
APPLICATION NOTE

R A 32x16 Reconfigurable
Correlator for the XC6200

XAPP 084 July 25, 1997 (Version 1.0) Application Note by Ann Duncan

Summary

A correlator design for the XC6200 is discussed. Dynamic reconfiguration is exploited to rapidly reconfigure the
hardwired match image template into the design.

Xilinx Family

• XC6200

 Demonstrates

• Use of Fast Map Interface

• Dynamic reconfiguration at Logic Level

• Register Access through control store interface

• Codesign in C++

• CBUF timing strategy

1 XAPP 084 July 25 1997 (Version 1.0)

Table of Contents

INTRODUCTION .. 1
DESIGN FLOW... 2
SOFTWARE DESIGN ... 3

The Control Program.. 3
THE CORRELATOR CLASSES............................. 3
THE ACCESSREGISTER CLASS.......................... 3
THE PCI6200 CLASS.. 4
THE RAL CLASS.. 4
LOGIC DESCRIPTION.. 4

Overview .. 4
Threshold Block Logic .. 6
XACT6000 Instantiation ... 7

PERFORMANCE MEASURES............................... 8
Speed of Operation .. 8
Speed of Initialisation ... 8
Performance with multiple templates 9

SUMMARY... 9
APPENDIX A .. 11
GATE... 11
CONDITION ... 11
RECONFIGURATION ... 11
NET CONNECTIONS.. 11
APPENDIX B .. 12
LIMITATIONS AND RESTRICTIONS 14

Introduction

Image correlation is performed by passing a template
over an image and determining at each pixel position
if a match has been found. The design described
uses a 32x16-pixel match image and a 32x16-pixel
mask image to construct the template. The match
image is a small image to be located within a larger
image. The mask image allows masking out of
background regions in the match image. Only
unmasked pixels will be correlated. If the number of
matching pixels at any point in the image exceed a
threshold, a Hit is detected.

The correlator is implemented as a pipelined design.
Image data is fed in 16 rows at a time into a 32-stage
pipeline. At each clock step the pixel data in each of
the 512 registers is compared to the template. The
match and mask images are hardwired into the logic.
See Figure 1. The ability to dynamically reconfigure
gates means that the image template can be rapidly
reconfigured an unlimited number of times. Partial
reconfiguration and fast reconfiguration times make
the XC6200 ideal for this application, and by using
XACT6000, reconfiguration data can be generated
easily, thus minimizing development time even
further.

An XC6200, resident on an XC6200DS, is
programmed with a design to perform correlation on
binary images. This note describes design flow
showing how using the codesign approach, software
and hardware tasks can be tackled simultaneously.
Details are given of correlator development,

R

 XAPP 084 July 25 1997 (Version 1.0) 2

modeling correlator functionality in software, logic
simulation, and emulation (actual design running in
FPGA). The standard XC6200DS libraries, linking
user design elements to actual array resources, are
presented. The logic architecture for an array of
custom adders is described. ASIC designers will be
familiar with this static ASIC design process; altering
design for regularity and reconfiguration will be new.
Finally, performance data is given for both image
correlation and reconfiguration.

Design Flow

Design flow uses a codesign approach allowing
software and hardware to be implemented in parallel.

In software:

• Write C++ program to read in the image, mask
and match templates, and call a correlator.

• Create C++ classes for Correlator,
CorrelatorSoft, CorrelatorHard, CorrelatorSim
and CorrelatorBoard.

• Model correlator design in software using the
class CorrelatorSoft.

In hardware:

• Capture the design as a schematic, in this case
ViewDraw was used.

In software:

• Simulate and debug by defining a correlator of
type CorrelatorSim and using a simulator, in this
case ViewSim was used.

In hardware:

• Generate the Edif for the design.
• Use XACTstepSeries6000 to optimally place

and route the design.
• Generate the cal file, the symbol table and the

RAL file.

In software:

• Redefine the correlator in the C++ program as
type CorrelatorBoard.

• Run the program using the XC6200 hardware
accelerated correlator.

See Figure 2.

Image, showing current coordinates of
correlator and the input register. Image data
and correlator position are controlled in

Data in input
register clocked
into pipeline

Template
hardwired
into correlator
logic

Figure 1. Image being pushed into the correlator pipeline in rows of 16

A 32x16 Reconfigurable Correlator for the XC6200

3 XAPP 084 July 25 1997 (Version 1.0)

Software Design

The Control Program

The C++ program controls both setup and operation.

Setup includes the following steps:

• Initialization of correlator design in one of
software, simulation or hardware modes.

• Reading in the match and mask data from files.
• Reconfiguring correlator according to the match

and mask images.
• Reading in the image to match against.

Correlator operation:

• Alternately, writing the image data to the input
register in 16 pixel columns and checking for Hit

• Displaying crosshairs on the Hit location if Hit = 1.

 The Correlator Classes

 A correlator base class, Correlator, is defined as part
of the C++ program. On it are defined arrays for the
mask image and the match image; the dimensions of
the search image and the threshold value. From this
base class is derived the class CorrelatorHard.
CorrelatorHard contains methods common to both
simulation and utilization of the ASIC design e.g. a
list of the blocks with reconfigurable gates (see
section on Logic Design) and a function
build_correlator() which generates the hierarchical

path names for each of these reconfigurable gates.
This design follows a recursive structural pattern
through the hierarchy making the generation of these
strings an elegant process. See Appendix B.

 CorrelatorBoard and CorrelatorSim in turn derive
from CorrelatorHard. CorrelatorSim performs
simulation of a design by generating simulation files
from image data. ViewSim was used in this instance.
CorrelatorBoard uses the AccessRegister and
Pci6200 classes to interface to the Development
System.

 The AccessRegister Class

 The AccessRegister classes AccessRegisterSim and
AccessRegisterBoard, allow registers in the logic
design to be treated as variables in the controlling
C++ program. These classes are generic and can be
used for variables in any design. AccessRegisterSim
writes a command file for ViewSim. This file is
imported by ViewSim and shows the operation of the
correlator via simulation of the ViewLogic design.
AccessRegisterBoard utilizes the symbol table data
from XACT6000 to evaluate the Map Register,
column select and bus width for each variable in the
design. For this design there are only two variables,
the 16bit input register and the 1bit hit register. The
16bit Map Register selects the rows from which data
will be passed on to the bus. Column select selects
the column to or from which these bits are
transferred. The image data is then written to the
hardware correlator. See Appendix B and refer to the

:ULWH�FRUUHODWRU�FRQWURO
SURJUDP

&DSWXUH�GHVLJQ�DV�D

VFKHPDWLF

0RGHO�IXQFWLRQDOLW\�ZLWK
VRIWZDUH�FRUUHODWRU

*HQHUDWH�GDWD�IRU�ORJLF
VLPXODWLRQ�XVLQJ�VLPXODWLRQ

FRUUHODWRU

3ODFH�DQG�URXWH�XVLQJ

;$&7������JHQHUDWH�V\PERO

WDEOH�DQG�5$/�ILOHV

5XQ�XVLQJ�;&�����FRUUHODWRU

6LPXODWH�DQG�JHQHUDWH�(',)

62)7:$5(+$5':$5(

WLPH

 Figure 2. Software and Hardware developed in parallel

R

 XAPP 084 July 25 1997 (Version 1.0) 4

documentation on the AccessRegister classes for
elaboration.

 The Pci6200 Class

 Below the AccessRegister classes in the software
hierarchy lies the Pci6200 function library. These
functions perform the low-level interface to the
XC6200 and XC6200DS. Included in the functionality
of this low-level library is the ability to download a
design onto the array and reprogramming it via the
FastMap interface; set the Map Register, control the
Global Clock, and Clear. For further information see
the documentation for the Pci6200 class. Figure 3
demonstrates the levels of each of these classes with
respect to user software and the hardware.

 The RAL Class

 The address data pairs for reconfiguring individual
function units are provided by a Ral Software Library
function. This library extracts information from a
special Ral file generated by XACT6000 for this
design. Provided with the following parameters, a
function call returns the address/data pairs required
to reconfigure a specific function unit in the array:
hierarchical instance name, hierarchical net names,
and the XC6000 library function name for the new
reconfiguration.

 Logic Description

 Overview

 The design comprises the following:
• 16bit input register
• 32x16bit correlator block programmed with mask

and match
• Threshold block
• 1bit hit register
• CBUF clock: generates a clock pulse on each

write to the input register

Figure 4 is a block diagram illustrating the structure
of the correlator logic. The image data is written in
columns of 16 pixels to the input register via the

XC6200 and
XC6200DS (Hardware)

Pci6200 classAccessRegisterBoard
class

CorrelatorBoard class
(User defined)

Top Level Control
Program

(User defined)

 Figure 3. An illustration of the XC6200DS software
library hierarchy

,QSXW�5HJLVWHU &RUUHODWRU 7KUHVKROG +LW

&%8)

*&ON

�������[��

���ELW�VOLFHG

��FRUUHODWRU

��ELW�GDWD

��ELW�WRWDO

SOXV���ELW
FDUU\�LQ

&ON

Figure 4. 32x16 pixel correlator design for XC6200

A 32x16 Reconfigurable Correlator for the XC6200

5 XAPP 084 July 25 1997 (Version 1.0)

control store interface. (See Application Note
XAPP063 for details [1].) On each write to this
register, the CBUF generates a clock pulse clocking
the design and shifting the columns of data into the
pipeline. All pixels in the pipeline are summed in an
array of custom adders.

Correlator Logic Details

The operation of the correlator is as follows. On each
clock step, the 16bit column of data in the input
register is shifted into the 32 bit long pipeline as the
next column is written by the control program to the
register. Each pixel is logically compared with the
match and mask data (hardwired as gates) for its
current position and the total number of matches
evaluated.

Figure 5 shows a 3-pixel correlator. The gates inside
each dotted box perform selection on the pixels
depending on the match and mask data. All of these
gates can be eliminated from the design if it is
possible to reconfigure the gates within the three-bit
adder, minimizing the adder logic according to the
match and mask data for each pixel.

Figure 6 is the base configuration for the lowest level
block of the design showing a reconfigurable 2-stage
adder. The adder inputs come from a section of the
pipeline. Operation is as follows. Pixel data is
clocked through the shift register. Summing of the
number of matched pixels takes place over two clock
cycles. The output from ABXOR is delayed for one
clock cycle and then operates as in a standard adder
design when the three pixels being correlated lie in
the registers. The adder sums the number of
matched pixels, the sum has a one-clock cycle delay,
the carry a delay of two. When placed and routed
using XACT6000, this block occupies 6 function
units, the design in Figure 5 would require 12.

Figure 6 shows this three-pixel adder. As discussed,
correlation, or matching against different pixel
patterns, is achieved by making each gate of this
adder reconfigurable, basing the new gate on the
mask and match data. For example, if the pixel on
the input was masked and the pixel in the first flip-
flop matched with 1, the gate ABXOR would be
configured to be a buffer. If the pixel in the first flip-
flop matched against 0, ABXOR would be configured
to an inverter. Similarly, gates and their net
connections are evaluated for CMUX and SUMXOR.
Say for example the template for these 3 pixels is as
follows [*, 1, 0] where the * signifies that the first pixel
is masked out. The pixel on Din is masked, and the

pixel in the top flip-flop is matched with 1. One clock
cycle later, all pixels will have shifted one step along
the pipeline. Therefore, at T+1, the pixel in the middle
flip-flop matches with 1 and the pixel in the bottom
flip-flop matches with 0. During reconfiguration, the
CMUX is replaced by a MUX with an inverter on the
second input and the SumXOR with an XNOR gate.

3bit
adder

pixel

match

mask D

D

pixel

match

mask D

D

pixel

match

mask D

D

Figure 5. 3-pixel correlator without reconfiguration

6XP

'RXW

&RXW

'LQ
$%;25

&08;

6XP;25

D Q

D Q

D Q
D Q

D Q

Figure 6. A 3-pixel correlator. Lowest level block of
correlator showing 3 pixel shift register and 3

reconfigurable gates

R

 XAPP 084 July 25 1997 (Version 1.0) 6

See Appendix A for all possible reconfigurations of
mask and match combinations.

The correlator is constructed hierarchically from
these low-level blocks. Two blocks are chained
together to make a 6bit shift register. See Figure 7.
The sum and carry bits from these two blocks are
then summed to give a matched pixel total for the
6bits. As a space saving trick here, an extra pixel is
taken as a carry in, making a seven-pixel correlator
block. The carry in pixel must be delayed by one
clock cycle to synchronize timing with the sum output
from the 3-pixel correlator to which it is being added.
The gate which takes the carry in is reconfigurable,
another ABXOR but with only one of the inputs being
a pixel value the other is assumed always to have a
mask value of 0 and a match of 1.

Two of these 7 pixel correlators are combined in
parallel, their totals summed, plus an extra pixel on
the carry in, and delayed by two; this make a 15 pixel
correlator (see Figure 8). Two 15 pixel correlators are
combined in series with an extra carry in delayed by
three clock cycles to make a 31 bit correlator; and so
on, until a 511 pixel correlator is constructed, leaving
one pixel untested.

The sum of the 511-pixel correlator and the 512th
pixel are fed into the Threshold block.

In total, if comparing the reconfigurable design
against the alternative shown in Figure 3, a total of
2048 function units are saved. The final design uses
2343 function units in all.

Threshold Block Logic

The threshold value determines the quality of the
match of the image with the template. Logically, the
threshold block compares the number of matches
with a preset threshold t, and if it is greater, sets the
Hit flag. For a perfect match the threshold value
would be 32x16=512. In practice, the threshold block
operates by adding the total number of matched

pixels plus the extra carry in pixel to a constant value
and generating an overflow when the threshold is
exceeded. This means programming the threshold
block with a constant value, 512-t, where t is the
threshold value. This is done by performing a single
threshold register write before correlation of the
image begins. The overflow or carry appears in the
single bit Hit register.

6�6�

6�

'LQ 'RXW�JRHV�RQ

WR�QH[W�VWDJH

��SL[HO

&RUUHODWRU

6
C

6
C

)OLS�IORS

IRUPLQJ�SDUW

RI�WKH�SLHOLQH

$GG�WKH�&DUULHV�RI�WKH

WZR��SL[HO�FRUUHODWRUV

SOXV�WKH�FDUU\�RXW�RI

WKH�VXP�RI�WKH�VXPV

SLSHOLQH

6XP�WKH�VXPV�RI�WKH�WZR

�SL[HO�FRUUHODWRUV�DQG�WDNH

DQ�H[WUD�SL[HO�IURP�WKH

SLSHOLQH�DV�D�FDUU\�LQ

+ +

� �
'�4

Figure 7. A 7-pixel correlator constructed from two 3-pixel correlators in series. Shaded blocks contain
reconfigurable gates

A 32x16 Reconfigurable Correlator for the XC6200

7 XAPP 084 July 25 1997 (Version 1.0)

Figure 9 shows how the reconfigurable gates map to
the pixels in the mask and match template images.

XACT6000 Instantiation

Knowing the regular structure of XC6200 (refer to the
XC6200 Datasheet [2]), it is easy to exploit this in
structured logic design. XACT6000 performs
automatic placement and routing. It can be forced to
place and route according to user preference by
attaching constraints during the schematic capture
phase. This feature is exploited fully in the
development of this design. The advantages
XACT6000 offers, of maintaining the hierarchy in the
physical Instantiation of a design, are shown clearly
in Figure 10. This figures shows the XACT6000

layout and clearly maps the structure of the logic,
Figures 4, 6, 7 and 8 and the hierarchical breakdown
of the image in the same way show logic mapping
directly into hardware.

Placement Constraints
RLOC constraints are attached to the instances in
the low-level blocks forcing them to be placed in
rectangles which can then be tiled together.

Transform Constraints
The way that blocks in this design connect together
can be specified by the use of transforms. In the
layout of the 15 pixel correlator (Figure 8), for
example, it is sensible to place two 7 pixel correlators

back to back with the adders in between them. The
REF0 constraint is attached to one of the blocks,
forcing a reflection in the Y-axis of the default layout
for the block.

Flatten Constraint
The FLATTEN constraint forces all gates within an
instance to be placed as gates rather than as a
single block i.e. the hierarchical structure of the block
is removed. This is particularly useful when mapping
gates and flip-flops into single cells or when space is
at a premium and placing blocks would cause
redundancy.

Routing Constraints
Routing is deferred to a higher level with the
attachment of the RTDEFER constraint to a

schematic sheet. Optimal routing for this design
results when deferring low level routing to the 15-
pixel correlator block level. This block is routed
limiting routing resources to local and length four
routing. Subsequent levels in the hierarchy have
routing deferred to the top level. All resources are
made available for top level routing.

+

+

+

'LQ�

'LQ�

'RXW�

'RXW�

7 Pixel correlators in
parallel. D0 and D1
are pipelines for two
distinct image rows.

3HUIRUP�WKH�VXP�RI

WKH�VXPV�RI�WKH�WZR��

SL[HO�FRUUHODWRUV
WDNLQJ�D�FDUU\�LQ�SL[HO

IURP�WKH�SLSHOLQH�

�

'�4

'�4

'�4

'�4

6�

6�

6�

6�

Figure 8. A 15-pixel correlator constructed from two 7-pixel correlators

R

 XAPP 084 July 25 1997 (Version 1.0) 8

Performance Measures

Speed of Operation

There are three possible modes of operation.

1. XC6216 as part of a purpose built hardware
system for image processing. XC6216 would reside
on a board with frame grabber and control logic. Data
input would be via the array pins. According to timing
analysis of the design using XACT6000, the
maximum clock speed to the design is 50MHz if data
is fed direct to IOBs. This would enable correlation of
a 512x512 image in 5.2ms; a maximum frame rate of
190Hz.

2. A system where data is fed to the XC6216 design
via the microprocessor interface, from local memory.
Speeds of 20-25MHz would be attainable giving a
worst case correlation time for a 512x512 image of
13ms. This equates to a frame rate of 76Hz.

3. As part of a development system where image
data is stored on the PC. Timing is dependent on PCI
bus performance and the control software.

Actual values measured from the software control
program give correlation times of 0.69s using the
XC6200. The software control and PCI interface

increase the delay from the calculated value. This
compares with a value of 38s for a software
correlator running on a 133MHz pentium. To improve
speed, Hit could be wired to an interrupt signal and
image data could be stored in the on-board RAM.

Speed of Initialization

In performing reconfiguration, time taken is
dependent on the method of reconfiguration. In the
most simple method, also the most time consuming,
each address/data pair is written individually from the
control program. It is also possible to perform batch
reconfiguration.

Total time taken to change the mask and match
image for this design is given by the following
equation:

T G Nclk Fclk= × ×2 1

Where T is the total reconfiguration time, G is the
number of gates, Nclk is the number of Clock cycles
taken for a write of one address/data pair and Fclk is
the frequency of the clock.

T ms= × × × × =512 2 5 1
33 10

01556 .

3 pixel correlator
configured
according to values
of 3 pixels

7 pixel correlator
comprises two 3 pixel
correlators plus one
reconfigurable adder

15 pixel correlator
comprises two 7 pixel
correlators plus one
reconfigurable adder

31 pixel correlator
comprises two 15
pixel correlators plus
one reconfigurable
adder

63 pixel correlator
comprises two 31
pixel correlators plus
one reconfigurable
adder

127 pixel
correlator

(0,0)

(31,15)

Figure 9. How template pixel values correspond to reconfigurable gates

A 32x16 Reconfigurable Correlator for the XC6200

9 XAPP 084 July 25 1997 (Version 1.0)

Performance with multiple templates

Given that correlator reconfiguration with a 32x16
mask and match template requires less than 0.2ms
and correlation over a 512x512 image takes
approximately 30ms, reconfiguration time between
templates can be regarded as insignificant.

Summary

For the problems of image correlation: large amounts
of data, intensive computation and the desire, in
most applications, to frequently change mask and
match images two advantages of XC6200 are clear.
It has both the flexibility of rapid partial
reconfiguration for changing between image
templates, times of less than 0.2ms calculated; with
high density on this kind of structured, heavily
pipelined application.

Durations of 30ms are obtainable for full correlation
of images of dimension 512x512 pixels.

References

[1] XAPP063: "Interfacing the XC6200 to a
Microprocessor", Bill Wilkie, 1996 Xilinx Scotland.
[2] "XC6200 Reconfigurable Programmable Logic
Family" Datasheet, v1.10, 1997 Xilinx Scotland.

R

 XAPP 084 July 25 1997 (Version 1.0) 10

Figure 10. Physical layout of the correlator design in XACT6000

A 32x16 Reconfigurable Correlator for the XC6200

11 XAPP 084 July 25 1997 (Version 1.0)

Appendix A

Gate reconfigurations depending on match and mask values

Gate Condition Reconfiguration Net connections

ABXOR Match A = Match B XOR2 A, B
Match A != Match B XNOR2 A, B
Match A = 1, B Masked BUF A
Match A = 0, B Masked INV A
Match B = 1, A Masked BUF B
Match B = 0, A Masked INV B
A, B Masked GND

RCMUX Match C, Match D = 1 M2_1 C, D, S
Match C = 0, Match D = 1 M2_1B1 Cinv, D, S
Match C = 1, Match D = 0 M2_1B1B C, Dinv, S
Match C, Match D = 0 M2_1B2 Cinv, Dinv, S
Match C = 1, D Masked AND2B1 C, S
Match D = 1, C Masked AND S0, D1
Match C = 0, D Masked AND2B2 Cinv, Sinv
Match D = 0, C Masked AND2B1 S, Dinv
C, D Masked GND

SUMXOR Match D = 1 XOR2 D, S
Match D = 0 XNOR2 D, S
D Masked BUF S

6XP

'RXW

&RXW

'LQ
$%;25

&08;

6XP;25

D Q

D Q

D Q
D Q

D Q

$

%

&

'

6

R

 XAPP 084 July 25 1997 (Version 1.0) 12

Appendix B

int image_correlate(Image *image)
// Locate match and mask template in image using defined correlator

{
CorrelatorBoard cor; //Initialise a correlator, current definition

 //sets up XC6200 design and registers
//CorrelatorSim cor;
//CorrelatorSoft cor;

unsigned thresh =239; //Set a threshold value for an acceptable
 //match

cor.rows=image->_rows; //Initialise image dimensions
cor.cols=image->_cols;

cor.set_match_and_mask(); //Reconfigures custom adders according to
 //template

cor.set_threshold(thresh);//Set acceptance threshold

cor.correlate(image); //correlate the image with the correlator
 //template

return 0;

} /* end image_correlate() */

/**/
// The hardware correlation classes overide some of the methods of
// this base class.
class Correlator{
public:
 char match_image[32][16],mask_image[32][16];
 int rows,cols;
 int threshold;

 void set_match_and_mask(); //Set up arrays mask_image and match_image
 void set_threshold(int t){threshold=t;}
 Bool correlate(char **image);
};

/**/
// This abstract class contains common methods and data structures
// for the hardware simulation and implementation classes.
class CorrelatorHard: public Correlator {
public:
 CorrelatorRes resources; // Access to named resources in the schematic
 CList<RCAdder *,RCAdder *> full_adders;
 CList<RCOneInAdder *,RCOneInAdder *> cin_adders;

 void build_correlator();
 void set_threshold(int t)
 {

 Correlator::set_threshold(t);
 // The hardware comparator works by generating a carry in
 // a 9 bit addition rather than doing a subtraction.
 // (val>=t) iff (val+512-t>511)
 resources._threshold->set_map_reg();
 (resources._threshold)->write((unsigned long) 512-t);

 } // set_threshold

A 32x16 Reconfigurable Correlator for the XC6200

13 XAPP 084 July 25 1997 (Version 1.0)

 void set_match_and_mask()
 {

 POSITION p;
 // Set up arrays in Correlator structure.
 Correlator::set_match_and_mask();

 // set_match_and_mask refer to arrays in correlator structure.
 // for each full adder reconfigure gates according to mask and
 // match data

 for(p=full_adders.GetHeadPosition();
 p!=NULL;full_adders.GetNext(p))

 (full_adders.GetAt(p))->set_match_and_mask(this);
 // for each carry-in adder reconfigure gates according to mask and
 // match data
 for(p=cin_adders.GetHeadPosition();
 p!=NULL;cin_adders.GetNext(p))

 (cin_adders.GetAt(p))->set_match_and_mask(this);
 }
 void clock(int cycles);
 Bool correlate(Image*);

 virtual RCAdder *new_RCAdder(int ix,int iy,CString name)=0;
 virtual RCOneInAdder *new_RCOneInAdder(int ix,int iy,CString name)=0;
};
// Implements the hardware correlator on the board.
class CorrelatorBoard: public CorrelatorHard{
public:
 CorrelatorBoard(){

 build_correlator();
 resources.initialiseBoard();

 //set up access to array elements, using symbol table data
 resources._data= new AccessRegisterBoard("DATA",&resources);

 resources._threshold= new AccessRegisterBoard("THRESH",&resources);
 resources._hit= new AccessRegisterBoard("HIT",&resources);
 resources._clr= new AccessRegisterBoard("CLR",&resources);

 }

 RCAdder *new_RCAdder(int ix,int iy,CString name)
 {return new RCAdderBoard(ix,iy,name);}
 RCOneInAdder *new_RCOneInAdder(int ix,int iy,CString name)
 {return new RCOneInAdderBoard(ix,iy,name);}
};

/**/

R

 XAPP 084 July 25 1997 (Version 1.0) 14

Limitations And Restrict ions

Warning: THIS IS AN UNTESTED DESIGN.

Xilinx, Inc. does not make any representation or warranty regarding this design or any item based on this design.
Xilinx disclaims all express and implied warranties, including but not limited to the implied fitness of this design for
a particular purpose and freedom from infringement. Without limiting the generality of the foregoing, Xilinx does not
make any warranty of any kind that any item developed based on this design, or any portion of it, will not infringe
any copyright, patent, trade secret or other intellectual property right of any person or entity in any country. It is the
responsibility of the user to seek licenses for such intellectual property right where applicable. Xilinx shall not be
liable for any damages arising out of or in connection with the use of the design including liability for lost profit,
business interruption, or any other damages whatsoever.

	Introduction

	Design Flow

	Software Design

	The Control Program

	The Correlator Classes

	The AccessRegister Class

	The Pci6200 Class

	The RAL Class

	Logic Description

	Overview

	Correlator Logic Details

	Threshold Block Logic

	XACT6000 Instantiation

	Performance Measures

	Speed of Operation

	Speed of Initialization

	Performance with multiple templates

	Summary

	References

	Appendix A

	Appendix B

	Limitations And Restrictions

