
XACTstep Core Tools — 040134101 4-1

Chapter 4

Cadence Verilog-XL Interface and Libraries

This chapter contains the following information on using the Xilinx
Interface to Cadence Verilog-XL and the Cadence Verilog-XL
Libraries.

• Introduction

• Contents

• Other Cadence Interface Products

• Other Sources of Information

• Installation

• Features in This Release

• X2VPrep Program

• XNF2Verilog Program

• Simulation Scripts

• funcnetx

• timenetx

• Detailed Design Flow for Design Verification

• Known Issues1

1. For information about Core Tools known issues, refer to the XACTstep Version
5.2/6.0 Core Tools Known Issues, Work Arounds, and Helpful Hints.



XACTstep Core Tools

4-2 Xilinx Development System

Introduction
Welcome to the Cadence Verilog-XL Interface and Libraries Package
from Xilinx!

The Xilinx Interface to Cadence Verilog-XL, ES-Verilog, is supported
on HP-700 and Sun4 workstations only. It is released as ES (Engi-
neering Sample) software to accelerate the product’s availability. In a
future release, the Verilog libraries and interface will become a part of
the FPGA Core Implementation Tools (DS-502) on HP700 and Sun4
platforms as well as HP700 and Sun4 Standard packages.

Note: For Synopsys users, this release only supports post-route
timing simulation. Pre-route, post-synthesis, functional simulation of
Synopsys designs is not supported.

Note: Functional simulation of designs implemented using the pre-
Unified libraries is not supported by this package. If your design is
entered using pre-Unified libraries, you must use the Cadence 9402
interface to process it. The application note “Using the Xilinx Inter-
face 4.0 with XACT 5.0” describes the procedure for processing pre-
Unified designs in detail. Contact Cadence Technical Support at
1-800-223-3622 or Xilinx Technical Support at 1-800-255-7778 to
request a copy.

Contents
The Development System (DS) product you received contains soft-
ware, documentation, and/or hardware. New DS Base, Standard,
and Extended packages contain hardware, software, and documenta-
tion. Interface and Update products have software and documenta-
tion only.

Software
The ES Release Version 5.2.0 Verilog-XL Interface and Libraries (ES-
Verilog) are available only on CD-ROM, and includes the Verilog
interface for both Sun4 series workstations and HP700 workstations.

Documentation
This release document is the only document necessary to use the
Verilog-XL Interface. However, it also lists other references that you
may find helpful.



Cadence Verilog-XL Interface and Libraries

XACTstep Core Tools 4-3

Maintenance and Support
This product comes with free technical and product information tele-
phone support (toll-free in the U.S. and Canada). You can also fax
and e-mail your questions. See the last page of this release note for
offices and phone numbers.

Xilinx also offers many customer education services; ask your sales
representative for more information.

Other Cadence Interface Products
The following products are also available from Xilinx.

DS-381-SN2-C (Sun4) and DS-381-HP7-C (HP700)
These are for users who purchase DS-502 and/or DS-550 separately.

• Concept libraries and interface

• Composer libraries and interface

• Verilog simulation models and interface

• Rapidsim simulation models and interface

DS-CDN-SN2-C (Sun4) and DS-CDN-HP7-C (HP700)
These are complete front-to-back solutions.

• All software included in DS-381, plus:

• FPGA Core Implementation Tools (DS-502)

• XEPLD Translator Core Tools (DS-550)

• X-BLOX Synthesis Tool (DS-380)

The two sets of products above include some features that are not
included in the Xilinx Interface to Verilog-XL:

• Two scripts, timenet and funcnet, which automate the prepara-
tion of designs for simulation

• Two scripts, timesim and funcsim, which automate the simula-
tion process

• Online documentation



XACTstep Core Tools

4-4 Xilinx Development System

• Support for Cadence Rapidsim, Composer, and Concept integra-
tion and back-annotation

• Support for Cadence Logic Workbench integration

• Support for Cadence System Workbench integration

Other Sources of Information
Additional sources of information on the Xilinx Interface to Verilog-
XL and related products are listed in the next two sections.

Related Manuals
The Xilinx Interface to Verilog-XL is used with other Cadence and
Xilinx products during the Xilinx FPGA and EPLD design process.
The following manuals give you more information about the tools
used with the Xilinx Interface to Verilog-XL.

Manual What It Contains

Verilog-XL Configuration Guide
Verilog-XL Reference Manual
Verilog-XL Tutorial

Information on the Verilog-XL simulator

Libraries Guide Information on the primitives and macros
available in the XACT libraries

Hardware & Peripherals User Guide Information about the Xilinx demonstra-
tion boards, the XChecker/download
cable, the Xilinx HW112 PROM program-
mer, the XPP PROM Programmer software
interface, and the XChecker software inter-
face

Development System Reference Guide, Vols 1-3 Information about the programs within the
XACTstep Development System

Development System User Guide Overview of the XACT tools and the Xilinx
FPGA design process

X-BLOX Reference/User Guide Information about the X-BLOX library and
software

XEPLD Design Guide Information about how to use the XEPLD
software to create designs for Xilinx
XC7000-series EPLD devices



Cadence Verilog-XL Interface and Libraries

XACTstep Core Tools 4-5

Installation
This section gives instructions for installing the Xilinx Interface to
Verilog-XL.

Software Requirements
The Xilinx Interface to Verilog-XL is provided on CD-ROM. To install
the Xilinx Interface to Verilog-XL, you must have a CD-ROM drive
and at least 4 MB of free disk space.

Software Versions
The ES-Verilog Version 5.2.0 Xilinx Interface to Verilog-XL includes
the following software:

Installing from CD-ROM
You can install the Xilinx Interface to Verilog-XL from CD-ROM on
the following workstation types.

• Sun4 (SPARC) with SunOS 4.1.x or SunOS 5.3

• HP-PA Model 9000 (RISC) with HP-UX 9.01

Follow these procedures.

XEPLD Reference Guide Reference information about the XEPLD
software used for implementing Xilinx
XC7000-series EPLD devices

The Programmable Logic Data Book Complete specifications for the Xilinx
FPGA and EPLD devices

Program Version

X2VPrep 9504

XNF2Verilog 9504

funcnetx 5.4.1c

timenetx 5.2.0

Manual What It Contains



XACTstep Core Tools

4-6 Xilinx Development System

1. Check the system requirements defined in the Getting Started &
Installation Guide.

2. Insert the CD-ROM into the drive.

3. Start a window manager (OpenWindows or X-Windows).

4. Execute the platform-specific commands as indicated in the
following sections.

On A Sun4 Workstation, make these entries:

# mkdir /cdrom

# mount -t hsfs -o ro /dev/sr0 /cdrom

# cd xilinx_install_dir

(to change directory to your XACT install directory)

# uudecode /cdrom/xbbs/vlog_intfc/
xil_vlog_intfc.sun4.tar.z.uu

# uncompress vlog_intfc.sun4.tar.z

# tar xvf vlog_intfc.sun4.tar

On an HP700 Workstation, make these entries:

# mkdir /cdrom

# mount /dev/dsk/3s0 /cdrom

# cd xilinx_install_dir

(to change directory to your XACT install directory)

# uudecode /cdrom/xbbs/vlog_intfc/
xil_vlog_intfc.hp7.tar.z.uu

# uncompress xil_vlog_intfc.hp7.tar.z

# tar xvf xil_vlog_intfc.hp7.tar

Note: Workstation users must have root privileges to use mount
commands (“#” is the root prompt, and “%” is the user prompt).
Directories and device names can vary; therefore, check these names
with your system administrator.

5. Xilinx recommends that you use your XACT directory as the
install directory. With XACT as the install directory, the installa-
tion will create the following directory structure for you:

$XACT/bin/platform/ (where “platform” is either sparc
or hppa)



Cadence Verilog-XL Interface and Libraries

XACTstep Core Tools 4-7

x2vprep
xnf2verilog
funcnetx
timenetx

$XACT/data/ (Pin files)
xc2000.pin
xc3000.pin
xc4000.pin
xc7000.pin

$XACT/ (Verilog libraries)
verilog2000/
verilog3000/
verilog4000/
verilog7000/

Environment Variable Settings

Before using the Xilinx Interface to Verilog-XL, you need to add the
name of your installation directory to the path variable in your .cshrc
file, if different from your Xilinx installation directory:

set path = (install_dir/bin/platform $path)

where install_dir is your installation directory, and platform is either
sparc, for a Sun4 platform, or hppa, for an HP700 platform.

Example:

set path = ( /tools/xact/bin/sparc $path )

In this example, the install directory is /tools/xact, and the platform
is Sun4 (sparc).

To run the Xilinx FPGA Core Tools programs X-BLOX, LCA2XNF,
and XNFBA, you will also need to:

1. Add the path to your Xilinx Development System Core Tools
installation directory to your path variable, if different from your
ES-Verilog installation directory:

set path = (core_install_dir/bin/platform $path)

2. Define an environment variable, “XACT”, and set it to the name
of the Core Tools installation directory.

setenv XACT core_install_dir



XACTstep Core Tools

4-8 Xilinx Development System

In addition, Xilinx highly recommends that you define the environ-
ment variable, CDS_INTFC, in your .cshrc file or setup file.
CDS_INTFC should be declared in either file as follows:

setenv CDS_INTFC install_dir

where install_dir is the installation directory for your Xilinx Interface
to Verilog-XL.

Both funcnetx and timenetx will search for Cadence pin files and
Verilog libraries under $CDS_INTFC, if it is defined.

Example:

setenv CDS_INTFC /tools/xact

In the example, the install directory is /tools/xact.

To run XEPLD Translator Core Tools executables (including
vmh2xnf), you must also install the DS-550 software.

Refer to the Getting Started & Installation Guide for more details on
setting up your environment for the Xilinx Development System.

Licensing

The Xilinx Interface to Verilog-XL V5.2.0 executables, X2VPrep and
XNF2Verilog, are unlicensed executables, so no license authorization
is required to run these programs.

Features in This Release
This section describes the supported devices, libraries, and programs
in this release.

Devices Supported
The Xilinx Interface to Verilog-XL enables you to simulate both Xilinx
field-programmable gate array (FPGA) designs or erasable program-
mable logic device (EPLD) designs that are generated by the
following products:

• XACT (Xilinx Automated CAE Tools) Development System,
Version 5.0, 5.1.0, and 5.2.0.

• Xilinx XEPLD software, Version 5.0, 5.1.0, and 5.2.0.



Cadence Verilog-XL Interface and Libraries

XACTstep Core Tools 4-9

The Xilinx Interface to Verilog-XL supports all released Xilinx FPGA
families: XC2000, XC3000, XC4000, and XC7000 (the Xilinx EPLD
family).

Libraries
Included in the Xilinx Interface to Verilog-XL are the Verilog-XL
simulation module libraries: verilog2000, verilog3000, verilog4000,
and verilog7000.

X2VPrep Program
X2VPrep is a Cadence executable that is run before the execution of
XNF2Verilog. XNF2Verilog only handles a very specific and limited
subset of the XNF syntax, and X2VPrep ensures that the XNF file
used as input to XNF2Verilog uses only this subset of XNF.

Note: If the output file is not specified, the input file is overwritten
after it is processed by X2VPrep.

X2VPrep adds EXT records for sourceless and loadless signals to the
input XNF file when preparing a design sub-block containing
X-BLOX modules for functional simulation. It also removes INV
properties from non-combinatorial symbol pins, replacing them with
INV symbols in the input XNF file in preparation for processing by
XNF2Verilog. When processing a design containing X-BLOX
modules for functional simulation, X2VPrep must be run both before
XNFMerge and after X-BLOX.

Syntax

To run X2VPrep, type the following syntax at the command line:

x2vprep input_file[.xnf|.xg] [output_file.[xnf|xcd]]

The parameters of this syntax are as follows:

• input_file[.xnf|.xg] is the XNF file that X2VPrep reads. If you do
not provide a file extension, X2VPrep looks for a file with an .xnf
extension.

• output_file.[xnf|xcd] is the name of the XNF file that X2VPrep
generates. This parameter is optional; however, it is recom-
mended that you do specify a name for the output file with a .xcd



XACTstep Core Tools

4-10 Xilinx Development System

extension to prevent X2VPrep from overwriting the original
input file.

Example:

x2vprep foo.xnf  foo.xcd

To display the help text for X2VPrep, type:

x2vprep -help

XNF2Verilog Program
XNF2Verilog reads your XNF file and a pin file, and generates the
files that you need to perform simulation with the Verilog-XL simu-
lator. XNF2Verilog creates the following files from your XNF netlist
and a pin file:

• A Verilog model (.v) file

• A stimulus template (.stim) file

• An SDF delay (.sdf) file

The XNF file must be a gate-level description. All net and pin names
generated are Verilog-compliant.

Syntax

To run XNF2Verilog, type the following syntax at the command line:

xnf2verilog input_file.[xnf|xcd|xg] output_file \
OPTIONS

where OPTIONS corresponds to the following options, all of which
are required:

-arch architecture

-pin path_to_pinfile

-vlibs path_to_libraries

For timing simulation, there is an additional option to generate the
Standard Delay Format File (SDF):

-s sdf_file_name

The parameters of this syntax are the following.



Cadence Verilog-XL Interface and Libraries

XACTstep Core Tools 4-11

• input_file.[xnf|xcd|xg] is the XNF file that XNF2Verilog reads. If
no file extension is provided, XNF2Verilog looks for a file with an
.xnf extension.

• output_file (or Vlog Module Name) is the name to be used for the
output .v and .stim files; this parameter is required.

Example:

xnf2verilog input_file.[xnf|xcd] output_file-arch
architecture -pin path_to_pinfile -vlibs
path_to_libraries

Option Descriptions

• -arch architecture is a required option. It instructs XNF2Verilog to
use the package files for the family specified by architecture.
Valid architecture values are 2000, 3000, 4000, and 7000.

Example:

-arch 7000

• -pin path_to_pinfile is a required option. It gives XNF2Verilog the
name of the pin file, which must be specified by an explicit path
starting from the root directory. The pin file name corresponds to
the Xilinx architecture that you are targeting. Valid pin file names
are xc2000.pin, xc3000.pin, xc4000.pin, or xc7000.pin for XC2000,
XC3000, XC4000, or XC7000 devices, respectively. The pin files
contain information about how to connect unconnected pins in
the XNF file. It also contains information on whether a pin is
sizable and whether it should have a delay. XNF2Verilog uses
this information when generating the Verilog netlist. The pin files
are normally located in the directory install_dir/data/and thus
are specified as:

-pin install_dir/data/xc_family.pin

where install_dir is your Xilinx Interface to Verilog-XL installation
directory, and xc_family.pin must be replaced with xc2000.pin,
xc3000.pin, xc4000.pin, or xc7000.pin.

Example:

-pin /tools/xact/data/xc7000.pin

• -vlibs path_to_libraries is a required option. The Xilinx Interface to
Verilog-XL includes a set of Verilog libraries. When XNF2Verilog
runs, it creates a Verilog file containing a Uselib statement



XACTstep Core Tools

4-12 Xilinx Development System

pointing to these libraries. This statement points Verilog-XL to
the location of the simulation primitives when it runs a simula-
tion. You must use the -vlibs option to point to the Verilog library
directory appropriate to the architecture you are targeting. The
default location of the Verilog libraries is the following:

install_dir/ verilog_family

where verilog_family is either verilog2000, verilog3000,
verilog4000, or verilog7000. For example, if install_dir is specified
as an XACT directory called /tools/xact, the Verilog libraries for
an XC4000 design will usually be located in
/tools/xact/verilog4000.

Example:

-vlibs /tools/xact/verilog4000

• -s sdf_filename.sdf specifies the name of the .sdf delay annotation
file to be generated by XNF2Verilog. This flag is optional.
XNF2Verilog will not generate an .sdf file unless the -s option is
specified. The .sdf file contains all of a design’s timing informa-
tion, so you must specify this option when preparing a design for
timing simulation. The .sdf extension is recommended, but not
necessary.

Input Files

XNF2Verilog requires the following files:

• input_file.[xnf|xcd|xg] is the input XNF file, which may have an
extension of .xnf, .xcd or .xg. XNF2Verilog accepts unrouted XNF
files from XNFMerge, unrouted, synthesized netlists from
X-BLOX, and routed XNF files from LCA2XNF. In all cases, the
file must first be processed by X2VPrep. See the “Design Flow”
section for more details.

• pin_file. See the above section on XNF2Verilog options under
“-pin.”

Output Files

XNF2Verilog creates the following files:

• output_file.sdf contains the delay information to be annotated to
the Verilog primitives. The .sdf file is only generated when you
specify the -s option.



Cadence Verilog-XL Interface and Libraries

XACTstep Core Tools 4-13

• output_file.stim is a template Verilog stimulus file, which contains
an instantiation of the top-level Verilog module described in
output_file.v. This file sets all inputs to 0 (zero) at initialization
and includes a $gr_waves statement that includes all inputs and
outputs in the top-level module.

• output_file.v is the Verilog netlist file, which you use as input to
the Verilog-XL simulator. It contains instantiations of Xilinx
primitives, whose Verilog models are in install_dir/verilog_family,
where verilog_family is either verilog2000, verilog3000,
verilog4000, or verilog7000. This file does not contain timing
information; all timing information is stored in the SDF file.

Example:

xnf2verilog foo.xcd foo -s foo.sdf -arch 4000 \
-pin /tools/xact/data/xc4000.pin -vlibs /tools\
/xact/verilog4000

In this case, the design, foo, is an XC4000 netlist. The input file is
foo.xcd, and the output files are foo.v, foo.sdf, and foo.stim. The
XC4000 pin file specified in this example is located in /tools/xact/
data, and the library being used is in /tools/xact/verilog4000.

Simulation Scripts
This section provides reference information on the following Xilinx
Interface to Verilog-XL scripts:

• funcnetx

• timenetx

Funcnetx and timenetx provide a convenient one-step means of
generating a Verilog simulation netlist. Use funcnetx to process a
design for functional simulation, and timenetx to process a design for
timing simulation. The basic design flow is illustrated in the
following figure.



XACTstep Core Tools

4-14 Xilinx Development System

funcnetx Script
funcnetx is a C-shell script that runs x2vprep and xnf2verilog to
create files for Verilog-XL functional simulation. For information
about x2vprep and xnf2verilog, see the “x2vprep” and “xnf2verilog”

X6150

Edit/Create Design

Translate

Design

Implementation

Synthesize

Program Device

Functional Simulation

Timing

Simulation

XACT/XEPLD Tools

XNF

BIT/PRG/JED

Device

Programmer

STIM

Verilog-XL

LCA/VMH/VMD

Examine Results

Process for

Functional Simulation

Process for

Timing Simulation

XNF

Schematic HDL

Edit Stimulus

STIM Template SDFV

STIM

Verilog-XL

Examine Results

Edit Stimulus

STIM TemplateV

funcnetx

timenetx



Cadence Verilog-XL Interface and Libraries

XACTstep Core Tools 4-15

sections in this document. The funcnetx script is based on the
Cadence funcnet script, which is shipped with the DS381 interface.

If the environment variable, CDS_INTFC, is defined, the location of
the pin file for xnf2verilog is assumed to be the following:

$CDS_INTFC/xcXXXXX.pin

and the location of the appropriate library will be assumed to be

$CDS_INTFC/verilogXXXX

where XXXX is either 2000, 3000, 4000, or 7000. If CDS_INTFC is not
defined, you must specify the pin file and library locations explicitly
using the -pin and -vlibs options.

Syntax

funcnetx design_name

{2000 | 3000 | 4000 | 7000}

[-r run_dir] [-pin pin_file]

[-vlibs path_to_libraries]

[-noio] [-save]

The parameters of this syntax are as follows:

design_name (Required) flattened, gate-level XNF
file.

2000|3000|4000|7000 (Required) The target architecture
family of your design. Funcnetx
determines the appropriate flow to
use based on the target architecture.

[ -r run_dir ] (optional) Specifies the directory
wherefuncnetx looks for the input
Xilinx XNF files. The default is the
current working directory.

[ -pin <pin_file> ] (optional) Use specified pin file.This
is not needed if the variable
CDS_INTFC is declared in your
environment.



XACTstep Core Tools

4-16 Xilinx Development System

Example: funcnetx is most commonly called with only two parame-
ters, input design name, and type of architecture.

funcnetx foo 4000

In this example, the design name is “foo”, and the architecture is
XC4000.

Note: Functional simulation of XC7000 designs is not supported by
funcnetx.

Input Files

funcnetx requires the following file:

[ -vlibs <path_to_library> ] (optional) Use the Verilog library
option specified by path_to_library.
This option is not needed if the
variable CDS_INTFC is declared in
your environment.

-noio (optional) Do not add IBUFs,
OBUFS, or EXT records to the
design. By default,x2vprep inserts
I/O on loadless and sourceless
signals to prevent them from being
deleted prior to functional
simulation.

-save (optional) Save the intermediate files
generated byfuncnetx. The interme-
diate files include the .bxa, .blx, .xg,
.xcd, .xff, .xtg, .mrg, .prx, and .prp
files. By default, these files are
removed oncefuncnetx has
completed processing of a design.

design.xnf This is a flattened, gate-level XNF
file that represents your entire design.



Cadence Verilog-XL Interface and Libraries

XACTstep Core Tools 4-17

Output Files

The files and directories funcnetx produces are described in the
following table.

File/Directory Description

<design>.mrg is the report generated byxnfmerge, which is
called byfuncnetx.

<design>.xff is similar to the input XNF file, with the
following additions:

• Input EXT records are added to source-
less signals

• Output EXT records are added to
loadless signals

• Bidirectional EXT records are added to
bidirectional I/O signals

These additions to the XNF file permit you to
simulate a sub-block of your design.

<design> f.stim is a template Verilog stimulus file, which
contains an instantiation of the top-level
Verilog module described in <design>f.v. This
file:

• Sets all inputs to 0 (zero) at initialization

• Includes a$gr_waves statement that
includes all inputs and outputs on the top-
level module

<design> f.v is the Verilog netlist file, which you use as
input to the Verilog-XL simulator. It contains
instantiations of Xilinx primitives, whose
Verilog models arein <install_dir>/
verilogxxxx, wherexxxx represents either
2000, 3000, 4000 or 7000. These models do
not contain timing information.

funcnetx.log contains output messages from thefuncnetx
script.



XACTstep Core Tools

4-18 Xilinx Development System

Function

funcnetx executes the following commands:

xnfmerge
xnfprep (X-BLOX designs only)
xblox (X-BLOX designs only)
x2vprep
xnf2verilog

timenetx Script
timenetx is a C-shell script based on the Cadence timenet script
shipped with the DS381 interface. timenetx executes the following
programs to create files for Verilog-XL timing simulation, as listed in
the following table:

If the environment variable, CDS_INTFC, is defined, the location of
the pin file for xnf2verilog is assumed to be:

$CDS_INTFC/xcXXXXX.pin

and the location of the appropriate Verilog library is assumed to be:

Program Reference

lca2xnf
(XC2000, XC3000, XC4000)

For information, see the
Development System Reference
Guide, Vol. 3

vmh2xnf
(XC7000)

For information, see theXEPLD
Reference Guide

xnfba
(XC2000, XC3000, XC4000)

For information, see the
Development System Reference
Guide, Vol. 3

x2vprep For information, see the
“x2vprep” section in this
document

xnf2verilog For information, see the
“xnf2verilog” section in this
document



Cadence Verilog-XL Interface and Libraries

XACTstep Core Tools 4-19

$CDS_INTFC/verilogXXXX

where XXXX is either 2000, 3000, 4000, or 7000. You may also specify
the pin file and library locations explicitly using the -pin and -vlibs
options.

Syntax

timenetx design_name
{2000 | 3000 | 4000 | 7000}
[-pin pin_file]
[-vlibs path_to_library]

(-o output_file]
[-x]
[-cds]
[-r run_dir]

Options

• design_name is a timing-annotated LCA, VMD, or VMH file.

• {2000 | 3000 | 4000 | 7000} is the target architecture family of
your design. Timenetx determines the appropriate flow to use
based on the target architecture.

• [ -pin pin_file ] (optional) specifies the location of the pin file,
which must be specified by an explicit path starting from the root
directory. The pin file name corresponds to the Xilinx architecture
that you are targeting. Valid pin file names are xc2000.pin,
xc3000.pin, xc4000.pin, or xc7000.pin for XC2000, XC3000,
XC4000, or XC7000 devices, respectively. The pin files contain
information on how to properly connect unconnected pins found
in the XNF file when generating the Verilog code. The pin files
are normally located in the directory, install_dir/data/. If the
environment variable CDS_INTFC is defined, this option need
not be specified, as the pin file will be assumed to be in the
$CDS_INTFC/data directory. To specify a pin file location that is
different from this, use this syntax:

-pin new_dir/xc_family.pin

where new_dir is the directory where the pin file is located, and
xc_family.pin must be replaced with xc2000.pin, xc3000.pin,
xc4000.pin, or xc7000.pin.



XACTstep Core Tools

4-20 Xilinx Development System

Example:

-pin /tools/xact/data/xc7000.pin

• [ -vlibs path_to_library ] (optional) specifies the location of the
Verilog library for XNF2Verilog. If the environment variable
CDS_INTFC is defined, this option need not be specified. The
default location of the Verilog libraries assumed by timenetx is
the following:

$CDS_INTFC/verilog_family

where verilog_family is either verilog2000, verilog3000,
verilog4000, or verilog7000.

[ -o output_file ] (optional) specifies the name to be used for the
output .v, .stim, and .sdf files. This output file name must be
different from the input cellname. The default is input_filet.

[ -x] (optional) This option instructs timenetx to skip XNFBA. The
timenetx script will invoke this option automatically if it detects a
Synopsys block in the design, as back annotation of original
signal and symbol names is not supported for Synopsys designs.
The -x option is ignored for XC7000 designs. (XNFBA is not part
of the back annotation flow.)

[ -cds ](optional) This option instructs timenetx to skip the Xilinx
programs (LCA2XNF, XNFBA, VMH2XNF).

[ -r run_dir](optional) The -r option instructs timenetx to use the
specified run directory when generating the design netlist files.
The default is the current working directory.

Example:

-r xilinx.run

The -r option instructs timenetx to write all design netlist files to
the directory names xilinx.run

Input Files

timenetx requires the following files:

• A timing-annotated file: design.lca, design.vmd, design.vmh, or
design.xnf.



Cadence Verilog-XL Interface and Libraries

XACTstep Core Tools 4-21

Output Files

timenetx creates the following files:

• output_file.sdf contains the delay information to be annotated to
the Verilog primitives.

• output_file.stim is a template Verilog stimulus file, which contains
an instantiation of the top-level Verilog module described in
output_file.v. This file sets all inputs to 0 (zero) at initialization
and includes a $gr_waves statement that includes all inputs and
outputs on the top-level module.

• output_file.v is the Verilog netlist file, which you use as input to
the Verilog-XL simulator. It contains instantiations of Xilinx
primitives, whose Verilog models are in install_dir/verilog_family,
where verilog_family is either verilog2000, verilog3000,
verilog4000, or verilog7000. This file does not contain timing
information; all timing information is stored in the SDF file.

• designt.xbf is similar to designt.xnf, with the addition of the orig-
inal symbol and signal names from your schematic.

• designt.xnf is a gate-level XNF representation of your imple-
mented design. It contains timing information, but no parti-
tioning information.

• timenetx.log contains output messages from the timenetx script.

• xnf2verilog.info contains output messages from the xnf2verilog
program.

• xnfba.rpt contains the report generated by the XNFBA program.

Example:

timenetx foo.xnf 4000

In this case, the design, foo, is an XC4000 design. Timenetx reads the
input file is foo.lca, and the output file is foo.v. The XC4000 pin file
specified in this example is located in /tools/xact/data, and the
library being used is in /tools/xact/verilog4000.

Function

timenetx executes the following commands.

lca2xnf -wg



XACTstep Core Tools

4-22 Xilinx Development System

vmh2xnf -n

xnfba unrouted_xnf routed_xnf -o routed_xnf

xnf2verilog

Detailed Design Flow for Design Verification
Design verification includes both functional and timing simulation.
Functional simulation enables you to verify the logic of a design
before implementation. Timing simulation enables you to examine
the timing delays produced during implementation.

Although the following sections discuss functional and timing simu-
lation design flows in detail, you may use the simulation scripts func-
netx and timenetx to automate the process.

The following figure illustrates how design verification fits into the
overall design flow. The main steps are:

1. Edit/Create the Design using schematics or HDL (hardware
description language).

2. For designs entered in HDL, the next step is Synthesis of the
design.

3. Translate the design to XNF.

4. Functional Simulation. This verifies the design’s basic functionality
without taking delays into account. Note that there are two
subflows, one for designs containing X-BLOX and/or FILE=
modules, and one for designs containing only primitives and
macros.

5. Implement the Design. The implementation step is carried out
using the XACT and/or XEPLD tools.

6. Timing Simulation. The Xilinx Interface to Verilog-XL allows you
to run timing simulation of your design to verify delays and
performance.

7. Program the Device. After timing verification is complete, the
device can be programmed with the configuration data.



Cadence Verilog-XL Interface and Libraries

XACTstep Core Tools 4-23

Consult the Development System Reference Guide or the XEPLD Refer-
ence Guide for information on the following additional steps:

1. Performing static-timing analysis.

2. Editing the actual physical implementation of the design.

3. Downloading your design to a Xilinx FPGA or EPLD.

4. Using a PROM to configure a Xilinx FPGA.

X6085

Edit Schematic

Edit/Create Design

Translate

Design

Implementation

Synthesize

Program Device

Functional Simulation

Timing

Simulation

3rd Party Translator

XACT/XEPLD Tools

Design File

Edit HDL

3rd-Party Synthesis Tool

Design File

XNF

BIT/PRG/JED

Device

Programmer

STIM

Verilog-XL

LCA/VMH/VMD

Examine Results

Process for Functional Simulation

Process for Timing Simulation

Primitive

and Macro


Components Only

7K2K, 3K, 4K

Design Includes

X-BLOX,


FILE= modules

X2VPrep

XNF/XCD

XFF

XNFMerge

X2VPrep

XNF2Verilog

XFF/XCD

X2VPrep

XNF

XNF/XCD

XNFMerge

XFF

XNFPrep

XTG

X-BLOX

XG

X2VPrep

XG/XCD

LCA2XNF

XNFBA

XNF

X2VPrep

XNF/XBF

XNF/XCD

XNF2Verilog

Edit Stimulus

STIM Template SDFV

Skip if

design is from


Synopsys

or other


HDL synthesis

tool

VMH2XNF -l 5

XNF

3rd Party Translator

STIM

Verilog-XL

Examine Results

Edit Stimulus

STIM TemplateV




funcnetx

XDelay

timenetx



XACTstep Core Tools

4-24 Xilinx Development System

Functional Simulation
This section shows you how to prepare your design to ensure that it
simulates correctly and how to use the Verilog-XL simulator to func-
tionally simulate your design.

Xilinx strongly recommends that you functionally simulate your
design before you implement it. Functional simulation saves time in
the design cycle by identifying logical errors early in the design
process.

As the name implies, functional simulation only checks design func-
tionality. To find routing-related timing errors in your design, you can
perform timing simulation after you implement the design. Timing
simulation is described in the “Timing Simulation” section.

If functional simulation yields satisfactory results, you can proceed to
the design implementation step. If not, determine the source of the
errors, correct them in your design, and repeat functional simulation
until you achieve satisfactory results.

Note: Please note the following constraints on functional simulation:

1. Functional simulation of designs done in pre-unified libraries is
not supported by this package. You must use the 9402 interface to
process pre-unified designs for functional simulation.

2. Pre-route, post synthesis simulation of Synopsys designs is not
supported.

3. Functional or unit delay simulation of XC7000 designs is not
supported. Refer to the chapter on timing simulation for details
on simulating XC7000 designs with routing delays.

Preparing a Design for Functional Simulation

Before you functionally simulate your design, complete the following
steps:

1. If you are using schematics for design entry, ensure that the
design does not contain any CLB or IOB primitives. Unlike
macros, which are composed of primitives, CLB and IOB primi-
tive symbols do not have underlying simulation primitives and
therefore cannot be simulated functionally.



Cadence Verilog-XL Interface and Libraries

XACTstep Core Tools 4-25

2. If applicable, configure the “hidden” global set/reset pin on flip-
flop primitives to the design’s set/reset signal, as described in
your third-party design entry user guide.

3. If applicable, configure the “hidden” global 3-state pin on output
primitives to the design’s general 3-state signal, as described in
your third-party design entry user guide.

Design Flows for Functional Simulation

There are two basic Verilog-XL functional simulation design flows for
Xilinx designs. The flow that you use depends on the elements that
comprise your design. Designs with X-BLOX elements follow a
different functional simulation flow from designs without X-BLOX
elements. This section describes Verilog-XL functional simulation
flows for both types of designs.

Xilinx recommends that you use the funcnetx script to process your
design for functional simulation. The funcnetx script will pick the
appropriate flow for you automatically based on the target architec-
ture and types of elements found in your design.

The following sections describe the design flows in detail for users
who wish to process their design for simulation manually.

For additional information about using Verilog-XL, see the Verilog-XL
Configuration Guide, the Verilog-XL Reference Manual, or the Verilog-XL
Tutorial.

Detailed Design Flow for Functional Simulation of
Designs with Only Primitive and Macro Elements

The design flow for using the Verilog-XL simulator to functionally
simulate designs containing only primitive or macro library compo-
nents is shown in the following figure.



XACTstep Core Tools

4-26 Xilinx Development System

The procedure is as follows:

1. Run X2VPrep. X2VPrep adds inputs and outputs to your design
temporarily if you are processing only a sub-block of your
design. Note that the output file, design.xcd, has an XCD exten-
sion to prevent X2VPrep from overwriting the original XNF file.
Specifying the XNF extension for the input file is optional.

x2vprep design[.xnf] designf.xcd

2. Merge the design to produce a flattened XFF file. Use the
following command:

xnfmerge design.xcd design[.xff]

X6089

X2VPrep

XNF/XCD

XFF

XNFMerge

X2VPrep

XFF/XCD

Edit Schematic

Edit/Create Design

Translate

Synthesize

3rd Party Translator

Design File

Edit HDL

3rd-Party Synthesis Tool

Design File

XNF

3rd Party Translator

STIM

Verilog-XL

Examine Results

XNF2Verilog

Edit Stimulus

STIM TemplateV

funcnetx



Cadence Verilog-XL Interface and Libraries

XACTstep Core Tools 4-27

3. Run X2VPrep to convert INV attributes to inverter symbols and
to convert the netlist to the proper subset of XNF for
XNF2Verilog.

x2vprep design.xff design.xcd

Again, a .xcd extension is added to the output filename,
design.xcd, to prevent X2VPrep from overwriting the original
XFF file.

4. Run XNF2Verilog to generate the Verilog source, stimulus, and
standard delay format files.

xnf2verilog designf.xcd designf -arch \
architecture -pin path_to_pinfile \
-vlibs path_to_library_directory

Example:

xnf2verilog mydesignf.xcd mydesignf -arch 4000 \
-pin /tools/xact/data/xc4000.pin -vlibs /tools\
/xact/verilog4000

This example uses the XC4000 architecture. The explicit path to
the pin file, xc4000.pin, is /tools/xact/data/xc4000.pin. The
verilog4000 simulation library is located in
/tools/xact/verilog4000. The input design name is
mydesignf.xcd, and the output files will be named

mydesignf.[ext]

For example,

mydesignf.v
mydesignf.stim
mydesignf.sdf

In this example

• mydesignf.v is the Verilog source file.

• mydesignf.stim is the Verilog stimulus file.

• mydesignf.sdf is the standard delay format file containing
routing delays.

5. Add the stimulus for your design to the stimulus template
(STIM) file (mydesignf.stim, in this example).



XACTstep Core Tools

4-28 Xilinx Development System

6. Invoke the Verilog-XL simulator by entering the following at the
command line:

verilog designf.v designf.stim [options]

This syntax is composed of the following parameters:

• designf.v is the Verilog-XL netlist created by XNF2Verilog.

• designf.stim is the stimulus file created by XNF2Verilog.

• options refers to the Verilog-XL command-line options.

Detailed Design Flow for Functional Simulation of
Designs Containing X-BLOX and/or FILE= modules

The following figure displays the design flow involved in using the
Verilog-XL simulator to functionally simulate XC2000 and XC3000
designs containing FILE= modules, and XC3000A and XC4000
designs containing X-BLOX or FILE= modules.



Cadence Verilog-XL Interface and Libraries

XACTstep Core Tools 4-29

The flow is as follows:

1. Run X2VPrep to add inputs and outputs to your design tempo-
rarily if you are processing only a sub-block of your design.

x2vprep design[.xnf] design.xcd

X2VPrep

X6093

XNF/XCD

XNFMerge

XFF

XNFPrep

XTG

X-BLOX

XG

X2VPrep

XG/XCD

Edit Schematic

Edit/Create Design

Translate

Synthesize

3rd Party Translator

Design File

Edit HDL

3rd-Party Synthesis Tool

Design File

XNF

3rd Party Translator

STIM

Verilog-XL

Examine Results

XNF2Verilog

Edit Stimulus

STIM TemplateV

funcnetx



XACTstep Core Tools

4-30 Xilinx Development System

Note that the output file, design.xcd, has a .xcd extension to
prevent X2VPrep from overwriting the original XNF file. Speci-
fying the .xnf extension for the input file is optional.

2. Merge the design to produce a flattened XFF file. Use the
following command:

xnfmerge design.xcd design[.xff]

3. Check the design for errors.

xnfprep design.xff design[.xtg]

4. Run X-BLOX on the design to expand the X-BLOX modules

xblox design[.xtg] [design.xg]

5. Run X2VPrep to convert INV attributes to inverter symbols and
convert the netlist to the required subset of XNF for XNF2Verilog.

x2vprep design.xg designf.xcd

In this case the .xg extension is required for the input file. Also,
for the output file, Xilinx recommends that you rename it designf
and specify a .xcd extension to distinguish the output file from
the input .xg file and the output from the first run of X2VPrep.

6. Run XNF2Verilog to generate the Verilog source, stimulus, and
standard delay format files.

xnf2verilog designf.xcd designf -arch \
architecture -pin path_to_pinfile -vlibs \
path_to_library_directory

Example:

xnf2verilog mydesignf.xcd mydesignf -arch 4000 \
-pin /tools/xact/data/xc4000.pin -vlibs /tools\
/xact/verilog4000

This example uses the XC4000 architecture. The pin file,
xc4000.pin, is located in /tools/xact/data/xc4000.pin. The
XC4000 Verilog simulation library is located in
/tools/xact/verilog4000. The input design name is
mydesignf.xcd, and the output files are named mydesignf.v
(Verilog source file), mydesignf.stim (Verilog stimulus file), and
mydesignf.sdf (standard delay format file containing routing
delays).



Cadence Verilog-XL Interface and Libraries

XACTstep Core Tools 4-31

7. Add the stimulus for your design to the stimulus template
(STIM) file.

8. Invoke the Verilog-XL simulator by entering the following at the
command line:

verilog designf.v designf.stim [options]

This syntax is composed of the following parameters:

• designf.v  is the Verilog-XL netlist created by XNF2Verilog.

• designf.stim  is the stimulus file created by XNF2Verilog
and edited by the user.

• options  refers to additional Verilog-XL command-line
options you may wish to include.

Timing Simulation
This section shows you how to use the Verilog-XL simulator to
perform timing simulation on your XC2000, XC3000, XC4000, or
XC7000 family design.

After implementing your design, you should simulate its timing to
ensure that its performance meets your expectations. Timing simula-
tion verifies the timing relationships within the design and deter-
mines the critical paths for the design under worst-case conditions.
You can also use timing simulation to determine if your design
contains setup or hold violations.

If you determine that the implementation of the design is satisfactory,
you can download it to a Xilinx FPGA or program the Xilinx EPLD. If
not, you can either re-implement the design, or you can use the
XACT Design Editor to alter the actual placement and routing of the
design.

It is recommended that you use the timenetx script for processing
your design. The timenetx script will select the appropriate flow to
use for you based on your target architecture and the types of
elements in your design.

The following sections describe the design flows in detail for users
who wish to process their designs for simulation manually.



XACTstep Core Tools

4-32 Xilinx Development System

Detailed Design Flow for Timing Simulation of
XC2000, XC3000, and XC4000 FPGA Designs

The flow for processing an XC2000, XC3000, or XC4000 design for
post-route timing simulation with the Verilog-XL simulator is illus-
trated in the following figure. The starting point is a routed LCA with
routing delays annotated to it, and the outputs are a Verilog source
file (.v), a stimulus template file (.stim), and a delay annotation file
(.sdf).

To simulate the timing of your XC2000, XC3000, or XC4000 series
design using the Verilog-XL simulator, execute the following steps
from your design directory. The overall flow is shown in the figure
above.

LCA2XNF

X6088

XNFBA

XDELAY

XNF

LCA

X2VPrep

XNF/XBF

XNF/XCD

XNF2Verilog

Edit Stimulus

STIM Template SDFV

Verilog-XL

STIM

Examine Results

Skip if design is from

Synopsys or other

HDL synthesis tool

Design

Implementation

XACT Tools

LCA

timenetx



Cadence Verilog-XL Interface and Libraries

XACTstep Core Tools 4-33

1. If you did not generate your routed LCA file using XMake 5.x,
run XDelay on your design to annotate routing delays to the LCA
file.

xdelay -dw design[.lca]

2. Generate the routed XNF file.

lca2xnf design[.lca] designt[.xnf]

Here, design is the name of the input LCA file, and designt is the
name selected for the output XNF file. Xilinx recommends that
you append the “t” extension to your routed XNF file to distin-
guish it from the unrouted XNF file and to avoid overwriting the
unrouted XNF file.

3. Run XNFBA to back-annotate net and instance names to the post-
route XNF file. (Skip this step if you are simulating a Synopsys
design, because you will not have gates to which you can back-
annotate.)

xnfba design designt[.xnf] -o designt.xbf

4. Convert INV attributes to INV gates for XNF2Verilog.

x2vprep designt.xbf designt.xcd

Use the extension .xbf, if you run XNFBA as specified above in
step 3. If you skip XNFBA, use the .xnf extension for the input
filename.

5. Run XNF2Verilog to generate the Verilog source (.v), stimulus
(.stim), and standard delay format (.sdf) files.

xnf2verilog designt.xcd outputfilename -s \
designt.sdf -arch architecture -pin \
path_to_pinfile -vlibs path_to_library_directory

Example:

xnf2verilog mydesignt.xcd mydesignt -s mydesignt.sdf\
-arch 4000 -pin /tools/xact/data/xc4000.pin \
-vlibs /tools/xact/verilog4000

6. Add the stimulus for your design to the stimulus template (.stim)
file.

7. Invoke the Verilog simulator by entering the following at the
command line:

verilog designt.v designt.stim [options]



XACTstep Core Tools

4-34 Xilinx Development System

This syntax is composed of the following parameters:

• designt.v is the Verilog-XL netlist created by XNF2Verilog.

• designt.stim is the stimulus file created by XNF2Verilog.

• [options] refers to the Verilog-XL command-line options.

Detailed Design Flow for Timing Simulation of XC7000
Designs

The flow for processing an XC7000 design for post-route timing simu-
lation with the Verilog-XL simulator is illustrated in the following
figure. The input is a VMH or VMD file, and the outputs are a Verilog
source file (.v), a stimulus template file (.stim), and a delay annotation
file (.sdf).

The following steps describe the flow you need to follow to do a
timing simulation on an XC7000 design using the Verilog-XL simu-
lator.

1. Generate a post-route XNF file from the routed VMH file.

vmh2xnf -l 5 -n designt[.vmh] -o design[.xnf]

VMH2XNF

X6084

X2VPrep

XNF

XNF/XCD

XNF2Verilog

Edit Stimulus

STIM Template SDFV

Verilog-XL

STIM

Examine Results

Design

Implementation

XEPLD Tools

VMH/VMD

timenetx



Cadence Verilog-XL Interface and Libraries

XACTstep Core Tools 4-35

2. Convert INV attributes to INV gates for XNF2Verilog.

x2vprep designt[.xnf] designt.xcd

3. Run XNF2Verilog to generate the Verilog source (.v), stimulus
(.stim), and standard delay format (.sdf) files.

xnf2verilog designt.xcd designt -s designt.sdf \
-arch architecture -pin path_to_pinfile \
-vlibs path_to_library_directory

Example:

xnf2verilog mydesignt.xcd mydesignt \

-s mydesignt.sdf -arch 7000 \

-pin /tools/xact/data/xc7000.pin \

-vlibs /tools/xact/verilog7000

In this example, the Verilog interface has been installed in
/tools/xact.

4. Add the stimulus for your design to the stimulus template (.stim)
file.

5. Invoke the Verilog simulator by entering the following at the
command line:

verilog designt.v designt.stim [options]

This syntax is composed of the following parameters:

• filename.v is the Verilog-XL netlist created by XNF2Verilog.

• filename.stim is the stimulus file created by XNF2Verilog.

• [options] refers to the Verilog-XL command-line options.

Note: To initialize an XC7000 simulation, you must first toggle the
active low PRLD signal low for 100ns to reset all the flip-flops in the
XC7000 device.



XACTstep Core Tools

4-36 Xilinx Development System

Known Issues
This section describes the known issues and solutions for this
Cadence Verilog-XL release.

Functional Simulation

Functional Simulation of Pre-Route, Post-Synthesis
XNF Netlists from Synopsys

Platform: All
Architecture: All
Design Step: Functional Simulation
Reference Number: Not Available

Currently, post-synthesis functional simulation of Synopsys designs
is not supported. To obtain a post-synthesis gate-level functional
simulation netlist, you must place the design using PPR to translate
all of the modules into primitives, then follow a timing-simulation
netlist flow to generate a netlist that can be simulated. The flow is the
following

xmake -n design

ppr design route=false placer_effort=1

lca2xnf design design t

x2vprep design t design t.xcd

xnf2verilog -arch family  -pin path_to_pinfile  -vlibs
path_to_library design t.xcd design t

XNF2Verilog V9504-1-30B Cannot Resolve All Pin
Names in a MemGen-Generated XNF File

Platform: All
Architecture: XC4000
Design Step: Functional Simulation
Reference Number: 22108

XNF2Verilog usually flags the problem with this message:

ERROR:

Could not find primitive OR2, pin i2 in
does_pin_have_delay.



Cadence Verilog-XL Interface and Libraries

XACTstep Core Tools 4-37

The Verilog-XL simulator issues this error:

Error! Port (i2) not found in module definition
[Verilog-PNFMD].

MemGen numbers combinational logic gate input pins starting from
I1. This method differs from the way Cadence numbers pins in its
Verilog simulation library primitives; these pins start at I0.
XNF2Verilog V9502 is unable to resolve the differences in the pin-
numbering conventions between MemGen and the Verilog library.
Trying to process a design with a MemGen block in it for functional
simulation causes the error just given during Verilog simulation.

In timing simulation, this problem appears if the design contains a
MemGen block, and you run XNFBA to restore the original pin
names.

Since MemGen only generates memory blocks for XC4000 designs,
this problem is not encountered in XC2000, XC3000, or XC7000
designs.

As a solution, pre-process the design through XMake, and use PPR to
place the design without routing it. Then complete processing with
LCA2XNF, X2VPrep, and XNF2Verilog. Since the design is not
routed, all delays in the routed XNF file are unit delays. Use this
sequence of commands:

xmake -n design

ppr design.xtf placer_effort=1 -route=false

lca2xnf design design t

x2vprep design

xnf2verilog

Do not run XNFBA, because it back-annotates the original MemGen-
style pin names.

Functional Simulation of Designs Implemented Using
the Pre-Unified Libraries Is Not Supported By This
Package

Platform: All
Architecture: XC2000, XC3000, XC4000
Design Step: Functional Simulation
Reference Number: Not Available



XACTstep Core Tools

4-38 Xilinx Development System

If your design is entered using pre-Unified libraries, you must use the
Cadence 9402 interface to process the design. The application note
“Using the Xilinx Interface 4.0 with XACT 5.0” describes the proce-
dure for processing pre-Unified designs in detail.

Contact Cadence technical support at 1-800-223-3622 or Xilinx tech-
nical support at 1-800-255-7778 to request a copy.


