

Programmable Logic Design
Quick Start Hand Book

By Karen Parnell & Nick Mehta

June 2003

Fourth
Edition
ISE 5.1i

Programmable Logic Design Quick Start Hand Book Page 2
© Xilinx

ABSTRACT

Whether you design with discrete logic, base all of your designs on
microcontrollers, or simply want to learn how to use the latest and
most advanced programmable logic software, you will find this book
an interesting insight into a different way to design.

Programmable logic devices were invented in the late seventies and
since then have proved to be very popular and are now one of the
largest growing sectors in the semiconductor industry. Why are
programmable logic devices so widely used? Programmable logic
devices provide designers ultimate flexibility, time to market
advantage, design integration, are easy to design with and can be
reprogrammed time and time again even in the field to upgrade
system functionality.

This book was written to complement the popular Xilinx Campus
Seminar series but can also be used as a stand-alone tutorial and
information source for the first of your many programmable logic
designs. After you have finished your first design this book will prove
useful as a reference guide or quick start handbook.

The book details the history of programmable logic, where and how to
use them, how to install the free, full functioning design software
(Xilinx WebPACK ISE included with this book) and then guides you
through your first of many designs. There are also sections on VHDL
and schematic capture design entry and finally a data bank of useful
applications examples.

We hope you find the book practical, informative and above all easy
to use.

Karen Parnell & Nick Mehta

Programmable Logic Design Quick Start Hand Book Page 3
© Xilinx

Programmable Logic Design
Quick Start Hand Book

Programmable Logic Design Quick Start Hand Book Page 4
© Xilinx

NAVIGATING THE BOOK

This book was written for both the professional engineer who has
never designed using programmable logic devices and for the new
engineer embarking on their exciting career in electronics design. To
accommodate this the following navigation section has been written to
help the reader decide in advance which section he/she wishes to
read.

This chapter gives an overview of how and
where programmable logic devices are used. It
gives a brief history of the programmable logic
devices and goes on to describe the different
ways of designing with PLDs.

Chapter 2 describes the products and services
offered by Xilinx to ensure PLD designs enable
time to market advantage, design flexibility and
system future proofing. The Xilinx portfolio
includes both CPLD & FPGA devices, design
software, design services & support, and Cores.

The WebPACK ISE design software offers a
complete design suite based on the Xilinx
Foundation ISE series software. This chapter
describes how to install the software and what
each module does.

Chapter 2
Xilinx

Solutions

Chapter 3
WebPACK
ISE Design
Software

Chapter 1
Introduction

Programmable Logic Design Quick Start Hand Book Page 5
© Xilinx

NAVIGATING THE BOOK (Continued)

This section is a step by step approach to your
first simple design. The following pages are
intended to demonstrate the basic PLD design
entry implementation process.

This chapter discusses the Synthesis and
implementation process for FPGAs. The design
targets a Spartan IIE FPGA.

This section takes the VHDL or Schematic design
through to a working physical device. The design
is the same design as in the previous chapters
but targeting a CoolRunner CPLD.

The final chapter contains a useful list of design
examples and applications that will give you a
good jump-start into your future programmable
logic designs. It will also give you pointers on
where to look for and download code and search
for Intellectual Property (IP) Cores from the Xilinx

 Web site.

Chapter 4
WebPACK
ISE Design

Entry

Chapter 5
Implementing

FPGAs

Chapter 7
Design

Reference
Bank

Chapter 6

Implementing
CPLDs

Programmable Logic Design Quick Start Hand Book Page 6
© Xilinx

CONTENTS

 ABSTRACT
 NAVIGATING THE BOOK
 CONTENTS
 ABBREVIATIONS

Chapter 1 INTRODUCTION
 1.1 The History of Programmable Logic

1.2 Complex Programmable Logic
Devices (CPLDs)

 1.2.1 Why Use a CPLD?
1.3 Field Programmable Gate Arrays

(FPGAs)
1.4 The Basic Design Process
1.5 Intellectual Property (IP) Cores
1.6 Design Verification

Chapter 2 XILINX SOLUTIONS

2.1 Introduction
2.2 Xilinx Devices

2.2.1 Platform FPGAs
2.2.2 Virtex FPGAs
2.2.3 Spartan FPGAs
2.2.4 Xilinx CPLDs
2.2.5 Military and Aerospace
2.2.6 Automotive and

Industrial
2.3 Design Tools
2.4 Xilinx Intellectual Property (IP) Cores
2.5 Web Based Information Guide

Programmable Logic Design Quick Start Hand Book Page 7
© Xilinx

CONTENTS (Continued)

2.5.1 ESP Emerging
Standards and
Protocols

2.5.2 Xtreme DSP
2.5.3 Xilinx On Line
2.5.4 Configuration Solutions
2.5.5 Processor Central
2.5.6 Memory Corner
2.5.7 DSP Central
2.5.8 Connectivity Central
2.5.9 Signal Integrity
2.5.10 Education Services
2.5.11 University Program
2.5.12 Design Consultants
2.5.13 Technical Support

Chapter 3 WebPACK ISE DESIGN

SOFTWARE
3.1 Module Descriptions
3.2 WebPACK Design Suite

 3.3 WebPACK CDROM Installation
 3.4 Getting Started

Chapter 4 WebPACK ISE DESIGN ENTRY
 4.1 Introduction
 4.2 Design Entry
 4.3 Functional Simulation

4.4 State Machine Editor
4.5 Top Level VHDL Designs
4.6 Top Level Schematic Designs

Programmable Logic Design Quick Start Hand Book Page 8
© Xilinx

CONTENTS (Continued)

Chapter 5 IMPLEMENTING FPGAS

5.1 Introduction
5.2 Synthesis
5.3 Constraints Editor
5.4 Reports
5.5 Timing Simulation
5.6 Configuration

Chapter 6 IMPLEMENTING CPLDS
 6.1 Introduction

6.2 Synthesis
 6.3 The Constraints File
 6.4 CPLD Reports
 6.5 Timing Simulation
 6.6 Programming

Chapter 7 DESIGN REFERENCE BANK
 7.1 Introduction

7.2 Get the Most out of Microcontroller-
Based Designs

7.3 Application Notes and Example Code
7.3 Website Reference

GLOSSARY OF TERMS

Programmable Logic Design Quick Start Hand Book Page 9
© Xilinx

ABBREVIATIONS

ABEL Advanced Boolean Expression Language
ASIC Application Specific Integrated Circuit
ASSP Application Specific Standard Product
ATE Automatic Test Equipment
CDMA Code Division Multiple Access
CPLD Complex Programmable Logic Device
CLB Configurable Logic Block
DCM Digital Clock Manager
DCI Digitally Controlled Impedance
DES Data Encryption Standard
DRAM Dynamic Random Access Memory
DSL Digital Subscriber Line
DSP Digital Signal Processor
DTV Digital Television
ECS Schematic Editor
EDA Electronic Design Automation
FAT File Allocation Table
FIFO First In First Out
FIR Finite Impulse Response (Filter)
Fmax Frequency Maximum
FPGA Field Programmable Gate Array
FSM Finite State Machine
GPS Geo-stationary Positioning System
GUI Graphical User Interface
HDTV High Definition Television
IP Intellectual Property
I/O Inputs and Outputs
IRL Internet Reconfigurable Logic
ISP In-System Programming
IQ Extended temperature devices for automotive

and industrial applications
JTAG Joint Test Advisory Group
LSB Least Significant Bit

Programmable Logic Design Quick Start Hand Book Page 10
© Xilinx

ABBREVIATIONS (Continued)

LUT Look Up Table
MP3 MPEG Layer III Audio Coding
MPEG Motion Picture Experts Group
MSB Most Significant Bit
NRE Non-Recurring Engineering (Cost)
PAL Programmable Array Logic device
PCB Printed Circuit Board
PCI Peripheral Component Interconnect
PCMCIA Personal Computer Memory Card International

Association
PCS Personnel Communications System
PLA Programmable Logic Array
PLD Programmable Logic Device
PROM Programmable Read Only Memory
EPROM Erasable Programmable Read Only Memory
RAM Random Access Memory
ROM Read Only Memory
SPLD Simple Programmable Logic Device
SRAM Static Random Access Memory
SRL16 Shift Register LUT
Tpd Time of Propagation Delay through the device
UMTS Universal Mobile Telecommunications System
VHDL VHISC High Level Description Language
VHSIC Very High Speed Integrated Circuit
VSS Visual Software Solutions
WLAN Wireless Local Access Network
XST Xilinx Synthesis Technology
XCITE Xilinx Controlled Impedance TEchnology
QML Qualified Manufacturers Listing
QPRO QML Performance Reliability of supply Off-the-

shelf ASIC

Programmable Logic Design Quick Start Hand Book Page 11
© Xilinx

INTRODUCTION

The following chapter gives an overview of how and where
programmable logic devices are used. It gives a brief history of the
programmable logic devices and goes on to describe the different
ways of designing with PLDs.

1.1 The History of Programmable Logic

By the late 70’s, standard logic devices were the rage and printed
circuit boards were loaded with them. Then someone asked the
question: “What if we gave the designer the ability to implement
different interconnections in a bigger device?” This would allow the
designer to integrate many standard logic devices into one part. In
order to give the ultimate in design flexibility Ron Cline from
Signetics (which was later purchased by Philips and then eventually
Xilinx !) came up with the idea of two programmable planes. The
two programmable planes provided any combination of ‘AND’ and
‘OR’ gates and sharing of AND terms across multiple OR’s.

This architecture was very flexible, but at the time due to wafer
geometry's of 10um the input to output delay or propagation delay
(Tpd) was high which made the devices relatively slow.

 1

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 12
© Xilinx

Figure 1.1 What is a CPLD?

MMI (later purchased by AMD) was enlisted as a second source for
the PLA array but after fabrication issues was modified to become
the Programmable Array Logic (PAL) architecture by fixing one of
the programmable planes. This new architecture differs from that of
the PLA by having one of the programmable planes fixed - the OR
array. This PAL architecture had the added benefit of faster Tpd and
less complex software but without the flexibility of the PLA structure.
Other architectures followed, such as the PLD (Programmable Logic
Device). This category of devices is often called Simple PLD (SPLD).

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 13
© Xilinx

Figure 1.2 SPLD Architectures

The architecture has a mesh of horizontal and vertical interconnect
tracks. At each junction, there is a fuse. With the aid of software
tools, the user can select which junctions will not be connected by
“blowing” all unwanted fuses. (This is done by a device programmer
or more commonly nowadays using In-System Programming or ISP).
 Input pins are connected to the vertical interconnect and the
horizontal tracks are connected to AND-OR gates, also called
“product terms”. These in turn connect to dedicated flip-flops whose
outputs are connected to output pins.

PLDs provided as much as 50 times more gates in a single package
than discrete logic devices! A huge improvement, not to mention
fewer devices needed in inventory and higher reliability over
standard logic.

Programmable Logic Device (PLD) technology has moved on from
the early days with such companies as Xilinx producing ultra low
power CMOS devices based on Flash technology. Flash PLDs
provide the ability to program the devices time and time again

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 14
© Xilinx

electrically programming and ERASING the device! Gone are the
days of erasing taking in excess of twenty minutes under an UV
eraser.

1.2 Complex Programmable Logic Devices (CPLDs)

Complex Programmable Logic Devices (CPLD) are another way to
extend the density of the simple PLDs. The concept is to have a few
PLD blocks or macrocells on a single device with general purpose
interconnect in between. Simple logic paths can be implemented
within a single block. More sophisticated logic will require multiple
blocks and use the general purpose interconnect in between to
make these connections.

Figure 1.3 CPLD Architecture

CPLDs are great at handling wide and complex gating at blistering
speeds e.g. 5ns which is equivalent to 200MHz. The timing model for
CPLDs is easy to calculate so before you even start your design you
can calculate your in to output speeds.

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 15
© Xilinx

1.2.1 Why Use a CPLD?

CPLDs enable ease of design, lower development costs, more
product revenue for your money, and the opportunity to speed your
products to market...

Ease of Design: CPLDs offer the simplest way to implement design.
Once a design has been described, by schematic and/or HDL entry,
a designer simply uses CPLD development tools to optimise, fit, and
simulate the design. The development tools create a file, which is
then used to customise (program) a standard off-the-shelf CPLD
with the desired functionality. This provides an instant hardware
prototype and allows the debugging process to begin. If
modifications are needed, design changes are just entered into the
CPLD development tool, and the design can be re-implemented and
tested immediately.

Lower Development Costs: CPLDs offer very low development
costs. Ease of design, as described above, allows for shorter
development cycles. Because CPLDs are re-programmable,
designers can easily and very inexpensively change their designs.
This allows them to optimise their designs and continues to add new
features to continue to enhance their products. CPLD development
tools are relatively inexpensive and in the case of Xilinx, are free.
Traditionally, designers have had to face large cost penalties such
as re-work, scrap, and development time. With CPLDs, designers
have flexible solutions thus avoiding many traditional design pitfalls.

More Product Revenue: CPLDs offer very short development
cycles, which means your products get to market quicker and begin
generating revenue sooner. Because CPLDs are re-programmable,
products can be easily modified using ISP over the Internet. This in
turn allows you to easily introduce additional features and quickly
generate new revenue from them. (This results in an expanded time
for revenue). Thousands of designers are already using CPLDs to
get to market quicker and then stay in the market longer by
continuing to enhance their products even after they have been
introduced into the field. CPLDs decrease Time To Market (TTM)
and extend Time In Market (TIM).
Reduced Board Area: CPLDs offer a high level of integration (large

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 16
© Xilinx

number of system gates per area) and are available in very small
form factor packages. This provides the perfect solution for
designers of products which must fit into small enclosures or who
have a limited amount of circuit board space to implement the logic
design. The CoolRunner CPLDs are available in the latest chip
scale packages, e.g. CP56 which has a pin pitch of 0.5mm and is a
mere 6mm by 6mm in size so are ideal for small, low power end
products.

Cost of Ownership: Cost of Ownership can be defined as the
amount it costs to maintain, fix, or warranty a product. For instance,
if a design change requiring hardware rework must be made to a
few prototypes, the cost might be relatively small. However, as the
number of units that must be changed increases, the cost can
become enormous. Because CPLDs are re-programmable, requiring
no hardware rework, it costs much less to make changes to designs
implemented using them. Therefore cost of ownership is dramatically
reduced. And don't forget the ease or difficulty of design changes
can also affect opportunity costs. Engineers who are spending a lot
of time fixing old designs could be working on introducing new
products and features - ahead of the competition.

There are also costs associated with inventory and reliability. PLDs
can reduce inventory costs by replacing standard discrete logic
devices. Standard logic has a predefined function and in a typical
design lots of different types have to be purchased and stocked. If
the design is changed then there may be excess stock of
superfluous devices. This issue can be alleviated by using PLDs i.e.
you only need to stock one device and if your design changes you
simply reprogram. By utilising one device instead of many your
board reliability will increase by only picking and placing one device
instead of many. Reliability can also be increased by using the ultra
low power CoolRunner CPLDs i.e. lower heat dissipation and lower
power operation leads to decreased Failures In Time (FIT).

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 17
© Xilinx

1.3 Field Programmable Gate Arrays (FPGAs)

In 1985, a company called Xilinx introduced a completely new idea.
The concept was to combine the user control and time to market of
PLDs with the densities and cost benefits of gate arrays. A lot of
customers liked it - and the FPGA was born. Today Xilinx is still the
number one FPGA vendor in the world!

An FPGA is a regular structure of logic cells or modules and
interconnect which is under the designer’s complete control. This
means the user can design, program and make changes to his
circuit whenever he wants. And with FPGAs now exceeding the 10
million gate limit (Xilinx Virtex II is the current record holder), the
designer can dream big!

Figure 1.4 FPGA Architecture

With the introduction of the Spartan range of FPGAs we can now
compete with Gate Arrays on all aspects - price, gate and I/O count,

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 18
© Xilinx

performance and cost! The new Spartan IIE will provide up to 300k
gates at a price point that enables Application Specific Standard
Product (ASSP) replacement. For example a Reed Solomon IP Core
implemented in a Spartan II XC2S100 FPGA has an effective cost of
$9.95 whereas the equivalent ASSP would cost around $20.

There are 2 basic types of FPGAs: SRAM-based reprogrammable
and One-time programmable (OTP). These two types of FPGAs
differ in the implementation of the logic cell and the mechanism
used to make connections in the device.

The dominant type of FPGA is SRAM-based and can be
reprogrammed by the user as often as the user chooses. In fact, an
SRAM FPGA is reprogrammed every time it is powered-up because
the FPGA is really a fancy memory chip! (That’s why you need a
serial PROM or system memory with every SRAM FPGA).

Figure 1.5 Digital Logic History

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 19
© Xilinx

In the SRAM logic cell, instead of conventional gates there is instead
a Look Up Table (LUT) which determines the output based on the
values of the inputs. (In the “SRAM logic cell” diagram above you
can see 6 different combinations of the 4 inputs that will determine
the values of the output). SRAM bits are also used to make
connections.

One-time programmable (OTP) FPGAs use anti-fuses (contrary to
fuses, connections are made not “blown” during programming) to
make permanent connections in the chip and so do not require a
SPROM or other means to download the program to the FPGA.
However, every time you make a design change, you must throw
away the chip! The OTP logic cell is very similar to PLDs with
dedicated gates and flip-flops.

Design Integration

The integration of 74 series standard logic into a low cost CPLD is a
very attractive proposition. Not only do you save Printed Circuit
Board (PCB) area and board layers therefore reducing your total
system cost but you only have to purchase and stock one generic
part instead of upto as many as twenty pre-defined logic devices. In
production the pick and place machine only has to place one part -
therefore speeding up production. Less parts means higher quality
and better Failure In Time (FIT) factor.

By using Xilinx CoolRunner devices (our family of ultra low power
parts) in a design customers can benefit from low power
consumption and reduced thermal emissions. This in turn leads to
the reduction of the use of heat sinks (another cost saving) and a
higher reliability end product.

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 20
© Xilinx

Figure 1.6 Basic Logic Definitions

1.4 The Basic Design Process

The availability of design software such as WebPACK ISE has
made it much easier to design with programmable logic. Designs
can be described easily and quickly using either a description
language such as ABEL (Advanced Boolean Expression Language),
VHDL (VHSIC Hardware Description Language), Verilog or via a
schematic capture package.

Schematic capture is the traditional method that designers have
used to specify gate arrays and programmable logic devices. It is a
graphical tool that allows the designer to specify the exact gates he
requires and how he wants them connected. There are 4 basic
steps to using schematic capture.

Step one: After selecting a specific schematic capture tool and
device library, the designer begins building his circuit by loading the
desired gates from the selected library. He can use any combination

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 21
© Xilinx

of gates that he needs. A specific vendor and device family library
must be chosen at this time (e.g. Xilinx XCR3256XL) but he doesn’t
have to know what device within that family he will ultimately use
with respect to package and speed.

Step two: Connect the gates together using nets or wires. The
designer has complete control of connecting the gates in whatever
configuration is required for his application.

Step three: The input and output buffers are added and labelled.
These will define the I/O package pins for the device.

Step four: The final step is to generate a netlist.

Figure 1.7 PLD Design Flow

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 22
© Xilinx

The netlist is a text equivalent of the circuit which is generated by
design tools such as a schematic capture program. The netlist is a
compact way for other programs to understand what gates are in the
circuit, how they are connected and the names of the I/O pins.

In the example below, the netlist reflects the actual syntax for the
circuit in the schematic. There is one line for each of the
components and one line for each of the nets. Note that the
computer assigns names to components (G1 to G4) and the nets
(N1 to N8). When we implement this design, it will have input
package pins A, B, C, D and output pins Q, R, S.

EDIF (Electronic Digital Interchange Format) is the industry-wide
standard for netlists although there are many other including vendor-
specific ones such as the Xilinx Netlist Format (XNF).

If you have the design netlist, you have all you need to determine
what the circuit does.

Figure 1.8 Design Specification - Netlist

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 23
© Xilinx

The example on the previous pages are obviously very simplistic. A
more realistic design of 10,000 equivalent gates is shown here.

The typical schematic page contains about 200 gates included the
logic contained with soft macros. Therefore, it would require 50
schematic pages to create a 10,000 gate design! Each page needs
to go through all the steps mentioned previously: adding
components, interconnecting the gates, adding I/Os and generating
a netlist! This is rather time-consuming, especially if you want to
design a 20k, 50k or larger design.

Another inherent problem with using schematic capture is the
difficulty in migrating between vendors and technologies. If you
initially create your 10,000 gate design with FPGA vendor X and
then want to migrate to a gate array, you would have to modify every
one of those 50 pages using the gate array vendor’s component
library! There has to be a better way...

And of course, there is. It’s called High Level Design (HLD),
Behavioural or Hardware Description Language (HDL). For our
purposes, these three terms are essentially the same thing.

The idea is to use a high-level language to describe the circuit in a
text file rather than a graphical low-level gate description. The term
Behavioural is used because in this powerful language, the designer
describes the function or behaviour of the circuit in words rather than
figuring out the appropriate gates needed to create the application.

There are two major flavours of HDL: VHDL and Verilog. Although
it’s not really important for you to know, VHDL is an acronym for
“VHSIC High-level Design Language”. And yes, VHSIC is another
acronym “Very High Speed Integrated Circuit”.

As an example we will design a 16 by 16 multiplier specified with a
schematic and with an HDL file. A multiplier is a regular but complex
arrangement of adders and registers which requires quite a few
gates. Our example has two 16 bit inputs (A and B) and a 32 bit
product output (Y=A*B) - that’s a total of 64 I/Os. This circuit
requires approximately 6,000 equivalent gates.

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 24
© Xilinx

In the schematic implementation, all the required gates would have
to be loaded, positioned on the page, interconnected, and I/O buffers
added. About 3 days worth of work.

The HDL implementation, which is also 6,000 gates, requires 8 lines
of text and can be done in 3 minutes. This file contains all the
information necessary to define our 16x16 multiplier!

So, as a designer, which method would you choose? In addition to
the tremendous time savings, the HDL method is completely vendor-
independent. That means that this same code could be used to
implement a Xilinx FPGA as an LSI Logic gate array! This opens up
tremendous design possibilities for engineers. For example, what if
you wanted to create a 32X32 multiplier

Figure 1.9 Design Specification – Multiplier

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 25
© Xilinx

Obviously, you would want to modify the work already done for the
smaller multiplier. For the schematic approach, this would entail
making 3 copies of the 30 pages, then figuring out where to edit the
90 pages so that they addressed the larger bus widths. This would
probably require 4 hours of graphical editing. For the HDL
specification, it would be a matter of changing the bus references:
change 15 to 31 in line 2 and 31 to 63 in line 3 (4 seconds)!

HDL File Change Example

Before (16x 16 multiplier):

entity MULT is
port(A,B:in std_logic(15 downto 0);

 Y:out std_logic(31 downto 0));
end MULT;

architecture BEHAVE of MULT is
begin

 Y <= A * B;
end BEHAVE;

After (32 x 32 multiplier):

entity MULT is
port(A,B:in std_logic(31 downto 0);

Y:out std_logic(63 downto 0));
end MULT;

architecture BEHAVE of MULT is
begin

Y <= A * B;
end BEHAVE;

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 26
© Xilinx

So HDL is ideal for design re-use, you can share you ‘library’ of parts
with other designers at your company therefore saving and avoid
duplication of effort.
I think you can see now why HDL is the way to design logic circuits!

So, now that we have specified the design in a behavioural
description, how do we convert this into gates, which is what all logic
devices are made of?
The answer is Synthesis. It is the synthesis tool that does the
intensive work of figuring out what gates to use based on the high
level description file provided by the designer. (Using schematic
capture, the designer has to do this all this manually). Since the
resulting netlist is vendor and device family specific, the appropriate
vendor library must be used. Most synthesis tools support a large
range of gate array, FPGA and CPLD device vendors.

In addition, the user can specify optimisation criteria that the
synthesis tool will take into account when selecting the gate-level
selection or Mapping. Some of these options include: optimise the
complete design for the least number of gates, optimise a certain
section of the design for fastest speed, use the best gate
configuration to minimise power, use the FPGA-friendly register rich
configuration for state machines.
The designer can easily experiment with different vendors, device
families and optimisation constraints thus exploring many different
solutions instead of just one with the schematic approach.

To recap, the advantages of high level design & synthesis are many.
It is much simpler and faster to specify your design using HLD. And
much easier to make changes to the design by the designer or
another engineer because of the self-documenting nature of the
language. The designer is relieved from the tedium of selecting and
interconnecting at the gate level. He merely selects the library and
optimisation criteria (e.g. speed, area) and the synthesis tool will
determine the results. The designer can thereby try different design
alternatives and select the best one for the application. In fact, there
is no real practical alternative for designs exceeding 10,000 gates.

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 27
© Xilinx

1.5 Intellectual Property (IP) Cores

Intellectual Property (IP) Cores are defined as very complex pre-
tested system-level functions that are used in logic designs to
dramatically shorten development time. The IP Core benefits are:

• Faster Time-to-Market
• Simplifies the development process
• Minimal Design Risk
• Reduces software compile time
• Reduced verification time
• Predictable performance/functionality

IP Cores are similar to vendor-provided soft macros in that they
simplify the design specification step by removing the designer from
gate-level details of commonly used functions. IP Cores differ from
soft macros in that they are generally much larger system-level
functions such as PCI bus interface, DSP filter, PCMCIA interface,
etc. They are extensively tested (and hence rarely free of charge) to
offload the designer from having to verify the IP Core functions
himself

1.6 Design Verification

To verify a programmable logic design we will probably use a
simulator, which is a software program to verify the functionality
and/or timing of a circuit

The industry-standard formats used ensure that designs can be re-
used and there is no concerns if a vendors changes their libraries -
no rework is necessary, just a synthesis recompile. Even if the
customer decides to move to a different vendor and/or technology, it
is just a compile away after selecting the new library. It’s even
design tool independent so the designer can try synthesis tools from
different vendors and pick the best results!

It is more common to have cores available in HDL format since that
makes them easier to modify and use with different device vendors.

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 28
© Xilinx

After completing the design specification, you need to know if the
circuit actually works as it’s supposed to. That is the purpose of
Design Verification. A simulator is used to well ... simulate the
circuit.
You need to provide the design information (via the netlist after
schematic capture or synthesis) and the specific input pattern or
Test Vectors that you want checked. The simulator will take this
information and determine the outputs of the circuit.

Figure 1.10 The PLD Design Flow

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 29
© Xilinx

i. Functional Simulation

At this point in the design flow, we are doing a Functional Simulation
which means we are only checking to see if the circuits gives us the
right combinations of ones and zeros. We will do Timing Simulation
a little later in the design flow.

If there are any problems, the designer goes back to the schematic
or HDL file, makes the changes, re-generates the netlist and then
reruns the simulation. Designers typically spent 50% of the
development time going through this loop until the design works as
required.

Using HDL offers an additional advantage when verifying the design.
 You can simulate directly from the HDL source file. This by passes
the time-consuming synthesis process that would be required for
every design change iteration. Once the circuit works correctly, we
would need to run the synthesis tool to generate the netlist for the
next step in the design flow - Device Implementation.

ii. Device Implementation

We now have a design netlist that completely describes our design
using the gates for a specific vendor/ device family and it has been
fully verified. It is now time to put this in a chip, referred to as Device
Implementation.

Translate consists of a number of various programs that are used to
import the design netlist and prepare it for layout. The programs will
vary among vendors. Some of the more common programs during
translate include: optimisation, translation to the physical device
elements, device-specific design rule checking (e.g. does the design
exceed the number of clock buffers available in this device). It is
during the stage of the design flow that you will be asked to select
the target device, package, speed grade and any other device-
specific options.

The translate step usually ends with a comprehensive report of the
results of all the programs executed. In addition to warnings and

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 30
© Xilinx

errors, there is usually a listing of device and I/O utilisation, which
helps the designer to determine if he has selected the best device.

iii. Fitting

For CPLDs, the design step is called Fitting to “Fit” the design to the
target device. In the diagram above, a section of the design is fit to
the CPLD. CPLDs are a fixed architecture so the software needs to
pick the gates and interconnect paths that match the circuit. This is
usually a fast process.

The biggest potential problem here is if the designer has previously
assigned the exact locations of the I/O pins, commonly referred to as
Pin Locking. (Most often this is from a previous design iteration and
has now been committed to the printed circuit board layout).
Architectures (like the Xilinx XC9500 & CoolRunner CPLDs) that
support I/O pin locking have a very big advantage. They permit the
designer to keep the original I/O pin placements regardless of the
number of design changes, utilisation or required performance.

Pin locking is very important when using In-System Programming -
ISP. This means that if you layout your PCB to accept a specific pin
out then if you need to change the design you can re-programme
confident that you pin out will stay the same.

iv. Place and Route

For FPGAs, the Place and Route programs are run after Compile.
“Place” is the process of selecting specific modules or logic blocks in
the FPGAs where design gates will reside. “Route” as the name
implies, is the physical routing of the interconnect between the logic
blocks.

Most vendors provide automatic place and route tools so the user
does not have to worry about the intricate details of the device
architecture. Some vendors have tools that allow expert users to
manually place and/or route the most critical parts of their designs
and achieve better performance than with the automatic tools.
Floorplanner is a form of such manual tools.

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 31
© Xilinx

These two programs require the longest time to complete
successfully since it is a very complex task to determine the location
of large designs, ensure they all get connected correctly, and meet
the desired performance. These programs however, can only work
well if the target architecture has sufficient routing for the design. No
amount of fancy coding can compensate for an ill-conceived
architecture, especially if there is not enough routing tracks. If the
designer faces this problem, the most common solution to is to use a
larger device. And he will likely remember the experience the next
time he is selecting a vendor.

A related program is called Timing-Driven Place & Route (TDPR).
This allows users to specify timing criteria that will be used during
device layout.

A Static Timing Analyser is usually part of the vendor’s
implementation software. It provides timing information about paths
in the design. This information is very accurate and can be viewed
in many different ways (e.g. display all paths in the design and rank
them from longest to shortest delay).

In addition, the user at this point can use the detailed layout
information after reformatting, and go back to his simulator of choice
with detailed timing information. This process is called Back-
Annotation and has the advantage of providing the accurate timing
as well as the zeros and ones operation of his design.

In both cases, the timing reflects delays of the logic blocks as well as
the interconnect.

The final implementation step is the Download or Program.

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 32
© Xilinx

v. Downloading or Programming

Download generally refers to volatile devices such as SRAM FPGAs.
As the name implies, you download the device configuration
information into the device memory. The Bitstream that is
transferred contains all the information to define the logic and
interconnect of the design and is different for every design. Since
SRAM devices lose their configuration when the power is turned off,
the bitstream must be stored somewhere for a production solution.
A common such place is a serial PROM. There is an associated
piece of hardware that connects from the computer to a board
containing the target device.

Program is used to program all non-volatile programmable logic
devices including serial PROMs. Programming performs the same
function as download except that the configuration information is
retained after the power is removed from the device. For antifuse
devices, programming can only be done one per device. (Hence the
term One-Time Programmable, OTP).

Programming of Xilinx CPLDs can be done In-System via JTAG
(Joint Test Advisory Group) or using a conventional device
programmer e.g. Data I/O. JTAG boundary scan – formally known
as IEEE/ANSI standard 1149.1_1190 – is a set of design rules,
which facilitate testing, device programming and debugging at the
chip, board and system levels. In-System programming has the
added advantage that devices can be soldered directly to the PCB,
e.g. TQFP surface mount type devices, and if the design changes do
not need to be removed form the board but simply re-programmed
in-system. JTAG stands for Joint Test Advisory Group and is an
industry.

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 33
© Xilinx

Figure 1.11 Device Implementation – Download/Program

vi. System Debug

At this point in the design flow, the device is now working but we’re
not done yet. We need to do a System Debug - verify that our
device works in the actual board. This is truly the moment of truth
because any major problems here means the engineer has made a
assumption on the device specification that is incorrect or has not
considered some aspect of the signal required to/from the
programmable logic device. If so, he will then collect data on the
problem and go back to the drawing (or behavioural) board!

Xilinx has the world’s first WebPOWERED programmable logic
devices!

This means we have the first WebFITTER, you can fit your design
in real time at our web site. Simply take your existing design to our
WebFITTER webpage - these files can be HDL source code or
netlists - and specify your target device or your key design criteria -
speed, low power etc and then press ‘fit’. You will receive your

Introduction Chapter 1

Programmable Logic Design Quick Start Hand Book Page 34
© Xilinx

results moments later via email, which includes full fitter results,
design files and programming file (JEDEC file).
If you like the results you can then go on to get an on-line price.

You may then like to download your personal copy, which can be
downloaded in modules, so you can decide which parts you need.
Modules include the design environment (Project Navigator), XST
(Xilinx Synthesis tool), ModelSim Xilinx Edition Starter which is a 3rd
party simulator, chip viewer and eventually ECS schematic capture &
VSS.

ChipViewer (a JavaTM utility) graphically represents pin constraints
and assignments. You can also use this tool to graphically view a
design implementation from the chip boundary to the individual
macrocell equations.

Programmable Logic Design Quick Start Hand Book Page 35
© Xilinx

XILINX SOLUTION

Chapter 2 describes the products and services offered by Xilinx to
ensure PLD designs enable time to market advantage, design flexibility
and system future proofing. The Xilinx portfolio includes both CPLD &
FPGA devices, design software, design services & support, and Cores.

2.1 Introduction

Xilinx programmable logic solutions help minimise risks for
manufacturers of electronic equipment by shortening the time required
to develop products and take them to market. Designers can design
and verify their unique circuits in Xilinx programmable devices much
faster than they could than by choosing traditional methods such as
mask-programmed, fixed logic gate arrays. Moreover, because Xilinx
devices are standard parts that need only to be programmed, you are
not required to wait for prototypes or pay large non-recurring
engineering (NRE) costs. Customers incorporate Xilinx programmable
logic into products for a wide range of markets. Those include data
processing, telecommunications, networking, industrial control,
instrumentation, consumer electronics, automotive, defence and
aerospace markets.

Leading-edge silicon products, state-of-the-art software solutions and
World-class technical support make up the total solution delivered by
Xilinx. The software component of this solution is critical to the success
of every design project. Xilinx Software Solutions provide powerful
tools which make designing with programmable logic simple. Push
button design flows, integrated on-line help, multimedia tutorials, plus

 2

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 36
© Xilinx

high performance automatic and auto-interactive tools, help designers
achieve optimum results. And the industry's broadest array of
programmable logic technology and EDA integration options deliver
unparalleled design flexibility.

Xilinx is also actively developing breakthrough technology that will
enable the hardware in Xilinx-based systems to be upgraded remotely
over any kind of network including the Internet even after the
equipment has been shipped to a customer. Such Xilinx Online
Upgradable Systems would allow equipment manufacturers to
remotely add new features and capabilities to installed systems or
repair problems without having to physically exchange hardware.

2.2 Devices

Figure 2.2 Xilinx Devices at a Glance

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 37
© Xilinx

2.2.1 Platform FPGAs

Virtex-II™ FPGAs

‘The Platform for Programmable Logic’

The Virtex-II solution is the first embodiment of the Platform FPGA,
once again setting a new benchmark in performance, and offering a
feature set that is unparalleled in the industry.

It's an era where Xilinx leads the way, strengthened by our strategic
alliances with IBM, Wind River Systems, Conexant, RocketChips, The
MathWorks, and other technology leaders.

The Platform FPGA delivers SystemIO™ interfaces to bridge emerging
standards, XtremeDSP™ for unprecedented DSP performance (up to
100 times faster than the leading DSP processor), and will offer
Empower!™ processor technology for flexible high-performance
system processing needs.

The Virtex-II solution is the first embodiment of the Platform FPGA,
once again setting a new benchmark in performance, and offering a
feature set that is unparalleled in the industry.

With densities ranging from 40,000 up to 10 million system gates, the
Virtex-II solution delivers enhanced system memory and lightning –fast
DSP through a flexible IP-Immersion fabric.

Additionally, significant new capabilities address system-level design
issues including flexible system interfaces with signal integrity
(SystemIO™ , DCI), complex system clock management (Digital Clock
Manager), and on-board EMI management (EMIControl™).

Virtex-II solutions are empowered by advanced design tools that drive
time to market advantages through fast design, powerful synthesis,
smart implementation algorithms, and efficient verification capabilities.
Not only does the fabric provide the ability to integrate a variety of soft
IP, but it also has the capability of embedding hard IP cores such as
processors and Gigabit serial I/Os in future Virtex-II families.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 38
© Xilinx

Virtex-II Pro™ FPGAs

‘The Platform for Programmable Systems’

With up to four IBM PowerPC™ 405 processors immersed into the
industry's leading FPGA fabric, Xilinx/Conexant's flawless high-speed
serial I/O technology, and Wind River System's cutting-edge
embedded design tools, Xilinx delivers a complete development
platform of infinite possibilities. The era of the programmable system is
here.

The Power of Xtreme Processing

Each PowerPC runs at 300+ MHz delivering 420 Dhrystone MIPS, and
is supported by IBM CoreConnect™ bus technology. With the unique
Xilinx IP-Immersion architecture, system architects can now harness
the power of high-performance processors, along with easy integration
of soft IP into the industry's highest performance programmable logic.

XtremeDSP - The World's Fastest Programmable DSP Solution

The Xilinx XtremeDSP solution is the world's fastest programmable
DSP solution. With up to 556 embedded 18 x 18 multipliers, 10 Mbits
of embedded block RAM, an extensive library of DSP algorithms and
tools that include System Generator for DSP, ISE and Cadence SPW,
XtremeDSP is the industry's premier programmable solution for
enabling TeraMAC/s applications.

The Ultimate Connectivity Platform

The first programmable device to combine embedded processors
along with 3.125 Gbps transceivers, the Virtex-II Pro series addresses
all existing connectivity requirements as well as the emerging high-
speed interface standards. Xilinx Rocket I/O™ transceivers offer a
complete serial interface solution, supporting 10 Gigabit Ethernet with
XAUI, 3GIO, SerialATA, you name it. And our SelectI/O™-Ultra
supports 840 Mbps LVDS and high speed single-ended standards
such as XSBI and SFI-4.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 39
© Xilinx

The Power of Integration

In a single off-the-shelf programmable device, systems architects can
take advantage of microprocessors, the highest density of on-chip
memory, multi-gigabit serial transceivers, digital clock managers, on-
chip termination and more. The result is a dramatic simplification of
board layout, a reduced bill of materials, and unbeatable time to
market.

Enabling a New Development Paradigm

For the first time ever, systems designers can partition and repartition
their systems between hardware and software at any time during the
development cycle - even after the product shipped. That means you
can optimize the overall system, guaranteeing your performance target
in the most cost-efficient manner. You can also debug hardware and
software simultaneously at speed.

Industry-Leading Tools

Optimized for the PowerPC, Wind River's industry-proven embedded
tools are the premier support for real-time microprocessor and logic
designs. Driving the Virtex-II Pro FPGA is the Xilinx lightning-fast ISE
software, the most comprehensive, easy-to-use development system
available.

2.2.2 Virtex FPGAs

The Xilinx Virtex™ series was the first line of FPGAs to offer one
million system gates. Introduced in 1998, the Virtex product line
fundamentally redefined programmable logic by expanding the
traditional capabilities of field programmable gate arrays (FPGAs) to
include a powerful set of features that address board level problems
for high performance system designs.

The latest devices in the Virtex-E series, unveiled in 1999, offer more
than three million system gates. The Virtex-EM devices, introduced in
2000 and the first FPGAs to be manufactured using an advanced
copper process, offer additional on chip memory for network switch
applications.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 40
© Xilinx

Figure 2.2.2 Platform FPGAs

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 41
© Xilinx

2.2.3 Spartan FPGAs

Xilinx Spartan™ FPGAs are ideal for low-cost, high volume
applications and are targeted as replacements for fixed-logic Gate
Arrays and for application specific standard products (ASSP) products
such as bus interface chip sets. The are five members of the family
Spartan-3 (1.2V), Spartan IIE (1.8V), Spartan II (2.5V), Spartan XL
(3.3V) and Spartan (5V) devices.

The Spartan-3 (1.2V, 90nm) FPGA has been designed to not only be
very low cost but integrates many architectural features associated
with high-end programmable logic. This combination of low cost and
features makes it an ideal replacement for ASICs (Gate Arrays) and
many ASSP devices. For example in a Car Multimedia System the
Spartan 3 could absorb many system functions. These functions can
take the form of embedded IP Cores, bespoke system interfaces, DSP
and logic. The diagram below shows such a system:

Figure 2.2.3 Car Multimedia System

In the Car Multimedia System shown in figure 2.2.3 the PCI Bridge
takes the form of a pre-verified drop in IP Core, the device level and

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 42
© Xilinx

board level clocking functions are implemented in the Spartan 3 on-
chip Digital Control Management (DCMs). CAN core IP can be used to
connect to the body electronics modules, these cores can be provided
by AllianceCore partners such as Bosch, Memec Design, Cast, Xylon
and Intelliga. On-chip 18x18 multipliers can be used in DSP type
activity such as filtering and formatting. Other bespoke interfaces to
off-chip processors, IDE interface to the drive unit of a DVD player,
audio interfaces, memory and LCD can also be implemented.
Additionally the Spartan 3 XCITE Digitally Controlled Impedance
technology can reduce EMI and also component count by providing
on-chip tuneable impedances to provide line matching without the
need for external resistors.

The Spartan-3 family is based on IBM and UMC advanced 90nm, 8-
layer metal process technology. Xilinx is using 90nm technology to
drive pricing down to under $20* for a one-million-gate FPGA
(approximately 17,000 logic cells), which represents a cost savings up
to 80 percent compared to competitive offerings. A smaller die size and
300mm wafers improve device densities and yields, thereby reducing
overall production costs. This in turn leads to a more highly integrated,
less expensive product that takes up less board space when designed
into an end product.

Figure 2.2.4 Spartan-3 Features

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 43
© Xilinx

The Spartan™-3 FPGA memory architecture provides the optimal
granularity and efficient area utilization.

Shift Register SRL16 blocks

• Each CLB LUT (Look-Up Table) works as a 16-bit fast,
compact shift register

• LUTs can be cascaded to build longer shift registers
• Implement pipeline registers and buffers for video, wireless

Up to 520 Kb Distributed SelectRAM+™ Memory

• Each LUT works as a single-port or dual-port RAM/ROM
• LUTs can be cascaded to build larger memories
• Applications include flexible memory sizes, FIFOs, and buffers

Up to 1.87 Mb Embedded Block RAM

• Up to 104 blocks of synchronous cascadable 18 Kb block
RAM

• Each 18 Kb block can be configured as a single/dual-port RAM
• Supports multiple aspect ratios, data-width conversion and

parity
• Applications include data caches, deep FIFOs, and buffers

Memory Interfaces. Spartan-3 FPGAs enable electrical interfaces such
as HSTL and SSTL to connect to popular external memories.

A variety of Spartan™-3 multipliers enable simple arithmetic and math
as well advanced DSP functions. Derive over 330 Billion MACs/sec of
DSP performance.

• 18x18 embedded multipliers. Up to 104 18 x 18 multipliers,
support 18-bit signed or 17-bit unsigned multiplication, which
can be cascaded to support wider bits

• Constant coefficient multipliers. On-chip memories and logic
cells work hand-in-hand to build compact multipliers with a
constant operand

• Logic Cell multipliers. Implement user-preferred algorithms
such as Baugh-Wooley, Booth, Wallace tree, and others

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 44
© Xilinx

Digital Clock Managers (DCMs) deliver sophisticated digital clock
management impervious to system jitter, temperature, voltage
variations and other problems typically found with PLLs integrated into
FPGAs.
• Flexible frequency generation from 25 MHz to 325 MHz

o 100ps jitter
o Integer multiplication and division parameters

• Quadrature and precision phase shift control
o 0, 90, 180, 270 degrees
o Fine grain control (1/256 clock period) for clock data

synchronization
• Precise 50/50 duty cycle generation
• Temperature compensation

XCITE Digitally Controlled Impedance Technology- A Xilinx Innovation

I/O termination is required to maintain signal integrity. With hundreds of
I/Os and advanced package technologies, external termination
resistors are no longer viable. It dynamically eliminates drive strength
variation due to process, temperature, and voltage fluctuations.

Spartan-3 XCITE DCI Technology Highlights

o Series and parallel termination for single-ended and differential

standards
o Maximum flexibility with support of series and parallel termination

on all I/O banks
o Input, output, bidirectional and differential I/O support
o Wide series impedance range
o Popular standard support including LVDS, LVDSEXT, LVCMOS,

LVTTL,SSTL, HSTL, GTL, and GTLP
o Full and half impedance input buffers

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 45
© Xilinx

Figure 2.2.5 XCITE DCI Technology

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 46
© Xilinx

Spartan-3 Features and Value
Spartan-3 Feature Value

FPGA fabric and routing, up to 5,000,000
system gates

Allows for implementation of system level
function blocks, high on-chip connectivity
and high-throughput

BlockRAM – 18k blocks Enables implementation of large packet
buffers/FIFOs, line buffers

Distributed RAM For implementing smaller FIDOs/Buffers,
DSP coefficients

Shift register mode (SRL16) 16-bit shift register ideal for capturing high
speed or burst mode data and to store
data in DSP and encryption applications
e.g. fast pipelining

Dedicated 18 x 18 multiplier blocks High speed DSP processing; use of
multipliers in conjunction with fabric allows
for ultra-fast, parallel DSP operations

Single-ended signalling (up to 622 Mbps) –
LVTTL, LVCMOS, GTL, GTL+, PCI, HSTL-
I, II, III, SSTL-I,II

Connectivity to commonly used chip-to-
chip, memory (SRAM, SDRAM) and chip-
to-backplane signalling standards;
eliminates the need for multiple translation
ICs

Differential signalling (up to 622 Mbps) -
LVDS, BLVDS, Ultra LVD, SRSDS and
LDT

Differential signalling at low cost –
bandwidth management (saving the
number of pins, reduced power
consumption, reduced EMI, high noise
immunity

Digital clock management (DCM) Eliminate on-chip & board level clock
delay, simultaneous multiply and divide,
reduction of board level clock speed and
number of board level clocks, adjustable
clock phase for ensuring coherency

Global routing resources Distribution of clocks and other signals
with very high fanout throughout the device

Programmable output drive Improves signal integrity, achieving right
trade off between Tco and ground bounce

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 47
© Xilinx

Spartan IIE

The Spartan-IIE (1.8V core) family offers some of the most advanced
FPGA technologies available today, including programmable support
for multiple I/O standards (including LVDS, LVPECL & HSTL), on-chip
block RAM and digital delay lock loops for both chip-level and board-
level clock management. In addition, the Spartan-IIE devices provide
superior value by eliminating the need for many simple ASSPs such as
phase lock loops, FIFOs, I/O translators and system bus drivers that in
the past have been necessary to complete a system design.

Figure 2.4 Spartan IIE System Integration

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 48
© Xilinx

Spartan-IIE Architectural Features

Figure 2.5 Spartan IIE Architecture

The Spartan-IIE family leverages the basic feature set of the Virtex-E
architecture in order to offer outstanding value. The basic CLB
structure contains distributed RAM and performs basic logic functions.
The four DLLs are used for clock management and can perform clock
de-skew, clock multiplication, and clock division. Clock de-skew can be
done on an external (board level) or internal (chip level) basis.
The block memory blocks are 4K bits each and can be configured from
1 to 16 bits wide. Each of the two independent ports can be configured
for width independently.

The SelectI/O feature allows many different I/O standards to be
implemented in the areas of chip-to-chip, chip-to-memory, and chip-to-
backplane interfaces

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 49
© Xilinx

Spartan-IIE Block Diagram

Figure 2.6 Spartan IIE Block Diagram

The Spartan-IIE family of Field Programmable Gate Arrays (FPGAs) is
implemented with a regular, flexible, programmable architecture of
Configurable Logic Blocks (CLBs), surrounded by a perimeter of
programmable Input/Output Blocks (IOBs), interconnected by a
powerful hierarchy of versatile routing resources. The architecture also
provides advanced functions such as Block RAM and clock control
blocks.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 50
© Xilinx

Spartan-IIE Input/Output Block

Figure 2.7 Spartan IIE Input/Output Block

The Spartan-IIE IOB features inputs and outputs that support 19 I/O
signalling standards, including LVDS, BLVDS, LVPECL, LVCMOS,
HSTL, SSTL, and GTL. These high-speed inputs and outputs are
capable of supporting various state-of-the-art memory and bus
interfaces. The three IOB registers function either as edge-triggered D-
type flip-flops or as level sensitive latches. Each IOB has a clock signal
(CLK) shared by the three registers and independent clock enable
(CE) signals for each register.

In addition to the CLK and CE control signals, the three registers share
a Set/Reset (SR). For each register, this signal can be independently
configured as a synchronous Set, a synchronous Reset, an
asynchronous Preset, or an asynchronous Clear.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 51
© Xilinx

Spartan-IIE Banking of I/O Standards

Figure 2.8 Spartan IIE Banking of I/O Standards

Some of the I/O standards require VCCO and/or VREF voltages.
These voltages externally are connected to device pins that serve
groups of IOBs, called banks. Consequently, restrictions exist about
which I/O standards can be combined within a given bank. Eight I/O
banks result from separating each edge of the FPGA into two banks.
Each bank has multiple VCCO pins, all of which must be connected to
the same voltage. This voltage is determined by the output standards
in use.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 52
© Xilinx

Logic Cells

The basic building block of the Spartan-IIE CLB is the logic cell (LC).
An LC includes a four-input function generator, carry logic, and a
storage element. The output from the function generator in each LC
drives both the CLB output and the D input of the flip-flop. Each
Spartan-IIE CLB contains four LCs, organised in two similar slices. In
addition to the four basic LCs, the Spartan-IIE CLB contains logic that
combines function generators to provide functions of five or six inputs.
Consequently, when estimating the number of system gates provided
by a given device, each CLB counts as 4.5 LCs.

Figure 2.9 Spartan IIE Logic Cell

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 53
© Xilinx

Spartan-IIE function generators are implemented as 4-input look-up
tables (LUTs). In addition to operating as a function generator, each
LUT can provide a 16 x 1-bit synchronous RAM. Furthermore, the two
LUTs within a slice can be combined to create a 16 x 2-bit or 32 x 1-bit
synchronous RAM, or a 16x1-bit dual-port synchronous RAM. The
Spartan-IIE LUT can also provide a 16-bit shift register that is ideal for
capturing high-speed or burst-mode data. This SRL16 (Shift Register
LUT) mode can be used to increase the effective number of flip-flops
by a factor of 16. Adding flip-flops enables fast pipelining which are
ideal for DSP applications. The storage elements in the Spartan-IIE
slice can be configured either as edge-triggered D-type flip-flops or as
level-sensitive latches.

Block RAM

Spartan-IIE FPGAs incorporate several large Block SelectRAM+
memories. These complement the distributed SelectRAM+ resources
that provide shallow RAM structures implemented in CLBs. Block
SelectRAM+ memory blocks are organised in columns. All Spartan-II
devices contain two such columns, one along each vertical edge.
These columns extend the full height of the chip. Each memory block
is four CLBs high, and consequently, a Spartan-IIE device 8 CLBs high
will contain 2 memory blocks per column, and a total of 4 blocks.

Figure 2.10 Spartan IIE on-chip Memory

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 54
© Xilinx

Figure 2.11 Block RAM Applications

Delay-Locked Loop

Associated with each global clock input buffer is a fully digital Delay-
Locked Loop (DLL) that can eliminate skew between the clock input
pad and internal clock input pins throughout the device. Each DLL can
drive two global clock networks. The DLL monitors the input clock and
the distributed clock, and automatically adjusts a clock delay element.
Additional delay is introduced such that clock edges reach internal flip-
flops exactly one clock period after they arrive at the input. This closed-
loop system effectively eliminates clock-distribution delay by ensuring
that clock edges arrive at internal flip-flops in synchronism with clock
edges arriving at the input.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 55
© Xilinx

Figure 2.12 Spartan IIE Clock Management

Figure 2.13 Spartan Family Comparison

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 56
© Xilinx

Configuration
Configuration is the process by which the FPGA is programmed with
the configuration file generated by the Xilinx development system.
Spartan-IIE devices support both serial configuration, using the
master/slave serial and JTAG modes, as well as byte-wide
configuration employing the slave parallel mode.

Figure 2.14 Spartan IIE Family Overview

Figure 2.15 Spartan FPGA Part Numbering Guide

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 57
© Xilinx

Xilinx CPLDs

Currently, Xilinx offers CPLD products in two categories: XC9500 and
CoolRunner. To choose a CPLD that's right for you, review the product
features below to identify the product family that fits your application,
then review the selection considerations to choose the device that best
meets your design criteria.

Product Features:

XC9500 - The XC9500 In-System Programmable (ISP) CPLD families
take complex programmable logic devices to new heights of high-
performance, feature-richness, and flexibility. These families deliver
industry-leading speeds, while giving you the flexibility of enhanced
customer proven pin-locking architecture along with extensive IEEE
Std.1149.1 JTAG boundary scan support. This CPLD family is ideal for
high speed, low cost designs.

CoolRunner - The CoolRunner product families offer extreme low
power making them the leaders in an all new market segment for
CPLDs - portable electronics. With standby current in the low micro
amps and minimal operational power consumption, these parts are
ideal for any application is that is especially power sensitive, for
example, battery powered or portable applications. CoolRunner II
extends the CPLD usage as it offers system level features such as
LVTTL & SSTL, Clocking modes and input hysteresis.

Selection Considerations:

To decide which device best meets your design criteria, take a
minute to jot down your design specs (using the list below as a
criteria reference). Next, go to a specific product family page to get
more detailed information about the device you need.

Density - for each part, an equivalent 'gate count' is given. This is an
estimate of the logic density of the part.

Number of registers - count up the number of registers you need for
your counters, state machines, registers and latches. The number of
macrocells in the device must be at least this large.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 58
© Xilinx

Number of I/O pins - How many inputs and outputs does your design
need?

Speed requirements - What is the fastest combinatorial path in your
design? This will determine the tpd (propagation delay through the
device in nano seconds) of the device. What is the fastest sequential
circuit in your design? This will tell you what fMax (Maximum
frequency) you need.

Package - What electromechanical constraints are you under? Do you
need the smallest ball grid array package possible or can you use a
more ordinary QFP? Or are you prototyping and wish to use a
socketed device, in this case a PLCC package?

Low Power - is your end product battery or solar powered? Does your
design require the lowest power devices possible? Do you have heat
dissipation concerns?

System Level Functions - Does you board have multi-voltage
devices? Do you need to level shift between these devices? Do you
need to square up clock edges? Do you need to interface to memories
and microprocessors?

XC9500 ISP CPLD Overview

The high-performance, low-cost XC9500™ families of Xilinx CPLDs
are targeted for leading-edge systems that require rapid design
development, longer system life, and robust field upgrade capability.
The XC9500 families range in density from 36 to 288 macrocells and
are available in 2.5-volt (XC9500XV), 3.3-volt (XC9500XL) and 5-volt
(XC9500) versions. These devices support In-System Programming
(ISP) which allows manufacturers to perform unlimited design
iterations during the prototyping phase, extensive system in-board
debugging, program and test during manufacturing, as well as field
upgrades. Based upon advanced process technologies, the XC9500
families provide fast, guaranteed timing, superior pin locking, and a full
JTAG compliant interface. All XC9500 devices have excellent quality
and reliability characteristics with 10,000 program/erase cycles
endurance rating and 20 year data retention.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 59
© Xilinx

XC9500 5V Family

The XC9500™ In-System Programmable (ISP) CPLD family takes
complex programmable logic devices to new heights of high-
performance, feature-richness, and flexibility. This 5V family delivers
industry-leading speeds, while giving you the flexibility of an enhanced
customer proven pin-locking architecture along with extensive IEEE
Std. 1149.1 JTAG boundary scan support. It features six devices
ranging from 36 to 288 macrocells with a wide variety of package
combinations that both minimise board space and maintain package
footprints as designs grow or shrink. All I/O pins allow direct
interfacing to both 3 and 5 volt systems, while the latest in compact,
easy-to-use CSP and BGA packaging gives you access to as many as
192 signals.

Flexible Pin-Locking Architecture

The XC9500 devices, in conjunction with our fitter software, give you
the maximum in routeability and flexibility while maintaining high
performance. The architecture is feature rich, including individual p-
term output enables, three global clocks, and more p-terms per output
than any other CPLD. The proven ability of the architecture to adapt to
design changes while maintaining pin assignments (pin-locking) has
been demonstrated in countless real-world customer designs since the
introduction of the XC9500 family. This assured
pin-locking means you can take full advantage of in-system-
programmability and you can easily change at any time, even in the
field.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 60
© Xilinx

Full IEEE 1149.1 JTAG Development and Debugging Support

The JTAG capability of the XC9500 family is the most comprehensive
of any CPLD on the market. It features the standard support including
BYPASS, SAMPLE/PRELOAD, and EXTEST. Additional boundary
scan instructions, not found in any other CPLD, such as INTEST (for
device functional test), HIGHZ (for bypass), and USERCODE (for
program tracking), allow you the maximum debugging capability. The
XC9500 family is supported by a wide variety of industry standard
third-party development and debugging tools including Corelis, JTAG
Technologies, and Asset Intertech. These tools allow you to develop
boundary scan test vectors to interactively analyse, test, and debug
system failures. The family is also supported on all major ATE
platforms including Teradyne, Hewlett Packard, and Genrad.

XC9500 Product Overview Table

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 61
© Xilinx

XC9500XL 3.3V Family

The XC9500XL CPLD family is targeted for leading-edge systems that
require rapid design development, longer system life, and robust field
upgrade capability. This 3.3V in-system programmable family provides
unparalleled performance and the highest programming reliability, with
the lowest cost in the industry. The XC9500XL CPLDs also
complement the higher density Xilinx FPGAs to provide a total logic
solution, within a unified development environment. The XC9500XL
family is fully WebPOWERED via its free WebFITTER and WebPACK
ISE™ ISE™ software. Family Highlights:

• Lowest cost per macrocell
• State-of-the-art pin-locking architecture
• Highest programming reliability reduces system risk
• Complements Xilinx 3.3V FPGA families

Performance

• 5 ns pin-to-pin speed
• 222 MHz system frequency

Powerful Architecture

• Wide 54-input function blocks
• Up to 90 product-terms per macrocell
• Fast and routable FastCONNECT II switch matrix
• Three global clocks with local inversion
• Individual OE per output, with local inversion

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 62
© Xilinx

Figure 2.16 XC9500XL Block Fan-In

Highest Reliability

• Endurance rating of 10,000 cycles
• Data retention rating of 20 years
• Immune from "ISP Lock-Out" failure mode
• Allows arbitrary mixed-power sequencing and waveforms

Advanced Technology

• 3rd generation, proven CPLD technology
• Mainstream, scalable, high-reliability processing
• Fast in-system programming and erase times

Outperforms All Other 3.3V CPLDs

• Extended data retention supports longer system operating life
• Virtually eliminates in-system programming failures
• Superior pin-locking for lower design risk
• Glitch-free I/O pins during power-up
• Full IEEE 1149.1 (JTAG) ISP and boundary-scan test
• Free WebPOWERED software

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 63
© Xilinx

XC9500XV 2.5V CPLD Family

The XC9500XV 2.5V CPLD family from Xilinx is based upon an
advanced architecture that combines system flexibility and low cost to
allow for faster time-to-market and lower manufacturing and support
costs. Designed to operate with an internal core voltage of 2.5V, the
XC9500XV offers 30% lower power consumption than 3.3V CPLDs,
resulting in lower heat dissipation and increased long-term device
reliability. The XC9500XV silicon plus the powerful WebPOWERED
software offers a valuable logic solution that can't be beat when it
comes to cost and ease-of-use.

High Performance Through Advanced Technology

Manufactured on the latest generation 0.25 process, the new
XC9500XV CPLDs provide the same advanced architectural features
and densities of the 3.3V XC9500XL family, with device offerings of 36-
, 72-, 144- and 288-macrocells. High performance version offering pin-
to-pin delays as low as 3.5ns and system frequencies as fast as 275
MHz will be available later this year. The 2.5V XC9500XV devices also
include optimised support for in-system programming (ISP) through the
industry's most extensive IEEE1149.1 JTAG and IEEE 1532
programming capability which helps to streamline the
manufacturing, testing and programming of CPLD-based electronic
products, including remote field upgrades.

The System Designers' CPLD

The advanced architecture that is employed in the XC9500XV CPLD
allows for easy design integration, thus empowering the designer to
fully concentrate on this system design, and not so much on chip-level
details. The unique features offered in the XC9500XV include a 54-
input block fan-in which contributes to the device's superior pin-locking
capability, built-in input hysteresis for improved noise margin, bus-hold
circuitry for better I/O control, hot-plugging capability to eliminate the
need for power sequencing, and local and global clock control to
provide maximum flexibility.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 64
© Xilinx

XC9500XV & XC9500 XL Product Table

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 65
© Xilinx

CoolRunner Low Power CPLDs

There are two members to the CoolRunner series, CoolRunner XPLA3
(3.3V) and CoolRunner II (1.8V). We will start by looking at the
CoolRunner XPLA3 devices.

The CoolRunner™ CPLDs combine very low power with high speed,
high density, and high I/O counts in a single device. The CoolRunner
3.3-volt family range in density from 32 to 512 macrocells. CoolRunner
CPLDs feature Fast Zero Power technology, allowing the devices to
draw virtually no power in standby mode, making them ideal for the
fast growing market for battery operated portable electronic equipment
such as:

• Laptop PCs
• Telephone handsets
• Personal digital assistants
• Electronic games
• Web tablets

These CPLDs also use far less dynamic power during actual operation
compared to conventional CPLDs, an important feature for high
performance, heat sensitive equipment such as telecom switches,
video conferencing systems, simulators, high end testers and
emulators.

Figure 2.17 Sense Amplifier vs. CMOS CPLDs

The CoolRunner™ XPLA3 eXtended Programmable Logic Array family
of CPLDs is targeted for low power applications that include portable,
handheld, and power sensitive applications. Each member of the
XPLA3 family includes Fast Zero Power™ (FZP) design technology
that combines low power AND high speed. With this design technique,

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 66
© Xilinx

the XPLA3 family offers true pin-to-pin speeds of 5.0 ns, while
simultaneously delivering power that is <100µA (standby) without the
need for special "power down bits" that negatively affect device
performance. By replacing conventional sense amplifier methods for
implementing product terms (a technique that has been used in PLDs
since the bipolar era) with a cascaded chain of pure CMOS gates, the
dynamic power is also substantially lower than any competing CPLD.
CoolRunner devices are the only TotalCMOS PLDs, as they use both a
CMOS process technology and the patented full CMOS FZP design
technique.

Figure 2.18 CPLD Application Trends

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 67
© Xilinx

XPLA3 Architecture

The XPLA3 architecture features a direct input register path, multiple
clocks, JTAG programming, 5 volt tolerant I/Os and a full PLA
structure. These enhancements deliver high speed coupled with the
best flexible logic allocation which results in the ability to make design
changes without changing pin-outs. The XPLA3 architecture includes a
pool of 48 product terms that can be allocated to any macrocell in the
logic block. This combination allows logic to be allocated efficiently
throughout the logic block and support as many product terms as
needed per macrocell. In addition, there is no speed penalty for using
a variable number of product terms per macrocell.
The XPLA3 family features also include industry standard IEE 1149.1
JTAG interface through In-System Programming (ISP) and
reprogramming of the device can occur. The XPLA3 CPLD is
electrically reprogrammable using industry standard device
programmers from vendors such as Data I/O, BP Microsystems and
SMS.

XPLA3 Architecture

The figure below shows a high-level block diagram of the XPLA3
architecture. The XPLA3 architecture consists of logic blocks that are inter-
connected by a Zero-power Interconnect Array (ZIA). The ZIA is a virtual
cross point switch. Each logic block has 36 inputs from the ZIA and 16
macrocells. From this point of view, this architecture looks like many other
CPLD architectures. What makes the XPLA3 family unique is logic
allocation inside each logic block and the design technique used to
implement these logic blocks.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 68
© Xilinx

Figure 2.19 CoolRunner XPLA3 Architecture Overview

Logic Block Architecture

The figure below illustrates the logic block architecture. Each logic block
contains a PLA array that generates control terms, each macrocell for use
as asynchronous clocks, resets, presets and output enables. The other P-
terms serve as additional single inputs into each macrocell. There are eight
foldback NAND P-terms that are available for ease of fitting and pin
locking. Sixteen product terms are coupled with the associated
programmable OR gate into the VFM (Variable Function Multiplexer). The
VFM increases logic optimization by implementing any two input logic
function before entering the macrocell.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 69
© Xilinx

Figure 2.20 CoolRunner XPLA3 Logic Block

Each macrocell can support combinatorial or registered inputs, preset
and reset on a per macrocell basis and configurable D, T registers, or
latch function. If a macrocell needs more product terms, it simply gets
the additional product terms from the PLA array.

FoldBack NANDs

XPLA3 utilizes FoldBack NANDs to increase the effective product term
width of a programmable logic device. These structures effectively provide
an inverted product term to be used as a logic input by all of the local
product terms.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 70
© Xilinx

Macrocell Architecture

The figure below shows the architecture of the macrocell used in
the CoolRunner XPLA3. Any macrocell can be reset or pre-set
on power-up.

Figure 2.21 CoolRunner XPLA3 Macrocell Diagram

Each macrocell register can be configured as a D-, T-, or Latch-type flip-
flop, or combinatorial logic function. Each of these flip-flops can be clocked
from any one of eight sources. There are two global synchronous clocks
that are derived from the four external clock pins. There is one universal
clock signal. The clock input signals CT[4:7] (Local Control Terms) can be
individually configured as either a PRODUCT term or SUM term equation
created from the 36 signals available inside the logic block. There are two
feedback paths to the ZIA: one from the macrocell, and one from the I/O
pin. When the I/O pin is used as an output, the output buffer is enabled,
and the macrocell feedback path can be used to feed back the logic
implemented in the macrocell. When an I/O pin is used as an input, the
output buffer will be 3-stated and the input signal will be fed into the ZIA via

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 71
© Xilinx

the I/O feedback path. The logic implemented in the buried macrocell can
be fed back to the ZIA via the macrocell feedback path.
If the macrocell is configured as an input, there is a path to the register to
provide a fast input setup time.

I/O Cell

The OE (Output Enable) Multiplexer has eight possible modes, including a
programmable weak pull-up (WPU) eliminating the need for external
termination on unused I/Os. The I/O Cell is 5V tolerant, and has a single-
bit slew-rate control for reducing EMI generation.
Outputs are 3.3V PCI electrical specification compatible (no internal clamp
diode).

Simple Timing Model

The figure overleaf shows the XPLA3 timing model which has three main
timing parameters, including T PD , T SU , and T CO . In other architectures,
the user may be able to fit the design into the CPLD, but may not be sure
whether system timing requirements can be met until after the design has
been fit into the device. This is because the timing models of other
architectures are very complex and include such things as timing
dependencies on the number of parallel expanders borrowed, sharable
expanders, varying number of X and Y routing channels used, etc. In the
XPLA3 architecture, the user knows up front whether the design will meet
system timing requirements. This is due to the simplicity of the timing
model.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 72
© Xilinx

Figure 2.22 CoolRunner XPLA3 Simple Timing Model

Slew Rate Control

XPLA3 devices have slew rate control for each macrocell output pin. The
user has the option to enable the slew rate control to reduce EMI. The
nominal delay for using this option is 2.0 ns.

XPLA3 Software Tools

Software support for XPLA3 devices is provided by Xilinx
WebPOWERED software products which include WebFITTER and
WebPACK ISE. Both tools are free. In addition, EDIF input for all major
3rd party software flows such as Cadence, Mentor, Viewlogic,
Exemplar and Synopsys are supported.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 73
© Xilinx

Features Benefits
Total CMOS architecture with
FZP design technology

Lowest stand-by current and total
current consumption of any CPLD
therefore longer battery life,
increased reliability and less heat
dissipation

32 to 512 macrocell device
selections

Suit full range of designs and
applications and able to migrate
up and down densities if design
grows or shrinks

5 volt tolerant I/Os and multi I/O
standards

Simplifies multi-voltage design
and level shifting

PLA Array Optimises sharing and resource
utilization (all product terms
available)

Bus friendly I/O Pull-up resistor for I/O termination
Multiple clocking options Design flexibility
Fast input registers Supports direct high speed

interface
VFM (Variable Function MUX)
and fold back NANDs

Superior logic optimisation and
device fitting – fit first time
designs and lower costs by being
able to use a smaller device

Small, surface mount packages –
0.8mm and 0.5mm ball pitch Chip
Scale packages

Smallest footprint and board
space savings – ideal for
handheld devices like PDAs and
Cellphones

Industrial, Commercial and
Automotive temperature ranges

Can be used in all application
areas from telematics and set top
boxes to medical and harsh
environment applications.

Figure 2.23 CoolRunner Summary of Features and Benefits

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 74
© Xilinx

CoolRunner XPLA3 Family

Figure 2.24 CoolRunner XPLA3 Part Number System

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 75
© Xilinx

CoolRunner II

Xilinx CoolRunner™-II CPLDs deliver the high speed and ease of use
associated with the XC9500/XL/XV CPLD family with the extremely low
power versatility of the XPLA3™ family in a single CPLD. This means that
the exact same parts can be used for high-speed data communications,
computing systems and leading edge portable products, with the added
benefit of In System Programming (ISP). Low power consumption and
high-speed operation are combined into a single family that is easy to use
and cost effective. Xilinx patented Fast Zero Power™ (FZP) architecture
inherently delivers extremely low power performance with out the need for
any special design measures. Clocking techniques and other power saving
features extend the users’ power budget. The design features are
supported
starting with Xilinx ISE 4.1i, WebFITTER, and ISE Web-PACK.

The table show in figure 2.25 overleaf shows the CoolRunner-II CPLD
package offering with corresponding I/O count. All packages are surface
mount, with over half of them being ball-grid technologies. The ultra tiny
packages permit maximum functional capacity in the smallest possible
area. The CMOS technology used in CoolRunner-II CPLDs generates
minimal heat, allowing the use of tiny packages during high-speed
operation. There are at least two densities present in each package with
three in the VQ100 (100-pin 1.0mm QFP) and TQ144 (144-pin 1.4mm
QFP), and in the FT256 (256-ball 1.0mm spacing FLBGA). The FT256 is
particularly important for slim dimensioned portable products with mid- to
high-density logic requirements.

The table also details the distribution of advanced features across the
CoolRunner-II CPLD family. The family has uniform basic features with
advanced features included in densities where they are most useful. For
example, it is very unlikely that four I/O banks are needed on 32 and 64
macrocell parts, but very likely they are for 384 and 512 macrocell parts.
The I/O banks are groupings of I/O pins using any one of a subset of
compatible voltage standards that share the same V CCIO level. The clock
division capability is less efficient on small parts, but more useful and likely
to
be used on larger ones. DataGATE, an ability to block and latch inputs to
save power, is valuable in larger parts, but brings marginal benefit to small
parts.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 76
© Xilinx

Figure 2.25 CoolRunner II Family Overview

CoolRunner II Architecture Description

CoolRunner-II CPLD is a highly uniform family of fast, low power
CPLDs. The underlying architecture is a traditional CPLD architecture
combining macrocells into Function Blocks (FBs) interconnected with a
global routing matrix, the Xilinx Advanced Interconnect Matrix (AIM).
The Function Blocks use a Programmable Logic Array (PLA)
configuration which allows all product tems to be routed and shared
among any of the macrocells of the FB. Design software can efficiently
synthesise and optimise logic that is subsequently fit to the FBs and
connected with the ability to utilise a very high percentage of device
resources. Design changes are easily and automatically managed by
the software, which exploits the 100% routability of the Programmable
Logic Array within each FB. This extremely robust building block
delivers the industry’s highest pin-out retention, under very broad
design conditions. The architecture will be explained by expanding the

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 77
© Xilinx

detail as we discuss the underlying Function Blocks, logic and
interconnect.

The design software automatically manages these device resources so
that users can express their designs using completely generic
constructs without knowledge of these architectural details. More
advanced users can take advantage of these details to more
thoroughly understand the software’s choices and direct its results.

Figure 2.26 below shows the high-level architecture whereby Function
Blocks attach to pins and interconnect to each other within the internal
interconnect matrix. Each FB contains 16 macrocells.

Figure 2.26 CoolRunner II High Level Architecture

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 78
© Xilinx

CoolRunner II Function Block

The CoolRunner II CPLD Function Blocks contain 16 macrocells, with
40 entry sites for signals to arrive for logic creation and connection.
The internal logic engine is a 56 product term PLA. All Function Blocks,
regardless of the number contained in the device, are identical. For a
high-level view of the Function Block. At the high level, it is seen that
the product terms (p-terms) reside in a programmable logic array
(PLA). This structure is extremely flexible, and very robust when
compared to fixed or cascaded product term function blocks. Classic
CPLDs typically have a few product terms available for a high-speed
path to a given macrocell. They rely on capturing unused p-terms from
neighbouring macrocells to expand their product term tally, when
needed. The result of this architecture is a variable timing model and
the possibility of stranding unusable logic within the FB.

The PLA is different - and better. First, any product term can be
attached to any OR gate inside the FB macrocell(s). Second, any logic
function can have as many p-terms as needed attached to it within the
FB, to an upper limit of 56. Third, product terms can be re-used at
multiple macrocell OR functions so that within a FB, a particular logical
product need only be created once, but can be re-used up to 16
times within the FB. Naturally, this works well with the fitting software,
which identifies product terms that can be shared.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 79
© Xilinx

Figure 2.27 Logic Allocation – Typical PAL vs. PLA

The software places as many of those functions as it can into FBs, so it
happens for free. There is no need to force macrocell functions to be
adjacent or any other restriction save residing in the same FB, which is
handled by the software. Functions need not share a common clock,
common set/reset or common output enable to take full advantage of
the PLA. Also, every product term arrives with the same time delay
incurred. There are no cascade time adders for putting more product
terms in the FB. When the FB product term budget is reached, there is
a small interconnect timing penalty to route signals to another FB to
continue creating logic. Xilinx design software handles all this
automatically.

CoolRunner II Macrocell

The CoolRunner-II CPLD macrocell is extremely efficient and
streamlined for logic creation. Users can develop sum of product

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 80
© Xilinx

(SOP) logic expressions that comprise up to 40 inputs and span 56
product terms within a single function block. The macrocell can further
combine the SOP expression into an XOR gate with another single p-
term expression.
The resulting logic expression’s polarity is also selectable. As well, the
logic function can be pure combinatorial or registered, with the storage
element operating selectably as a D or T flip-flop, or transparent latch.
Available at each macrocell are independent selections of global,
function block level or local p-term derived clocks, sets, resets, and
output enables. Each macrocell flip-flop is configurable for either single
edge or DualEDGE clocking, providing either double data rate
capability or the ability to distribute a slower clock (thereby saving
power). For single edge clocking or latching, either clock polarity may
be selected per macrocell. CoolRunner-II macrocell details are shown
in figure 2.28. Note that in figure 2.28, standard logic symbols are used
except the trapezoidal multiplexers have input selection from statically
programmed configuration select lines (not shown). Xilinx application
note XAPP376 gives a detailed explanation of how logic is created in
the CoolRunner-II CPLD family.

Figure 2.28 CoolRunner II Macrocell

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 81
© Xilinx

When configured as a D-type flip-flop, each macrocell has an optional
clock enable signal permitting state hold while a clock runs freely. Note
that Control Terms (CT) are available to be shared for key functions
within the FB, and are generally used whenever the exact same logic
function would be repeatedly created at multiple macrocells. The CT
product terms are available for FB clocking (CTC), FB asynchronous
set (CTS), FB asynchronous reset (CTR), and FB output enable
(CTE).

Any macrocell flip-flop can be configured as an input register or latch,
which takes in the signal from the macrocell’s I/O pin, and directly
drives the AIM. The macrocell combinatorial functionality is retained for
use as a buried logic node if needed.

Advanced Interconnect Matrix (AIM)

The Advanced Interconnect Matrix is a highly connected low power
rapid switch. The AIM is directed by the software to deliver up to a set
of 40 signals to each FB for the creation of logic. Results from all FB
macrocells, as well as, all pin inputs circulate back through the AIM for
additional connection available to all other FBs as dictated by the
design software. The AIM minimises both propagation delay and
power as it makes attachments to the various FBs.

I/O Block

I/O blocks are primarily transceivers. However, each I/O is either
automatically compliant with standard voltage ranges or can be
programmed to become so. In addition to voltage levels, each input
can selectively arrive through Schmitt-trigger inputs. This adds a small
time delay, but substantially reduces noise on that input pin. Hysteresis
also allows easy generation of external clock circuits. The Schmitt-
trigger path is best seen in Figure 2.29. Outputs can be directly driven,
3-stated or open-drain con-figured. A choice of slow or fast slew rate
output signal is also available.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 82
© Xilinx

Figure 2.29 CoolRunner II I/O Block

Output Banking

CPLDs are widely used as voltage interface translators. To that end,
the output pins are grouped in large banks. The smallest parts are not
banked, so all signals will have the same output swing for 32 and 64
macrocell parts. The medium parts (128 and 256 macrocell) support
two output banks. With two, the outputs will switch to one of two
selected output voltage levels, unless both banks are set to the same
voltage. The larger parts (384 and 512 macrocell) support four output
banks split evenly. They can support groupings of one, two, three or
four separate output voltage levels. This kind of flexibility permits easy
interfacing to 3.3V, 2.5V, 1.8V, and 1.5V in a single part.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 83
© Xilinx

DataGATE

Low power is the hallmark of CMOS technology. Other CPLD families
use a sense amplifier approach to creating product terms, which
always has a residual current component being drawn. This residual
current can be several hundred milliamps, making them unusable in
portable systems. CoolRunner-II CPLDs use standard CMOS methods
to create the CPLD architecture and deliver the corresponding low
current consumption, without doing any special tricks.

However, sometimes designers would like to reduce their system
current even more by selectively disabling circuitry not being used.
The patented DataGATE technology was developed to permit a
straightforward approach to additional power reduction. Each I/O pin
has a series switch that can block the arrival of free running signals
that are not of interest. Signals that serve no use may increase power
consumption, and can be disabled. Users are free to do their design,
then choose sections to participate in the DataGATE function.

Figure 2.30 DataGATE Function in CoolRunner II

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 84
© Xilinx

DataGATE is a logic function that drives an assertion rail threaded
through the medium and high-density CoolRunner-II CPLD parts.
Designers can select inputs to be blocked under the control of the
DataGATE function, effectively blocking controlled switching signals so
they do not drive internal chip capacitances. Output signals that do
not switch, are held by the bus hold feature. Any set of input pins can
be chosen to participate in the DataGATE function.

Figure 2.30 shows how DataGATE basically works. One I/O pin drives
the DataGATE Assertion Rail. It can have any desired logic function on
it. It can be as simple as mapping an input pin to the DataGATE
function or as complex as a counter or state machine output driving the
DataGATE I/O pin through a macrocell. When the DataGATE rail is
asserted low, any pass transistor switch attached to it is blocked. Note
that each pin has the ability to attach to the AIM through a DataGATE
pass transistor, and thus be blocked. A latch automatically captures
the state of the pin when it becomes blocked. The DataGATE
Assertion Rail threads throughout all possible I/Os, so each can
participate if chosen. Note that one macrocell is singled out to drive the
rail, and that macrocell is exposed to the outside world through a pin,
for inspection. If DataGATE is not needed, this pin is an ordinary I/O.

Additional Clock Options: Division, DualEDGE, and CoolCLOCK

Division

Circuitry has been included in the CoolRunner-II CPLD architecture to
divide one externally supplied global clock by standard values. Division
by 2,4,6,8,10, 12, 14 and 16 are the options (see Figure 2.31). This
capability is supplied on the GCK2 pin. The resulting clock produced
will be 50% duty cycle for all possible divisions. Note that a
Synchronous Reset is included to guarantee no runt clocks can get
through to the global clock nets. Note that again, the signal is buffered
and driven to multiple traces with minimal loading and skew.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 85
© Xilinx

Figure 2.31 CoolRunner II Clock Division

DualEDGE

Each macrocell has the ability to double its input clock switching
frequency. Figure 2.28 shows the macrocell flip-flop with the
DualEDGE option (doubled clock) at each macro-cell. The source to
double can be a control term clock, a product term clock or one of the
available global clocks. The ability to switch on both clock edges is vital
for a number of synchronous memory interface applications as well as
certain double data rate I/O applications.

CoolCLOCK

In addition to the DualEDGE flip-flop, additional power savings can be
had by combining the clock division circuitry with the DualEDGE
circuitry. This capability is called CoolCLOCK and is designed to
reduce clocking power within the CPLD. Because the clock net can be

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 86
© Xilinx

an appreciable power drain, the clock power can be reduced by driving
the net at half frequency, then doubling the clock rate using
DualEDGE triggering at the macrocells.

Figure 2.32 shows how CoolCLOCK is created by internal clock
cascading with the divider and DualEDGE flip-flop working together.

Figure 2.32 CoolCLOCK

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 87
© Xilinx

Design Security

Designs can be secured during programming to prevent either
accidental overwriting or pattern theft via ‘readback’. Four independent
levels of security are provided on-chip, eliminating any electrical or
visual detection of configuration patterns. These security bits can be
reset only by erasing the entire device. Additional detail is omitted
intentionally.

Figure 2.33 CoolRunner II Device Security

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 88
© Xilinx

CoolRunner II Application Examples

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 89
© Xilinx

CoolRunner II Application Examples – PDA Using CoolCOREs

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 90
© Xilinx

2.2.5 Military & Aerospace

Xilinx is the leading supplier of High-Reliability programmable logic
devices to the aerospace and defence markets. These devices are
used in a wide range of applications such as electronic warfare, missile
guidance and targeting, RADAR, SONAR communications, signal
processing, avionics and satellites. The Xilinx QPRO family of
ceramic and plastic QML designers with advanced programmable logic
solutions for next generation designs. The QPRO family also includes
select products that are radiation hardened for use in satellite and
other space applications.
Our quality management system is fully compliant with all ISO9001
requirements and in 1997 we became fully qualified as a QML supplier
because we meet all of the requirements for MIL Standard 38535.

2.2.6 Automotive & Industrial

Xilinx IQ Solutions – Architecting Automotive Intelligence

In-car electronics content is increasing at a phenomenal rate and
includes such applications as navigation systems, entertainment
systems, and communications devices. To address the needs of
telematic designers Xilinx has created a new family of devices with an
extended Industrial temperature range option. This new “IQ” family
consists of existing Xilinx Industrial grade (I) FPGAs and CPLDs with
the addition of a new extended temperature grade (Q), available for
selected devices. The new IQ product grade (-40°C to +125°C ambient
for CPLDs and Junction for FPGAs) is ideal for automotive and
industrial applications. The wide range of device density and package
combinations enable you to deliver high performance, cost effective,
flexible solutions that meet all of your application needs.

Design-In Flexibility

With Xilinx IQ devices, you can design-in flexibility and get your
product to market faster than ever before. Because many new
standards are evolving (such as the MOST and FlexRay in-car bussing
standards), you need the flexibility to quickly modify your designs at
any time. With our unique Internet Reconfigurable Logic (IRL)

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 91
© Xilinx

capability, you can remotely and automatically modify your designs, in
the field, after your product has left the factory.
By combining our latest IQ programmable logic devices with our
solutions infrastructure of high productivity software, IP Cores, Design
Services, and Customer Education, you can develop advanced, highly
flexible products, faster than ever before.

For more information, visit: www.xilinx.com/automotive

Figure 2.2.6 IQ Devices Ordering Information

Temperature Grade/Range ºC
Product Group C I Q

FPGA Tj = 0 to +85 Tj = -40 to
+100

Tj = -40 to +125

CPLD Ta = 0 to +70 Ta = -40 to +85 Ta = -40 to +125

Table 1 – IQ Temperature range

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 92
© Xilinx

IQ Device Family Densities
Spartan XL (3.3V) 15k gates to 40k gates
XC9500XL (3.3V) 36 and 72 macrocells
CoolRunner XPLA3 (3.3V) 32 to 512 macrocells
Spartan II (2.5V) 15k gates to 200k gates
CoolRunner II (1.8V) 32 to 512 macrocells
Spartan II E (1.8V) 50k gates to 300k gates
XC9500 (5V) 36 and 72 macrocells

Table 2 – Available IQ devices in extended temperature

2.3 Design Tools Center

Programmable logic design has entered an era where device densities
are measured in the millions of gates, and system performance is
measured in hundreds of MegaHertz (MHz). Given these new system
complexities, the critical success factor in the creation of a design is
your productivity.

Xilinx offers complete electronic design tools, which enable the
implementation of designs in Xilinx Programmable Logic devices.
These development solutions combine powerful technology with a
flexible, easy to use graphical interface to help you achieve the best
possible designs within your project schedule, regardless of your
experience level.

The ‘Design Tools Center’ web pages cover both the Xilinx ISE tools
suite plus design tools from our software partners. It is arranged in the
following design tools topics:

Design Entry

ISE greatly improves your “Time-to-Market” and productivity by
accelerating the design entry process ISE provides support for today’s
most popular methods for design capture including HDL and schematic
entry, integration of IP cores as well as robust support for reuse of your
own IP. This rich mixture of design entry capabilities provides the
easiest to use design environment available today for all logic design.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 93
© Xilinx

Synthesis

ISE Advanced HDL Synthesis Engines produce optimised results for
your Programmable Logic Design Synthesis is one of the most
essential steps in your design methodology. It takes your conceptual
Hardware Description Language (HDL) design definition and
generates the logical or physical representation for the targeted silicon
device.

A state of the art synthesis engine is required to produce highly
optimised results with a fast compile and turnaround time. To meet this
requirement, the synthesis engine needs to be tightly integrated with
the physical implementation tool and have the ability to proactively
meet the design timing requirements by driving the placement in the
physical device. In addition, cross probing between the physical design
report and the HDL design code will further enhance the turnaround
time.

Xilinx ISE provides the seamless integration with the leading synthesis
engines from Mentor Graphics/Exemplar, Synopsys, and Synplicity.
ISE also includes Xilinx proprietary synthesis technology, XST. With
only the push of a button, you can start any leading synthesis engine
within ISE. You can even use multiple synthesis engines to obtain the
most optimised result of your programmable logic design.

Implementation & Configuration

Programmable logic design implementation assigns the logic created
during design entry and synthesis into specific physical resources of
the target device.

The term "place and route" has historically been used to describe the
implementation process for FPGA devices and "fitting" has been used
for CPLDs. Implementation is followed by device configuration, where
a bitstream is generated from the physical place and route information
and downloaded into the target programmable logic device.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 94
© Xilinx

To ensure designers get their product to market quickly, Xilinx ISE
software provides several key technologies required for design
implementation:

• Ultra-fast runtimes enable multiple "turns" per day
• ProActive™ Timing Closure drives high-performance results
• Timing-driven place and route combined with "push-button"

ease

Board Level Integration

ISE provides intensive support to help you ensure your programmable
logic design works in context of the entire system. Xilinx understands
the critical issues such as complex board layout, signal integrity, high-
speed bus interface, high-performance I/O bandwidth, and electro-
magnetic interference for system level designers. To ease the system
level designers’ challenge, ISE provides support to all Xilinx leading
FPGA technologies:

� XCITE
� Digital clock management for system timing
� EMI control management for electromagnetic

interference
� Complete pin configurations
� Packaging information for board level

integration
� ISE board level verification
� IBIS models
� STAMP models
� LMG models
� ChipScope ILA

Verification Technologies

ISE Includes Verification support at all stages of your design, from
Design Entry to Board-level Integration

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 95
© Xilinx

Static Verification

Static verification tools allow a design to be verified without requiring
the creation of lengthy test vectors. The verification they provide can
be exhaustive or selective, allowing designers to rapidly detect
implementation errors in advance. Static verification tools also deliver
extensive diagnosis and debug capabilities. The following static
verification tools are supported:

� Constraints Editor
� Delay Calculator
� Trace
� Timing Analyzer
� Prime Time
� XPower
� Formality
� Conformal LEC
� DRC
� Chip Viewer

Dynamic Verification

You can save time by using dynamic verification to intercept logical or
HDL-based errors early in the design cycle. Many functional problems
can be found at this stage, by exposing a design to realistic and
extensive stimuli. The following dynamic verification tools are
supported:

� HDL Bencher
� ModelSim XE
� StateBench
� HDL Simulation Libraries

Debug Verification

Debug verification tools speed up the process of viewing, identifying
and correcting design problems at different stages of the design cycle.
Debug verification includes the ability to view all the internal signals
and nodes within an FPGA 'live'. They can also assist in HDL-based
designs by checking coding style for optimum performance.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 96
© Xilinx

The following debug verification tools are supported:

� LEDA
� FPGA Editor Probe
� ChipScope ILA
� ChipScope Pro

Board Level Verification

Using board level verification tools insures your design performs as
intended once integrated with the rest of the system. The Xilinx ISE
environment supports the following Board Level Verification tools:

� IBIS Models
� Tau
� BLAST
� STAMP Models
� Impact

Advanced Design Techniques

As your FPGA requirements grow, your design problems can change.
High-density design environments mean multiple teams working
through distributed nodes on the same project, located in different
parts of the world, or across the aisle. ISE advanced design options
are targeted at making your high-density design as easy to realize as
your smallest glue-logic.

Floorplanner - The Xilinx High-Level Floorplanner is a graphic planning
tool that lets you map your design onto the target chip. Floorplanning
can efficiently drive your high-density design process.

Modular Design - the ability to partition a large design into individual
modules. Each of those modules can then be floorplanned, designed,
implemented, and then locked until the remaining modules are
finished.

Partial Reconfigurability - Partial reconfiguration is useful for
applications requiring the loading of different designs into the same
area of the device, or the ability to flexibly change portions of a design

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 97
© Xilinx

without having to either reset or completely reconfigure the entire
device.

Internet Team Design - allows a manager to drive each team and it's
design module from a standard internet browser using the corporate
intranet structure.

High-Level Languages - As design densities increase, the need for a
higher-level of abstraction becomes more important. Xilinx is driving
and supporting the industry standards and their supporting tools.

Embedded SW Design Tools Center

Embedded Software Tools for Virtex-II Pro Platform FPGAs

The term "embedded software tools" most often applies to the tools
required to create, edit, compile, link, load, and debug high level
language code, usually C or C++, for execution on a processor engine.
With the Virtex™-II Pro Platform FPGA, engineers will be able to target
design modules for either silicon hardware (FPGA gates) or as
software applications, run on process engines like the embedded
PowerPC hard core.

When it comes to embedded software development, Xilinx offers
multiple levels of support. Xilinx supports the Virtex-II Pro Platform
FPGA embedded processors with "Xilinx versions" of established tools
for both low-cost and high-performance markets. For hardware centric
engineers who want to innovate by moving design modules into
software run on the Virtex-II Pro Platform FPGA PowerPC core, Xilinx
provides a simple and low cost solution. Alternatively, if software
centric engineers want a feature-rich environment for developing more
complex applications, Xilinx supplies access to specialized best-of-
class tools from the embedded industry leader.

This will alleviate the issue of design engineers having to embrace
completely new development methodologies and will better allow them
to port existing legacy designs to the Virtex-II Pro Platform FPGA.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 98
© Xilinx

2.4 Xilinx Intellectual Property

Intellectual Property (IP) is defined as very complex pre-tested system-
level functions that are used in logic designs to dramatically shorten
development time. The core benefits are:

• Faster Time-to-Market
• Simplifies the development process
• Minimal Design Risk
• Reduces software compile time
• Reduced verification time
• Predictable performance/functionality

Cores are similar to vendor-provided soft macros in that they simplify
the design specification step by removing the designer from gate-level
details of commonly used functions. Cores differ from soft macros in
that they are generally much larger system-level functions such as,
PCI bus interface, DSP filter, PCMCIA interface, etc. They are
extensively tested (and hence rarely free of charge) to offload the
designer from having to verify the core functions himself. The Xilinx
website has a comprehensive data base of Xilinx (LogiCORE) and
3rd Party (AllianceCORE) verified & tested cores, these can be found
by interrogating the on-line search facility called the ‘IP Center’.

www.xilinx.com/ipcenter

The CORE Generator tool form Xilinx delivers highly optimised cores
that are compatible with standard design methodologies for Xilinx
FPGAs. This easy-to-use tool generates flexible, high performance
cores with a high degree of predictability and allows customers to
download future core offerings from the Xilinx web site. The CORE
Generator tool is provided as part of the Xilinx Foundation iSE
software offering.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 99
© Xilinx

2.5 Web Based Information Guide

The ‘Products’ section of the Xilinx website gives information about
where and how Xilinx devices can be used in end applications and
markets. The data ranges from application notes, white papers,
reference designs, example code, industry information and much
more. These pages are updated very regularly so are ideal to book
mark and use for research into new areas or for downloading code or
design solutions to help shorten your design time to market.

The sections within the ‘Products’ page on the Xilinx website are:

Each of these web based sections are briefly described on the
following pages.

2.5.1 eSP - Emerging Standards and Protocols Web Portal

The ‘eSP Web Portal’ (emerging Standard and Protocols) can be
found under ‘End Markets’ on the Xilinx web site. The eSP End
Markets is the industry's first web portal dedicated to providing
comprehensive solutions that accelerate product development. To
make it as easy as possible, we've provided you with a choice for

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 100
© Xilinx

locating material. You can select a specific market solution or a broad
reaching technology category from two drop down menus, Network
Solutions or Technology.

In ‘Network Solutions’ choose from:

• Metro Access Networks
• Digital Video Technology (DVT)
• Home Networks
• Wireless LANs/PANs

In the ‘Technology’ section choose from:

• Wired Networks
• Wireless Networks
• Consumer

The site was designed to decrease the time spent in the pre-design
phase, which has been found to be increasing and proving to be the
new Achilles heel of the designer. It has been found that this phase of
the design cycle involves visiting seminars, learning new standards,
assimilating the data, analysing the market trends and more. The eSP
web portal can save time by proving up to date information about
emerging standards and protocols, how and where they are used,
impartial information about which one is best for your application and
pre-tested reference designs that can be purchased and used.

www.xilinx.com/esp

eSP Web Portal includes:

• White Papers
• System Diagrams
• Ask the Experts
• Glossary of terms
• System Solutions Boards / reference design boards
• eSP News
• Industry Events
• Tutorials on the latest standards and protocols

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 101
© Xilinx

2.5.2 Xtreme DSP

Xtreme DSP solutions deliver the performance and flexibility needed
today to quickly build the complex high performance DSP systems of
tomorrow.

Driven by the broadband revolution and explosive growth in wireless,
demand for new digital signal processing featuring extreme
performance and great flexibility is growing faster than conventional
DSP can deliver. The rapid convergence of different technology
segments, such as 3G and 4G wireless communication systems, high-
bandwidth networking, real-time video broadcasting, and high-
performance computing systems is producing what analysts call the
”The beginning of a new information technology era”.

Xilinx, the recognised leader in programmable logic solutions and well
established in all these technology segments, is uniquely positioned to
address this new DSP paradigm now. Xilinx XtremeDSP solutions
deliver the performance and flexibility you need today to quickly build
the complex, high-performance DSP systems of tomorrow.

XtremeDSP can give you computing capabilities approaching 1 Tera
MAC per second (1 trillion multiply and accumulate operations per
second) – more than 100 times faster than conventional DSP
solutions. Using our comprehensive line of industry-leading FPGAs
easy-to-use tools, and optimised algorithms, along with the most
comprehensive technical support, services and third-party programs in
the industry, you’ll have the confidence to tackle even the most
challenging applications using Xilinx XtremeDSP.

2.5.3 Xilinx Online (Internet Reconfigurable Logic – IRL)

Access and upgrade hardware from your desktop anywhere in the
world with Internet Reconfigurable Logic (IRL). The mission of the
Xilinx Online program is to enable, identify and promote any Xilinx
programmable system that is connected to a network that can be fixed,
upgraded, or otherwise modified after the system has been deployed
in the field. The design technology for creating Xilinx Online
applications is called Internet Reconfigurable Logic or IRL™. IRL
consists of robust PLD technology, your network connectivity and

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 102
© Xilinx

software design tools. Put these individual pieces together and
network-based hardware upgradeability becomes a reality. Details can
be accessed via the ‘Systems Resources’ main page or directly using
the link below:

www.xilinx.com/irl

2.5.4 Configuration Solutions

The Configuration Solutions section under the ‘System Resources’
section of the Xilinx website provides easy to use pre-engineered
solutions to configure all Xilinx FPGAs and CPLDs. All aspects of
configuration, whether it be from a PROM for FPGAs or via In-system
programming for CPLDs is explained. The section also includes 3rd
part boundary scan tools, embedded software solutions, ISP cables,
Automatic Test Equipment (ATE) & programmer support and
configuration storage devices.

The latest edition to the configuration solutions section is the System
ACE configuration series. With the System ACE solution, designers
can easily tap into the benefits of FPGAs, using the built-in System
ACE microprocessor interface to co-ordinate FPGA configuration
directly with system requirements. The initial member of this series,
System ACE CF, will support CompactFlash and one-inch Microdrive
disk drive technology as the storage medium.

In addition to supporting configuration storage of up to 8 gigabits,
System ACE CF is pre-engineered to support new capabilities that use
the flexibility of reconfigurable FPGAs, including:

• Multi-board configuration from a single source
• Multi-configuration bitstream management
• Configuration updates over a network (IRL)
• Hot-swapping
• Processor core initialisation and software storage
• Encryption

With System ACE CF, designers now have a drop-in configuration
solution with the density and flexibility to handle most FPGA

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 103
© Xilinx

configuration needs. The added system capabilities allow designers to
use FPGAs in ways that have previously required significant additional
design effort and debug time. In addition, JTAG test and
microprocessor ports allow seamless integration of System ACE into
any system.

Figure 2.5.4 System ACE CF flexibility and support

Flexibility

With System ACE CF, you can use one design to serve multiple
applications, drastically reducing time to market. For example, rather
than design several similar boards to accommodate different broadcast
standards, you can design one board with multiple configurations
stored in one System ACE CF memory module. Each board can be
"customised" to different standards simply to setting as default the
appropriate configuration stored in the ACE memory module.
You can also store multiple configurations of one design in a single
System ACE CF. For example, during prototyping you can store
operational, test, and debug configurations in the ACE memory module
and select different configurations to prove your design.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 104
© Xilinx

To help manage multiple bit streams and integrate FPGA configuration
control with system operation, System ACE has a built-in system
microprocessor port. This port allows a system processor to change
default configuration, trigger reconfiguration, directly reconfigure
individual or groups of FPGAs, access non-configuration files stored in
the CompactFlash module, or use excess CompactFlash memory as
generic system memory.

For customers using embedded processor cores in FPGAs, System
ACE CF offer a 3-in-1 solution for hardware and software
management. System ACE CF can configure the FPGA fabric, initialise
the microprocessor core, and supply the applications software used by
the core as needed. No extra implementation hardware is required.

Density

With unprecedented density ranging to over 8Gb, one System ACE CF
can configure hundreds of FPGAs and replace arrays of configuration
PROMs. You can also store a large number of different designs for a
given array of FPGAs all in the same memory module. Because
System ACE CF uses a standard File Allocation Table (FAT) file
system, you can also store non-bitstream files (e.g., release notes,
technical schematics, user manuals) or use excess memory as
standard system memory.

Centralisation

System ACE CF was designed to handle a variety of configuration
management needs. Its flexibility and capacity allow one System ACE
CF to configure a board full of FPGAs or multiple boards connected
through a back-plane. This centralisation greatly simplifies
configuration management and upgrades. To change or upgrade the
configuration of a system, you can either remove the memory module
and make the necessary alterations on your desktop PC, adjust the
contents in-system through the microprocessor port, or download a
new configuration over a network using Internet Reconfigurable
Logic™.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 105
© Xilinx

2.5.5 Processor Central

Processor Central provides information that will enable you to reap
the maximum benefit from the Xilinx processing solution for its FPGAs.
It offers the freedom to design a custom solution with a choice of hard
processors (up to four embedded PowerPC processors in Virtex™-II
Pro) or soft processors (with MicroBlaze™ and PicoBlaze™ in Virtex-
II, Virtex-E, Spartan-II and Spartan-IIE), and includes over 40 soft
processor peripherals and the embedded software tools to easily
complete your design.

The Processor Central section has the following detailed web pages:

PowerPC Embedded Processor Solution

Embedding IBM's PowerPC™ processor core into the Virtex-II Pro
FPGA provides the ultimate platform FPGA solution.

CoreConnect™ Technology

The IBM CoreConnect bus architecture is an on-chip bus that enables
communication between the processor core and its peripherals.

Tools and Partnerships

Xilinx offers comprehensive tools to design with its hard and soft
processor cores by partnering with industry leaders through our
XPERTS and AllianceCORE program.

MicroBlaze™ and PicoBlaze™ Soft Processor Solution

Xilinx introduces the industry's fastest 32-bit soft processor core
running at 100 D-MIPS on a Virtex™-II Pro FPGA.

The PicoBlaze™ 8-bit microprocessor core is the clear leader in FPGA
based soft processors. Formerly known as KCPSM, the PicoBlaze
processor runs at speeds of 116 MHz, yet occupies a tiny footprint of
just 154 logic cells. This combination of highest performance and
miniscule size, when coupled with the Xilinx MicroBlaze™ product,
offers designers a broad range of "right sized" solutions from 8- to 32

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 106
© Xilinx

-bits. All of Xilinx soft CPUs offer performance that is 2 to 4 times faster
than competitive offerings, at sizes that range from 1/2 to 1/5th the
size.

Soft
Processor

Archit
ecture

Bus MIPS/
Speed

Size FPGA
Support

Support

 32-bit
RISC

Harvard
style
buses
32-bit
instructi
on and
data
buses

100 D-
MIPs
150M
Hz

225
CLBs

Virtex
Virtex-E
Virtex-II
Virtex-IIPro
Spartan-II
Spartan-IIE

MicroBlaze
 Developments Kit
 (MDK) – soft
processor core,
peripherals,
GNU-based
software tools
(Compiler,
assembler,
debugger, and
linker)

 8-bit 8-bit
address
and data
busses

35
MIPS
116M
Hz

35
CLBs

Virtex
Spartan II

Free of charge
reference design
and application
note, assembler

Table 2.5.5 Xilinx Soft Processors

Third Party Processors Solution

Both soft processor cores and companion processors are available
from third party sources that support Xilinx devices.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 107
© Xilinx

2.5.6 Memory Corner

A one-stop memory shop providing solutions for leading-edge memory
technology. The Memory Corner is a one-stop memory shop providing
solutions for leading edge memory technology. The Memory Corner
represents the collaborative efforts of Xilinx and major memory
manufacturers including Cypress Semiconductor Corp., Samsung
Semiconductor, IDT, Micron Technology Inc, NEC Electronics and
Toshiba America Electronic Components Corp. (TAEC). The Memory
Corner includes a comprehensive overview of the latest memory
technologies in the form of application notes, tutorials and reference
designs to help simplify the memory selection process.

Xilinx provides embedded memory solutions as well as memory
controllers for DRAM and SRAM product families.

Figure 2.5.6 Memory Solutions on the Xilinx Website

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 108
© Xilinx

2.5.7 DSP Central

DSP Central provides information that will enable you to achieve the
maximum benefit from Xilinx DSP solutions. This section provides
details and design information in the following areas:

Algorithms/Cores

A comprehensive listing of intellectual property. Search for algorithms
by type:

• DSP Cores
• Communication and Networking
• Video/Image Processing
• IP Updates

Silicon

Xilinx FPGAs are tailored to meet the requirements of different DSP
applications. This sections helps you to select the most cost effective
silicon solution for you end application requiring high speed digital
signal processing.

Design Tools & Boards

Xilinx works with industry leaders to provide comprehensive tools for
prototyping and development.

• DSP Software Tools
• DSP Hardware Tools

Technical Literature & Training

An extensive list of DSP application notes, conference papers, white
papers, articles, training classes, and on-line seminars.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 109
© Xilinx

2.5.8 Connectivity Central

Terabit networks amongst other applications require high-bandwidth
system interconnect technology. The Xilinx SystemIO solution provides
complete connectivity for high-performance applications utilizing a
combination of the FPGA physical interface, compliant IP Cores,
design tools and partnerships. Browse this page to learn more about
the Xilinx SystemIO solution, related offerings and tools as shown
below:

Networking and Datapath Products

Using the Xilinx SystemIO networking IP cores, and reference
designs you can quickly build your edge and core routers, layer2/3+
switches, optical cross connects and LANs, WANs and MANs.

Control Plane and Backplane Products

Building on our PCI IP leadership, we are also providing IP cores for
more system interconnectivity standards including PCI Express, PCI-X,
Cardbus and RapidIO.

High Speed Design Resources

Xilinx Virtex-II series Platform FPGAs are the ideal solution for
building high-performance designs and we are providing a variety of
system tools, reference designs, and application notes for help with
your high-speed designs.

Signal Integrity Tools

Building a working system today requires knowledge of a great deal
more than just logic design. The documents and links in this area
will help you design a reliable PC Board quickly.

Partnerships

We have also working with other networking industry leaders to
provide you with a complete connectivity solution including Device
Interoperability Testing, 3rd party IP and Design Services.

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 110
© Xilinx

2.5.9 Signal Integrity

Building a working system today requires knowledge of a great deal
more than just boolean logic and HDL code. The documents and links
in this area are designed to give you everything you need to achieve
reliable PCB designs on the first try. Below are the areas accessible
from this web page:

Signal Integrity Fundamentals

• Overview of SI principles and glossary
• PCB Design Considerations
• High-density package routing information, PCB checklist and

other resources
• Power Supply and Bypassing
• Bypass capacitor selection, power consumption and voltage

regulator information
• Thermal Design
• Literature and tools for keeping FPGAs cool

Simulation Tools

IBIS information, models and simulation tool vendors

Multi Gigabit Signaling

Signal Integrity in the Gigahertz domain

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 111
© Xilinx

2.5.10 Education Services
Participation in a Xilinx training course is one of the fastest and most
efficient ways to learn how to design with Xilinx FPGA devices. Hands-
on experience with the latest information and software will allows you
to implement your own design in less time with more effective use of
the devices. Not only design engineers, but also test engineers,
component engineers, CAD engineers, technicians and engineering
managers may want to participate in the training in order to understand
the Xilinx products. Learning services provides a number of courses in
a variety or delivery methods.

Live E-Learning Environment
Choose from more than 70 online classes or modules covering a broad
range of topics and skills involving Xilinx products and services. The
one-hour modules are taught weekly at different times throughout the
day to support world-wide access. Live instructors present the modules
in real time. During each session, you will be able to interact with the
instructor as well as collaborate with online subject experts.

Day Segment Courses
Xilinx continues to develop and instruct traditional day length courses.
Working with various Xilinx product development groups, new courses
are created and made available to reflect the current product releases.
This serves to make training available when you need it and on the
products you need it for. These classes are held in centres around the
world. Specific onsite instruction is also available at your facility. For
more information: www.support.xilinx.com and click on Courses under
Education.

Computer Based Training (CBT)
Xilinx introduced computer based training with Verilog CBT. Verilog
CBT will allow you to learn the Verilog language at your own pace
without ever leaving your office. Verilog CBT is based on the traditional
3-day course, converted into a computerised self-study program.
For more information please email: eurotraining@xilinx.com or
telephone: +44 (0)870 7350 548 or v is i t :

www.xilinx.com/support/education-home.htm

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 112
© Xilinx

2.5.11 University Program

The mission of the Xilinx University Program (XUP) is to promote Xilinx
as the technology of choice in the Academic community. The XUP has
provided donations, discounted products, and services to universities
since 1985. Today there are over 1600 universities using Xilinx in
class labs, or about 18% of all of the engineering universities
World-wide.

The resources available to Universities and education include:

Xilinx University Resource Centre

http://xup.msu.edu//

Developed and maintained by the Department of Electrical and
Computer Engineering at Michigan State University, this site is
designed specifically to support and encourage universities using
Xilinx products in the classroom. You will find references and
resources regarding everything from hardware data sheets to tutorials
on using the Xilinx search engine effectively. Vast amounts of time
and energy can be saved by using the resources contained within
these pages.

Xilinx Answers Data Base:

http://www.xilinx.com/support/searchtd.htm

Xilinx Student Edition Frequently Asked Questions:

http://university.xilinx.com/univ/xsefaq1.htm

Xilinx Solution Chapter 2

Programmable Logic Design Quick Start Hand Book Page 113
© Xilinx

2.5.12 Design Consultants

The Xilinx Xperts Program qualifies, develops and supports design
consultants, ensuring that they have superior design skills and the
ability to work successfully with customers. XPERTS is a world wide
program that allows easy access to certified experts in Xilinx devices
architectures, software tools and cores. XPERTS partners also offer
consulting in the areas of HDL synthesis and verification,
customisation and integration, system level designs and team based
design techniques. A listing of the partners in the Xilinx XPERTS
program is located on the Web at:

www.xilinx.com/ipcenter

For more information on Xilinx Products and Services please look in
the Xilinx Data Source CDROM in the back of the book or visit our
website:

www.xilinx.com

2.5.13 Technical Support

Xilinx provides 24 hour access to a set of sophisticated tools for
resolving technical issues via the Web. The Xilinx search utility scans
through thousands of answer records to return solutions for the given
issue. Several problem solver tools are also available for assistance in
specific areas, like configuration or install. A complete suite of one
hour modules is also available at the desktop via live or recorded e-
learning. Lastly, users with a valid service contract can access Xilinx
engineers over the Web by opening a case against a specific issue.
For technical support on the web, log on to:

www.support.xilinx.com

Programmable Logic Design Quick Start Hand Book Page 114
© Xilinx

WebPACK ISE DESIGN SOFTWARE

The WebPACK ISE design software offers a complete design suite
based on the Xilinx Foundation ISE series software. This chapter
describes how to install the software and what each module does.

3.1 Introduction

The individual WebPACK ISE modules give the user the ability to tailor
the design environment to the chosen programmable logic devices to
be implemented and the preferred design flow.

In general, the design flow for FPGAs and CPLDs is the same. The
designer can choose whether to enter the design in schematic form or
HDL such as VHDL, Verilog or ABEL. The design can also comprise of
a mixture of schematic diagram with embedded HDL symbols. There is
also a facility to create state machines in a diagrammatic form and let
the software tools generate optimised code from a state diagram.

For simulation, WebPACK ISE incorporates a Xilinx version of
ModelSim from Model Technology, referred to as MXE (ModelSim Xilinx
Edition).This powerful simulator is capable of simulating functional
VHDL before synthesis, or simulating after the implementation process
for timing verification. WebPACK ISE offers an easy to use Graphical
User Interface (GUI) to visually create a test pattern. A testbench is then
generated and is compiled into MXE along with the design under test.

The flow diagram below shows the similarities and differences between
the CPLD and FPGA software flows.

 3

WebPACK ISE Design Software Chapter 3

Programmable Logic Design Quick Start Hand Book Page 115
© Xilinx

Figure 3.1 WebPACK Design Flow

Idea

Schematic

ECS

HDL
Design
Entry

Simulation
MXE

Testbench
HDL

Bencher

State
Machines
StateCad

Synthesis
Xilinx Synthesis Technology (XST)

FPGA

Implement
FPGA

CPLD

Fit
CPLD Fitter

Chip-
Viewer

Program
iMPACT Programmer

XPower

WebPACK ISE Design Software Chapter 3

Programmable Logic Design Quick Start Hand Book Page 116
© Xilinx

When the design is complete and the designer is happy with the
simulation results, the design can be downloaded to the required
device.

 For FPGAs the implementation process undertakes four key steps.

1. Translate – Interprets the design and runs a ‘design rule check’

(DRC).
2. Map – Calculates and allocates resources in the targeted device.
3. Place and Route – Places the CLBs in a logical position and utilises

the routing resources.
4. Configure – Creates a programming bitstream.

For CPLDs the implementation process is as follows:

1. Translate – Interprets the design and runs a ‘design rule check’.
2. Fit – Allocates the resource usage and connections
3. Configure – Creates a JED file for programming.

3.2 WebPACK Design Suite and Tools

There are several modules and tools that make up the WebPACK
Design Suite. These are listed below with a brief description of their
function. There is a demonstration of the use of these tools in later
chapters.

i. WebPACK Device Support

Device Support
Virtex-II Pro Up to XC2VP2
Virtex-II Up to XC2V250
Virtex-E Up to XCV300E
Spartan-IIE Up to XC2S300E
Spartan-II Up to XC2S200
CoolRunner-II All
CoolRunner All
XC9500 Families All
ii. WebPACK Design Entry

WebPACK ISE Design Software Chapter 3

Programmable Logic Design Quick Start Hand Book Page 117
© Xilinx

Design Entry can be performed in several different ways in WebPACK.
The XST synthesis tool is capable of synthesising HDL code in VHDL,
Verilog or ABEL into a netlist. Schematic designs are converted into
VHDL and then run through XST in the same way.

iii. WebPACK StateCAD

StateCad is a tool for graphically entering state machine in ‘bubble
diagram’ form. The user simply draws the states, transitions and
outputs. StateCad gives a visual test facility. State machines are
generated in HDL and then simply added to the WebPACK ISE project.

vi. WebPACK MXE Simulator

Modeltech Xilinx Edition (MXE) can be used for both functional and
timing simulation. The necessary libraries are already pre-compiled into
MXE and pre-written scripts seamlessly compile the design to be tested
and its testbench.

For functional simulation the written code is simulated prior to synthesis.
After fitting (CPLDs) or Place And Route (PAR) (FPGAs), the design
can be simulated using the same original testbench as a test fixture, but
with logic and routing delays added.

v. WebPACK HDL Bencher

The HDL Bencher generates the previously mentioned testbenches
allowing the design under test to be stimulated. The HDL bencher reads
the design under test and the user enters signal transitions in a
graphical timing diagram GUI. The expected simulation results can also
be entered allowing the simulator to flag a warning if the simulation did
not yield the expected results.

WebPACK ISE Design Software Chapter 3

Programmable Logic Design Quick Start Hand Book Page 118
© Xilinx

vi. WebPACK FPGA Implementation Tools

There are several steps to implementing an FPGA design that are
described above. The FPGA implementation tools perform all of these
steps.

vii. WebPACK CPLD Implementation Tools

The CPLD Implementation tools perform all of the steps in the CPLD
implementation flow outlined above.

viii. WebPACK iMPACT Programmer

For all devices available in WebPACK, the iMPACT Programmer
module allows a device to be programmed in-system. (A JTAG cable
must be connected to the PC’s parallel port.)
For FPGAs the programmer module allows a device to be configured
via the JTAG cable. Xilinx FPGAs are based on a volatile SRAM
technology, so the device will not retain configuration data when power
is removed. Therefore this configuration method is normally only used
for test purposes. CPLDs, however, are non-volatile devices and once
programmed will retain their program until they are erased or
reprogrammed.

The programmer module also includes a PROM file formatter. The use
of an external PROM is a popular method of storing FPGA configuration
data. The PROM file formatter takes in the bitstream generated by the
implementation phase and provides an MCS or HEX formatted file used
by PROM programmers.

ix. WebPACK ChipViewer

The ChipViewer tool can be used to examine the design after it has
been implemented. It shows the connections between pins of the
device as well as the configuration of the internal logical resources

WebPACK ISE Design Software Chapter 3

Programmable Logic Design Quick Start Hand Book Page 119
© Xilinx

x. XPower

As power consumption is becoming increasingly more important in
modern digital design, the XPower tool is available to calculate the
power consumption of a design running inside a device.

3.3 WebPACK CDROM Installation Instructions

Insert the CD and if the installation does not start automatically,
navigate to the CD drive using Windows Explorer.

Double click on the setup.exe file to start the installation process. (The
installation process may have already started automatically).

As the installation process fires up, a window will appear asking for a
Registration Key. To get the Registration Key, the Product ID on the
CD sleeve should be entered at the website given in the window.

www.xilinx.com/ise/webpack.htm

WebPACK ISE Design Software Chapter 3

Programmable Logic Design Quick Start Hand Book Page 120
© Xilinx

When at the registration web page:
Follow the on-line registration process by selecting New customer
please register from the first on-line screen. Enter the data requested at
each stage. You will need to create and enter a memorable user name
and password.

When requested enter the product ID in the appropriate field.

A CD Registration Key number will then be sent to you via email (please
ensure that you have carefully entered your correct email address when
entering your details).
Your key number will look something like this:

1234-xxxx-xxxx

To proceed with the installation, enter your key number into the
WebInstall Wizard CD Registration Key window and select the ‘next’
button.

Select the WebPACK configuration you wish to install from the
following:

Software
Focus Area

Module Type Description

 Complete Tool Set Everything required for CPLDs

 Design Environment Only CPLD Design Entry only

CPLD Programming Tools Only CPLD Programming tool only

 Optional Tools XPower and Chipviewer

CPLD
and

Complete ISE WebPACK
Software

Everything required for both
CPLD and FPGA designs

FPGA Complete Device
Programming Software

Programming support for both
CPLDs and FPGAs

If you have enough disk space it is recommended that you install the
complete ISE WebPACK software although it will be possible to
upgrade at a later time.

WebPACK ISE Design Software Chapter 3

Programmable Logic Design Quick Start Hand Book Page 121
© Xilinx

WebPACK ISE Design Software Chapter 3

Programmable Logic Design Quick Start Hand Book Page 122
© Xilinx

3.4 Getting Started

i. Licenses

The MXE simlulator is the only tool which requires a license.

MXE Simulator is licensed via FlexLM. It requires a Starter License file
to be situated on the hard drive pointed to by a set lm_license_file
environment setting.
The license is free and is applied for on line after installation.
A license.dat file will be emailed back. From the Start menu, Programs
> ModelSimXE 5.xx > Submit License Request.

ii. Projects

When starting a project the default location of the project will be:

c:\Xilinx_WebPACK\bin\nt

Create a unique directory on your hard drive for working on projects e.g.
c:\my_projects. If you need to uninstall and reinstall WebPACK ISE due
to problems on your system, it is recommended that the entire
WebPACK ISE directory structure be deleted.

Summary

In this chapter the functions of all the WebPACK ISE modules have
been explained along with installation of the modules you require.
You can decide which modules are necessary for your intended design
and install only relevant modules. The next section will take you through
your first PLD design using the powerful features of the WebPACK ISE
software. The example design is a simple traffic light controller which
uses a VHDL counter and a state machine. The design entry process is
identical for FPGAs and CPLDs.

Programmable Logic Design Quick Start Hand Book Page 123
© Xilinx

WebPACK ISE DESIGN ENTRY

4.1 Introduction

This section is a step by step approach to your first simple design. The
following pages are intended to demonstrate the basic PLD design
entry and implementation process.

In this example tutorial a simple traffic light controller is designed in
VHDL. The design is initially targeted at a Spartan-IIE FPGA, and then
shows how to convert the project to target a CoolRunner-II CPLD and
use some of its advanced features.

CPLD Users
This design entry section also applies to CPLDs. Any additional CPLD
specific information is included in italic font.

 4

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 124
© Xilinx

4.2 Design Entry

Start WebPACK ISE Software
Select Start > Programs > Xilinx ISE 5 > Project Navigator

 Create a New Project
Select File -> New Project…

Enter the following into the New Project dialogue box:
Project Name: Traffic
Project Location: c:\Designs\Traffic
Device Family: Spartan2e
Device: 2S100E
Package: FT256
Speed Grade: -6
Synthesis Tool: XST VHDL

Figure 4.2.1 Project Properties Window
CPLD designs
Other device families can be chosen here including CPLDs. For CPLD
designs the synthesis tool can also be ABEL XST. Even if the flow is
intended to be purely schematic, the schematic diagram will be
converted into HDL and synthesised through the chosen synthesis tool.

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 125
© Xilinx

Create a 4-bit Counter Module

Use the Language Templates to create a VHDL module for a counter as

follows:

From the Project menu select New Source.

Select VHDL Module as the source type and give it a file name

counter.
Click the Next> button.

Fill out the source definition box as follows and then click Next.

Figure 4.2.2 Define VHDL Source Window

This table automatically generates the entity in the counter VHDL
module.

Click the Finish button to complete the new source file template.

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 126
© Xilinx

Notice a file called counter.vhd has been added to the project in the
sources window of the project navigator.

Figure 4.2.3 Counter Window

The source files can be removed from the WebPACK ISE GUI by
clicking on the add/remove arrow .

As the project builds you will notice how WebPACK ISE manages
hierarchy and associated files in the sources window.
Double clicking on any file name in the sources window will allow that
file to be edited in the main text editor.

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 127
© Xilinx

Figure 4.2.4 Source in project Window

The Language Template
The language template is an excellent tool to assist in creating HDL
code. It has a range of popular functions such as counters, multiplexers,
decoders and shift registers to assist the designer. There are also
templates for creating common operators (such as ‘IF/THEN’ and ‘FOR’
loops) often associated with software languages.
Language templates are used as a reference. They can be ‘copied and
pasted’ into the design, then customised for their intended purpose.
Usually, it is necessary to change the bus width or names of the signals
or sometimes modify the functionality. In this tutorial the template uses
the signal name ‘clk’ and the design requires the signal to be called
‘clock’. The counter in the template is too complex for this particular
requirement so some sections are deleted.

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 128
© Xilinx

Open the Language Templates by clicking the button located on
the far right of the toolbar.

The language template can also be accessed from the Edit >
Language Template menu.

Click and drag the Counter template from the VHDL -> Synthesis
Templates folder and drop it into the counter.vhd architecture

between the begin and end statements. An alternative method is to

place your cursor between the begin and end statements in

counter.vhd, select Counter in the VHDL > Synthesis Templates folder

and the click the

Close the Language Templates.
Notice the colour coding used in the HDL editor. The green text
indicates a comment. The commented text in this template shows which
libraries are required in the VHDL header and the port definitions
required if this counter was used in its entirety. As the entity has already
been created, this information is not required

Delete the Green Comments
The counter from the template shows a loadable bi-directional counter.
For this design only a 4-bit up counter is required

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 129
© Xilinx

Edit the counter module

• Replace clk with the word ‘clock’ – by using the Edit>Replace

function

• Delete the section

 if CE='1' then
 if LOAD='1' then
 COUNT <= DIN;
 else
 if DIR='1' then

• Delete the section
 else
 COUNT <= COUNT - 1;
 end if;
 end if;
 end if;

The counter module should now look like figure 4.2.5 overleaf.

For the purposes of debugging code, there are several new features
available in the source editor window. A right click in the grey bar on
the left-hand side of the source editor window will bring up a menu of
these features. The line numbers in the side bar can be toggled on or
off and bookmarks can be placed to mark lines of interest in the source
file.

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 130
© Xilinx

Figure 4.2.5 Counter in VHDL Window

The above design is a typical VHDL module. It consists of library
declarations, an entity and an architecture.

The library declarations are needed to tell the compiler which packages
are required.

The entity declares all the ports associated with the design. Count (3
down to 0) means that count is a 4-bit logic vector. This design has 2
inputs clock and reset, and 1 output, a 4-bit bus called ‘count’

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 131
© Xilinx

The actual functional description of the design appears after the ‘begin’
statement in the Architecture.

The function of this design increments a signal ‘count’ when clock = 1
and there is an event on the clock. This is resolved into a positive edge.
The reset is asynchronous as it is evaluated before the clock action.
The area still within the Architecture but before the begin statement is
where declarations reside. There will be examples of both component
declarations and signal declarations later in this chapter.
Save the counter module.

The counter module of the design can now be simulated.

With counter.vhd highlighted in the sources window, the process
window will give all the available operations for that particular module. A
VHDL file can be synthesised then implemented through to a bitstream.
Normally a design consists of several lower level modules wired
together by a top level file. This design currently only has one module
which can be simulated.

4.3 Functional Simulation

To simulate a vhdl file it is necessary to first create a testbench.

From the Project menu select New Source as before.

Select Test Bench Waveform as the source type and give it the name
counter_tb.

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 132
© Xilinx

Figure 4.3.1 New Source Window
Click Next.

The testbench is going to simulate the Counter module so, when asked
which source you want to associate the source with, select counter and
click Next. Review the information and click Finish.

The HDL bencher tool reads in the design. The Initialise Timing box
sets the frequency of the system clock, set up requirements and output
delays.

Set Initialise Timing as follows and Click OK:
Clock high time: 50 ns
Clock low time: 50 ns
Input setup time: 10 ns
Output valid delay: 10 ns

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 133
© Xilinx

Figure 4.3.2 HDL Bencher Window

Note: The blue cells are for entering input stimulus and the yellow cells
are for entering expected response. When entering a stimulus, clicking
the left mouse button on the cell will cycle through available values for
that. Open a pattern text field and button by double clicking on a
signals cell or single clicking on a bus cell, from this pattern window you
can enter a value in the text field or click on the pattern button to open a
pattern wizard.

Enter the input stimulus as follows:
Set the RESET cell below CLK cycle 1 to a value of ‘1’.

Set the RESET cell below CLK cycle 2 to a value of ‘0’.

Enter the expected response as follows:
Click the yellow COUNT[3:0] cell under CLK cycle 1 and click the

Pattern button to launch the Pattern Wizard.

Set the pattern wizard parameters to count up from 0 to 1111 shown

below.

Click OK to accept the parameters.

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 134
© Xilinx

Figure 4.3.3 Pattern Wizard Window

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 135
© Xilinx

Your waveform should look like the following:

Figure 4.3.4 Waveform Window

Click File > Save Waveform to save the waveform

Close HDL Bencher.

The ISE source window should look like the following:

Figure 4.3.5 New Sources in Project Window

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 136
© Xilinx

Note: To make changes to the waveform used to create the testbench,
double-click counter_tb.tbw.

Now that the testbench is created you can now simulate the design.

Select counter_tb.tbw in the ISE source window. In the Process

window expand Modelsim Simulator by clicking and then right-click
Simulate Behavioural VHDL Model.
Select Properties.
In the ‘Simulation run time’ field type –all, hit OK.

By default MXE will only run for 1us. The –all property runs MXE until
the end of the testbench.

In the Process window double click on Simulate Behavioural VHDL
Model. This will bring up the Model Technology MXE dialog box.

Note: ISE automates the simulation process by creating and launching
a simulation macro file (a .do file, or in this case a .fdo file)). This
creates the design library, compiles the design and testbench source
files and calls a user editable .do file called counter_tb.udo. It also
invokes the simulator, opens all the viewing windows, adds all the
signals to the Wave window, adds all the signals to the List window and
runs the simulation for the time specified by the Simulation Run Time
property.

Select ModelSim for the dialog box.

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 137
© Xilinx

Maximise the Wave window and from the Zoom menu select Zoom
Full:

Figure 4.3.6 Wave Window

Use File > Exit to Close the Modelsim simulator. Alternatively, closing

the main ModelSim Window using the usual close window button will

close down the whole ModelSim program.

Take a snapshot of your design by selecting Project > Take Snapshot

Figure 4.3.7 Project Snapshot Window

Note: Taking a snapshot of your project saves the current state of your
project in a subdirectory with the same name as the Snapshot name so

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 138
© Xilinx

you can go back to it in the future. You can view project snapshots by
selecting the Sources window Snapshot tab in the Project Navigator.

If the design was to have only one module (one level of hierarchy), the
implementation phase would be the next step. This design, however,
has a further module to represent a more typical VHDL design.

4.4 State Machine Editor

For the traffic light design, the counter will act as a timer that determines
the transitions of a state machine.
The state machine will run through 4 states, each state controlling a
combination of the three lights.

State1 – Red Light
State2 – Red and Amber Light
State3 – Green Light
State4 – Amber Light

To invoke the state machine editor select New Source from the Project
Menu.

Highlight State Diagram and give it the name stat_mac and click
Next, then finish.

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 139
© Xilinx

Figure 4.4.1 New Source Window

Open the State Machine Wizard by clicking in the button

on the main toolbar.

Figure 4.4.2 State Machine Wizard Window

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 140
© Xilinx

Set the Number of states to 4 and hit Next.
Click Next to build a synchronous state machine.

In the Setup Transitions box, type TIMER in the Next: state transition

field. (Shown in Figure 4.4.3).

Figure 4.4.3 Set-up Transitions Window

Click on finish and drop the state machine on the page.

Double Click on the Reset State 0 coloured yellow.

Rename the State Name RED

Hit the Output Wizard button.

This design will have three outputs named RD, AMB and GRN.

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 141
© Xilinx

In the DOUT Field type RD to declare an output. Set RD to a constant

‘1’ with a registered output as shown in figure 4.4.4 below.

Figure 4.4.4 Logic Wizard Window

Click on OK and then OK the Edit State box.

In a similar fashion edit the other states.

Rename State1 to REDAMB and use the output wizard to set RD = 1

and a new output AMB equal to 1 with a registered output.

Rename State2 to GREEN and use the output wizard to set a new

output GRN equal to 1 with a registered output.

Rename State3 to AMBER and use the output wizard to set AMB = 1.

The state machine should look like the following.

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 142
© Xilinx

Note: If you set a signal as registered in the output wizard then select

signal and re-open wizard – it is no longer ticked as registered.

Figure 4.4.5 State Diagram

Double-Click on the transition line between state RED and state

REDAMB.

In the Edit Condition window, set a transition to occur when timer is

1111 by editing the condition field to TIMER = “1111”. (Don’t forget the

double quotes (“) as these are part of VHDL syntax.).

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 143
© Xilinx

Figure 4.4.6 Edit Conditions Window

Repeat for the other transitions:

Transition REDAMB to GREEN, TIMER = “0100”

Transition GREEN to AMBER, TIMER = “0011”

Transition AMBER to RED, TIMER = “0000”

Hence, the traffic light completes a RED, REDAMB, GREEN, AMBER

once every three cycles of the counter.

Finally, declare the vector TIMER by clicking on the button on the

left side toolbar.

Drop the marker on the page, double click on it and enter the name

TIMER with a width of 4 bits. (Range 3:0)

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 144
© Xilinx

Figure 4.4.7 Edit Vector Window

Click OK.

Your completed state machine drawing should look like the Figure 4.4.8

overleaf.

Figure 4.4.8 State Machine Drawing

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 145
© Xilinx

Click on the button on the top toolbar.

The results window should read ‘Compiled Perfectly’. Close the dialog

box and the generated HDL browser window.

Save and Close StateCad.

The state machine can now be added to the WebPACK ISE project.

In the Project Navigator go to the Project Menu and select Add Source.
In the Add Existing Sources box find STAT_MAC.vhd.

Click on Open and declare it as a VHDL Module.

In the Project Navigator go to the Project Menu and select Add Source.
In the Add Existing Sources box find stat_mac.dia.

The State Diagram will be added to the top of the Sources window.

Double Clicking on this file will open up the state diagram in StateCad.

Figure 4.4.9 Source in Project Window showing Model View

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 146
© Xilinx

4.5 Top Level VHDL Designs
At this point in the flow two modules in the design are connected
together by a top level file. Some designers like to create a top level
schematic diagram whilst others like to keep the design entirely text
based.
This section discusses the latter, hence the counter and state machine
will be connected using a top.vhd file.
If you prefer the former, jump directly to the next section, 4.6, entitled
‘Top Level Schematic Designs’. There is the opportunity to do both by
continuing through the tutorial.

Take a snapshot of the project from Project > Take Snapshot

Figure 4.5.1 Project snapshot

From the Project Menu select New Source and create a VHDL Module
called top.

Figure 4.5.2 New Source Window Showing VHDL Module

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 147
© Xilinx

Click on next and fill out the ‘Define VHDL Source’ dialog box as shown

below in figure 4.5.3:

Figure 4.5.3 Define VHDL Source Window

Click on Next, then Finish.

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 148
© Xilinx

Your new file, top.vhd should look like figure 4.5.4 below:

Figure 4.5.4 New VHDL File

In the Sources Window highlight counter.vhd

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 149
© Xilinx

In the Process Window double click View VHDL Instantiation
Template from the Design Entry Utilities section.

Highlight and Copy the Component Declaration and Instantiation:
Figure 4.5.5 Instantiation Template

Close the Instantiation Template as shown in figure 4.5.5.

Paste the Component Declaration and Instantiation into top.vhd.

Re-arrange so that the Component Declaration lies before the begin

statement in the architecture and the instantiation lies between the

begin and end statement. (Use the picture on the next page for

assistance).

Highlight stat_mac.vhd in the Sources window and double click View
VHDL Instantiation Template from the Design Utilities section.

Repeat the copy and paste procedure above.

Declare a signal called timer by adding the following line above the

component declarations inside the architecture:

signal timer : std_logic_vector(3 downto 0);

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 150
© Xilinx

Connect up the counter and state machine instantiated modules so your
top.vhd file looks like figure 4.5.6 below:

Figure 4.5.6 top.vhd File

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 151
© Xilinx

Save top.vhd and notice how the Sources window automatically
manages the hierarchy of the whole design with counter.vhd and
stat_mac.vhd becoming sub-modules of top.vhd.

The entire design can now be simulated.
Add a new Test Bench Waveform source as before but this time,
associate it with the module top.

Accept the timing in the Initialise Timing dialog box and click OK.

In the waveform diagram Enter the input stimulus as follows:
Set the RESET cell below CLK cycle 1 to a value of ‘1’.
Click the RESET cell below CLK cycle 2 to reset if low.
Scroll to the 64th clock cycle, right click and select ‘Set end of
testbench’.

Figure 4.5.7 Waveform Diagram

Close the Edit Test Bench window.

Click the Save Waveform button.

Close HDL Bencher.

The top_tb.tbw file will now be associated with the top level VHDL
module.

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 152
© Xilinx

Simulate Functional VHDL Model in the Process Window.

Figure 4.5.8 Waveform Window

You are now ready to go to the implementation stage.

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 153
© Xilinx

4.6 Top Level Schematic Designs
It is sometimes easier to visualise designs when they have a schematic
top level which instantiates the individual blocks of HDL. The blocks can
then be wired together in the traditional method.

For designs in WebPACK ISE, the entire project can be schematic
based.

This section discusses the method of connecting VHDL modules via the
ECS schematic tool.

If you have worked through the previous session you will first need to
revert to the screen shown in Figure 4.6.1 below (two modules with no
top level file). This is achieved by:
At the bottom of Sources window select the Snapshot View Tab.
Highlight Snap2 (two modules), then in the Project menu select Make
Snapshot Current. This action will take you back to the stage in the
flow with only the counter.vhd and the stat_mac.vhd files.
WebPACK ISE will ask if you would like to take another snapshot of the
design in its current state.
Select Yes and create a third snapshot called vhdl_top.
The Sources window module view should look like the following figure:

Figure 4.6.1 Sources in Project Window

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 154
© Xilinx

4.6.1 ECS Hints

The ECS schematic capture program is designed around the user
selecting the action they wish to perform followed by the object the
action is to be performed on. In general most Windows applications
currently operate by selecting the object and then the action to be
performed on that object. Understanding this fundamental philosophy
of operation makes learning ECS a much more enjoyable experience.

From the Project Menu select New Source > Schematic and give it
the name top_sch.

Figure 4.6.2 New Source Window showing top_sch

Click Next then Finish.

The ECS Schematic Editor Window will now appear.

Back in the Project Navigator highlight counter.vhd in the sources
window.

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 155
© Xilinx

In the process window double click on ‘Create Schematic Symbol’
from the Design Entry Utilities Section. This will create a schematic
symbol and add it to the library in the Schematic Editor.

Create another symbol this time for the state machine by highlighting
stat_mac.vhd and double clicking on Create Schematic Symbol.

Returning to the Schematic editor, the symbol libraries can be found
under the Symbol tab on the left-hand side of the page.

Add the counter and state machine by clicking on the new library in the
Categories window in the top right of the ECS page, then selecting
counter. Move the cursor over the sheet and drop the counter symbol
by clicking where it should be placed.
Move the cursor back into the Categories window and place the
stat_mac symbol on the sheet.

Zoom in using the button so your window looks like the following:

Figure 4.6.3 Close Up of Counter and State Machine Symbols

Select the Add Wire tool from the Drawing Toolbar
Note: Click once on the symbol pin, once at each vertex and once on
the destination pin to add a wire between two pins. ECS will let the user
decide whether to use the autorouter or to manually place the signals
on the page.

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 156
© Xilinx

Note: To add a hanging wire click on the symbol pin to start the wire,
once at each vertex and then double-click at the location you want the
wire to terminate.

Wire up the counter and state machine as shown below in figure 4.6.4:

Figure 4.6.4 Counter and State Machine symbols with wire.

Select the Add Net Names tool from the Drawing Toolbar. Type
clock (notice that the text appears in the window in the top left of the
ECS page) and then place the net name on the end of the clock wire.

Note: To add net names to wires that will be connected to your
FPGA/CPLD I/Os, place the net name on the end of the hanging wire.

Finish adding net names so your schematic looks similar to the
following figure:

Figure 4.6.6 More Net Names

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 157
© Xilinx

ECS recognises that count(3:0) and TIMER(3:0) are buses so connects
them together with a bus rather than a single net.

I/O Markers

Select the Add I/O Marker tool from the Drawing Toolbar.

With the Input type selected, click and drag around all the inputs that

you want to add input markers to.

Repeat for the outputs but select Output type.

Your completed schematic should look like the following figure, 4.6.7:

Figure 4.6.7 Adding I/O markers

Save the design and exit the schematic editor.

Note: In the Design Entry utilities you can view the VHDL created from
the schematic when top_sch is selected in the Sources window. The
synthesis tool actually works from this file.

The entire design can now be simulated.

Highlight top_sch.sch in the sources window

Add a new Test Bench Waveform source by right clicking on
top_sch.sch and selecting New Source. Call this source top_sch_tb
and associate it with top.

Accept the timing in the Initialise Timing dialog box and click OK.

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 158
© Xilinx

In the waveform diagram Enter the input stimulus as follows:
Set the RESET cell below CLK cycle 1 to a value of ‘1’.

Click the RESET cell below CLK cycle 2 to reset it low.

Go to the 64th clock cycle, right click and select ‘Set end of testbench’.

Figure 4.6.8 Waveform Diagram

Close the Edit Test Bench window.
Click the Save Waveform button.

Close HDL Bencher.

With Top_sch_tb.tbw selected in the sources window expand

ModelSim Simulator and double click Simulate Behavioral VHDL
Model in the Process Window.

WebPACK ISE Design Chapter 4

Programmable Logic Design Quick Start Hand Book Page 159
© Xilinx

Figure 4.6.9 ModelSim Simulation Window

You are now ready to go to the implementation stage.

Summary
This section covered the following topics

• Hierarchical VHDL structure and simple coding example

• Test Bench Generation

• Functional Simulation

• The State Machine Editor

• ECS Schematic Capture

The next Chapter discusses the Synthesis and implementation process

for FPGAs. CPLD users may wish to skip the next chapter. For those

intending to target a CPLD, the Constraints Editor and Translate

information may be of interest.

Programmable Logic Design Quick Start Hand Book Page 160
© Xilinx

IMPLEMENTING FPGAs

5.1 Introduction

After the design has been successfully simulated the synthesis stage
converts the text-based design into an NGC netlist file. The netlist is a
non-readable file that describes the actual circuit to be implemented at
a very low level.

The implementation phase uses the netlist, and normally a ‘constraints
file’ to recreate the design using the available resources within the
FPGA. Constraints may be physical or timing and are commonly used
for setting the required frequency of the design or declaring the
required pin-out.

The first step is translate. The translate step checks the design and
ensures the netlist is consistent with the chosen architecture. Translate
also checks the user constraints file (UCF) for any inconsistencies. In
effect, this stage prepares the synthesised design for use within an
FPGA.

The Map stage distributes the design to the resources in the FPGA.
Obviously, if the design is too big for the chosen device the map
process will not be able to complete its job.

Map also uses the UCF file to understand timing and may sometimes
decide to actually add further logic (replication) in order to meet the
given timing requirements. Map has the ability to ‘shuffle’ the design
around look up tables to create the best possible implementation for
the design.
This whole process is automatic and requires little user input.

 5

Implementing FPGAs Chapter 5

Programmable Logic Design Quick Start Hand Book Page 161
© Xilinx

The Place And Route (PAR) stage works with the allocated
configurable logic blocks (CLBs) and chooses the best location for
each block. For a fast logic path it makes sense to place relevant CLBs
next to each other purely to minimise the path length. The routing
resources are then allocated to each connection, again using careful
selection of the best possible routing types. e.g. if a signal is needed
for many areas of the design the Place and Route tool would use a
‘longline’ to span the chip with minimal delay or skew.

At this point it is good practice to re-simulate. As all the logic delays
added by the LUTs and Flip Flops are now known as well as the
routing delays, MXE can use this information for timing simulation.

Finally a program called ‘bitgen’ takes the output of Place and Route
and creates a programming bitstream. Whilst developing a design it
may not be necessary to create a bit file on every implementation as
the designer may just need to ensure a particular portion of the design
passes any timing verification.

The steps of implementation must be carried out in this order. The
WebPACK ISE software will automatically perform the steps required if
a particular step is selected. E.g. If the design has only just been
functionally simulated and the designer then decides to do a timing
simulation, WebPACK ISE will automatically Synthesise, Translate,
Map and ‘PAR’ the design. It will then generate the timing information
before it opens MXE and gives the timing simulation results.

The rest of this chapter demonstrates each step required to
successfully implement the Traffic Light design in the previous chapter.

Implementing FPGAs Chapter 5

Programmable Logic Design Quick Start Hand Book Page 162
© Xilinx

5.2 Synthesis

The XST synthesis tool will only attempt to synthesis the file
highlighted in the sources window. In the traffic light design top.vhd (for
VHDL designs) or top_sch (for schematic designs) instantiates two
lower level blocks, stat_mac and counter.
The synthesis tool recognises all the lower level blocks used in the top
level code and synthesises them all together to create a single
bitstream.

In the Sources window ensure top.vhd (top_sch for schematic flows)
is highlighted.
In the Process window expand the Synthesis sub-section by clicking
on the + next to Synthesize.
You can now check your design by double clicking on Check Syntax.
Ensure any errors in your code are corrected before you continue. If
the syntax check is OK a tick will appear.

The design should be OK because both the HDL Bencher and MXE
have already checked for syntax errors. (It is useful, when writing code,
to periodically check your design for any mistakes using this feature).

Figure 5.2.1 Process Window showing Check Syntax

Right Click on Synthesize and select Properties.

Implementing FPGAs Chapter 5

Programmable Logic Design Quick Start Hand Book Page 163
© Xilinx

A window appears allowing the user to influence the way in which the
design is interpreted.
The help feature will explain each of the options in each tab.
Click on the HDL options Tab.

The Finite State Machine (FSM) encoding algorithm option looks for
state machines and determines the best method of optimising.
For FPGAs state machines are usually ‘one hot’ encoded. This is due
to the abundance of flip-flops in FPGA architectures. A ‘one hot’
encoded state machine will use one flip-flop per state. Although this
may seem wasteful, the next state logic is reduced and the design is
likely to run much faster. Leave the setting on ‘auto’ to achieve this fast
one hot encoding.

In the Xilinx Specific Options tab ensure the ‘Add IO Buffers’ box is
ticked. The IO buffers will be attached to all the port names in the top
level entity of the design.

Clicking on help in each tab demonstrates the complex issue of
synthesis and how the final result could change. The synthesis tool will
never alter the function of the design but it has a huge influence on
how the design will perform in the targeted device.

OK the Process Properties window and double click on Synthesize.
When the synthesis is complete a green tick appears next to
Synthesize. Double Click on View Synthesis Report.

The first section of the report just summarises the synthesis settings.
Each entity in the design is then compiled and analysed.
The next section in the report gives the synthesis details and
documents how the design has been interpreted.
It can be seen that the state machine is one hot encoded as each state
name (red, amber, redamb and green) has been assigned its own 1 bit
register. When synthesis chooses to use primitive macros it is known
as inference. As registered outputs were selected in the state machine,
three further registers have been inferred.

Implementing FPGAs Chapter 5

Programmable Logic Design Quick Start Hand Book Page 164
© Xilinx

Figure 5.2.2 Extract of Synthesis Report

The Final Report section shows the resources used within the FPGA.

Figure 5.2.3 Resource Report

Implementing FPGAs Chapter 5

Programmable Logic Design Quick Start Hand Book Page 165
© Xilinx

5.3 Constraints Editor
To get the ultimate performance from the device it is necessary to tell
the implementation tools what and where performance is required. This
design is particularly slow and timing constraints are unnecessary.
Constrains can also be physical and pin locking is a physical
constraint.
For this design, assume the specification for clock frequency is
100MHz and the pin out has been pre determined to that of a Spartan-
IIE pre designed board.

In the source window add a New Source of type Implementation
Constraints File. Call this file top_constraints and associate with the
module top.

Figure 5.3.1 Constraints File as a source

In the Process window expand the User Constraints section and
double click on Create Timing Constraints.

Implementing FPGAs Chapter 5

Programmable Logic Design Quick Start Hand Book Page 166
© Xilinx

Figure 5.3.2 Process Window showing User Constraints

Notice the Translate step in the Implement Design section runs
automatically. This is because the implementation stage must see the
netlist before it can offer the user the chance to constrain sections of
the design. When ‘Translate’ has completed the Constraints Editor
Opens.

There is one global net in the design, this is the clock. Translate
detected the clock assigned it to the global tab.
Double Click in Period field.
Give the clock a Period Constraint of 10ns with a 50% duty cycle as
follows.*

Implementing FPGAs Chapter 5

Programmable Logic Design Quick Start Hand Book Page 167
© Xilinx

Figure 5.3.3 Clock Period Editor Window

A period constraint ensures the internal paths stating and ending at
synchronous points (Flip-Flop, Ram, Latch) have a logic delay less
than 10ns.

OK the clock period and hit the Ports tab
The ports section lists all the IO in the design. The location field sets
which pin on the device the signal will connect to.

Double click in the location field for amber_light. Then, in the location
dialogue box, type G16. (If a non-Ball Grid package is used, such as a
PQ208, the syntax is slightly different. The correct syntax for each
package can be found in the online datasheet).

Repeat for the other outputs, the Clock and Reset input.

amber_light G16

Clock T9

green_light G15

red_light H16

Reset H13

Implementing FPGAs Chapter 5

Programmable Logic Design Quick Start Hand Book Page 168
© Xilinx

Highlight the three outputs ‘red_light’, ‘green_light’ and ‘amber_light’
using ctrl select.

Figure 5.3.4 Constraints Editor – Create Group

In the Group Name field type lights and then hit Create Group.

In the Select Group box select lights and hit the Clock to Pad button.

In the clock to pad dialogue box set the time requirement to 15ns
relative to the clock. (There is only one clock but in some designs there
may be more).

Implementing FPGAs Chapter 5

Programmable Logic Design Quick Start Hand Book Page 169
© Xilinx

Figure 5.3.5 Clock to Pad Dialogue Box

Hit OK and notice that the clock to pad fields have been filled in
automatically. Also notice that the User Constraints File (UCF)
generated has appeared in the UCF constraints tab at the bottom of
the screen. The UCF file should look similar to the following:

Save the Constraints Editor session and exit the Constraints Editor.

Translate must be re-run so the new constraints can be read. OK the
‘run translate’ window and exit the constraints editor and hit reset in
the notice window.

Click on the + next to Implement Design in the Process window.

Implementing FPGAs Chapter 5

Programmable Logic Design Quick Start Hand Book Page 170
© Xilinx

Figure 5.3.6 Design Process Window

The implementation steps are now visible. The green tick next to
translate indicates this step has completed once before. An orange
question mark indicates that this step is out of date and should be
rerun.

A right Click on each step allows the user to edit the properties for that
particular step. The properties for all the steps can be edited by right
clicking on Implement Design. There is a tab for each step.

Implementing FPGAs Chapter 5

Programmable Logic Design Quick Start Hand Book Page 171
© Xilinx

Figure 5.3.7 Process Properties

The help button will explain the operation of each field.
Implement the design by double clicking on Implement Design. (Each
stage could be run separately if required).

When there is a green tick next to Translate, Map and Place and
Route the design has completed the implementation stage. For a ‘post
route’ timing report manually run the Generate Post-Route Static
Timing section.

Implementing FPGAs Chapter 5

Programmable Logic Design Quick Start Hand Book Page 172
© Xilinx

Figure 5.3.8 Generate Post-Route Timing

5.4 Reports
Each of the stages has its own report. Clicking on the + next to each
stage lists the reports available. The various reports available are as
follows:

i. Translate Report – Shows any errors in the design or the UCF.

ii. Map Report – Confirms the resources used within the device. A
detailed map report can be chosen in the Properties for map. The
detailed map report describes trimmed and merged logic. It will also
describe exactly where each portion of the design is located in the
actual device.

iii. Post-Map Static Timing Report - Shows the logic delays only (no
routing) covered by the timing constraints. This design has two timing
constraints, the clock period and the ‘clock to out’ time of the three
lights. If the logic only delays don’t meet the timing constraints the
additional delay added by routing will only add to the problem.
If there was no routing delay these traffic lights would run at 216 MHz!!

Implementing FPGAs Chapter 5

Programmable Logic Design Quick Start Hand Book Page 173
© Xilinx

iv. Place and Route Report – Gives a step by step progress report.
The place and route tool must be aware of timing requirements. It will
list the given constraints and report how comfortably the design fell
within or how much it failed the constraints.

v. Asynchronous Delay Report – is concerned with the worst path
delays in the design, both logic and routing.

vi. Pad Report – Displays the final pin out of the design with
information regarding the drive strength and signalling standard.

vii. Guide Report – Shows how well a guide file has been met if one
was specified.

viii. Post Place and Route Static Timing Report – Adds the routing
delays. It can now be seen that the max frequency of the clock has
dropped.

WebPACK has additional tools for complex timing analysis and floor
planning. Neither of these tools are covered in this introductory
booklet.

5.5 Timing Simulation

The process of timing simulation is very similar to the functional
method.

With top_tb.tbw or (top_sch_tb.tbw for schematic flow) selected in the
sources window, expand the Modelsim Simulator section in the
Process window and rightclick on Simulate Post-Place and Route
VHDL model.

Select Properties and in the Simulation Run Time field type ‘all’.

Click OK then double click on Simulate Post Route VHDL model

MXE opens but this time a different script file is implemented and the
post route VHDL file (time_sim.vhd) is compiled. Time_sim.vhd is a
very low level VHDL file generated by the Implementation tools. It

Implementing FPGAs Chapter 5

Programmable Logic Design Quick Start Hand Book Page 174
© Xilinx

references the resources within the FPGA and takes timing information
from a separate file.
Use the Zoom features and Cursors to measure the added timing
delays.

Figure 5.5.1 Simulation Window showing Timing

5.6 Configuration

Right click on Generate Programming file and then click on
Properties. Under the Start-Up Options tab, ensure that the Start-Up
clock is set to JTAG Clock by selecting JTAG Clock from the drop
down menu.

Double click on Generate Programming file.

This operation creates a .bit file which can be used by the iMPACT
programmer to configure a device.

Expand the Generate Programming File tools sub section.
Double Click on Configure Device (iMPACT).

Implementing FPGAs Chapter 5

Programmable Logic Design Quick Start Hand Book Page 175
© Xilinx

A DLC7 Parallel-IV JTAG cable is required to configure the device from
the iMPACT Programmer. Ensure the cable is plugged in to the
computer and the ribbon cable/flying leads are connected properly to
the board. It is also necessary to connect the power jack of the
Parallel-IV cable to either the Mouse or keyboard port of the PC.

If the chain specified in the design is not automatically picked up from
the ISE tool, right click in the top half of the iMPACT window and select
Add Xilinx Device. Browse to the location of the project
(c:\designs\traffic) and change the file type to .bit.

Open top.bit (top_sch.bit for schematic designs). The iMPACT
Programmer has drawn a picture of the programming Chain. Click on
the picture of the device.

From the Operations Menu select Program.

Implementing FPGAs Chapter 5

Programmable Logic Design Quick Start Hand Book Page 176
© Xilinx

Summary

This chapter has taken the VHDL or Schematic design through to a

working physical device. The steps discussed were:

• Synthesis and Synthesis report

• Timing and Physical Constraints using the Constraints Editor

• The Reports Generated throughout the Implementation flow

• Timing Simulation

• Creating and Downloading a bitstream.

The next chapter details a similar process but this time a CoolRunner-II

CPLD is targeted rather than a Spartan-IIE FPGA.

Programmable Logic Design Quick Start Hand Book Page 177
© Xilinx

IMPLEMENTING CPLDs

6.1 Introduction

After the design has been successfully simulated the synthesis stage
converts the text based HDL design into an NGC netlist file. The netlist
is a non-readable file that describes the actual circuit to be
implemented at a very low level.

The implementation phase uses the netlist and normally, a constraints
file to recreate the design using the available Macrocells within the
CPLD. Constraints may be physical or timing and are commonly used
for setting the required frequency of the design or declaring the
required pin-out.

Obviously, if the design is too big for the chosen device the fitter will
not be able to complete its job.

The fitter also uses the UCF file to understand timing and may
sometimes decide to change the actual design. For example,
sometimes the Fitter will change the D-Type flip-flops in the design to
Toggle Type or T-Type registers. It all depends on how well the design
converts into product terms.

Once the fitter has completed it is good practice to re-simulate. As all
the logic delays added by the macrocells, switch matrix and flip flops
are known, MXE can use information for timing simulation.
The fitter creates a JEDEC file which is used to program the device
either on the board via a Parallel cable or using programming
equipment.

 6

Implementing CPLDs Chapter 6

Programmable Logic Design Quick Start Hand Book Page 178
© Xilinx

The steps of implementation must be carried out in this order
(Synthesise, Fit, Timing Simulate, Program). The WebPACK ISE
software will automatically perform the steps required if a particular
step is selected. E.g. if the design has only just been functionally
simulated and the designer then decides to do a timing simulation,
WebPACK ISE will automatically Synthesise and Fit. It will then
generate the timing information before it opens MXE and gives the
timing simulation results.

The rest of this chapter demonstrates each step required to
successfully implement the Traffic Light design in the previous chapter
but now targeting a CoolRunner-II low power CPLD.

A Spartan-IIE FPGA was chosen at the start of this tutorial it must now
be changed to a CoolRunner-II CPLD. The project can be changed at
any time to any device BUT, when a device family, type, package of
speed grade is changed, the design must be re-synthesised.

Double click on xc2s100e-7FT256 – XST VHDL in the Sources
Window shown below in figure 6.1.1.

Figure 6.1.1 Sources in Project Window

Implementing CPLDs Chapter 6

Programmable Logic Design Quick Start Hand Book Page 179
© Xilinx

Change the Device Family to CoolRunner2 CPLDs
In the device field Select XC2C128
Change the package field to CP132
Enter the Speed Grade as -6
Leave the Synthesis tool as XST VHDL
Click on OK.

The Project, originally targeted at a Spartan-IIE FPGA is now targeting
a Xilinx CoolRunner-II CPLD. The Green ticks in the process window
have now disappeared and orange question marks have appeared
indicating that the design must be re-synthesised and re-implemented.

6.2 Synthesis

The XST synthesis tool will only attempt to synthesise the file
highlighted in the sources window. In the traffic light design top.vhd (for
VHDL designs) or top_sch (for schematic designs) instantiates two
lower level blocks, stat_mac and counter.

The synthesis tool recognises all the lower level blocks used in the top
level code and synthesises them all together to create a single netlist.

In the Sources window ensure top.vhd (top_sch for schematic flows)
is highlighted.

In the Process window expand the Synthesis sub-section by clicking
on the + next to Synthesize.

You can now check your design by double clicking on Check Syntax.
Ensure any errors in your code are corrected before you continue. If
the syntax check is OK a tick will appear (as shown in figure 6.2.1).
The design should be OK because both the Bencher and MXE have
already checked for syntax errors. (It is useful, when writing code, to
periodically check your design for any mistakes using this feature).

Implementing CPLDs Chapter 6

Programmable Logic Design Quick Start Hand Book Page 180
© Xilinx

Figure 6.2.1 Processes Window Showing Check Syntax has
Completed Successfully

Right Click on Synthesize and select Properties.

A window appears allowing the user to influence the way in which the
design is interpreted.

The Help feature will explain each of the options in each tab.

Click on the HDL options Tab.

In the Xilinx Specific Options tab ensure the ‘Add IO Buffers’ box is
ticked. The IO buffers will be attached to all the port names in the top
level entity of the design.

Clicking on help in each tab demonstrates the complex issue of
synthesis and how the final result could change. The synthesis tool will
never alter the function of the design but it has a huge influence on
how the design will perform in the targeted device.

OK the Process Properties window and double click on Synthesize.

Implementing CPLDs Chapter 6

Programmable Logic Design Quick Start Hand Book Page 181
© Xilinx

6.3 The Constraints File
To get the ultimate performance from the device it is necessary to tell
the implementation tools what and where performance is required. The
requirement for design is particularly slow and timing constraints are
unnecessary.
Constrains can also be physical and pin locking is a physical
constraint.
For this design, assume the specification for clock frequency is
100MHz and the pin out has been pre-determined to that of a
CoolRunner pre-designed board.

In the Source Window right click and add a new Implementation
Constraints File source. Call this file top_constraints and associate
it with the module top. Highlight the newly added UCF file in the
Source Window and then, in the Process Window, expand the User
Constraints branch and double click on Assign Package Pins.
Alternatively, it is possible to highlight the top level (top.vhd) and
expand the User Constraints branch.

Figure 6.3.1 Process window showing synthesised design

The ChipViewer tool will be launched. All IO pins can be assigned by
expanding the tree in the Signal Hierarchy window and dragging them
over to the desired location in the Placement Window. It may be

Implementing CPLDs Chapter 6

Programmable Logic Design Quick Start Hand Book Page 182
© Xilinx

necessary to zoom in to be able to read the pin names using the
button. Place the IO at the locations indicated below. Once the pins
have been assigned, it will be possible to right-click on each assigned
pin to assign certain attributes and properties. Save and Close the
ChipViewer session.

Signal Location Pin Type
clock N2 IO/Global Clock 2
reset A3 IO/Global Set-Reset
red_light F1 IO
amber_light G1 IO
green_light F2 IO

Figure 6.3.2 Location constraints

The LOC constraint tells the fitter which pins on the device are to be
used for a particular signal.

To Add a period constraint, double click on the Create Timing
Constraints as seen above Assign Package Pins in Figure 6.3.1.
Notice that the Constraints Editor picks up the LOC constraints
entered in ChipViewer. These can be edited by double clicking on
them in the read-write window or under the Ports tab in the main
window. Double click in the Period window of the Global signal clock
and enter a period of 10ns. Save and close the Constraints Editor
session.

The final way to edit constraints is to enter them directly into the UCF
via a text file. Double click the Edit Constraints (Text) and the
constraints file will open in the text editor.

The CoolRunner-II architecture supports the use of non 50:50 clocks
by implementing input hysteresis. This can be selected on a pin by
pin basis. For example, if the clock used in this design is an RC
oscillator, the input hysteresis can be used to clean up the clock using
the following constraint syntax:

NET “clock” schmitt_trigger;

Implementing CPLDs Chapter 6

Programmable Logic Design Quick Start Hand Book Page 183
© Xilinx

Different IO Standards are also supported by the CoolRunner-II. If the
three light signals had to go to a downstream device that required the
signals to conform to a certain IO Standard the following constraint
syntax can be used:

NET “red_light” IOSTANDARD=LVTTL;

The permissible standards are LVTTL, LVCMOS15, LVCMOS18,
LVCMOS25, LVCMOS33 and on the larger devices (128 macrocell
and larger) HSTL_I, SSTL2_I and SSTL3_I. However, only one IO
Standard can be used per bank so care must be taken when
assigning different IO Standards in a design.

Save the Constraints file session and close the text editor window.

The CoolRunner-II family has several features that are aimed at
reducing power consumption in the device. One of these features is
known as CoolClock. The clock signal on Global Clock input 2 (GCK2)
is divided by 2 as soon as it enters the device. All the registers that
are clocked by this clock are then automatically configured as Dual-
Edge triggered flip flops. So, the highest toggling net in the design will
now be toggling at half the frequency, which will reduce the power
consumption of that net, without compromising the performance of the
design. The CoolClock attribute can be applied by right clicking on
GCK2 in ChipViewer or by adding the following line in the UCF:

NET “clock” COOL_CLK;

However, we will not use the CoolClock feature in this tutorial.

For more information on the use of CoolRunner-II and its advanced
features, there are several resources available. The CoolRunner-II
User Guide will be located at:
http://www.xilinx.com/publications/products/cool2/handbook/index.htm

There are also several Application Notes available that cover a variety
of topics and often include free code examples:
http://www.xilinx.com/apps/epld.htm

Implementing CPLDs Chapter 6

Programmable Logic Design Quick Start Hand Book Page 184
© Xilinx

Click on the + next to Implement Design in the Process window.

Figure 6.3.3 Process Window Showing Implement Design

The implementation sub-sections are now visible.

A Right Click on Implement Design allows the user to edit the
properties for each particular step.

Figure 6.3.4 Process Properties – Implement Design

The Help button will explain the operation of each field.

Implementing CPLDs Chapter 6

Programmable Logic Design Quick Start Hand Book Page 185
© Xilinx

The default IO Standard can be set under the Basic tab of the
Process Properties window in Figure 6.3.4. In this case, we will set
the Output Voltage Standard to LVTTL so that all our pins are
configured to be compliant with the LVTTL standard.

The UCF will be automatically read by the tools. It is possible to
navigate to a different UCF in the Implementation User Constraints
File window.

Implement the design by double clicking on Implement Design. When
there is a green tick next to Implement Design the design has
completed the implementation stage. For timing report expand the
Generate Timing branch and double click on Timing Report.

Note: A green tick means that the design ran through without any
warnings. A yellow exclamation may mean that there is a warning in
one of the reports. A common warning, which can be safely ignored in
CPLD designs, is that an “fpga_don’t_touch” attribute has been applied
to an instance. If the design procedure outlined in this example has
been followed, there should be no errors or warnings.

6.4 CPLD Reports
The are two reports available detailing the fitting results and the
associated timing of the design. These are:

i. Translation Report – Shows any errors in the design or the UCF.

ii. Fitter Report – The CPLD fitter report can be opened in two ways.
 Firstly in a standard text window within the ISE GUI and secondly in a
browser window. To select which format is opened go Edit >
Preferences > General > CPLD Fitter Report.

Implementing CPLDs Chapter 6

Programmable Logic Design Quick Start Hand Book Page 186
© Xilinx

Fig 6.4.1 ISE Preferences

To open the CPLD Fitter Report, expand the Fit branch and double
click on the Fitter Report Process.

Implementing CPLDs Chapter 6

Programmable Logic Design Quick Start Hand Book Page 187
© Xilinx

Fig 6.4.2 CPLD HTML Fitter Report

The same information is contained in both the HTML and text reports
but the HTML report has been designed to make the information more
readable and easier to find. There are several sections to the HTML
Fitter report that can be browsed by the blue menu on the left-hand
side of the page.

The Summary section of the report gives a summary of the total
resources available in the device (128 Macrocells, 100 IO pins etc),
and how much is used by the design.

The Errors and Warnings generated during Fitting can be seen in the
Errors and Warnings section.

The Mapped Inputs and Mapped Logic sections give information
about signals, macrocells and pins in the fitted design. The key to the
meaning of the abbreviations is available by pressing the Legend

button .

Implementing CPLDs Chapter 6

Programmable Logic Design Quick Start Hand Book Page 188
© Xilinx

The Function Block Summary looks into each function block and
shows which macrocell is used to generate the signals on the external
pins. By clicking on a specific Function Block (e.g. FB1) in the Function
Blocks section, all the Macrocells in that function block will be shown.
Then clicking on a specific Macrocell will bring up a diagram of how
that Macrocell is configured.

An XC2C128 has 8 function blocks of which only 1 has been used for
logic functions in this design. The design could be packed into a single
function block but the chosen IO pins dictate which macrocells, hence
which function blocks are utilised.

ii. Timing Report – A great feature of CPLDs is the deterministic
timing as a fixed delay exists per macrocell. The Timing report is able
to give the exact propagation delays, set up times and clock to out
times. These values are displayed in the first section of the timing
report you will have created.

The next section lists the longest set up time, cycle time (logic delay
between synchronous points as constrained by the PERIOD
constraint) and clock to out time.
The set up and clock to out times don’t strictly effect the performance
of the design. These parameter limitations are dependent on the
upstream and downstream devices on the board.

The cycle time is the maximum period of the internal system clock. The
report shows this design has a minimum cycle time of 5.1ns or 196
MHz. This delay is created within the state machine.

The next section shows all the inputs and outputs of the design and
their timing relationship with the system clock. It can be seen that the
three lights will have an 8.5ns delay with respect to the clock input.

The clock to set up section details the internal nets from and to a
synchronous point. The maximum delay in this section dictates the
maximum system frequency.

Implementing CPLDs Chapter 6

Programmable Logic Design Quick Start Hand Book Page 189
© Xilinx

‘amber_light, red_light’ and ‘green_light’ are the D-Type flip-flops used
to register the outputs.

The last section details all the path type definitions explaining the
difference between the types mentioned previously in the report.

To generate a detailed timing report, right click on Generate Timing
in the Process window and select Properties > Timing Report
Format > Detail.

6.5 Timing Simulation

The process of timing simulation is very similar to the functional
method. With top_tb.vhd or (top_sch_tb.vhd for schematic flow)
selected in the sources window, expand the Modelsim Simulator
section in the process window and right click on Simulate Post Fit
VHDL model.

Select Properties and in the Simulation Run Time field type ‘all’.

Click OK then double click on Simulate Post Fit VHDL model.

MXE opens but this time a different script file is implemented and the
post route VHDL file (time_sim.vhd) is compiled. Time_sim.vhd is a
very low level VHDL file generated by the Implementation tools. It
references the resources within the CPLD and takes timing information
from a separate file.

Use the Zoom features and Cursors to measure the added timing
delays.

Implementing CPLDs Chapter 6

Programmable Logic Design Quick Start Hand Book Page 190
© Xilinx

Figure 6.5.1 Simulation Waveform

Implementing CPLDs Chapter 6

Programmable Logic Design Quick Start Hand Book Page 191
© Xilinx

6.6 Programming
A DLC7 Parallel-IV JTAG cable is required to configure the device
from the iMPACT Programmer. Ensure the cable is plugged in to the
computer and the ribbon cable/flying leads are connected properly to
the board. It is also necessary to connect the power jack of the
Parallel-IV cable to either the Mouse or keyboard port of the PC.

With top.vhd highlighted in the Source window, double Click on
Configure Device (iMPACT) in the Processes window.

Figure 6.6.1 iMPACT Programmer Main Window

Right click on the Xilinx XC2C128 that appears in the iMPACT window
and select Program…

The design will now download in to the device. Well done, you have
now successfully programmed your first CoolRunner-II CPLD!

Implementing CPLDs Chapter 6

Programmable Logic Design Quick Start Hand Book Page 192
© Xilinx

Summary

This chapter has taken the VHDL or Schematic design through to a

working physical device. The steps discussed were:

• Synthesis and Synthesis report

• Creating User Constraints files for Timing and Pin Constraints

• The Fitting and Timing Reports

• Timing Simulation

• The iMPACT programmer.

Programmable Logic Design Quick Start Hand Book Page 193
© Xilinx

DESIGN REFERENCE BANK

7.1 Introduction

The final chapter contains a useful list of design examples and
applications that will give you a good jump-start into your future
programmable logic designs. The applications examples have been
selected from a comprehensive list of applications notes available from
the Xilinx website and also extracts from the Xilinx quarterly magazine
called ‘Xcell’ (to subscribe please visit the following web page:
www.xilinx.com/xcell/xcell.htm). This section will also give you pointers
on where to look for and download code and search for Intellectual
Property (IP) from the Xilinx website.

7.2 Get the Most out of Microcontroller-Based Designs: Put a

Xilinx CPLD Onboard

Microcontrollers don’t make the world go round, but they most certainly
help us get around in the world. You can find microcontrollers in
automobiles, microwave ovens, automatic teller machines, VCRs, point
of sale terminals, robotic devices, wireless telephones, home security
systems, and satellites, just to name a very few applications.

In the never-ending quest for faster, better, cheaper products,
advanced designers are now pairing complex programmable logic
devices (CPLDs) with microcontrollers to take advantage of the
strengths of each. Microcontrollers are naturally good at sequential
processes and computationally intensive tasks, as well as a host of
non-time-critical tasks. CPLDs such as Xilinx® CoolRunner™ devices
are ideal for parallel processing, high-speed operations, and
applications where lots of inputs and outputs are required.

 7

Design Reference Bank Chapter 7

Programmable Logic Design Quick Start Hand Book Page 194
© Xilinx

Although there are faster and more powerful microcontrollers in the
field, eight-bit microcontrollers own much of the market because of
their low cost and low power characteristics. The typical operational
speed is around 20 MHz, but some microcontroller cores divide clock
frequency internally and use multiple clock cycles per instruction
(operations often include fetch-and-execute instruction cycles). Thus,
with a clock division of two and with each instruction taking up to three
cycles, the actual speed of a 20 MHz microcontroller is divided by six.
This works out to an operational speed of only 3.33MHz.

CoolRunner CPLDs are much, much faster than microcontrollers and
can easily reach system speeds in excess of 100 MHz. Today, we are
even seeing CoolRunner devices with input to output delays as short
as 3.5 ns (nanoseconds), which equates to impressive system speeds
as fast as 285 MHz. CoolRunner CPLDs make ideal partners for
microcontrollers, because they not only can perform high-speed tasks,
they perform those tasks with ultra low power consumption.

Also, Xilinx offers free software and low cost hardware design tools to
support CPLD integration with microcontrollers. The Xilinx CPLD
design process is quite similar to that used on microcontrollers, so
designers can quickly learn how to partition their designs across a
CPLD and microcontroller to maximum advantage.

So far, a design partition over a microcontroller and a CPLD sounds
good in theory, but will it work in the field? We will devote the rest of
this article to design examples that show how you can enhance a
typical microcontroller design by utilising the computational strengths
of the microcontroller and the speed of a CoolRunner CPLD.

7.2.1 Conventional Stepper Motor Control

A frequent use of microcontrollers is to run stepper motors. Figure 1
depicts a typical four-phase stepper motor driving circuit. The four
windings have a common connection to the motor supply voltage
(Vss), which typically ranges from 5 volts to 30 volts. A high power
NPN transistor drives each of the four phases. (Incidentally, MOSFETs
– metal oxide semiconductor field effect transistors – can also be used
to drive stepper motors).

Design Reference Bank Chapter 7

Programmable Logic Design Quick Start Hand Book Page 195
© Xilinx

Figure 7.2.1 Stepper Motor Controller

Each motor phase current may range from 100 mA to as much as 10
A. The transistor selection depends on the drive current, power
dissipation, and gain. The series resistors should be selected to limit
the current to 8 mA per output to suit either the microcontroller or
CPLD outputs. The basic control sequence of a four-phase motor is
achieved by activating one phase at a time.

At the low cost end, the motor rotor rotates through 7.5 degrees per
step, or 48 steps per revolution. The more accurate, higher cost
versions have a basic resolution of 1.8 degrees per step. Furthermore,
it is possible to half-step these motors to achieve a resolution of 0.9
degrees per step. Stepper motors tend to have a much lower torque
than other motors, which is advantageous in precise positional control.
The examples that follow show how either a microcontroller or a CPLD
can be used to control stepper motor tasks to varying degrees of
accuracy.

Design Reference Bank Chapter 7

Programmable Logic Design Quick Start Hand Book Page 196
© Xilinx

The examples that follow show how either a microcontroller or a CPLD
can be used to control stepper motor tasks to varying degrees of
accuracy. We can see from Figure 2 that the design flow for both is
quite similar.

Figure 7.2.2 Design Flow Comparison

Both flows start with text entry. Assembly language targets
microcontrollers. ABEL (Advanced Boolean Expression Language)
hardware description language targets PLDs. After the text
“description” is entered, the design is either compiled (microcontroller)
or synthesised (PLD). Next, the design is verified by some form of
simulation or test. Once verified, the design is downloaded to the target
device – either a microcontroller or PLD. We can then program the
devices in-system using an inexpensive ISP (in-system programming)
cable.

Design Reference Bank Chapter 7

Programmable Logic Design Quick Start Hand Book Page 197
© Xilinx

One of the advantages of a PLD over a microcontroller occurs during
board level testing. Using a JTAG boundary scan, the PLD can be fully
tested on the board. The PLD can also be used as a “gateway” to test
the rest of the board functionality. After the board level test is
completed, the PLD can then be programmed with the final code in-
system via the JTAG port.

(A JTAG boundary scan – formally known as IEEE/ANSI standard
1149.1_1190 – is a set of design rules, which facilitate the testing,
device programming, and debugging at the chip, board, and system
levels.)

Microcontrollers can include monitor debug code internal to the device
for limited code testing and debugging. With the advent of flash-based
microcontrollers, these can now also be programmed in-system.
Using a Microcontroller to Control a Stepper Motor

7.2.2 Using a Microcontroller to Control a Stepper Motor

Figure 3 shows assembly language targeting a Philips 80C552
microcontroller. The stepper motor the microcontroller will control has
four sets of coils. When logic level patterns are applied to each set of
coils, the motor steps through its angles. The speed of the stepper
motor shaft depends on how fast the logic level patterns are applied to
the four sets of coils. The manufacturer’s motor specification data
sheet provides the stepping motor code. A very common stepping
code is given by the following hexadecimal numbers:

A 9 5 6

Each hex digit is equal to four binary bits:

1010 1001 0101 0110

Design Reference Bank Chapter 7

Programmable Logic Design Quick Start Hand Book Page 198
© Xilinx

These binary bits represent voltage levels applied to each of the coil
driver circuits. The steps are:

1010 5V 0V 5V 0V
1001 5V 0V 0V 5V
0101 0V 5V 0V 5V
0110 0V 5V 5V 0V

If you send this pattern repeatedly, then the motor shaft rotates. The
assembly language program in Figure 3 continually rotates the stepper
motor shaft. By altering the value of R0 in the delay loop, this will give
fine control over speed; altering the value of R1 will give coarse
variations in speed.

Figure 7.2.3 Assembly language program to rotate the stepper

motor shaft

Design Reference Bank Chapter 7

Programmable Logic Design Quick Start Hand Book Page 199
© Xilinx

7.2.3 Stepper Motor Control Using a CPLD

Figure 4 shows a design written in ABEL hardware description
language. Within the Xilinx CPLD, four inputs are required to fully
control the stepper motor. The clock (CLK) input synchronises the logic
and determines the speed of rotation. The motor advances one step
per clock period. The angle of rotation of the shaft will depend on the
specific motor used. The direction (DIR) control input changes the
sequence at the outputs (PH1 to PH4) to reverse the motor direction.
The enable input (EN) determines whether the motor is rotating or
holding. The active low reset input (RST) initialises the circuit to ensure
the correct starting sequence is provided to the outputs.

-- Stepper Motor Controller

library IEEE;
use IEEE.std_logic_1164.all;

entity step1 is
port (

clk : in std_logic; -- input to determine speed of rotation
rst : in std_logic; -- resets and initialises the circuit
en : in std_logic; -- determines whether motor rotating or

holding
dir : in std_logic; -- motor direction control
ph1 : inout std_logic; -- output to motor phase 1
ph2 : inout std_logic; -- output to motor phase 2
ph3 : inout std_logic; -- output to motor phase 3
ph4 : inout std_logic -- output to motor phase 4
);

end step1;
architecture equation of step1 is
begin

Process (rst,clk)
begin

if rst = '0' then
ph1 <= '1';
ph2 <= '0';
ph3 <= '0';
ph4 <= '0';

else
if clk'event and clk='1' then

-- Stepper Motor Controller description equations
ph1 <= (not(dir)and en and not(ph1)and ph2 and

not(ph3)and not(ph4))
or (dir and en and not(ph1)and not(ph2)and not(ph3)and

ph4)
or (not(en)and ph1);

Design Reference Bank Chapter 7

Programmable Logic Design Quick Start Hand Book Page 200
© Xilinx

ph2 <= (not(dir)and en and not(ph1)and not(ph2)and ph3
and not(ph4))

or (dir and en and ph1 and not(ph2)and not(ph3)and
not(ph4))

or (not(en)and ph2);
ph3 <= (not(dir)and en and not(ph1)and not(ph2) and

not(ph3)and ph4)
or (dir and en and not(ph1) and (ph2) and not(ph3)and

not(ph4))
or (not(en)and ph3);
ph4 <= (not(dir)and en and ph1 and not(ph2) and

not(ph3)and not(ph4))
or (dir and en and not(ph1) and not(ph2)and ph3 and

not(ph4))
or (not(en) and ph4);

end if;
end if;

end process;
end equation;

Figure 7.2.4 CPLD ABEL program to control a stepper motor

The phase equations (PH1 to PH4) are written with a colon and equal
sign (:=) to indicate a registered implementation of the combinatorial
equation. Each phase equation is either enabled (EN), indicating that
the motor is rotating, or disabled (!EN), indicating that the current
active phase remains on and the motor is locked. The value of the
direction input (DIR) determines which product term is used to
sequence clockwise or counter-clockwise. The asynchronous
equations (for example, ph1.AR=!rst) initialise the circuit.

The ABEL hardware description motor control module can be
embedded within a macro function and saved as a re-useable
standard logic block, which can be shared by many designers within
the same organisation – this is the beauty of design re-use. This
‘hardware’ macro function is independent of any other function or event
not related to its operation. Therefore it cannot be affected by
extraneous system interrupts or other unconnected system state
changes. Such independence is critical in safety systems. Extraneous
system interrupts in a purely software based system could cause
indeterminate states that are hard to test or simulate.

Design Reference Bank Chapter 7

Programmable Logic Design Quick Start Hand Book Page 201
© Xilinx

7.2.4 PC-Based Motor Control

Our next example (Figure 5 and 6) is more complex, because now the
motor is connected to a PC-based system via an RS-232 serial
connection. This implementation has a closed loop system controlling
rotation, speed, and direction. There is also the addition of a safety-
critical emergency stop, which has the highest level of system
interrupt. This means that if the emergency stop is activated, it will
override any other process or interrupt and will immediately stop the
motor from rotating.

Figure 7.2.5 Design Partitioning

Design Reference Bank Chapter 7

Programmable Logic Design Quick Start Hand Book Page 202
© Xilinx

Figure 7.2.6 Microcontroller Implementation

This design solution purely uses a microcontroller. The main functions
it performs are:

• Interrupt control

• Status feedback to the PC

• Accurate motor control.

This configuration would probably be implemented in a single
microcontroller device with specific motor control peripherals, such as
a capture-compare unit. This configuration would also need a built-in
UART (Universal Asynchronous Receiver Transmitter). These extra
functions usually add extra cost to the overall microcontroller device.

Design Reference Bank Chapter 7

Programmable Logic Design Quick Start Hand Book Page 203
© Xilinx

Due to the nature of the microcontroller, the interrupt handling must be
thoroughly mapped out, because interrupts could affect the speed of
the motor. In a safety-critical system, emergency stops implemented in
software require exhaustive testing and verification before they can be
used in the final system to ensure that they operate properly under all
software related conditions, including software bugs and potential
software states. The output from the motor rotation sensor is very fast,
so control of the speed of the motor could cause problems if system
interrupts occurred.

7.2.5 Design Partitioning

As we noted before, microcontrollers are very good at computational
tasks, and CPLDs are excellent in high speed systems and have an
abundance of I/Os. Figure 7 shows how we can use a microcontroller
and a CPLD in a partitioned design to achieve the greatest control over
a stepper motor.

Figure 7.2.7 Partitioned Design: Microcontroller and CPLD

Design Reference Bank Chapter 7

Programmable Logic Design Quick Start Hand Book Page 204
© Xilinx

The microcontroller:

• Interprets ASCII commands from the PC.

• Reports status of the motor to the PC.

• Converts required speed into control vectors (small mathematical
algorithm).

• Decides direction of rotation of the motor.

• Computes stop point and sets a value into the pulse count
comparison register.

• Monitors progress (control loop) and adapts speed.

• Recovers from emergency stops.

Although the microcontroller performs recovery from emergency stops,
the actual emergency stop is implemented by the CPLD, because this
is the safety-critical part of the design. Because the CPLD is
considered independent hardware, safety-critical proving and sign off
are more straightforward than software safety systems. Additionally, all
of the high-speed interface functions are also implemented in the
CPLD, because it is very fast and has abundant inputs and outputs.

Meanwhile, the UART & FIFO sections of the design can be
implemented in the microcontroller in the form of a costed
microcontroller peripheral or may be implemented in a larger more
granular programmable logic device like a field programmable gate
array (FPGA) – for example, a Xilinx Spartan™ device. Using a
programmable logic device in a design has the added benefit of the
ability to absorb any other discrete logic elements on the PCB or in the
total design into the CPLD. Under this new configuration, we can
consider the CPLD as offering hardware-based sub-routines or as a
mini co-processor.

Design Reference Bank Chapter 7

Programmable Logic Design Quick Start Hand Book Page 205
© Xilinx

The microcontroller still performs ASCII string manipulation and
mathematical functions, but it now has more time to perform these
operations – without interruption. The motor control is now
independently stable and safe.

Microcontroller/CPLD design partitioning can reduce overall system
costs. This solution uses low cost devices to implement the functions
they do best – computational functions in the microcontroller and high
speed, high I/O tasks in the CPLD. In safety-critical systems, why not
put the safety critical functions (e.g. emergency stop), in “hardware”
(CPLDs) to cut down safety system approval time scales?
System testing can also be made easier by implementing the difficult-
to-simulate interrupt handling into programmable logic. Low cost
microcontrollers are now in the region of US$1.00, but if your design
requires extra peripherals (e.g., capture-compare unit for accurate
motor control, ADCs or UARTs), this can quadruple the cost of your
microcontroller. A low cost microcontroller coupled with a low cost
CPLD from Xilinx can deliver the same performance – at approximately
half the cost.

In low power applications, microcontrollers are universally accepted as
low power devices and have been the automatic choice of designers.
The CoolRunner family of ultra low power CPLDs are an ideal fit in this
arena and may be used to complement your low power microcontroller
to integrate designs in battery powered, portable designs (<100 µA
current consumption at standby).

7.2.6 Conclusion

Microcontrollers are ideally suited to computational tasks, whereas
CPLDs are suited to very fast, I/O intensive operations. Partitioning
your design across the two devices can increase overall system
speeds, reduce costs, and potentially absorb all of the other discrete
logic functions in a design – thus presenting a truly reconfigurable
system.

The design process for a microcontroller is very similar to that of a
programmable logic device. This permits a shorter learning and
designing cycle. Full functioning software design tools for Xilinx CPLDs

Design Reference Bank Chapter 7

Programmable Logic Design Quick Start Hand Book Page 206
© Xilinx

are free of charge and may be downloaded from the Xilinx website.
Thus, your first project using CPLDs can not only be quick and
painless, but very cost-effective.

Extract from the Xilinx Xcell journal, Issue 39, Spring 2001.

To receive regular copies of the Xcell magazine please register at:

http://www.xilinx.com/xcell/xcell.htm

Design Reference Bank Chapter 7

Programmable Logic Design Quick Start Hand Book Page 207
© Xilinx

7.3 Application Notes and Example Code

The following is a list of selected application notes and example code
that can be downloaded from the Xilinx website. This list is added to
regularly as more applications are developed, for the latest list please
visit the Xilinx website (www.xilinx.com/apps/appsweb.htm).

Title Number Family Design Code
Embedded
Instrumentation
Using XC9500
CPLDs

XAPP076 XC9500

Configuring Xilinx
FPGAs using an
XC9500 CPLD and
a parallel PROM

XAPP079 XC9500

Supply Voltage
migration, 5V to
3.3V.

XAPP080 XC9500

Xilinx FPGAs: A
technical overview
for the first time
user.

XAPP097 FPGA

Choosing a Xilinx
Product Family

XAPP100 All

XC9500 Remote
Field Upgrade

XAPP102 XC9500

A CPLD VHDL
Introduction

XAPP105 XC9500

Adapting ASIC
Designs for Use
with Spartan
FPGAs

XAPP119 Spartan

Design Reference Bank Chapter 7

Programmable Logic Design Quick Start Hand Book Page 208
© Xilinx

Title Number Family Design Code
A quick JTAG
ISP Checklist

XAPP104 XC9500

170 MHz FIFOs
Using the Virtex
Block
SelectRAM+
Feature

XAPP131 Virtex

Virtex
Synthesizable
High
Performance
SDRAM
Controller

XAPP134 Virtex FREE VHDL &
Verilog

Synthesizable
143 MHz ZBT
SRAM Interface

XAPP136 Virtex FREE VHDL &
Verilog

MP3 NG: A Next
generation
Consumer
Platform

XAPP169 Spartan II

Virtex
Synthesizable
Delta-Sigma
DAC

XAPP154 Virtex

Implementing an
ISDN PCMCIA
Modem

XAPP170 Spartan

Using Delay-
Locked Loops in
Spartan-II
FPGAs

XAPP174 Spartan II FREE VHDL &
Verilog

High Speed
FIFOs In
Spartan-II
FPGAs

XAPP175 Spartan II FREE VHDL &
Verilog

Design Reference Bank Chapter 7

Programmable Logic Design Quick Start Hand Book Page 209
© Xilinx

Title Number Family Design Code
An Inverse Discrete
Cosine Transform
(IDCT)
Implementation in
Virtex Devices
for MPEG Video
Applications

XAPP208 Virtex FREE VHDL

8-Bit
Microcontroller for
Virtex
Devices

XAPP213 Virtex &
Spartan

CoolRunner
Visor™
Springboard™ LED
Test

XAPP357 CoolRunner

CoolRunner XPLA3
SMBus Controller
Implementation

XAPP353 CoolRunner FREE VHDL &
Verilog

CoolRunner CPLD
8051
Microcontroller
Interface

XAPP349: CoolRunner FREE VHDL &
Verilog

CoolRunner XPLA3
Serial Peripheral
Interface Master

XAPP348 CoolRunner FREE VHDL &
Verilog

UARTs in Xilinx
CPLDs

XAPP341 CoolRunner FREE VHDL &
Verilog

Design of a
16b/20b
Encoder/Decoder
Using a
CoolRunner CPLD

XAPP336 CoolRunner FREE VHDL &
Verilog

CoolRunner XPLA3
I2C Bus Controller
Implementation

XAPP333 CoolRunner FREE VHDL &
Verilog

Manchester XAPP339 CoolRunner FREE VHDL &

Design Reference Bank Chapter 7

Programmable Logic Design Quick Start Hand Book Page 210
© Xilinx

Encoder-Decoder Verilog

Title Number Family Design Code
Design of a MP3
Portable Player
using a CoolRunner
CPLD

XAPP328 CoolRunner FREE VHDL &
Verilog

Content
Addressable
Memory (CAM)
in ATM Applications

XAPP202 Virtex, Virtex II FREE VHDL &
Verilog

Virtex analogue to
digital converter

XAPP155 Virtex

Designing an Eight
Channel Digital Volt
Meter with the
Insight
Springboard Kit

XAPP146 CoolRunner FREE VHDL &
Verilog

Exemplar/ModelSim
Tutorial for CPLDs

Tutorial CPLDs

Workstation Flow for
Xilinx CoolRunner
CPLDs

Tutorial CPLDs

OrCAD/ModelSim
Tutorial for CPLDs

Tutorial CPLDs

Understanding the
CoolRunner-II
Timing Model

XAPP375 CoolRunner II

Understanding the
CoolRunner-II Logic
Engine

XAPP376 CoolRunner II

Using CoolRunner-II
Advanced Features

XAPP378 CoolRunner II FREE HDL

High Speed Design
with CoolRunner-II
CPLDs

XAPP379 CoolRunner II

Building Crosspoint
Switches with

XAPP380 CoolRunner II FREE HDL

Design Reference Bank Chapter 7

Programmable Logic Design Quick Start Hand Book Page 211
© Xilinx

CoolRunner-II
CPLDs

Design Reference Bank Chapter 7

Programmable Logic Design Quick Start Hand Book Page 212
© Xilinx

7.4 Website Reference
The following table is a summary of useful web pages and websites
that could help with your programmable logic designs.

Website/Page Topic Resources Available
Www.xilinx.com General Xilinx

website
Product data, investor
information,
application notes etc

Www.support.xilinx.com Technical Support Comprehensive
resource for all
technical support.

Www.xilinx.com/ipcenter IP search engine Xilinx and 3rd party IP
and cores .

Www.xilinx.com/esp Emerging
Standards and
Protocol web portal

Resource portal
including data on
home networking and
Bluetooth – white
papers, application
notes, reference
designs, block
diagrams, ask the
experts, links to
industry websites

Www.xilinx.com/support/
education-home.htm

Customer
Education

List of customer
courses and types
available

Http://xup.msu.edu University Program
Www.xilinx.com/support/
searchtd.htm

Answers Database

Http://university.xilinx.com/
univ/xsefaq1.htm

Student edition
frequently asked
questions

Http://toolbox.xilinx.com/
cgi-bin/forum

Forums and chat
rooms

www.model.com Simulation Model Technology
Www.optimagic.com/ Programmable

logic jump station

Programmable Logic Design Quick Start Hand Book Page 213
© Xilinx

GLOSSARY OF TERMS

ABEL- Advanced Boolean Expression Language, low-level language
for design entry, from Data I/O.

AIM – Advanced Interconnect Matrix in the CoolRunner II CPLD that
provides the flexible interconnection between the PLA function blocks.

Antifuse- A small circuit element that can be irreversibly changed from
being non-conducting to being conducting with ~100 Ohm. Anti-fuse-
based FPGAs are thus non-volatile and can be programmed only once
(see OTP).

AQL- Acceptable Quality Level. The relative number of devices,
expressed in parts-per-million (ppm), that might not meet specification
or be defective. Typical values are around 10 ppm.

ASIC- Applications-Specific Integrated Circuit, also called a gate array
Asynchronous Logic that is not synchronised by a clock. Asynchronous
designs can be faster than synchronous ones, but are more sensitive
to parametric changes, and are thus less robust.

ASSP- Application-Specific Standard Product. Type of high-integration
chip or chipset ASIC that is designed for a common yet specific
application.

ATM- Asynchronous Transfer Mode. A very-high-speed (megahertz to
gigahertz) connection-oriented bit-serial protocol for transmitting data
and real-time voice and video in fixed-length packets (48-byte payload,
5-byte header).

Back annotation- Automatically attaching timing values to the entered
design format after the design has been placed and routed in an
FPGA.

Behavioral language- Top-down description from an even higher level
than VHDL.

Programmable Logic Design Quick Start Hand Book Page 214
© Xilinx

GLOSSARY OF TERMS (Continued)

Block RAM- A block of 2k to 4k bits of RAM inside an FPGA. Dual-port
and synchronous operation are desirable.

CAD Computer- Aided Design, using computers to design products.

CAE Computer- Aided Engineering, analyses designs created on a
computer.

CLB- Configurable Logic Block. Xilinx-specific name for a block of logic
surrounded by routing resources. A CLB contains 2 or 4 look-up-tables
(function generators) plus 2 or 4 flip-flops.

CMOS- Complementary Metal-Oxide-Silicon. Dominant technology for
logic and memory. Has replaced the older bipolar TTL technology in
most applications except very fast ones. CMOS offers lower power
consumption and smaller chip size compared to bipolar and now
meets or even beats TTL speed.

Compiler- software that converts a higher-language description into a
lower-level representation. For FPGAs : the complete partition, place &
route process.

Configuration- The internally stored file that controls the FPGA so that
it performs the desired logic function. Also: The act of loading an FPGA
with that file.

Constraints- Performance requirements imposed on the design,
usually in the form of max allowable delay, or required operating
frequency.

CoolCLOCK – Combination of the clock divider and clock doubler
functions in CoolRunner II to further reduce power consumption
associated with high speed clocked in internal device networks.

Programmable Logic Design Quick Start Hand Book Page 215
© Xilinx

GLOSSARY OF TERMS (Continued)

CPLD- Complex Programmable Logic Device, synonymous with
EPLD. PAL-derived programmable logic devices that implement logic
as sum-of-products driving macrocells. CPLDs are known to have
short pin-to-pin delays, and can accept wide inputs, but have relatively
high power consumption and fewer flip-flops, compared to FPGAs.

CUPL- Compiler Universal for Programmable Logic, CPLD
development tool available from Logical Devices.

DataGATE – A function within CoolRunner II to block free running
input signals, effectively blocking controlled switching signals so they
do not drive internal chip capacitances to further reduce power
consumption. Can be selected on all inputs.

Input Hysteresis - Input hysteresis provides designers with a tool to
minimize external components. Whether using the inputs to create a
simple clock source, or reducing the need for external buffers to
sharpen up a slow or noisy input signal. Function found in CoolRunner
II CPLDs (may also be referred to as Schmitt Trigger inputs in the text).

DCM- Digital Clock Manager, Provides zero-delay clock buffering,
precise phase control and precise frequency generation on Xilinx
Virtex II FPGAs

DCI – Digitally Controlled Impedance in the Virtex-II solution
dynamically eliminates drive strength variation due to process,
temperature, and voltage fluctuation. DCI uses two external high-
precision resistors to incorporate equivalent input and output
impedance internally for hundreds of I/O pins.

Debugging- The process of finding and eliminating functional errors in
software and hardware.

Programmable Logic Design Quick Start Hand Book Page 216
© Xilinx

GLOSSARY OF TERMS (Continued)

Density- Amount of logic in a device, often used to mean capacity.
Usually measured in gates, but for FPGAs better expressed in Logic
Cells, each consisting of a 4-input look-up table and a flip-flop.

DLL- Delay Locked Loop, A digital circuit used to perform clock
management functions on and off-chip.

DRAM- Dynamic Random Access Memory. A low-cost\read-write
memory where data is stored on capacitors and must be refreshed
periodically. DRAMs are usually addressed by a sequence of two
addresses, row address and column address, which makes them
slower and more difficult to use than SRAMs.

DSP- Digital Signal Processing. The manipulation of analog data that
has been sampled and converted into a digital representation.
Examples are: filtering, convolution, Fast-Fourier-Transform, etc.

EAB- Embedded Array Block. Altera name for Block RAM in
FLEX10K.

EDIF- Electronic Data Interchange Format. Industry-standard
for specifying a logic design in text (ASCII) form.

EPLD- Erasable Programmable Logic Devices, synonymous with
CPLDs. PAL-derived programmable logic devices that implement logic
as sum-of-products driving macrocells. EPLDs are known to have
short pin-to-pin delays, and can accept wide inputs, but have relatively
high power consumption and fewer flip-flops than FPGAs.

Embedded RAM- Read-write memory stored inside a logic device.
Avoids the delay and additional connections of an
external RAM.

ESD- Electro-Static Discharge. High-voltage discharge can rupture the
input transistor gate oxide. ESD-protection diodes
divert the current to the supply leads.

Programmable Logic Design Quick Start Hand Book Page 217
© Xilinx

GLOSSARY OF TERMS (Continued)

5-volt tolerant- Characteristic of the input or I/O pin of a 3.3 V device
that allows this pin to be driven to 5 V without any excessive input
current or device breakdown. Very desirable
feature.

FIFO- First-In-First-Out memory, where data is stored in the incoming
sequence, and is read out in the same sequence. Input and output can
be asynchronous to each other. A FIFO needs no external addresses,
although all modern FIFOs are implemented internally with RAMs
driven by circular read and write counters.

FIT- Failure In Time. Describes the number of device failures
statistically expected for a certain number of device-hours. Expressed
as failures per one billion device hours. Device temperature must be
specified. MTBF can be calculated from FIT.

Flash- Non-volatile programmable technology, an alternative to
Electrically-Erasable Programmable Read-Only Memory
(EEPROM) technology. The memory content can be erased by
an electrical signal. This allows in-system programmability and
eliminates the need for ultraviolet light and quartz windows in the
package.

Flip-flop- Single-bit storage cell that samples its Data input at
the active (rising or falling) clock edge, and then presents the
new state on its Q output after that clock edge, holding it there
until after the next active clock edge.

Floor planning- Method of manually assigning specific parts of the
design to specific chip locations. Can achieve faster compilation, better
utilisation, and higher performance.

Footprint- The printed-circuit pattern that accepts a device and
connects its pins appropriately. Footprint-compatible devices can be
interchanged without modifying the pc-board.

Programmable Logic Design Quick Start Hand Book Page 218
© Xilinx

GLOSSARY OF TERMS (Continued)

FPGA- Field Programmable Gate Array. An integrated circuit that
contains configurable (programmable) logic blocks and configurable
(programmable) interconnect between these blocks.

Function Generator- Also called look-up-table (LUT), with N-inputs
and one output. Can implement any logic function of its N-inputs. N is
between 2 and 6, most popular are 4-input function generators.

GAL- Generic Array Logic. Lattice name for a variation on PALs Gate
Smallest logic element with several inputs and one output. AND gate
output is High when all inputs are High. OR
gate output is High when at least one input is High. A 2-input NAND
gate is used as the measurement unit for gate array complexity.

Gate Array- ASIC where transistors are pre-defined, and only the
interconnect pattern is customised for the individual application.

GTL- Gunning Transceiver Logic, is a high speed, low power back-
plane standard.

GUI- Graphic User Interface. The way of representing the computer
output on the screen as graphics, pictures, icons and windows.
Pioneered by Xerox and the Macintosh, now universally adopted, e.g
by Windows95.

HDL- Hardware Description Language.

Hierarchical design- Design description in multiple layers, from the
highest (overview) to the lowest (circuit details). Alternative: Flat
design, where everything is described at the same level of detail.
Incremental design Making small design changes while maintaining
most of the lay-out and routing.

Interconnect- Metal lines and programmable switches that
connect signals between logic blocks and between logic blocks and
the I/O.

Programmable Logic Design Quick Start Hand Book Page 219
© Xilinx

GLOSSARY OF TERMS (Continued)

IOB or I/O- Input/Output Block. Logic block with features specialised
for interfacing with the pc-board.

ISO9000- An internationally recognised quality standard. Xilinx is
certified to ISO9001 and ISO9002.

IP- Intellectual Property. In the legal sense: Patents, copyrights and
trade secrets. In integrated circuits: pre-defined large functions, called
cores, that help the user complete a large design faster.

ISP- In-System Programmable device. A programmable logic device
that can be programmed after it has been connected to (soldered into)
the system pc-board. Although all SRAM-based FPGAs are naturally
ISP, this term is only used with certain CPLDs, to distinguish them
from the older CPLDs that must be programmed in programming
equipment.

JTAG- Joint Test Action Group. Older name for IEEE 1149.1
boundary scan, a method to test pc-boards and also ICs.

LogiBLOX- Formerly called X-Blox. Library of logic modules, often
with user-definable parameters, like data width. (Very similar to LPM).

Logic Cell- Metric for FPGA density. One logic cell is one 4-input look-
up table plus one flip-flop.

LPM- Library of Parameterised Modules, library of logic modules, often
with user-definable parameters, like data width. Very similar to
LogiBlox.

LUT- Look-Up-Table, also called function generator with N inputs and
one output. Can implement any logic function of its N inputs. N is
between 2 and 6, most popular are 4-input LUTs.

Macrocell- The logic cell in a sum-of-products CPLD or PAL/GAL.

Programmable Logic Design Quick Start Hand Book Page 220
© Xilinx

GLOSSARY OF TERMS (Continued)

Mapping- Process of assigning portions of the logic design to the
physical chip resources (CLBs). With FPGAs, mapping is a more
demanding and more important process than with gate arrays.

MTBF- Mean Time Between Failure. The statistically relevant up-time
between equipment failure. See also FIT.

Netlist- Textual description of logic and interconnects. See XNF and
EDIF.

NRE- Non-Recurring Engineering charges. Start-up cost for the
creation of an ASIC, gate array, or HardWire. Pays for lay-out,
masks, and test development. FPGAs and CPLDs do not require NRE.

Optimisation- Design change to improve performance. See also:
Synthesis.

OTP- One-Time Programmable. Irreversible method of programming
logic or memory. Fuses and anti-fuses are inherently OTP. EPROMs
and EPROM-based CPLDs are OTP if their plastic package blocks the
ultraviolet light needed to erase the stored data or configuration.

PAL- Programmable Array Logic. Oldest practical form of
programmable logic, implemented a sum-of-products plus optional
output flip-flops.

Partitioning- In FPGAs, the process of dividing the logic into sub-
functions that can later be placed into individual CLBs.
Partitioning precedes placement.

PCI- Peripheral Component Interface. Synchronous bus standard
characterised by short range, light loading, low cost, and high
performance. 33-MHz PCI can support data byte transfers of up to 132
megabytes per second on 36 parallel data lines (including parity) and
a common clock. There is also a new 66-MHz standard.

Programmable Logic Design Quick Start Hand Book Page 221
© Xilinx

GLOSSARY OF TERMS (Continued)

PCMCIA- Personal Computer Memory Card Interface Association,
also: People Can’t Memorise Computer Industry Acronyms. Physical
and electrical standard for small plug-in boards for portable computers.

Pin-locking- Rigidly defining and maintaining the functionality and
timing requirements of device pins while the internal logic is still being
designed or modified. Pin-locking has become important, since circuit-
board-fabrication times are longer than PLD design implementation
times.

PIP- Programmable Interconnect Point. In Xilinx FPGAs, a point where
two signal lines can be connected, as determined by the device
configuration.

Placement- In FPGAs, the process of assigning specific parts of the
design to specific locations (CLBs) on the chip. Usually done
automatically.

PLA – Programmable Logic Array. The first and most flexible
programmable logic configuration with two programmable planes
providing any combination of ‘AND’ and ‘OR’ gates and sharing of AND
terms across multiple OR’s. This architecture is implemented in the
CoolRunner and CoolRunner II devices.

PLD- Programmable Logic Device. Most generic name for all
programmable logic: PALs, CPLDs, and FPGAs.

QML- Qualified Manufacturing Line. For example, ISO9000.

Routing- The interconnection, or the process of creating the desired
interconnection, of logic cells to make them perform the desired
function. Routing follows after partitioning and placement.

Programmable Logic Design Quick Start Hand Book Page 222
© Xilinx

GLOSSARY OF TERMS (Continued)

Schematic- Graphic representation of a logic design in the form of
interconnected gates, flip-flops and larger blocks. Older and more
visually intuitive alternative to the increasingly more popular equation-
based or high-level language textual description of a logic design.

Select-RAM- Xilinx-specific name for a small RAM (usually 16 bits),
implemented in a LUT.

Simulation- Computer modelling of logic and (sometimes) timing
behaviour of logic driven by simulation inputs (stimuli, or vectors).

SPROM- Serial Programmable Read-Only Memory. Non-volatile
memory device that can store the FPGA configuration bitstream. The
SPROM has a built-in address counter, receives a clock and outputs a
serial bitstream.

SRAM- Static Random Access Memory. Read-write memory with data
stored in latches. Faster than DRAM and with simpler timing
requirements, but smaller in size and about 4-times more expensive
than DRAM of the same capacity.

SRL16 - Shift Register LUT, an alternative mode of operation for every
function generator (look up table) which are part of every CLB in Virtex
and Spartan FPGAs. This mode increases the number of flip-flops by
16. Adding flip-flops enables fast pipelining - ideal in DSP
applications.

Static timing- Detailed description of on-chip logic and interconnect
delays.

Sub-micron- The smallest feature size is usually expressed in micron
(µ= millionth of a meter, or thousandth of a millimetre) The state of the
art is moving from 0.35µ to 0.25µ, and may soon reach 0.18µ. The
wavelength of visible light is 0.4 to 0.8µ. 1 mil = 25.4µ.

Programmable Logic Design Quick Start Hand Book Page 223
© Xilinx

GLOSSARY OF TERMS (Continued)

Synchronous- Circuitry that changes state only in response to a
common clock, as opposed to asynchronous circuitry that responds to
a multitude of derived signals. Synchronous circuits are easier to
design, debug, and modify, and tolerate parameter changes and speed
upgrades better than asynchronous circuits

Synthesis- Optimisation process of adapting a logic design to the logic
resources available on the chip, like look-up-tables, Longline,
dedicated carry. Synthesis precedes Mapping.

SystemI/O- technology incorporated in Virtex II FPGAs that uses the
SelectI/O-Ultra™ blocks to provide the fastest and most flexible
electrical interfaces available. Each user I/O pin is individually
programmable for any of the 19 single-ended I/O standards or six
differential I/O standards, including LVDS, SSTL, HSTL II, and GTL+.
SelectI/O-Ultra technology delivers 840 Mbps LVDS performance
using dedicated Double Data Rate (DDR) registers.

TBUFs- Buffers with a 3-state option, where the output can be made
inactive. Used for multiplexing different data sources onto a common
bus. The pull-down-only option can use the bus as a wired AND
function.

Timing- Relating to delays, performance, or speed.

Timing driven- A design or layout method that takes performance
requirements into consideration.

UART- Universal Asynchronous Receiver/Transmitter. An 8-bit-
parallel-to-serial and serial-to-8-bit-parallel converter, combined with
parity and start-detect circuitry and sometimes even FIFO buffers.
Used widely in asynchronous serial-communications interfaces, (e.g.
modems).

USB- Universal Serial Bus. A new, low-cost, low-speed, self-clocking
bit-serial bus (1.5 MHz and 12 MHz) using 4 wires (Vcc, ground,
differential data) to daisy-chain up to 128 devices.

Programmable Logic Design Quick Start Hand Book Page 224
© Xilinx

GLOSSARY OF TERMS (Continued)

VME- Older bus standard, popular with MC68000-based industrial
computers.

XNF File- Xilinx-proprietary description format for a logic
design (Alternative: EDIF).

Peter Alfke - Glossary, September 1997(Revised for this book in June
2001 and January 2002)

Programmable Logic Design Quick Start Hand Book Page 225
© Xilinx

Karen M. Parnell is a Product Manager at Xilinx Inc. and is a Chartered
Engineer. Prior to joining Xilinx she worked as a design engineer in the
Aerospace industry and in semiconductor field applications
engineering. Parnell is currently working towards an MBA at Aston
Business School.

Nick Mehta is an Applications Engineer at Xilinx Inc. where he is the
European CPLD Expert. Prior to joining Xilinx in 2000, he gained a
BEng (hons) in Electrical and Electronic Engineering from The
University of Leicester.

"We keep moving forward, opening up new doors, and doing new
things, because we're curious and curiosity keeps leading us
down new paths."
- Walt Disney

