 12 14 7 8 0

XC3S50 TQ144 97 46 51 12 14 12 8 0

XC3S200 TQ144 97 46 51 12 14 12 8 0

XC3S400 TQ144 97 46 51 12 14 12 8 0

XC3S50 PQ208 124 56 72 12 16 16 8 17

XC3S200 PQ208 141 62 83 12 16 22 8 0

XC3S400 PQ208 141 62 83 12 16 22 8 0

ug000.book Page 92 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/bvdocs/packages/tq144.pdf
http://www.xilinx.com/bvdocs/packages/pq208.pdf
http://www.xilinx.com/bvdocs/packages/ft256.pdf
http://www.xilinx.com/bvdocs/packages/fg456.pdf
http://www.xilinx.com/bvdocs/packages/fg676.pdf
http://www.xilinx.com/bvdocs/packages/fg900.pdf
http://www.xilinx.com/bvdocs/packages/fg1156.pdf
http://www.xilinx.com/bvdocs/packages/vq100.pdf

Spartan-3 1.2V FPGA Family: Pinout Descriptions

DS099-4 (v1.1.2) July 11, 2003 www.xilinx.com 93
Advance Product Specification [ABBREVIATED] 1-800-255-7778

R

Electronic versions of the package pinout tables and foot-
prints are available for download from the Xilinx website.
Using a spreadsheet program, the data can be sorted and
reformatted according to any specific needs. Similarly, the

ASCII-text file is easily parsed by most scripting programs.
Download the files from the following location:

http://www.xilinx.com/bvdocs/publications/s3_pin.zip

XC3S200 FT256 173 76 113 12 16 24 8 0

XC3S400 FT256 173 76 113 12 16 24 8 0

XC3S1000 FT256 173 76 113 12 16 24 8 0

XC3S400 FG456 264 116 196 12 16 32 8 69

XC3S1000 FG456 333 149 261 12 16 36 8 0

XC3S1500 FG456 333 149 261 12 16 36 8 0

XC3S1000 FG676 391 175 315 12 16 40 8 98

XC3S1500 FG676 487 221 403 12 16 48 8 2

XC3S2000 FG676 489 221 405 12 16 48 8 0

XC3S2000 FG900 565 270 481 12 16 48 8 68

XC3S4000 FG900 633 300 549 12 16 48 8 0

XC3S5000 FG900 633 300 549 12 16 48 8 0

XC3S4000 FG1156 712 312 621 12 16 55 8 73

XC3S5000 FG1156 784 344 692 12 16 56 8 1

Table 15: Maximum User I/Os by Package (Continued)

Device Package
Maximum
User I/Os

Maximum
Differential

Pairs

All Possible I/O Pins by Type

N.C.I/O DUAL DCI VREF GCLK

ug000.book Page 93 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/bvdocs/publications/s3_pin.zip

Spartan-3 1.2V FPGA Family: Pinout Descriptions

94 www.xilinx.com DS099-4 (v1.1.2) July 11, 2003
1-800-255-7778 Advance Product Specification [ABBREVIATED]

R

VQ100 Footprint

Figure 8: VQ100 Package Footprint (top view). Note pin 1 indicator in top-left corner and logo orientation.

22
I/O: Unrestricted, general-purpose user I/O

12
DUAL: Configuration pin, then possible
user I/O

7
VREF: User I/O or input voltage reference for
bank

14
DCI: User I/O or reference resistor input for
bank

8 GCLK: User I/O or global clock buffer
input

8
VCCO: Output voltage supply for bank

7 CONFIG: Dedicated configuration pins 4 JTAG: Dedicated JTAG port pins 4 VCCINT: Internal core voltage supply (+1.2V)

0 N.C.: No unconnected pins in this package 10 GND: Ground 4 VCCAUX: Auxiliary voltage supply (+2.5V)

T
D

I

P
R

O
G

_B

H
S

W
A

P
_E

N

IO
_L

01
N

_0
/V

R
P

_0

IO
_L

01
P

_0
/V

R
N

_0

G
N

D

V
C

C
O

_0

V
C

C
IN

T

IO
_L

31
N

_0

IO
_L

31
P

_0
/V

R
E

F
_0

IO
_L

32
N

_0
/G

C
LK

7

IO
_L

32
P

_0
/G

C
LK

6

IO
_L

32
N

_1
/G

C
LK

5

IO
_L

32
P

_1
/G

C
LK

4

IO
_L

31
N

_1
/V

R
E

F
_1

IO
_L

31
P

_1

V
C

C
A

U
X

V
C

C
O

_1

G
N

D

IO IO
_L

01
N

_1
/V

R
P

_1

IO
_L

01
P

_1
/V

R
N

_1

T
M

S

T
C

K

T
D

O

10
0

99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76

1 75 IO_L01N_2/VRP_2

2 74 IO_L01P_2/VRN_2

3 73 GND

4 72 IO_L21N_2

5 71 IO_L21P_2

VCCO_7 6 70 VCCO_2

VCCAUX 7 69 VCCINT

8 68 IO_L24N_2

9 67 IO_L24P_2

10 66 GND

11 65 IO_L40N_2

12 64 IO_L40P_2/VREF_2

13 63 IO_L40N_3/VREF_3

14 62 IO_L40P_3

IO_L24P_6

IO_L40P_7

IO_L23P_7

IO_L21P_7

IO_L21N_7

IO_L23N_7

IO_L40N_6

15 61 IO_L24N_3

16 60 IO_L24P_3

IO 17 59 IO

VCCINT 18 58 VCCAUX

VCCO_6 19 57 VCCO_3

GND

GND

GND

IO_L01N_6/VRP_6

IO_L01P_6/VRN_6

IO_L24N_6/VREF_6

IO_L40N_7/VREF_7

IO_L01P_7/VRN_7

IO_L01N_7/VRP_7

IO_L40P_6/VREF_6

20 56 GND

IO 21 55 IO

22 54 IO_L01N_3/VRP_3

23 53 IO_L01P_3/VRN_3

M1 24 52 CCLK

M0 25 51 DONE

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

M
2

IO
_L

01
P

_5
/C

S
_B

IO
_L

01
N

_5
/R

D
W

R
_B

G
N

D

IO
_L

28
P

_5
/D

7

V
C

C
O

_5

IO
_L

28
N

_5
/D

6

V
C

C
A

U
X

IO
_L

31
P

_5
/D

5

IO
_L

31
N

_5
/D

4

IO
_L

32
P

_5
/G

C
LK

2

IO
_L

32
N

_5
/G

C
LK

3

IO
_L

32
P

_4
/G

C
LK

0

IO
_L

32
N

_4
/G

C
LK

1

G
N

D

IO
_L

31
N

_4
/IN

IT
_B

IO
_L

30
P

_4
/D

3

IO
_L

30
N

_4
/D

2

V
C

C
IN

T

V
C

C
O

_4

IO
_L

27
P

_4
/D

1

IO
_L

27
N

_4
/D

IN
/D

0

IO
_L

31
P

_4
/D

O
U

T
/B

U
S

Y

IO
_L

01
P

_4
/V

R
N

_4

IO
_L

01
N

_4
/V

R
P

_4

B
an

k
6

Bank 0 Bank 1

B
an

k
3

B
an

k
2

Bank 4
(no VREF)

Bank 5
(no VREF, no DCI)

B
an

k
7

DS099-4_15_042303

See
http://www.xilinx.com/bvdocs/publications/ds099-4.pdf
for complete, detailed pinout information.

ug000.book Page 94 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Pinout Descriptions

DS099-4 (v1.1.2) July 11, 2003 www.xilinx.com 95
Advance Product Specification [ABBREVIATED] 1-800-255-7778

R

TQ144 Footprint

Figure 9: TQ144 Package Footprint (top view). Note pin 1 indicator in top-left corner and logo orientation.

51
I/O: Unrestricted, general-purpose user I/O

12
DUAL: Configuration pin, then possible
user I/O

12
VREF: User I/O or input voltage reference for
bank

14
DCI: User I/O or reference resistor input for
bank

8 GCLK: User I/O or global clock buffer
input

12
VCCO: Output voltage supply for bank

7 CONFIG: Dedicated configuration pins 4 JTAG: Dedicated JTAG port pins 4 VCCINT: Internal core voltage supply (+1.2V)

0 N.C.: No unconnected pins in this package 16 GND: Ground 4 VCCAUX: Auxiliary voltage supply (+2.5V)

IO

T
D

I

P
R

O
G

_B

H
S

W
A

P
_E

N

IO
_L

01
N

_0
/V

R
P

_0

IO
_L

01
P

_0
/V

R
N

_0

G
N

D

V
C

C
O

_T
O

P

IO
_L

27
N

_0

G
N

D

IO
_L

27
P

_0

V
C

C
A

U
X

V
C

C
IN

T

IO
_L

30
N

_0

IO
_L

30
P

_0

IO
_L

31
N

_0

IO
_L

31
P

_0
/V

R
E

F
_0

IO
_L

32
N

_0
/G

C
LK

7

IO
_L

32
P

_0
/G

C
LK

6

V
C

C
O

_T
O

P

IO
_L

32
N

_1
/G

C
LK

5

IO
_L

32
P

_1
/G

C
LK

4

IO
_L

31
N

_1
/V

R
E

F
_1

IO
_L

31
P

_1

V
C

C
IN

T

V
C

C
A

U
X

IO
_L

28
N

_1

IO
_L

28
P

_1

G
N

D

IO V
C

C
O

_T
O

P

G
N

D

IO
_L

01
N

_1
/V

R
P

_1

IO
_L

01
P

_1
/V

R
N

_1

T
M

S

T
C

K

T
D

O

14
4

14
3

14
2

14
1

14
0

13
9

13
8

13
7

13
6

13
5

13
4

13
3

13
2

13
1

13
0

12
9

12
8

12
7

12
6

12
5

12
4

12
3

12
2

12
1

12
0

11
9

11
8

11
7

11
6

11
5

11
4

11
3

11
2

11
1

11
0

10
9

IO_L01P_7/VRN_7 1 108 IO_L01N_2/VRP_2
IO_L01N_7/VRP_7 2 107 IO_L01P_2/VRN_2

VCCO_LEFT 3 X 106 VCCO_RIGHT
IO/VREF_7 4 105 IO_L20N_2
IO_L20P_7 5 104 IO_L20P_2
IO_L20N_7 6 103 IO_L21N_2
IO_L21P_7 7 102 IO_L21P_2
IO_L21N_7 8 101 GND

GND 9 100 IO_L22N_2
IO_L22P_7 10 99 IO_L22P_2
IO_L22N_7 11 98 IO_L23N_2/VREF_2
IO_L23P_7 12 97 IO_L23P_2
IO_L23N_7 13 96 IO_L24N_2
IO_L24P_7 14 95 IO_L24P_2
IO_L24N_7 15 94 GND

GND 16 93 IO_L40N_2
IO_L40P_7 17 92 IO_L40P_2/VREF_2

IO_L40N_7/VREF_7 18 91 VCCO_RIGHT
VCCO_LEFT 19 90 IO_L40N_3/VREF_3

IO_L40P_6/VREF_6 20 89 IO_L40P_3
IO_L40N_6 21 88 GND

GND 22 87 IO_L24N_3
IO_L24P_6 23 86 IO_L24P_3

IO_L24N_6/VREF_6 24 85 IO_L23N_3
IO_L23P_6 25 84 IO_L23P_3/VREF_3
IO_L23N_6 26 83 IO_L22N_3
IO_L22P_6 27 82 IO_L22P_3
IO_L22N_6 28 81 GND

GND 29 80 IO_L21N_3
IO_L21P_6 30 79 IO_L21P_3
IO_L21N_6 31 78 IO_L20N_3
IO_L20P_6 32 77 IO_L20P_3
IO_L20N_6 33 76 IO

VCCO_LEFT 34 75 VCCO_RIGHT
IO_L01P_6/VRN_6 35 74 IO_L01N_3/VRP_3
IO_L01N_6/VRP_6 36 73 IO_L01P_3/VRN_3

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

M
1

M
0

M
2

IO
_L

01
P

_5
/C

S
_B

_L
01

N
_5

/R
D

W
R

_B

G
N

D

V
C

C
O

_B
O

T
T

O
M

IO
/V

R
E

F
_5

G
N

D

IO
_L

28
P

_5
/D

7

IO
_L

28
N

_5
/D

6

V
C

C
A

U
X

V
C

C
IN

T

IO
_L

31
P

_5
/D

5

IO
_L

31
N

_5
/D

4

IO
_L

32
P

_5
/G

C
LK

2

IO
_L

32
N

_5
/G

C
LK

3

V
C

C
O

_B
O

T
T

O
M

IO
_L

32
P

_4
/G

C
LK

0

IO
_L

32
N

_4
/G

C
LK

1

_
IO

_L
31

P
4/

D
O

U
T/

B
U

S
Y

IO
_L

31
N

_4
/IN

IT
_B

IO
_L

30
P

_4
/D

3

IO
_L

30
N

_4
/D

2

V
C

C
IN

T

V
C

C
A

U
X

IO
_L

27
P

_4
/D

1

G
N

D

IO
_L

27
N

_4
/D

IN
/D

0

V
C

C
O

_B
O

T
T

O
M

G
N

D

IO
_L

01
P

_4
/V

R
N

_4

IO
_L

01
N

_4
/V

R
P

_4

IO
/V

R
E

F
_4

D
O

N
E

C
C

LK

Bank 5
(no DCI)

B
an

k
3

B
an

k
2

VCCO for Top Edge

V
C

C
O

 fo
r

R
ig

ht
 E

dg
e

VCCO for Bottom Edge

Bank 0 Bank 1

B
an

k
7

Bank 4

B
an

k
6

V
C

C
O

 fo
r

Le
ft

E
dg

e

DS099-4_08_030503

See
http://www.xilinx.com/bvdocs/publications/ds099-4.pdf
for complete, detailed pinout information.

ug000.book Page 95 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Pinout Descriptions

96 www.xilinx.com DS099-4 (v1.1.2) July 11, 2003
1-800-255-7778 Advance Product Specification [ABBREVIATED]

R

PQ208 Footprint

Left Half of Package
(top view)

XC3S50
(124 max. user I/O)

72 I/O: Unrestricted,
general-purpose user I/O

16 VREF: User I/O or input
voltage reference for bank

17 N.C.: Unconnected pins for
XC3S50 ()

XC3S200, XC3S400
(141 max user I/O)

83 I/O: Unrestricted,
general-purpose user I/O

22 VREF: User I/O or input
voltage reference for bank

0 N.C.: No unconnected pins
in this package

All devices

12 DUAL: Configuration pin,
then possible user I/O

8 GCLK: User I/O or global
clock buffer input

16 DCI: User I/O or reference
resistor input for bank

7 CONFIG: Dedicated
configuration pins

4 JTAG: Dedicated JTAG
port pins

4 VCCINT: Internal core
voltage supply (+1.2V)

12 VCCO: Output voltage
supply for bank

8 VCCAUX: Auxiliary voltage
supply (+2.5V)

28 GND: Ground

Figure 10: PQ208 Package Footprint (top view). Note pin 1 indicator in top-left corner and logo orientation.

T
D

I
P

R
O

G
_B

H
S

W
A

P
_E

N
IO

/V
R

E
F

_0
IO

_L
01

N
_0

/V
R

P
_0

IO
_L

01
P

_0
/V

R
N

_0
G

N
D

V
C

C
O

_0
IO

/V
R

E
F

_0
 (

)
IO

_L
25

N
_0

IO
_L

25
P

_0
IO IO

_L
27

N
_0

G
N

D
IO

_L
27

P
_0

V
C

C
A

U
X

V
C

C
IN

T
IO

_L
30

N
_0

IO
_L

30
P

_0
IO V

C
C

O
_0

IO
_L

31
N

_0
G

N
D

IO
_L

31
P

_0
/V

R
E

F
_0

IO
_L

32
N

_0
/G

C
LK

7
IO

_L
32

P
_0

/G
C

LK
6

20
8

20
7

20
6

20
5

20
4

20
3

20
2

20
1

20
0

19
9

19
8

19
7

19
6

19
5

19
4

19
3

19
2

19
1

19
0

18
9

18
8

18
7

18
6

18
5

18
4

18
3

GND 1
IO_L01P_7/VRN_7
IO_L01N_7/VRP_7

() IO_L16P_7/VREF_7 4
() IO_L16N_7 5

VCCO_7 6
IO_L19P_7 7

GND 8
IO_L19N_7/VREF_7 9

IO_L20P_7 10
IO_L20N_7 11
IO_L21P_7 12
IO_L21N_7 13

GND 14
IO_L22P_7 15
IO_L22N_7 16

UVCCA X 17
IO_L23P_7 18
IO_L23N_7 19
IO_L24P_7 20
IO_L24N_7 21

() IO_L39P_7 22
VCCO_7 23

() IO_L39N_7 24
GND 25

IO_L40P_7 26
IO_L40N_7/VREF_7 27

IO_L40P_6/VREF_6 28
IO_L40N_6 29

GND 30
() IO_L39P_6 31

VCCO_6 32
() IO_L39N_6 33

IO_L24P_6 34
IO_L24N_6/VREF_6 35

IO_L23P_6 36
IO_L23N_6 37

VCCAUX 38
IO_L22P_6 39
IO_L22N_6 40

GND 41
IO_L21P_6 42
IO_L21N_6 43
IO_L20P_6 44

IO_L20N 45
IO_L19P_6 46

GND 47
IO_L19N 48
VCCO_6 49

() IO/VREF_6 50
IO_L01P_6/VRN_6 51
IO_L01N_6/VRP_6 52

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

G
N

D
M

1
M

0
M

2
IO

_L
01

P
_5

/C
S

_B
IO

_L
01

N
_5

/R
D

W
R

_B
G

N
D

V
C

C
O

_5
IO

_L
10

P
_5

/V
R

N
_5

IO
_L

10
N

_5
/V

R
P

_5 IO
IO

_L
27

P
_5

IO
_L

27
N

_5
/V

R
E

F
_5

G
N

D
IO

_L
28

P
_5

/D
7

IO
_L

28
N

_5
/D

6
V

C
C

A
U

X
V

C
C

IN
T IO

IO
_L

31
P

_5
/D

5
V

C
C

O
_5

IO
_L

31
N

_5
/D

4
G

N
D

IO
_L

32
P

_5
/G

C
LK

2
IO

_L
32

N
_5

/G
C

LK
3

IO
/V

R
E

F
_5

Bank 5

B
an

k
7

B
an

k
6

Bank 0

DS099-4_09a_0301

3

2

See
http://www.xilinx.com/bvdocs/publications/ds099-4.pdf
for complete, detailed pinout information.

ug000.book Page 96 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Pinout Descriptions

DS099-4 (v1.1.2) July 11, 2003 www.xilinx.com 97
Advance Product Specification [ABBREVIATED] 1-800-255-7778

R

Right Half of Package
(top view)

IO IO
_L

32
N

_1
/G

C
LK

5
IO

_L
32

P
_1

/G
C

LK
4

G
N

D
IO

_L
31

N
_1

/V
R

E
F

_1
V

C
C

O
_1

IO
_L

31
P

_1
IO V

C
C

IN
T

V
C

C
A

U
X

IO
_L

28
N

_1
IO

_L
28

P
_1

G
N

D
IO

_L
27

N
_1

IO
_L

27
P

_1
IO IO

_L
10

N
_1

/V
R

E
F

_1
IO

_L
10

P
_1

V
C

C
O

_1
G

N
D

IO
_L

01
N

_1
/V

R
P

_1
IO

_L
01

P
_1

/V
R

N
_1

T
M

S
T

C
K

T
D

O
G

N
D

18
2

18
1

18
0

17
9

17
8

17
7

17
6

17
5

17
4

17
3

17
2

17
1

17
0

16
9

16
8

16
7

16
6

16
5

16
4

16
3

16
2

16
1

16
0

15
9

15
8

15
7

156 IO_L01N_2/VRP_2
155 IO_L01P_2/VRN_2
154 IO/VREF_2 ()
153 VCCO_2
152 IO_L19N_2
151 GND
150 IO_L19P_2
149 IO_L20N_2
148 IO_L20P_2
147 IO_L21N_2
146 IO_L21P_2
145 GND
144 IO_L22N_2
143 IO_L22P_2
142 VCCAUX
141 IO_L23N_2/VREF_2
140 IO_L23P_2
139 IO_L24N_2
138 IO_L24P_2
137 IO_L39N_2 ()
136 VCCO_2
135 IO_L39P_2 ()
134 GND
133 IO_L40N_2
132 IO_L40P_2/VREF_2
131 IO_L40N_3/VREF_3
130 IO_L40P_3
129 GND
128 IO_L39N_3 ()
127 VCCO_3
126 IO_L39P_3 ()
125 IO_L24N_3
124 IO_L24P_3
123 IO_L23N_3
122 IO_L23P_3/VREF_3
121 VCCAUX
120 IO_L22N_3
119 IO_L22P_3
118 GND
117 IO_L21N_3
116 IO_L21P_3
115 IO_L20N_3
114 IO_L20P_3
113 IO_L19N_3
112 GND
111 IO_L19P_3
110 VCCO_3
109 IO_L17N_3 ()
108 IO_L17P_3/VREF_3 ()
107 IO_L01N_3/VRP_3
106 IO_L01P_3/VRN_3 RN_3
105 GND

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 10
0

10
1

10
2

10
3

10
4

IO
_L

32
P

_4
/G

C
LK

0
IO

_L
32

N
_4

/G
C

LK
1

IO
_L

31
P

_4
/D

O
U

T
/B U

G
N

D
IO

_L
31

N
_4

/IN
IT

_B
V

C
C

O
_4

IO
/V

R
E

F
_4

IO
_L

30
P

_4
/D

3
IO

_L
30

N
_4

/D
2

V
C

C
IN

T
V

C
C

A
U

X
IO

_L
27

P
_4

/D
1

G
N

DD
IO

_L
27

N
_4

/D
IN

/D
0 IO

IO
_L

25
P

_4
IO

_L
25

N
_4

(
)

IO
/V

R
E

F
_4

(
)

IO
V

C
C

O
_4

G
N

D
IO

_L
01

P
_4

/V
R

N
_4

IO
_L

01
N

_4
/V

R
P

_4
IO

/V
R

E
F

_4
D

O
N

E
C

C
LK

Bank 1

Bank 4

B
an

k
3

B
an

k
2

DS099-4_9b_030503

See
http://www.xilinx.com/bvdocs/publications/ds099-4.pdf
for complete, detailed pinout information.

ug000.book Page 97 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Pinout Descriptions

98 www.xilinx.com DS099-4 (v1.1.2) July 11, 2003
1-800-255-7778 Advance Product Specification [ABBREVIATED]

R

FT256 Footprint

Figure 11: FT256 Package Footprint (top view)

113
I/O: Unrestricted, general-purpose user I/O

12
DUAL: Configuration pin, then possible
user I/O

24
VREF: User I/O or input voltage reference for
bank

16
DCI: User I/O or reference resistor input for
bank

8
GCLK: User I/O or global clock buffer input

24
VCCO: Output voltage supply for bank

7
CONFIG: Dedicated configuration pins

4
JTAG: Dedicated JTAG port pins

8
VCCINT: Internal core voltage supply
(+1.2V)

0
N.C.: No unconnected pins in this package

32
GND: Ground

8
VCCAUX: Auxiliary voltage supply
(+2.5V)

10 11 12 13 14 15 161 2 3 4 5 6 7 8 9

A

B

C

D

E

F

G

H

J

K

L

M

N

P

R

T

B
an

k
6

B
an

k
3

Bank 5 Bank 4

B
an

k
7

Bank 0 Bank 1

B
an

k
2

2

2

3

3

TDI
IO

VREF_0

I/O
L01P_0
VRN_0

I/O VCCAUX I/O
I/O

L32P_0
GCLK6

I/O
I/O

L31N_1
VREF_1

VCCAUX I/O
I/O

L10N_1
VREF_1

I/O
L01N_1
VRP_1

TDO

I/O
L01P_7
VRN_7

PROG_B
I/O

L01N_0
VRP_0

I/O
L25P_0

I/O
L28P_0

I/O
L30P_0

I/O
L32N_0
GCLK7

I/O
L31P_1

I/O
L29N_1

I/O
L27N_1

I/O
L10P_1

I/O
L01P_1
VRN_1

I/O
L01N_2
VRP_2

I/O
L01N_7
VRP_7

I/O
L16N_7

I/O
L16P_7

VREF_7

HSWAP_
EN

I/O
L25N_0

I/O
L28N_0

I/O
L30N_0

I/O
L31P_0

VREF_0

I/O
L32N_1
GCLK5

I/O I/O
L29P_1

I/O
L27P_1

TMS TCK I/O
L16N_2

I/O
L01P_2
VRN_2

I/O
L17N_7

I/O
L17P_7

I/O
L19P_7

VCCINT
IO

VREF_0
I/O

L27P_0
I/O

L29P_0
I/O

L31N_0

I/O
L32P_1
GCLK4

I/O
L30N_1

I/O
L28N_1

IO
VREF_1 VCCINT I/O

L16P_2
I/O

L17N_2

I/O
L17P_2
VREF_2

I/O
L20N_7

I/O
L20P_7

I/O
L19N_7
VREF_7

I/O
L21P_7

VCCINT I/O
L27N_0

I/O
L29N_0

VCCO_0 VCCO_1 I/O
L30P_1

I/O
L28P_1

VCCINT I/O
L19N_2

I/O
L19P_2

I/O
L20N_2

I/O
L20P_2

VCCAUX I/O
L22N_7

I/O
L22P_7

I/O
L21N_7

I/O
L23P_7

VCCO_0 VCCO_0 VCCO_1 VCCO_1 I/O
L21N_2

I/O
L21P_2

I/O
L22N_2

I/O
L22P_2

VCCAUX

I/O
L40P_7

I/O I/O
L24N_7

I/O
L24P_7

I/O
L23N_7

VCCO_7 VCCO_2
I/O

L23N_2
VREF_2

I/O
L23P_2

I/O
L24N_2

I/O
L24P_2

I/O

I/O
L40N_7
VREF_7

I/O
L39N_7

I/O
L39P_7

VCCO_7 VCCO_7 GND

GND GND GND GND

GND

GND

GNDGNDGNDGND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GNDGND

GND

GNDGND

GND GND

GNDGND

VCCO_2 VCCO_2 I/O
L39N_2

I/O
L39P_2

I/O
L40N_2

I/O
L40P_2
VREF_2

I/O
L40P_6

VREF_6

I/O
L40N_6

I/O
L39P_6

I/O
L39N_6

VCCO_6 VCCO_6 VCCO_3 VCCO_3 I/O
L39P_3

I/O
L39N_3

I/O
L40N_3
VREF_3

I/O I/O
L24P_6

I/O
L24N_6
VREF_6

I/O
L23P_6

I/O
L23N_6

VCCO_6 VCCO_3 I/O
L23N_3

I/O
L24P_3

I/O
L24N_3

I/O I/O
L40P_3

VCCAUX I/O
L22P_6

I/O
L22N_6

I/O
L21P_6

I/O
L21N_6

VCCO_5 VCCO_5 VCCO_4 VCCO_4
I/O

L23P_3
VREF_3

I/O
L21N_3

I/O
L22P_3

I/O
L22N_3

VCCAUX

I/O
L20P_6

I/O
L20N_6

I/O
L19P_6

I/O
L19N_6

VCCINT
I/O

L28P_5
D7

I/O
L30P_5

VCCO_5 VCCO_4 I/O
L29N_4

I/O
L27N_4

DIN
D0

VCCINT I/O
L21P_3

I/O
L19N_3

I/O
L20P_3

I/O
L20N_3

I/O
L17P_6

VREF_6

I/O
L17N_6

I/O
L16P_6

VCCINT I/O
I/O

L28N_5
D6

I/O
L30N_5

I/O
L32P_5
GCLK2

I/O
L31N_4
INIT_B

I/O
L29P_4

I/O
L27P_4

D1

IO
VREF_4 VCCINT I/O

L19P_3

I/O
L17P_3

VREF_3

I/O
L17N_3

I/O
L01P_6
VRN_6

I/O
L16N_6

M0 M2 I/O
L27P_5

I/O
L29P_5

VREF_5
I/O

I/O
L32N_5
GCLK3

I/O
L31P_4
DOUT
BUSY

I/O
L30N_4

D2

I/O
L28N_4

I/O
L25N_4

IO
VREF_4

I/O
L16P_3

I/O
L16N_3

I/O
L01N_3
VRP_3

I/O
L01N_6
VRP_6

I/O
L01P_5
CS_B

I/O
L10P_5
VRN_5

I/O
L27N_5
VREF_5

I/O
L29N_5

I/O
L31P_5

D5

I/O
L32N_4
GCLK1

I/O
L30P_4

D3

I/O
L28P_4

I/O
L25P_4

I/O
L01N_4
VRP_4

DONE GND
I/O

L01P_3
VRN_3

M1
I/O

L01N_5
RDWR_B

I/O
L10N_5
VRP_5

I/O VCCAUX
I/O

L31N_5
D4

IO
VREF_5

I/O
L32P_4
GCLK0

IO
VREF_4 VCCAUX I/O

I/O
L01P_4
VRN_4

I/O CCLK GND

DS099-4_10_030503

ug000.book Page 98 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Pinout Descriptions

DS099-4 (v1.1.2) July 11, 2003 www.xilinx.com 99
Advance Product Specification [ABBREVIATED] 1-800-255-7778

R

ug000.book Page 99 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Pinout Descriptions

100 www.xilinx.com DS099-4 (v1.1.2) July 11, 2003
1-800-255-7778 Advance Product Specification [ABBREVIATED]

R

FG456 Footprint

Left Half of Package
(top view)

XC3S400
(264 max. user I/O)

196 I/O: Unrestricted,
general-purpose user I/O

32 VREF: User I/O or input
voltage reference for bank

69 N.C.: Unconnected pins for
XC3S400 ()

XC3S1000, XC3S1500
(333 max user I/O)

261 I/O: Unrestricted,
general-purpose user I/O

36 VREF: User I/O or input
voltage reference for bank

0 N.C.: No unconnected pins
in this package

All devices

12 DUAL: Configuration pin,
then possible user I/O

8 GCLK: User I/O or global
clock buffer input

16 DCI: User I/O or reference
resistor input for bank

7 CONFIG: Dedicated
configuration pins

4 JTAG: Dedicated JTAG
port pins

12 VCCINT: Internal core
voltage supply (+1.2V)

40 VCCO: Output voltage
supply for bank

8 VCCAUX: Auxiliary voltage
supply (+2.5V)

52 GND: Ground

See
http://www.xilinx.com/bvdocs/
publications/ds099-4.pdf for
complete, detailed pinout
information.

Figure 12: FG456 Package Footprint (top view)

Bank 5

Bank 0

A

B

C

D

E

F

G

H

J

K

L

M

N

P

R

T

U

V

W

Y

A
A

A
B

B
an

k
7

B
an

k
6

PROG_B
IO

VREF_0

I/O
L01P_0
VRN_0

I/O
L09P_0

VCCAUX
I/O

L19P_0 I/O
L24P_0

I/O
L27P_0 I/O

I/O
L32P_0
GCLK6

TDI HSWAP_
EN

I/O
L01N_0
VRP_0

I/O
L09N_0

I/O
L15P_0

I/O
L19N_0 I/O

L24N_0
I/O

L27N_0
I/O

L29P_0

I/O
L32N_0
GCLK7

I/O
L16P_7

VREF_7
I/O

I/O
L01N_7
VRP_7

I/O
L01P_7
VRN_7

I/O
L06P_0

I/O
L15N_0

IO
VREF_0 VCCO_0 GND

GND

GND

I/O
L29N_0

I/O
L31P_0

VREF_0

I/O
L16N_7

I/O
L19P_7

I/O
L19N_7
VREF_7

I/O
L17P_7

I/O
L06N_0

I/O
L10P_0

I/O
L16P_0

I/O
L22P_0 I/O I/O I/O

L31N_0

I/O
L21N_7

I/O
L21P_7

I/O
L20P_7

I/O
L17N_7

IO
VREF_0 I/O

L10N_0
I/O

L16N_0

I/O
L22N_0 I/O

L25P_0
I/O

L28P_0
I/O

L30P_0

VCCAUX I/O
L23N_7

I/O
L23P_7

I/O
L20N_7

I/O
L22P_7 I/O IO

VREF_0 VCCO_0 I/O
L25N_0

I/O
L28N_0

I/O
L30N_0

I/O
L27N_7

I/O
L27P_7

VREF_7

I/O
L26N_7

I/O
L26P_7

I/O
L24P_7

I/O
L22N_7 VCCINT VCCINT VCCO_0 VCCO_0 VCCO_0

I/O
L28N_7

I/O
L28P_7 VCCO_7

I/O
L29P_7 I/O

L24N_7
VCCO_7 VCCINT

I/O
L32N_7

I/O
L32P_7 GND

I/O
L29N_7

I/O
L31N_7

I/O
L31P_7 VCCO_7

I/O
L35N_7

I/O
L35P_7

I/O
L34N_7

I/O
L34P_7

I/O
L33N_7

I/O
L33P_7 VCCO_7

I/O
L40N_7
VREF_7

I/O
L40P_7

I/O
L39N_7

I/O
L39P_7

I/O
L38N_7

I/O
L38P_7

VCCO_7

I/O
L40P_6
VREF_6

I/O
L40N_6

I/O
L39P_6

I/O
L39N_6

I/O
L38P_6

I/O
L38N_6

VCCO_6

GND GND GND

GND GND GND

GND GND GND

GND GND GND

GND GND GND

GND GND GND

I/O
L35P_6

I/O
L35N_6

I/O
L34P_6

I/O
L34N_6
VREF_6

I/O
L33P_6

I/O
L33N_6 VCCO_6

I/O
L32P_6

I/O
L32N_6 GND

I/O
L31P_6

I/O
L31N_6

I/O
L28P_6 VCCO_6

I/O
L29P_6

I/O
L29N_6 VCCO_6

I/O
L26P_6

I/O
L28N_6 VCCO_6 VCCINT

I/O
L27P_6

I/O
L27N_6

I/O
L26N_6 I/O

L23P_6
I/O

L22P_6
I/O

L22N_6 VCCINT VCCINT VCCO_5 VCCO_5 VCCO_5

VCCAUX I/O
L24P_6

I/O
L24N_6
VREF_6

I/O
L23N_6

I/O
L19P_6

IO
VREF_5 I/O VCCO_5 I/O I/O I/O

I/O
L21P_6

I/O
L21N_6

I/O
L20P_6

I/O
L20N_6

I/O
L19N_6

I/O
L15P_5 I/O I/O

L24P_5
I/O

L27P_5 I/O
I/O

L31P_5
D5

I/O
L17P_6

VREF_6

I/O
L17N_6

I/O
L16P_6

I/O
L16N_6

I/O
L09P_5

I/O
L15N_5

I/O
L19P_5
VREF_5

I/O
L24N_5

I/O
L27N_5
VREF_5

I/O
L29P_5

VREF_5

I/O
L31N_5

D4

I/O
I/O

L01P_6
VRN_6

I/O
L01N_6
VRP_6

I/O
L01N_5
RDWR_B

I/O
L09N_5

I/O
L16P_5

I/O
L19N_5 VCCO_5 I/O

L29N_5

I/O
L32P_5
GCLK2

M1
I/O

L01P_5
CS_B

I/O
L06P_5

I/O
L10P_5
VRN_5

I/O
L16N_5

I/O
L22P_5 I/O

L25P_5

I/O
L28P_5

D7

I/O
L30P_5

I/O
L32N_5
GCLK3

GND

GND

GND

M0 M2 I/O
L06N_5

I/O
L10N_5
VRP_5

VCCAUX
I/O

L22N_5 I/O
L25N_5

I/O
L28N_5

D6

I/O
L30N_5

IO
VREF_5

DS099-4_11a_030203

103 41 2 5 6 7 8 9 11

ug000.book Page 100 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Pinout Descriptions

DS099-4 (v1.1.2) July 11, 2003 www.xilinx.com 101
Advance Product Specification [ABBREVIATED] 1-800-255-7778

R

Right Half of Package
(top view)

See
http://www.xilinx.com/bvdocs/
publications/ds099-4.pdf for
complete, detailed pinout
information.

12 13 14 15 16 17 18 19 20 21 22
Bank 1

Bank 4

A

B

C

D

E

F

G

H

J

K

L

M

N

P

R

T

U

V

W

Y

A
A

A
B

B
an

k
2

B
an

k
3

I/O I/O
L30N_1

I/O
L28N_1

I/O
L25P_1

I/O
L22N_1 VCCAUX

I/O
L10N_1
VREF_1

I/O
L06N_1
VREF_1

TMS TCK

TDO

GND

I/O
L32N_1
GCLK5

I/O
L30P_1

I/O
L28P_1

I/O
L25N_1

I/O
I/O

L16N_1
I/O

L10P_1
I/O

L06P_1

I/O
L01P_1
VRN_1

GND

I/O
L32P_1
GCLK4

I/O
L29N_1 GND VCCO_1

I/O
L19N_1 I/O

L16P_1
I/O

L09N_1

I/O
L01N_1
VRP_1

I/O
L01N_2
VRP_2

I/O
L01P_2
VRN_2

I/O

I/O
L31N_1
VREF_1

I/O
L29P_1

I/O
L27N_1

I/O
L24N_1

I/O
L19P_1 I/O

L15N_1
I/O

L09P_1
I/O

L16P_2
I/O

L16N_2
I/O

L17N_2

I/O
L17P_2

VREF_2

I/O
L31P_1

IO
VREF_1

I/O
L27P_1

I/O
L24P_1 I/O I/O

L15P_1
I/O

L19N_2
I/O

L20N_2
I/O

L20P_2
I/O

L21N_2
I/O

L21P_2

I/O I/O
IO

VREF_1 VCCO_1 I/O I/O I/O
L19P_2

I/O
L23N_2
VREF_2

I/O
L24N_2

I/O
L24P_2

VCCAUX

VCCO_1 VCCO_1 VCCO_1 VCCINT VCCINT I/O
L22N_2

I/O
L22P_2

I/O
L23P_2

I/O
L26N_2 I/O

L27N_2
I/O

L27P_2

VCCINT VCCO_2
I/O

L28N_2
I/O

L26P_2 VCCO_2
I/O

L29N_2
I/O

L29P_2

GND GND GND VCCO_2
I/O

L28P_2
I/O

L31N_2
I/O

L31P_2 GND
I/O

L32N_2
I/O

L32P_2

GND GND GND VCCO_2
I/O

L33N_2
I/O

L33P_2
I/O

L34N_2
VREF_2

I/O
L34P_2

I/O
L35N_2

I/O
L35P_2

GND GND GND VCCO_2 I/O
L38N_2

I/O
L38P_2

I/O
L39N_2

I/O
L39P_2

I/O
L40N_2

I/O
L40P_2

VREF_2

GND GND GND VCCO_3 I/O
L38P_3

I/O
L38N_3

I/O
L39P_3

I/O
L39N_3

I/O
L40P_3

I/O
L40N_3
VREF_3

GND GND GND VCCO_3
I/O

L33P_3
I/O

L33N_3
I/O

L34P_3
VREF_3

I/O
L34N_3

I/O
L35P_3

I/O
L35N_3

GND GND GND VCCO_3
I/O

L31P_3
I/O

L31N_3
I/O

L29N_3 GND
I/O

L32P_3
I/O

L32N_3

VCCINT VCCO_3 I/O
L24N_3

I/O
L29P_3 VCCO_3

I/O
L28P_3

I/O
L28N_3

VCCO_4 VCCO_4 VCCO_4 VCCINT VCCINT I/O
L22N_3

I/O
L24P_3

I/O
L26P_3

I/O
L26N_3 I/O

L27P_3
I/O

L27N_3

I/O
L30N_4

D2

I/O
L28N_4

I/O
L25N_4

VCCO_4 I/O I/O I/O
L22P_3

I/O
L20N_3

I/O
L23P_3

VREF_3

I/O
L23N_3

VCCAUX

I/O
L30P_4

D3

I/O
L28P_4

I/O
L25P_4

I/O
L22N_4
VREF_4

I/O
L16N_4

I/O
L10N_4

IO
VREF_4

I/O
L17N_3

I/O
L20P_3

I/O
L21P_3

I/O
L21N_3

I/O
L31N_4
INIT_B

I/O I/O
I/O

L22P_4 I/O
L16P_4

I/O
L10P_4

I/O
L06N_4
VREF_4

I/O
L17P_3

VREF_3

I/O
L19P_3

I/O
L19N_3

I/O
L16N_3

I/O
L31P_4
DOUT
BUSY

I/O
L29N_4 GND VCCO_4

IO
VREF_4

I/O
L15N_4

I/O
L06P_4

I/O
L01P_3
VRN_3

I/O
L01N_3
VRP_3

I/O I/O
L16P_3

I/O
L32N_4
GCLK1

I/O
L29P_4

I/O
L27N_4

DIN
D0

I/O
L24N_4

I/O
L19N_4 I/O

L15P_4
I/O

L09N_4

I/O
L05N_4

I/O
L01N_4
VRP_4

GND CCLK

I/O
L32P_4
GCLK0

IO
VREF_4

I/O
L27P_4

D1

I/O
L24P_4

I/O
L19P_4 VCCAUX I/O

L09P_4

I/O
L05P_4

I/O
L01P_4
VRN_4

DONE GND

DS099-4_11b_030503

L22P_1

ug000.book Page 101 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Pinout Descriptions

102 www.xilinx.com DS099-4 (v1.1.2) July 11, 2003
1-800-255-7778 Advance Product Specification [ABBREVIATED]

R

FG676 Footprint

Left Half of Package
(top view)

XC3S1000
(391 max. user I/O)

315
I/O: Unrestricted,
general-purpose user I/O

40
VREF: User I/O or input
voltage reference for bank

98
N.C.: Unconnected pins for
XC3S1000 ()

XC3S1500
(487 max user I/O)

403
I/O: Unrestricted,
general-purpose user I/O

48
VREF: User I/O or input
voltage reference for bank

2
N.C.: Unconnected pins for
XC3S1500 ()

XC3S2000
(489 max user I/O)

405
I/O: Unrestricted,
general-purpose user I/O

48
VREF: User I/O or input
voltage reference for bank

0 N.C.: No unconnected pins

All devices

12
DUAL: Configuration pin,
then possible user I/O

8
GCLK: User I/O or global
clock buffer input

16
DCI: User I/O or reference
resistor input for bank

7
CONFIG: Dedicated
configuration pins

4
JTAG: Dedicated JTAG
port pins

20
VCCINT: Internal core
voltage supply (+1.2V)

64
VCCO: Output voltage
supply for bank

16
VCCAUX: Auxiliary voltage
supply (+2.5V)

76 GND: Ground

Figure 13: FG676 Package Footprint (top view)

21 103 4 5 6 7 8 9 11 12 13
Bank 0

A

B

C

D

E

F

G

H

J

K

L

M

N

P

R

T

U

V

W

Y

A
A

A
B

A
C

A
D

A
E

A
F

B
an

k
6

B
an

k
7

Bank 5

VCCAUX I/O
I/O

L05P_0
VREF_0

I/O I/O
I/O

L10P_0
I/O

L15P_0
VCCAUX

I/O
L23P_0

I/O
L26P_0
VREF_0

I/O
L29P_0

I/O
L32P_0
GCLK6

VCCAUX I/O
VREF_0

I/O
L05N_0

I/O
L06P_0

I/O
L08P_0

I/O
L10N_0

I/O
L15N_0

I/O
L18P_0

I/O
L23N_0

I/O
L26N_0 I/O

L29N_0

I/O
L32N_0
GCLK7

TD I
HSWAP_

EN I/O
I/O

L06N_0
I/O

L08N_0
VCCO_0

I/O
I/O

L18N_0 I/O
L22P_0

VCCO_0 I/O
I/O

L31P_0
VREF_0

I/O
L03N_7
VREF_7

I/O
L03P_7

PROG_B
I/O

L01P_0
VRN_0

I/O
L07P_0

I/O
L09P_0

I/O
L12P_0

I/O
L17P_0 I/O

L22N_0
I/O

L25P_0
GND

GND GND

GND GND GND GND

GND GNDGND GND

GND GND GND GND

GND GND

GND GND

GND GNDGND

GND GNDGND

GNDGND

I/O
L31N_0

I/O
L06N_7

I/O
L06P_7 I/O

L02N_7
I/O

L02P_7

I/O
L01N_0
VRP_0

I/O
L07N_0

I/O
L09N_0

I/O
L12N_0

I/O
L17N_0 I/O

L19P_0
I/O

L25N_0
I/O

L28P_0
I/O

I/O
L09N_7

I/O
L09P_7

I/O
L07N_7

I/O
L07P_7

I/O
L01N_7
VRP_7

I/O
L01P_7
VRN_7

I/O
VREF_0

I/O
L11P_0 I/O

L16P_0
I/O

L19N_0
I/O

L24P_0
I/O

L28N_0
I/O

L30P_0

I/O
L14N_7

I/O
L14P_7

VCCO_7
I/O

L08N_7
I/O

L08P_7
I/O

L05N_7
I/O

L05P_7
I/O

L11N_0 I/O
L16N_0

I/O
VREF_0

I/O
L24N_0

I/O
L27N_0

I/O
L30N_0

I/O
L19N_7
VREF_7

I/O
L19P_7

I/O
L17N_7

I/O
L17P_7

I/O
L16P_7
VREF_7

I/O
L10N_7

I/O
L10P_7
VREF_7 VCCINT VCCO_0 VCCO_0 I/O I/O

I/O
L27P_0

VCCAUX I/O
L22N_7

I/O
L22P_7

I/O
L21N_7

I/O
L21P_7

I/O
L16N_7

I/O
L20P_7

VCCO_7 VCCINT VCCINT VCCO_0 VCCO_0 VCCO_0

I/O
L26N_7

I/O
L26P_7

I/O
L24N_7

I/O
L24P_7

I/O
L23N_7

I/O
L23P_7

I/O
L20N_7

VCCO_7 VCCINT VCCINT VCCO_0

I/O
L29N_7

I/O
L29P_7

VCCO_7 I/O
L33P_7

I/O
L28N_7

I/O
L28P_7

I/O
L27N_7

I/O
L27P_7
VREF_7

VCCO_7

I/O
L34N_7

I/O
L34P_7

I/O
L33N_7

I/O
L32P_7

I/O
L32N_7

I/O
L31N_7

I/O
L31P_7

VCCO_7

I/O
L40N_7
VREF_7

I/O
L40P_7

I/O
L39N_7

I/O
L39P_7

I/O
L38N_7

I/O
L38P_7

I/O
L35N_7

I/O
L35P_7

VCCO_7 VCCO_7

I/O
L40P_6
VREF_6

I/O
L40N_6

I/O
L39P_6

I/O
L39N_6

I/O
L38P_6

I/O
L38N_6

I/O
L35P_6

I/O
L35N_6

VCCO_6 VCCO_6

I/O
L34P_6

I/O
L34N_6
VREF_6

I/O
L33P_6

GND

GND

GND

GND

GND

GND

I/O
L32P_6

I/O
L32N_6

I/O
L31P_6

I/O
L31N_6

VCCO_6

I/O
L29P_6

I/O
L29N_6

VCCO_6 I/O
L33N_6

I/O
L28P_6

I/O
L28N_6

I/O
L27P_6

I/O
L27N_6

VCCO_6

I/O
L26P_6

I/O
L26N_6

I/O
L24P_6

I/O
L24N_6
VREF_6

I/O
L23P_6

I/O
L23N_6

I/O
L20P_6

VCCO_6 VCCINT VCCINT VCCO_5

VCCAUX I/O
L22P_6

I/O
L22N_6

I/O
L21P_6

I/O
L21N_6

I/O
L16N_6

I/O
L20N_6

VCCO_6 VCCINT VCCINT VCCO_5 VCCO_5 VCCO_5

I/O
L19P_6

I/O
L19N_6

I/O
L17P_6
VREF_6

I/O
L17N_6

I/O
L16P_6

I/O
L14P_6

I/O
L14N_6

VCCINT VCCO_5 VCCO_5 I/O
L24P_5

I/O
L27P_5

I/O
L30P_5

I/O
L10P_6

I/O
L10N_6 VCCO_6

I/O
L08P_6

I/O
L08N_6

I/O
L06P_6

I/O
L06N_6 I/O

I/O
L16P_5

I/O
L19P_5
VREF_5

I/O
L24N_5

I/O
L27N_5
VREF_5

I/O
L30N_5

I/O
L09P_6

I/O
L09N_6
VREF_6

I/O
L07P_6

I/O
L07N_6

I/O I/O
L05P_5

I/O

I/O
L11P_5 I/O

L16N_5
I/O

L19N_5
I/O

L25P_5

I/O
L28P_5

D7
I/O

I/O
L05P_6

I/O
L05N_6 I/O

L02P_6
I/O

L02N_6

I/O
L01P_5
CS_B

I/O
L05N_5

I/O
L09P_5

I/O
L11N_5
VREF_5 I/O

I/O
L22P_5

I/O
L25N_5

I/O
L28N_5

D6

I/O
L31P_5

D5

I/O
L03P_6

I/O
L03N_6
VREF_6

M1
I/O

L01N_5
RDWR_B

I/O
L07P_5

I/O
L09N_5

I/O
L12P_5

I/O I/O
L22N_5

I/O GNDGND

GND

GND

GND

I/O
L31N_5

D4

I/O
L01P_6
VRN_6

I/O
L01N_6
VRP_6

I/O
L04P_5

I/O
L06P_5

I/O
L07N_5

VCCO_5
I/O

L12N_5
I/O

L18P_5 I/O VCCO_5 I/O
I/O

L32P_5
GCLK2

VCCAUX M0
I/O

L04N_5
I/O

L06N_5
I/O

L08P_5

I/O
L10P_5
VRN_5

I/O
L15P_5

I/O
L18N_5

I/O
L23P_5

I/O
L26P_5

I/O
L29P_5
VREF_5

I/O
L32N_5
GCLK3

VCCAUX M2 I/O
I/O

VREF_5
I/O

L08N_5

I/O
L10N_5
VRP_5

I/O
L15N_5

VCCAUX
I/O

L23N_5
I/O

L26N_5 I/O
L29N_5

I/O
VREF_5

DS099-4_12a_030203

See http://www.xilinx.com/bvdocs/
publications/ds099-4.pdf for complete,
detailed pinout information.

ug000.book Page 102 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Pinout Descriptions

DS099-4 (v1.1.2) July 11, 2003 www.xilinx.com 103
Advance Product Specification [ABBREVIATED] 1-800-255-7778

R

Right Half of Package
(top view)

2

14 15 16 17 18 19 20 21 22 23 24 25 26
Bank 1

Bank 4

A

B

C

D

E

F

G

H

J

K

L

M

N

P

R

T

U

V

W

Y

A
A

A
B

A
C

A
D

A
E

A
F

B
an

k
2

B
an

k
3

I/O
I/O

L29N_1

I/O
L26N_1

I/O
L23N_1 VCCAUX I/O

L15N_1

I/O
L10N_1
VREF_1

I/O
L08N_1

I/O I/O TMS VCCAUX

I/O
L32N_1
GCLK5

I/O
L29P_1

I/O
L26P_1

I/O
L23P_1

I/O
L18N_1 I/O

L15P_1
I/O

L10P_1
I/O

L08P_1

I/O
L06N_1
VREF_1

I/O
L04N_1

TCK VCCAUX

I/O
L32P_1
GCLK4

I/O
VREF_1

VCCO_1 I/O
VREF_1

I/O
L18P_1

I/O
L12N_1 VCCO_1 I/O

L07N_1
I/O

L06P_1
I/O

L04P_1

I/O
L01N_2
VRP_2

I/O
L01P_2
VRN_

I/O
L31N_1
VREF_1

GND I/O
I/O

L22N_1

I/O
VREF_1

I/O
L12P_1 I/O

L09N_1
I/O

L07P_1

I/O
L01N_1
VRP_1

GND

GND GND

GNDGNDGNDGND

GND GND GND GND GND

GND

GNDGNDGND

GND GND GND

GNDGNDGNDGND

GND GND GND GND

GNDGND

GND GND

GND

GND

GND

GND

GND

GND

TDO
I/O

L03N_2
VREF_2

I/O
L03P_2

I/O
L31P_1

I/O
L28N_1

I/O
L25N_1

I/O
L22P_1 I/O

I/O
L11N_1 I/O

L09P_1
I/O

L05N_1

I/O
L01P_1
VRN_1

I/O
L02N_2

I/O
L02P_2

I/O
L05N_2

I/O
L05P_2

I/O
I/O

L28P_1
I/O

L25P_1
I/O

L19N_1
I/O

L16N_1

I/O
L11P_1 I/O

I/O
L05P_1

I/O
I/O

L07N_2
I/O

L07P_2

I/O
L09N_2
VREF_2

I/O
L09P_2

I/O
L30N_1

I/O
L27N_1

I/O
L24N_1

I/O
L19P_1

I/O
L16P_1

I/O

I/O
L06N_2

I/O
L06P_2

I/O
L08N_2

I/O
L08P_2 VCCO_2

I/O
L10N_2

I/O
L10P_2

I/O
L30P_1

I/O
L27P_1

I/O
L24P_1

VCCO_1 VCCO_1 VCCINT
I/O

L14N_2
I/O

L14P_2
I/O

L16N_2
I/O

L17N_2

I/O
L17P_2
VREF_2

I/O
L19N_2

I/O
L19P_2

VCCO_1 VCCO_1 VCCO_1 VCCINT VCCINT VCCO_2 I/O
L20N_2

I/O
L16P_2

I/O
L21N_2

I/O
L21P_2

I/O
L22N_2

I/O
L22P_2

VCCAUX

VCCO_1 VCCINT VCCINT VCCO_2 I/O
L20P_2

I/O
L23N_2
VREF_2

I/O
L23P_2

I/O
L24N_2

I/O
L24P_2

I/O
L26N_2

I/O
L26P_2

VCCO_2 I/O
L27N_2

I/O
L27P_2

I/O
L28N_2

I/O
L28P_2

I/O
L33N_2

VCCO_2 I/O
L29N_2

I/O
L29P_2

VCCO_2 I/O
L31N_2

I/O
L31P_2

I/O
L32N_2

I/O
L32P_2

I/O
L33P_2

I/O
L34N_2
VREF_2

I/O
L34P_2

VCCO_2 VCCO_2 I/O
L35N_2

I/O
L35P_2

I/O
L38N_2

I/O
L38P_2

I/O
L39N_2

I/O
L39P_2

I/O
L40N_2

I/O
L40P_2
VREF_2

VCCO_3 VCCO_3 I/O
L35P_3

I/O
L35N_3

I/O
L38P_3

I/O
L38N_3

I/O
L39P_3

I/O
L39N_3

I/O
L40P_3

I/O
L40N_3
VREF_3

VCCO_3 I/O
L31P_3

I/O
L31N_3

I/O
L32P_3

I/O
L32N_3

I/O
L33N_3

I/O
L34P_3
VREF_3

I/O
L34N_3

VCCO_3 I/O
L27P_3

I/O
L27N_3

I/O
L28P_3

I/O
L28N_3

I/O
L33P_3

VCCO_3 I/O
L29P_3

I/O
L29N_3

VCCO_4 VCCINT VCCINT VCCO_3 I/O
L20N_3

I/O
L23P_3
VREF_3

I/O
L23N_3

I/O
L24P_3

I/O
L24N_3

I/O
L26P_3

I/O
L26N_3

VCCO_4 VCCO_4 VCCO_4 VCCINT VCCINT VCCO_3 I/O
L20P_3

I/O
L16N_3

I/O
L21P_3

I/O
L21N_3

I/O
L22P_3

I/O
L22N_3

VCCAUX

I/O
L27P_4

D1
I/O I/O VCCO_4 VCCO_4 VCCINT

I/O
L10P_3

I/O
L10N_3 I/O

L16P_3

I/O
L17P_3
VREF_3

I/O
L17N_3

I/O
L19P_3

I/O
L19N_3

I/O
L30N_4

D2

I/O
L27N_4

DIN
D0

I/O
L24N_4

I/O
VREF_4

I/O
L16N_4

I/O
L11N_4

I/O
L05P_3

I/O
L05N_3

I/O
L08P_3

I/O
L08N_3 VCCO_3 I/O

L14P_3
I/O

L14N_3

I/O
L30P_4

D3

I/O
L28N_4

I/O
L24P_4

I/O
L19P_4

I/O
L16P_4

I/O
L11P_4 I/O

I/O
L01P_3
VRN_3

I/O
L01N_3
VRP_3

I/O
L07P_3

I/O
L07N_3

I/O
L09P_3
VREF_3

I/O
L09N_3

IO
VREF_4

I/O
L28P_4

I/O
L25N_4

I/O
L22P_4

I/O
L17N_4

I/O
L12N_4 I/O

L09N_4
I/O

L07N_4

I/O
L01N_4
VRP_4

I/O
L02P_3

I/O
L02N_3
VREF_3

I/O
L06P_3

I/O
L06N_3

I/O
L31N_4
INIT_B

I/O
L25P_4

I/O
L19N_4

I/O
L17P_4

I/O
L12P_4 I/O

L09P_4
I/O

L07P_4

I/O
L01P_4
VRN_4

DONE
I/O

L03P_3
I/O

L03N_3

I/O
L31P_4
DOUT
BUSY

I/O VCCO_4
I/O

L22N_4
VREF_4

I/O
L18N_4

I/O
VCCO_4 I/O

L08N_4

I/O
L06N_4
VREF_4

I/O
I/O

VREF_4
CCLK

I/O
L32N_4
GCLK1

I/O
L29N_4

I/O
L26N_4

I/O
L23N_4

I/O
L18P_4 I/O

L15N_4
I/O

L10N_4
I/O

L08P_4
I/O

L06P_4
I/O

L05N_4
I/O

L04N_4
VCCAUX

I/O
L32P_4
GCLK0

I/O
L29P_4

I/O
L26P_4
VREF_4

I/O
L23P_4 VCCAUX I/O

L15P_4
I/O

L10P_4
I/O I/O

I/O
L05P_4

I/O
L04P_4

VCCAUX

DS099-4_12b_030203

See http://www.xilinx.com/bvdocs/
publications/ds099-4.pdf for complete,
detailed pinout information.

ug000.book Page 103 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Pinout Descriptions

104 www.xilinx.com DS099-4 (v1.1.2) July 11, 2003
1-800-255-7778 Advance Product Specification [ABBREVIATED]

R

FG900 Footprint

Left Half of Package
(top view)

XC3S2000
(565 max. user I/O)

481
I/O: Unrestricted,
general-purpose user I/O

48
VREF: User I/O or input
voltage reference for bank

68
N.C.: Unconnected pins for
XC3S2000 ()

XC3S4000, XC3S5000
(633 max user I/O)

549
I/O: Unrestricted,
general-purpose user I/O

48
VREF: User I/O or input
voltage reference for bank

0
N.C.: No unconnected pins
in this package

All devices

12
DUAL: Configuration pin,
then possible user I/O

8
GCLK: User I/O or global
clock buffer input

16
DCI: User I/O or reference
resistor input for bank

7
CONFIG: Dedicated
configuration pins

4
JTAG: Dedicated JTAG port
pins

32
VCCINT: Internal core
voltage supply (+1.2V)

80
VCCO: Output voltage
supply for bank

24
VCCAUX: Auxiliary voltage
supply (+2.5V)

120
GND: Ground

Figure 14: FG900 Package Footprint (top view)

HSWAP_
EN

I/O
L01P_0
VRN_0

I/O
L02P_0

I/O
L35P_0 I/O

L09P_0

I/O
L38P_0 I/O

L17P_0
I/O

L22P_0
I/O

L25P_0

I/O
L32P_0
GCLK6

GCLK7
PROG_B

I/O
L01N_0
VRP_0

I/O
L02N_0

I/O
L04P_0

I/O
L35N_0 I/O

L09N_0

I/O
L38N_0 I/O

L12P_0
I/O

L17N_0
I/O

L22N_0
I/O

L25N_0
I/O

L28P_0

I/O
L32N_0

I/O
L01N_7
VRP_7

I/O
L01P_7
VRN_7

TDI
IO

VREF_0 VCCO_0 I/O
L04N_0

I/O
L06P_0

I/O
L08P_0

VCCO_0 I/O
L12N_0

I/O
L16P_0

I/O
L21P_0

VCCO_0 I/O
L28N_0

I/O
L31P_0

VREF_0

I/O
L03N_7

VREF_7

I/O
L03P_7

I/O
L02N_7

I/O
L02P_7

I/O
L03N_0

I/O
L06N_0

I/O
L08N_0

I/O
L37P_0 I/O

L16N_0
I/O

L21N_0 I/O I/O
L31N_0

I/O
L04N_7

I/O
L04P_7

VCCO_7 I/O
L05P_7

I/O
L03P_0

VCCO_0 I/O
L07P_0

I/O
L37N_0 I/O

L15P_0
I/O

L20P_0
I/O

L24P_0 I/O

I/O
L06N_7

I/O
L06P_7

I/O
L05N_7

I/O
L05N_0

I/O
L05P_0
VREF_0

I/O
L07N_0

IO
VREF_0

I/O
L11P_0

I/O
L15N_0

I/O
L20N_0

I/O
L24N_0

I/O
L27P_0

I/O
L30P_0

I/O
L08N_7

I/O
L08P_7

I/O
L07N_7

I/O
L07P_7

VCCO_7 I/O
L09P_7

I/O
L36N_0 I/O VCCO_0 I/O

L11N_0
I/O

L14P_0
I/O

L19P_0
VCCO_0 I/O

L27N_0
I/O

L30N_0

I/O
L13N_7

I/O
L13P_7

I/O
L11N_7

I/O
L11P_7

I/O
L10N_7

I/O
L10P_7

VREF_7

I/O
L09N_7

I/O
L36P_0 I/O

L10P_0
I/O

L14N_0
I/O

L19N_0
I/O

L23P_0
I/O

L29P_0

I/O
L15N_7

I/O
L15P_7

VCCO_7 I/O
L14N_7

I/O
L14P_7 I/O VCCO_7

I/O
L16P_7

VREF_7

I/O
L10N_0

I/O
L13N_0

VCCO_0 I/O
L18P_0

I/O
L23N_0

I/O
L26P_0

VREF_0

I/O
L29N_0

GND
I/O

L19N_7
VREF_7

I/O
L19P_7

VCCAUX

VCCAUX

VCCAUX VCCAUX VCCAUX

VCCAUX

VCCAUX

VCCAUX

VCCAUXVCCAUX

I/O
L17N_7

I/O
L17P_7

I/O
L16N_7

I/O
L20P_7

I/O
L13P_0

I/O
L18N_0 I/O I/O

L26N_0 I/O

I/O
L24N_7

I/O
L24P_7

I/O
L23N_7

I/O
L23P_7

I/O
L22N_7

I/O
L22P_7

I/O
L21N_7

I/O
L21P_7

VCCO_7 I/O
L20N_7 VCCINT VCCO_0 VCCO_0 VCCO_0 VCCINT

I/O
L27N_7

I/O
L27P_7
VREF_7

I/O
L26N_7

I/O
L26P_7

I/O
L49P_7

I/O
L25N_7

I/O
L25P_7

I/O
L46N_7

I/O
L46P_7 I/O

L28P_7
VCCO_7 VCCINT VCCINT VCCINT GND

GNDGND

GND

GNDGND

GND

GND

GND

GND

GND GND

GND GND

GNDGND

GND

GND

GND

GNDGNDGND

GNDGNDGND

GNDGNDGND

GNDGNDGND

GNDGNDGND

GNDGNDGND

I/O
L31N_7

I/O
L31P_7

VCCO_7
I/O

L50N_7
I/O

L50P_7
I/O

L49N_7 VCCO_7 I/O
L29N_7

I/O
L29P_7

I/O
L28N_7

VCCO_7 VCCINT

GND I/O
L34N_7

I/O
L34P_7 GND I/O

L33N_7
I/O

L33P_7 GND I/O
L32N_7

I/O
L32P_7

VCCO_7 VCCINT

I/O
L40N_7

VREF_7

I/O
L40P_7

I/O
L39N_7

I/O
L39P_7

I/O
L38N_7

I/O
L38P_7

I/O
L37N_7

I/O
L37P_7

VREF_7

I/O
L35N_7

I/O
L35P_7 VCCINT

I/O
L40P_6

VREF_6

I/O
L40N_6

I/O
L39P_6

I/O
L39N_6

I/O
L38P_6

I/O
L38N_6

I/O
L52P_6

I/O
L52N_6 I/O

L37P_6
I/O

L37N_6 VCCINT

GND
I/O

L36P_6
I/O

L36N_6 GND I/O
L35P_6

I/O
L35N_6 GND I/O

L34P_6

I/O
L34N_6

VREF_6
VCCO_6 VCCINT

I/O
L33P_6

I/O
L33N_6

VCCO_6 I/O
L32P_6

I/O
L32N_6

I/O
L31P_6

VCCO_6
I/O

L30P_6
I/O

L30N_6 I/O
L29P_6

VCCO_6 VCCINT

I/O
L28P_6

I/O
L28N_6

I/O
L27P_6

I/O
L27N_6

I/O
L31N_6

I/O
L26P_6

I/O
L26N_6

I/O
L25P_6

I/O
L25N_6 I/O

L29N_6
VCCO_6 VCCINT VCCINT VCCINT

I/O
L24P_6

I/O
L24N_6
VREF_6

I/O
L45P_6

I/O
L45N_6 I/O

L22P_6
I/O

L22N_6
I/O

L21P_6
I/O

L21N_6
VCCO_6 I/O

L20P_6 VCCINT VCCO_5 VCCO_5 VCCO_5 VCCINT

GND I/O
L19P_6

I/O
L19N_6 GND

I/O
L17P_6

VREF_6

I/O
L17N_6 GND I/O

L16P_6
I/O

L20N_6 I/O I/O
L22P_5

I/O
L22N_5

I/O
L26P_5 I/O

I/O
L15P_6

I/O
L15N_6

VCCO_6 I/O
L14P_6

I/O
L14N_6 I/O VCCO_6 I/O

L16N_6
I/O

L08P_5 I/O VCCO_5 I/O
L17N_5

I/O
L23P_5

I/O
L26N_5

I/O
L29P_5

VREF_5

I/O
L13P_6
VREF_6

I/O
L13N_6

I/O
L11P_6

I/O
L11N_6

I/O
L10P_6

I/O
L10N_6

I/O
L09P_6

I/O
L36P_5 I/O

L08N_5 GND I/O
L17P_5

I/O
L18P_5

I/O
L23N_5 GND I/O

L29N_5

I/O
L08P_6

I/O
L08N_6

I/O
L07P_6

I/O
L07N_6

VCCO_6
I/O

L09N_6
VREF_6

I/O
L05P_5

I/O
L36N_5 VCCO_5 I/O

L13P_5
I/O

L13N_5
I/O

L18N_5
VCCO_5 I/O

L30P_5
I/O

L30N_5

GND I/O
L06P_6

I/O
L06N_6

VCCAUX I/O
L05P_6 I/O I/O

L05N_5

I/O
L37P_5 I/O

L11P_5

I/O
L11N_5

VREF_5

I/O
L14P_5

I/O
L19P_5
VREF_5

I/O
L27P_5

I/O
L27N_5

VREF_5
I/O

I/O
L04P_6

I/O
L04N_6

VCCO_6 I/O
L05N_6 GND I/O

L03N_5
VCCO_5

I/O
L37N_5 I/O

L09P_5 GND I/O
L14N_5

I/O
L19N_5

I/O
L24P_5 GND

I/O
L31P_5

D5

I/O
L03P_6

I/O
L03N_6

VREF_6

I/O
L02P_6

I/O
L02N_6

I/O
L03P_5

I/O
L06P_5

I/O
L38P_5 I/O

L09N_5
I/O

L15P_5
I/O

L20P_5
I/O

L24N_5
VCCAUX

I/O
L31N_5

D4

I/O
L01P_6
VRN_6

I/O
L01N_6
VRP_6

M1
IO

VREF_5 VCCO_5 I/O
L04P_5

I/O
L06N_5

I/O
L38N_5 VCCO_5 I/O

L12P_5
I/O

L15N_5
I/O

L20N_5
VCCO_5

I/O
L28P_5

D7

I/O
L32P_5

GND GND M0
I/O

L01P_5
CS_B

I/O
L02P_5

I/O
L04N_5

I/O
L35P_5 I/O

L07P_5

I/O
L10P_5
VRN_5

I/O
L12N_5

I/O
L16P_5

I/O
L21P_5

I/O
L25P_5

I/O
L28N_5

D6

I/O
L32N_5
GCLK3

GCLK2

GND GND M2
I/O

L01N_5
RDWR_B

I/O
L02N_5 GND

I/O
L35N_5 I/O

L07N_5

I/O
L10N_5
VRP_5

GND I/O
L16N_5

I/O
L21N_5

I/O
L25N_5 GND

IO
VREF_5

10 11 12 13 14 151 2 3 4 5 6 7 8 9
Bank 0

A

B

C

D

E

F

G

H

J

K

L

M

N

P

R

T

U

V

W

Y

A
A

A
B

A
C

A
D

A
E

A
F

A
G

A
H

A
J

A
K

B
an

k
7

B
an

k
6

Bank 5 DS099-4_13a_042103

See http://www.xilinx.com/bvdocs/
publications/ds099-4.pdf for complete,
detailed pinout information.

ug000.book Page 104 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Pinout Descriptions

DS099-4 (v1.1.2) July 11, 2003 www.xilinx.com 105
Advance Product Specification [ABBREVIATED] 1-800-255-7778

R

Right Half of Package
(top view)

I/O GND
I/O

L39N_1 I/O
L26N_1

I/O
L21N_1 GND I/O

L15N_1
I/O

L11N_1
I/O

L07N_1 GND I/O
L03N_1

I/O
L01N_1
VRP_1

TMS GND GND

I/O
L32N_1 I/O

L28N_1

I/O
L39P_1 I/O

L26P_1
I/O

L21P_1

I/O
L17N_1
VREF_1

I/O
L15P_1

I/O
L11P_1

I/O
L07P_1

I/O
L04N_1

I/O
L03P_1

I/O
L01P_1
VRN_1

TCK GND GND

I/O
L32P_1
GCLK4

GCLK5

I/O
L28P_1

I/O
L25N_1

I/O
L20N_1

I/O
L17P_1

I/O
L10N_1
VREF_1

I/O
L06N_1
VREF_1

I/O
L04P_1

I/O
L02P_1 TDO

I/O
L01N_2
VRP_2

I/O
L01P_2
VRN_2

I/O
L31N_1
VREF_1

VCCAUX VCCAUX VCCAUX

VCCAUX

VCCAUX

VCCAUX

VCCAUX

VCCAUX

VCCAUX

VCCAUXVCCAUXVCCAUX

I/O
L38N_1 I/O

L25P_1
I/O

L20P_1
I/O

L14N_1
I/O

L10P_1
I/O

L06P_1
I/O

L02N_1
I/O

L02N_2
I/O

L02P_2

I/O
L03N_2

VREF_2

I/O
L03P_2

I/O
L31P_1 GND

I/O
L38P_1 I/O

L24N_1
I/O

L19N_1 GND I/O
L14P_1

I/O
L13P_1 I/O GND

I/O
L41N_2 I/O

L04N_2
I/O

L04P_2

I/O I/O
L27N_1 I/O I/O

L24P_1
I/O

L19P_1
I/O

L16N_1
I/O

L13N_1
I/O

L09N_1
I/O

L05N_1
I/O

L05P_1

I/O
L41P_2 I/O

L05N_2
I/O

L05P_2 GND

I/O
L30N_1

I/O
L27P_1

I/O
L23N_1

I/O
L18N_1

I/O
L16P_1

I/O
L09P_1

I/O
L08P_1

I/O
L08N_2

I/O
L06N_2

I/O
L06P_2

I/O
L07N_2

I/O
L07P_2

I/O
L30P_1 GND

I/O
L37N_1 I/O

L23P_1
I/O

L18P_1 GND I/O
L12N_1

I/O
L08N_1

I/O
L08P_2

I/O
L09N_2
VREF_2

I/O
L09P_2

I/O
L10N_2

I/O
L10P_2

I/O
L12N_2

I/O
L12P_2

I/O
L29N_1

IO
VREF_1

I/O
L37P_1 I/O

L22N_1 I/O I/O
L12P_1

I/O
L15N_2 I/O I/O

L13N_2

I/O
L13P_2
VREF_2

I/O
L14N_2

I/O
L14P_2

I/O
L29P_1

I/O
L40N_1

I/O
L40P_1 I/O

L22P_1 I/O
I/O

L46N_2 I/O
L15P_2 GND I/O

L16N_2
I/O

L16P_2 GND
I/O

L45N_2
I/O

L45P_2 GND

VCCINT VCCINT
I/O

L46P_2
I/O

L47N_2
I/O

L47P_2 I/O
L19N_2

I/O
L19P_2

I/O
L20N_2

I/O
L20P_2

I/O
L21N_2

I/O
L21P_2

GND VCCINT VCCINT VCCINT I/O
L26N_2

I/O
L22N_2

I/O
L22P_2

I/O
L23N_2

VREF_2

I/O
L23P_2

I/O
L28N_2

I/O
L24N_2

I/O
L24P_2

I/O
L50N_2

I/O
L50P_2

GND GND GND VCCINT I/O
L26P_2

I/O
L27N_2

I/O
L27P_2

I/O
L28P_2

I/O
L29N_2

I/O
L29P_2

I/O
L31N_2

I/O
L31P_2

GND GND GND VCCINT I/O
L32N_2

I/O
L32P_2 GND I/O

L33N_2
I/O

L33P_2 GND
I/O

L34N_2
VREF_2

I/O
L34P_2 GND

GND GND GND GND VCCINT I/O
L35N_2

I/O
L35P_2

I/O
L37N_2

I/O
L37P_2

I/O
L38N_2

I/O
L38P_2

I/O
L39N_2

I/O
L39P_2

I/O
L40N_2

I/O
L40P_2

VREF_2

GND GND GND GND VCCINT I/O
L35P_3

I/O
L35N_3

I/O
L37P_3

I/O
L37N_3

I/O
L38P_3

I/O
L38N_3

I/O
L39P_3

I/O
L39N_3

I/O
L40P_3

I/O
L40N_3

VREF_3

GND GND GND VCCINT I/O
L32P_3

I/O
L32N_3 GND I/O

L33P_3
I/O

L33N_3 GND
I/O

L34P_3
VREF_3

I/O
L34N_3 GND

GND GND GND VCCINT I/O
L27N_3

I/O
L28P_3

I/O
L28N_3

I/O
L29N_3

I/O
L50P_3

I/O
L50N_3 I/O

L31P_3
I/O

L31N_3

GND VCCINT VCCINT VCCINT I/O
L27P_3

I/O
L46P_3

I/O
L46N_3

I/O
L47P_3

I/O
L47N_3 I/O

L29P_3

I/O
L48P_3

I/O
L48N_3 I/O

L26P_3
I/O

L26N_3

VCCINT VCCO_4 VCCO_4 VCCO_4

VCCO_4

VCCO_4

VCCO_4 VCCO_4 VCCO_4

VCCO_4

VCCO_4

VCCINT I/O
L20N_3

I/O
L21P_3

I/O
L21N_3

I/O
L22P_3

I/O
L22N_3

I/O
L23P_3

VREF_3

I/O
L23N_3

I/O
L24P_3

I/O
L24N_3

I/O I/O
L26N_4 I/O I/O

L18N_4
I/O

L13P_4
I/O

L20P_3
I/O

L16N_3 GND
I/O

L17P_3
VREF_3

I/O
L17N_3 GND I/O

L19P_3
I/O

L19N_3 GND

I/O
L29N_4

I/O
L26P_4

VREF_4

I/O
L23N_4

I/O
L18P_4

I/O
L13N_4

I/O
L08N_4

I/O
L16P_3 I/O I/O

L14P_3
I/O

L14N_3
I/O

L15P_3
I/O

L15N_3

I/O
L29P_4 GND I/O

L23P_4
I/O

L19N_4
I/O

L14N_4 GND I/O
L08P_4

I/O
L04P_4

I/O
L09N_3

I/O
L10P_3

I/O
L10N_3

I/O
L11P_3

I/O
L11N_3

I/O
L13P_3

I/O
L13N_3
VREF_3

I/O
L30N_4

D2

I/O
L27N_4

DIN
D0

I/O
L19P_4

I/O
L14P_4

I/O
L11N_4 I/O I/O

L04N_4

I/O
L09P_3

VREF_3

I/O
L07P_3

I/O
L07N_3

I/O
L08P_3

I/O
L08N_3

I/O
L30P_4

D3

I/O
L27P_4

D1

I/O
L24N_4

I/O
L20N_4

I/O
L15N_4

I/O
L11P_4 I/O I/O

L05N_4

I/O
L34P_4

I/O
L34N_4 I/O

L05N_3
I/O

L06P_3
I/O

L06N_3 GND

IO
VREF_4 GND I/O

L24P_4
I/O

L20P_4
I/O

L15P_4 GND I/O
L09N_4

I/O
L05P_4

I/O
L03P_4 GND I/O

L05P_3
VCCO_3

VCCO_3VCCO_3

VCCO_3

VCCO_3

VCCO_3 VCCO_3 VCCO_3

VCCO_2VCCO_2

VCCO_2

VCCO_2

VCCO_2

VCCO_2

VCCO_1

VCCO_1

VCCO_1

VCCO_1

VCCO_1

VCCO_1

VCCO_1

VCCO_1 VCCO_1 VCCO_1

VCCO_2

VCCO_2

VCCO_2

VCCO_2

VCCO_3

VCCO_3

I/O
L04P_3

I/O
L04N_3

I/O
L31N_4
INIT_B

I/O I/O
L21N_4

I/O
L16N_4

I/O
L09P_4

I/O
L06N_4

VREF_4

I/O
L35N_4 I/O

L03N_4
I/O

L02P_3

I/O
L02N_3
VREF_3

I/O
L03P_3

I/O
L03N_3

I/O
L31P_4
DOUT
BUSY

I/O
L28N_4

I/O
L21P_4

I/O
L16P_4

I/O
L12N_4

I/O
L06P_4

I/O
L35P_4

I/O
L33N_4 I/O CCLK

I/O
L01P_3
VRN_3

I/O
L01N_3
VRP_3

I/O
L32N_4 I/O

L28P_4
I/O

L25N_4

I/O
L22N_4

VREF_4

I/O
L17N_4

I/O
L12P_4

I/O
L10N_4

I/O
L07N_4

I/O
L38N_4

I/O
L33P_4 I/O

L02N_4

I/O
L01N_4
VRP_4

DONE GND GND

I/O
L32P_4
GCLK0

GCLK1

GND I/O
L25P_4

I/O
L22P_4

I/O
L17P_4 GND I/O

L10P_4
I/O

L07P_4

I/O
L38P_4 GND I/O

L02P_4

I/O
L01P_4
VRN_4

IO
VREF_4 GND GND

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Bank 1

A

B

C

D

E

F

G

H

J

K

L

M

N

P

R

T

U

V

W

Y

A
A

A
B

A
C

A
D

A
E

A
F

A
G

A
H

A
J

A
K

Bank 4

B
an

k
2

B
an

k
3

DS099-4_13b_042103

See http://www.xilinx.com/bvdocs/
publications/ds099-4.pdf for complete,
detailed pinout information.

ug000.book Page 105 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan-3 1.2V FPGA Family: Pinout Descriptions

106 www.xilinx.com DS099-4 (v1.1.2) July 11, 2003
1-800-255-7778 Advance Product Specification [ABBREVIATED]

R

Revision History

The Spartan-3 Family Data Sheet
DS099-1, Spartan-3 1.2V FPGA Family: Introduction and Ordering Information (Module 1)

DS099-2, Spartan-3 1.2V FPGA Family: Functional Description (Module 2)

DS099-3, Spartan-3 1.2V FPGA Family: DC and Switching Characteristics (Module 3)

DS099-4, Spartan-3 1.2V FPGA Family: Pinout Tables (Module 4)

Date Version No. Description

04/03/03 1.0 Initial Xilinx release.

04/21/03 1.1 Added information on the VQ100 package footprint, including a complete pinout table
(Table 16) and footprint diagram (Figure 8).

Updated Table 15 with final I/O counts for the VQ100 package. Also added final differential I/O
pair counts for the TQ144 package.

Added clarifying comments to HSWAP_EN pin description on page 83.

Updated the footprint diagram for the FG900 package shown in Figure 14a and Figure 14b.
Some thick lines separating I/O banks were incorrect.

Made cosmetic changes to Figure 1, Figure 3, and Figure 4.

Updated Xilinx hypertext links.

Added XC3S200 and XC3S400 to Pin Name column in Table 18.

05/12/03 1.1.1 AM32 pin was missing GND label in FG1156 package diagram (Figure 15).

07/11/03 1.1.2 Corrected misspellings of GCLK in Table 1 and Table 2. Changed CMOS25 to LVCMOS25 in
Dual-Purpose Pin I/O Standard During Configuration section. Clarified references to
Module 2. For XC3S5000 in FG1156 package, corrected N.C. symbol to a black square in key
and package drawing.

ug000.book Page 106 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/bvdocs/publications/ds099-4.pdf
http://www.xilinx.com/bvdocs/publications/ds099-1.pdf
http://www.xilinx.com/bvdocs/publications/ds099-2.pdf
http://www.xilinx.com/bvdocs/publications/ds099-3.pdf

Spartan™-3 FPGA Handbook www.xilinx.com 107
July 11, 2003 1-800-255-7778

R

Designing with Spartan-3 FPGAs

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs

Using Block RAM in Spartan-3 FPGAs

Using Look-Up Tables as Distributed RAM in Spartan-3 FPGAs

Using Look-Up Tables as Shift Registers (SRL16) in Spartan-3 FPGAs

Using Dedicated Multiplexers in Spartan-3 FPGAs

Using Embedded Multipliers in Spartan-3 FPGAs

ug000.book Page 107 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

108 www.xilinx.com Spartan™-3 FPGA Handbook
1-800-255-7778 July 11, 2003

R

ug000.book Page 108 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

XAPP462 (v1.0) July 11, 2003 www.xilinx.com 109
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Summary Digital Clock Managers (DCMs) provide advanced clocking capabilities to Spartan™-3 FPGA
applications. DCMs optionally multiply or divide the incoming clock frequency to synthesize a
new clock frequency. DCMs also eliminate clock skew, thereby improving system performance.
Similarly, a DCM optionally phase shifts the clock output to delay the incoming clock by a
fraction of the clock period. The DCMs integrate directly with the FPGA’s global low-skew clock
distribution network.

Introduction DCMs integrate advanced clocking capabilities into the Spartan-3 global clock distribution
network. Consequently, Spartan-3 DCMs solve a variety of common clocking issues, especially
in high-performance, high frequency applications:

• Multiply or Divide an Incoming Clock Frequency or synthesize a completely new
frequency by a mixture of clock multiplication and division.

• Condition a Clock, ensuring a clean output clock with a 50% duty cycle.

• Phase Shift a clock signal, either by a fixed fraction of a clock period or by precise
increments.

• Eliminate Clock Skew, either within the device or to external components, to improve
overall system performance and to eliminate clock distribution delays.

• Mirror, Forward, or Rebuffer a Clock Signal, often to deskew and convert the incoming
clock signal to a different I/O standard—for example, forwarding and converting an
incoming LVTTL clock to LVDS.

• Any or all the above functions, simultaneously.

Application Note: Spartan-3 FPGA Family

XAPP462 (v1.0) July 11, 2003

Using Digital Clock Managers (DCMs) in
Spartan-3 FPGAs

R

Table 1: Digital Clock Manager Features and Capabilities

Feature Description DCM Signals

Digital Clock Managers (DCMs) per device • 4, except in XC3S50
• 2 in XC3S50

All

Digital Frequency Synthesizer (DFS) Input Frequency
Range*

1 MHz to ~326 MHz CLKIN

Delay-Locked Loop (DLL) Input Frequency Range* 24 MHz to ~326 MHz CLKIN

Clock Input Sources • Global buffer input pad
• Global buffer output
• General-purpose I/O (no deskew)
• Internal logic (no deskew)

CLKIN

Frequency Synthesizer Output Multiply CLKIN by the fraction (M/D)
where M={2..32}, D={1..32}

• CLKFX
• CLKFX180

ug000.book Page 109 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

110 www.xilinx.com XAPP462 (v1.0) July 11, 2003
1-800-255-7778

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs
R

Document
Overview

This application note covers an assortment of topics related to Digital Clock Managers, not all
of which are relevant to every specific FPGA application.

The “DCM Functional Overview” section provides a brief introduction to the DCM and its
functions. Similarly the “DCM Primitive” section describes all the connection ports and
attributes or constraints associated with a DCM. Likewise the “DCM Wizard” and the “VHDL
and Verilog Instantiation” sections demonstrate the various methods to specify a DCM design.

The “DCM Clock Requirements” and the “Input and Output Clock Frequency Restrictions”
sections explain the frequency requirements on the DCM clock input and the various DCM
clock outputs. Similarly, the “Clock Jitter or Phase Noise” section highlights the effect jitter has
on output clock quality.

Finally, the “Eliminating Clock Skew”, “Clock Conditioning”, “Phase Shifting – Delaying the
Clock by a Fraction of a Period”, “Clock Multiplication, Clock Division, and Frequency
Synthesis”, and “Clock Forwarding, Mirroring, Rebuffering” sections illustrate various
applications using the DCM block.

Clock Divider Output Divide CLKIN by 1.5, 2, 2.5, 3, 3.5, 4,
4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 9, 10, 11,
12, 13, 14, 15, or 16

CLKDV

Clock Doubler Output Multiply CLKIN frequency by 2 • CLK2X
• CLK2X180

Clock Conditioning, Duty-Cycle Correction Always provided on most outputs.
Optional on CLK0, CLK90, CLK180,
CLK270. 50% duty cycle ± 100 ps*

All

Quadrant Phase Shift Outputs 0° (no phase shift),
90° (¼ period),
180° (½ period),
270° (¾ period)

• CLK0
• CLK90
• CLK180
• CLK270

Half-period Phase Shift Outputs Output pairs with 0º and 180º phase
shift, ideal for DDR applications

• CLK0, CLK180
• CLK2X, CLK2X180
• CLKFX, CLKFX180

Dynamic or Fixed Phase Shift resolution Down to 1/256th of a clock period (or
~30 to 50 ps)*

All

Number of Clock Outputs to General-purpose
Interconnect

Up to all 9 All

Number of Clock Outputs to Global Clock Network Any 4 of 9 All

Number of Clock Outputs to Output Pins Up to all 9 All

* Estimate only. See the Spartan-3 Data Sheet, Module 3 for the correct specified value.

Table 1: Digital Clock Manager Features and Capabilities (Continued)

Feature Description DCM Signals

ug000.book Page 110 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/bvdocs/publications/ds099-3.pdf

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs

XAPP462 (v1.0) July 11, 2003 www.xilinx.com 111
1-800-255-7778

R

DCM Locations
and Clock
Distribution
Network
Interface

As shown in Figure 1, most Spartan-3 FPGAs have four DCM blocks, except for the XC3S50,
which has two DCM blocks. The DCM blocks are located at the top and bottom of the block
RAM/multiplier columns along the left and right edges. The XC3S50 has two DCMs, along the
top and bottom of the block RAM/multiplier column along the left edge of the device.

The DCM blocks have dedicated connections to the global buffer inputs and global buffer
multiplexers on the same edge of the device, either top or bottom. As shown in Figure 2, DCMs
are an integral part of the FPGA’s global clocking infrastructure. DCMs are an optional element
in the clock distribution network and are available when required by the application. In
Figure 2a, a clock input feeds directly into the low-skew, high-fanout global clock network via a
global input buffer and global clock buffer.

If the application requires some or all of the DCM’s advanced clocking features, the DCM fits
neatly between the global buffer input and the buffer itself, as shown in Figure 2b.

Figure 1: Location of the Four DCM Blocks on Spartan-3 FPGAs

Block RAM
Column

DCM_X1Y1

DCM_X1Y0DCM_X0Y0

DCM_X0Y1
Global buffer multiplexers

Embedded
Multiplier
Column

Global buffer multiplexers

XC3S50 only

x462_01_061803

ug000.book Page 111 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

112 www.xilinx.com XAPP462 (v1.0) July 11, 2003
1-800-255-7778

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs
R

DCM Functional
Overview

The single entity called a Digital Clock Manager (DCM) actually consists of four distinct
functional units as depicted in Figure 3 and described below. These units operate
independently or in tandem.

Figure 2: DCMs are an Integral Part of the FPGA's Global Clock Network

I O
IBUFG

I O
BUFG

Global Buffer Input

GCLK

Global Clock Buffer

Low-Skew
Global Clock
Network

x462_02a_062403

I O
IBUFG

I O
BUFG

Global
Buffer Input

Global
Clock Buffer

Low-Skew
Global Clock

Network

Digital Clock
Manager

CLKIN Output

CLKFB

DCM

x462_02b_062403

GCLK

a. Global Buffer Inputs and Clock Buffers Drive a Low-Skew Global Network in the
FPGA

b. A Digital Clock Manager (DCM) Inserts Directly into the Global Clock Path

Figure 3: DCM Functional Block Diagram

DS099-2_07_040103

PSINCDEC
PSEN

PSCLK

CLKIN

CLKFB

RST
STATUS [7:0]

LOCKED
8

CLKFX180

CLKFX

CLK0

PSDONE

Clock
Distribution

DelayCLK90
CLK180
CLK270
CLK2X
CLK2X180
CLKDV

Status
Logic

DFS
DLL

Phase
Shifter

D
el

ay
 T

ap
s

O
ut

pu
t S

ta
ge

In
pu

t S
ta

ge

DCM

ug000.book Page 112 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs

XAPP462 (v1.0) July 11, 2003 www.xilinx.com 113
1-800-255-7778

R

Delay-Locked Loop (DLL)

The Delay-Locked Loop (DLL) unit provides an on-chip digital deskew circuit that generates
zero-propagation-delay clock output signals. The deskew circuit compensates for the delay on
the routing network by monitoring an output clock, either the CLK0 or the CLK2X. The DLL unit
effectively eliminates the delay from the external clock input port to the individual clock loads
within the device. The well-buffered global network minimizes the clock skew on the network
caused by loading differences.

The input signals to the DLL unit are CLKIN and CLKFB. The output signals from the DLL are
CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV.

The DLL unit generates the outputs for the Clock Doubler (CLK2X, CLK2X180), the Clock
Divider (CLKDV) and the Quadrant Phase Shifted Outputs functions.

Digital Frequency Synthesizer (DFS)

The Digital Frequency Synthesizer (DFS) provides a wide and flexible range of output
frequencies based on the ratio of two user-defined integers, a Multiplier (CLKFX_MULTIPLY)
and a Divisor (CLKFX_DIVIDE). The output frequency is derived from the input clock (CLKIN)
by simultaneous frequency division and multiplication. This feature can be used with or without
the DLL feature of the DCM. If the DLL is not used, then there is no phase relationship between
CLKIN and the DFS outputs.

The DFS unit generates the Frequency Synthesizer (CLKFX, CLKFX180) outputs.

Phase Shift (PS)

The Phase Shift (PS) unit controls the phase relations of the DCM’s clock outputs to the CLKIN
input.

The Phase Shift unit shifts the phase of all nine DCM clock output signals by a fixed fraction of
the input clock period. The fixed phase shift value is set at design time and loaded into the DCM
during FPGA configuration.

The Phase Shift unit also provides a digital interface for the FPGA application to dynamically
advance or retard the current shift value by 1/256th of the clock period.

The input signals to the Phase Shift unit are PSINCDEN, PSEN, and PSCLK. The output
signals are PSDONE and the STATUS[0] signal.

Status Logic

The Status Logic indicates the current state of the DCM via the LOCKED and STATUS[0],
STATUS[1], and STATUS[2] output signals. The LOCKED output signal indicates whether the
DCM outputs are in phase with the CLKIN input. The STATUS output signals indicate the state
of the DLL and PS operations.

The RST input signal resets the DCM logic and returns it to its post-configuration state.
Likewise, a reset forces the DCM to reacquire and lock to the CLKIN input.

ug000.book Page 113 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

114 www.xilinx.com XAPP462 (v1.0) July 11, 2003
1-800-255-7778

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs
R

DCM Primitive The DCM primitive represents all the Digital Clock Manger functionality. The DCM primitive
appears in Figure 4, and the DCM’s Connection Ports and Attributes, Properties, or Constraints
are summarized below.

Symbol

Connection Ports

Table 3 lists the various connection ports to the Digital Clock Manager. Each port connection
has a brief description, which includes the signal direction, and which DCM function units
require the connection. Table 2 provides the abbreviated name for each function unit used in
Table 3.

Figure 4: DCM Primitive

Table 2: Functional Unit Abbreviations for Table 3

Abbreviation Functional Unit

DLL Delay-Locked Loop

PS Phase Shifter

DFS Digital Frequency Synthesizer

CLK0

CLK90

CLK180

CLK270

CLK2X

CLK2X180

CLKDV

CLKFX

CLKFX180

STATUS[7:0]

LOCKED

PSDONE

CLKIN

CLKFB

RST

PSEN

PSINCDEC

PSCLK

DCM

x462_04_061803

ug000.book Page 114 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs

XAPP462 (v1.0) July 11, 2003 www.xilinx.com 115
1-800-255-7778

R

Table 3: DCM Connection Ports

Port Direction Description
Functional Unit

DLL PS DFS

CLKIN Clock
Input

Clock input to DCM. Always required. The CLKIN frequency and jitter
must fall within the limits specified in the Spartan-3 Data Sheet. The
frequency limits are controlled by the DLL_FREQUENCY_MODE
and DFS_FREQUENCY_MODE attributes.

CLKFB Input Clock feedback input to DCM. The feedback input is required unless
the Digital Frequency Synthesis outputs, CLKFX or CLKFX180, are
used stand-alone. The source of the CLKFB input must be the CLK0
or CLK2X output from the DCM and the CLK_FEEDBACK must be
set to 1X or 2X accordingly. The feedback point ideally includes the
delay added by the clock distribution network, either internally or
externally. See “Feedback from a Reliable Source.”

Optional

RST Input Asynchronous reset input. Resets the DCM logic to its post-
configuration state. Causes DCM reacquire and relock to the CLKIN
input. Invertible within DCM block. Non-inverted behavior shown
below. See “RST Input Behavior.”

PSEN Input Dynamic phase shift enable. Invertible within DCM block. Non-
inverted behavior shown below. See “Dynamic Fine Phase Shifting.”

PSINCDEC Input Increment/decrement dynamic phase shift. Invertible within DCM
block. Non-inverted behavior shown below. See “Dynamic Fine
Phase Shifting.”

PSCLK Clock
Input

Clock input to dynamic phase shifter, clocked on rising edge.
Invertible within DCM block. The frequency limits are controlled by
the DLL_FREQUENCY_MODE attribute. See “Dynamic Fine Phase
Shifting.”

CLK0 Clock
Output

Same frequency as CLKIN, 0° phase shift (i.e., not phase shifted).
Conditioned to 50% duty cycle when DUTY_CYCLE_CORRECTION
attribute is TRUE. Either CLK0 or CLK2X is required as a feedback
source for DLL functions. See “Half-Period Phase Shifted Outputs,”
and “Quadrant Phase Shifted Outputs.”

0 No effect.

1 Reset DCM block. Hold RST pulse High for at least 2 ns.

0 Disable dynamic phase shifter. Ignore inputs to phase
shifter.

1 Enable dynamic phase shifter operations on next rising
PSCLK clock edge.

0 Increment phase shift value on next enabled, rising
PSCLK clock edge.

1 Decrement phase shift value on next enabled, rising
PSCLK clock edge.

ug000.book Page 115 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

116 www.xilinx.com XAPP462 (v1.0) July 11, 2003
1-800-255-7778

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs
R

CLK90 Clock
Output

Same frequency as CLKIN, 90° phase shifted (quarter period). Not
available if DLL_FREQUENCY_MODE attribute set to HIGH.
Conditioned to 50% duty cycle when DUTY_CYCLE_CORRECTION
attribute is TRUE. See “Quadrant Phase Shifted Outputs.”

CLK180 Clock
Output

Same frequency as CLKIN, 180° phase shifted (half period).
Conditioned to 50% duty cycle when DUTY_CYCLE_CORRECTION
attribute is TRUE. See “Half-Period Phase Shifted Outputs,” and
“Quadrant Phase Shifted Outputs.”

CLK270 Clock
Output

Same frequency as CLKIN, 270° phase shifted (three-quarters
period). Not available if DLL_FREQUENCY_MODE attribute set to
HIGH. Conditioned to 50% duty cycle when
DUTY_CYCLE_CORRECTION attribute is TRUE. See “Quadrant
Phase Shifted Outputs.”

CLK2X Clock
Output

Double-frequency clock output, 0° phase shift. Not available if
DLL_FREQUENCY_MODE attribute set to HIGH. When available,
the CLK2X output is always 50% duty cycle. Either CLK0 or CLK2X
is required as a feedback source for DLL functions. Clock Doubler
(CLK2X, CLK2X180) output. See “Half-Period Phase Shifted
Outputs.”

CLK2X180 Clock
Output

Double-frequency clock output, 180° phase shifted. Not available if
DLL_FREQUENCY_MODE attribute set to HIGH. When available,
the CLK2X180 output is always 50% duty cycle. Clock Doubler
(CLK2X, CLK2X180) output. See “Half-Period Phase Shifted
Outputs.”

CLKDV Clock
Output

Divided clock output, controlled by the CLKDV_DIVIDE attribute. The
CLKDV output has a 50% duty cycle unless the
DLL_FREQUENCY_MODE attribute is HIGH and the
CLKDV_DIVIDE attribute is a non-integer value. Locking time is
longer when CLKDV_DIVIDE is non-integer value. Clock Divider
(CLKDV) output.

CLKFX Clock
Output

Synthesized clock output, controlled by the CLKFX_MULTIPLY and
CLKFX_DIVIDE attributes. Always has 50% duty cycle. If the CLKFX
or CLKFX180 clock outputs are used stand-alone, then no clock
feedback is required. See “Frequency Synthesizer (CLKFX,
CLKFX180),” and “Half-Period Phase Shifted Outputs.”

CLKFX180 Clock
Output

Synthesized clock output CLKFX, phase shifted by 180° (appears to
be inverted version of CLKFX). Always has 50% duty cycle. If only
CLKFX or CLKFX180 clock outputs are used on the DCM, then no
feedback loop is required. See “Frequency Synthesizer (CLKFX,
CLKFX180),” and “Half-Period Phase Shifted Outputs.”

Table 3: DCM Connection Ports (Continued)

Port Direction Description
Functional Unit

DLL PS DFS

FCLKDV

FCLKIN

CLKDV_DIVIDE
--=

FCLKFX FCLKIN
CLKFX_MULTIPLY

CLKFX_DIVIDE
--•=

ug000.book Page 116 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs

XAPP462 (v1.0) July 11, 2003 www.xilinx.com 117
1-800-255-7778

R

STATUS[0] Output Dynamic Phase Shift Overflow. Control output for Dynamic Fine
Phase Shifting. The dynamic phase shifter has reached its minimum
or maximum limit value. The limit value is either ±255 or a lesser
value if the phase shifter reached the end of the delay line. See
“Dynamic Fine Phase Shifting.”

STATUS[1] Output CLKIN Input Stopped Indicator. Available only when CLKFB
feedback input is connected. Held in reset until LOCKED output is
asserted. Requires at least one CLKIN cycle to become active. Never
asserted if CLKIN never toggles.

STATUS[2] Output CLKFX or CLKFX180 Output Stopped Indicator. See Frequency
Synthesizer (CLKFX, CLKFX180).

STATUS[7:3] Output Reserved

LOCKED Output All DCM features have locked onto CLKIN frequency. Clock outputs
are now valid, assuming CLKIN is within specified limits (as
described in “DCM Clock Requirements”). See “Frequency
Synthesizer (CLKFX, CLKFX180).”

PSDONE Output Dynamic phase shift operation complete. See “Dynamic Fine Phase
Shifting.”

Table 3: DCM Connection Ports (Continued)

Port Direction Description
Functional Unit

DLL PS DFS

0 The Phase Shifter has not yet reached its limit value.

1 Phase Shifter has reached its limit value.

0 CLKIN input is toggling.

1 CLKIN input is not toggling.

0 CLKFX and CLKFX180 outputs are toggling.

1 CLKFX and CLKFX180 outputs are not toggling, even
though LOCKED output may still be High.

0 DCM is attempting to lock onto CLKIN frequency. DCM
clock outputs are not valid.

1 DCM is locked onto CLKIN frequency. DCM clock
outputs are valid.

1-to-0 DCM lost lock. Reset DCM.

0 No phase shift operation active or phase shift operation
in progress.

1 Requested phase shift operation is complete. Output
High for one PSCLK cycle. Okay to provide next dynamic
phase shift operation.

ug000.book Page 117 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

118 www.xilinx.com XAPP462 (v1.0) July 11, 2003
1-800-255-7778

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs
R

Attributes, Properties, or Constraints

Table 4 lists the various attributes for the Digital Clock Manager. All attributes are set at design
time and programmed during configuration. Most, except for the Dynamic Fine Phase Shift
function, cannot be changed by the FPGA application at run-time. To set an attribute, set
<ATTRIBUTE>=<SETTING> as appropriate for the design entry tool.

Table 4: DCM Attributes

Attribute Allowable Settings and Description

DLL_FREQUENCY_MODE Specifies the allowable frequency range for the CLKIN input, the PSCLK input, and
for the output clocks from the DCM’s Delay-Locked Loop (DLL) unit. The DLL clock
outputs include CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, CLKDV.

CLK_FEEDBACK Defines the frequency of the feedback clock.

DUTY_CYCLE_CORRECTION Enables or disables the 50% duty-cycle correction for the CLK0, CLK90, CLK180,
and CLK270 outputs from the DLL unit.

CLKDV_DIVIDE Defines the frequency of the CLKDV output. Allowable values for CLKDV_DIVIDE
include 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 9, 10, 11, 12, 13, 14, 15, 16.

Locking time is longer and there is more output jitter when CLKDV_DIVIDE is a non-
integer value.

CLKFX_MULTIPLY Defines the multiplication factor for the frequency of the CLKFX and CLKFX180
outputs. Used in conjunction with CLKFX_DIVIDE attribute. Allowable values for
CLKFX_MULTIPLY include integers ranging from 2 to 32. Default value is 4.

LOW Default. The DLL function unit operates in its low-frequency mode. All
DLL-related outputs are available. The frequency for all clock inputs and
outputs must fall within the low-frequency DLL limits specified in the
Spartan-3 Data Sheet.

HIGH The DLL function unit operates in its high-frequency mode. The Clock
Doubler (CLK2X, CLK2X180) outputs are not available. The Quadrant
Phase Shifted Outputs CLK90 and CLK270 are not available. The duty
cycle for the CLKDV output is not 50% if the CLKDV_DIVIDE attribute is
a non-integer. The frequency for all clock inputs and outputs must fall
within the high-frequency DLL limits specified in the Spartan-3 Data
Sheet.

1X Default. CLK0 feedback. Same frequency as CLKIN.

2X CLK2X feedback. Double the frequency of CLKIN.

None No feedback. Allowed if using only the CLKFX or CLKFX180 outputs.

TRUE Default. Enable duty-cycle correction.

FALSE Disable duty-cycle correction.

FCLKDV

FCLKIN

CLKDV_DIVIDE
--=

FCLKFX FCLKIN
CLKFX_MULTIPLY

CLKFX_DIVIDE
--•=

ug000.book Page 118 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs

XAPP462 (v1.0) July 11, 2003 www.xilinx.com 119
1-800-255-7778

R

CLKFX_DIVIDE Defines the division factor for the frequency of the CLKFX and CLKFX180 outputs.
Used in conjunction with CLKFX_MULTIPLY attribute. Allowable values for
CLKFX_DIVIDE include integers ranging from 1 to 32. Default value is 1.

PHASE_SHIFT The PHASE_SHIFT attribute is applicable only if the CLKOUT_PHASE_SHIFT
attribute is set to FIXED or VARIABLE. Defines the rising-edge skew between CLKIN
and all the DCM clock outputs at configuration and consequently phase shifts the
DCM clock outputs.

The skew or phase shift value is specified as an integer that represents a fraction of
the clock period as expressed in the following equations. The integer value must
range from –255 to 255. The default is 0. Actual allowable values depend on input
clock frequency. The actual range is less when TCLKIN > FINE_SHIFT_RANGE. The
FINE_SHIFT_RANGE specification represents the total delay of all taps in the delay
line. See “Fine Phase Shifting,” for more information.

CLKOUT_PHASE_SHIFT Sets the phase shift mode. Together with the PHASE_SHIFT constraint, implements
the Digital Phase Shifter (DPS) feature of the DCM. Affects all DCM clock outputs
from both the DLL and DFS units. See “Fine Phase Shifting,” for more information.

DESKEW_ADJUST Controls the clock delay alignment between the FPGA clock input pin and the DCM
output clocks. See “Skew Adjustment.”

Do not use this setting to phase shift DCM clock outputs. Instead, use the
CLKOUT_PHASE_SHIFT and PHASE_SHIFT constraints to achieve accurate phase
shifting.

Table 4: DCM Attributes (Continued)

Attribute Allowable Settings and Description

FCLKFX FCLKIN
CLKFX_MULTIPLY

CLKFX_DIVIDE
--•=

NONE Default. CLKIN and CLKFB are in phase (no skew) and phase
relationship cannot be changed. Equivalent to FIXED setting with a
PHASE_SHIFT value of 0.

FIXED Phase relationship is set at configuration by the PHASE_SHIFT
attribute value and cannot be changed by the application.

VARIABLE Phase relationship is set at configuration by the PHASE_SHIFT
attribute value but can be changed by the application using the
dynamic phase shift controls, PSEN, PSCLK, PSINCDEC, and
PSDONE.

SYSTEM_SYNCHRONOUS Default. All devices clocked by a common,
system-wide clock source.

SOURCE_SYNCHRONOUS Clock is provided by the data source, i.e., source-
synchronous applications.

ug000.book Page 119 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

120 www.xilinx.com XAPP462 (v1.0) July 11, 2003
1-800-255-7778

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs
R

DFS_FREQUENCY_MODE Specifies the allowable frequency range for the CLKFX and CLKFX180 output clocks
from the DCM’s Digital Frequency Synthesizer (DFS). If any DLL clock outputs are
used, then the more restrictive DLL_FREQUENCY_MODE limits the CLKIN input
frequency.

STARTUP_WAIT Controls whether the FPGA configuration signal DONE waits for the DCM to assert
its LOCKED signal before going High.

If more than one DCM is so configured, the FPGA waits until all DCMs are locked.

CLKIN_DIVIDE_BY_2 Optionally divides the CLKIN in half before entering DCM block. In some applications,
reduces the input clock frequency to within acceptable limits.

Table 4: DCM Attributes (Continued)

Attribute Allowable Settings and Description

LOW Default. The DFS function unit operates in its low-frequency mode. The
frequency for the CLKFX and CLKFX180 outputs must fall within the low-
frequency DFS limits specified in the Spartan-3 Data Sheet. The
frequency limits for the CLKIN input depend on if any DLL clock outputs
are used.

HIGH The DFS function unit operates in its high-frequency mode. The
frequency for the CLKFX and CLKFX180 outputs must fall within the high-
frequency DFS limits specified in the Spartan-3 Data Sheet. The
frequency limits for the CLKIN input depend on if any DLL clock outputs
are used.

FALSE Default. DONE asserted at end of configuration without waiting for DCM
to assert LOCKED.

TRUE DONE signal does not go High until the LOCKED signal goes HIGH on
the associated DCM. STARTUP_WAIT does not prevent LOCKED from
going High. The FPGA startup sequence must also be modified to insert
a LCK (lock) cycle before the postponed cycle (see “Bitstream Generation
Settings”). Either the DONE cycle or GWE cycle are typical choices.

FALSE Default. CLKIN input directly feeds the DCM block.

TRUE Divides CLKIN frequency in half and provides roughly a 50% duty cycle
clock before entering the DCM block. Helpful with high-frequency clocks
to meet the DCM input clock frequency or duty-cycle requirements.
Divides clock frequency in half when determining operating frequency
modes and calculating phase shift limits.

ug000.book Page 120 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs

XAPP462 (v1.0) July 11, 2003 www.xilinx.com 121
1-800-255-7778

R

Compatibility
with Other
Xilinx FPGA
Families

The Spartan-3 Digital Clock Manager (DCM) is nearly functionally identical to the DCM units
found in Virtex™-II and Virtex-II Pro FPGA families. However, the Spartan-3 DCM is the third-
generation in DCM design with some improved capabilities over previous FPGA families.
Specifically, Spartan-3 has improved immunity to noise on the VCCAUX supply compared to
Virtex-II and has more flexible phase shifting than both Virtex-II and Virtex-II Pro families. The
DCMs on both Virtex-II and Virtex-II Pro families have a higher output frequency limit.

The Spartan-3 DCM is a significant enhancement over the Spartan-II/IIE Delay-Locked Loop
(DLL) function. A Spartan-3 DCM provides all the capabilities of the Spartan-II/IIE DLL with
new capabilities such as the Frequency Synthesizer and phase shifting functions. The Spartan-
3 Frequency Synthesizer multiplies an input clock by up to a factor of 32. The Spartan-II/IIE DLL
has limited frequency multiplication capabilities—namely, an input clock can be doubled.
Similarly, the Spartan-3 DCM has a wider divider range compared to Spartan-IIE DLLs.

DCM Clock
Requirements

The DCM is built for maximum flexibility, but there are certain requirements on clock frequency
and clock stability, both frequency variation and clock jitter.

Input Clock Frequency Range

The DCM clock input frequency depends on whether the DLL functional unit, the DFS unit, or
both are utilized in the application.

Table 5 shows the clock input, CLKIN, frequency range for the Digital Frequency Synthesizer
(DFS) unit. The DFS unit, if used stand-alone, has a wider frequency range than the DLL unit.
If the application uses both units, then the more restrictive DLL requirements apply. The table
shows the data sheet specification name and an estimated value. The actual value depends on
which speed grade is required for the design and the value specified in the data sheet takes
precedence over the estimate.

FACTORY_JF Controls how often the DCM’s DLL unit adjusts its tap settings. The FACTORY_JF
setting affects the jitter characteristics of the DLL element.

The settings are automatically adjusted based on the DLL_FREQUENCY_MODE
attribute.

Do not change the default values unless otherwise recommended (see “Adjusting
FACTORY_JF Setting”).

LOC Specifies the physical location of the DCM, as shown in Figure 1.

Table 4: DCM Attributes (Continued)

Attribute Allowable Settings and Description

DLL_FREQUENCY_MODE FACTORY_JF

LOW 0xC080

HIGH 0xF0F0

DCM_X0Y0 Lower left DCM.

DCM_X1Y0 Lower right DCM. Not available in XC3S50.

DCM_X0Y1 Upper left DCM.

DCM_X1Y1 Upper right DCM. Not available in XC3S50.

ug000.book Page 121 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

122 www.xilinx.com XAPP462 (v1.0) July 11, 2003
1-800-255-7778

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs
R

Table 6 shows the clock input, CLKIN, frequency range for the Delay-Locked Loop (DLL) unit.
The DLL frequency restrictions apply regardless if the DLL is used stand-alone or with the DFS
unit. The table shows the frequency range when the DLL unit operates in either is low- or high-
frequency mode. The mode is controlled by the DLL_FREQUENCY_MODE attribute. Likewise,
the table shows the data sheet specification name and an estimated value. The actual value
depends on which speed grade is required for the design and the value specified in the data
sheet takes precedence over the estimate.

Output Clock Frequency Range

The various DCM output clocks also have a specified frequency range. See the “Input and
Output Clock Frequency Restrictions” section for more information.

Input Clock and Clock Feedback Variation

As described later in the “A Stable, Monotonic Clock Input” section, the DCM expects a stable,
monotonic clock input. However, for maximum flexibility, the DCM tolerates a certain amount of
clock jitter on the CLKIN input and a reasonable amount of frequency variation on both the
CLKIN input and the CLKFB clock feedback input.

There are two types of jitter tolerance on the CLKIN input. Cycle-to-cycle jitter indicates how
much the CLKIN input period is allowed to change from one cycle to the next. The maximum
allowable cycle-to-cycle change is shown in Table 7, including the data sheet specification
name and an estimated value.

The other applicable type of jitter is called period jitter. Period jitter indicates the maximum
range of the period variation over millions of clock cycles. Cycle-to-cycle jitter shows the

Table 5: Digital Frequency Synthesizer (DFS) Unit Clock Input Frequency Requirements

Function Minimum Frequency Maximum Frequency

Digital Frequency
Synthesizer (DFS)

CLKIN_FREQ_FX_MIN
~ 1.00 MHz*

CLKIN_FREQ_FX_MAX
~326 MHz*

* Estimate only. See the Spartan-3 Data Sheet, Module 3 for the correct specified value.

Table 6: Delay-Locked Loop (DLL) Unit Clock Input Frequency Requirements

Function

DLL Frequency Mode Attribute (DLL_FREQUENCY_MODE)

= LOW = HIGH

Minimum Frequency Maximum Frequency Minimum Frequency Maximum Frequency

Delay Locked Loop (DLL) CLKIN_FREQ_DLL_LF_MIN

~ 24 MHz*

CLKIN_FREQ_DLL_LF_MAX

~ 180 MHz*

CLKIN_FREQ_DLL_HF_MIN

~ 48 MHz*

CLKIN_FREQ_DLL_HF_MIN

~326 MHz*

* Estimate only. See the Spartan-3 Data Sheet, Module 3 for the correct specified value.

Table 7: Maximum Allowable Cycle-to-Cycle Jitter

Functional Unit
Frequency Mode

Low High

Digital Frequency Synthesizer (DFS) CLKIN_CYC_JITT_FX_LF
~ ±300 ps*

CLKIN_CYC_JITT_FX_HF
~ ±150 ps*

Delay Locked Loop (DLL) CLKIN_CYC_JITT_DLL_LF
~ ±300 ps*

CLKIN_CYC_JITT_DLL_HF
~ ±150 ps*

* Estimate only. See the Spartan-3 Data Sheet, Module 3 for the correct specified value.

ug000.book Page 122 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/bvdocs/publications/ds099-3.pdf
http://www.xilinx.com/bvdocs/publications/ds099-3.pdf
http://www.xilinx.com/bvdocs/publications/ds099-3.pdf

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs

XAPP462 (v1.0) July 11, 2003 www.xilinx.com 123
1-800-255-7778

R

change from one clock to the next while period jitter shows the total range of changes over time.
The maximum allowable period jitter appears in Table 8, including the data sheet specification
name, and an estimated value.

Another source of stability for the DCM is the clock feedback path used by the DLL unit. The
feedback path delay variance must also be within the limit shown in Table 9. This limit only
applies to an external feedback path as any on-chip variance is minimal when connected to a
global clock line.

LOCKED
Output
Behavior

The DCM’s LOCKED output indicates when all the enabled DCM functions have locked to the
CLKIN input. When the DCM asserts LOCKED, the output clocks are valid for use within the
FPGA application.

Figure 5 shows the behavior of the LOCKED output. The LOCKED output is Low immediately
after the FPGA finishes its configuration process and is Low whenever the RST input is
asserted.

After configuration, the DCM always attempts to lock, whether the CLKIN signal is valid yet or
not. If the input clock is not yet stable, the FPGA circuit should assert the RST input until the
CLKIN input stabilizes. The DLL unit uses both the CLKIN input and the CLKFB feedback input
to determine when locking is complete, that is, when the rising edges of CLKIN and CLKFB are
in phase. The DFS unit monitors CLKIN to determine if a valid frequency is present on CLKIN.
To achieve lock, the DCM may need to sample several thousand clock cycles.

The DCM asserts it LOCKED output High upon locking onto CLKIN. The DCM clock outputs
are then valid and available for use within the FPGA application. The DCM timing section of the
Spartan-3 Data Sheet provides worst-case locking times. In general, the DLL unit outputs lock
faster with increasing clock frequency. The DFS unit outputs require significantly longer to lock,
depending on the multiply and divide factors. Smaller multiply and divide factors result in faster
lock times.

To guarantee that the system clock is established before the FPGA completes its configuration
process, the DCM can optionally delay the completion of the configuration process until after
the DCM locks. The STARTUP_WAIT attribute activates this feature.

Until LOCKED is High, there is no guarantee how the DCM clock outputs behave. The DCM
output clocks are not valid until LOCKED is High and before that time can exhibit glitches,
spikes, or other spurious behavior.

Table 8: Maximum Allowable Period Jitter

Functional Unit
Frequency Mode

Low High

Digital Frequency Synthesizer (DFS) CLKIN_PER_JITT_FX_LF
~ ±1,000 ps* (±1 ns)

CLKIN_PER_JITT_FX_HF
~ ±1,000 ps* (±1 ns)

Delay Locked Loop (DLL) CLKIN_PER_JITT_DLL_LF
~ ±1,000 ps* (±1 ns)

CLKIN_PER_JITT_DLL_HF
~ ±1,000 ps* (±1 ns)

* Estimate only. See the Spartan-3 Data Sheet, Module 3 for the correct specified value.

Table 9: External Feedback Path Delay Variation

Description Specification

Maximum allowable variation in off-chip CLKFB feedback path CLKFB_DELAY_VAR_EXT
~ ±1,000 ps* (±1 ns)

* Estimate only. See the Spartan-3 Data Sheet, Module 3 for the correct specified value.

ug000.book Page 123 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/bvdocs/publications/ds099-3.pdf
http://www.xilinx.com/bvdocs/publications/ds099-3.pdf

124 www.xilinx.com XAPP462 (v1.0) July 11, 2003
1-800-255-7778

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs
R

While the CLKIN input stays within the specified limits, the DCM continues to adjust its internal
delay taps to maintain lock. However, if the CLKIN input strays well beyond the specified limits,
then the DCM loses lock and deasserts the LOCKED output.

Once the DCM loses lock, it does not automatically attempt to reacquire lock. When the DCM
loses lock—i.e., LOCKED was High, then goes Low—the FPGA application must take the
appropriate action. For example, once lock is lost, resetting the DCM via the RST input forces
the DCM to reacquire lock.

RST Input
Behavior

The asynchronous RST input forces the DCM to its post-configuration state. Use the RST pin
when reconfiguring the FPGA or when changing the input clock frequency beyond the
allowable range. The active-High RST pin either must connect to a dynamic signal or must be
tied to ground. The RST input must be asserted for 2 ns or longer.

If the input clock frequency is not yet stable after configuration, assert RST until the clock
stabilizes. When using external feedback, hold the DCM in reset immediately after
configuration. Figure 20, page 138 shows an example reset technique using an SRL16 shift
register primitive.

If the DCM loses lock—i.e., the LOCKED output was High then goes Low—then the FPGA
application must assert RST to force the DCM to reacquire the input clock frequency.

If the DCM LOCKED output is High, then the LOCKED signal deactivates within four source
clock cycles after RST is asserted. Asserting RST forces the DCM to reacquire lock.

Figure 5: Functional Behavior of LOCKED Output

LOCKED output
is HIGH

FPGA application
asserts RST input

Y

N

Y

N

FPGA
Configuration
Startup Phase

LOCKED output
is LOW

Is
CLKIN stable?

Within specified
limits?

Phase
aligned?

Output clocks
good?

Lost lock.
LOCKED output

is LOW

RST Input
asserted

x462_05_062103

If CLKIN not yet stable,
assert RST input until
CLKIN stabilizes

If lock is lost, assert RST
input to force DCM to
reacquire lock

ug000.book Page 124 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs

XAPP462 (v1.0) July 11, 2003 www.xilinx.com 125
1-800-255-7778

R

Asserting RST also resets the DCM’s delay tap position to zero. Due to the tap position
changes, glitches may occur on the DCM clock output pins. Similarly, RST affects the duty
cycle on the clock outputs.

Asserting RST also resets the present variable phase shift value back to the value specified by
the PHASE_SHIFT attribute.

DCM Wizard To simplify applications using DCMs, the Xilinx ISE development software includes a software
wizard that provides step-by-step instructions for configuring a DCM. As shown in Figure 6,
DCM Wizard generates a vendor-specific logic synthesis file instantiating the DCM in either
VHDL or Verilog syntax. Similarly, DCM Wizard generates a user constraints (UCF) file for the
specific implementation. Finally, all the user specifications are saved in a Xilinx Architecture
Wizard (XAW) settings file.

Invoking DCM Wizard

There are multiple methods to invoke DCM Wizard, either from the Windows Start button or
from within the Xilinx ISE Project Navigator software.

From Windows Start Button

To invoke DCM Wizard from the Windows Start button, click Start Programs Xilinx ISE
5 Accessories Architecture Wizard. The setup window shown in Figure 7 appears.

• Specify the name of the Xilinx Architecture Wizard (.xaw) file that holds the option settings
for this DCM.

• Optionally, click Browse and select a directory location for the *.xaw file.

• Select the logic synthesis language for the output file, either VHDL or Verilog.

• Choose the targeted logic synthesis tool. DCM Wizards creates vendor-specific output for
the specified synthesis tool.

• Select the targeted Spartan-3 device.

Figure 6: DCM Wizard Provides a Graphical Interface for Configuring Digital Clock
Managers

DCM Wizard

User contraints
file (UCF)

Vendor-specific
VHDL or Verilog

Xilinx Architecture
Wizard (XAW)

settings file

Graphically configure a
Spartan-3 Digital Clock
Manager (DCM)

x462_06_061803

ug000.book Page 125 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

126 www.xilinx.com XAPP462 (v1.0) July 11, 2003
1-800-255-7778

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs
R

From within Project Navigator

Optionally, invoke DCM Wizard from within Project Navigator, either from the menu bar or from
within the “Sources in Project” window. From the menu bar, select Project New Source.
Alternately, right-click in the “Sources in Project” window and choose New Source.

Select Architecture Wizard from the available list, as shown in Figure 8. Enter the file name for
the Xilinx Architecture Wizard (*.xaw) file, and select the directory where the file will be saved.
Click Next > to continue.

Figure 7: Set Up the Architecture Wizard

Figure 8: Configuring a New Architecture Wizard in the Project Navigator

Xilinx Architecture Wizard Setup

My_Spartan-3 Browse ...

XAW File:

Output File Type

VHDL Verilog

XST

Synthesis Tool:

XC3S1000-FT256-4 Select ...

OK Cancel

Part:

Enter the filename to
save the settings for
this DCM module

Click here to select
the directory for the
filename

Choose the
language for the
generated output

Choose the targeted
logic synthesis
package

Click here to select the
Spartan-3 part number
for your application

Click OK
to continue x462_07_061803

New

User Document
VHDL Module
CoreGen IP
Schematic
VHDL Library
VHDL Package
VHDL Test Bench
Test Bench Waveform
BMM File
MEM File
Implementation Constraints File
Architecture Wizard
State Diagram

My_Spartan-3

F ile Name:

MyDirectory

Lo cation:

...

Add to Project

< Back Next > Cancel Help

Enter the filename to
save the settings for
this DCM module

Click here to select
the directory for the
filename

Click Next
to continue

Choose
Architecture Wizard

x462_08_061803

ug000.book Page 126 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs

XAPP462 (v1.0) July 11, 2003 www.xilinx.com 127
1-800-255-7778

R

Wizard Selection

The previous procedures are common to any of the ISE Architecture Wizards. Spartan-3
FPGAs supports the DCM Wizard, as shown in Figure 9. Click OK to continue.

General Setup

Specify most of the DCM’s options using the DCM Wizard General Setup panel, as shown in
Figure 10. The text in ovals shows the DCM primitive attribute name for the corresponding
setting.

• Enter the name for this specific DCM instance. This name is used within the Verilog or
VHDL output file.

• To select the outputs and functions used in the final application, check the option boxes
next to the desired DCM clock outputs. Checking the output boxes enables related option
settings below.

• Enter the frequency of the CLKIN clock input. Either specify the frequency in MHz, or
specify the clock period in nanoseconds. The specified value also sets DCM’s
DLL_FREQUENCY_MODE attribute.

• Specify whether the CLKIN source is internal or external to the FPGA. If External, then
DCM Wizard automatically inserts a global buffer input (IBUFG) primitive. If Internal, then
the source signal is provided as a top-level input within the generated HDL source file.

• If the CLKDV output box is checked, then specify the Divide by Value for the Clock Divider
circuit. This setting defines the DCM’s CLKDV_DIVIDE attribute.

• Specify the feedback path to the DCM. If only the CLKFX or CLKFX180 outputs are used,
then select None. Otherwise, feedback is required. If the feedback is from within the
FPGA, choose Internal. If the feedback loop is from outside the FPGA, choose External.
Furthermore, specify the source of the DCM feedback, either from CLK0 (1X) or from
CLK2X (2X). This setting defines the DCM’s CLK_FEEDBACK attribute.

Figure 9: DCM Wizard is the only Wizard Available for Spartan-3 FPGAs

Xilinx Architecture Wizard Selection

DCM Wizard

OK Cancel

Select Wizard:

DCM Wizard is the only wizard
available for Spartan-3. Click
OK to continue.

x462_09_061703

ug000.book Page 127 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

128 www.xilinx.com XAPP462 (v1.0) July 11, 2003
1-800-255-7778

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs
R

• Specify whether to phase shift all DCM outputs. By default, there is no phase shifting
(None). If phase shifting is required by the application, choose whether the phase shift
value is Fixed or Variable. Selecting Variable also enables the dynamic phase shift
controls, PSEN, PSINCDEC, PSCLK, and PSDONE. This setting defines the DCM’s
CLKOUT_PHASE_SHIFT attribute. For both Fixed and Variable modes, specify the
related Phase Shift Value, which provides either the fixed phase shift value or the initial
value for the dynamic phase shift. This setting defines the DCM’s PHASE_SHIFT attribute.

• To open the Advanced Options window, click Advanced.

• When finished, click Next > to continue to the Clock Buffers panel.

Advanced Options

Various advanced DCM options are grouped together in the Advanced Options window, shown
in Figure 11:

• By default, the DCM has no effect on the FPGA’s configuration process. Click Yes to have
the FPGA wait for the DCM to assert its LOCKED output before asserting the DONE
signal at the end of configuration. This setting defines the DCM’s STARTUP_WAIT

Figure 10: A Majority of DCM Options are Set in the General Setup Panel

Xilinx DCM Wizard - General Setup

MY_DCMDCM Instance Name:

Input Clock Frequency

MHz ns 2

Phase Shift Value:

30

Advanced ...

Source:

CLK0

CLK90

CLK180

CLK270

CLKDV

CLK2X

CLK2X180

CLKFX

CLKFX180

LOCKED

STATUS

PSDONE

CLKIN

CLKFB

RST

PSEN

PSINCDEC
PSCLK

CLKIN Source
Internal

External

Divide By Value

Feedback
Internal External None

Value: 1X 2X

Duty Cycle Correction

Yes No

Phase Shift
None Fixed Variable

23 More Info

< B ack Next > Cancel

Enter the name
of the DCM
function here

Check CLKFX or
CLKFX180 to enable
the Frequency
Synthesizer options

Check CLKDV to
enable the Clock
Divider options

Enter input clock
frequency, with full
accuracy, in MHz
or ns

Click here for help
on this screen

Click here for
advanced options

If clock feedback is
required, indicate
whether the feedback
is from an internal
source (BUFG)
or external source
via an input pin

When Yes, the CLK0,
CLK90, CLK180, and
CLK270 outputs have
50% duty cycle

If clock feedback is
required, is it from
the CLK0 output
(1X) or the CLK2X
output (2X)?

Click Next to
continue

Sets the Fixed phase shift
value or the initial value for
Variable phase shift mode

Sets the frequency
divider for the Clock
Divider output, CLKDV

Select Fixed to
phase shift all
outputs by the
value defined
below. Select
Variable mode to
dynamically adjust
phase shifting
using the PSEN,
PSINCDEC, and
PSCLK inputs.

DLL_FREQUENCY_MODE

CLK_FEEDBACK

CLKDV_DIVIDE

Selecting External
automatically connects
CLKIN to an IBUFG global
buffer input primitive. Select
Internal to connect CLKIN to
another source.

DUTY_CYCLE_
CORRECTIONCLKOUT_PHASE_SHIFT

DCM attribute name

PHASE_SHIFT

x462_10_061803

ug000.book Page 128 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs

XAPP462 (v1.0) July 11, 2003 www.xilinx.com 129
1-800-255-7778

R

attribute. If set to Yes, additional bitstream generation option changes are required, as
described in the “Setting Configuration Logic to Wait for DCM LOCKED Output” section.

• If the CLKIN input frequency is too high for a particular DCM feature, click Yes under
Divide Input Click by 2 to reduce the input frequency by half with roughly a 50% duty
cycle before entering the DCM block. This setting defines the DCM’s
CLKIN_DIVIDE_BY_2 attribute.

• If required for source-synchronous data transfer applications, modify the DCM Deskew
Adjust value to SOURCE_SYNCHRONOUS. Do not use any values other than
SOURCE_SYNCHRONOUS or SYSTEM_SYNCHRONOUS without first consulting Xilinx.
This setting defines the DCM’s DESKEW_ADJUST attribute. See “Skew Adjustment.”

• Click OK when finished to apply any changes and return to the General Setup window.

Clock Buffers

Define the clock buffer output type for each DCM clock output, shown in Figure 12. By default,
DCM Wizard automatically assigns all outputs to a global buffer (BUFG). However, there are
only four global buffers along each the top or bottom edge of the device, shared by two DCMs.
In the XC3S50, there is a single DCM along the top or bottom edge that optionally connects to
all four global buffers along the edge.

• To assign clock buffer types for each DCM clock output, click Customize under Clock
Buffer Settings.

• For each DCM clock output, select a Clock Buffer output type using the drop-down list.
Table 10 lists the available Clock Buffer options.

• If using an Enabled Buffer output type, either specify a signal name for the buffer enable
(CE) input or use the automatically generated name.

• If using a Clock Mux output type, either specify a signal name for the select (S) input or
use the automatically generated name.

• When finished, click Next > or Finish to continue. The Next > option only appears if the
CLKFX or CLKFX180 outputs were selected in the General Setup panel. Otherwise, click
Finish to generate the HDL output (see “Generating HDL Output”).

Figure 11: DCM Advanced Options Panel

Xilinx DCM Wizard Advanced

Wait for DCM lock before DONE signal goes high?

Yes No

Divide Input Clock by 2?

Yes No

SYSTEM_SYNCHRONOUS

OK Cancel

DCM Deskew Adjust:

Optionally divides
CLKIN frequency
by 2

Controls
whether the
FPGA
configuration
process waits
for the DCM to
lock before
asserting the
DONE signal Controls how much

skew is purposely
added to the DCM
clock path

Click OK to apply
changes and close
this window DCM attribute name

STARTUP_WAIT

CLKIN_DIVIDE_BY_2

DESKEW_ADJUST

x462_11_061703

ug000.book Page 129 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

130 www.xilinx.com XAPP462 (v1.0) July 11, 2003
1-800-255-7778

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs
R

Figure 12: DCM Wizard Provides a Variety of Buffer Options for each DCM Output

Xilinx DCM Wizard - Clock Buffers

This dialog sets up the clock buffers for all the DCM clock outputs selected in the General
Setup dialog.

Clock Buffer Settings

U se Global Buffer (BUFG) for all selected DCM clock outputs

C ustomize (using grid below)

Reference the ‘More Info’ button for more information on customizing the global buffers.

M ore Info

< Back N ext > Cancel

Clock Buffer Input I0 Input I1 Input CE/S

Global Buffer CLK0

Enabled Buffer CLK90 CLK90_ENABLE_IN

Clock Mux CLK2X180 CLKFX CLKFX_SELECT_IN

Lowskewline CLK180

Local Routing CLK270

CLK2XGlobal Buffer
Global Buffer

Enabled Buffer
Clock Mux
Lowskewline
Local Routing
None

Output O

CLK0_OUT

CLK90_OUT

CLKFX_OUT

CLK180_OUT

CLK270_OUT

CLK2X_OUT

By default,
DCM Wizard
places global
buffers (BUFG)
on all the
selected DCM
clock outputs

Optionally,
customize how
the DCM clock
outputs connect
to the rest of
the FPGA
using the grid
below

For each clock
output, select
the type of
buffer
connecting the
signal to the
FPGA

Click here for help
on this screen

Click Next to
continue

For each output, either
specify a signal name or
use the generated name

Some buffer types require
additional inputs. Either specify
a signal name or use the
generated name

x462_12_061703

Table 10: Settings for Clock Buffer Output Types

Clock Buffer
Selection

Diagram Description

Global Buffer Connect to one of four global buffers (BUFG) along the same edge as the DCM.

Enabled Buffer Connect to one of the four global buffers configured as an enable clock buffer
(BUFGCE). The CE input enables the buffer when High. When CE is Low, the buffer
output is zero.

BUFG
I0 O

BUFGCE
I0 O

CE

CE O

0 0

1 I0

ug000.book Page 130 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs

XAPP462 (v1.0) July 11, 2003 www.xilinx.com 131
1-800-255-7778

R

Clock Frequency Synthesizer

The Clock Frequency Synthesizer panel, shown in Figure 13, only appears if the CLKFX or
CLKFX180 outputs were selected in the General Setup panel.

Here, specify either the desired output frequency or enter the specific values for the multiply
and divide factors. The frequency limits—or delay limits if CLKIN was specified in ns—appear
under Valid Ranges for Selected Speed Grade. The range is displayed for both possible
values of the DFS_FREQUENCY_MODE attribute. The range is tighter if the DCM uses any of
the DLL-related clock outputs.

• Click Use output frequency and enter the requested value, in as much precision as
possible, either in megahertz (MHz) or in nanoseconds (ns). Click Calculate to compute
the values for the CLKFX_MULTIPLY and CLKFX_DIVIDE attributes. If no solution is
available using the possible multiply and divide values, DCM Wizard issues an error
message asking for another output frequency value. If a solution exists, then the multiply
and divide values, plus the resulting jitter values (see “Clock Jitter or Phase Noise”)
appear under Generated Output.

• Optionally, click Use Multiply (M) and Divide (D) values and enter the desire values.
Click Calculate to calculate the resulting output frequency and jitter, displayed under
Generated Output.

• Finally, click Finish to generate the HDL output (see “Generating HDL Output”).

Clock Mux Connect to one of the four global buffers configured as a clock multiplexer
(BUFGMUX). The S input selects the clock source.

Lowskewline Connect to low-skew programmable interconnect.

Local Routing Connect to local interconnect, skew not critical.

None Disable DCM output.

Table 10: Settings for Clock Buffer Output Types

Clock Buffer
Selection

Diagram Description

O

S

BUFGMUX
I0

I1
S O

0 I0

1 I1

I0

I0

ug000.book Page 131 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

132 www.xilinx.com XAPP462 (v1.0) July 11, 2003
1-800-255-7778

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs
R

Generating HDL Output

After entering all the parameters and clicking Finish, DCM Wizard automatically generates the
requested VHDL or Verilog HDL output file, as shown in Figure 14. DCM Wizard also generates
a User Constraints File (UCF) based on the settings.

VHDL and
Verilog
Instantiation

DCM Wizard is the easiest method to create a VHDL or Verilog HDL description of a DCM.
However, Verilog and VHDL source examples are also available.

Language Templates within Project Navigator

There are DCM language templates available within the ISE 5.2i and later Project Navigator. To
select a DCM template, select Edit Language Templates from the Project Navigator menu.
From the Templates tree shown in Figure 15, expand either the Verilog or VHDL folder, then

Figure 13: Set the Multiply and Divide Values for the Digital Frequency Synthesizer and Calculate the Resulting
Jitter

Xilinx DCM Wizard - Clock Frequency Synthesizer

Valid Ranges for Selected Speed Grade:

Inputs for Jitter Calculations

U se output frequency

M Hz ns87.5

U se Multiply (M) and Divide (D) values:

4M 1D

Input Clock Frequency: 30 ns C alculate

< Back Finish Cancel

More Info

Generated Output:

M
Output

Frequency
(MHz)

29 1.11

Period Jitter
(pk-to-pk ns)

D

11 87.5

Period Jitter
(unit interval)

0.10

DFS
Mode

Fin (MHz)

Low

High

24.000 - 180.000

50.000 - 270.000

24.000 - 210.000

210.000 - 270.000

Fout (MHz)

Displays the frequency
limits for the Frequency
Synthesizer in both low-
and high-frequency mode

Enter the desired output
frequency, in MHz or ns,
then click Calculate
DCM Wizard calculates
the best multiply (M) and
divide (D) values
possible.

Optionally, enter the
specific values for the
multiply (M) and divide
(D) values, then click
Calculate

After entering the desired
output frequency or
multiply and divide
values, click Calculate to
compute the resulting
jitter for the Frequency
Synthesizer output

Displays the incoming
clock frequency,
specified earlier Displays the calculated

output jitter values based
on the settings

Click here for help
on this screen

Click Finish
when finished

DCM attribute name

CLKFX_MULTIPLY CLKFX_DIVIDE

CLKFX_MULTIPLY CLKFX_DIVIDE

DFS_FREQUENCY_MODE

x462_13_061803

Figure 14: DCM Wizard Generates Either a VHDL or Verilog HDL Output File

Xilinx Architecture Wizard

Cancel

Generating HDL file...

x462_14_061803

ug000.book Page 132 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs

XAPP462 (v1.0) July 11, 2003 www.xilinx.com 133
1-800-255-7778

R

the Component Instantiation folder, then the DCM folder. Under the DCM folder, select the
desired DCM source file. The selected source file appears in the adjacent window.

Use the file either as a reference or cut the content of the window into a new source file.

VHDL and Verilog Reference Files

The same VHDL and Verilog source files are also available for download from the Xilinx FTP
site from the following locations.

• VHDL DCM Reference Files
ftp://ftp.xilinx.com/pub/applications/xapp/xapp462_vhdl.zip

• Verilog DCM Reference Files
ftp://ftp.xilinx.com/pub/applications/xapp/xapp462_verilog.zip

Eliminating
Clock Skew

One of the fundamental functions of a DCM is to eliminate clock skew. Eliminating clock skew
is important for most designs that operate at 50 MHz or more. Furthermore, the concepts
involved in clock skew elimination also apply to many of the other applications of a DCM.

What is Clock Skew?

Clock skew inherently exists in every synchronous system. The pristine clock edge generated
by the clock source arrives at different times at different points in the system—either within a
single device or on the clock inputs to the different devices connected to the clock. This
difference in arrival times is defined as clock skew.

Figure 16 illustrates clock skew in an example system. A clock source drives the clock input to
an FPGA. The clock enters through an input pin on the FPGA, is distributed within the FPGA
using the internal low-skew global clock network, and arrives at a flip-flop within the FPGA.
Each element in the clock path delays the arrival of the clock edge at the flip-flop. Consequently,
the clock input at the flip-flop—Point (B)—is delayed, or skewed compared to the original clock
source at Point (A). In this example, this clock skew or difference in arrival time for this path is
called ∆b.

Figure 15: DCM Designs in Project Navigator Language Templates

Language Templates

Verilog

Component Instantiation

Block RAM

CLK0

CLK0_FB

CLK2X

Templates: // Module: BUFG_CLK0_SUBM
//
// Description: Verilog Submodule
// DCM with CLK0 deskew
//
/////////////////////////////-

module BUFG_CKL0_SUBM (
 CLK_IN,
 RST,
 CLK1X,
 LOCK

DCM

x462_15_061803

ug000.book Page 133 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
ftp://ftp.xilinx.com/pub/applications/xapp/xapp462_vhdl.zip
ftp://ftp.xilinx.com/pub/applications/xapp/xapp462_verilog.zip

134 www.xilinx.com XAPP462 (v1.0) July 11, 2003
1-800-255-7778

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs
R

Similarly, the clock source is rebuffered in the FPGA and drives another device on the board. In
this case, again the clock source enters the FPGA via an input pin, is distributed via the global
clock network, feeds an output pin on the FPGA, and finally connects to the other device via a
trace on the printed circuit board (PCB). Because there is more total delay in this clock path, the
resulting skew, ∆c, is also larger.

Clock Skew: The Performance Thief

Clock skew potentially reduces the overall performance of the design by increasing setup times
and lengthening clock-to-output delays—both of which increase the clock cycle time. Similarly,
clock skew might require lengthy hold times on some devices. Otherwise, unreliable operation
might result.

Make it Go Away!

Is there a way to eliminate clock skew? Fortunately, a Digital Clock Manager (DCM) provides
such capabilities. Figure 17 shows the same example design as Figure 16, except this time
implemented in a Spartan-3 FPGA. Two DCMs eliminate the clock skew: One DCM eliminates
the skew for clocked items within the FPGA, the other DCM eliminates the skew when clocking
the other device on the board. The result is practically ideal alignment between the clock at
Points (A), (B), and (C)!

How is clock skew elimination accomplished? Remember, clock skew is caused by the delay in
the clock path. In Figure 17, the clock at Point (B) was skewed by ∆b and the clock at Point (C)
was skewed by ∆c. What if there was a way to provide Point (B) with an early version of the
clock, advanced by ∆b and a way to provide Point (C) with an early version of the clock,
advanced by ∆c? The result would be that all clocks would arrive at their destinations with
perfect clock edge alignment. Such perfect alignment reduces setup times, shortens clock-to-
output delays, and increases overall system performance.

Figure 16: Clock Skew Inherently Exists in Every Synchronous System

Other
Device on

Board

FPGA

 c
 b

A

A

C

B

B

C

x462_16_062403

ug000.book Page 134 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs

XAPP462 (v1.0) July 11, 2003 www.xilinx.com 135
1-800-255-7778

R

Predicting the Future by Closely Examining the Past

Even though Spartan-3 FPGAs employ highly advanced digital logic, unfortunately they cannot
predict the future. However, a DCM applies its knowledge of the past behavior of the clock to
predict the future. Most input clocks to a system have a never-changing, monotonic frequency.
Consequently, the input clock has a nearly constant period, T.

Because it is impossible to insert a negative delay to counteract the clock skew, the DCM
delays the clocks enough so that they appear to be advanced in time. How is this
accomplished? The clock cycle is repetitive and has a fixed period, T. As shown in Figure 18,
the clock at Point (B) appears to be advanced in time by the delay ∆b. In reality however, the
clock is delayed by (T – ∆b). Similarly, the clock at Point (B) is delayed by (T – ∆c).

Figure 17: Eliminating Clock Skew in a Spartan-3 FPGA Design

Figure 18: Delaying a Fixed Frequency Clock Appears to Predict the Future

Other
Device on

Board

Spartan-3 FPGA

D
C

M

Ideal Clock Alignment

 b

c
Early Clocks Eliminate Skew

A

B

C

A

B

C

D
C

M

A

B

C

x462_17_062403

 c

b

Clock Period (T)

Delay=T- b

Delay=T- c

A

B

C

x462_18_061803

ug000.book Page 135 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

136 www.xilinx.com XAPP462 (v1.0) July 11, 2003
1-800-255-7778

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs
R

The clock period, T, is easy to derive knowing the frequency of the incoming monotonic clock
signal. But what are the clock skew delays ∆b and ∆c? With careful analysis, they can be
determined after examining the behavior of multiple systems under different conditions. In
reality, this is impractical. Furthermore, the values of ∆b and ∆c are different between devices
and vary with temperature and voltage on the same device.

Instead of attempting to determine the ∆b and ∆c delays in advance, the Spartan-3 DCM
employs a Delay-Locked Loop (DLL) that constantly monitors the delay via a feedback loop, as
shown in Figure 17. In this particular example, two DCMs are required—one to compensate for
the clock skew to internal signals and another to compensate for the skew to external devices,
each with their own clock feedback loop. The DLL constantly adapts to subtle changes caused
by temperature and voltage.

Locked on Target

In order to determine and insert the correct delay, the DCM samples up to several thousand
clock cycles. Once the DCM inserts the correct delay, the DCM asserts its LOCKED output
signal.

Do not use the DCM clock outputs until the DCM asserts its LOCKED signal. Until the DCM
locks onto the input clock signal, the output clocks are invalid. While the DCM attempts to lock
onto the clock signal, the output clocks can exhibit glitches, spikes, or other spurious
movements.

In an application, the LOCKED signal qualifies the output clock. Think of LOCKED as a “clock
signal good” indicator.

A Stable, Monotonic Clock Input

To operate properly, the DCM requires a stable, monotonic clock input. Consequently, the DCM
can predict future clock periods and adjust the output clock timing appropriately. Once locked,
the DCM tolerates clock period variations up to the value specified in the Spartan-3 Data Sheet.
See “DCM Clock Requirements” section.

Should the input clock vary well outside the specified limits, the DCM loses lock and the
LOCKED output switches Low. If the DCM loses lock, reset the DCM to reacquire lock. If the
input clock stays within the specified limits, then the output clocks always are valid when the
LOCKED output is High. However, it is possible for the clock to stray well outside the limits, for
the LOCKED output to stay High, and for either the CLKDV or CLKFX outputs to be invalid. In
short, a stable, monotonic clock input guarantees problem-free designs.

The recommended input path to a DCM’s CLKIN input is via one of the four global buffer inputs
(IBUFG) along the same half of the device. Using the IBUFG path, the delay from the pad,
through the global buffer, to the DCM is eliminated from the deskewed output. Other paths are
possible, however, as shown in Table 11. The signal driving the CLKIN input can also originate
a general-purpose input pin (IBUF primitive) via general-purpose interconnect, from in global
buffer input (IBUFG), or from a global buffer multiplexer (BUFGMUX, BUFGCE). Similarly, an
LVDS clock input may provide the clock signal. The deskew logic is characterized for a single-
ended clock input such as LVCMOS or LVTTL. Differential signals may incur a slight amount of
phase error due to I/O timing. See the Spartan-3 Data Sheet, Module 3 for specific I/O timing
differences.

ug000.book Page 136 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/bvdocs/publications/ds099-3.pdf

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs

XAPP462 (v1.0) July 11, 2003 www.xilinx.com 137
1-800-255-7778

R

Feedback from a Reliable Source

In order to lock in on the proper delay, the DCM monitors both the incoming clock and a
feedback clock, tapped after the clock distribution delay. There are no restrictions on the total
delay in the clock feedback path. If required, the DLL effectively delays the output clock by
multiple clock periods. Consequently, a DCM can compensate for either internal or external
delays, but the clock feedback must connect to the correct feedback point.

Removing Skew from an Internal Clock

To eliminate skew within the FPGA, the feedback tap is the same clock as that seen by the
clocked elements within the FPGA, shown in Figure 19. The feedback clock is typically the
CLK0 output (no phase shift) from the DCM, connected to the output of a global clock buffer
(BUFG) or a global clock multiplexer (BUFGMUX or BUFGCE primitive) on the same edge of
the device. Alternatively, the DCM’s CLK2X output (no phase shift, frequency doubled) may be
used instead of the CLK0 output.

Table 11: CLKIN Input Sources

CLKIN Source Description

Via global buffer input A global buffer input, IBUFG, is the preferred source for an external clock to the DCM. The
delay from the pad, through the global buffer, to the CLKIN input is characterized, and this
delay is removed from the deskewed clock output.

Global Clock Buffer A global clock buffer, using either a BUFG, BUFGCE, or BUFGMUX primitive, is a preferred
source for an internally generated clock to the DCM. The delay through the global buffer is
characterized, and this delay is removed from the deskewed clock output.

Via general-purpose I/O Any user-I/O pin, IBUF, becomes an alternate source for an external clock. The pad-to-
DCM delay cannot be predetermined due to the numerous potential input paths, and
consequently, the delay is not compensated by the DCM.

Derived from internal logic Logic within the FPGA also may be the clock source. Again, the logic-to-DCM delay cannot
be predetermined as it is not compensated by the DCM.

I O
IBUFG

BUFG
I O

BUFGCE
I O

CE

O

S

BUFGMUX
I0

I1

I O
IBUF

Internal
Logic

ug000.book Page 137 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

138 www.xilinx.com XAPP462 (v1.0) July 11, 2003
1-800-255-7778

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs
R

Removing Skew from an External Clock

Constructing the DCM feedback for an external clock is slightly more complex. Ideally, the clock
feedback originates from the point where the signal feeds any external clocked inputs, after any
long printed-circuit board traces or external clock rebuffering, as shown in Figure 20.

The LOCKED signal indicates when the DCM achieves lock, qualifying the clock signal. The
LOCKED signal can enable external devices or an inverted version can connect to an active-
Low chip enable.

Reset DCM After Configuration

When using external feedback, apply a reset pulse to the DCM immediately after configuration
to ensure consistent locking. An SRL16 primitive, initialized with 0x000F, supplies the
necessary reset pulse, as shown in Figure 20. See “RST Input Behavior.”

Why Reset?

Why is this extra reset pulse required? For an optimum locking process, a DCM configured with
external feedback requires both the CLKIN and either the CLK0 or CLK2X signals to be present
and stable when the DCM begins to lock. During the configuration process, the external
feedback, CLKFB, is not available because the FPGA’s I/O buffers are not yet active.

At the end of configuration, the DCM begins the capture process once the device enters the
startup sequence. Because the FPGA’s global 3-state signal (GTS) still is asserted at this time,
any output pins remain in a 3-state (high-impedance, floating) condition. Consequently, the
CLKFB signal is in an unknown logic state.

Figure 19: Eliminating Skew on Internal Clock Signals

I O
BUFG

Clock to
internal
FPGA logic

(or BUFGMUX,
 or BUFGCE)

(Internal Feedback)

“Clock Good”

I O
IBUFG

CLKIN CLK0

CLKFB LOCKED
DCM

(or CLK2X)
(alternate clock inputs
 possible, but not fully
 skew adjusted)

x462_19_061803

Figure 20: Eliminating Skew on External Clock Signals

CLKIN CLK0

CLKFB LOCKED
DCM

(or CLK2X)

I O
OBUF

I O
OBUF

FPGA
Other

Device(s)
on Board

CLK

ENABLE

(External Feedback Trace)

Circuit-board trace
delay, additional

clock buffers, etc.

Feedback path delay
must match the
forward path delay to
guarantee skew
elimination

RESET

Recommended

D

WCLK

A[3:0]

Q

INIT=000F

SRL16

I O
IBUFG

I O
IBUFG

x462_20_062203

ug000.book Page 138 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs

XAPP462 (v1.0) July 11, 2003 www.xilinx.com 139
1-800-255-7778

R

When CLKFB eventually appears after the GTS is deasserted, the DCM proceeds to capture.
However, without the reset pulse, the DCM might not lock at the optimal point, which potentially
introduce slightly more jitter and greater clock cycle latency through the DCM.

Without the reset, another possible issue might occur if the CLKFB signal, while in the 3-state
condition, cross-couples with another signal on the board due to a printed-circuit board signal
integrity problem. The DCM might sense this invalid cross-coupled signal as CLKFB and use it
to proceed with a lock. This possibly prevents the DCM from properly locking once the GTS
signal deasserts and the true CLKFB signal appears.

What is a Delay-Locked Loop?

Two basic types of circuits remove clock delay:

• Delay-Locked Loops (DLLs) and

• Phase-Locked Loops (PLLs)

In addition to their primary function of removing clock distribution delay, DLLs and PLLs typically provide additional
functionality such as frequency synthesis, clock conditioning, and phase shifting.

Delay-Locked Loop (DLL)

As shown in Figure 21, a DLL in its simplest form consists of a tapped delay line and control logic. The delay line produces
a delayed version of the input clock CLKIN. The clock distribution network routes the clock to all internal registers and to the
clock feedback CLKFB pin. The control logic continuously samples the input clock as well as the feedback clock to properly
adjust the delay line. Delay lines are constructed either using a voltage controlled delay or as a series of discrete delay
elements. For best, ruggedly stable performance, the Spartan-3 DLL uses an all-digital delay line.

A DLL works by inserting delay between the input clock and the feedback clock until the two rising edges align, effectively
delaying the feedback clock by almost an entire period—minus the clock distribution delay, of course. In DLL and PLL
parlance, the feedback clock is 360° out of phase, which means that they appear to be exactly in phase again.

After the edges from the input clock line up with the edges from the feedback clock, the DLL “locks”, and the two clocks have
no discernible difference. Thus, the DLL output clock compensates for the delay in the clock distribution network, effectively
removing the delay between the source clock and its loads. Voila!

Figure 21: Delay-Locked Loop (DLL) Block Diagram

Clock
Distribution
Network

Control

Variable
Delay Line

CLKOUT

CLKFB

CLKIN

x462_21_061903

ug000.book Page 139 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

140 www.xilinx.com XAPP462 (v1.0) July 11, 2003
1-800-255-7778

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs
R

Skew Adjustment

Most of this section discusses how to remove skew and how to phase align an internal or
external clock to the clock source. In actuality, the DCM purposely adds a small amount of skew
via an advanced attribute called DESKEW_ADJUST. In DCM Wizard, the DESKEW_ADJUST
attribute is controlled via the Advanced Options window.

There are two primary applications for this attribute, SYSTEM_SYNCHRONOUS and
SOURCE_SYNCHRONOUS. The overwhelming majority of applications use the default
SYSTEM_SYNCHRONOUS setting. The purpose of each mode is described below.

System Synchronous

In a Source Synchronous system, all devices within a data path share a common clock source,
as shown in Figure 23. This is the traditional and most-common system configuration. The
SYSTEM_SYNCHRONOUS option, which is the default value, adds a small amount of clock
delay so that there is zero hold time when capturing data. Hold time is essentially the timing
different between the best-case data path and the worst-case clock path. The DCM’s clock
skew elimination function advances the clock, essentially dramatically shortening the worst-
case clock path. However, if the clock path is advance so far that the clock appears before the

Phase-Locked Loop (PLL)

While designed for the same basic function, a PLL uses a different architecture to accomplish the task. As shown in
Figure 22, the fundamental difference between the PLL and DLL is that instead of a delay line, the PLL uses a voltage-
controlled oscillator, which generates a clock signal that approximates the input clock CLKIN. The control logic, consisting
of a phase detector and filter, adjusts the oscillator frequency and phase to compensate for the clock distribution delay. The
PLL control logic compares the input clock to the feedback clock CLKFB and adjusts the oscillator clock until the rising edge
of the input clock aligns with the feedback clock. The PLL then “locks.”

Implementation

A DLL or PLL is assembled using either analog or digital circuitry; each approach has its own advantages. An analog
implementation with careful circuit design produces a DLL or PLL with a finer timing resolution. Additionally, analog
implementations sometimes consume less silicon area.

Conversely, digital implementations offer advantages in noise immunity, lower power consumption and better jitter
performance. Digital implementations also provide the ability to stop the clock, facilitating power management. Analog
implementations can require additional power supplies, require close control of the power supply, and pose problems in
migrating to new process technologies.

DLL vs. PLL

When choosing between a PLL or a DLL for a particular application, understand the differences in the architectures. The
oscillator used in the PLL inherently introduces some instability, which degrades the performance of the PLL when
attempting to compensate for the delay of the clock distribution network. Conversely, the unconditionally stable DLL
architecture excels at delay compensation and clock conditioning. On the other hand, the PLL typically has more flexibility
when synthesizing a new clock frequency.

Figure 22: Phase-Locked Loop (PLL) Block Diagram

Clock
Distribution
Network

Control

Voltage Controlled
Oscillator

CLKOUT

CLKFB

CLKIN

x462_22_061903

ug000.book Page 140 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs

XAPP462 (v1.0) July 11, 2003 www.xilinx.com 141
1-800-255-7778

R

data, then hold time results. The SYSTEM_SYNCHRONOUS setting injects enough additional
skew on the clock path to guarantee zero hold times, but at the expense of a slightly longer
clock-to-output time.

Source Synchronous

SOURCE_SYNCHRONOUS mode is an advanced setting, used primarily in high-speed data
communications interfaces. In Source Synchronous applications, both the data and the clock
are derived from the same clock source, as shown in Figure 24. The transmitting devices sends
the both data and clock to the receiving device. The receiving device then adjusts the clock
timing for best data reception. High-speed Dual-Data Rate (DDR) and LVDS connections are
examples of such systems.

The SOURCE_SYNCHRONOUS setting essentially zeros out any phase difference between
the incoming clock and the deskewed output clock from the DCM. The FPGA application must
then adjust the clock timing using either the Fixed or Dynamic Fine Phase Shift mode. The
following application notes provide additional information on Source Synchronous design and
using dynamic phase alignment:

• XAPP268: Dynamic Phase Alignment
http://www.xilinx.com/xapp/xapp268.pdf

• XAPP622: SDR LVDS Transmitter/Receiver
http://www.xilinx.com/xapp/xapp622.pdf

Similarly, the following application note delves into more details on system-level timing.
Although the application note is written for the Virtex-II and Virtex-II Pro FPGA architectures,
most of the concepts apply directly to Spartan-3 FPGAs.

• XAPP259: System Interface Timing Parameters
http://www.xilinx.com/xapp/xapp259.pdf

Timing Comparisons

Figure 25 compares the effect of both SYSTEM_SYNCHRONOUS and
SOURCE_SYNCHRONOUS settings using a Dual-Data Rate (DDR) application. In DDR
applications, two data bits appear on each data line—one during the first half-period of the
clock, the second during the second half-period.

Figure 23: System-Synchronous Applications are Clocked by a Single, System-Wide
Clock Source

Figure 24: In Source-Synchronous Applications, the Data Clock is Provided by the Data
Source

Clock
Source

DATA_INDATA_OUT

x462_23_061903

Clock
Source

DATA_INDATA_OUT

DATA_CLK

x462_24_061903

ug000.book Page 141 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/xapp/xapp622.pdf
http://www.xilinx.com/xapp/xapp268.pdf
http://www.xilinx.com/xapp/xapp259.pdf

142 www.xilinx.com XAPP462 (v1.0) July 11, 2003
1-800-255-7778

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs
R

In SYSTEM_SYNCHRONOUS mode, a small amount of skew is purposely added to the DCM
clock path so that there is zero hold time.

In SOURCE_SYNCHRONOUS mode, no additional skew is inserted to the DCM clock path.
However, the FPGA application must insert additional skew or phase shifting so that the clock
appears at the ideal location in the data window.

Clock
Conditioning

Clock conditioning is a function where an incoming clock with a duty cycle other than 50% is
reshaped to have a 50% duty cycle. Figure 26 shows an example where an incoming clock,
with roughly a 40% High time and a 60% Low time (40%/60% duty cycle), is reshaped into a
nearly perfect 50% duty cycle—nearly perfect because there is some residual duty-cycle
distortion specified by the CLKOUT_DUTY_CYCLE_DLL and CLKOUT_DUTY_CYCLE_FX
values in the Spartan-3 Data Sheet. The distortion is estimated at less than 150 ps.

Clocks with 50% duty cycle are mandatory for high-speed communications interfaces such as
LVDS or Dual-Data Rate (DDR) and for clock forwarding or clock mirroring applications. See
“Dual-Data Rate (DDR) Clocking Example.”

The DCM automatically conditions most clock outputs so that they have a 50% duty cycle.
Other clock outputs are optionally conditioned, depending either on the operating conditions or
on attribute settings, as shown in Table 12.

Figure 25: Comparing SYSTEM_SYNCHRONOUS and SOURCE_SYNCHRONOUS
Timing in a Dual-Data Rate (DDR) Application

SYSTEM_SYNCHRONOUS

DATA_IN

SOURCE_SYNCHRONOUS

SOURCE_SYNCHRONOUS
+ Fixed or Dynamic Phase Shift

Data capture window
or data “eye”

x462_25_061903

Figure 26: DCM Duty-Cycle Correction Feature Provides 50% Duty Cycle Outputs

CLKIN

Conditioned
Clock Output

50% 50%

40% 60%

x462_26_061903

ug000.book Page 142 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs

XAPP462 (v1.0) July 11, 2003 www.xilinx.com 143
1-800-255-7778

R

The Quadrant Phase Shifted Outputs, CLK0, CLK90, CLK180, and CLK270 have optional
clock conditioning, controlled by the DUTY_CYCLE_CORRECTION attribute. By default, the
DUTY_CYCLE_CORRECTION attribute is set to TRUE, meaning that these outputs are
conditioned to a 50% duty cycle. Setting this attribute to FALSE disables the clock-conditioning
feature, in which case the effected clock outputs have roughly the same duty cycle as the
incoming clock. Exact replication of the CLKIN duty cycle is not guaranteed.

Phase Shifting
– Delaying the
Clock by a
Fraction of a
Period

A DCM also optionally phase shifts an incoming clock, effectively delaying the clock by a
fraction of the clock period.

The DCM supports four different types of phase shifting. Each type may be used independently,
or in conjunction with other phase shifting modes. The phase shift capabilities for each clock
output appear in Table 13.

1. Half-Period Phase Shifted Outputs, most with conditioned 50% duty cycle. A pair of outputs
provides a rising edge at 0° and 180° phase shift—or, at the beginning and half-period
points during the clock period.

2. Quadrant Phase Shifted Outputs of 0° (CLK0), 90° (CLK90), 180° (CLK180), and 270°
(CLK270), with optional 50% duty-cycle conditioning.

3. Fixed Fine Phase Shifting of all DCM clock outputs with a resolution of 1/256th of a clock
cycle.

4. Dynamic Fine Phase Shifting of all DCM clock outputs from within the FPGA application,
again with a resolution of 1/256th of a clock cycle.

Table 12: Conditioned Clock Output with 50% Duty Cycle

DCM Clock
Output

50% Duty Cycle Output

CLK0

CLK90

When DUTY_CYCLE_CORRECTION attribute set to TRUE

CLK180

CLK270

CLK2X

CLK2X180

CLKDV

CLKFX

CLKFX180

Always

DLL_FREQUENCY_MODE Attribute

LOW HIGH

When DUTY_CYCLE_CORRECTION attribute set to TRUE Outputs not available

DLL_FREQUENCY_MODE Attribute

LOW HIGH

Always Outputs not available

DLL_FREQUENCY_MODE Attribute

LOW HIGH

Always When CLKDV_DIVIDE attribute is an integer value

ug000.book Page 143 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

144 www.xilinx.com XAPP462 (v1.0) July 11, 2003
1-800-255-7778

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs
R

Half-Period Phase Shifted Outputs

The Half-Period Phase Shift outputs provide a non-shifted clock output, and the equivalent
clock output but shifted by half a period (180° phase shift). The Half-Period Phase Shift outputs
appear in pairs, as shown in Table 14.

The Half-Period Phase Shift outputs are ideal for duty-cycle critical applications such as high-
speed Dual-Data Rate (DDR) designs and clock mirrors. The Half-Period Phase Shift output
pairs provide two clocks, one with a rising edge at the beginning of the clock period, and
another rising edge precisely aligned at half the clock period, as shown in Figure 27.

Table 13: Phase Shift Capabilities by Clock Output

Clock Output Half-Period Quadrant Fixed or Dynamic

CLK0

CLK90

CLK180

CLK270

CLK2X

CLK2X180

CLKDV

CLKFX

CLKFX180

Table 14: Half-Period Phase Shifted Outputs

Output Pairs
Comment

No Phase Shift 180° Phase Shift

CLK0 CLK180 Same frequency as CLKIN input. 50% duty cycle corrected by default and
controlled by the DUTY_CYCLE_CORRECTION attribute.

CLK2X CLK2X180 Outputs from the Clock Doubler (CLK2X, CLK2X180). Twice the frequency of the
CLKIN input, always with 50% duty cycle.

CLKFX CLKFX180 Outputs from the Frequency Synthesizer (CLKFX, CLKFX180). Output frequency
depends on Frequency Synthesizer attributes. Always with 50% duty cycle.

Figure 27: Half-Period Phase Shift Outputs

180˚0˚

½T 1T

CLKx

CLKx180

360˚

0

Phase Shift (degrees)

Delay (fraction of
clock period)

Clock Period (T)

x462_27_061903

ug000.book Page 144 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs

XAPP462 (v1.0) July 11, 2003 www.xilinx.com 145
1-800-255-7778

R

Half-Period Phase Shift Outputs Reduce Duty-Cycle Distortion

When the DCM clock outputs are duty-cycle corrected to 50%, it appears that the 180° phase-
shifted clock is just an inverted version on the non-shifted clock. For low-frequency
applications, this is essentially true.

However, at very high operating frequencies, duty-cycle distortion—due to differences in rise
and fall times of individual transistors—becomes relevant within the FPGA device. Starting with
a 50% clock cycle, such distortion causes differences between the clock High and clock Low
times, which is consistent from cycle to cycle.

Dual-Data Rate (DDR) Clocking Example

In Figure 28, a single DCM clock output, CLKx, drives both clocks on a Dual-Data Rate (DDR)
output flip-flop. One DDR clock input uses the clock output as is, the other input inverts the
clock within the DDR flip-flop. The CLKx output from the DCM has a 50% duty cycle, but after
traveling through the FPGA’s clock network, the duty cycle becomes slightly distorted. In this
exaggerated example, the distortion truncates the clock High time and elongates the clock Low
time. Consequently, the C1 clock input triggers slightly before half the clock period. At lower
frequencies, this distortion is usually negligible. However, high-performance DDR-based
systems require precise clocking.

Figure 29 shows a slightly modified circuit compared to Figure 28. In this case, the DCM
provides both a non-shifted and a 180° phase-shifted output to the DDR output flip-flop. The
CLKx clock signal precisely triggers the DDR flip-flop’s C0 input at the start of the clock period.
Similarly, the CLKx180 clock signal precisely triggers the DDR flip-flop’s C1 input halfway
through the clock period. The cost of this approach is an additional global buffer and global
clock line, but it potentially reduces the potential duty-cycle distortion by approximately 300 ps
(this value is an estimate only. See the Spartan-3 Data Sheet, Module 3 for the correct specified
value).

Figure 28: Dual-Data Rate (DDR) Output Using Both Edges of a Single Clock Induces
Duty-Cycle Distortion

D0

D1

CE

C0

C1

Q

OFDDRCPE

CLKx at Flip-Flop
(with duty-cycle distortion)

Duty-cycle distortion

Factor in distortion
when using a single,
inverted clock

CLKx
(50% duty cycle)

BUFG
CLKx

DCM

CLKIN

x462_28_061903

ug000.book Page 145 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/bvdocs/publications/ds099-3.pdf

146 www.xilinx.com XAPP462 (v1.0) July 11, 2003
1-800-255-7778

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs
R

Table 15 shows the specified duty-cycle distortion values as measured using DDR output flip-
flops and LVDS outputs. There may be additional distortion on other output types caused by
asymmetrical rise and fall times, which can be simulated using IBIS.

Quadrant Phase Shifted Outputs

The Quadrant Phase Shift outputs shift the CLKIN input, each by a quarter period, as shown in
Figure 30 and Table 17. Because the Quadrant Phase Shift outputs require a feedback path
back to the CLKFB input, the CLK0 output is phase aligned to the rising edge of the CLKIN
input. The CLK90 output is phase shifted 90° from the CLKIN input, and so forth.

Figure 29: Using Half-Period Phase Shift Outputs Reduces Potential Duty-Cycle
Distortion

CLKx at Flip-Flop
(with duty-cycle distortion)

180 ˚
Phase Shift

CLKx180 at Flip-Flop
(with duty-cycle distortion)

CLKx
(50% duty cycle)

D0

D1

CE

C0

C1

Q

OFDDRCPE

CLKx

DCM

CLKIN

CLKx180

BUFG

BUFG

x462_29_061903

Table 15: Duty-Cycle Distortion Parameters

Parameter Description
Estimated

Value

TDCD_CLK0 Duty-cycle distortion when local inversion provides negative-edge clock to DDR element
in an I/O block. See Figure 28.

~400 ps*

TDCD_CLK180 Duty-cycle distortion when DCM CLKx180 output provides clock to DDR element in an
I/O block. See Figure 29.

~60 ps*

* Estimate only. See the Spartan-3 Data Sheet, Module 3 for the correct specified value.

ug000.book Page 146 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/bvdocs/publications/ds099-3.pdf

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs

XAPP462 (v1.0) July 11, 2003 www.xilinx.com 147
1-800-255-7778

R

Output Availability Depends on DLL Frequency Mode

The availability of the Quadrant Phase Shift outputs depends on the DLL’s frequency mode,
controlled by the DLL_FREQUENCY_MODE attribute. All four Quadrant Phase Shift outputs
are available in low-frequency mode (DLL_FREQUENCY_MODE=LOW), as shown in
Table 16. Only the CLK0 and CLK180 outputs are available in both modes.

Optional 50/50 Duty Cycle Correction

As a group, the Quadrant Phase Shift outputs are optionally conditioned to a 50% duty cycle,
controlled by the DUTY_CYCLE_CORRECT attribute. When TRUE, which is the default, all
four outputs have a 50% duty cycle. When FALSE, the outputs do not have the same duty cycle
as the CLKIN input. See the “Clock Conditioning” section for more information.

Four Phases, Delayed Clock Edges, Phased Pulses

One view of the Quadrant Phase Shift outputs is that each provides a rising clock that is delay
one quarter period from the preceding pulse, as shown in Table 17. These outputs provide
flexible timing for such applications as memory interfaces and peripheral control.

With the duty-cycle correction option enabled (DUTY_CYCLE_CORRECTION = TRUE), there
are other ways to view the outputs. For example, the outputs also provide falling-edge clocks

Figure 30: Quadrant Phase Shift Outputs Shift CLKIN, Each by a Quarter Period (Shown
with Duty-Cycle Correction Enabled)

Table 16: Quadrant Phase Shift Output Availability by DLL Frequency Mode

Output
DLL_FREQUENCY_MODE

LOW HIGH

CLK0

CLK90

CLK180

CLK270

270˚180˚90˚0˚

¼T ½ T ¾T 1T

CLK0

CLK90

CLK180

CLK270

360˚

0

Phase Shift (degrees)

Delay (fraction of
clock period)

Clock Period (T)
x462_30_061903

ug000.book Page 147 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

148 www.xilinx.com XAPP462 (v1.0) July 11, 2003
1-800-255-7778

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs
R

separated by a quarter phase. Again, see Table 17. Similarly, each output produces a High-
going pulse, and a Low-going pulse, both half a period wide. For example, the CLK90 output
shown in Figure 30 produces a High-going pulse, centered within the CLK0 clock period.

Fine Phase Shifting

The DCM provides additional controls over clock skew using fine phase shifting. Fine-phase
adjustment affects all nine DCM output clocks simultaneously. The fine phase shift capability
requires the DCM’s DLL functional unit. Consequently, clock feedback via the CLKFB input is
required.

Physically, the fine phase shift control adjusts the phase relationship between the rising edges
of the CLKIN and CLKFB inputs. The net effect, however, is the all DCM outputs are phase
shifted with relation to the CLKIN input.

By default, fine phase shifting is disabled (CLKOUT_PHASE_SHIFT=NONE), meaning that the
clock outputs are phase aligned with CLKIN. In this case, there is no skew between the input
clock, CLKIN, and the feedback clock, measured at the appropriate feedback point (see
“Feedback from a Reliable Source” section). When fine phase shifting is enabled, the output
clock edges can be phase shifted so that they are advanced or are retarded compared to the
CLKIN input, as shown in Figure 31.

There are two fine phase shift modes as described below. Both are commonly used in high-
speed data communications applications. See the “Source Synchronous” section.

1. Fixed Fine Phase Shift mode sets the phase shift value at design time. The phase shift
value is loaded during the FPGA configuration process and cannot be changed by the
application.

2. Dynamic Fine Phase Shift mode has an initial phase shift value, similar to Fixed Fine
Phase Shift, which is set during FPGA configuration. However, the phase shift value can be
changed by the application after the DCM’s LOCKED output goes High.

Fixed Fine Phase Shifting

In Fixed Fine Phase Shift mode, the phase shift value is specified at design time and set during
the FPGA configuration process. The application cannot change the value during run time.

Two attributes control this mode. The CLKOUT_PHASE_SHIFT attribute is set to FIXED, and
the PHASE_SHIFT attribute controls the amount of phase shift. If PHASE_SHIFT is 0, then the
output clocks and the CLKIN input are phase aligned, as shown in Figure 31. If PHASE_SHIFT
is a negative integer, then the clock output(s) are phase shifted before CLKIN. If
PHASE_SHIFT is a positive integer, then the clock output(s) are phase shifted after CLKIN.

Fixed Fine Phase Shift Range

The PHASE_SHIFT attribute is always an integer value, ranging between –255 and +255.
However, the actual limits may be lower depending on the CLKIN input frequency, as described
below.

Table 17: Quadrant Phase Shift Outputs and Characteristics (DUTY_CYCLE_CORRECTION=TRUE)

DCM Output
Phase
Shift

Delayed by
Period

Fraction

Rising
Edge

Falling
Edge

Comment

CLK0 0° 0 0 ½T Deskewed input clock, no phase shift

CLK90 90° ¼T ¼T ¾T High-going pulse, ½T wide, in middle of period

CLK180 180° ½T ½T 0T Inverted CLK0, rising clock edge in middle of period

CLK270 270° ¾T ¾T ¼T Low-going pulse, ½T wide, in middle of period

ug000.book Page 148 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs

XAPP462 (v1.0) July 11, 2003 www.xilinx.com 149
1-800-255-7778

R

The minimum and maximum limit of the PHASE_SHIFT attribute depend on two values.

1. The period of the CLKIN input, TCLKIN, measured in nanoseconds.

2. The value of the FINE_SHIFT_RANGE specification for the Spartan-3 device and speed
grade, found in the Spartan-3 Data Sheet, Module 3. FINE_SHIFT_RANGE is the total
delay achievable by the phase shift delay line, which is a function of the number of delay
taps used in the circuit. The actual delay line may be longer than FINE_SHIFT_RANGE,
but only the delay up to FINE_SHIFT_RANGE is guaranteed.

Using these two values, calculate the SHIFT_DELAY_RATIO using Equation 1. The limits for
the PHASE_SHIFT attribute are different, depending on whether the result is less than or if it is
greater than or equal to one.

Eq. 1

SHIFT_DELAY_RATIO < 1

If the clock period is longer than the specified FINE_SHIFT_RANGE, then the
SHIFT_DELAY_RATIO < 1, meaning that maximum fine phase shift is limited by
FINE_SHIFT_RANGE. When SHIFT_DELAY_RATIO < 1, then the PHASE_SHIFT limits are
set according to Equation 2:

Eq. 2

For example, assume that FCLKIN is 75 MHz (TCLKIN = 13.33 ns) and FINE_SHIFT_RANGE is
10.00 ns(1). In this case, the PHASE_SHIFT value is limited to ±191.

Consequently, the phase shift value when SHIFT_DELAY_RATIO < 1 is shown by Equation 3.
To determine the phase shift resolution, set PHASE_SHIFT = 1.

Eq. 3

Figure 31: Fixed-Value Fine Phase Shift Control

0

Fixed Phase Shift
- Limit

Fixed Phase Shift
+ Limit

Clock Outputs

The PHASE_SHIFT attribute, set at design
time, controls the amount of phase shift on the
DCM clock outputs relative to the CLKIN input.

CLKIN

x462_31_061903

1. Estimate only. See the Spartan-3 Data Sheet, Module 3 for the correct specified value.

SHIFT_DELAY_RATIO FINE_SHIFT_RANGE
TCLKIN

--=

PHASE_SHIFTLIMITS ± INTEGER 256 FINE_SHIFT_RANGE
TCLKIN

--•⎝ ⎠
⎛ ⎞=

TPhaseShift
PHASE_SHIFT

PHASE_SHIFTLIMITS
---⎝ ⎠

⎛ ⎞ FINE_SHIFT_RANGE•=

ug000.book Page 149 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/bvdocs/publications/ds099-3.pdf

150 www.xilinx.com XAPP462 (v1.0) July 11, 2003
1-800-255-7778

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs
R

SHIFT_DELAY_RATIO ≥ 1

By contrast, if the clock period is shorter than the specified FINE_SHIFT_RANGE, then the
SHIFT_DELAY_RATIO ≥ 1, meaning that maximum fine phase shift is limited to ±255.

Eq. 4

Consequently, the phase shift value when SHIFT_DELAY_RATIO ≥ 1 is shown by Equation 5.
To determine the phase shift resolution, set PHASE_SHIFT = 1.

Eq. 5

Minimum Phase Shift Size

The minimum phase shift size is controlled by the greater of two limiting factors.

1. The minimum delay-line tap resolution, listed as the DCM_TAP_MIN specification in the
Spartan-3 Data Sheet (estimated at ~30ps), or

2. 1/256th of the clock period.

Other Design Considerations

In Fixed Phase Shift mode, the Dynamic Phase Shift control inputs must be tied to GND, which
DCM Wizard does automatically.

DCM Wizard

To use Fixed Phase Shift mode, click Fixed in the Phase Shift section of DCM Wizard’s General
Setup panel, shown in Figure 32. This action sets the CLKOUT_PHASE_SHIFT attribute to
FIXED.

Enter the Phase Shift Value, which must be an integer within the limits described above. This
action sets the PHASE_SHIFT attribute value. DCM Wizard checks that the phase shift value is
within the limits.

Dynamic Fine Phase Shifting

In Dynamic Fine Phase Shift mode, the initial skew or phase shift is still controlled by the
PHASE_SHIFT attribute during configuration, just as it is for Fixed Fine Shift mode. However, in
dynamic mode, the FPGA application can adjust the current phase shift location after the
DCM’s LOCKED output goes High using the Dynamic Fine Phase Shift control inputs, PSEN,
PSCLK, and PSINCDEC.

Operation

Use the phase shift control inputs to adjust the current phase shift value, as shown in Figure 33.
The rising edge of PSCLK synchronizes all dynamic phase shift operations. A valid operation
starts by asserting the PSEN enable input for one and only one PSCLK clock period. Asserting
PSEN for more than one rising PSCLK clock edge may cause undesired behavior.

Figure 32: Selecting Fixed Fine Shift Mode

PHASE_SHIFTLIMITS 255±=

TPhaseShift
PHASE_SHIFT

256
---⎝ ⎠

⎛ ⎞ TCLKIN•=

Phase Shift Value:

Phase Shift
None Fixed Variable

23

Enter the Fixed
phase shift value

Select
Fixed

x462_32_061803

ug000.book Page 150 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs

XAPP462 (v1.0) July 11, 2003 www.xilinx.com 151
1-800-255-7778

R

The value on the PSINCDEC increment/decrement control input determines the phase shift
direction. When PSINCDEC is High, the present dynamic phase shift value is incremented by
one unit. Similarly, when PSINCDEC is Low, the present dynamic phase shift value is
decremented by one unit.

The actual phase shift operation timing varies and the operation completes when the DCM
asserts the PSDONE output High for a single PSCLK clock period. Between enabling PSEN
until PSDONE is asserted, the DCM output clocks slide, bit by bit, from their original phase shift
value to their new phase shift value. During this time, the DCM remains locked on the incoming
clock and continues to assert its LOCKED output.

When or after PSDONE is asserted High, the next phase shift operation can be initiated.

To enable Dynamic Fine Phase Shift mode, set the CLKOUT_PHASE_SHIFT attribute to
VARIABLE. The PHASE_SHIFT attribute value sets the initial phase shift location, established
after FPGA configuration. The FPGA application can the dynamically adjust the skew or phase
shift on the DCM’s output clocks after the DCM's LOCKED output goes High. If the DCM is
reset, the PHASE_SHIFT value reverts to its initial configuration value.

Figure 33: Dynamic Fine Phase Shift Control Interface

PSINCDEC

PSEN

PSCLK

PSDONE

0 = Decrement phase shift
1 = Increment phase shift

Start new phase shift
operation. Shift by
one phase increment.

Operation complete.
Okay to start new
operation.

STATUS[0]
(Variable Phase
Shift Overflow)

The timing to complete a phase
shift operation varies. PSDONE
indicates operation is complete.

If phase shift incremented or
decremented to limit value,
STATUS[0] stays High until new
operation shifts away from limit.

x462_33_062403

ug000.book Page 151 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

152 www.xilinx.com XAPP462 (v1.0) July 11, 2003
1-800-255-7778

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs
R

Dynamic Fine Phase Shift Range

Just as the PHASE_SHIFT has a minimum and maximum phase shift limit, so does the
Dynamic Phase Shift, as shown in Figure 34. Similarly, the limit depends on the ratio of the
FINE_SHIFT_RANGE versus the input clock period, as calculated by the
SHIFT_DELAY_RATIO equation above.

SHIFT_DELAY_RATIO < 2

If the specified FINE_SHIFT_RANGE value is less than twice the clock period
(SHIFT_DELAY_RATIO < 2), then the maximum dynamic fine phase shift value is limited by
FINE_SHIFT_RANGE, the maximum delay tap value. When SHIFT_DELAY_RATIO < 2, then
the dynamic phase shift limits are set according to Equation 6.

Eq. 6

For example, assume that FCLKIN is 75 MHz (TCLKIN = 13.33 ns) and FINE_SHIFT_RANGE is
10.00 ns(1). In this case, the Dynamic Phase Shift value is limited to ±96.

Figure 34: Dynamic Phase Shift Controls

Clock Outputs

The PHASE_SHIFT attribute determines
the initial phase shift position. DCM
initially asserts LOCKED with this phase
shift value. DCM returns to this value
upon RESET.

CLKIN

0
Fixed Phase Shift

- Limit
Fixed Phase Shift
+ Limit

PSEN

PSINCDEC

PSCLK

PSDONE

STATUS[0]

0

Dynamic Phase Shift
- Limit

Dynamic Phase Shift
+ Limit

Increment Phase
Shift Value

Decrement Phase
Shift Value

Enable

Increment/Decrement

Phase Shift Clock

Phase Shift Done

Variable Phase
Shift Overflow

After the DCM asserts LOCKED, the FPGA
application can increment or decrement the
present phase shift value using the Dynamic
Phase Shift Control logic.

DCM Variable Phase
Shift Control

x462_34_061903

1. Estimate only. See the Spartan-3 Data Sheet, Module 3 for correct specified value.

DynamicPhaseShiftLIMITS INTEGER 128 FINE_SHIFT_RANGE
TCLKIN

--•⎝ ⎠
⎛ ⎞±=

ug000.book Page 152 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/bvdocs/publications/ds099-3.pdf

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs

XAPP462 (v1.0) July 11, 2003 www.xilinx.com 153
1-800-255-7778

R

When SHIFT_DELAY_RATIO < 2, the dynamic phase shift value is shown by Equation 7. To
determine the dynamic phase shift resolution, set Dynamic Phase Shift = 1.

Eq. 7

SHIFT_DELAY_RATIO ≥ 2

If the incoming clock period is less than or equal to half the specified FINE_SHIFT_RANGE,
then the SHIFT_DELAY_RATIO ≥ 2, meaning that maximum fine phase shift is limited to ±255.

Eq. 8

Consequently, the phase shift value when SHIFT_DELAY_RATIO ≥ 2 is shown by Equation 9.
To determine the phase shift resolution, set PHASE_SHIFT = 1.

Eq. 9

Controls

As shown in Figure 33, page 151 and Figure 34, page 152, the DCM’s Dynamic Phase Shift
control signals allow the FPGA application to adjust the present phase relationship between the
CLKIN input and the DCM clock outputs. Table 18 shows the detailed relationship between
control inputs, the current and next phase relationship, how the operation affects the delay tap,
and the control outputs.

TPhaseShift
DynamicPhaseShift

DynamicPhaseShiftLIMITS
---⎝ ⎠

⎛ ⎞ FINE_SHIFT_RANGE•=

DynamicPhaseShiftLIMITS 255±=

TPhaseShift
DynamicPhaseShift

256
--- TCLKIN•=

Table 18: Dynamic Phase Shifter Control (assumes no internal inversion)

PSEN
PSINC-

DEC
PSCLK

Current
Phase Shift

Next
Phase Shift

Delay Line PSDONE
STATUS[0]
(Overflow)

Operation

0 X X X No change No change ? ? Dynamic phase shift disabled.

1 0 > -Limit Current – 1 Current – 1 1* 0 Decrement phase shift and
phase pointer.

1 0 ≤ -Limit and
> –255

Current – 1 No Change 1* 1 End of delay line. No phase shift
change. Phase pointer
decremented.

1 0 –255 –255 No Change 1* 1 End of delay line. No phase shift
change. Phase pointer at limit.

1 1 < +Limit Current + 1 Current + 1 1* 0 Increment phase shift and phase
pointer.

1 1 ≥ +Limit and
< +255

Current + 1 No Change 1* 1 End of delay line. No phase shift
change. Phase pointer
incremented.

1 1 +255 +255 No Change 1* 1 End of delay line. No phase shift
change. Phase pointer at limit.

Notes:
X = don’t care.
? = indeterminate, depends on current application state.
1* = PSDONE asserted High for one PSCLK period.
-Limit = minimum delay line position.
+Limit = maximum delay line position.
Assert PSEN for only one PSCLK cycle.

ug000.book Page 153 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

154 www.xilinx.com XAPP462 (v1.0) July 11, 2003
1-800-255-7778

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs
R

When PSEN is Low, the Dynamic Phase Shifter is disabled and all other inputs are ignored. All
present shift values and the delay line position remain unchanged.

If the delay line has not reached its limits (-Limit or –255 when decrementing, +Limit or +255
when incrementing), then the FPGA application can change the existing phase shift value by
asserting PSEN High and the appropriate increment/decrement value on PSINCDEC before
the next rising edge of PSCLK. The phase shift value increments or decrements as instructed.
At the end of the operation, PSDONE goes High for a single PSCLK period indicating that the
phase shift operation is complete. STATUS[0] remains Low because no phase shift overflow
condition occurred.

When the DCM is incremented beyond +255 or below –255, the delay line position remains
unchanged at its limit value of +255 or –255 and no phase change occurs. STATUS[0] goes
High, indicating a dynamic phase shift overflow. When a new phase shift operation changes the
value in the opposition direction—i.e., away from the limit value—STATUS[0] returns Low.

If the phase shift does not reach +255 or –255, but the phase shift exceeds the delay-line
range—indicated by +Limit and –Limit in Table 18—then no phase change occurs. However,
STATUS[0] again goes High. The STATUS[0] output indicates when the delay tap reaches the
end of the delay line. In the FPGA application, however, use the limit value calculated using
either Equation 6 or Equation 8. The calculated delay limit is a guaranteed value. A specific
device, due to processing, voltage, or temperature, may have a longer line delay, but this cannot
be guaranteed from device to device. The phase shift value—but not the delay line positions—
continues to increment or decrement until it reaches its +255 or –255 limit. When a new phase
shift operation changes the value in the opposition direction—i.e., away from the limit value—
the STATUS[0] signal returns Low. The phase shift value is incremented or decremented back
to a value that corresponds to a valid absolute delay in the delay line.

DCM Wizard

The Dynamic Phase Shift options are part of the DCM Wizard’s General Setup panel, shown in
Figure 35. To enable dynamic fine phase shifting, select Variable, as shown in Figure 35. Enter
an initial Phase Shift Value in the text box provided. The initial value behaves exactly like the
Fixed Fine Phase Shifting mode described above.

Choosing Variable mode also enables the Dynamic Phase Shift control signals, PSEN,
PSINCDEC, PSCLK, and PSDONE, as shown in Figure 36. Check the input and output boxes
to use these controls in the FPGA application. Also, check the STATUS output box to enable the
STATUS[0] signal. STATUS[0] indicates when the dynamic phase shifter reaches is maximum
or minimum limit value.

Figure 35: Selecting Dynamic Fine Phase Shift Mode in DCM Wizard

Figure 36: Check the Dynamic Phase Shift Control Outputs in DCM Wizard

Phase Shift Value:

Phase Shift
None Fixed Variable

23

Enter the initial
phase shift value

Select
Variable

x462_35_061903

LOCKED
STATUS

PSDONE

PSEN
PSINCDEC
PSCLK

Check the STATUS output
to access STATUS[0], the
Dynamic Phase Shift
Overflow status bit.

x462_36_061903

ug000.book Page 154 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs

XAPP462 (v1.0) July 11, 2003 www.xilinx.com 155
1-800-255-7778

R

Example Applications

See application note XAPP268 for an example of how to use the Dynamic Phase Shift function
to perform dynamic phase alignment.

• XAPP268: Dynamic Phase Alignment
http://www.xilinx.com/xapp/xapp268.pdf

Clock
Multiplication,
Clock Division,
and Frequency
Synthesis

A DCM provides flexible methods for generating new clock frequencies—one of the most
common DCM applications. Spartan-3 DCMs provide up to three independent frequency
synthesis functions, listed below, and in Figure 37, and summarized in Table 19. An application
may use one or all three functions simultaneously. Detailed descriptions for each function
follows.

1. A Clock Doubler (CLK2X, CLK2X180) that doubles the frequency of the input clock.

2. A Clock Divider (CLKDV) that reduces the input frequency by a fixed divider value.

3. A Frequency Synthesizer (CLKFX, CLKFX180) for generating a completely new frequency
from an incoming clock frequency.

All the frequency synthesis outputs, except CLKDV, always have a 50/50 duty cycle. CLKDV
usually has a 50% duty cycle except when dividing by a non-integer value at high frequency, as
shown in Table 23. The Clock Doubler (CLK2X, CLK2X180) circuit is not available at high
frequencies.

All the DCM clock outputs, except CLKFX and CLKFX180, are generated by the DCM’s Delay-
Locked Loop (DLL) unit and consequently require some form of clock feedback to the CLKFB
pin. The DCM’s Digital Frequency Synthesizer (DFS) unit generates the CLKFX and
CLKFX180 clock outputs. If the application uses only the CLKFX or CLKFX180 outputs, then
the feedback path may be eliminated, which also extends the DCM’s operating range. The
Frequency Synthesizer has a feedback path within the DCM, based on CLKIN.

Figure 37: Clock Synthesis Options

CLKIN CLK0

CLKFB

DCM

CLKFX

CLKFX180

Frequency Synthesizer

F = FCLKIN CLKFX_MULTIPLY

CLKFX_DIVIDE

CLKDV

Clock Divider

F =
FCLKIN

CLKDV_DIVIDE

CLK2X

CLK2X180

F = 2 FCLKIN
Clock Doubler

Clock
Distribution

Delay

CLK0
or

CLK2X

Clock Feedback Loop
A clock feedback loop to CLKFB
is required when using the
CLK0, CLK2X, CLK2X180, or
CLKDV outputs. Use only CLK0
or CLK2X as the feedback
source. Feedback is not
required when using only the
CLKFX or CLKFX180 outputs.

50% duty cycle

50% duty cycle

Output available on when
DLL_FREQUENCY_MODE=LOW

Usually 50% duty cycle,
depending on conditions

Deskewed Clock
F = FCLKIN

50% duty cycle when
DUTY_CYCLE_CORRECTION=TRUE

Output clocks are phase aligned
when using clock feedback via
the CLKFB input.

x462_37_062203

ug000.book Page 155 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/xapp/xapp268.pdf

156 www.xilinx.com XAPP462 (v1.0) July 11, 2003
1-800-255-7778

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs
R

If clock feedback is used, then all the output clocks are phase aligned. Obviously, full clock-
edge alignment across all the DCM outputs occurs only occasionally because some of the
outputs are divided clock values. For example, the CLKDV output is aligned to CLKIN and
CLK0 every CLKDV_DIVIDE cycles. Similarly, the CLK2X output is aligned to CLK0 every other
clock cycle. The CLKFX output is aligned to CLKIN every CLKFX_DIVIDE cycles of CLKIN and
every CLKFX_MULTIPLY cycles of CLKFX.

Frequency Synthesis Applications

The potential applications for frequency synthesis are almost boundless. Some example
applications include the following.

• Generating a completely new clock frequency for the FPGA and external logic using an
available clock frequency on the board.

• Generate a high-frequency internal clock from a slower external clock source to reduce
system EMI.

• Dividing a high-speed serial data clock to process data in parallel within the FPGA, as
shown in Figure 38.

• Multiplying a parallel data clock before converting to a high-speed serial data format, also
shown in Figure 38.

• Multiplying an input clock to overclock internal logic to reduce resources by time-sharing
logic when implementing moderately fast functions.

Table 19: DCM Frequency Synthesis Options

Function
DCM

Output(s)
Frequency

DCM
Functional

Unit

Feedback
Required?

50%
Duty Cycle?

Deskewed
Clock

CLK0 DLL Yes When DUTY_CYCLE_
CORRECTION = TRUE

Clock
Doubler

CLK2X

CLK2X180

DLL Yes Always

Clock Divider CLKDV DLL Yes Always except when
dividing by non-integer
value in high-frequency
mode

Frequency
Synthesizer

CLKFX

CLKFX180

DFS Optional. No
feedback

extends clock
input frequency

limits.

Always

FCLKIN

2 FCLKIN•

FCLKIN

CLKDV_DIVIDE
--

FCLKIN
CLKFX_MULTIPLY

CLKFX_DIVIDE
--⎝ ⎠

⎛ ⎞•

ug000.book Page 156 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs

XAPP462 (v1.0) July 11, 2003 www.xilinx.com 157
1-800-255-7778

R

Input and Output Clock Frequency Restrictions

The input and output clock frequency restrictions for frequency synthesis depend on which
DCM clock outputs are used. For example, the CLKFX and CLKFX180 outputs only use the
DCM’s Digital Frequency Synthesis (DFS) unit. All the other clock outputs use the DCM’s
Delay-Locked Loop (DLL) unit. The DLL unit has tighter frequency restrictions than the DFS.
Consequently, operating the DFS unit without the DLL allows a wider frequency operating
range. When using both the DFS and DLL units, the DLL frequency range limits the application.

Also, both the DLL and DFS have a low- and a high-frequency operating mode and the mode
settings determine the allowable frequency operating range.

A valid DCM design requires that the CLKIN frequency be within the operating range specified
in the Spartan-3 Data Sheet, Module 3. Likewise, the output frequency for any of the clock
outputs used must fall within their respective specified operating range.

Figure 39 shows how the various clock input and clock output specifications line up by
frequency range. Only the low-frequency operating modes are shown. The data sheet
specification for each name is provided within the shaded boxes. Table 20 provides example
DCM applications and how the frequency restrictions apply.

Figure 38: Common Applications of Frequency Synthesis

DCM DCM

F

n-bits
wide

F
n

F F . m

m-bits
wide

F F

Overclocked,
time-shared logic

DCM

F

F F . x

High-speed serial data
down-converted to
slower parallel data

Slower parallel data
up-converted to high-
speed serial data

FPGA

x462_38_070903

ug000.book Page 157 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

158 www.xilinx.com XAPP462 (v1.0) July 11, 2003
1-800-255-7778

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs
R

Clock Doubler (CLK2X, CLK2X180)

The Clock Doubler unit doubles the frequency of the incoming CLKIN input, as summarized in
Table 21. The Clock Doubler is part of the DLL functional unit and requires a clock feedback
path back to CLKFB from either the CLK0 or CLK2X output. The outputs from the Clock
Doubler are CLK2X and CLK2X180. Both outputs are always conditioned to a 50% duty cycle.
Both have the same output frequency but CLK2X180 is 180° phase shifted from CLK2X,
essentially inverting the CLK2X output. Having both phases is essential for high-performance
Dual-Data Rate (DDR) or clock forwarding applications.

The CLK2X and CLK2X180 outputs are only available when the DLL_FREQUENCY_MODE
attribute is LOW. If required by the application, reduce the CLKIN input frequency using the
optional divide-by-two feature (see “Advanced Options”).

Figure 39: Input and Output Clock Frequency Restrictions (Low-Frequency Mode)

DFS
(CLKIN_FREQ_FX_{MIN,MAX})

DLL (Low-Frequency Mode)
(CLKIN_FREQ_DLL_LF_{MIN,MAX})

~1 MHz* ~326 MHz*

~24 MHz* ~180 MHz*
FCLKIN

DFS (Low-Frequency Mode)
(CLKOUT_FREQ_FX_LF_{MIN,MAX})

~24 MHz* ~200 MHz*

DLL, CLKDV (Low-Frequency Mode)
(CLKOUT_FREQ_FX_LF_{MIN,MAX})

~1.5 MHz* ~120 MHz*

DLL, CLK2X (Low-Frequency Mode)
(CLKOUT_FREQ_2X_LF_{MIN,MAX})

~48 MHz* ~326 MHz*

FCLKFX
FCLKFX180

FCLKDV

FCLK2X
FCLK2X180

Frequency

Data sheet
specification name

x462_39_070903

* Estimate only. See the Spartan-3 Data Sheet, Module 3 for the correct specified value.

Table 20: DCM Frequency Restriction Examples

Input
Frequency

Output
Frequency

Comments

1.2 MHz 12.8 MHz Not possible in a single DCM. FCLKIN is within acceptable range for DFS unit, but FCLKFX
requires at least a 24MHz output frequency.

1.2 MHz 32.4 MHz Possible in a single DCM using DFS unit. Set CLKFX_MULTIPLY=27. FCLKFX is within the
DFS output frequency range.

25 MHz 2.5 MHz

30 MHz

Possible in a single DCM using both the DFS and DLL units. Use the CLKDV output for a
2.5MHz signal, setting CLKDV_DIVIDE=10. Use the CLKFX output for a 30MHz signal,
setting CLKFX_MULTIPLY=6 and CLKFX_DIVIDE=5. All input and output frequencies are
within appropriate ranges.

ug000.book Page 158 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/bvdocs/publications/ds099-3.pdf

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs

XAPP462 (v1.0) July 11, 2003 www.xilinx.com 159
1-800-255-7778

R

Table 21: Clock Doubler Summary

DCM Output(s) CLK2X

CLK2X180

Output Frequency

DCM Functional Unit Delay-Locked Loop (DLL)

Feedback Required? Yes

50% Duty Cycle? Yes

Controlling Attributes

DLL_FREQUENCY_MODE The CLK2X and CLK2X180 outputs are only valid when
DLL_FREQUENCY_MODE = LOW

CLKIN The CLKIN frequency limits are determined by the DLL_FREQUENCY_MODE attribute.
The Clock Doubler outputs are not available in high-frequency mode but may be required
for other DCM clock outputs.

CLK2X

CLK2X180

The CLKDV frequency limits are determined by the DLL_FREQUENCY_MODE attribute.

* Estimate only. See the Spartan-3 Data Sheet, Module 3 for the correct specified value.

2 FCLKIN•

DLL_
FREQUENCY_

MODE
Minimum Frequency Maximum Frequency

LOW CLKIN_FREQ_DLL_LF_MIN
(~24 MHz)*

CLKIN_FREQ_DLL_LF_MAX
(~180 MHz)*

HIGH CLKIN_FREQ_DLL_HF_MIN
(~48 MHz)*

CLKIN_FREQ_DLL_HF_MAX
(~326 MHz)*

DLL_
FREQUENCY_

MODE
Minimum Frequency Maximum Frequency

LOW CLKOUT_FREQ_2X_LF_MIN
(48 MHz)*

CLKOUT_FREQ_2X_LF_MAX
(~325 MHz)*

HIGH Not available Not available

ug000.book Page 159 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/bvdocs/publications/ds099-3.pdf

160 www.xilinx.com XAPP462 (v1.0) July 11, 2003
1-800-255-7778

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs
R

Clock Divider (CLKDV)

The Clock Divider unit, summarized in Table 22, divides the incoming CLKIN frequency by the
value specified by the CLKDV_DIVIDE attribute, set at design time. The Clock Divider unit is
part of the DLL functional unit and requires a clock feedback path back to CLKFB from either
the CLK0 or CLK2X output.

Table 22: Clock Divider Summary

DCM Output(s) CLKDV

Output Frequency

DCM Functional Unit Delay-Locked Loop (DLL)

Feedback Required? Yes, using either CLK0 or CLK2X output from DCM

50% Duty Cycle? Yes, except when DLL_FREQUENCY_MODE=HIGH and CLKDV_DIVIDE is a non-
integer value

Controlling Attributes

DLL_FREQUENCY_MODE CLKDV is available in both modes. Potentially affects duty cycle of output (see “CLKDV
Clock Conditioning”), depending on divider value.

CLKDV_DIVIDE Controls the output frequency per the equation above. Legal values include 1.5, 2, 2.5, 3,
3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 9, 10, 11, 12, 13, 14, 15, and 16. The DLL locks faster
on integer values than on non-integer values. Likewise, integer values result in lower
output jitter.

Frequency Constraints

CLKIN The CLKIN frequency limits are determined by the DLL_FREQUENCY_MODE attribute.

CLKDV The CLKDV frequency limits are determined by the DLL_FREQUENCY_MODE attribute.

* Estimate only. See the Spartan-3 Data Sheet, Module 3 for the correct specified value.

FCLKIN

CLKDV_DIVIDE
--

DLL_
FREQUENCY_

MODE
Minimum Frequency Maximum Frequency

LOW CLKIN_FREQ_DLL_LF_MIN
(24 MHz)*

CLKIN_FREQ_DLL_LF_MAX
(~180 MHz)*

HIGH CLKIN_FREQ_DLL_HF_MIN
(48 MHz)*

CLKIN_FREQ_DLL_HF_MAX
(~325 MHz)*

DLL_
FREQUENCY_

MODE
Minimum Frequency Maximum Frequency

LOW CLKOUT_FREQ_DV_LF_MIN
(1.5 MHz)*

CLKOUT_FREQ_DV_LF_MAX
(~120 MHz)*

HIGH CLKOUT_FREQ_DV_HF_MIN
(3.0 MHz)*

CLKOUT_FREQ_DV_HF_MAX
(~240 MHz)*

ug000.book Page 160 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/bvdocs/publications/ds099-3.pdf

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs

XAPP462 (v1.0) July 11, 2003 www.xilinx.com 161
1-800-255-7778

R

CLKDV Clock Conditioning

The CLKDV output is conditioned to a 50% duty cycle unless the DLL_FREQUENCY_MODE
attribute is set to HIGH and CLKDV_DIVIDE is a non-integer value. Under these conditions, the
CLKDV duty cycle is shown in Table 23. A Spartan-3 DCM requires CLKIN to have at least a
60%/40% (or 40%/60%) or better duty cycle. Consequently, the CLKDV output, divided by 1.5
in high-frequency mode cannot provide a clock input to a second cascaded DCM.

CLKDV Jitter Depends on Frequency Mode and Integer or Non-Integer Value

Similarly, integer values for the CLKDV_DIVIDE attribute result in half the output jitter and faster
DLL locking times.

DCM Wizard

The Clock Divider controls are in DCM Wizard’s General Setup window. Check the CLKDV
output box, shown in Figure 40a. Then, choose the Clock Divider’s Divide by Value using the
drop-down list, shown in Figure 40b.

Table 23: CLKDV Duty Cycle with DLL_FREQUENCY_MODE=HIGH

CLKDV_DIVIDE Attribute Duty Cycle
High Time/
Total Cycle

Integer 50.000% 1/2

1.5 33.333% 1/3

2.5 40.000% 2/5

3.5 42.857% 3/7

4.5 44.444% 4/9

5.5 45.454% 5/11

6.5 46.154% 6/13

7.5 46.667% 7/15

Table 24: CLKDV Output Jitter

CLKDV_DIVIDE CLKDV Output Period Jitter

Integer Value CLKOUT_PER_JITT_DV1 (±~150 ps)*

Non-integer Value CLKOUT_PER_JITT_DV2 (±~300 ps)*

* Estimate only. See the Spartan-3 Data Sheet, Module 3 for the correct specified value.

a. Check the CLKDV output box
b. Select the Divide by Value from the
Drop-Down List

Figure 40: Specifying the Clock Divider in DCM Wizard

CLKDV

x462_40a_061903
2

Divide By Value

x462_40b_061903

ug000.book Page 161 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/bvdocs/publications/ds099-3.pdf

162 www.xilinx.com XAPP462 (v1.0) July 11, 2003
1-800-255-7778

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs
R

Frequency Synthesizer (CLKFX, CLKFX180)

The Frequency Synthesizer provides the most flexible means to multiply, divide, or multiply and
divide an input frequency. As shown in Table 25, the two Frequency Synthesizer outputs are
CLKFX and CLKFX180. The CLKFX180 output has the same frequency as CLKFX but is
phase shifted 180°, or half a clock period. Because both Frequency Synthesizer outputs have
50% duty cycles, CLKFX180 appears to be an inverted version of CLKFX.

Two attributes, set at design time, control the synthesized output frequency, as shown in the
equation in Table 25. The CLKIN clock input is multiplied the fraction formed by
CLKFX_MULTIPLY as the numerator and CLKFX_DIVIDE as the denominator. For example, to
create a 155MHz output using a 75MHz CLKIN input, the Frequency Synthesizer multiplies
CLKIN by the fraction 31/15. Note that it does not multiply CLKIN by 31 first, then divide by the
result by 15. Multiplying CLKIN by 31 would result in a 2.325GHz output frequency—well
outside the frequency range of the Spartan-3 DCM.

The multiplier and divider values should be reduced to their simplest form, which results in
faster lock times. For example, reduce the fraction 6/8 to 3/4.

Frequency synthesis always requires some form of clock feedback. However, the DFS unit has
an internal feedback loop based on CLKIN and does not require a separate loop on CLKFB if
used without the DLL unit.

The CLKFX output is phase aligned with the CLKIN input every CLKFX_DIVIDE cycles of
CLKIN and every CLKFX_MULTIPLY cycles of CLKFX. For example, if CLKFX_MULTIPLY = 3
and CLKFX_DIVIDE = 5, then the CLKFX output is phase aligned with the CLKIN input every
five CLKIN cycles and every three CLKFX cycles. After the DCM asserts its LOCKED output,
the DFS unit is resynchronized to the CLKIN input at each concurrence and phase alignment is
nearly perfect at these edges.

Table 25: Frequency Synthesizer Summary

DCM Output(s) CLKFX

CLKFX180 (same as CLKFX, phase shifted 180°)

Output Frequency

DCM Functional Unit Digital Frequency Synthesizer (DFS)

Feedback Required? No. Uses internal feedback based on CLKIN. Optionally can use CLKFB input if required
for Delay-Locked Loop (DLL) functions.

50% Duty Cycle? Yes, always.

Controlling Attributes

DFS_FREQUENCY_MODE Affects frequency limits on CLKIN and the CLKFX, CLKFX180 outputs.

DLL_FREQUENCY_MODE Only affects the Frequency Synthesizer if the application uses any DLL outputs. Potentially
reduces the CLKIN frequency to the more restrictive DLL limits. If only the CLKFX or
CLKFX180 outputs are used, then DFS_FREQUENCY_MODE alone defines the
frequency limits.

CLKFX_MULTIPLY Controls the output frequency per the equation above. Legal values include integer values
ranging from 2 to 32. Default value is 4.

CLKFX_DIVIDE Controls the output frequency per the equation above. Legal values include integer values
ranging from 1 to 32. Default value is 1.

FCLKIN
CLKFX_MULTIPLY

CLKFX_DIVIDE
--•

ug000.book Page 162 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs

XAPP462 (v1.0) July 11, 2003 www.xilinx.com 163
1-800-255-7778

R

DCM Wizard

To enable the Frequency Synthesizer in DCM Wizard, check the CLKFX, CLKFX180, or both
clock outputs in the General Setup window, as shown in Figure 41.

If using the CLKFX or CLKFX180 clock outputs stand-alone, then optionally extend the
frequency limits by disabling any DLL clock outputs and any feedback.

• By default, the CLK0 output is always checked. If just using CLKFX or CLKFX180,
uncheck CLK0.

• Disable DCM feedback by selecting None, as shown in Figure 42. Without feedback, the
CLKFX and CLKFX180 frequency range is extended to both lower and higher frequencies.

Frequency Constraints

CLKIN The CLKIN frequency limits are determined by the DFS_FREQUENCY_MODE attribute
unless the application uses any outputs from the Delay-Locked Loop (DLL) unit. If the DLL
unit is used, then the more restrictive DLL clock limits apply.

CLKFX
CLKFX180

The CLKFX and CLKFX180 output frequency limits are determined by the
DFS_FREQUENCY_MODE attribute.

* Estimate only. See the Spartan-3 Data Sheet, Module 3 for the correct specified value.

Table 25: Frequency Synthesizer Summary (Continued)

Minimum Frequency Maximum Frequency

CLKIN_FREQ_FX_MIN (~1.0 MHz)* CLKIN_FREQ_FX_MAX (~326 MHz)*

DFS_
FREQUENCY_

MODE
Minimum Frequency Maximum Frequency

LOW CLKIN_FREQ_FX_LF_MIN
(~24 MHz)*

CLKIN_FREQ_FX_LF_MAX
(~210 MHz)*

HIGH CLKIN_FREQ_FX_HF_MIN
(~210 MHz)*

CLKIN_FREQ_FX_HF_MAX
(~325 MHz)*

Figure 41: Enabling Frequency Synthesizer in DCM Wizard

CLK0

CLKFX
CLKFX180

Check CLKFX or
CLKFX180 to enable
the Frequency
Synthesizer options

If using only the
CLKFX or CLKFX180
clock outputs, uncheck
CLK0 to extend the
DCM frequency limits

x462_41_070903

ug000.book Page 163 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/bvdocs/publications/ds099-3.pdf

164 www.xilinx.com XAPP462 (v1.0) July 11, 2003
1-800-255-7778

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs
R

Finally, enter the desired output frequency or the Multiply and Divide values, as described in the
DCM Wizard Clock Frequency Synthesizer panel section.

Clock
Forwarding,
Mirroring,
Rebuffering

Because DCMs provide advanced clock control features and Spartan-3 I/O pins support a
variety of I/O voltage standards, Spartan-3 FPGAs commonly are used to rebuffer or mirror
clock signals, often changing the input clock from one voltage standard to another. Likewise,
the DCM conditions an incoming clock signal so that it has a 50% duty cycle.

Figure 20 shows a simple example where a DCM conditions an incoming clock to a 50% duty
cycle, and then either forwards the clock at the same frequency using the CLK0 output, or
doubles the frequency using the DCM CLK2X output. Similarly, the input and output clocks are
phase aligned once the DCM asserts its LOCKED output. The clock feedback path to CLKFB
monitors and eliminates the clock distribution delay at the external clock feedback point.

If a 50/50 duty cycle is important on the output clock, make sure that the output I/O standard
can switch fast enough to preserve the 50% duty cycle. Verify the duty cycle performance using
IBIS simulation on the output signal. Some I/O standards have asymmetric rise and fall times
that distort the duty cycle higher frequencies, as can be seen in the IBIS simulation. The DCI
versions of HSTL, SSTL, and LVCMOS I/O standards have better symmetry.

To guarantee a 50/50 duty cycle above 100 MHz, the DCM’s duty cycle correction capability is
mandatory, even if the CLKIN source provides a clean 50% duty cycle. Consequently, the
DUTY_CYCLE_CORRECTION attribute must equal TRUE when using the CLK0, CLK90,
CLK180, or CLK270 outputs for clock forwarding. The other DCM clock outputs are normally
always clock corrected to a 50% duty cycle (see “Clock Conditioning”).

For best duty-cycle performance—especially at 200 MHz and greater—use a circuit similar to
that shown in Figure 43. Use both the CLKx and CLKx180 outputs from the DCM to drive the
C0 and C1 inputs, respectively, on a Dual-Data Rate (DDR) output flip-flop. Connect the D0
input of the DDR flip-flop to VCC and the D1 input to GND. Each DCM output drives a separate
global buffer, which minimizes duty-cycle distortion. At higher frequencies, it is best not to
distribute just one clock and invert one phase locally within the DDR flip-flop, as this adds
approximately 150 ps of duty-cycle distortion.

At frequencies of 250 MHz or higher, distribute clocks using a differential signaling standard,
such as LVDS. In Figure 43, for example, both the CLKIN clock input and the clock output use
LVDS. Additionally, the clock feedback path uses LVDS. For optimal performance, both the
clock input and the clock feedback paths require differential global buffer inputs (IBUFGDS),
which unfortunately consumes all the global buffer inputs along one edge of the device.
However, this solution provides the best-quality clock forwarding solution at high frequencies.

Figure 42: Select No Feedback (None) to Extend Frequency Synthesizer Frequency
Limits

Source:
Feedback

Internal External None

Value: 1X 2X

If only using the CLKFX or CLKFX180
clock ouputs, optionally click None to
extend the DCM frequency limits.

x462_42_070903

ug000.book Page 164 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs

XAPP462 (v1.0) July 11, 2003 www.xilinx.com 165
1-800-255-7778

R

Clock Jitter or
Phase Noise

All clocks, including the most expensive, high-precision sources, exhibit some amount of clock
jitter or phase noise. The Spartan-3 Digital Clock Managers have their own jitter characteristics,
as described in this section. When operating at low frequencies—20 MHz, for example—the
effects of jitter usually can be ignored. However, when operating at high frequencies—
200 MHz, for example, especially in dual-data rate (DDR) applications—clock jitter becomes a
relevant design factor. Clock jitter directly subtracts from the time available to the FPGA
application by effectively reducing the available time between active clock edges.

What is Clock Jitter?

Clock jitter is the variation of a clock edge from its ideal position in time, as illustrated in
Figure 44. The heavy line shows the ideal position on the clock signal. On each clock edge,
there is some amount of variation between the actual clock edge and its ideal location. The
difference between the maximum and minimum variations is called peak-to-peak jitter. Jitter is
only relevant on the active clock edge. For example, in single-data rate (SDR) applications, data
is clocked at each rising clock edge and the specified jitter only subtracts from the total clock
period. In dual-data rate (DDR) application, data is clocked at the start of each period and
halfway into the period. Therefore, jitter affects each half period.

Figure 43: High-Frequency (250+ MHz) LVDS Clock Forwarding Circuit with 50% Duty Cycle

D0

D1

CE

C0

C1

Q

OFDDRCPE

CLKx

DCM

CLKx180

BUFG

BUFG

VCC

GND

OBUFDS

CLKIN

CLKFB

IBUFGDS

IBUFGDS

External Clock Feedback (LVDS)

FPGA

x462_43_061903

Figure 44: Jitter in Clock Signals

Clock Period

Ideal clock
edge location

Clock edge
with jitter

Peak-to-peak
jitter

x462_44_061903

ug000.book Page 165 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

166 www.xilinx.com XAPP462 (v1.0) July 11, 2003
1-800-255-7778

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs
R

What Causes Clock Jitter?

Clock jitter is unavoidable and exists in all systems. Clock jitter is caused by the various sources
of noise or by signal imperfections within the system. In fact, jitter is the manifestation of noise
in the time domain. The incoming clock source, for example, has its own jitter characteristics
due to random thermal or mechanical vibration noise from the crystal. A large number of
simultaneous switching outputs (SSOs) adds substrate noise that slightly changes internal
switching thresholds and therefore adds jitter. Similarly, an improperly designed power supply
or insufficient decoupling also contributes to jitter. Other sources of clock jitter include cross talk
from adjacent signals, poor termination, ground bounce, and electromagnetic interference
(EMI).

This application note only discusses the jitter behavior of Spartan-3 Digital Clock Managers
(DCMs) and how to improve overall jitter performance within the FPGA.

Understanding Clock Jitter Specifications

Clock jitter is specified in a variety of manners, and the various specifications show different
aspects of the same phenomenon.

Cycle-to-Cycle Jitter

Cycle-to-cycle jitter, also called adjacent cycle jitter, indicates the maximum clock period
variance from one clock cycle to the next, as shown in Figure 45. In this simple example, the
maximum change from one cycle to the next is +100 ps and –100 ps, or put simply, ±100 ps.
Although the clock period may change by larger absolute amounts when measured over
millions of clock cycles, the clock period never changes by more than ±100 ps from one clock
cycle to the next.

Cycle-to-cycle is an important measure of the quality of a clock output or oscillator but has little
use in analyzing the timing of an application.

Period Jitter

Period jitter is the summation of all the cycle-to-cycle jitter values over millions of clock cycles.
Peak jitter indicates the earliest and the latest transition times compared to the ideal clock
transition time over consecutive clocks.

Period jitter for Digital Clock Mangers is random and is expressed as peak-to-peak jitter.
Conceptually, the position of the clock transition is a probabilistic distribution or histogram,
centered around the ideal, desired clock position, as shown in Figure 46. The actual distribution
may not appear purely Gaussian and may be bimodal. Regardless, most actual clock
transitions occur near the desired ideal position. However, measured over millions of clock
cycles, some clock transitions occur far from the desired position.

The statistical distance from the desired position is measured in standard deviations, also
called σ (sigma). Because the DCM is an all-digital design, it is highly stable and Xilinx specifies
jitter deviation to ±7σ or peak-to-peak jitter to 14σ. As a point of reference, ±7σ guarantees that

Figure 45: Cycle-to-Cycle Jitter Example

T0 T1 = T0 + 100 ps T2 = T1 - 100 ps

Cycle-to-cycle jitter is the
difference in clock period
from one cycle to the next.

x462_45_062203

ug000.book Page 166 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs

XAPP462 (v1.0) July 11, 2003 www.xilinx.com 167
1-800-255-7778

R

99.99999999974% of the jitter values are less than the specified worst-case jitter value. A 14σ
peak-to-peak jitter, ±7σ jitter deviation, equates to a maximum bit error rate (BER) of
1.28 x 10-12.

Unit Interval (UI)

Another method to specify jitter is as a fraction of the Unit Interval (UI). One UI represents the
time equivalent to one bit time, irrespective of frequency. In single-data rate (SDR) applications
where either the rising or the falling clock edge captures data, one UI equals one clock period.
In dual-data rate (DDR) applications where data is clocked at twice the clock rate, one UI
equals half the clock period.

The peak-to-peak jitter amplitude, quantified in UIs, is the fraction of the peak-to-peak jitter
value compared to the total bit period time.

Calculating Total Jitter

The Spartan-3 Data Sheet specifies the output jitter from the DCM clock outputs, except for
CLKFX/CLKFX180. The Digital Frequency Synthesizer (DFS) jitter is calculated based on the
multiplier and divider settings.

The clock outputs from the DLL unit—i.e., every clock output except CLKFX and CLKFX180—
have a worst-case specified jitter listed in the data sheet. This specified value includes the jitter
added by the DLL unit. The DLL unit does not remove jitter, so the total jitter on the DLL clock
output includes the jitter on the input clock, CLKIN, plus the specified value from the data sheet.

The DFS clock outputs, CLKFX and CLKFX180, remove some amount of incoming clock jitter,
so the calculated output jitter is the total jitter.

Figure 46: Peak-to-Peak Period Jitter Example

Figure 47: Period Jitter Specified as a Fraction of a Unit Interval

Desired clock period

Measured clock period

N
um

be
r

of
 s

am
pl

es
Peak-to-peak Period Jitter

(14σ)

+7σ-7σ

x462_46_061903

Bit Period

Peak-to-peak
Period Jitter

Unit Interval (UI) Peak-to-peak period jitter,
represented as fraction of
Unit Interval.

x462_47_061903

ug000.book Page 167 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

168 www.xilinx.com XAPP462 (v1.0) July 11, 2003
1-800-255-7778

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs
R

Adding Input Jitter to DLL Output Jitter

When adding the input jitter and the DLL output jitter, use a root-mean-square (RMS)
calculation, similar to noise calculations.

Peak-to-Peak

Eq. 10

Peak-to-Peak Deviation

Eq. 11

where

Example

Assume that an input clock has 150 ps peak-to-peak period jitter, optionally expressed as
±75 ps. The incoming clock is duty-cycle corrected, using the same frequency, on the CLK0
DCM output.

In this case, JITTERINPUT = 150 ps. The value for JITTERSPEC is the Spartan-3 Data Sheet
specification called CLKOUT_JITT_PER_0, which is estimated here as ±100 ps, or 200 ps
peak-to-peak.

Consequently, the total jitter on the DCM output is 250 ps peak-to-peak or ±125 ps.

Calculating Jitter for Cascaded DCMs

Figure 48 shows an example application where multiple DCMs are cascaded together to create
various output frequencies. The jitter at any point depends on:

• the incoming jitter from the previous sources and

• which DCM output is used.

Each DCM output has slightly different jitter characteristics, as specified in the data sheet. Also,
the CLKFX and CLKFX180 outputs from the DFS unit remove some amount of input jitter and
DCM Wizard calculates their jitter values (see “Clock Frequency Synthesizer”).

JITTERINPUT = The input period jitter, measured at the clock input pin of the FPGA

JITTERSPEC = The DLL clock output period jitter, as specified in the Spartan-3 Data
Sheet for the appropriate output port

JITTERTOTAL = The expected total output period jitter

JITTERTOTAL JITTERINPUT()2
JITTERSPEC()2

+=

JITTERTOTAL

JITTERINPUT()2
JITTERSPEC()2

+

2
--±=

JITTERTOTAL 150 ps()2 200 ps()2
+ 250 ps= =

ug000.book Page 168 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs

XAPP462 (v1.0) July 11, 2003 www.xilinx.com 169
1-800-255-7778

R

Consequently, the jitter at any point in the cascaded DCM chain depends on the factors
described above. The following examples illustrate how to calculate total jitter at the various
points in the circuit.

Example 1: All DCMs Use DLL Outputs

In this example, assume that the input clock has 150 ps (±75 ps) of period jitter.

Assume that DCM (A) uses the CLK2X output. Use the Spartan-3 Data Sheet specification
called CLKOUT_PER_JITT_2X for the DCM output jitter, estimated here as 400 ps (±200 ps).
Calculate the total period jitter on clock (A) using Equation 10.

Assume that DCM (B) uses the CLKDV output with an integer divider value. Use the Spartan-
3 Data Sheet specification called CLKOUT_PER_JITT_DV1 for the DCM output jitter,
estimated here as 300 ps (±150 ps). Calculate the total period jitter on clock (B) using
Equation 10. Because there are now three elements involved—the input jitter, the jitter from
DCM (A), and the jitter from DCM (B)—expand the RMS equation appropriately.

Finally, assume that DCM (C) phase shifts the output from DCM (B) by 90°. Use the Spartan-3
Data Sheet specification called CLKOUT_PER_JITT_90 for the DCM output jitter, estimated
here as 300 ps (±150 ps). Calculate the total period jitter on clock (C) using Equation 10.
Because there are now four elements involved—the input jitter, the jitter from DCM (A), the jitter
from DCM (B), and the jitter from DCM (C)—expand the RMS equation appropriately.

Example 2: Some DCMs Use the CLKFX or CLKFX180 Outputs

This example is similar to Example 1: All DCMs Use DLL Outputs above except that some
DCMs use the CLKFX or CLKFX180 outputs from the DCM’s DFS unit.

In this example, assume that the 75MHz input clock has 150 ps (±75 ps) of period jitter.

As in Example 1, assume again that DCM (A) uses the CLK2X output. The resulting output jitter
is the same as that shown in the following equation.

In this example, assume that DCM (B) synthesizes a 90MHz clock using the 150MHz clock
generated by DCM (A). Per the DCM Wizard (see “Clock Frequency Synthesizer”), set the
attributes CLKFX_MULTIPLY=3 and CLKFX_DIVIDE=5. DCM Wizard also specifies the worst-
case output period jitter as 700 ps.

Finally, assume again that DCM (C) phase shifts the output from DCM (B) by 90°. Use the
Spartan-3 Data Sheet specification called CLKOUT_PER_JITT_90 for the DCM output jitter,

Figure 48: Calculating Jitter for Cascaded DCMs Depends on which DCM Outputs are Used

DCM
CLKIN

RST

CLKx

LOCKED

DCM
CLKIN

RST

CLKx

LOCKED

DCM
CLKIN

RST

CLKx

LOCKED

A B C

x462_48_061903

JITTERTOTAL A() 150ps()2 400ps()2
+ 427ps 214ps±= = =

JITTERTOTAL B() 150ps()2 400ps()2 300ps()2
+ + 522ps 261ps±= = =

JITTERTOTAL C() 150ps()2 400ps()2 300ps()2 300ps()2
+ + + 602ps 301ps±= = =

JITTERTOTAL B() 700ps 350ps±= =

ug000.book Page 169 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

170 www.xilinx.com XAPP462 (v1.0) July 11, 2003
1-800-255-7778

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs
R

estimated here as 300 ps (±150 ps). Calculate the total period jitter on clock (C) using the
following equation. Because the preceding DCM used the CLKFX output, the total incoming
jitter is set at 700 ps, worst-case. Use the RMS equation to calculate the resulting output jitter
as shown below.

Cascaded DCM Design Recommendations

When cascading DCMs, be sure that the LOCKED output of the preceding DCM controls the
cascaded DCM’s RST input, as shown in Figure 48. The cascaded DCM should not attempt to
lock to the input clock until the preceding DCM asserts its LOCKED output, indicating that the
clock is stable.

When cascading DCMs, place the most jitter-critical clock output on the first DCM in the
cascaded chain.

Jitter Effect on System Performance

Clock jitter, along with other effects, adversely affects system performance by reducing the
effective bit period. The bit period available to the FPGA application is the total bit period, TBIT,
minus the following effects, as shown in the following equation. In single-data rate (SDR)
applications, the clock period and the bit period are equal. However, in dual-data-rate (DDR)
applications, the bit period is half the clock period.

where

If the total jitter is specified as a positive value instead of a deviation from the clock period—
e.g., 200 ps instead of ±100 ps—subtract half the positive value—i.e., 100 ps. The bit period is
only shortened by the negative deviation. The positive deviate adds to the bit period, adding
more timing slack.

Example

Assume that an incoming clock signal enters the FPGA at 75 MHz and that the clock source
has ±100 ps of jitter. The application clocks data on the rising edge of an internally generated
150 MHz, or a total bit period, TBIT, of 6.67 ns. How long is the available bit period, TAVAILABLE,
after considering the effects of jitter?

The CLK2X output from the Clock Doubler generates a 150MHz clock from the 75MHz clock
input. The Clock Doubler output, CLK2X, has ±~200 ps (estimated) of worst-case jitter
according to the CLKOUT_PER_JITT_2X specification in the Spartan-3 Data Sheet. Adding

TBIT = Bit period time

tTOTAL_JITTER = Total clock jitter. Includes the clock input jitter plus any DCM
output jitter or cascaded DCM output jitter.

tDUTY_CYCLE_DISTORTION = Duty cycle distortion specification. Only required for dual-data
rate (DDR) applications; otherwise zero. Either data sheet
specification CLKOUT_DUTY_CYCLE_DLL or
CLKOUT_DUTY_CYCLE_FX depending on which DCM clock
output is used.

JITTERTOTAL C() 700ps()2 300ps()2
+ 762ps 381ps±= = =

TAVAILABLE TBIT tTOTAL_JITTER– tDUTY_CYCLE_DISTORTION–=

ug000.book Page 170 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs

XAPP462 (v1.0) July 11, 2003 www.xilinx.com 171
1-800-255-7778

R

the DCM’s ±200 ps of jitter to the clock source’s ±100 ps of jitter using root-mean square
(RMS), the total jitter, tTOTAL_JITTER, is ±0.223 ns.

Because data is only clocked on the rising clock edge, there are no duty-cycle distortion effects
and tDUTY_CYCLE_DISTORTION = 0.

Therefore, the total available clock period, TAVAILABLE is reduced down to 6.444 ns from a total
bit period of 6.667 ns. Effectively, this forces the logic to operate at 155.1831 MHz instead of
150 MHz.

Recommended Design Practices to Minimize Clock Jitter

In higher-performance applications, clock jitter steals valuable bit period time. Adhere to the
following recommendations to minimize the amount of system-wide clock jitter.

Properly Design the Power Distribution System

A properly designed power distribution system (PDS), including proper power-plane
decoupling, reduces system jitter by creating a stable power environment. Application note
XAPP623 discusses recommended design practices for PDS design.

• XAPP623: Power Distribution System (PDS) Design: Using Bypass/Decoupling
Capacitors
http://www.xilinx.com/xapp/xapp623.pdf

Properly Design the Printed Circuit Board

Design the printed circuit board for expected operating frequency range and application
environment.

• WP174: Methodologies for Efficient FPGA Integration into PCBs
http://www.xilinx.com/publications/whitepapers/wp_pdf/wp174.pdf

• PCB Checklist
http://support.xilinx.com/xlnx/xil_prodcat_product.jsp?title=si_pcbcheck

Obey Simultaneous Switching Output (SSO) Recommendations

To avoid signal-related corruption of clock inputs to or clock outputs from a DCM, be sure to
follow the Simultaneous Switching Output (SSO) recommendations outlined in the Spartan-3
Data Sheet.

Whenever possible, avoid placing DCM inputs or output near heavily switching I/Os, especially
those with large output voltage swings or with high current drive.

Place Virtual Ground Pins Around DCM Input and Output Connections

On sensitive, high frequency DCM inputs or outputs, use additional user-I/O pin to create extra
connections to the PCB ground—i.e., create virtual ground pins. Place these virtual ground
pins on the I/O pads adjacent to the sensitive DCM signal. Make sure that the I/O pads are on
adjacent pads on the FPGA die level, not just on adjacent pins or balls on the package.
Adjacent balls on BGA packages do not necessarily connect to adjacent pads on the FPGA.
These techniques reduce the internal voltage drop and improve the jitter.

To create a “virtual ground”, configure an IOB as an output driving GND (Low logic level) and
connect the IOB externally directly to the ground plane, as shown in Figure 49.

tTOTAL_JITTER 100ps±()2 200ps±()2
+ 223.60ps± 0.223ns±= = =

TAVAILABLE 6.667ns 0.223ns– 6.444ns= =

ug000.book Page 171 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/xapp/xapp623.pdf
http://www.xilinx.com/publications/whitepapers/wp_pdf/wp174.pdf
http://support.xilinx.com/xlnx/xil_prodcat_product.jsp?title=si_pcbcheck

172 www.xilinx.com XAPP462 (v1.0) July 11, 2003
1-800-255-7778

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs
R

VCCAUX Considerations for Improving Jitter Performance

The Digital Clock Managers are powered by the VCCAUX supply input. Any excessive noise on
the VCCAUX supply input to the FPGA adversely affects the DCM’s characteristics, especially its
jitter performance. For best DCM performance, please follow these recommendations.

1. Limit changes in on the VCCAUX power supply or ground potentials to less than 10 mV in
any 1 ms interval, as shown in Figure 50. This recommendation allows the DCM to properly
track out the change.

2. Limit the noise at the power supply to be within 200 mV peak-to-peak, as shown in
Figure 50.

3. If VCCAUX and VCCO are of the same power plane, every VCCAUX/VCCO pin must be
properly decoupled or bypassed (see “Properly Design the Power Distribution System”).
Separate the VCCAUX supply from any VCCO supplies if Guidelines 1 and 2 above cannot be
maintained.

4. The CLK2X output is especially affected by the power or ground shift. Consequently, the
CLKFX output, using CLKFX_MULTIPLY =2 and CLKFX_DIVIDE=1, may provide a better
quality output when all IOBs and CLBs are switching. The CLKFX circuitry updates the tap
every three input clocks in the DFS mode, as opposed to the slower update rate for the
CLK2X output.

Adjusting FACTORY_JF Setting

A well-designed, stable, properly decoupled power supply is the best overall solution to
reducing clock skew and jitter within the FPGA. However, increasing the FACTORY_JF attribute
setting to 0xFFFF may improve jitter performance on a problem board. When

Figure 49: Place Virtual Ground Pins Adjacent to Sensitive DCM Input or Output Clock
Signals

IBUFG

OBUF

OBUF

To DCM
CLKIN Input

Sensitive DCM
Clock Input

FPGA“Virtual”
ground pin

Direct connection
to PCB ground
plane

GND

GND

x462_49_061903

Figure 50: Recommended VCCAUX Supply Considerations Avoid Voltage Droop

VCCAUX
Supply
(at FPGA)

dV < 10 mV

dt < 1 mS

Keep VCCAUX noise
envelope to < 200 mV,
peak-to-peak

Avoid sudden changes from
one DC level to another.
Keep dV/dt < 10mV/mS. x462_50_061903

ug000.book Page 172 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs

XAPP462 (v1.0) July 11, 2003 www.xilinx.com 173
1-800-255-7778

R

FACTORY_JF=FFFF, the DCM updates its tap settings approximately every twenty input
clocks. The frequency-based default settings update the tap settings much more slowly.

Increasing the FACTORY_JF setting may introduce a small amount of jitter (~30 ps) because
the DCM frequently updates its delay line, which is why FACTORY_JF is not set to the
maximum value by default. If the power supply is unstable, the phase error introduced may be
much bigger than the extra jitter introduced; therefore, increasing the FACTORY_JF setting
may improve the design.

Miscellaneous
Topics

Bitstream Generation Settings

There are two bitstream generation (BitGen) options related to the DCM:

• -g lck_cycle: This option causes the FPGA configuration startup sequence to wait until all
instantiated DCMs assert their LOCKED outputs.

• -g DCMShutdown: This option resets the DCM logic if the "SHUTDOWN" configuration
command is loaded into the configuration logic, as during either partial reconfiguration or
during full reconfiguration via the JTAG port.

Setting Bitstream Generation Options in Project Navigator

If using the ISE 5.2i Project Navigator graphical interface, set the bitstream generation options
by right-mouse clicking Generate Programming File in the Processes for Current Source
panel, as shown in Figure 51. Select Properties from the resulting menu.

See "BitGen Switches and Options" for more information.

Setting Bitstream Generation Options via Command Line or Script

To see the available options, type the following in a command window:

bitgen -help spartan3

Setting Configuration Logic to Wait for DCM LOCKED Output

The DCM’s STARTUP_WAIT attribute signals the FPGA’s configuration start-up logic to wait for
the DCM to assert its LOCKED output before the FPGA asserts its DONE output. Two actions
are required at design time, however. First, set the STARTUP_WAIT attribute to TRUE on each
of the DCMs that must be locked before configuration completes. Then, modify the bitstream
generation options so that the events shown in Figure 52 happen within the six-clock start-up
cycle. Sufficient configuration clock cycles must be provided after the DCM locks to allow the
device to complete the configuration start-up sequence.

Figure 51: Setting Bitstream Generator (BitGen) Options within Project Navigator

Processes for Current Source:

Generate Programming File

Programming File Generation Report

Run
Rerun
Rerun All
Stop
Open without Updating

Properties ...

x462_51_061903

ug000.book Page 173 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

174 www.xilinx.com XAPP462 (v1.0) July 11, 2003
1-800-255-7778

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs
R

A. Release the FPGA’s internal Global Three-State (GTS_cycle) signal, enabling all I/O
signals.

B. Set the cycle where the start-up logic waits for the DCM(s) to assert LOCKED after the
GTS_cycle. The DCMs require some form of external input—a clock and possibly a
feedback signal—before the DCM can lock on the clock signal.

C. After achieving valid DCM lock, assert the FPGA's internal Global Write Enable
(GWE_cycle) signal.

D. Finally, assert the internal DONE signal.

Figure 53 shows these same option settings from within Project Navigator.

The specific start-up phase timing and the timing of both the GWE_cycle and DONE_cycle are
flexible. However, if using the STARTUP_WAIT attribute on a DCM, the GTS_cycle must always
happen before the LCK_cycle. Otherwise, the DCM never locks and configuration never
completes!

Figure 52: Start-up Logic Interaction with DCM LOCKED Output

0 1 2 3 4 5 6

DONE_cycle

Start-up CLK

GTS_cycle

GWE_cycle

LCK_cycle

Start-up Cycles

A

B

C

D

x462_52_062403

Figure 53: BitGen Options

Process Properties

Startup options

Value

CCLK

6

3

5

4

Default (NoWait)

General Options Configuration Options Readback Options

Property Name

FPGA Startup Clock

Enable Internal Done Pipe

Done (Output Events)

Enable Outputs (Output Events)
Release Write Enable (Output Events)
Release DLL (Output Events)

Match Cycle (Output Events)

Drive Done Pin High

OK Cancel Default Help

Optionally, set GWE_cycle
to follow GTS_cycle
ensuring DCM(s) reset after
I/Os activate.

LCK_cycle indicates cycle
where start-up logic waits
for DCM(s) to assert
LOCKED.

Set Done_cycle
after LCK_cycle. GTS_cycle must occur

before LCK_cycle to enable
I/O pins.

Click Startup options tab.

Click OK when
finished.

x462_53_061903

ug000.book Page 174 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs

XAPP462 (v1.0) July 11, 2003 www.xilinx.com 175
1-800-255-7778

R

Reset DCM During Partial Reconfiguration or During Full Reconfiguration via JTAG

Another bitstream option resets all the DCMs in the FPGA application during reconfiguration
via the SelectMAP interface or during full or partial reconfiguration via the JTAG port. If the
option is enabled, the DCMs are reset when the AGHIGH configuration command is issued
during the SHUTDOWN command sequence. It is imperative to reset the DCMs when
reconfiguring through JTAG. Change the bitstream generator options in Project Navigator (see
“Setting Bitstream Generation Options in Project Navigator”). Click Configuration options,
then check the Reset DCM if SHUTDOWN & AGHIGH performed option as shown in
Figure 54.

Momentarily Stopping CLKIN

To reduce overall system noise while taking precision analog measurements, it is possible to
momentarily stop the clock inputs to the DCM without adversely affecting the remainder of the
FPGA application. This is possible, in part, because the DCM is an all-digital, stable system.
The DCM must first lock to the input clock and assert the LOCKED output. If the DCM is not
reset, it is possible to momentarily stop the CLKIN input clock with little impact to the deskew
circuit, provided that these guidelines are followed:

• The clock must not be stopped for more than 100 ms to minimize the effect of device
cooling, which would change the tap delays.

• The clock should be stopped during a Low phase, and when restored, must generate a full
High half-period.

Although the above conditions do technically violate the clock input jitter specifications, the
DCM LOCKED output stays High and remains High when the clock is restored. Consequently,
the High on LOCKED does not necessarily mean that a valid clock is available. The above
conditions technically do violate the clock input jitter specifications but work within the limits
described above.

When CLKIN is stopped, an additional one to eight output clock cycles are still generated as the
DCM’s digital delay line is flushed. Similarly, once CLKIN is restarted, output clocks are not
generated for one to four clocks cycles as the delay line is filled. The delay line usually fills
within two or three clocks.

Figure 54: Configuration Option Allows DCM Reset During Reconfiguration Process

Process Properties

Configuration options

Value
Pull Up

Pull Up
Float
Pull Up
Pull Down
0xFFFFFFFF

General Options Startup options Readback Options

Property Name
Configuration Pin Done
JTAG Pin TCK
JTAG Pin TDI
JTAG Pin TDO
JTAG Pin TMS
Unused IOBs
UserID Code (8 Digit Hexadecimal)
Reset DCM if SHUTDOWN & AGHIGH performed

OK Cancel Default Help

Click Configuration
options tab.

Click OK when
finished.

Pull Up

Check to reset all the DCMs
in the FPGA if the AGHIGH
command issued during
SHUTDOWN sequence.

x462_54_062103

ug000.book Page 175 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

176 www.xilinx.com XAPP462 (v1.0) July 11, 2003
1-800-255-7778

Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs
R

Likewise, it is also possible to phase shift the input clock. This phase shift propagates to the
output one to four clocks after the original shift with no disruption to the DCM control.

Figure 55 shows an example where the CLKIN input clock is momentarily stopped. The figure
also illustrates the corresponding effect on the CLK2X clock output.

Related
Materials and
References

• Spartan-3 Data Sheet (Module 2).
“Digital Clock Manager”. Description of features and capabilities.
http://www.xilinx.com/bvdocs/publications/ds099-2.pdf

• Spartan-3 Data Sheet (Module 3).
Timing and Jitter Specifications.
http://www.xilinx.com/bvdocs/publications/ds099-3.pdf

• Libraries Guide, for ISE 5.2i by Xilinx, Inc.
DCM Primitive description.
http://toolbox.xilinx.com/docsan/xilinx5/pdf/docs/lib/lib.pdf

• Architecture Wizard.
Free recorded E-learning session.
http://www.xilinx.com/support/training/ise5-wizard.htm

• XAPP259: System Interface Timing Parameters.
http://www.xilinx.com/xapp/xapp259.pdf

• XAPP268: Dynamic Phase Alignment.
http://www.xilinx.com/xapp/xapp268.pdf

• XAPP622: SDR LVDS Transmitter/Receiver.
http://www.xilinx.com/xapp/xapp622.pdf

• Development System Reference Guide. Chapter 15, "BitGen". Description of bitstream
generation program and options. Pages 335-367.
http://toolbox.xilinx.com/docsan/xilinx5/pdf/docs/dev/dev.pdf

Revision
History

The following table shows the revision history for this document.

Figure 55: Momentarily Stopping CLKIN Clock Input

CLKIN

CLK2X

Clock input must be
stopped in Low phase and
for no more than 100 ms.

When restarted, the clock
input must generate a full
High half-period.

x462_55_062403

Date Version Revision

07/09/03 1.0 Initial Xilinx release.

ug000.book Page 176 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/bvdocs/publications/ds099-3.pdf
http://www.xilinx.com/bvdocs/publications/ds099-2.pdf
http://toolbox.xilinx.com/docsan/xilinx5/pdf/docs/lib/lib.pdf
http://www.xilinx.com/support/training/ise5-wizard.htm
http://www.xilinx.com/xapp/xapp259.pdf
http://www.xilinx.com/xapp/xapp268.pdf
http://www.xilinx.com/xapp/xapp622.pdf
http://toolbox.xilinx.com/docsan/xilinx5/pdf/docs/dev/dev.pdf

XAPP463 (v1.1.1) June 25, 2003 www.xilinx.com 177
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Summary For applications requiring large, on-chip memories, Spartan™-3 FPGAs provides plentiful,
efficient SelectRAM™ memory blocks. Using various configuration options, SelectRAM blocks
create RAM, ROM, FIFOs, large look-up tables, data width converters, circular buffers, and shift
registers, each supporting various data widths and depths. This application note describes the
features and capabilities of block SelectRAM and illustrates how to specify the various options
using the Xilinx CORE Generator™ system or via VHDL or Verilog instantiation. Various non-
obvious block RAM applications are discussed with references to additional tools, application
notes, and documentation.

Introduction All Spartan-3 devices feature multiple block RAM memories, organized in columns. The total
amount of block RAM memory depends on the size of the Spartan-3 device, as shown in
Table 1.

Each block RAM contains 18,432 bits of fast static RAM, 16K bits of which is allocated to data
storage and, in some memory configurations, an additional 2K bits allocated to parity or
additional "plus" data bits. Physically, the block RAM memory has two completely independent
access ports, labeled Port A and Port B. The structure is fully symmetrical, and both ports are
interchangeable and both ports support data read and write operations. Each memory port is
synchronous, with its own clock, clock enable, and write enable. Read operations are also
synchronous and require a clock edge and clock enable.

Though physically a dual-port memory, block RAM simulates single-port memory in an
application, as shown in Figure 1. Furthermore, each block memory supports multiple
configurations or aspect ratios. Table 2 summarizes the essential SelectRAM features.

Application Note: Spartan-3 FPGA Family

XAPP463 (v1.1.1) June 25, 2003

Using Block RAM in Spartan-3 FPGAs
R

Table 1: Block RAM Available in Spartan-3 Devices

Spartan-3
Device

RAM
Columns

RAM Blocks
Per Column

Total RAM
Blocks

Total RAM
Bits

Total RAM
Kbits

XC3S50 1 4 4 73,728 72K

XC3S200 2 6 12 221,184 216K

XC3S400 2 8 16 294,912 288K

XC3S1000 2 12 24 442,368 432K

XC3S1500 2 16 32 589,824 576K

XC3S2000 2 20 40 737,280 720K

XC3S4000 4 24 96 1,769,472 1,728K

XC3S5000 4 26 104 1,916,928 1,872K

Notes:
1. 1Kbit = 1,024 bits, per memory conventions.

ug000.book Page 177 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

178 www.xilinx.com XAPP463 (v1.1.1) June 25, 2003
1-800-255-7778

Using Block RAM in Spartan-3 FPGAs
R

Cascade multiple block RAMs to create deeper and wider memory organizations, with a
minimal timing penalty incurred through specialized routing resources.

Figure 1: SelectRAM 18K Blocks Perform as Dual-Port (a) and Single-Port (b) Memory

X463_01_040403

WEA
ENA

SSRA
CLKA

ADDRA[rA–1:0]
DIA[wA–1:0]

DIPA[3:0]

DOPA[pA–1:0]

DOA[wA–1:0]

RAM16_wA_wB

(a) Dual-Port (b) Single-Port

DOPB[pB–1:0]

DOB[wB–1:0]

WEB
ENB

SSRB
CLKB

ADDRB[rB–1:0]
DIB[wB–1:0]

DIPB[3:0]

WE
EN

SSR
CLK

ADDR[r–1:0]
DI[w–1:0]

DIP[p–1:0]

DOP[p–1:0]

DO[w–1:0]

RAM16_Sw

Notes:
1. wA and wB are integers representing the total data path width (i.e., data bits plus parity bits) at ports A and B, respectively.
2. pA and pB are integers that indicate the number of data path lines serving as parity bits.
3. rA and rB are integers representing the address bus width at ports A and B, respectively.
4. The control signals CLK, WE, EN, and SSR on both ports have the option of inverted polarity.

Table 2: SelectRAM 18K Block Memory Features and Applications

Total RAM bits, including parity 18,432 (16K data + 2K parity)

Memory Organizations 16Kx1

8Kx2

4Kx4

2Kx8 (no parity)

2Kx9 (x8 + parity)

1Kx16 (no parity)

1Kx18 (x16 + 2 parity)

512x32 (no parity)

512x36 (x32 + 4 parity)

256x72 (single-port only)

Parity Available and optional only for organizations greater than
byte-wide. Parity bits optionally available as extra data
bits.

Performance 200 MHz (estimated)

ug000.book Page 178 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Block RAM in Spartan-3 FPGAs

XAPP463 (v1.1.1) June 25, 2003 www.xilinx.com 179
1-800-255-7778

R

The Xilinx CORE Generator system supports various modules containing block RAM for
Spartan-3 devices including:

• Embedded dual- or single-port RAM modules

• ROM modules

• Synchronous and asynchronous FIFO modules

• Content-Addressable Memory (CAM) modules

Furthermore, block RAM can be instantiated in any synthesis-based design using the
appropriate “RAMB16” module from the Xilinx design library.

This application note describes the signals and attributes of the Spartan-3 block RAM feature,
including details on the various attributes and applications for block RAM.

Block RAM
Location and
Surrounding
Neighborhood

As mentioned previously, block RAM is organized in columns. Figure 2 shows the Block RAM
column arrangement for the XC3S200. The XC3S50 has a single column of block RAM, located
two CLB columns from the left edge of the device. Spartan-3 devices larger than the XC3S50
have two columns of block RAM, adjacent to the left and right edges of the die, located two
columns of CLBs from the I/Os at the edge. In addition to the block RAM columns at the edge,
the XC3S4000 and XC3S5000 have two additional columns—a total of four columns—nearly
equally distributed between the two edge columns. Table 1 describes the number of columns
and the total amount of block RAM on a specific device. The edge columns make block RAM
particularly useful in buffering or resynchronizing buses entering or leaving the Spartan-3
device.

Timing Interface Simple synchronous interface. Similar to reading and
writing from a register with a setup time for write
operations and clock-to-output delay for read operations.

Single-Port Yes

True Dual-Port Yes

ROM, Initial RAM Contents Yes

Mixed Data Port Widths Yes

Power-Up Condition User-defined data, defaults to zero

Potential Applications Local data storage, FIFOs, elastic stores, register files,
buffers, stacks, circular buffers, shift registers, delay
lines, waveform storage and generation, direct digital
synthesis, CAMs, associative memories, function tables,
function generators, wide logic functions, code
converters, encoders, decoders, counters, state
machines, microsequencers, program storage for
embedded processor(s)

Table 2: SelectRAM 18K Block Memory Features and Applications (Continued)

ug000.book Page 179 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

180 www.xilinx.com XAPP463 (v1.1.1) June 25, 2003
1-800-255-7778

Using Block RAM in Spartan-3 FPGAs
R

Immediately adjacent to each block RAM is an embedded 18x18 hardware multiplier. Co-
locating block RAM and the embedded multipliers improves the performance of some digital
signal processing functions.

Special interconnect surrounding the block RAM provides efficient signal distribution for
address and data. Furthermore, special provisions allow multiple block RAMs to be cascaded
to create wider or deeper memories.

Data Flows Spartan-3 block RAM is constructed of true dual-port memory and simultaneously supports all
the data flows and operations shown in Figure 3. Both ports access the same set of memory
bits but with two potentially different address schemes depending on the port’s data width.

1. Port A behaves as an independent single-port RAM supporting simultaneous read and
write operations using a single set of address lines.

2. Port B behaves as an independent single-port RAM supporting simultaneous read and
write operations using a single set of address lines.

3. Port A is the write port with a separate write address and Port B is the read port with a
separate read address. The data widths for Port A and Port B can be different also.

4. Port B is the write port with a separate write address and Port A is the read port with a
separate read address. The data widths for Port B and Port A can be different also.

Figure 2: Block RAMs Arranged in Columns with Detailed Floorplan of XC3S200

Block RAM Columns

2 CLBs 2 CLBsEmbedded Multipliers

XC3S200
XC3S400

XC3S1000
XC3S1500
XC3S2000

XC3S4000
XC3S5000

XC3S50

X463_02_062503

ug000.book Page 180 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Block RAM in Spartan-3 FPGAs

XAPP463 (v1.1.1) June 25, 2003 www.xilinx.com 181
1-800-255-7778

R

Signals The signals connected to a block RAM primitive divide into four categories, as listed below.
Table 3 lists the block RAM interface signals, the signals names for both single-port and dual-
port memories, and signal direction.

1. Data Inputs and Outputs

2. Parity Inputs and Outputs, available when a data port is byte-wide or wider

3. Address inputs to select a specific memory location

4. Various control signals that manage read, write, or set/reset operations.

Data Inputs and Outputs
The total width of a port’s data port includes both the data bus and the parity bus, when
applicable, as shown in Figure 4. In the 512x36 organization, for example, the 36-bit data port
width includes four parity bits as the more significant bits followed by the 32 data bits as the less
significant bits.

The data and parity input and output signals are always buses; that is, in a 1-bit width
configuration, the data input signal is DI[0] and the data output signal is DO[0].

Figure 3: Block RAM Support Single- and Dual-Port Data Transfers
X463_03_020503

Spartan-3
Dual Port

Block RAM

Read 3

Read

Write

Write

Read

Write

Write

Read

P
or

t A

P
or

t B

21

4

Table 3: Block RAM Interface Signals

Signal Description Single Port

Dual Port

DirectionPort A Port B

Data Input Bus DI DIA DIB Input

Parity Data Input Bus (available only for
byte-wide and wider organizations)

DIP DIPA DIPB Input

Data Output Bus DO DOA DOB Output

Parity Data Output (available only for
byte-wide and wider organizations)

DOP DOPA DOPB Output

Address Bus ADDR ADDRA ADDRB Input

Write Enable WE WEA WEB Input

Clock Enable EN ENA ENB Input

Synchronous Set/Reset SSR SSRA SSRB Input

Clock CLK CLKA CLKB Input

ug000.book Page 181 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

182 www.xilinx.com XAPP463 (v1.1.1) June 25, 2003
1-800-255-7778

Using Block RAM in Spartan-3 FPGAs
R

Data Input Bus — DI[#:0] (DIA[#:0], DIB[#:0])

The Data Input bus is the source of data to be written into RAM.

Data at the DI input bus is written to the RAM location specified by the address input bus,
ADDR, during a Low-to-High transition on the CLK input, when the clock enable EN and write
enable WE inputs are High.

Figure 4: Data Organization and Mapping Between Modes

Byte 0Byte 1Byte 2Byte 3

Byte 0Byte 1

Byte 2Byte 3

Byte 0

Byte 1

Byte 2

Byte 3

0123

4567
Byte 3

0

0
1

0
1
2
3

0
1

6
7

01

23

45

67

B
yt

e
0

01

23
45

67

B
yt

e
3

0
1
2
3

P0

P2

P0P1P2P3

P2P3

P0P1

P3

P1

0

1

2

3

B
yt

e
0

4

5

6

7

B
yt

e
3

0
1
2
3

C
D
E
F

1C
1D
1E
1F

1617 815

08162432333435 31 23 15 7

07

078

23

0123

4567
yte 0

01

01

0

Address

512x36

1Kx18

2Kx9

4Kx4

8Kx2

16Kx1

Parity Data

B

X463_04_062503

N
o

 P
ar

it
y

(1
6K

bi
ts

 d
at

a)

Parity Optional

(16Kbits data,

2Kbits parity)

ug000.book Page 182 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Block RAM in Spartan-3 FPGAs

XAPP463 (v1.1.1) June 25, 2003 www.xilinx.com 183
1-800-255-7778

R

Data Output Bus — DO[#:0] (DOA[#:0], DOB[#:0])

The data output bus, DO, presents the contents of memory cells referenced by the address
bus, ADDR, at the active clock edge during a read operation. During a simultaneous write
operation, the behavior of the data output latches is controlled by the WRITE_MODE attribute
(see Read Behavior During Simultaneous Write — WRITE_MODE, page 190).

Parity Inputs and Outputs
Parity is only supported for data paths byte wide and wider.

Although referred to herein as “parity” bits, the parity inputs and outputs have no special
functionality and can be used as additional data bits. For example, the parity bits could be used
to hold additional information about a data word, tagging the data as code or data, positive or
negative values, old or new data, etc.

Block RAM does not contain any special circuitry for generating or checking parity. These
functions, if required by the application, are created using CLB logic resources.

Data Input Parity Bus — DIP[#:0] (DIPA[#:0], DIPB[#:0])

Data at the DIP input bus is written to the RAM location specified by the address input bus,
ADDR, during a Low-to-High transition on the CLK input, when the clock enable EN and write
enable WE inputs are High.

Data Output Parity Bus — DOP[#:0] (DOPA[#:0], DOPB[#:0])

The data output bus, DOP, presents the contents of memory cells referenced by the address
bus, ADDR, at the active clock edge during a read operation. During a simultaneous write
operation, the behavior of the data output latches is controlled by the WRITE_MODE attribute
(see Read Behavior During Simultaneous Write — WRITE_MODE, page 190).

Address Input
As dual-port RAM, both ports operate independently while accessing the same set of 18K-bit
memory cells.

Address Bus — ADDR[#:0] (ADDRA[#:0], ADDRB[#:0])

The address bus selects the memory cells for read or write operations. The width of the
address bus input determines the required address bus width, as shown in Table 5.

Control Inputs

Clock — CLK (CLKA, CLKB)

Each port is fully synchronous with independent clock pins. All port input pins have setup time
referenced to the port CLK pin. The data bus has a clock-to-out time referenced to the CLK pin.
Clock polarity is configurable and is rising edge triggered by default.

With default polarity, a Low-to-High transition on the clock (CLK) input controls read, write, and
reset operations.

Enable — EN (ENA, ENB)

The enable input, EN, controls read, write, and set/reset operations. When EN is Low, no data
is written and the outputs DO and DOP retain the last state. The polarity of EN is configurable
and is active High by default.

When EN is asserted, minus an active synchronous set/reset input or write enable input, block
RAM always reads the memory location specified by the address bus, ADDR, at the rising clock
edge.

ug000.book Page 183 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

184 www.xilinx.com XAPP463 (v1.1.1) June 25, 2003
1-800-255-7778

Using Block RAM in Spartan-3 FPGAs
R

Write Enable — WE (WEA, WEB)

The write enable input, WE, controls when data is written to RAM. When both EN and WE are
asserted at the rising clock edge, the value on the data and parity input buses is written to
memory location selected by the address bus.

The data output latches are loaded or not loaded according to the WRITE_MODE attribute.

The polarity of WE is configurable and is active High by default.

Synchronous Set/Reset — SSR (SSRA, SSRB)

The synchronous set/reset input, SSR, forces the data output latches to value specified by the
SRVAL attribute. When SSR and the enable signal, EN, are High, the data output latches for
the DO and DOP outputs are synchronously set to a ‘0’ or ‘1’ according to the SRVAL
parameter.

A Synchronous Set/Reset operation does not affect RAM memory cells and does not disturb
write operations on the other port.

The polarity of SSR is configurable and is active High by default.

Global Set/Reset — GSR

The global set/reset signal, GSR, is asserted automatically and momentarily at the end of
device configuration. By instantiating the STARTUP primitive, the logic application can also
assert GSR to restore the initial Spartan-3 state at any time. The GSR signal initializes the
output latches to the INIT value. A GSR signal has no impact on internal memory contents.

Because GSR is a global signal and automatically connected throughout the device, the block
RAM primitive does not have a GSR input pin.

Inverting Control Pins

For each port, the four control pins—CLK, EN, WE, and SSR—each have an individual
inversion option. Any control signal can be configured as active High or Low, and the clock can
be active on a rising or falling edge without consuming additional logic resources.

Unused Inputs

Tie any unused data or address inputs to logic ‘1’. Connecting the unused inputs High saves
logic and routing resources compared to connecting the inputs Low.

Attributes A block RAM has a number of attributes that control its behavior as shown in Table 4 for VHDL
and Verilog. The CORE Generator system uses slightly different values, as described below.

Table 4: Block RAM Attributes and VHDL/Verilog Attribute Names

Function VHDL or Verilog Attribute Default Value

Number of Ports Defined by instantiating the
appropriate RAMB16 primitive

N/A

Memory Organization Defined by instantiating the
appropriate RAMB16 primitive

N/A

Initial Content for Data Memory,
Loaded during Configuration

INIT_xx Initialized to zero

Initial Content for Parity Memory,
Loaded during Configuration

INITP_xx Initialized to zero

Data Output Latch Initialization INIT (single-port)

INIT_A, INIT_B (dual-port)

Initialized to zero

ug000.book Page 184 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Block RAM in Spartan-3 FPGAs

XAPP463 (v1.1.1) June 25, 2003 www.xilinx.com 185
1-800-255-7778

R

Number of Ports
Although physically dual-port memory, each block RAM performs as either single-port or dual-
port memory. The method to specify the number of ports depends on the design entry tool.

CORE Generator System

As shown in Figure 5, the Xilinx CORE Generator system provides module generators for
various types of memory blocks. Choose single- or dual-port block memories, or use the
higher-level functions to create FIFOs, content-addressable memories (CAMs), and so forth.

VHDL or Verilog Instantiation

The Xilinx design libraries contain single- and dual-port memory primitives similar to those
shown in Figure 1. Select among the various primitives to choose single- or dual-port memory,
as well as the memory organization or aspect ratio of the memory. See Table 5 and Table 6 for
single-port and dual-port block RAM primitives, respectively.

Memory Organization/Aspect Ratio
The data organization or aspect ratio of a RAM block is configurable, as shown in Table 5. If the
data path is byte-wide or wider, then the block RAM also provides additional bits to support
parity for each byte. Consequently, a 1Kx18 memory organization is 18 bits wide with 16 bits
(two bytes) allocated to data plus two parity bits, one for each byte. Also, the physical amount
of memory accessible from a port depends on the memory organization. For memories byte-
wide and wider, there are 18K memory bits accessible. For narrower memories, only 16K bits
are accessible due to the lack of parity bits in these organizations. Essentially, 16K bits are
allocated to data, 2K bits to parity on the 18K-bit block RAM. See Figure 4 for details on data
mapping for and between each memory organization.

Data Output Latch Synchronous
Set/Reset Value

SRVAL (single-port)

SRVAL_A, SRVAL_B (dual-port)

Reset to zero

Data Output Latch Behavior during
Write

WRITE_MODE WRITE_FIRST

Block RAM Location LOC N/A

Table 4: Block RAM Attributes and VHDL/Verilog Attribute Names (Continued)

Function VHDL or Verilog Attribute Default Value

Figure 5: Selecting a Block RAM Function in CORE Generator System

ug000.book Page 185 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

186 www.xilinx.com XAPP463 (v1.1.1) June 25, 2003
1-800-255-7778

Using Block RAM in Spartan-3 FPGAs
R

CORE Generator System — Memory Size

The CORE Generator system creates a wide variety of memories with very flexible aspect
ratios. Unlike the actual block RAM primitive, the CORE generator system does not differentiate
between data and parity bits and considers all bits data bits. For dual-port memories, each port
can have different organizations or aspect ratios.

Within the CORE Generator system, locate the Memory Size group and enter the desired
memory organization, as shown in Figure 6.

VHDL or Verilog Instantiation

The aspect ratio is defined at design time by specifying or instantiating the appropriate
SelectRAM component. Table 5 indicates the SelectRAM component for single-port RAM. For
single-port RAM, the proper component name is RAMB16_Sn, where n is the data path width
including both the data bits plus parity bits. For example, a 1Kx18 single-port RAM uses
component RAMB16_S18. In this example, n=18 because there are 16 data bits plus 2 parity
bits.

Selecting a dual-port memory is slightly more complex because the two memory ports may
have different aspect ratios. For dual-port RAM, the proper component name is
RAMB16_Sm_Sm, where m is the data path width for Port A and n is the width for Port B. For
example, using the suffix shown in Table 6, if Port A is organized a 2Kx9 and Port B is
organized as 1Kx18, then the proper dual-port RAM component is RAMB16_S9_S18. In this
example, m=9 and n=18.

Table 5: Block RAM Data Organizations/Aspect Ratios

Organization
Memory
Depth

Data
Width

Parity
Width DI/DO DIP/DOP ADDR

Single-Port
Primitive

Total RAM
Kbits

512x36 512 32 4 (31:0) (3:0) (8:0) RAMB16_S36 18K

1Kx18 1024 16 2 (15:0) (1:0) (9:0) RAMB16_S18 18K

2Kx9 2048 8 1 (7:0) (0:0) (10:0) RAMB16_S9 18K

4Kx4 4096 4 - (3:0) - (11:0) RAMB16_S4 16K

8Kx2 8192 2 - (1:0) - (12:0) RAMB16_S2 16K

16Kx1 16384 1 - (0:0) - (13:0) RAMB16_S1 16K

Figure 6: Selecting Memory Width and Depth in CORE Generator System

Table 6: Dual-Port RAM Component Suffix Appended to “RAMB16”

Port A

16Kx1 8Kx2 4Kx4 2Kx9 1Kx18 512x36

P
o

rt
 B

16Kx1 _S1_S1

8Kx2 _S1_S2 _S2_S2

4Kx4 _S1_S4 _S2_S4 _S4_S4

2Kx9 _S1_S9 _S2_S9 _S4_S9 _S9_S9

1Kx18 _S1_S18 _S2_S18 _S4_S18 _S9_S18 _S18_S18

512x36 _S1_S36 _S2_S36 _S4_S36 _S9_S36 _S18_S36 _S36_S36

Memory Size

Width 16

Depth 256

Valid Range 1..256

Valid Range 2..16384

ug000.book Page 186 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Block RAM in Spartan-3 FPGAs

XAPP463 (v1.1.1) June 25, 2003 www.xilinx.com 187
1-800-255-7778

R

Address and Data Mapping Between Two Ports

In dual-port mode, both ports access the same set of memory cells. However, both ports may
have the same or different memory organization or aspect ratio. Figure 4 shows how the same
data set may appear with different aspect ratios.

There are extra bits available to store parity for memory organizations that are byte-wide or
wider. The extra parity bits are designed to be associated with a particular byte and these parity
bits appear as the more-significant bits on the data port. For example, if a x36 data word (32
data, 4 parity) is addressed as two x18 halfwords (16 data, 2 parity), the parity bits associated
with each data byte are mapped within the block RAM to appropriate parity bits. The same
effect happens when the x36 data word is mapped as four x9 words. The extra parity bits are
not available if the data port is configured as x4, x2, or x1.

The following formulas provide the starting and ending address for data when the two ports
have different memory organizations. Find the starting and ending address for Port X given the
address and port width of Port Y and the port width of Port X.

If, due the memory organization, one port includes parity bits and the other does not, then the
above equations are invalid and the values for width should only include the data bits. The
parity bits are not available on any port that is less than 8 bits wide.

Content Initialization
By default, block RAM memory is initialized with all zeros during the device configuration
sequence. However, the contents can also be initialized with user-defined data. Furthermore,
the RAM contents are protected against spurious writes during configuration.

CORE Generator System — Load Init File

To specify the initial RAM contents for a CORE Generator block RAM function, create a
coefficients (.coe) file. A simple example of a coefficients file appears in Figure 7. At a
minimum, define the radix for the initialization data—i.e., base 2, 10, or 16—and then specify
the RAM contents starting with the data at location 0, followed by data at subsequent locations.

To include the coefficients file, locate the appropriate section in the CORE Generator wizard
and check Load Init File, as shown in Figure 8. Then, click Load File and select the
coefficients file.

Figure 7: A Simple Coefficients File (.coe) Example

Figure 8: Specifying Initial RAM Contents in CORE Generator System

START_ADDRESSX INTEGER
ADDRESSY WIDTHY•

WIDTHX
--⎝ ⎠

⎛ ⎞=

END_ADDRESSX INTEGER
ADDRESSY 1+() WIDTHY•() 1–

WIDTHX
--⎝ ⎠

⎛ ⎞=

memory_initialization_radix=16;
memory_initialization_vector= 80, 0F, 00, 0B, 00, 0C, …, 81;

Initial Contents

Global Init Value:

ff0001 (Hex Value)

Load Init File

C:\MyProject\my_ram_init.coe

Load File ...

(.coe File)

ug000.book Page 187 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

188 www.xilinx.com XAPP463 (v1.1.1) June 25, 2003
1-800-255-7778

Using Block RAM in Spartan-3 FPGAs
R

VHDL or Verilog Instantiation — INIT_xx, INITP_xx

For VHDL and Verilog instantiation, there are two different types of initialization attributes. The
INIT_xx attributes define the initial contents of the data memory locations. The INITP_xx
attributes define the initial contents of the parity memory locations.

The INIT_xx attributes on the instantiated primitive define the initial memory contents. There
are 64 initialization attributes, named INIT_00 through INIT_3F. Each INIT_xx attribute is a
64-digit (256-bit) hex-encoded bit vector. The memory contents can be partially initialized and
any unspecified locations are automatically completed with zeros.

The following formula defines the bit positions for each INIT_xx attribute.

Given yy = convert_hex_to_decimal(xx), INIT_xx corresponds to the following memory cells.

• Starting Location: [(yy + 1) * 256] –1

• End Location: (yy) * 256

For example, for the attribute INIT_1F, the conversion is as follows:

• yy = convert_hex_to_decimal(0x1F) = 31

• Starting Location: [(31+1) * 256] –1 = 8191

• End Location: 31 * 256 = 7936

The INITP_xx attributes define the initial contents of the memory cells corresponding to parity
bits, i.e., those bits that connect to the DIP/DOP buses. By default these memory cells are also
initialized to all zeros.

The eight initialization attributes from INITP_00 through INITP_07 represent the memory
contents of parity bits. Each INITP_xx is a 64-digit (256-bit) hex-encoded bit vector and
behaves like an INIT_xx attribute. The same formula calculates the bit positions initialized by
a particular INITP_xx attribute.

Data Output Latch Initialization
The block RAM output latches can be initialized to a user-specified value immediately after
configuration or whenever the global set/reset signal, GSR, is asserted. For dual-port
memories, there is a separate initialization value for each port.

If no value is specified, the output latch is initialized to zero.

Table 7: VHDL/Verilog RAM Initialization Attributes for Block RAM

Attribute From To

INIT_00 255 0

INIT_01 511 256

INIT_02 767 512

… … …

INIT_3F 16383 16128

ug000.book Page 188 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Block RAM in Spartan-3 FPGAs

XAPP463 (v1.1.1) June 25, 2003 www.xilinx.com 189
1-800-255-7778

R

CORE Generator System — Global Init Value

Figure 9 describes how to specify the initial value for data output latches in the CORE
Generator system. The value, specified in hexadecimal, should include one bit per the specified
data width. For dual-port memories, there is a separate initialization value for each port.

VHDL or Verilog Instantiation — INIT (INIT_A and INIT_B)

For VHDL or Verilog, the INIT attribute (or INIT_A and INIT_B for dual-port memories) defines
the output latch value after configuration. The INIT (or INIT_A and INIT_B) attribute specifies
the initial value for the data and, if applicable, the parity bits. Figure 4 shows the expected bit
format for each memory organization with parity bits—if applicable—as the more significant bits
followed by the data bits. For example, the initialization value for a 2Kx9 memory would be
nine bits wide and would include one parity bit followed by eight data bits. These attributes are
hex-encoded bit vectors and the default value is 0.

Data Output Latch Synchronous Set/Reset Value
When the synchronous set/reset input, SSR, is asserted, the data output latches are set or
reset according to the set/reset value attribute. For dual-port memories, there is a separate
initialization value for each port.

If no value is specified, the output latch is reset to zero during a valid Synchronous Set/Reset
operation.

CORE Generator System — Init Value (SINIT)

Figure 10 describes how to specify the synchronous set/reset value for data output latches in
the CORE Generator system. Check the SINIT pin and then specify the synchronous set/reset
value in hexadecimal, with one bit per the specified data width. For dual-port memories, there
is a separate value for each port.

VHDL or Verilog Instantiation — SRVAL (SRVAL_A and SRVAL_B)

For VHDL or Verilog, the SRVAL attribute (or SRVAL_A and SRVAL_B for dual-port memories)
defines the output latch value after configuration. The SRVAL (or SRVAL_A and SRVAL_B)
attribute specifies the initial value for the data and, if applicable, the parity bits. Figure 4 shows
the expected bit format for each memory organization with parity bits—if applicable—as the
more significant bits followed by the data bits. These attributes are hex-encoded bit vectors
and the default value is 0.

Figure 9: Specifying Initial Value for Block RAM Data Output Latches

Figure 10: Specifying the Output Data Latch Set/Reset Value

Initial Contents

Global Init Value:

ff0001 (Hex Value)

Load Init File

C:\MyProject\my_ram_init.coe

Load File ...

(.coe File)

Output Register Options

0Additional Output Pipe Stages

SINIT pin (sync. reset of output registers)

a5a50fInit Value (Hex)

ug000.book Page 189 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

190 www.xilinx.com XAPP463 (v1.1.1) June 25, 2003
1-800-255-7778

Using Block RAM in Spartan-3 FPGAs
R

Read Behavior During Simultaneous Write — WRITE_MODE
To maximize data throughput and utilization of the dual-port memory at each clock edge, block
RAM memory supports one of three write modes for each memory port. These different modes
determine which data is available on the output latches after a valid write clock edge to the
same port. The default mode, WRITE_FIRST, provides backwards compatibility with the older
Virtex™/E and Spartan-IIE FPGA architectures and is also the default behavior for Virtex-II/Pro
devices. However, READ_FIRST mode is the most useful as it increases the efficiency of block
RAM memory at each clock cycle, allowing designs to use maximum bandwidth. In
READ_FIRST mode, a memory port supports simultaneous read and write operations to the
same address on the same clock edge, free of any timing complications.

Table 8 outlines how the WRITE_MODE setting affects the output data latches on the same
port, and how it affects the output latches on the opposite port during a simultaneous access to
the same address.

Mode selection is set by configuration. One of these three modes is set individually for each
port by an attribute. The default mode is WRITE_FIRST.

WRITE_FIRST or Transparent Mode (Default)

The WRITE_FIRST mode is the default operating mode for backward compatibility reasons.
For new designs, READ_FIRST mode is recommended.

In this mode, the input data is written into the addressed RAM location memory and
simultaneously stored in the data output latches, resulting in a transparent write operation, as
shown in Figure 11. The WRITE_FIRST mode provides backwards compatibility with the 4K-bit
blocks RAMs on Virtex/E and Spartan-II/E FPGAs and is also the default mode for Virtex-II/Pro
block RAMs.

Table 8: WRITE_MODE Affects Data Output Latches During Write Operations

Write Mode Effect on Same Port
Effect on Opposite Port

(dual-port mode only, same address)

WRITE_FIRST
Read After Write
(Default)

Data on DI, DIP inputs written into specified
RAM location and simultaneously appears on
DO, DOP outputs.

Invalidates data on DO, DOP outputs.

READ_FIRST
Read Before Write
(Recommended)

Data from specified RAM location appears on
DO, DOP outputs.

Data on DI, DIP inputs written into specified
location.

Data from specified RAM location appears on
DO, DOP outputs.

NO_CHANGE
No Read on Write

Data on DO, DOP outputs remains unchanged.

Data on DI, DIP inputs written into specified
location.

Invalidates data on DO, DOP outputs.

Figure 11: Data Flow during a WRITE_FIRST Write Operation

RAM Location

Data_in Data_out

WRITE_MODE = WRITE_FIRST

Address

WE

EN

CLK

X463_11_062503

ug000.book Page 190 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Block RAM in Spartan-3 FPGAs

XAPP463 (v1.1.1) June 25, 2003 www.xilinx.com 191
1-800-255-7778

R

Figure 12 demonstrates that a valid write operation during a valid read operation results in the
write data appearing on the data output.

READ_FIRST or Read-Before-Write Mode

In READ_FIRST mode, data previously stored at the write address appears on the output
latches, while the new input data is stored in memory, resulting in a read-before-write operation
shown in Figure 13. The older RAM data appears on the data output while the new RAM data
is stored in the specified RAM location. READ_FIRST mode is the recommended operating
mode.

Figure 12: WRITE_FIRST Mode Waveforms

Figure 13: Data Flow during a READ_FIRST Write Operation

CLK

WE

Data_in

Address

Data_out

ENABLE

DISABLED READ

XXXX 1111 2222 XXXX

aa bb cc dd

0000 MEM(aa) 1111 2222 MEM(dd)

READWRITE
MEM(bb)=1111

WRITE
MEM(cc)=2222

X463_12_020503

Data_in Data_out

WRITE_MODE = READ_FIRST

Address

WE

EN

CLK

RAM Location

X463_13_062503

ug000.book Page 191 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

192 www.xilinx.com XAPP463 (v1.1.1) June 25, 2003
1-800-255-7778

Using Block RAM in Spartan-3 FPGAs
R

Figure 14 demonstrates that the older RAM data always appears on the data output, regardless
of a simultaneous write operation.

This mode is particularly useful for building circular buffers and large, block-RAM-based shift
registers. Similarly, this mode is useful when storing FIR filter taps in digital signal processing
applications. Old data is copied out from RAM while new data is written into RAM.

NO_CHANGE Mode

In NO_CHANGE mode, the output latches are disabled and remain unchanged during a
simultaneous write operation, as shown in Figure 15. This behavior mimics that of simple
synchronous memory where a memory location is either read or written during a clock cycle,
but not both.

The NO_CHANGE mode is useful in a variety of applications, including those where the block
RAM contains waveforms, function tables, coefficients, and so forth. The memory can be
updated without affecting the memory output.

Figure 14: READ_FIRST Mode Waveforms

Figure 15: Data Flow during a NO_CHANGE Write Operation

CLK

WE

Data_in

Address

Data_out

ENABLE

DISABLED READ

XXXX 1111 2222 XXXX

aa bb cc dd

0000 MEM(aa) old MEM(bb) old MEM(cc) MEM(dd)

READWRITE
MEM(bb)=1111

WRITE
MEM(cc)=2222

X463_14_020503

RAM Location

Data_in Data_out

WRITE_MODE = NO_CHANGE

Address

WE

EN

CLK

X463_15_062503

ug000.book Page 192 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Block RAM in Spartan-3 FPGAs

XAPP463 (v1.1.1) June 25, 2003 www.xilinx.com 193
1-800-255-7778

R

Figure 16 shows that the data output retains the last read data if there is a simultaneous write
operation on the same port.

CORE Generator System — Write Mode

To specify the WRITE_MODE in the CORE Generator system, locate the settings for Write
Mode as shown in Figure 17. Select between Read After Write (WRITE_FIRST), Read Before
Write (READ_FIRST) or No Read On Write (NO_CHANGE).

VHDL or Verilog Instantiation — WRITE_MODE

When instantiating block RAM, specify the write mode via the WRITE_MODE attribute.
Acceptable values include WRITE_FIRST, READ_FIRST, and NO_CHANGE, as demonstrated
in the examples in the appendices.

Location Constraints (LOC)
In general, it is best to allow the Xilinx ISE software to assign a block RAM location. However,
block RAMs can be constrained to specific locations on a Spartan-3 device using an attached
LOC property. Block RAM placement locations are device specific and differ from the
convention used for naming CLB locations, allowing LOC properties to transfer easily from
array to array.

The LOC properties use the following form:

LOC = RAMB16_X#Y#

The RAMB16_X0Y0 is the lower-left block RAM location on the device, as shown in Figure 18.
The upper-right block RAM location depends on n, the number of block RAM columns, and m,
the number of block RAM rows, as provided in Table 1.

Figure 16: NO_CHANGE Mode Waveforms

Figure 17: Selecting the Write Mode in CORE Generator System

CLK

WE

Data_in

Address

Data_out

ENABLE

DISABLED READ

XXXX 1111 2222 XXXX

aa bb cc dd

0000 MEM(aa) MEM(dd)

READWRITE
MEM(bb)=1111

WRITE
MEM(cc)=2222

X463_16_020503

Write Mode

Read After Write Read Before Write No Read On Write

ug000.book Page 193 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

194 www.xilinx.com XAPP463 (v1.1.1) June 25, 2003
1-800-255-7778

Using Block RAM in Spartan-3 FPGAs
R

Location attributes cannot be specified directly in the CORE Generator system. However,
location constraints can be added to VHDL or Verilog instantiations.

Block RAM
Operation

Table 9 describes the behavior of block RAM and assumes that all control signals use their
default, active-High behavior. However, the control signals can be inverted in the design if
necessary. The table and following text describes the behavior for a single memory port. In
dual-port mode, both ports perform as independent single-port memories.

All read and write operations to block RAM are synchronous. All inputs have a set-up time
relative to clock and all outputs have a clock-to-output time.

Figure 18: Block RAM LOC Coordinates

Lower
Left

Lower
Right

Upper
Right

Upper
Left

RAMB16_X0Y0

RAMB16_X0Y(m-1) RAMB16_X(n-1)Y(m-1)

XC3S200
XC3S400
XC3S1000
XC3S1500
XC3S2000

XC3S4000
XC3S5000

RAMB16_X(n-1)Y(m-1)

n = total columns
m = total rows

XC3S50

X463_18_062503

Table 9: Block RAM Function Table

Input Signals Output Signals RAM Contents

GSR EN SSR WE CLK ADDR DIP DI DOP DO Parity Data

Immediately After Configuration

Loaded During Configuration X X INITP_xx2 INIT_xx2

Global Set/Reset Immediately after Configuration

1 X X X X X X X INIT3 INIT No Chg No Chg

RAM Disabled

0 0 X X X X X X No Chg No Chg No Chg No Chg

Synchronous Set/Reset

0 1 1 0 X X X SRVAL4 SRVAL No Chg No Chg

Synchronous Set/Reset during Write RAM

0 1 1 1 addr pdata Data SRVAL SRVAL RAM(addr)
pdata

RAM(addr)
 data

ug000.book Page 194 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Block RAM in Spartan-3 FPGAs

XAPP463 (v1.1.1) June 25, 2003 www.xilinx.com 195
1-800-255-7778

R

RAM Contents Initialized During Configuration
The initial RAM contents, if specified, are loaded during the Spartan-3 configuration process. If
no contents are specified, the RAM cells are loaded with zero. The RAM contents are protected
against spurious writes during configuration.

Global Set/Reset Initializes Data Output Latches Immediately After
Configuration or Global Reset
Immediately following configuration, the Spartan-3 device begins its start-up procedure and
asserts the global set/reset signal, GSR, to initialize the state of all flip-flops and registers. The
initial contents of the block RAM output latches, INIT, are asynchronously loaded at this time.
The GSR signal does not change or re-initialize the RAM contents.

Enable Input Activates or Disables RAM
If the block RAM is disabled—i.e., EN is Low—then the block RAM retains its present state. The
enable input must be High for any other operations to proceed.

Synchronous Set/Reset Initializes Data Output Latches
If the block RAM is enabled (EN is High) and the Synchronous Set/Reset signal is asserted
High, then the data output latches are initialized at the next rising clock edge. The SRVAL
attribute defines the synchronous set/reset state for the data output latches. This operation is
different the operation caused by the global set/reset signal, GSR, immediately after
configuration. The synchronous set/reset input affects the specific RAM block whereas the
GSR signal affects the entire device.

Read RAM, no Write Operation

0 1 0 0 addr X X RAM(pdata) RAM(data) No Chg No Chg

Write RAM, Simultaneous Read Operation

0 1 0 1 addr pdata Data WRITE_MODE = WRITE_FIRST5 (default)

pdata data RAM(addr)
pdata

RAM(addr)
 data

WRITE_MODE = READ_FIRST6 (recommended)

RAM(data) RAM(data) RAM(addr)
pdata

RAM(addr)
pdata

WRITE_MODE = NO_CHANGE7

No Chg No Chg RAM(addr)
pdata

RAM(addr)
pdata

Notes:
1. No Chg = No Change, addr = address to RAM, data = RAM data, pdata = RAM parity data.
2. Refer to Content Initialization, page 187.
3. Refer to Data Output Latch Initialization, page 188.
4. Refer to Data Output Latch Synchronous Set/Reset Value, page 189.
5. Refer to WRITE_FIRST or Transparent Mode (Default), page 190.
6. Refer to READ_FIRST or Read-Before-Write Mode, page 191.
7. Refer to NO_CHANGE Mode, page 192.

Table 9: Block RAM Function Table (Continued)

Input Signals Output Signals RAM Contents

GSR EN SSR WE CLK ADDR DIP DI DOP DO Parity Data

ug000.book Page 195 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

196 www.xilinx.com XAPP463 (v1.1.1) June 25, 2003
1-800-255-7778

Using Block RAM in Spartan-3 FPGAs
R

Simultaneous Write and Synchronous Set/Reset Operations
If a simultaneous write operation occurs during the synchronous set/reset operation, then the
data on the DI and DIP inputs is stored at the RAM location specified by the ADDR input.
However, the data output latches are initialized to the SRVAL attribute value as described
immediately above.

Read Operations Occur on Every Clock Edge When Enable is Asserted
Read operations are synchronous and require a clock edge and an asserted clock enable. The
data output behavior depends on whether or not a simultaneous write operation occurs during
the read cycle.

If no simultaneous write cycle occurs during a valid read cycle, then the read address is
registered on the read port and the data stored in RAM at that address is simply loaded into the
output latches after the RAM access interval passes.

However, if there is a simultaneous write cycle during the read cycle, then the output behavior
depends on which of the three write modes is selected, as described immediately below.

Write Operations Always Have Simultaneous Read Operation, Data
Output Latches Affected
During a Write operation, a simultaneous Read operation occurs. The WRITE_MODE attribute
determines the behavior of the data output latches during the Write operation (refer to Read
Behavior During Simultaneous Write — WRITE_MODE, page 190). By default,
WRITE_MODE is WRITE_FIRST and the data output latches and the addressed RAM
locations are updated with the input data during a simultaneous Write operation. When
WRITE_MODE is READ_FIRST, the output latches are updated with the data previously stored
in the addressed RAM location and the new data on the DI and DIP inputs is stored at the
address RAM location. When WRITE_MODE is NO_CHANGE, the data output latches are
unaffected by a simultaneous Write operation and retain their present state.

General Characteristics
• A write operation requires only one clock edge.

• A read operation requires only one clock edge.

• All inputs are registered with the port clock and have a setup-to-clock timing specification.

• All outputs have a read-through function or one of three read-during-write functions,
depending on the state of the WE pin. The outputs relative to the port clock are available
after the clock-to-out timing interval.

• Block RAM cells are true synchronous RAM memories and do not have a combinatorial
path from the address to the output.

• The ports are completely independent of each other without arbitration. Each port has its
own clocking, control, address, read/write functions, initialization, and data width.

• Output ports are latched with a self-timed circuit, guaranteeing glitch-free read operations.
The state of the output port does not change until the port executes another read or write
operation.

Functional Compatibility with Other Xilinx FPGA Families
The block RAM on Spartan-3 FPGAs is functionally identical to block RAM on the Xilinx Virtex-
II/Pro FPGA families. Consequently, design tools that support Virtex-II and Virtex-II Pro block
RAM also support with Spartan-3 FPGAs.

ug000.book Page 196 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Block RAM in Spartan-3 FPGAs

XAPP463 (v1.1.1) June 25, 2003 www.xilinx.com 197
1-800-255-7778

R

Dual-Port RAM
Conflicts and
Resolution

As a dual-port RAM, the block RAM allows both ports to simultaneously access the same
memory cell. Potentially, conflicts arise under the following conditions.

1. If the clock inputs to the two ports are asynchronous, then conflicts occur if clock-to-clock
setup time requirements are violated.

2. Both memory ports write different data to the same RAM location during a valid write cycle.

3. If a port uses WRITE_MODE=NO_CHANGE or WRITE_FIRST, a write to the port
invalidates the read data output latches on the opposite port.

If Port A and Port B different memory organizations and consequently different widths, only the
overlapping bits are invalid when conflicts occur.

Timing Violation Conflicts
When one port writes to a given memory cell, the other port must not address that memory
cell—either for a write or a read operation—within the clock-to-clock setup window specified in
the Spartan-3 data sheet. Figure 19 describes this situation where both ports operate from
asynchronous clock inputs.

The first rising edge on CLK_A violates the clock-to-clock setup parameter, because it occurs
too soon after the last CLK_B clock edge. The write operation on port B is valid because
Data_in_B, Address_B, and WE_B all had sufficient set-up time before the rising edge on
CLK_B. Unfortunately, the read operation on port A is invalid because it depends on the RAM
contents being written to Address_B and the read clock, CLK_A, happened too soon after the
write clock, CLK_B.

On the second rising edge of CLK_B, there is another valid write operation to port B. The
memory location at address (bb) contains 4444. Data on the Data_out_A port is still invalid
because there has not been another rising clock edge on CLK_A. The second rising edge of
CLK_A reads the new data at the in location (bb), which now contains 4444. This time, the read
operating is valid because there has been sufficient setup time between CLK_B and CLK_A.

Figure 19: Clock-to-Clock Timing Conflicts

CLK_B

Data_in_B

Address_B

WE_B

aa bb

44443333

UNKNOWN 4444

aa bb

CLK_A

Data_out_A

Address_A

WE_A

MEM(aa)=
3333

Clock-to-clock
setup violation

MEM(bb)=
4444

MEM(cc)=
2222

X463_19_020503

B A B A

cc

2222

READ Port

WRITE Port

ug000.book Page 197 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

198 www.xilinx.com XAPP463 (v1.1.1) June 25, 2003
1-800-255-7778

Using Block RAM in Spartan-3 FPGAs
R

Simultaneous Writes to Both Ports with Different Data Conflicts
If both ports write simultaneously into the same memory cell with different data, then the data
stored in that cell becomes invalid, as outlined in Table 10.

Write Mode Conflicts on Output Latches
Potential conflicts occur when one port writes to memory and the opposite port reads from
memory. Write operations always succeed and the write port’s output data latches behave as
described by the port’s WRITE_MODE attribute. If the write port is configured with
WRITE_MODE set to NO_CHANGE or WRITE_FIRST, then a write operation to the port
invalidates the data output latches on the opposite port, as shown in Table 11.

Using the READ_FIRST mode does not cause conflicts on the opposite port.

Conflict Resolution
There is no dedicated monitor to arbitrate the result of identical addresses on both ports. The
application must time the two clocks appropriately. However, conflicting simultaneous writes to
the same location never cause any physical damage.

Table 10: RAM Conflicts During Simultaneous Writes to Same Address

Input Signals

RAM ContentsPort A Port B

WEA CLKB DIPA DIA WEB CLKA DIPB DIB Parity Data

1 DIPA DIA 1 DIPB DIB ? ?

Notes:
1. ADDRA=ADDRB, ENA=1,ENB=1, DIPA ≠ DIPB, DIA ≠ DIB, ?=Unknown or invalid

data.

Table 11: Conflicts to Output Latches Based on WRITE_MODE

Input Signals Output Signals

Port A Port B Port A Port B

WEA CLKB DIPA DIA WEB CLKA DIPB DIB DOPA DOA DOPB DOB

WRITE_MODE_A=NO_CHANGE

1 DIPA DIA 0 DIPB DIB No Chg No Chg ? ?

WRITE_MODE_B=NO_CHANGE

0 DIPA DIA 1 DIPB DIB ? ? No Chg No Chg

WRITE_MODE_A=WRITE_FIRST

1 DIPA DIA 0 DIPB DIB DIPA DOA ? ?

WRITE_MODE_B=WRITE_FIRST

0 DIPA DIA 1 DIPB DIB ? ? DIPB DIB

WRITE_MODE_A=WRITE_FIRST, WRITE_MODE_B=WRITE_FIRST

0 DIPA DIA 1 DIPB DIB ? ? ? ?

Notes:
1. ADDRA=ADDRB, ENA=1, ENB=1, ?=Unknown or invalid data

ug000.book Page 198 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Block RAM in Spartan-3 FPGAs

XAPP463 (v1.1.1) June 25, 2003 www.xilinx.com 199
1-800-255-7778

R

Block RAM
Design Entry

Various tools help create Spartan-3 block RAM designs, two of which are the Xilinx CORE
Generator system and VHDL or Verilog instantiation of the appropriate Xilinx library primitives.

Xilinx CORE Generator System
The Xilinx CORE Generator system provides both a Single Port Block Memory and a Dual Port
Block Memory module generator, as shown in Figure 5. Both module generators support RAM,
ROM, and Write Only functions, according to the control signals that are selected. Any size
memory that can be created in the architecture is supported.

Both modules are parameterizable as with most CORE Generator modules. To create a
module, specify the component name and choose to include or exclude control inputs, and
choose the active polarity for the control inputs. For the Dual-Port Block Memory, once the
organization or aspect ratio for Port A is selected, only the valid options for Port B are displayed.

Optionally, specify the initial memory contents. Unless otherwise specified, each memory
location initializes to zero. Enter user-specified initial values via a Memory Initialization File,
consisting of one line of binary data for every memory location. A default file is generated by the
CORE Generator system. Alternatively, create a coefficients file (.coe), which not only defines
the initial contents in a radix of 2, 10, or 16, but also defines all the other control parameters for
the CORE Generator system.

The output from the CORE Generator system includes a report on the options selected and the
device resources required. If a very deep memory is generated, some external multiplexing
may be required, and these resources are reported as the number of logic slices required. In
addition, the software reports the number of bits available in block RAM that are less than 100%
utilized. For simulation purposes, the CORE Generator system creates VHDL or Verilog
behavioral models.

• CORE Generator: Single-Port Block Memory module (RAM or ROM)

• CORE Generator: Dual-Port Block Memory module (RAM or ROM)

VHDL and Verilog Instantiation
VHDL and Verilog synthesis-based designs can either infer or directly instantiate block RAM,
depending on the specific logic synthesis tool used to create the design.

Inferring Block RAM

Some VHDL and Verilog logic synthesis tools, such as the Xilinx Synthesis Tool (XST) and
Synplicity Synplify both infer block RAM based on the hardware described. The Xilinx ISE
Project Navigator includes templates for inferring block RAM in your design. To use the
templates within Project Navigator, select Edit Language Templates from the menu, and
then select VHDL or Verilog, followed by Synthesis Templates RAM from the selection
tree. Finally, select the preferred block RAM template.

It is still possible to directly instantiate block RAM, even if portions of the design infer block
RAM.

Instantiation Templates

For VHDL- and Verilog-based designs, various instantiation templates are available to speed
development. Within the Xilinx ISE Project Navigator, select Edit Language Templates
from the menu, and then select VHDL or Verilog, followed by Component Instantiation
Block RAM from the selection tree.

The appendices include example code showing how to instantiate block RAM in both VHDL
and Verilog.

In VHDL, each template has a component declaration section and an architecture section.
Each part of the template must be inserted within the VHDL design file. The port map of the
architecture section must include the signal names used in the application.

ug000.book Page 199 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/ipcenter/catalog/logicore/docs/sp_block_mem.pdf
http://www.xilinx.com/ipcenter/catalog/logicore/docs/dp_block_mem.pdf

200 www.xilinx.com XAPP463 (v1.1.1) June 25, 2003
1-800-255-7778

Using Block RAM in Spartan-3 FPGAs
R

The SelectRAM_Ax templates (with x = 1, 2, 4, 9, 18, or 36) are single-port modules and
instantiate the corresponding RAMB16_Sx module.

SelectRAM_Ax_By templates (with x = 1, 2, 4, 9, 18, or 36 and y = 1, 2, 4, 9, 18, or 36) are dual-
port modules and instantiate the corresponding RAMB16_Sx_Sy module.

Initialization in VHDL or Verilog Codes

Block RAM memory structures can be initialized in VHDL or Verilog code for both synthesis and
simulation. For synthesis, the attributes are attached to the block RAM instantiation and are
copied within the EDIF output file compiled by Xilinx Alliance Series™ tools. The VHDL code
simulation uses a generic parameter to pass the attributes. The Verilog code simulation uses
a defparam parameter to pass the attributes.

The VHDL and Verilog examples in the appendices illustrate these techniques.

Block RAM
Applications

Typically, block RAM is used for a variety of local storage applications. However, the following
section describes additional, perhaps less obvious block RAM capabilities, illustrating some
powerful capabilities to spur the imagination.

Creating Larger RAM Structures
Block SelectRAM columns have specialized routing to allow cascading blocks with minimal
routing delays. Wider or deeper RAM structures incur a small delay penalty.

Block RAM as Read-Only Memory (ROM)
By tying the write enable input Low, block RAM optionally functions as registered block ROM.
The ROM outputs are synchronous and require a clock input and perform exactly like a block
RAM read operation. The ROM contents are defined by the initial contents at design time.

After design compilation, the ROM contents can also be updated using the Data2BRAM utility
described below.

FIFOs
First-In, First-Out (FIFO) memories, also known as elastic stores, are perhaps the most
common application of block RAM, other than for random data storage. FIFOs typically
resynchronize data, either between two different clock domains, or between two parts of a
system that have different data rates, even though they operate from a single clock. The Xilinx
CORE Generator system provides two parameterizable FIFO modules, one a synchronous
FIFO where both the read and write clocks are synchronous to one another and the other an
asynchronous FIFO where the read and write clocks are different.

Application note XAPP261 demonstrates that the FIFO read and write ports can be different
data widths, integrating the data width converter into the FIFO.

Application note XAPP291 describes a self-addressing FIFO that is useful for throttling data in
a continuous data stream.

• CORE Generator: Synchronous FIFO module

• CORE Generator: Asynchronous FIFO module

• XAPP258: FIFOs Using Block RAM, includes reference design

• XAPP261: Data-Width Conversion FIFOs Using Block RAM Memory, includes reference
design

• XAPP291: Self-Addressing FIFO

Storage for Embedded Processors
Block RAM also enables efficient embedded processor applications. RAM performs a variety
functions in an embedded processor such as those listed below.

ug000.book Page 200 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/ipcenter/catalog/logicore/docs/sync_fifo.pdf
http://www.xilinx.com/ipcenter/catalog/logicore/docs/async_fifo.pdf
http://www.xilinx.com/xapp/xapp258.pdf
http://www.xilinx.com/xapp/xapp261.pdf
http://www.xilinx.com/xapp/xapp291.pdf

Using Block RAM in Spartan-3 FPGAs

XAPP463 (v1.1.1) June 25, 2003 www.xilinx.com 201
1-800-255-7778

R

• Register file for processor register set, although for some processors, distributed RAM
may be a preferred solution.

• Stack or LIFO for stack-based architectures and for call stacks.

• Fast, local code storage. The fast access time to internal block RAM significantly boosts
the performance of embedded processors. However, on-chip storage is limited by the
number of available block RAMs.

• Large dual-ported mailbox memory shared with external processor or DSP device.

• Temporary trace buffers (see Circular Buffers, Shift Registers, and Delay Lines) to
ease and enhance application debugging.

Updating Block RAM/ROM Content by Directly Modifying Device
Bitstream
In a typical design flow, the initial contents of block RAM/ROM is defined at design time and
compiled into the device bitstream that is downloaded to and configures a Spartan-3 FPGA.

However, for some applications, the actual memory contents may not be known when the
bitstream is created or may change later. One example is if a processor embedded with the
Spartan-3 FPGA uses block RAM to store program code. To avoid re-compiling the FPGA
design just to incorporate a code change, Xilinx provides a utility called Data2BRAM that
updates an existing FPGA bitstream with new block RAM/ROM contents.

As shown in Figure 20, the inputs to Data2BRAM include the new RAM contents—typically the
output from the embedded processor compiler/linker, the present FPGA bitstream, and a file
that describes both the mapping between the system address space and the addressing used
on the individual block RAMs and the physical location of each block RAM.

Two Independent Single-port RAMs Using One Block RAM
Some applications may require more single-port RAMs than there are RAM blocks on the
device. However, a simple trick allows a single block RAM to behave as if it were two,
completely independent single-port memories, effectively doubling the number of RAM blocks
on the device. The penalty is that each RAM block is only half the size of the original block, up
to 9K bits total.

Figure 20: The Data2BRAM Utility Updates Block RAM Contents in a Bitstream

Data2BRAM
Utility

New Block RAM Data
 (.elf Compiler/Linker output,

or .mem file)

Present FPGA Bitstream

Mapping Between System
Address Space and Block
RAM, Block RAM Location

(.bmm file)

(.bit file)

(.bit file)

New FPGA Bitstream with
Updated Block RAM Contents

X463_20_062503

ug000.book Page 201 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

202 www.xilinx.com XAPP463 (v1.1.1) June 25, 2003
1-800-255-7778

Using Block RAM in Spartan-3 FPGAs
R

Figure 21 shows how to create two independent single-port RAMs from one block RAM. Tie the
most-significant address bit of one port High and the most-significant address bit of the other
port Low. Both ports evenly split the available RAM between them.

Both ports are independent, each with its own memory organization, data inputs and outputs,
clock input and control signals. For example, Port A could be 256x36 while Port B is 2Kx4.

Figure 21 splits the available memory evenly between the two ports. With additional logic on
the upper address lines, the memory can be split into other ratios.

A 256x72 Single-Port RAM Using One Block RAM
Figure 22 illustrates how to create a 256-deep by 72-bit wide single-port RAM using a single
block RAM. As in the previous example, the memory array is split into halves. One half contains
the lower 36 bits and the upper half stores the upper 36 bits, effectively creating a 72-bit wide
memory.

Figure 21: One Block RAM Becomes Two Independent Single-Port RAMs

SSRA
CLKA

CLKB
SSRB

ENA

ENB

WEA

WEB

DIA DOA

DIB DOB

ADDR[m -1:0]

ADDR[n -1:0]

ADDR[m]

ADDR[n]

X463_21_062503

S
in

g
le

-P
o

rt
 A

S
in

g
le

-P
o

rt
 B

ug000.book Page 202 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Block RAM in Spartan-3 FPGAs

XAPP463 (v1.1.1) June 25, 2003 www.xilinx.com 203
1-800-255-7778

R

The most-significant address line, ADDR[8] is tied High on one port and Low on the other. Both
ports share the same the address inputs, control inputs, and clock input.

Circular Buffers, Shift Registers, and Delay Lines
Circular buffers are used in a variety of digital signal processing applications, such as finite
impulse response (FIR) filters, multi-channel filtering, plus correlation and cross-correlation
functions. Circular buffers are also useful simply for delaying data to resynchronize it with other
parts of a data path.

Figure 23 conceptually describes how a circular buffer operates. Data is written into the buffer.
After n clock cycles, that same data is clocked out of the buffer while new data is written to the
same location.

Figure 24 describes the hardware implementation to create a circular buffer using block RAM.
A modulo-n counter drives the address inputs to a single-port block RAM. For simple data delay
lines, the block RAM writes new data on every clock cycle.

The circular buffer also reads the delayed data value on every clock edge. Using block RAM’s
READ_FIRST write mode, both the incoming write data and the outgoing read data use the
same clock input and the same clock edge, both simplifying the design and improving overall
performance. The actual write and read behavior is described in Figure 17.

Figure 22: A 256x72 Single-Port RAM Using a Single Block RAM

Figure 23: Circular Buffer

SSRA
CLKA

CLKB
SSRB

ENA

ENB

WEA

WEB

DIA DOA

DIB DOB

ADDRA[7:0]

ADDRB[7:0]

ADDR[8]

ADDRB[8]

DO[71:36]

DO[35:0]

DI[71:36]

DI[35:0]

ADDR[7:0]

WE
ENA
SSR
CLK

X463_22_062403

0

1 2

3

n

n-1 n-2

…

OUT

X463_20_020503

IN

ug000.book Page 203 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

204 www.xilinx.com XAPP463 (v1.1.1) June 25, 2003
1-800-255-7778

Using Block RAM in Spartan-3 FPGAs
R

In Figure 24, the width of the IN and OUT data ports is identical, although they do not need be.
Using dual-port mode, the ports can be different widths. Figure 25 shows an example where
byte-wide data enters the block RAM and a 32-bit word exits the block RAM. Furthermore, the
data can be delayed up to 2,048 byte-clock cycles.

A single block RAM is configured as dual-port memory. The incoming byte-wide data feeds Port
B, which is configured as a 2Kx9 memory. The outgoing 32-bit data appears on Port A and
consequently, Port A is configured as a 512x36 memory.

Figure 24: Circular Buffer Implementation Using Block RAM and Counter

Figure 25: Merge Circular Buffer and Port-Width Converter into a Single Block RAM

SSR

CLK

EN
WE

DI DO

ADDR

WRITE_MODE=READ_FIRST

IN OUT

X463_24_020503

C
o

u
n

te
r

Block RAM
Circular Buffer/

Delay Buffer
Data delayed up to
2,048 clock cycles

IN

OUT

Byte 0

Byte 1

Byte 2

Byte 3

Byte 0Byte 1Byte 2Byte 3
X463_25_020503

ug000.book Page 204 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Block RAM in Spartan-3 FPGAs

XAPP463 (v1.1.1) June 25, 2003 www.xilinx.com 205
1-800-255-7778

R

Manipulating the addresses that feeds both ports creates the 4n-byte clock delay. Every 32-bit
output word requires four incoming bytes. Consequently, a divide-by-4 counter feeds the two
lower address bits, ADDRB[1:0]. After four bytes are stored, a terminal count, TC, from the
lower counter enables Port A plus a separate divide-by-n counter. The enable signal latches the
32-bit output data on Port B and increments the upper counter. The combination of the divide-
by-4 counter and the divide-by-n counter effectively create a divide-by-4n counter. The output
from the divide-by-n counter forms the more-significant address bits to Port B, ADDRB[11:2]
and the entire address to Port A, ADDRA[9:0].

Fast Complex State Machines and Microsequencers
Because block RAMs can be configured with any set of initial values, they also make excellent
dual-ported registered ROMs that can be used as state machines. For example, a 128-state, 8-
way branch finite state machine with 38 total state outputs, fits in a single block RAM, as shown
in Figure 27.

Figure 26: Incoming Byte-Wide Data is Delayed 4n Clock Cycles, Converted to 32-Bit Data

CLKA

CLKB

ENA

ENB

WEA

WEB

DOA[31:0]

DIB[7:0]

ADDRA[8:0]

ADDRB[1:0]

OUT

TC

÷4

EN
÷n

IN

512x36

2Kx9

ADDRB[11:2]

X463_26_062503

ug000.book Page 205 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

206 www.xilinx.com XAPP463 (v1.1.1) June 25, 2003
1-800-255-7778

Using Block RAM in Spartan-3 FPGAs
R

A dual-port block RAM memory is divided into two completely independent half-size, single-
port memories by tying the most-significant address bit of one port High and the other one Low,
similar to Figure 21. Port A is configured as 2Kx9 but used as a 1K x 9 single-port ROM. Seven
outputs feed back as address inputs, stepping through the 128 states. The 1Kx9 ROM has ten
total address lines, seven of which are the current-state inputs and the remaining three address
inputs determine the eight-way branch. Any of the 128 states can conditionally branch to any
set of eight new states, under the control of these three address inputs.

Port B is configured as 512 x 36 and used as a 256 x 36 single-port ROM. It receives the same
7-bit current-state value from Port A, and drives 36 outputs that can be arbitrarily defined for
each state. However, due to the synchronous nature of block ROM, the 36 outputs from the
256x36 ROM are delayed by one clock cycle. The eighth address input can invoke an alternate
definition of the 36 outputs. Two additional state bits are available from the 1Kx9 block, but are
not delayed by one clock.

This same basic architecture can be modified to form a 256-state finite state machine with four-
way branch, or a 64-state state machine with 16-way branch.

If additional branch-control inputs are needed, they can be combined using an input
multiplexer. The advantages of this design are its low cost (a single block RAM), its high
performance (125+ MHz), the absence of lay-out or routing issues, and complete design
freedom.

Fast, Long Counters Using RAM
A counter is an example of a simple state machine, where the next state depends only on the
current state. A binary up counter, for example, simply increments the current state to create
the next state. Figure 28 shows a 20-bit binary up counter, with clock enable and synchronous
reset, implemented in a single block RAM.

Figure 27: 128-State Finite State Machine with 38 Outputs in a Single Block RAM

36 bits

1Kx9
State Machine
or Sequencer

256x36
State Outputs

7+2 bits7 bits

7 bits

7 State Bits
38 Output Bits

X463_27_062503

O
ut

pu
t

C
on

tr
ol

B
ra

nc
h

C
on

tr
ol

ug000.book Page 206 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Block RAM in Spartan-3 FPGAs

XAPP463 (v1.1.1) June 25, 2003 www.xilinx.com 207
1-800-255-7778

R

A 20-bit binary counter can be constructed from two identical 10-bit binary counters, with the
lower 10-bit counter enabling the upper 10-bit counter every 1024 clock cycles. In this example,
Port B is a 1Kx18 ROM (WEB is Low) that forms the lower 10-bit counter. The ten less-
significant data outputs, representing the current state, connect directly to the ten address
inputs, ADDRB[9:0]. The next state is looked up in the ROM using the current state applied to
the address pins. The eleventh data bit, D[10], forms the terminal-count output from the
counter. In this example, the upper seven data bits, DOB[17:11] are unused.

The next-state logic for a binary counter appears in Table 12. The counter starts at state 0—or
the value specified by the INIT or SRVAL attributes—and counts through to 0x3FF (1023
decimal) at which time the terminal count, D[10], is active and the counter rolls over back to 0.

Port A is configured nearly identically to Port B, except that Port A is enabled by the terminal
count output from Port B. The 10-bit counter in Port A has the identical counting pattern as Port
B, except that it increments at 1/1024th the rate of Port B.

Figure 28: Two 10-Bit Counters Create a 20-Bit Binary Counter Using a Single Block RAM

SSRA
CLKA

CLKB

SSRB

ENA

ENB

WEA

WEB

DOA[9:0]

DOB[9:0]

ADDRB[9:0]

COUNT[19:11]

COUNT[9:0]

ENA

SSR
CLK

DOB[10]
DOB[17:11]

ADDRB[9:0]

DOA[10]
DOA[17:11]

TERM_COUNT

1Kx18

1Kx18

(unused)

(unused)

Terminal Count
from Port B enables
Port A every 1024
clock cycles.

TC

CNT[9:0]

EN

TC

CNT[9:0]

EN

X463_28_062503

Table 12: Next-State Logic for Binary Up Counter

Current State State Outputs Next State

TC COUNT

ADDR[9:0]
(Hex) D[10]

D[9:0]
(Hex)

0 0 1

1 0 2

2 0 3

… … …

3FFF 1 0

ug000.book Page 207 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

208 www.xilinx.com XAPP463 (v1.1.1) June 25, 2003
1-800-255-7778

Using Block RAM in Spartan-3 FPGAs
R

With a simple modification, the 20-bit up counter becomes an 18-bit up/down counter. Using
the most-significant address input as a direction control, the same basic counter architecture
either increments or decrements its count, as shown in Table 13. In this example, the counter
increments when the Up/Down control is Low and decrements when High. The ROM memory
is split between the incrementing and decrementing next-state logic.

Various other counter implementations are possible including the following.

• Binary up and up/down counters of various modulos determined by the combinations of
the modulos of the counters implemented in Port A and Port B.

• Counters with other incrementing and decrementing patterns including fast gray-code
counters.

• A six-digit BCD counter in one block ROM, configured as 512x36, plus one CLB.

Four-Port Memory
Each block RAM is physically a dual-port memory. However, due to the block RAM’s fast access
performance, it is possible to create multi-port memories by time-division multiplexing the
signals in and out of the memory. A block RAM with some additional logic easily supports up to
four ports but at the cost of additional access latency for each port. The following application
note provides additional details and a reference design.

• XAPP228: Quad-Port Memories in Virtex Devices, includes reference design

Content-Addressable Memory (CAM)
Content-Addressable Memory (CAM), sometimes known as associative memory, is used in a
variety of networking and data processing applications. In most memory applications, content
is referenced by an address. In CAM applications, the content is the driving input and the output
indicates whether or not the content exists in memory and, if so, provides a reference to its
location.

An easy way to envision how a CAM operates is to think of an index to a book. Looking up an
item, i.e., the content, first determines whether the item exists in the index and if it does,
provides a reference to its location, i.e., the page number of where the item can be found.

Table 13: Next-State Logic for Binary Up/Down Counter

Up/Down
Control Present State State Outputs Next State

TC COUNT

ADDR[9]
ADDR[8:0]

(Hex) D[10]
D[9:0]
(Hex)

0
(Up)

0 0 1

1 0 2

2 0 3

… … …

1FFF 1 0

1
(Down)

1FFF 0 1FFE

1FFE 0 1FFD

1FFD 0 1FFC

… … …

0 1 1FFF

ug000.book Page 208 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/xapp/xapp228.pdf

Using Block RAM in Spartan-3 FPGAs

XAPP463 (v1.1.1) June 25, 2003 www.xilinx.com 209
1-800-255-7778

R

• CORE Generator: Content-Addressable Memory module

• XAPP260: Using Block RAM for High-Performance Read/Write CAMs

• XAPP201: An Overview of Multiple CAM Designs, written for Virtex/E and Spartan-II/E
architectures but provides a useful overview to the techniques involved

Implementing Logic Functions Using Block RAM
Inside every Spartan-3 logic cell, there is a four-input RAM/ROM called a look-up table or LUT.
The LUT performs any possible logic function of its four inputs and forms the basis of the
Spartan-3 logic architecture.

Another possible application for block RAM is as a much larger look-up table. In one of its
organizations, a block RAM—used as ROM in this case—has 14 inputs and a single output.
Consequently, block RAM is capable of implementing any possible arbitrary logic function of up
to 14 inputs, regardless of the complexity and regardless of inversions. There are a few
restrictions, however.

• There cannot be any asynchronous feedback paths in the logic, such as those that create
latches.

• The logic output must be synchronized to a clock input. Block RAM does not support
asynchronous read outputs.

If the logic function meets these requirements, then a single block RAM implements the
following functions.

• Any possible Boolean logic function of up to 14 inputs

• Nine separate arbitrary Boolean logic functions of 11 inputs, as long as the inputs are
shared.

• Various other combinations are possible, but may have restrictions to the number of
inputs, the number of shared inputs, or the complexity of the logic function.

Due to the flexibility and speed of CLB logic, block RAM may not be faster or more efficient for
simple wide functions like an address decoder, where multiple inputs are ANDed together.
Block RAM will be faster and more efficient for complex logic functions, such as majority
decoders, pattern matching, correlators.

Fuzzy Pattern Matching Circuit Example

For example, Figure 29 illustrates a fuzzy pattern matching circuit that detects both exact
matches and those patterns that are close enough. Each incoming bit is matched against the
required MATCH pattern. Then, any “don’t care” bits are masked off, indicating that the specific
bit should always match. Then, the number of matching bits is counted and compared against
an activation threshold. If the number of matching bits is greater than the activation threshold,
then the input data mostly matches the required pattern and the MATCH output goes High.

Figure 29: A 14-Input Fuzzy Pattern Matching Circuit Implemented in a Single Block RAM

1

0

•••

0

1 MATCH

T
hr

es
ho

ld Is number of
matching bits
greater than
threshold?

•••

MASK any don't

Number of bits
that must match

care bits
Compare bit to
MATCH pattern

>

Σ

X463_29_040403

ug000.book Page 209 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/ipcenter/catalog/logicore/docs/cam.pdf
http://www.xilinx.com/xapp/xapp260.pdf
http://www.xilinx.com/xapp/xapp201.pdf

210 www.xilinx.com XAPP463 (v1.1.1) June 25, 2003
1-800-255-7778

Using Block RAM in Spartan-3 FPGAs
R

If the application requires a new matching pattern or different logic function, it could be loaded
via the second memory port.

Implemented in CLB logic, this function would require numerous logic cells and multiple layers
of logic. However, because the MATCH, MASK, and Threshold values are known in advance,
the function can be pre-computed and then stored in block RAM. For each input condition, i.e.,
starting at address 0 and incremented through the entire memory, the output condition can be
pre-computed. A 14-input fuzzy pattern matching circuit requires a single block RAM and
performs the operation in a single clock cycle.

Mapping Logic into Block RAM Using MAP –bp Option

The Xilinx ISE software does not automatically attempt to map logic functions into block RAM.
However, there is a mapping option to aid the process.

The block RAM mapping option is enabled when using the MAP –bp option. If so enabled, the
Xilinx ISE logic mapping software attempts to place LUTs and attached flip-flops into an
unused single-output, single-port block RAM. The final flip-flop output is required as block
RAMs have a synchronous, registered output. The mapping software packs the flip-flop with
whatever LUT logic is driving it. No register will be packed into block RAM without LUT logic,
and vice versa.

To specify which register outputs will be converted to block RAM outputs, create a file
containing a list of the net names connected to the register output(s). Set the environment
variable XIL_MAP_BRAM_FILE to the file name, which instructs the mapping software to use
this file. The MAP program looks for this environment variable whenever the –bp option is
specified. Only those output nets listed in the file are converted into block RAM outputs.

• PCs:
set XIL_MAP_BRAM_FILE=file_name

• Workstations:
setenv XIL_MAP_BRAM_FILE file_name

Waveform Storage, Function Tables, Direct Digital Synthesis (DDS) Using
Block RAM
Another powerful block RAM application is waveform storage, including function tables such as
trigonometric functions like sine and cosine. Sine and cosine form the backbone of other
functions such as direct digital synthesis (DDS) to generate output waveforms. The Xilinx
CORE Generator system provides parameterizable modules for both:

• CORE Generator: Sine/Cosine Look-Up Table module

• CORE Generator: Direct Digital Synthesizer (DDS) module

Another potential application of waveform storage is in various signal companders
(compressors/expanders) and normalization circuits used to boost important parts of a signal
within the available bandwidth. Examples include converters between linear data, u-Law
encoded data, and A-Law encoded data commonly used in telecommunications.

The dual-port nature of block RAM not only facilitates waveform storage, it also enables an
application to update the waveform, either with a completely new waveform or with corrected or
normalized waveform data. In the example shown in Figure 30, Port A initially contains the
currently active waveform. The application can load a new waveform on Port B.

ug000.book Page 210 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/ipcenter/catalog/logicore/docs/sincos.pdf
http://www.xilinx.com/ipcenter/catalog/logicore/docs/dds.pdf

Using Block RAM in Spartan-3 FPGAs

XAPP463 (v1.1.1) June 25, 2003 www.xilinx.com 211
1-800-255-7778

R

As in real-world engineering, sometimes it is faster to look up an answer than deriving it. The
same is true in digital designs. Block RAM is also useful for storing pre-computed function
tables where the output, y, is a function of the input, x, or y=f(x).

For example, instead of creating the CLB logic that implements the following polynomial
equation, the function can be pre-computed and stored in a block RAM.

Y = Ax3 – Bx2 + Cx + D

The values A, B, C, and D are all constants. The output, y, depends only on the input, x. The
output value can be pre-computed for each input value of x and stored in memory. There are
obvious limitations as the function may not fit in a single logic block either because of the range
of values for x, or the magnitude of the output, y. For example, a 512x36 block ROM
implements the above equation for input values between 0 and 511. The range of x is limited by
its exponential effect on y. With x at its maximum value for this specific example, y requires at
least 28 output bits.

Some other look-up functions possible in a single block RAM/ROM include the following.

• Various complex arithmetic functions of a single input, including mixtures of functions such
as log(x), square-root(x). Multipliers of two values are possible but are typically limited by
the number of block RAM inputs. The Spartan-3 embedded 18x18 multipliers are a better
solution for pure multiplication functions.

• Two independent 11-bit binary to 4-digit BCD converters, with the block ROM configured
as 1Kx18. The least-significant bit (LSB) of each converter bypasses the ROM as the
converted result is the same as the original value, i.e. the LSB indicates whether the value
is odd or even.

• Two independent 3-digit BCD to 10-bit binary converters, with the block ROM configured
as 2Kx9 and the LSBs bypass the converters.

• Sine-cosine look-up tables using one port for sine, the other one for cosine, with 90
degree-shifted addresses, 18-bit amplitude, 10-bit angular resolution.

• Two independent 10-bit binary to three-digit, seven-segment LED output converter with
the block ROM configured as 1Kx18. Leading zeros are displayed as blanks. Because
input values are limited to 1023, the LED digits display from “0” to “3FF”. Consequently,
the logic for the most-significant digit requires only four inputs (segment a=d=g, segment f
is always High).

Figure 30: Dual-Port Block RAM Facilitates Waveform Storage and Updates

ADDRA

DOA

DIB

ADDRB

Port A
Active Waveform

Port B
Update Waveform X463_30_062503

ug000.book Page 211 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

212 www.xilinx.com XAPP463 (v1.1.1) June 25, 2003
1-800-255-7778

Using Block RAM in Spartan-3 FPGAs
R

Related
Materials and
References

• “Using Leftover Multipliers and Block RAM in Your Design” by Peter Alfke, Xilinx, Inc.
http://www.xilinx.com/support/techxclusives/leftover-techX11.htm

• “The Myriad Uses of Block RAM” by Jan Gray, Gray Research, LLC.
http://www.fpgacpu.org/usenet/bb.html

• Libraries Guide, for Xilinx ISE 5.2i by Xilinx, Inc.

- Adobe Acrobat [PDF]
http://toolbox.xilinx.com/docsan/xilinx5/pdf/docs/lib/lib.pdf, pp. 1593–1640.

If ISE 5.2i is installed in the default directory, this document is also located in the
following path or within Project Navigator by selecting Help Online Documentation.
When the Acrobat document appears, click Libraries Guide from the table of
contents on the left.
C:\Xilinx\doc\usenglish\docs\lib\lib.pdf

- RAMB16_Sn Primitive [HTML]
http://toolbox.xilinx.com/docsan/xilinx5/data/docs/lib/lib0371_355.html

- RAMB16_Sm_Sn Primitive [HTML]
http://toolbox.xilinx.com/docsan/xilinx5/data/docs/lib/lib0372_356.html

Conclusion The Spartan-3 FPGA’s abundant, fast, and flexible block RAMs provide invaluable on-chip local
storage for scratchpad memories, FIFOs, buffers, look-up tables, and much more. Using unique
capabilities, block RAM implements such functions as shift registers, delay lines, counters, and
wide, complex logic functions.

Block RAM is supported in applications using the broad spectrum of Xilinx ISE development
software, including the CORE Generator system and can be inferred or directly instantiated in
VHDL or Verilog synthesis designs.

Appendix A:
VHDL
Instantiation
Example

The following VHDL instantiation example is for the Synopsys FPGA Express system. The
example XC3S_RAMB_1_PORT module uses the SelectRAM_A36.vhd VHDL template. This
and other templates are available for download from the following Web link. The following
example is a VHDL code snippet and will not compile as is.

• ftp://ftp.xilinx.com/pub/applications/xapp/xapp463_vhdl.zip

-- Module: XC3S_RAMB_1_PORT
-- Description: 18Kb Block SelectRAM example
-- Single Port 512 x 36 bits
-- Use template “SelectRAM_A36.vhd"
--
-- Device: Spartan-3 Family

library IEEE;
use IEEE.std_logic_1164.all;
--
-- Syntax for Synopsys FPGA Express
-- pragma translate_off
library UNISIM;
use UNISIM.VCOMPONENTS.ALL;
-- pragma translate_on
--
entity XC3S_RAMB_1_PORT is
port (

DATA_IN : in std_logic_vector (35 downto 0);
ADDRESS : in std_logic_vector (8 downto 0);
ENABLE : in std_logic;
WRITE_EN : in std_logic;
SET_RESET : in std_logic;
CLK : in std_logic;
DATA_OUT : out std_logic_vector (35 downto 0)

ug000.book Page 212 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/support/techxclusives/leftover-techX11.htm
http://www.fpgacpu.org/usenet/bb.html
http://toolbox.xilinx.com/docsan/xilinx5/pdf/docs/lib/lib.pdf
http://toolbox.xilinx.com/docsan/xilinx5/data/docs/lib/lib0371_355.html
http://toolbox.xilinx.com/docsan/xilinx5/data/docs/lib/lib0372_356.html
ftp://ftp.xilinx.com/pub/applications/xapp/xapp463_vhdl.zip

Using Block RAM in Spartan-3 FPGAs

XAPP463 (v1.1.1) June 25, 2003 www.xilinx.com 213
1-800-255-7778

R

);
end XC3S_RAMB_1_PORT;
--
architecture XC3S_RAMB_1_PORT_arch of XC3S_RAMB_1_PORT is
--
-- Components Declarations:
--
component BUFG
port (

I : in std_logic;
O : out std_logic

);
end component;
--
-- Syntax for Synopsys FPGA Express
component RAMB16_S36
-- pragma translate_off
generic (
-- "Read during Write" attribute for functional simulation
WRITE_MODE : string := "READ_FIRST" ; -- WRITE_FIRST(default)/ READ_FIRST/
NO_CHANGE
-- Output value after configuration
INIT : bit_vector(35 downto 0) := X"000000000";
-- Output value if SSR active
SRVAL : bit_vector(35 downto 0) := X"012345678";
-- Initialize parity memory content
INITP_00 : bit_vector(255 downto 0) :=
X"00FEDCBA9876543210";
INITP_01 : bit_vector(255 downto 0) :=
X"00";
... (snip)
INITP_07 : bit_vector(255 downto 0) :=
X"00";
-- Initialize data memory content
INIT_00 : bit_vector(255 downto 0) :=
X"00FEDCBA9876543210";
INIT_01 : bit_vector(255 downto 0) :=
X"00";
... (snip)
INIT_3F : bit_vector(255 downto 0) :=
X"00"
);
-- pragma translate_on
port (

DI : in std_logic_vector (31 downto 0);
DIP : in std_logic_vector (3 downto 0);
ADDR : in std_logic_vector (8 downto 0);
EN : in STD_LOGIC;
WE : in STD_LOGIC;
SSR : in STD_LOGIC;
CLK : in STD_LOGIC;
DO : out std_logic_vector (31 downto 0);
DOP : out std_logic_vector (3 downto 0)

);
end component;
--
-- Attribute Declarations:
attribute WRITE_MODE : string;
attribute INIT: string;
attribute SRVAL: string;
-- Parity memory initialization attributes
attribute INITP_00: string;
attribute INITP_01: string;
... (snip)
attribute INITP_07: string;
-- Data memory initialization attributes
attribute INIT_00: string;
attribute INIT_01: string;

ug000.book Page 213 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

214 www.xilinx.com XAPP463 (v1.1.1) June 25, 2003
1-800-255-7778

Using Block RAM in Spartan-3 FPGAs
R

... (snip)
attribute INIT_3F: string;
--
-- Attribute "Read during Write mode" = WRITE_FIRST(default)/ READ_FIRST/
NO_CHANGE
attribute WRITE_MODE of U_RAMB16_S36: label is "READ_FIRST";
attribute INIT of U_RAMB16_S36: label is "000000000";
attribute SRVAL of U_RAMB16_S36: label is "012345678";
--
-- RAMB16 memory initialization for Alliance
-- Default value is "0" / Partial initialization strings are padded
-- with zeros to the left
attribute INITP_00 of U_RAMB16_S36: label is
"00FEDCBA9876543210";
attribute INITP_01 of U_RAMB16_S36: label is
"00";
... (snip)
attribute INITP_07 of U_RAMB16_S36: label is
"00";
--
attribute INIT_00 of U_RAMB16_S36: label is
"00FEDCBA9876543210";
attribute INIT_01 of U_RAMB16_S36: label is
"00";
... (snip)
attribute INIT_3F of U_RAMB16_S36: label is
"00";
--
-- Signal Declarations:
--
-- signal VCC : std_logic;
-- signal GND : std_logic;
signal CLK_BUFG: std_logic;
signal INV_SET_RESET : std_logic;
--
begin
-- VCC <= ’1’;
-- GND <= ’0’;
--
-- Instantiate the clock Buffer
U_BUFG: BUFG
port map (

I => CLK,
O => CLK_BUFG

);
--
-- Use of the free inverter on SSR pin
INV_SET_RESET <= NOT SET_RESET;
-- Block SelectRAM Instantiation
U_RAMB16_S36: RAMB16_S36
port map (

DI => DATA_IN (31 downto 0), -- insert 32 bits data-in bus (<31 downto 0>)
DIP => DATA_IN (35 downto 32), -- insert 4 bits parity data-in bus (or <35

-- downto 32>)
ADDR => ADDRESS (8 downto 0), -- insert 9 bits address bus
EN => ENABLE, -- insert enable signal
WE => WRITE_EN, -- insert write enable signal
SSR => INV_SET_RESET, -- insert set/reset signal
CLK => CLK_BUFG, -- insert clock signal
DO => DATA_OUT (31 downto 0), -- insert 32 bits data-out bus (<31 downto 0>)
DOP => DATA_OUT (35 downto 32) -- insert 4 bits parity data-out bus (or <35

-- downto 32>)
);
--

end XC3S_RAMB_1_PORT_arch;

ug000.book Page 214 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Block RAM in Spartan-3 FPGAs

XAPP463 (v1.1.1) June 25, 2003 www.xilinx.com 215
1-800-255-7778

R

Appendix B:
Verilog
Instantiation
Example

The following Verilog instantiation example is for the Synopsys FPGA Express system. The
example XC3S_RAMB_1_PORT module uses the SelectRAM_A36.v Verilog template. This
and other templates are available for download from the following Web link. The following
example is a Verilog code snippet and will not compile as is.

• ftp://ftp.xilinx.com/pub/applications/xapp/xapp463_verilog.zip

// Module: XC3S_RAMB_1_PORT
// Description: 18Kb Block SelectRAM-II example
// Single Port 512 x 36 bits
// Use template "SelectRAM_A36.v"
//
// Device: Spartan-3 Family
//---
module XC3S_RAMB_1_PORT (CLK, SET_RESET, ENABLE, WRITE_EN, ADDRESS, DATA_IN,
DATA_OUT);

input CLK, SET_RESET, ENABLE, WRITE_EN;
input [35:0] DATA_IN;
input [8:0] ADDRESS;
output [35:0] DATA_OUT;
wire CLK_BUFG, INV_SET_RESET;

//Use of the free inverter on SSR pin
assign INV_SET_RESET = ~SET_RESET;
// initialize block ram for simulation
// synopsys translate_off
defparam
//”Read during Write” attribute for functional simulation
U_RAMB16_S36.WRITE_MODE = “READ_FIRST”, //WRITE_FIRST(default)/ READ_FIRST/ NO_CHANGE
//Output value after configuration
U_RAMB16_S36.INIT = 36'h000000000,
//Output value if SSR active
U_RAMB16_S36.SRVAL = 36'h012345678,
//Initialize parity memory content
U_RAMB16_S36.INITP_00 =
256'h0123456789ABCDEF00,
U_RAMB16_S36.INITP_01 =
256'h00,
... (snip)
U_RAMB16_S36.INITP_07 =
256'h00,
//Initialize data memory content
U_RAMB16_S36.INIT_00 =
256'h0123456789ABCDEF00,
U_RAMB16_S36.INIT_01 =
256'h00,
... (snip)
U_RAMB16_S36.INIT_3F =
256'h00;
// synopsys translate_on
//Instantiate the clock Buffer
BUFG U_BUFG (.I(CLK), .O(CLK_BUFG));
//Block SelectRAM Instantiation
RAMB16_S36 U_RAMB16_S36 (

.DI(DATA_IN[31:0]),

.DIP(DATA_IN-PARITY[35:32]),

.ADDR(ADDRESS),

.EN(ENABLE),

.WE(WRITE_EN),

.SSR(INV_SET_RESET),

.CLK(CLK_BUFG),

.DO(DATA_OUT[31:0]),

.DOP(DATA_OUT-PARITY[35:32]));
// synthesis attribute declarations
/* synopsys attribute
WRITE_MODE "READ_FIRST"
INIT "000000000"
SRVAL "012345678"

ug000.book Page 215 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
ftp://ftp.xilinx.com/pub/applications/xapp/xapp463_verilog.zip

216 www.xilinx.com XAPP463 (v1.1.1) June 25, 2003
1-800-255-7778

Using Block RAM in Spartan-3 FPGAs
R

INITP_00
"0123456789ABCDEF00"
INITP_01
"00"
... (snip)
INITP_07
"00"
INIT_00
"0123456789ABCDEF00"
INIT_01
"00"
... (snip)
INIT_3F
"00"
*/
endmodule

Revision
History

The following table shows the revision history for this document.

Date Version Revision

04/05/03 1.0 Initial Xilinx release.

05/12/03 1.1 Updated block RAM information for the XC3S50 device.

Updated Table 1, Figure 2, Figure 18, Figure 26, and the text
associated with the Introduction and Block RAM Location and
Surrounding Neighborhood sections.

Added 256x72 single-port mode to Table 2.

Updated hypertext links in Related Materials and References,
Appendix A: VHDL Instantiation Example, and Appendix B:
Verilog Instantiation Example.

Corrected Figure 22. DIB and ADDRB connections were swapped.

06/25/03 1.1.1 Minor editing changes.

ug000.book Page 216 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

XAPP464 (v1.0) July 8, 2003 www.xilinx.com 217
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Summary Each Spartan™-3 Configurable Logic Block (CLB) contains up to 64 bits of single-port RAM or
32 bits of dual-port RAM. This RAM is distributed throughout the FPGA and is commonly called
“distributed RAM” to distinguish it from block RAM. Distributed RAM is fast, localized, and ideal
for small data buffers, FIFOs, or register files. This application note describes the features and
capabilities of distributed RAM and illustrates how to specify the various options using the Xilinx
CORE Generator™ system or via VHDL or Verilog instantiation.

Introduction In addition to the embedded 18Kbit block RAMs, Spartan-3 FPGAs feature distributed RAM
within each Configurable Logic Block (CLB). Each SLICEM function generator or LUT within a
CLB resource optionally implements a 16-deep x 1-bit synchronous RAM. The LUTs within a
SLICEL slice do not have distributed RAM.

Distributed RAM writes synchronously and reads asynchronously. However, if required by the
application, use the register associated with each LUT to implement a synchronous read
function. Each 16 x 1-bit RAM is cascadable for deeper and/or wider memory applications, with
a minimal timing penalty incurred through specialized logic resources.

Spartan-3 CLBs support various RAM primitives up to 64-deep by 1-bit-wide. Two LUTs within
a SLICEM slice combine to create a dual-port 16x1 RAM—one LUT with a read/write port, and
a second LUT with a read-only port. One port writes into both 16x1 LUT RAMs simultaneously,
but the second port reads independently.

Distributed RAM is crucial to many high-performance applications that require relatively small
embedded RAM blocks, such as FIFOs or small register files. The Xilinx CORE Generator™
software automatically generates optimized distributed RAMs for the Spartan-3 architecture.
Similarly, CORE Generator creates Asynchronous and Synchronous FIFOs using distributed
RAMs.

Single-Port and Dual-Port RAMs

Data Flow

Distributed RAM supports the following memory types:

• Single-port RAM with synchronous write and asynchronous read. Synchronous reads are
possible using the flip-flop associated with distributed RAM.

• Dual-port RAM with one synchronous write and two asynchronous read ports. As above,
synchronous reads are possible.

As illustrated in Figure 1, dual-port distributed RAM has one read/write port and an
independent read port.

Application Note: Spartan-3 FPGA Family

XAPP464 (v1.0) July 8, 2003

Using Look-Up Tables as Distributed RAM
in Spartan-3 FPGAs

R

ug000.book Page 217 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

218 www.xilinx.com XAPP464 (v1.0) July 8, 2003
1-800-255-7778

Using Look-Up Tables as Distributed RAM in Spartan-3 FPGAs
R

Any write operation on the D input and any read operation on the SPO output can occur
simultaneously with and independently from a read operation on the second read-only port,
DPO.

Write Operations

The write operation is a single clock-edge operation, controlled by the write-enable input, WE.
By default, WE is active High, although it can be inverted within the distributed RAM. When the
write enable is High, the clock edge latches the write address and writes the data on the D input
into the selected RAM location.

When the write enable is Low, no data is written into the RAM.

Read Operation

A read operation is purely combinatorial. The address port—either for single- or dual-port
modes—is asynchronous with an access time equivalent to a LUT logic delay.

Read During Write

When synchronously writing new data, the output reflects the data being written to the
addressed memory cell, which is similar to the WRITE_MODE=WRITE_FIRST mode on the
Spartan-3 block RAMs. The timing diagram in Figure 2 illustrates a write operation with the
previous data read on the output port, before the clock edge, followed by the new data.

Figure 1: Single-Port and Dual-Port Distributed RAM

Figure 2: Write Timing Diagram

D

WCLK

Single-Port RAM

O
D

WCLK

Dual-Port RAM

SPO

DPO

x464_01_062503

R/W Port

Write Read

Address Address

Address

R/W Port

Read Port

Write Read

Read

tread
twrite

Previous
Data

d

d

aa

MEM(aa)

New
Data

tread

WCLK

DATA_IN

ADDRESS

WRITE_EN

DATA_OUT

x464_02_070303

ug000.book Page 218 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Look-Up Tables as Distributed RAM in Spartan-3 FPGAs

XAPP464 (v1.0) July 8, 2003 www.xilinx.com 219
1-800-255-7778

R

Characteristics • A write operation requires only one clock edge.

• A read operation requires only the logic access time.

• Outputs are asynchronous and dependent only on the LUT logic delay.

• Data and address inputs are latched with the write clock and have a setup-to-clock timing
specification. There is no hold time requirement.

• For dual-port RAM, the A[#:0] port is the write and read address, and the DPRA[#:0] port
is an independent read-only address.

Compatibility
with Other
Xilinx FPGA
Families

Each Spartan-3 distributed RAM operates identically to the distributed RAM found in Virtex™,
Virtex-E, Spartan-II, Spartan-IIE, Virtex-II, and Virtex-II Pro FPGAs.

Table 1 shows the basic memory capabilities embedded within the CLBs on various Xilinx
FPGA families. Like Virtex-II/Pro FPGAs, Spartan-3 CLBs have eight LUTs and implement 128
bits of ROM memory. Like the Virtex/E and Spartan-II/IIE FPGAs, Spartan-3 CLBs have 64 bits
of distributed RAM. Although the Spartan-3 and Virtex-II/Pro CLBs are identical for logic
functions, the Spartan-3 CLBs have half the amount of distributed RAM within each CLB.

Table 2 lists the various single- and dual-port distributed RAM primitives supported by the
different Xilinx FPGA families. For each type of RAM, the table indicates how many instances of
a particular primitive fit within a single CLB. For example, two 32x1 single-port RAM primitives
fit in a single Spartan-3 CLB. Similarly, two 16x1 dual-port RAM primitives fit in a Spartan-3
CLB but a single 32x1 dual-port RAM primitive does not.

Table 1: Distributed Memory Features by FPGA Family

Feature
Spartan-3

Family

Virtex/Virtex-E,
Spartan-II/Spartan-IIE

Families

Virtex-II,
Virtex-II Pro

Families

LUTs per CLB 8 4 8

ROM bits per CLB 128 64 128

Single-port RAM bits per CLB 64 64 128

Dual-port RAM bits per CLB 32 32 64

Table 2: Single- and Dual-port RAM Primitives Supported in a CLB by Family

Family
Single-Port RAM Dual-Port RAM

16x1 32x1 64x1 128x1 16x1 32x1 64x1

Spartan-3 4 2 1 2

Spartan-II/IIE

Virtex/E

4 2 1 2

Virtex-II/Pro 8 4 2 1 4 2 1

ug000.book Page 219 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

220 www.xilinx.com XAPP464 (v1.0) July 8, 2003
1-800-255-7778

Using Look-Up Tables as Distributed RAM in Spartan-3 FPGAs
R

Library
Primitives

There are four library primitives that support Spartan-3 distributed RAM, ranging from 16 bits
deep to 64 bits deep. All the primitives are one bit wide. Three primitives are single-port RAMs
and one primitive is dual-port RAM, as shown in Table 3.

The input and output data are one bit wide. However, several distributed RAMs, connected in
parallel, easily implement wider memory functions.

Figure 3 shows generic single-port and dual-port distributed RAM primitives. The A[#:0] and
DPRA[#:0] signals are address buses.

As shown in Table 4, wider library primitives are available for 2-bit and 4-bit RAMs.

Table 3: Single-Port and Dual-Port Distributed RAMs

Primitive
RAM Size

(Depth x Width)
Type Address Inputs

RAM16X1S 16 x 1 Single-port A3, A2, A1, A0

RAM32X1S 32 x 1 Single-port A4, A3, A2, A1, A0

RAM64X1S 64 x 1 Single-port A5, A4, A3, A2, A1, A0

RAM16X1D 16 x 1 Dual-port A3, A2, A1, A0

Figure 3: Single-Port and Dual-Port Distributed RAM Primitives

Table 4: Wider Library Primitives

Primitive
RAM Size

(Depth x Width)
Data Inputs Address Inputs Data Outputs

RAM16x2S 16 x 2 D1, D0 A3, A2, A1, A0 O1, O0

RAM32X2S 32 x 2 D1, D0 A4, A3, A2, A1, A0 O1, O0

RAM16X4S 16 x 4 D3, D2, D1, D0 A3, A2, A1, A0 O3, O2, O1, O0

DPRA[#:0]

A[#:0]

D

WE

WCLK

RAMyX1D

SPO

DPO

X464_03_062503

R/W Port

Read Port

RAMyX1S

O

A[#:0]

D

WE

WCLK

ug000.book Page 220 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Look-Up Tables as Distributed RAM in Spartan-3 FPGAs

XAPP464 (v1.0) July 8, 2003 www.xilinx.com 221
1-800-255-7778

R

Signal Ports Each distributed RAM port operates independently of the other while reading the same set of
memory cells.

Clock — WCLK

The clock is used for synchronous writes. The data and the address input pins have setup times
referenced to the WCLK pin.

Enable — WE

The enable pin affects the write functionality of the port. An inactive Write Enable prevents any
writing to memory cells. An active Write Enable causes the clock edge to write the data input
signal to the memory location pointed to by the address inputs.

Address — A0, A1, A2, A3 (A4, A5)

The address inputs select the memory cells for read or write. The width of the port determines
the required address inputs.

Note: The address inputs are not a bus in VHDL or Verilog instantiations.

Data In — D

The data input provides the new data value to be written into the RAM.

Data Out — O, SPO, and DPO

The data output O on single-port RAM or the SPO and DPO outputs on dual-port RAM reflects
the contents of the memory cells referenced by the address inputs. Following an active write
clock edge, the data out (O or SPO) reflects the newly written data.

Inverting Control Pins

The two control pins, WCLK and WE, each have an individual inversion option. Any control
signal, including the clock, can be active at logic level 0 (negative edge for the clock) or at logic
level 1 (positive edge for the clock) without requiring other logic resources.

Global Set/Reset — GSR

The global set/reset (GSR) signal does not affect distributed RAM modules.

Global Write Enable — GWE

The global write enable signal, GWE, is asserted automatically at the end of device
configuration to enable all writable elements. The GWE signal guarantees that the initialized
distributed-RAM contents are not disturbed during the configuration process.

Because GWE is a global signal and automatically connected throughout the device, the
distributed RAM primitive does not have a GWE input pin.

ug000.book Page 221 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

222 www.xilinx.com XAPP464 (v1.0) July 8, 2003
1-800-255-7778

Using Look-Up Tables as Distributed RAM in Spartan-3 FPGAs
R

Attributes Content Initialization — INIT

By default, distributed RAM is initialized with all zeros during the device configuration
sequence. To specify [non-zero] initial memory contents after configuration, use the INIT
attributes. Each INIT is a hexadecimal-encoded bit vector, arranged from most-significant to
least-significant bit. In other words, the right-most hexadecimal character represents RAM
locations 3, 2, 1, and 0. Table 5 shows the length of the INIT attribute for each primitive.

Placement Location — LOC

Each Spartan-3 CLB contains four slices, each with its own location coordinate, as shown in
Figure 4. Distributed RAM fits only in SLICEMs slices. The ‘M’ in SLICEM indicates that the
slice supports memory-related functions and distinguishes SLICEMs from SLICELs. The ‘L’
indicates that the slice supports logic only.

When a LOC property is assigned to a distributed RAM instance, the Xilinx ISE software places
the instance in the specified location. Figure 4 shows the X,Y coordinates for the slices in a
Spartan-3 CLB. Again, only SLICEM slices support memory.

Distributed RAM placement locations use the slice location naming convention, allowing LOC
properties to transfer easily from array to array.

Table 5: INIT Attributes Length

Primitive Template INIT Attribute Length

RAM16X1S RAM_16S 4 digits

RAM32X1S RAM_32S 8 digits

RAM64X1S RAM_64S 16 digits

RAM16X1D RAM_16D 4 digits

Figure 4: SLICEM slices within Spartan-3 CLB

X1Y0

X1Y1

Reg

Reg

Reg Reg

RegReg

Logic/ROM
Distributed RAM

Shift Register

Logic/ROM only

X0Y1

X0Y0

SLICEM

LUT

LUT

x464_04_070803

LUT

LUT

Configurable Logic Block (CLB)

SLICEL

Reg

RegLUT

LUT

LUT

LUT

ug000.book Page 222 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Look-Up Tables as Distributed RAM in Spartan-3 FPGAs

XAPP464 (v1.0) July 8, 2003 www.xilinx.com 223
1-800-255-7778

R

For example, the single-port RAM16X1S primitive fits in any LUT within any SLICEM. To place
the instance U_RAM16 in slice X0Y0, use the following LOC assignment:

INST "U_RAM16" LOC = "SLICE_X0Y0";

The 16x1 dual-port RAM16X1D primitive requires both 16x1 LUT RAMs within a single
SLICEM slice, as shown in Figure 5. The first 16x1 LUT RAM, with output SPO, implements the
read/write port controlled by address A[3:0] for read and write. The second LUT RAM
implements the independent read-only port controlled by address DPRA[3:0]. Data is
presented simultaneously to both LUT RAMs, again controlled by address A[3:0], WE, and
WCLK.

A 32x1 single-port RAM32X1S primitive fits in one slice, as shown in Figure 6. The 32 bits of
RAM are split between two 16x1 LUT RAMs within the SLICEM slice. The A4 address line
selects the active LUT RAM via the F5MUX multiplexer within the slice.

Figure 5: RAM16X1D Placement

D

A[3:0]

WE

WCLK

SPO

DPO

DPRA[3:0]

16x1
LUT
RAM
(Read/
Write)

16x1
LUT
RAM
(Read
Only)

Optional
Register

Optional
Register

SLICEM

x464_05_062603

ug000.book Page 223 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

224 www.xilinx.com XAPP464 (v1.0) July 8, 2003
1-800-255-7778

Using Look-Up Tables as Distributed RAM in Spartan-3 FPGAs
R

The 64x1 single-port RAM64X1S primitive occupies both SLICEM slices in the CLB. The read
path uses both F5MUX and F6MUX multiplexers within the CLB.

Distributed
RAM Design
Entry

To specify distributed RAM in an application, use one of the various design entry tools,
including the Xilinx CORE Generator software or VHDL or Verilog.

Xilinx CORE Generator System

The Xilinx CORE Generator system creates distributed memory designs for both single-port
and dual-port RAMs, ROMs, and even SRL16 shift-register functions.

The Distributed Memory module is parameterizable. To create a module, specify the
component name and choose to include or exclude control inputs, then choose the active
polarity for the control inputs.

Optionally, specify the initial memory contents. Unless otherwise specified, each memory
location initializes to zero. Enter user-specified initial values via a Memory Initialization File,
consisting of one line of binary data for every memory location. A default file is generated by the
CORE Generator system. Alternatively, create a coefficients file (.coe) as shown in Figure 7,
which not only defines the initial contents in a radix of 2, 10, or 16, but also defines all the other
control parameters for the CORE Generator system.

The output from the CORE Generator system includes a report on the options selected and the
device resources required. If a very deep memory is generated, then some external
multiplexing may be required; these resources are reported as the number of logic slices
required. For simulation purposes, the CORE Generator system creates VHDL or Verilog
behavioral models.

Figure 6: RAM32X1S Placement

D

A[3:0]

WE

WCLK

SLICEM

A4

O

F
5M

U
X

16x1
LUT
RAM

16x1
LUT
RAM

Optional
Register

Optional
Register

x464_06_062603

Figure 7: A Simple Coefficients File (.coe) Example for a Byte-Wide Memory

memory_initialization_radix=16;
memory_initialization_vector= 80, 0F, 00, 0B, 00, 0C, …, 81;

ug000.book Page 224 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Look-Up Tables as Distributed RAM in Spartan-3 FPGAs

XAPP464 (v1.0) July 8, 2003 www.xilinx.com 225
1-800-255-7778

R

The CORE Generator synchronous and asynchronous FIFO modules support both distributed
and block RAMs.

• CORE Generator: Distributed Memory module
http://www.xilinx.com/ipcenter/catalog/logicore/docs/dist_mem.pdf

• CORE Generator: Synchronous FIFO module
http://www.xilinx.com/ipcenter/catalog/logicore/docs/sync_fifo.pdf

• CORE Generator: Asynchronous FIFO module
http://www.xilinx.com/ipcenter/catalog/logicore/docs/async_fifo.pdf

VHDL and Verilog

VHDL and Verilog synthesis-based designs can either infer or directly instantiate block RAM,
depending on the specific logic synthesis tool used to create the design.

Inferring Block RAM

Some VHDL and Verilog logic synthesis tools, such as the Xilinx Synthesis Tool (XST) and
Synplicity Synplify, infer block RAM based on the hardware described. The Xilinx ISE Project
Navigator includes templates for inferring block RAM in your design. To use the templates
within Project Navigator, select Edit Language Templates from the menu, and then select
VHDL or Verilog, followed by Synthesis Templates RAM from the selection tree. Finally,
select the preferred distributed RAM template. Cut and paste the template into the source code
for the application and modify it as appropriate.

It is still possible to directly instantiate distributed RAM, even if portions of the design infer
distributed RAM.

Instantiation Templates

For VHDL- and Verilog-based designs, various instantiation templates are available to speed
development. Within the Xilinx ISE Project Navigator, select Edit Language Templates
from the menu, and then select VHDL or Verilog, followed by Component Instantiation
Distributed RAM from the selection tree. Cut and paste the template into the source code for
the application and modify it as appropriate.

There are also downloadable VHDL and Verilog templates available for all single-port and dual-
port primitives. The RAM_xS templates (where x = 16, 32, or 64) are single-port modules and
instantiate the corresponding RAMxX1S primitive. The ‘S’ indicates single-port RAM. The
RAM_16D template is a dual-port module and instantiates the corresponding RAM16X1D
primitive. The ‘D’ indicates dual-port RAM.

• VHDL Distributed RAM Templates
ftp://ftp.xilinx.com/pub/applications/xapp/xapp464_vhdl.zip

• Verilog Distributed RAM Templates
ftp://ftp.xilinx.com/pub/applications/xapp/xapp464_verilog.zip

The following are single-port templates:

• RAM_16S

• RAM_32S

• RAM_64S

The following is a dual-port template:

• RAM_16D

In VHDL, each template has a component declaration section and an architecture section.
Insert both sections of the template within the VHDL design file. The port map of the
architecture section must include the design signal names.

ug000.book Page 225 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
ftp://ftp.xilinx.com/pub/applications/xapp/xapp464_verilog.zip
ftp://ftp.xilinx.com/pub/applications/xapp/xapp464_vhdl.zip
http://www.xilinx.com/ipcenter/catalog/logicore/docs/async_fifo.pdf
http://www.xilinx.com/ipcenter/catalog/logicore/docs/sync_fifo.pdf
http://www.xilinx.com/ipcenter/catalog/logicore/docs/dist_mem.pdf

226 www.xilinx.com XAPP464 (v1.0) July 8, 2003
1-800-255-7778

Using Look-Up Tables as Distributed RAM in Spartan-3 FPGAs
R

Templates for the RAM_16S module are provided below as examples in both VHDL and Verilog
code.

VHDL Template Example

--
-- Module: RAM_16S
--
-- Description: VHDL instantiation template
-- Distributed RAM
-- Single Port 16 x 1
-- Can also be used for RAM16X1S_1
--
-- Device: Spartan-3 Family
--

--
-- Components Declarations:
--
component RAM16X1S
-- pragma translate_off
generic (
-- RAM initialization (“0” by default) for functional simulation:
INIT : bit_vector := X"0000"
);
-- pragma translate_on
port (
 D : in std_logic;
 WE : in std_logic;
 WCLK : in std_logic;
 A0 : in std_logic;
 A1 : in std_logic;
 A2 : in std_logic;
 A3 : in std_logic;
 O : out std_logic
);
end component;
--

--
-- Architecture section:
--
-- Attributes for RAM initialization ("0" by default):
attribute INIT: string;
--
attribute INIT of U_RAM16X1S: label is "0000";
--
-- Distributed RAM Instantiation
U_RAM16X1S: RAM16X1S
port map (
 D => , -- insert Data input signal
 WE => , -- insert Write Enable signal
 WCLK => , -- insert Write Clock signal
 A0 => , -- insert Address 0 signal
 A1 => , -- insert Address 1 signal
 A2 => , -- insert Address 2 signal
 A3 => , -- insert Address 3 signal
 O => -- insert Data output signal
);
--

ug000.book Page 226 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Look-Up Tables as Distributed RAM in Spartan-3 FPGAs

XAPP464 (v1.0) July 8, 2003 www.xilinx.com 227
1-800-255-7778

R

Verilog Template Example

//
// Module: RAM_16S
//
// Description: Verilog instantiation template
// Distributed RAM
// Single Port 16 x 1
// Can also be used for RAM16X1S_1
//
// Device: Spartan-3 Family
//
//---
//
// Syntax for Synopsys FPGA Express
// synopsys translate_off
defparam
//RAM initialization (“0” by default) for functional simulation:
U_RAM16X1S.INIT = 16'h0000;
// synopsys translate_on
//Distributed RAM Instantiation
RAM16X1S U_RAM16X1S (
 .D(), // insert input signal
 .WE(), // insert Write Enable signal
 .WCLK(), // insert Write Clock signal
 .A0(), // insert Address 0 signal
 .A1(), // insert Address 1 signal
 .A2(), // insert Address 2 signal
 .A3(), // insert Address 3 signal
 .O() // insert output signal
);
// synthesis attribute declarations
/* synopsys attribute
INIT "0000"
*/

Wider Distributed RAM Modules

Table 6 shows the VHDL and Verilog distributed RAM examples that implement n-bit-wide
memories.

Initialization in VHDL or Verilog Codes

Distributed RAM structures can be initialized in VHDL or Verilog code for both synthesis and
simulation. For synthesis, the attributes are attached to the distributed RAM instantiation and
are copied in the EDIF output file to be compiled by Xilinx ISE Series tools. The VHDL code
simulation uses a generic parameter to pass the attributes. The Verilog code simulation uses
a defparam parameter to pass the attributes.

Table 6: VHDL and Verilog Submodules

Submodules Primitive Size Type

XC3S_RAM16XN_S_SUBM RAM16X1S 16 words x n-bit Single-port

XC3S_RAM32XN_S_SUBM RAM32X1S 32 words x n-bit Single-port

XC3S_RAM64XN_S_SUBM RAM64X1S 64 words x n-bit Single-port

XC3S_RAM16XN_D_SUBM RAM16X1D 16 words x n-bit Dual-port

ug000.book Page 227 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

228 www.xilinx.com XAPP464 (v1.0) July 8, 2003
1-800-255-7778

Using Look-Up Tables as Distributed RAM in Spartan-3 FPGAs
R

Related
Materials and
References

Refer to the following documents for additional information:

• “Elements within a Slice” and “Function Generator” sections, Spartan-3 Data Sheet
(Module 2). Describes the CLB slice structure and distributed RAM function.
http://www.xilinx.com/bvdocs/publications/ds099-2.pdf

• Libraries Guide, for ISE 5.2i by Xilinx, Inc. Distributed RAM primitives. Pages 1491-1571.
http://toolbox.xilinx.com/docsan/xilinx5/pdf/docs/lib/lib.pdf

Revision
History

The following table shows the revision history for this document.

Date Version Revision

07/08/03 1.0 Initial Xilinx release.

ug000.book Page 228 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://toolbox.xilinx.com/docsan/xilinx5/pdf/docs/lib/lib.pdf
http://www.xilinx.com/bvdocs/publications/ds099-2.pdf

XAPP465 (v1.0.1) July 5, 2003 www.xilinx.com 229
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

FP

Summary The SRL16 is an alternative mode for the look-up tables where they are used as 16-bit shift
registers. Using this Shift Register LUT (SRL) mode can improve performance and rapidly lead
to cost savings of an order of magnitude. Although the SRL16 can be automatically inferred by
the software tools, considering their effective use can lead to more cost-effective designs.

Introduction Spartan™-3 FPGAs can configure the Look-Up Table (LUT) in a SLICEM slice as a 16-bit shift
register without using the flip-flops available in each slice. Shift-in operations are synchronous
with the clock, and output length is dynamically selectable. A separate dedicated output allows
the cascading of any number of 16-bit shift registers to create whatever size shift register is
needed. Each CLB resource can be configured using four of the eight LUTs as a 64-bit shift
register.

This document provides generic VHDL and Verilog submodules and reference code examples
for implementing from 16-bit up to 64-bit shift registers. These submodules are built from 16-bit
shift-register primitives and from dedicated MUXF5, MUXF6, and MUXF7 multiplexers.

These shift registers enable the development of efficient designs for applications that require
delay or latency compensation. Shift registers are also useful in synchronous FIFO and
Content-Addressable Memory (CAM) designs. To quickly generate a Spartan-3 shift register
without using flip-flops (i.e., using the SRL16 element(s)), use the CORE Generator RAM-
based Shift Register module.

Shift Register
Architecture

The structure of the SRL16 will be described from the bottom up, starting with the shift register
and then building up to the surrounding FPGA structure.

LUT Structure

The Look-Up Table can be described as a 16:1 multiplexer with the four inputs serving as binary
select lines, and the values programmed into the Look-Up Table serving as the data being
selected (see Figure 1).

Application Note: Spartan-3 FPGA Family

XAPP465 (v1.0.1) July 5, 2003

Using Look-Up Tables as Shift Registers
(SRL16) in Spartan-3 FPGAs

R

Figure 1: LUT Modeled as a 16:1 Multiplexer

x465_01_070603

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

1 0 1 1 1 0 0 0

D

A[3:0]

1 1 1 0 1 0 0 1

ug000.book Page 229 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

230 www.xilinx.com XAPP465 (v1.0.1) July 5, 2003
1-800-255-7778

Using Look-Up Tables as Shift Registers (SRL16) in Spartan-3 FPGAs
R

With the SRL16 configuration, the fixed LUT values are configured instead as an addressable
shift register (see Figure 2). The shift register inputs are the same as those for the synchronous
RAM configuration of the LUT: a data input, clock, and clock enable (not shown). A special
output for the shift register is provided from the last flip-flop, called Q15 on the library primitives
or MC15 in the FPGA Editor. The LUT inputs asynchronously (or dynamically) select one of the
16 storage elements in the shift register.

Dynamic Length Adjustment

The address can be thought of as dynamically changing the length of the shift register. If D is
used as the shift register output instead of Q15, setting the address to 7 (0111) selects Q7 as
the output, emulating an 8-bit shift register. Note that since the address lines control the mux,
they provide an asynchronous path to the output.

Logic Cell Structure

Each SRL16 LUT has an associated flip-flop that makes up the overall logic cell. The
addressable bit of the shift register can be stored in the flip-flop for a synchronous output or can
be fed directly to a combinatorial output of the CLB. When using the register, it is best to have
fixed address lines selecting a static shift register length. Since the clock-to-output delay of the
flip-flop is faster than the shift register, performance can be improved by addressing the
second-to-last bit and then using the flip-flop as the last stage of the shift register. Using the flip-
flop also allows for asynchronous or synchronous set or reset of the output.

The shift register input can come from a dedicated SHIFTIN signal, and the Q15/MC15 signal
from the last stage of the shift register can drive a SHIFTOUT output. The addressable D output
is available in all SRL primitives, while the Q15/MC15 signal that can drive SHIFTOUT is only
available in the cascadable SRLC16 primitive.

Figure 2: LUT Configured as an Addressable Shift Register

Figure 3: Logic Cell SRL Structure

x465_02_040203

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

D

A[3:0]

DIN

CLK

D Q D Q D Q D Q D Q D Q D Q D Q D Q D Q D Q D Q D Q D Q D Q D Q

Q15 or
MC15

A[3:0]

SHIFTIN

SHIFTOUT
or YB

DI (BY)

D

MC15

DI

WSG

CE (SR)
CLK

SRLC16

D Q

SHIFT-REG

WE
CK

A[3:0] Output

Registered
Output

(optional)

4

X465_03_040203

WS

ug000.book Page 230 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Look-Up Tables as Shift Registers (SRL16) in Spartan-3 FPGAs

XAPP465 (v1.0.1) July 5, 2003 www.xilinx.com 231
1-800-255-7778

R

Slice Structure

The two logic cells within a slice are connected via the SHIFTOUT and SHIFTIN signals for
cascading a shift register up to 32 bits (see Figure 4). These connect the Q15/MC15 of the first
shift register to the DI (or Q0 flip-flop) of the second shift register.

If dynamic addressing (or "dynamic length adjustment") is desired, the two separate data
outputs from each SRL16 must be multiplexed together. One of the two SRL16 bits can be
selected by using the F5MUX to make the selection (see Figure 5).

CLB Structure

The Spartan-3 CLB contains four slices, each with two Look-Up Tables, but only two allow LUTs
to be used as SRL16 components or distributed RAM. The two left-hand SLICEM components
allow their two LUTs to be configured as a 16-bit shift register. The same cascading of
SHIFTOUT to SHIFTIN available between the LUTs in the SLICEM is also available to connect
the two SLICEM components. The four left-hand LUTs of a single CLB can be combined to
produce delays up to 64 clock cycles (see Figure 6).

Figure 4: Shift Register Connections Between Logic Cells in a Slice

Figure 5: Using F5MUX for Addressing Multiple SRL16 Components

SHIFTIN

SLICEM

SHIFTOUT

X465_04_070703

MC15

SRL16
LC

DI

SRL16
LC

F5MUX

X465_05_070703

SRL16

A[3:0]

A4

LC

SRL16
LC

ug000.book Page 231 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

232 www.xilinx.com XAPP465 (v1.0.1) July 5, 2003
1-800-255-7778

Using Look-Up Tables as Shift Registers (SRL16) in Spartan-3 FPGAs
R

The multiplexers can be used to address multiple SLICEMs similar to the description for
combining the two LUTs within a SLICEM. The F6MUX can be used to select from three or four
SRL16 components in a CLB, providing up to 64 bits of addressable shift register (see
Figure 7).

Figure 6: Cascading Shift Register LUTs in a CLB

Figure 7: Using F6MUX to Address a 64-Bit Shift Register

SLICEM S0

SLICEM S1

1 Shift Chain
in CLB

X465_06_040503

SRLC16
MC15

MC15

D

SRLC16

DI

DI

SHIFTIN

IN

OUT

CASCADABLE OUT

FF

FFD

SRLC16
MC15

MC15

D

SRLC16
DI

SHIFTOUT

FF

FFD

DI

 X465_07_040203

LUT

SLICEM S1

D

LUT

LUT

SLICEM S0

F6

LUT

F5

F5

CLB

ug000.book Page 232 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Look-Up Tables as Shift Registers (SRL16) in Spartan-3 FPGAs

XAPP465 (v1.0.1) July 5, 2003 www.xilinx.com 233
1-800-255-7778

R

Library
Primitives

Eight library primitives are available that offer optional clock enable (CE), inverted clock (CLK)
and cascadable output (Q15) combinations.

Table 1 lists all of the available primitives for synthesis and simulation.

Initialization in VHDL and Verilog Code

A shift register can be initialized in VHDL or Verilog code for both synthesis and simulation. For
synthesis, the INIT attribute is attached to the 16-bit shift register instantiation and is copied in
the EDIF output file to be compiled by Xilinx Alliance Series tools. The VHDL code simulation
uses a generic parameter to pass the attributes. The Verilog code simulation uses a
defparam parameter to pass the attributes.

The S3_SRL16E shift register instantiation code examples (in VHDL and Verilog) illustrate
these techniques (see “VHDL and Verilog Templates,” page 240). S3_SRL16E.vhd and .v
files are not a part of the documentation.

Port Signals

Clock — CLK

Either the rising edge or the falling edge of the clock is used for the synchronous shift-in. The
data and clock enable input pins have set-up times referenced to the chosen edge of CLK.

Data In — D

The data input provides new data (one bit) to be shifted into the shift register.

Table 1: Shift Register Primitives

Primitive Length Control Address Inputs Output

SRL16 16 bits CLK A3, A2, A1, A0 Q

SRL16E 16 bits CLK, CE A3, A2, A1, A0 Q

SRL16_1 16 bits CLK A3, A2, A1, A0 Q

SRL16E_1 16 bits CLK, CE A3, A2, A1, A0 Q

SRLC16 16 bits CLK A3, A2, A1, A0 Q, Q15

SRLC16E 16 bits CLK, CE A3, A2, A1, A0 Q, Q15

SRLC16_1 16 bits CLK A3, A2, A1, A0 Q, Q15

SRLC16E_1 16 bits CLK, CE A3, A2, A1, A0 Q, Q15

Figure 8: SRLC16E Primitive

D

CE

CLK

Q

Q15

A0

A1

A2

A3

SRLC16E

X465_19_040503

ug000.book Page 233 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

234 www.xilinx.com XAPP465 (v1.0.1) July 5, 2003
1-800-255-7778

Using Look-Up Tables as Shift Registers (SRL16) in Spartan-3 FPGAs
R

Clock Enable — CE (optional)

The clock enable pin affects shift functionality. An inactive clock enable pin does not shift data
into the shift register and does not write new data. Activating the clock enable allows the data
in (D) to be written to the first location and all data to be shifted by one location. When available,
new data appears on output pins (Q) and the cascadable output pin (Q15).

Address — A3, A2, A1, A0

Address inputs select the bit (range 0 to 15) to be read. The nth bit is available on the output pin
(Q). Address inputs have no effect on the cascadable output pin (Q15), which is always the last
bit of the shift register (bit 15).

Data Out — Q

The data output Q provides the data value (1 bit) selected by the address inputs.

Data Out — Q15 (optional)

The data output Q15 provides the last bit value of the 16-bit shift register. New data becomes
available after each shift-in operation.

Inverting Control Pins

The two control pins (CLK, CE) have an individual inversion option. The default is the rising
clock edge and active High clock enable.

GSR

The global set/reset (GSR) signal has no impact on shift registers.

Attributes

Content Initialization — INIT

The INIT attribute defines the initial shift register contents. The INIT attribute is a hex-encoded
bit vector with four digits (0000).The left-most hexadecimal digit is the most significant bit. By
default the shift register is initialized with all zeros during the device configuration sequence, but
any other configuration value can be specified.

Location Constraints

Figure 9 shows how the slices are arranged within a CLB. Each CLB has four slices, but only
the two at the bottom-left of the CLB can be used as shift registers. These are both designated
SLICEM in CLB positions S0 and S1. The relative position coordinates are X0Y0 and X0Y1. To
constrain placement, these coordinates can be used in a LOC property attached to the SRL
primitive. Note that the dedicated CLB shift chain runs from the top to the bottom, but the start
and end of the shift register can be in any of the four SLICEM LUTs.

ug000.book Page 234 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Look-Up Tables as Shift Registers (SRL16) in Spartan-3 FPGAs

XAPP465 (v1.0.1) July 5, 2003 www.xilinx.com 235
1-800-255-7778

R

Shift Register Operations

Data Flow

Each shift register (SRL16 primitive) supports:

• Synchronous shift-in

• Asynchronous 1-bit output when the address is changed dynamically

• Synchronous shift-out when the address is fixed

In addition, cascadable shift registers (SRLC16) support synchronous shift-out output of the
last (16th) bit. This output has a dedicated connection to the input of the next SRLC16 inside
the CLB resource. Two primitives are illustrated in Figure 10.

Figure 9: Arrangement of Slices within the CLB

Figure 10: Shift Register and Cascadable Shift Register

X465_08_040203

Interconnect
to Neighbors

Left-Hand SLICEM
(Logic or Distributed RAM

or Shift Register)

Right-Hand SLICEL
(Logic Only)

CIN

SLICE
X0Y1

SLICE
X0Y0

Switch
Matrix

COUT

CLB

COUT

SHIFTOUT
SHIFTIN

CIN

SLICE
X1Y1

SLICE
X1Y0

X465_09_070703

D Q

Address

CE

CLK

SRL16E

D Q

Address

CE

CLK

SRLC16E

D Q

Q15

Q15

Address

CE

CLK

SRLC16E

ug000.book Page 235 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

236 www.xilinx.com XAPP465 (v1.0.1) July 5, 2003
1-800-255-7778

Using Look-Up Tables as Shift Registers (SRL16) in Spartan-3 FPGAs
R

Shift Operation

The shift operation is a single clock-edge operation with an active-High clock enable feature.
When enable is High, the input (D) is loaded into the first bit of the shift register, and each bit is
shifted to the next highest bit position. In a cascadable shift register configuration (such as
SRLC16), the last bit is shifted out on the Q15 output.

The bit selected by the 4-bit address appears on the Q output.

Dynamic Read Operation

The Q output is determined by the 4-bit address. Each time a new address is applied to the 4-
input address pins, the new bit position value is available on the Q output after the time delay to
access the LUT. This operation is asynchronous and independent of the clock and clock enable
signals.

Figure 11 illustrates the shift and dynamic read operations.

Static Read Operation

If the 4-bit address is fixed, the Q output always uses the same bit position. This mode
implements any shift register length up 1 to 16 bits in one LUT. Shift register length is (N+1)
where N is the input address.

The Q output changes synchronously with each shift operation. The previous bit is shifted to
the next position and appears on the Q output.

Figure 11: Shift- and Dynamic-Length Timing Diagrams

tshift

taccess

7

Position (7) Position (10)

10

taccess

CLK

CE

D

Q

Q15

Q

Address

Shift Timing Diagram

Dynamic Length Timing Diagram

X465_10_040203

ug000.book Page 236 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Look-Up Tables as Shift Registers (SRL16) in Spartan-3 FPGAs

XAPP465 (v1.0.1) July 5, 2003 www.xilinx.com 237
1-800-255-7778

R

Characteristics
• A shift operation requires one clock edge.

• Dynamic-length read operations are asynchronous (Q output).

• Static-length read operations are synchronous (Q output).

• The data input has a setup-to-clock timing specification.

• In a cascadable configuration, the Q15 output always contains the last bit value.

• The Q15 output changes synchronously after each shift operation.

Shift Register
Inference

When a shift register is described in generic HDL code, synthesis tools will infer the use of the
SRL16 component. Note that since the SRL16 does not have either synchronous or
asynchronous set or reset inputs, and does not have access to all bits at the same time, using
such capabilities will preclude the use of the SRL16, and the function will be implemented in
flip-flops. The cascadable shift register (SRLC16) may be inferred if the shift register is larger
than 16 bits or if only the Q15 is used.

Although the SRL16 shift register does not have a parallel load capability, an equivalent
function can be implemented simply by anticipating the load requirement and shifting in the
proper data. This requires predictable timing for the load command.

VHDL Inference Code

The following code infers an SRL16 in VHDL.

architecture Behavioral of srl16 is

signal Q_INT: std_logic_vector(15 downto 0);

begin

process(C)
begin
if (C’event and C=’1’) then
Q_INT <= Q_INT(14 downto 0) & D;

end if;
end process;

Q <= Q_INT(15);

end Behavioral;

An inverted clock (SRL16_1) is inferred by replacing C='1' with C='0'. A clock enable
(SRL16E) is inferred by inserting if (CE='1') then after the first if-then statement.

Verilog Inference Code

The following code infers an SRL16 in Verilog.

always @ (posedge C)
begin
Q_INT <= {Q_INT[14:0],D};

end

always @(Q_INT)
begin
Q <= Q_INT[15];

end

An inverted clock (SRL16_1) is inferred by replacing (posedge C) with (negedge C). A clock
enable (SRL16E) is inferred by inserting if(CE) after the begin statement.

ug000.book Page 237 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

238 www.xilinx.com XAPP465 (v1.0.1) July 5, 2003
1-800-255-7778

Using Look-Up Tables as Shift Registers (SRL16) in Spartan-3 FPGAs
R

Shift Register
Submodules

In addition to the 16-bit primitives, two submodules that implement 32-bit and 64-bit cascadable
shift registers are provided in VHDL and Verilog code. Table 2 lists available submodules.

The submodules are based on SRLC16E primitives, which are associated with dedicated
multiplexers (MUXF5, MUXF6, and so forth). This implementation allows a fast static- and
dynamic-length mode, even for very large shift registers.

Figure 12 represents the cascadable shift registers (32-bit and 64-bit) implemented by the
submodules in Table 2.

Table 2: Shift Register Submodules

Submodule Length Control Address Inputs Output

SRLC32E_SUBM 32 bits CLK, CE A4, A3, A2, A1, A0 Q, Q31

SRLC64E_SUBM 64 bits CLK, CE A5, A4, A3, A2, A1, A0 Q, Q63

Figure 12: Shift-Register Submodules (32-bit, 64-bit)

SRLC16E

X465_11_040603

SRLC16E

32-bit Shift Register

64-bit Shift Register

4

4

MUXF5

SRLC16E

D D

4

5

A3, A2, A1, A0

A4

Add.

4

A[3:0]

CE

Q

Q

Q15

Q15

D

A[3:0]

CE

Q

MUXF5

Q31

D

4

4

6

A3, A2, A1, A0

A5, A4 A5

A4

Add.

MUXF5

D

A[3:0]

CE

Q

Q15

Q15

D

A[3:0]

CE

Q

SRLC16E

D

A[3:0]

CE

Q

Q15

Q15

SRLC16E

D

A[3:0]

CE

Q

SRLC16E

MUXF6

Q

Q63

ug000.book Page 238 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Look-Up Tables as Shift Registers (SRL16) in Spartan-3 FPGAs

XAPP465 (v1.0.1) July 5, 2003 www.xilinx.com 239
1-800-255-7778

R

All clock enable (CE) and clock (CLK) inputs are connected to one global clock enable and one
clock signal per submodule. If a global static- or dynamic-length mode is not required, the
SRLC16E primitive can be cascaded without multiplexers.

Fully Synchronous Shift Registers

All shift-register primitives and submodules do not use the register(s) available in the same
slice(s). To implement a fully synchronous read and write shift register, output pin Q must be
connected to a flip-flop. Both the shift register and the flip-flop share the same clock, as shown
in Figure 13.

This configuration provides a better timing solution and simplifies the design. Because the flip-
flop must be considered to be the last register in the shift-register chain, the static or dynamic
address should point to the desired length minus one. If needed, the cascadable output can
also be registered in a flip-flop.

Static-Length Shift Registers

The cascadable 16-bit shift register implements any static length mode shift register without the
dedicated multiplexers (MUXF5, MUXF6, and so on). Figure 14 illustrates a 40-bit shift register.
Only the last SRLC16E primitive needs to have its address inputs tied to “0111”. Alternatively,
shift register length can be limited to 39 bits (address tied to “0110”) and a flip-flop can be used
as the last register. (In an SRLC16E primitive, the shift register length is the address input + 1.)

Figure 13: Fully Synchronous Shift Register

D Q

Q15

Address

CE (Write Enable)

CLK

SRLC16E QD Synchronous
Output

X465_12_040203

FF

Figure 14: 40-bit Static-Length Shift Register

DD

Q15
SRLC16

LUT

D

Q15
SRLC16

LUT

D Q OUT
(40-bit SRL)A[3:0]

Q15
SRLC16

LUT

"0111" 4

DD

Q15
SRLC16

LUT

D

Q15
SRLC16

LUT

D Q OUT
(40-bit SRL)A[3:0]

Q15
SRLC16

D Q

LUT

FF

"0110"

X465_13_040603

ug000.book Page 239 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

240 www.xilinx.com XAPP465 (v1.0.1) July 5, 2003
1-800-255-7778

Using Look-Up Tables as Shift Registers (SRL16) in Spartan-3 FPGAs
R

VHDL and Verilog Instantiation

VHDL and Verilog instantiation templates are available for all primitives and submodules.

In VHDL, each template has a component declaration section and an architecture section.
Each part of the template should be inserted within the VHDL design file. The port map of the
architecture section should include the design signal names.

The ShiftRegister_C_x (with x = 16, 32, or 64) templates are cascadable modules and
instantiate the corresponding SRLCxE primitive (16) or submodule (32 or 64).

The ShiftRegister_16 template can be used to instantiate an SRL16 primitive.

VHDL and Verilog Templates

In template names, the number indicates the number of bits (for example, SHIFT_SELECT_16
is the template for the 16-bit shift register) and the “C” extension means the template is
cascadable.

The following are templates for primitives:

• SHIFT_REGISTER_16

• SHIFT_REGISTER_16_C

The following are templates for submodules:

• SHIFT_REGISTER_32_C (submodule: SRLC32E_SUBM)

• SHIFT_REGISTER_64_C (submodule: SRLC64E_SUBM)

The corresponding submodules have to be synthesized with the design.

Templates for the SHIFT_REGISTER_16_C module are provided in VHDL and Verilog code as
an example.

VHDL Template:

-- Module: SHIFT_REGISTER_C_16
-- Description: VHDL instantiation template
-- CASCADABLE 16-bit shift register with enable (SRLC16E)
-- Device: Spartan-3 Family

-- Components Declarations:
--
component SRLC16E
-- pragma translate_off
 generic (
-- Shift Register initialization ("0" by default) for functional
simulation:
 INIT : bit_vector := X"0000"
);

-- pragma translate_on
 port (
 D : in std_logic;
 CE : in std_logic;
 CLK : in std_logic;
 A0 : in std_logic;
 A1 : in std_logic;
 A2 : in std_logic;
 A3 : in std_logic;
 Q : out std_logic;
 Q15 : out std_logic
);

end component;
-- Architecture Section:
--

ug000.book Page 240 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Look-Up Tables as Shift Registers (SRL16) in Spartan-3 FPGAs

XAPP465 (v1.0.1) July 5, 2003 www.xilinx.com 241
1-800-255-7778

R

-- Attributes for Shift Register initialization (“0” by default):
attribute INIT: string;
--
attribute INIT of U_SRLC16E: label is “0000”;
--
-- ShiftRegister Instantiation
U_SRLC16E: SRLC16E
 port map (
D => , -- insert input signal
CE => , -- insert Clock Enable signal (optional)
CLK => , -- insert Clock signal
A0 => , -- insert Address 0 signal
A1 => , -- insert Address 1 signal
A2 => , -- insert Address 2 signal
A3 => , -- insert Address 3 signal
Q => , -- insert output signal
Q15 => -- insert cascadable output signal
);

Verilog Template:

// Module: SHIFT_REGISTER_16
// Description: Verilog instantiation template
// Cascadable 16-bit Shift Register with Clock Enable (SRLC16E)
// Device: Spartan-3 Family
//---
// Syntax for Synopsys FPGA Express
// synopsys translate_off

 defparam

//Shift Register initialization ("0" by default) for functional simulation:
U_SRLC16E.INIT = 16'h0000;

// synopsys translate_on

//SelectShiftRegister-II Instantiation
 SRLC16E U_SRLC16E (.D(),

.A0(),

.A1(),

.A2(),

.A3(),

.CLK(),

.CE(),

.Q(),

.Q15()
);

// synthesis attribute declarations
 /* synopsys attribute
INIT "0000"

 */

CORE Generator System

The Xilinx CORE Generator™ system generates fast, compact, FIFO-style shift registers, delay
lines, or time-skew buffers using the SRL16. The RAM-based Shift Register module shown in
Figure 15 provides a very efficient multibit wide shift for widths up to 256 and depths to 1024.
Fixed-length shift registers and variable-length shift registers can be created. An option is also
provided to register the outputs of the module. If output registering is selected, there are
additional options for Clock Enable, Asynchronous Set, Clear, and Init, and Synchronous Set,
Clear and Init of the output register. The module can optionally be generated as a relationally
placed macro (RPM) or as unplaced logic.

ug000.book Page 241 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

242 www.xilinx.com XAPP465 (v1.0.1) July 5, 2003
1-800-255-7778

Using Look-Up Tables as Shift Registers (SRL16) in Spartan-3 FPGAs
R

Applications Delay Lines

The register-rich nature of the Xilinx FPGA architecture allows for the addition of pipeline
stages to increase throughput. Data paths must be balanced to keep the desired functionality.
The SRL16 can be used when additional clock cycles of delay are needed anywhere in the
design (see Figure 16).

Figure 15: CORE Generator RAM-Based Shift Register Module

x465_14_040203

D[N:0]

ASET SSET

ACLR SCLR AINIT SINIT

A[M:0]

CE

CLK

Q[N:0]

Figure 16: Using SRL16 as a Delay Line

4 Cycles 8 Cycles

Operation BOperation A

3 Cycles

3 Cycles

Operation C

4 Cycles 8 Cycles

Operation B

9 Cycles
using SRL16

Pipeline

Operation A

3 Cycles

12 Cycles

Operation C

12 Cycles

12 Cycles

9-cycle imbalance

Paths statically
balanced

X465_20_040603

ug000.book Page 242 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Look-Up Tables as Shift Registers (SRL16) in Spartan-3 FPGAs

XAPP465 (v1.0.1) July 5, 2003 www.xilinx.com 243
1-800-255-7778

R

Linear Feedback Shift Registers

Linear Feedback Shift Registers (LFSRs) sequence through 2n-1 states, where n is the number
of flip-flops. The sequence is created by feeding specific bits back through an XOR or XNOR
gate. LFSRs can replace conventional binary counters in performance critical applications
where the count sequence is not important (e.g., FIFOs). LFSRs are also used as pseudo-
random number generators. They are important building blocks in encryption and decryption
algorithms.

Maximal-length LFSRs need taps taken from specific positions within the shift register. There
are multiple ways these taps can be made available in the SRL16 configuration. One is by
addressing the necessary bit in a given SRL16 while allowing the Q15 to cascade to the next
SRL16. Another is to use flip-flops to "extend" the SRL16 where necessary to access the tap
points. For example, Figure 17 shows how a 52-bit LFSR can be implemented in one CLB with
the feedback coming from bits 49 and 52. A third method is to duplicate the LFSR in multiple
SRLs and address different bits from each one. Yet another is to generate multiple addresses
in one SRL clock cycle to capture multiple bit positions. The XNOR gate required for any LFSR
can be conveniently located in the SLICEL part of the CLB. More detail is available in
XAPP210.

Gold Code Generator

Gold code generators are used in CDMA systems to generate code sequences with good
correlation properties (see Figure 18). R. Gold suggested that sets of small correlation codes
could be generated by modulo 2 addition of the results of two LFSRs, primed with factor codes.
The result is a set of codes ideally suited to distinguish one code from another in a spectrum full
of coded signals. Figure 18 shows an implementation of a Gold code generator. The logic

Figure 17: 52-bit LFSR in One CLB

XNOR

x465_15_040203

D Q

D Q

Bit 1

Bit 52

Bit 52

Bit 49

Bit 49

OutputD
SRL16

Address = 15

Q
Bit 17

D
SRL16

Address = 15

Q
Bit 33

D
SRL16

Address = 15

Q

D Q
Bit 51

D Q
Bit 50

ug000.book Page 243 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/xapp/xapp210.pdf

244 www.xilinx.com XAPP465 (v1.0.1) July 5, 2003
1-800-255-7778

Using Look-Up Tables as Shift Registers (SRL16) in Spartan-3 FPGAs
R

required to initially fill the LFSR and provide the feedback can be located in the SLICEL parts
of the CLB. See XAPP217 for more details.

FIFOs

Synchronous FIFOs can be built out of the SRL16 components. These are useful when other
resources become scarce, providing up to 64 bits per CLB. For larger FIFOs, the block RAM is
the most efficient resource to use. See XAPP256 for more detail.

Counters

Any desired repeated sequence of 16 states can be achieved by feeding each output with an
SRL16. Cascading the SRL16 allows even longer arbitrary count sequences. A terminal count
can be generated by using the standard carry chain (see Figure 20).

Figure 18: Gold Code Generator

Figure 19: Synchronous FIFO Using SRLC16 Shift Registers

LFSR 1

LFSR 2

Gold Code Out

x465_16_040203

 x465_17_040203

CLK

Address
Counter

DATA_OUT

FULL

EMPTY

SINIT

DATA_IN

RD_EN

SRL16
Based
FIFO

WR_EN
FIFO_COUNTFIFO

Count

Status
Flag

Generation

ug000.book Page 244 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/xapp/xapp217.pdf
http://www.xilinx.com/xapp/xapp256.pdf

Using Look-Up Tables as Shift Registers (SRL16) in Spartan-3 FPGAs

XAPP465 (v1.0.1) July 5, 2003 www.xilinx.com 245
1-800-255-7778

R

Related
Materials and
References

• XAPP210: Linear Feedback Shift Registers in Virtex Devices
Linear Feedback Shift Registers are very efficient counters in the FPGA architecture.
Using the SRL16 as the basis of the shift register, a 15-bit counter can fit in one slice and
a 52-bit counter in two slices.

• XAPP211: PN Generators Using the SRL Macro
Pseudo-random Noise sequences are used to code and spread signals across a wide
band of transmission frequencies for spread spectrum modulation. PN generators are
based upon LFSRs, which can be effectively built from the SRL16 components.

• XAPP217: Gold Code Generators in Virtex Devices
A special type of PN sequence is a Gold code generator, which can be created from
SRL16-based LFSRs.

• XAPP220: LFSRs as Functional Blocks in Wireless Applications
Further discussion of the usage of LFSRs such as Gold Code Generators in applications
such as CDMA.

• XAPP256: FIFOs Using Virtex-II Shift Registers
The SRL16 is ideal for building smaller synchronous FIFOs. FIFOs can be built in any
width while producing a 1-bit resolution. With cascaded SRL16 shift registers, a flexible
depth in multiples of 16 is available. These techniques are useful for even larger FIFOs
when block RAM resources are not available.

• TechXclusive: "The SRL16E: How Using this Exciting Mode Can Lead to Cost Saving of
an Order of Magnitude"
Describes the SRL16 function and its application in pipeline compensation, pseudo
random noise generators, serial frame synchronizers, running averages, pulse generation
and clock division, pattern generation, state machines, dynamically addressable shift
registers, FIFOs, and an RS232 receiver.

• DS228: RAM-Based Shift Register LogiCORE Module
Generates fast, compact, FIFO-style shift registers, delay lines or time-skew buffers using
the SRL16.

• SRL16 Primitives in Libraries Guide
Describes the usage and functionality of the SRL16 primitive and its variations.

Figure 20: SRL-Based Counter with Terminal Count

0

Q3

1SRL

0

Q2

TC

VCC

1SRL

0

Q1

1SRL

0

Q0

1SRL

x465_18_040503

ug000.book Page 245 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/xapp/xapp210.pdf
http://www.xilinx.com/xapp/xapp211.pdf
http://www.xilinx.com/xapp/xapp217.pdf
http://www.xilinx.com/xapp/xapp220.pdf
http://www.xilinx.com/xapp/xapp256.pdf
http://www.xilinx.com/support/techxclusives/SRL16-techxclusive2.htm
http://www.xilinx.com/ipcenter/catalog/logicore/docs/ram_shift.pdf
http://toolbox.xilinx.com/docsan/xilinx5/data/docs/lib/lib0393_377.html

246 www.xilinx.com XAPP465 (v1.0.1) July 5, 2003
1-800-255-7778

Using Look-Up Tables as Shift Registers (SRL16) in Spartan-3 FPGAs
R

Conclusion The SRL16 configuration of the Spartan-3 look-up table provides a space-efficient shift register
that would otherwise require 16 flip-flops. This feature will be automatically used when a small
shift register is described in HDL code. However, creative consideration of the uses of the
SRL16 as described here can provide even more significant advantages in many applications.

Revision
History

The following table shows the revision history for this document.

Date Version Revision

04/10/03 1.0 Initial Xilinx release.

07/05/03 1.0.1 Changed title.

ug000.book Page 246 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

XAPP466 (v1.0.1) July 5, 2003 www.xilinx.com 247
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Summary The Spartan™-3 architecture includes dedicated multiplexers within the Configurable Logic
Blocks (CLBs). These specialized multiplexers improve the performance and density of not just
wide multiplexers but almost any wide-input function. Using these resources, a 32:1 multiplexer
fits in just one level of logic, as do some Boolean logic functions of up to 79 inputs.

Introduction A multiplexer, or mux, is a common building block of almost every logic design, selecting one of
several possible input signals. Spartan-3 FPGAs are very efficient at implementing
multiplexers: small ones in the look-up tables and larger ones using dedicated multiplexer
resources. Any Spartan-3 slice easily implements a 4:1 mux, any CLB implements up to a 16:1
mux, and two CLBs implement up to a 32:1 mux. The same logic resources also can be used
for wide, general-purpose logic functions. For applications like comparators, encoder-
decoders, or case statements, these resources provide an optimal solution. These resources
are used automatically by the Xilinx development system.

This document describes the dedicated multiplexer resources in the Spartan-3 architecture.
The signals and parameters associated with the multiplexers are defined. The many methods
to include multiplexers in a design are described along with recommendations and guidelines
for their use.

Advantages of Dedicated Multiplexers
Spartan-3 FPGAs are based on four-input Look-Up Tables (LUTs) that can provide any
possible function of the four inputs. The largest mux that a single LUT supports is a 2:1 mux,
with the fourth input available as a possible enable. One method to construct larger muxes
would be to cascade multiple LUTs. For example, a 4:1 mux could be built by combining the
outputs of two LUTs into a third LUT. However, this method adds two full levels of logic delays
plus an additional routing delay between the LUTs. Without special resources, an 8:1 mux
would consume seven LUTs as well as add three levels of logic delays plus two levels of routing
delays, as shown in Figure 1.

Application Note: Spartan-3 FPGA Family

XAPP466 (v1.0.1) July 5, 2003

Using Dedicated Multiplexers
in Spartan-3 FPGAs

R

Figure 1: 8:1 Mux, 7 LUTs, 3 Levels of Logic

LUT

LUT

LUT

LUT
net
net

net
net

LUT

LUT

LUT
net
net

X466_01_040303

ug000.book Page 247 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

248 www.xilinx.com XAPP466 (v1.0.1) July 5, 2003
1-800-255-7778

Using Dedicated Multiplexers in Spartan-3
R

To increase multiplexer speed and density, Spartan-3 FPGAs provide a dedicated 2:1 mux
following every LUT, which replaces additional levels of LUT-based logic. One of these, called
the F5MUX, combines adjacent LUTs to create a 4:1 mux. The other mux, following every pair
of LUTs, combines muxes into even wider functions, with different capabilities depending on its
location in the CLB. This mux is called the FiMUX, where the index "i" equals 6, 7, or 8. For
example, the F6MUX combines the results of two F5MUX elements to create an 8:1 mux as
shown in Figure 2. The connections from the LUTs to the muxes and between the muxes are
dedicated and have zero connection delay. The combination of LUTs and dedicated
multiplexers allows very efficient implementation of even large multiplexers.

Spartan-3 CLB
Multiplexer
Resources

The Spartan-3 architecture consists of an array of identical Configurable Logic Blocks, or CLBs.
Each CLB is made up of four slices: two SLICEMs with memory capability and two SLICELs
with logic-only capability. Each slice is identical with respect to logic and mux resources. Each
slice has two LUTs, an F5MUX, and a second expansion mux (see Figure 3).

Figure 2: 8:1 Mux, 4 LUTs, 1 Level of Logic

LUT

LUT

LUT

LUT

X466_02_030603

F5MUX

F5MUX

F6MUX

Figure 3: LUTs and F5MUX in a Slice

LUT

LUT

Reg

Reg

FiMUX

Any Slice

F5MUX

4

4

X466_03_030603

ug000.book Page 248 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Dedicated Multiplexers in Spartan-3 FPGAs

XAPP466 (v1.0.1) July 5, 2003 www.xilinx.com 249
1-800-255-7778

R

F5MUX
The F5MUX always combines the two LUTs in a slice. If those two LUTs contain 2:1 muxes with
the same control input, then the overall result is a 4:1 mux (see Figure 4).

The F5MUX is so named because it generates any possible Boolean logic function of five
inputs (see Figure 5). If the two LUTs contain independent functions of the same four inputs,
the mux select line becomes the fifth input. The F5MUX becomes a function expander that is
just as efficient as another 3-input LUT for implementing any 5-input function. This is a
significant advantage over other FPGA architectures.

As shown in Figure 6, the F5MUX also produces some functions of up to nine inputs, if they can
be partitioned into two 4-input LUTs and a mux.

Consequently, the F5MUX generates any 5-input function, the 4:1 mux 6-input function, or
some 9-input functions.

Figure 4: 4:1 Mux Implemented Using F5MUX

Figure 5: Any 5-input Function Can Be Implemented Using F5MUX

Figure 6: Some 9-input Functions Can Be Implemented Using F5MUX

LUT

LUT

F5MUX
4:1 MUX

X466_04_030603

LUT

LUT

F5MUX
Any 5-input Function

4

X466_05_030603

LUT

LUT

F5MUX
Some 9-input Functions

4

4

X466_06_030603

ug000.book Page 249 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

250 www.xilinx.com XAPP466 (v1.0.1) July 5, 2003
1-800-255-7778

Using Dedicated Multiplexers in Spartan-3
R

FiMUX
The second mux, called the FiMUX, functions as either a F6MUX, F7MUX, or F8MUX,
depending on its location and connections to the other muxes.

Each FiMUX receives inputs from muxes of the next lower number; for example, the two
F6MUX results drive the F7MUX. Like the F5MUX, the FiMUX has the flexibility to implement
other types of functions besides just multiplexers. The F6MUX is so named because it creates
any function of six inputs. Similarly, the F7MUX generates any function of seven inputs, and the
F8MUX generates any function of eight inputs.

Naming Conventions

In this document and in the Spartan-3 data sheet, the mux that serves as either F6MUX,
F7MUX, or F8MUX generically is called an FiMUX (i = 6, 7, or 8). This name avoids confusion
with the static CLB mux that generates the X output, which the FPGA Editor refers to as the
FXMUX. The FiMUX is always referred to as the F6MUX in the FPGA Editor. The timing
analyzer also refers to the path through the FiMUX to the CLB pin as TIF6Y, although it may be
used as an F7MUX or F8MUX.

The library components are called MUXF5, MUXF6, MUXF7, and MUXF8. MUXF6, MUXF7,
and MUXF8 use the FiMUX and restrict the placement to a specific relative location in the CLB.

Dedicated Local Routing
A significant benefit of the dedicated multiplexers is the dedicated routing that connects
between levels. Although each mux is implemented as one pass through the CLB, the outputs
connect back to the CLB inputs through local interconnect with zero routing delay. The result is
the same as if the muxes were in series within the CLB.

The F5MUX feeds the F5 CLB output pin, which only connects back to an FiMUX input on the
same CLB (called FXINA and FXINB). The FiMUX feeds the FX CLB output pin, which also

Figure 7: Mux Positions in a CLB

Table 1: Mux Capabilities

Mux Usage Input Source

Total Number of Inputs per Function

For Any
Function For Mux

For Limited
Functions

F5MUX F5MUX LUTs 5 6 (4:1 mux) 9

FiMUX

F6MUX F5MUX 6 11 (8:1 mux) 19

F7MUX F6MUX 7 20 (16:1 mux) 39

F8MUX F7MUX 8 37 (32:1 mux) 79

F8MUX

SLICEL S3

F6MUX

SLICEL S2

F7MUX

SLICEM S1

F6MUX

SLICEM S0
CLB

X466_07_040303

ug000.book Page 250 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Dedicated Multiplexers in Spartan-3 FPGAs

XAPP466 (v1.0.1) July 5, 2003 www.xilinx.com 251
1-800-255-7778

R

feeds back to an FiMUX input on the same CLB, or in the case of the F7MUX, also to the CLB
below. If the mux result is needed elsewhere, it connects to a general-purpose CLB output (X
for the F5MUX, Y for the FiMUX).

Figure 8: Muxes and Dedicated Feedback in a Spartan-3 CLB

X466_08_030603

F5

F8

F5

F6

F5

F7

F5

F6

F5

FX

F5

FX

F5

X
FXINA

FXINB

FXINA

FXINB

FXINA

FXINB

FXINA

FXINB

F5

FX

ug000.book Page 251 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

252 www.xilinx.com XAPP466 (v1.0.1) July 5, 2003
1-800-255-7778

Using Dedicated Multiplexers in Spartan-3
R

Mux Select Inputs
The select inputs for the multiplexers come from general-purpose routing. The select input for
the F5MUX is the BX input on the CLB, and the select input for the FiMUX is the BY input on the
CLB.

Implementation
Examples

Wide-Input Multiplexers
Each LUT optionally implements a 2:1 multiplexer. In each slice, the F5MUX and two LUTs can
implement a 4:1 multiplexer. As shown in Figure 10, the F6MUX and two slices implement an
8:1 multiplexer. The F7MUX and the four slices of any CLB implement a 16:1 multiplexer, and
the F8MUX and two CLBs implement a 32:1 multiplexer.

Figure 9: Dedicated Multiplexers in Spartan-3 CLB

FiMUX

FX (Local Feedback to FXIN)

Y (General Interconnect)

YQ

FXINA

FXINB

F[4:1]

G[4:1]

D Q

F5MUX

BY

BX

F5 (Local Feedback to FXIN)

X (General Interconnect)

XQD Q

LUT

LUT

x466_13_040303

ug000.book Page 252 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Dedicated Multiplexers in Spartan-3 FPGAs

XAPP466 (v1.0.1) July 5, 2003 www.xilinx.com 253
1-800-255-7778

R

Figure 10: 8:1 and 16:1 Multiplexers

LUT

DATA[0]

DATA[1]

DATA[7:0]

DATA[15:8]

16:1 output

SELECT[2:0]

SELECT[3]

LUT

DATA[2]

DATA[3]

LUT

8:1
(S2 & S3)

8:1
(S0 & S1)

DATA[4] 8:1 Output

DATA[5]

LUT

F5

F6

F7

DATA[6]

DATA[7]

SELECT[0]

SELECT[1]

SELECT[2]

F5

8:1 MUX 16:1 MUX

S0 CLB

S1

X466_09_030603

ug000.book Page 253 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

254 www.xilinx.com XAPP466 (v1.0.1) July 5, 2003
1-800-255-7778

Using Dedicated Multiplexers in Spartan-3
R

Wide-Input Functions
Slices S0 and S2 have an F6MUX, designed to combine the outputs of two F5MUX resources.
Figure 11 illustrates a combinatorial function up to 19 inputs in the slices S0 and S1, or in the
slices S2 and S3.

Figure 11: 19-input Function Using F6MUX in Two Slices

LUT

LUT

Reg

Reg

F6MUX

SLICEL OR SLICEM

SLICEL OR SLICEM

F5MUX

4

4

S_F5

S_F6

S_F5

OUT_F6

LUT

LUT

Reg

Reg

FiMUX

F5MUX

4

4

X466_10_030603

ug000.book Page 254 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Dedicated Multiplexers in Spartan-3 FPGAs

XAPP466 (v1.0.1) July 5, 2003 www.xilinx.com 255
1-800-255-7778

R

The slice S1 has an F7MUX, designed to combine the outputs of two F6MUXs. Figure 12
illustrates a combinatorial function up to 39 inputs in a Spartan-3 CLB.

Figure 12: 39-input Function Using F7MUX in One CLB

LUT

LUT

Reg

Reg

F6MUX

SLICEL S2

SLICEL S3

F5MUX

4

4

S_F5

S_F5

S_F6

LUT

LUT

Reg

Reg

FiMUX

F5MUX

4

4

X466_11_030603

LUT

LUT

Reg

Reg

F6MUX

SLICEM S0

SLICEM S1

F6MUX

4

4

S_F5

S_F5

S_F6

LUT

LUT

Reg

Reg

F7MUX OUT_F

F5MUX

4

4

S_F7

ug000.book Page 255 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

256 www.xilinx.com XAPP466 (v1.0.1) July 5, 2003
1-800-255-7778

Using Dedicated Multiplexers in Spartan-3
R

The slice S3 of each CLB has an F8MUX. Combinatorial functions of up to 79 inputs fit in two
CLBs as shown in Figure 13. The outputs of two F7MUXs are combined through dedicated
routing resources between two adjacent CLBs in a column.

Figure 13: 79-input Function Using F8MUX in Two Adjacent CLBs

F8MUX OUT_F8

Slice S3

F6MUX

Slice S2

F7MUX

Slice S1

F6MUX

Slice S0 CLB

FiMUX

Slice S3

F6MUX

Slice S2

F7MUX

Slice S1

F6MUX

Slice S0
CLB

X466_12_030603

ug000.book Page 256 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Dedicated Multiplexers in Spartan-3 FPGAs

XAPP466 (v1.0.1) July 5, 2003 www.xilinx.com 257
1-800-255-7778

R

Timing
Parameters

There are several possible paths through the CLB multiplexers. The two types of multiplexers
are considered separately (F5MUX and FiMUX). Each multiplexer type has two types of inputs:
data inputs and select lines. The output of the mux drives the local interconnect through the F5
and FX CLB pins, the general interconnect through the X and Y CLB pins, or the D input on the
flip-flop. See Figure 9, page 252 for a block diagram showing dedicated multiplexers in a
Spartan-3 CLB. Note that although the mux functionality is identical between the slices with
memory and those without, the timing values are independent and may vary slightly.

Although the multiplexers are connected in series inside the CLB, each mux actually feeds a
CLB output pin, which feeds back to an input pin through zero-delay local interconnect. Thus
each reported block delay element will have only one mux from input to output. The Spartan-3
architecture improves on the Virtex™-II architecture by providing a direct path from the F5MUX
or FiMUX to the flip-flop in the CLB.

Programmable Polarity
As with most resources in the Spartan-3 FPGA, inverters are free in large multiplexers. The
functions in the LUT can have inverters added to inputs or outputs with no effect on
performance or utilization. The control inputs to the F5MUX (BX) and FiMUX (BY) have
programmable polarity inside the CLB.

Related Uses of
Multiplexers

Multiplexers and Three-State Buffers
The LUT and MUX resources multiplex one of several inputs signals onto an internal routing
resource, using the routing like an internal bus. This is equivalent to the BUFT-based
multiplexers found in other FPGA architectures. In most modern FPGA families, these three-
state buffers actually are implemented as dedicated logic gates to avoid possible contention
when more than one is enabled at a time. The Spartan-3 family reduces die size and cost by
eliminating the overhead of these internal three-state buffer gates. Instead, internal functions
defined as a three-state buffer in the Spartan-3 family must be implemented in the LUTs and
dedicated muxes.

The CLB multiplexers providing binary encoding of the select lines, requiring fewer signals than
the one-hot encoding of the BUFT-based multiplexers. CLB-based multiplexers have no limit on
width as BUFT-based multiplexers did, nor nay special placement considerations.

The BUFT component, representing a three-state buffer, is not available in the Spartan-3
library, except for the output function in the IOBs. The CORE Generator™ functions of the
BUFT-based Multiplexer (and the equivalent BUFE-based Multiplexer) will be implemented as
multiplexers in the CLBs.

Table 2: Multiplexer Timing Paths

Symbol CLB Input Through CLB Output

tIF5 F/G LUT Inputs LUT and F5MUX Inputs F5

tIF5X F/G LUT Inputs LUT and F5MUX Inputs X

tIF5CK F/G LUT Inputs LUT and F5MUX Inputs D input on flip-flop

tBXF5 BX F5MUX Select F5

tBXX BX F5MUX Select X

tINAFX FXINA FiMUX Inputs FX

tINBFX FXINB FiMUX Inputs FX

tIF6Y FXINA or FXINB FiMUX Inputs Y

tBYFX BY FiMUX Select FX

tBYY BY FiMUX Select Y

ug000.book Page 257 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

258 www.xilinx.com XAPP466 (v1.0.1) July 5, 2003
1-800-255-7778

Using Dedicated Multiplexers in Spartan-3
R

Multiplexers and Memory Functions
The F5MUX and FiMUX are used also to expand the distributed memory and shift register
capability in the CLB. Those functions are not included in this document.

Other CLB Multiplexers
The CLB also contains several other multiplexers for routing signals through the logic
resources. The CYMUX for propagating carry signals is the only other dynamic mux. Several
other muxes are used for selecting one of multiple paths. One is called the FXMUX in the FPGA
Editor, since it routes the F LUT signal to the X CLB output. Do not confuse this static mux with
the FXMUX name that is sometimes used for the FiMUX described here.

Designing with
Multiplexers

There are several ways multiplexers can be used in a design. The most common is to simply
have them inferred by synthesis tools when appropriate for a design. Library primitives can be
used to instantiate specific multiplexers. This document provides HDL submodules that
combine the library primitives into larger muxes. The CORE Generator system includes the Bus
Multiplexer and Bit Multiplexer functions, and many other CORE solutions take advantage of
the dedicated multiplexers.

Inference
Multiplexers are typically inferred by a conditional statement, most commonly the CASE or IF-
THEN-ELSE statement. The IF statement generally produces priority-encoded logic. The
CASE statement is more likely to generate an optimized multiplexer.

Synthesis options may determine whether multiplexers are inferred and how they are
implemented. For XST, the MUX_EXTRACT constraint specifies whether multiplexers are
inferred, and the MUX_STYLE constraint specifies whether they are implemented in the
dedicated logic multiplexers or the carry multiplexers (CY_MUX). The default is to infer
automatically the best resource.

CASE statements should be full (all branches defined) to avoid creating a latch. They also
should be parallel (branch conditions all mutually exclusive) to avoid a priority encoder. Some
synthesis tools, such as XST, have options to assume full and parallel CASE statements even
if not written that way.

Make sure you do not write the code such that your synthesis tool will infer BUFT-based
multiplexers. A BUFT-based multiplexer usually requires a statement with a "Z" value. Some
synthesis tools might automatically or optionally convert BUFT logic to multiplexers.

A decoder is a special case of a multiplexer where the inputs are fixed as one-hot values.
Decoders of up to 4:16 in size are easily implemented in individual LUTs for each output and do
not need to use the dedicated multiplexers, or they can even use the Carry muxes for high
performance.

The following subsections provide examples of 2:1 muxes described using the CASE statement
in Verilog and VHDL code.

Verilog Inference

module MUX_2_1 (DATA_I, SELECT_I, DATA_O);

input [1:0]DATA_I;
input SELECT_I;

output DATA_O;
reg DATA_O;

always @ (DATA_I or SELECT_I)

case (SELECT_I)

ug000.book Page 258 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Dedicated Multiplexers in Spartan-3 FPGAs

XAPP466 (v1.0.1) July 5, 2003 www.xilinx.com 259
1-800-255-7778

R

1'b0 : DATA_O <= DATA_I[0];
1'b1 : DATA_O <= DATA_I[1];
default : DATA_O <= 1'bx;

endcase

endmodule

VHDL Inference

entity MUX_2_1 is
 port (
 DATA_I: in std_logic_vector (1 downto 0);
 SELECT_I: in std_logic;
 DATA_O: out std_logic
);

end MUX_2_1;

architecture MUX_2_1_arch of MUX_2_1 is
--
begin
--
SELECT_PROCESS: process (SELECT_I, DATA_I)
begin
case SELECT_I is
when '0' => DATA_O <= DATA_I (0);
when '1' => DATA_O <= DATA_I (1);
when others => DATA_O <= 'X';

end case;
end process SELECT_PROCESS;
--
end MUX_2_1_arch;

Library Primitives
Four library primitives are available that offer access to the dedicated multiplexers in each slice:
MUXF5, MUXF6, MUXF7, and MUXF8. Each of the multiplexer primitives looks identical (see
Figure 14). The actual selection simply determines where in the CLB the multiplexer can be
located, as shown in Table 3.

Note that the generic multiplexer components also can take advantage of the dedicated
multiplexers. The M2_1 component is implemented in a look-up table, while the larger
multiplexers in the library use the F5MUX and FiMUX components.

Figure 14: MUXF5 Primitive

Table 3: Multiplexer Resources

Primitive Slice Control Input Output

MUXF5 S0, S1, S2, S3 S I0, I1 O

MUXF6 S0, S2 S I0, I1 O

MUXF7 S1 S I0, I1 O

MUXF8 S3 S I0, I1 O

O
I0

I1

S
x466_14_040303

ug000.book Page 259 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

260 www.xilinx.com XAPP466 (v1.0.1) July 5, 2003
1-800-255-7778

Using Dedicated Multiplexers in Spartan-3
R

Enable Signals in Multiplexers

An enable signal on a multiplexer can be used to keep the multiplexer output Low when
disabled. Note that although the dedicated multiplexers do not have enable signals, the enable
can be implemented on the preceding 2:1 mux that will be implemented in a look-up table. The
M4_1E and M8_1E library components are built this way, using the F5MUX and F6MUX for the
final result, respectively, while the M16_1E library component keeps the enable on the final
mux, forcing it into a LUT instead of the F7MUX. Figure 15 shows the M4_1E library
component logic.

Modeling Local Output Timing

There are also two alternative versions of each library component that are functionally identical
but can be used for more accurate timing estimation before implementation. As mentioned
previously, the multiplexers can drive one or both CLB outputs. The first output is the special
CLB output that feeds directly back through local interconnect to the next multiplexer in series,
known as the local output. The second output is the general-purpose CLB output, which can be
routed to any other logic. For better pre-implementation timing estimation, the user can
substitute special primitives that specify whether to use the local output timing or the general-
purpose output timing. The MUXF5_L primitive models the local output, while the MUXF5_D
primitive models both output paths (see Figure 16). The functionality is identical to that for the
MUXF5 primitive.

Submodules
In addition to the primitives, five submodules that implement multiplexers from 2:1 to 32:1 are
provided in VHDL and Verilog code. Synthesis tools can automatically infer the above primitives
(MUXF5, MUXF6, MUXF7, and MUXF8); however, the submodules described in this section
use instantiation of the multiplexers to guarantee an optimized result. Table 4 lists available
submodules.

Figure 15: M4_1E Library Component Logic

Figure 16: MUXF5_L and MUX5F_D Primitives to Model Local Output Timing

O

O

O

0

O
E M01

M23

MUXF5

M2_1E

M2_1E

S0

S1
x466_15_040303

D0

D1

S0

D0

D1

S

I0

I1

M01

M23

S0

EE

D0

D1

D2

D3

LO
I0

I1

S

LOI0

I1

S

O

x466_16_040303

ug000.book Page 260 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Dedicated Multiplexers in Spartan-3 FPGAs

XAPP466 (v1.0.1) July 5, 2003 www.xilinx.com 261
1-800-255-7778

R

Port Signals

Data In — DATA_I

The data input provides the data to be selected by the SELECT_I signal(s).

Control In — SELECT_I

The select input signal or bus determines the DATA_I signal to be connected to the output
DATA_O. For example, the MUX_4_1_SUBM multiplexer has a 2-bit SELECT_I bus and a 4-bit
DATA_I bus. Table 5 shows the DATA_I selected for each SELECT_I value.

Data Out — DATA_O

The data output O provides the data value (1 bit) selected by the control inputs.

Applications
Multiplexers are used in various applications. These are often inferred by synthesis tools when
a “case” statement is used (see the example below). Comparators, encoder-decoders and
wide-input combinatorial functions are optimized when they are based on one level of LUTs
and dedicated MUXFX resources of the Spartan-3 CLBs.

VHDL and Verilog Instantiation
The primitives (MUXF5, MUXF6, and so forth) can be instantiated in VHDL or Verilog code, to
design wide-input functions.

The submodules (MUX_2_1_SUBM, MUX_4_1_SUBM, and so forth) can be instantiated in
VHDL or Verilog code to implement multiplexers. However the corresponding submodule must
be added to the design directory as hierarchical submodule. For example, if a module is using
the MUX_16_1_SUBM, the MUX_16_1_SUBM.vhd file (VHDL code) or MUX_16_1_SUBM.v
file (Verilog code) must be compiled with the design source code. The submodule code can
also be “cut and pasted” into the designer source code.

VHDL and Verilog Submodules

VHDL and Verilog submodules are available to implement multiplexers up to 32:1. They
illustrate how to design with the MUX resources. When synthesis infers the corresponding MUX
resource(s), the VHDL or Verilog code is behavioral code (“case” statement). Otherwise, the
equivalent “case” statement is provided in comments and the correct MUX are instantiated.

Table 4: Available Submodules

Submodule Multiplexer Control Input Output

MUX_2_1_SUBM 2:1 SELECT_I DATA_I[1:0] DATA_O

MUX_4_1_SUBM 4:1 SELECT_I[1:0] DATA_I[3:0] DATA_O

MUX_8_1_SUBM 8:1 SELECT_I[2:0] DATA_I[8:0] DATA_O

MUX_16_1_SUBM 16:1 SELECT_I[3:0] DATA_I[15:0] DATA_O

MUX_32_1_SUBM 32:1 SELECT_I[4:0] DATA_I[31:0] DATA_O

Table 5: Selected Inputs

SELECT_I[1:0] DATA_O

0 0 DATA_I[0]

0 1 DATA_I[1]

1 0 DATA_I[2]

1 1 DATA_I[3]

ug000.book Page 261 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

262 www.xilinx.com XAPP466 (v1.0.1) July 5, 2003
1-800-255-7778

Using Dedicated Multiplexers in Spartan-3
R

However, most synthesis tools support the inference of all of the MUXs. The following examples
can be used as guidelines for designing other wide-input functions.

The following submodules are available:

• MUX_2_1_SUBM (behavioral code)

• MUX_4_1_SUBM

• MUX_8_1_SUBM

• MUX_16_1_SUBM

• MUX_32_1_SUBM

The corresponding submodules have to be synthesized with the design

The submodule MUX_16_1_SUBM in VHDL and Verilog are provided as example.

VHDL Template

-- Module: MUX_16_1_SUBM
-- Description: Multiplexer 16:1
--
-- Device: Spartan-3 Family

library IEEE;
use IEEE.std_logic_1164.all;

-- Syntax for Synopsys FPGA Express
-- pragma translate_off
library UNISIM;
use UNISIM.VCOMPONENTS.ALL;
-- pragma translate_on

entity MUX_16_1_SUBM is
 port (
 DATA_I: in std_logic_vector (15 downto 0);
 SELECT_I: in std_logic_vector (3 downto 0);
 DATA_O: out std_logic
);

end MUX_16_1_SUBM;

architecture MUX_16_1_SUBM_arch of MUX_16_1_SUBM is
-- Component Declarations:
component MUXF7
 port (
 I0: in std_logic;
 I1: in std_logic;
 S: in std_logic;
 O: out std_logic
);
end component;
--
-- Signal Declarations:
signal DATA_MSB : std_logic;
signal DATA_LSB : std_logic;
--
begin
--
-- If synthesis tools support MUXF7 :
--SELECT_PROCESS: process (SELECT_I, DATA_I)
--begin
--case SELECT_I is
-- when "0000" => DATA_O <= DATA_I (0);
-- when "0001" => DATA_O <= DATA_I (1);
-- when "0010" => DATA_O <= DATA_I (2);

ug000.book Page 262 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Dedicated Multiplexers in Spartan-3 FPGAs

XAPP466 (v1.0.1) July 5, 2003 www.xilinx.com 263
1-800-255-7778

R

-- when "0011" => DATA_O <= DATA_I (3);
-- when "0100" => DATA_O <= DATA_I (4);
-- when "0101" => DATA_O <= DATA_I (5);
-- when "0110" => DATA_O <= DATA_I (6);
-- when "0111" => DATA_O <= DATA_I (7);
-- when "1000" => DATA_O <= DATA_I (8);
-- when "1001" => DATA_O <= DATA_I (9);
-- when "1010" => DATA_O <= DATA_I (10);
-- when "1011" => DATA_O <= DATA_I (11);
-- when "1100" => DATA_O <= DATA_I (12);
-- when "1101" => DATA_O <= DATA_I (13);
-- when "1110" => DATA_O <= DATA_I (14);
-- when "1111" => DATA_O <= DATA_I (15);
-- when others => DATA_O <= 'X';
--end case;
--end process SELECT_PROCESS;
--
-- If synthesis tools DO NOT support MUXF7 :
SELECT_PROCESS_LSB: process (SELECT_I, DATA_I)
begin
case SELECT_I (2 downto 0) is
when "000" => DATA_LSB <= DATA_I (0);
when "001" => DATA_LSB <= DATA_I (1);
when "010" => DATA_LSB <= DATA_I (2);
when "011" => DATA_LSB <= DATA_I (3);
when "100" => DATA_LSB <= DATA_I (4);
when "101" => DATA_LSB <= DATA_I (5);
when "110" => DATA_LSB <= DATA_I (6);
when "111" => DATA_LSB <= DATA_I (7);
when others => DATA_LSB <= 'X';

end case;
end process SELECT_PROCESS_LSB;
--
SELECT_PROCESS_MSB: process (SELECT_I, DATA_I)
begin
case SELECT_I (2 downto 0) is
when "000" => DATA_MSB <= DATA_I (8);
when "001" => DATA_MSB <= DATA_I (9);
when "010" => DATA_MSB <= DATA_I (10);
when "011" => DATA_MSB <= DATA_I (11);
when "100" => DATA_MSB <= DATA_I (12);
when "101" => DATA_MSB <= DATA_I (13);
when "110" => DATA_MSB <= DATA_I (14);
when "111" => DATA_MSB <= DATA_I (15);
when others => DATA_MSB <= 'X';

end case;
end process SELECT_PROCESS_MSB;
--
-- MUXF7 instantiation
U_MUXF7: MUXF7
 port map (
 I0 => DATA_LSB,
 I1 => DATA_MSB,
 S => SELECT_I (3),
 O => DATA_O
);
--
end MUX_16_1_SUBM_arch;
--

ug000.book Page 263 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

264 www.xilinx.com XAPP466 (v1.0.1) July 5, 2003
1-800-255-7778

Using Dedicated Multiplexers in Spartan-3
R

Verilog Template

// Module: MUX_16_1_SUBM
//
// Description: Multiplexer 16:1
// Device: Spartan-3 Family
//---
//
module MUX_16_1_SUBM (DATA_I, SELECT_I, DATA_O);

input [15:0]DATA_I;
input [3:0]SELECT_I;

output DATA_O;

wire [2:0]SELECT;

reg DATA_LSB;
reg DATA_MSB;

assign SELECT[2:0] = SELECT_I[2:0];

/*
//If synthesis tools support MUXF7 :
always @ (DATA_I or SELECT_I)

 case (SELECT_I)
4'b0000 : DATA_O <= DATA_I[0];
4'b0001 : DATA_O <= DATA_I[1];
4'b0010 : DATA_O <= DATA_I[2];
4'b0011 : DATA_O <= DATA_I[3];
4'b0100 : DATA_O <= DATA_I[4];
4'b0101 : DATA_O <= DATA_I[5];
4'b0110 : DATA_O <= DATA_I[6];
4'b0111 : DATA_O <= DATA_I[7];
4'b1000 : DATA_O <= DATA_I[8];
4'b1001 : DATA_O <= DATA_I[9];
4'b1010 : DATA_O <= DATA_I[10];
4'b1011 : DATA_O <= DATA_I[11];
4'b1100 : DATA_O <= DATA_I[12];
4'b1101 : DATA_O <= DATA_I[13];
4'b1110 : DATA_O <= DATA_I[14];
4'b1111 : DATA_O <= DATA_I[15];
default : DATA_O <= 1'bx;

 endcase
*/
//If synthesis tools do not support MUXF7 :
always @ (SELECT or DATA_I)

 case (SELECT)
3'b000 : DATA_LSB <= DATA_I[0];
3'b001 : DATA_LSB <= DATA_I[1];
3'b010 : DATA_LSB <= DATA_I[2];
3'b011 : DATA_LSB <= DATA_I[3];
3'b100 : DATA_LSB <= DATA_I[4];
3'b101 : DATA_LSB <= DATA_I[5];
3'b110 : DATA_LSB <= DATA_I[6];
3'b111 : DATA_LSB <= DATA_I[7];
default : DATA_LSB <= 1'bx;

 endcase

always @ (SELECT or DATA_I)

ug000.book Page 264 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Dedicated Multiplexers in Spartan-3 FPGAs

XAPP466 (v1.0.1) July 5, 2003 www.xilinx.com 265
1-800-255-7778

R

 case (SELECT)
 3'b000 : DATA_MSB <= DATA_I[8];
3'b001 : DATA_MSB <= DATA_I[9];
3'b010 : DATA_MSB <= DATA_I[10];
3'b011 : DATA_MSB <= DATA_I[11];
3'b100 : DATA_MSB <= DATA_I[12];
3'b101 : DATA_MSB <= DATA_I[13];
3'b110 : DATA_MSB <= DATA_I[14];
3'b111 : DATA_MSB <= DATA_I[15];
default : DATA_MSB <= 1'bx;

 endcase

// MUXF7 instantiation

MUXF7 U_MUXF7 (.I0(DATA_LSB),
.I1(DATA_MSB),
.S(SELECT_I[3]),

 .O(DATA_O)
);

endmodule

CORE Generator System
The CORE Generator system offers the BaseBLOX functions of the Bit Multiplexer and the Bus
Multiplexer. The Bit Multiplexer, shown in Figure 17, supports sizes up to 256 inputs; the Bus
Multiplexer, shown in Figure 18, supports muxes of up to 32 inputs for buses of up to 256 bits
each. These core solutions have a parameter Mux Type to select a BUFT or LUT based
multiplexer. Select the appropriate radio button in the CORE Generator system for the
construction of the multiplexer. The default setting is LUT Based, which is required for Spartan-
3 multiplexers. The CORE Generator system also offers options for registering the output of the
multiplexer.

Figure 17: Bit Multiplexer CORE Symbol

D

ASET SSET

ACLR SCLR

CE

CLK

QOM[N:0]

S[M:0]

x465_17_041003

•

ug000.book Page 265 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

266 www.xilinx.com XAPP466 (v1.0.1) July 5, 2003
1-800-255-7778

Using Dedicated Multiplexers in Spartan-3
R

The CORE Generator system also offers the specific functions of the BUFT-based Multiplexer
(and the equivalent BUFE-based Multiplexer). As with the generic Bit and Bus Multiplexers,
they are implemented in LUTs and/or muxes.

Revision
History

The following table shows the revision history for this document.

Figure 18: Bus Multiplexer CORE Symbol

D[N:0]

ASET SSET

ACLR SCLR AINIT SINIT

CE

CLK

Q[N:0]O[N:0]

MCH[N:0]

MA[N:0]

S[M:0]

x465_18_040203

•••

Date Version Revision

04/10/03 1.0 Initial Xilinx release.

07/05/03 1.0.1 Changed title.

ug000.book Page 266 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

XAPP467 (v1.1) May 13, 2003 www.xilinx.com 267
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Summary Dedicated 18x18 multipliers speed up DSP logic in the Spartan™-3 family. The multipliers are
fast and efficient at implementing signed or unsigned multiplication of up to 18 bits. In addition
to basic multiplication functions, the embedded multiplier block can be used as a shifter or to
generate magnitude or two’s-complement return of a value. The multipliers can be cascaded
with each other or CLB logic for larger or more complex functions.

Introduction Spartan-3 FPGAs have a number of features to fortify the chip’s arithmetic capabilities. Carry
logic and dedicated carry routing continues to be provided as in past generations. Dedicated
AND gates in the CLBs accelerate array multiplication operations. The newest and most
significant addition is the dedicated 18x18 two’s-complement multiplier block. With 4 to 104 of
these dedicated multipliers in each device, fast arithmetic functions can be implemented with
minimal use of the general-purpose resources. In addition to the performance advantage,
dedicated multipliers require less power than CLB-based multipliers.

The embedded multipliers offer fast, efficient means to create 18-bit signed by 18-bit signed
multiplication products. The multiplier blocks share routing resources with the Block
SelectRAM™ memory, allowing for increased efficiency for many applications. Cascading of
multipliers can be implemented with additional logic resources in local Spartan-3 slices.

Applications such as signed-signed, signed-unsigned, and unsigned-unsigned multiplication,
logical, arithmetic, and barrel shifters, two’s-complement and magnitude return are easily
implemented.

The 18-bit x 18-bit multipliers can be quickly created using the CORE Generator™ system, or
they can be instantiated (or inferred) using VHDL or Verilog.

Two’s-
Complement
Signed
Multiplier

Data Flow
Each embedded multiplier block (MULT18X18 primitive) supports two independent dynamic
data input ports: 18-bit signed or 17-bit unsigned. The two inputs are referred to as the
multiplicand and the multiplier, or the factors, while the output is the product. The MULT18X18
primitive is illustrated in Figure 1.

Application Note: Spartan-3

XAPP467 (v1.1) May 13, 2003

Using Embedded Multipliers
in Spartan-3 FPGAs

R

Figure 1: Embedded Multiplier

A [17:0]

MULT18X18
X467_01_032503

B [17:0]

P [35:0]

ug000.book Page 267 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

268 www.xilinx.com XAPP467 (v1.1) May 13, 2003
1-800-255-7778

Using Embedded Multipliers in Spartan-3 FPGAs
R

In addition, efficient cascading of multipliers up to 35-bit x 35-bit signed can be accomplished
by using four embedded multipliers, one 36-bit adder, and one 53-bit adder. See Figure 6.

Binary multiplication is similar to regular multiplication with the multiplicand multiplied by each
bit of the multiplier to generate partial products, and then the partial products added together to
create the result. The Xilinx multiplier block uses the modified Booth algorithm, in effect using
multiplexers to create the partial products.

Timing Specification
The result is generated faster for the LSBs than the MSBs, since the MSBs require more levels
of addition, so timing specifications are different for each of the 36 multiplier outputs. Designs
should use only as many output bits as are necessary. For example, if two unsigned numbers
will never have a product of 235 or higher, the P[35] output is always zero. For any pair of signed
numbers of n bits, if you will never have -2n-1 x -2n-1, then the MSB is always identical to the
next lower-order bit (P[2n-1] = P[2n-2]). Also consider that if some outputs must have longer
routing delays, they should be put on the output LSBs to balance with the MSB delays.

For the same reason, the data input setup time for the pipelined multiplier will be shorter for the
MSBs than the LSBs, but the timing parameters do not differentiate between pins for setup
time. For additional safety margin in a design, slower inputs should be put on the MSBs. The
Reset and Clock Enable inputs have much faster setup times than any of the data inputs, and
all have zero hold times. The timing parameter name "tMULIDCK" (MULtiplier Input Data to
ClocK) is used for both the data and control inputs, but will have different values for each type.

Library
Primitives

Two library primitives are available for the embedded multipliers. Table 1 describes these
primitives.

The registered version of the multiplier adds a clock input C, an active-High Clock Enable CE,
and a synchronous Reset R (see Figure 2). The registers are implemented in the multiplier
itself and do not require any other resources. The control inputs C, CE, and R all have built-in
programmable polarity. The data inputs, clock enable, and reset all must meet a setup time
before the clock edge, and the data on the P outputs changes after the clock-to-output delay.

The pin names used in the Xilinx implementation tools, such as the FPGA Editor, are identical
to those used in the library primitives.

Table 1: Multiplier Primitives

Primitive A Width B Width P Width Signed/Unsigned Output

MULT18X18 18 18 36 Signed
(Two’s Complement)

Combinatorial

MULT18X18S 18 18 36 Signed
(Two’s Complement)

Registered

Figure 2: Combinatorial and Registered Multiplier Primitives

X467_02_032403

MULT18X18S

A[17:0]

B[17:0]

C

CE

R

P[35:0]

A[17:0]

MULT18X18

B[17:0]

P[35:0]

ug000.book Page 268 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Embedded Multipliers in Spartan-3 FPGAs

XAPP467 (v1.1) May 13, 2003 www.xilinx.com 269
1-800-255-7778

R

VHDL Instantiation Template
-- Component Declaration for MULT18X18 should be placed
-- after architecture statement but before begin keyword
component MULT18X18
port (P : out STD_LOGIC_VECTOR (35 downto 0);

A : in STD_LOGIC_VECTOR (17 downto 0);
B : in STD_LOGIC_VECTOR (17 downto 0));

end component;
-- Component Attribute specification for MULT18X18
-- should be placed after architecture declaration but
-- before the begin keyword
-- Attributes should be placed here
-- Component Instantiation for MULT18X18 should be placed
-- in architecture after the begin keyword
MULT18X18_INSTANCE_NAME : MULT18X18
port map (P => user_P,

A => user_A,
B => user_B);

Verilog Instantiation Template
MULT18X18 MULT18X18_instance_name (.P (user_P),

.A (user_A),

.B (user_B));

MULT_STYLE Constraint
The MULT_STYLE constraint controls the implementation of the MULT18X18 primitives. In the
Project Navigator (see Figure 3), the default is that the Xilinx Synthesis Tool (XST) will select
the best type of implementation. To ensure that the embedded multipliers are used, set
MULT_STYLE = Block or select "Block" for the "Multiplier Style" property in the Project
Navigator. The MULT_STYLE constraint can also be applied globally at the XST command line
or attached to a MULT18X18 primitive. For the MULT18X18S, attach the MULT_STYLE
constraint to the component, not the output bus. See the Constraints Guide for more
information.

Figure 3: Setting Multiplier Style in Project Navigator Process Properties
X467_03_032403

ug000.book Page 269 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

270 www.xilinx.com XAPP467 (v1.1) May 13, 2003
1-800-255-7778

Using Embedded Multipliers in Spartan-3 FPGAs
R

Multipliers in the Spartan-3 Architecture
The multipliers are located adjacent to the block RAM, making it convenient to store inputs or
results in the block memory (see Figure 4). There are two or four columns of multipliers in each
device. Where there are two columns, they have two rows of CLBs between them and the edge,
allowing the multiplier to be easily driven by CLB or IOB logic. There are four CLBs, or 16 slices
and 32 LUTs, on either side of a given multiplier block, allowing 32 input and output signals to
be connected immediately adjacent to the multiplier block. One possible high-speed layout is to
put A[15:0] on one side, B[15:0] on the other side, and intersperse the P[31:0] outputs on both
sides. For a full-size 18x18 multiplier, the extra inputs and outputs can connect to the next CLB
column. For best performance, pipeline the inputs with registers in the adjacent CLBs.

The 18-bit width of the Spartan-3 multiplier is unusual but matches with the 18-bit width of the
block RAM, which includes parity bits. Standard 8-bit or 16-bit multipliers can be created by
using part of the multiplier block, or a 32-bit multiplier can be created via cascading. The Xilinx
architecture allows any non-standard bit width to be implemented, exactly matching the needs
of the application. Unused multiplier inputs are connected automatically to zero via connections
to unused LUTs that are set to zero.

Figure 4: Location of Multipliers in Spartan-3 Architecture

Table 2: Number of Multipliers per Spartan-3 Device

Device Multiplier Columns Multipliers

XC3S50 1 4

XC3S200 2 12

XC3S400 2 16

XC3S1000 2 24

XC3S1500 2 32

XC3S2000 2 40

XC3S4000 4 96

XC3S5000 4 104

x467_04_070903

CLB

IOBDCM

Block RAM Multiplier
IOBs

IO
B

s

IO
B

s

C
LB

s

C
LB

s

C
LB

s
IOBs

Notes:
1. The two additional block RAM/multiplier columns of the XC3S4000 and

XC3S5000 devices are shown with dashed lines. The XC3S50 device has a
single column of block RAM/multipliers along the left edge.

ug000.book Page 270 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Embedded Multipliers in Spartan-3 FPGAs

XAPP467 (v1.1) May 13, 2003 www.xilinx.com 271
1-800-255-7778

R

Expanding
Multipliers

Multiplication using inputs with more than 18 bits is possible by decomposing the multiplication
process into smaller subprocesses. The binary representation of either input can be split at any
point, provided the proper weighting and sign of the MSBs is taken into account. Splitting off the
18 MSBs of the input makes the best use of the 18-bit signed multipliers.

For example, Figure 5 shows how a 22x16 multiplier could be implemented. The 22-bit value is
decomposed into an 18-bit signed value and a 4-bit unsigned value from the LSBs. Two partial
products are formed. The first is a 20-bit signed product, which is the result of multiplying the
16-bit signed value by the 4-bit unsigned section. The second is a 34-bit signed product, formed
by multiplying the 16-bit signed value by the 18-bit signed section. The addition process
restores the weighting of the products (note the least significant bits of the first product bypass
the addition) and forms the final 38-bit product. Since the first product is signed, the 20-bit value
needs to be sign-extended before addition. The adder itself only needs to be 34 bits, requiring
17 slices.

The implementation can vary depending on the performance needs and available resources.
The second multiplier can be implemented in the MULT18X18 resource or in CLBs if it is small.
Pipelining can be added to improve performance, using the built-in capabilities of the dedicated
multipliers. If both inputs are greater than 18 bits, then four partial products are formed, but the
purely unsigned result from the LSBs simply can be concatenated with the 36-bit signed
product of the MSBs and added to the other two results.

Figure 6 represents the cascaded scheme used to implement a 35-bit by 35-bit signed
multiplier utilizing four embedded multipliers and two adders.

The fixed adder is 53 bits wide (17 LSBs are always 0 on one input).

The 34-bit by 34-bit unsigned submodule is constructed in a similar manner with the most
significant bit on each operand being tied to logic Low.

Figure 5: 22x16 Multiplier Implementation

MULT18X18

34

Unsigned

16

44

34

38

16

18

16

20

22A

B
P

16
+

X467_14_051303

ug000.book Page 271 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

272 www.xilinx.com XAPP467 (v1.1) May 13, 2003
1-800-255-7778

Using Embedded Multipliers in Spartan-3 FPGAs
R

Two Multipliers
in a Single
Primitive

The dedicated multiplier can be used to multiply two smaller numbers at the same time. By
putting one value on the LSBs and one on the MSBs, two independent results can be obtained
as long as the results do not overlap with each other on the outputs. Shifting one of the values
n positions to the MSBs is the same as multiplying it by 2n. If the value shifted to the MSBs is
X, then the new value is X * 2n. If the value on the LSBs is Y, then the complete multiplier input
is X * 2n + Y.

For simplified illustration purposes, an assumption of two squares being implemented in the
same MULT18X18 primitive is used. The following equation shows the form of the
multiplication.

Two Multipliers per Primitive:

(X * 2n + Y)(X * 2n + Y) = (X2 * 22n) + (XY * 2n+1) + (Y2)

For values 0 on X or Y, the equation becomes:

X2 * 22n {Y=0} (X2 on the output MSBs)

Y2 {X=0} (Y2 on the output LSBs)

0 {X=0, Y=0}

With both X and Y at non-zero values, care must be taken to avoid overlap between the results
on the MSBs and LSBs and the middle term (XY * 2n+1). Two multipliers can coexist in one
MULT18X18 primitive, if the conditions in the following inequalities are met when neither X nor
Y are 0.

Inequality Conditions for Two Multipliers per Primitive:

(X2 * 22n)min > (XY * 2n+1)max, (XY * 2n+1)min > (Y2)max

Figure 6: 35x35 Signed Multiplier

MULT18X18

AA[34:17]

B
P

36
B[34:17] [69:34]

[33:0]

36

36

70 70

MULT18X18

AA[34:17]

B
P

36
0, B[16:0]

36

36
[52:17]

0
•
•
0

16
•
•
0

MSB
•
•

MSB

69
•
•
53

MULT18X18

A0, A[16:0]

B
P

36
B[34:17]

36

36

MULT18X18

A0, A[16:0]

B

+

+

P
34

0, B[16:0]
34 34

X467_11_051303

ug000.book Page 272 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Embedded Multipliers in Spartan-3 FPGAs

XAPP467 (v1.1) May 13, 2003 www.xilinx.com 273
1-800-255-7778

R

Table 3 shows values for X and Y where these conditions are met.

Figure 7 represents the MULT18X18 connections for calculating the square of both a 6-bit
signed number and a 5-bit unsigned number.

Design Entry There are many options for including the Spartan-3 multiplier in a design. The library primitives
MULT18X18 and MULT18X18S described earlier can be instantiated in the schematic or HDL
code. Synthesis tools can infer a multiplier block from the multiply operator, including Xilinx
XST, Synplicity Synplify, and Mentor LeonardoSpectrum. They will infer the MULT18X18S
when the operation is controlled by a clock for a synchronous multiplier.

LeonardoSpectrum features a pipeline multiplier that involves putting levels of registers in the
logic to introduce parallelism and, as a result, use CLB resources instead of the dedicated
multipliers. A certain construct in the input RTL source code description is required to allow the
pipelined multiplier feature to take effect. See the Synthesis and Simulation Design Guide for
more information.

The following VHDL example will infer the MULT18X18S using XST or Synplify:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
entity mult18x18s is
port (a : in std_logic_vector(7 downto 0);

b : in std_logic_vector(7 downto 0);
 clk : in std_logic;
 prod : out std_logic_vector(15 downto 0));
end mult18x18s;
architecture arch_mult18x18s of

Table 3: Two Multipliers per MULT18X18 Allowable Sizes

X * X Y * Y

Signed Size Unsigned Size Signed Size Unsigned Size

7 X 7 6 X 6 - 4 X 4

6 X 6 5 X 5 - 5 X 5

5 X 5 4 X 4 3 X 3 6 X 6

4 X 4 3 X 3 3 X 3 7 X 7

3 X 3 2 X 2 4 X 4 8 X 8

Figure 7: Two Multipliers in One Primitive

A_5U [4:0]

P_5U[9:0]

x00 [11:5]

A_6S [17:12]

P_6S[35:24]

NC[23:10]

A

B_5U [4:0]

x00 [11:5]

B_6S [17:12]

B

P

MULT18X18

X467_05_032403

ug000.book Page 273 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

274 www.xilinx.com XAPP467 (v1.1) May 13, 2003
1-800-255-7778

Using Embedded Multipliers in Spartan-3 FPGAs
R

mult18x18s is
begin
process(clk) is begin
if clk’event and clk = ’1’ then
prod <= a*b;

end if;
end process;
end arch_mult18x18s;

The following is a Synchronous Multiplier VHDL Example coded for LeonardoSpectrum:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
entity mult18x18s is
port(clk: in std_logic;

 a: in std_logic_vector(7 downto 0);
 b: in std_logic_vector(7 downto 0);
 prod: out std_logic_vector(15 downto 0));
end mult18x18s;
architecture arch_mult18x18s of
mult18x18s is

signal reg_prod : std_logic_vector(15 downto 0);
begin
process(clk)
begin
if(rising_edge(clk))then
reg_prod <= a * b;
prod <= reg_prod;

end if;
end process;
end arch_mult18x18s;

The following is a Synchronous Multiplier Verilog Example coded for Synplify and XST:

module mult18x18s(a,b,clk,prod);
input [7:0] a;
input [7:0] b;
input clk;
output [15:0] prod;
reg [15:0] prod;
always @(posedge clk) prod <= a*b;

endmodule

The following is a Synchronous Multiplier Verilog Example coded for LeonardoSpectrum:

module mult18x18s (a,b,clk,prod);
input [7:0] a;
input [7:0] b;
input clk;
output [15:0] prod;
reg [15:0] reg_prod, prod;
always @(posedge clk) begin
reg_prod <= a*b;
prod <= reg_prod;

endmodule

ug000.book Page 274 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Embedded Multipliers in Spartan-3 FPGAs

XAPP467 (v1.1) May 13, 2003 www.xilinx.com 275
1-800-255-7778

R

Using the CORE
Generator
System

Multipliers that make use of the embedded Spartan-3 18-bit x 18-bit two’s-complement
multipliers can be easily generated using v6.0 of the CORE Generator Multiplier module. This
core is available with version 5.1i and later of the CORE Generator system. Features of the
Multiplier Generator include:

• Generates parallel multipliers using the dedicated multiplier blocks

- Also can use other resources for parallel multipliers or generate sequential/serial-
sequential, and fixed/reloadable constant coefficient multipliers

• Supports two’s-complement signed/unsigned modes

• Supports inputs ranging from 1 to 64 bits wide

• Supports outputs ranging from 1 to 129 bits wide

• Generates purely combinatorial and fully pipelined implementations

• Provides optional registered output with optional clock enable and asynchronous and
synchronous clears

• Provides optional handshaking signals

Figure 8 shows the logic symbol for the Core Multiplier Generator. The RFD (Ready For Data)
output goes High to indicate the multiplier is ready to accept data. The ND (New Data) input can
be asserted to indicate new data is available on the multiplier inputs. The RDY (Ready) signal
indicates that the output is the current product. LOADB and SWAPB are used in constant
coefficient multipliers.

The CORE Generator system uses the embedded multiplier for the default Parallel multiplier
type. The Multiplier Construction option gives the user the choice to implement the function in
look-up tables instead.

Figure 9 shows the timing diagram for the Multiplier Generator.

Figure 8: Core Multiplier Generator Symbol

A

X467_06_032403

A_SIGNED

ND

B

LOADB

SWAPB

ACLR

SCLR

CE

CLK

O

Q

RFD

RDY

LOAD_DONE

ug000.book Page 275 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

276 www.xilinx.com XAPP467 (v1.1) May 13, 2003
1-800-255-7778

Using Embedded Multipliers in Spartan-3 FPGAs
R

System Generator
The Multiplier Generator is used by the System Generator for DSP when the MULT block is
used. System Generator presents a high level and abstract view of the design, but also
exposes key features in the underlying silicon, making it possible to build extremely high-
performance FPGA implementations. The System Generator also provides blocks for compiling
MATLAB® M-code into synthesizable HDL code. The System Generator uses the embedded
multiplier when a parallel multiplier is selected and the use of the dedicated multiplier is
checked in the System Generator interface.

MAC Cores
The CORE Generator system and the System Generator can also implement more complex
functions using the multiplier as a building block. The Multiply Accumulator (MAC) core
supports up to 32-bit inputs and optional user-defined pipelining. The options of an Embedded
or LUT Based implementation control whether the dedicated multipliers or CLB resources are
used for the function. The MAC implementation uses relatively few CLB resources beyond the
dedicated multipliers and provides flexibility that is key to matching a design to the lowest
density and lowest cost solution possible.

The MAC and MAC-based FIR filters include an automatic pipeline control which is based on
required system clock performance. Levels of pipeline will automatically be inserted based on
the design requirement for a perfect speed/area trade-off.

Figure 9: Multiplier Generator Timing Diagram

CLK

SCLR

X467_07_040303

RFD

ND

A & B
Input

DOUT

RDY

XXX XXX

RFD active unless ACLR or SCLR active

interval depends on multiplier latency

XXX XXX A0 A1 An An

DnDnD0

An+1

Dn+1

new multiplier inputs A(n) & B(n)

multiplier output still valid
but RDY low (ND was 0)

new multiplier output
DOUT = 0 (SCLR was 1)

ug000.book Page 276 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Embedded Multipliers in Spartan-3 FPGAs

XAPP467 (v1.1) May 13, 2003 www.xilinx.com 277
1-800-255-7778

R

Multiplier
Submodules

This section describes several example submodules that can be used in a Spartan-3 design.
Table 4 lists multipliers and two’s-complement return functions that utilize one MULT18X18
primitive and are not registered.

Figure 10 and Figure 11 represent 4-bit by 4-bit signed multiplier and 4-bit by 4-bit unsigned
multiplier implementations, respectively.

Table 4: Embedded Multiplier Submodules — Single MULT18X18

Submodule A Width B Width P Width Signed/Unsigned

MULT17X17_U 17 17 34 Unsigned

MULT8X8_S 8 8 16 Signed

MULT8X8_U 8 8 16 Unsigned

MULT4X4_S 4 4 8 Signed

MULT4X4_U 4 4 8 Unsigned

TWOS_CMP18 18 - 18 -

TWOS_CMP9 9 - 9 -

MAGNTD_18 18 - 17 -

Figure 10: MULT4X4_S Submodule

170

0
A3
A3
A3
A3

A[3:0]

P[7:0][7:0]

•••
•••

8
7
6
5
4
[3:0] NC[35:8]

A

P

170

0
B3
B3
B3
B3

B[3:0]

•••
•••

8
7
6
5
4
[3:0]

B

MULT18X18

X467_08_032503

ug000.book Page 277 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

278 www.xilinx.com XAPP467 (v1.1) May 13, 2003
1-800-255-7778

Using Embedded Multipliers in Spartan-3 FPGAs
R

Submodule MAGNTD_18 performs a magnitude return (i.e., absolute value) of a two’s-
complement number. An incoming negative number returns with a positive number, while an
incoming positive number remains unchanged. Submodules TWOS_CMP18 and
TWOS_CMP9 perform a two’s-complement return function. Additional slice logic can be used
with these submodules to efficiently convert sign-magnitude to two’s-complement or vice-
versa.

Figure 12 shows the connections to a MULT18X18 to create the submodule TWOS_CMP9.

VHDL and
Verilog
Instantiation

VHDL and Verilog instantiation templates are available as examples of primitives and
submodules (see VHDL and Verilog Templates, page 279).

In VHDL, each template has a component declaration section and an architecture section.
Each part of the template should be inserted within the VHDL design file. The port map of the
architecture section should include the design signal names.

Figure 11: MULT4X4_U Submodule

Figure 12: TWOS_CMP9 Submodule

170

0

A[3:0] [3:0]

P[7:0][7:0]

•••
•••

4

NC[35:8]

A

170

0

B[3:0] [3:0]

•••
•••

4

B

P

MULT18X18

X467_09_032503

x000

MULT18X18
X467_10_032503

x000
P [8:0]

[17:9]

[8:0]

[35:9]

[8:0]
[17:9]

[8:0]

A [8:0]

x111

P

B

A

NC

ug000.book Page 278 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Embedded Multipliers in Spartan-3 FPGAs

XAPP467 (v1.1) May 13, 2003 www.xilinx.com 279
1-800-255-7778

R

Port Signals

Data In — A

The data input A provides new data (up to 18 bits) to be used as one of the multiplication
operands.

Data In — B

The data input B provides new data (up to 18 bits) to be used as one of the multiplication
operands.

Data Out — P

The data output bus P provides the data value (up to 36 bits) of two’s-complement multiplication
for operands A and B.

Location Constraints
MULT18X18 embedded multiplier instances can have LOC properties attached to them to
constrain placement. MULT18X18 placement locations differ from the convention used for
naming CLB locations, allowing LOC properties to transfer easily from array to array.

The LOC properties use the following form:

LOC = MULT18X18_X#Y#

For example, MULT18X18_X0Y0 is the bottom-left MULT18X18 location on the device.

VHDL and
Verilog
Templates

VHDL and Verilog templates are available for the primitive and submodules.

The following is a template for the primitive:

• SIGNED_MULT_18X18 (primitive: MULT18X18)

The following are templates for submodules:

• UNSIGNED_MULT_17X17 (submodule: MULT17X17_U)

• SIGNED_MULT_8X8 (submodule: MULT8X8_S)

• UNSIGNED_MULT_8X8 (submodule: MULT8X8_U)

• SIGNED_MULT_4X4 (submodule: MULT4X4_S)

• UNSIGNED_MULT_4X4 (submodule: MULT4X4_U)

• TWOS_COMPLEMENTER_18BIT (submodule: TWOS_CMP18)

• TWOS_COMPLEMENTER_9BIT (submodule: TWOS_CMP9)

• MAGNITUDE_18BIT (submodule: MAGNTD_18)

The corresponding submodules have to be synthesized with the design.

Templates for the SIGNED_MULT_18X18 module are provided in VHDL and Verilog code as
an example.

ug000.book Page 279 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

280 www.xilinx.com XAPP467 (v1.1) May 13, 2003
1-800-255-7778

Using Embedded Multipliers in Spartan-3 FPGAs
R

VHDL Template
-- Module: SIGNED_MULT_18X18
-- Description: VHDL instantiation template
-- 18-bit X 18-bit embedded signed multiplier (asynchronous)
--
-- Device: Spartan-3 Family

-- Components Declarations
component MULT18X18
 port(
 A : in std_logic_vector (17 downto 0);
 B : in std_logic_vector (17 downto 0);
 P : out std_logic_vector (35 downto 0)
);
end component;
--
-- Architecture Section
--
U_MULT18X18 : MULT18X18
 port map (
 A => , -- insert input signal #1
 B => , -- insert input signal #2
 P => -- insert output signal
);

Verilog Template
// Module: SIGNED_MULT_18X18
// Description: Verilog instantiation template
// 18-bit X 18-bit embedded signed multiplier (asynchronous)
//
// Device: Spartan-3 Family
//---
// Instantiation Section
//
MULT18X18 U_MULT18X18
 (
 .A () , // insert input signal #1
 .B () , // insert input signal #2
 .P () // insert output signal
);

Alternative
Applications to
Multiplication

Since binary multiplication by 2n is the same as shifting the value n places, a multiplier can be
used as a shifter or other general-purpose resource. These can be considered in applications
that otherwise would not need the large number of available multipliers.

Shifter
A multiplier can be used as a shifter. One operand is routed to the output, shifted by n positions,
if the other operand is a power of two (2n). Since the sign-bit (MSB) cannot be used to control
the shift, the 18x18 two’s-complement multiplier can shift by 0 to 16 positions.

Of the 36 output lines, those less significant than the shifted data lines are automatically filled
with zeros; those more significant than the shifted data are filled with zeros or ones, depending
on the state of the MSB input. This is the natural result of the two’s-complement multiplication.

The user can either perform a logic shift of 17 input bits by holding the MSB input Low, or
perform an arithmetic shift of an 18-bit two’s-complement number, effectively sign-extending
the MSB.

ug000.book Page 280 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Embedded Multipliers in Spartan-3 FPGAs

XAPP467 (v1.1) May 13, 2003 www.xilinx.com 281
1-800-255-7778

R

A conventional CLB-based shifter would use an array of n multiplexers, each with n inputs, and
require a large amount of routing resources. Multiplier-based shifters larger than 18 bits, and
barrel shifters of any length, require external OR gating of the outputs, but use far fewer CLB
resources.

Magnitude Return
To generate the absolute value of a number by using multiplication, multiply by 1 if it is positive
(MSB is zero), and multiply by -1 if it is negative (MSB is one). In two’s-complement notation,
1 is all zeros ending in a one as the LSB, and -1 is all ones, including the LSB. Therefore, a
magnitude return or absolute value generator can be implemented by multiplying by a value
with a one as the LSB and the MSB of the input value in all the other bit positions. Figure 13
shows a magnitude return generator.

Two’s-Complement Return
Generating the two’s complement of a number typically requires only one LUT per bit with the
carry logic used for larger numbers. However, if LUTs are heavily used, the multiplier can be
used to return the two’s complement of the input. Multiplying an input number by an equivalent
length number of all ones generates the two’s complement of the number over the same length
of the output bits. Any extraneous higher-order bits are ignored. Figure 14 shows a two’s
complement return generator.

Figure 13: Magnitude Return

Figure 14: Two’s-Complement Return

•

•
•

•••

16

0

•••

17
16

0
1

•••

17
16

0
1

1

A

B

P

X467_12_032503

•••

10

0

•••

10

0

1

1

A

B

•••

10

11

0

P

NC
•••

35

P

X467_13_032503

ug000.book Page 281 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

282 www.xilinx.com XAPP467 (v1.1) May 13, 2003
1-800-255-7778

Using Embedded Multipliers in Spartan-3 FPGAs
R

Complex Multiplication
Complex multiplication is multiplication of complex numbers, which contain real and imaginary
components with the imaginary unit i equal to the square root of -1. Complex multiplication can
be carried out using only three real multiplications: ac, bd, and (a + b)(c + d). The real part of
(a + ib)(c + id) is ac - bd, and the imaginary part is (a + b)(c + d) - ac - bd. The large number of
multipliers in the Spartan-3 architecture makes it convenient to do even complex multiplication.

Time Sharing in Matrix Multiplication
Many pipelined functions in the computer graphics and video fields are expressed in matrix
mathematics. A 3 x 3 matrix multiplication would require 27 multiplies and 18 adds to generate
the 3 x 3 matrix result. Color conversion can be described as a 3 x 3 matrix multiplication by a
constant, which requires nine multiplies and six adds to generate the three results.

The high-speed capability of a Spartan-3 device allows the user to "time share" the multipliers.
Instead of nine multipliers, the design feeds nine sets of inputs resulting in nine sets of results
at nine times the clock rate of the system, reducing the multiplier count to one. The adder logic
is implemented in CLB resources, and at every third clock, the adder output is stored in output
registers to capture the three results. See XAPP284 for more information.

Floating-Point Multiplication
Floating-point values add an exponent to the number and sign bit used in binary multiplication.
A 32-bit floating-point multiplier can be implemented using four of the dedicated multiplier
blocks and CLB resources. Such multipliers are available from Xilinx AllianceCORE™ partners.

Related
Materials and
References

• Spartan-3 Family Data Sheet
Architectural description and timing parameters.
DS099-1, Spartan-3 1.2V FPGA Family: Introduction and Ordering Information (Module 1)
DS099-2, Spartan-3 1.2V FPGA Family: Functional Description (Module 2)
DS099-3, Spartan-3 1.2V FPGA Family: DC and Switching Characteristics (Module 3)
DS099-4, Spartan-3 1.2V FPGA Family: Pinout Tables (Module 4)

• DSP Central (http://www.xilinx.com/xlnx/xil_prodcat_landingpage.jsp?title=Xilinx+DSP)
Information that will enable you to achieve the maximum benefit from our DSP solutions.

• IP Center (http://www.xilinx.com/ipcenter)
Xilinx and Alliance partner core solutions.

• Xilinx Software Documentation
(http://www.xilinx.com/support/sw_manuals/xilinx5/download/)
Libraries Guide MULT18X18/S descriptions, Synthesis and Simulation Design Guide
instantiation examples for HDL.

• XAPP284: Matrix Math, Graphics, and Video
Uses one multiplier running at 9x the clock rate to provide the nine results for a 3x3 matrix
multiplication in one system clock cycle.

• XAPP636: Optimal Pipelining of the I/O Ports of Virtex-II Multipliers
Describes a high-speed, optimized implementation of the dedicated multiplier resulting
from pipelined inputs and outputs and effective placement and routing constraints.

• TechXclusives (http://www.xilinx.com/support/techxclusives/techX-home.htm)
See "Using Leftover Multipliers and Block RAM" by Peter Alfke and "Expanding Virtex-II
Multipliers" by Ken Chapman.

ug000.book Page 282 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/xlnx/xil_prodcat_landingpage.jsp?title=Xilinx+DSP
http://www.xilinx.com/ipcenter
http://www.xilinx.com/support/sw_manuals/xilinx5/download/
http://www.xilinx.com/bvdocs/publications/ds099-2.pdf
http://www.xilinx.com/bvdocs/publications/ds099-3.pdf
http://www.xilinx.com/bvdocs/publications/ds099-4.pdf
http://www.xilinx.com/bvdocs/publications/ds099-1.pdf
http://www.xilinx.com/xapp/xapp284.pdf
http://www.xilinx.com/xapp/xapp636.pdf
http://www.xilinx.com/support/techxclusives/techX-home.htm

Using Embedded Multipliers in Spartan-3 FPGAs

XAPP467 (v1.1) May 13, 2003 www.xilinx.com 283
1-800-255-7778

R

Conclusion FPGAs have a significant advantage over general-purpose DSP chips because their logic can
be customized for the specific application. Some functions can run over 100 times faster and
require much less expense in an FPGA. A key feature to take advantage of is the dedicated
multiplier block. Take advantage of the automatic optimization of multiplication logic, and the
user controls when necessary to get the exact results desired. The CORE Generator system
can create simple multipliers or combine them into more complex functions such as MACs.

Appendix A:
Two's-
Complement
Multiplication

Two’s-complement representation allows the use of binary arithmetic operations on signed
integers, yielding the correct two’s-complement results. Positive two’s-complement numbers
are represented as simple binary. Negative two’s-complement numbers are represented as the
binary number that when added to a positive number of the same magnitude equals zero. To
calculate the two's complement of an integer, invert the binary equivalent of the number by
changing all of the ones to zeros and all of the zeros to ones (also called one’s complement),
and then add one. The MSB (left-most) bit indicates the sign of the integer; therefore it is
sometimes called the sign bit. If the sign bit is zero, the number is positive. If the sign bit is one,
the number is negative. To extend a signed integer to a larger width, duplicate the MSB on the
left side of the number.

Two’s-complement multiplication follows the same rules as binary multiplication, which are the
same as the truths of the AND gate:

0 x 0 = 0

0 x 1 = 0

1 x 0 = 0

1 x 1 = 1, and no carry or borrow bits

For example,

1111 1100 = -4

× 0000 0100 = +4

1111 0000 = -16

Revision
History

The following table shows the revision history for this document.

Date Version Revision

04/06/03 1.0 Initial Xilinx release.

05/13/03 1.1 Updated multiplier information for the XC3S50 device in the
Multipliers in the Spartan-3 Architecture section.

Added new section entitled Expanding Multipliers.

Added TechXclusives reference to Related Materials and
References section.

Made minor edits for clarification.

ug000.book Page 283 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

284 www.xilinx.com XAPP467 (v1.1) May 13, 2003
1-800-255-7778

Using Embedded Multipliers in Spartan-3 FPGAs
R

ug000.book Page 284 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan™-3 FPGA Handbook www.xilinx.com 285
July 11, 2003 1-800-255-7778

R

Spartan-3 Design Software and IP Cores

Using the ISE Design Tools for Spartan-3 FPGAs

Using Spartan-3 IP Cores

Embedded Processing and Control Solutions for Spartan-3 FPGAs

ug000.book Page 285 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

286 www.xilinx.com Spartan™-3 FPGA Handbook
1-800-255-7778 July 11, 2003

R

ug000.book Page 286 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

XAPP473 (v1.0) July 11, 2003 www.xilinx.com 287
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Summary Software is critical to the effective use of programmable logic. The Spartan™-3 family is
supported by the complete set of Xilinx Integrated Software Environment (ISE) development
tools, with additional support available from a variety of partners. This document provides an
overview of those design tools. It is intended primarily for the user who is new to the Xilinx
development system. This document can be used to get a better understanding of the specific
tools mentioned elsewhere in the Spartan-3 literature. The first half provides an overview of the
general design flow, while the second half describes the specific tools used at the different
steps in the flow. Use the Xilinx development system documentation for detailed information
and introductory tutorials.

Introduction Combined with the Spartan-3 FPGA family, ISE’s optimized design tools help you finish faster
and lower your project costs. The ISE package is a collection of Xilinx software design tools that
concentrate on delivering the most productivity available for your Spartan-3 logic performance.
With ProActive Timing Closure technology, you get the fastest runtimes in programmable logic
ensuring you reach your performance goals quicker. Incremental Design delivers faster re-
compile times with guaranteed performance, and the optional Xilinx ChipScope™ Pro
verification tools provide real-time debug with advantages that are not possible in ASIC
designs. ISE makes sure you get through the logic design process faster, saving both time and
project costs, and getting you to market ahead of your competition.

Design Flow The standard design flow for Spartan-3 FPGAs consists of the following three major steps. The
entire design implementation flow is run simply by selecting the desired result in the Xilinx
Graphical User Interface (GUI). The tools automatically determine which programs and files are
needed to bring the appropriate output up to date.

1. Design Entry and Synthesis

In this step of the design flow, you create your design using a Xilinx-supported schematic
editor, a Hardware Description Language (HDL) for text-based entry, or both. If you use an
HDL for text-based entry, you must synthesize the HDL file into an industry-standard
Electronic Data Interchange Format (EDIF) file. If you use the Xilinx Synthesis Technology
(XST) tool, a Xilinx-specific NGC netlist file is created, which can be converted to an EDIF
file.

2. Design Implementation

By implementing the specific Xilinx Spartan-3 architecture, you convert the logical design
file format, such as EDIF, that you created in the design entry or synthesis stage into a
physical file format. The physical information is contained in the Native Circuit Description
(NCD) file. Then you create a bitstream file from these files and optionally program a
PROM for subsequent programming of your Spartan-3 device.

3. Design Verification

Application Note: Spartan-3 FPGA Family

XAPP473 (v1.0) July 11, 2003

Using the ISE Design Tools for Spartan-3
FPGAs

R

ug000.book Page 287 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

288 www.xilinx.com XAPP473 (v1.0) July 11, 2003
1-800-255-7778

Using the ISE Design Tools for Spartan-3 FPGAs
R

Using a gate-level simulator, you ensure that your design meets your timing requirements
and functions properly. In-circuit verification can be performed by downloading your design
to the device using Xilinx iMPACT Programming Software. Design verification can begin
immediately after design entry and can be repeated after various steps of design
implementation.

Figure 1 shows the general overall design flow for Spartan-3 FPGAs.

Design Entry and Synthesis

You can enter a design with a schematic editor or a text-based tool for HDL code. Design entry
begins with a design concept, expressed as a drawing or functional description. From the
original design, a generic EDIF netlist is created, then synthesized and translated into a Xilinx
netlist file. This file is fed into a program called NGDBuild, which produces a logical Native
Generic Database (NGD) file. Xilinx libraries provide access to features specific to the Spartan-
3 architecture.

Figure 2 shows the design entry and synthesis flow.

Figure 1: Design Flow

Design
Synthesis

Design
Verification

Back
Annotation

Design

Download to a
Xilinx Device

Implementation

Optimization

- Mapping
- Placement
- Routing

FPGAs

Bitstream
Generation

x473_01_062103

Timing
Simulation

Static Timing
Analysis

Design Entry

In-Circuit
Verification

Functional
Simulation

ug000.book Page 288 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using the ISE Design Tools for Spartan-3 FPGAs

XAPP473 (v1.0) July 11, 2003 www.xilinx.com 289
1-800-255-7778

R

Hierarchical Design

Design hierarchy is important in both schematic and HDL entry for the following reasons:

• Helps you conceptualize your design

• Adds structure to your design

• Promotes easier design debugging

• Makes it easier to combine different design entry methods (schematic, HDL, or state
editor) for different parts of your design

• Makes it easier to design incrementally, which consists of designing, implementing, and
verifying individual parts of a design in stages

• Reduces optimization time

• Facilitates concurrent design, which is the process of dividing a design among a number
of people who develop different parts of the design in parallel, such as in Modular Design

Xilinx strongly recommends that you name the components and nets in your design. These
names are preserved and used by the Xilinx tools. These names are also used for back-
annotation and appear in the debug and analysis tools. If you do not name your components
and nets, the tools automatically generate the names, making it difficult to analyze circuits.

Schematic Entry

Schematic tools provide a graphical interface for design entry. You can use these tools to
connect symbols representing the logic components in your design. You can build your design
with individual gates, or you can combine gates to create functional blocks.

Figure 2: Design Entry and Synthesis Flow

Schematic
Libraries

Synthesis
Libraries

UCF
EDIF and

Constraints/NCF

HDL

NGC
(XST Netlist)

CORE Generator System

Synthesis

NGDBuild

Schematic Capture

x473_02_061703

ug000.book Page 289 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

290 www.xilinx.com XAPP473 (v1.0) July 11, 2003
1-800-255-7778

Using the ISE Design Tools for Spartan-3 FPGAs
R

Primitives and macros are the “building blocks” of a device library. The Xilinx Spartan-3 library
provides primitives as well as common high-level macro functions, all optimized for the
Spartan-3 architecture. Primitives are basic circuit elements, such as AND and OR gates, and
special device resources, such as the DCM and block RAM. Each primitive has a unique library
name, symbol, and description.

Macros contain multiple library elements, which can include primitives and other macros. Soft
macros have pre-defined functionalities, but have flexible mapping, placement, and routing.
Relationally Placed Macros (RPMs) have fixed mapping and relative placement. Macros are
not available for synthesis because synthesis tools have their own module generators and do
not require RPMs. If you wish to override the module generation, you can instantiate Xilinx-
provided CORE Generator™ modules, which include pre-built optimization for the Spartan-3
architecture. For most leading-edge synthesis tools, this is not needed unless it is for a module
that cannot be inferred.

HDL Entry and Synthesis

A typical Hardware Description Language (HDL) supports a mixed-level description in which
gate and netlist constructs are used with functional descriptions. This mixed-level capability
enables you to describe system architectures at a high level of abstraction, then incrementally
refine a design’s detailed gate-level implementation. HDL descriptions offer the following
advantages:

• You can verify design functionality early in the design process. A design written as an HDL
description can be simulated immediately. Design simulation at this high level — at the
gate-level before implementation — allows you to evaluate architectural and design
decisions.

• An HDL description is more easily read and understood than a netlist or schematic
description. HDL descriptions provide technology-independent documentation of a design
and its functionality. Because the initial HDL design description is technology independent,
you can use it again to generate the design in a different technology, without having to
translate it from the original technology.

• Large designs are easier to handle with HDL tools than schematic tools.

After creating your HDL design, you must synthesize it. During synthesis, behavioral
information in the HDL file is translated into a structural netlist, and the design is optimized for
the Spartan-3 architecture. Xilinx supports HDL synthesis tools for several third-party synthesis
vendor partners. In addition, Xilinx offers its own synthesis tool, Xilinx Synthesis Technology
(XST).

Functional simulation tests the logic in your design to determine if it works properly. You can
save time during subsequent design steps if you perform functional simulation early in the
design flow.

Although HDL entry offers the advantage of technology independence, it is helpful to
understand the available resources in the Spartan-3 architecture and design to take advantage
of those resources. For example, the abundance of registers at every I/O and following every
look-up table encourages pipelining. Most synthesis tools automatically infer Xilinx-specific
resources and optimize for the architecture. Simple ways to specify implementation
requirements are to instantiate Spartan-3 library components or add constraints.

Constraints

You might want to constrain your design within certain timing or placement parameters to
specify your required pin locations or timing requirements. You can specify logic mapping, block
placement, and timing specifications. Constraints can be entered as parameters or attributes
on library components. You can enter constraints by hand or use one of several graphical tools
for generating constraint files and evaluating the results. Constraints found in the design are
written to an NCF file (Netlist Constraints File). Constraints created separately are written to a
UCF file (User Constraints File).

ug000.book Page 290 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using the ISE Design Tools for Spartan-3 FPGAs

XAPP473 (v1.0) July 11, 2003 www.xilinx.com 291
1-800-255-7778

R

Design Implementation

Design Implementation begins with the translating, then mapping, of a logical design file to a
specific Spartan-3 device; it is complete when the physical design is successfully routed and a
bitstream is generated. You can alter constraints during implementation in the same way as
during the Design Entry step.

Figure 3 shows an overall view of the design implementation flow for Spartan-3 FPGAs.

Translating

NGDBuild performs all the steps necessary to read a netlist file in EDIF or NGC format and
create an NGD file describing the logical design. A logical design is in terms of logic elements,
such as AND gates, OR gates, decoders, flip-flops, and RAMs. The NGD file resulting from an
NGDBuild run contains both a logical description of the design reduced to Xilinx primitives and
a description in terms of the original hierarchy expressed in the input netlist. The output NGD
file then can be mapped to the Spartan-3 device family resources.

Figure 3: Design Implementation Flow

BIT

NCD

NGD

NCD & PCF

UCF NGDBuild

MAP

PAR

BitGen

TRACE &
Timing Analyzer

PROM File Formatter

iMPACT

PROMGen &

FPGA Editor

Constraints Editor

Floorplanner

x473_03_062103

ug000.book Page 291 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

292 www.xilinx.com XAPP473 (v1.0) July 11, 2003
1-800-255-7778

Using the ISE Design Tools for Spartan-3 FPGAs
R

NGDBuild performs the following steps to convert a netlist to an NGD file:

1. Reads the source netlist(s). NGDBuild invokes the Netlister Launcher. The Netlist
Launcher determines the type of the input netlist and starts the appropriate netlist reader
program. The netlist readers incorporate NCF files associated with each netlist. NCF files
contain timing and layout constraints for each module.

2. Reduces all components in the design to NGD primitives. NGDBuild merges components
that reference other files. NGDBuild also finds the appropriate system library components,
physical macros, and behavioral models.

3. Checks the design by running a Logical Design Rule Check (DRC) on the converted
design. The Logical DRC is a series of tests on the logical design.

4. Writes an NGD file as output.

Mapping

The MAP program maps a logical design to a Spartan-3 FPGA. The input to MAP is an NGD
file, which contains a logical description of the design in terms of both the hierarchical
components used to develop the design and the lower-level Xilinx primitives. Additionally, it
contains any number of hard placed-and-routed physical macro files. MAP then maps the logic
to the components (logic cells, I/O cells, and other components) in the Spartan-3 architecture.
The output design is a Native Circuit Description (NCD) file, which is a physical representation
of the design mapped to the components in the Spartan-3 architecture. The NCD file then can
be placed and routed.

MAP performs the following steps when mapping a design:

1. Selects the target Xilinx device, package, and speed.

2. Reads the information in the input design file.

3. Performs a Logical DRC (Design Rule Check) on the input design. If any DRC errors are
detected, the MAP run is aborted. If any DRC warnings are detected, the warnings are
reported, but MAP continues to run.

4. Removes unused logic, where all unused components and nets are removed.

5. Maps pads and their associated logic into IOBs.

6. Maps the logic into Xilinx components (IOBs, CLBs, etc.). If any Xilinx mapping control
symbols appear in the design hierarchy of the input file, MAP uses the existing mapping of
these components in preference to re-mapping them. The mapping is influenced by various
constraints.

7. Updates the information received from the input NGD file and writes this updated
information into an NGM file. This NGM file contains both logical information about the
design and physical information about how the design was mapped. The NGM file is used
only for back-annotation.

8. Creates a physical constraints (PCF) file. This text file contains any constraints specified
during design entry. If no constraints were specified during design entry, an empty file is
created so that you can enter constraints directly into the file using a text editor.

9. Runs a physical Design Rule Check (DRC) on the mapped design. If DRC errors are found,
MAP does not write an NCD file.

10. Creates an NCD file, which represents the physical design. The NCD file describes the
design in terms of Xilinx components (CLBs, IOBs, and so forth).

11. Writes a MAP report (MRP) file, which lists any errors or warnings found in the design,
details how the design was mapped, and supplies statistics about component usage in the
mapped design.

ug000.book Page 292 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using the ISE Design Tools for Spartan-3 FPGAs

XAPP473 (v1.0) July 11, 2003 www.xilinx.com 293
1-800-255-7778

R

Placing and Routing

After creating a mapped NCD file, you can place and route the file using the automatic Place
And Route (PAR) tool. PAR accepts an NCD file as input, places and routes the design, and
outputs an NCD file to be used by the bitstream generator (BitGen). You can use the output
NCD file as a guide file for additional runs of PAR after making minor changes to your design.

PAR places and routes a design based on the following considerations:

• Cost-Based: Placement and routing are performed using various cost tables that assign
weighted values to relevant factors such as constraints, length of connection, and
available routing resources.

• Timing-Driven: The Xilinx timing analysis software enables PAR to place and route a
design based upon your timing constraints.

Placing

The PAR placer executes multiple phases of the placer. PAR writes the NCD after all the
phases are completed. During placement, PAR places components into sites based on factors
such as constraints specified in the PCF file, the length of connections, and the available
routing resources. Timing-driven placement is automatically invoked if PAR finds timing
constraints in the physical constraints file.

Routing

The next stage is routing the placed design. PAR writes the NCD file when the design is fully
routed. There still may exist unroutes since power and ground are not considered. At this point
the design can be analyzed against timing. A new NCD will be written as the routing improves.
The router performs a procedure to converge on a solution that routes the design to completion
and meets timing constraints. Timing-driven routing is automatically invoked if PAR finds timing
constraints in the physical constraints file.

Floorplanning

Floorplanning is the process of specifying user placement constraints. The Floorplanner
provides a graphical view of placement, while the FPGA Editor provides a graphical view of
both placement and routing. Both tools can be used before or after PAR to analyze or constrain
the design.

Bitstream Generation

After the design has been completely routed, it is necessary to configure the device so that it
can execute the desired function. This configuration is done using files generated by BitGen,
the Xilinx bitstream generation program. BitGen takes a fully routed NCD file as its input and
produces a configuration bitstream (binary BIT file).

The BIT file contains all of the configuration information from the NCD file defining the internal
logic and interconnections of the Spartan-3 FPGA, plus device-specific information from other
files associated with the target device. The binary data in the BIT file then can be downloaded
into the FPGA memory cells or it can be used to create a PROM file. The PROM file is created
by the PROM File Formatter, which is the GUI for the PROMGen tool.

Design Verification

Design verification is the process of testing the functionality and performance of your design.
You can verify Xilinx designs in the following ways:

• Simulation (functional and timing using back-annotation)

• Static timing analysis

• In-circuit verification

ug000.book Page 293 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

294 www.xilinx.com XAPP473 (v1.0) July 11, 2003
1-800-255-7778

Using the ISE Design Tools for Spartan-3 FPGAs
R

Design verification procedures should occur throughout your design process, as shown in
Figure 4.

Simulation

Design simulation involves testing your design using software models. It is most effective when
testing the functionality of your design and its performance under worst-case conditions. You
can easily probe internal nodes to check your circuit’s behavior, and then use these results to
make changes in your design. Simulation is performed using third-party tools that are linked to
the Xilinx Development System. The software models provided for your simulation tools are
designed to perform detailed characterization of your design. You can perform functional or
timing simulation.

Functional Simulation

Functional simulation determines if the logic in your design is correct before you implement it in
a device. Functional simulation can take place at the earliest stages of the design flow.
Because timing information for the implemented design is not available at this stage, the
simulator tests the logic in the design using unit delays.

Figure 4: Design Verification Flow

Timing Simulation Path

Integrated Tool

Functional Simulator Paths

Xilinx FPGA

Design EntrySimulation

Mapping, Placement,
and Routing

Translate to
Simulator Format

Translate to
Simulator Format

BitGen

Back-Annotation

iMPACT In-Circuit
Verification

In-Circuit Verification

Static Timing Analysis

Static Timing

Basic Design Flow

Simulation

Translation

Simulation Netlist

Input Stimulus

BIT

NGD

NCD

NGA

x473_04_062103

ug000.book Page 294 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using the ISE Design Tools for Spartan-3 FPGAs

XAPP473 (v1.0) July 11, 2003 www.xilinx.com 295
1-800-255-7778

R

Timing Simulation

Timing simulation verifies that your design runs at the desired speed for your device under
worst-case conditions. This process is performed after your design is mapped, placed, and
routed. At this time, all design delays are known. Timing simulation is valuable because it can
verify timing relationships and determine the critical paths for the design under worst-case
conditions. It also can determine whether or not the design contains setup or hold violations.
Before you can simulate your design, you must go through the back-annotation process, as
described below. During this process, the Xilinx netlist writers create suitable formats for
various simulators.

Note that naming the nets during your design entry is important for both functional and timing
simulation because it allows you to find the nets in the simulations more easily than looking for
a software-generated name.

Back-Annotation

Before timing simulation can occur, the physical design information must be translated and
distributed back to the logical design. This back-annotation process is done with a program
called NGDAnno. These programs create a database for the netlist writers, which translate the
back-annotated information into a netlist format that can be used for timing simulation.

NGDAnno is a command line program that distributes information about delays, setup and hold
times, clock to out, and pulse widths found in the physical NCD design file back to the logical
NGD file. NGDAnno reads an NCD file as input. The NCD file can be a mapped-only design, or
a partial or fully placed and routed design. An NGM file, created by MAP, is an optional source
of input. NGDAnno merges mapping information from the NGM file with placement, routing,
and timing information from the NCD file. NGDAnno outputs a Native Generic Annotated (NGA)
file, which is a back-annotated NGD file. This file is input to the appropriate netlist writer, which
converts the binary Xilinx database format back to an ASCII netlist.

Netlist Writers (NGD2EDIF, NGD2VER, or NGD2VHDL) take the output of NGDAnno and
create a simulation netlist in the specified format. An NGD or NGA file is input to each of the
netlist writers. The NGD file is a logical design file containing primitive components, while the
NGA file is a back-annotated logical design file.

Static Timing Analysis

Static timing analysis is best for quick timing checks of a design after it is placed and routed. It
also allows you to determine path delays in your design. Following are the two major goals of
static timing analysis:

• Timing verification is the process of verifying that the design meets your timing constraints.

• Reporting is the process of enumerating input constraint violations and placing them into
an accessible file. You can analyze partially or completely placed and routed designs. The
timing information depends on the placement and routing of the input design.

You can run static timing analysis using the Timing Reporter And Circuit Evaluator (TRACE)
program, which is accessible through the Timing Analyzer GUI. Use either tool to evaluate how
well the place and route tools met the input timing constraints.

In-Circuit Verification

As a final test, you can verify how your design performs in the target application. In-circuit
verification tests the circuit under typical operating conditions. Because you can program your
Xilinx devices repeatedly, you can easily load different iterations of your design into your device
and test it in-circuit. To verify your design in-circuit, download your design bitstream into a
device using the iMPACT programming software with the Parallel Cable IV or MultiPRO cable.

ug000.book Page 295 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

296 www.xilinx.com XAPP473 (v1.0) July 11, 2003
1-800-255-7778

Using the ISE Design Tools for Spartan-3 FPGAs
R

ISE
Development
Environment

Introduction to ISE

Xilinx development systems are available in a number of easy to use configurations, collectively
known as the Integrated Software Environment (ISE) Series. Creating Spartan-3 designs is
easy with Xilinx ISE development systems, which support advanced design capabilities,
including ProActive Timing Closure, integrated logic analysis, and the fastest place and route
runtimes in the industry. ISE solutions enable designers to get the performance they need,
quickly and easily.

Note: To get the full details on ISE tools for Spartan-3 devices, go to
http://www.xilinx.com/ise/ise_promo/ise5_spartan3.htm.

Project Navigator is the user interface that helps you manage the entire design process
including design entry, simulation, synthesis, implementation and finally configuration of your
device.

The following is an outline of the features offered in ISE:

Design Entry

• HDL Editor

• StateCAD® State Machine Editor

• Schematic Editor - Engineering Capture System (ECS)

• CORE Generator system

Synthesis

• XST - Xilinx Synthesis Technology

• Integration with LeonardoSpectrum synthesis from Mentor Graphics

• Integration with Synplify/Pro and Amplify synthesis from Synplicity

Simulation

• HDL Bencher™ Testbench Generator

• Integration with ModelSim Simulator from Model Technology

Implementation

• Translate

• Map

• Place and Route (PAR)

• Floorplanner

• FPGA Editor

• Timing Analyzer

• XPower Power Analysis

Device Download

• BitGen Bitstream Generator

• PROMGen PROM File Formatter

• iMPACT Configuration Tool

• ChipScope Pro Logic Analyzer

ug000.book Page 296 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/ise/ise_promo/ise5_spartan3.htm

Using the ISE Design Tools for Spartan-3 FPGAs

XAPP473 (v1.0) July 11, 2003 www.xilinx.com 297
1-800-255-7778

R

ISE Versions

The ISE development systems are available in the following configurations.

• ISE WebPACK™ Tool

The ISE WebPACK tool is the easiest development system to get. This free tool is
downloadable from the Web at:
(http://www.xilinx.com/xlnx/xil_prodcat_landingpage.jsp?title=ISE+WebPack).

ISE WebPACK software combines support for advanced HDL entry, synthesis, and
verification capabilities for all Xilinx CPLDs and lower-density FPGAs.

• ISE BaseX Tool

The ISE BaseX tool is the industry's most cost-effective, PC-based programmable logic
design environment. The ISE BaseX configuration provides all of the capabilities contained
within the ISE WebPACK software plus additional tools like the CORE Generator system
and FPGA Editor that help you complete your programmable logic design even faster.

• ISE Alliance Tool

The ISE Alliance tool is designed to fit into your existing design environment. This tool
provides full device support and works seamlessly with those tools of our EDA partners.
The ISE Alliance tool is for those designers looking to add programmable logic design
capabilities into their existing design environment. This tool does not include XST synthesis
or ECS schematic capture.

• ISE Foundation™ Tool

The ISE Foundation tool is a complete, ready-to-use design environment that integrates
schematic, synthesis, and verification technologies into an intuitive, yet highly advanced
design solution. The tool has full device support as well as the full suite of tools.

To see a table comparison of these versions, see the Development Systems Overview at
http://www.xilinx.com/ise/devsys_feature_guide.pdf.

Development system updates are provided on a regular basis. These are available as Service
Packs that can be downloaded from the Xilinx website
(http://www.xilinx.com/support/software/install_info.htm). Always use the latest development
system update for the best results.

Project Navigator

Project Navigator is the primary user interface for the Xilinx ISE tools. You can create, define,
and compile your Spartan-3 design using a suite of tools accessible from Project Navigator.
Each step of the design process, from design entry to downloading the design to the device, is
managed from Project Navigator as part of a project. These include:

• Design Entry

• Constraint Entry

• Synthesis

• Simulation

• Implementation

• Device Programming

Project Navigator Main Window

The Project Navigator workspace is made up of a title bar, a status bar, a menu bar, toolbars
and windows.

ug000.book Page 297 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com/xlnx/xil_prodcat_landingpage.jsp?title=ISE+WebPack
http://www.xilinx.com
http://www.xilinx.com/ise/devsys_feature_guide.pdf
http://www.xilinx.com/support/software/install_info.htm

298 www.xilinx.com XAPP473 (v1.0) July 11, 2003
1-800-255-7778

Using the ISE Design Tools for Spartan-3 FPGAs
R

Project

ISE organizes and tracks your design as a project. A project is a collection of all files necessary
to create and download your design to the selected device. The following information is
required for each project:

• A unique project name

• A specified target device family (architecture)

• A specified target device

• A specified design flow

Each project has a directory, device family, device, and design flow associated with it as project
properties. The project properties enable Project Navigator to display and run only those
processes appropriate for the targeted device and design flow.

Sources

A source is any element that contains information about a design. In Project Navigator, you can
create and add sources to your project. Each project can contain many sources, each one
representing a different part of the overall design. Sources can include the description of
circuits (as represented by schematics and hardware description language files), state
diagrams, simulation models, test files, and documentation of the design.

Source Hierarchy

One source file in a project is the top-level source for the design. The top-level source defines
the inputs and outputs to be mapped into the device, and references the logic descriptions
contained in lower-level sources in a hierarchical design. A project must contain at least one
source as the top-level source. All source files and their accompanying icons are displayed in
the Sources in Project window below the project file.

Figure 5: Project Navigator Main Window

x473_05_071103

ug000.book Page 298 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using the ISE Design Tools for Spartan-3 FPGAs

XAPP473 (v1.0) July 11, 2003 www.xilinx.com 299
1-800-255-7778

R

The term instantiation describes when one source references another. Lower-level sources
also can instantiate sources to build as many levels of logic hierarchy as necessary to describe
your design.

Valid top-level source types include the following:

• Schematics

• HDL files (VHDL or Verilog)

• EDIF

ISE Tools

ISE includes a number of individual tools and capabilities that can be accessed standalone or
within the Project Navigator.

Engineering Capture System (ECS)

The Engineering Capture System (ECS) allows you to create, view, and edit schematics and
symbols. You can use ECS to create a top-level schematic and use any of the following to
define the lower levels of the design: ECS, CORE Generator System, or HDL code. Then you
can translate the schematics created by ECS to a structural HDL for simulation and synthesis,
or use the schematics solely for documentation purposes.

HDL Editor

The HDL Editor is a text editor designed especially for editing HDL source files. In addition to
regular editing features, the editor provides syntax coloring. The syntax-coloring feature
supports both VHDL and Verilog. The HDL Editor operates as a standard text editor as well.
ISE provides optimized, ready-to-use language and synthesis templates for easy insertion into
an HDL source file.

StateCAD State Machine Editor

StateCAD accelerates design entry by allowing quick entry of finite state machines (FSMs).
Each step is automated, reducing development costs and enhancing effectiveness. StateCAD
allows users to quickly design FSMs, find and fix design errors, verify behavior, and generate
optimized HDL. StateCAD automatically analyzes designs for problems such as stuck-in-
states, conflicting state assignments, and indeterminate conditions. This automated error
analysis ensures that designs are logically consistent, reducing simulation requirements and
improving product reliability.

Xilinx Synthesis Technology (XST)

Xilinx Synthesis Technology (XST) provides cutting edge design optimization techniques from
a Xilinx-developed synthesis tool. XST supports the Verilog and VHDL design languages. XST
is included in ISE WebPACK, ISE BaseX, and ISE Foundation packages. RTL Viewer displays
the results of XST synthesis in a schematic view.

HDL Advisor

The HDL Advisor gives advisory messages in the XST synthesis report files. The messages
are designed to make suggestions on how code can be changed to reduce design size and
meet timing requirements. These HDL advisors allow designers to produce better code earlier,
reducing design time, and resulting in better space utilization in the Spartan-3 FPGA.

Partner Tools

The Xilinx tools provide easy integration with third-party tools including LeonardoSpectrum
synthesis from Mentor Graphics, Synplify/Pro and Amplify synthesis from Synplicity, and FPGA
Compiler II from Synopsys. These tools can be purchased separately from the vendor.

ModelSim simulators from Model Technology provide the simulation functions for ISE.
ModelSim Xilinx Edition II (MXE-II) is available as an option from Xilinx. It offers a complete PC

ug000.book Page 299 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

300 www.xilinx.com XAPP473 (v1.0) July 11, 2003
1-800-255-7778

Using the ISE Design Tools for Spartan-3 FPGAs
R

HDL simulation environment that enables you to verify the HDL source code as well as the
functional and timing models of your designs.

Intellectual Property (IP)

Get to market faster and less expensively using the latest pre-verified, pre-optimized
Intellectual Property (IP) Cores, Reference Designs, and Design Services for Xilinx FPGAs.
Xilinx-created LogiCORE™ products form the most successful core program in the
programmable logic industry, including PCI bus interfaces and MicroBlaze™ soft processors. As
a result, Xilinx has gained considerable experience developing and selling cores, and servicing
FPGA core customers. Through the AllianceCORE™ program, Xilinx is expanding the
availability of quality cores for programmable logic by sharing what has been learned with
leading third-party core developers. The AllianceCORE program is a cooperative effort
between Xilinx and independent third-party core developers. It is designed to produce a broad
selection of industry-standard solutions dedicated for use in Xilinx programmable logic. Xilinx
also provides many reference designs and design examples provided “as-is” to help get you
started with your own designs.

CORE Generator System

The Xilinx CORE Generator System provides a catalog of ready-made functions, ranging in
complexity from simple arithmetic operators like adders, accumulators, and multipliers, to
system-level building blocks such as filters, transforms, and memory resources. Cores are
organized by functional type into folders that expand or contract on demand.

The Xilinx CORE Generator System produces an EDIF netlist, schematic symbol, Verilog
template file with a Verilog wrapper file, and a VHDL template file with a VHDL wrapper file. The
Electronic Data Netlist (EDN) file contains the information for implementing the module. Cores
generated in the Xilinx CORE Generator tool can be used in schematic designs. After the core
is selected and customized, the CORE Generator tool generates its schematic symbol. The
core then can be added to the schematic like any other library component. Finally, the template
files contain code that can be used as a model to instantiate a CORE Generator module in a
Verilog or VHDL design so that it can be simulated and integrated into a design.

System Generator for DSP

The System Generator for DSP software enables electronic designs to be created, tested, and
translated into hardware for Spartan-3 FPGAs. The tool extends Simulink (from The
MathWorks, Inc.) to support bit- and cycle-accurate system-level simulation, and automatic
code generation for Xilinx FPGAs. System Generator co-simulation interfaces extend Simulink
to incorporate FPGA hardware and HDL simulation into the system-level environment as
naturally as other library blocks. System Generator presents a high-level and abstract view of
the design, but also exposes key features in the underlying silicon, making it possible to build
extremely high-performance FPGA implementations.

DCM Wizard

To reduce the complexities of new device technologies like Digital Clock Managers (DCM), ISE
includes Architecture Wizards, allowing users access through an intuitive easy-to-use dialog.
Through the use of the ISE Architecture Wizards, designers can access these leading edge
technologies quickly by creating the component through a push-button flow rather than learning
all the attributes in HDL. Then the component simply can be instantiated in the user’s design by
copying the instantiation template created by ISE. The DCM Wizard supports all the
capabilities of the Spartan-3 DCMs.

Data2BRAM Tool

Data2BRAM is fundamentally a data translation tool. It translates contiguous fragments of data
into the proper initialization records for Block RAMs. It automates distribution of that data
across multiple physical Block RAMs that constitute a contiguous logical data space.
Data2BRAM is also a simplified means for initializing block RAMs.

ug000.book Page 300 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using the ISE Design Tools for Spartan-3 FPGAs

XAPP473 (v1.0) July 11, 2003 www.xilinx.com 301
1-800-255-7778

R

Automatic Implementation Tools

The automatic implementation tools (synthesis, translation, mapping, placement, and routing)
provide the best results for any design. ProActive Timing Closure technologies deliver the
industry's highest performance in programmable logic designs, quickly and efficiently. The
technologies include:

• Physical Synthesis

♦ Includes place and route information to work on the real critical paths first

♦ Achieves better quality of results of 5 to 20%

♦ Supported through Synplicity's Amplify, Mentor Graphic's LeonardoSpectrum Time
Closer, and Xilinx's own XST synthesis tool

♦ Timing optimization prior to physical place and route

• Macro Builder

♦ Lets you freeze placement information for a given design

♦ You can then re-use that macro in future designs using relative placement

♦ Performance preservation

• Advanced Place and Route Algorithms

♦ Critical Path Placement first

♦ Extra-Effort Mode

♦ Directed Routing that lets the designer specify routing with IP

• Timing Improvement Wizard

♦ Interactively helps designer improve design

♦ Click on a timing problem and receive suggestions that can improve design timing

• Timing Cross-Probing

♦ Decreases debug time by cross-probing from the timing report directly to Floorplanner

♦ Click on the error, path, or net in the timing report and instantly see it in Floorplanner
or Synthesis Source Tool

• HDL Advisors

♦ Included in XST synthesis reports, clicking on an error or warning suggests changes
to HDL to improve the implementation

Incremental Design

Incremental Design gets your overall design to market faster by minimizing the impact from
late-arriving design changes. The Incremental Design flow facilitates more debug cycles in a
day when making small design changes. A designer quickly and easily can floorplan design
areas along hierarchy boundaries, and then finish the design as normal. Later, if a design
change is required, Incremental Design ensures that only the area of the design change need
be re-implemented; the rest of the design stays locked and intact, delivering overall design
completion faster.

Modular Design

Modular Design lets you implement a “divide and conquer” approach to multi-million gate
FPGA designs. Partitioning a design into smaller functional modules reduces the complexities
of design, implementation, and verification. These design modules then can be brought
through the design flow independently, leveraging all of the powerful tools within the Xilinx
FPGA design flow. Once completed, a module's implementation is preserved, guaranteeing the
timing in the finished device. This technology is a requirement for any organization employing a
team design methodology for the design of a multi-million gate FPGA.

ug000.book Page 301 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

302 www.xilinx.com XAPP473 (v1.0) July 11, 2003
1-800-255-7778

Using the ISE Design Tools for Spartan-3 FPGAs
R

Constraints Editor

Constraints are user instructions placed on elements of a schematic or HDL design, either in
the design itself or in a separate file. They can indicate a number of things such as placement,
implementation, naming, signal direction, and timing considerations. In the Xilinx development
system, logical constraints are placed in a file called the UCF (User Constraints File). The
Constraints Editor is a graphical program that you can use to create and modify those
constraints.

PACE

Pinout and Area Constraints Editor (PACE) is an interactive graphical application that you can
use to do the following functions:

• View and edit location constraints for I/Os and global logic

• View and create area constraints for hierarchical symbols in your design

• Determine connectivity and resource requirements of your design

• Determine resource layout of your target FPGA

• Determine how your design maps onto the FPGA via location and area constraints

PACE fits into the Xilinx implementation flow at the very beginning. Because PACE supports I/O
layout with an NGD file, it can be used early at the design entry stage of the flow. PACE reads
an NGD file and reads and writes a UCF file.

Floorplanner

Use the Floorplanner interactive graphical tool to perform the following functions on your
designs:

• Floorplan resource placement at a detailed level

• Use Macro Builder to create a Relationally Placed Macro (RPM) core that can be used in
other designs

• View and edit location constraints

• Find logic or nets by name or connectivity

• Cross-probe from the Timing Analyzer to the Floorplanner

• Automatic placement of ports for modular design

The graphical user interface includes pull-down menus and toolbar buttons that contain all of
the necessary commands for changing the design hierarchy, floorplanning, and performing
design rule checks. Dialog boxes allow you to quickly set parameters and options for command
execution.

FPGA Editor

The FPGA Editor is a graphical application for displaying and configuring FPGAs. The FPGA
Editor requires an NCD file. This file contains the logic of your design mapped to components
such as CLBs and IOBs. In addition, the FPGA Editor reads from and writes to a Physical
Constraints File (PCF).

The following is a list of a few of the functions you can perform on your designs in the FPGA
Editor:

• Place and route critical components before running automatic place and route

• Fine-tune placement and routing after running automatic place and route

• Add probes to design to examine the signal states of the targeted device

• Run the Bitstream Generator and download the resulting file to the targeted device

• View and change the nets connected to the capture units of an Integrated Logic Analyzer
(ILA) core

ug000.book Page 302 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using the ISE Design Tools for Spartan-3 FPGAs

XAPP473 (v1.0) July 11, 2003 www.xilinx.com 303
1-800-255-7778

R

• Create an entire design by hand (for advanced users)

HDL Bencher Software

The HDL Bencher software automates verification of VHDL sources, Verilog sources, and
schematics created within ISE. Design sources are imported, a waveform is created, and
stimulus is specified by filling in the WaveTable spreadsheet cells. Outputs may be auto-
simulated via a command from ISE. A self-checking test bench is exported whenever the
waveform is saved. No knowledge of HDL or language scripting is needed to verify the design
functions as intended.

Multiple layers of simulation are supported. Waveforms that include the expected timing results
are developed for behavioral designs. The waveforms may be simulated behaviorally, after
translation, after mapping, or after routing.

The HDL Bencher software constrains the test run to a specific sequence of events, initial
conditions, and user-determined results. With the HDL Bencher software, you quickly can
validate your design functions as intended.

Interactive Timing Analyzer

The Interactive Timing Analyzer provides a powerful, flexible, and easy way to perform static
timing analysis. With Timing Analyzer, analysis can be performed immediately after mapping,
placing, or routing a Spartan-3 FPGA design.

Timing Analyzer verifies that the delay along a given path or paths meets specified timing
requirements. It organizes and displays data that allows you to analyze critical paths in a circuit,
the cycle time of the circuit, the delay along any specified path(s), and the path with the greatest
delay. It also provides a quick analysis of the effect different speed grades have on the same
design.

Timing Analyzer creates timing analysis reports based on existing timing constraints or user
specified paths within the program. Timing reports have a hierarchical browser to quickly jump
to different sections of the reports. Timing paths in reports can be cross-probed to synthesis
tools (Exemplar and Synplicity) and the Floorplanner.

iMPACT Configuration Tool

The iMPACT configuration tool, a command line and GUI based tool, allows you to configure
your PLD designs using Boundary Scan, Slave Serial, SelectMap, and Desktop Configuration
modes. It also allows you to do the following:

• Download

• Read back and verify design configuration data

• Debug configuration problems

• Create PROM, SVF, STAPL, System ACE™ CF, and System ACE MPM programming files

ChipScope Pro Analyzer

The ChipScope Pro analyzer delivers in-circuit real-time debugging with shorter verification
cycles and lower project costs. By inserting special low-impact IP debugging cores directly into
your HDL code or design netlist, you can debug and verify FPGA logic and system bus activity,
capturing signals at or near system operating speeds. You easily can change your trace points
without having to recompile your design. The ChipScope Pro analyzer embeds Integrated
Logic Analyzer (ILA) and Integrated Bus Analyzer (IBA) cores into your design. These cores
allow the user to view all the internal signals and nodes within the Spartan-3 FPGA.

XPower Analysis Tool

XPower is a post-route analysis tool for interactively and automatically analyzing power
consumption for Xilinx devices. XPower includes both GUI (XPower) and batch (xpwr)
applications.

ug000.book Page 303 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

304 www.xilinx.com XAPP473 (v1.0) July 11, 2003
1-800-255-7778

Using the ISE Design Tools for Spartan-3 FPGAs
R

Earlier in the design flow than ever, you can analyze total device power, power per net, routed,
partially routed or unrouted designs, all driven from a comprehensive graphical interface or
command-line driven batch mode. XPower also reads VCD simulation data from the ModelSim
family of HDL simulators to set estimation stimulus, reducing setup time, as well as from
additional simulators.

XPower uses device knowledge and design data to estimate device power and by-net power
utilization. Information is presented in both HTML and ASCII (text) report formats. The
accuracy of XPower is higher than the power estimator worksheets available for pre-design
analysis.

Conclusion The ISE design environment brings you the fastest, most complete family of design tools
available. The ISE tools are available in multiple configurations with various optional tools and
interfaces to third-party tools, allowing you to customize the set of tools for your own needs. ISE
combines advanced technologies such as ProActive Timing Closure with a flexible, easy-to-use
graphical interface to help you achieve the best possible designs with the least time and effort,
regardless of your experience level.

Revision
History

The following table shows the revision history for this document.

Date Version Revision

07/11/03 1.0 Initial Xilinx release.

ug000.book Page 304 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

XAPP474 (v1.0) July 11, 2003 www.xilinx.com 305
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Summary This document provides an overview of the Xilinx CORE Generator™ System and the Xilinx
Intellectual Property (IP) offerings that facilitate the Spartan™-3 design process. For more
detailed and complete information, consult the CORE Generator Guide available at
http://www.xilinx.com/support/software_manuals.htm, and the Xilinx IP Center available at
http://www.xilinx.com/ipcenter/index.htm.

The CORE
Generator
System

The Xilinx CORE Generator System is the cataloging, customization, and delivery vehicle for IP
cores targeted to Xilinx FPGAs. The CORE Generator provides centralized access to a catalog
of ready-made IP functions ranging in complexity from simple arithmetic operators, such as
adders, accumulators, and multipliers to system-level building blocks, such as filters,
transforms, and memories. Cores can be displayed alphabetically, by function, by vendor, or by
type. Each core comes with its own data sheet, which documents the core’s functionality in
detail.

The CORE Generator user interface makes it very easy to access the latest Spartan-3 IP
releases and to get helpful, up-to-date information. Links to partner IP providers also are built
in for the various partner-supplied AllianceCORE products. The use of CORE Generator IP
cores in Spartan-3 designs enables designers to shorten design time, and it also helps them
realize high levels of performance and area efficiency without any special knowledge of the
Spartan-3 architecture.

When installing the CORE Generator software, the designer gains immediate access to dozens
of cores supplied by the LogiCORE program. In addition, data sheets are available for all
AllianceCORE products, and additional, separately licensed, advanced function LogiCORE
products are also available. New and updated Spartan-3 IP for the CORE Generator can be
downloaded from the IP Center and added to the CORE Generator catalog.

Xilinx IP
Solutions and
the IP Center

The CORE Generator works in conjunction with the Xilinx IP Center (www.xilinx.com/ipcenter).
To make the most of this resource, Xilinx highly recommends that whenever starting a design,
one first does a quick search of the IP Center to see whether a ready-made core solution is
already available.

A complete catalog of Xilinx cores and IP tools resides on the IP Center, including:

• LogiCORE Products

• AllianceCORE Products

• Reference Designs

• XPERTS Partner Consultants

• Design Reuse Tools

Application Note: Spartan-3 FPGA Family

XAPP474 (v1.0) July 11, 2003

Using Spartan-3 IP Cores
R

ug000.book Page 305 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com/support/software_manuals.htm
http://www.xilinx.com/ipcenter/index.htm
http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

306 www.xilinx.com XAPP474 (v1.0) July 11, 2003
1-800-255-7778

Using Spartan-3 IP Cores
R

LogiCORE Products

LogiCORE products are designed, sold, licensed, and supported by Xilinx. LogiCORE products
include a wide selection of generic, parameterized functions, such as muxes, adders,
multipliers, and memory cores, which are bundled with the Xilinx CORE Generator software at
no additional cost to licensed software customers. System-level cores, such as PCI, Reed-
Solomon, ADPCM, HDLC, POS-PHY, and Color Space Converters are also available as
optional, separately licensed products. The CORE Generator commonly is used to quickly
generate Spartan-3 block and distributed memories. A more detailed listing of available
Spartan-3 LogiCORE products is available in Table 1, page 307 and on the Xilinx IP Center
website (http://www.xilinx.com/ipcenter).

Types of IP currently offered by the Xilinx LogiCORE program include:

• Basic Elements: logic gates, registers, multiplexers, adders, multipliers

• Communications and Networking: ADPCM modules, HDLC controllers, ATM building
blocks, forward error correction modules, and POS-PHY Interfaces

• DSP and Video Image Processing: cores ranging from small building blocks (e.g., Time
Skew Buffers) to larger system-level functions (e.g., FIR Filters and FFTs)

• System Logic: accumulators, adders, subtracters, complementers, multipliers, integrators,
pipelined delay elements, single and dual-port distributed and block RAM, ROM, and
synchronous and asynchronous FIFOs

• Standard Bus Interfaces: PCI Interfaces

AllianceCORE Products

The AllianceCORE program is a cooperative effort between Xilinx and third-party IP developers
to provide additional system-level IP cores optimized for Xilinx FPGAs. To ensure a high level of
quality, AllianceCORE products are implemented and verified in a Xilinx device as part of the
certification process. Xilinx develops relationships with AllianceCORE partners who can
complement the Xilinx LogiCORE product offering. A large percentage of Xilinx AllianceCORE
partners focus on data and telecommunication applications, as well as processor and
processor peripheral designs.

AllianceCORE products include customizable cores that can be configured to exact needs, as
well as fixed netlist cores targeted toward specific applications. In many cases, partners can
provide cores customized to meet the specific design needs if the primary offerings do not fit
the requirements. Additionally, source code versions of the cores are often available from the
partners at additional cost for those who need maximum flexibility.

Reference Designs

Xilinx offers two types of design files: XAPP application notes developed by Xilinx and
reference designs developed through the Xilinx Reference Design Alliance Program. Both
types are extremely valuable to customers looking for guidance when designing systems.
Application notes developed by Xilinx usually include supporting design files. They are supplied
free of charge, without technical support or warranty.

Reference designs often can be used as starting points for implementing a broad spectrum of
functions in Xilinx programmable logic. Reference designs developed through the Xilinx
Reference Design Alliance Program are developed, owned, and controlled by the partners in
the program. The goal of the program is to form partnerships with other semiconductor
manufacturers and design houses so as to assist in the development of high-quality, multi-
component reference designs that incorporate Xilinx devices and demonstrate how they can
operate at the system level with other specialized and general-purpose semiconductors. The
reference designs in the Xilinx Reference Design Alliance Program are fully functional and
applicable to a wide variety of digital electronic systems, including those used for networking,
communications, video imaging, and DSP applications.

ug000.book Page 306 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com/ipcenter
http://www.xilinx.com

Using Spartan-3 IP Cores

XAPP474 (v1.0) July 11, 2003 www.xilinx.com 307
1-800-255-7778

R

XPERTS Partner Consultants

Xilinx established the XPERTS Program to provide customers with access to a worldwide
network of certified design consultants who are proficient with Xilinx FPGAs, software, and IP
core integration. All XPERTS members are certified and have extensive expertise and
experience with Xilinx technology in various vertical applications, such as communications and
networking, DSP, video and image processing, system I/O interfaces, and home networking.
XPERTS partners are an integral part of the Xilinx strategy to provide customers with cost-
efficient design solutions, while accelerating time to market.

Design Reuse Tools

To facilitate the archiving and sharing of IP created by different individuals and workgroups
within a company, Xilinx offers the IP Capture Tool. The IP Capture Tool helps to package
design modules created by individual engineers in a standardized format so that they can be
cataloged and distributed using the Xilinx CORE Generator. A core can take the form of
synthesizable VHDL or Verilog code, or a fixed function netlist. Once it is packaged by the IP
Capture Tool and installed into the CORE Generator, the captured core can be shared with
other designers within a company through an internal network.

Spartan-3 IP
Cores

Table 1 provides a partial listing of cores available for Spartan-3 designs. For a complete
catalog of Spartan-3 IP solutions, visit the Xilinx IP Center website at
http://www.xilinx.com/ipcenter and search for the latest Spartan-3 core solutions.

Table 1: Spartan-3 IP Cores Support

Function
Vendor
Name

IP Type Key Features Application Examples

Basic Elements

Binary Counter Xilinx LogiCORE 2-256 bit output width

Binary Decoder Xilinx LogiCORE 2-256 bit output width

Bit Bus Gate Xilinx LogiCORE 1-256 bits wide

Bit Gate Xilinx LogiCORE 1-256 bits wide

Bit Multiplexer Xilinx LogiCORE 1-256 bits wide

BUFE-based Multiplexer
Slice

Xilinx LogiCORE 1-256 bits wide

BUFT-based Multiplexer
Slice

Xilinx LogiCORE 1-256 bits wide

Bus Gate Xilinx LogiCORE 1-256 bits wide

Bus Multiplexer Xilinx LogiCORE I/O widths up to 256 bits

Comparator Xilinx LogiCORE 1-256 bits wide

FD-based Parallel Register Xilinx LogiCORE 1-256 bits wide

FD-based Shift Register Xilinx LogiCORE 1-64 bits wide

LD-based Parallel Latch Xilinx LogiCORE 1-256 bits wide

RAM-based Shift Register Xilinx LogiCORE 1-256 bits wide, 1024 words deep

Communication & Networking

8b/10b Decoder Xilinx LogiCORE Industry standard 8b/10b
encode/decode for serial data
transmission

Physical layer of Fibre Channel

ug000.book Page 307 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com/ipcenter
http://www.xilinx.com

308 www.xilinx.com XAPP474 (v1.0) July 11, 2003
1-800-255-7778

Using Spartan-3 IP Cores
R

8b/10b Encoder Xilinx LogiCORE Industry standard 8b/10b
encode/decode for serial data
transmission

Physical layer of Fibre Channel

AES Standard
Encryptor/Decryptor

Helion
Technology
Limited

AllianceCORE Implements AES (Rijndael) to latest
NIST FIPS PUB 197; Full dynamic
support for all AES key sizes (128, 192
and 256 bits); Medium speed/low gate
count version; Separate building blocks
available for encryption and decryption

Security in wireless applications;
802.11 WLAN, 802.15 PAN, 802.16
MAN. Satellite communications,
Networked environments; Virtual
Private Networks (VPN), Storage Area
Networks (SAN), Voice over IP (VoIP),
Securing program content, Securing
financial data

AES Tiny
Encryptor/Decryptor

Helion
Technology
Limited

AllianceCORE Implements AES (Rijndael) to latest
NIST FIPS PUB 197; Full dynamic
support for all AES key sizes (128, 192
and 256 bits); Low speed/ultra-low gate
count version; The smallest full
hardware AES solution available
anywhere, fully integrated encryptor
and decryptor

Security in wireless applications;
802.11 WLAN, 802.15 PAN, 802.16
MAN. Satellite communications,
Networked environments; Virtual
Private Networks (VPN), Storage Area
Networks (SAN), Voice over IP (VoIP),
Securing program content, Securing
financial data

Convolutional Encoder Xilinx LogiCORE k from 3 to 9, puncturing from 2/3 to
12/13

3G base stations, broadcast, wireless
LAN, cable modem, xDSL, satellite,
microwave

DES3 Encryption CAST, Inc. AllianceCORE

Ethernet MAC, 10/100 Zuken, Inc. AllianceCORE IEEE802.3 1998 Edition Compliant;
10BASE, 100BASE MAC function;
Half/Full-Duplex Operation; MII
interface

ISDN network controller, NIC, switch
fabric interface

HDLC, Single Channel Memec Core AllianceCORE 16/32-bit frame seq, 8/16-bit address,
insert/delete, flag/zerop,
insert/detection

X.25, Frame Relay, B/D-Channel

Interleaver/De-interleaver Xilinx LogiCORE Block & convolutional, width up to 256
bits, 256 branches

Broadcast, wireless LAN, cable
modem, xDSL, satellite, microwave
nets, digital TV, CDMA2000

MD5 Message Digest
Algorithm

CAST, Inc. AllianceCORE RFC 1321 compliant, suitable for data
authentication applications, fully
synchronous design

Electronic funds transfer,
authenticated electronic data transfers,
encrypted data storage

Reed Solomon Decoder Xilinx LogiCORE Standard or custom coding, 3-12 bit
symbol width, up to 4095 symbols,
error & erasure decoding

Broadcast, wireless LAN, cable
modem, xDSL, satellite, microwave
nets, digital TV

Reed Solomon Encoder Xilinx LogiCORE Standard or custom coding, 3-12 bit
width, up to 4095 symbols with 256
check symbols

Broadcast, wireless LAN, cable
modem, xDSL, satellite, microwave
nets, digital TV

SPI-3 (POS-PHY L3) Link
Layer Interface, 1-256
Channels

Xilinx LogiCORE OIF SPI-3 (POS-PHY L3) compliant.
Fully HW interoperable with PMC-
Sierra OC-48 framers.

Line cards, iSCSI cards, gigabit
routers, and switches

SPI-4.2 Lite (POS-PHY L4) Xilinx LogiCORE Functionally compliant with SPI-4.2
spec, but able to run at 1/4 data rate
(2.5G vs. 10G). Optimized for low cost -
it requires less logic to implement so it
can run on a smaller, slower speed
grade device.

SPA daughter cards sitting on top of
optical line cards

Table 1: Spartan-3 IP Cores Support

Function
Vendor
Name

IP Type Key Features Application Examples

ug000.book Page 308 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Spartan-3 IP Cores

XAPP474 (v1.0) July 11, 2003 www.xilinx.com 309
1-800-255-7778

R

Viterbi Decoder, General
Purpose

Xilinx LogiCORE Puncturing, serial & parallel
architecture, dynamic rate change,
parameterized constraint length,
soft/hard decision with programmable
number of soft bits, dual rate decoder,
erasure pins for external puncturing,
compatible with standards such as DVB
ETS, 3GPP2, IEEE802.16, HiperLAN,
Intelsat IESS-308/309

3G base stations, broadcast, wireless
LAN, cable modem, xDSL, satellite,
microwave, CDMA2000

Digital Signal Processing

CORDIC Xilinx LogiCORE Polar to rectangular, rectangular to
polar, sin & cos, sinh & cosh, atan &
atanh, square root

Digital receivers

Direct Digital Synthesizer
(DDS)

Xilinx LogiCORE 8-65K samples, 32-bit output precision,
phase dithering/offset

Fast Fourier Transform Xilinx LogiCORE New core that supersedes the 64-256-
1024-point Complex FFT. Transform
sizes ranging from 16 to 16384 pts,
selectable data precision: 8, 12, 16, 20,
24 bits, selectable phase factor
precision: 8, 12, 16, 20, 24 bits,
supports unscaled fixed point, scaled
fixed point, block floating point, Block
RAM or Distributed RAM for data or
phase factor storage.

FIR Filter, Distributed
Arithmetic (DA)

Xilinx LogiCORE 32-bit input/coeff width, 1024 taps, 1-8
channels, polyphase, online coeff
reload

FIR Filter, MAC Xilinx LogiCORE Single rate, Polyphase Decimator,
Polyphase Interpolator

3G base stations, wireless
communications, image filtering

LFSR, Linear Feedback
Shift Register

Xilinx LogiCORE 168 input widths, SRL16/register
implementation

Math Functions

Accumulator Xilinx LogiCORE 1-256 bit wide

Adder Subtracter Xilinx LogiCORE 1-256 bit wide

Multiply Accumulator (MAC) Xilinx LogiCORE Input width up to 32 bits, 65-bit
accumulator, truncation rounding

Multiply Generator Xilinx LogiCORE 64-bit input data width, constant,
reloadable or variable inputs,
parallel/sequential implementation

Sine Cosine Look-Up Table Xilinx LogiCORE 3-10 bits in, 4-32 bits out,
distributed/block ROM

Twos Complementer Xilinx LogiCORE Input width up to 256 bits

Memories & Storage Elements

Block Memory, Dual-Port Xilinx LogiCORE 1-256 bits, 2-13K words

Block Memory, Single-Port Xilinx LogiCORE 1-256 bits, 2-128K words

Content Addressable
Memory (CAM)

Xilinx LogiCORE 1-512 bits, 2-10K words, SRL16

Table 1: Spartan-3 IP Cores Support

Function
Vendor
Name

IP Type Key Features Application Examples

ug000.book Page 309 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

310 www.xilinx.com XAPP474 (v1.0) July 11, 2003
1-800-255-7778

Using Spartan-3 IP Cores
R

Distributed Memory Xilinx LogiCORE 1-1024 bits, 16-65536 words,
RAM/ROM/SRL16, optional output
regs and pipelining

FIFO, Asynchronous Xilinx LogiCORE 1-256 bits, 15-65535 words, DRAM or
BRAM, independent I/O clock domains

FIFO, Synchronous Xilinx LogiCORE 1-256 bits, 16-256 words,
distributed/block RAM

SDRAM Controller,
Pipelined

Eureka
Technology

AllianceCORE Networking, communication, video
system, image processing equipment,
medical, avionics and PC peripheral
equipment

Microprocessors, Controllers, & Peripherals

16450 UART with OPB
interface

Xilinx LogiCORE CoreConnect Bus (OPB), Evaluation
Core (Available with EDK) or High
Value Core to be bought separately

Processor applications

16550 UART with OPB
interface

Xilinx LogiCORE CoreConnect Bus (OPB), Evaluation
Core (Available with EDK) or High
Value Core to be bought separately

Processor applications

16-bit proprietary RISC
Processor

Loarant
Corporation

AllianceCORE 44 opcodes, 64K word data, program,
Harvard architecture

Control functions, State machines,
Coprocessor

Arbiter and Bus Structure
with OPB interface

Xilinx LogiCORE CoreConnect Bus (OPB), Infrastructure
Core (includes device drivers).
Available with EDK

Processor applications

BRAM Controller with OPB
interface

Xilinx LogiCORE CoreConnect Bus (OPB), Memory
Controller Core. Available with EDK

Processor applications

External Memory Controller
(EMC) with OPB interface
(Includes support for Flash,
SRAM, ZBT, System ACE)

Xilinx LogiCORE CoreConnect Bus (OPB), Memory
Controller Core. Available with EDK

Processor applications

Generic compact UART Memec Core AllianceCORE UART and baud rate generator Serial data communication

GPIO with OPB interface Xilinx LogiCORE CoreConnect Bus (OPB). Available
with EDK

Processor applications

I2C with OPB interface Xilinx LogiCORE CoreConnect Bus (OPB), Evaluation
Core (Available with EDK) or High
Value Core to be bought separately

Networking, communications,
processor applications

Interrupt Controller (IntC)
with OPB interface

Xilinx LogiCORE CoreConnect Bus (OPB), Peripheral
Core (includes device drivers, RTOS
adaptation layers). Available with EDK

Processor applications

JTAG UART with OPB
interface

Xilinx LogiCORE CoreConnect Bus (OPB), Peripheral
Core (includes device drivers, RTOS
adaptation layers). Available with EDK

Processor applications

MicroBlaze Soft RISC
Processor

Xilinx LogiCORE 32-bit Soft Processor Core. Available
with EDK

Networking, communications

OPB2OPB Bridge (Lite) Xilinx LogiCORE CoreConnect Bus (OPB), Infrastructure
Core (includes device drivers).
Available with EDK

Processor applications

OPB2PCI Full Bridge
(32/33)

Xilinx LogiCORE CoreConnect Bus (OPB), Infrastructure
Core (includes device drivers).
Available with EDK

Processor applications

Table 1: Spartan-3 IP Cores Support

Function
Vendor
Name

IP Type Key Features Application Examples

ug000.book Page 310 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using Spartan-3 IP Cores

XAPP474 (v1.0) July 11, 2003 www.xilinx.com 311
1-800-255-7778

R

PowerPC Bus Master Eureka
Technology

AllianceCORE

PowerPC Bus Slave Eureka
Technology

AllianceCORE

SDRAM Controller with
OPB interface

Xilinx LogiCORE CoreConnect Bus (OPB), Memory
Controller Core. Available with EDK

Processor applications

SPI Master and Slave with
OPB interface

Xilinx LogiCORE CoreConnect Bus (OPB), Peripheral
Core (includes device drivers, RTOS
adaptation layers). Available with EDK

Networking, communications,
processor applications

Timebase/Watch Dog Timer
(WDT) with OPB interface

Xilinx LogiCORE CoreConnect Bus (OPB), Peripheral
Core (includes device drivers, RTOS
adaptation layers). Available with EDK

Processor applications

Timer/Counter with OPB
interface

Xilinx LogiCORE CoreConnect Bus (OPB), Peripheral
Core (includes device drivers, RTOS
adaptation layers). Available with EDK

Processor applications

UART Lite with OPB
interface

Xilinx LogiCORE CoreConnect Bus (OPB), Peripheral
Core (includes device drivers, RTOS
adaptation layers). Available with EDK

Processor applications

Standard Bus Interfaces

CAN 2.0 B Compatible
Network Controller

Xylon d.o.o. AllianceCORE In compliance with CAN 2.0A and CAN
2.0B protocol specifications; Bit timing
requirements, hard synchronization
and resynchronization supported;
Support CAN bus arbitration, automatic
retransmission in error case and
arbitration lost, transmission abort

Standard CAN 2.0. A/B, simple
multiplex wiring systems, highly
integrated automotive or building
management, communication protocol
bridges/gateways

CAN Bus Controller 2.0B CAST, Inc. AllianceCORE Implementation of the Basic CAN
specification; No generated Overload
Frames; Receiving and transmitting of
both identifiers (CAN specification
2.0B); Programmable data rate up to 1
Mbps; Programmable baud rate
prescaler (up to 1/30)

Railway, Automotive, Industrial

CAN with 32 mail boxes Robert Bosch
GmbH

AllianceCORE Supports CAN protocol version 2.0 part
A, B; Bit rates up to 1 MBit/s; Disable
Automatic Retransmission mode for
Time; Triggered CAN applications; 32
Message Objects; Each Message
Object has its own Identifier Mask;
Programmable FIFO mode; Maskable
interrupt

Automotive, Industrial Control,
Telematics, Medical Engineering

Controller Area Network Memec Core AllianceCORE

PCI32 Interface Design Kit
(DO-DI-PCI32-DKT)

Xilinx LogiCORE Includes PCI32 board, driver
development kit, and customer
education 3-day training class for US &
Canada locations

PC boards, CPCI, Embedded, high-
performance video, Gb Ethernet

PCI32 Interface, IP Only
(DO-DI-PCI32-IP)

Xilinx LogiCORE v2.3 compliant, assured PCI timing,
3.3V, 0 wait state, CPCI hot swap
friendly

PC add-in boards, CPCI, Embedded

PCI32 Single-Use License
for Spartan (DO-DI-PCI32-
SP)

Xilinx LogiCORE v2.3 compliant, assured PCI timing,
3.3V, 0 wait state, CPCI hot swap
friendly

PC add-in boards, CPCI, Embedded

Table 1: Spartan-3 IP Cores Support

Function
Vendor
Name

IP Type Key Features Application Examples

ug000.book Page 311 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

312 www.xilinx.com XAPP474 (v1.0) July 11, 2003
1-800-255-7778

Using Spartan-3 IP Cores
R

Revision
History

The following table shows the revision history for this document.

PCI64 & PCI32, IP Only
(DO-DI-PCI-AL)

Xilinx LogiCORE v2.3 compliant, assured PCI timing,
3.3V, 0 wait state, CPCI hot swap
friendly, 32 bit

PC boards, CPCI, Embedded, high
performance video, Gb Ethernet

XAPP653: Virtex-II
Pro/Spartan-3 3.3V PCI
Reference Design

Xilinx Reference Design Application note describes how to
create compliant PCI 3.3V designs

Video & Image Processing

BURST_PLL Pinpoint
Solutions, Inc.

AllianceCORE Locks to subcarrier with 1° of accuracy
within 1 frame in video applications;
Even higher accuracy can be
guaranteed in specific configurations;
BURST_PLL is fully synchronous

Video color subcarrier recovery for
color regeneration Any burst locked
sinusoidal wave regeneration system

JPEG Fast Codec CAST, Inc. AllianceCORE Baseline ISO/IEC 10918-1 JPEG
compliance; Fully programmable
through standard JPEG stream marker
segments; 4 stream defined Huffman
tables; 4 stream defined Quantization
tables

Printers, Digital Cameras/Camcorders,
projection systems, Video conference
& surveillance

NTSC-COSEP Pinpoint
Solutions, Inc.

AllianceCORE 10-bit NTSC input; 8-bit BT.656 output;
Proprietary 2D adaptive comb filter;
Built-in colorbar test output mode;
Fixed 27MHz design; AGC feedback
interface for analog front end; External
timing reference; Fully synchronous
design

LCD Panel Controllers, Set-top Box,
Digital TV / Converters, PC Desktop
Video Systems, Video system design
requiring NTSC input, video editing
and production, Video test / verification
equipment, Video storage, Video
teleconferencing

Table 1: Spartan-3 IP Cores Support

Function
Vendor
Name

IP Type Key Features Application Examples

Date Version Revision

07/11/03 1.0 Initial Xilinx release.

ug000.book Page 312 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

XAPP477 (v1.0) July 11, 2003 www.xilinx.com 313
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Introduction In a variety of applications, an embedded processor or controller is key to system flexibility,
maintainability, and low cost. Spartan-3™ FPGAs support two powerful yet flexible Field
Programmable Controller (FPC) solutions, shown in Table 1. The PicoBlaze™ FPC is a simple,
highly efficient 8-bit RISC controller optimized for the Spartan-3 FPGA architecture. The
MicroBlaze™ FPC is a powerful, full-featured, high-performance 32-bit RISC processor
offering high-level language and real-time operating system (RTOS) support.

Application Note: Spartan-3 FPGA Family

XAPP477 (v1.0) July 11, 2003

Embedded Processing and Control
Solutions for Spartan-3 FPGAs

R

Table 1: Embedded Processing/Control Solutions for Spartan-3 FPGAs

Function/Feature PicoBlaze FPC MicroBlaze FPC

Processor Architecture 8-bit RISC controller 32-bit RISC CPU

Typical Applications Embedded control, state machines,
I/O processing

Embedded computation and control

Memory Architecture Harvard
(separate data/code data paths)

Harvard
(separate data/code data paths)

ALU/register width 8 bits (byte) 32 bits (word)

Registers 16 byte-wide 32 word-wide

Pipeline Stages 0 3

Code Address Space 512 or 1K instructions 512 to 4G bytes

Code Storage Block RAM (internal) Block RAM (internal)
External memory

Data Address Space 64 bytes (internal) 0 to 4G bytes

Data Storage Distributed RAM (internal) Block RAM (internal)
External memory

I/O Address Space 256 locations N/A

Processor Instructions 57 106

Operands per Instruction 2 3

Clocks per Instruction 2 1 to 3, 34 for integer divide

Call/Return/Interrupt Stack 31 locations (internal) Variable size, in data memory

Interrupts 1, Expandable 1, Expandable

Maximum Interrupt Latency 4 clock cycles
(46 ns at maximum clock rate)

7 to 40 clock cycles
(application dependent)

Instruction Cache N/A 0, 2K, 4K, 8K, 16K, 32, or 64K

ug000.book Page 313 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

314 www.xilinx.com XAPP477 (v1.0) July 11, 2003
1-800-255-7778

Embedded Processing and Control Solutions for Spartan-3 FPGAs
R

The PicoBlaze FPC is always fully embedded within a Spartan-3 FPGA using on-chip block
RAM and distributed RAM for code and data storage. The MicroBlaze FPC optionally uses
internal FPGA memory resources or interfaces to external memory to support larger code or
data storage requirements. The Embedded Development Kit (EDK) for the MicroBlaze FPC
includes hardware IP cores to support external Flash, SRAM, SDRAM, DDR DRAM, and ZBT
SRAM memory. Similarly, the MicroBlaze FPC supports both instruction and data caches, each
up to 64K bytes, to increase performance when connected to external memory.

Using Spartan-3 FPGAs, both MicroBlaze and PicoBlaze FPCs consume minimal FPGA
resources and are highly cost effective, as shown in Table 2. Complete PicoBlaze solutions

Data Cache N/A 0, 2K, 4K, 8K, 16K, 32, or 64K

Hardware Multiplier N/A 32x32 = 32 in 3 cycles

Hardware Divider N/A Optional, up to 20% performance
improvement

Hardware Barrel Shifter N/A Optional, up to 15X performance
improvement

Hardware Debugger Support N/A

LocalLink Direct Processor Interface N/A 200 MB/sec communication

Table 1: Embedded Processing/Control Solutions for Spartan-3 FPGAs (Continued)

Function/Feature PicoBlaze FPC MicroBlaze FPC

Table 2: PicoBlaze and MicroBlaze Resource Requirements and Performance

Function/Feature PicoBlaze FPC MicroBlaze FPC

Resource Requirements

Slices (4 slices = 1 CLB) 96 525

Block RAMs 0.5 or 1 2+

Effective cost in high-volume
applications (250Ku, 2004)

From US$0.40 From US$1.40

Percent of XC3S50 13% – 25% 68%+

Percent of XC3S200 4% – 8% 27%+

Percent of XC3S400 3% – 6% 15%+

Percent of XC3S1000 2% – 4% 7%+

Percent of XC3S1500 2% – 3% 4%+

Percent of XC3S2000 1.3% – 3% 3%+

Percent of XC3S4000 0.5% – 1% 2%+

Percent of XC3S5000 0.5% – 1% 1.6%+

Performance (Spartan-3 –4 speed grade)

Maximum clock frequency 87 MHz 85 MHz

Instructions per second 43.5M 85M

Dhrystone MIPS (D-MIPS) N/A 68

ug000.book Page 314 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Embedded Processing and Control Solutions for Spartan-3 FPGAs

XAPP477 (v1.0) July 11, 2003 www.xilinx.com 315
1-800-255-7778

R

cost as little as $0.40 in high-volume applications. MicroBlaze solutions start from $1.40 in
volume.

Both the MicroBlaze and PicoBlaze FPCs provide significant numbers of flexible I/O at much
lower cost than off-the-shelf controllers. Similarly, the peripheral set for both FPCs can be
customized to meet the specific feature, function, and cost requirements of the target
application. Because both FPCs are delivered in synthesizable HDL, both cores are future-
proof, safe from any possible product obsolescence. Being integrated into the FPGA, both
FPCs reduce board space, design cost, and inventory.

PicoBlaze
Application
Development
Support

The PicoBlaze FPC solution is a simple 8-bit RISC controller with an easy-to-use assembler.
The PicoBlaze core has no direct support for in-system debugging although it can be debugged
using the standard Xilinx JTAG-based interface. A simple instruction-set simulator is available.

The PicoBlaze reference design also includes UART transmitter and receiver macros with
integrated 16-byte FIFOs. The UART supports 8-bit data, no parity, with one stop bit.

MicroBlaze
Application
Development
Support

The MicroBlaze FPC offers complete application development support, including a full suite of
software development tools, an IP library of processor hardware peripheral functions, plus in-
circuit hardware debugger/emulation support.

Embedded Development Kit (EDK)

The Embedded Development Kit (EDK) is an all-encompassing solution for creating embedded
programmable systems design. The EDK includes and supports the MicroBlaze soft processor
core. The EDK also includes support for the PowerPC™ hard processor core, which is only
available within the Xilinx Virtex-II Pro and Virtex-II Pro X FPGA families.

Xilinx Platform Studio (XPS)

• Tools for editing software; creating hardware and software platforms

• Runs library generation, and compiler tool chains; generates implementation and
simulation netlists for use with ISE Logic Design Tools

GNU Software Development Tools

• C/C++ compiler for MicroBlaze and PowerPC cores (GNU gcc)

• Debugger for MicroBlaze and PowerPC cores (GNU gdb)

• Other GNU utilities

Hardware/Software Development Tools

• XMD - Xilinx Microprocessor Debug engine for MicroBlaze and PowerPC cores

• SystemACE tools

• Data2BRAM – Updates internal block RAM contents without recompiling the FPGA design

Board Support Packages (BSPs)

• Stand Alone BSP - For non-RTOS systems (MicroBlaze and PowerPC cores)

Supported Operating Systems

Many embedded processing applications require operating system capabilities. The
MicroBlaze FPC solution supports the following operating systems and real-time operating
systems (RTOS).

• Micriµm µC/OS-II Real-Time Operating System
http://ucos-ii.com/

ug000.book Page 315 Wednesday, July 23, 2003 9:46 AM

http://ucos-ii.com/
http://www.xilinx.com

316 www.xilinx.com XAPP477 (v1.0) July 11, 2003
1-800-255-7778

Embedded Processing and Control Solutions for Spartan-3 FPGAs
R

• µClinux Operating System
http://www.uclinux.org
http://www.uclinux.org/pub/uClinux/ports/microblaze/

• ATI Nucleus Real-Time Operating System
http://www.mentor.com/nucleus
http://www.mentor.com/nucleus/nucleus_cpu_support.html#xilinx

• Xilinx Microkernel Libraries

♦ Highly modular scheduler, network stack, and file system

♦ Minimal resource requirements and footprint size

♦ Royalty-free license included with EDK purchase

Processor Peripheral IP Functions

The EDK includes the following processor IP cores that support the MicroBlaze FPC. The IP
cores also include device drivers and RTOS adaptation layers. Add one or more IP cores to
create a custom processor to meet specific application requirements.

Processor Peripherals

• Timer/Counter

• Timebase/Watchdog Timer

• UART-Lite

• Interrupt Controller

• General-Purpose I/O port (GPIO)

Serial I/O

• SPI Master and Slave

• JTAG UART

• 16450 UART*

• 16550 UART*

• I2C two-wire serial Master and Slave*

Memory Interfaces

• SDRAM controller and interface

• DDR SDRAM controller and interface

• Flash memory interface

• SRAM memory interface

• Block RAM interface

Networking Interfaces

• Single-channel HDLC controller*

• ATM Utopia L2 master and slave controller*

• 10/100 Ethernet Media Access Controller (MAC)* (Full and Lite versions)

* IP core available as a separate product. Plugs into EDK. Evaluation versions available (Full
and Lite versions).

ug000.book Page 316 Wednesday, July 23, 2003 9:46 AM

http://www.uclinux.org
http://www.uclinux.org/pub/uClinux/ports/microblaze/
http://www.xilinx.com
http://www.mentor.com/nucleus
http://www.mentor.com/nucleus/nucleus_cpu_support.html#xilinx

Embedded Processing and Control Solutions for Spartan-3 FPGAs

XAPP477 (v1.0) July 11, 2003 www.xilinx.com 317
1-800-255-7778

R

In-Circuit Hardware Debugger Support
• EDK Software Debugger

♦ Requires MicroBlaze Hardware Debug Module

♦ Connects via FPGA JTAG port using Xilinx Parallel Cable IV

• Nohau In-Circuit Hardware Debugger for MicroBlaze FPC
http://www.nohau.com/emul-microblaze-pc.html

Related
Materials and
References

• MicroBlaze 32-bit RISC Processor
http://www.xilinx.com/ipcenter/processor_central/microblaze

• PicoBlaze 8-bit RISC Controller
http://www.xilinx.com/ipcenter/processor_central/picoblaze

• Embedded Development Kit (EDK)
http://www.xilinx.com/ise/embedded/edk.htm

• Embedded Systems Development Training Course
http://www.xilinx.com/support/training/abstracts/embedded-systems.htm

• MicroBlaze Recorded Lectures
http://www.xilinx.com/support/training/mb.htm

Revision
History

The following table shows the revision history for this document.

Date Version Revision

07/11/03 1.0 Initial Xilinx release.

ug000.book Page 317 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.nohau.com/emul-microblaze-pc.html
http://www.xilinx.com/ipcenter/processor_central/microblaze
http://www.xilinx.com/ipcenter/processor_central/picoblaze
http://www.xilinx.com/ise/embedded/edk.htm
http://www.xilinx.com/support/training/abstracts/embedded-systems.htm
http://www.xilinx.com/support/training/mb.htm

318 www.xilinx.com XAPP477 (v1.0) July 11, 2003
1-800-255-7778

Embedded Processing and Control Solutions for Spartan-3 FPGAs
R

ug000.book Page 318 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan™-3 FPGA Handbook www.xilinx.com 319
July 11, 2003 1-800-255-7778

R

Configuration Solutions and Considerations

Platform Flash In-System Programmable Configuration PROMs

Bitstream Generator (BitGen) Switches and Options

ug000.book Page 319 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

320 www.xilinx.com Spartan™-3 FPGA Handbook
1-800-255-7778 July 11, 2003

R

ug000.book Page 320 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

DS123 (v1.1) June 3, 2003 www.xilinx.com 321
Preliminary Product Specification 1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Features
• In-system programmable 3.3V PROMs for

configuration of Xilinx FPGAs
• Low-power advanced CMOS FLASH process
• Endurance of 20,000 program/erase cycles
• Program/erase over full industrial temperature range

(–40°C to +85°C)

• IEEE Standard 1149.1 boundary-scan (JTAG) support
• IEEE Standard 1532 in-system programming

compatible
• Serial Slow/Fast FPGA configuration (up to 33 MHz)

• Cascadable for storing longer or multiple bitstreams

• 5V tolerant I/O pins accept 5V, 3.3V, and 2.5V signals
when VCCO is at 3.3V or 2.5V

• 3.3V tolerant I/O pins accept 3.3V, 2.5V, or 1.8V signals
when VCCO is at 1.8V

• 3.3V, 2.5V, or 1.8V output capability
• Available in the VO20 package
• Design support using the Xilinx Alliance and

Foundation ISE series software packages.
• JTAG command initiation of standard FPGA

configuration

Description
Xilinx introduces the Platform Flash series of in-system pro-
grammable configuration PROMs (Figure 1). This 3.3V fam-
ily includes a 4-megabit, a 2-megabit, and a 1-megabit
PROM that provide an easy-to-use, cost-effective method
for reprogramming and storing large Xilinx FPGA configura-
tion bitstreams. The Platform Flash PROM family supports
both Master Serial and Slave Serial FPGA configuration
modes.

When the FPGA is in Master Serial mode, it generates a
configuration clock that drives the PROM. A short access
time after CE and OE are enabled, data is available on the
PROM DATA (D0) pin that is connected to the FPGA DIN
pin. New data is available a short access time after each ris-
ing clock edge. The FPGA generates the appropriate num-
ber of clock pulses to complete the configuration. When the
FPGA is in Slave Serial mode, the PROM and the FPGA are
clocked by an external clock.

0

Platform Flash
In-System Programmable
Configuration PROMs

DS123 (v1.1) June 3, 2003 0 0 Preliminary Product Specification

R

Figure 1: Platform Flash PROMs Block Diagram

Control
and

JTAG
Interface

Memory
Serial

Interface DATA (D0)
Serial Mode

Data

Address

CLK CE

TCK

TMS

TDI

TDO

OE/Reset

CEO

Data

ds123_01_30603CF

Platform Flash PROMs

ug000.book Page 321 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Platform Flash In-System Programmable Configuration PROMs

322 www.xilinx.com DS123 (v1.1) June 3, 2003
1-800-255-7778 Preliminary Product Specification

R

Multiple devices can be concatenated by using the CEO
output to drive the CE input of the following device. The
clock inputs and the DATA outputs of all PROMs in this

chain are interconnected. All devices are compatible and
can be cascaded with other members of the family.

Pinout and Pin Descriptions
Table 1 provides a list of the pin names and descriptions for the 20-pin VO20 package.

Table 1: Pin Names and Descriptions

Pin Name
Boundary

Scan Order Function Pin Description
20-pin TSSOP

(VO20)

D0
4 Data Out Serial Data Output. D0 is the DATA output pin to

provide data for configuring an FPGA in serial mode.
1

3 Output Enable

CLK 0 Data In Configuration Clock Input. Each rising edge on the
CLK input increments the internal address counter if
both CE is Low and OE/RESET is High.

3

OE/RESET

20 Data In Output Enable/Reset (Open-Drain I/O). When Low,
this input holds the address counter reset and the
DATA output is in a high-impedance state. This is a
bidirectional open-drain pin that is held Low while the
PROM is reset. Polarity is NOT programmable.

8
19 Data Out

18 Output Enable

CE 15 Data In Chip Enable Input. When CE is High, the device is put
into low-power standby mode, the address counter is
reset, and the DATA pins are put in a high-impedance
state.

10

CF

22 Data Out Configuration Pulse (Open-Drain Output). Allows
JTAG CONFIG instruction to initiate FPGA
configuration without powering down FPGA. This is
an open-drain output that is pulsed Low by the JTAG
CONFIG command.

7
21

Output Enable

CEO

12 Data Out Chip Enable Output. Chip Enable Output (CEO) is
connected to the CE input of the next PROM in the
chain. This output is Low when CE is Low and
OE/RESET input is High, AND the internal address
counter has been incremented beyond its Terminal
Count (TC) value. CEO returns to High when
OE/RESET goes Low or CE goes High.

13

11 Output Enable

GND Ground. 11

TMS Mode Select JTAG Mode Select Input. The state of TMS on the
rising edge of TCK determines the state transitions at
the Test Access Port (TAP) controller. TMS has an
internal 50K ohm resistive pull-up on it to provide a
logic “1” to the device if the pin is not driven.

5

TCK Clock JTAG Clock Input. This pin is the JTAG test clock. It
sequences the TAP controller and all the JTAG test
and programming electronics.

6

TDI Data In JTAG Serial Data Input. This pin is the serial input to
all JTAG instruction and data registers. TDI has an
internal 50K ohm resistive pull-up on it to provide a
logic “1” to the system if the pin is not driven.

4

TDO Data Out JTAG Serial Data Output. This pin is the serial output
for all JTAG instruction and data registers. TDO has
an internal 50K ohm resistive pull-up on it to provide
a logic “1” to the system if the pin is not driven.

17

VCCINT +3.3V Supply. This supply voltage for internal logic. 18

ug000.book Page 322 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Platform Flash In-System Programmable Configuration PROMs

DS123 (v1.1) June 3, 2003 www.xilinx.com 323
Preliminary Product Specification 1-800-255-7778

R

Pinout Diagram

Xilinx FPGAs and Compatible PROMs
Table 2 provides a list of Xilinx FPGAs and compatible
PROMs.

VCCO +3.3V, 2.5V, or 1.8V I/O Supply. This supply voltage
connected to the output voltage drivers and input
buffers.

19

VCCJ +3.3V or 2.5V JTAG Signals I/O Supply 20

DNC Do not connect. (These pins must be left
unconnected.)

2, 9, 12, 14,
15, 16

Table 1: Pin Names and Descriptions (Continued)

Pin Name
Boundary

Scan Order Function Pin Description
20-pin TSSOP

(VO20)

Table 2: Xilinx FPGAs and Compatible PROMs

Device
Configuration

Bitstream Platform Flash PROM

Virtex-II Pro™ FPGAs

XC2VP2 1,305,440 XCF02S

XC2VP4 3,006,560 XCF04S

XC2VP7 4,485,472 XCF04S + XCF01S(1)

XC2VP20 8,214,624 2 of XCF04S(1)

XC2VP30 11,589,984 3 of XCF04S(1)

XC2VP40 15,868,256 4 of XCF04S(1)

XC2VP50 19,021,408 5 of XCF04S(1)

XC2VP70 26,099,040 6 of XCF04S +
XCF01S(1)

XC2VP100 34,292,832 8 of XCF04S +
XCF01S(1)

XC2VP125 43,602,784 10 of XCF04S +
XCF02S(1)

VO20
Top
View

DS123_02_052703

1
2
3
4
5
6
7
8
9
10

D0
(DNC)

CLK
TDI

TMS
TCK

CF
OE/RESET

(DNC)
CE

20
19
18
17
16
15
14
13
12
11

VCCJ
VCCO
VCCINT
TDO
(DNC)
(DNC)
(DNC)
CEO
(DNC)
GND

Virtex™-II FPGAs

XC2V40 360,096 XCF01S

XC2V80 635,296 XCF01S

XC2V250 1,697,184 XCF02S

XC2V500 2,761,888 XCF04S

XC2V1000 4,082,592 XCF04S

XC2V1500 5,659,296 XCF04S + XCF02S(1)

XC2V2000 7,492,000 2 of XCF04S(1)

XC2V3000 10,494,368 3 of XCF04S(1)

XC2V4000 15,659,936 4 of XCF04S(1)

XC2V6000 21,849,504 5 of XCF04S +
XCF02S(1)

XC2V8000 29,063,072 7 of XCF04S(1)

Spartan-IIE FPGAs

XC2S50E 630,048 XCF01S

XC2S100E 863,840 XCF01S

XC2S150E 1,134,496 XCF02S

XC2S200E 1,442,016 XCF02S

XC2S300E 1,875,648 XCF02S

XC2S400E 2,693,440 XCF04S

XC2S600E 3,961,632 XCF04S

Spartan-3 FPGAs

XC3S50 439,264 XCF01S

XC3S200 1,047,616 XCF01S

XC3S400 1,699,136 XCF02S

XC3S1000 3,223,488 XCF04S

XC3S1500 5,214,784 XCF04S + XCF01S(1)

Table 2: Xilinx FPGAs and Compatible PROMs

Device
Configuration

Bitstream Platform Flash PROM

ug000.book Page 323 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Platform Flash In-System Programmable Configuration PROMs

324 www.xilinx.com DS123 (v1.1) June 3, 2003
1-800-255-7778 Preliminary Product Specification

R

Capacity

In-System Programming
In-System Programmable PROMs can be programmed indi-
vidually, or two or more can be daisy-chained together and
programmed in-system via the standard 4-pin JTAG proto-
col as shown in Figure 2. The Platform Flash PROMs are
IEEE Standard 1532 in-system programming compatible.
In-system programming offers quick and efficient design
iterations and eliminates unnecessary package handling or
socketing of devices. The Xilinx development system pro-
vides the programming data sequence using either Xilinx
iMPACT software and a
download cable, a third-party JTAG development system, a
JTAG-compatible board tester, or a simple microprocessor
interface that emulates the JTAG instruction sequence. The
iMPACT software also outputs serial vector format (SVF)
files for use with any tools that accept SVF format and with
automatic test equipment.

All outputs are held in a high-impedance state or held at
clamp levels during in-system programming.

OE/RESET
The ISP programming algorithm requires issuance of a
reset that causes OE to pulse Low.

External Programming
Xilinx reprogrammable PROMs can also be programmed by
the Xilinx MultiPRO Desktop Tool or a third-party device
programmer. This provides the added flexibility of using
pre-programmed devices with an in-system programmable
option for future enhancements and design changes.

Reliability and Endurance
Xilinx in-system programmable products provide a guaran-
teed endurance level of 20,000 in-system program/erase
cycles and a minimum data retention of 20 years. Each
device meets all functional, performance, and data retention
specifications within this endurance limit.

Design Security
The Xilinx in-system programmable PROM devices incorpo-
rate advanced data security features to fully protect the pro-
gramming data against unauthorized reading via JTAG.
Table 3 shows the security setting available.

The read security bit can be set by the user to prevent the
internal programming pattern from being read or copied via
JTAG. When set, it allows device erase. Erasing the entire
device is the only way to reset the read security bit.

Table 3: Data Security Options

XC3S2000 7,673,024 2 of XCF04S(1)

XC3S4000 11,316,864 3 of XCF04S(1)

XC3S5000 13,271,936 3 of XCF04S +
XCF01S(1)

Notes:
1. Contact your Xilinx sales representative for future availability

of the XCF08P, XCF16P, and XCF32P PROMs.

Devices Configuration Bits

XCF04S 4,194,304

XCF02S 2,097,152

XCF01S 1,048,576

Table 2: Xilinx FPGAs and Compatible PROMs

Device
Configuration

Bitstream Platform Flash PROM

Default = Reset Set

Read Allowed
Program/Erase Allowed

Verify Allowed

Read Inhibited via JTAG
Program/Erase Allowed

Verify Inhibited

Figure 2: In-System Programming Operation (a) Solder Device to PCB and (b) Program Using Download Cable

DS026_02_011100

GND

V CC

(a) (b)

ug000.book Page 324 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Platform Flash In-System Programmable Configuration PROMs

DS123 (v1.1) June 3, 2003 www.xilinx.com 325
Preliminary Product Specification 1-800-255-7778

R

IEEE 1149.1 Boundary-Scan (JTAG)
The Platform Flash PROM family is fully compliant with the
IEEE Std. 1149.1 Boundary-Scan, also known as JTAG. A
Test Access Port (TAP) and registers are provided to sup-
port all required boundary scan instructions, as well as
many of the optional instructions specified by IEEE Std.
1149.1. In addition, the JTAG interface is used to implement
in-system programming (ISP) to facilitate configuration, era-
sure, and verification operations on the Platform Flash
PROM device.

Table 4 lists the required and optional boundary-scan
instructions supported in the Platform Flash PROMs. Refer
to the IEEE Std. 1149.1 specification for a complete
description of boundary-scan architecture and the required
and optional instructions.

Instruction Register
The Instruction Register (IR) for the Platform Flash PROM
is eight bits wide and is connected between TDI and TDO
during an instruction scan sequence. In preparation for an
instruction scan sequence, the instruction register is parallel
loaded with a fixed instruction capture pattern. This pattern
is shifted out onto TDO (LSB first), while an instruction is
shifted into the instruction register from TDI. The detailed
composition of the instruction capture pattern is illustrated
in Figure 3.

The ISP Status field, IR(4), contains logic “1” if the device is
currently in ISP mode; otherwise, it contains logic “0”. The
Security field, IR(3), contains logic “1” if the device has been

programmed with the security option turned on; otherwise, it
contains logic “0”.

Boundary Scan Register
The boundary-scan register is used to control and observe
the state of the device pins during the EXTEST, SAM-
PLE/PRELOAD, and CLAMP instructions. Each output pin
on the Platform Flash PROM has two register stages that
contribute to the boundary-scan register, while each input
pin only has one register stage.

For each output pin, the register stage nearest to TDI con-
trols and observes the output state, and the second stage
closest to TDO controls and observes the High-Z enable
state of the pin.

For each input pin, the register stage controls and observes
the input state of the pin.

Identification Registers
The IDCODE is a fixed, vendor-assigned value that is used
to electrically identify the manufacturer and type of the
device being addressed. The IDCODE register is 32 bits
wide. The IDCODE register can be shifted out for examina-
tion by using the IDCODE instruction. The IDCODE is avail-
able to any other system component via JTAG.

The IDCODE register has the following binary format:

vvvv:ffff:ffff:aaaa:aaaa:cccc:cccc:ccc1

where

v = the die version number

f = the family code (50h for Platform Flash PROM
family)

a = the ISP PROM product ID (46h for the XCF04S)

c = the company code (49h for Xilinx)

Notes:
1. The LSB of the IDCODE register is always read as logic

“1” as defined by IEEE Std. 1149.1.
Table 5 lists the IDCODE register values for the Platform
Flash PROMs.

Table 4: Boundary Scan Instructions

Boundary-Scan
Command

Binary
Code [7:0] Description

Required Instructions

BYPASS 11111111 Enables BYPASS

SAMPLE/
PRELOAD

00000001 Enables boundary-scan
SAMPLE/PRELOAD operation

EXTEST 00000000 Enables boundary-scan
EXTEST operation

Optional Instructions

CLAMP 11111010 Enables boundary-scan
CLAMP operation

HIGHZ 11111100 all outputs in high-impedance
state simultaneously

IDCODE 11111110 Enables shifting out
32-bit IDCODE

USERCODE 11111101 Enables shifting out
32-bit USERCODE

Platform Flash PROM Specific Instructions

CONFIG 11101110 Initiates FPGA configuration
by pulsing CF pin Low once

IR[7:5] IR[4] IR[3] IR[2] IR[1:0]

TDI-> Reserved ISP
Status

Security 0 0 1 ->TDO

Notes:
1. IR(1:0) = 01 is specified by IEEE Std. 1149.1

Figure 3: Instruction Register Values Loaded into IR as
Part of an Instruction Scan Sequence

ug000.book Page 325 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Platform Flash In-System Programmable Configuration PROMs

326 www.xilinx.com DS123 (v1.1) June 3, 2003
1-800-255-7778 Preliminary Product Specification

R

The USERCODE instruction gives access to a 32-bit user
programmable scratch pad typically used to supply informa-
tion about the device’s programmed contents. By using the
USERCODE instruction, a user-programmable identifica-
tion code can be shifted out for examination. This code is
loaded into the USERCODE register during programming of
the Platform Flash PROM. If the device is blank or was not
loaded during programming, the USERCODE register con-
tains FFFFFFFFh.

Platform Flash PROM
TAP Characteristics
The Platform Flash PROM family performs both in-system
programming and IEEE 1149.1 boundary-scan (JTAG) test-
ing via a single 4-wire Test Access Port (TAP). This simpli-
fies system designs and allows standard Automatic Test
Equipment to perform both functions. The AC characteris-
tics of the Platform Flash PROM TAP are described as fol-
lows.

TAP Timing
Figure 4 shows the timing relationships of the TAP signals.
These TAP timing characteristics are identical for both
boundary-scan and ISP operations.

TAP AC Parameters
Table 6 shows the timing parameters for the TAP waveforms shown in Figure 4.

Table 5: IDCODES Assigned to Platform Flash PROMs

ISP-PROM IDCODE

XCF01S 05044093h

XCF02S 05045093h

XCF04S 05046093h

Figure 4: Test Access Port Timing

Table 6: Test Access Port Timing Parameters

Symbol Parameter Min Max Units

TCKMIN1 TCK minimum clock period when VCCJ = 2.5V or 3.3V 100 - ns

TCKMIN2 TCK minimum clock period, Bypass Mode, when VCCJ = 2.5V or
3.3V

50 - ns

TMSS TMS setup time when VCCJ = 2.5V or 3.3V 10 - ns

TMSH TMS hold time when VCCJ = 2.5V or 3.3V 25 - ns

TDIS TDI setup time when VCCJ = 2.5V or 3.3V 10 - ns

TDIH TDI hold time when VCCJ = 2.5V or 3.3V 25 - ns

TDOV TDO valid delay when VCCJ = 2.5V or 3.3V - 30 ns

TCK

TCKMIN

TMSS

TMS

TDI

TDO

TMSH

TDIH

TDOV

TDIS

DS026_04_020300

ug000.book Page 326 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Platform Flash In-System Programmable Configuration PROMs

DS123 (v1.1) June 3, 2003 www.xilinx.com 327
Preliminary Product Specification 1-800-255-7778

R

Connecting Configuration PROMs
Connecting the FPGA device with the configuration PROM
(see Figure 5 and Figure 6).

• The DATA output(s) of the PROM(s) drives the DIN
input of the lead FPGA device.

• The Master FPGA CCLK output drives the CLK input(s)
of the PROM(s) (in Master-Serial mode only).

• The CEO output of a PROM drives the CE input of the
next PROM in a daisy chain (if any).

• The OE/RESET pins of all PROMs are connected to
the INIT_B pins of all FPGA devices. This connection
assures that the PROM address counter is reset before
the start of any (re)configuration, even when a
reconfiguration is initiated by a VCCINT glitch.

• The PROM CE input can be driven from the DONE pin.
The CE input of the first (or only) PROM can be driven
by the DONE output of all target FPGA devices,
provided that DONE is not permanently grounded. CE
can also be permanently tied Low, but this keeps the
DATA output active and causes an unnecessary supply
current of 10 mA maximum.

Initiating FPGA Configuration
The Platform Flash PROMs incorporate a pin named CF
that is controllable through the JTAG CONFIG instruction.
Executing the CONFIG instruction through JTAG pulses the
CF low once for 300-500 ns, which resets the FPGA and ini-
tiates configuration.

The CF pin must be connected to the PROG_B pin on the
FPGA(s) to use this feature.

The iMPACT software can also issue a JTAG CONFIG com-
mand to initiate FPGA configuration through the “Load
FPGA” setting.

Master Serial Mode Summary
The I/O and logic functions of the Configurable Logic Block
(CLB) and their associated interconnections are established

by a configuration program. The program is loaded either
automatically upon power up, or on command, depending
on the state of the three FPGA mode pins. In Master Serial
mode, the FPGA automatically loads the configuration pro-
gram from an external memory. Xilinx PROMs are designed
to accommodate the Master Serial mode.

Upon power-up or reconfiguration, an FPGA enters the Mas-
ter Serial mode whenever all three of the FPGA mode-select
pins are Low (M0=0, M1=0, M2=0). Data is read from the
PROM sequentially on a single data line. Synchronization is
provided by the rising edge of the temporary signal CCLK,
which is generated by the FPGA during configuration.

Master Serial Mode provides a simple configuration inter-
face. Only a serial data line, a clock line, and two control
lines are required to configure an FPGA. Data from the
PROM is read sequentially, accessed via the internal
address and bit counters which are incremented on every
valid rising edge of CCLK.

Cascading Configuration PROMs
For multiple FPGAs configured as a serial daisy-chain, or a
single FPGA requiring larger configuration memories in a
serial configuration mode, cascaded PROMs provide addi-
tional memory (Figure 5). Multiple Platform Flash PROMs
can be concatenated by using the CEO output to drive the
CE input of the downstream device. The clock inputs and
the data outputs of all Platform Flash PROMs in the chain
are interconnected. After the last data from the first PROM
is read, the next clock signal to the PROM asserts its CEO
output Low and drives its DATA line to a high-impedance
state. The second PROM recognizes the Low level on its CE
input and enables its DATA output.

After configuration is complete, address counters of all cas-
caded PROMs are reset if the PROM OE/RESET pin goes
Low or CE goes High.

ug000.book Page 327 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Platform Flash In-System Programmable Configuration PROMs

328 www.xilinx.com DS123 (v1.1) June 3, 2003
1-800-255-7778 Preliminary Product Specification

R

Figure 5: Configuring Multiple Devices in Master/Slave Serial Mode

4.7K

4.7K

(See
Note
1)

1

2
3

4

TDO

DOUT

TDI

TMS

TCK

VCCINT

VCCO

DIN

CCLK

DONE

INIT_B

MODE PINS

Xilinx
FPGA

Master
Serial

VCCINT D0

VCCO

TDI CLK

TMS CE

TCK CEO

OE/RESET

PROG_B

TDO

TDI

TMS

TCK

DIN

CCLK

DONE

INIT_B

MODE PINS

Xilinx
FPGA

Slave
Serial

PROG_BCF

TDOGND

For Mode pin connections and DONE pin pullup value, refer to appropriate FPGA data sheet.
For compatible voltages, refer to the appropriate data sheet.

Platform
Flash PROM

Cascaded
PROM

TDI
TMS

TCK

TDO

J1

DS123_08_052903

VCCINTVCCO VCCO

VCCINT D0

VCCO

TDI CLK

TMS CE

TCK CEO

OE/RESET

CF

TDOGND

Platform
Flash PROM

First
PROM

VCCO

(See Note 1)(See Note 1)

(See Note 2)

(See Note 2)(See Note 2)

Notes:
1
2

VCCJ VCCJ

VCCJVCCJ

Figure 6: Configuring Multiple Devices with Identical Patterns in Master/Slave Serial Mode

4.7K

4.7K

1

2
3

4

TDO

TDI

TMS

TCK

VCCINT

VCCO

 D0

CCLK

DONE

INIT_B

 MODE PINS

Xilinx
FPGA

Master
Serial

VCCINT
VCCO

TDI CLK

TMS CE

TCK CEO

OE/RESET

PROG_B

TDO

TDI

TMS

TCK

D0

CCLK

DONE

INIT_B

 MODE PINS

Xilinx
FPGA

Slave
Serial

PROG_BCF

TDOGND

For Mode pin connections and DONE pin pullup value, refer to the appropriate FPGA data sheet.
For compatible voltages, refer to the appropriate data sheet.

Platform
Flash PROM

Cascaded
PROM

TDI
TMS

TCK

TDO

J1

DS123_09_052903

VCCINTVCCO
VCCJ

VCCINT
VCCO

TDI CLK

TMS CE

TCK CEO

OE/RESET

CF

TDOGND

Platform
Flash PROM

First
PROM

Vcco

Notes:

(1)

 (2)

(See
note 1)

1
2

D0 D0

VCCJ

VCCO

VCCJVCCJ

(See Note 2) (See Note 2)

(See Note 2)

ug000.book Page 328 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Platform Flash In-System Programmable Configuration PROMs

DS123 (v1.1) June 3, 2003 www.xilinx.com 329
Preliminary Product Specification 1-800-255-7778

R

Reset Activation
On power up, OE/RESET is held low until the Platform
Flash PROM is active (1 ms). OE/RESET is connected to
an external resistor to pull OE/RESET HIGH releasing the
FPGA INIT and allowing configuration to begin. If the power
drops below 2.0V, the PROM resets. OE/RESET polarity is
not programmable. See Figure 7 for power-up require-
ments.

Standby Mode
The PROM enters a low-power standby mode whenever CE
is asserted High. The address is reset. The output remains
in a high-impedance state regardless of the state of the OE
input. JTAG pins TMS, TDI and TDO can be in a
high-impedance state or High. See Table 7.

5V Tolerant I/Os
The I/Os on each re-programmable PROM are fully 5V tol-
erant even when the core power supply is 3.3V if VCCO is at
3.3V or 2.5V. This allows 5V CMOS signals to connect
directly to the PROM inputs without damage. In addition, the
3.3V VCCINT power supply can be applied before or after 5V
signals are applied to the I/Os. In mixed 5V/3.3V/2.5V sys-
tems, the user pins, the core power supply (VCCINT), and
the output power supply (VCCO) can have power applied in
any order. This makes the PROM devices immune to power
supply sequencing issues.

Notes:
1. When VCCO is set to 1.8V, the I/Os are only 3.3V tolerant.

Figure 7: VCCINT Power-Up Requirements

Time (ms)

V
ol

ts

3.6V

3.0V

0V

Recommended Operating Range

Recommended

VCCINT
 Rise

Time

1ms 50ms0ms
ds123_10_052903

Table 7: Truth Table for PROM Control Inputs

Control Inputs

Internal Address

Outputs

OE/RESET CE DATA CEO ICC

High Low If address < TC(1): increment
If address > TC(1): don’t change

Active
High-Z

High
Low

Active
Reduced

Low Low Held reset High-Z High Active

High High Held reset High-Z High Standby

Low High Held reset High-Z High Standby

Notes:
1. TC = Terminal Count = highest address value. TC + 1 = address 0.

ug000.book Page 329 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Platform Flash In-System Programmable Configuration PROMs

330 www.xilinx.com DS123 (v1.1) June 3, 2003
1-800-255-7778 Preliminary Product Specification

R

Absolute Maximum Ratings(1,2)

Recommended Operating Conditions

Quality and Reliability Characteristics

Symbol Description Value Units

VCCINT/ VCCO/
VCCJ

Supply voltage relative to GND –0.5 to +4.0 V

VIN Input voltage with respect to GND –0.5 to +5.5 V

VTS Voltage applied to High-Z output –0.5 to +5.5 V

TSTG Storage temperature (ambient) –65 to +150 °C

TSOL Maximum soldering temperature (10s @ 1/16 in.) +220 °C

TJ Junction temperature +125 °C

Notes:
1. Maximum DC undershoot below GND must be limited to either 0.5V or 10 mA, whichever is easier to achieve. During transitions, the

device pins can undershoot to –2.0V or overshoot to +7.0V, provided this over- or undershoot lasts less then 10 ns and with the
forcing current being limited to 200 mA.

2. Stresses beyond those listed under Absolute Maximum Ratings might cause permanent damage to the device. These are stress
ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions
is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time might affect device reliability.

Symbol Parameter Min Max Units

VCCINT Internal voltage supply 3.0 3.6 V

VCCO Supply voltage for output drivers for VCCO at 3.3V operation 3.0 3.6 V

Supply voltage for output drivers for VCCO at 2.5V operation 2.3 2.7 V

Supply voltage for output drivers for VCCO at 1.8V operation 1.7 2.0 V

VCCJ Supply voltage for output drivers for VCCO at 3.3V operation 3.0 3.6 V

Supply voltage for output drivers for VCCO at 2.5V operation 2.3 2.7 V

VIL Low-level input voltage for VCCO at 3.3V or 2.5V 0 0.8 V

Low-level input voltage for VCCO at 1.8V 0 20% VCCO V

VIH High-level input voltage for VCCOat 3.3V or 2.5V 2.0 5.5 V

High-level input voltage for VCCO at 1.8V 70% VCCO 3.6 V

VO Output voltage 0 VCCO V

TVCC VCCINT rise time from 0V to nominal voltage(1) 1 50 ms

TA Operating ambient temperature –40° 85° C

Notes:
1. At power up, the device requires the VCCINT power supply to monotonically rise from 0V to nominal voltage within the specified

VCCINT rise time. If the power supply cannot meet this requirement, then the device might not perform power-on-reset properly. See
Figure 7.

Symbol Description Min Max Units

TDR Data retention 20 - Years

NPE Program/erase cycles (Endurance) 20,000 - Cycles

VESD Electrostatic discharge (ESD) 2,000 - Volts

ug000.book Page 330 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Platform Flash In-System Programmable Configuration PROMs

DS123 (v1.1) June 3, 2003 www.xilinx.com 331
Preliminary Product Specification 1-800-255-7778

R

DC Characteristics Over Operating Conditions

Symbol Parameter Test Conditions Min Max Units

VOH High-level output voltage for 3.3V outputs IOH = –4 mA 2.4 - V

High-level output voltage for 2.5V outputs IOH = –500 µA VCCO – 0.4 - V

High-level output voltage for 1.8V outputs IOH = –50 µA VCCO – 0.4 - V

VOL Low-level output voltage for 3.3V outputs IOL = 8 mA - 0.4 V

Low-level output voltage for 2.5V outputs IOL = 500 µA - 0.4 V

Low-level output voltage for 1.8V outputs IOL = 50 µA - 0.4 V

ICC Supply current, active mode 25 MHz - 10 mA

ICCS Supply current, standby mode - - 1 mA

IILJ JTAG pins TMS, TDI, and TDO pull-up current VCCJ = MAX
VIN = GND

- 100 µA

IIL Input leakage current VCCINT = Max
VIN = GND or
VCCINT

–10 10 µA

IIH Input and output High-Z leakage current VCCINT = Max
VIN = GND or
VCCINT

–10 10 µA

CIN Input capacitance VIN = GND
f = 1.0 MHz

- 8 pF

COUT Output capacitance VIN = GND
f = 1.0 MHz

- 14 pF

ug000.book Page 331 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Platform Flash In-System Programmable Configuration PROMs

332 www.xilinx.com DS123 (v1.1) June 3, 2003
1-800-255-7778 Preliminary Product Specification

R

AC Characteristics Over Operating Conditions for XCF04S, XCF02S, and XCF01S

OE/RESET

CE

CLK

DATA
TCE

TOE

TLC

TSCE THCE

THOE

TCAC TOH TDF

TOH

THC

DS026_06_012000

TCYC

Symbol Description Min Max Units

TOE OE/RESET to data delay when VCCO = 3.3V or 2.5V - 10 ns

OE/RESET to data delay when VCCO = 1.8V - 30 ns

TCE CE to data delay when VCCO = 3.3V or 2.5V - 15 ns

CE to data delay when VCCO = 1.8V - 30 ns

TCAC CLK to data delay when VCCO = 3.3V or 2.5V - 15 ns

CLK to data delay when VCCO = 1.8V - 30 ns

TOH Data hold from CE, OE/RESET, or CLK when VCCO = 3.3V or 2.5V 0 - ns

Data hold from CE, OE/RESET, or CLK when VCCO = 1.8V 0 - ns

TDF CE or OE/RESET to data float delay(2) when VCCO = 3.3V or 2.5V - 25 ns

CE or OE/RESET to data float delay(2) when VCCO = 1.8V - 30 ns

TCYC Clock period(7) when VCCO = 3.3V or 2.5V 30 - ns

Clock period when VCCO = 1.8V 67 - ns

TLC CLK Low time(3) when VCCO = 3.3V or 2.5V 10 - ns

CLK Low time(3) when VCCO = 1.8V 15 - ns

THC CLK High time(3) when VCCO = 3.3V or 2.5V 10 - ns

CLK High time(3) when VCCO = 1.8V 15 - ns

TSCE CE setup time to CLK (guarantees proper counting)(3) when
VCCO = 3.3V or 2.5V

20 - ns

CE setup time to CLK (guarantees proper counting)(3) when
VCCO = 1.8V

30 - ns

THCE
(5) CE High time (guarantees counters are reset) when

VCCO = 3.3V or 2.5V
250 - ns

CE High time (guarantees counters are reset) when
VCCO = 1.8V

250 - ns

ug000.book Page 332 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Platform Flash In-System Programmable Configuration PROMs

DS123 (v1.1) June 3, 2003 www.xilinx.com 333
Preliminary Product Specification 1-800-255-7778

R

THOE
(6) OE/RESET hold time (guarantees counters are reset) when

VCCO = 3.3V or 2.5V
250 - ns

OE/RESET hold time (guarantees counters are reset) when
VCCO = 1.8V

250 - ns

Notes:
1. AC test load = 50 pF.
2. Float delays are measured with 5 pF AC loads. Transition is measured at ±200 mV from steady state active levels.
3. Guaranteed by design, not tested.
4. All AC parameters are measured with VIL = 0.0V and VIH = 3.0V.
5. If THCE High < 2 µs, TCE = 2 µs.
6. If THOE Low < 2 µs, TOE = 2 µs.
7. This is the minmum possible TCYC. Actual TCYC = TCAC + FPGA Data setup time. If FPGA Data setup time = 15 ns, the actual

TCYC = 15 ns +15 ns = 30 ns.

Symbol Description Min Max Units

ug000.book Page 333 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Platform Flash In-System Programmable Configuration PROMs

334 www.xilinx.com DS123 (v1.1) June 3, 2003
1-800-255-7778 Preliminary Product Specification

R

AC Characteristics Over Operating Conditions When Cascading for XCF04S,
XCF02S, and XCF01S

CLK

DATA

CE

CEO

First Bit Last Bit

TCDF

DS026_07_020300

OE/RESET

TOCK TOOE

TOCE

Symbol Description Min Max Units

TCDF CLK to data float delay(2,3) when VCCO = 2.5V or 3.3V - 25 ns

CLK to data float delay(2,3) when VCCO = 1.8V - 35 ns

TOCK CLK to CEO delay(3,5) when VCCO = 2.5V or 3.3V - 20 ns

CLK to CEO delay(3,5) when VCCO = 1.8V - 35 ns

TOCE CE to CEO delay(3) when VCCO = 2.5V or 3.3V - 20 ns

CE to CEO delay(3) when VCCO = 1.8V - 35 ns

TOOE OE/RESET to CEO delay(3) when VCCO = 2.5V or 3.3V - 20 ns

OE/RESET to CEO delay(3) when VCCO = 1.8V - 35 ns

Notes:
1. AC test load = 50 pF.
2. Float delays are measured with 5 pF AC loads. Transition is measured at ±200 mV from steady state active levels.
3. Guaranteed by design, not tested.
4. All AC parameters are measured with VIL = 0.0V and VIH = 3.0V.
5. For cascaded PROMs minimum, TCYC = TOCK + FPGA Data setup time.

ug000.book Page 334 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Platform Flash In-System Programmable Configuration PROMs

DS123 (v1.1) June 3, 2003 www.xilinx.com 335
Preliminary Product Specification 1-800-255-7778

R

Ordering Information

Valid Ordering Combinations

Marking Information

Revision History
The following table shows the revision history for this document.

XCF04SVO20 C

XCF02SVO20 C

XCF01SVO20 C

XCF04S VO20 C

Operating Range/Processing

C = (TA = –40°C to +85°C)Package Type

VO20 = 20-pin Package

Device Number

XCF04S
XCF02S
XCF01S

20-pin Package
XCF04S V

Operating Range/Processing

C = (TA = –40°C to +85°C)Package Type

VO20 = 20-pin Package

Device Number

XCF04S
XCF02S
XCF01S

Date Version Revision

04/29/03 1.0 Xilinx Initial Release.

06/03/03 1.1 Made edits to all pages.

ug000.book Page 335 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Platform Flash In-System Programmable Configuration PROMs

336 www.xilinx.com DS123 (v1.1) June 3, 2003
1-800-255-7778 Preliminary Product Specification

R

ug000.book Page 336 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan™-3 FPGA Handbook www.xilinx.com 337
July 11, 2003 1-800-255-7778

R

Bitstream Generator (BitGen) Switches
and Options

The BitGen program generates bitstream configuration files for a Spartan-3 FPGA. It can be
run as BitGen in the command-line mode or run within the Project Navigator as part of the
“Generate Programming File” process, where the same options are available through
dialog boxes. The information below is a subset of the BitGen section of the Xilinx software
documentation, which can be found on-line at
http://www.xilinx.com/support/software_manuals.htm. See the on-line documentation
for the complete options available for a specific version of the program. The information
relevant to Spartan-3 FPGAs is included here.

This chapter contains the following sections:

• “BitGen Overview”

• “BitGen Syntax”

• “BitGen Input Files”

• “BitGen Output Files”

• “BitGen Options”

BitGen Overview
BitGen produces a bitstream for Xilinx device configuration. After the design is completely
routed, it is necessary to configure the device so that it can execute the desired function.
This is done using files generated by BitGen, the Xilinx bitstream generation program.
BitGen takes a fully routed NCD (native circuit description) file as input and produces a
configuration bitstream—a binary file with a .bit extension.

The BIT file contains all of the configuration information from the NCD file that defines the
internal logic and interconnections of the FPGA, plus device-specific information from
other files associated with the target device. The binary data in the BIT file is then
downloaded into the FPGAs memory cells, or it is used to create a PROM file.

The following figure shows the BitGen input and output files:

ug000.book Page 337 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.com/support/software_manuals.htm

338 www.xilinx.com Spartan™-3 FPGA Handbook
1-800-255-7778 July 11, 2003

Bitstream Generator (BitGen) Switches and Options
R

BitGen Syntax
The following syntax creates a bitstream from your NCD file:

bitgen [options] infile[.ncd] [outfile] [pcf_file.pcf]

options is one or more of the options listed in “BitGen Options”.

infile is the name of the NCD design for which you want to create the bitstream. You may
specify only one design file, and it must be the first file specified on the command line.

Note: You do not have to use an extension. If you do not use an extension, then .ncd is assumed. If
you do use an extension, then the extension must be .ncd.

outfile is the name of the output file. If you do not specify an output file name, BitGen
creates a .bit file in your input file directory. If you specify any of the following options, the
corresponding file is created in addition to the .bit file. If you do not specify an extension,
BitGen appends the correct one for the specified option.

A report file containing all BitGen output is automatically created under the same
directory as the output file. The report file has the same root name as the output file and a
.bgn extension.

Figure 2-1: BitGen input and output files

BIT RBT ISC

BitGen

iMPACTPROMGen

BGN

DRC

LL
(optional)

NCD
Circuit Description
(Placed/Routed)

bitgen_01_071003

MSK
(optional)

MEM
(optional)

PCF
(optional)

Option Output File

–l outfile_name.ll

–m outfile_name.msk

–b outfile_name.rbt

ug000.book Page 338 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan™-3 FPGA Handbook www.xilinx.com 339
July 11, 2003 1-800-255-7778

Bitstream Generator (BitGen) Switches and Options
R

Pcf_file is the name of a physical constraints file. BitGen uses this file to interpret CONFIG
constraints, which control bitstream options. These CONFIG constraints override default
behavior and can be overridden by configuration options. See “–g (Set Configuration).”
BitGen automatically reads the .pcf file by default. If the PCF is the second file specified on
the command line, it must have a .pcf extension. If it is the third file specified, the extension
is optional; .pcf is assumed. If a .pcf file name is specified, it must exist; otherwise, the
input design name with a .pcf extension is assumed.

Type the following syntax to see a complete list of BitGen command line options and
supported devices:

bitgen —h

BitGen Input Files
Input to BitGen comprises the following files:

• NCD file—a physical description of the design mapped, placed and routed in the
target device. The NCD file must be fully routed.

• PCF—an optional user-modifiable ASCII Physical Constraints File.

BitGen Output Files
Output from BitGen comprises the following files:

Table 2-1: BitGen Output Files

Output File Type Output File Description

.bgn Contains log information for the BitGen run, including command
line options, errors, and warnings. Always produced.

.bin A binary file that contains only configuration data. The .bin has no
header like the .bit file. Produced when –g Binary:Yes is specified.

.bit A binary file that contains proprietary header information as well as
configuration data. Meant for input to other Xilinx tools, such as
PROMGen and iMPACT. Always produced unless the -j option is
specified.

.drc A design rule check (DRC) file for the design. Contains log
information or Design Rules Checker, including errors and
warnings. Always produced unless the -d option is specified.

.isc Contains the configuration data in IEEE1532 format. Produced when
-g IEEE:1532:Yes is specified.

.ll An ASCIII file that contains information on each of the nodes in the
design that can be captured for readback. The file contains the
absolute bit position in the readback stream, frame address, frame
offset, logic resource used, and name of the component in the design.
Produced when the -l option is specified.

.msd An ASCII file that contains only mask information for verification,
including pad words and frames. No commands are included.
Produced when -g Readback is specified.

ug000.book Page 339 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

340 www.xilinx.com Spartan™-3 FPGA Handbook
1-800-255-7778 July 11, 2003

Bitstream Generator (BitGen) Switches and Options
R

BitGen Options
Following is a description of the command line options and how they affect the behavior of
BitGen.

–b (Create Rawbits File)
Create a rawbits (file_name.rbt) file. If the –g Readback option is specified in combination
with the –b option, an ASCII readback command file (file_name.rba) is also generated.

The rawbits file consists of ASCII ones and zeros representing the data in the bitstream file.
If you are using a microprocessor to configure a single FPGA, you can include the rawbits
file in the source code as a text file to represent the configuration data. The sequence of
characters in the rawbits file is the same as the sequence of bits written into the FPGA.

–bd (Update Block RAMs)
–bd file_name

The –bd option updates the bitstream with the block RAM content from the specified MEM
file.

–d (Do Not Run DRC)
Do not run DRC (design rule check). Without the –d option, BitGen runs a DRC and saves
the DRC results in two output files: the BitGen report file (file_name.bgn) and the DRC file
(file_name.drc). If you enter the –d option, no DRC information appears in the report file
and no DRC file is produced.

.msk A binary file that contains the same configuration commands as a .bit
file, but has mask data where the configuration data is. This data
should NOT be used to configure the device. If a mask bit is 0, that
bit should be verified against the bitstream data. If a mask bit is 1,
that bit should not be verified. Produced when the -m option is
specified.

.rba An ASCII file that contains readback commands, rather than
configuration commands, and expected readback data where the
configuration data would normally be.

To produce the .rba file, the –b option must be used when –g
Readback is specified.

.rbb The same as the .rba file, but it is a binary file.

Produced when –g Readback is specified.

.rbd An ASCII file that contains only expected readback data, including
pad words and frames. No commands are included. Produced when
-g Readback is specified.

.rbt An ASCII version of the bit file. Produced when the -b option is
specified.

Table 2-1: BitGen Output Files (Continued)

Output File Type Output File Description

ug000.book Page 340 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan™-3 FPGA Handbook www.xilinx.com 341
July 11, 2003 1-800-255-7778

Bitstream Generator (BitGen) Switches and Options
R

Running DRC before a bitstream is produced detects any errors that could cause the FPGA
to malfunction. If DRC does not detect any errors, BitGen produces a bitstream file (unless
you use the –j option described in “–j (No BIT File)”).

–f (Execute Commands File)
–f command_file

The –f option executes the command line arguments in the specified command_file.

–g (Set Configuration)
The –g option has sub-options that represent settings you use to set the configuration for a
design. These options have the following syntax:

bitgen –g option:setting design.ncd design.bit design.pcf

For example, to enable Readback, use the following syntax:

bitgen –g Readback

The following sections describe the options for the –g option.

ActivateGCLK

Allows any partial bitstream for a reconfigurable area to have its registered elements wired
to the correct clock domain.

ActiveReconfig

Prevents the assertions of GHIGH and GSR during configuration. This is required for the
active partial reconfiguration enhancement features.

Binary

Creates a binary file with programming data only. Use this option to extract and view
programming data. Any changes to the header will not affect the extraction process.

Settings: No, Yes

Default: No

Settings: No, Yes

Default: No

Settings: No, Yes

Default: No

ug000.book Page 341 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

342 www.xilinx.com Spartan™-3 FPGA Handbook
1-800-255-7778 July 11, 2003

Bitstream Generator (BitGen) Switches and Options
R

CclkPin

Adds an internal pull-up to the Cclk pin. The Pullnone setting disables the pullup.

Compress

This option reduces the size of the bitstream, not just the .bit file. Using the Compress
option does not guarantee that the size of the bitstream will shrink. Compression is
enabled by setting the BitGen option –g compress; compression is disabled by not
setting it.

ConfigRate

Spartan-3 FPGAs use an internal oscillator to generate the configuration clock, CCLK,
when configuring in a master mode. Use the configuration rate option to select the rate for
this clock.

CRC

The CRC option controls the generation of a Cyclic Redundancy Check value in the
bitstream. When enabled, a unique CRC value is calculated based on bitstream contents. If
the calculated CRC value does not match the CRC value in the bitstream, the device will
fail to configure. When CRC is disabled a constant value is inserted in the bitstream in
place of the CRC and the device will not calculate a CRC.

DCIUpdateMode

This option controls how often the Digitally Controlled Impedance circuit attempts to
update the impedance match for DCI IOSTANDARDs.

Settings: Pullnone, Pullup

Default: Pullup

Settings: None

Default: Off

Settings: 6, 3, 12, 25, 50, 100

Default: 6

Settings: Disable, Enable

Default: Enable

Settings: AsRequired, continuous, quiet

Default: AsRequired

ug000.book Page 342 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan™-3 FPGA Handbook www.xilinx.com 343
July 11, 2003 1-800-255-7778

Bitstream Generator (BitGen) Switches and Options
R

DCMShutdown

When DCMShutdown is enabled, the digital clock manager (DCM) resets if the
SHUTDOWN and AGHIGH commands are loaded into the configuration logic.

DebugBitstream

If the device does not configure correctly, you can debug the bitstream using the
DebugBitstream option. A debug bitstream is significantly larger than a standard
bitstream. The values allowed for the DebugBitstream option are No and Yes.

Note: Use this option only if your device is configured to use slave or master serial mode

In addition to a standard bitstream, a debug bitstream offers the following features:

• Writes 32 0s to the LOUT register after the synchronization word

• Loads each frame individually

• Performs a cyclical redundancy check (CRC) after each frame

• Writes the frame address to the LOUT register after each frame

DONE_cycle

Selects the Startup phase that activates the FPGA Done signal. Done is delayed when
DonePipe=Yes.

DonePin

Adds an internal pull-up to the DONE pin. The Pullnone setting disables the pullup.

Use this option only if you are planning to connect an external pull-up resistor to this pin.
The internal pull-up resistor is automatically connected if you do not use this option.

Settings: Disable, Enable

Default: Disable

Values: No, Yes

Settings: 1, 2, 3, 4, 5, 6

Default: 4

Settings: Pullup, Pullnone

Default: Pullup

ug000.book Page 343 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

344 www.xilinx.com Spartan™-3 FPGA Handbook
1-800-255-7778 July 11, 2003

Bitstream Generator (BitGen) Switches and Options
R

DonePipe

This option is intended for use with FPGAs being set up in a high-speed daisy chain
configuration.When set to Yes, the FPGA waits on the CFG_DONE (DONE) pin to go High
and then waits for the first clock edge before moving to the Done state.

DriveDone

This option actively drives the DONE Pin High as opposed to using a pullup.

GWE_cycle

Selects the Startup phase that asserts the internal write enable to flip-flops, LUT RAMs,
and shift registers. It also enables the BRAMs. Before the Startup phase both BRAM writing
and reading are disabled.The Done setting asserts GWE when the DoneIn signal is High.
DoneIn is either the value of the Done pin or a delayed version if DonePipe=Yes. The Keep
setting is used to keep the current value of the GWE signal.

GTS_cycle

Selects the Startup phase that releases the internal 3-state control to the I/O buffers. The
Done setting releases GTS when the DoneIn signal is High. DoneIn is either the value of the
Done pin or a delayed version if DonePipe=Yes.

HswapenPin

Adds a pull-up, pull-down, or neither to the HSWAP_EN pin. The Pullnone option shows
there is no connection to either the pull-up or the pull-down.

Settings: No, Yes

Default: No

Settings: No, Yes

Default: No

Settings: 1, 2, 3, 4, 5, 6, Done, Keep

Default: 6

Settings: Done, 1, 2, 3, 4, 5, 6, Keep

Default: 5

Settings: Pullup, Pulldown, Pullnone

Default: Pullup

ug000.book Page 344 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan™-3 FPGA Handbook www.xilinx.com 345
July 11, 2003 1-800-255-7778

Bitstream Generator (BitGen) Switches and Options
R

IEEE1532

Creates IEEE1532 configuration file (.isc).

LCK_cycle

Selects the Startup phase to wait until DLLs/DCMs lock. If NoWait is selected, the Startup
sequence does not wait for DLLs/DCMs.

M0Pin

The M0 pin is used to determine the configuration mode. Adds an internal pull-up, pull-
down or neither to the M0 pin. The following settings are available. The default is PullUp.
Select Pullnone to disable both the pull-up resistor and pull-down resistor on the M0 pin.

M1Pin

The M1 pin determines the configuration mode. Adds an internal pull-up, pull-down or
neither to the M1 pin. The following settings are available. The default is PullUp.

Select Pullnone to disable both the pull-up resistor and pull-down resistor on the M1 pin.

M2Pin

 The M2 pin determines the configuration mode. Adds an internal pull-up, pull-down or
neither to the M2 pin. The default is Pullup. Select Pullnone to disable both the pull-up
resistor and pull-down resistor on the M2 pin.

Settings: No, Yes

Default: No

Settings: 0,1, 2, 3, 4, 5, 6, NoWait

Default: NoWait

Settings: Pullup, Pulldown, Pullnone

Default: Pullup

Settings: Pullup, Pulldown, Pullnone

Default: Pullup

Settings: Pullup, Pulldown, Pullnone

Default: Pullup

ug000.book Page 345 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

346 www.xilinx.com Spartan™-3 FPGA Handbook
1-800-255-7778 July 11, 2003

Bitstream Generator (BitGen) Switches and Options
R

Match_cycle

Specifies a stall in the Startup cycle until digitally controlled impedance (DCI) match
signals are asserted.

Note: When the Auto setting is specified, BitGen searches the design for any DCI I/O standards. If
DCI standards exist, BitGen will use the Match_cycle:2 setting, otherwise it will use the
Match_cycle:NoWait setting.

PartialGCLK

Adds the center global clock column frames into the list of frames to write out in a partial
bitstream. This option is equivalent to the PartialMask0:1 option.

PartialMask0, PartialMask1, PartialMask2

Generates a bitstream comprised of only the major addresses of block type <0, 1, or 2> that
have enabled value in the mask. The block type is all non-block ram initialization data
frames in the applicable device and its derivatives. The mask is a hex value.

PartialLeft

Adds the left side frames of the device into the list of frames to write out in a partial
bitstream. This includes CLB, IOB, and BRAM columns. It does not include the center
global clock column.

PartialRight

Adds the right side frames of the device into the list of frames to write out in a partial
bitstream. This includes CLB, IOB, and BRAM columns. It does not include the center
global clock column.

Persist

This option is needed for Readback and Partial Reconfiguration using the SelectMAP
configuration pins. If Persist is set to Yes, the pins used for SelectMAP mode are prohibited
for use as user I/O. Refer to the datasheet for a description of SelectMAP mode and the
associated pins.

Settings: Auto, NoWait, 0, 1, 2, 3, 4, 5, 6

Default: Auto

Default: <Not Specified> - no partial masks in use

Settings: All columns enabled, major address mask

Default: <Not Specified> - no partial masks in use

Settings: No, Yes

Default: No

ug000.book Page 346 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan™-3 FPGA Handbook www.xilinx.com 347
July 11, 2003 1-800-255-7778

Bitstream Generator (BitGen) Switches and Options
R

ProgPin

Adds an internal pull-up to the PROG_B pin. The Pullnone setting disables the pullup. The
pull-up affects the pin after configuration.

ReadBack

This option allows you to perform the Readback function by creating the necessary
readback files.

When specifying the –g Readback option, the .rbb, .rbd, and .msd files are created.

If the –b option is used in conjunction with the –g Readback option, an ASCII readback
command file (file_name.rba) is also generated.

Security

Selecting Level1 disables Readback. Selecting Level2 disables Readback and Partial
Reconfiguration.

StartupClk

The startup sequence following the configuration of a device can be synchronized to either
Cclk, a User Clock, or the JTAG Clock. The default is Cclk.

• Cclk

Enter Cclk to synchronize to an internal clock provided in the FPGA device.

• JTAG Clock

Enter JtagClk to synchronize to the clock provided by JTAG. This clock sequences the
TAP controller which provides the control logic for JTAG.

• UserClk

Enter UserClk to synchronize to a user-defined signal connected to the CLK pin of the
STARTUP symbol.

Note: In modes where Cclk is an output, the pin is driven by an internal oscillator.

Settings: Pullup, Pullnone

Default: Pullup

Settings: None, Level1, Level2

Default: None

Settings: Cclk (pin—see Note), UserClk (user-supplied),
JtagCLK

Default: Cclk

ug000.book Page 347 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

348 www.xilinx.com Spartan™-3 FPGA Handbook
1-800-255-7778 July 11, 2003

Bitstream Generator (BitGen) Switches and Options
R

TckPin

Adds a pull-up, a pull-down or neither to the TCK pin, the JTAG test clock. Selecting one
setting enables it and disables the others. The Pullnone setting shows there is no
connection to either the pull-up or the pull-down.

TdiPin

Adds a pull-up, a pull-down, or neither to the TDI pin, the serial data input to all JTAG
instructions and JTAG registers. Selecting one setting enables it and disables the others.
The Pullnone setting shows there is no connection to either the pull-up or the pull-down.

TdoPin

Adds a pull-up, a pull-down, or neither to the TDO pin, the serial data output for all JTAG
instruction and data registers. Selecting one setting enables it and disables the others. The
Pullnone setting shows there is no connection to either the pull-up or the pull-down.

TmsPin

Adds a pull-up, pull-down, or neither to the TMS pin, the mode input signal to the TAP
controller. The TAP controller provides the control logic for JTAG. Selecting one setting
enables it and disables the others. The Pullnone setting shows there is no connection to
either the pull-up or the pull-down

UnusedPin

Adds a pull-up, a pull-down, or neither to the unused device pins and the serial data
output (TDO) for all JTAG instruction and data registers. Selecting one setting enables it
and disables the others. The Pullnone setting shows there is no connection to either the
pull-up or the pull-down.

The following settings are available. The default is Pulldown.

Settings: Pullup, Pulldown, Pullnone

Default: Pullup

Settings: Pullup, Pulldown, Pullnone

Default: Pullup

Settings: Pullup, Pulldown, Pullnone

Default: Pullup

Settings: Pullup, Pulldown, Pullnone

Default: Pullup

Settings: Pullup, Pulldown, Pullnone

Default: Pulldown

ug000.book Page 348 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan™-3 FPGA Handbook www.xilinx.com 349
July 11, 2003 1-800-255-7778

Bitstream Generator (BitGen) Switches and Options
R

UserID

You can enter up to an 8-digit hexadecimal code in the User ID register. You can use the
register to identify implementation revisions.

–j (No BIT File)
Do not create a bitstream file (.bit file). This option is used when you want to generate a
report without producing a bitstream. For example, if you wanted to run DRC without
producing a bitstream file, you would use the -j option.

Note: The .msk or .rbt files may still be created.

–l (Create a Logic Allocation File)
This option creates an ASCII logic allocation file (design.ll) for the selected design. The logic
allocation file shows the bitstream position of latches, flip-flops, IOB inputs and outputs,
and the bitstream position of LUT programming and Block RAMs.

In some applications, you may want to observe the contents of the FPGA internal registers
at different times. The file created by the –l option helps you identify which bits in the
current bitstream represent outputs of flip-flops and latches. Bits are referenced by frame
and bit number within the frame.

The iMPACT tool uses the design.ll file to locate signal values inside a readback bitstream.

–m (Generate a Mask File)
Creates a mask file. This file determines which bits in the bitstream should be compared to
readback data for verification purposes.

–r (Create a Partial Bit File)
–r bit_file

The –r option is used to create a partial bit file. It takes that bit file and compares it to the
.ncd file given to bitgen. Instead of writing out a full bit file, it only writes out the part of
the bit file that is different from the original bit file given.

–w (Overwrite Existing Output File)
Enables you to overwrite an existing BitGen output file. See “BitGen Output Files” for
additional information.

Settings: 0xFFFFFFFF, [hex string]

Default: 0xFFFFFFFF

ug000.book Page 349 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

350 www.xilinx.com Spartan™-3 FPGA Handbook
1-800-255-7778 July 11, 2003

Bitstream Generator (BitGen) Switches and Options
R

ug000.book Page 350 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan™-3 FPGA Handbook www.xilinx.com 351
July 11, 2003 1-800-255-7778

R

Printed Circuit Board Design Considerations

Package Drawings

Using IBIS Models for Spartan-3 FPGAs

Using BSDL Files for Spartan-3 FPGAs

ug000.book Page 351 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

352 www.xilinx.com Spartan™-3 FPGA Handbook
1-800-255-7778 July 11, 2003

R

ug000.book Page 352 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan™-3 FPGA Handbook www.xilinx.com 353
July 11, 2003 1-800-255-7778

R

Package Drawings

This section contains the package drawings for the packages used by the Spartan-3 FPGA
family:

• VQ100: Very Thin Quad Flat Pack

• TQ144: Thin Quad Flat Pack

• PQ208: Plastic Quad Flat Pack

• FT256: Fine-Pitch Thin Ball Grid Array

• FG456: Fine-Pitch Ball Grid Array

• FG676: Fine-Pitch Ball Grid Array

• FG900: Fine-Pitch Ball Grid Array

• FG1156: Fine-Pitch Ball Grid Array

For the latest version of these drawings, see the following Web page:
http://www.xilinx.com/xlnx/xweb/xil_publications_index.jsp?category=Package+Drawings

ug000.book Page 353 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com/xlnx/xweb/xil_publications_index.jsp?category=Package+Drawings
http://www.xilinx.com

354 www.xilinx.com Spartan™-3 FPGA Handbook
1-800-255-7778 July 11, 2003

Package Drawings
R

PK012 (v1.1) October 17, 2002
VQFP (VQ100) Package

R

ug000.book Page 354 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan™-3 FPGA Handbook www.xilinx.com 355
July 11, 2003 1-800-255-7778

Package Drawings
R

PK009 (v1.1) October 17, 2002
TQFP (TQ144) Package

R

ug000.book Page 355 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

356 www.xilinx.com Spartan™-3 FPGA Handbook
1-800-255-7778 July 11, 2003

Package Drawings
R

PK007 (v1.1) April 6, 2001
PQFP (PQ208) Package

R

ug000.book Page 356 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan™-3 FPGA Handbook www.xilinx.com 357
July 11, 2003 1-800-255-7778

Package Drawings
R

PK053 (v1.0) April 6, 2001
Fine Pitch Thin BGA (FT256) Package

R

ug000.book Page 357 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

358 www.xilinx.com Spartan™-3 FPGA Handbook
1-800-255-7778 July 11, 2003

Package Drawings
R

PK034 (v1.1) April 6, 2001
Fine Pitch BGA (FG456) Package

R

ug000.book Page 358 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan™-3 FPGA Handbook www.xilinx.com 359
July 11, 2003 1-800-255-7778

Package Drawings
R

PK035 (v1.1) April 6, 2001
Fine Pitch BGA (FG676) Package

R

ug000.book Page 359 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

360 www.xilinx.com Spartan™-3 FPGA Handbook
1-800-255-7778 July 11, 2003

Package Drawings
R

PK038 (v1.1) April 6, 2001
Fine Pitch BGA (FG900) Package

R

ug000.book Page 360 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan™-3 FPGA Handbook www.xilinx.com 361
July 11, 2003 1-800-255-7778

Package Drawings
R

PK039 (v1.1) April 6, 2001
Fine Pitch BGA (FG1156) Package

R

ug000.book Page 361 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

362 www.xilinx.com Spartan™-3 FPGA Handbook
1-800-255-7778 July 11, 2003

Package Drawings
R

ug000.book Page 362 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

XAPP475 (v1.0) June 21, 2003 www.xilinx.com 363
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Summary Input/Output Buffer Information Specification (IBIS) models are industry-standard descriptions
used to simulate I/O characteristics in board-level design simulation. IBIS models for
Spartan™-3 devices are available at http://www.xilinx.com/support/sw_ibis.htm. The models
can be used with third-party simulation tools to verify proper signal integrity characteristics in
board designs.

Introduction As I/O switching frequencies have increased and voltage levels have decreased, accurate
analog simulation of I/Os has become an essential part of modern high-speed digital system
design. By accurately simulating the I/O buffers, termination, and circuit board traces,
designers can significantly shorten their time-to-market of new designs. Identifying signal
integrity related issues at the beginning of the design cycle decreases the required number of
board fixes and increases quality.

The device data sheets provide basic information about guaranteed DC and switching
characteristics of the I/Os. However, the data sheet does not include all the information
required to determine the best board layout for a particular application, such as slew rates and
drive strength, which are included in the IBIS model. Designers can use IBIS models for
system-level analysis of signal integrity issues, such as ringing, ground bounce, crosstalk, and
RFI/EMI. Complete designs can be simulated and evaluated before going through the
expensive and time consuming process of producing prototype PCBs. This type of pre-layout
simulation can reduce considerably the development cost and time to market, while increasing
the reliability of the I/O operation.

IBIS
Advantages
over SPICE

Traditionally SPICE analysis has been used extensively in areas like IC design, where a high
level of accuracy is required. However in the PCB and systems domain, there are several
disadvantages to the SPICE method, both for the device vendor and the user.

Since SPICE simulations model a circuit at transistor level, it is necessary for the SPICE
models to contain detailed information about the circuit and process parameters. For most IC
vendors, this type of information is regarded as proprietary.

Although SPICE simulation accuracy is typically very good, a significant limitation with any
simulation method is simulation speed. Simulation speeds are particularly slow for transient
simulation analysis, which is most often used when evaluating signal integrity performance.
SPICE simulation has a further disadvantage in that not all SPICE simulators are fully
compatible. Often, default simulator options are not the same in different SPICE simulators. As
there are some very powerful options that control accuracy, convergence and the algorithm
type, any options that are not consistent might give rise to poor correlation in simulation results
across different simulators. Also, because of the different variants of SPICE, these models are
often incompatible between simulators, thus models must be extracted for a specific simulator.

Application Note: Spartan-3 FPGA Family

XAPP475 (v1.0) June 21, 2003

Using IBIS Models for Spartan-3 FPGAs
R

ug000.book Page 363 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com/support/sw_ibis.htm
http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

364 www.xilinx.com XAPP475 (v1.0) June 21, 2003
1-800-255-7778

Using IBIS Models for Spartan-3 FPGAs
R

Xilinx SPICE models are only available upon completion of a Non-Disclosure Agreement (NDA)
and application evaluation process; therefore it is recommended that IBIS models be used
wherever possible. See more information on SPICE at:
http://www.xilinx.com/xlnx/xil_prodcat_product.jsp?ipoid=66136&sSecondaryNavPick=Design
+Tools&sGlobalNavPick=PRODUCTS

IBIS
Background

IBIS, originally developed by Intel, is an alternative to SPICE simulation. The IBIS specification
now is maintained by the EIA/IBIS Open Forum, which has members from a large number of IC
and EDA vendors. IBIS is the ANSI/EIA-656 and IEC 62014-1 standard. For more information
about the IBIS specification, see http://www.eigroup.org/ibis/ibis.htm.

The core of the IBIS model consists of a table of current versus voltage and timing information.
This is very attractive to the IC vendor as the I/O internal circuit is treated as a black box. This
way, transistor-level information about the circuit and process details is not revealed.

IBIS models can be used to model best-case and worst-case conditions (best-case = strong
transistors, low temperature, high voltage; worst-case = weak transistors, high temperature,
low voltage). The “fast/strong” model represents best-case conditions, while the "slow/weak"
model represents worst-case conditions. The "typical" model represents typical behavior.

IBIS cannot be used for internal timing information (propagation delays and skew); the timing
models instead provide that information. IBIS also does not model power and ground structures
or pin-to-pin coupling. The implications are that ground bounce, power supply droop, and
simultaneous switching output (SSO) noise cannot be simulated with IBIS models. Instead,
Xilinx provides device/package-dependent SSO guidelines once extensive lab measurements
are completed. IBIS models also do not provide detailed package parasitic information.
Package parasitics usually are provided in the form of lumped RLC data, which loses its
accuracy at higher speeds. To model the package parasitics accurately, include a transmission
line with a delay of 25 ps to 100 ps and an impedance of 65Ω.

Using IBIS models has a great advantage to the user in that simulation speed is significantly
increased over SPICE, while accuracy is only slightly decreased. Non-convergence, which can
be a problem with SPICE models and simulators, is eliminated in IBIS simulation. Virtually all
EDA vendors presently support IBIS models, and ease of use of these IBIS simulators is
generally very good. IBIS models for most devices are freely available over the Internet making
it easy to simulate several different manufacturers’ devices on the same board. Several different
IBIS simulators are available today, and each simulator provides different results. An overshoot
or undershoot of ±10% of the measured result is tolerable. Differences between the model and
measurements occur because not all parameters are modeled. Simulators for IBIS models are
provided by Cadence, Avanti Corporation, Hyperlynx, Mentor, Microsim, Intusoft, Veribest, and
Viewlogic. See the links to third-party IBIS tools at:
http://www.xilinx.com/xlnx/xil_prodcat_product.jsp?title=si_simulation.

Xilinx Support
of IBIS

Xilinx provides IBIS models for all current products; they are downloaded easily from our
website at http://www.xilinx.com/support/sw_ibis.htm. The models also are made available in
the development system. The Preliminary models are based initially on simulation and then
verified against the silicon.

An IBIS file contains two sections, the header and the model data for each component. One
IBIS file can describe several devices. The following is the content list in a typical IBIS file:

• IBIS Version

• File Name

• File Revision

• Component

• Package R/L/C

ug000.book Page 364 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com/xlnx/xil_prodcat_product.jsp?ipoid=66136&sSecondaryNavPick=Design+Tools&sGlobalNavPick=PRODUCTS
http://www.xilinx.com/xlnx/xil_prodcat_product.jsp?ipoid=66136&sSecondaryNavPick=Design+Tools&sGlobalNavPick=PRODUCTS
http://www.eigroup.org/ibis/ibis.htm
http://www.xilinx.com/xlnx/xil_prodcat_product.jsp?title=si_simulation
http://www.xilinx.com/support/sw_ibis.htm
http://www.xilinx.com

Using IBIS Models for Spartan-3 FPGAs

XAPP475 (v1.0) June 21, 2003 www.xilinx.com 365
1-800-255-7778

R

• Pin name, model, R/L/C

• Model (i.e., 3-state)

• Temperature Range (typical, minimum, and maximum)

• Voltage Range (typical, minimum, and maximum)

• Pull-Up Reference

• Pull-Down Reference

• Power Clamp Reference

• Ground Clamp Reference

• I/V Tables for:

♦ Pull-Up

♦ Pull-Down

♦ Power Clamp

♦ Ground Clamp

• Rise and Fall dV/dt for minimum, typical, and maximum conditions (driving 50Ω)

IBIS I/V and
dV/dt Curves

A digital buffer can be measured in receive (3-state) mode and drive mode. IBIS I/V curves are
based on the data of both these modes. The transition between modes is achieved by phasing
in/out the difference between the driver and the receiver models, while keeping the receiver
model constantly in the circuit.

The I/V curve range required by the IBIS specification is –VCC to (2x VCC). This wide voltage
range exists because the theoretical maximum overshoot due to a full reflection is twice the
signal swing. The ground clamp I/V curve must be specified over the range – VCC to VCC, and
the power clamp I/V curve must be specified from VCC to (2x VCC).

The three supported conditions for the IBIS buffer models are typical values (required),
minimum values (optional), and maximum values (optional). For CMOS buffers, the minimum
condition is defined as high temperature and low supply voltage, and the maximum condition is
defined as low temperature and high supply voltage.

An IBIS model of a digital buffer has four I/V curves:

• The pull-down I/V curve contains the mode data for the driver driving low. The origin of the
curve is at 0V for CMOS buffers.

• The pull-up I/V curve contains the mode data for the driver driving high. The origin of the
curve is at the supply voltage (VCC).

• The ground clamp I/V curve contains receive (3-state) mode data. The origin of the curve
is at 0V for CMOS buffers.

• The power clamp I/V curve contains receive (3-state) mode data. The origin of the curve is
at the supply voltage (VCC).

Ramp and dV/dt
Curves

The Ramp keyword contains information on how fast the pull-up and pull-down transistors turn
on/off. The dV/dt curves give the same information, while including the effects of die
capacitance (C_comp). C_comp is the total die capacitance as seen at the die pad, excluding
the package capacitance.

dV/dt curves describe the transient characteristics of a buffer more accurately than ramps. A
minimum of four dV/dt curves are required to describe a CMOS buffer: pull-down ON, pull-up
OFF, pull-down OFF, and pull-up ON. dV/dt curves incorporate the clock-to-out delay, and the
length of the dV/dt curve corresponds to the clock speed at which the buffer is used. Each dV/dt
curve has t = 0, where the pulse crosses the input threshold.

ug000.book Page 365 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

366 www.xilinx.com XAPP475 (v1.0) June 21, 2003
1-800-255-7778

Using IBIS Models for Spartan-3 FPGAs
R

Xilinx IBIS
Package
Parasitic
Modeling

Xilinx IBIS modeling previously used a simple RCL model for the pin and bond wire parasitics.
Due to the fast rise and fall times of many of the supported I/O standards, it was deemed
necessary to improve the package parasitic modeling. The latest IBIS 3.2 specification has a
complex parasitic package model, which incorporates a transmission line and lumped RCL
model. Unfortunately, IBIS 3.2 still is not widely supported by simulators.

For these reasons, the old lumped package parasitic parameters have been removed from
the latest models, and the user must add manually an external transmission line. A 65Ω
ideal transmission line, with the delay set between 25 ps to 100 ps, is recommended. This
configuration works in conjunction with a revised lumped model (included inside the IBIS
model). For critical applications, both extremes (25 ps and 100 ps) should be checked;
however, for most I/O applications this difference is very small.

IBISWriter A Xilinx IBIS file downloaded from the Web contains a collection of IBIS models for all I/O
standards available in the targeted device. ISE can generate IBIS models specific to your
design via the IBISWriter tool, simplifying design export into signal integrity analysis tools.
IBISWriter associates IBIS buffer models to each pin of the customer design according to the
design specification for each I/O buffer. IBISWriter outputs an IBS file that can be used directly
as an input file to your signal integrity analysis tool.

Generating design-specific IBIS files requires only three easy steps:

1. Implement your design in Project Navigator.

2. In the Process View window, under Implement Design/Place & Route, select Generate IBIS
Model and click Run. A design-specific file is generated where all input/output pins are
associated with an IBIS model.

3. Incorporate this file onto your favorite signal integrity analysis tool to perform the desired
simulations.

Revision
History

The following table shows the revision history for this document.

Date Version Revision

06/21/03 1.0 Initial Xilinx release.

ug000.book Page 366 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

XAPP476 (v1.0) July 10, 2003 www.xilinx.com 367
1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Summary BSDL (Boundary Scan Description Language) files are provided for every part and package
combination of IEEE 1149.1 (JTAG) compatible devices produced by Xilinx, including all the
Spartan-3 FPGAs. Third-party boundary scan tools use these files to generate test vectors and
perform the tests. Xilinx programming software also uses BSDL files when configuring devices
through Boundary Scan.

Boundary Scan
Overview

Boundary Scan testing is used to identify faulty board-level connections, such as unconnected
or shorted pins. Boundary Scan tests allow designers to quickly identify manufacturing or layout
problems, which otherwise could be nearly impossible to isolate, especially with high-count
ball-grid packages. More recently, PLD vendors such as Xilinx have made use of boundary
scan as a convenient way of configuring devices, including the Spartan-3 FPGA family.

IEEE Standards JTAG (Joint Test Action Group) is the commonly used name for IEEE standard 1149.1, which
defines a method for Boundary Scan. JTAG compliant devices have dedicated hardware that
comprises a state machine and several registers to allow boundary scan operations. This
dedicated hardware interprets instructions and data provided by four dedicated signals: TDI
(Test Data In), TDO (Test Data Out), TMS (Test Mode Select), and TCK (Test Clock). The JTAG
hardware interprets instructions and data on the TDI and TMS signals, and drives data out on
the TDO signal. The TCK signal is used to clock the process.

IEEE 1532 is a superset of the IEEE 1149.1 JTAG standard. IEEE 1532 provides additional
flexibility for configuring programmable logic devices. IEEE Std 1532 enables designers to
concurrently program multiple devices, minimize programming times with enhanced silicon
features, and produce robust systems that are more easily maintained. This standard defines
the three additional items required to configure in-system programmable logic devices:

• Device architectural components for configuration

• Algorithm description framework

• Configuration data file

General information on the IEEE 1532 JTAG standard is available on the Xilinx website at
http://www.xilinx.com/xlnx/xil_prodcat_product.jsp?title=isp_standards_specs#1532.

Boundary Scan
Tools

Boundary Scan testing requires specialized test equipment and software. The Boundary Scan
test software is used to generate test vectors, which are typically delivered to the boundary
scan chain using a test pod connected to a PC.

To develop vectors for boundary scan testing, the test software must be provided with
information about the scan chain:

1. The composition of the scan chain - how many devices, what type, and so forth.

Application Note: Spartan-3 FPGA Family

XAPP476 (v1.0) July 10, 2003

Using BSDL Files for Spartan-3 FPGAs
R

ug000.book Page 367 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com/xlnx/xil_prodcat_product.jsp?title=isp_standards_specs#1532
http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

368 www.xilinx.com XAPP476 (v1.0) July 10, 2003
1-800-255-7778

Using BSDL Files for Spartan-3 FPGAs
R

The chain composition can be either specified by the user or automatically detected by the
boundary scan software.

2. The Boundary Scan architecture of each device - the Instruction Register length, opcodes,
number of I/Os, and how each of those I/Os behaves.

The Boundary Scan architecture of each device is defined in a Boundary Scan Description
Language (BSDL) file.

3. How the device I/Os are connected to each other.

This information typically is extracted from a board-level netlist.

BSDL Files Any manufacturer of a JTAG-compliant device must provide a BSDL file for that device. The
BSDL file contains information on the function of each of the pins on the device - which are
used as I/Os, which are power or ground, and so forth. All Xilinx BSDL files have file extensions
of .bsd.

BSDL files for Xilinx devices are available in the development system and on the Xilinx website
at http://www.xilinx.com/support/sw_bsdl.htm. BSDL files for other manufacturers typically can
be found on the manufacturer's website.

Prototype files for the IEEE 1532 extension to the BSDL files are also available for Xilinx
products. They are included in the development system and are available at
http://www.xilinx.com/isp/1532download.htm.

IEEE 1149.1 BSDL files appear as: <device_name>.bsd

For example: xc3s50_pq208.bsd

IEEE 1532 BSDL files appear as: <device_name>_1532.bsd

For example: xc3s50_pq208_1532.bsd

Note that prototype IEEE Std 1532 BSDL files should not be used in place of or alongside
1149.1 BSDL files.

BSDL File Composition

BSDL files describe the Boundary Scan architecture of a JTAG-compliant device, and are
written in VHDL. There are eight main parts of a BSDL file:

1. Entity Declaration

The entity declaration is a VHDL construct used to identify the name of the device that is
described by the BSDL file.

Example (from the xc3s50_pq208.bsd file):

entity XC3S50_PQ208 is

2. Generic Parameter

The Generic parameter specifies which package the BSDL file describes.

Example (from the xc3s50_pq208.bsd file):

generic (PHYSICAL_PIN_MAP : string := "PQ208");

3. Logical Port Description

The Logical Port Description lists all of the pads on a device, and states whether that pin is
an input (in bit;), output (out bit;), bidirectional (inout bit;) or unavailable for
boundary scan (linkage bit;).

ug000.book Page 368 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com/support/sw_bsdl.htm
http://www.xilinx.com/isp/1532download.htm
http://www.xilinx.com

Using BSDL Files for Spartan-3 FPGAs

XAPP476 (v1.0) July 10, 2003 www.xilinx.com 369
1-800-255-7778

R

Example (from the xc3s50_pq208.bsd file):

port (
GND: linkage bit_vector (1 to 28);
CCLK_P104: inout bit;
DONE_P103: inout bit;
HSWAP_EN_P206: in bit;
M0_P55: in bit;
M1_P54: in bit;
M2_P56: in bit;
PROG_B: in bit;
TCK: in bit;
TDI: in bit;
TDO: out bit;
TMS: in bit;
VCCAUX: linkage bit_vector (1 to 8);
VCCINT: linkage bit_vector (1 to 4);
VCCO0: linkage bit_vector (1 to 2);
IO_P2: inout bit; -- PAD124
IO_P3: inout bit; -- PAD123

4. Package Pin Mapping

The Package Pin Mapping shows how the pads on the device die are wired to the pins on
the device package.

Example (from the xc3s50_pq208.bsd file):

constant PQ208: PIN_MAP_STRING:=
"GND:(P1,P8,P14,P25,P30,P41,P47,P53,P59,P66," &
"P75,P82,P91,P99,P105,P112,P118,P129,P134,P145," &
"P151,P157,P163,P170,P179,P186,P195,P202)," &

"CCLK_P104:P104," &
"DONE_P103:P103," &
"HSWAP_EN_P206:P206," &
"M0_P55:P55," &
"M1_P54:P54," &
"M2_P56:P56," &
"PROG_B:P207," &
"TCK:P159," &
"TDI:P208," &
"TDO:P158," &
"TMS:P160," &
"VCCAUX:(P17,P38,P69,P89,P121,P142,P173,P193)," &
"VCCINT:(P70,P88,P174,P192)," &
"VCCO0:(P188,P201)," &
"IO_P2:P2," &
"IO_P3:P3," &

5. use statements

The use statement calls VHDL packages that contain attributes, types, constants, and
others that are referenced in the BSDL File.

Example (from the xc3s50_pq208.bsd file):

use STD_1149_1_1994.all;

6. Scan Port Identification

The Scan Port Identification identifies the JTAG pins: TDI, TDO, TMS, TCK, and TRST (if
used). TRST is an optional JTAG pin that is not used by Xilinx devices.

ug000.book Page 369 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

370 www.xilinx.com XAPP476 (v1.0) July 10, 2003
1-800-255-7778

Using BSDL Files for Spartan-3 FPGAs
R

Example (from the xc3s50_pq208.bsd file):

attribute TAP_SCAN_IN of TDI : signal is true;
attribute TAP_SCAN_MODE of TMS : signal is true;
attribute TAP_SCAN_OUT of TDO : signal is true;
attribute TAP_SCAN_CLOCK of TCK : signal is (33.0e6, BOTH);

7. TAP description

The TAP description provides additional information on the device’s JTAG logic. Some of
this information includes the Instruction Register length, Instruction Opcodes, and device
IDCODE. These characteristics are device specific, and may vary widely from device to
device.

Examples (from the xc3s50_pq208.bsd file):

attribute COMPLIANCE_PATTERNS of XC3S50_PQ208 : entity is
 "(PROG_B) (1)";
attribute INSTRUCTION_LENGTH of XC3S50_PQ208 : entity is 6;
attribute INSTRUCTION_OPCODE of XC3S50_PQ208 : entity is

 "EXTEST (000000)," &
attribute INSTRUCTION_CAPTURE of XC3S50_PQ208 : entity is

 "XXXX01";
attribute IDCODE_REGISTER of XC3S50_PQ208 : entity is
"XXXX" & -- version
"0001010" & -- family
"000001100" & -- array size
"00001001001" & -- manufacturer
"1"; -- required by 1149.1

8. Boundary Register description

The Boundary Register description gives the structure of the Boundary Scan cells on the
device. Each pin on a device may have up to three Boundary Scan cells, each cell
consisting of a register and a latch. Boundary Scan test vectors are loaded into or scanned
from these registers.

Example (from the xc3s50_pq208.bsd file):

attribute BOUNDARY_REGISTER of XC3S50_PQ208 : entity is
" 0 (BC_2, *, controlr, 1)," &
" 1 (BC_2, IO_P161, output3, X, 0, 1, PULL0)," & -- PAD30
" 2 (BC_2, IO_P161, input, X)," & -- PAD30

BSDL File Verification

Xilinx verification of the supplied BSDL files has two levels. Preliminary files are generated
using an automated, Xilinx-standard, BSDL generation process. The process is script-based
and extracts information directly from the device design files, which fully describe the
architecture and pinout. The quality of "Preliminary" BSDL files is very high, and the syntax is
always tested. Files marked "Final" have undergone all the tests for syntax and hardware
verification. To guarantee that the BSDL files exactly describe the operation of each pin, Xilinx
uses an independent third-party boundary-scan tool vendor — Intellitech — to verify the actual
silicon against the BSDL.

Xilinx BSDL files are checked for 1149.1 compliance with the Intellitech Eclipse product using
'strict' BSDL syntax checking. Every semantic check described in the IEEE 1149.1b-1994 (the
standard for BSDL syntax) is performed using strict parsing. Test patterns then are generated
from the BSDL file that include unique tests for every I/O pin. Each Xilinx device/package
combination is tested on the Intellitech RCT (Reduced Contact Tester). The test patterns
include verification of Test-Logic-Reset and TAP controller operation,
BYPASS/IDCODE/USERCODE instructions and registers, and pin mapping of the boundary
register to every input/output/bidir/clock pin and control cell. Finally, each device is tested for

ug000.book Page 370 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Using BSDL Files for Spartan-3 FPGAs

XAPP476 (v1.0) July 10, 2003 www.xilinx.com 371
1-800-255-7778

R

1149.1 compliance after the device is programmed by downloading a design and using the
RCT tester to verify post configuration compliance.

Using BSDLAnno for Post-Configuration Boundary Scan Behavior

Whenever possible, boundary scan tests should be performed on an unconfigured Spartan-3
device. Unconfigured devices allow for better test coverage, since all I/Os are available for
bidirectional scan vectors. Boundary Scan tests should be performed after configuration when
configuration cannot be prevented and when differential signaling standards are used. If the
differential signals are located between Xilinx devices, both devices can be tested pre-
configuration. Each side of the differential pair will behave as a single-ended signal.

The BSDL files provided by Xilinx reflect the Boundary Scan behavior of an unconfigured
device. After configuration, the boundary scan behavior of a device changes. I/O pins that were
bidirectional before configuration may now be input-only, output-only, bidirectional, or
unavailable. Boundary Scan test vectors typically are derived from BSDL files, so if boundary
scan tests are going to be performed on a configured Xilinx device, the BSDL file must be
modified to reflect the device's configured Boundary Scan behavior.

The boundary scan architecture changes after the device is configured because the boundary
scan registers sit behind the I/O buffer and sense amplifier. The hardware is arranged in this
way so that the boundary scan logic operates at the I/O standard specified by the design. This
allows boundary scan testing across the entire range of available I/O standards.

Because certain connections between the boundary scan registers and pad may change, the
boundary scan architecture is effectively changed when the device is configured. These
changes often need to be communicated to the boundary scan tester through a post-
configuration BSDL file. If the changes to the boundary scan architecture are not reflected in
the BSDL file, boundary scan tests may fail.

Xilinx offers the BSDLAnno utility to automatically modify the BSDL file for post-configuration
testing. BSDLAnno obtains the necessary design information from the routed .ncd file and
generates a BSDL file that reflects the post-configuration boundary scan architecture of the
device.

Use the following syntax to generate a post-configuration BSDL file with BSDLAnno:

bsdlanno [options] infile[.ncd] outfile[.bsd]

The infile is the routed (post-PAR) NCD design source file for the specified design. The
outfile[.bsd] is the destination for the design-specific BSDL file. The .bsd extension is
optional. For more details on BSDLanno, see Answer 15346 at
http://www.xilinx.com/xlnx/xil_ans_display.jsp?i&getPagePath=15346.

Software
Support

Xilinx offers several tools for generating device files and for device programming. Boundary
Scan test functionality is available from several third-party vendors, as noted under
Configuration Solutions on www.xilinx.com.

iMPACT

iMPACT is a full featured software tool used for configuration and programming of all Xilinx
FPGAs, CPLDs, and PROMs. It features a series of "wizard" dialogs that easily guide the user
through the every step of the configuration process. iMPACT supports a host of output file types
including SVF. iMPACT configuration software enables users to easily configure all Xilinx
FPGAs using three different modes; slave serial, SelectMAP (Slave Parallel), and JTAG IEEE
1149.1. iMPACT supports the Parallel Cable IV and MultiPRO cables.

iMPACT features a special function in the JTAG mode to test both the operation of the cable and
the robustness of the JTAG chain. The user can test chain operation by instructing iMPACT to
write to and read back from the user code location multiple thousands of times. It then counts

ug000.book Page 371 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com/xlnx/xil_ans_display.jsp?i&getPagePath=15346
http://www.xilinx.com
www.xilinx.com

372 www.xilinx.com XAPP476 (v1.0) July 10, 2003
1-800-255-7778

Using BSDL Files for Spartan-3 FPGAs
R

the number of errors that occur in this operation. This gives the user the opportunity to evaluate
the relative robustness of the JTAG chain and the susceptibility to noise and other influences
like board layout.

SVF Files

Serial Vector Format (SVF) is an industry-standard file format that is used to describe JTAG
chain operations in a compact, portable fashion. SVF files capture all of the device specific
programming information within the SVF instructions. SVF files are useful because intricate
knowledge of the device is not needed. The capability to create SVF files is included in the
iMPACT tool. See the iMPACT User Guide for more details.

J Drive Engine for IEEE 1532 Programming

Xilinx has developed and introduced the world's first IEEE Std 1532 Programming Engine: J
Drive™ Engine. Using this engine and a simple cable connected to the parallel port of any PC,
users can easily configure Xilinx IEEE Std 1532 compatible PLDs. The designer provides J
Drive Engine with the data and 1532 BSDL files for the device(s) to be programmed using a
command line interface to configure the PLDs in the JTAG chain. For more information, see
http://www.xilinx.com/xlnx/xil_prodcat_systemsolution.jsp?title=isp_jdrivemain_page.

Using the BSCAN_SPARTAN3 Macro

BSCAN_SPARTAN3 provides access to the BSCAN sites on a Spartan-3 device. It is used to
create internal boundary scan chains. The four-pin JTAG interface (TDI, TDO, TCK, and TMS)
contains dedicated pins in Spartan-3 FPGAs. To use normal JTAG for boundary scan
purposes, just hook up the JTAG pins to the port and go. The pins on the BSCAN_SPARTAN3
symbol do not need to be connected unless those special functions are needed to drive an
internal scan chain.

Spartan-3 FPGAs provide hooks for two user-definable scan chains through the USER1 and
USER2 instructions. These instructions may be used to provide access to the user design
through the JTAG interface. To take advantage of the optional USER1 and USER2 instructions,
the designer must instantiate the BSCAN_SPARTAN3 macro in the source code, and wire it to
the user-defined scan chain.

Revision
History

The following table shows the revision history for this document.

Date Version Revision

07/10/03 1.0 Initial Xilinx release.

ug000.book Page 372 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com/xlnx/xil_prodcat_systemsolution.jsp?title=isp_jdrivemain_page
http://www.xilinx.com

Spartan™-3 FPGA Handbook www.xilinx.com 373
July 11, 2003 1-800-255-7778

R

Appendices

Xilinx XAPP Application Notes

Glossary

ug000.book Page 373 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

374 www.xilinx.com Spartan™-3 FPGA Handbook
1-800-255-7778 July 11, 2003

R

ug000.book Page 374 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan™-3 FPGA Handbook www.xilinx.com 375
July 11, 2003 1-800-255-7778

R

Appendix A

Xilinx XAPP Application Notes

This appendix summarizes all application notes that are relevant to the Spartan-3 FPGA
family. The latest versions of these documents are available on the Xilinx website at
http://www.xilinx.com/apps/sp3app.htm.

Table A-1: Application Note Summary for Spartan-3 FPGA Family

Application
Note Number

Title Description

Memory

XAPP201 An Overview of Multiple CAM
Designs

Flexible CAMs (Content Addressable Memory) are
implemented by taking advantage of the
reprogrammability of the basic LUT as a Shift Register or
a SelectRAM memory and the fast carry logic chain.

XAPP228 Quad-Port Memories Describes how the dual-port block memories can be used
as Quad-Port memories. This essentially involves a data
access time (halved) versus functionality (doubled) trade-
off. The overall bandwidth of the block memory in terms
of bits per second will remain the same.

XAPP258 FIFOs Using Block RAM Describes a way to create a common-clock (synchronous)
version and an independent-clock (asynchronous)
version of a 511 x 36 FIFO, with the depth and width
being adjustable within the Verilog or VHDL code.

XAPP260 Using Block RAM for High-
Performance Read/Write CAMs

Content Addressable Memory (CAM) offers increased
data search speed. This innovative design is suited for
small embedded Cams with high-speed match and write
requirements. The reference design is built using the true
dual-port block SelectRAM+™ feature.

XAPP261 Data-Width Conversion FIFOs Using
Block RAM

Describes how to create a common-clock (synchronous)
version and an independent-clock (asynchronous)
version of a FIFO for data-width conversion with
different width read and write data ports.

ug000.book Page 375 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com/apps/sp3app.htm
http://www.xilinx.com

376 www.xilinx.com Spartan™-3 FPGA Handbook
1-800-255-7778 July 11, 2003

Xilinx XAPP Application Notes
R

XAPP291 Self-Addressing FIFO A self-addressing FIFO reference design uses block
memories to store both data and address information in a
single memory location. No external counters are
required; only flag and status information logic is used.
Their advantage is in using only one clock load. In
addition, the status mechanism is very simple, making
FIFOs more suitable for data throttling in continuous
data systems instead of the full or empty detection
required in frame based data systems.

LFSRs

XAPP211 Pseudo-Random Noise Generators
Using the SRL Macro

Pseudo-random Noise (PN) generators are at the heart of
every spread spectrum system. Many PN generators are
required within CDMA base stations. PN generators are
based upon LFSRs. Xilinx devices implement efficient
LFSRs and deliver a significant reduction in resource
utilization when compared with alternative flip-flop only
PLD structures. For example, a 16-stage LFSR can be
realized in just one LUT.

XAPP217 Gold Code Generators Gold code generators are used extensively in CDMA
systems to generate code sequences with good
correlation properties. Describes the implementation of
Gold code generators in Spartan-II devices. The Gold
code generators use efficiently implemented LFSRs using
the SRL16 macro.

XAPP220 LFSRs as Functional Blocks in
Wireless Applications

Describes two implementations of an LFSR using the
SRL16 primitive for area-efficient designs. The first LFSR
implementation describes the parallel output access and
parity calculation; the second describes the multi-cycle
output access and sequential parity calculation.

Multipliers

XAPP284 Matrix Math, Graphics, and Video Describes a unique way to implement a 3 x 3-matrix
multiplier using a Virtex™-II device. By running
multipliers at multiples of the system clock rate in slower
applications, silicon resources can be leveraged.

XAPP636 Optimal Pipelining of the I/O Ports
of Virtex-II Multipliers

This application note and reference design describes a
high-speed, optimized implementation of a Virtex-II
pipelined multiplier primitive.

Table A-1: Application Note Summary for Spartan-3 FPGA Family

Application
Note Number

Title Description

ug000.book Page 376 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan™-3 FPGA Handbook www.xilinx.com 377
July 11, 2003 1-800-255-7778

Xilinx XAPP Application Notes
R

Microcontrollers

XAPP213 PicoBlaze™ 8-Bit Microcontroller The Constant Coded Programmable State Machine
(PicoBlaze) solution is a fully embedded 8-bit
microcontroller macro. The module is remarkably small
at just 35 CLBs. This PicoBlaze solution provides 49
different instructions at 35 million instructions per
second. This performance exceeds that of traditional
discrete microcontroller devices, providing a cost-
attractive solution for data processing as well as control
algorithms. Fully embedded including the program
memory, the PicoBlaze solution can be connected to
many other functions and peripherals tuned to a specific
design.

Configuration

XAPP501 Configuration Quick Start
Guidelines

Discusses configuration and programming options for
Xilinx CPLD, FPGA, and PROM families and
demonstrates some of the most popular configuration
methods.

XAPP502 Using a Microprocessor to Configure
Xilinx FPGAs via Slave Serial or
SelectMAP Modes

In embedded systems designers can reduce component
count and increase flexibility by using a microprocessor
to configure an FPGA. C code illustrates using either
Slave Serial or SelectMAP mode. CPLD design files
illustrate a synchronous interface between processor and
FPGA.

Power

XAPP623 Power Distribution System (PDS)
Design: Using Bypass/Decoupling
Capacitors

Covers principles of power distribution systems and
bypass or decoupling capacitors. A step-by-step process
is described where a power distribution system can be
designed and verified. The final section discusses
additional sources of power supply noise and provides
resolutions.

XAPP653 3.3V PCI Reference Design 3.3V regulator reference design to work with 3.3V I/O
pins using the PCI I/O standard.

Table A-1: Application Note Summary for Spartan-3 FPGA Family

Application
Note Number

Title Description

ug000.book Page 377 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

378 www.xilinx.com Spartan™-3 FPGA Handbook
1-800-255-7778 July 11, 2003

Xilinx XAPP Application Notes
R

Timing

XAPP259 System Interface Timing Parameters Defines timing parameters required for the analysis of
source synchronous and system synchronous
applications. Explains the DCM clock phase accuracy
parameters, system-synchronous pin-to-pin setup/hold
with DCM parameters, and all source-synchronous
parameters. Memory interface analyses are provided as
examples.

XAPP268 Active Phase Alignment The DCM allows fine phase adjustment of an incoming
clock. Normally the DCM is set up to provide a constant
phase shift that allows the incoming data to be correctly
clocked in. This phase shift is corrected for both
temperature and voltage, but can vary slightly across
different devices and wafer lots, thus effectively reducing
slightly the receiver window or "eye". One way of
correcting for this is to set up the DCM phase shift
dynamically via training either at device reset or on a
continuous basis. Systems using both single and double
data rate reception can use the concepts in this
application note.

XAPP622 SDR LVDS Transmitter/Receiver Describes Single Data Rate (SDR) transmitter and
receiver interfaces using 17 LVDS pairs (one clock and 16
data channels). Describes a method of implementing an
SDR interface at clock frequencies higher than the
maximum operating frequency of the DCM.

Table A-1: Application Note Summary for Spartan-3 FPGA Family

Application
Note Number

Title Description

ug000.book Page 378 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan™-3 FPGA Handbook www.xilinx.com 379
July 11, 2003 1-800-255-7778

R

Appendix B

Glossary

Numeric
3-state

Includes high, low and disabled states, also known as three-state

90nm
Feature size in Spartan-3 process technology, 1 nanometer (nm) is 1
billionth of a meter

A
advance specification

Initial estimates of characteristics based on simulation, subject to
change.

AllianceCORE
IP created and supported by third parties

AllianceEDA
Third-party partners supplying Electronic Design Automation tools

Alliance
Xilinx ISE development system for interfacing to third-party partners

ASIC
Application Specific Integrated Circuit

ASSP
Application Specific Standard Product

B
bank

Groups of I/Os with a common VREF and/or VCCO

BaseX
Xilinx low-cost ISE development system

BGA
Ball Grid Array package

ug000.book Page 379 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

380 www.xilinx.com Spartan™-3 FPGA Handbook
1-800-255-7778 July 11, 2003

Glossary
R

BitGen
Bitstream Generator tool

bitstream
FPGA configuration file

block RAM
Dedicated embedded 18K memory blocks

BLVDS
Bus LVDS for bidirectional signals

boundary scan
Serial test protocol defined by IEEE 1149.1 standard

BRAM
See “block RAM”

BSP
Board Support Package

BUFG
Global clock buffer

BUFGCE
Global clock buffer with enable input

BUFGMUX
Global clock multiplexer buffer

C
CAM

Content-Addressable Memory

CCLK
Configuration Clock

ChipScope
In-circuit real-time debugging tool

CLB
Configurable Logic Block

CLKIN
Clock Input to DCM

commercial
Junction temperature operating range 0-85 °C

configuration
Process of programming an FPGA or the program itself

ug000.book Page 380 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan™-3 FPGA Handbook www.xilinx.com 381
July 11, 2003 1-800-255-7778

Glossary
R

constraints
Implementation parameters defined by user

CORE Generator
Software tool providing a set of ready-made functions as IP

CPLD
Complex Programmable Logic Device

D
daisy chain

FPGAs connected in series in order to configure from a single source

Data2BRAM
Block RAM contents definition tool

DCI
Digitally Controlled Impedance on-chip termination, also known as
XCITE

DCM
Digital Clock Manager

DCM Wizard
DCM design entry tool

DDR
Double Data Rate I/O registers

DFS
Digital Frequency Synthesizer part of the DCM

differential
Signaling scheme using two complementary signals to transmit data,
such as LVDS

DIN
Data Input, FPGA configuration input

direct line
Routing that connects adjacent CLBs

distributed RAM
16x1 RAM blocks built from LUTs

DLL
Delay Locked Loop part of the DCM

D-MIPS
Dhrystone MIPS or Dhrystone Million Instructions Per Second
processor performance benchmark

ug000.book Page 381 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

382 www.xilinx.com Spartan™-3 FPGA Handbook
1-800-255-7778 July 11, 2003

Glossary
R

DONE
Device pin that indicates end of configuration process

double line
Routing that connects to one of every two CLBs

DOUT
Data Out, FPGA configuration output

DSP
Digital Signal Processing

dual port
Two independent data ports allowing access to same memory

E
ECS

Engineering Capture System; Xilinx schematic entry tool

EDIF
Electronic Design Interchange Format, industry standard for
specifying a logic design in text

EDK
Embedded Development Kit for MicroBlaze embedded CPU

ESD
Electro-Static Discharge

EST
Embedded Systems Tools

F
F5MUX

CLB multiplexer that combines two LUTs to create any 5-input
function

FAE
Field Application Engineer

FDDR
DDR Flip-flop

FF
Flip-Flop, edge-sensitive storage element

FG or FBGA
Fine-pitch ball grid array package

ug000.book Page 382 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan™-3 FPGA Handbook www.xilinx.com 383
July 11, 2003 1-800-255-7778

Glossary
R

FIFO
First In, First Out memory

FiMUX
F6MUX, F7MUX, or F8MUX CLB multiplexer

Flash
Reprogrammable, non-volatile memory technology

Floorplanner
Tool for graphical analysis and specification of placement

Forge
High-level logic description language using Java syntax

Foundation
Xilinx ISE development system with integrated design entry and
verification tools

FPC
Field-Programmable Controller (eg. MicroBlaze or PicoBlaze FPC)

FPGA
Field-Programmable Gate Array

FPGA Editor
Tool for graphical analysis and specification of placement and routing

FSM
Finite State Machine

FT or FTBGA
Fine-pitch thin ball grid array package

function generator
4-input look-up table, also known as LUT

G
GCLK

Global Clock input

GNU
Pronounced "guh-NEW". Free embedded development tools

GSR
Global Set/Reset

GTL
Gunning Transceiver Logic I/O standard

GTLP
GTL Plus I/O standard

ug000.book Page 383 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

384 www.xilinx.com Spartan™-3 FPGA Handbook
1-800-255-7778 July 11, 2003

Glossary
R

GTS
Global Three-State

GWE
Global Write Enable

H
HDL

Hardware Description Language

hex line
Routing that connects to one of every three CLBs

Hoplite
A soldier in the Spartan army

HSTL
High-Speed Transceiver Logic I/O standard

HSWAP_EN
Disables pull-ups on I/Os during configuration

HyperTransport
I/O standard selected via LDT option

I
IBIS

I/O Buffer Information Specification

IC
Integrated Circuit

ICR
In-Circuit Reconfigurable

ILA
Integrated Logic Analyzer. See “ChipScope”

iMPACT
Xilinx programming tool

industrial
Junction temperature operating range -40-100C

INIT
1. INITialization pin

2. INITial state control

I/O
Input/Ouput

ug000.book Page 384 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan™-3 FPGA Handbook www.xilinx.com 385
July 11, 2003 1-800-255-7778

Glossary
R

IOB
Input/Output Block

IP
1. Intellectual Property, usually referring to predefined core designs

2. Internet Protocol

ISE
Integrated Software Environment; Xilinx development system

ISP
1. In-System Programmable

2. Internet Service Provider

J
jitter

In a periodic signal, the delay between the expected and actual
transition

JTAG
Joint Test Action Group, common name for IEEE 1149.1 boundary scan
standard

L
LDT

Lightning Data Transport, previous name to HyperTransport

lock
When DLL has brought clock output in phase with clock intput

logic cell
Equivalent to a 4-input LUT and a flip-flop, Spartan-3 CLBs have
additional logic making them equivalent to nine logic cells

LogiCORE
IP created and supported by Xilinx

long line
Routing that connects to one of every six CLBs

LUT
Look-Up Table, also known as function generator

LVCMOS
Low Voltage CMOS I/O standard

LVDS
Low Voltage Differential Signaling I/O standard

ug000.book Page 385 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

386 www.xilinx.com Spartan™-3 FPGA Handbook
1-800-255-7778 July 11, 2003

Glossary
R

LVDSEXT
LVDS EXTended I/O standard

LVTTL
Low Voltage TTL I/O standard

M
map

Translate a logic design to a physical design

master
Configuration mode where the FPGA supplies the configuration clock

MicroBlaze
32-bit soft RISC processor core

module
1. Block of a design

2. Section of a data sheet

MultiPRO
High-speed desktop download tool that programs all Xilinx devices

mux
Multiplexer

N
NC

No Connect

NCD
Native Circuit Description, physical FPGA file

no change
Block RAM mode where data is written and outputs maintain current
state

NRE
Non-Recurring Engineering or mask charges associated with gate
arrays, ASICs, and SOCs. NRE charges do not apply to FPGAs.

P
PACE

Pinout and Area Constraints Editor

PAR
Place And Route

ug000.book Page 386 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan™-3 FPGA Handbook www.xilinx.com 387
July 11, 2003 1-800-255-7778

Glossary
R

PCI
Peripheral Component Interconnect local bus standard

PicoBlaze
Fuly embedded 8-bit RISC controller optimized for Xilinx FPGAs

Platform Flash
Cost-effective, in-system reprogrammable Flash for storing FPGA
configuration bitstreams

PLD
Programmable Logic Device, generic name for FPGAs and CPLDs

POR
Power-On Reset

PQ or PQFP
Plastic quad flat pack package

preliminary specification
Characteristics not expected to change, based on characterization

primitive
Design library element

production specification
Final characteristics

PROG
PROGram pin

Project Navigator
Xilinx user interface to manage the design process

PROMgen
PROM file generator

PS
Phase Shifter part of DCM

R
RAM

Writeable Random Access Memory

readback
Reading configuration data out of an FPGA

read first
Block RAM mode in which data is written and previous data is sent to
outputs

ug000.book Page 387 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

388 www.xilinx.com Spartan™-3 FPGA Handbook
1-800-255-7778 July 11, 2003

Glossary
R

register
A set of flip-flops

RISC
Reduced Instruction Set Computer

ROM
Read-Only Memory

RPM
Relationally Placed Macro

RSDS
Reduced Swing Differential Signaling I/O standard

RTL
Register Transfer Level or Language, depending on context

RTOS
Real-Time Operating System

S
schematic

Graphical representation of a design

SDR
1. Single Date Rate

2. Software Defined Radio

SelectIO
I/O with programmable functionality and interface standards

SelectMAP
Port used in Master and Slave Parallel configuration modes

SelectRAM
Hierarchical memory system including distributed RAM and block
RAM

single ended
Signaling scheme using one signal to transmit data, such as LVCMOS

single port
One data port allowing access to a memory

skew
Difference in timing

slave
Configuration mode with external clock source

ug000.book Page 388 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan™-3 FPGA Handbook www.xilinx.com 389
July 11, 2003 1-800-255-7778

Glossary
R

slew rate
I/O transition speed

slice
One-fourth of a CLB, contains two LUTs

SLICEL
Slice for Logic only, right-hand LUTs in CLB

SLICEM
Slice for Memory or logic, left-hand LUTs in CLB

SMT
Surface Mount Technology

SOC
System On a Chip. Typically, a single device that integrates a
processor, memory, and logic

Spartan-3
Family of low-cost Xilinx FPGAs ranging from the XC3S50 to the
XC3S5000

Spartan Series
All families of low-cost Xilinx FPGAs: Spartan, Spartan-XL, Spartan-
II, Spartan-IIE, and Spartan-3

SPICE
Transistor-level circuit model

SPROM
Serial PROM

SR
Set/Reset

SRL
Shift Register LUT

SSTL
Stub Series Terminated Logic I/O standard

staggered pads
Dual rows of I/O pads

startup
Device transition from configuration to operation

synthesis
Translation from behavioral HDL to structural netlist

system gate
Equivalent 2-input function required to implement an FPGA resource

ug000.book Page 389 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

390 www.xilinx.com Spartan™-3 FPGA Handbook
1-800-255-7778 July 11, 2003

Glossary
R

System Generator
Software tool for designing, simulating, and implementing FPGA-
based DSP designs

T
TBUF

Three-state BUFfer

Three-state
Includes high, low, and disabled states, also known as 3-state

TJ
Junction Temperature

TQ or TQFP
Thin quad flat pack package

TRACE
Timing Reporter And Circuit Evaluator

True Dual-Port RAM
RAM with either of two ports configurable as input or output

U
UCF

User Constraints File

ULVDS
Ultra LVDS

V
VCCAUX

VCC AUXiliary

VCCINT
VCC INTernal

VCCO
VCC Output/input

Verilog
A high-level design language

VHDL
VHSIC HDL high-level design language

VQ or VQFP
Very thin quad flat pack package

ug000.book Page 390 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan™-3 FPGA Handbook www.xilinx.com 391
July 11, 2003 1-800-255-7778

Glossary
R

VREF
Voltage REFerence

VRN
Voltage Reference Negative for DCI

VRP
Voltage Reference Positive for DCI

VTT
Board termination voltage

W
WebPACK

Xilinx free downloadable ISE development system

write first
Block RAM mode in which data is written and sent to outputs

X
XAPP

Xilinx Application Note

XCITE
Xilinx Controlled Impedance TEchnology, also known as DCI

XMD
Xilinx Microprocessor Debug

XPower
Xilinx Power estimator tool

XPS
Xilinx Platform Studio

XST
Xilinx Synthesis Technology

XtremeDSP
Xilinx DSP solution including silicon, cores, development tools, and
support

ug000.book Page 391 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

392 www.xilinx.com Spartan™-3 FPGA Handbook
1-800-255-7778 July 11, 2003

Glossary
R

ug000.book Page 392 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan™-3 FPGA Handbook www.xilinx.com 393
July 11, 2003 1-800-255-7778

R

Index & Sales Office Listing

ug000.book Page 393 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

394 www.xilinx.com Spartan™-3 FPGA Handbook
1-800-255-7778 July 11, 2003

R

ug000.book Page 394 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan™-3 FPGA Handbook www.xilinx.com 395
July 11, 2003 1-800-255-7778

A
advance specification 57
Alliance 297

B
bank 24
BaseX 297
BitGen 337

options affecting pins 88
bitstream 48
block RAM

Architecture 28
Usage 177

read first 190, 191
write first 190

BSDL 367
BUFGMUX 45

C
CAM 208
CCLK 81
ChipScope 303
configuration 48
constraints 290
CORE Generator 300, 305

block RAM 185, 199
Distributed RAM 224
multiplexer 265
multiplier 275
SRL 241

creates 224

D
data sheet

Platform Flash Configuration PROMs
321

Spartan-3 FPGAs 11
DCI 21
DCM 35, 109
DDR 19
DFS 41, 113
direct line 47
Distributed RAM

Architecture 28
Usage 217

DLL 36, 113
DONE 82

double line 47
DOUT 73, 77
dual port 180

E
ECS 299

F
F5MUX 247
FF

CLB 26
IOB 17

FG or FBGA
FG456 pinout 100
FG676 pinout 102
FG900 pinout 104
overview 91

FiMUX 247
Floorplanner 302
Foundation 297
FPC 313
FPGA Editor 302
FT or FTBGA

overview 91
pinout 98

function generator 28

G
GCLK 45, 81

H
HDL 290
hex line 47
HSWAP_EN 25, 83

I
IBIS 363
iMPACT 303
implementation 291
INIT 74, 77
interconnect 47
IOB 17
IP 300, 305

J
JTAG 20, 367

port 83

L
long line 47
LUT 26

M
MAP 292
master 50
MicroBlaze 313
multiplier

architecture 34
usage 267

mux 247

N
NC 85

P
PACE 302
packages

drawings 353
overview 91
table 14

PAR 293
PicoBlaze 313
POR 52
PQ or PQFP

overview 91
pinout 96

PROG 82
Project Navigator 297
PROM 321
PS 42, 113

R
read first 190
readback 55

Index

ug000.book Page 395 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

396 www.xilinx.com Spartan™-3 FPGA Handbook
1-800-255-7778 July 11, 2003

R

S
schematic 289
SelectIO 20
simulation 294
slave 49, 50
slice 26
Spartan-3

overview 11
packages 14

SRL 229
synthesis 290
System Generator 300

T
TQ or TQFP

overview 91
pinout 95

V
VCCAUX 85
VCCINT 85
VCCO 85
verification 293
VQ or VQFP

overview 91
pinout 94

VREF 84

W
WebPACK 297
write first 190

X
XPower 303
XST 299

ug000.book Page 396 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan™-3 FPGA Handbook www.xilinx.com 397
July 11, 2003 1-800-255-7778

R

ug000.book Page 397 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

398 www.xilinx.com Spartan™-3 FPGA Handbook
1-800-255-7778 July 11, 2003

R

ug000.book Page 398 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

Spartan™-3 FPGA Handbook www.xilinx.com 399
July 11, 2003 1-800-255-7778

R

ug000.book Page 399 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com

R

For updates and addresses, see http://www.xilinx.com/company/sales/offices.htm

For information on Xilinx North American Sales Representative offices, see
http://www.xilinx.com/company/sales/na_reps.htm

For information on Xilinx International Sales Representative offices, see
http://www.xilinx.com/company/sales/int_reps.htm

Headquarters

2100 Logic Drive
San Jose, CA 95124

Tel: (408) 559-7778
Fax: (408) 559-7114
TWX: (510) 600-8750
Web: http://www.xilinx.com

North America

Phoenix, AZ
Tel: (480) 753-4503
Fax: (480) 753-4504

Irvine, CA
Tel: (949) 471-1300
Fax: (949) 727-3128

San Diego, CA
Tel: (858) 558-5974
Fax: (858) 558-6418

Sunnyvale, CA
Tel: (408) 470-0000
Fax: (408) 245-9865

Greenwood Village, CO
Tel: (303) 220-7541
Fax: (303) 220-8641

Winter Park, FL
Tel: (407) 673-8661
Fax: (407) 673-8663

Schaumburg, IL
Tel: (847) 605-1972
Fax: (847) 605-1976

Deephaven, MN
Tel: (952) 473-4816
Fax: (952) 473-5060

Marriottsville, MD
Tel: (410) 442-9748
Fax: (410) 442-9749

Nashua, NH
Tel: (603) 521-1200
Fax: (603) 891-0890

Fairfield, NJ
Tel: (973) 808-2780
Fax: (973) 808-2738

Raleigh, NC
Tel: (919) 455-2980
Fax: (919) 846-8316

Brecksville, OH
Tel: (440) 526-1991
Fax: (440) 526-5426

Portland, OR
Tel: (503) 293-9016
Fax: (503) 293-3858

Dallas, TX
Tel: (972) 246-0220
Fax: (972) 960-0927

Salt Lake City, UT
Tel: (801) 281-2245
Fax: (801) 281-2369

Bellevue, WA
Tel: (425) 451-7000
Fax: (425) 990-8989

Oakville, Ontario Canada
Tel: (905) 337-5850
Fax: (905) 337-3554

European Headquarters

Benchmark House, 203
Brooklands Rd.
Weybridge Surrey KT13 0RH
United Kingdom

Tel: +44-870-7350-600
Fax: +44-870-7350-601

Benelux
Tel : +32-53-848310
Fax: +32-53-848311

France and Spain
Tel: +33-1-34-63-01-01
Fax: +33-1-34-63-01-09

Germany, Switzerland, and
Austria
Tel: +49-89-93088-0
Fax: +49-89-93088-188

Israel
Tel: +972-3-9295-318
Fax: +972-3-9295-319

Italy
Tel: +39-02-487-12-101
Fax: +39-02-400-94-700

Sweden, Norway, Denmark, and Finland
Tel: +46-8-594-61-660
Fax: +46-8-594-61-661
e-mail: xilinx-nordic@xilinx.com

Japan

Tel: +81-3-5321-7711
Fax: +81-3-5321-7765
Web: http://www.xilinx.co.jp

Asia Pacific Headquarters

Hong Kong

Tel: +852-2-424-5200
Fax: +852-2-494-7159
e-mail: hongkong@xilinx.com

Korea
Tel : +822-761-4277
Fax : +822-761-4278
e-mail: ask-korea@xilinx.com

Shanghai
Tel: +86-21-6886-2323, 2322
Fax: +86-21-6886-2333
e-mail: ask-china@xilinx.com
Web: http://www.xilinx-china.com

Shenzhen
Tel: +86-755-2588-2622
Fax: +86-755-2583-0986
e-mail: ask-china@xilinx.com
Web: http://www.xilinx-china.com

Taiwan
Tel: +886-2-2739-6765
Fax: +886-2-2739-8423
e-mail: ask-taiwan@xilinx.com

Xilinx Sales Offices

ug000.book Page 400 Wednesday, July 23, 2003 9:46 AM

http://www.xilinx.com
http://www.xilinx.co.jp
http://www.xilinx-china.com
http://www.xilinx-china.com
http://www.xilinx.com/company/sales/offices.htm
http://www.xilinx.com/company/sales/na_reps.htm
http://www.xilinx.com/company/sales/int_reps.htm

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue true
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

