APPLICATION NOTE

@ XILINX

Interfacing XC6200 To Microprocessors
(TMS320C50 Example)

XAPP 064 October 9, 1996 (Version 1.1)

Application Note by Bill Wilkie

Summary

The issues involved in interfacing XC6200 family members to microprocessors are discussed. An example

using the Motorola 68020 processor is described.

Xilinx Family Demonstrates
XC6200 Parallel programming interface.

Driving device control inputs from within the FPGA core array.
Overview Introduction

This note explains the key issues involved in interfac-
ing XC6200 parts to microprocessors by looking at a
specific example. The XC6200 parallel interface
signals are described and related to the signals
provided by a widely used microprocessor. Different
ways of implementing the design are discussed,
including a method which uses no glue logic between
the two devices. More details on XC6200 features
can be found in the Xilinx data sheet for the XC6200
family.

The sections covered in this note are:

Introduction

XC6200 Requirements
TMS320C50 Requirements
Example Circuit

Timing

Implementation

Summary

One of the key features of the XC6200 family is the
easy access to all the device memory and array
logic. The fastest way of configuring the chip is via
the parallel programming interface. This allows a
CPU to directly write the entire device configuration
and also modify the state of registers within logic
cells. Having full 32-bit access to the configuration
RAM makes dynamic reconfiguration a real possibil-
ity.

The 32-bit interface also means users can read or
write the state of columns of 32 cells within the array
simultaneously.

Although the data bus is 32 bits wide, it is also
straightforward to interface to 8 and 16-bit micropro-
cessors.

The CPU interface is internally governed by a device
control register. This determines the width of the data
bus. This is initially 8 bits but can be modified to 16 or
32 bits. In the case of an 8-bit interface, only bits
D<7:0> are of relevance. Other data bus bits will not
be driven during reads.

The interface signals provided make it fairly straight-
forward to interface to any microprocessor. In this
example a Texas Instruments TMS320C50 micropro-
cessor is used as this is a commonly used processor
in DSP applications.

XC6200 Requirements

XC6200 provides the following signals specifically for
parallel access:

XAPP 064 October 9, 1996 (Version 1.1)

S XILINX

CS

Chip Select enables the programming circuitry and
initiates address decoding. When CSis low data can
be read from or written to the control memory. This
signal is intended to be used in conjunction with
address decoding circuitry to select one part within a
larger array for programming.

D<d:0>

(d+1)-bit bidirectional data bus. Used for device con-
figuration and direct cell register access.

A<a:0>

Address bus for CPU access of internal registers and
configuration memory. ‘a varies between family
members.

RdWr

When CS is low this signal determines whether data
is read from or written to the control memory. If RdWr
is high then a read cycle takes place. If RdWr is low
then a write cycle takes place.

The full 32-bit data bus is not available on all device
package options due to pin limitations. The width of
the address bus varies between XC6200 family
members. The XC6216 is used as an example. In
this case the address bus is 16 bits, A<15:0>. This
part will take up the entire data address space of
some processors which only have a 16-bit address
bus. If this is not desired then paging registers can be
implemented in the address decoding to allow as
many peripheral devices as required.

The CPU interface is synchronized by the GClk
signal. This clock controls all the RAM and register
interface circuitry within the XC6200 device.

XC6200 write and read cycles are shown in Figures
1 and 2. The a.c. parameter numbers are the
XC6200 data sheet references.

CS is normally high. The XC6200 continually
samples CS on the rising edge of GCIk. All the other
CPU interface signals are also sampled on the rising
edge of GCIk. The set up and hold times specified in
the XC6200 data sheet must be met.

Once the XC6200 detects that CS has gone low a
parallel CPU cycle begins.This is time t; in Figures 1
and 2. The type of cycle (read or write) is determined
by the value of RdWr sampled at time t;. The

address bus is also sampled at this time. What
happens next depends on whether it is a read or
write cycle.

Write Cycle

The data bus is sampled at t;. RdWr is sampled low
at t;. After t; the address and data busses are
ignored. The write cycle now takes place inside the
XC6200 device. The cycle is split into 4 phases.
During phase 1 the XC6200 decodes the address.
The memory location addressed is written with the
data value captured at t; during phase 2. By phase 4
the device is ready for another cycle to start.

If CS'is still low at time t, the cycle is extended. The
internal write still occurs during phase 2. CS must be
sampled high before phase 4 can be entered and the
cycle terminated.

Read Cycle

RdWr is sampled high at t;. After t; the address bus
is ignored. The address is decoded during phase 1
and the memory location addressed is internally read
during phase 2. The data is then driven onto the data
bus during phase 3 - after t, in Figure 2.

If CS is sampled high at time t,, phase 4 will be
entered and the cycle will terminate. The data bus
will enter a high impedance state after t3. Another
read cycle may be started by driving CS low during
phase 4. An additional clock cycle must be inserted
before a write cycle can be started as the data bus
cannot be driven until the read cycle data is removed
from the bus, tckpz after t3. Thus an interface opti-
mized for fast state reading could perform a burst of
reads with only two clock cycles per read and no
waiting between reads.

If the processor requires the data to be held on the
data bus for longer than one clock cycle, CS must be
held low until it is safe for the data bus to enter the
high impedance state. There are two possible situa-
tions here:

1) CS is sampled low at t, and high at t3. The data
bus enters the high impedance state tcxpz after
t3. Another read cycle cannot begin until the next
rising GCIk edge.Thus in this case the data is still
only present on the bus for one clock cycle but an
extra clock cycle must be inserted between con-
secutive reads.

2) CS is sampled low at t, and t3. In this case the
cycle is extended. It is the rising edge of CS which

XAPP 064 October 9, 1996 (Version 1.1)

Interfacing XC6200 To Microprocessors

@ twe

-]
@thCS
cs 1_ 4—@ lsuics 7 E \ : ! /
— N Z . l
@thRdWr : .
Rdwr 1_ 4—@ surdWr 7~ : \ : : /

— @ tha—>
1_@-’) tsuA

- @ thp—

1_@> tsuD

A<a:0> ZD
p—y

T UFTHHII

T LTI

' CS sampled high, ' CS sampled low, ' CS sampled low,
 Ist cycle is terminated. « 2nd cycle begins. » 2nd cycle continues.
. ' .
ty tp t3
Write Cycle Extended Write Cycle

Figure 1. XC6200 Write Cycles

« RC :

<—@ thﬁ—b : E :

CS 1_ ﬁ@tsuﬁ 1 \ . : 7
<—@thRdW—>
RAWr - F@%Rdw X / S
Sal) . [T N

‘_@tsuA : |
Bost [e
D<d:0> CKD . : :
: | : | .

TS sampled high, ' CS sampled low, ' CS sampled low,
. 1st cycle is terminated. 1 2nd cycle begins. » 2nd cycle continues.
'] '
t t t3
Read Cycle Extended Read Cycle

Figure 2. XC6200 Read Cycles

3 XAPP 064 October 9, 1996 (Version 1.1)

S XILINX

causes the XC6200 to switch off its data bus
drivers. This will happen tsspz after CS goes
high. Note that this is slightly different from the
normal short read cycle, where it is the rising
edge of GClk at t3 which switches off the bus.

In all cases CS must be sampled high on a rising
edge of GClk to terminate the cycle.

TMS320C50 Requirements

The TMS320C50 is a 16-bit DSP oriented processor.
It has 3 separate 16-bit address spaces. The 16-bit
address bus is qualified with 3 strobe signals to dis-
tinguish program, data and 1/O port accesses. The
XC6216 could be mapped to the data or I/O spaces.
Each address references a 16-bit location. Thus a
single XC6216 would take up half of the available
data or 1/0O address space. If more address space
was required paging registers could be used.

The processor uses the following major signals to
communicate with peripheral devices:

D<15:0>
16-bit bidirectional data bus.

A<15:0>
16-bit address bus output.

R/W
Output which determines whether a bus cycle is a

read or a write cycle. A high level indicates a read
cycle. A low level indicates a write.

WE

Write Enable output has suitable timing to be used as
a write pulse for asynchronous devices such as RAM
and latches. Data may be latched in the external
device on the rising edge of WE.

PS,DS,IS

Strobe outputs which indicate the address space to
which an external bus cycle is to be applied -
program, data or I/O.

Strb

Strobe output which indicates an external bus cycle.

Ready

Input which can be used to insert wait states in CPU
cycles.

ClkOut1

Master clock output. Cycles at the machine cycle rate
of the CPU.

The processor also has some additional interface
signals which are not used in this example.

If wait states are required they can be inserted auto-
matically by the processor or the Ready signal can
be used.

When the XC6200 is in 8-bit mode (as it is initially) it
will use the 8 least significant bits of the data bus to
transfer information (D<7:0>). To make the most of
the processor’s 16-bit data bus, the XC6200 device
control register should be modified to 16-bit mode.

Example Circuit

The example shown here uses the TMS320C50
ClkOut1 signal to clock the FPGA. One wait state is
required during read cycles. If this is generated using
the processor software wait state generator then no
wait state circuitry is required.

A basic example circuit is shown in Figure 3. This
example places the XC6216 in the processor’'s 1/0O
memory space. The XC6216 takes up the lower half
of the 1/0 address space.

A correctly timed CS pulse is generated from /S and
Strb. It is necessary to generate a CS pulse because
during consecutive read cycles the strobe signals
remain low throughout the burst. The FPGA needs to
detect the high to low and low to high transitions on
CS to start and terminate CPU cycles. The example
circuit will generate a single clock cycle CS pulse at
the start of each processor read or write to the
FPGA. Depending on the propagation delays of the
logic elements used, a glitch may be generated on
CS at the end of the last read cycle in a sequence.
This does not matter to the FPGA as CS is sampled
synchronously on the rising edge of GClk. A more
complicated pulse generation circuit could be used if
this was a problem for other circuitry.

The Ready input is not shown as one wait state is
automatically inserted by the processor. This is not
necessary during write cycles but the software wait
state generator generates the same number of wait
states for both reads and writes. If 0-wait state write

XAPP 064 October 9, 1996 (Version 1.1)

4

Interfacing XC6200 To Microprocessors

This circuitry can be placed in the XC6216 logic array

CS pulse generator
S Z Z
Sio :ﬂ_@ . . o
A<15> . . CS
| D Q :

TMS320C50 L —d : XC6216
D<15:0> — —————— D<15:0>
A<14:0> A<15:1>

A<0>
o
RAW RAWF
ClkOutl GClk
Figure 3. Basic Example Circuit
This circuitry can be placed in the XC6216 logic array
/7
CS pulse generator 3
from basic circuit v
CSs
s
—
Strb
WE
Page
Register
A<15>
TMS320C50 Address XC6216
Decoder To other device
address decoders
D<15:0> D<15:0>
RS Reset
A<14:0> A<15:1>
A<0>
o[]
RIW RdWr
ClkOut1 GClk

Figure 4. Example Circuit With Paging Register

XAPP 064 October 9, 1996 (Version 1.1)

S XILINX

cycles were required the Ready signal would have to
be used to generate the read cycle wait state. An
example circuit to do this is shown in Figure 7.

Each TMS320C50 address accesses two 8-bit
XC6216 locations. Hence A<0O> on the XC6216 is
grounded. The FPGA configuration register must be
set to 16-bit data bus width. The first write cycle to
the configuration register will be an 8-bit cycle as far
as the XC6216 is concerned, however the configura-
tion register is located at an even address so it does
not matter that A<O> is tied to ground.

Figure 4 shows a modified circuit with paging regis-
ters which allow more devices to be located within
the available address space. In this example the
paging register and the XC6216 are located in the I/
O memory space. The page register is written when
a processor 1/0 space write cycle occurs to the
address decoded by the address decoder block. The
complexity of the address decoder will depend on
how many separate devices are to be directly written
in the 1/0 space. The XC6216 CS can only be
asserted if the paging register has been written with
an appropriate value first. The paging register may
be any width up to 16 bits. The output from the
register could be further decoded or used directly, as
in the example here.

These designs assume CS and the data bus will
meet all the relevant set up and hold times. This is
dependant on the gate delays and the clock speed
used. If these times are not met then CS can be
retimed and more wait states added.

Timing

Timing diagrams for the example circuit of Figure 7
are shown in Figures 5 and 6. It is assumed that
there will be one wait state during read cycles and no
wait states during write cycles.

Write Cycle

At the start of a write cycle the processor drives
A<15:0> with the address to be written. R/Wis driven
low and the appropriate address space strobe is
asserted (IS, DS or PS). In the example here it is
assumed that the FPGA is located in the 1/0O address
space.

Strb goes low on the falling edge of ClkOutl. In the
example circuit this causes CS to be asserted. It is
assumed that no wait states are required and Ready
is always high during writes. If the FPGA timing

requirements for the set up time of CS and the data
bus cannot be met due to a very fast clock or large
propagation delays in the decoding, CS would have
to be retimed and a wait state added in the same way
as for a read cycle.

The XC6216 samples CS low at t;. This starts the
write cycle inside the XC6216. The address and data
busses and RdWr pin are also sampled at t;.

Since there is no wait state, the processor deasserts
Strb on the next falling edge of ClkOutl. This causes
CS to be deasserted. In the case of write cycles Strb
is always deasserted between cycles. Thus the CS
pulse generation circuit is not required here. However
it is required for read cycles.

The XC6216 samples CS high at t, and terminates
the cycle. The internal XC6216 write actually com-
pletes during the first clock cycle of the next CPU
cycle, however this does not matter as the FPGA will
be ready to sample CS again on the rising edge of
ClkOutl and start a new cycle at time t3 if required.
The internal XC6216 write cycle takes place between
t; and t3 in Figure 5. Times t; to t3 in Figure 5 corre-
spond to t; to t3 in Figure 1.

The processor holds the address and data busses
stable during the cycle but this is not important
because the XC6216 samples at t; and the bus
values are irrelevant after this time.

The WE signal is shown as this is used as a conve-
nient way of clocking the page register in Figure 4.
Care must be taken when designing a paging
scheme to ensure that a spurious write to the FPGA
does not occur immediately after the page register
has been activated. This will not happen in the
example shown here as Strb has been deasserted by
the time the paging register has been written so a
spurious CS pulse will not be generated.

Read Cycle

A standard TMS320C50 read cycle takes only a
single ClkOut1 cycle. An XC6216 read cycle requires
two clock cycles therefore a wait state is required.

The processor outputs the address to be read and
drives R/W high to signify a read cycle. The appropri-
ate address space strobe signal (IS, DS or PS) is
also asserted. Strb is asserted on the falling ClkOut1
edge, causing a CS pulse to be generated. The CS
pulse is used to generate a zero on the processor's
Ready input. Ready is sampled low by the processor
at time t;, signalling a wait state.

XAPP 064 October 9, 1996 (Version 1.1)

Interfacing XC6200 To Microprocessors

ciout e N S U A W

_—\—/7

A<15:0> X Write Address1 >< Write Address2 X

w0 S

— . S

s \ /T ST
D<15:0> Write Datal Write Data2

- \ /7 \ /——
WE \ VA \ /

Figure 5. Interface Write Cycles

ClkOut1 / \ 7_—_/1 |

A<15:0> >< Read Addressl l >< Read Address?2
RIW /
IS
Strb

o \ / \ /—
Ready \ / \ /

Figure 6. Interface Read Cycles

7 XAPP 064 October 9, 1996 (Version 1.1)

S XILINX

This circuitry can be placed in the XC6216 logic array

/7 CS pulse generator N
[
Strb CS
A<15>
TMS320C50 XC6216
D<15:0> D<15:0>
A<14:0> A<15:1>
A<0>
o'
RW RdWr
Add one wait state
during read cycles
Ready [«
ClkOut1 GCIk

Figure 7. Example Circuit With External Wait State Generator

The XC6216 samples CS low at t;. This starts the
read cycle inside the XC6216. The address bus and
RdWr pin are also sampled at t;.

The XC6216 performs its internal read and drives the
data bus for a clock cycle following the next rising
edge on ClkOutl. The FPGA also samples CS high
at this time and terminates the cycle.

The processor samples the data around time t,. The
internal XC6216 read cycle takes place between t;
and ts. Times t; and tg in Figure 6 correspond to t;
and t3 in Figure 2.

If there are no more read cycles the processor deas-
serts Strb at t,. If there are more read cycles Strb
remains asserted and another CS pulse is produced
by the pulse generator circuit.

The processor holds the address bus stable during
the cycle but this is not important because the
XC6216 samples at t; and the bus values are irrele-
vant after this time.

Implementation

All the logic between the processor and the FPGA in
Figures 3, 4 and 7 could be implemented in a small
EPLD on the board. This may be the best option if a
very fast clock is being used.

Another possibility makes use of the XC6200 family’s
ability to drive its own control inputs from user logic
within the programmable array. This is fully described
in the XC6200 family data sheet. In this case the con-
figuration for the interface circuit is stored in a Xilinx
serial PROM. On power up this is serially loaded into
the FPGA. The FPGA is configured so that its CS
input pin is driven from the output of the interface
circuit within the logic array rather than from external
circuitry.

Using this method, the interface circuit could easily
be expanded to provide all the timing and glue logic
for an entire board. Minimal circuitry would be loaded
serially from the PROM to allow the microprocessor
to complete the process in fast parallel mode.

XAPP 064 October 9, 1996 (Version 1.1)

Interfacing XC6200 To Microprocessors

Summary

XC6200 parallel interface gives fast access to
internal configuration and logic state data.

Parallel interface gives user total control over all reg-
isters in logic design.

XC6200 is easily interfaced.

Interface circuitry can be implemented in XC6200
array itself, booted from PROM.

The technigues shown here can be easily adapted to
any 8, 16 or 32-bit microprocessor.

Limitations And Restrictions

Warning: THIS IS AN UNTESTED DESIGN.

Xilinx, Inc. does not make any representation or
warranty regarding this design or any item based on
this design. Xilinx disclaims all express and implied
warranties, including but not limited to the implied
fithess of this design for a particular purpose and
freedom from infringement. Without limiting the gen-
erality of the foregoing, Xilinx does not make any
warranty of any kind that any item developed based
on this design, or any portion of it, will not infringe
any copyright, patent, trade secret or other intellec-
tual property right of any person or entity in any
country. It is the responsibility of the user to seek
licenses for such intellectual property right where
applicable. Xilinx shall not be liable for any damages
arising out of or in connection with the use of the
design including liability for lost profit, business inter-
ruption, or any other damages whatsoever.

XAPP 064 October 9, 1996 (Version 1.1)

	Overview
	Introduction
	XC6200 Requirements
	Write Cycle
	Read Cycle

	TMS320C50 Requirements
	Example Circuit
	Timing
	Write Cycle
	Read Cycle

	Implementation
	Summary
	Limitations And Restrictions

